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ABSTRACT 
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Doctor of Philosophy 

EFFECTIVE COMPUTATION OF ACOUSTIC PROPAGATION IN TURBOFAN BYPASS DUCTS 

by Vincent Hii Jiu Ta 

In this thesis, a numerical mode matching (MM) procedure is applied to the acoustic analysis of turbofan 

intake and bypass ducts. The expansion of the sound field in a duct in terms of modes forms the basis for 

many analytic and semi-analytic methods in duct acoustics. It has many attractive features such as reducing the 

dimension of the problem. By matching expansions of such eigensolutions at the interface between different 

uniform duct segments, the effect of axial variations of impedance can be modelled with far fewer parameters 

than would be required for a three-dimensional numerical transmission analysis. The current MM scheme can 

be applied readily to axially uniform ducts of arbitrary cross-section with non-uniform flow and impedance 

boundaries. This research focuses on predicting accurately the attenuation by the acoustic treatments within 

engine ducts in a computationally efficient way. Specially the main goal of the research is to ascertain the 

effectiveness of the MM method to study large three-dimensional ducts at realistic high frequencies within an 

engineering time scale. 

A reVIsed MM procedure has been proposed in this research. It is different to the existing approach em­

ployed by Beckemeyer [1], Cummings [2] and Sijtsma [3] in their studies of duct acoustics. When flow is 

present in the duct, the revised MM procedure yields solutions which give better agreement with the finite 

element (FE) transmission analysis than those using the existing approach. When no flow in the duct, both 

approaches are equivalent. The research has shown that the revised MM scheme has correctly modelled a range 

of benchmarK problems and converged to the correct solutions with a small number of duct modes. The re­

search has also shown that the revised MM procedure is capable of studying sound diffraction by a splitter in 

the two-dimensional flow duct. The MM scheme also shows less computation times and storage requirement 

than the FE transmission analysis when applied to study a three-dimensional problem. 

Issues regarding the computation of duct eigenvalues and eigenfunctions in the presence of uniform and 

sheared flows have also been addressed in the research. An FE eigenvalue model has been developed for 

cticulating the eigeI1modes in ducts of arbitrary cross-section and with non-uniform impedance boundaries 

and flow. The accuracy and convergence of the FE eigenvalue model has been extensively validated using the 

analytical .solutions and the results in the literatures obtained by other methods. The effects of non-uniform 

mean flow and acoustic impedance boundaries on the modal sound field in a duct have been studied using 

the validated FE eIgenvalue model. The study has also shown that using an iterative routine (ARPACK), sets 

of propagating eigenmodes can be obtained at modest computational cost for frequencies and flow conditions 

which arc characteristics or turbofan intake and bypass ducts. 



Contents 

Introduction 

1.1 Overview 

1.1.1 Outline 

1.1.2 Aircraft Noise and Reduction 

1.2 Methods Currently Available .. 

1.2.1 Mode Matching Method 

1.2.2 Multiple Scales Method 

1.2.3 Parabolic Equation Approximation Method 

I .2.4 Ray Theory . . . . . . . . . . . 

1.2.5 Finite/Infinite Element Methods 

1.2.6 The Discontinous Galerkin Method 

1.2.7 Linearized Euler Equations (LEE) Computation Aeroacoustics Scheme 

1.2.8 Multi-modal Method 

1 .. 1 Motivations..... 

1.4 Research Objectives. 

1.5 Original Contributions 

1.6 Thesis Outline ..... 

2 Theory: Eigenvalues and Eigenfunctions of Flow Ducts 

2.1 Introduction.. 

2.1.1 Outline 

7 7 Acoustic Modes In A Duct 

2.2.1 Uniform Flow ... 

2.2.2 Non-Uniform flow 

2.3 Derivation of The Pridmore-Brown Equation 

2.3.1 Acoustic Boundary Condition .... 

1 

2 

2 

5 

5 

6 

8 

9 

lO 

I I 

12 

14 

IS 

17 

17 

19 

21 

21 

22 

22 

22 

23 

25 

27 



Contents 

2.4 Formulation Of Eigenvalue Problems ........... . 

2.4.1 Sheared Flow With No-Slip Boundary Conditions. 

2.4.2 Uniform Flow With Slip Boundary Conditions 

2.5 Methods for the Solutions of Eigenvalue Problems 

2.5.1 The Finite Element Method 

2.5.2 Three-dimensional Problems 

2.5.3 Eigenvalue Routines 

2.5.4 Analytical Method 

2.6 Surface Waves ...... . 

3 Results: Two-dimensional Eigenvalue Problems - Validation and Application 

3.1 Introduction .. 

3.1.1 Outline 

3.2 Problem Specification. 

3.2. I Test Problems. 

3.3 Eigen-Solution .... 

3.3.1 Acoustic Modes 

Benchmark Results 

3.4 Uniform Flow Results ... 

3"+.1 Assessment of Accuracy of the FE Solutions for a Fixed Mesh - Uniform Flow 

3.4.2 Convergence of the FE Solutions - Uniform Flow ....... . 

3.4.3 Comparison with Previously Computed Results - Uniform Flow 

.~.-+.4 Surface Waves - Uniform Flow. 

3.5 Sheared Flow Results ......... . 

ii 

28 

28 

28 

29 

29 

33 

34 

35 

36 

39 

39 

40 

40 

40 

41 

41 

44 

44 

44 

46 

49 

52 

54 

3 . .5.1 Assessment of Accuracy of the FE Solutions for a Fixed Mesh - Sheared Flow 54 

3.5.2 Convergence of the FE Solutions - Sheared Flow 56 

3.5.3 FE Mesh Uniformity . . . . . . . . . . . . . . . 57 

3.5.-+ Effect of Shear Flow on the Propagation and Attenuation of Acoustic Modes In Ducts 57 

3.5.5 Comparison with Previously Computed Results - Sheared Flow 58 

.).6 Conclusions ............................... . 

4 Results: Three-Dimensional Eigenvalue Problems - Validation And Application 

4.1 I Illroduction . . 

4.1.1 Outline 

59 

68 

68 

69 



Contents 

4.2 Problem Specification .. 

4.2. I Numerical Model 

4.2.2 Duct Mode Classification. 

4.3 Results......... .. 

4.3.1 Benchmark Results 

iii 

69 

70 

71 

72 

72 

4.3.2 Performance of Different Finite Element Meshes To the Accuracy of the FE Solution 72 

4.3.3 Assessment of Accuracy of the FE Solutions 73 

4.3.4 Convergence of the FE Solutions. 

4.4 Application: Spliced Liners Study 

4.4.1 No Flow Case. . .. 

4.4.2 Uniform Flow Case. 

4.5 Performance Study 

4.6 Cunclusions .... 

74 

76 

79 

80 

83 

85 

5 Application of Mode Matching Techniques To Study Sound Transmission in Flow Ducts. 88 

5. I Introduction......... 88 

5.2 Specification of the problem 89 

5.2.1 General Case .. 

5.3 Moue Matching Methods 

5.4 Trauitional Mode Matching By The Galerkin Weighted Residual Method 

5.4.1 Traditional Mode Matching By The Least Squares Method .... 

5.4.2 New Mode Matching Method By The Galerkin Weighted Residuals 

5.5 Application of NMMM To Study Sound Transmission In Flow Ducts. 

5.5. I Duct (A) With Impedance Discontinuities 

5.5.2 Iterative Method ... 

5.5.3 Acoustic Performance 

5.5.4 Duct (B) With An Infinitely Thin Splitter 

6 Finite Element Method 

6.1 Introduction.. 

6.1.1 Outline 

6.2 Problem Specification. 

6.2.1 Benchmark Results 

6.3 Derivation or The Converted Wave Equation. 

89 

90 

92 

93 

94 

99 

100 

101 

101 

103 

105 

105 

105 

105 

106 

106 



Contents 

6.4 Velocity Potential Formulation ... 

6.4.1 The FE Transmission Model 

6.4.2 Admittance Boundary 

6.4.3 Modal Boundary . . . 

6.5 Steady Compressible Mean Flow Calculation 

6.5.1 Problem Specification 

6.5.2 The FE Flow Model 

6.5.3 Iterative Procedure . 

6.6 Validation of The Finite Element Results. 

6.7 A Numerical Study of Varying Splitter Thickness on Sound Propagation In A Duct 

6.~ Conclusions .................................... . 

7 Results: Two-Dimensional Mode Matching Problems - Validation and Application 

7 .1 Introduction.. 

7.1.1 Outline 

7.2 Problem Specification. 

7.2.1 Modal Scattering 

7.2.2 FE Models " . 

7.2.3 Mode Matching Models 

7.3 Benchmark Results . . . . . . . 

7.4 Assessment of Accuracy of the New Mode Matching 

7.-+.1 Hardwalled Duct 

7.-1-.2 Softwalled Duct 

7.5 Convergence of the New Mode Matching Method 

7.6 Cialerkin Weighted Residuals Method and Least Squares Method 

7.7 Case Study Results ....................... . 

iv 

107 

108 

110 

111 

116 

116 

116 

118 

118 

119 

120 

125 

125 

125 

126 

126 

127 

127 

128 

129 

129 

129 

131 

132 

133 

7.7.1 Case Study I: Acoustic Scattering By An Impedance Discontinuity In The Duct 133 

7.7.2 Case Study 2: Sound Propagation In A Duct Containing Surface Waves . . . 135 

7.7.3 Case Study 3: Sound Diffraction By An Infinitely Thin Splitter In The Duct. 137 

7.~ Computation Time 

7.l) Conc lusions . . 

X Results: Three-Dimensional Mode Matching Problems - Validation and Application 

~.I Introduction . . . 

143 

144 

147 

147 



Contents 

X.I.I Outline .... 

8.2 Problem Specification. 

~.2.1 Modal Scattering 

~.2.2 Mode Matching Models 

X.2.3 FE Models ...... . 

X.3 Assessment of Accuracy of the New Mode Matching 

XA Convergence of the New Mode Matching Method 

~.5 Acoustic Scattering By Liner Splices. 

~.6 

X.5.1 Broadband Analysis .... 

~.5.2 Engine Order Tone Analysis 

Cunclusions ..... 

9 Summary of' Conclusions 

0.1 Conclusions Arising From The Work. 

0.2 Future Research ........... . 

A 

List of References 

v 

148 

149 

149 

149 

150 

lSI 

153 

155 

156 

157 

158 

167 

167 

168 

170 

172 



List of Figures 

1.1 A cross-section cut of a typical high bypass ratio turbofan aero-engine and the major noise 

sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2 NASA experimental treated nacelle mounted on McDonnell Douglas DC-8 airplane. [4] 

1.3 A potential arrangement of radial and circumferential splitters in an idealised 1/6 scale test rig 

for SILENCE(R) no flow test. 

1.4 (a)-( h) An idealised bypass duct model with a circumferentially and axially varying acoustic 

liner and its two-dimensional model. (c)-Cb) An idealised bypass duct model with radial splitters 

vi 

4 

5 

6 

and its two-dimensional model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

1.5 An idealised bypass duct model can be represented in two-dimensions by a rectangular duct. 8 

1.6 (a)-(b) An idealised inlet duct model with an axially varying acoustic liner and its two-dimensional 

model. (cHe!) An idealised inlet duct model with two liner splices and its two-dimensional model. 9 

1.7 Stencils at the reference node Xi.j for (a) the conventional sixth-order scheme and (b) the sixth-

Dreier compact scheme. 

2.1 Schematic of downstream and upstream sound propagation. (a) For downstream wave propaga­

tion. wavefront is refracted into the duct walls by the velocity gradient. (b) For upstream wave 

prupagation. wavefront is refracted away from the duct walls. 

.., .., (a)-(b) Duct models. (c) FE mesh .............. . 

2.3 (a) ~-nocled quadrilateral element. (b) 6-noded triangular element. • - interelement node and 0 

14 

24 

25 

- midsicle node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34 

2.4 (a) A structured FE mesh constructed from 8-noded quadrilateral elements. (b) An unstructured 

FE mesh constructed from 6-noded triangular elements. 35 

2.5 Duct model. . . . . 37 

2.6 A complex impedance plane with five regions showing the presence of different types of surlace 

waves fur iVI" = 0.5 [5] ....... . 38 



List of Figures vii 

3.1 (a)-(b) Sketches of a two-dimensional duct geometry and the coordinate system for the duct, 

(c) Finite element grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 41 

3.2 (a) A softwalled duct with uniform mean flow. (b) Finite element subdivision of the duct with 

using a uniform mesh. 0 interelement node, x midside node. . . . . . . . . . . . . . . . . .. 43 

3.3 (a) A softwalled duct with a sheared mean flow. (b) Finite element subdivision of the duct width 

using a uniform mesh. (c) Finite element subdivision of the duct width using a nonuniform 

mesh. 0 interelement node. x midside node. . . . . . . . . . . . . . . . . . . . . . . . . . .. 43 

3.4 Error plotted against mode number for kh =5. Mo = 0.4,2,,=2 - 2.34423i and ZI=oo + ooi. (a) 

Positive acoustic modes. (b) Negative acoustic modes . . . . . . . . . . . . . . . . . . . . .. 48 

3.5 Error plotted against mode number for kh = 10. M" = 0.4. 2,,=2 - 1. I 4423i and ZI=oo + ooi. (a) 

Positive acoustic modes. (b) Negative acoustic modes . . . . . . . . . . . . . . . . . . . . .. 48 

3.6 Error plotted against mode number for kh = 20. Mo = 0.4, 2,,=2 + I .25576i and ZI=oo + ooi. (a) 

Positive acoustic modes. (b) Negative acoustic modes . . . . . . . . . . . . . . . . . . . . .. 49 

3.7 DLict axial wavenumbers in the complex plane for kh = 5. FE and exact solutions are presented. 

M" = 0.4. 2,,=2 - 2.34423i and 21=00 + ooi. (a) Positive acoustic modes (b) Negative acoustic 

modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.iI Duct axial wavenumbers in the complex plane for kh = 10. FE and exact solutions are pre­

sented. M" = 0.4. 2,,=2 - 1.14423i and 21=00 + ooi. (a) Positive acoustic modes. (b)Negative 

acoustic modes. . . . . . . . . . . . . . . . . . . . . . . . . 

3.9 Duct axial wavenumbers in the complex plane for kh = 20. FE and exact solutions are pre­

sented. M() = 0.4. 2,,=2 + 1.25576i and 21=00 + ooi. (a) Positive acoustic modes. (b) Negative 

acoustic modes. . . . . . . . . . . . . . . . . . .. 

3.1 () Convergence study of the FE eigenvalue model. Error plotted against mode number for different 

mesh resolutions. kh =20. M" = 0.4. 2,,=2 + 1.25576i and 21 = 00 + ooi. (a) Positive acoustic 

49 

so 

so 

modes. (b) Negative acoustic modes. .............................. 5 I 

3.1 I Comparison of FE solutions with previously computed results. Error plotted against mode 

number for uniform mean flow of Mach number 0.4 in the positive x direction. kh = 6. A" = 

0.72 -1- 0.42i and AI = 0 + Oi. (a)Positive acoustic modes (b )Negative acoustic modes .. . .. 53 

3.12 Comparison of exact and FE computed eigenvectors of mode 1 + to mode 11+ for a two­

dimensional lined duct with uniform mean flow of Mach number 0.4 in the positive x direction. 

kh = 60. A" = 0.72 + 0.42i and AI = 0 + Oi. Duct mode 6+ in (h) is a surface wave. -0-. 

Real(FEM).-+-. Real(Exact). - 0 -. Imaginary(FEM). -. -. Imaginary(Exact). . . 61 



List of Figlll'es viii 

3.13 Eigenvectors of the surface waves - Configuration L Z, = 0.1 - 3i, Z" = 0.1 - 3i, Mn = 0.5 and 

kh = 36. The eigenvectors have been normalized to the maximum absolute pressure. ..... 62 

3.14 (a) A constant gradient boundary layer, (b) A sheared flow with a boundary layer thickness 8. 63 

3.15 Error plotted against mode number for a lined duct containing a sheared flow with a constant 

gradient boundary layer. kh = 1.1, Mo = 0.3, A/J=I.14 - 0.5447i and A,=O + Oi. (a) Positive 

acoustic modes (b) Negative acoustic modes . . . . . . . . . . . . . . . . . . . . . . . . . .. 63 

3.16 Error plotted against mode number for a lined duct containing a sheared flow with a boundary 

layer of thickness 8/h = 0.2. kh = 10, Mo = 0.3, A,,=O.073 - O.I77i and A,=O +Oi. (a) Positive 

acoustic modes, (b) Negative acoustic modes. . . . . . . . . . . . . . . . . . . . . . . . . .. 63 

3.17 Duct axial wavenumbers in the complex plane for a lined duct containing a sheared flow with 

a constant gradient boundary layer. FE and exact solutions are presented. kh = 1.1, Mo = 0.3, 

A,,= 1.14 - 0.5447i and A,=O + Oi. (a) Positive acoustic modes, (b) Negative acoustic modes. 64 

3.18 Duct axial wavenumbers in the complex plane for a lined duct containing a sheared flow with 

houndary layer of thickness 8/ h = 0.2. kh = 10, M" = 0.3, A,,=0.07 - 0.18i and A,=O + Oi. (a) 

Pos i ti ve acoustic modes. (b) Negative acoustic modes. . . . . . . . . . . . . . . . . . . . . .. 64 

3.1 L) Convergence study of the FE solutions. Error plotted against mode number for different FE 

mesh resolutions. Sheared flow with a boundary layer of thickness 8/ h = 0.2. kh =20, Mo = 

() 3. Z/,=2. () + 5. 804i and Z, == + ooi. (a) Posi tive acoustic modes, (b) Negative acoustic modes 64 

3.20 Uniform and nonuniform meshes. ................................ 65 

3.21 Comparison between the FE solutions obtained using uniform and nonuniform meshes. Error 

plotted against mode number for a lined duct containing a sheared flow with a boundary layer of 

thickness 8/ h = 0.2. Mil = 0.3. kh = 20, Z" = 2 + 5.804i and Z,=oo + ooi . (a) Positive acoustic 

modes. (b) Negative acoustic modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65 

3.22 Duct axial wavenumbers of an acoustically lined duct containing a uniform flow and a sheared 

flow in the complex plane. kh = 10. Z" = 2 + 5. 80i and Z, = 00 + ooi (a)Positive acoustic modes, 

(h) Negative acoustic modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65 

3.23 (a) Velocity gradient of the boundary layer refracts the sound that propagates with the flow into 

a narrow layer near the lined wall, (b) Velocity gradient of the boundary layer refracts the sound 

that propagates against the flow away from the lined walL . . . . . . . . . . . . . . . . . . .. 66 



List of Figul'es 

3,24 Comparison of the current FE solutions with the previously computed results. Errors of the 

Astley-Eversman FE eigenvalue model, of the current FE eigenvalue model and of the MWR 

plotted against the mode number for a lined duct containing a sheared flow with a boundary 

layer thickness 8/ h = 0.2. kh = I, M() = 0.3, A{=-0.055 + 0.272i and Ab=O + Oi. (a) Positive 

acollstic modes, (b) Negative acoustic modes. . . . . . . . . . . . . . . . . .. 

3.25 Comparison of the current FE solutions with the previollsly computed results. Errors of the 

Astley-Eversman FE eigenvalue model, of the current FE eigenvalue model and of the MWR 

solutions plotted against the mode number for a lined duct containing a sheared flow with a 

boundary layer thickness 8/ II = 0.2. kh = 5, M() = 0.3, A{=O. 161 + 0.446i and Ah=O + Oi. (a) 

ix 

66 

Positive acoustic modes, (b) Negative acoustic modes. . . . . . . . . . . . . . . . . . . . . .. 66 

3.26 Comparison of the current FE solutions with previously computed results. Errors of the Astley·, 

Eversman FE eigenvalue modeL of the current FE eigenvalue model and of the MWR plotted 

against the mode number for a lined duct containing a sheared flow with a boundary layer 

thickness 8/ h = 0.2. kh = I (), M() = 0.3, A{=1.393 + 0.1 OOi and Ab=O + Oi. (a) Positive acoustic 

modes, (b) Negative acoustic modes. . . . . . . . . . . . . . . . . . . . . . 

4.1 (a)-(b) A rectangular duct geometry and the coordinate system for the duct. (c)-Cd) A circular 

67 

duct geometry and the coordinate system for the duct. . . . . . . . . . . . . . . . . . . . . .. 70 

-+.2 (a) A structured FE mesh constructed from 8-nodedd quadrilateral elements. (b) An unstruc-

tured FE mesh constructed from 6-nodedd triangular elements. . . . . . . . . . . . . . . . .. 71 

-+.3 (a) ~-noded quadrilateral element. (b) 6-noded triangular element. • - interelement node and 0 

- midside node. . ..................... . 71 

-+.4 FE grids constructed for the circular and rectangular ducts. 74 

-+.5 Error plotted against mode number for the circular duct. kR= I 5 and M" = 0.4. Hardwalled. (a) 

Positive acoustic modes, (b) Negative acoustic modes.. . . . . . . . . . . . . . . . . . . . .. 75 

-+.6 Error plotted against mode number for the rectangular duct. kh= I 5 and M" = 0.4. Hardwalled. 

(a) Positive acoustic modes, (b) Negative acoustic modes. . . . . . . . . . . . . . . . . . . .. 75 

-+.7 Error plotted against mode number for the circular duct. M() = 0.4, kR=15 and Zc = 2.02 + 

OOti. (a) Positive acoustic modes, (b) Negative acoustic modes. . . . . . . . . . . . . . . .. 76 

-+.~ Error plotted against mode number for the rectangular duct. M() = 0.4, kR=15, Z{ = 2 - Ii and 

L" = 2 - I i. (a) Positive acoustic modes, (b) Negative acoustic modes. . . . . . . . . . . . .. 76 

-+.l) Comparison of duct axial wavenumber between the FE and exact solutions for the circular duct. 

/II/" = OA, kR =t5 and Z, = 2.02+0.0Ii. (a) Positive acoustic modes, (b) Negative acoustic 

mode~ .. 77 



List of Figures 

4.10 Comparison of duct axial wavenumber between the FE and exact solutions for the rectangular 

duct. M" = 0.4, kR = 15, Z/ = 2 - Ii and Z" = 2 - Ii. Ca) Positive acoustic modes, Cb) Negative 

acoustic modes . . . . . . . . . . . . . 

4.1 I FE grids used in the convergence study. 

4.12 Error plotted against mode number for different mesh resolutions. Mo = -0.4, kR = 15 and 

x 

77 

78 

Z, = 2.02 + 0.0 I i. (a) Positive acoustic modes, (b) Negative acoustic modes. . 79 

4.13 A circular duct containing two liner splices and the coordinates of the system. 80 

4.14 A circular duct cross-sectional mesh with two splices. . . . . . . . . . . . . . 80 

4.1'i LSPL plotted against Re{ k~} for different splice widths. Positive acoustic modes. Mo = 0, 

kR=14andZc =2.02+0.0Ii ................................... 81 

4.16 Mode shapes of the positive acoustic mode (+/-20, I) highlighted in Fig. 4.16. Mo = 0, kR = 14 

and Z, = 2.02 + OJ) I i. 83 

4.17 LSPL plotted against Re{ k~} for dift"erent splice widths. Positive acoustic modes. M - 0 = 

-(l.4, kR =14 and Zc = 2.02+0.0Ii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 84 

4.1 S LSPL plotted against Re{ k~} for different splice widths. Negative acoustic modes. Mo = -0.4, 

kR=14andZc =2.02+0.0Ii ................................... 85 

4. I () Mode shapes of the positive acoustic mode (± 10.3) highlighted in Fig. 4.17. Mn = -0.4, 

kR = 14 and Z, = 2.02 + CHlI i ....................... . 86 

4.20 Mode shape of the negative acoustic mode (±22. I) highlighted in Fig. 4.18. Mo = -0.4, 

kR = 14 and Z = 2.02 +O.Oli. .................................. 87 

4.21 (a) Computation time plotted against problem size for the QR direct method and ARPACK. (b) 

The number of eigenvalues, N computed by ARPACK plotted against the computation time, T 

in an logarithmic (base 10) scale .......... . 87 

'i. I Different matching criteria. (a) TMMM, (b) NMMM. . . . . . . . . . . . . . . . . . . . 89 

5.2 (a) Duct (A) with an impedance discontinuity, (b) Duct (B) with an infinitely thin splitter. 90 

'i.3 An axially uniform duct with an acoustic impedance discontinuity at x = Xo. ca) Three-dimensional 

\·IC\\". (b) Two-dimensional view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 92 

'i.4 (a) Control volume. V bounded by surface areas S~,,+i5' S:,,-i5 and Sc. Surface area Sz,,±i5 is 

hounded by perimeter r;,,±i5' (b) Acoustic admittance. A varies smoothly from A 1 at.:: = '::0 - 0 

10r12 at:::" 10. 

'i.'i ;\coustic pressure. /) and particle velocity, II behave as r- 1 /2 at the acoustic impedance discon­

tinuity at ::: =:::" where r is the radius from the discontinuity. 

'i.6 Modc lllatching models (a) Model CAl. (b) Model (8) ..... 

98 

98 

100 



List of Figures xi 

6.1 (a) A uniform flow duct with a hard-soft-hard-walled section, (b) An FE mesh constructed from 

8-noded quadrilateral elements. . . . . . . . . . . . . . . . . . . . 106 

6.2 (a) 8-noded quadrilateral element, (b) 6-noded triangular element. I 10 

6.3 Duct model with a finite thickness splitter. I 17 

6.4 Duct models. 120 

6.5 FE grids.. . . 121 

6.6 Model (A) - Absolute acoustic pressure along the duct wall at y = h. Results predicted by 

ACTRAN and by the in-house FE transmission model are presented. (a) Zt = 3 - 4.97i, Zb = 

00 + ooi. Mo = 0.5, kh = 5, (b) Zt = 3 - 1.29i, Z" = 00 + ooi, Mo = 0.5, kh = 10. ........ 122 

6.7 Model (A) - PW L of the reflected modes atx = 0 and of the transmitted modes atx = L predicted 

hy ACTRAN and by the in-house FE transmission model. kh = 5, Mo = 0.5, Zt = 3 - 4.97i, 

Z" = 00 + ooi. (a) Reflected modes, (b) Transmitted modes. ................... 122 

6.8 Model (A) - PW L of the reflected modes atx = 0 and of the transmitted modes atx = L predicted 

by ACTRAN and by the in-house FE transmission model. kh = 10, Mo = 0.5, Zt = 3 - 1.29i, 

Z" = 00 -;- ooi. (a) Reflected modes, (b) Transmitted modes. ................... 122 

h.C) Model (B) - PW L of the reflected modes atx = 0 and of the transmitted modes at x = L predicted 

by ACTRAN and by the in-house FE transmission model. kh = 5, Mo = 0.5, Zt = 3 - 4.97i, 

Z" = 3 -- 4.C)7i. (a) Reflected modes, (b) Transmitted modes. . . . . . . . . . . . . . . . . .. 123 

6.10 l'vlodel (B) - PW L of the reflected modes at x = 0 and of the transmitted modes at x = L predicted 

by ACT RAN and by the in-house FE transmission model. kh = 10, Mo = 0.5, Zt = 3 - J.29i, 

Z" = 3 - 1.2C)i. (a) Reflected modes, (b) Transmitted modes. . . . . . . . . . . . . . . . . 123 

6. 11 Compressible mean flow computed for a duct with splitter thickness, t,,/h = 0.2 and 0.01. . 123 

6.12 Duct (B) - PW L of the reflected modes at x = 0 and of the transmitted duct modes at x = L for 

different splitter thickness. Solutions are predicted using ACTRAN. Mo = 0 and kh = 10. (a) 

Reflected modes, (b) Transmitted modes. ............................ 124 

6.13 Duct (B) - PW L of the reflected modes at x = 0 and of the transmitted duct modes at x = L for 

different splitter thickness. M" = 0.3 and kh = 10. (a) Reflected modes, (b) Transmitted modes. 124 

7.1 Duct models. 

7.2 FE grids . . . 

7.3 M()de matching models. (a) Duct (A). (b) Duct (B) 

7....J. Val idation study - acoustic pressure along the duct wall at )' = h. Results obtained by the 

126 

128 

128 

FE transmission analysis and by the NMMM using analytical and numerical eigen-modes are 

presented. kli = 10. Z = 00 + ooi and M" = OA. . . . . . . . . . . . . . . . . . . . . . . . . .. 130 



List of FigUl'es 

7.5 Validation study - PWL of the reflected modes and of the transmitted modes plotted against 

mode number. Results obtained by the FE transmission analysis and by the NMMM using an­

alytical or numerical eigen-modes are presented. kh = 10, Z = 00 + ooi, Mo = 0.4. (a) Reflected 

modes, (b) Transmitted modes. . . . . . . . . . . . . . . . . . . . . 

7.6 Validation study - acoustic pressure along the duct wall at)' = h. Results obtained by the 

xii 

130 

FE transmission analysis and by the NMMM using analytical or numerical eigen-modes are 

presented. kh = 10, Z = 2 - I i and Mo = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . .. 131 

7.7 Validation study - PW L of the reflected modes at x = 0 and of the transmitted modes at x = L 

plotted against mode number. Results obtained by the FE transmission analysis and by the 

NMMM using numerical or analytical eigen-modes are presented. kh = 10, Z = 2 - Ii and 

M" = 0.4. (a) Reflected modes, (b) Transmitted modes. . . . . . . . . . . . . . . . . . . . .. 132 

7.X Convergence study - PW L of the reflected modes at x = 0 and of the transmitted modes at x = L 

plotted against mode number for different numbers of truncated modes in each duct section. 

kII = 10. Z = 2 - I i and M" = 0.4. (a) Reflected modes, (b) Transmitted modes. . . . . . . .. 132 

7.9 Validation study - PW L of the reflected modes at x = ° and of the transmitted modes at x = L 

plotted against mode number. MM solutions obtained by the GWR method and by the LS 

methods are presented. kh = 10, Z = 2 - I i and Mo = O. (a) Reflected modes, (b) Transmitted 

modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 133 

7.1 () Case study I - absolute acoustic pressure along the duct wall at y = h. Results obtained by the 

FE transmission analysis and by the NMMM are presented. kh = 10. Z = 2 - Ii. M(} = O. . .. 135 

7.1 I Case study I - PW L of the reflected modes at x = 0 and of the transmitted modes at x = L 

plotted against mode number. Results obtained by the FE transmission analysis and by the MM 

are presented. kh = 10. Z = 2 - I i and M" = O. (a) Reflected modes, (b) Transmitted modes. . 136 

7.12 Case study I - absolute acoustic pressure along the duct wall at y = h. Results obtained by the 

FE transmission analysis. by the TMMM and by the NMMM are presented. kh = 10. Z = 2 - 1 i 

and M" = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 137 

7.13 Case study I - PW L of the reflected modes at x = 0 and of the transmitted modes at x = L plotted 

against mode number. Solutions obtained by the FE transmission analysis, by the TMMM 

and by the NMMM are presented. kh = 10. Z = 2 - Ii. M" = 0.4. (a) Reflected modes, (b) 

Transmitted modes ........ . 

7.1'+ Case study I - absolute acoustic pressure along the matching interfaces at x = XI and X2. kh = 

138 

10. Z = 2 - Ii. M" = 0.4. (a) Acoustic pressure along the matching intelt'ace at x = XI. (b) 

Acoustic pressure along the matching interface at.\' = .\'2. . . . . . . . . . . . . . . . . . . .. 139 



List of Figures xiii 

7.15 Case study 2 - finite element meshes (a) Fine mesh, (b) Coarse mesh. . . . . . . . . . . . . .. 139 

7.16 Case study 2 - contour plots of the absolute acoustic pressure obtained using the fine and the 

coarse mesh shown in Fig. 7.15. kh=IO and M() = 0.5. (a) Fine mesh, (b) Coarse mesh. . . .. 140 

7.17 Case study 2 - PW L of the reftected and transmitted modes predicted by using the fine and 

coarse FE grids. kh=IO, M{) = 0.5. (a) Reftected modes, (b) Transmitted modes. . . . . . . .. 140 

7.1 ~ Case study 2 - absolute acoustic pressure obtained by the FE transmission analysis, by the 

NMMM and by the TMMM. kh = 10 and M{) = 0.5. . . . . . . . . . . . . . . . . . . . . . .. 141 

7.19 Case study 2 - PW L of the reftected modes at x = 0 and of the transmitted modes at x = L 

plotted against mode number. kh= I 0 and M" = 0.5. (a) Configuration I - Reftected modes, (b) 

Configuration 1 - Transmitted modes, (c) Configuration 2 - Reflected modes, (d) Configuration 

2 - Transmitted modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 141 

7.20 Case study 3 - Hardwalled duct with a splitter. PW L of the transmitted modes at x = 0 and of 

the reflected modes at x = L plotted against mode number. M{) = 0 and kh = 10. (a) Reflected 

modes. (b) Transmitted modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 142 

7.21 Case study 3 - Hardwalled duct with a splitter. PW L of the transmitted modes at x = 0 and of 

the reftected modes at x = L plotted against mode number. Mo = 0.3 and kh = 10. (a) Reflected 

modes. (b) Transmitted modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 142 

7.22 Case study 3 - Absolute acoustic pressure fields computed by the FE transmission analysis and 

hy the NMMM. M" = 0.3 and kh = 10. (a)-(b) FE transmission analysis (c)-(d) NMMM. . .. 143 

7.23 Case study 3 - softwalled duct with a splitter. PW L of the transmitted modes at x = 0 and of 

the reftected modes at x = L plotted against mode number. Mo = 0, kh = 10 and Z = 2 - 1 i. (a) 

Reftected modes, (b) Transmitted modes. ............................ 144 

7.24 Case study 3 - softwalled duct with a splitter. PW L of the transmitted modes at x = 0 and of the 

reflected modes at x = L plotted against mode number. Mo = 0.3, kh = 10 and Z = 2 - 1 i. (a) 

Reftected modes, (b) Transmitted modes. ............................ 144 

7.25 Case study 3 - comparison of hard and softwalled ducts with zero flow. PW L of the transmitted 

Illlllle.~ at x = 0 and of the reflected modes at x = L plotted against mode number. Mo = 0, 

kll = I () and Z = 2 - I i. (a) Reflected modes, (b) Transmitted modes. . . . . . . . . . . . . .. 145 

7.26 Case study 3 - comparison of hard and softwalled ducts with uniform flow. PW L of the transmit-

ted Illodes at x = 0 and of the reftected modes at x = L plotted against mode number. Mo = 0.3, 

k/I = 10 and Z = 2 - Ii. (a) Reflected modes, (b) Transmitted modes.. . . . . . . . . . . . .. 145 

7.27 Case study 3 - 6PW L predicted by the FE transmission analysis, by the NMMM and by the 

TMMM.IVI" = (U. kll = 10 and Z = 2 - Ii. . . . . . . . . . . . . . . . . . . . . . . 145 



List of Figures xiv 

7.28 Computation time of the NMMM and the FE methods. kh = 10 and 5. Mo = 0.5. 146 

8.1 Duct models. ...... ISO 

8.2 Mode matching models. . 151 

8.3 FE meshes. (a) Non-axisymmetric duct FE mesh, (b) Axisymmetric duct FE mesh. 152 

8.4 Duct cross-sectional meshes. (a) FE model mesh, (b) MM model mesh. ...... 154 

8.5 Validation study: Variation in /'I,PW L with splice width for kR = 14, Mo = -0.4, Z = 2.12 + 

0.0 I i. (a) /'I,PW L plotted against different splice widths, (b) Discrepancies between TMMM 

and NMMM predicted /'I,PW L with the FE transmission analysis predictions. .. . . . . . .. 154 

8.6 Validation study: Variation in /'I,PW L with splice width for kR = 16, M() = -0.5, Z = 4.49 + 

2.2CJi. (a) /'I,PW L plotted against different splice widths, (b) Discrepancies between TMMM 

and NMMM predicted /'I,PW L with the FE transmission analysis predictions. . . . . . . . .. 155 

8.7 Validation study: Contour plots of the real part of the acoustic pressure at the inlet and exit of 

the duct for different splice widths. kR = 14 and 16, Mo = -0.4 and -0.5, Z = 2.21 + 0.0 Ii 

and Z = 4.49 + 2.29i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 160 

8.8 Validation study: (a)-(d) PW L of all the cut-on modes at the exit plane for kR = 14, Mo = -0.4, 

Z = 2.21 + 0.0 I i, (e)-(h) PW L of all the cut-on modes at the exit plane for kR = 16, Mo = -0.5, 

Z=-J.4Y+2.29i. . . .. . .................................. 161 

8.Y Convergence study: (a) /'I,PW L predicted by considering different number of truncated modes 

in each segmented section in the MM model. (b) Difference between NMM and FE predicted 

:3.PWL. kR = 14, M" = -0.4. Z = 2.12+0.0Ii. .................. 162 

8.1 () FE meshes constructed for the FE and MM models. (a) FE model, (b) MM model. . 162 

8.11 (a) Variation in /'I,PW LRB over a range of splice width for approach and cutback. (b) Acoustic 

pmver reduction and increment in liner splice area plotted against splice width. ........ 163 

8.12 /~.P\V L plotted against splice width and liner length for cutback. kR = 28, M() = -0.4 and 

~ = 2 - Ii. (a) Three-dimensional plot. (b) Two-dimensional plot. .. . . . . . . . . . . . .. 163 

8.13 /'I,PW L plotted against splice width and liner length for sideline. kR = 34, M" = -0.5 and 

7. = 2 - Ii. (a) Three-dimensional plot. (b) Two-dimensional plot. . . . . . . . . . . . . . .. 163 

8.14 /'I,PW L plotted against liner length for cutback and sideline. Results are obtained using the 

NMM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 164 

8.15 Contour plots showing the real part of the acoustic pressure at the inlet and exit of the duct 

for different engine operating conditions and splice widths. NMMM results. (a)-ec) Cutback, 

(d H C) Sideline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165 



List of Figm·es xv 

8.16 PW L of all the cut-on modes at the exit plane for different splice widths and engine operating 

conditions. NMMM results. (a)-(c) Cutback, (d)-(f) Sideline. . . . . . . . . . . . . . . . . .. 166 



List of Tables 

1.1 Modelling capabilities of each prediction method in studying acoustic propagation and attenu-

ation in turbofan aero-engine ducts. 

3.1 Model duct specification. . . . . . . 

3.2 AXial wavenumbers of the positive and negative acoustic modes computed by the FE eigenvalue 

Illodel and by the analytic model. M() = 0.4, kh =5, 10 and 20. The duct wall at y = h is 

acoustically lined and the duct wall at \' = 0 is acoustically hard. . 

3.3 Duct axial wavenumbers obtained by the exact method, by the MWR, by the Astley-Eversman 

FE eigenvalue model and by the current FE eigenvalue model for an acoustically lined duct. 

xvi 

16 

45 

47 

/v/(I = -0.5, kh = 6, A" = 0.72 + 0.42i and AI = 0 + Oi. . . . . . . . . . . . . . . . . . . . .. 52 

3.4 Non-dimensional acoustic impedance at the top and bottom of the duct and the location of the 

impedance in the complex impedance plane according to Rienstra [6]. M() = 0.5 and kh = 18. 54 

.).5 Exact and FE computed duct axial and transverse wavenumbers of the surface waves. . . .. 55 

3.6 Duct axial wavenumbers for a soft-walled duct containing sheared flows. Exact, reference and 

FE solutions. 

3.7 Duct axial wavenumbers for a lined duct containing a uniform flow and a sheared flow. 

3.~ Duct axial wavenumbers obtained by the exact method, by the MWR, by the Astley-Eversman 

FE eigenvalue model and by the current FE eigenvalue model for an acoustically lined duct 

with a sheared flow ..... 

4.1 Test models specification .. 

4.2 Test models specification for a circular duct with liner splices. 

4.3 Axial wavenumbers and attenuation of the positive acoustic mode (±20, I) highlighted in Fig. 

56 

58 

60 

74 

78 

4.1:'1. M,,=(),kR= 14andZ,=2.02+0.0Ii ........................... 82 

4.4 Axial wavenumbers and mode attenuations of the positive acoustic mode (± 10,3) indicated in 

Fig. 4.19. M" = -0.4, kR = 14 and Z, = 2.02 + 0.0 I i. 82 



List of Tahles 

4.5 

6.1 

6.2 

7.1 

7.2 

7.3 

7.4 

~.I 

~.2 

8.3 

8.4 

Axial wavenumbers and mode attenuations of the negative acoustic modes (±22, 1) indicated 

in Fig. 4.20. M" = -0.4, kR = 14 and Zc = 2.02 + 0.0 Ii. . . . . . . . . . . . . . . . . . . . . 

Model duct specification. . . . . . . . . . . . . . . . . . 

Model duct specification - sound diffraction by a splitter in the duct. 

Model duct specification. . . . . . . . . . . . . . . . . . . . . . . 

Model duct specification - acoustic impedance discontinuity study. 

Acoustic impedances at the top and bottom of the duct. 

Surface waves duct model specification. . ...... . 

Engine operating conditions for approach, cutback and sideline. 

Flight conditions and analysis types. . ............. . 

Model inlet duct specification - validation and convergence study. 

Model inlet duct specification. . . . . . . . . . . . . . . . . . . . 

xvii 

82 

119 

121 

129 

134 

136 

136 

148 

148 

153 

156 



xviii 

Acknowledgements 

This work would not have been possible without the help of many people. Firstly of all I would like to acknowl­

edge my supervisor Professor Jeremy Astley, for his excellent support, guidance and encouragement throughout 

the completion of this work. I also would like to thank him for providing me with the opportunity to carry my 

research at the Institute or Sound and Vibration Research (ISVR). 

I w()uld als() like to thank my examiners; Professor Hans Boden from KTH, Sweden and Dr. Chris Jones 

i'rom rSVR. Southampton, UK for taking their time to evaluate this work. I would also like to acknowledge the 

financial support from the University Technology Centre (UTC) Rolls-Royce. Also special thanks to Dr Brian 

Tester, Dr. Matthew Wright, Dr. Alan McApline, Dr. Rie Sugimoto and Dr. Pablo Gamallo for their valuable 

discussions and guidance. 

Thank you to all my friends and workmates in Southampton, especially James, Alessandro, Juan, Chris L, 

MatL Cary. Qicluo, Emmett, TzePei, Viswanah, Fabrice, Paul and Chris Brooks. Special thanks also goes to 

my wi fe, Jessie for being there for me through the good and bad times. 

Special thanks to Professor Denys Mead for reviewing the draft thesis. I would like to express my gratitude 

to all the people who dedicated their time to develop the free and open source software which was essential for 

realizing this project. 

Finally to my family. Dad, Mum, Michael and Anthony for all your love and support. 

Vincent Hii Jiu Ta, September 2005 



List of Symbols and Abbreviations 

Symbols 

N 

TJ 

M.M" 

f 
k 

k, 

1( 

w 

W 

£ 

p 

H.V 

4>.'P 

A 

Z 

A 

Abbreviations 

FE 

IE 

NMMM 

Mesh resolution 

Mode cut-off ratio 

Mean flow Mach number 

Speed of sound of an acoustic fluid 

Frequency in Hertz 

Acoustic wavenumber 

Modal axial wavenumber 

Modal transverse wavenumber 

Angular frequency 

Weighting functions 

Error 

Acoustic fluid density 

Acoustic pressure 

Mean flow 

Particle velocity 

Mode eigenfunction 

AcoLlstic admittance 

Acoustic impedance 

Eigenvalue 

Finite element 

Infinite element 

Newlrevised mode matching method 

xix 



List of Symhols and Ahh,"eviations xx 

TMMM Existing mode matching method 

MM Mode matching 



Chapter 1 

Introduction 

1.1 Overview 

I n this thesis. a numerical mode matching (MM) procedure is applied to the acoustic analysis of turbofan intake 

and bypass ducts. The expansion of the sound field in a duct in terms of modes forms the basis for many analytic 

and semi-analytic methods in duct acoustics. It has many attractive features such as reducing the dimension of 

the problelll: propagation in a prismatic two-dimensional or axisymmetric duct reduces to a one-dimensional 

eigenvalue problem: propagation in a duct of arbitrary cross-section reduces to two-dimensional eigenvalue 

problem posed over the duct cross-section. By matching expansions of such eigensolutions at the interface 

between di fferent uniform duct segments. the effect of axial variations of impedance can be modelled with far 

fewer parameters than would be required for a three-dimensional numerical transmission analysis. 

In thiS theSIS. the effectiveness of a revised mode matching procedure for studying sound transmission in 

high bYP~ISS r~llill turbofan aero-engine ducts is investigated. The research focuses on predicting accurately the 

attenuation by the acoustic treatments within engine ducts in a computationally efficient way. The MM model 

develuped in this study is capable of considering axially straight ducts of any cross-sections with non-uniform 

flow and locally reacting impedance boundaries. 

To d~lte. a number of llther approaches. both exact and approximate. have been proposed for studying 

sound propagation in flow ducts. These include the finite element method (FEM), [7, 8, 9, 7, 10, 11. 12, 

131. computational aeroacoustics (CAA) schemes [14. IS. 16. 17. 16]. ray tracing methods [18, 19.2]. the 

llluiti pk scales (MS) lllethod [20. 21 ). the parabolic equation approximation (PEA) method [22. 23. 24]. the 

discontinuous (,akrkin method (DGM) 125. 26. 271 and the multi-modal method [28.29. 30l However it 

appears that there is no universal method which allows the solution of any kind of aeroacoustic problem with 

the best efficiency and accuracy. Each method has its own limitations either in term of modelling capabilities 

or computational cost when applied to realistic turbofan engine configurations with non-uniform impedance 

boundaries, non-uniform flows, complex duct geometries and at relatively high frequencies. The MM method 
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is selected in this study because the method is computationally fast and requires low computing resources 

compared to other existing numerical methods. The method is therefore particularly suitable for parametric 

studies during the preliminary design stage of engine nacelles. The method is also robust and can be readily 

used to solve realistic engine duct problems with some geometric simplifications and assumptions. 

The frequency range of interest in this study is from 0 to 2200 Hertz (Hz) which corresponds to values of kR 

from 0 to 40 where Ie is the acoustic wavenumber and R is the characteristic radius of the aero-engine duct. This 

frequency range corresponds approximately to the blade passing frequency (BPF) in the intake or bypass duct 

of a turbofan aero-engine at maximum power. Ideally it would be desirable to cover even higher frequencies, 

say up to 2 to ::I times BPF. 

In this thesis. different aspects that have to be understood in order to develop the computational scheme are 

documented. These aspects include mathematics equations, physics, computer science and numerical analysis. 

The chapter continues with a list of the aims of this thesis and the contributions made in this thesis. The chapter 

ends with a plan of this thesis. 

1.1.1 Outline 

This chapter is arranged as follows. Section 1.2 presents a review of current prediction methods for flow duct 

acoustics. This review concentrates on the applications and limitations of each method in modelling acoustic 

propagation ill turbofan aero-engines. The methods reviewed are; mode matching, the method of multiple 

scales, parabolic equation approximations, ray tracing, the finite element method, computational aeroacoustic 

schemes based on the linearized Euler equations, the discontinuous Galerkin method and the multi-modal 

method. The motivations and objectives of the research are outlined in Sections 1.3 and lA. The original 

contributiuns made in this thesis are presented in Section 1.5. Finally, Section 1.6 outlines the contents of the 

thesis. 

1.1.2 Aircraft Noise and Reduction 

Although individual aircraft have become quieter since the introduction of jet engines in the early 1960s. any 

reduction in noise levels around the major airports has been off-set by the huge increase in the number of planes. 

Since the main source of aircraft noise is engine-related noise. the quest for quieter skies has led to a major 

focus on reducing engine noise without sacrificing engine thrust and performance. For the early jet engines, 

the majm noi.';e source was mixing noise attributed to the jet exhaust mixing with the sUITounding air. Mixing 

noise was reduced with the advent of high bypass ratio turbofan engines. 

In the ll10dern high bypass ratio engines. the fan is used to generate thrust and the core and fan exhausts 

are further ll1ixed internally hefore being vented. This leacls to a reduction of jet exhaust velocities hence the 
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mIxIng nOIse. As a consequence, the emphasis on noise reduction has now shifted to fan related noise and the 

acoustics of the ducted fan system. 

Fig. 1.1 shows a longitudinal cross-section of a typical high bypass ratio turbofan aircraft engine. Down­

stream of the fan, the duct of a turbofan engine splits into a bypass duct and an engine duct. In both ducts, 

radial stators are placed to cancel out the swirling effect of the flow and to recover the energy from the swirl. 

One of the early studies of noise generating mechanisms in flow ducts is by Tyler and Sofrin [31]. They had 

classified noise generating mechanisms in axial flow systems as those due to the rotating blades, the interaction 

between the rotor and the stator and the interaction of the boundary layer and inlet disturbances with the rotor 

blades. The study found that the fundamental tonal noise generating mechanism is attributed to the rotating 

pressure patterns or spinning modes by the rotor or the fan at the BPF or its harmonics. The interaction 

oj" rotor wakes cutting through the stator blades produces noise at mUltiples of the BPF. As the fan size is 

increased with increasing bypass ratio engines, rotor-stator interactions playa more significant role as a noise 

generating mechanism. The interaction generates both broadband and tonal noise. In the duct, paI1 of the 

rotor-stator interaction noise travels back towards the engine fan, which partly reflects it and partly transmits 

it. DO\vnstream oj" the stators, the rotor-stator noise travels through the engine duct and the bypass duct before 

hei ng radiated out to the atmosphere. 

For high bypass ratio turbofan engines, aft-fan noise has became the largest or the second largest source of 

radiated noise under all three noise certification conditions; cutback, sideline and approach. Other sources of 

noise include noise from the inlet fan. airframe, jet, core turbine and low pressure compressor. 

One of the most eft"ective techniques of reducing aircraft noise is by using acoustic treatments in certain 

key areas (If the duct. The relatively long and curved geometry of the engine duct makes an acoustic lining 

highly ellecti\C. Therefore. it is important to have an accurate. reliable and practical tool for acoustic analysis 

in predicting the effect of acoustic treatments in flow ducts. Other methods such as the negative scarf inlet [32] 

and optimal fan blacle design [33] have also been proposed, however, the presence of appropriate acoustical 

lInings is still an Important way of reducing noise in engine ducts. 

This research also focuses on studying sound diffraction by radial and circumferential splitters in the engine 

duct. Although splitters have not yet been implemented in commercial aero-engines, they have been considered 

as a putential way of reducing duct noise. Fig. 1.2 shows an experimental turbofan engine with a splitter ring 

installed in the inlet duct which had been tested as part of an experimental installation conducted by NASA in 

the early Il)~()s. However. no results have been published regarding the performance of the splitters. Fig. 1.3 

shows an Ideali.-;cd 1/6 scale test rig used for SILENCE(R) I no flow tests with recommended arrangements 

I SILENCE(R) - Signil1cantly Lower Community Exposure To Aircraft Noise is the largest ever European aircraft noise research 
pmgr;llll. It is ;1 lour year program ami invol\'cd 50 panners collaborate together to validate noise reduction technologies that will allow 

;IS 01' 2(II)~ quit·ter aircr;lft operations by lip til h dB. The program is part of the 5th framework program of the European Commission 
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Figure 1.1: A cross-section CLlt of a typical high bypass ratio turbofan aero-engine and the major noise sources. 

of radial and circumferential splitters for duct noise reduction by Institute of Sound and Vibration Research 

(iSYR). The experimental results have shown some encouraging noise reduction by the splitters. The waves 

that hitting the splitters are being reflected and scattered into other duct modes which may be more readily 

attenuated by the acoustic liner. The splitters also provide additional surface areas for acoustic treatments. 

Modelling transmission of sound in a turbofan engine duct is a challenging problem because a real engine 

duct has a three-dimensional geometry and complex mean flow. The propagation of sound in the bypass duct 

is more complicated than in the inlet duct because the mean flow in the duct is strongly sheared, sometimes 

with s\virl and increase geometry complexity. It therefore requires more precise modelling. However, this 

noise transmission problem can be simplified by assuming, to a first approximation, that the inlet duct has a 

circular cross-section containing uniform mean flow and the bypass duct has an annular cross-section containing 

uniform mean flow. 

Fig. 1.4 shows two simplified bypass duct models. One with varying acoustic impedance boundaries in 

both axial and circumferential directions and the other with four radial splitters. These simplified bypass duct 

models can be represented in two-dimensions by rectangular ducts assuming the duct model is unwrapped as 

shown in Fig. 1.5 in which the height and width of the two-dimensional duct define the perimeter and radius of 

the thrce-dimensional duct. Figs. 1.4(b) and (d) show the two-dimensional representations of the two bypass 

duct models presented. Fig. 1.6 shows two simplified inlet duct models, one with an axially varying impedance. 

Thc otiler duct contains two liner splices. Their equivalent two-dimensional models are also shown. 

These two-dimensional models are used in the initial development of the MM scheme before extending 

it tll thrcc-dimensional models. The two-dimensional models also provide good insight to the physics in the 

three-dimensional models. In most of the models, the splitters will be assumed to be infinitely thin so that the 

uniform flow assumption can be justified. 

enahling 'I 511';; runding ()r the t()tal budget ()f Illore than II () Illillion Euro. 
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Figure 1.2: NASA experimental treated nace lle mounted on McDonnell Douglas DC-8 a irplane. [4] 

1.2 Methods Currently Available 

In thi s section , current methods of analysis for flow duct acoustics are reviewed. The review focuses on the 

capabi li ties and limitat ions of each method in study ing sound transmission in turbofan aero-engine ducts . The 

methods covered are MM techniques, the MS method, the PEA method, ray theory, the FEM, CAA, the DGM 

and the mu l ti -modal method. 

1.2.1 Mode Matching Method 

The MM technique is a we ll know n method for stud ying sound propagati on in ducts [1 ,2, 3, 34, 35 , 36, 37]. 

Genera ll y. the method matches solu tio ns between uniform duct sections at geometric or impedance disconti­

nuities. The MM procedure entails the expansion of unknown fields in the individual sections in terms of their 

respect ive duc t modes. S ince the eigenfunctions of the modes are known for each section , the problem reduces 

to the determination of the relationship between the modal coefficients associated with the field expansions in 

the different duct secti ons. Thi s requires the application of the continuity conditions for the fields at the inter­

faces . Continuity of aco ustic pressure and particle velocity are commonly assumed. This then leads to a finite 

set of linear simultaneous equations for the unknown modal coefficients. 

In II J, the MM method was employed to study sound transmission in ducts with partial transverse baffies 

with and without flow. In the stud y, different matching conditions had been suggested to study the problems. 

However. o nl y a few of the matc hing conditions had been tested wi th results presented. A lfredso n [34] ap llied 

the MM method to study sound transmi ss ion in a duct with ax ially varying cross-sec tional areas fo r the case of 

zero fl ow and Joshi el 01. 135 1 app li ed the method to a uni fo rm duct with a uniform ax ia ll y segmented lin ings 

and with uni form flow. In both studies, locally reacting liners were assumed. 

In 131. the MM method was empl oyed to stud y sound trans mission in a cy lindri ca l duct w ith non-loca ll y 

reacl ing lin ers and the resulls co mpared we ll with the ex perimenta l measurements. Cummings [2] in hi s stud y 

ur s ile ncer lr ~l n s mi ss i () n loss also showed good compari son between the MM results with those obtained by ray 
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Front view 

Spinner 

Side view 

Figure 1.3: A potential arrangement of radial and circumferential splitters in an idealised 116 scale test rig for 
SILENCE(R) no flow test. 

acoustics and ex-perimental measurements. A two-dimensional duct with zero flow was considered in the study. 

The drawback of the MM method is its inability to represent non-uniform duct geometries and flows in the 

duct axial direction. The method can only be apply to study axially straight ducts. However, the method is 

capable of representing ducts of any arbitrary duct cross-section with non-uniform impedance boundaries and 

mean flows. 

From the present literature research, there appears to be little published or documented on the application 

of the MM method to study sound transmission in flow ducts with three-dimensional geometry. Although 

work has been published recently on ducts with circular geometry containing circumferentially varying liner 

impedance [38]. 

1.2.2 Multiple Scales Method 

In recent years, the method of MS has been employed to study acoustic propagation in flow ducts with slowly 

varying geometries [21 , 20, 39, 40). The MS approach allows the sound transmission to be represented by 

a summation of slowly-varying modes. The amplitudes and phases of the modes are determined by slowly 

changing parameters such as the axial slope of the duct walls and the mean flow. For some aero-engine ducts, 

the MS method can be suitable because the slope of the duct wall is small for aerodynamic reasons. These 

variations are necessarily gradual over a length scale much larger than typical acoustic wavelengths to preserve 
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Figure 1.4: (a)-(b) An idealised bypass duct model with a circumferentially and axially varying acoustic liner 
and its two-dimensional model. (c )-(b) An idealised bypass duct model with radial splitters and its two­
dimensional model. 

the aerodynamic of the mean flow. 

The method of MS was first applied to the case of a variable geometry duct by Nayfeh [40] without flow, 

Later, Rienstra [21 , 20] applied the method to the case of a slowly varying circular duct and an slowly varying 

annular duct with irrotational mean flow. The method was then applied to the case of mean swirling flow by 

Cooper and Peake [39]. In [20], a comparison of solutions obtained by the MS and the FEM for an axisymmetric 

lined turbofan inlet duct in irrotational mean flow, was presented and general good agreement was shown 

between the two methods. Recently, Rienstra [41] has published the mathematical theory on extending the 

method to three-dimensional problems. However no results are presented. 

A complication of the MS is the 'turning point' problem. This is when the geometry of the duct varies in 

such a way that the propagating mode vanishes (the cut-on mode becomes cut-oft) and causes the break down 

of the solution. These phenomena can be overcome by a special adjustment to the formulation in the turning 

point region. This transition type phenomena of duct modes in a slowly varying cylindrical duct has been 

investigated by Rienstra [42] for hard walls and by Ovenden [43] for soft walls . Recently, Ovenden [44] has 

derived an explicit solution for an acoustic mode undergoing cut-on cut-off transition for an arbitrary duct with 

mean irrotational flow. The analytical solution is a composite solution, encompassing both the inner boundary 

layer solution in the neighbourhood of the transition point and the outer slowly varying modal solution far 
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Figure 1.5: An idealised bypass duct model can be represented in two-dimensions by a rectangular duct. 

upstream and downstream. 

The drawback of the MS approach is that there is no interaction between the various acoustic modes in the 

duct. The method is therefore unsuitable for our study here as predicting accurately the acoustic scattering due 

to impedance discontinuities and sound diffraction by splitters in the duct form a major part of this research. 

The method is limited to ducts with slowly varying geometries. However, the method is computationally fast 

and requires low computing resources compared to other numerical schemes . The method permits the inclusion 

of acoustic impedance boundaries and mean flow. 

1.2.3 Parabolic Equation Approximation Method 

The PEA method has been employed to study sound propagation in ducts in [22, 23 , 24, 45 , 46]. A compre­

hensive review of the application and development of the PEA method for different research areas including 

duct acoustics is given by Lee et af. [47]. 

The PEA method approximates the second order wave equation into two first order equations. The method 

changes the boundary value problem to an initial value problem so that it can be solved by the marching 

algorithm, which is computationally cheap to perfonn. However, by this, reflections that couple downstream 

propagation waves to upstream propagation waves are neglected. 

In [48], Lan employed the PEA method in his study of sound propagation in an axisymmetric circular duct 

in the presence of uniform axial mean flow. In [22, 23], Dougherty employed the method in his investigation 

of flow effects on sound propagation in nonunifonn, soft-walled ducts . Dallois et af. [24] employed the wide 

angle PEA method to investigate sound diffraction by a core vortex in moving media. In [45] , the PEA method 

was employed to predict the attenuation provided by an outer fan duct liner in an aft fan duct and in [46] , to 
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Figure 1.6: (a)-(b) An idealised inlet duct model with an axially varying acoustic liner and its two-dimensional 
model. (c)-(d) An idealised inlet duct model with two liner splices and its two-dimensional model. 

study the effects on aft fan noise propagation due to geometry changes e.g. bifurcation and pylons. The study 

found that bifurcations and pylons clearly affect modal content in both propagation and radiation calculations. 

The PEA method is only accurate for uniform ducts or weakly varying ducts where reflection and mode 

interaction are not critical. For axially non-uniform ducts with non-uniform acoustic impedance boundar­

ies, decoupling the upstream and downstream propagation waves might yield inaccuracy in the solution. The 

method can represent three-dimensional ducts with three-dimensional mean flows and impedance boundaries 

and remains computationally efficient under these conditions. 

1.2.4 Ray Theory 

Ray theory is a high frequency approximation model [18, 19,2]. When the wavelength of a sound wave is 

small compared to other characteristic lengths of the system, the sound may be considered to be propagating 

locally as a plane wave, resulting in a characteristic line or ray path. 

The ray acoustic technique was first employed to study sound propagation in an inlet duct by Kempton and 

Smith [49]. In the study, the reciprocity principle was applied in which rays were traced backwards from the 

measurement or microphone locations to the source. The source was taken to be a distribution of incoherent 
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monopoles or dipoles. Tester [18] later studied the case of a two-dimensional lined duct with a point and a line 

source. Dougherty 119] employed the ray acoustic technique to nacelle acoustic design in three dimensions 

with nonuniform mean flow. In [2], Cummings used a forward ray tracing method in his investigation of the 

transmission loss of duct silencers and the ray results compared well with those obtained by a mode matching 

model and experimental measurements. In the study, rays were traced forwards from the source regions to the 

microphone locations. 

The advantages of the ray theory are its simplicity and versatility in application to complex geometries 

and its computational robustness and rapidity. It permits implementation of a broadband source and is able to 

represent non-uniform ducts with non-uniform acoustic boundaries and mean flows. The disadvantages of the 

method are that an accurate source model is difficult to define and it is only accurate for high frequencies. For 

this research. the ray technique is not regarded as accurate enough for the typical duct geometries within the 

frequency range of interest. 

1.2.5 Finite/Infinite Element Methods 

The finite clemenUinfinite element (FEIIE) method is among the most widely used numerical methods for 

studying acoustic propagation and radiation problems at low and mid frequencies [32, 9, 7, 10, 11, 50, 51, 52, 

53,54,55.56,57, 13,58,59]. The focus of this research is on in-duct sound propagation and infinite elements 

are not required. No further details on the IE will therefore be given. 

In the rEM. the solution domain is divided into sub-domains (or elements) in which suitable basis functions 

(or element shape functions) are defined. The shape functions interpolate the acoustic field within each element 

on the basis of the value of the acoustic field at discrete nodes within and on the boundary of the element. 

Although. there are a lot of publications about the application of FEM to study transmission of sound in 

ducts. due to high computational cost. two-dimensional or axisymmetric duct models are generally assumed 

[32. L). 7.10. 11.50.51.601. The only three-dimensional duct studies found are those by Regan et 01. [13J. 

by Tester 1'1 uf. [5XI and by McAlphine et ({!.[59]. All these studies are related to the investigation of acoustic 

liner non-uniformities on duct modes. 

In [91, Eversman and Okunbor had proposed a method of treating the flow shear layer at the exit of a bypass 

duct by assuming continuity of particle velocity and acoustic pressure at a v0I1ex sheet in their investigation of 

aft-fan duct acoustic radiation with irrotational mean flow. 

The FEM can represent non-uniform ducts with non-uniform irrotational mean flows and with non-uniform 

locally and !lon-locally reacting frequency dependent impedance boundaries. The method has good dispersion 

characteristics when high order elements are used. The drawback of the method is that it is computationally 

expensive. Therefore. the practicability of the method in application to large three-dimensional problems is 
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restricted to low and mid frequencies. 

To overcome the high computational cost, methods such as domain decomposition [61], a time domain 

formulation with an iterative solver [62] and parallel computing [13] have been proposed. However, there are 

other issues associated with these methods such as matrix ill-conditioning and complex implementation. 

Recently, Listerud and Eversman [63 J explored the use of cubic 'serendipity' elements to study sound prop­

agation in a non-uniform duct model in a moving medium. In [64J, the serendipity elements were used to model 

acoustic radiation in a non-uniform moving medium. Both studies showed that cubic serendipity elements out­

perform the common quadratic serendipity elements in terms of computational efficiency. A disadvantage of 

cubic elements is that they create a greater bandwidth in the stiffness matrix than the quadratic elements, given 

the same nodal density along element boundaries. However, the study showed that the penalty in numerical 

accuracy incurred by using serendipity elements rather than Lagrangian elements in most of the FE models is 

far outweighed by the gains in problem size. 

1.2.6 The Discontinous Galerkin Method 

The DGM is quite a recent method developed to study flow duct acoustic problems [26, 25, 27]. The DGM 

is somewhere between a finite element and a finite volume method and has many good features of both. The 

method provides a practical framework for the development of high-order accurate methods using unstructured 

or structured grids. The method is well suited to large-scale time-dependent computations in which high accu­

racy is required. An important distinction between the DGM and the conventional FEM is that the local solution 

IS discontinuous at element boundaries. The solution within each element is not related to neighbouring ele­

ments. The local elements are related to each other by energy flux through the element boundaries. Since they 

only require to comll1unicate through the elements that have common boundaries. the method is well suited 

for parallelization using message passing. In the DGM, the type of the element used and the choice of the 

governing equations can be varied from element to element without loss of rigour in the method [26J. 

In [2.'1 [. the dispersion and dissipation properties of the DGM for acoustic wave propagation were studied 

by Hu 1'1 11/ . . The study found that the dispersion relation and the dissipation rate depended on the energy 

flux formulation used to connect the discontinuous domains. The study also showed that the DGM requires 

less storage and computational time than the conventional FEM. Hu and Atkins carried out a study of the 

convergence rate of the DGM and found that higher order basis functions gave better dispersion and dissipation 

rcsults [271. 

The DGM is capable of representing non-uniform ducts with rotational and irrotational flows. The method 

also permits the inclusion of acoustic impedance boundaries. However, the method suffers from large compu­

tational time and resources when applied to large three-dimensional problems at high frequencies. 
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1.2.7 Linearized Euler Equations (LEE) Computation Aeroacoustics Scheme 

The rapid growth of computer processing power has led to a new and active field of research called compu­

tational aeroacoustics (CAA) which combines the traditional disciplines of acoustics and computational fluid 

dynamics (CFD) 165,66,67,68,68]. 

The CAA schemes generally solved the linearized Euler equations (LEE) for the acoustic field. In general, 

the CAA problems can be classified into problems of propagation, scattering and radiation, linear interaction 

noise problems and vortex generated broadband noise fully coupled to the mean flow [67, 69]. For sound prop­

agation, scattering and radiation problems, a stationary mean flow field is calculated by solving the Reynolds­

averaged Navier-Stokes equations. The Euler equations are then linearized around this mean flow to simulate 

the sound field. 

One of the greatest advantages offered by the CAA schemes is their ability to solve non-linear problems of 

sound generation. This is achieved by solving together the unsteady flow and the sound generation by using 

only the conservation equations that govern the fluid motions. This means that the unsteady flow and the sound 

field are regarded as different but related to the same flow field. Because the amplitude of the acoustic pressure 

waves generated by a flow field is orders of magnitude smaller than the dynamic pressures, solving the coupled 

problem would be very demanding in spatial and temporal accuracy. Most of the past studies were at low 

CrequenCles or twu-dimensional or axisymmetric duct models were assumed. 

There are a handfull of CAA schemes which have been developed to study duct acoustic problems. In this 

thesis. two of the most commonly used CAA schemes are reviewed; the Dispersion-Relation-Preserving (DRP) 

finite difference scheme [66, 70] and the high order compact scheme [71, 68]. Each scheme has its advantages 

and disacJ\antages when applied to different problems. 

The C AA schemes are capable of studying sound propagation in non-uniform ducts with rotational and 

irrotational mean flows and with vortical disturbances. The schemes also permit the inclusion of acoustic 

impedance houndaries. Although the CAA schemes have capabilities to study a wider range of aeroacoustic 

problems than other numerical methods. for large three-dimensional problems at high frequencies they are 

extremely computationally demanding and unsuitable for parametric studies. Besides these, there are also a 

number of other issues concerning the CAA schemes [65,66,67]: 

• large disparity between energy levels in the unsteady flow and in the sound field; 

• large disparity between the length scales of the fluid dynamics and of the propagation sound field; 

• ;1 wide range of frequency of acoustic interest 

• numerical dissipation and dispersion; 
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• special boundary conditions required for the acoustic part of the solution; 

• convergency and grid topologies. 

These issues need to be solved before the CAA schemes can be used as a reliable and accurate engineering tool. 

Dispersion-Relation-Preserving Finite Difference Scheme 

The DRP finite difference scheme of Tam and Webb [66] is based on optimized finite difference approximations 

of" space and time derivatives in the wavenumber and frequency domains. It is a high order scheme which is 

specially designed to reduce dissipation and dispersion. It is a fully explicit scheme and thus can be easily 

parallelizcd. The formulation of the ORP scheme can be found in [66, 72]. 

In 11.:1-1. the ORP scheme was employed to solve the Navier Stokes equations to predict the ducted fan 

engine acoustics. In I 151, Ozyoruk, Ahuja and Long employed the ORP scheme in their predictions of forward 

and art radiated noise from a turbofan engine. In the study, a Kirchhoff formulation is used for calculating the 

noise radiation. A high-order explicit time marching algorithm was used to advance the solutions in time and a 

domain decomposition method was applied to parallelize the codes. 

The Compact Scheme 

The compact scheme is also a high-order finite difference method [71, 72]. The scheme requires narrower 

computational grid stencils, has better fine-scale resolution and yields better global accuracy than standard 

finite difference schemes with the same order [71]. 

A typical sixth-order compact scheme is expressed as follows [73]: 

. f" t ' - .1;+1 - 1;-1 l .1;+2 - 1;-2 
ex.j,_I-.,·-,-cx..i+l-il 7/ ,) 

_ 1 41z 
(I.I ) 

where /, i~ the derivative of the function at point i and Ii is the value of the function at the same point. II is the 

distance between adjacent points in the mesh. a. b and ex. are coefficients to be determined depending on the 

order uf" the scheme. The formulation indicates that the value of the derivative of a function at a given point 

depends not only on the values of f at neighbouring points but also on the values of the derivatives at these 

points. This highlights another difference between the compact scheme and the conventional scheme. Fig. 1.7 

illustrates another difference between a conventional sixth-order scheme and a sixth-order compact scheme. To 

approximate the solution of node Xi.j. the conventional sixth-order scheme incorporates seven points in each 

direction while the sixth-order compact scheme is formulated on a compact set of nine grid points around the 

node. 

Two kcy is.sues cncountered in the compact scheme are (a) boundary treatments (e.g. in areas near the 
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boundaries in which the scheme cannot be applied because the stencil extends outside the computational do-

main) and (b) grid non uniformity [74]. Both issues are still active research fields at present [75, 76, 73]. 

In 16R I, a high-order compact scheme was employed to study fan noise radiation through a realistic engine 

exhaust geometry with flow. In the study, for efficient computation and accurate modelling of features such as 

liner wall condition, the in-duct sound propagation was modelled by using a multiple scales method [21, 20]. 

An integral solution of the Howes WilIiams-Hawkings (FW-H) equation was implemented numerically to 

determine the far field noise levels efficiently. 
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Figure 1.7: Stencils at the reference node Xi.j for (a) the conventional sixth-order scheme and (b) the sixth-order 
compact scheme. 

1.2.8 Multi-modal Method 

A multi-modal method has been proposed by Pagneux and others [29, 30, 28] for studying sound propagation in 

flow ducts. The method segments the duct at the impedance and geometric changes. The method then projects 

the first order mass and momentum conservation equations over the eigenfunctions of a rigid uniform duct. 

Mode coupling effects are then explicitly expressed by the inverse Fourier transformation of liner admittance. 

A scattering matrix that relates the reflection and transmission coefficients of each segmented duct section is 

sct up. From these scattering matrices. a global scattering matrix can be constructed and solved. The rigid duct 

modes are used in the method because they are known a priori. 

The method can represent non-uniform ducts containing non-uniform impedance boundaries when no flow 

is present in the duct. When flow is present in the duct, the method can only be applied to axially uniform ducts. 

The drawback of the method is that the eigenfunctions of the rigid duct modes used in the method sometimes 

do not satisfy the true boundary condition for acoustic linings and the complex duct cross-section and this can 

lead to poor solution convergence and inaccurate results 12RJ. For rigid ducts, the method is accurate as long as 

the duct cross-section variations are not very abrupt. 
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Summary 

Table 1.1 presents a summary of the modelling capabilities of each prediction method in application to sound 

transmission studies in turbofan aero-engine ducts. The FEM, the DGM and the LEE-CAA schemes can rep­

resent complex duct geometries with non-uniform mean flows and impedance boundaries but they are com­

putationally demanding for large three-dimensional problems at high frequencies. Ray theory is not accurate 

enough for the frequency range of interest in this research. The PEA method is only accurate for uniform ducts 

or weakly varying ducts where reflection and mode interaction are not critical. The MS method does not allow 

modal scattering between acoustic modes in the duct and is only accurate for ducts with slowly varying geome­

tries. The fVIfV1 method is restricted to axially uniform ducts. In the multi-modal method, the eigenfunctions 

of the rigid duct modes used do not always satisfy the true boundary condition for acoustic linings and the 

complex duct cruss-section. This can lead to poor solution convergence and inaccurate results. 

Numerical Scheme Proposed 

The scattering and attenuation of the sound field within aero-engine ducts is strongly dependent on duct geom­

etry. the acoustic impedance and placement of the liners and the convective and refractive effects of the non­

uniform mean flow. It is therefore important that the method that is chosen for the development of an engineer­

ing tool for studying sound transmission in high bypass ratio turbofan aero-engines is capable of considered 

these features. In this research, the MM method is selected rather than other methods because it is computa­

tionally fast and requires a low computational storage. This also makes the scheme particularly suitable for 

parametric studies during the preliminary design stage. 

The research will be examining the validity of the MM method for studying transmission of sound in flow 

ducts. in particular three-dimensional ducts. The MM method will be validated against analytical and numerical 

solution.s obtained by other methods to establish its accuracy. Its general modelling characteristics, strengths 

and limitations are explored in two and three-dimensional cases. The two-dimensional models are used in the 

initial development of the scheme before extending it to three-dimensional models. 

The ability of the method for studying sound diffraction by radial and circumferential splitters in the duct 

is also explored in this thesis although this is only touched upon briefly. 

1.3 lVlotivations 

The impact of high noise levels associated with jet propulsion systems has been felt by people living in commu­

nities surrounding airports and the flight paths. The introduction of no-frill airlines in recent years has resulted 

in an incrcased rrequcncy or aircraft operations at most major airports e.g. London Heathrow Airport and 
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Method Mean Geometry Frequency Mesh Acoustic Computation Splitter 
Flow Liner Cost 

FEM Non-uniform NOll-uniform duct Low, mid Structured and Yes High Yes 
irrotational flow unstructured 

CAA-LEE Non-uniform Non-uniform duct Low, mid Structured Yes High Yes 
rotational flow 

Ray theory Yes in theory Non-uniform duct High Not required Yes Low Yes 

MM N()Il-lInifnrm Axially uniform duct Low, mid, high Not required Yes Low Yes 
irrotational flow with arbitrary 

()\'~r uuct cross-section cross-sectIon 

MS NOll-uniform Duct with slowly Low, mid Not required Yes Medium No 
irrotational flow varying geometries 

DGM N()J1-uniform Non-uniform duct Low, mid Structured and Yes High Yes 
rotational flow unstructured 

PEA r\(H1-uniform Duct with slowly Low, mid Structured Yes Medium Yes 
irrotational flow varying geometries 

Multi-1I1()Ual Uniform Axially uniform duct Low, mid, high Not required Yes Low No 
irrotational flow with arbitrary 

Cf(lSs-scction 

Table 1.1: Modelling capabilities of each prediction method in studying acoustic propagation and attenuation 
in turbofan aero-engine ducts. 

Luton Airport. The noise problems have became so severe that stringent airport noise restrictions have been 

introduced to control the noise generated by turbofan aircraft during landing and take off. 

Although a significant reduction in the noise generated by turbofan engines has been achieved since the 

introduction of turbofan aero-engines to commercial aviation in the early 1960s, a significant further reduction 

of aircraft noise is still required. These restrictions are difficult to meet even by the current high bypass ratio 

turbofan engines which already have advanced noise reduction technologies implemented on them. Aero-

engine manufacturers are under great pressure to meet these stricter noise restrictions. 

ThiS research aims to develop an effective acoustic analysis tool that is capable of modelling sound prop­

agation in aero-engine ducts realistically, effectively and accurately. Ideally, the method should compute the 

solution within a reasonable engineering time seale (in hours rather than days, weeks or months) with modest 

c()mputing resources and architecture. The computational tool should consider the following features in order 

()f importance: 

• attcnuation by acoustic linings at the bounding surfaces and splitters; 

• non-uniform duct geometry; 

• sound diffraction by splitters (radial and circumferential); 

• sound refraction by the mean flow and 

• wakes and vorticities generated in the duct. 
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1.4 Research Objectives 

Having chosen the most effective method of analysis to be the MM method, the main objectives of this research 

are: 

• to develop and validate a numerical scheme based on mode matching for studying transmission of sound 

in high bypass ratio turbofan aircraft engine ducts; 

• to consider features such as non-uniform mean flows, radial and circumferential splitters, non-uniform 

acoustic impedance boundaries in the duct and any arbitrary duct cross-sections, and 

• to be used by engine nacelle manufacturers during preliminary design stages at reasonable computing 

time and storage requirement. 

Other objectives for this research are 

• to compare the performance of the MM scheme proposed with alternative methods; 

• to employ the MM scheme proposed to study acoustic scattering due to impedance discontinuities in the 

duct; 

• to employ the MM scheme proposed to study the influence of acoustic liner non-uniformities on duct 

modes; 

• to employ the MM scheme proposed to gain better understanding of sound diffraction by splitters (radial 

and circumferential) in the duct; 

• to employ the MM scheme proposed to gain better understanding of propagation of surface waves in the 

duct. and 

• to acid to the 'knowledge base' regarding the validity of MM techniques for studying transmission of 

sound in two and three-dimensional ducts. 

1.5 Original Contributions 

In the accumplishment of the research objectives the following original contributions have been made: 

• A numerical scheme using finite elements has been proposed to solve for duct eigenvalues and eigenfunc­

tions in the presence of uniform and sheared flow. The FE eigenvalue model is capable of representing 

ducts of any arbitrary duct cross-sections with non-uniform impedance boundaries and mean flows. From 
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the results computed, different types of duct modes are identified unambiguously and no modes are re­

peated. An FE mesh resolution of 8-10 nodes per wavelength has been found to be adequate to resolve 

the duct modes of interest in this research (duct modes having cut-off ratios greater than 0.8) . 

• For large three-dimensional problems, an iterative eigenvalue routine (ARPACK) has been employed to 

solve the eigenvalue problems. A performance study has demonstrated that the iterative routine can result 

in significant improvement in computation times and storage requirement when compared with a direct 

eigenvalue routine. 

• The FE eigenvalue model has been employed to study the modal sound field in an idealised inlet duct 

with spliced liners of different widths with and without the presence of mean flow in the duct. 

• A new Galerkin MM procedure has been developed for studying transmission of sound in flow ducts. The 

scheme matches solutions between duct segments using continuity of mass flux and momentum flux at 

the matching interface. The conventional MM procedure matches solutions between duct segments using 

continuity of acoustic pressure and velocity. When flow is present in the duct, the solutions obtained 

lIsi ng the revised MM procedure show better agreement with the FE solutions than those obtained using 

the pre-existing approach. Both MM procedures are equivalent when no flow is present in the duct. 

• The new MM scheme is capable of studying acoustic effects in axially uniform ducts of any arbitrary 

cross-section with non-uniform mean flows and impedance boundaries. A study into the efficiency of 

the scheme has shown that large savings in both computational storage and computation times may be 

achieved compared to an FE transmission analysis. The savings will be more significant for large three­

dimensional problems at high frequencies. The study also shows that the resulting solution times are 

slich that a parametric study of the geometrical parameters may be performed within an engineering time 

scale. 

• The new MM scheme has been employed to study acoustic scattering due to impedance discontinuities 

111 the duct. 

• The new MM scheme has been employed to study sound diffraction by a infinitely thin splitter in a 

two-dimensional flow duct. 

• The new MM scheme has been employed to study propagation of surface waves in the duct. 

• The new MM scheme has been employed to study transmission of sound in an idealised aircraft engine 

intake with spliced liners of varying width and length at a frequency of practical interest. 
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• The new MM scheme has been employed to conduct a broadband multi-mode analysis of the effect of 

liner splices in a circular flow duct. 

The main point of originality of the work presented in this thesis lies in the development and application of a 

reliable and efficient engineering tool for studying sound transmission in turbofan aero-engine ducts. 

1.6 Thesis Outline 

This thesis is arranged as follows. Chapter 1 reviews the current prediction methods for flow duct acoustics. 

The motivations and objectives of the research, as well as contributions of the thesis to the analysis of flow duct 

acuustics are presented. 

In Chapter 2, theories used in the development of a numerical method using finite elements to solve for duct 

eigenvalues and eigenfunctions in the presence of uniform and sheared flow are presented. The formulation 

of two and three-dimensional eigenvalue problems as well as the boundary conditions of the problems are 

presented. 

Chapter .i presents the results of the two-dimensional eigenvalue problems. Issues regarding the accuracy 

and convergence of the FE eigenvalue model are investigated and discussed. The numerical results for varioLls 

duct configurations have been presented which show the validity of the analysis and computer code. 

In Chapter 4. results of the three-dimensional eigenvalue problems are presented. Issues regarding the 

accuracy and convergence of the FE model for three-dimensional problems are investigated and discussed. The 

numerical results for various waveguides have been presented. These show the validity of the analysis and 

computer code. Results of a study of the modal sound field in an idealised inlet engine duct with spliced liners 

are presented. 

Chapter 5 is devoted to the application of MM techniques to study sound transmission in flow ducts. In this 

chapter. t\VO MM procedures: the conventional approach and the revised approach. are described using a test 

problem. The rormulatiun of two and three-dimensional MM problems is also presented. 

In Chapter 6. the formulation of an FE transmission model for studying sound transmission in two-dimensional 

flow ducts is presented. Also presented is the formulation of an FE flow model for computing the steady com­

pressible potential flow in the duct. Some validation results of the FE transmission model are then presented. 

Chapter 7 examines the validity of a MM model based on a revised MM procedure for studying sound 

transmission in two-dimensional flow ducts. Ducts with acoustic impedance discontinuities and a infinitely 

thin .splitter ,m: being considered. Issues regarding the accuracy and convergence of the MM model for two­

dimenSional problems are investigated and documented. 

In Chapter 8. the validity of the MM model for studying sound transmission in three-dimensional flow ducts 
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is examined. Issues regarding the accuracy and convergence of the MM model especially for three-dimensional 

problems are investigated and discussed. The MM model has been employed to study transmission of sound 

in an idealised turbofan inlet duct with spliced liners at a realistic frequency. The main observable results are 

highlighted. Engine order tone and broadband analysis are carried out. 

In Chapter 8, concluding remarks, contributions of the thesis and future work are put forward. 



Chapter 2 

Theory: Eigenvalues and Eigenfunctions of 
Flow Ducts 

2.1 Introduction 

21 

Sound propagation in acoustically lined flow ducts is a problem which is relevant to the acoustic design of 

aero-engine nacelles. It is of considerable practical interest due to stringent noise levels required for quiet com­

mercial aircraft engines. The expansion of the sound field in a duct in terms of modes forms the basis for many 

~lnalytiL' amI semi-analytic methods in duct acoustics. It is not only an effective way of reducing the dimension 

of the problem: propagation in a prismatic two-dimensional or axisymmetric duct reduces to a one-dimensional 

eigenvalue problem: propagation in a duct of arbitrary cross-section reduces to a two-dimensional eigenvalue 

problem. It is also ,I useful way of understanding the sound attenuation in acoustically lined ducts by analysis 

uf their mud~t1 solutions. The mode axial wavenumber indicates the mode attenuation rate and the modal prop­

agation speed, and the duct eigenfunction represents the mode pressure field. By matching expansions of such 

eigensulutions at the interface between different uniform duct segments, the effect of axial variations of im­

pedance can be mudelleel with far fewer parameters than would be required for a three-dimensional numerical 

transmissiuIl analysis. 

Tu date, both exact and approximate methods have been developed for studying sound propagation in 

attenuated ducts with and without flow. These methods have been used not only for solving practical problems 

hut also as <l tool for fundamental understanding of the problem. 

In this chapter, a numerical model using finite element (FE) for computing the eigenmodes in ducts of 

arbitrary cross-section with nonuniform mean flow and locally reacting impedance boundaries is described. 

The FE method has been employed to solve these kind of problems in the early 1980s [77, 12,78]. These are 

based on the linearised Euler equations. However, the application was limited to low frequencies and coarse 

meshes hccaw;c of the computational resources available at that time. In this research, this general approach is 

revisited. 
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For two-dimensional and axisymmetric ducts, the FE method may be computationally expensive as the 

solutions can also be obtained analytically [79]. For three-dimensional problems, when the mean flow and 

impedance boundary in the duct are non-uniform, some form of numerical procedure must be used, either to 

solve an analytical eigenvalue relationship, or to form an equivalent discrete problem. In the later instance, a 

FE representation of the duct cross-section is commonly used. 

In this research, the FE eigenvalue model is used for computing the axial wavenumbers and eigenfunctions 

of the duct modes required for duct transmission analysis using mode matching techniques. This work also 

seeks to gain further understanding of the effect of the boundary layer on the attenuation of sound in the duct. 

The problem IS formulated so that a boundary layer can be included near to the duct wall if this is required. 

The influence of acoustic liner non-uniformities on duct modes is also considered. In particular the effect of 

hard axial strips inside a lined duct on the attenuation characteristics of the liner. In some engine nacelles, the 

existence of hard axial strips is inevitable in order to hold the liners in place. 

In this chapter, the equation describing the propagation of sound waves in an acoustically lined duct with 

a sheared flow is derived from first principles. The formulation of the eigenvalue problem with the relevant 

boundary conditions is then presented along with two methods for the solution of the eigenvalue problems. 

Although only simplified geometries are considered in this thesis, the extension of the central ideas to complex 

duct geometries is straightforward. 

2.1.1 Outline 

Section 2.2 presents a review of currently available techniques for solution of the duct eigenvalue problem. 

The different types of duct modes presence in a duct and the identification of these modes from the eigen­

solutions are then described and presented. In Section 2.3, the problem specification is put forward followed 

by a derivation of the equations describing the propagation of sound waves in a duct with a sheared flow and 

a uniform flow. In Section 2.4, the formulation of the duct eigenvalue problem for an acoustically lined two­

dimensional duct containing a sheared flow and a uniform flow is presented. Finally in Section 2.5, methods 

for the solution of the eigenvalue problem are described. 

2.2 Acoustic lVlodes In A Duct 

2.2.1 Uniform Flow 

Sound propagation in a duct can be described by modes. For uniform mean flow, these modes are found by 

solving the convected wave equation for the perturbed pressure as an eigenvalue problem. The derivation of 

the convected wave equation is presented later in this chapter. The eigenvalue problem has two sets of discrete 

eigenvalues ,IS solutions whieh correspond to duct modes that propagate in the positive and negative duct axial 
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directions. These are also termed 'positive' and 'negative' acoustic modes in this thesis. For hardwalled 

ducts, these duct modes form a complete, orthogonal set. Every pressure perturbation can be described by a 

combination of these eigenfunctions. 

Numerous investigations on sound propagation and attenuation in ducts with uniform flow have been re­

ported. The studies by Eversman [SO], by Astley [12J and by Ko [SIJ are some of the representatives. The 

techniques developed for the solution of the duct eigenvalue problem include the Newton-Raphson iteration 

scheme, the FEM [12, 10 J, Rienstra's tracking method [5], the Muller method [2], Eversman's numerical in­

tegration scheme [SO, 79 J, the multi-modal method [28] and the point matching method [38]. Each method 

has its advantages and disadvantages. However, only some of these methods can be used to represent three­

dimensional geometries with non-uniform impedance boundaries and mean flows. The FEM is one of them. 

2.2.2 Non-Uniform flow 

For non-uniform flow in the duct, the duct modes that describe the propagation of sound in the duct are found by 

solving the Pridmore-Brown equation [82 [ for the perturbed pressure as an eigenvalue problem. The derivation 

of the Pridmore-Brown equation is presented later in this chapter. The eigenvalue problem will yield three 

sets of discrete eigenvalues as solutions which conespond to positive acoustical modes, negative acoustical 

modes and hydrodynamic modes. Physically. hydrodynamic modes represent rotational disturbances which are 

convected with the mean flow and they are almost pressureless [83]. Details of the different types of duct modes 

are presented in Chapter 3. 

The effects of non-uniform mean flow on the propagation and attenuation of sound in ducts were first 

considered by Pridmore-Brown [82] for inviscid flow and by Mungur and Gladwell [84] for viscous flow. In 

both studies. a two-dimensional duct was considered and the influence of the boundary layer on the duct walls 

was approximated by treating the duct flow as a sheared flow with a characteristic boundary-layer velocity 

profile as shown in Fig. 2.2. Pridmore-Brown observed that for the case of rigid walls, for acoustic waves 

that propagate with the mean flow, the effect of the velocity gradient is to refract the sound into a nan-ow layer 

near the walls - see Fig. 2.1 (a). This effect is found to be frequency dependent and is only important at high 

frequencies. Because the effect of shear flow is an important issue for the study of sound propagation and 

attenuation in ducts, the Pridmore-Brown equation has formed the basis for numerous subsequent studies. In 

[85 J, Hersh and Catton have observed that for acoustic waves that propagate against the flow, the effect of the 

velocity gradient is to refract the sound into the centre of the duct - see Fig. 2.I(b). The studies by Pridmore­

BroWll I ~21 alld Hersh and Catton [851 have shown that the effect of refraction is found to be important for 

houndary layer flows when the ratio of boundary layer height to acoustic wavelength is equal to or greater than 

L111itv. 
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Figure 2.1: Schematic of downstream and upstream sound propagation. (a) For downstream wave propaga­

tion. wavefront is refracted into the duct walls by the velocity gradient. (b) For upstream wave propagation. 
wavefront is refracted away from the duct walls. 

I n I ~() I, Tack and Lambert have employed a power series solution to the Pridmore-Brown's two-dimensional 

formulation in their study of the influence of shear flow on the attenuation of sound in lined ducts. Comparison 

between the theoretical and experimental results fails to give satisfactory results at mid and high frequencies. 

Syeb 1'1 u/. [87] employs a finite difference iteration scheme to study sound attenuation in an acoustically 

lined circular duct containing a sheared flow. In [88, 89], a Galerkin weighted residual method is employed to 

investi~atc the transmission of sound in an acoustically treated rectangular duct with boundary layers and in 

Il)()l. a Runge-Kutta integration scheme combined with a Newton-Raphson iteration is employed to study the 

dTect of the boundary layer on the transmission and attenuation of sound in an acoustically treated circular duct. 

In It) II. the same problem is studied using a method of weighted residuals with trigonometric basic functions 

and a perturbation approach is employed in [92]. In [12], a FEM is employed for the solutions of the flow duct 

eigenvalue problems. The FE solution agreed well with those obtained using the Galerkin weighted residual 

method Il).~ I. The study found that the number of accurately computed modes is roughly equal to the number of 

quadratic Lagrangian elements used to discretize the duct width. Sometimes, the FE solution shows occurrence 

of spurious !1l()des which are eigen-solutions that do not correspond to any of the physical acoustic modes. 

Their eigen\"ectors reveal very rapid oscillation. Later in [77], the same problems are studied using higher order 

clements \vith slope continuity and the spurious modes are eliminated. The FEM is later employed to compute 

eigenvalues and eigenfunctions of a circular duct with swirling flow [78]. 

Although the eigenvalue model proposed in this research is also based on FE analysis. it is different to 

those by Astley and Eversman [12. 77] and by Nijboer [78]. In this study, a weak form of the Pridmore-

Brown equation forms the basis for the current eigenvalue formulation in acoustic pressure. In [77. 12. 78], 

the eigcllvaluc problem is formulated from the Euler equations in terms of primitive variables of velocity and 

acoustic pressure. 
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Figure 2.2: (a)-(b) Duct models. (c) FE mesh 

2.3 Derivation of The Pridmore-Brown Equation 

In this section, equations describing the propagation of sound waves in a lined duct with a sheared flow and a 

uniform flow are derived from first principles. The derivation is same as those presented in [82]. It is presented 

here because it is important to the understanding of this work. To reduce the complexity of the problem, the 

present analysis will be confined to two-dimensions only. The two-dimensional duct geometry is shown in Fig. 

2.2(a). The duct walls at.l' = 0 and h are lined with a locally reacting acoustic liner whose admittances on the 

bottom and top surfaces are A" and A, respectively. The width of the duct is given by h and the duct is assumed 

to be infinitely long. The mean flow in the duct, M(y) will be taken in the x direction and will be assumed to be 

a function of \' only. Inviscid mean flow is assumed. 

The fluid motion in the duct is governed by the Euler equations for the conservation of mass, momentum 

and energy which are expressed as follows [84]: 

IVlomentull1 x direction: p' (a [I' + lI' ~ + v' a u l

) = _ a p' 
at ax a)' ax (2.1 ) 

Momentull1 v direction: p --=) + u' -=;- + 1" -=;- = - ~ , (ali av' aVI) ap' 
ot ox 0)' 0)' 

(2.2) 

Conservation of mass equation: -=) + u' ~ + v' ~ + p;' ~ + -=;- = 0 
ap' ap' ap' (au' av') 
ot ox ox ox u)' 

(2.3) 

where pi, II', \: and p' are the total fluid density, flow velocity in the x direction, flow velocity in the y direction 

and acoustic pressure respectively. These variables can be expressed as: 

,/ = P" + p: [/ = II" + II: v' = \' and p' = Po + P (2.4) 

where po and p are the static and fluctuating density of the medium, Po and p are the mean and fluctuating 

acollstic pressure, 1I" is the mean flow velocity in the x direction and is assumed to be a function of v and II is 

the !1uctuating velocity in the x direction. \' is the fluctuating velocity in the)' direction. \/ = \' because there is 
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no mean flow in the y direction Vo = O. The pressure and density are adiabatically related by p = c~p where Co 

is the speed of sound. po, Po and Co are steady state values which do not vary with y. The acoustic part of the 

Euler equation can be obtained by subtracting the time-average of Eqs. (2.1) to (2.3) from the original equations 

and neglecting the products of fluctuating components. The linearized momentum and mass equations are: 

(
dU dU dUo) dp 

Momentum x direction: Po at + Uo dX + v dy = - dX (2.5) 

(
dV dV) dp 

Momentum y direction: Po ar + Uo dX = - dy (2.6) 

.. . dP dP (dU dV) 
ConservatIOn of mass equatIOn: at + U(} dX + Po dX + dy = 0 (2.7) 

Let I/> = (dll/dx+ dV/dY) so that Eq. (2.7) can be rewritten as 

(2.8) 

Differentiating Eqs. (2.5), (2.6) and (2.7) with respect to x, Y and t respectively to yield: 

(2.9) 

(2.10) 

(2.11 ) 

The two momentum equations. Eqs. (2.9) and (2. 10) are then added and equated to Eq. (2.11) to give 

(2.12) 

where \72 = ((j2 / dx2 + (j2 / (jy2). Eq. (2.12) can be further simplified to 

(2.13 ) 

Using Eq. (2)~) and its derivative with respective to x and also the relation p = c~p, I/> can be eliminated from 

Eq. (2.13) to yield 

(2.14) 

where AI = II"/C,, is the local mean flow Mach number and it is a function of y only. Differentiating Eq. (2.6) 
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with respect to x and substituting it into Eq. (2.14), the following expression is yielded: 

(2.15) 

This is the Pridmore-Brown equation that governs the propagation of sound with shear flow in acoustic pressure. 

In the expression, the interaction of shear flow with the acoustic wave is represented by the term involving 

dM/d),. 

In the case of uniform flow, dM / d)' = 0, the Pridmore-Brown equation, Eq. (2.15) simplifies to the con-

vected wave equation: 

( 
d d ) 2 7 ( d

2 
d

2 
) 

dt + /I" dX P - c~ dx2 + dy2 P = 0 (2.16) 

For uniform flow in the duct, the Pridmore-Brown equation, a third order partial differential equation simplifies 

to the convected wave equation which is a second order partial differential equation. By this, a group of 

solutions have been eliminated from the complete solutions. In [94], Eversman shows that these solutions 

are solutions which correspond to 'V x V =F 0 and they are known as the hydrodynamic disturbances. They 

propagate at the mean flow velocity with axial wavenumber k, = W / U(}. 

2.3.1 Acoustic Boundary Condition 

At the duct wall, for a uniform admittance wall, the acoustic pressure, p must satisfy the boundary condition 

derived by Myers 1951. The pressure is related to the wall admittance, A by the following relation: 

ali . .M" a 7 
- = -lkA(I-I--)-p 
dn k dX 

(2.17) 

where n is the unit normal directed out of the duct wall, W = 2nJ is the angular frequency and J is the frequency 

in Hertz. IV/" is the mean flow Mach number at the duct wall. For a no-slip boundary condition or zero flow, 

M" = 0, Eq. (2.17) simplifies to 

djJ . 
- =-lkAp 
dn 

and for a rigid wall, A = 0, Eq. (2.17) becomes 

ap 
- =() an 

(2.18) 

(2.19) 
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2.4 Formulation Of Eigenvalue Problems 

2.4.1 Sheared Flow With No-Slip Boundary Conditions 

In this section, the formulation of a duct eigenvalue problem based on the Pridmore-Brown equation for a two­

dimensional duct containing a sheared flow is presented. Consider a two-dimensional duct as shown in Fig. 2.2 

(a). The duct walls at.l' = 0 and h are acoustically lined with admittances on the bottom and top surfaces A" 

and A, respectively. The sound propagation in the duct is governed by the Pridmore-Brown equation expressed 

as follows: 

(2.20) 

Solutions to the acoustic pressure are sought in the form: 

(2.21 ) 

where A. are eigenvalues to be computed and kA = kx are the corresponding duct axial wavenumbers. Substitute 

Eq. (2.21) into the Pridmore-Brown equation, Eq. (2.20), to obtain a cubic eigenvalue equation for A: 

(2.22) 

At the duct walls, at y = 0 and h, the non-slip boundary conditions are applied: 

al'l - 'kA an - -/ hP 
\,=0 

al'l - 'kA an - -/ rP 
\,=h 

(2.23) 

Eq. (2.22) with the boundary conditions, Eq. (2.23) completes an eigenvalue problem which can then be solved 

to yield the duct axial wavenumbers and the corresponding duct eigenfunctions for a given shear flow profile. 

If A" = A" the problem can be simplified to consider only half of the duct for symmetric modes. 

2.4.2 Uniform Flow With Slip Boundary Conditions 

For unifonn flow in the duct, the duct eigenvalue problem is formulated based on the convected wave equation 

in acoustic pressure expressed as follows: 

( 
() () ) 2 0 ( ()2 ()2 ) 

-=;- -L II,,-=)" fJ - c~ ~ + ~ p = 0 
ul ux uX~ uy~ 

(2.24 ) 

Similarly. solutions to the acoustic pressure are sought in the form: 

(2.25) 
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Substituting Eq. (2.25) into the convected wave equation, Eq. (2.24), to yield a quadratic eigenvalue equation 

for A: 

At the duct walls, at y = 0 and h, the slip boundary conditions are applied 

~~Iv=o = -ikAb(I-MA?p 

*1" = -ikA/(1-MA?p 
y=h 

(2.26) 

(2.27) 

Eq. (2.26) with the boundary conditions, Eq. (2.27), completes an eigenvalue problem which can be solved to 

yield the duct axial wavenumbers and the corresponding duct eigenfunctions for a given uniform mean flow. 

Engine Duct Flow Condition 

The mean flow in the inlet duct is generally assumed to be uniform because the real flow is almost uniform 

with vorticity concentrated in the thin boundary layer at the duct walls. In the bypass duct, the mean flow is 

strungly sheared and sometimes with swirl. The acoustic disturbances in the duct are no longer irrotational and 

arc coupled with the hydrodynamic disturbance due to entropy and vorticity waves. For an acoustic study of 

bypass duct. the acoustic modes can not be studied independently from the hydrodynamic modes as in the inlet 

duct with uniform flow. 

2.5 lVlethods for the Solutions of Eigenvalue Problems 

In this section. an FE algorithm and an analytical method for the solution of the eigenvalue problem formulated 

in Section 2.4 are presented. 

2.5.1 The Finite Element Method 

Sheared Flow With Non-Slip Boundary Conditions 

In tillS section. the duct eigenvalue problem posed by Eq. (2.22) with the non slip boundary conditions is solved 

by the LIse of FE analysis. The FEM is based on a weak variational statement constructed by multiplying the 

duct eigcnvalue equation. Eq. (2.22), by weighting functions, Wand integrating over the duct width, h to give: 
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Apply the divergence theorem to Eq. (2.28) to yield: 

(2.29) 

Apply the non-slip boundary conditions at y = 0 and h through the last term of Eq. (2.29) to yield: 

i·II {rJw rJ,., (I _ M'A) - 3W rJM ap'A - W (k2 _ 3Mk2'A + 3M2k2'A2 - k2'A 2 - k2M3'A3 +k2M'A 3) p} dv+ . () ar a\' ay ay -

[W ( I - M'A ) ikA p l~; = 0 

(2.30) 

The FE discretization is achieved by dividing the duct height, h into m elements. The trial solution of the 

pressure is assumed to be of the form: 

/I 

I) = L N;(y) Pj (2.31 ) 
;-1 

where j = 1.2 ... . 11,11 is the number of nodes and NiCv) is the element shape function that connects the pressure 

at the nocles of the element. In this study, quadratic line elements are used to discretize the duct width. The 

clements produce trial functions that are continuous at all points in the region 0 :S y :S h with discontinuities in 

their y deri vatives at element boundaries. Each element has two end nodes and one midside node. Fig. 2.2(b) 

shows a typical example of a FE mesh constructed for the two-dimensional duct. The shape functions of the 

element in natural coordinates are expressed as follows: 

NI(~) = t(~ -I) 

N2(~)=(I-~2) 

N;(~) = t(~ + I) 

The shape function is equal to I at its associated node and 0 at the other nodes. 

iF i =.i 

iF i ;F j 

(2.32) 

(2.33) 

The Galerkin procedure then yields a solution by selecting weighting functions, W equal to N;, the trial func­

tions. Substitute Eq. (2.31) into Eq. (2.30) to give: 

r.J1 {fi.\ ~ (I _ M'Al - 3NrJA.1 aNi 'A _ NN· (k2 - 3Mk"'A + 3M2k2'A 2 - le2'A 2 - k"MJ'A 3 +le2M'A 3)} p .. d\'+ 
. I) ,), ,h . I dV dV I j I . 

[N,N; (I M'A)ikApil~; = () 
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Eq. (2.34) can be written as a function of eigenvalue, A as: 

[A]{ ji f + [B] A {p } + [q A 2 {p } + [D] A 3 {p } = 0 

where 

By defining 

A2{p} = {Q} and A{p} = {R} 

Eq. (2.35) can be re-written in a linear function of A: 

[AI{ ji f + [B]A{p} + [qA{R} + [D]A{Q} = 0 

which can then be written in the form of a standard eigenvalue problem: 

[G]{ o} = A [H]{ 0 } 

where the entries of [G] ane! [H] matrices are: 

IGI ~ r 0 

l c 

() 0 

() 

B A 

31 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

II] is an Identity matrix. The matrices [GJ and [H] are assembled from the appropriate element sub-matrices 

[tJ6[. Solving the system will yiele!31l eigenvalues A; 11 positive acoustical modes, 11 negative acoustical modes 

and 11 hydrodynamic modes ane! also the corresponding mode eigenvectors. 
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Uniform Flow With Slip Boundary Conditions 

For uniform flow in the duct, aM / ay = 0, the eigenvalue problem posed by Eq. (2.26) with the slip boundary 

conditions is solved. The weak variational statement is constructed by multiplying Eq. (2.26) by weighting 

functions. Wand integrating over the duct width, II to yield: 

(2.40) 

where M" is the uniform mean flow Mach number. The trial solutions of the pressure are assumed to be of the 

form: 

/I 

P = L N i (v) p, (2.41 ) 
/-1 

Apply the divergence theorem, the following expression is yielded: 

f'I! { ~W :\ } [:\ ]" U op 2 2 2 0P 
---k W[(I-Mn'A) -'A]p dy- W- =0 . () ay ay an 0 

(2.42) 

The Galerkin procedure selects weighting functions, W = N j • Substitute the slip boundary condition terms, Eq 

(2.27) into Eq. (2.42). The following expression is yielded: 

/1, {aNi aNi 2 [ 2 2]} [. 2 ]" j() ar ay -k NiNj (I-Mo'A) -'A pjdy+ NiNjlkA(l-Mo'A) Pj 0=0 (2.43) 

Write Eq. (2.-:1-3) into a function of 'A: 

[A]{p}+[B]'A{p}+[Q'A2{p}=0 (2.44) 

where 

By defining 'A {p} = {R}. Eq. (2.44) can be written in the form of a standard eigenvalue problem: 

(2.4S) 
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It can be seen that the resultant eigen-matrix is smaller than for the non-uniform flow case. Solving the system 

will yield 2n eigenvalues; n positive acoustic modes and n negative acoustic modes and the corresponding mode 

eigenfunctions. 

2.5.2 Three-dimensional Problems 

For three-dimensional problems, the FE algorithm for solving the eigenvalue problems will be similar to the 

two-dimensional case specified in this chapter. For three-dimensional ducts, the duct cross section is discretized 

using surface elements. For two dimensional ducts, the width of the duct is discretized using line elements. 

The entries in matrices [A], [B], [C] and [D] consist of area integrals rather than line integrals as in the two­

dimensional case and the boundary conditions of the problem will be associated with the line integral terms in 

the matrices. 

For three-dimensional ducts, 8-noded quadrilateral elements or 6-noded triangular elements as shown in 

Fig. 2.3 are used to discretize the duct cross-section. The mesh can be structured or unstructured. Fig. 2.4 

shows a structured FE mesh constructed from 8-noded quadrilateral elements and an unstructured FE mesh 

constructed from 6-noded triangular elements. The element shape functions for an eight-noded quadrilateral 

element are: 

Nd~·TJ) = (1/4)~(I-~)TJ(I -TJ) 

Ne (~ . TJ) = - ( I /2) ~ (I - ~)( 1 + TJ) (I - TJ) 

N\(~·TJ) = (1/4)S(1 -S)TJ(i +TJ) 

NIlS·TJ) = -(1/2)(1 +S)(I- S)TJ(I +TJ) 

N;(~·TJ) = (1/4)S(I +S)TJ(I +TJ) 

Nil (S· TJ) = - (I /2)S (l + S)( I + TJ)( I - TJ) 

N7 ( S . TJ) = ( 1/4) S ( 1 + S ) TJ (I - TJ ) 

N~(S·TJ) = -(1/2)(1 +S)(I -~)TJ(I -TJ) 

(2.46) 

where sand TJ are the local coordinates. The element shape functions for a six-noded triangular element are: 

Nd S· TJ) = I - S - TJ 

N2(~' TJ) = S 
N'(~·11) = TJ 

N-l (S·11) = 4S (I - S - TJ) 

Nil ~. TJ) = 4TJ ( 1 - ~ - TJ) 

N(, ( S . TJ ) = 4S TJ 

(2.47) 

The element shape functions imply that the acoustic pressure is continuous at all points in the duct region but 
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Figure 2.3: (a) 8-noded quadrilateral element, (b) 6-noded triangular element. • - interelement node and 0 -

midside node. 

discontinuities in the derivative are permitted at element boundaries. 

Another important aspect of the FE analysis when solving three-dimension problems is the mapping from 

local coordinates to global coordinates. This is needed for a systematic way of integrating different elements of 

different sizes and shapes throughout the meshed model. The relation between the local and global coordinates 

IS given by 

dX elY = III d7Jd~ (2.48) 

where III is the Jacobian which is the determinant of 

1- [;~ in (2.49) 

where X and Y are the global coordinates defined as 

(2.50) 

Ni is the shape function for node i and Xi and Yi are the global coordinates x and y of node i. 

2.5.3 Eigenvalue Routines 

For two-dimensional problems, a standard complex eigenvalue routine uses the QZ algorithm, a complex im-

piementatlon of the COlllmon QR algorithm for complex, non Hermitian matrices is employed to compute the 

eigel1-solutiOl1s. For large three-dimensional problems, an iterative eigenvalue routine (ARPACK) developed by 

LehuucLJ. Maschholl, Suresen and Yang 197, 98] is employed for computing the eigen-solutions. ARPACK is 

a collectiol1 or Fortran77 subroutines designed to solve large scale eigenvalue problems 197. 981. It is a free 
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(a) Structured grid: quadrangular elements (b) Unstructured grid: triangula r elements 
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Figure 2.4: (a) A structured FE mesh constructed from 8-noded quadril ateral e lements . (b) An unstructured FE 
mesh co nstructed fro m 6-noded tri angular e lements . 

softwa re whi ch can be downloaded fro m www.cC/Clm.rice .edu. Rather than computing the complete eigenval-

ues, it computes a certain number of eigenval ues with user specified features such as those of the largest real 

part , largest imag in ary part or largest abso lute. Genera lly the number of e igenvalues computed is of the order 

of 10% for matri ces that may ty picall y be of order of around 10,000. 

2.5.4 Analytical Method 

Uniform Mean F low 

For two-di mensional and ax isymmetri c ducts, the duct e igen-so luti on can be computed analytica lly. In thi s 

section. ,I n ana lytica l method of so lving the duct e igenva lue problem fo r a two-dimensional ducts with uni fo rm 

mean fl ow is described [79, 80]. The present analysis will be confined to two-dimensional ducts only as the 

extension of the method to axisymmetric ducts is straightforward . T he duct confi guration considered is shown 

in Fig. 2.5. /VI" is the unifom1 mean flow Mach number, A is the acousti c ad mittance at the duct wall at y = 0 

and Ii is the duct width . In th is stud y, the analyti ca l model is used to provide a va lidation to the FE e igenvalue 

mode l for some two-d imens ional and ax isy mmetric ducts . 

The acoustic pressure in the duct is assumed to be represented by a superpositi on of acousti c modes of the 

fo rm 

Pi = L AieiWle- ik"x cOS ( /(iY ) 
i ~ 1 

(2 .S I ) 

where /(, is the duc t transverse wavenumber of ith mode and kr.i and Ai are the co rresponding duct ax ia l 

wavenum ber and the coeffic ient of the mode respectively. /(i is re lated to the duct ax ia l wavenumber, kr.i 



Chapter 2. Theory: Eigenvalues and Eigenfunctions of Flow Ducts 36 

by the dispersion equation: 

k . I [ /~., = I-M~ -M,,± 1- (I-M,;) G;),I (2.52) 

Substitute Eq. (2.51) into the convected wave equation, Eq. (2.16), an eigenvalue equation for K; is yielded: 

( K;) ( K;) k t ; 2 2 kh k tankh k = iAkh( 1- M()t-) = iAkhw (2.53) 

The eigenvalue equation, Eq. (2.53), is then transformed into a first order non-linear ordinary differential 

equation by differentiating with respect to a non dimensional parameter ( where (0 :s; ( :s; I) and this yields 

CJ (K;h) iw
2
Ar 

JS" kh = [tankh (K;h) +kh (K;h) sec2kh (K;h) =f2i!l!!2..M (K;")] 
, kh kh kh u I /2 () kh 

(2.54) 

where the admittance A (() is now taken as a function of the non dimensional parameter (. If Af is the admit-

tance for which the eigenvalues are required, then 

and 

Eq. (2.54) is then integrated from suitable initial conditions with A = 0 over (0 :s; ( :s; I) to yield the eigenvalue 

solutions of the equation. In [79, 80], hard-walled eigenvalues K;h/kh = (i - l)rc/kh were used as initial 

values. A fourth-order Runga-Kutta integration scheme was then used to perform the integration from ( = 0 to 

( = I. a Newton-Raphson iteration was later performed to refine the solution. For each eigenvalue, K;/ k, the 

corresponding cluct axial wavenumber, kr .;/ k can be computed using Eq. (2.52). When the acoustic admittance 

has a positive imaginary part. IIIl(A) > 0, two extra eigenvalues appear. These are known as the surface wave 

modes. They can be found using the following initial values: 

(2.55) 

2.6 Surface Waves 

In a three-dimensional acoustically lined duct, the duct modes can be classified into two categories; the three-

dimensional acoustic modes and the two-dimensional sUIiace waves that exist only near the lined wall [5]. 

For an axisymmetric duct, per frequency and per circumferential order, there are, at most four surface 

waves that can be present in the duct depending on the acoustic impedance value and the mean flow. There 

are two kinds of surface waves; two acoustic surface waves that exist with and without mean flow, and two 

hydrodynamic surface waves that exist when flow is present in the duct. The surface waves can be identified by 
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their axial wavenumbers with large imaginary parts, Re(kx) < Im(k,:) or by their transverse wavenumbers with 

large real parts, Re( K) > Im( K). 

In [5 I. Rienstra Llsed a complex impedance to identify the presence of different types of surface waves in 

the duct according to the liner impedance. He presented a complex impedance plane with five regions showing 

the presence of different types of surface waves in each region - see Fig. 2.6. The plot is unique for different 

flow Mach number which is uniform mean flow of Mach number 0.5 in this case. In region I, no surface waves 

exist. in region II. only hydrodynamic instability mode (HI) exists. in region III, only HI and right propagating 

surface modes (SR) exist. in region VI, only HI. SR and left propagating surface modes (SL) exist and in region 

Y. all four surface waves exist: HI. SR. SL and hydrodynamic stable mode (H S). 

Rienstra's study found that for certain flow conditions, and impedance values, HI can be unstable. The 

mode propagates in one direction and exponentially decays in the opposite direction. The modal intensity of 

the mode indicated that the the actual propagation direction of the mode can be different for different flow and 

impedance values. This also suggests that in order to identify the positive and negative propagating modes 

correctly. the modal intensity should be used instead of the imaginary part of the duct axial wavenumber which 

is what is suggested in [80]. The expression of the modal intensity is presented in Chapter 5. 
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Figure 2_6: A complex impedance plane with five regions showing the presence of different types of surface 

waves for M" = 0 _5 [51. 



Chapter 3 

Results: Two-dimensional Eigenvalue 
Problems - Validation and Application 

3.1 Introduction 

39 

I n this chapter. the propagation and attenuation of modes in two-dimensional ducts with uniform and sheared 

flows are studied using an FE eigenvalue model. Details of the FE eigenvalue model are presented in Chapter 2. 

This wurk alll1S to establish the accuracy and convergence of the FE eigenvalue model for solutions of the duct 

eigenvalue equations presented in Chapter 2. The accuracy of the solutions computed by the FE eigenvalue 

model is checked against those obtained using other methods, either numerically or analytically. This work is 

also to indicate whether the two-climensional results are favorable. If so, the generalization and assessment of 

the FE eigenvalue model for three-dimensional problems would be warranted. 

Sume issues regarding the validity of the FEM for solution of the duct eigenvalue problems have been 

addressed 111 the past [ 12, 77]. The eigenvalue problems considered were different to the problems considered 

In thiS study. r\stley-Eversman eigenvalue model is formulated in terms of primitive variables of velocity and 

acoustic pressure and at low frequencies. The eigenvalue model considered in this study is formulated from the 

Pridmore-Brown equation for sheared flow and from the convected wave equation for uniform flow in terms of 

acoustic pressure. 

In this research, we are interested in applications at relatively high frequencies relevant in high bypass ratio 

turbofan cngine ducts. The reduced frequency range of interest corresponds to kh between 15 to 30 where k is 

the acoustic wavenumber and h is a characteristic width of the duct. This reduced frequency range corresponds 

approximately to blade passing frequency (BPF) for an equivalent circular duct in a turbofan aero-engine. 

Ideally the ahility to calculate solutions for greater kh values would be desirable e.g. up to 60 or 70. 

Thc llhjectives of this chapter are: 

• to show that the FE eigenvalue model gives COITI'Cf results. That is to say that the duct eigen-solutions 
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computed correspond to the analytical solutions which should include hydrodynamic modes, acoustic 

modes and surface wave modes; 

• to assess the accuracy of the FE eigenvalue model and to determine the FE mesh resolution which is 

required to obtain solutions for a given number of modes particularly at high frequencies; 

• to gain further insight into the modelling characteristic of the FE eigenvalue model and the possible 

structure of the modal solutions; 

• to investigate the advantages of the FEM over other methods cun'ently available, and 

• to study the effect of the boundary layer on the attenuation of sound in the duct. 

3.1.1 Outline 

The outline of this chapter is as follows. In Section 3.2, the problem specification is put forward, including 

the test problems that have been used and details of the numerical models. In Section 3.3, a description of the 

different types of duct modes presence in a duct and the identification of these modes from the eigen-solutions 

are presented. In Section 3.4.1, the accuracy of the FE eigenvalue model is checked by comparing with the 

analytical and numerical solutions obtained by other methods for a lined duct containing uniform flow. Section 

3.4.2 presents results of a convergence study of the FE eigenvalue model using meshes of different resolutions. 

In Section 3.-+.3. results of a comparison of the FE solutions with previous computed results obtained using 

other methods for a lined duct with uniform flow are presented. In Sections 3.5.1 and 3.5.2, the accuracy and 

convergence of the FE eigenvalue model for a lined duct with sheared flow are presented. Section 3.4.3 presents 

results of a comparison of the FE solutions with previously computed results obtained using other methods for 

a lined duct with various sheared flow profiles. Finally, in Section 3.6, some conclusions of the study are 

presented. 

3.2 Problem Specification 

3.2.1 Test Problems 

This section presents the details of the test cases considered in this study. The results have been produced 

for the particular test cases of a uniform two-dimensional duct containing uniform flow and a uniform two­

dimensional duct containing sheared flow - see Figs. 3.2(a) and 3.3(a). The shear flow profile shown in Fig. 

3.3( a) IS considered because it corresponds to a known test case in [93, 12J. The FE eigenvalue model is capable 

of considering any arbitrary flow profile. 
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Figure 3.1: (a)-(b) Sketches of a two-dimensional duct geometry and the coordinate system for the duct. (c) 
Finite element grid. 

The top and bottom of the duct walls are lined with locally reacting acoustic linings whose acoustic admit­

tances are defined by AI and A". The mean flow Mach number in the duct, Mo will be taken in the x direction 

and is assumed to be a function of y only. If AI = Ah, the problem can be simplified to consider only half of the 

duct geometry for symmetric modes with hard boundary at y = h - see Fig. 3.1 (b). 

3.3 Eigen-Solution 

3.3.1 Acoustic Modes 

For ducts with sheared flow, the eigenvalue problem for the Pridmore-Brown equation is solved for the acoustic 

pressure. The eigen solution yields three distinct sets of duct modes; positive acoustic modes, negative acoustic 

modes and hydrodynamic modes. For ducts with uniform flow, the eigenvalue problem for the convected wave 

equation is solved for the acoustic pressure. The eigen-solution yields two distinct sets of duct modes; positive 

acoLlstic modes and negative acoustic modes. The different types of duct modes can be identified based on the 

duct axial wawnull1ber and the duct modal intensity. 

A mode with a negative modal intensity represents a negative acoustic mode. The mode decays or prop a-

gates in the negative x direction. Similarly. a mode with a positive modal intensity represents a positive acoustic 

mode. The mode decays or propagates in the positive x direction. The hydrodynamic modes are identified by 

their axial wavenumbers. kr.h which are predominantly real with small imaginary values. The kdz value lies in 

the range hounded by k/ MIII,n and k/ Mill ill where MII/(/x and M'llill are the maximum and minimum mean flow 

Mach numher values in the duct. k = ill/Co is the acoustic wavenumber. ill is the angular frequency and Co is the 

speed of sound. In the case of uniform flow in the duct, the axial wavenumbers of the hydrodynamic modes are 

representee! hy Illultiple solutions with kdz = k/M". Physically. the hydrodynamic modes represent rotational 

disturbances which are convected with the mean flow and they are almost pressureless [83]. 
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[n this study, the positive and negative acoustic modes are ordered on the basis of their cut-off ratios in 

descending order. The mode cut-off ratio, T) is defined by: 

k 
T)=----;:::== 

11(IJI-M~ 
(3. I) 

where 1( is the duct transverse wavenumber and it is related to the eigenvalue, A, by the dispersion equation: 

,~~~~~~~-~-~-~--

1( - Ie ---2 - ---2 (Mo + (I -M())/1 - . V I I 2 1)2 
I-M() I-M() 

(3.2) 

For shear flow, M() is taken to be the maximum mean flow Mach number in the duct. 

In a hardwalled duct, the duct modes having cut-off ratios greater than I are cut-on and propagate unattenu-

ated in the axial direction upstream and downstream from their point of origin and carry acoustic energy. When 

the mode cut-on ratios are less than I, the associated acoustic modes are cut-off. The cut-on modes decay 

exponentially along the axial direction of the duct and carry no acoustic energy. In a softwalled duct where 

,lcoustic Illodes are neither cut-on nor cut-on. the mode cut-on ratio can still be used to indicate the degree to 

which the Illode propagates within the duct. The smaller the mode cut-off ratio, the greater the rate of which 

the acoustic Illode decays along the duct. 

For the shear flow case, an FE subdivision with n degrees of freedom yields an eigen-matrix of order 311. For 

uniform flow, the order of the eigen-matrix decreases to 211 because the Pridmore-Brown equation, a third order 

differential equation simplifies to the convected wave equation, a second order differential equation. Details of 

the discrete eigenvalue problem are presented in Chapter 2. 

In this work. the eigenvalue problems are solved using the generalized eigenvalue routines in the IMSL li­

brary [l)l) [. The routines use the QZ algorithm which is a complex implementation of the common QR algorithm 

for cUlllple\: and non Hermitian matrices. The eigenvalue routines calculate all the eigenvalues. 

Surface \Vavcs 

In lined ducts. besides the acoustic modes. the eigen-solutions can include up to four surface waves depending 

on the liner impedance and flow condition. The surface waves arise when part of the sound wave is scattered 

by the impedance wall and confined to a thin layer near the wall [100]. The characteristics of the surface waves 

are their pressure field is localized near the lined walls. Details regarding the surface waves are presented in 

Chapter 2. Part of the validation study is to ensure that the FE eigenvalue model is capable of resolving correctly 

the surface waves of different types. Some of the test cases have been deliberately set up to include different 

types of surf,lce waves in the solutions. 
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Figure 3.2: (a) A softwalled duct with uniform mean flow. (b) Finite element subdivision of the duct with using 
a uniform mesh. 0 interelement node, x micIside node. 
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Figure 3.3: (a) A softwalled duct with a sheared mean flow. (b) Finite element subdivision of the duct width 
using a uni form mesh. (c) Finite element subdivision of the duct width using a nonuniform mesh. 0 interelement 
node. x mldside node. 

Numerical Model 

The duct width is discretized using quadratic Langrangian line elements as shown in Fig. 3. I (c). For uniform 

flow, uniform meshes are used for the discretization of the duct width - see Fig. 3.2(b). For sheared flow, 

uniform and non-uniform meshes are used to discretize the duct width - see Figs. 3.3(b) and (c). Both meshes 

have the same number of elements but the non-uniform grid has more elements at the boundary layer than 

the unifOlm grid. This intends to resolve the pressure in that region more accurately. The linear shear flow 

profile shown in Fig. 3.3(a) is considered here because previous results are available for comparison. The FE 

eigenvalue model is capable of considering any arbitrary flow profile. 
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3.3.2 Benchmark Results 

In this study, the validity of the FE eigenvalue model is examined by comparing with the exact and approximate 

results obtained by other methods. Some of these results are computed by the author and some are previously 

computed results. For uniform flow, the exact solutions are computed using an integration scheme [80, 79]. 

The scheme are detailed in Chapter 2. The approximate results are those previously computed by Unruh and 

Eversman [XX [ using the method of weighted residuals (MWR) and by Astley and Eversman [12] using the 

FEM. Although the eigenvalue model proposed in this research is also based on FE analysis, it is different to 

those by Astley and Eversman [12, 77]. The current FE eigenvalue model is formulated from the Pridmore­

Brown equation in acoustic pressure. The Astley-Eversman FE eigenvalue model is formulated from the Euler 

equations in terms of primitive variables of velocity and acoustic pressure. 

For sheared flow, the exact results are those previously computed by Hersh [85]. The approximate results 

are those previously computed by Unruh and Eversman [88] using the MWR and by Astley and Eversman [12] 

using the FEM. 

3.4 Uniform Flow Results 

This section presents results for uniform flow in the duct. Section 3.4.1 presents results of an assessment of 

accuracy of the FE eigenvalue model for a fixed mesh. Section 3.4.2 presents results of a convergence study of 

the FE eigenvalue model using meshes of different resolutions. In Section 3.4.3, results of a comparison of the 

FE solutions against previously computed results. Finally Section 3.4.4, results of a study into the treatment of 

surface waves by the FE eigenvalue model are presented. 

3.4.1 Assessment of Accuracy of the FE Solutions for a Fixed Mesh - Uniform Flow 

In this section. the accuracy of the FE eigenvalue model is checked by comparing with the analytical solutions 

computed by the author. The test duct as shown in Fig. 3.2(a) has an acoustically lined wall at y = 0 and a 

hard boundary at \" = h. The duct is studied for kh =5, 10 and 20 with uniform mean flow at Mo = 0.5. The 

non-dimensional acoustic impedance at the lined wall is taken to be 2.0 - 2.34i, 2.0 - 1.14i, and 2.0 + 1.26i 

respectively. These values are derived for a simple model for a single cavity liner which consists of a porous 

facing sheet with resistance R and rigid back plate. They are separated by a honeycomb mesh with cavity depth 

d and mass reactance Ill. The non-dimensional specific acoustic impedance, Z of the lining is expressed as 

follows: 

L = Ri- i[XI/l- X,] (3.3) 
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Duct width h 0.5m 

Reduced frequency kh 5, 10,20 

Non-dimensional acoustic impedance Z" 2 - 2.344i, 2 - 1.144i, 2 + 1.256i 

Mean flow Mach number M" 0.4 

Table 3.1: Model duct specification. 

where the mass reactance XIII = km,. and the cavity reactance Xc = -cot (kd). For the results presented here, the 

resistance is taken to be 2, and the mass reactance and liner depth are taken to be m = 0.24 and d = 27.5mm. 

These are typical values for a turbofan aero-engine liner. In Table 3.1, the values of the parameters used in this 

analysis are presented. 

A uniform mesh constructed from 5 quadratic Lagrangian line elements as shown in Fig. 3.2(b) was used 

to discretize the duct width. Table 3.2 presents the axial wavenumbers of the positive and negative propagating 

mode~ computed by the FE eigenvalue model and also the corresponding mode cut-off ratios evaluated by using 

Eq. (4.2). 

Tu ,[ssess the accuracy of the FE solution, the error percentage between the FE and the benchmark solutions 

is calculated using the following expression: 

(3.4) 

where k;~11 is the c1uct axial wavenumber computed by the FE eigenvalue model and k~e is the duct axial 

wavenumber computed analytically. The superscripts ± are associated with duct modes propagate in the posi-

tive and negative .\ direction. 

Figs. :1.4 tu :1.6 show plots of error versus mode number for the three frequency cases. The mode number 

in the plots is obtained by ordering the modes according to their cut-off ratios in descending order so that those 

modes on the left are well cut-on and those on the right are effectively cut-off. In the plots, modes having 

cut-off ratios greater than 0.8 are represented by unfilled symbols and modes having cut-off ratios less than 0.8 

are represented by filled symbols. 

[n this study, the comparison is only made for modes having cut-off ratios greater than 0.8 because these 

mocles have been found to be adequate when incorporated with the mode matching method for duct transmission 

study. This would include all the cut·on mocles ancl a few evanescent mocles as in a harclwallecl cluct. 

Results presented in Fig. 3.4 show that at the low frequency of kh = 5, all the cluct mocles having cut-off 

ratios greater than O.X are computed accurately by the FE eigenvalue moclel with errors less than 5% when 

compared with the exact solutions. For kh = 10, three out of the five positive acoustic modes and four out of 

the five negative acoustic mocles having cut-off ratios greater than 0.8 show errors less than 5% when compared 

with the exact solutions. ;\t the high frequency of kh = 20. only half of the duct mocles having cut-off ratios 
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greater than 0.8 show errors less than 5% when compared with the exact solutions - see Fig. 3.6. The gradual 

deterioration in the solution accuracy with increasing mode order illustrates the inability of the current mesh 

resolution to cope with the more complicated mode shapes. The mesh resolution, N defines the number of 

nodes which are required to represent the solution over one wavelength: 

CO 
N=-

If1 
(3.5) 

where f is the frequency in Hertz and f1 is the average distance between nodes. For many engineering ap­

pi ications. for a given frequency, a mesh resolution of 8 to 10 nodes per wavelength is the general rule of 

thumb. 

Using Eq. (3.5), the FE mesh resolution is calculated to be II nodes per wavelength for kh = 5, 6 nodes 

per wavelength for kh = 10 and 3 nodes per wavelength for kh = 20. For kh = 10 and 20, the mesh resolution 

is less than the recommended resolution of 8 to 10 nodes per wavelength which explains the poor agreement 

between the two methods. 

The large error observed of mode 7 + in Fig. 3.6(a) is because of the sign difference between the FE and 

the analytical solutions: k7711 = -3.575 - 3.678i and k;t:7.e = 2.044 - 0.675i. Using the error expression in Eq. 

(3.-J.J. <l large error is being computed because a large value is divided by a small value. 

Tahle 3.2 shows that for kh = 20. the number of softwalled duct modes having cut-off ratios greater than 

(l.R is equal to the number of hardwalled duct modes having cut-off ratios greater than 0.8. As the mode order 

increases. the cut-off ratios of the softwalled duct modes converge to those of the hardwalled duct. A similar 

characteristic has been observed for kh = 5 and 10. This observation justifies the use of the cut-off ratio to refer 

to duct modes in both rigid <lndlined ducts. 

In Figs. 3.7 to 3.9. plots show the locations of the duct axial wavenumbers in the complex plane for the 

three frequency cascs. Results obtained by the FE eigenvalue model and by the exact method are presented. 

In the plots. duct modes having cut-off ratios greater than 0.8 are represented by unfilled symbols and duct 

modes having cut-off ratios less than 0.8 are represented by filled symbols. The results are consistent with 

those observed In Fig. 3.4 to 3.6. For kII = 5 and 10. the agreement between the FE and the exact solutions for 

modes haVing cut-off ratios greater than 0.8 is generally good. At the high frequency of klz = 20, only half the 

duct modes having cut-off ratios greater than 0.8 agree well with the exact solutions. In Fig. 3.9(a), FE mode 

7 + has a dlfTerent imaginary sign from its exact counterpart. 

3.4.2 Convergence of the FE Solutions - Uniform Flow 

In this secti()n. results that demonstrate the convergence of the FE solutions to the exact solutions are presented. 

The aim of this study is to determine the FE mesh resolution required to obtain solutions for a given number of 
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Mode Exact FEM cut-off ratio. T) Exact FEM cut-off ratio, T) 

kh=5.0 kh=IO.0 
1+ ( ~.616 - (I.077i) 3.636 - O.077i) 8.10 7.09()- 0.142i) ( 7.096- O.142i) 6.31 
2-f- t 2.6X2 - (I 153i) 2.682 - D.153i) 1.83 6.802 - 0.257i) ( 6.802 - 0.257i) 3.76 
3+ (-2.mX - 2.575i) (-2.D41 - 2.5%i) 0.90 5.165 - o 290i) ( 5.159 - 0.292i) 1.80 
.j, - 2A93 - 7.97(1i -2.5()D- X.D5Xi (159 1.690- D.595i) ( 1.582 - 0.622i) 1.17 
S 1- -2.hm - 12.(l45i -2.616 - 12.161 i OA4 (-4.DXS - 5891 i) (-4.146- 6.4ni) 0.90 
(,+ -2.h75 - 15.814i -2.956- 17.647i (US -4.851 - 11.687; -4.560 - 13.655; 0.71 
7+ -2.734 - 19.5D4i -3.237-21.519i 0.29 -4.736 - 16.223; -4.805 -18.290i 0.59 
X+ -2.7X7 - 23.ll3i -3.666 - 26.984i 025 -4.829 - 20.336; -5.044-24.217; 0.51 
9+ - 2.X35 - 26.685i -4.643 - 32.829i 0.22 -4.898-24.24Ii -5.316 - 30.529; 0.44 

10+ -2.X8 I -10.236i -4.418 - 37.243i 0.19 -4.956 - n.023i -5.383 - 36.394; 0.39 
11+ -2.925 - 31.772i -2.653-41.184i 0.17 -5006-31.727i -4.900 - 40.043i 0.35 

1- ( - 7 986 + 0 128i) (-7.703+ O.116i) 2.22 (- 16.534 + O.020i) (- 16.534 + O.020i) 6.67 
(-X.227 + 2.OJ5i) (-8.743+ o 292i) 2.39 (- 15398 + o 222i) (-15.396+ 0.223i) 2.21 

,- ( -3.366+ 3036i) (-2.692+ .1.079i) 0.89 (-12AOX+ I.069i) (-12.350+ 1.140i) 1.28 
4- - 2.~:'6 + XAXOi -2.591+ 8.344i D.58 (- 12.583 + 4242i) (-12.497 + 4.128;) 1.09 
)- - 2.709 + 12.562i -2.566 + 12AD3i 0.41 (- 6.14S+ 6842i) (- 6.01 3 + 7.465i) 0.87 
6- -2.(,33 + 16.349i -2550+ 16.214i (1.35 -5.479 + 12.597i -5442+ 15252i 0.69 
7- - 2.57X + 20.0 11i -2.538+ 19.957i 029 -5.261 + 17.108i -5.574 + 20.207i 0.57 
s- .- 2.5.33 + 23.613i -2.526+ 23.709i 025 -5.139 + 21.20Si -5.415 + 26.453i OA9 
L)_ -2.494+27.I73i -2.512+27.513i 022 -5.057 + 25.105i -5.222 + 33.392i 0.43 

111- - 2.4(,(1 + 311.709i -2A81 +3U2L)i O.Il) -4L)94 + 2SS84i -4.881 +39.44li 0.38 
11- - 2A29 + 34.228i -2.487 + 37.62(,i () 17 -4.943 + 32.586i -5.855 +46.583i 0.34 

Moue Exact FEM Soft walled duct Hardwalled duct 
cut-off ratio. T) cut-off ratio, T) 

kh=20.0 
1+ ( 14.241 - 0.016i) (14241 - O.OI6i) 28.017 
2+ ( LU89- 0.1(41) ( 13.889- O.IOSi) 6A81 6.946 
J+ ( 13.118- O.175i) (13.113- o 176i) 3405 3.473 
4+ ( 11783 - 0.221il (11743 - O.22('il 2.29.3 2.315 
5+ ( LJ.746 - 0.279il ( 9.540- 0.2Sli) 1.725 1.737 
h+ ( 6.744- (US7i) ( 4.424- 0.599i) 1.383 1.389 
7+ ( 2.044- (I.675i) (-3575 - 3678i) I 153 1.158 
X+ (-7.117- 5.198i) (-6595 - 15.154i) 0.988 0.992 
9+ (-8391 - 13XOOi) (- 7.0X3 - 23.339i) 0.865 0.868 

10+ -8.675 - 19563i -S.O.35 - 30.096i D.770 0.772 
11+ -X.X33 - 24A91i -9.292 - 34.320i 0.693 0.695 

1- (-33.275 + O.004i) (-33.275 + O.OO4i) 17.10 
:. (-32.799 + D.03Si) (-32.799+ 0039i) 5.52 6.95 
.1- (-31.824+ O1l2i) (-31.()15+ 0.115i) 3.20 3.47 
4- I -3D.292 + II 23Si) (-.30l29 + o 260i) o 0" 

-.-~) 2.32 
5- (-28.095 + 1I.432i) (-27.900+ OA95i) 1.70 1.74 
6- (-24.994+ O.72Di) (-22.()43 + O.704i) 1.37 1.39 
7- (-20282+ 1.194i) (-13.677+ 4AOli) 1.15 1.16 
x- I - II 174+ 5.855i) (-10.270+ 16.93Ii) 0.99 0.99 
<)- (-9.97) + 14.536i) (-9.769+26.31 Ii) 0.87 O.S7 

10- - <)751 + 20 338i - 9513 + 33.559i [J.77 0.77 
11- - L).639 + 25.284i -8188+39.4lli 0.69 0.70 

( J - Illode having clIt-off ratio. T) :> [J.X 

Table 3.2: Axial wavenumbers of the positive and negative acoustic modes computed by the FE eigenvalue 
Illude I and by the analytic model. M" = 0.4, kh =5, 10 and 20. The duct wall at y = Iz is acoustically lined and 
the duct wall at \' = () is acoustically hard. 
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Figure 3.4: Error plotted against mode number for kh =5. Mo = 0.4, Zb=2 - 2.34423i and Z/=oo + ooi. (a) 
Positive acoustic modes, (b) Negative acoustic modes 
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Figure 3.5: Error plotted against mode number for kh = 10. Mo = 0.4, Zb=2 -1.14423i and Z/=oo+ooi. (a) 
Positive acoustic modes, (b) Negative acoustic modes 

duct modes particularly at high frequencies. The same test duct as in Section 3.4.1 is considered here. The duct 

is only studied for kh = 20 with uniform mean of Mach number 0.4. 

In Fig. 3.10, the errors between the FE and the exact solutions are plotted against the mode number for 

different mesh resolutions . The error is calculated using Eq. (3.4) . The mode number in the plots is obtained 

by ordering the modes according to their cut-off ratios in descending order. In the plots, errors of the duct 

modal wavenumbers having cut-off ratios greater than 0.8 are denoted by unfilled symbols and errors of the 

duct modal wavenumbers having cut-off ratios less than 0.8 are denoted by filled symbols. 

As expected, the FE solutions converge to the exact solutions as the mesh resolution increases. The errors 

of the duct modes having cut-off ratios greater than 0 .8 drop below 6% when the mesh resolution is equal to 8 

nodes per wavelength and drop below 4% when the mesh resolution is equal to 10 nodes per wavelength. In 

general , the error decreases with increasing mesh resolution. 

This study has shown that an FE mesh resolution of 8 to 10 nodes per wavelength is found to be adequate 

to resolve the duct modes of interest in this research. 
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Figure 3.7: Duct axial wavenumbers in the complex plane for kh = 5. FE and exact solutions are presented. 
Mo = 0.4, Zh=2 - 2.34423i and Z/=oo + ooi. (a) Positive acoustic modes (b) Negative acoustic modes. 

3.4.3 Comparison with Previously Computed Results - Uniform Flow 

The FE solutions are compared against the previously computed results for a uniform mean flow of Mach 

number 0.4 in the negative x direction. This comparison is not intended to validate the current FE eigenvalue 

model but is to indicate how the resolution required for the current FE eigenvalue model compares to that of 

previous formulations. 

Fig. 3.2(a) shows the duct geometry used in the production of the results. The duct has a lined wall at y = 0 

and a hard wall at y = h. The non-dimensional admittance of the liner is taken to be Ah = 0.72 + 0.42i. The 

duct is studied for kh = 6. The duct width is discretized using a uniform mesh of five Lagrangian quadratic line 

elements. 

Table 3.3 presents the duct axial wavenumbers obtained by the exact method, by the MWR with the use of 

ten basis functions , by the Astley-Eversman FE eigenvalue model and by the current FE eigenvalue model. The 

previously computed results are taken from a known test case in [12]. In the table, duct modes having cut-off 

ratios greater than 0.8 are bracketed. 
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Figure 3.9: Duct axial wavenumbers in the complex plane for kh = 20. FE and exact solutions are presented. 
Mo = 0.4, Zb=2 + 1.25576i and Z/=oo + ooi. (a) Positive acoustic modes, (b) Negative acoustic modes. 

In Fig. 3.11 , the errors of the three approximation solutions when compared with the exact solutions are 

plotted against the mode number. The error is calculated using the error expression in Eq. (3.4). The results 

show that the accuracy of the current FE eigenvalue model is found to be comparable to the MWR and the 

Astley-Eversman FE eigenvalue model, and is of good agreement with the exact solutions. 

The results also show that the number of accurately predicted duct modes by the current FE eigenvalue 

model is about equal to the number of quadratic elements. This agrees with the estimate of accuracy established 

by Astley and Eversman in [12]. This estimate of accuracy is found equivalent to a mesh resolution of 6 to 

7 nodes per wavelength which is close to the 8 to 10 nodes per wavelength established for the current FE 

eigenvalue model in this research. 

The current FE solutions show no occurrence of spurious modes as observed in the Astley-Eversman FE 

eigenvalue model [12]. Spurious modes are eigen-solutions that do not correspond to any of the physical 

acoustic modes and their eigenvectors reveal very rapid oscillation. This is supported by the mode shape plots 

presented in Fig. 3.12. In the figure , the eigenvectors of modes I + to 11 + obtained by the current FE eigenvalue 
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Figure 3.10 : Convergence study of the FE eigenvalue model. Error plotted against mode number for different 
mesh resolutions. kh = 20, M" = 0.4, Zh=2 + 1.25576i and Z/ = 00 + ooi. (a) Positive acoustic modes, (b) 
Negative acoustic modes. 

model and by the analytic model are plotted against the width of the duct. Solid lines denote the exact solutions 

and dotted lines denote the FE solutions. Fig. 3.12 shows a gradual deterioration in the accuracy of the current 

FE solution as the mode order increases. This illustrates the growing inability of the current mesh to cope with 

the more complicated mode shapes. Mode 8+ in Fig. 3.13(h) is a surface wave and the mode shape shows the 

pressure is localised near the lined wall. 

The conclusions can be drawn from this study are: 

• the accuracy of the FE eigenvalue model proposed in this research is found to be comparable to the MWR 

and the Astley-Eversman FE eigenvalue model; 

• the solutions obtained by the current FE eigenvalue model are found to be of good accuracy with the 

exact solutions when adequate mesh resolution is used; 

• the solutions obtained by the current FE eigenvalue model show no occurrence of spurious modes with 

no modes repeated and 

• an FE mesh resolution of 8 to 10 nodes per wavelength is found to be adequate to resolve accurately 

the modes of interest in this research. This estimate of accuracy is found to be comparable to those 

established by Astley and Eversman in their FE eigenvalue model study [12]. 

In tenns of application to general problems, the current FE eigenvalue model has the advantages of rep­

resenting any duct cross section with non-unifonn mean flows and impedance boundaries compared to the 

analytical method and the MWR. 
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Mode Exact MWR FEM FEM 
( Astley-Eversman) (Current) 

1+ ( 1.964 - 0003i) ( 1.96 - 0004i) ( 1.964 - O.003i) ( 1.964 - 0.OO3i) 
2+ ( 1.622-0.05Ii) ( 1.62 - 0050i) ( 1.622-005Ii) ( 1.621 - 0.05Ii) 
3+ ( 0.979-0.736i) ( 0.96 - 0.770i) (0.980 - 0.738i) (0.983 - 0.743i) 
4+ ( 0.831 - 1.500i) ( 0.82 - 1.550i) ( OS31 - 1.507i) ( 0.835 - 1.521 i) 
5+ ( 0.753-2219i) ( 0.75 - 2.280i) ( O.741-2.ISJi) ( 0.753 - 2.274i) 
6+ 0.7IS-2.90Ii ( 070 - 2970i) U0679 - 2.368i) 0.692 - 3.250i 
7+ 0.691 - 3.560i 0.68 - 3660i O.714-2.908i 0.680 - 4.1 06i 
H -5.9IS - 4.078i -1.51 - 5.390i -4.588 - 4.912i -4.607 -5.ll8i 
9+ 0.675 - 4.206i 0.66 - 4.340i 0.681-3.515i 0.656 - 5.161i 
10+ 0.663 - 4.S44i 0.65 - 5.030i 0.674 - 3.633i 0.646-6.316i 
11+ O.654-5A76i O.667-5.6I7i 0.662 - 7.199i 

1- (-0.655 + 0045i) (-0.66 + O.050i) 1-0.655 + 0045i) (-0.655 + 0.045i) 
7_ (-0.592 + 0074i) (-0.59 + 0060i) (-0.592 + 0074i) (-0.592 + 0.074i) 
3- (-O.112+0.152i) (-0.11 +0 150i) (-0 111+0.152i) (-0.110+0.153i) 
4- I 0.609 + 0 973i) ( 0.60 + O. 990i) ( 0.609 + O.979i) ( 0.610+0.990i) 
5- I (l.(185 + I 820i) ( (l.67 + 1.840i) ( 0.684 + I.S24i) ( 0690+1.871i) 
6- ( O.719+2526i) ( 0.69 + 2550i) ( o 754+2.232i) ( 0.780 + 2.698i) 
7- 0.744+3.183i 0.70+3.220i (:::0.672 + 2.331 i) 0.752 + 3A38i 

x- 0762+3g1Si (1.70 + 3.870i ( 0.718 + 2.S50iJ 0.786+4.340i 
9- 0.775 + 4A33i 070+4.510i 0.674+3.591i 0.786+5.354i 
10- 0782+5042i O.69+5.150i O.963+3.897i 0.742 + 6.423i 
11- 0784 + 5.647i 0.667 +5.617i 0.679+7.215i 
I ) - mode with cllt-off ratio. 11 > O.S 
:':: - spuriolls mode 

Table 3.3: Duct axial wavenuJl1bers obtained by the exact method, by the MWR, by the Astley-Eversman FE 
eigenvalue model and by the current FE eigenvalue model for an acoustically lined duct. M(} = -0.5, kh = 6, 

A" = 0 72 -'-- 0.42i and A, = 0 + Oi 

3.4.4 Surface Waves - Uniform Flow 

This work investigates the capability of the CllITent FE eigenvalue model to resolve the correct number of 

surface waves of different types, It is carried out by applying different acoustic impedances at the lined walls 

at the bottom (\' = 0) and top (\' = h) of the duct. Fig. 3,2(a) shows the duct geometry used in the production 

of the re,sulrs. The duct is studied for kh = 18 with uniform mean flow at A{, = 0.5. Table 3.4 outlines three 

configurations with different acoustic impedances at the top and bottom of the duct along with the different 

types of surface waves expected according to the location of the impedance in the complex impedance plane 

[5]. The duct width is discretized using a uniform mesh of 30 quadratic Lagrangian line elements for which the 

mesh resolution is calculated to be 10 nodes per wavelength. 

Tahle 3.5 presents the axial and transverse wavenumbers of the surface waves computed by the FE eigen-

value model and by an integration scheme [79]. The results show that both methods predict the conect number 

of surface waves of different types expected. Configuration I results show the existence of eight surface modes; 

two hydrodynamic instability modes (HI). two hydrodynamic stable modes (Hs), two right propagating surface 

modes (S/i) and two left propagating surface modes (SiJ. Configuration 2 results show the existence of six 
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Figure 3. 11: Comparison of FE solutions with previously computed results. Error plotted against mode number 
for uniform mean flow of Mach number 0.4 in the positive x direction. kh = 6, Ab = 0.72+0.42i andA t = O+Oi. 
(a) Positive acoustic modes (b)Negative acoustic modes 

surface waves; two HI, two 5R, one 51 and one Hs. Configuration 3 results show the existence of one 51, one 

5R, one HI and one Hs. 

For all three cases, general good agreement is observed between the FE and the exact solutions except the 

HI mode because of insufficient mesh resolution to resolve the localized pressure field at the lined walls. This 

has been verified by the results obtained using a finer mesh. 

Fig. 3.13 presents the eigenvectors of the eight surface waves of Configuration 1 plotted against the width 

of the duct. The eigenvectors have been normalized to the maximum absolute pressure. The eigenvector plots 

show that the pressure field of the surface wave is localized near to the lined walls especially the HI mode. This 

suggests that a finer mesh is required near to the lined walls in order to model the localized pressure accurately 

and effectively. 

Although the problem studied is symmetric, the eigenvector plots presented in Fig. 3.13 show that the 

surface waves with an identical axial wavenumber show asymmetry in the mode shapes . No further investig­

ation is carried out at the time of the research, but it has been suggested as future research, to gain a better 

understanding of the characteristics of the surface waves. 

The results presented in Table 3.5 also show that the axial wavenumbers of the surface waves computed in 

the three configurations are very close to each other when an identical impedance is used. This might suggest 

that the propagation characteristics of the surface waves are very acoustic impedance dependent. This can be 

expected as most of the acoustic energy of the surface wave is localised near to the lined walls . This also means 

that the surface waves will influence only the sound field near the lined walls and have small influence on the 

sound field away from the walls. 

The FE eigenvalue model developed in this study has been shown to be capable of resolving the surface 
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Specific impedance SL SR HI Hs 
Region in 

complex Z-plane 

Configuration 1 
Top: 0.1 - 3.0i vi vi vi vi V 

Bottom: 0.1-3.0i vi vi vi vi V 

Configuration 2 
Top: 0.1 - 3.0i V vi vi V V 

Bottom: 0.1 - 1.0i V vi III 

Configuration 3 
Top: 0.1 - 3.0i vi vi vi vi V 

Bottom: 0.1 + 3.0i I 

Table 3.4: Non-dimensional acoustic impedance at the top and bottom of the duct and the location of the 
impedance in the complex impedance plane according to Rienstra [6]. M() = 0.5 and kh =18. 

waves of different types if sufficient mesh resolution is used. The propagation characteristics of the surface 

waves are found to be very acoustic impedance dependent. 

3.5 Sheared Flow Results 

This section presents results for shear flow in the duct. Section 3.5.1 examines the accuracy of the FE eigenvalue 

mociel by comparing the FE solutions with the exact or reference solutions. Section 3.5.2 presents results of a 

convergence study of the FE eigenvalue model. In Section 3.5.3, the effect of mesh uniformity to the accuracy 

uf the FE solution is investigated. Section 3.5.5 presents results of a comparison of the FE solutions with 

prn'iously computed results, 

Due to limited results available for validation especially at high frequencies, an approach adopted in this 

study is to use converged FE solutions computed using a high resolution mesh such as 100 quadratic Lagrangian 

elements as the reference solutions, This should be a reasonable approximation to the exact solutions at least for 

the luw order modes e.g, modes having cut-off ratios greater than 0,8. The hydrodynamic modes are omitted in 

the results because they are almost pressureless and their contribution to the acoustic field is insignificant [83]. 

3_5_1 Assessment of Accuracy of the FE Solutions for a Fixed Mesh - Sheared Flow 

This work examines the accuracy of the FE eigenvalue model for determination of duct eigen-modes in sheared 

flow. Fig. 3,3(a) shows the test duct used in the production of the results. It has a soft wall at v = 0 and a 

hard wall at \' = h. The non··dimensional acoustic admittance at the lineel wall is taken to be 1,14 - 0,S5i and 

(),07 - () I Si respectively. The duct is studied for kh = 1.1 and 10. For the low frequency case of kh = 1.1. a 

cunstant gradient boundary layer is considered - see Fig. 3, 14(a), This flow profile corresponds to a known test 

case i 11 I l).1. 1,21. For the high frequency case off," = 10, a more realistic flow profile in a turbofan aero-engine 
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Moue Exact method FEM 

SRI 

SR2 
SL I 
SL2 

HII 

Hll 
HS I 
HS} 

SRI 

SR2 
SL I 
HII 

HIl 
HS I 

kx )( 

Configuration 1, A,=0.1-3.0i, Ab=0.1-3.0i, 0.5 Mach number 
25.545 - 0.033i 0.277+ 4.495i 25.545 - 0.033i 
25.762 - O.024i 0.152+ 6.063i 25.762 - 0.024i 

-129.687 + 61.453i 58.265 + 82.589i -130.0S3 + 62.801i 
-129.687+61.453i 58.265 + 82.589i -130.083 + 62.80 Ii 

551.813+ 13.573i 11.800-497.857i 860.265 + 55.709i 
551.813 + 13.573i 11.800 - 497.857i 860.265 + 55.709i 

-144.445 - 75.000i 69.395 + 96.592i -144.514 -78.159i 
-144.445 - 75000i 69.395 + 96.592i -144.514-78.159i 

Configuration 2, A,=0.1-3.0i, ;\,,=0.1 1.0i. 0.5 Mach number 
25.667 - O.028i 0.1'18+ 5.433i 25.667 - 0.028i 
28. 110 - O,449i 1.207 + 14.898i 28.110- 0.449i 

-129.687+61.452i 58.265 + 82.589i -130.083+62.80Ii 
272104+ 14.S50i 13.050 - 253.802i 284.528 + 17.879i 

551.813 + 13.S73i 11.800 - 497 .857 i 860265 + S5. 709i 
-144.446 - 7S000i 69.395 - 96.592i -144.514- 78.159i 

Configuration 3, A,=O.I-3.0i. A,,=O.I +3.0i, 0.5 Mach number 
25.680 - o ()26i (U8CH 5.523i 25.680 - 0.026i 

-12'1.687 + 61.452i 5S.265 - 82.590i - 130'()83 + 62.80 I i 
551.X 13 + 13.57Ji 11.800 - 497.857i 

-144.446 - 75000i (1'1.359 - %.592i 
860.265 + 5S709i 

-144.SI4-78.159i 

0.277+ 4.495i 
0.152+ 6.063i 

59.443 + 83.043i 
59.443 + 83.043i 

48.324 - 765 .658i 
48.324-765.658i 
72.188 + 96.823i 
72.188 + 96.823i 

0.198+ 5.433i 
1.207 + 14.897i 

59.443 + 83.043i 
15.693 - 264.717i 
48.324 - 765.658i 
72.188 - 96.823i 

0.180+ 5.523i 
59.443 - 83.043i 

48.324 - 765.658i 
72.188 - 96.823i 

Table 3.5: Exact and FE computed duct axial and transverse wavenumbers of the surface waves. 
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is considered - see Fig. 3.14(b). The thickness of the boundary layer is 8/h = 0.2. The remaining flow is 

uniform at Mo = 0.3. For both frequencies, a uniform mesh of 5 quadratic line elements is used to discretize the 

duct width. For these results, the error of the FE solutions when compared to the exact or reference solutions is 

computed using the error expression in Eq. (3.4). 

In Table 3.6, the axial wavenumbers of the first nine positive and negative acoustic modes for kh = 1.1 

;lI1d 10 are listed. For comparison. the exact solutions are obtained using an integration scheme [93] and the 

reference s()luti()ns arc FE solutions computed using a uniform mesh of 100 quadratic Lagrangian elements -

see Table 3.6. The modes are arranged based on the mode cut-off ratios in descending order and those having 

cut-off ratios greater than (U\ are bracketed. The mode cut-off ratio is calculated using the expression in Eq. 

(3.1) with the maximum shear flow value. 

J n Figs. _c;. J 5 and 3.16, plots of error versus mode number for kh = 1.1 and 10 are presented. The mode 

number is obtained by ordering the modes according their cut-off ratios in descending order. In the plots, duct 

ll1udes ha\'ing cut-off ratios greater than 0.8 are denoted by unfilled symbols and those having cut-off ratios 

les:-- than () ~ are denoted by filled symbols. 

;\t tile I()\V frequency of kll = 1.1, all the duct modes having cut-off ratios greater than 0.8 show good 

agreement with the exact solutions with less than 5% error. For kll = 10, only half the duct modes having cut-
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Mode Exact FEM Reference FEM 
kh=1.I,A" = I.I4-0.5447i,A, =O+Oi kh=I 0, Ab = 0.0734 - O.I77i, A, = 0 + Oi 

1+ (O.G673 - 0.36 I Oi) (0.6673 - 0.36 IIi) ( 0.7684 - O.OOOli) ( 0.7684 - 0.0001 i) 

2+ O.I678-2.918Ii O. I 678 - 2.9 I 80i ( 0.7516-0.000Ii) ( 0.7516 - O.OOOli) 
.H 0.0 I 65 - 5.8060i 0.0 I 58 - 5.8066i ( 0.7040 - O.0003i) ( 0.7039 - O.OOO3i) 

4+ -0.0379 - 8.7080i -0.0437 - 8.7I09i ( 062 I 4 - O.OO04i) ( 0.6210 - 0.OO04i) 

5+ -00701 - 11.608i -00827 - I 1.627 i ( 0.4956 - 0.OO07i) ( 0.4938 - 0.0007 i) 
6+ -00906 - 14.542i -0. I 197 - 14.565i ( 03020 - 000 12i) ( 02945 - 0.00 13i) 

7+ -0.1058- 17.487i -0.1598 - 17.542i (-0.2888 - O.5886i) (-0.2887 - O.6320i) 

8+ -0. I 159 - 20.459i -0. I 179 - 20.579i (-0.2887 - 0.8803i) (-0.2848 - O.9388i) 

9+ -0.1177 - 23.452i -0.2242 - 23.71 Ii (-0.2905 - 1. 1204i) (-0.2676 - 1. I 797 i) 

1- (-OX I 07 + O.5024i) (-0.8105 + 0.5022i) (-1.4247 +O.OOOOi) (-1.4247 + O.OOOOi) 
2- -O.4795+30143i -0.4796 + 30 143i (- I .3930 + O.OOOOi) (- I .3930 + O.OOOOi) 
3- -0.3379 + 5.8343i -0.3387 + 5.8348i (-1.3282 + O.OOOOi) (- L3281 + OOOOOi) 
4- -02796 + 8.7209i -0.2837 + X.7232i (-1.2274 + OOOOOi) (-1.2269 + O.OOOOi) 
5- -02513+ 11.625i -0.2639 + 11.633i (-1.0860 + 0.0002i) (-1.0837 + 0.0002i) 
6-- -0.2366 + 14.547i -0.2652 + 14.569i (-0.8854 + 00007i) (-0.8776 +0.0007i) 
7- -02285 + 17.491 i -0.2808 + 17.544i (-0.4676 + 00045i) (-0.3808 + 0.00 I Oil 
x- -0.2221 + 20.461 i -0.2989 + 20.581 i (-0.2929 + O.5880i) (-0.2930 + 0.6311 i) 
l) -0.211 I + 23.454i -0.3058 + 23.716i (-0.2940 + II 200i) (-0.2742+ Ll807i) 

() - mode with cut-oil ratio, 7) > 0.8 

Table 3.6: Duct axial wavenumbers for a soft-walled duct containing sheared flows. Exact, reference and FE 
solutions. 

off ratios greater than 0.8 show less than S% error with the reference solutions. The error is due to inadequate 

mesh resolution. 

In Figs . .1.17 and 3. I 8, plots show the location of the duct axial wavenumbers in the complex plane for 

kh = I. I and I () are presented. Duct modes having cut-off ratios greater than 0.8 are denoted by unfilled 

symbols and duct modes having cut-off ratios less than 0.8 are denoted by filled symbols. Figs. 3.17 and 

3.18 shovv reasonably good agreement between the two solutions especially for acoustic modes having cut-

off ratios greater than 0.8. For modes having cut-off ratios less than 0.8, the FE solutions start to deviate 

significantly from the exact or reference solutions as the mode number increases, which is consistent with the 

results presented in Figs. 3.IS and 3.16. This illustrates the growing inability of the cunent mesh to cope with 

the more compl icated mode shapes at high frequencies. 

The results presented in this section have shown that the FE eigenvalue model is capable for determination 

of duct cigcn-modes in sheared flow with impedance boundaries if an adequate mesh resolution is used. 

3.5.2 Convergence of the FE Solutions - Sheared Flow 

In this section. results that demonstrate the convergence orthe FE solutions to the exact solutions are presented. 

This study ;lilllS to determine the FE mesh resolution required to obtain solutions for a given number of duct 
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modes particularly at high frequencies. The same test duct as in Section 3.5.1 is considered here. The duct is 

studied for kh = 20 and the non-dimensional acoustic impedance at the lined wall is taken to be Z" = 2.00 + 

5.80i. In the duct, a sheared flow with a boundary layer of thickness 8/h = 0.2 as shown in Fig. 3.14(b) is 

considered. 

Fig. 3.1 t) presents the errors between the FE and the reference solutions. These are plotted against the mode 

number for di fferent mesh resolutions. The error is calculated using the error expression in Eq. (3.4). Fig. 3.19 

shows that the error decreases with increasing mesh resolution. The errors of the modes having cut-off ratios 

greater than 0.8 drop below 5% when the mesh resolution is 8 nodes per wavelength. The error drops below 

2 (/c. when the mesh resolution is 10 nodes per wavelength. 

This study has concluded that for sheared flow in the duct, an FE mesh resolution of 8 to 10 nodes per 

wavelength is found to be adequate to resolve the duct modes (cut-off ratio greater than 0.7) of interest in this 

research. This convergence criteria are similar to those established in the uniform flow problems in Section 

3.4.2. 

3.5.3 FE Mesh Uniformity 

This study examines the effect of mesh uniformity on the accuracy of the FE solution. An acoustically lined duct 

containing a sheared flow with a boundary layer of thickness 8/ h = 0.2 as shown in Fig. 3.14(b) is considered. 

The remaining flow is uniform at M() = 0.3. The duct is studied for kh = 20 and the acoustic impedance at the 

lined wall is taken to be Z" = 2.0+5.804i. 

The duct width is discretized using uniform and non-uniform meshes of different mesh resolutions as shown 

in Fig. 3.20. The nonuniform mesh has more elements at the boundary layer aiming to resolve the sound field 

at the boundary layer more accurately and effectively. The FE solutions obtained using different meshes are 

then compared with the reference solutions and the errors between the two solutions are computed using Eq. 

(3.4 J. Fig. 3.21 presents plots of error versus mode number for the different meshes. The results show that the 

uniform meshes yield solutions with better accuracy than those obtained using non-uniform meshes. Uniform 

mesh is therefore llsed in all the analysis carried out in this study. 

3.5.4 Effect of Shear Flow on the Propagation and Attenuation of Acoustic Modes In Ducts 

In this study. the effect of the boundary layer on sound attenuation in the duct is investigated. A duct containing 

a sheared flow with a boundary layer of thickness 8/ h = 0.2 and uniform flow at M" = 0.5 is considered. The 

duct is studied for kh = 10. The duct has a soft wall at y = 0 whose impedance is Z" = 2.00 + 5 .80i and a hard 

wall at \' = h. 

In Table 3.7. the duct axial wavenumbers of the uniform flow case and of the sheared flow case are pre-
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Positive acollstic mode Negative acollstic mode 
Mode Uniform flow Shear flow Uniform flow Shear flow 

1+ 7.653- O.Olli 7.749 - 0.033i 1- -14.205 + 0.012i -14.157+ O.OOU 
2+ 7.079 - O.04li 7.237 - 0.044i 2- -13495+ 0.074i -13.134+ 0.019i 
3+ 5.340- O.062i 5437 - O.060i 3- -1l.711 + 0.132i - I I. 134 + 0.091 i 
4+ 1.130- 0.167i 1158 - O.lni 4- -7480+ 0.254i -7.082+ 0.235i 
5+ -3.052 - 7.520i -2.945 - 7.520i 5- -3.291 + 7.617i -3.156+ 7.569i 
0+ -3.IOI-12.387i -3.012 - 12.364i 6- -3.239+ 12487i -3.138+ 12404i 
7+ -3.122 - 16497i -3.067 - 16.435i 7- -3.217 + 16.600i -3.162+ 1647li 
8+ -3.135 -20.318i -3.134 - 20.217i 8- - 3.203 + 20423i -3.209 + 20.247i 
9+ -3.144-23.995i -3.172-23.887i 9- -3.192+24.IOli -3.234 + 23.91 OJ 

10+ -3.152-27.59Ii -3.181 - 27499i 10- -3.183+27.698i -3.235 + 27.519i 
11+ -3.158-31.144i -3.199 - 31.052i 11- - 3. 176 + 31. 251 i -3.248 + 31.071i 
12+ -3164 - 34.676i -3.244 - 34.558i 12- -3169+34.785i -3.288 + 34.576i 
13+ -3.168 - 38.206i -3.291 - 38.063i 13- -3.164 + 38.315i -3.331 + 38.079i 
14+ -3.ln - 4l.746i -3.317 -41.612i 14- -3.158+41.856i -3.353 + 41.624i 
15-+- -3.17R-45.310i -3.330 - 45.204i 15- -3.153+45419i -3.362 + 45216i 
16+ -3.182-48.905i -3350-48.82Ii 16- -3150+49.014i -3.379 +48.832i 
17, -3.188 - 52.538i -3379 - 52463i 17- -3.148 + 52.645i -3405 + 52474i 
18+ -3.197 - 56.204i -3402-56.155i 18- -3.151 +56.306i -3424+56.166i 
19+ -3.211 -59.87Ii -3410 - 59.879i 19- -3165 +59.961i -3428 + 59.889i 
20 -]- -3.244 - 63.357i -3.386 - 63407i 20- -3.212+63415i -3.396 + 63.414i 

Table 3.7: Duct axial wavenumbers for a lined duct containing a uniform flow and a sheared flow. 

sented. In Fig. 3.22. the locations of these axial wavenumbers are plotted in the complex plane. The duct 

axial wavenumber provides a good understanding of the mode characteristics. The real part of the duct ax-

lal wa\'enuillber indicates the axial propagation speed of the mode and the imaginary part of the duct axial 

wavenumber indicates the axial decay rate of the mode. 

Results presented in Fig. 3.22 and Table 3.7 show that in this particular case, the boundary layer does not 

have significant effect on the sound attenuation in the duct; however, there are still some effects. The duct 

modes that propagate with the flow show greater drop in axial decay rates than those that propagate against 

the flow. This is due to the velocity gradient of the boundary layer which refracts the sound that propagates in 

the direction of the flow into a narrow layer near the lined wall results in greater attenuation - see Fig. 3.23. 

Similarly. for duct modes that propagate against the flow, the velocity gradient of the boundary layer refracts 

the sound ~l\\ay from the lineel wall anel this results in smaller attenuation [85] - see Fig. 3.23. 

3.5.5 Comparison with Previously Computed Results - Sheared Flow 

Results or a comparison of the FE solutions against previously computed results are presented in this section. 

Previous results arc those computed by Hersh using an integration scheme [85], by Unruh and Eversman [88] 

using a IVIWR and by Astley and Eversman 112] using an FEM. This comparison is not intended to validate the 

currcnt FE eigenvaluc model but is to indicate how the resolution required for the current FE eigenvalue model 



Chapte.· 3. Results: Two-dimensional Eigenvalue Problems - Validation and Application 59 

compares to that of previous formulations. 

The configuration of the test duct is illustrated in Fig. 3.14(a). The duct is studied for kh = I, 5 and 10 

with a linear sheared layer of 20% of the duct width. The remainder of the flow is uniform at M() = 0.3. This 

test problem is chosen here because it was previously presented as a test problem for the MWR in [93]. The 

non-dimensional acoustic admittance at the lined wall is taken to be -0.06 + 0.27i, 0.16 + 0.45 and 1.39 + 0.1 Oi 

respectively. 

Table 3.8 presents the duct axial wavenumbers obtained by the exact method, by the MWR, by the Astley­

Eversman FE eigenvalue model and by the current FE eigenvalue model. The current FE solutions are computed 

using a uniform mesh of 5 quadratic Lagrangian elements. For each test case, only the first three positive and 

negative acoustic Illodes are presented as these are the only results available for comparison. In the table, duct 

modes having cut-off ratios greater than 0.8 are bracketed. 

Figs. 3.24 to 3.26 present the errors of the solutions obtained by the three approximate methods when 

compared with the exact solutions. Results show that at low frequencies of kh = I and 5, the current FE 

eigenvalue model is observed to yield solutions with better accuracy than those of the MWR. At the high 

frequency of kh = 10, the current FE eigenvalue model performed poorer than the MWR and the Astley­

Eversman FE eigenvalue model especially for the high order modes. This is due to insufficient mesh resolution 

to resol ve the more complicated mode shape at high frequencies. The current mesh resolution of 6 nodes per 

wavelength is less than the recommended resolution of 8 to 10 nodes per wavelength. 

3.6 Conclusions 

In this chapter. the validity of the FE eigenvalue model for computation of duct eigen-solutions in shear and 

uniform flows has been examined. The accuracy of the FE eigenvalue model has been checked by comparing 

with the analytical and approximate solutions obtained by other methods. The numerical results for various 

duct configurations have been presented. These show the validity of the analysis and computer code. 

The study has shown that a mesh resolution of 8 to 10 nodes per wavelength is found to be adequate to 

resol ve the duct modes of interest in this research. This mesh resolution is found to be comparable to those 

e.,tablished by Astley and Eversman for their FE eigenvalue model 1121. 

The current fE solutions show no occurrence of spurious modes as observed in the Astley-Eversman FE 

eigenvalue Illodel. The current FE eigenvalue model is capable of resolving the correct number of surface 

modes of different types if sufficient mesh resolution is used. Comparison with previously computed results 

Llsing other methods shows that the accuracy of the current FE eigenvalue model is comparable to the MWR 

~ll1d the Astley-Eversman FE eigenvalue model. It is also of good standard relative to the exact solutions. 

The results presented in this chapter have shown that it is worthwhile to extend the FE eigenvalue model to 
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Mode 

1+ 
2+ 
.1+ 

1-
2-
3-

1+ 
2+ 
.1+ 

1-

1-

Exact MWR FEM 
(171=5,n= 11) 

(10 basis functions) (Astley - Eversman) 

kh = 1.0, A, = -0.0551 + 0.2722i, A" = 0.0 + O.Oi 
O.8659-0.0162i) (0.8656-0.016Ii) (0.8659-0.0161i) 

-0.7256 - 2.6574i -0.7586 - 2.7215i -0.7279 - 2.6564i 
-O.6519-5.7880i -O.9511-5.9204i -0.6470-5.7775i 

(-1.6090 + O.0580i) 
-0.7821 + 2.6943i 
-0.6736 + 5.7890i 

(-1.6111 + 0.0580i) 
-0.8177 +2.7628i 
-0.9804 + 5.9211 i 

(-1.6087 + 0.0580i) 
-0.7846 + 2.6933i 
-0.6685 + 5.7781 i 

kh = 5.0, A, = 0.1607 + 0.4463i, A" = 0.0 + O.Oi 
().6428 - O.0215i) (0.6448 - 0.0208i) (0.6427 - 0.0215i) 

( 0.8553 - O.0415i) (0.8598 - O.0428i) (0.8551 - 0.041 Oil 
(-0.2853 - 0.5558i) (-0.2858 - 0.5600i) (-0.2854 - 0.5565i) 

( - I .4200 + O.0452i) 
(- 1.2946 + O.0596i) 
(-0 . .1995 +0 5634i) 

( - 1.419.1 + 0.0420i) 
(-1.2903 + 0.0612i) 
( -D.40 II + 0.570 I i) 

(-1.4198 + 0.0448i) 
(-1.2945 + 0.0596i) 
( -0.3996 + 0.5641 i) 

kh = I (J.O, A, = 1.3929 + 0.0997 i, A" = 0.0 + O.Oi 
07586 - O.0038i) (0.7587 - 0.0039i) (0.7586 - O.0038i) 
0.6666 - 0.0297 i) (06665 - 0.0298i) (0.6666 - 0.0298i) 
()4295 - O.0902i) (0.4297 - 0.0901 i) (0.4295 - 0.0914i) 

(-14140 + 0.0003i) 
( - 1.2929 + 0.0051 i) 
(- 1.0132 + 0.0382i) 

( - 1.4142 + 0.0003i) 
(-1.2932 +0005Ii) 
( - I .0138 + 0.0378i) 

(-1.4140 + O.OOO3i) 
(-1.2929 + 0.0051 i) 
( -1.0 124 + 0.0384i) 

( ) - mode with cut-oil ratio greater than 0.8 

FEM 
(m=5,n=11) 

(Current) 

( 0.8658 - 0.0 162i) 
-0.7554 - 2.6467i 
-0.7753 - 5.6590i 

(-1.6081 +0.0577i) 
-0.8136 + 2.681Oi 
-0.7947 +5.6529i 

( 0.6427 - 0.0214i) 
( 0.8550 - 0.041 Oil 

(-0.2863 - 0.5594i) 

( -1.4194 + 0.0436i) 
( -1.2931 + 0.0598i) 
( -0.4006 + 0.5668i) 

( 0.7586 - 0.0038i) 
( 0.6666 - 0.0298i) 
( 0.4283 - 0.0935i) 

(-1.4140 + O.OOO3i) 
( - 1.2928 + 0.0051 i) 
( -1.0 1 00 + 0.0390i) 

60 

Table :U): Duct axial wavenumbers obtained by the exact method, by the MWR, by the Astley-Eversman FE 
eigenvalue model and by the current FE eigenvalue model for an acoustically lined duct with a sheared flow. 

three ciimensions to explore its ability to represent ducts of arbitrary cross sections with non-uniform impedance 

boundaries and mean flow. 
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Figure 3. 12: Comparison of exact and FE computed eigenvectors of mode I + to mode II + for a two­
dimensional lined duct with unifoffil mean flow of Mach nunlber 0.4 in the positive x direction. kh = 6.0, 
Ah = 0.72 + 0.42i and AI = 0 + Oi. Duct mode 6+ in (h) is a surface wave. - 0-, Real(FEM), -+-, 
Real(Exact) , - 0 -, Imaginary(FEM), -. - , Imaginary(Exact). 



Chapter 3. Results: Two-dimensional Eigenvalue Problems - Validation and Application 62 

(a) Surface wave mode shape, SR1 (k.x=25 .76·()'021) 
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Figure 3.13 : Eigenvectors of the surface waves - Configuration 1. Z/ = 0.1 - 3i, Zh = 0.1 - 3i, Mo = 0.5 and 
kh = 36. The eigenvectors have been normalized to the maximum absolute pressure. 
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Figure 3.15: Error plotted against mode number for a lined duct containing a sheared flow with a constant 
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Figure 3.17: Duct axial wavenumbers in the complex plane for a lined duct containing a sheared flow with a 
constant gradient boundary layer. FE and exact solutions are presented. kh = 1.1, Mo = 0.3, Ah= 1.14 - 0.5447i 
and A/=O + Oi. (a) Positive acoustic modes, (b) Negative acoustic modes. 
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Figure 3.18: Duct axial wavenumbers in the complex plane for a lined duct containing a sheared flow with 
boundary layer of thickness 8/ h = 0.2. kh = 10, Mo = 0.3, Ah=0.07 - 0.18i and A/=O + Oi. (a) Positive acoustic 
modes, (b) Negative acoustic modes. 
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Figure 3.25 : Comparison ofthe current FE solutions with the previously computed results. Errors of the Astley­
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In this chapter, the validity of the finite element (FE) eigenvalue model for computation of duct eigen-solutions 

in three-dimensional ducts is assessed. Chapter 3 has shown that the FE eigenvalue model is accurate, robust 

and efficient for two-dimensional ducts. In this chapter, the accuracy of the FE eigenvalue model is examined 

by comparing with those obtained analytically using an integration method [79, 80]. 

Due to the large problem size for the three-dimensional problems, the use of a direct eigenvalue routine 

as In Chapter 3 will require a large amount of computing resources and time. To circumvent this problem, an 

iterative eigenvalue routine, ARPACK is employed to compute the eigen-solutions. ARPACK is a collection of 

Fortran 77 subroutines designed to solve large scale eigenvalue problems [97, 98]. The number of eigenvalues 

computed is user specified with features such as those of the largest real part, largest imaginary part or largest 

absolute. Generally the number of eigenvalues computed is many fewer than the size of the eigen-matrix. This 

is an advantage here because only a number of the duct modes e.g. duct modes having cut-off ratios greater 

than O.X arc of interest in this research. ARPACK also computes the eigenvectors on request. The program is 

also capable fur parallel computing to speed up the computation time but this is not implemented in this study. 

ARPACK is based upon an algorithmic variant of the Arnoldi process called the Implicitly Restarted 

Arnoldi Method (IRAM). When the eigen matrix is symmetric, the method reduces to a variant of the Lanczos 

process called the Implicitly Restarted Lanczos Method (IRLM). These variants may be viewed as a synthe­

sis of the Arnoldi/Lanczos process with the Implicitly Shifted QR technique that is suitable for large scale 

prublems. More details about ARPACK can be found in [97,98]. 

The aspects that have been specifically considered in this study are: 

• to examine the accuracy of the FE solution by comparison with the analytical solution. The FE solutions 

should correspond to the exact solutions which should include hydrodynamic modes. acoustic modes and 
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surface modes; 

• to asses the convergence of the FE eigenvalue model. This aims to determine the FE mesh resolution 

required to obtain accurate solutions for a given number of modes, particularly at high frequencies; 

• to assess the performance of ARPACK compared to a direct eigenvalue routine in terms of computation 

time and storage requirement; and 

• to demonstrate the feasibility of the FE eigenvalue model for large scale three-dimensional problems 

particularly at high frequencies. 

For simplicity and validation purposes, only uniform mean flow is considered in this study. The uniform 

flow problem is smaller in terms of problem size compared to the non-uniform flow problems. Hence less 

computation time and resources are required to solve the problems. The FE eigenvalue model is capable of 

considering ducts of any arbitrary cross-section with non-uniform flow and impedance boundaries. 

4.1.1 Outline 

In Section 4.2, the problem specification is put forward, including the test problems that have been used and 

detai Is of the numerical models. Section 4.2.2 describes the different types of duct modes present in a duct 

along with the identification of these modes from the eigen-solutions. Section 4.3.2 presents results of an 

investigation of the performance of different FE meshes to the accuracy of the FE solution. Results of an 

assessment of accuracy of the FE eigenvalue model are presented in Section 4.3.3. In Section 4.3.4, results of a 

convergence study of the FE model are presented. In Section 4.4, results of a modal study of a cylindrical duct 

containing spliced liners of varying widths are presented. Section 4.5 presents results of a performance study 

of a direct routine and an iterative routine. Finally, in Section 4.6 the conclusions of the study are presented. 

4.2 Problem Specification 

The results have been produced for the particular test cases of an infinitely long rectangular duct and an infinitely 

long circular duct as shown in Fig. 4.l. The width and height of the rectangular duct are defined by d and h 

respectively. The duct walls at y = () and h are lined with a locally reacting acoustic lining whose acoustic 

impedance is defined by Z" and Z/ respectively. The radius of the cylindrical duct is denoted by R and the duct 

wall is lined with a locally reacting acoustic lining whose acoustic impedance is denoted by Zc. For both ducts, 

uniform mean flow of Mach number, M() is assumed. 

Although the duct geometries considered in this study are that of rectangular and circular ducts, the FE 

eigenvalue model is sufficiently general for it to represent any cross-sectional geometry with any mean flow 
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profile and impedance boundary. The reason these duct geometries are considered here is because exact solu-

tions are available for comparison. 

4.2.1 Numerical Model 

The duct cross-section is discretized using meshes constructed from either 8-noded quadrilateral elements or 

6-noded triangular elements. The meshes are created using the ICEMCF D [10 1] mesh generator. The mesh 

can be structured or unstructured. Fig. 4.2 shows a structured mesh constructed from 8-noded quadrilateral 

elements for the rectangular duct and an unstructured mesh constructed from 6-noded triangular elements for 

the circular duct. Details of the element shape functions are presented in Chapter 2. 

The resolution of the mesh is based on the number of nodes which are required to represent the solution 

accurately over one wavelength. The resolution of the mesh. N is defined as: 

C(I 
N=-

f!1 
(4.1 ) 

where c" is the local speed of sound, f is the frequency in Hertz and !1 is the average distance between nodes. 
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Figure 4.1: (a)-(b) A rectangular duct geometry and the coordinate system for the duct. (c)-(d) A circular duct 
gcometry and the coordinate system for the duct. 
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Figure 4.2: (a) A struc tured FE mesh constructed from 8-nodedd quad ril ateral e lements. (b) An unstructured 
FE mesh constructed from 6-nodedd triangul ar e lements. 
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For man y engineering purposes , a mesh reso luti on of 8 to 10 nodes per wave length is the general rule of thumb 

re ference. 

4.2.2 Duct Mode Classification 

For uniform flow in the duct , the duct modes are found by solving the convected wave equation for acoustic 

pressure as an e igenva lue problem. The e igen-so lution yields two di stinc t sets of duct modes; positive acoustic 

modes and negative acoustic modes. The different types of duct modes can be identified based on their axial 

wavenum bers and the moda l intensities. 

A mode w ith a negative moda l intensity represents a negative aco usti c mode. T he mode decays and propa-

gates in the negat ive -: di rec ti on. Similarl y, a mode with a pos itive modal intensity represents a pos itive acousti c 

mode. The mode decays or propagates in the pos itive z. di rection. The Morfey [102] express ion of acoustic 

intensity with the Eversman [ 103 1 bounda ry condit ion term is used to ca lculate the modal in tensity. The ex-
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pression of the modal intensity is presented in Chapter 5. 

The positive and negative acoustic modes are ordered on the basis of their cut-off ratios in descending order. 

The mode cut-off ratio, 11 is defined as: 

Ie 
11 = ---;=== 

IKI JI-M~ 
(4.2) 

where K is the duct transverse wavenumber and it is related to the eigenvalue, A by the dispersion equation: 

(4.3) 

4.3 Results 

Results are first presented of a study of the effect of different FE meshes on the accuracy of the FE solutions. 

This is f(lJlowed by results of an assessment of accuracy of the FE eigenvalue model. In Section 4.3.4, results 

of a convergence study of the FE eigenvalue model are presented. Section 4.4 presents results of a study of 

the modal sound field in a circular duct with spliced liners of varying widths. Finally in Section 4.5 results 

of a performance study of an iterative eigenvalue routine (ARPACK) against a direct eigenvalue routine are 

presen teel. 

4.3.1 Benchmark Results 

Analytical solutions obtained by an integration scheme [79J are used to benchmark the FE solutions. The details 

of the integration scheme are presented in Chapter 2. 

4.3.2 Performance of Different Finite Element Meshes To the Accuracy of the FE Solution 

This work II1vestigates the performance of different FE meshes in terms of the accuracy of the FE solution. 

A rectangular duct and a circular duct. as shown in Fig. 4.1, were considered. Both ducts were studied for 

reduced frequency of 15 with rigid boundaries and uniform mean flow at M" = 0.4. The FE solutions obtained 

using different types of grids are compared with the exact solutions and the error between the two solutions is 

calculated using the foJlowing expression: 

I
kL k~ I 

£ = ':." -- ':.(' X 100'/0 
Ikf,,1 (4.4) 

where k:L" are the FE computed duct axial wavenumbers and k~i' are the analytical solutions. The FE solutions 

are obtained using ARPACK. 

For the rectangular duct. two structured and two unstructured meshes constructed from either 8-nodecl 

quadrilateral elements or 6-nodecl triangular elements with an average mesh resolution of 10 nodes per wave-
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length are considered - see Figs. 4.4(a)-(d). For the circular duct, two unstructured meshes constructed from 

6-noded triangular with an average mesh resolution of 10 nodes per wavelength are considered - see Figs. 4.4 

(e)-( 0. 

In Fig. 4.5, plots of errors versus mode number for the circular duct are presented. The mode number in 

the plots is obtained by ordering the modes according to their cut-off ratios in descending order. Modes having 

cut-off ratios greater than 1 are represented by unfilled symbols and modes having cut-off ratios less than 1 are 

represented by filled symbols. In Fig. 4.6, similar plots are presented for the rectangular duct. In this study, 

the comparison is only made for duct modes having cut-off ratios greater than 0.8 because these are the modes 

of interest in this research. These would include all the cut-on modes and a few evanescent modes as in a 

hardwalled duct. 

Figs. 4.5 and4.6 show that triangular meshes, either structured and unstructured yield solutions with better 

accuracy than those obtained using quadrilateral meshes. For quadrilateral meshes, structured meshes out 

peltorm unstructured meshes. For triangular meshes. both structured and unstructured meshes yield solutions 

with comparable accuracy when compared with the analytical solutions. These results are found contradictory 

to the other FE studies which shown that quadrilateral elements are more effective than triangular elements. 

This behaviour is therefore a function of the FE eigenvalue model and does not apply to other software. In this 

thesis, quadrilateral elements are used for the FE transmission analysis and triangle elements are used for the 

FE eigenvalue model. 

The results presented show very similar enor trend to those observed in the two-dimensional problems in 

Chapter 3. The large error observed of modes 64+ and 65+ in Fig. 4.5(a) and of mode 26+ in Fig. 4.6(a) is 

because of the sign difference between the FE and the exact solutions as described in Chapter 2. This results in 

a large error being computed using the error expression - Eq. (4.4). 

4.3.3 Assessment of Accuracy of the FE Solutions 

This section examines the accuracy of the FE eigenvalue model by comparing with the exact solutions for a 

rectangular duct and a circular duct. The details of the rectangular and circular ducts are presented in Table 

4.1. Both ducts are studied with uniform flow at Mach number M" = 0.4 for reduced frequency of 15. The 

duct cross-sections are discretized using meshes constructed from 6-noded triangular elements with an average 

mesh resolution of 8 nodes per wavelength. The error between the FE and the exact solutions is computed using 

Eq. HA) 

In Figs. 4.7 and 4.8, plots of error versus mode number for the rectangular and circular ducts are presented. 

In the plots. cut-on modes are represented by unfilled symbols and cut-off modes are represented by filled 

symbols. 



Chaptet· 4. Results: Three-Dimensional Eigenvalue Problems - Validation And Application 
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Figure 4.4: FE grids constructed for the circular and rectangular ducts. 

Geo metry 

Impedance 

Flow 

Frequency 

Rectangular duct 

h=I.O, w=I,O 
Z, = 2 - Ii , Zb = 2 - Ii 
+ 0.4 Mach number 

kh = 15,0 

Circul ar duct 

R=I.O 
Zc = 2.02+0.0 I i 

+ 0.4 Mach number 

kR = 15,0 

Table 4.1: Test models specification, 
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Results for the circu lar duct show that all the duct modes hav ing cut-off ratios greater 0.8 have been com­

puted to w ithin 9% error. Sim il ar resul ts are observed fo r the rectangular duct in which all the duct modes 

having c ut-o ff ratios greater than 0.8 have been computed to wi thin I % error - see Fig, 4,8. 

I n Figs. 4 .9 and 4. 10, the locat ions of the duct axial wavenumbers in the complex plane for the rectangular 

and c ircul ar ducts are presented. The results show genera ll y good agreement between the two solutions which 

is consistent w ith the res ul ts presented in Figs. 4 .7 and 4.8. 

4.3.4 Convergence of the FE Solutions 

Thi s study is to ex amine the convergence of the FE e igenva lue mode l. The ai m of the study is to determine the 

FE mes h reso luti on required to obta in so lu tions for a g iven number of modes particularly at high frequencies . 

The c irc ular duct in Section 4.3.3 is conside red here. The duct is studied for kR = 15 with uniform mean flow 

at Mil = - OA. 

The FE so lu tio ns obtained using FE meshes of different reso lutions are compared against the exact so lutions 

a nc! the e rro r between the two so luti ons is computed , Six unstructured meshes constructed from 6-noded 

tri ang ul ar c leme nts wi th reso luti ons of 6,8, 10, 12, 14 and 20 nodes per wave length as shown in Fig. 4. 11 
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Positive acoustic modes, (b) Negative acoustic modes . 
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Figure 4.6: Error plotted against mode number for the rectangular duct. kh= 15 and Mo = 0.4. Hardwalled. (a) 
Positive acoustic modes, (b) Negative acoustic modes. 

sound field in the duct. Therefore, the mesh near to the splices is been refined. 

In Fig. 4.12, plots of error versus mode number for different mesh resolutions are presented. Modes having 

cut-off ratio greater than 1 are denoted by unfilled symbols and modes having cut-off ratio less than 1 are 

denoted by filled symbols. The results show that the error decreases with increasing mesh resolution. The 

errors fall below 10% when the mesh resolution is equal to 8 nodes per wavelength and below 6% when the 

mesh resolution is equal to 10 nodes per wavelength. For mesh resolution greater than 10 nodes per wavelength, 

small improvement in the accuracy of the solution is observed. This indicates that convergency in solution has 

been achieved. 

This study has shown that an FE mesh resolution of 8 to 10 nodes per wavelength has been found to be 

adequate to resolve the duct modes of required interest in this research. This convergence criteria is similar to 
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those established for two-dimensional problems in Chapter 3. 

4.4 Application: Spliced Liners Study 

Knowledge of the modal content of the sound field in a turbofan engine duct is important for source charac­

terization and for helping to determine noise generation mechanisms in the engine. In this section, the modal 

solutions in a circular duct with liner splices of different widths are investigated using the FE eigenvalue model. 

In modem turbofan engines, acoustic lining is commonly used to absorb sound generated by the fan. The 

acoustic liner is usually manufactured in sections and each covers part of the duct's circumference. The sec­

tions are joined together by longitudinal hard strips or liner splices which are acoustically hard. Although the 

area covered by the splices is small, the discontinuities in the acoustic impedance around the circumference of 

the duct cause modal scattering of high order modes into other low order modes which are less attenuated by 
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the acoustic liner. This can result in a significant reduction in the liner performance. 

The objectives of this study are to investigate how the acoustic modes in the duct are modulated by the 

presence of the liner splices and also by the presence of mean flow in the duct This is achieved by making 

comparisons between a uniform liner and a liner with splices of different widths on the modal axial attenuation 

rate, 6SPL, the mode axial propagating speed, Re{k;= } and the mode shape. The 6SPL defines the rate of 

change in the sound pressure level (SPL) over a duct radius. It is calculated using the following expression 

[94] : 

6SPL = 2010g(e)t3Im{kx;}R = 8.686t3R (4.5) 

where t3 is negative if the propagation is in the positive axial direction and vice versa. The higher the 6SPL, 

,,6-

, 

·6 

o 
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6 n/w 8 n/w 10 n/w 

12 n/w 14 n/w 

Figure 4.11: FE grids used in the convergence study. 

R = 1m Duct radius 
Sp li ce width 
Impedance 
Flow 
Frequency 

s = 3.8 cm, 5.7 cm, 7.6 cm, 9 .5 cm, I1A cm 

Zc =2. 12 + 0.0 Ii 
M (I = - 0.4 
kR= 14 

Table 4.2: Test models specification for a circular duct with liner splices. 
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where f3 is negative if the propagat ion is in the positive axial direction and vice versa. The higher the 6 SPL, 

the greater the rate of attenuation of the acoustic mode along the duct. The outcome of this work is to identify 

and quantify the potential noise benefit that could be gained by manufacturing a uniform acoustic lining with 

no spli ces . 

The geometry of the test model is shown in Fi g. 4. 13. The duct contains two liner splices whose wid th, s 

varies from 3.8 cm to 11 A cm and the duct is assumed to be infinitely long. The splices are 180 degrees apart 

from each other. The duct is studied for kR = IS with and without flow in the duct. In Table 4.2, the values 

o r the paramete rs used in thi s analysis are presented . The duct cross-secti on is di screti zed using an FE mesh 

cons tructed frol11 6- noded triangu lar e lements wi th an average mesh reso lution of 10 nodes per wavelength and 

the mesh near the vicinity of the splices is refined - see Fig. 4.14. 
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Figure 4.12 : Error plotted against mode number for different mesh resolutions. M" = -0.4> kR = 15 and 
Zc = 2.02 + 0.0 Ii. (a) Positive acoustic modes> (b) Negative acoustic modes. 

propagation direction. In Table 4.3, the duct axial wavenumbers of the corresponding /':-.SPL presented in Fig. 

4.15 are presented. The results show that the modes in the duct with liner splices show smaller attenuation than 

those in the duct without splices. This is due to the reduction in the effective lining area for the spliced liner 

case. However, only one of the coupled azimuthal modes shows reduc.tion in /':-.SPL. The other azimuthal mode 

shows /':-.SPL values very close to those of the uniform liner - see Fig. 4.15. For zero splice width, both coupled 

azimuthal modes show identical /':-.SPL as well as Re{ kz } . 

In Fig. 4.16, the mode shapes of the positive acoustic mode (±20, 1) highlighted in Fig. 4.15 for different 

splice widths are plotted. Inspection of the mode shapes found that only the mode with a maximum pressure 

at the splices shows reduction in the /':-.SPL - see Fig. 4.16. The other azimuthal mode which has a minimum 

pressure at the splices shows /':-.SPL very similar to those of zero splice width. The splices have only a small 

effect on the modal propagation speed as the coupled modes show very similar Re{ k; } . 

The results also show that high order modes are more affected by the discontinuity in the acoustic impedance 

than low order modes. The reduction can be as high as 5 to 6 dB per duct radius for high order modes and 1 to 

2 dB per radius for low order modes. The FE results also show no occurrence of additional modes or spurious 

modes in the duct with splices. 

4.4.2 Uniform Flow Case 

In Figs. 4.17 and 4.18, plots of /':-.SPL versus Re{ ~} for different splice widths in the presence of uniform 

flow are presented. Fig. 4.17 presents modes that propagate with the flow and Fig. 4.18 presents modes that 

propagate against the flow. In Tables . 4.4 and 4.5 , the mmlerical values of the axial wavenumbers and /':-.SPL 
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Figure 4 .13: A c ircular duct containing two liner spl ices and the coordinates of the system. 
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Figure 4.14: A circular duct cross-sectional mesh with two splices. 

4.4.2 Uniform Flow Case 

In Fi gs. 4. 17 and 4.1 8, plots of 6 SPL versus Re{k~} for different splice widths in the presence of uniform 

flow are presented. Fig. 4.l7 presents modes that propagate with the flow and Fig. 4.18 presents modes that 

propagate agai nst the flow. In Tables . 4.4 and 4.5, the numerical values of the axial wavenumbers and 6 SPL 

of the ouct modes are presented. 

Results for the uniform flow case are very similar to those observed in the no flow case. The modes in the 

duct with liner splices show a smaller rate of attenuation than those in the duct with no splices. This is only 

observed on a il e of the coup led azi muthal modes. The other azimuthal mode shows rates of attenuation very 

s illlilar to th ose of zero spli ce width . 

III Figs . 4. 19 and 4.20, the mode shapes of the positive acoustic modes (+/- 10,3) and of the negative acoustic 
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Figure 4.15 : 6 SPL plotted against Re{ k;- } for different splice widths. Positive acoustic modes. Mo = 0, 
kR = 14 and Zc = 2.02+0 .0Ii. 

propagation speed as both coupled modes show very similar propagation speed Re{ k;= } . 

The FE results also show no occurrence of additional modes or spurious modes in the duct with liner 

splices . Comparison with the zero flow results shows that the presence of flow in the duct further reduces the 

liner performance and high order modes are more affected than low order modes. Generally, the results have 

shown that the presence ofliner splices in a duct decreases the liner performance. 

4.5 Performance Study 

Results of a performance study of a direct eigenvalue routine compared to an iterative eigenvalue routine 

(ARPACK) are presented. This study aims to assess the feasibility of using the FE eigenvalue model for 

studying three-dimensional problems at high frequencies . 



Chaptel' 4, Results: Three-Dimensional Eigenvalue Problems - Validation And Application 82 

Liner width Plot k~ 6SPL Plot k~ 6SPL 
i. ,. 

OCI11 Al 6.849-2.935i 64.76 dBIR A2 6.845-2.934i 64.72 dBIR 
3.798cl11 Bl 6.870-2.870i 63.31 dBIR B2 6.846-2.933i 64.71 dBIR 
5.697cl11 CI 6.876-2.842i 62.70 dB/R C2 6.846-2.931i 64.66 dBIR 
7.596cl11 DI 6.880-2.818i 62.17 dB/R D2 6.848-2.927i 64.58 dBIR 
9.495cl11 EI 6.883-2.798i 61.74 dB/R E2 6.850-2.921i 64.44 dBIR 
11.394cl11 FI 6.886-2.783i 61.39 dB/R F2 6.853-2.912i 64.24 dBIR 

Table 4.3: Axial wavenul11bers and attenuation of the positive acoustic l110de (±20, 1) highlighted in Fig. 4.15. 
M() = 0, kR = 14 and Zc = 2.02 + O.Oli. 

Liner width Plot k~ 6SPL Plot k~ 6SPL 
Oc 111 Al 12.766-3.351 i 73.92 dB/R A2 12.761-3.351i 73.93 dBIR 
3.798cl11 81 12.800-3.225i 71.14 dBIR B2 12.762-3.351 i 73.93 dBIR 
5.697cl11 CI 12.787-3.153i 69.57 dBIR C2 12.762-3.350i 73.91 dBIR 
7.596cl11 D1 12.750-3.087i 68.11 dBIR D2 12.763-3.349i 73.88 dBIR 
9.495cl11 E1 12.722-3.028i 66.80 dB/R E2 12.764-3.346i 73.82 dBIR 
I 1.394cl11 FI 12.677-2.976i 65.66 dB/R F2 12.766-3.342i 73.72 dB/R 

Table 4.4: Axial wavenul11bers and l110de attenuations of the positive acoustic l110de (± 1 0.3) indicated in Fig. 
4.19. M" = -0.4. kR = 14 and Z, = 2.02 +O.Oli. 

Liner width Plot k:- 6SPL Plot k:- 6SPL 
Ocm AI -2.284+ 3 .050i 67.30 dB/R A2 -2.277+3.049i 67.26 dBIR 
3.798cm BI -2.277+2.975i 65.65 dB/R B2 -2.277+3.047i 67.23 dBIR 
5.697cl11 CI -2.272+2.945i 64.97 dB/R C2 -2.277+3.045i 67.17 dBIR 
7.596cl11 DI -2.269+2.919i 64.40 dB/R D2 -2.276+3.039i 67.06 dB/R 
9.495cl11 EI -2.266+2.897i 63.91 dB/R E2 -2.275+3.031 i 66.87 dBIR 
I 1.394cl11 FI -2.265+2.879i 63.52 dB/R F2 -2.273+3.019i 66.61 dB/R 

Table 4.5: Ax ial wavenul11bers and mode attenuations of the negative acoustic modes (±22. I) indicated in Fig. 
4.20. MI' = -0.4. kR = 14 and Z, = 2.02 + 0.0 I i. 
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Figure 4.16: Mode shapes of the positive acoustic mode (+1-20, 1) highlighted in Fig. 4.16. Mo = 0, kR = 14 
and Zc = 2.02 + 0.01 i. 

4.5 Performance Study 

Results of a performance study of a direct eigenvalue routine compared to an iterative eigenvalue routine 

(ARPACK) are presented. This study aims to assess the feasibility of using the FE eigenvalue model for 

studying three-dimensional problems at high frequencies, 

A rigid circular duct as shown in Fig. 4.1 is considered in this study. The duct is studied for kR = 15 

without flow in the duct. In Fig. 4.21 , the times taken to compute the solutions by the direct eigenvalue routine 

and by the iterative eigenvalue routine are plotted against the problem size. The problem size is defined in 

terms of the number of nodal point used to discretize the duct cross-section. All the results are computed on a 

I GHz Pentium III computer with 1 G bytes of RAM. The FE eigenvalue model either using the direct eigenvalue 

routine or the iterative eigenvalue routine is written in Fortran language operating under Window 2000. The 

main difference between the two routines is that the direct eigenvalue routine computes all the solutions and 
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Unifonn liner 
Splice width = 3.798cm 
Splice width = 5.697cm 
Splice width = 7.596cm 
9.495cm splice width 
Splice width = 11.394cm 

Figure 4.17: 6SPL plotted against Re{ k:} for different splice widths. Positive acoustic modes. M - 0 = -0.4, 
kR = 14 and Zc = 2.02+0.0li. 

which correspond to the different number of eigenvalues computed. In Fig. 4.21 (b), the number of eigenvalues, 

N computed by ARPACK is plotted against the computation time, T on a logarithmic scale base 10. The plot 

shows that the computation time, T scales as N1.7 where N is the number of eigenvalues sought. 

The results presented have shown that ARPACK offers significant savings in computation time over the 

direct eigenvalue routine. The slopes of the timing curves indicate that these savings should be more significant 

with increasing problem size . ARPACK is also a better choice for this work as only a specific number of 

eigenvalues are required to be computed. 

4.6 Conclusions 

In this chapter, the validity of the FE eigenvalue model for computation of eigenmodes in three-dimensional 

ducts has been assessed. The numerical results for various duct cross sections and the mode shape for various 

modes have been presented which show the validity of the analysis and computer code. Simple waveguide 

shapes are chosen for the study here because their field distributions are well known. The study found that 
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Figure 4.18: 6 SPL plotted against Re{k; } for different splice widths. Negative acoustic modes. Mo = -0.4, 
kR = 14 and Zc = 2.02 + 0.0 Ii. 

complete sets of propagating eigenmodes can be obtained at modest computational cost for frequencies and 

flow conditions which are characteristic of turbofan intake and bypass ducts. 

The results presented in this study have concluded that: 

• The FE eigenvalue model yield solutions which exhibit good accuracy when compared with the exact 

solutions when an adequate FE mesh resolution is used. The FE solutions show no modes are repeated 

or missing. 

• The FE solutions obtained using triangular meshes show better accuracy than those obtained using quad­

rilateral meshes. 

• An FE mesh resolution of8 to 10 nodes per wavelength is found to be adequate to resolve the duct modes 

of interest in this research which is modes having cut-off ratio greater than 0.8 . 

• This study has demonstrated that the FE eigenvalue model is capable of studying three-dimensional ducts 

with non-wufonn impedance bOlmdaries and unifonn flow. 
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splices • (A1) Uniform liner, kz=12.166-3.3511 (Al) Uniform liner, kz=12.761-l .3S11 (01) SW=7.598cm, kz=12.760-3.0871 (02) SW=7.596cm, kz=12.763-3.3491 

(81) SW=3.798cm, kz=12 .800-3.2251 (82) SW=3.798cm, kz=12.762-3.351 I (E1) SW=9.495cm, kz=12.752-3 .0931 (E2) SW=9.495cm, kz=12.758-3.3531 

(C1) SW=5.697cm, kz=12.787-3.1531 (C2) SW=5 .697cm, kz=12.762-3.3501 (F2) SW=11.394cm, kz=12.766-3.3421 

SW - splice width in cm 

Figure 4.19: Mode shapes of the positive acoustic mode (±10, 3) highlighted in Fig. 4.17. Mo = -0.4, kR = 14 
and Zc = 2.02 + 0.01 i. 

lateral meshes. 

• An FE mesh resolution of 8 to 10 nodes per wavelength is found to be adequate to resolve the duct modes 

of interest in this research which is modes having cut-off ratio greater than 0.8. 

• This study has demonstrated that the FE eigenvalue model is capable of studying three-dimensional ducts 

with non-uniform impedance boundaries and uniform flow. 

• The modal study of a circular duct with liner splices showed that an increase in splice width decreases 

the liner performance. The FE solutions also show no occurrence of additional duct modes or spurious 

modes in the duct with the introduction of liner splices. 

• The iterative routine (ARPACK) offers significant savings in computation time over the QR direct eigen­

value routine and these savings should be more significant with increasing problem size. 
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SW - splice width in em 

Figure 4.20: Mode shape of the negative acoustic mode (±22, 1) highlighted in Fig. 4.18. Mn = -OA, kR = 14 
and Z = 2.02 + O.Oli. 
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Chapter 5 

Application of Mode Matching Techniques To 
Study Sound Transmission in Flow Ducts. 

5.1 Introduction 

This chapter is about the application of mode matching (MM) techniques to study transmission of sound in 

flow ducts. The essence of the mathematics is that the duct is segmented into different sections at boundaries 

where changes of acoustic impedance or geometry take place. The duct modes which propagate in each section, 

including some evanescent modes. are computed. The complex amplitudes of the duct modes are then matched 

across the interface of the section with that of the next section. This yields a series of equations which can then 

be solved to yield the complex amplitudes of the duct modes in each section. 

This chapter will describe two MM procedures: the existing and the revised MM procedures. The revised 

MM procedure is different to the existing MM procedure which has been employed by Beckmeyer [I]. Cum­

mings [21 and Sijtsma [3[ in their studies of duct acoustics. The revised MM procedure matches solutions 

between segmented sections using continuity of axial momentum flux and mass flux across the matching inter­

face. The existing MM procedure matches solutions between segmented sections using continuity of acoustic 

pressure and ~lxial particle velocity across the matching interface. Fig. 5.1 shows the different matching criteria 

implied ,It a matching interface by the two procedures. Note that the revised MM procedure is also known 

as the new mude matching method (NMMM) and the existing MM procedure is also known as the traditional 

mocle matching method (TMMM) in the thesis. The NMMM is proposed because during the course of the 

study. it was found that when traditional mode matching solutions were compared to a full FE transmission 

analyses. discrepancies were found in the vicinity of a liner discontinuity when flow is present in the duct. 

These persisted as the resolution of each model was increased and led to significant differences in transmitted 

and reneet acoustic power. In this work, FE solutions are used as the benchmark solutions for validating the 

MM solutiuns. 
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In Section 5.2, the problem specification is presented. Section 5.3 describes the two MM procedures using a 

test problem. In Section 5.5.2. an iterative procedure for solving the formulated MM problems is described. 

In Section 5.5. the application of the MM procedures for studying transmission of sound in a two-dimensional 

flow duct with and without the presence of an infinitely thin splitter is described. 

5.2 Specification of the problem 

5.2.1 General Case 

Modelling transmission of sound in an acoustically lined turbofan engine duct is a challenging problem. Not 

only a real engine duct has a three-dimensional geometry and flow, the problem becomes rather complicated 

in the bypass duct because of growing boundary layer thickness, the presence of vorticity, swirling flow and 

increased geometrical complexity. 

However, this noise transmission problem can be simplified, to a first approximation, by assuming that the 

inlet duct is a circular-section axisymmetric duct with uniform mean flow and the bypass duct is an annular­

section axisymmetric duct with uniform mean flow as described in Chapter l. Finite thickness splitters (radial 

and circumferential) can be included into the MM model if it can be assumed that they are sufficiently thin for 

the uniform flow assumption to be justified. 

In this study. two duct models as shown in Fig. 5.2 are considered. Both ducts consist of a short hard 

Section (a) \vith length L I • a lined Section (b) with impedance Z and length L2 and another short hard Section 

(el with length Ll. In duct (B), an infinitely thin splitter with length L2 is positioned at y = hi in Section (b). 

The uniform mean flow in both ducts is given by II". At the source plane at x = O. a single harmonic mode or a 

multi-mode source with equal energy per mode can be specified as the input source. The outlet of the duct at 
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Figure 5.2: (a) Duct (A) with an impedance discontinuity, (b) Duct (B) with an infinitely thin splitter. 

x = L is anechoically terminated. 

5.3 Mode Matching Methods 
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In this section. two MM procedures; the existing and the revised are described using a general test model. The 

test model consists of an axially uniform duct with an impedance discontinuity at Z = Zo - see Fig. 5.3. The 

uniform mean flow in the duct is given by li" and the flow is assumed to be parallel with the z axis of the duct. 

To study the acoustic scattering due to the impedance discontinuity at z = Z(i> the duct is segmented into two 

sections: Section (1) and Section (2) - see Fig. 5.3(a). The duct modes that represent the harmonic sound field 

in each section are computed numerically using the FE eigenvalue solver described in Chapter 2. The harmonic 

sound field in each section is expressed as: 

(5.1 ) 

where N = 1.2 denotes the duct section. the superscript + and - signs are associated with duct modes prop­

agating in the positive and negative z direction and A$ are the complex amplitudes of the duct modes. The 

eigenfunctions and the axial wavenumbers of the duct modes in each duct section are denoted by lfIiJ.i and k~N.i 

respecti\'ely. The FE computed eigenfunctions are represented by a series of nodal pressures and element shape 

functions: 

'1/ 

ljI,(x) = L Ni(x)Pi/ (5.2) 
I~I 

where N I (x) IS the element shape function and Pi.j is the nodal pressure of mode i at node j. Solving the 

eigenvalue numerically will allow the consideration of ducts of any cross-section with non-uniform mean flows 

and impedance boundaries. 

Duct 
height, h 
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For prismatic ducts e.g. two-dimensional and axisymmetric ducts, the duct modes can also be computed 

analytically. For two-dimensional ducts, the eigenfunctions of the duct modes are expressed by a series of 

cosine functions II'(Y)i = COSi(ICiY), where ICi are the mode transverse wavenumbers. For axisymmetric ducts, 

the duct eigenfunctions are expressed in terms of Bessel functions. 

Similarly the axial particle velocity in each duct section can be expressed as a superposition of positive and 

negative acoustic modes: 

UN = f {B~.i 1I'f;)x)e-ik:NiZ+BiV.i 1I'A;-.;(x)e-ik~NjZ} 
1-0 

(5.3) 

B~.i can be related to A~J using the acoustic momentum equation: 

I± 
f( N' 

B~ . = Z. J A± . 
:\.1 p (0) I± ) N.I 

() ~ f(z.N.;llo 
(5.4) 

where 0) = 2nI is the angular frequency, f is the frequency in Hertz, k = O)/co is the local wavenumber, Co is 

the local speed of sound and po is the local fluid density. 

The acoustic pressure and axial particle velocity for each duct section are described by a truncated set of 

modes, m: 1711 in Section I and 1172 in Section 2 expressed in the following form: 

(5.5) 

(5.6) 

where. 

(5.7) 

Neither the revised nor the existing MM procedure is an exact matching procedure, both procedures involve a 

weighted residual approach in which the residuals are minimised over the area of the duct for three-dimensions 

or over the width of the duct for two-dimensions. The existing approach minimises the residuals of acoustic 

pressure and axial particle velocity over the interface between the two regimes using mode eigenfunctions as 

weighting functions. The revised procedure minimises the residuals of the mass continuity equation and the 

axial momentum equation over a duct volume enclosing the duct cross section where the impedance disc on-

tinuity occurs. Once again transverse eigenfunctions are used as weighting functions. The crucial difference 

between the two MM procedures is that the volume integral of the revised procedure introduces an integral over 

the lincd surfacc of the duct which cloes not necessarily vanish as the control volume shrinks to contain only 

the matching plane. 
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Figure 5.3: An axially uniform duct with an acoustic impedance discontinuity atx = X o - (a) Three-dimensional 
view, (b) Two-dimensional view. 

5.4 Traditional Mode Matching By The Galerkin Weighted Residual Method 

The existing MM procedure minimises the residuals of (p{"1 - p!{'2) and (Ut I - U!{'2) over the interface between 

Section (1) and Section (2) using mode eigenfunctions as weighting functions_ This yields the following two 

weak statements: 

isw (Pi" I -P!{'2)dS 

is W (U;"I - U!{'2)dS 

(5.8) 

(5.9) 

where S is the area of the duct cross section. The Galerkin method selects weighting functions to be from the 

same class of approximation functions , If't Substitute Eqs. (5.5) and (5.6) into Eqs. (5.8) and (5.9) to yield: 

is W ({Aif {1f'1+} + {Alf {1f'1- } - {Aif {1f'2+}) dS = 0 

is W ({Bi}T {If't} + {Blf {1f'1- } - {Bif {If'/}) dS = 0 

(5.10) 

(5.11 ) 
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It is given that the coefficients A T are known and A;:- = 0 as there is an anechoic termination at the exit plane. 

This yields a system of 2m equations with 2m unknowns which are then written in the following partition form: 

(5.12) 

T\;~':?~ is the transfer matrix which relates the acoustic pressure and axial particle velocity in Sections (I) and 

(2) anel GWR stands for Galerkin weighted residual method. In reaching these equations, the coefficients B~,i 

have been eliminated in terms of the coefficients A~,i' The matrix entries are 

where 

({,~ = [ ( lfI~i lfI~j) ciS 

h~ = ( ( IfIti lfIij) dS 

,-'- = k: L1 f' (111+ IIf± ,) dS 
'~'I P"(W-k.:Li,,,,):S' 't'I,I'f'"I . .1 

/ '-1 ~ k~21 f' (lIf+ l"± ) dS 
. " ~ p"(W-e2.i ,,,,) 5 'f'" I,i n,j 

(5,13) 

(5.14) 

(/-'-, h-1, .1,'-1 and f"- are each (N x N) matrices as N = ml = m2. The system is then solved to yield the complex 

Clmplituues of the modes in each duct section for a given AT. 

5.4.1 Traditional Mode Matching By The Least Squares Method 

The residuals of (Pi,,1 - P2"
2 ) and (Vi"i - V2"2) over the interface between Section (1) and Section (2) can also 

be sui veel by the least squares (LS) method. The residuals (Pi" - Pl:") and (VI" ~ V2') are squared and integrated 

across the duct cross sectional area, S to yield the following two functions: 

lF /, = I I (Pi" l 
- p~"2)12dS (5.15) 

s 

IF,, = II(VI"I - u:;"2)1
2
dS (5. I 6) 

s 

Substitute Eqs. (5.5) and (5,6) into Eqs. (5.15) and (5.16), this yields: 

IF!, = II {A n r {lfIn + {A I} T {1fI1} - {An T {1fI:i} 12 dS (5.17) 

S 

!i~1I = II {sn r {lfIn + {HI} T {lfIn - {Hn T {1fI;} 1

2
e1S (5. I 8) 

s 
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Both equations are then differentiated with respect to a selected coefficient which is A 1 in this case. At mini­

mum, the derivatives of lFp and IF,, are equal to zero: 

(5. I 9) 

where the subscripts, Rand f denote the real and imaginary parts of the coefficients A l' A system of 1111 + 1112 

equations with 1111 + m2 unknowns is yielded which can then be written in the following partition form: 

(5.20) 

where TII"~2 is the transfer matrix which relates the acoustic pressure and axial particle velocity in Sections (1) 

and (2) and LS denotes the least squares method. In reaching these equations, the coefficients Bt have been 

eliminated in terms of the coefficients A~J' The matrix entries are: 

where 

T I.S ~ 
[2 ~ [ : (5.21 ) 

(5.22) 

u~. h~. g-'- and 1'-- are each (N x N) square matrices as N = m I = 1112. The system is then solved to yield the 

complex amplitudes of the duct modes in each section for a given Ai. 
I n this particular case. 1711 = 1712 as both functions are minimized with respect to the same coefficient A l' 

If F I , and IF,, are minimized with respect to different coefficients, then ml -I- 1712. This is the main difference 

between the two MM models. If the Galerkin weighted residual method is used, 1771 = m2 so that there are 

enough equations to solve for the number of unknowns. 

5.4.2 New Mode Matching Method By The Galerkin Weighted Residuals 

This section describes solving the same problem by the revised MM procedure. The revised procedure min-

imises the residuals llf the mass continuity equation and the axial momentum equation over a duct volume 

enclosing the duct cross section where the impedance discontinuity occurs. The eigenfunctions are used as 

weighting functions. In each duct section, the acoustic field governing equations in dimensional form are given 
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IWW+Uo-

a 
+--a =0 

z Po x 

· av I ap 
IWV+Uo -

a 
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z po y 
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IWU+Uo-+--=O 

az Po az 
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. ap 2 aw av au 
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(5.23) 

(5.24) 

(5.25) 

(5.26) 

where II, \' and ware the acoustic particle velocity in the x, y and z directions respectively and p is the acoustic 

pressure. 

At the impedance discontinuity at z = Zo, consider a control volume, V bounded by surfaces S,,,+8, S,,,-8 

and S, as shown in Fig. 5.4(a). The surfaces S,,,+8 and S,,,-8 are bounded by perimeters I;,,+8 and I;,,-8 at 

z = z" + (5 and z" - (5 respectively. The control volume encloses the duct cross section where the impedance 

discontinuity occurs. Let the acoustic admittance, A vary smoothly from A 1 at z = zo - (5 to A2 at Zo + (5 at 

Z = z" as shown in Fig. 5.4(b). 

First. consider the weighted form of the axial momentum equation integrated over the control volume, V 

gives 

j'{ a a a p} IV iWII+-
a

.(0)+-a.(O)+a7(uou+-) dV=O 
. .\)" po 
\' 

(5.27) 

Apply the divergence theorem to give 

/
. /. I r I 
,WiWII dV + W(uou + -p) ciS - II' W(uou+ -p) ciS = 0 

. \ . S,,,~8 Po S,,,_8 po 
(5.28) 

a W / az = 0 as W is chosen so that it depends only on the transverse coordinates. Take the limit: 

(5.29) 

This statement is only true if u is finite or has an integrable singularity at the impedance discontinuity as shown 

in Fig. 5.5. If the limit of Eq. (5.29) is now taken as (5 tends to zero, 

(5.30) 

I 1,,1111.1112 I U lll 1.1112 h d I' I' I I f' d' h f h" f S w lere 1,2 anc 1.2 are t e pressure an ve oClty so U(lOns to t le e t an ng t 0 matc mg mter ace, . 
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Now let consider the weighted form of the mass continuity equation 

(5.31) 

Apply the divergence theorem to give: 

dW / de: = () as W is chosen so that it depends only on the transverse coordinates. The last integral term in 

the equation is associated to the boundary condition of the problem. On the duct boundary, the solution must 

satisfy the Myers boundary condition [95]: 

iU(I d 
U'11 =Ap- --(Ap) 

m dz 
(5.33) 

where A is the acoustic admittance, u is the particle velocity and 11 denotes the direction normal to the surface 

Se. Substitute the Myers boundary condition, Eq. (5.33) into Eq. (5.32) this gives: 

/
'. ~ dw ~ dv 1 2 

W (1m p - p(}C~ ---=) - p(}c~ -:;- )dV + W (uop + Pacau )dS-
. II aX ay S",+8 

t ~ j' ~ [ iLl" d ] I,. W(u(}p+p(}c~u)dS+. Poc~W Ap---;;-(Ap) dS=O 
.. 1,,,-8 S, m z 

(5.34 ) 

The last integral in Eq. (5.34) can be rewritten as: 

where the last two line integrals are evaluated at the duct perimeters T;,,+8 and T;,,-8 respectively. Take the 

limit: 

(5.36) 

This statement is only true if p, v and w are finite or have integrable singularities at the impedance discontinuity 

as shown in Fig. 5.5. If the limit of Eq. (5.29) is now taken as 0 tends to zero, 

j'lll( )1112 .2U III2 )/<, j'W( 1:>11/1 ,2UII/ I )IS /' . . 2 11"WApIll2tr fr' 2UOWAplllllr-o vv 1I,,!2 +p"(,, 2 (.)- II" I +p"c(} I (. - lP"C,,- 2 2 ( + lP"C,,- I I G -
.S .s .r m r m 

(5.37) 
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h 1,)1111,1112 I 1111,11/2 h d I' I' h I f d' h f S F fl ( 0) were 1,2 anc U I ,2 are t e pressure an ve oCIty so utlOns to tee tan ng to. or zero ow Un = , 

Eqs. (5,30) and (5.37) is equivalent to the cOlTesponding equations from the existing MM procedure. How­

ever, when flow is present in the duct, the MM equations from the revised MM procedure show an additional 

boundary condition term at the matching interface where the impedance discontinuity occurs. 

The Galerkin method selects testing functions, W = vr~, from the same class of approximation functions. 

Substitute Eqs. (5,5) and (5,6) into Eqs, (5.37) and (5,30) to yield 

II' { vrt} [uo ( {At} T { vrt} + {A2" } T { vr2 } ) + Poc; ( {Bt} T { vrt} + {B2" } T {vr2} ) ] dS 

- fl' { vr~} [Uo ( {A T } T { vr~ } + { A I} T {vri} ) + Poc~ ( { BT } T {vr~} + { BJ } T {vr1-} ) ] dS 

I'· ,211" { +}A ({A+}T { +1 {A-}T { -}) lr - rlPocoffi vrl 2 2 vr2 f + 2 vr2 G 
(5.38) 

-+-/, ip(}c~'f;f {vrn A I ( {A n T {vrn + {A I}T {vri} ) dr = 0 

The coefficients A t is known and A2" = 0 as there is an anechoic termination at the exit plane. A system of 2m 

unknowns with 2m equations is yielded which is then written in the following partition form: 

(5.39) 

where Ti~2(;I\'R is the transfer matrix which relates the momentum flux and mass flux in Sections (1) and (2) 

and N - G WR denotes the new MM procedure by the Galerkin weighted residual method. In reaching these 

equations, the coefficients B~.i have been eliminated in terms of the coefficients A~,i' The matrix entries are 

T "'-C;\\'R _ 
1-2 - [ 

ag-_ -_b

t
>++]- I [ag++ -_b

f
_-] (5.40) 

where 

(5.41) 

(/~. h~, g~ and rJ:. are each (N x N) square matrices as N = m I = m2. The system is then solved to yield the 

coefficients of the duct modes for a given At. 
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Figure 5.5: Acoustic pressure, p and particle velocity, u behave as r- 1/ 2 at the acoustic impedance discontinuity 
at z = Zo where r is the radius from the discontinuity. 
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5.5 Application of NMMM To Study Sound Transmission In Flow Ducts 

In this section, the revised MM procedure is employed to study transmission of sound in two-dimensional flow 

ducts with and without the presence of a splitter. The ducts are assumed to be anechoically terminated at both 

ends and at the inlet of the duct at x = 0, a single harmonic mode is incident. 

Mode Matching Model 

To study acoustic scattering due to the impedance discontinuity, Duct (A) is segmented into three sections; 

Section (I). Section (2) and Section (3) at x = XI and X2 - see Fig. 5.2(a). To study sound diffraction by a 

splitter. Duct (8) is segmented into four sections; Section (I), Section (2), Section (3) and Section (4) at X = XI 

and -'2 - see Fig. S.2(b). 

The superposition of positive and negative acoustic modes that represent the harmonic pressure field in each 

section are truncated into a finite number of duct modes, NII1 • Typically to ensure good accuracy, Nm > > nc , 

where 11, is the number of cut-on modes as in a hardwalled duct [59]. In practice if I1c < 5, then Nm ;;;; 20 

appears sufficient l59 J. The duct modes are numerically computed using the FE eigenvalue model described in 

Chapter 2. The acoustic field in each section is expressed as: 

(5.42) 

where N = 1.2.3.4 denotes the duct section, the superscripts + and - signs are associated with duct modes 

that propagate in the positive and negative x directions and A~ are the complex amplitudes of the duct modes. 

The duct eigenfunctions and axial wavenumbers are denoted by VI!; and k~N' The VI!;,i are represented by a 

series of nodal pressure and element shape functions: 

II/ 

VlA,i(r) = L Nj(Y)Pj.i 
j~1 

(5.43) 

where N I (r) is the element shape function and P j.i is the nodal pressure computed for mode i. The axial particle 

velocity in each section is expressed as: 

(5.44) 

B~ is related to A~ using the momentum equation: 

(5.45) 
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Figure 5.6: Mode matching models Ca) Model CAl, (b) Model (E). 

5.5.1 Duct (A) With Impedance Discontinuities 

The revised MM procedure minimises the residual of the mass continuity equation and the axial momentum 

equation over a duct area enclosing the duct width where the impedance discontinuities occur at x = XI and X2. 

The residuals are minimised using mode eigenfunctions as weighting functions. At x = XI, the following weak 

statements are yielded: 

and 

I;;' W (linP;//l + poc6V;nl ) d)' - ip"c6li"w-1 [W (h)A l.)'=h P;lll (h) - W(O)A I.)'=OP(lll (0)] -

/(;' W (li r'p!:."2 + Poc~V21l2)dv - ip"c6li"w-l [W (/7 )A2,\'=hPt2(h) - W (0)A2,y=Op2"2(0)] = 0 

(5.46) 

(5.4 7) 

where A land A2 are acoustic admittances of the boundary of Sections (1) and (2). m 1 and m2 are the number 

of truncated duct modes in Sections (I) and (2) and 1111 = m2, At X = X2, a further two weak statements are 

yielded by matching solutions between Sections (2) and (3) using continuity of mass flux and axial momentum 

flux. 

and 

I;;' W h.p5.1/2 + Poc6V21/2)dy - ipoc611"w-1 [W (17 )A2,r=hPt2(17) - W (0)A2,y=Op2"2 (0) ]­

/(;' W (lI"P~//' + Poc6V~//])dv - ipoc611oW-1 [W (h)Aj,\'=hP{13 (h) - W(0)A3,y=oP1//3 (0)] = 0 

(5.48) 

(5.49) 

where A, is the acoustic admittance of the boundary of Section (3), 1Il3 is the number of truncated duct modes 

in Section (3) and 1lI3 = 1172 = ml, The weighting functions are from the same class of approximation functions, 

W = 1jI~. the transverse eigenfunctions of Section (I). This results in 4Nm sets of equations with 4Nm unknown 
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coefficients. Coefficient A T is known and coefficient A3 = 0 as there is an anechoic termination at the exit 

plane at x = L. 

An iterative scheme proposed by Cummings [2] is employed to solve the problem and to avoid problems 

associated with ill-conditioning of the matrix. The procedure also reduces the number of equations to be solved 

simultaneously by a factor of two giving a considerable saving in computation time and resources. 

5.5.2 Iterative Method 

First, substitute Eqs. (5.42) and (5.44) into Eqs. (5.46) and (5.49) and these equations are rewritten in the 

following partition form: 

{ :~ } ~ [10-2[ { :~ } 

{ :~ } ~ [1,_,[ { :n 
(5.50) 

(5.51) 

TI ~2 and T2~1 are transfer matrices which relate solutions between Sections (1) and (2) and between Sections 

(2) and (3) using continuity of momentum flux and mass flux at x = Xl and X2 respectively. The entries of the 

matrices are presented in Appendix A. In reaching these equations, the coefficients B~.i have been eliminated 

in terms of the coefficients A~.i' 

Coefficients A3 and A2 are then assumed to be zero. Eq. (5.50) is solved for a known AT. The coefficient 

A{ calculated is then used in Eq (5.5 I) to calculate A2 and At. The coefficient Az with the known AT is then 

used in ELJ. (5.50) to compute a new Ai- Az in Eq. (5.5 I) is then recomputed using the Ai computed from 

Eq. (5.50). The process is repeated until both coefficients Al and At or all the coefficients cease to change 

significantly or converged. 

5.5.3 Acoustic Performance 

Modal Intensity 

There a number of measures of the performance of the acoustic treatment in the duct. A common measure 

is by the change in the sum of acoustic power in all the cut-on modes at the source and exit planes. The 

acoustic power in each mode can be summed because the mode eigenfunctions are orthogonal. At the source 

plane. it is assumed that all the acoustic energy is contained in the incident mode(s). At the exit plane, due 

to lincr scattering. it is anticipated that all the cut-on modes will contain some acoustic energy. The sum of 
ml 1113 

acollstic power in all the cut-Oil modes at the source and exit planes is Wr=() = [ PW Li and Wr=L = [ PW Li 
i=1 i=1 

respectivdy. PW L is the average modal intensity computed using the Morfey expression of acoustic intensity 
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1102,103]. 

The expression for acoustic intensity I(t) proposed by Morfey is defined as: 

I I 
f(/) = p(t)u(t) + p,,(uo ' u(t))u(t) + -~ uofi(t) + 2"uo (uo ' u(t))p(t) 

p()c~ Co 
(5.52) 

where p(/) is the instantaneous acoustic pressure and u(t) = (u, v, w) is the instantaneous particle velocity. 

lin = (11".1'(1' w".J is the instantaneous particle velocity. The time-averaged acoustic intensity, I in the duct axial 

direction is defined as: 

I 2, M" 2 I 2 
f =< I(t) >= -( I +Mo)Re(p u) + --Ip 1+ -Pouolu I 

2 2Paco 2 
(5.53) 

where M" = 11(11 c" is the axial mean flow Mach number. The average modal intensity, PW L is obtained by 

integrating the local acoustic intensity, lover the width of the duct, h and the contribution of the impedance 

boundary: 

dy + boundary condition term (5.54) 

and the boundary condition term is given by [103]: 

(5.55) 

where ~ is the particle displacement of the wall directed into the wall and it is related to the fluid particle 

velocity in the normal direction of the wall and directed into the wall, V· v: 

T ~(., d)r \ . v ~ Ik., M" dx ':> (5.56) 

PW L is expressed in decibels (dB) using the following expression: 

PWL = IOLoKIO -- (dB) (
PWL) 
Ire r 

(5.57) 

frl' ( is the reference modal intensity defined by: 

(I +siKI1(k;)Mo) (2 x 10-5)2 
f n • I = -----'-----'----'----'--

POC" 
(5.58) 

The in-cluet sOLlnd power transmission loss, 6PW L defined as the ratio of transmitted to incident sound power 

in dB and is given by 

(

II" ) L PWLilx=L 
IJ.PWL = -IOlog lo i.~,1 

L PWLilr~() 
,~I 

(5.59) 
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where 11" and Ili are the number of cut-on modes at the source and exit planes of the duct. A value of zero for 

the relative ilPW L corresponds to zero attenuation or no energy loss in the duct. 

5.5.4 Duct (B) With An Infinitely Thin Splitter 

The revised MM procedure minimises the residual of the mass continuity equation and the axial momentum 

equation over a duct area enclosing the duct width where the impedance discontinuities and geometrical change 

occurred at x = XI and X2. The residuals are minimised using mode eigenfunctions as weighting functions. At 

x = XI, the following weak statements are yielded: 

and 

W lIoU;,,1 + _p;,,1 ely - W uoU!J.12 + -Pt2 ely - W uoU3"
3 + _p~13 ely = 0 

/

'/1 ( I) /'hl ( I) 1,17 ( I) 
. () Po . () Po . hi Po 

1((' W (U,J)f"1 + Poc~U;,,1 )dy - iPoc~uoW-1 [AI,1'=hW(h)Pf"1 (h) -AI,y=ow(o)p,nl (O)J-

1;(11 W (lIoP2"2 + PocBUt2)dy - iPoC6UnW-1 [A2,y=hl W(hl )P2n2 (hl) - A2,y=OW(O)P2'12(h 1 )]­

/;:'1 W (uoP3"
3 + Poc~U3"3 )dy - ipoc6uoW-1 [A 3.y=h W (h )P3"3 (h) - A3,y=hl W (hi )P3',3 (h I) J = 0 

(5.60) 

(5.61) 

where A I, A2 and A3 are acoustic admittances of the boundary of Sections (I) to (3). Matching solutions 

between Sections (2) to (4) at x = X2 using continuity of mass flux and axial momentum flux yields the following 

two weak statements: 

(5.62) 

and 

1,"1 I" ( pili 2 , .2UIII2 ) /' . .2 -I [A W(f l)pIll2(!I) A w(0)pm2(0)J · (I v 110 2 T PoLO 2 () - IpoCOUoW 2.\'="1 1 2 I - 2.1'=0 2 + 
j '''11 1

( 1':>1110, .2U III .,)! .. 2 -I [A W'(I)PIII3 (f·) A W(/I)pm3 (/I)J · III . II" 3 + poL 0 3 (y -lpoLOUoW o,.\,=h 1 3 ! - 3,),=171 1 3 1 - (5.63) 

j·"I.I/( pIII4 .2UIII4 )I' .. 2 -I [A W(I)pm4(1) A w(0)pm4(0)J-0 · II v II" 4 + PoLO 4 ( ) - IpoCOUoW 4.y=h 1 4 1 - 4.y=0 4 -

where A4 is the acoustic admittance of the boundary of Section (4) and 1114 is the number of truncated modes in 

Section (4). The total number of modes in Sections (2) and (3) is equal to number of modes in Section (I) or 

(4), which is I n proportion with the width of the duct, m2 + m3 = III I = 1174. The theory of relative convergence 

states that for regions of similar geometry. the ratio of the number of modes is the same as the ratio of the 

characteristic sizes [ 1041. When dealing with two circular ducts with a radius ratio of 2 : I, the number of mode 

ratio l1lust be 2 : I. 

The testing function, W is selected to be the eigenfunction of Section (I), W = 1fI(. This leads to 6NIIl sets 

of equations with 6NIII unknown coefficients. Eqs. (5,60) and (5,63 and Eqs. (5.42) and (5.44) are rearranged 
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into the following partition format and solved using the iterative procedure [2]. 

(5.64) 

(5.65) 

T 1-2-3 and T 2-3-4 are transfer matrices which relate solutions between Sections (I )-(3) and between Section 

(2)-(4) using continuity of mass and momentum. Expressions for their component terms are listed in Appendix 

A. In reaching these equations, the coefficients B~.i have been eliminated in terms of the coefficients A~.i' 

Coefficients Ai. A2 and A3" are first assumed to be zero. Eq. (5.64) is solved with a known Ai. The coeffi­

cients A; and At calculated are then used in Eq (5.65) to compute coefficients A;- and A). The coefficients A;­

and A3" calculated from Eq. (5.65) are then used in Eq. (5.64) to recompute new coefficients Ai and At. These 

coefficients are then used to calculate the A2 and A) in Eq. (5.65). The process is repeated until coefficients 

A2. A3" and Ar or all the coefficients cease to change significantly or converged. 
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Chapter 6 

Finite Element Method 

6.1 Introduction 

In this chapter, the formulation of an finite element (FE) transmission model is presented. It models the sound 

field in a domain which extends a finite distance along the duct. Some results of validation and convergence of 

the FE transmission model are also presented. Factors that affect the FE solutions such the mesh refinement, 

mesh uniformity and element type are explored. The FE transmission model is to provide a validation for the 

mode matching results. The formulation of a FE flow model for computing steady compressible mean flow in 

the duct is also presented. 

6.1.1 Outline 

In Section 6.2. the problems are posed. Aspects such as the duct geometries, liner impedances and aspects 

of the computational models are described. Section 6.4 presents the formulation of the FE transmission model 

followed by some results of validation and convergence of the FE transmission model in Section 6.6. In Section 

6.7. results of a numerical study of the effect of splitter thickness on sound propagation in a two-dimensional 

duct are presented. Section 6.5.2 presents the formulation of the FE flow model followed by some results. 

6.2 Problem Specification 

A two-dimensional duct consisting of a hard-soft-hard section as shown in Fig. 6.1 is considered in the study. 

The boundaries Ii and Ii,. at the top and bottom of the duct. are lined with an acoustic liner whose impedance is 

Z, and Z" respectively. The boundary Ii, is acoustically hard. The duct inlet Ii at x = 0 is the plane on which the 

sound source is defined and the duct outlet T;, at x = L is assumed to be anechoically terminated. The acoustic 

domain (j) is bounded by boundaries Ii. Ii,. Ii,. T;, and Ii. M" denotes the flow Mach number in the duct. 

The duct is discretized using structured or unstructured meshes constructed from either 8-noded quadrilat­

eral elements or 6-lloded triangular elements with an average mesh resolution of 8 to 10 nodes per wavelength. 
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(a) Acoustic liner of le ngtn l2 

(b) 

Acoustic domain 

Fan plane, x=O Ex~ plane, x=L 

Figure 6.1: (a) A uniform flow duct with a hard-soft-hard-walled section, (b) An FE mesh constructed from 
8- noded quadri latera l e lements. 

The mesh resol ution is defined by the number of nodes which are required to represent accurately the solution 

ove r one wave length: 

N = c" 
I I1 II - M"I 

(6. 1 ) 

where (;" is the speed o f sound, f is the frequency in Hertz and 11 is the average di stance between nodes. For 

many eng ineering purposes, a mesh resolution of 8 to 10 nodes per wave length is the rule of thumb reference. 

The reso luti on o f the mesh in the y direction is given by N = co i f 11 as no account is taken for the effect of flow. 

Fi g . 6. 1 (b ) shows a typical examp le of the mesh constructed in this study. The mesh near to the impedance 

boundary has been refined. 

6.2.1 Benchmark Results 

In thi s research. FE so lu tions obtained using ACTRAN are used to validate the results obtained using mode 

matching (MM ). ACTRAN is a commercial code produced by Free Field Technologies [ l OS] which is capable 

of predicting sound propagation in non-uniform ducts with non-uniform mean flow and impedance boundaries. 

In lhis research. a FE transmiss ion code s imilar to ACTRAN but which uses a s lightly different matching 

procedure is written by the author for two-dimensional problems. The in-house FE transmiss ion code is to 

provide a validation for the mode matching resu lts in add iti on to the ACTRAN results. It is also desirable to 

have an in-house code with access to source. 

6.3 Derivation of The Converted Wave Equation 

In thi s sec ti o n. the lineari zed wave eq uations that governing the isentropic motion of a non-viscous, non-heat 

co nduclin g perfec t gas ill a duct are de ri ved. To reduce the complex ity of the probl em, the present analys is wi ll 
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be confined to two-dimensions and uniform mean flow is assumed. The field governing equations are: 

Continuity: 

Momentum: 

d " 
L+v.p*u" =0 
dt 

dU" + (U*. V)U* = -~Vp* = 0 
dt P* 

Equation of state: " I *y p =-p 
r 
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(6.2) 

(6.3) 

(6.4 ) 

where pi is the pressure, U" is the velocity, p* is the local fluid density and r = 1.4 is the ratio of specific heats 

at constant pressure and volume. The acoustic equations are obtained by considering small perturbations on a 

mean state po, Po and Uo: 

(6.S) 

p* = Po + P 

U* = Uo+U 

Substitute Eq. (6.S) into the field governing equations, Eqs. (6.2) to (6.4). Ignore the products of perturbation, 

the following linearized acoustic field governing equations are obtained: 

Acoustic Continuity: 

Acoustic Momentum: 

dp 
Tr+V,(poU+pUo)=O 

dU 1 1 
-+(Uo · V)U+ -Vp+U· VUo- --pVPo =0 
dt po rpop" 

Acoustic Equation of State: 
1 

p=c;'p 

where Co is the speed of sound, 

6.4 Velocity Potential Formulation 

(6.6) 

(6.7) 

(6.8) 

Assuming both the steady and acoustic parts are irrotational, the velocity U* can be expressed in terms of a 

velocity potential, ¢ where 

u =V¢ (6.9) 

Acoustic disturbances in the flow can be described by decomposing the velocity potential, ~ as 

¢(x.r) = I/Jo(x) + I/J(x.t) (6.10) 

where the steady-state mean flow is given by 

(6.11 ) 
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and the harmonic acoustic disturbances are given by 

¢(x,r) = ¢(x)eiWI (6.12) 

It is assumed that the acoustic velocity potential ¢o > > ¢. The linearized acoustic mass and momentum equa-

tions, Eqs. (6.6) and (6.7), can be written in terms of the velocity potential, ¢: 

Acoustic Continuity: 
dP at + V . (Po V ¢ + V P ¢o) = 0 (6.13) 

po d¢ 
p = ~ ----;;- (- + V ¢o . V ¢ ) 

c~ dt 
Acoustic Momentum: (6.14) 

In reaching these equations, the second and higher order terms in the small perturbations have been ignored. 

Using the linearized isentropic equation of state, Eq. (6.8), the acoustic pressure, p can be related to the acoustic 

potential, ¢ by 

(6.15) 

On combining Eqs. (6.13) and (6.14), the convected wave equation in ¢ is obtained: 

(6.16) 

6.4.1 The FE Transmission Model 

The FE transmission model is based on a weak variational statement constructed by multiplying the convected 

wave equation. Eq. (6.16), by weighting functions, Wand integrating over the acoustic domain, Q: 

where \V(x) E H(R). Apply the divergence theorem to Eq. (6.17) to obtain: 

In {PoW [~?~ ¢ ~ i(~Mo' V¢] ~ VW· [PoV¢ ~ po C~¢ +Mo' V¢) Mo]} dQ 

~ Ir IV {Po V ¢ ~ Po ( ~ ¢ + Mo . V ¢ ) M" } . n dr = 0 

(6.17) 

(6.18) 

The line integral in the equation is associated with the boundary conditions of the problem. Mo = Uo/co denotes 

the flow Mach number in the duct and n is the normal outward from the boundary, r. 

The acoustic domain. Q is then discretized using finite elements which take the form 

N 

¢(x) = L Ni(x)¢, (6.19) 
,-- I 

where ¢, is the nodal value of ¢(x) in the FE region and Ni(x) are the element shape functions which have the 
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following property at a nodal point Xj, 

{

I, (j = i), 
Ni(xi) = 

. 0, U#i). 

The shape functions for an 8-noded quadrilateral element are - see Fig. 6.2(a): 

Nd~·11) = (1/4)~(1 -~)11(l-11) 

N2 (~ . 11) = - (1/2 g (I - ~)( I + 11)( I - 11) 

N'(~·11) = (1/4)~(1 -~)11(l +11) 

Nd~·11) = -(1/2)(1 +~)(I -S)11(l +11) 

N'i(~·11) = (1/4)S(l +S)11(I +11) 

Nh (S· 11) = - ( I /2) S (I + S)( I + 11)( I - 11) 

N7 (~ . 11) = ( I /4) S ( I + S ) 11 (I - 11 ) 

Nx(S·11) = -(1/2)(1 +S)(I -S)11(l -11) 
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(6.20) 

where ~ and 11 are the local coordinates. The element shape functions for a 6-noded triangular element are -

see Fig. 6.2(b): 

Nl(~·11) = I -S-11 

Ne(S· 11) = ~ 

N,(S·11) =11 

Nfl S . 11) = 4S (I - S - 11 ) 

Nd~. 11) = 411(1 - S - 11) 

Nil ( ~ . 11 ) = 4S 11 

(6.21) 

The Galerkin method selects weighting functions, W;(x) equal to N;(x), the element shape functions. Eq. (6.18) 

is then written in the following discrete form: 

[Aj{cp}+{B} = {O} (6.22) 

where the [A I term is assembled from the surface integral term: 

Ail = / {PoNi [W2

2

Ni _ i~M()'V'Ni] -V'Ni · [PoV'Ni-Po (iWNi+Mo'V'Ni)Mo]}dQ (6.23) ./Q CO Co Co 

and the {H} term is assembled from the boundary integral term: 

(6.24) 

An important aspect of the FE analysis is the mapping from local coordinates to global coordinates. This 
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(1 -1) 1 (1 1) 

(-1,-1 ) (-1,1 ) (0,0) (1,0) 

(a) (b) 

Figure 6.2: (a) 8-noded quadrilateral element, (b) 6-noded triangular element. 

is needed for a systematic way of integrating different elements of different sizes and shapes throughout the 

meshed model. The relation between the local and global coordinates is given by 

dX elY = III dT)d~ (6.25) 

where III is the Jacobian which is the determinant of 

(6.26) 

X and Yare the global coordinates defined as 

(6.27) 

Ni is the shape function for node i and Xi and Yj are the global coordinates x and y of node i. 

6.4.2 Admittance Boundary 

On boundaries. 1;, Ii, and Ii" Mo' n = 0 and Vrp· n = Un as the mean flow is tangential to the boundary. The 

boundary integral term in Eq. (6.24) becomes 

j,. W p"Vrp·n d[, 
.1 

The solution on the boundary must satisfy the Myers boundary condition [95]: 

iu" d 
Vrp· n = Un' n = AnfJ - --:;-(AnP) 

OJ ax 

(6.28) 

(6.29) 
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where All is the acoustic admittance normal to the boundary and Uo is the mean flow in the x direction. On r;, 

substitute Eq. (6.29) into Eq. (6.28). The following expression is obtained: 

j,. j,' { iu" d ( } Wpo\1~·ndT = - PoW AnP- --=;- AnP) dT 
. 1;, . 1;, W aX 

(6.30) 

Using Eq. (6.15), the acoustic pressure in the equation can be replaced by the velocity potential. This leads to 

(6.31 ) 

where A;:j is non-zero if i and.i conespond to a node on II,. Eq. (6.31) can be further simplified to 

(6.32) 

6.4.3 Modal Boundary 

On boundaries Ii and r;" modal boundary conditions are prescribed. Two modal matching procedures are 

considered in this work: a direct method and a Galerkin weighted residuals method. For both procedures, the 

accurate matching of the eigenfunctions on the modal boundary is depended on good approximation by the FE 

interpolatiun functions. To ensure the duct eigenfunctions are computed accurately in this study, the mesh used 

must have resulution of 10 to 12 nodes per wavelength. 

ModallVIatching By A Galerkin Weighted Residuals Method 

At x = O. the plane Ii is perpendicular to the x axis. Assume that the modal plane is adjacent to the FE region, 

then W;Cd = Ni (r). The modal boundary matching term is expressed as: 

B,.; = l Ni {Po\1~j - Po (iW ~j+Mo' \1~j) Mo} . neW 
. r, ( () 

(6.33) 

I/>j at x = 0 is asslImed to have the form: 

~ j (\') = f. ({/ j ¢t (r)e -ik,",,+ ({ i ¢j (y)e -ik~J') 
; I 

(6.34) 

where the superscripts + and - signs are associated with waves propagating in the positive and negative X direc­

tions. {/~ are coefficients of the positive and negative acoustic modes and ¢ (y)1 and k;j are the corresponding 

duct eigenfunctions and axial wavenumbers respectively. ~j is truncated to number In modes. Substitute Eq. 

(6.34) and its derivative, d¢ Idx into Eq. (6.33) and write the equation in the following discrete form: 

( 6.35) 
/I' I 1/ III fII/ I IlXI1I III X I 
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where 11 is the number of degrees of freedom and 

(6.36) 

The system is under-determined so m equations are still required for the solutions. The additional equations 

are provided by implying potential continuity on the plane Ii [II, 13, 51]. The residuals (ep - epin) are weighted 

over the duct width by testing functions, F to give 

./r; {F ( ep - epin ) } cLr = 0 (6.37) 

epin Cv) is assumed to have the form: 

epi,,(V) = f (a7ept(y)e-ik~J' +ajep;-(y)e-ik~jX) 
I-I 

(6.38) 

epin has been truncated to number m of modes. Substitute Eq. (6.38) into Eq. (6.37) and the equation is written 

in the following discrete form: 

where 

and 

[D:] {((+} + [D~] {a-} + [Ein] {ep} = {O} 
111/111 /1//1 I11X/11 111 X 1 I11X/1 llxl 

Ein .LI = j,' F;Nidr 
.r; 

(6.39) 

(6.40) 

(6.41 ) 

On plane f;, at x = L, a similar modal matching procedure is applied. The modal matching term is expressed as: 

BI.I = ! Ni {Po'Yep; - Po (i~ ep; +Mo' 'Yep;) Mo} ·ndr 
. r;, Co 

(6.42) 

ep i is assumed to be in the form: 

ep/(.") = f (b7If1j(y)e-<r') 
/=1 

(6.43) 

where h~' are coefficients of the positive acoustic modes and IfIj (y) are the corresponding duct eigenfunctions. 

The duct is assumed to be anechoically terminated. Substituting Eq. (6.43) into Eq. (6.42) and write the 

equation in the following discrete form: 

J BOlltlet \ = [)3+ ] {f +} 
1 I (111) (6.44) 

1/ Fill X 111 III "'~ I 
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where. 

(6.45) 

The additional equations are obtained by implying continuity of velocity potentiaL The residuals of (rpOllt - rp) 

are weighted over the duct width by testing functions, G to give 

(6.46) 

where G are weighting functions. rpOllt is assumed to have the form: 

[
III ( + +() -ik+.X) rp(}lIt (y) = b· 1f! y e L) 

} } 
j~1 

(6.47) 

rpm" has been truncated to number m of modes. Substitute Eq. (6.47) into Eq. (6.46) and write the equation in 

the following discrete form: 

where 

and 

1/1/11/ 111 X I I11X/1 /lX I 

D+ .. = - r GIIf+(),)e-ik;';Xdr 
Oli/.i.! / r I 't' J . . r;, 

EoIl1i.! = /" GiNjdr .! r;, 

Eqs. (6.22). (6.35). (6.39), (6.44) and (6.48) are then written as a single matrix equation of the form: 

Weighting functions F are then chosen so that 

The matrices in Eq. (6.39) become: 

(6.48) 

(6.49) 

(6.50) 

(6.51) 

(6.52) 

(6.53) 
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and 

(6.54) 

Similarly at x = L, weighting functions Gin Eq. (6.48) are chosen so that 

(6.55) 

The matrices in Eq. (6.48) become: 

+ 'l + ( ) -ik+x [( 2) + ] + ( ) -ik+x DOIII . , .; = I Polfli ye r., l-Mo kt.j+Mok lfIj ye ... J dr 
. r:. 

(6.56) 

and 

(6.57) 

The complex sparse linear solver in the IMSL Fortran library is employed to solve the discrete system to yield 

the field potential, ~ and the mode coefficients, a- and b+ for given a+. 

Direct Modal Boundary Matching 

This section describes the direct modal matching procedure. At x = 0, the plane r; is perpendicular to the x 

axis. The modal boundary term is expressed as: 

(6.58) 

~; is assumed to be in the form: 

~(\.) = f ((/j</>t(y)e-ik;~jX +aj~j(y)e-ik~/) 
;=[ 

(6.59) 

Substitute Eq. (6.59) and its derivative with respect to x into the modal matching integral, Eq. (6.58) and write 

the equation in the following discrete form: 

{Bd = [B~]{ ([+} + [B h1 ]{ a-} (6.60) 
11..'\ 1//11/ mxI IIXII1 111 X I 

where 

B"- -' / P N· [(I-M 2)k± +M k] "'±(")e-ik~jXdr ill.i./-l'/r; (} f () x,j () 'rj] (6.61) 

At the outlet plane .e at x = L, the modal boundary term is expressed as: 

8 il = -I Ni {PoV'~j - po (iOJ ~j + Mo' V'~j) Mo} . neW 
. r:, (0 

(6.62) 
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</>j is assumed to be in the form: 

11'(1') = f (hjlflt(y)e-ik;~jX) 
1=1 

(6.63) 

There are no reflected modes at the exit plane as the duct is assumed to be anechoic ally terminated. Substitute 

Eq. (6.63) and its derivative with respect to x into the boundary integral term, Eq. (6.62) and write the equation 

in the following discrete form 

{8 o } = [B~lt]{b+} (6.64) 
1// I II/J1I mX 1 

where 

+ . / [( 2) + ] + ( ) -ik+.x 8 mil .il = -I /1 PoNi I-Mo kLj+M()k lfIj ye '.j dr 
. 1" 

(6.65) 

The solution vector. {</>} is partitioned into sub-vectors {</>d, {</>o} and {</>r} which correspond to nodes on 

plane 1;. plane 1" and the remaining nodes in the finite element domain. Eq. (6.22) is then written as: 

r A" 

Ari Aro 

Air Aii 0 

Aur 0 Aoo 

and re-written as: 

</>" and </>i can be written in the following discrete form: 

Ilxl 

where. 

JlXm mxl J/Xm 111 X I 

{</>o} = [P+]{b+} 
nxl IlXm III X I 

cp± _ ,n± ( ) -ik~.x 
j - 't'j Y e .. j 

(6.66) 

(6.67) 

( 6.68) 

(6.69) 

(6.70) 

(6.71 ) 
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Substitute Eqs. (6.68) and (6.69) into Eq. (6.67) and mUltiply the second row by cP- and the third row by P+, 

the following expression is obtained: 

_A_ir_~~_r __ )~CP_-_(A_iiA_):_i~_:_~_~_-~(B~~~)~ ___ A_r_o(_:_+_T) _____ ] {a
b

: }=_ 
AnI" (P+) 0 P+ (Aoo) pH + p+ (B~ut) 

l 
( +1') ] Ad cP 

(6.72) 

Although the entries in the system are slightly different to those employing the Galerkin weighted residual 

method for the modal matching, both FE transmission models should agree with each other for converged 

solutions. 

6.5 Steady Compressible Mean Flow Calculation 

In this section, the formulation of a FE model for computing steady compressible flow in two-dimensional 

ducts is presented. Details of a similar scheme can be found in [20]. To reduce the complexity of the problem, 

the present analysis will be confined to two-dimensions only. 

6.5.1 Problem Specification 

A duct contains a finite thickness splitter as shown in Fig. 6.3 is considered. The computational domain, Q is 

bounded by boundaries r" 1- and Ii,. On these boundaries, the mean flow is zero as the flow is perpendicular to 

the boundary. At plane r;, the mean flow is denoted by Vi and at plane r;), the mean flow is denoted by Va. It 

is assumed that r; and r;, are located remotely enough from regions of non-uniformity in the duct to allow the 

mean flow velocity to be uniform at these planes. 

6.5.2 The FE Flow Model 

In the duct, the mean flow field is governed by the following equations 

(6.73) 

I 1 12 c~_ - U" +---E 
2 y- I 

(6.74) 

('2 _ YIJ/P _ p y- 1 
() - (1- () (6.75) 

E is a cunstant and U" = 'V ¢" is the mean flow velocity. The subsonic mean flow in the duct is determined by 

the condition of uniformity upstream, the constant E and a constant axial mass flux nF. The FE flow model is 
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L, Acoustic liner of length L" At 
L3 
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I 
Computational domain, n I 

fi at X"O k 
splitter boundary. r sat y"h1 
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d ro atx"L height, h 

I 
h1 I 

y I 

Acoustic liner of length L" At, 
x +4----------------------------------------~ • 

Due! length, L=L,+L,+L3 

Figure 6.3: Duct model with a finite thickness splitter. 

based on a weak formulation of Eq. (6.73): 

I W {'V. (Po'Vcpo) }dQ = 0 (6.76) 

S2 

Apply the divergence theorem to Eq. (6.76) to give 

I ('VW)· (p,SCPo)dQ -I W(Po'Vcpo)' ndr = 0 (6.77) 

S2 r 

where Ware weighting functions. The line integral in the equation is associated with the boundary conditions 

of the problem. 

Boundary Conditions 

On boundaries r;. [j, and~, 'V CPo . n = O. On plane Ij, 'V cp . n = Ui, the line integral becomes 

I W(Po'Vcpo)' ne!r = I W(PoUi) dr (6.78) 

r; r; 

and on plane r;,. 'V cp" . n = -Uo, the line integral becomes 

I W(p,,'Vcpo)' ndr = -I W(poUo)dr (6.79) 

r;, r;, 

U" is related to Ui by the continuity of mass equation, PiUihi = PoUoho where Pi,o and hi,o are the fluid density 

and width of the duct at Ij and r;, respectively. The weighted residual formulation with the boundary conditions 

incorporated is: 

I ('VW)· (p,,'Vrj>,,)dQ -I W(p"Ui)e!r + I W(poUo)dr = 0 (6.80) 

S2 r; r;, 
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The acoustic domain, Q is then discretized using finite elements which take the form 

N 

I/>,,(x) = L Nj(x)l/>o,j 
j=1 

118 

(6.81 ) 

where 1/>"., is the nodal value of I/>o(x) in the FE region and Nj(x) are the element shape functions. The FE 

discretization consists of the same mesh with the same element type as used in the acoustic propagation cal­

culation. Meshes constructed from either 8-noded quadrilateral elements or 6-noded triangular elements with 

an average mesh resolution of 8 to 10 nodes per wavelength are used to discretize the duct- see Fig. 7.2. The 

splitter is modelled with round edges to ensure smooth flow. The mesh near to the splitter edges is refined for 

accurate model of the flow in the vicinity. Weighting functions Ware assumed from the same functions space, 
/I 

W(x) = 2:: Ni(X), Eq. (6,80) is then written in the following discrete form: 

where 

and 

,~I 

Ki.j = ./ (VNi)' (PoVNj)dQ 
.Q 

Kj'j = - '/NiNj(POUi)(/r + '/N;Nj(poUo)dr 
r, r" 

6.5.3 Iterative Procedure 

(6.82) 

(6.83) 

(6.84) 

An iterative procedure is employed to solve the problem. First, Eq. (6.82) is solved with density Po = I and 

speed of sound Co = 340, Then, using Eqs, (6.74) and (6.75), a new density Po and speed of sound Co are 

computed, Eq. (6.82) is then solved with the new Po and c" derived from the previous iteration step. This 

procedure is repeated until the solution ceases to change significantly. 

6.6 Validation of The Finite Element Results 

In this section, some results of the validation study of the in-house FE transmission model are presented. The 

results obtained using the in-house FE models are compared against those obtained using ACTRAN. Two duct 

models are considered. one with a hard-soft-harcl-walled boundary at the top of the duct and the other with an 

infinitely thin splitter positioned at.\' = 0.2 in the cluct - see Fig, 6.4. Duct (B) has the duct walls at v = 0 

and h lined \vith ,\C()ustic liners. The values of the parameters used in this analysis are detailed in Table 8.3, 

Fig, 7.2 shows typical examples of the meshes constructed in this study. These meshes are generated using the 
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Duct length L 1.6m 
Liner length L2 1.2m 
Hard section length LI, L3 0.2m 
Duct height h 0.5m 
Reduced frequency kh 5,10 
Mean flow Mo 0.5 
Impedance Z 3.0 - 4.97i(kh = 5), 3.0 - 1.29i(kh = 10) 
Splitter thickness (\. O.OOlm 

Table 6.1: Model duct specification. 

ICEMCF D package [10 I J. At the inlet plane at x = 0, all cut-on and a few cut-off negative acoustic modes are 

considered for modal matching. At the exit plane at x = L, all cut-on and a few cut-off positive acoustic modes 

are considered. No negative propagating modes are specified in the latter case as the exit plane is assumed to 

be an anechoic termination. 

Fig. 6.6 presents the absolute acoustic pressure along the duct wall at y = h predicted by the in-house FE 

model and by ACTRAN for Duct (A). Fig. 6.6(a) presents results for klz = 5 and Fig. 6.6(b) presents results 

Cor kh = 10. In the plots, impedance discontinuities at x = 0.2 and 1.4 are indicated by dotted lines. The 

comparisons show good agreement between the two FE models and both models predict pressure singularities 

where impedance discontinuities occur. 

Figs. 6.7 and 6.8 show the average modal intensity (PW L) of the reflected modes at x = 0 and of the 

transmitted modes at x = L plotted against the mode number for Duct (A) at frequency of kh = 5 and 10. 

Results predicted by ACTRAN and by the in-house FE code are presented. The mode number is obtained by 

ordering the duct modes according to their cut-off ratios in a descending order. The PW L is evaluated using the 

Morfey expression of acoustic intensity [102] with an additional contribution from the wall boundary derived 

by Eversman [ 103 [. The expression of the modal intensity is presented in Chapter 5. The comparisons show 

good agreement between the two FE models. Figs. 6.9 and 6.10 present the PW L of the reflected modes at 

x = () and of the transmitted modes at x = L predicted using ACTRAN and the in-house FE model for Model 

(B) at frequency of kh = S and 10. The comparisons show good agreement between the two FE solutions with 

discrepancies less than I dB. 

6.7 A Numerical Study of Varying Splitter Thickness on Sound Propagation 
In A Duct 

This section presents the results of a numerical study of the effect of varying splitter thickness on sound prop a-

gation in the duct. The analysis is carried out using ACTRAN and the mean flow in the duct is computed using 

the FE flow model presented in Section 6.5. The values of the parameters used in this analysis are detailed 

in Table 6.2. The flow calculation is carried out on the same grid with the same element type as used in the 
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Figure 6.4: Duct models. 

L, Acoustic liner of length lz. At 

Acoustlc domain. n I 
I 

Spll." wl1h 1h1,Im,". .. I 

Duct (8) 

120 

L, 

Ducl 
height, h 

At the inlet of the duct, flow at M" = 0.3 is specified. The splitter thicknesses considered are tpl h = 0.3, 

0.2, 0.1, 0.05, 0.0 I, 0.005, 0.00 1,0.0005 and 0.000 I where tp is the splitter thickness. The splitter is modelled 

with round edges to ensure a smooth flow. At the source plane at x = 0, a harmonic mode l1i = 2 is incident. 

Fig. 6.11 presents plots of compressible mean flow computed for splitter thickness, tpl h = 0.2 and 0.01. 

Figs. 6.11 (a) and (b) present the mean flow in the x direction, Figs. 6.11 (c) and (d) present the mean flow in 

the \' direction and Figs. 6.11(e) and (f) present the streamlines of the mean flow. The flow in the duct become 

almost uniform, no flow in the y direction, as the splitter thickness decreases. 

I n Figs. 6.12 and 6.13, bar charts show the PW L of the transmitted modes at x = L and of the reflected 

modes at .r = 0 plotted against the mode number for zero and uniform flows. Results obtained by the revised 

mode matching method (NMMM) model are also presented. The splitter is assumed to be infinitely thin in the 

MM model. 

The results show that, the FE results converge to the MM results of an infinitely thin splitter as the splitter 

thickness decreases. This is observed for uniform flow and zero flow. The results also show that as the splitter 

thickness decreases, more acoustic energy is scattered into the high order modes than the low order modes. 

This is seen as acoustically beneficial as the high the order modes are more easily attenuated by the acoustic 

liner. 

6.8 Conclusions 

An in-house FE transmission code has been developed to study transmission of sound in two-dimensional flow 

ducls. Thc model is to provide a validation to the MM model. The in-house FE model yields results which show 

good agreement with those obtained using ACTRAN which is also an FE transmission code but uses a slightly 

different modal matching procedure. The FE solutions obtained Llsing ACTRAN are Llsed as the benchmark 
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(a) Duct (A) - FE grid (b) Duct (8) - FE grid 

" r---------~--------_?--~~~~~ 
Lenght 

Langht 

Figure 6.S : FE grids. 

Duct length L 1.6m 
Liner length L? 1.2m 
Duct height h O.S m 
Splitter position hi 0.2m 
Splitter thickness {p l h 0.3 - 0.0001 

S pi i tter length Lp 1.2m 
Reduced frequency kh 10 
Acoustic impedance Z 00,2- 1 i 

Mean flow Mach number Mo 0.3M 

Table 6.2: Model duct specification - sound diffraction by a splitter in the duct. 

so luti ons to va lidate the mode matching solutions. 

An FE flow model has al so been developed to compute steady compressible mean flow in two-dimensional 

ducts. The flow model have been employed with ACTRAN to investigate the effect of varying splitter thickness 

on sound propagati on in the duct. The study shows that the FE so lution converge to the MM so lution of an 

infinitel y thin sp litter as the splitter thickness decreases. The diffraction at the splitter resulted in more energy 

been tran sferred to the high order modes than the low order modes . This is seen as acoustically beneficial as 

the hi gh order modes are more eas il y attenuated by the acoustic liner. 
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Figure 6.6: Model (A) - Absolute acoustic pressure along the duct wall aty = h. Results predicted by ACTRAN 
and by the in-house FE transmission model are presented. (a) Z/ = 3 - 4.97i, Zh = 00 + ooi, Mo = 0.5 , kh = 5, 
(b) Z/ = 3 - 1.29i, Zh = oo+ooi, Mo = 0.5, kh = 10. 
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Figure 6.7: Model (A) - PW L of the reflected modes at x = 0 and of the transmitted modes at x = L predicted 
by ACTRAN and by the in-house FE transmission model. kh = 5, Mo = 0.5, Z/ = 3 - 4.97i, Zh = 00 + ooi. (a) 
Reflected modes, (b) Transmitted modes. 
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Figure 6.8: Model (A) - PW L of the reflected modes at x = 0 and of the transmitted modes at x = L predicted 
by ACTRAN and by the in-house FE transmission model. kh = 10, Mo = 0.5, Z/ = 3 - 1.29i, Zh = oo+ooi. (a) 
Reflected modes, (b) Transmitted modes. 
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Figure 6.9: Model (B) - PW L of the reflected modes at x = 0 and of the transmitted modes at x = L predicted 
by ACTRAN and by the in-house FE transmission model. kh = 5, Mo = 0.5, Z/ = 3 - 4.97i, Zh = 3 - 4.97i. (a) 
Reflected modes, (b) Transmitted modes. 

(a) 100 ,-____ ---,--______ --, 
(b) 100 ,-------------

Figure 6. 10: Model (B) - PW L of the reflected modes at x = 0 and of the transmitted modes at x = L predicted 
by ACTRAN and by the in-house FE transmission model. kh = 10, Mo = 0.5, Z/ = 3 - 1.29i, Zh = 3 - 1.29i. 
(a) Reflected modes, (b) Transmitted modes. 
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Figure 6. 11: Compressible mean flow computed for a duct with splitter thickness, {p i h = 0.2 and 0.01. 
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Figure 6. 12: Duct (B) - PW L of the reflected modes at x = 0 and of the transmitted duct modes at x = L for 

diffe rent splitte r thickness . So luti ons are predicted using ACTRAN. M" = 0 and kh = 10. (a) Reflected modes, 
(b) Transmitted modes . 
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Figu re 6. 13: Duct (B) - PW L of the reflected modes at x = 0 and of the transmitted duct modes at x = L for 
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Results: Two-Dimensional Mode Matching 
Problems - Validation and Application 

7.1 Introduction 
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This chapter presents the results of a study of sound transmission in two-dimensional flow ducts using mode 

matching (MM) method. The revised MM procedure presented in Chapter 5 is employed to study transmission 

of sound in two-dimensional flow ducts and the accuracy of the method is examined by comparing with the 

finite element (FE) transmission analysis. If the results for the two-dimensional problems are favourable then 

general ization and assessment of the MM scheme for three-dimensional problems would be warranted. 

The revised MM procedure or the new mode matching method (NMMM) is different from the existing 

procedure or the traditional mode matching method (TMMM) which has been employed by Beckmeyer [IJ, 

CUll1mings [2 [ and Sijtsma [3[ in their studies of duct acoustics. Details of the two procedures are described in 

Chapter 5. Note that when no flow is present in the duct, the NMMM is equivalent to the TMMM. 

A series of two-dimensional ducts with and without mean flow in the duct are studied. The results are 

presented in two parts. The first part of the results is about validation and convergence of the NMMM. In the 

second part of the results. the NMMM is employed to study (i) acoustic scattering by an acoustic impedance 

discontinuity in the duct. (ii) sound propagation in a duct containing surface waves and (iii) sound diffraction 

by a splitter in the duct. In these analyses, comparisons of solutions obtained by the FE transmission analysis, 

hy the TMMM and by the NMMM are presented. 

7.1.1 Outline 

Section 7.2 details the test problems considered in the study. Aspects such as the duct geometries, liner im­

pedances and aspects of the computational models are described. Results of validation and convergence of 

the NMMM are then presented in Sections 7.4 and 7.5. This is followed by the case study results in Section 

7.7. Section 7.'1', presents the results of a performance study of the NMMM compared to the FE transmission 
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Figure 7.1: Duct models. 

analysis. The computation times of the two methods are determined using a test problem. Finally in Section 

7.9, some conclusions of the study are presented. 

7.2 Problem Specification 

The results have been presented for two-dimensional models shown in Fig. 7.1. Both Duct (A) and Duct (B) 

have three sections, a short hard Section (a) with length LI, a lined Section (b) with impedance Z and length 

L2 and another short hard Section (c) with length L j . In Duct (B), an infinitely thin splitter with length L2 is 

positioned at -" = hi in Section (b). 

At the inlet of the duct at x = 0, a single harmonic mode with mode number, lli or a multi-mode source 

with equal energy per mode is incident. For simplicity and for the purpose of validation, the current study only 

considers single tone analysis. These ducts are studied for reduced frequency, kh ~ 5to 10 with and without 

flow. The acoustic liners are assumed to be locally reacting linings. The resistance is taken to be R = 2 ~ 3, and 

the reactance is taken to be X = I ~ 2. These acoustic liner values are derived for a simple model for a single 

cavity liner detailed in Chapter 3. These values are typical for a turbofan aero-engine liner. 

7.2.1 Modal Scattering 

In Duct (1\). the input sound propagates in the positive x direction. It scatters into other cut-on modes when 

it meets the hard/lined interface at x = XI. Here some of the incident sound is reflected but most of it is 

transmitted into the lined Section (b). The scattered field in the lined Section (b) comprises offorward-scattered 

and backward-scattered sound. The forward-scattered sound attenuates along the lined section and then strikes 

the downstream end of the lined section at x = X2. At here, the sound is partially reflected and transmitted. 

The sound power that IS transmitted into the hard Section (c) is approximately equal to the sound power that is 

radiated to the far-field. The back-scattered modes in Section (b) that strike the hardlIined interface at x = XI 

Duct 
height, h 
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are transmitted into the hard Section (a) where they travel back to the source plane. Without acoustic lining in 

the duct, the incident sound propagates un-attenuated through the duct. 

In r 58 [, a plot of sound power variation in a hard/lined/hard section circular duct is presented which illus­

trates clearly the above phenomenon. The duct contains spliced liners and with uniform mean flow. 

7.2.2 FE Models 

For the FE transmission analysis, the ducts are discretized using meshes constructed from either 8-noded quadri­

lateral elements or 6-noded triangular elements with an average mesh resolution of 10 to 12 nodes per wave-

length. The mesh resolution is defined on the basis of the number of nodes which are required to represent 

accurately the solution over one wavelength. In the x direction, the mesh resolution, N is defined by: 

CO 
N=~---

/1111 -M(li 
(7.1 ) 

where Co is the speed of sound, f is the frequency in Hertz, M(I is the mean flow Mach number and 11 is the 

average distance between nodes. The mesh resolution in the)' direction is defined by N = coif 11 as no flow 

etlect is taken into account. For many engineering purposes, a mesh resolution of 8 to 10 nodes per wavelength 

is the rule of thumb. Fig. 7.2 shows examples of the meshes constructed in this study. The mesh near to the 

splitter edges and the acoustic liner is refined. This is to model more accurately the pressure at these regions. 

At the inlet plane at x = 0, 20 negative propagating modes are assumed for the modal matching. At the exit 

plane at x = L. 20 positive propagating modes are assumed for the modal matching and no negative propagating 

modes are specified as the exit plane is assumed to be an anechoic termination. 

7.2.3 Mode Matching Models 

Duct (A) is segmented into three sections: Section (I). Section (2) and Section (3) at x = Xl and X2 where the 

wall impedance changes. Duct (B) is segmented into four sections; Section (1), Section (2), Section (3) and 

Section (4) at .r = Xl and X2 where the wall impedance and duct geometry change - see Fig. 7.3. 

In each section. the superposition of positive and negative acoustic modes that represent the harmonic 

pressure field is truncated to a finite number of modes, II; 1111 in Section (l), 1112 in Section (2). m3 in Section (3) 

and 1114 in Section (4). Typically. to ensure good accuracy, II> > lie. where lie is the number of cut-on modes in 

a hardwalled duct r 591. In practice if lie < 5, then 11 ~ 20 appears sufficient [59]. The duct modes are computed 

numerically using the FE eigenvalue model described in Chapter 2. Meshes with an average mesh resolution of 

I () nodcs per wavelength are used to discretize the duct width. The matching procedures described in Chapter 

5 are then carried out to yield a linear system which is solved to obtain the unknown modal coefficients in each 

duct section. 
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(a) Duct (A) - FE grid 0.' (b) Duct (8) - FE grid 
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(c) 

Figure 7.2: FE grids 

7.3 Benchmark Results 

In thi s stud y. to benchmark the MM soluti ons, FE solutions ob tained using ACTRAN are used. ACTRAN is 

a finitelinfinite element (FE/IE) code produced by Free Field Technologies [105] which is capable of predict-

ing sound propagation in non-uniform ducts with non-uniform mean flow and boundaries with finite acoustic 

impedance . Detail s of the FE transmiss ion model are presented in Chapter 6. 
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Duct length L 1.6m 

Liner length L2 1.2m 
Hard section length LI, L3 0.2m 
Duct height h 0.5m 
Reduced frequency kh 10 
Acoustic impedance Z 00,2-li 

Mean flow Mach number Mo 0.4 

Table 7.1: Model duct specification. 

7.4 Assessment of Accuracy of the New Mode Matching 

This section examines the accuracy of the NMMM by comparing the MM results with those of the FE trans­

mission analysis. A uniform two-dimensional duct as shown in Fig. 7.I(a) is considered. Table 7. I details the 

values of the parameters used in this analysis. At the inlet of the duct, a harmonic mode, ni = 2 with modal 

coefficient of I is incident. The number of duct modes considered in Sections (1) to (3), is taken to be the nurn-

ber of hardwalled modes having cut-off ratios greater than 0.7. For the results, the average modal intensities 

(PW L) of the transmitted and reflected duct modes are obtained. 

7.4.1 Hardwalled Duct 

Fig. 7.4 shows the acoustic pressure: real and imaginary parts along the duct wall at y = h for a hardwalled 

duct. Solutions obtained by the FE transmission analysis and by the NMMM using numerical or analytical 

eigen-mOlles are presented. The analytical eigen-modes are computed using the integration scheme presented 

in Chapter:2 179. ~Ol. 

The results are expected as the incident mode propagates un-attenuated along the duct. The two MM 

results not only agree well with each other but also with the FE results. Fig. 7.5 presents the PW L of the 

transmitted Illodes at.\' = L and of the reflected modes at x = 0 plotted against the mode number. The mode 

number is obtained by ordering the duct modes according their cut-off ratios in descending order. The results 

show no modal scattering and no energy loss occur in the duct as the relative sound power - defined as the 

ratio of transmitted to incident sound power in dB, 6PW L, has a zero value. The results predicted by the two 

NMMM's are in good agreement with each other and also with the FE transmission analysis. The FE solutions 

show some reflected energy at x = O. This is due to the numerical error in the calculations and it is relatively 

small cumpared to the incident or transmitted energy - see Fig. 7.5. 

7.4.2 Softwalled Duct 

Fig. 7.6 presents the acoustic pressure: real and imaginary parts along the duct wall at y = h for a softwalled 

duct. Sulutions obtained by the FE transmission analysis and by the NMMM using numerical or analytical 
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eigen-modes are presented. Fig. 7.6 shows that ajump in the pressure is observed where there is a discontinuity 

in acoustic impedance or impedance mismatch. The pressure amplitude reduces along the acoustically lined 

duct section. The two NMMM 's show good agreement with each other and also with the FE transmission 

analysis . Both methods indicate that the pressure is singular at an impedance discontinuity. 

Fig. 7.7 presents the PWL of the transmitted modes at x = L and of the reflected modes at x = 0 plotted 

against the mode number. The results show that the impedance discontinuity causes scattering of acoustic 

energy to other cut-on modes, both high and low order modes. The performance of the acoustic treatment is 

evaluated by the in-duct sound power transmission loss, (6 PWL) which is defined as the ratio of transmitted 
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Figure 7.6: Validation study - acoustic pressure along the duct wall at y = h. Results obtained by the FE 
transmission analysis and by the NMMM using analytical or numerical eigen-modes are presented. kh = 10, 
Z = 2 -Ii and Mo = 0.4. 

to incident sound power: 

n 

I (W;+lx=o) 
,0.PW L = 10100- _i=_I ___ _ 

b n · 

i (Wn;lx=L) 
i= 1 

(7.2) 

n n i 

where I (W;+l x=L ) is the sum of the acoustic power in all the cut-on duct modes atx = L and I (W,~lx=o) is 
i= 1 i=1 

the sum of the acoustic power in all the incident modes at x = O. A ,0.PWL of3.5 dB is predicted by the FE 

transmission analysis. The difference between the ,0.PWL predicted by the two NMMM is less than 0.5 dB and 

less than 1 dB between the NMMM and the FE transmission analysis. 

The results presented in this section have shown good agreement between the FE transmission analys..~ and 

the NMMM using either numerical or analytical eigen-modes. 

1.5 Convergence of the New Mode Matching Method 

This section presents the results of a convergence study of the NMMM. The aim of the study is to' determine 

the number of duct modes required for accurate solutions in each duct section. The number of duct' modes in 

each segmented duct section is detennined by the number of hardwalled modes having a given cut-off ratio. 

The test model in Section 7.4.2 with the same parameters is considered. 

Fig. 7.8 presents the PWL of the transmitted modes at x = L and of the reflected modes.~ = 0 plotted 

against the mode number for different number of duct modes specified in each duct section. The number 'of 

duct modes is detennined by the number of acoustic modes having cut-off ratios greater than 0.8 ,0.7 ,0.6 ,0.5 
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and 0.4. FE solutions are also presented. 

Fig. 7.'b shows that only a small number of cut-off modes is adequate for the MM solutions to converge to 

the FE solutions. The number of hardwalled duct modes having cut-off ratios greater than 0.8 is found to be 

adequate for converged MM solutions. The results obtained using these modes show discrepancies less than 

dB with the FE transmission results - see Fig. 7.8. 

7.6 Galerkin Weighted Residuals Method and Least Squares Method 

This section investigates the accuracy of the MM solution obtained usmg the Gab'kin weighted residuals 

(GWR) method and using the least squares (LS) method by comparing them with the FE transmission analysis. 

A softwalled duct with zero flow as shown in Fig. 7.1 (a) is considered. The duct is studied for kh = 10 anel 

the impedance llr the acoustic liner at .\' = 0 and Iz is 2 ~ I i. The objective here is to establish the accuracy and 
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Figure 7.9: Validation study ... PW L of the reflected modes at x = 0 and of the transmitted modes at x = L plotted 
against mode number. MM solutions obtained by the GWR method and by the LS methods are presented. 
kh = 10. Z = 2 - I i and M() = O. (a) Reflected modes, (b) Transmitted modes. 

consistency of the solutions of the two methods. No attempt is therefore made to evaluate the performance of 

any specific acoustic treatments. 

Fig. 7.9 presents bar charts which show the PW L of the transmitted modes at x = L and of the reflected 

modes at x = () plotted against the mode number. Solutions obtained by the FE transmission analysis and by the 

two MM schemes are presented. Good agreement is shown between the two MM schemes with discrepancies 

less than 0.5 dB. The two MM schemes also agree well with the FE transmission analysis with discrepancies 

less than I dB. 

7.7 Case Study Results 

The following section presents the results of the case study. First. results of a study of acoustic scattering by a 

discontinuity in acoustic impedance in the duct are presented. Section 7.7.2 presents the results of a study of 

sound propagation in a duct containing surface waves and Section 7.7.3 presents the results of a study of sound 

diffraction by an infinitely thin splitter. The objective of these study is to demonstrate that the MM scheme is 

capable of studying the problems. No attempt is therefore made to evaluate the performance of any specific 

acoustic treatments. 

7.7.1 Case Study 1: Acoustic Scattering By An Impedance Discontinuity In The Duct 

The study is 

• to show that the NMMM is capable of studying acoustic scattering by an impedance discontinuity in the 

duct: and 

• tll show that the NMMM with an additional boundary condition term yields better accuracy than the 

TMMM when flow is present in the duct. 
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Duct length L 1.6m 
Liner length L2 1.2m 
Hard section length L I , L3 0.2m 
Duct height h 0.5m 
Reduced frequency kh 10 
Acoustic impedance Z 2-li 
Mean flow Mach number Mo 0,0.4 

Table 7.2: Model duct specification - acoustic impedance discontinuity study. 

The test model consisted of a two-dimensional duct with a hard-soft-hard boundary at y = h as shown in Fig. 

7.1 (a). The duct wall at y = 0 is hare!. The model is studied for kh = 10 with and without flow in the duct. Table 

7.2 details the values of the parameters used in this analysis. At the inlet of the duct, a harmonic mode, l1i = 2 

with a modal coefficient of 1 is incident. 

For the no flow case, results obtained by the FE transmission analysis and by the NMMM are presented as 

the TMMM is equivalent to the NMMM. For the flow case, results obtained by the FE transmission analysis, 

by the NMMM and by the TMMM are presented. 

Zero Flow 

I n Fig. 7.10. the absol ute acoustic pressure along the duct wall at)' = h for zero flow is presented. Solutions 

obtained by the FE transmission analysis and by the MM are presented. In the plot, the matching locations are 

shown by dotted lines. Fig. 7.10 shows good agreement between the two predictions even in the regions of 

impedance mismatch. 

Fig. 7.11 presents the PW L of the transmitted modes at x = L and of the reflected modes at x = 0 plotted 

against the mode number. Good agreement is shown between the FE and the MM with discrepancies less than 

I dB. The results show that the incident acoustic energy has been scattered into other cut-on modes due to 

impedance discontinuities at x = 0.2 and 1.4. The 6PW L predicted by the FE and the MM shows a reduction 

or 4.22 and -1..21 dB respectively. 

Uniform Mean Flow 

[n Fig. 7.12. the absolute acoustic pressure along the duct wall at y = h is plotted. Uniform mean flow of Mach 

number 0.4 is considered in the duct. Solutions obtained by the FE transmission analysis, by the NMMM and by 

the TMMM are presented. In the plot. the matching locations are indicated by dotted lines. The NMMM agrees 

better with the FE transmission analysis than the TMMM especially at the region of impedance mismatch. 

The FEM and the NMMM predict very large pressure fluctuations or pressure singularity at the impedance 

mismatch whilst the TMMM predicts only a slllooth pressure variation. 

Fig. 7. I J presents the PW L of the reflected and transmitted modes. Discrepancies of 4 to 6 dB are shown 
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Figure 7.10: Case study I - absolute acoustic pressure along the duct wall at y = h. Results obtained by the FE 
transmission analysis and by the NMMM are presented. kh = 10, Z = 2 - Ii, Mo = o. 

between the TMMM and the FE transmission analysis, especially the reflected modes. Energy conservation 

calculation shows that the energy is not conserved for the TMMM. The NMMM show discrepancies of I dB 

with the FE transmission analysis. The 6 PWL predicted by the FE transmission analysis, by the NMMM and 

by the TMMM shows 3.50 dB , 3.50 dB and 3.51 dB reduction respectively. Compared to the zero flow case, 

it is shown that the acoustic lining performance is reduced by approximately 1 dB due to the flow. 

In Fig. 7.14, the absolute acoustic pressure along the matching interfaces at x = Xl and X2 is presented. 

Again, better agreement is shown between the FEM and the NMMM. The agreement between the FEM and the 

NMMM is generally good apart from the regions near to the impedance discontinuity at the wall. Further study 

has shown that the agreement improves as more duct modes are considered in the MM model. 

7.7.2 Case Study 2: Sound Propagation In A Duct Containing Surface Waves 

This section presents the results of a study of sound propagation in a duct containing surface waves. Computa­

tions are made for a uniform two-dimensional duct with a hard-soft-hard boundary aty = 0 and h as shown in 

Fig. 7.1 (a). Table 7.3 lists the different combinations of non-dimension ali zed acoustic impedances used in this 

analysis . These impedances are particulary selected to reflect the existence of different types of surface waves 

in the duct. At the inlet of the duct, a harmonic mode, l1i = 1 is incident. The duct is studied for kh = 10 with 

unifOIDl mean flow at Mach number Mo = 0.5 . The values of the parameters used in the analysis are listed in 

Table 7.4. 
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Figure 7.11: Case study I - PW L of the reftected modes at x = 0 and of the transmitted modes at x = L plotted 
against mode number. Results obtained by the FE transmission analysis and by the MM are presented. kh = 10, 
Z = 2 - I i and M(I = O. (a) Reftected modes, (b) Transmitted modes. 

No. Impedance, Z/) at)' = 0 Region Impedance, Z/ at Y = h Region 

Configuration (1) 0.1-3i V 0.1-3i V 
Configuration (2) O.I+3i I 0.1-3i V 

Table 7.3: Acoustic impedances at the top and bottom of the duct. 

FE Mesh 

For the FE transmission analysis, a fine mesh and a coarse mesh are constructed from 8-noded quadrilateral 

elements. Both meshes has an average mesh resolution of 10 nodes per wavelength - see Fig. 7.15. The fine 

mesh has the mesh near to the liner boundaries refined aiming to model the short wavelength surface waves 

more effectively. Fig. 7.15 presents the absolute acoustic pressure predicted using the coarse and the fine 

mesh for configuration 2. Both meshes predict the presence of surface waves at y = h. However, the solutions 

obtained using the fine mesh show a better resolution of the surface waves - see Fig. 7.16. Fig. 7.17 presents 

the PW L of the reftected modes at x = 0 and of the transmitted modes at x = L predicted using the two meshes. 

Almost identical results are shown between the two mesh results even though some deviations are shown in the 

pressure plots in Fig. 7.15. 

In this study, to ensure the surface waves are modelled accurately, meshes used to obtain the FE solutions 

have the mesh near to the impedance boundary refined. 

Duct length L 1.6m 
Liner length L2 1.2m 
Hard section length L], L] 0.2m 
Duct height h O.Sm 
Reduced frequency kh 10 
Mean ftow Mach number M" 0.5M 

Table 7.4: Surface waves duct model specification. 
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Figure 7.12: Case study 1 - absolute acoustic pressure along the duct wall aty = h. Results obtained by the FE 
transmission analysis, by the TMMM and by the NMMM are presented. kh = 10, Z = 2 - Ii and Uc, = 0.4. 

Fig. 7.18 presents contour plots ofthe absolute acoustic pressure computed by the FE transmission analysis, 

by the NMMM and by the TMMM for configuration 1 and 2. For configuration 1, only the NMMM and the 

FEM predict the presence of surface waves at the impedance boundaries at y = 0 and h. The same is observed 

for configuration 2, in which surface waves are predicted at the acoustic boundary aty = h. 

In Fig. 7.19, bar charts show the PWL of the transmitted modes at x = L and of the reflected modes at 

x = 0 plotted against the mode number are presented. Results obtained by the FE transmission analysis, by the 

NMMM and by the TMMM are presented. The TMMM agrees poorly with the FEM especially the reflected 

modes with discrepancies as much as 9 dB. The NMMM agrees well with the FEM with discrepancies less than 

1 dB. 

This study have shown that the NMMM is capable of studying sound propagation in a duct containing 

surface waves and the NMMM yields solutions with better accuracy than those obtained using the TMMM for 

the problems considered. 

7.7.3 Case Study 3: Sound DifT.-action By An Infinitely Thin Splitter In The Duct 

This work investigates the effect of sound diffraction by an infinitely thin splitter in the duct. The objectives 

of the work are to demonstrate that the NMMM is capable of studying the problem and to show any acoustic 

benefit of having a splitter in the duct. The test case consists of a uniform two-dimensional duct with a rigid 

splitter located aty = 0.2 in the duct - see Fig. 7.I(b). The duct is studied for kh = 10 with and without flow. 

At the inlet of the duct, a harmonic mode of l1i = 2 is incident. Table 6.2 details the values of the parameters 
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Figure 7.13: Case study I . PW L of the reflected modes at x = 0 and of the transmitted modes at x = L plotted 
against mode number. Solutions obtained by the FE transmission analysis, by the TMMM and by the NMMM 
are presented. kli = 10, Z = 2 - Ii, M(I = OA. (a) Reflected modes, (b) Transmitted modes. 

used in the analysis. 

For the FE transmission analysis, meshes constructed from 6-noded triangular elements with an average 

mesh resolution of 10 nodes per wavelength are used to discretize the ducts - see Figs. 7 .2(b) and (c). The 

mesh near the splitter edges and the impedance boundaries is refined. The splitter thickness is taken to be 

11,/17 = 0.001. II' is the splitter thickness and h is the width of the duct. 

For the MM analysis, the splitter is assumed to be infinitely thin. The number of duct modes in Sections (1) 

and (4) is set to equal to the number of hardwalled duct modes having cut-on ratios greater than 0.7. According 

to the relative convergence theorem, the number of duct modes in Sections (2) and (3) need to set to be equal 

to 1112 = (Ii I /17)/111 and 1713 = (I -/z I/h)ml, which is in proportion to the width of the duct [104]. 

Hardwalled Duct with A Splitter 

Figs. 7.20 and 7.21 present the PW L of the transmitted modes at x = L and of the reflected modes at x = 0 

plotted against the mode number for a hardwalled duct with and without flow. Results obtained by the FE 

transmissiun analysis and by the NMMM are presented. The results show good agreement between the two 

methods with discrepancies less than I dB for the no flow case and less than 2 dB for the flow case. 

The results show that the splitter has scattered the acoustic energy to the other cut-on modes. The high order 

modes are more affected than the low order modes by the splitter diffraction. The same results were observed 

by Nijboer and Sijtsma [106] in their study of sound diffraction by an infinitely thin circumferential splitter in 

a cylindrical duct. 

Fig. 7.22 presents contour plots of the absolute acoustic pressure predicted by the FE transmission analysis 

and by the NMMM for the zero and uniform flow. Fig. 7.22 also shows good agreement between the two 

methods. For the flow case, the pressure is finite at the trailing edge of the splitter which satisfies the Kutta 
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Figure 7.14: Case study I - absolute acoustic pressure along the matching interfaces atx = Xl and X2 . kh = 10, 
Z = 2 - 1 i, Mo = 0.4. (a) Acoustic pressure along the matching interface at X = Xl, (b) Acoustic pressure along 
the matching interface at X = X2. 

condition - see Figs. 7.22(c) and Cd) [60]. At the leading edge of the splitter, pressure singularity is shown. 

Softwalled Duct with A Splitter 

Figs. 7.23 and 7.24 present the PW L of the transmitted modes and of the reflected modes plotted against the 

mode number for a softwalled duct with and without flow. For the no flow case, good agreement is shown 

between the NMMM and the FEM with discrepancies less than 2 dB. For the flow case, good agreement is only 

observed between the NMMM and the FEM with discrepancies less than 3 dB. This can be regarded as good 

agreement as the splitter is not infinitely thin in the FE model. Again, the TMMM shows considerably poorer 

(a) Fine mesh (b) 
Coarse mesh 

y=h y = h 

Dud length (x) Ducllength (x) 

Figure 7.15: Case study 2 - finite element meshes (a) Fine mesh, (b) Coarse mesh. 
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Figure 7.16: Case study 2 - contour plots of the absolute acoustic pressure obtained using the fine and the coarse 
mesh shown in Fig. 7.15. kh=10 and Mo = 0.5. (a) Fine mesh, (b) Coarse mesh. 
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Figure 7. 17: Case study 2 - PWL of dle reflected and transmitted modes predicted by using the fine and coarse 
FE grids. kh=10, Mo = 0.5. (a) Reflected modes, (b) Transmitted modes. 
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Figure 7.18: Case study 2 - absolute acoustic pressure obtained by the FE transmission analysis, by the NMMM 
and by the TMMM. kh = 10 and Mo = 0.5. 
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Figure 7.20: Case study 3 - Hardwalled duct with a splitter. PWL of the transmitted modes at x = 0 and of 
the reflected modes at x = L plotted against mode number. Mo = 0 and kh = 10. (a) Reflected modes, (b) 
Transmi ned modes. 
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Figure 7.21: Case study 3 - Hardwalled duct with a splitter. PW L of the transmitted modes at x = 0 and of 
the reflected modes at.\' = L plotted against mode number. Mo = 0.3 and kh = 10. (a) Reflected modes, (b) 
Transmitted modes. 

agreement with the FE results especially the reflected modes - see Fig. 7.24. Fig. 7.27 presents the I"-,PWL 

predicted by the FEM, by the NMMM and by the TMMM for the flow case. The poor TMMM results has 

slightly under-predicted the I"-,PW L when compared to the FE results. 

Compared to the case of a hardwalled duct without a splitter. the inclusion of the splitter in the duct has 

improved the I"-,PW L by nearly 2 dB. For the no flow case, the improvement is even greater which is 3 dB. 

Although splitters help improving the acoustic treatment in the engine duct, they also introduce further weight 

and disturbances to the aerodynamic of the engine. A compromise between the acoustic benefit and safety is 

therefore required. 

The .-;rudy shows that the NMMM has correctly model the problem of sound diffraction by a splitter in the 

duct and the results agreed well with those obtained using the FE transmission model. 
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Figure 7.22: Case study 3 - Absolute acoustic pressure fields computed by the FE transmission analysis and by 
the NMMM. Mo = 0.3 and kh = 10. (a)-(b) FE transmission analysis (c)-(d) NMMM. 

7.8 Computation Time 

In this work, the computation time of the FE transmission model and of the NMMM model is evaluated using 

a uniform rigid duct as shown in Fig. 7.1(a). The duct is studied for kh = 5 and 10 with uniform mean flow at 

Mo = 0.5. 

For the MM analysis, the number of duct modes in Sections (1) to (3) is set to equal to the number of 

hardwalled modes having cut-off ratios greater than 0.8. These duct modes are computed numerically using the 

FE eigenvalue model presented in Chapter 2. A uniform grid constructed from quadratic line elements with an 

average mesh resolution of 10 nodes per wavelength is used to discretize the duct width. For the FE transmission 

analysis, meshes constructed from 8-noded quadrilateral elements with an average mesh resolution of I 0 nodes 

per wavelength are used for the discretization of the duct - Fig. 7.15. 

The FE solutions are computed using ACTRAN which invokes a very efficient sparse direct solver. The 

solver has an out-of-core capability so that data is temporarily stored on the computer's hard disk during the 

solution process. The MM solutions are computed using the NMMM code developed by the author. The code 

is written in Fortran language operates under Window 2000 system. Both solutions are computed with a I G Hz 

Pentium III processor with I G bytes of RAM. 
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Figure 7.23: Case study 3 - softwalled duct with a splitter. PW L of the transmitted modes at x = 0 and of the 
reflected modes at x = L plotted against mode number. M(I = 0, kh = 10 and Z = 2 - 1 i. (a) Reflected modes, 
(b) Transm i tted modes. 
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Figure 7.24: Case study 3 - softwalled duct with a splitter. PW L of the transmitted modes at x = 0 and of the 
reflected modes at x = L plotted against mode number. M(I = 0.3, kh = 10 and Z = 2 - I i. (a) Reflected modes, 
(b) Transmitteclmodes. 

In Fig. 7.28(a), the computation time of the NMMM model is plotted against the number of truncated 

modes ill the duct section. The two curves in the plot correspond to kh = 5 and 10 respectively. In Fig. 7.28(b), 

the problem size and the computation time of the FE transmission model are plotted against the mesh resolution 

for kh = 5 cll1d In. 

Comparison between the two methods show that the NM11M requires significantly less computation time 

and storage than the FEM. The slopes of the time curves indicate that the difference between the two methods 

will be more significant for three-dimensional problems and with increasing frequency. 

7.9 Conclusions 

I. This study have demonstrated that the NMMM is capable of studying acoustic scattering due to im­

pedance disc()ntinuity. sound diffraction by splitters and sound propagation in a duct containing surface 
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Figure 7.25: Case study 3 - comparison of hard and softwalled ducts with zero flow. PW L of the transmitted 
modes at.\' = () and of the reflected modes at x = L plotted against mode number. Mo = 0, kh = 10 and Z = 2 - Ii. 
(a) Reflected modes, (b) Transmitted modes. 
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Figure 7.26: Case study 3 - comparison of hard and softwalled ducts with uniform flow. PW L of the transmitted 
modes at x = () and of the reflected modes at x = L plotted against mode number. Mo = 0.3, kh = 10 and 
Z = :2 - I i. (a) Reflected modes, (b) Transmitted modes. 
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Figure 7.27: Case study 3 - D.PW L predicted by the FE transmission analysis, by the NMMM and by the 
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waves . 

..., When flow is present in the duct, the NMMM yields solutions which give better agreement with the finite 
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Figure 7.28: Computation time of the NMMM and the FE methods. kh = 10 and 5. Mo = 0.5. 

element transmission analysis than those obtained using the TMMM. This is attributed to the additional 

boundary condition tenn derived in the NMMM which gives a better model of the acoustic pressure 

singularity at the impedance discontinuity, 

3. The MM solutions obtained using the Galerkin weighted residuals method and using the least squares 

method show good agreement with each other and also with the FE transmission analysis. 

4. The convergence study shows that the number of duct modes considered in each segment, equal to the 

number of hardwalled modes having cut-off ratios greater than 0.8, is found to be adequate for MM 

solutions to converge, 

5, Splitters can improve the acoustic perfonnance in lined ducts by scattering the acoustic energy into other 

high order cut-on modes which may be more easily attenuated by the liner. 

6, The NMMM requires significantly less computing time and storage than the FE transmission analysis. 

The slopes of the time curves indicate that the difference between the two methods will be more signific­

ant at high frequencies and for three-dimensional problems. The resulting solution times are such that a 

parametric study of the geometrical parameters may be perfonned within an engineering time scale. 

The results of the study have indicated that it is worthwhile to assess the perfonnance of the NMMM for 

studying sound transmission in three-dimensional flow ducts . 

5000 
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Chapter 8 

Results: Three-Dimensional Mode Matching 
Problems - Validation and Application 

8.1 Introduction 

This chapter presents the results of a study of sound transmission in three-dimensional ducts using the mode 

matching method (MMM). Chapter 6 has established that the new mode matching method (NMMM) is accurate 

and robust for two-dimensional problems. The method also requires less computational time and storage than 

the finite element (FE) transmission analysis. The aim of the present study is to examine the validity of the 

NMMM to study transmission of sound in three-dimensional ducts with non-uniform impedance boundaries. 

The reduced frequency range covered in this study is IS'S kR 'S 30 where k is the acoustic wavenumber 

and R is the characteristic size of the duct radius. This frequency range corresponds approximately to the blade 

passing frequency (8PF) in the intake or bypass duct of an aero-engine at maximum power. In Table 8.1, the 

relationship between flight condition, engine speeds and BPF for approach, cut-back and sideline for a typical 

high bypass ratio turbofan aero-engine is shown. Depending on the engine operation conditions, either the 

engine order (EO) or broadband propagation is of interest according to Table 8.2. 

Engine order is related to modes generated by pressure disturbances rotating with the shaft frequency. For 

EO analysis. the propagating modes are locked with the rotor and are generated by the supersonic tip speed of 

lhe fan. The modes ane! frequencies to be considered are given by: 

III = EO. III" = I and f = EO/NB x BPF (8.1 ) 

where III is the azimuthal mode order, III" is the radial mode order and N B is the number of blades in the rotor. 

In this study, only the first radial mode is considered assuming that all the energy is concentrated at the first 

radial mode. However, in practice. the rotor-alone pressure field attached to a supersonic ducted fan will contain 

acoustic energy over a range of harmonics based on the engine shaft rotational speed. These EO harmonics are 

known ~IS 'B lIzz-saw' or . Multiple Pure' tones. These tones are generated because of blade-to-blade variations. 
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Flight condition 

Approach 
Cutback 
Sideline 

BPF (Hz) 

800 
1250 
1500 

kR Fan tip Mach No. 

18 0.7 
29 1.1 
34 1.3 

Table 8.1: Engine operating conditions for approach, cutback and sideline. 

Analysis type Approach Cutback Sideline 

Engine order x x 
Broadband x x 

Table 8.2: Flight conditions and analysis types. 
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For an ideal ducted fan, all the fan blades are identical and rotating in the presence of a uniform mean flow, the 

only generated tones are those of harmonics of BPF. In the study, the problem is simplified by neglecting the 

buzz-saw tones. The incident sound field generated by the fan is assumed to consist of a single tone which is 

the rotor-alone BPF tone. 

Under less extreme engine operating conditions. the fan tip speed is subsonic, or just supersonic. The 

acoustic shock waves generated by the fan will be weak or non existent. Under these conditions, the acoustic 

sources many be generated by any part of the fan blade; the blade may be considered to be a broadband source. 

There are many \vays to characterize the broadband source. The common one is to assume all possible modes 

are generated with equal energy and are uncorrelated [107, 32]. 

In this study. a series of simplified aero-engine ducts is considered for different engine operating conditions. 

Both EO and broadband analyses are performed. 

Results are presented in two parts. The first part is about validation and convergence of the NMMM 

for three-dimensional problems. These studies are conducted by comparing the NMMM results with the FE 

transmission analysis results. In the second part, results of a parametric study of acoustic scattering by liner 

splices in a circular cylindrical duct is presented. 

8.1.1 Ou tline 

In Section iI.2. the problems are posed. Aspects such as the duct geometries, liner impedances and aspects of 

the computational models are described. Sections 8.3 and 8.4 present the results of validation and convergence 

of the NMMM. This is followed by Section 8.5 which presents the results of a parametric study of acoustic 

scattering by liner splices in a circular cylindrical duct. Three flying conditions are considered; approach, 

cut-back and sideline. In Section 8.6, the conclusions of the study are presented. 
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8.2 Problem Specification 

Although a real engine duct has a three-dimensional geometry and flow, this noise transmission problem can 

be simplified , to a first approximation, by assuming that the inlet duct has an axisymmetric circular-section 

containing a uniform mean flow and the bypass duct has an axisymmetric annular-section containing a uniform 

mean flow as described in Chapter 1. 

The results presented in this chapter have been carried out for the three-dimensional ducts shown in Fig. 

8.1. These models can be viewed as the three-dimensional representations of simplified turbofan aero-engine 

inlet ducts. Both Jucts have three sections, a short hard Section (a) with length, LI, a lined Section (b) with 

illlpeJancc. Z and length. L2 and another short hard Section (c) with length, L3 . At the inlet of the duct at z = 0, 

a single harmonic mode or a multi-mode source with equal energy per mode is specified as the input source. 

I n Duct (A). a uniform liner is considered in Section (b) and in Duct (B) two spliced liners are considered in 

Section (bl. In the validation and convergence study, the acoustic impedance values are taken from the known 

test cases in 1591.T he acoustic liners values are derived for a simple model for a single cavity liner. In the liner 

splices stuJy. the acoustic impedance is taken to be Z = 2 - I i, which is a typical value for a turbofan inlet liner. 

Although uniform mean flow is considered in the study, the new mode matching (NMM) model is capable of 

considering any flow profile over the duct cross section. 

At the inlet of the duct at z = 0, for engine order analysis, the input source is specified as a rotor-alone BPF 

tone with a modal coefficient of 1. For broadband analysis, the input source consists of all the cut-on modes 

with equal energy per mode. The amplitude of each cut-on mode is determined using the expression of modal 

energy presented in Chapter 5. 

8.2.1 Modal Scattering 

In Duct (A). a sound source (m,nr) propagates in the positive::,: direction will scatter into other radial modes, Ilr 

of the same azimuthal order. Ill, when it meets the hard/lined interfaces at Z = ZI and Z2. In Duct (B), the liner 

splices will cause scattering of acoustic energy into other radial. I7r and circumferential, III modes which are 

cut-()n. The scattered modes will consist of azimuthal modes with 111 = iB ± .iN" where .i and i are integers, B 

is the BPF azimuthal mode number and N., is the number of splices. More explanations about modal scattering 

by an acoustic liner are presented in Chapter 5. 

8.2.2 Mode Matching Models 

To carry out MM analysis. both Duct (A) and Duct (B) are segmented into three sections; Section (1), Section 

(:2) and Section (3). at the change of impeciance at Z =::':1 anci Z2 - see Fig. 8.2. In each section. the superposition 

of positive and negative acoustic modes that represent the acoustic field are truncated into a finite number of 
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acoustic modes, 11. The mode truncation is based on the number of hard walled acoustic modes having a given 

cut-off ratio. The duct modes in each duct section are computed numerically using the FE eigenvalue model 

presented in Chapter 2. Meshes constructed from 6-noded triangular elements with an average mesh resolution 

of 8 to 10 nodes per wavelength are used to discretize the duct cross-sections. For the duct with liner splices, 

the mesh is refined near to the splices - see Fig. 8.3. 

8.2.3 FE Models 

As Duct (A) is axisymmetric along the z-axis, the problem can be simplified to a two-dimensional problem. 

The duct is discretized using grids constructed from 8-noded quadrilateral elements as shown in Fig. 8.3(b). 

The average mesh resolution is set at 14 nodes per wavelength and tfe mesh near to the liner is refined. The 

mesh resolution defines the number of nodes which are required to represent the solution over one wavelength. 
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(8.2) 

where Co is the speed of sound, f is the frequency in Hertz and .1 is the average distance between two nodes. 

The mesh resolution in the y direction is given by N = Co / f.1 as no flow effect is taken into account. Duct (B) 

is discretized using meshes constructed from quadratic pentahedral and hexahedral elements with an average 

mesh resolution of 8 to 10 nodes per wavelength as shown in Fig. 8.3(a). 

At the inlet plane, for the modal matching, all the cut-on and a few cut-off negative propagating duct 

modes are considered. At the exit plane, all the cut-on and a few cut-off positive propagating duct modes are 

considered. No negative duct modes are specified as the exit plane is assumed to be an anechoic termination. 

In this study, FE results obtained using ACTRAN [105] are used as the benchmark solutions for comparison 

with the MM results. Details of the FE transmission model are presented in Chapter 6. 

8.3 Assessment of Accuracy of the New Mode Matching 

This study examines the accuracy of the NMMM by comparing with the FE transmission analysis . The model 

used in this analysis consists of a circular cylindrical duct with a hard-soft-hard section as shown in Fig. 8.1. 

In the soft section, Section (b) , a uniform liner or two spliced liners of widths 3.8 cm, 5.7 cm, 7.6 cm, 9.5 cm 

and 11.9 cm are considered. These models are studied for kR = 14 and 16. Table 8.3 details the values of the 

parameters used in this analysis . These parameters are taken from the known test cases in [59]. At the inlet of 
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Figure 8.3 : FE meshes. (a) Non-ax isymmetric duct FE mesh, (b) Ax isymmetric duct FE mesh. 

the duc t at :: = 0 , a harmonic tone (m=12,m=l) with a modal coefficient of 1 is incident. Fig. 8.4 shows the 

duct c ross- sec ti onal meshes constructed fo r the FE and MM models. The mesh used for the computation of 

duct eigenvalues and eigenfunctions for the tv1M has the mesh near to the liner splices refined. 

For the result , the in-duct sound power transmiss ion loss, 6 PW L is compu ted by using the fo llowing 

express ion: 

/I 

L Wi+bo 
6 PW L = 10 log _i~_, 1 __ -

, + 
L W/I, 1:=,-

i = 1 

/I 

(8.3) 

where L Wi+ 1: _1. is the sum of the acousti c power in all the cut-on positive acoustic modes at the exit plane 
i= 1 

/I , 

and I: W/~ 1>0 is the sum of the aco ustic power of the incident modes at the source plane. 
i = 1 

Figs. 8 .S(a) and 8. 6(a) present the 6 PW L predicted by the FE transmission analysis, by the NMMM and 

by the TMMM plotted against different sp lice widths fo r kR = 14 and 16. Figs. 8.S(b) and 8.6(b) present 

the di sc repancies be tween the TMMM and NMMM predictions compared to the FE transmission ana lysi s 

predi cti ons for kh = 14 and 16. 

The results show that the NMMM and the TMMM agree well with the FE transmission analys is with 

di sc repanc ies less than 0 .5 dB . However, the NMMM shows better agreement with the FEM than the TMMM. 

Thi s is c red ited to the add iti onal boundary condition term derived in the NMMM which gives a better model 

o f the aco usti c pressure singu larity at the impedance di scontinuity. Detail s of the MM models are presented in 

Chapte r 5. Fig . 8 .7 presents contour plots of the rea l part of the acousti c pressure at the inlet (z = 0 ) and ou tlet 

(:: = L) o j" the duc t for different sp lice widths and fa n speeds . The results are obtained using the NMM model. 

In the plo ts . acousti c scattering by the liner splices is clearly shown and the scattering becomes more apparent 
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kh = 14 kh = 16 

Duct radius R 1.0m l.Om 
Duct length L l.lm l.lm 

Hard section length LI, L3 0.15m 0.15m 
Liner length L2 0.8m 0.8m 
Reduced frequency kR 14.01 16.35 
Acoustic impedance Z 2.12+0.01i 4A9+2.29i 
Mean flow Mach number Mo -OAM -0.5M 

Table 8.3: Model inlet duct specification - validation and convergence study. 

as the splice width increases. In the case of kR = 16, the spinning pattem of the incident mode is still visible at 

the outlet of the duct because the incident mode is well cut-on and is not well attenuated by the acoustic liner. 

It is not the case for kR = 14, as the incident mode is just cut-on and is well attenuated by the liner. 

In Fig. 8.8, the averaged modal intensities, PW L of all the cut-on modes at the exit plane for different splice 

widths are presented. The PW L of the incident mode is also presented in the plots. The results presented show 

that the acoustic energy of the incident mode (12, I) has been scattered into other cut-on modes of different radial 

and azimuthal orders due to the liner splices. The scattered fields are made up of modes with circumferential 

order. 171 = 12 ± j2 where j=1 ,2, .... If no splice is present in the duct, the scattered fields will be made up of 

cut-on modes with circumferential order. 171 = 12. The results also show that the number of scattered modes 

increases with the splice width. For kR = 16, the incident mode (12,1) dominates the total sound field and for 

kR = 14. the scattered tones dominate the total sound field. This is consistent with the results presented in Fig. 

8.7. The large variation in the effective attenuation occurs with the splice width indicates that large acoustic 

benefit can be gained by having thin splice or no splices in the duct. 

The study has shown that the NMMM yields solutions which agree with the FE transmission analysis. The 

NMMM yields solution with better accuracy than the TMMM. The study has also shown that the NMMM otfers 

significant savings in computational time and storage compared to the FE transmission analysis. The resulting 

sulution limes are such that a parametric study of the geometrical parameters may be performed within an 

engineering time scale. 

8.4 Convergence of the New Mode Matching Method 

The aim of this study is to determine the number of truncated modes required in each duct section in the MM 

model to produce convergence of the solution. The test model in Section 8.3 with the same parameters is 

considered here. The duct is studied for kR = 14. 

Fig. 8.l) shows the 6PW L predicted by considering different numbers of duct modes, II in each duct section 

ill the MM model. The number of modes truncated in each section is determined by the number of hardwalled 
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(a) FEM transmission analysis mesh (b) MM Analysis - FE eigenvalue solver mesh 
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Figure 8.4: Duct cross-sectional meshes. (a) FE model mesh, (b) MM model mesh. 
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duct modes having cut-off ratios greater than 0.9, 0.8 and 0.7. Results of the FE transmission analysis are also 

presented. 

The results show that a relatively small number of cut-off modes are required for the MM solutions to 

converge. The discrepancies between the solutions obtained by using the number of duct modes having cut-off 

ratios greater than 0.9. 0.8 and 0.7 are less than I dB. This indicates that the results are well converged. The 

converged MM results show discrepancies less than I dB with the FE transmission analysis. 

The convergence study has shown that the number of duct modes considered in each duct section equals 

to the number o/" hard walled duct modes having cut-off ratios greater than 0.8 is found to be adequate for 

convergcd solutions. 
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8.5 Acoustic Scattering By Liner Splices 

This section presents the results of a parametric study of the effects of acoustic scattering by liner splices 

in a simplified engine inlet using the NMMM. The objectives of the study are to investigate how the liner 

attenuation is affected by the fan speed, the splice width and to illustrate the potential benefit that could be 

gained by manufacturing a uniform lining with no splices. Numerical results are presented to demonstrate how 

the rotor-alone BPF tone is scattered by the liner splices and also to show how the broadband noise attenuation 

is affected by the I iner splices. 

The test model consists of an infinite cylindrical duct containing two spliced liners as shown in Fig. 8.1 (b). 

The splice width . .I varies from 0 cm to 1\.9 cm or ° inch to 5 inch where 0 cm corresponds to no splices. 

Depending on the engine operation conditions, EO or broadband analysis is performed. The values of the 

parameters used for the ditlerent engine operation conditions are listed in Table 8.4. 

For the broadband calculation, all the cut-on modes are uncorrelated and carry equal sound power. For the 

EO calculation. the rotor-alone BPF tone (26. I) of modal coefficient 1 is incident at the fan plane at z = 0. 

The meshes constructed for the MM and FE models for the cutback case are presented in Fig. 8.10. For the 

MM model. the duct cross-section meshes used for the computation of duct eigenvalues and eigenfunctions are 

constructed from 6-noded triangular elements with an average mesh resolution of 8 to 10 nodes per wavelength. 

The mesh near to the splices is refined such that there are at least four elements for the smallest splice width. For 

the FE model. the three-dimensional mesh is constructed from quadratic pentahedral and hexahedral elements 

and the mesh resolution is such that the splice is only one element wiele. These meshes are generated using the 

ICEM CFD package [101 [. 
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Approach Cutback Sideline 
Duct radius R 1.27m 1.27m 1.27m 
Duct length L 1.6m 1.6m 1.6m 
Hard section length LI, L] O.2m O.2m O.2m 
Reduced frequency kR 18 28 34 
Acoustic impedance Z 2-1 i 2-1 i 2- Ii 
Mean flow Mach number M(} -O.2M -O.4M -O.SM 

Table 8.4: Model inlet duct specification. 

8.5.1 Broadband Analysis 

For the broadband analysis, two engine operation conditions of approach and cutback are considered. The 

length of the I iner considered is 0.8 m, a typical length for an inlet liner. Fig. 8.11 (a) presents the in-duct 

sound power transmission loss, 6PW Lss plotted against different splice widths for approach and cut-back. 

The 6PW LIlli is defined by 

(8.4) 

II 

where I:: Wi~ I>L is the sum of the acoustic power in all the transmitted modes at the exit plane at z = L. 
/~I 

II, 

I:: wt 1:-0 is the sum of the acoustic power in all the incident acoustic modes at the inlet plane at z = O. 
/=1 

The results show that the 6PW LBs decreases with increasing splice width, s. This is expected as the splice 

width increases. the effective lining area decreases. However, the reduction in the acoustic power due to the 

liner splices is relatively small. For both approach and cutback, only 0.5 dB reduction in the L',PW Lss between 

a uniform liner with no splice and the one with two 11.9 cm splices. 

Fig. R.II(b) also shows that the reduction in acoustic power varies exponentially with the splice width 

whilst the liner splice area varies linearly with the splice width. The general assumption of linear reduction 

in aCllustic power with the splice area will over-predict the liner performance. The results also show that the 

broadband attenuations are greater for the cutback case. It might be the present acoustic liner is not optimized 

for approach. There are also more cut on modes which might not be well attenuated by the present acoustic 

liner. 

The results show that for broadband source, the variations in 6PW Lss due to the presence of liner splices 

are relatively small. 
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8.5.2 Engine Order Tone Analysis 

The effect of varying the length of the acoustic lining on the in-duct sound power transmission loss, 6PW L for 

different splice liner widths is examined in this study. Cutback and sideline flying conditions are considered. 

The expression of the 6PW Lis: 

II 

L Wi+!:=o 
6PW L = 10 log _i=_I_,---_ 

W+lz=L 

II 

(8.5) 

where L Wi+ 1:-1. is the sum of the acoustic power in all the positive acoustic modes at the exit plane at z = L. 
i=1 

The sum of the acoustic power of the incident modes at the inlet plane at z = 0 is given by W+lz=o. The length 

of the lining considered is LID = 0.1 to 4.0 where D is the diameter of the duct and L is the length of the liner. 

Figs. 8. 12( a) and 8.13( a) present three-dimensional plots of the 6PW L plotted against the splice width, s 

and the liner length, LID for cutback and sideline. Figs. 8.12(b) and 8.13(b) present the same results viewing 

from a different angle. In the plots, the typical lengths of fan case and inlet liners are highlighted which is 

D / L = 0.03 to 006 for the fan case liner and D I L = 0.4 to 0.5 for the inlet liner. 

The results show that increasing the splice width has significant effects on the 6PW L for cutback. The 

6PW L \'aries from I 10 dB to 24 dB as the splice width reduces from 11.9 cm to 0 cm for a liner length of 

L/ D = ()6. The benefit of having smaller splice width is greater than having longer liner. For sideline, the 

effect or decreasing the splice width on the 6PW L is relatively small. The 6PW L only improved by I dB as 

the splice width reduces from 11.9 cm to 0 cm for a liner length of L/ D = 0.6. The reason being the rotor-alone 

BPF tone (26.1) is well cut-on and is not well attenuated by the liner. For cutback, the rotor-alone BPF tone 

(26.1) is just cut-on and therefore is well attenuated by the liner. Fig. 8.14 presents curves of the 6PW L 

plotted against the liner length for different splice widths and flying conditions. The results show that the liner 

attenuations are significantly greater for cutback than sideline. 

Figs. 8.13 and 8.12 show that the benefit of doubling the length of the exiting fan case and inlet liner is 

small for sideline. However, for cutback, significant improved in the 6PW L is shown; 7 to 10 dB for the inlet 

liner and 5 to 8 dB for the fan case liner - see Fig. 8.12. For sideline, 2 to 3 dB for the inlet liner and of 6 to 7 

dB for the fan case liner are shown by doubling the liner length - see Fig. 8.13. 

The cutback results also show that the 6PW L increases linearly with the liner length until the scattered 

tones domll1ate the rotor-alone attenuation in the duct [58J - see Fig. 8.12(b). The 6PW L curves flatten out 

when the scattered tones dominate the rotor-alone attenuation. 

[n Fig. 8.15, contour plots showing the real part of the acoustic pressure at the inlet (z = 0) and at the outlet 

(~ = I.) (1" the duct ror different splice widths and engine operating conditions are presented. The results are 

obtained Llsing the NMMM and the length of the liner is set to LID = 0.48. Acoustic scattering by the liner 
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splices is clearly shown in the contour plots and the scattering effect becomes more significant as the splice 

width increases especially for cutback. For the sideline case, the spinning pattern of the rotor-alone mode is 

still visible at the outlet of the duct because the rotor-alone mode is well cut-on and is not well attenuated by 

the liner as in the cutback case. This is consistent with the results presented in Figs. 8.12 - 8.14. 

Fig. g.16 presents the modal solutions at the outlet plane of the duct to illustrate the effect of acoustic 

scattering by liner splices of different widths and at different engine operating conditions. The PWL of all 

the cut-on modes at the exit plane is shown. The results demonstrate that the liner splices cause scattering of 

acoustic energy from the incident modes into other cut-on modes. The scattered fields are only made up of 

duct modes with azimuthal order, m = 26 ± j2 where j = I, 2 .... At this stage there is no simple or obvious 

explanation for the complex patterns which are observed in these modal distributions, but the current method 

provides a useful tool for exploring this phenomenon. 

The results show that the PW L of the scattered modes decreases with decreasing splice width. For sideline, 

the incident rotor-alone mode dominates the total sound field and for cutback, the scattered tones dominate the 

total sound field. Therefore, reducing the PW L of the scattered modes by having thinner splices is predicted to 

increase the 6PW L only for cutback. 

Fur high fan speed, (e.g. sideline) in order to increase the overall sound power transmission loss, it will 

be necessary to increase the attenuation of the rotor-alone tones before there is any benefit of having thinner 

splices. In [59[. the use of an axially segmented liner is being suggested to reduce the well cut-on rotor-alone 

tone for the sideline case. This is to scatter the rotor-alone mode into other modes which are more readily 

attenuated by the liner. For the broadband source, as the benefit of having thinner splices is relatively small, a 

better noise reduction method is therefore required before there is any benefit of having thinner splices. 

8.6 Conclusions 

The main conclusions from this chapter are: 

I. The NMMM yields results which agree well with the FE transmission analysis for the three-dimensional 

ducts considered in this study. 

} The NMMM yields results with better accuracy than the TMMM when compared with the FE transmis­

si()n analysis. This is credited to the additional boundary condition term in the NMMM. 

3. The convergence study showed that the number of duct modes considered in each duct section equal 

to the number of hard walled modes having cut-off ratios greater than 0.8 is found to be adequate for 

converged MM solutions. 
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4. Reducing the splice width has significant benefits for rotor-alone propagation for cutback, where the 

propagating mode is not well cut-on, However, these benefits are smoothed out when the engine is 

running at sideline conditions where the rotor-alone mode is well cut-on. For cutback, doubling the 

length of the existing fan case and inlet liners also shows significantly acoustic benefits. However, the 

benefit is not as great as having thinner splices, 

5. The broadband analysis results show that reducing the splice width gives small acoustic benefits, Better 

noise reduction methods are therefore required to reduce the broadband noise before there is any benefit 

of having thinner splices. 

6. The NMMM offers significant savings in computational time and storage compared to the FE transmis­

sion analysis. This is because of reduced problem size. The study has indicated that a parametric study 

of the geometrical parameters may be performed within an engineering time scale. 
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(a) kR=14 - splice width 0 cm (e) kR=16 - splice width 0 cm 

(b) kR=14 - splice width 3.798 cm (f) kR=16 - splice width 3 .798 cm 

(c) kR=14 - splice width 7.596 cm (g) kR=16 - splice width 7 .596 cm 

(d) kR=14 - splice width 11.940 cm (h) kR=16 - splice width 11 .940 cm 

, ' 

Figure 8.7: Validation study: Contour plots of the real part of the acoustic pressure at the inlet and exit of the 
duct for different splice widths. kR = 14 and 16, Mo = -0.4 and -0.5, Z = 2.21 +O.Oli and Z = 4.49+2.29i. 
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Figure 8.8: Validation study: (a)-(d) PWL of all the cut-on modes at the exit plane for kR = 14, Mn = -0.4, 
Z = 2.21 +O.Oli, (e)-(h)PWL ofal! the cut-on modes at the exit plane for kR = 16, Mn = -0.5, Z = 4.49+2.29i. 
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Figure 8.14: MWL plotted against liner length for cutback and sideline. Results are obtained using the NMM 
model. 
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Figure 8.15: Contour plots showing the real part of the acoustic pressure at the inlet and exit of the duct for 
different engine operating conditions and splice widths. NMMM results. (a)-(c) Cutback, (d)-(f) Sideline. 
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Chapter 9 

Summary of Conclusions 

9.1 Conclusions Arising From The Work 

In the accomplishment of the research objectives the following original contributions have been made in this 

thesis: 

• A numerical scheme using finite elements has been developed to solve for the duct eigenvalues and 

eigenfunctions in flow ducts. The FE eigenvalue model is capable of considering any arbitrary duct 

cross-sections with non-uniform flow and impedance boundaries. The duct modes of different types are 

being identified unambiguously and no modes are repeated. There is also no occurrence of spurious 

modes in the results. An mesh resolution of 8 to 10 nodes per wavelength is found be adequate to resolve 

duct modes of interest (modes having cut-off ratios greater than 0.8) to the design and acoustic treatment 

of aircraft engine bypass ducts. 

• The FE eigenvalue model has been employed to study the effect of liner splices on the modal sound field 

in a circular cylindrical duct. The results of the study show that the overall liner performance decreases 

with increasing splice width. The results show no occulTence of spurious modes or additional duct modes 

in the spliced duct. 

• For large three-dimensional problems, an iterative eigenvalue routine (ARPACK) has been employed to 

solve the eigenvalue problems. The iterative solver has demonstrated large savings in solution times 

compared to a direct eigenvalue solver. 

• The new mode matching method (NMMM) has been shown to give solutions which agree better with the 

FE transmission analysis than those obtained using the traditional mode matching method (TMMM). The 

NMMM uses continuity of mass flux and momentum flux to match solutions between different uniform 

duct sections at the interface. The TMMM uses continuity of acoustic pressure and velocity to match 

solutions hetween different duct sections at the interface. The convergence study shows that the number 
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of duct modes considered in each duct section equals to the number of hard walled modes having cut-off 

ratios greater than 0.8 is found to be adequate for converged solution. 

• The NMMM has been demonstrated to be capable of studying acoustic scattering due to an impedance 

discontinuity. sound diffraction by splitters and sound propagation in a duct containing surface waves. 

I n general, the NMMM is capable of studying acoustic effects in axially straight ducts of arbitrary cross 

section with non-uniform flow and impedance boundaries. The NMMM also offers significant savings in 

computational time and storage compared to the FE transmission analysis. The resulting solution times 

are such that a parametric study of the geometrical parameters may be performed within an engineering 

design time scale. 

• The NMMM has been employed to study sound diffraction by a infinitely thin splitter in a two-dimensional 

flow duct. The splitter causes scattering of acoustic energy to other cut-on modes and the high order 

modes are more affected than the low order modes. 

• The NMMM has been employed to study transmission of sound in an idealised aircraft engine intake 

with spliced liners at a frequency of practical interest. The study shows that reducing the splice width 

has significant acoustic benefit for just cut-on modes. 

• The NMMM has been employed to conduct a broadband analysis of the effect of liner splices in a circular 

cylindrical duct with uniform flow. The study shows that reducing the splice width gives small acoustic 

benefits. Better noise reduction methods are therefore required to reduce the broadband noise before 

there is any benefit of having thinner splices. 

The research has shown that the NMMM offers a computationally efficient alternative to other currently avail­

able methods of analysis for flow duct acoustic problems. 

9.2 Future Research 

Previous studies have indicated that the duct modal spectrum can be considerably altered by variations in the 

duct geometry, flow and the present of splitters in the duct [13, 46, 60]. The next stage of the research will be 

to apply the MM model to study more practical problems such as ducts with non-uniform duct cross sections, 

non-uniform mean flow and sound diffraction by radial and circumferential splitters in the duct. 

In order to employ the MM model for analysing realistic problems in aeroacoustics, the following avenues 

or ruture research have been suggested. 
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Integration with a radiation model 

The use of modal representation within the duct lends itself to integration with analytical radiation model at 

the duct exit [ 108]. Models of this type are currently being developed. The models can be used to investigate 

the effect on far field directivity of non-axisymmetric liner placement within intake and bypass duct. The 

models will also be less computationally demanding than other numerical models such as the finite element 

transmission model and the computational aeroacoustic schemes. 

Integration with a ray acoustic model 

The ray theory has been shown to be an effective technique for studying sound propagation in turbofan engine 

ducts in the high-frequency regime where a large number of modes are excited [49, 109]. By integrating the 

current MM scheme to a ray acoustic model, this will enable a wider range of frequency to be considered in a 

more efficient and effective way. 

Validation against experimental measured data 

For the current MM scheme to be used to optimise the next generation of engine ducts, true validation between 

the measured data in the presence of mean flow against which the predictions can be assessed is therefore 

required. Engine and rig tests which should provide data of this type are currently in progress within the 

SILENCE(R) and TURNEX projects, 
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Appendix A 

The following presents the terms of the transfer matrices T J - 2 and T2-3, which relate solutions in Sections (I) 

and (2) and Sections (2) and (3) using continuity of momentum flux and mass flux at x = XJ and X2 in Chapter 

5. 

(AI) 

where 

(A2) 

The following presents the terms of the transfer matrices T J -2-3 and T2-3-4, which relate solutions in Sections 

0), (2) and (3) and Sections (2), (3) and (4) using continuity of momentum flux and mass flux at x = XJ and X2 

in Chapter 5. 

[ 
P_-

T2-3-4 = 
S 

q 

e 

(A3) 
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where 

(A.4) 
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