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This thesis addresses issues in the econometric analysis of data observed over regular or 

irregular lattices, a lattice being a fixed set of observational units that have some spatial 

connotation, in a broad sense. As far as the case of data coming from irregular lattices is 

concerned, we investigate the correlation structure of spatial autoregressive models and we 

analyse the properties of tests for spatial autocorrelation. As for the case of regular lattices, 

we focus on statistical issues associated to some matrices, the so-called spatial design matrices, 

that arise naturally in many inferential problems in the context of isotropic spatial processes 

defined on uniform grids. 

Chapter 1, titled 'The Correlation Structure of Spatial Autoregressions', proposes a novel 

method to study the properties of spatial autoregressive models defined over irregular lattices. 

A little graph theory provides simple interpretations of the correlations implied by such 

models in terms of the walks connecting two vertices, and reveals the statistical consequences 

of the presence of symmetries or regularities in the configuration of the observational units. 

Chapter 2, titled 'Properties of Invariant Tests for Spatial Autocorrelation in the Linear 

Regression Model', sheds some new light on how the power of some popular tests for spatial 

autocorrelation in the errors of a linear model is affected by the matrix of regressors and by 

the assumed spatial structure. Conditions for unbiasedness and mono tonicity of the power 

function of the tests are studied. 

Chapter 3, titled 'Spatial Design Matrices and Associated Quadratic Forms: Structure and 

Properties', provides a complete characterization of the structure of spatial design matrices. 

The structural results are applied to study the statistical properties of statistics associated to 

the spatial design matrices, in particular of the classical variogram estimator, under several 

assumptions about the actual variogram. 

Chapter 4, titled 'Circular Approximation to the Design Matrices of Isotropic Spatial 

Processes', develops an approximation to the spatial design matrices, with the aim of alle­

viating the computational effort required to obtain the cumulants of some of the statistics 

discussed in Chapter 3. The performance of the approximation is discussed in the case of 

independent data and of second-order stationary and isotropic processes. 

Chapter 5 concludes by summarizing the main achievements of the thesis and suggesting 

directions for further research. 
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Preface 

Consider a statistical process of the type {Yi, i E U}, with Yi a univariate random variable 

and U a fixed and finite set of observational units. We call such a process spatial if U 

has some spatial, in a very broad sense, connotation. For instance, U could represent some 

physical space such as the set of regions of a country, or some abstract space such as a 

subset of a d-dimensional Euclidean space. For many of the problems considered in this 

thesis, however, what "space" is in question is not a fundamental issue. What is crucial is 

that: (i) the observational units are fixed, i.e., we are concerned with the joint distribution 

of the variables Yi given their locations, and not with the spatial variation of the locations 

themselves; (ii) it is assumed that the location in space of the observational units affects, in 

some way, the joint distribution of the variables Yi. 

Data that can be assumed to be realizations of spatial processes of the type just described 

are often referred to as lattice data, where a lattice can be regular, for instance a uniform 

d-dimensional grid, or irregular. The development of techniques for drawing inference from 

lattice data has been a relevant activity in statistics since, at least, the fifties. Some mile­

stone contributions are Moran (1950), Whittle (1954), Besag (1974) and Bartlett (1978). 

Conversely, in econometrics the attention to inferential procedures for spatial data has been 

long obfuscated by the dominating time-series perspective. Some early work in the field of 

"spatial econometrics" is represented by Paelinck and Klaassen (1979) and Anselin (1988). 

In very recent years, there has been an explosion of interest in spatial models in economet­

rics, with work in spatial econometrics being published by leading journals in empirical and 

theoretical econometrics (for instance, Conley, 1999, Kelejian and Prucha, 2001, Conley and 

Topa, 2002, Lee, 2002 and 2004). Such an explosion has been prompted not only by numer­

ous empirical analyses showing the importance of adopting spatial statistical models in many 

fields of economics, but also by the development of economic theories in which some physical 

or social distance plays an explicit role in determining the interaction among agents (see, for 
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instance, the references in Anselin and Bera, 1998). 

This thesis consists of four main chapters dealing with issues in the econometric, and 

more generally statistical, analysis of spatial data observed over regular or irregular lattices. 

Although they are related, the four chapters take the form of four papers that can be read 

independently. In the following, we summarize the focus of each paper and explain the 

relations among them. 

Chapter 1 is devoted to the analysis of properties of the most popular models for lattice 

data, the so-called spatial autoregressive models. In particular we study the correlation 

structure of these models when the set U of observational units is completely unrestricted. 

An interpretation of the correlations in terms of walks between the vertices of a graph is 

developed. The interpretation enables us to explain some known peculiarities of the models 

and to prove some new results. Since in this chapter we are concerned with correlation 

properties, we consider only zero-mean models. 

Chapter 2 studies power properties of invariant tests for spatial autocorrelation in the 

context of the linear regression model. The alternative hypothesis of spatial autocorrelation 

is provided by the models studied in the previous chapter. The main purpose of the chapter 

is to clarify the role played by the spatial structure of the set U of observational units and 

by the matrix of regressors in affecting the power of invariant tests for autocorrelation. 

While in the first two chapters the focus is on irregular lattices, the following two chap­

ters are concerned with spatial data observed over regular lattices, namely d-dimensional 

rectangular uniform grids. 

Chapter 3 analyses the structure of the so-called spatial design matrices. The quadratic 

forms associated to these matrices are recurrent objects in inferential procedures in the con­

text of isotropic processes defined on uniform grids. We give generating functions for the 

cumulants of the quadratic forms associated to the spatial design matrices. An application 

to the study of the exact properties of the classical variogram estimator is also discussed. 

Chapter 4 is intimately related to the material of Chapter 3. In this chapter we provide 

an approximation to the spatial design matrices, with the aim of reducing the computational 

effort required to obtain the cumulants of the quadratic forms associated to the spatial design 

matrices. The performance of the approximation is discussed under several assumptions. 

Chapter 5 summarizes the main findings of the thesis and discusses possible extensions. 

One theme that unifies the four main chapters is the attempt to understand how the 

spatial structure of the set U of observational units affects the properties of statistical entities 
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relative to data observed over U. The statistical entities are spatial autoregressive models 

in Chapter 1; invariant tests for spatial autocorrelation in Chapter 2; quadratic forms in the 

spatial design matrices and approximations to them in, respectively, Chapters 3 and 4. 

Chapter 3 is a slightly modified version of the paper Hillier and Martellosio (2006). One 

significant modification is the replacement of Lemma 5 of Hillier and Martellosio (2006) by 

the more general Lemma 3.3.4. Chapter 4 is also derived from joint work with Grant Hillier. 

Throughout the thesis, items such as theorems, propositions, examples, remarks, etc. 

are numbered consecutively within each section, by chapter and section, so that Theorem 

1.2.3, for instance, denotes the third of those items in Section 2 of Chapter 1. Equations 

are numbered consecutively within each chapter; for instance, (2.11) refers to the eleventh 

equation of Chapter 2. 
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Chapter 1 

The Correlation Structure of 

Spatial Autoregressions 

Abstract 

Conditional Autoregressive (CAR) and Simultaneous Autoregressive (SAR) models are 

used in many scientific fields to represent interaction among spatial data. They are both 

usually specified on the basis of p weights matrices, which are chosen to reflect a priori 

information on the associations among the random variables under analysis. This paper 

studies correlation properties of CAR and SAR models for an arbitrary spatial configuration 

of the units where the data are observed. We derive new results and interpretations concerning 

the one-parameter models (p = 1). In particular, a little graph theory provides simple 

interpretations of the correlations in terms of the walks connecting two vertices, and reveals 

the statistical consequences of the presence of symmetries or regularities in the configuration 

of the observational units. Extensions to multi-parameter models (p > 1) are also considered. 

Keywords: spatial autoregressions; weighted graphs; exponential families; quadratic sub­

spaces; association schemes. 
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1.1 Introduction 

As originally explained by Brook (1964), time series autoregressive processes can be gen­

eralized to a spatial setting in two different ways. The two approaches give rise to Con­

ditional Autoregressions (CAR) and Simultaneous Autoregressions (SAR). Since their first 

formulation-attributable, respectively, to Besag (1974) and Whittle (1954)-these models 

have been used extensively in many scientific fields. Some of the most common applications 

are in disease mapping and image analysis for the CAR models, in econometrics and regional 

science for the SAR models. 

The main purpose of this paper is to analyze the correlation structure of CAR and SAR 

models defined over an arbitrary set of observational units. Both classes of spatial autoregres­

sive models were first developed to analyze data on regular lattices, which arise for instance 

in agricultural field experiments or when decomposing an image in pixels. Nevertheless, they 

soon started to be used also for the irregular lattices typical of non-experimental contexts 

(e.g., Besag, 1975). Recent literature has pointed out that in the latter case the models 

exhibit some undesirable or unexpected properties (e.g., Besag and Kooperberg, 1995, and 

Wall, 2004). In fact, the theoretical analysis of the models defined on irregular lattices can be 

complicated and it is fair to say that some of the properties of spatial autoregressions are not 

completely understood by practitioners. This is unfortunate, because specifying the models 

may be difficult if their properties are not clear. 

The correlation structure of spatial autoregressions is well-understood in the case of regu­

lar lattices (e.g., Besag, 1972 and 1981). Here, we largely focus on the case of an unrestricted 

spatial configuration of the observational units, but we also consider the effects of regularities 

in the neighborhood structure of the units. The reason why, in general, the correlation struc­

ture of spatial autoregressions does not lend itself to a straightforward analysis is that such 

models-in their most common parametrization-imply a simple structure for the inverse 

of a covariance matrix, and not for the covariance matrix directly. Yet, these models have 

important advantages-for instance, they are exponential families, they use a parsimonious 

parametrization, they have a clear conditional independence structure and, for the CAR 

models, they lead to simple Markov Chain Monte Carlo analysis-and are so popular that 

a detailed understanding of the behavior of the correlations they imply on irregular lattices 

seems to be needed. 

Large part of our analysis will be conducted with the help of some formal graph theory. 
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The use of a graph theoretic terminology is common to discuss how CAR models are con­

structed (essentially because of the Hammersley-Clifford theorem, which characterizes the 

class of random fields which are Markovian with respect to a given graph; Besag, 1974), but 

is less common to discuss the properties of the covariance matrices of CAR and SAR models. 

There are several advantages to adopting a graph theoretic perspective in the analysis of spa­

tial autoregressions. Firstly, a graph endows the set of observational units with a metric that 

allows to develop a simple interpretation of the correlation structure of the one-parameter (or 

first-order) models. Secondly, graph theory is helpful in clarifying differences among different 

ways of constructing multi-parameter models. Thirdly, graph theory provides a convenient 

language to discuss what exactly is meant by regularities or symmetries in the spatial con­

figuration of the observational units and what their consequences on the properties of the 

models are. 

The rest of the paper is divided into three main sections and a discussion. In Section 

1.2 we first briefly review the general definitions of CAR and SAR models, and then discuss 

some issues concerning their parameterization. Obviously, the choice of parametrization is 

crucial when discussing the correlation structure of a family of distributions. We show, in 

particular, that the parameterizations commonly employed for CAR and SAR models, and 

that we also employ in this paper, have the advantage of making CAR and SAR models 

exponential families with low-dimensional minimal sufficient statistic. While, in their com­

mon parametrization, CAR models are always regular exponential families, SAR models are 

generally curved (in the sense of Efron, 1978), and are regular exponential families only if the 

assumed spatial structure is highly regular. Section 1.3 is the central part of the paper and is 

mainly devoted to a detailed study of the correlation structure of the one-parameter models 

defined on general graphs. We consider more briefly multi-parameter models, that are much 

less popular in applications. Extending the parameter space of the first-order models is a 

natural way to try to overcome some of the limitations of the first-order models, yet main­

taining some of their advantages. After all, it would be surprising if a family of distributions 

indexed by a single parameter (or two, including one scaling the covariance matrix) were 

particularly useful to describe the interaction structure of variables observed over an highly 

irregular lattice! In Section 1.4 the special features of spatial autoregressive models on graphs 

exhibiting some regularities or symmetries are discussed. In particular, we give the conditions 

for two pairs of variables to have the same correlations. This leads, among other things, to 

the statement of the restrictive conditions required for the models to be homoskedastic or 
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stationary (in a sense to be defined). We conclude the paper with a summary of the main 

results. All proofs are relegated to the Appendix. 

1.2 Spatial Autoregressions and Their Parametrization 

This section presents the theoretical framework ofthe paper. Section 1.2.1 defines the models 

and is mostly review. Section 1.2.2 discusses some issues, that are important in the rest of 

the paper, concerning the most common parametrization of the models. 

1.2.1 The Models 

Consider a fixed and finite set of n observational units, for instance the set of regions of 

a country. For the sake of convenience, we fix an arbitrary ordering of the units, i.e. an 

arbitrary labelling of the n units by the first n positive integers. CAR and SAR models are 

families of distributions for the n-dimensional random vector y = (Yl, ... , Yn)', where Yi is the 

random variable associated to the i-th observational unit. They are specified on the basis of 

two n x 71, real matrices Sand C chosen to reflect a priori information on relations among 

the 71, observations (see, for instance, Cressie, 1993). For instance, the (i,j)-th entry of C 

or S may be taken to be a certain function of some distance between the i-th and the j-th 

observational units. Usually, such matrices are sparse, which, in the example just mentioned, 

requires that the (i, j)-th entry of C or S is set to zero when the distance between i and 

j is larger than some threshold. The matrices Sand C depend on known constants and 

unknown parameters, and are such that the matrices I - S and I - Care nonsingular, with I 

denoting the 71, x 71, identity matrix. In this paper, as in most of the theoretical and empirical 

literature on spatial autoregressive models, we confine ourselves to Gaussian models (Nv (-'·) 

will denote the v-variate Gaussian distribution, dropping the subscript in the univariate case). 

Only the zero-mean case is considered, because our focus is on the second-order structure of 

the models. 

Let M be an 71, x 71, diagonal matrix with positive diagonal entries. A CAR model, also 

known as auto-normal scheme, is specified through the 71, conditional distributions 

Yi I {Yj : j "I i} rv N (t C(i,j)Yj, M(i, i)), i = 1,2, ... ,71" 

J=l 

which, provided that (I - C)-l M is symmetric and positive definite (hereafter abbreviated 
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to p.d.), yield the joint distribution (see Besag, 1974) 

y rv Nn (0, (I - C)-1 M) (1.1) 

(here and throughout the i-th entry of a vector r is denoted by ri, the (i, j)-th entry of a 

matrix R by R(i,j); all vectors and matrices considered in this paper are real-valued). 

In a SAR model the distributions of the random variables in yare specified simultaneously, 

rather than conditionally, through the stochastic equation 

y=Sy+c:, 

where c: is an n-dimensional vector with c: rv Nn(O, A), A being a diagonal matrix with positive 

diagonal entries. The resulting joint distribution is 

(1.2) 

Note that, for the CAR specification to be valid, the matrix C must have only zero entries 

on its main diagonal and must satisfy the property that C( i, j) = 0 if and only if C(j, i) = O. 

It is common, although not necessary, to impose these two restrictions on the matrix S as 

well, and this is what we do in the present paper, unless otherwise specified. Note that the 

symmetry of the zero entries of S entails that time series unilateral autoregressive models 

are not in the class of SAR models here considered. By the symmetry of their zero entries, 

C and S can be assumed to be irreducible (see, for instance, Gantmacher, 1974, Ch. 13) 

without loss of generality, because otherwise there would exist a permutation of the index 

set {I, 2, ... , n} such that the covariance matrices of the models are block diagonal, i.e., the 

models could be decomposed into the product of at least two models. 

It is worth stressing that we are only assuming that the zero entries of C and S are 

symmetric and not that C and S are symmetric. Indeed, the latter assumption would be 

too restrictive in some applications, especially in the case of irregular lattices. For the CAR 

model, this is because if C is symmetric and irreducible then M in (1.1) is a scalar multiple 

of I. This is because if C is symmetric it must hold that (I - C)-1 M = M(I - C)-1; but 

if C is irreducible then (I - C)-1 is entrywise positive (e.g., Gantmacher, 1974, p. 69) and 

the only diagonal matrix with positive diagonal entries that commutes with a positive matrix 

is a scalar multiple of I. Therefore, symmetry of C implies that the conditional variances 

are constant, which may not be desirable in applications (cf. Section 1.3.2). For the SAR 

model, symmetry of S is even more restrictive, as the covariance matrix of a SAR model is 

symmetric for any S and any A. 
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By far, the most common way of parametrizing the models is to take the matrices C and 

S to be linear in p ;:: 1 parameters and M and A linear in one parameter (we will see below 

that there are strong reasons for adopting such a parametrization). More precisely, a CAR 

model is commonly specified by setting C = 2::1=1 Pl Wl and M = 7
2 L, where 7

2
, PI,···, Pp 

are functionally independent unknown parameters, L is a known diagonal matrix with posi­

tive diagonal entries and WI, ... , Wp are non-zero linearly independent known matrices. The 

parameter space of the model is defined by 7 2 E lR+ and PI, ... , Pp belonging to the subset 

of lRP where the covariance matrix of the CAR model is p.d. Similarly, for a SAR model, 

S = 2::1=1 Pl Wi and A = (]"2V (using the same notation as for C, for the sake of convenience), 

where (]"2, PI, ... , Pp are functionally independent unknown parameters, V is a known diagonal 

matrix with positive diagonal entries and WI, ... , Wp are non-zero linearly independent known 

matrices. The parameter space of the model is given by (]"2 E lR+ and PI, ... , Pp belonging to 

the subset of lRP where the covariance matrix of the SAR model is p.d. The matrices Wl are 

often called (spatial) weights matrices. Clearly, the weights matrices inherit the restrictions 

imposed on C and S, and therefore each Wi must have zero diagonal and must satisfy the 

property that Wz(i,j) = 0 if and only if Wl(j,i) = O. Moreover, when used in the CAR 

specification, each product L -1 WI must be symmetric. 

We make the additional assumption that the weights matrices are (entrywise) nonnega­

tive. This is not required by the definition of the models, but is virtually always satisfied 

in empirical applications of spatial autoregressions and has the important theoretical ad­

vantage of making the Perron-Frobenius theorem for nonnegative irreducible matrices (e.g., 

Gantmacher, 1974) available to derive information about the spectral properties of weights 

matrices. 

From now on and unless otherwise specified, we will reserve the terms "CAR models" 

and "SAR models" for the families of distributions (1.1) and (1.2), when they are indexed by 

the parameters PI, ... , Pp and 7 2 or (]"2 as described above. Their covariance matrices will be 

denoted by I:c,p and I:s,p respectively. 

1.2.2 Consequences of the Parametrization 

In this section we discuss some consequences of the parametrization of CAR and SAR models. 

In particular, we are interested in how CAR and SAR models fit in the theory of exponential 

families. This is important, because of the many nice statistical properties satisfied by 

such families and because it allows us to start discussing the consequences of using highly 
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structured weights matrices. For details concerning exponential families, see Amari (1990) 

and Kass and Vos (1997). Here we only remind the reader that a family of densities is said 

to be an exponential family if its elements are representable as 

pdf(y; 0) ~ exp {t ~1(B)SI(Y) - K(B) } h(y), (1.3) 

with respect to some dominating measure on the sample space. Assuming that k is the 

smallest integer such that (1.3) holds, (SI (y), "., Sk (y))' is the minimal sufficient statistic for 

the parameter B. The parameter TJ = (TJl(B), ".,TJk(B)), is called the canonical parameter 

and the canonical parameter space n ~ IRk is the set of canonical parameters such that 

the integral of exp{2:?=1 TJI(B)SI(Y) - K:(B)} is finite. Under some regularity conditions, an 

exponential family is said to be .full if for each TJ E n there exists a density pd.f(y; B) in the 

family, curved otherwise. If the family is full and, in addition, n is an open subset of IRk, 

then the exponential family is said to be regular. 

CAR models are families of Gaussian distributions where the inverse of the covariance 

matrix-the precision matrix-has a linear structure (in the parameters 1/T2, Pl/T2, ... , pp /T2). 

A discussion of these general models from a time series perspective can be found in Anderson 

(1971), Chapter 6. One important consequence of the linearity of the precision matrix is 

stated in the following lemma. 

Lemma 1.2.1 A CAR model is a regular exponential.family, with minimal sufficient statis­

tics y'L -1 WLY, l = 0, I, "., p. 

Henceforth, £(n) denotes the vector space of all n x n real symmetric matrices. Since 

for the general model (1.1) to admit a representation (1.3) it is necessary that M-1 (I - C) 

belongs to a linear subspace of £(n) of dimension equal to the number of parameters of 

the model, it is easily seen that the parametrization of the models in terms of PI, ... , Pp ' T is 

virtually the only one-up to a diffeomorphism (see Kass and Vos, 1997)-such that CAR 

models are regular exponential families (assuming that the parameters in M are functionally 

independent of those in C). 

Conversely, SAR models are regular exponential families only in very special circum­

stances. Setting, for notational convenience, Po = 1 and Wo = J, it is easily seen that a 

SAR model is embedded in a regular exponential family with canonical parameters 

_P~1:;2; h=O,l,,,.,p, l2=O,l,,,.,h, 
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and sufficient statistics 

y'BhhY; lI=O,l, ... ,p, l2=0,1, ... ,lr, 

where 

Bhh = W{l V- IWZ2 + (1- 6Z 1 h)W{2 V-IWt 1 , 

6l1h being the Kronecker delta. Note that such an embedding family is not quite a CAR 

model (in the parametrization we have adopted for CAR models) because the matrices BZ1h, 

II = l2, do not have zero diagonals. 

Let L::.p be the subspace of £(n) spanned by the matrices BZ1h, for lr = 0,1, ... ,p and 

l2 = 0,1, ... , lr. The dimension of L::.p, which we denote by dim(L::.p), is the dimension of 

a minimal sufficient statistic for a SAR model. Since the matrices Bz,o, l = 0,1, ... ,p, are 

linearly independent (because the matrices Ware), the model is a curved exponential family 

if dim(L::.p) > p + 1, a full exponential family if dim(L::.p) = p + 1 (see Amari, 1990, p. 109). 

Calling a matrix full if it does not contain any zero entries, we have: 

Lemma 1.2.2 For a SAR model to be a full exponential family, the matrix S = 1-2:)=1 PZ Wz 

must be full. 

(Note that if a SAR model is a full exponential family than it is a regular exponential 

family by the same argument as the one used in the proof of Lemma 1.2.1.) Since the 

SAR models used in applications are constructed by specifying a sparse matrix S, Lemma 

1.2.2 implies that such models are curved. The curvature of a statistical model has well­

known consequences for inferential procedures. For instance, any efficient estimator in the 

context of a curved exponential family involves a loss of information which should somehow 

be recovered, typically by conditioning on an approximately ancillary statistic (Kass and Vos, 

1997, Chapter 3). 

The next natural step would be to study measures of curvature of SAR models. Dif­

ferential geometric measures of curvature (such as the Efron curvature, see Amari, 1990) 

can certainly be analyzed, but this goes beyond the scope of the present paper. Here, we 

limit ourselves to the following lemma, where the notation (PI, P2)-curved exponential fam­

ily is used to indicate that an exponential family has PI-dimensional parameter space and 

P2-dimensional minimal sufficient statistic. 

Lemma 1.2.3 Suppose that 1- pW is not full. Then, a .first-order SAR model with weights 

matrix W is a (3, 2)-curved exponential family. 
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Note that Lemma 1.2.3 does not hold for unilateral time series autoregressive models, 

which, as we have already mentioned, are not in the class of SAR models considered in the 

present paper. Such models are regular exponential families when, for instance, (the analog 

of) W is an orthogonal matrix. 

The condition in Lemma 1.2.2 is necessary, but by no means sufficient. Indeed, for a SAR 

model to be a regular exponential family, S must not only be full, but it must also have a 

very special structure. This is particularly transparent in the special case when the spatial 

weights matrices are symmetric and V = I. Before stating the next result, we need to define 

the concept of quadratic subspace of symmetric matrices, first introduced by Seely (1971) 

and subsequently extensively used in the literature on the analysis of variance components. 

Definition 1.2.4 A subspace Q of £( n) is a quadratic subspace if Q E Q =? Q2 E Q. 

Letting \IFp be the subspace of £(n) spanned by the matrices I, WI"" W p, we have: 

Lemma 1.2.5 Assume that WI, ... , Wp are symmetric and V = I. Then, a BAR model is 

a curved exponential family, unless \IF p is a quadratic subspace, in which case it is a regular 

exponential family. 

A quadratic subspace is a highly structured set of matrices. We will see in Section 1.4 

that in order to obtain a quadratic subspace, a very high level of regularity must be present in 

the spatial configuration of the observational units and a specific number of weights matrices 

must be used. Note that Lemma 1.2.5 gives a necessary and sufficient condition for the 

simultaneous and the conditional approaches to the specification of autoregressive models to 

be equivalent when WI, ... , Wp are symmetric and V = I. This is because, under the stated 

condition, :Es,p and :Ec,p belong to the same subspace \IFp if and only if \IFp is a quadratic 

subspace. 

1.3 The Correlation Structure of Spatial Autoregressions 

In the context of spatial autoregressions, the neighborhood structure of the set of the n ob­

servational units can be conveniently represented by a graph. This corresponds to identifying 

the index set of the random vector y with the vertex set of a graph and to defining the ad­

jacency matrix (as defined below) using a priori information about relationships among the 

random variables in y. 
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The precise definition of the graphs considered in the present paper is given in Section 

1.3.1, where we also summarize a series of well-known graph theoretic definitions and results. 

In Sections 1.3.2 and 1.3.3 we study in detail the correlation properties of first-order spatial 

autoregressive models with arbitrary weights matrices. We denote the first-order models by 

CAR(1) and SAR(1) models and, for convenience, we drop the subscript from the single 

weights matrix WI of CAR(1) and SAR(1) models. In Section 1.3.4 we consider extensions 

of one-parameter models on graphs to multi-parameter models. 

1.3.1 Graph Theoretic Notions 

Throughout the paper and unless otherwise specified, a graph G = (V(G), E(G)) is a pair of 

a finite non-empty set V(G) of vertices and a non-empty set E(G) of two-element subsets, 

called edges, of V(G). A graph has associated with it a weight function z : V(G) x V(G) ----.'JR 

such that z(i,j) = 0 if and only if (i,j) tf. E(G). 

This definition, together with the assumption-made to avoid trivial cases-that a graph 

G is connected but not complete (i.e. that every vertex appears in at least one edge and 

that E( G) does not contain all the two-element subsets of V (G)), completely characterizes 

the graphs considered in the paper. In graph theoretic terminology, we would say that such 

graphs are .finite, undirected (a graph is said to be directed if its edges are defined as ordered 

pairs of vertices), weighted and do not contain loops or multiple edges. An exposition of most 

of the graph theoretic concepts presented in this section can be found in Biggs (1993). 

The adjacency matrix of a graph G is the W(G)I x W(G)I matrix Z = Z(G) with entries 

Z(i,j) = z(i,j). The assumption of connectivity of a graph implies that its adjacency matrix 

is irreducible. Note that the the matrices C and S, as defined in Section 1.2.1, or the spatial 

weights matrices W, can always be regarded as the adjacency matrix of a graph. 

If they form an edge, two vertices of G are called (first-order) neighbors. The degree 

of a vertex i is the number of its neighbors and is denoted by di . A graph is said to be 

degree-regular if all its vertices have the same degree. 

A walk is a sequence of vertices (io, iI, ... , ir) such that two consecutive vertices in the 

sequence form an edge. Such a walk is sometimes referred to as an r-walk, r being the length 

of the walk. A walk is said to be closed if io = ir. A path is a walk in which all the vertices 

are distinct. A cycle is a closed walk with all the vertices distinct apart from the first and 

the last. Note that if (io,il, ... ,ir ) is a walk, then the reverse sequence (ir,ir-I, ... ,io) is 

a walk too. When we speak of walks between (or connecting) two vertices, it is with the 
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understanding that we are not double-counting a walk and its reverse, so that, for instance, 

the number of r-walks between two vertices i and j is equal to the number of r-walks from i 

to j (or from j to i). 

We can now define the distance d(i,j) = dc(i,j) between any two vertices i and j of 

G to be the length of the shortest path in G joining i and j. This is the distance that, as 

we shall see shortly, turns out to be the relevant one in interpreting CAR and SAR models. 

The largest distance between any two vertices of a graph G is called the diameter of G, and 

will be denoted by d = d( G). It is then natural to define the distance matrices Al = Al (G), 

for l = 0,1, ... , d, such that AI(i,j) equals 1 if d(i,j) = l, 0 otherwise, for each i,j E V(G). 

Note that the distance matrices are disjoint symmetric (0,1) matrices summing to the n x n 

matrix of all ones. Also, note that Ao = I and that AI-which we will usually denote simply 

by A-is the binary version of Z. In the special case of an unweighted graph, i.e. a graph 

having all weights 0 or 1, Z = A. 

The notion of bipartite graph is critical to understanding some aspects of our analysis of 

spatial autoregressions. A graph is said to be bipartite if its vertex set can be partitioned 

into two non-empty disjoint sets VI and V2 such that every edge of the graph joins one vertex 

in VI with one vertex in V2 (see, e.g., ). A necessary and sufficient condition which is useful 

to check for bipartiteness is the absence of cycles of odd length. This suggests that "regular" 

graphs such as those of any rectangular lattice are bipartite, whereas "irregular" graphs such 

as those of geographical maps of regions are generally not bipartite. 

The spectrum of a graph G is the set of eigenvalues, repeated according to their multi­

plicities, of A. Saying that the spectrum of a graph is symmetric about zero if it contains 

an eigenvalue A whenever it contains -A with the same multiplicity as A, we have (e.g., 

Cvetkovic et al. (1980), Theorem 3.11): 

Lemma 1.3.1 A graph is bipartite if and only if its spectrum is symmetric about zero. 

Next, we consider the subclass of graphs which are implicitly defined by the CAR specifi­

cation. These are the graphs whose adjacency matrix becomes symmetric after premultiplica­

tion by a diagonal matrix with positive diagonal entries (note that such a condition does not 

pose any restriction on the choice of an edge set, but it does pose restrictions on the choice of 

the weight function). For a diagonal matrix with positive diagonal entries 1',11, we denote by 

r (M) the class of graphs having adjacency matrix Z such that lvI- I Z is symmetric. For a 

graph G E r (M), we define the weight of a walk (io, iI, ... , ir) as the product II~~t Z (ii, ii+d 
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of the weights of its steps, times M (in ir). The factor M (ir , ir) serves to ensure that a walk 

(io,il, ... ,ir) in a graph G E r(M) has the same weight as the reverse walk (ir,ir-l, ... ,io), 

which is convenient later. Given the notion of weight of a walk we have just given, it is easy 

to check that, for a graph G E r (M), the (i, j)-th entry of iF M represents the sum of the 

weights of all the r-walks connecting i and j. In the particullitr case of an unweighted graph, 

zr (i,j) simply represents the number of r-walks from i to j. 

Having reviewed the necessary graph theoretic tools, we can now move to consider the 

classes of CAR and SAR models defined on general graphs, or-in other words-the classes 

of CAR and SAR models with arbitrary weights matrices. Models on graphs satisfying some 

regularities or symmetries will be considered in Section 1.4. 

1.3.2 CAR(1) Model 

In this section we study the covariance structure of the CAR(l) model, that is, of the family 

of n-variate normal distributions with covariance matrix ~c,l = T2(I - pW)-l L. To such a 

specification we associate, as discussed above, the graph with adjacency matrix pW. Without 

loss of generality, we fix T2 = 1. To underline the dependence on p, the covariance between 

any two variables Yi and Yj in a CAR(l) model will be denoted by li,j(p). 

Two subfamilies of the general CAR(l) model, corresponding to two simple choices of the 

weighting function of a graph, are particularly popular in applications (cf. Sun et al., 1999, 

where the two subfamilies are called Model 1A and Model 2). 

Modell. The weights matrix W is obtained by row-standardization of the first distance 

matrix A. That is, if D denotes the diagonal matrix with i-th diagonal entry equal to the 

degree di of the vertex i, then Modell is obtained by setting W = D-1 A and L = D-1 , 

which results in the covariance matrix ~c,l = (D - pA)-l. 

Model 2. The weights matrix is W = A (or, equivalently, the graph is unweighted), which 

results in ~c,l = (I - pA)-l. 

It should be noted that there are advantages and disadvantages to both models. A 

relative advantage of Modell is that such a specification entails that the conditional variances 

M(i, i) are not constant, but are inversely related to the number of neighbors di , which 

may be appropriate in some applications (Martin, 1990). Conversely, a relative advantage 

of Model 2 is that it reduces to a spherical distribution when p vanishes, i.e., the model 

includes the null hypothesis of i.i.d. data. Note that the two models are equivalent-up to a 

reparametrization-if and only if G is degree-regular. 
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Also, it is worth clarifying from the outset the interpretation of the parameter p in a 

CAR(l) model. Denoting by pij the partial correlation coefficient between Yi and Yj, it is 

easily seen that p = pij[W(i,j)W(j, i)]-1/2, for any pair i,j of neighbors. Thus, in a CAR(l) 

model p is equal to a standardized version of the correlation coefficient in the conditional 

distribution of any pair of neighbors (given the rest of the variables). In particular, for any 

pair i,j of neighbors, we have p = (didj)1/2pij in Modell and p = pij in Model 2. 

We now present a graph theoretic interpretation of the second order structure of CAR(l) 

models. The restriction that L -1 W is symmetric entails that the eigenvalues of Ware real, 

because LL -1 W = W is similar to the symmetric matrix L1/2 L -1 W L1/2. We denote such 

eigenvalues by AI, ... , An, labelled in non-decreasing order of magnitude. Note that Al < 0 

and An > 0, because tr(W) = Lr=l Ai = 0 and at least one eigenvalue does not vanish (since 

W is irreducible). It follows that the parameter space of the model, i.e. the set of parameters 

values such that ~c,l is p.d., is defined by All < p < A;;:-l. By the Perron-Frobenius theorem 

for nonnegative irreducible matrices, An ;:::: IAil, i = 1, ... ,11, - 1. Now, for a square matrix Q, 

L::o Qr = (I - Q)-l if and only if all the eigenvalues of Q are smaller than one in absolute 

value (here, as usual, QO = /). In our case, when Ipi < A;;:-1, (I _pW)-l admits the convergent 

power series representation L::o (pWr and thus, on noting that wr(i,j) = 0 for r < d(i,j), 

we have 
= 

(1.4) 
r=d(i,j) 

for i, j = 1, ... , n. Recall from the previous subsection that for a graph G with adjacency 

matrix C (C being the matrix in equation (1.1)), L(j,j)cr(i,j) represents the sum of the 

weights of all the r-walks between i and j. Representation (1.4) makes clear how the co­

variance structure of the CAR(l) model is determined by the connectivity properties of the 

underlying graph, in the region Ipi < A;;:-l.1 Namely, in a CAR(l) model the covariance "Ii,j(P) 

is determined by the total weight of all the walks connecting i and j, or, equivalently, any 

walk connecting i and j contributes its weight to "Ii,j (p). (Such an interpretation holds for 

any matrix C, but some of the results to be derived below are specific to the parametrization 

C = pW.) We will shortly see that the fact that all the walks, rather than only the paths 

or some other sequences of vertices, between i and j contribute to "Ii,j (p) has important 

consequences on the correlation properties of CAR(l) models. 

Because of the simple forms of the weights of the walks implied by Models 1 and 2, the 

1 When the graph is non-bipartite, that is when IA11 < IAn I, there is a region of the parameter space where 

the interpretation just given does not hold. However, the representation (1.4) is always valid for positive p. 

16 



interpretation of the covariance structure is particularly simple in such models. In Model 2, 

the contribution to li,j(P) of any r-walk between i and j is pT. Such a contribution is strictly 

decreasing in r, because Ipi < A;:;-l for representation (1.4) to exist and An cannot be smaller 

than the minimum row sum of A (e.g., Gantmacher, 1974, p. 63). In Modell, conversely, the 

contribution of a walk depends not only on the length of the walk, but also on the vertices 

that the walk visits. More precisely, the contribution to lio,i)P) of a walk (io, i1, ... , iT) is 

pT / rrr=o dil . For a fixed r, such a contribution is large if the walk passes through vertices 

with a small number of neighbors. When r increases, the contribution of an r-walks tend to 

decrease, because Ipi < 1 (as Ipi < A;:;-l for the representation (1.4) to exist and An = 1 for a 

row-stochastic matrix). The main distinction between Modell and Model 2, in terms of their 

graph theoretic interpretation, is perhaps clearer when considering the contribution to li,j (p) 

of an edge (i.e. a 1-walk) between two first-order neighbors i and j. Such a contribution is 

constant in Model 2, whereas it is inversely related to the number of neighbors of i and j in 

Model 1. This suggests that Model 1 is appropriate in cases when the resource determining 

the influence amongst is a limited one; for example, transportation amongst geographical 

units. 

Representation (1.4) also offers an intuitive explanation of the following well-known prop­

erties, or "peculiarities", of the covariances, and hence the correlations, in a CAR(l) model: 

(i) the covariances between variables observed at first-order neighbors are generally differ­

ent functions of p (e.g., Besag and Kooperberg, 1995); 

(ii) the ranking of first-order neighbors in terms of their degree of correlation may vary 

across the parameter space (e.g., Wall, 2004, p. 320-1); 

(iii) the behavior of the covariances in a CAR(l) model can be irregular for negative p (e.g., 

Wall, 2004, p. 321). 

We next discuss in turn each of the three properties, with the aim of showing how the 

adoption of a graph theoretic perspective improves the understanding of the correlation struc­

ture of spatial autoregressions. 

As for property (i), observe that, according to representation (1.4), the covariances be­

tween variables observed at first-order neighbors are constant if and only if the total weight of 

the r-walks connecting a pair of neighbors is the same for all the pairs of neighbors, for each 

r = 1,2, ... Clearly, such a condition is not met on general graphs, firstly because different 
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Figure 1.1: The correlations, as a function of p, implied by Modell between the 107 pairs 

of contiguous US states, with emphasis on Missouri and Tennessee (thick line) and Maine and 

New Hampshire (crosses). 

pairs of first-order neighbors are generally linked by a different number of walks of a certain 

length (unless strong regularities are imposed on the graph; d. Section 1.4), and secondly 

because the weights associated to r-walks connecting different pairs of first-order neighbors 

are generally different (except for simple weight functions as that implied by Model 2). For 

illustration, let us consider the cases of Models 1 and 2. Given the weights of walks implied 

by such models (already discussed above), we have that in Modell, i ,j (p) is large if the short 

walks between i and j pass through sites with a small number of neighbors, while in Model 2 

'Yi, j(P) is large if there is a large number of short walks between i and j. Therefore, Modell 

tends to give large covariance (and correlation) to pairs of neighbors close to the "edges" of 

the underlying graph (because vertices close to the edges have generally less neighbors than 

"internal" vertices, at least on common planar graphs) , and, on the contrary, Model 2 tends 

to give large covariance (correlation) to "internal" pairs of neighbors. An example may help 

to emphasize this fundamental difference between the two models. For ease of comparison, 

we use the same example as in Wall (2004). 

Example 1.3.2 Consider the graph having as vertices the 48 continental US states, and let 

two states be connected by an edge if and only if they are contiguous. Then, Modell implies 

that, for almost all values of p, Maine and New Hampshire are the most correlated contiguous 

states and that Missouri and Tennessee are the least correlated contiguous states. This is 

shown in Figure 1.1. Model 2 implies precisely the opposite situation, i.e. , that Missouri and 

Tennessee are the most correlated and Maine and New Hampshire are the least correlated. 

Property (ii) says that, regarded as functions of p, two covariances between two fixed 
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pairs of first-order neighbors, say (i,j) and (l,m), may intersect. Representation (1.4) in­

dicates that such a behavior is due to the fact that on general graphs L(j,j)vvr(i,j) -

L(m, m)Wr(l, m) need not have the same sign for each r. In the case of Model 2, this simply 

amounts to saying that there may be more walks of a certain length between i and j than 

between land m, but less walks of another length. Note that this characteristic of the covari­

ance function of CAR(l) models, as the previous one, holds not only for first-order neighbors 

but also for higher-order neighbors. 

The most striking aspect of property (iii) is that "Ii,j(P) need not have the same sign over 

the interval All < P < O. This is due to the fact that in general two vertices are connected 

by both walks of odd length and walks of even length. It is easily seen from (1.4) that if 

d(i,j) is odd (resp. even), then "Ii,j(P) is negative (resp. positive) as P approaches 0 from 

the left, but may change sign for more negative values of p, as I:::2,r even prwr (i, j) may 

become greater (resp. smaller) than I:::1,r oddprvF(i,j). 

We now turn to analyze the behavior of "Ii,j (p) as the distance d( i, j) changes. Since the 

models are generally heteroskedastic (see Proposition 1.4.4 below), it is more appropriate to 

consider the correlations, "Ii,j (p) = "Ii,j (p) / bi,i (ph j,j (p)) 1/2. In the limit for p approaching 

0, we have: 

Proposition 1.3.3 As p -7 0, "Ii,j(p) decreases in absolute value with d(i,j), for any i,j = 

1, ... ,n. 

However, contrary to what happens for autoregressions in the time domain, the result in 

Proposition 1.3.3 need not hold for non-vanishing p. To be more precise, we define: 

Definition 1.3.4 A model for the random vector y, whose index set is in a one to one 

correspondence with the vertex set of a graph G, is said to be G-stable ~f, for any four vertices 

i,j,l,m such that d(i,j) < d(l,m) and over the whole parameter space of the model, the 

absolute value of the correlation between Yi and Yj is non-smaller than the correlation between 

Yz and Ym' Otherwise, the model is said to be G-unstable. 

The reason why autoregressive models on graphs are not guaranteed to be G-stable can, 

again, be deduced from representation (1.4); on general graphs, the total weight ofthe r-walks 

between two vertices i and j need not be decreasing in d( i, j), so that for sufficiently large p 

the covariance (and the correlation) between two vertices may be larger than the covariance 

(correlation) between two vertices that are closer together. This is particularly transparent 
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Figure 1.2: The correlations, as a function of p, implied by Modell for a pair of first-order 

neighbors (thick line; Missouri and Tennessee) and for a pair of second-order neighbors (crosses; 

Vermont and Connecticut) . 

in the case on Model 2, where the total weight of the r-walks between two vertices is just the 

number of r-walks connecting the two vertices. 

Generally, for a given neighboring structure, Modell has better G-stability properties 

than Model 2. To see why this is the case, consider four vertices i,j,l , m such that d(i,j) < 

d(l, m). In view of representation (1.4), a necessary condition for a CAR model to be G­

unstable is that there is at least an r > d(l ,m) and an s:::; r such that L(m,m)Wr(l,m) > 

L(j, j) W S (i, j). This is less likely to occur in Modell than in Model 2, because the weights of 

r-walks decay quicker with r in Modell, due to the fact that the weight of a walk in Modell 

is inversely related to the product of the degrees of the vertices visited. However, even Model 

1 can be G-unstable, as shown, in the context of Example 1.3.2 , by Figure 1.2. 

Although it has not been acknowledged in previous literature, the potential lack of G­

stability is an intrinsic property of spatial autoregressive models, especially when the models 

are defined on irregular lattices, and represents an important difference between time series 

and spatial autoregressive models. Unfortunately, it seems difficult to give easy-to-check 

conditions for the models on general graphs to be G-stable. From the argument in the previous 

paragraph, however, it emerges that if it is desired to construct stable autoregressions, then 

one should chose the entries of W in such a way that the implied weights of the r-walks decay 

quickly with r. 

The lack of G-stability or any of the other peculiarities of the covariance function of 

CAR(l) models discussed above should not necessarily be regarded as drawbacks of the 

models. This is particularly true when the models are defined on irregular lattices, as we 

next argue. 
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In the case of regular lattices, it is usually convenient to interpret a CAR(l) model as 

the restriction to a finite lattice of a process defined on an infinite lattice. In such a case 

it is certainly desirable that the finite model satisfies any kind of regularity or stationarity 

assumed on the infinite process. This requires edge corrections, which, in general, are difficult 

to perform (see the excellent discussion in Besag and Kooperberg, 1995, Section 2.3) and 

involve the loss of the original Markov property (e.g., Champagnat, Idier and Goussard, 

1998). Such "edge effects" definitely represent drawbacks of spatial autoregressive models. 

Conversely, when the models are defined on irregular lattices, it is hard to see any reason why 

the correlations between units which are not neighbors should necessarily be smaller than 

the correlation between two neighbors. For instance, if two non-contiguous states share more 

(first-order or higher-order) neighbors than two contiguous states, then it may be appropriate 

to allow for the correlation between the two non-contiguous states to be greater than the 

correlation between the two contiguous states. As discussed above, this is precisely what 

CAR models do, because the correlation between two variables in a CAR model is determined 

by weighting all the walks connecting the two corresponding observational units (note that 

the number of walks of length two connecting two units is equal to the number of neighbors 

shared by the two units). 

We continue our analysis with three propositions, and relative discussions, containing 

some further second-order properties which should be of interest to users of CAR(l) models. 

We have said above that the behavior of ,i,j (p) can be irregular for negative p. We now 

specify in which sense the behavior is regular for positive p. 

Proposition 1.3.5 For positive p and any pair of distinct units i and j, ,i,j(p) is positive 

and increasing in p. 

In particular, it is easily checked that the first derivative of ,i,j (p) evaluated at p = 0 is 

equal to [W(i,j)W(j, i)F/2 if i and j are neighbors, 0 otherwise. Proposition 1.3.5 asserts 

that a positive p implies that all pairs of random variables are positively autocorrelated. 

Conversely when p < 0 the correlations may be positive or negative, but, by our comment 

to property (iii) above, are certainly not all positive. The next proposition is concerned with 

the behavior of the correlations at the right extreme of the parameter space of a CAR(l) 

model. 

Proposition 1.3.6 When p approaches A~l from the left, 'i.J(p) -7 1, for each i,j = 1, ... , n. 

Interestingly, the behavior of the correlations close to the other extreme of the parameter 
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space is different. Indeed, it can be deduced from the proof of Proposition 1.3.6 that the 

limit of li,j (p) for P approaching All from the right does not need to be + 1 or -1. 2 In the 

particular case of Modell, Proposition 1.3.6 is a simple application of the celebrated Matrix­

Tree-Theorem for the Laplacian matrix D - A of an unweighted graph G; e.g., Cvetkovic et 

al. (1980), p. 38.3 It should also be remarked that although Proposition 1.3.6 holds for any 

graph, in some circumstances-and especially when the graph is very irregular and Model 2 

is used-li,j (p) can approach 1 almost vertically. For instance, for the Model 2 of Example 

1.3.2, the correlation between Maine and New Hampshire is less than 0.2 for any p < p* with 

p* extremely close to A;;-1, and goes to one very rapidly for p* < p < A;;-l. 

The different limits of li,j (p) at the right and left extreme of the parameter space is only 

one manifestation of the already discussed difference in behavior for negative and positive 

values of p. This is in contrast with time series autoregressions, whose correlations functions 

are either odd or even functions of the autocorrelation parameter. We have: 

Proposition 1.3.7 For any pair of distinct observational units i and j, li)P) zs: (i) an 

odd function if and only ~f G is bipartite and d( i, j) is odd; (ii) an even function ~f and only 

if G is bipartite and d( i, j) is even. 

Obviously, the variances li,i(p) fall within case (ii) of the proposition. The combination 

of Propositions 1.3.6 and 1.3.7 implies that, on a bipartite graph G, when p approaches All 

from the right, li,j(p), i,j = 1, ... ,n, tends to +1 if d(i,j) is even and to -1 if d(i,j) is odd. 

We conclude our discussion of CAR(l) models with a remark on the interpretation of 

li,j(p) in terms of walks in a graph. Since the number of linearly independent non-negative 

powers of W is-as they all share the same eigenspaces-equal to the number s, say, of distinct 

eigenvalues of W, it follows that the infinite series representation (1.4) could be concentrated 

to a weighted sum of s of the powers of W, say li,j(p) = L(j,j) LrE{rl, ... ,r
s

} cr(p)Wr (i,j). 

Thus, li,j (p) could be interpreted in terms of contributions coming only from the walks 

between i and j of s lengths. The reason why we have not adopted this representation is 

that in practice the coefficients Cr (p) are not known in closed form, unless W is an highly 

structured matrix. 

2 Because .AI is not necessarily simple and, even when it is simple, an eigenvector associated to .AI may have 

i-th and/or j-th components equal to zero. 

3 Incidentally, the distributions with singular precision matrix D - A are known in the literature as intrinsic 

autoregressions, and are often used as (improper) priors in Bayesian analysis; see Besag et al. (1991) and Besag 

and Kooperberg (1995). 
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1.3.3 SAR(1) Model 

The main objective of this subsection is to show that the results obtained above for CAR(l) 

models can be extended in a simple manner to SAR(l) models. Contrary to the case of a 

CAR(l) model, in a SAR(l) model the eigenvalues of the matrix Ware generally complex. 

By the Perron-Frobenius theorem for nonnegative irreducible matrices, however, W admits a 

real positive eigenvalue, whose modulus is non-smaller than that of the remaining eigenvalues. 

With a slight abuse of notation, such an eigenvalue is denoted by An. 

A SAR( 1) model is the family of n-variate centered Gaussian distributions with covariance 

matrix ~s,l = (J"2(J - pW)-l V(I - pW,)-l, which is p.d. as long as p is different from 

the reciprocal of the non-zero real eigenvalues of VV. We denote the covariance and the 

correlations in a SAR(l) model respectively by ¢i,j(P) and ¢'L(p), for i,j = 1, ... ,n. Recall 

that, contrary to what happens for the matrices Wand L in a CAR(l) model, in a SAR(l) 

model there is no joint restriction between the matrices Wand V (that is, Wand V can 

be chosen independently). In most applications V = I, which has the virtue of making the 

(null) hypothesis of i.i.d. data testable in the SAR model. 

Given a graph with first distance matrix A (see Section 1.3.1), the most popular speci­

fications of the weights matrix W in applied work are as in Models 1 and 2 above, that is, 

W = D-l A or W = A. We now briefly discuss the interpretation of the covariance structure 

implied by these two specifications, when V = I and, without any loss of generality, (J"2 = 1. 

When W = D-1 A and Ipi < 1, ~s,l admits the power series representation 

CXl 

L {pTl+T2 (D- 1 Afl (AD- 1 f2}. 
Tl,T2=O 

It is easily seen that such an expression implies that any walk between i and j (in the graph 

with adjacency matrix W) contributes to the covariance ¢i,j (p), and that the contribution 

of an 1'-walk (io,i1, ... ,ir) to ¢io,i)P) is pTI:r=oditlII=odi t •
4 On the other hand, when 

W = A, ~s,l is equal to (I - pA)-2 (the square of the covariance matrix of Model 2), which, 

when Ipl < A~l, can be represented as I:;:'o (1' + 1) pT AT. In view of the graph theoretic 

interpretation of the entries of AT, we have a straightforward comparison with Model 2, 

whose covariance matrix can be represented as I:;:'o pT AT; the covariance structure of the 

two models on the same graph G is determined by weighting the same number of walks with 

'INote that if V = D- 2
, then L:s,l = (D - pA)-2, the square of the covariance matrix of Modell. In such 

a case, when Ipi < 1, the contribution of an r-walk is pr Sr / TI~=o dil , where Sr denotes the r-th elementary 

symmetric polynomial in the T + 1 variables dio , d i1 , ... , d ir . 
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different (but similar) functions of p, namely pT in the CAR(l) model and (r + l)pT in the 

SAR(l) model. For p < e-1 the function (r + l)pT, r 2: 0, is decreasing with r, while for 

larger values of p it first increases and then decreases. 

The arguments in the previous paragraph show that the second-order structure of the two 

most popular versions ofthe SAR(l) model is determined in a very similar way as the second­

order structure of CAR(l) models. In particular, this means that all the peculiarities of the 

correlation structure of CAR(l) models listed above will also characterize the two popular 

SAR(l) models. For the sake of brevity, details of such a characterization and extensions to 

more complicated choices of the matrices Wand V are left to the reader. 

It is perhaps worth remarking that, despite the similarities emphasized above, SAR(l) 

models are very different from CAR(l) models in many other respects. For instance, except 

for very particular cases, (i) SAR(l) models on a graph G do not satisfy the classical definition 

of the Markov property with respect to G (see, for instance, Speed and Kiiveri, 1986); (ii) 

they are curved exponential families (see Lemma 1.2.3 above); (iii) they do not admit a simple 

statistical interpretation for their parameter p. 

Although it is difficult to derive a statistical interpretation of the parameter p of a SAR(l) 

model, the following proposition shows that, in the region 0 < p < ->.;;:-1, the larger p is, the 

larger all the correlations (Fi,j (p) are, for any Wand V. 

Proposition 1.3.8 For 0 < p < ,>.;;:-1 and any pair of distinct units i and j, ¢i)p) is positive 

and increasing in p. 

Therefore, in the region 0 < p < ->.;;:-1, the parameter p can be thought of as a measure of 

the spatial correlation in y. When p > ->.;;:-1, the behavior of the correlations as a function of 

p is not as in Proposition 1.3.8 and the just-mentioned interpretation of p does not hold (in 

fact, the restriction p < ->.;;:-1 is usually imposed on the parameter space of SAR models). The 

next lemma compares the correlations of CAR(l) and SAR(l) models when the two models 

are constructed on the basis of the same weights matrix, when V = L = I, and over the 

whole region 0 < p < ->.;;:-1. 

Lemma 1.3.9 For V = L = I, a fixed Wand 0 < p < ->.;;:-1, the correlation between Yi and Yj 

in a SAR(1) model is always greater than the corresponding correlation in a CAR(l) model. 

Finally, the two following results represent the counterparts of Propositions 1.3.6 and 

1.3.7. They hold for any SAR(l) modet5 

5Kelejian and Robinson (1995) contains a numerical investigation of properties of SAR models connected 
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Proposition 1.3.10 When p approaches >-;:;-1, ¢i)p) -+ 1, for each i,j = 1, ... , n. 

Proposition 1.3.11 For any pair of distinct observational units i and j, ¢i)p) is: (i) an 

odd function of p if and only if G is bipartite and d( i, j) is odd; (ii) an even function of p if 

and only if G is bipartite and d( i, j) is even. 

1.3.4 Multi-Parameter Models 

In this section, we discuss how our analysis of CAR and SAR models can be extended from 

the one-parameter case (p = 1) to the multi-parameter case (p > 1). The use of multi­

parameter models is particularly relevant when the data are observed over irregular spatial 

configurations. In that case, it is more unlikely that a family of distributions indexed by one 

parameter (or two, including T2 or (j2) is sufficiently rich to provide a useful representation 

of the associations amongst the random variables in y. This is essentially due to the fact 

that the more irregular a spatial configuration is, the more uncertain the specification of a 

weights matrix is likely to be. In addition, the adoption of multi-parameter models can be 

regarded as an attempt to overcome the restrictive characteristics of the first-order models 

discussed above. 

Given a graph G, there are two fundamentally different ways of increasing the dimension of 

the parameter space of CAR(l) and SAR(l) models, the distinction being based on whether 

or not the resulting multi-parameter models maintain the same conditional independence 

structure as the original one-parameter model. 6 The first approach, which does maintain the 

original conditional independence structure, consists of splitting the edge set E of the graph 

Gin p disjoint subsets E l , ... , Ep , and associating a parameter to each subset, so that C (or 

S) is parametrized as ~f=l PI WI with VVi (i,j) equal to W(i,j) if (i,j) EEL, to 0 otherwise.7 

For instance, on a rectangular grid different parameters may be associated to horizontal and 

vertical edges, to account for potential anisotropy along the two main axes. On irregular 

lattices reasonable criteria for classifying edges will vary from application to application. We 

are not aware of work addressing this issue, but one criterion that might prove to be useful 

to classify edges is their closeness to the borders of the graph, as could be measured, for 

to the results in Propositions 1.3.10 and 1.3.11. 

6For details on the conditional independence structure of a Gaussian model, see, for instance, Speed and 

Kiiveri (1986). In the case of a CAR model, two distinct variables Yi and Yi are conditionally independent 

given all the remaining random variables in y, if and only if W1(i,j) = 0, for each 1= 1, ... ,p. 

7Note that for CAR models, such a construction is hampered by the restriction that each L-1'W1 must be 

symmetric. 

25 



instance, by the number A2(i,j) of common neighbors of two vertices i and j forming an 

edge. 

In the second approach to extending the one-parameter models, additional parameters 

are associated to different degrees of interaction (in a sense to be specified below). In this 

case the models are usually called p-th order models and denoted by CAR(p) and SAR(p). 

Contrary to the time series case, in a spatial setting there is no obvious way to perform 

such an extension. In the following, we show how the use of a graph theoretic perspective 

clarifies the differences among three alternatives that have been proposed in the literature. 

For the sake of simplicity, we limit ourselves to the case W = A, that is, to the case when 

the underlying graph is unweighted. 

Given a graph G, a first possibility is to take Wi = At, l = 1, ... ,p (e.g., Huang, 1984). 

The matrices At have some non-zero elements on their diagonals, which requires some mod­

ifications in our definition of CAR models (see Martin, 1990). The fact that the entries of 

the powers Al count the numbers of l-walks between two vertices, including the ones that are 

not paths, has been seen as a problem by some authors (see Blommestein and Koper, 1997 

and references therein, and Ross and Harary, 1952, for an earlier discussion of the same issue 

in a non-spatial context). As a consequence, a second possible way of defining higher-order 

models is to set Wi = Pt, l = 1, ... ,p, Pt being the matrices with (i,j)-th entry equal to the 

number of paths of length l between i and j. Evidently, Pt =I At, for each l > 1, because of the 

symmetry of A (if A were a triangular matrix, for instance representing temporal unilateral 

interaction, we would have PI = Al, for each l). A third possibility, which in a sense is the 

most natural in the graph metric induced by the graph distance de, .), is to take Wt = At (see 

Anselin and Smirnov, 1996). Of course, the distance matrix At is just the Boolean version of 

Pt. 

An important observation here is that, given a graph G, the three ways of construct­

ing higher-order models imply the same conditional independence structure, both in the 

case of CAR and in the case of SAR models. More precisely, two variables Yi and Yj in a 

CAR(p) model are conditionally independent-given all the remaining variables-if and only 

if d( i, j) > p, whereas they are conditionally independent in a SAR(p) model if and only if 

d(i,j»2p. 

Regardless of how the higher models are constructed, their main difference (in terms of 

correlation properties) from the first-order models is that every walk between two vertices 

is weighted differently according to its possible compositions in terms of steps of length 
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1, ... ,p. As a simple example, let us consider a CAR(2) model on a path formed by three 

vertices. If W2 = A2, then the covariance between the two extremes of the path is equal to 

pi + P2 + 2P2Pi + p~ + ... (the third term, for instance, indicates that there are two ways 

of "walking" from one extreme to the other by composing two I-walks with one 2-walk), 

whereas if W2 = A 2 , then the covariance is pi + P2 + 6p2Pi + 2p§ + 4p~ + ... (here the third 

term indicates that there are six ways of going from one extreme to the other with the same 

composition of walks as above). 

In the rest of the paper we limit ourselves to the third way of constructing higher-order 

spatial autoregressive models and, unless otherwise specified, the names CAR(p) and SAR(p) 

on a graph G will be reserved for the models where the first p distance matrices of G are 

used as weights matrices. 

The CAR(p) and SAR(p) models on a graph G may be regarded as particular cases 

(obtained for q = 1 and q = 2, respectively) of the large class of models Nn(O, Dp,q), with p.d. 

covariance matrix 

Dp,q = (52 (I -t pq,IAI) -q , 
1=1 

where p and q are positive integers, with p ::; d. When PI, ... , Pp are such that the eigenvalues 

of 2:f=1 PIAL are all smaller than one in absolute value, Dp,q admits the representationS 

(1.5) 

It is then clear that the correlation properties derived above for the CAR(I) and the SAR(I) 

models on a graph can be generalized to the models Nn(O, D 1 ,q), q > 2. 

The analysis of the models Nn(O, Dp,q) with p > 1 is more complicated, but, as we are 

about to see, some interesting properties can be derived for particular classes of graphs. 

1.4 Symmetries and Regularities 

In this section we study properties of CAR(p) and SAR(p) models on graphs satisfying 

some symmetries (in a group theoretic sense) or some regularities (in a combinatorial sense). 

The results obtained here are less directly useful to practitioners than those in the previous 

section, but they help to clarify the connection between the covariance properties of spatial 

autoregressions and the properties of the underlying graphs. 

8If further flexibility were required, the models could also be extended to have covariance matrix equal to 

a generalized hypergeometric function with matricial argument. 
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An automorphism of a graph G (e.g., Biggs, 1993) is a permutation 9 on the vertex set 

V(G) preserving adjacency (and non-adjacency), i.e. such that (i,j) E E(G) if and only if 

(g( i), g(j)) E E( G), for any i, j E V (G), where g( i) denotes the action of 9 on i. The set of the 

automorphisms of a graph G, which is obviously a subgroup of the symmetric group of degree 

n, will be denoted by Aut(G). The n x n permutation matrix representing a permutation 9 

will be denoted by Pg . Note that the action of Aut(G) on V(G) induces naturally an action 

on E( G) as well. Evidently, any covariance matrix Dp,q (defined at the end of the previous 

section) is invariant under Aut(G), in the sense that PgDp,qP~ = Dp,q, for each 9 E Aut(G).9 

For notational convenience, let 'Pi,j denote Dp,q( i, j), for any positive integers p :; d and q. 

An immediate consequence of the invariance just described is that 'Pi,j = 'Pl,m if there exists 

9 E Aut(G) such that g(i) = land g(j) = m, for i,j, l, m = 1, ... , n (this property, of course, 

holds also for the correlations). Let us look at an example. 

Example 1.4.1 In Figure 1.3 a planar configuration of observational units is given together 

with a corresponding graph, where two vertices are joined by an edge if the corresponding 

units are contiguous. For this graph, 'Pi,2 = 'Pj,5 when (i,j) = (2,5), (1, 1), (3,3), (4,4), (6,6). 

6 
6 

2 1 

2 4----'-+---'7 
4 

5 

3 I 

Figure 1.3: A planar configuration of observational units and a corresponding graph. 

It is clear that the covariance properties of models defined on graphs having large au­

tomorphism group will be particularly simple. The following definition can be found, for 

instance, in Biggs (1993). 

Definition 1.4.2 A graph G is said to be: vertex-transitive if Aut( G) acts transitively 

9In group theoretic terminology, this is equivalent to saying that any Dp,q belongs to the commuting algebra 

(centralizer) C(G) of the linear representation of Aut(G) inlRn. A basis of C(G) is given by the relationship 

matrices R/, I = 1, ... , t, of the orbits of the action of A ut( G) on V (G) X V (G); James (1957) can be consulted 

for an application of these notions in statistics. 
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on V(G); edge-transitive ~f Allt(G) acts transitively on E(G); distance-transitive if for all 

i,j,l,m E E(G) sllch that d(i,j) = d(l,m), there exists g E Allt(G) sllch that g(i) = land 

g(j) = m. 

It follows from the definition that if G is vertex-transitive, then the variances !.pi,i do not 

depend on i if G, whereas if G is edge-transitive, then that the covariances !.pi,j between 

first-order neighbors do not depend on the pair (i, j). For the reader's convenience, examples 

of a small vertex transitive graph and of a small edge-transitive graph are given in Figure 

1.4. 

Figure 1.4: A vertex-transitive graph (left) and an edge-transitive graph (right). 

It is of interest, at this point, to characterize a notion of stationarity for our models 

on graphs. Given the metric induced by the graph distance de, .), it is natural to consider 

the following definition (we do not distinguish between weak and strong stationarity, as this 

paper is concerned only with Gaussian models). 

Definition 1.4.3 A model for the random vector y, whose index set is in a one to one 

correspondence with the vertex set of a graph G, is said to be G-stationary ~f the covariance 

between any two variables Yi and Yj depends on (i, j) only through d( i, j). 

A sufficient condition for the models Nn(O, Dp,q) to be G-stationary is, evidently, distance­

transitivity of G. However the condition is not necessary, in the same way as vertex­

transitivity of G is not necessary for the models to be homoskedastic. It turns out that 

necessary and sufficient conditions for homoskedasticity and G-stationarity of the models 

Nn(O, Dp,q) are given in terms of combinatorial regularities, rather than group theoretic sym­

metries, of the underlying graphs. To show that this is the case, we need to generalize the 

concepts of vertex-transitivity and distance-transitivity to the concepts of walk-regularity 
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and distance-regularity, respectively. 

A graph is said to be walk-regular if the number of closed r-walks starting from a vertex 

i does not depend on i, for each r 2: 0 (Godsil, 1993, Sec. 5.3). For the first-order models, 

we have: 

Proposition 1.4.4 Any .first-order model Nn(O, DI,q) on a graph G is homoskedastic ~f and 

only ~f G is walk-regular. 

The property does not generally extend to higher-order models (with the distance ma­

trices as weights matrices). This is easily seen from (1.5), because walk-regularity does not 

necessarily imply that the powers of Az, l 2: 2, have constant diagonal. Conversely, if the 

powers of A were used as weights matrices, then the higher-order models on a walk-regular 

graph would always be homoskedastic. 

Consider now the class of distance-regular graphs. A graph is said to be distance-regular if 

{Ao, AI, ... , Ad} is an association scheme, or, equivalently, if Span {Ao, AI, ... , Ad} is a Bose­

Mesner algebra; e.g., Bannai and Ito (1984). Another known basis ofthe Bose-Mesner algebra 

spanned by the distance matrices of a distance-regular graph is { A 0 , A I, ... , Ad}. This class of 

graphs, which contains the class of distance-transitive graphs and is contained in the class of 

walk-regular graphs, has attracted a great deal of attention in both the mathematical and the 

statistical literature. The importance of distance-regular graphs to our treatment of spatial 

autoregressions (and their generalization) is emphasized by the next result. 

Theorem 1.4.5 Any model Nn(O, Dp,q) on a graph G is G-stationary ~f and only ~f G zs 

distance-regular. 

This result, together with Proposition 1.4.4, is in agreement with the well-known fact 

that finite autoregressive models are homoskedastic or stationary only in very special circum­

stances; see, for instance, Besag and Kooperberg (1995), p. 735. A weaker condition than 

G-stationarity, which is of interest to the user of the models has been discussed in Section 

1.3.2 for the CAR(l) model, under the name of G-stability. 

In addition, the notion of distance-regular graph enables us to elucidate the relationship 

between the curvature of a spatial autoregression on a graph G and the regularities of G, in 

the following sense. 

Theorem 1.4.6 Any model Nn(O, Dd,q), q 2: 2, on a graph G is a regular exponential family 

if G is distance-regular with diameter d, a curved exponential family otherwise 
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1.5 Summary of Results and Extensions 

In this final section, we summarize the results of the paper and discuss some issues that have 

not been considered in the paper. 

Our two main contributions to the literature on spatial autoregressive models are as 

follows. Firstly, we have provided an interpretation of the covariance structure of spatial 

autoregressions. The interpretation follows from the fact that, when the neighborhood struc­

ture of the set of the observational units is represented by a graph, the covariance between 

two variables Yi and Yj in a CAR(1) model can be viewed as the generating function of the 

total weight of the walks of the same length between the two vertices i and j (see eq. (1.4)). 

We have argued-by examining some examples and by deriving more formal results-that 

such an interpretation provides a valid tool for understanding the correlation structure of 

CAR(1) models. Extensions to SAR(1) models are straightforward, whereas the treatment 

of multi-parameter CAR and SAR models is more involved, but may be based on that of the 

first-order models. The graph theoretic interpretation also sheds light on how different spec­

ifications of the weights matrices affect the correlation properties of spatial autoregressions. 

This is important, because the specification of weights matrices may be very difficult when the 

models are defined on irregular lattices, due to the fact that the information used to specify 

such matrices is typically uncertain. Secondly, we have studied the properties enjoyed by the 

models when the underlying graphs satisfy symmetries or regularities. This has enabled us to 

give necessary and sufficient conditions for G-stationarity and homoskedasticity of the mod­

els. Rather than by imposing restrictions on the graph, homoskedasticity or G-stationarity 

could, of course, be achieved by changing the marginal distributions of some of the variables 

Yi (for instance by suitably choosing the matrix V in a SAR model). We have not pursued 

this approach in the paper, as it seems to be impractical for arbitrary configurations of the 

observational units. 

Next, we discuss two issues that are relevant to cast the spatial models studied in present 

paper-which are Gaussian models whose inverse covariance matrix has a linear structure-­

into a more general context. The first issue regards the choice of Gaussianity as the joint 

density of a spatial process, the second the choice between parametrizing a covariance matrix 

or its inverse. 

It is natural to ask how the choice of Gaussianity affects the interaction structure of 

a spatial process defined on a graph. The question is best discussed in the context of 
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Markov random fields, of which our CAR models are an example (see Besag, 1974, or 

Section 6.4 of Cressie, 1993). By the Hammersley-Clifford theorem, Gaussianity implies 

that a Markov random field is a pairwise interaction processes (see the same references 

as above for details); roughly speaking, a random field is a pairwise interaction process 

if its log-density does not depend on the data through interaction terms Yil" .Yim of 

order m higher than two. But, again by the Hammersley-Clifford theorem, the same 

restriction is implied by the absence in the graphs of cliques (i.e., sets of vertices which 

are all neighbors of each other) of size greater than two. Note that, in particular, 

bipartite graphs do not contain cliques of size greater than two, because they do not 

admit cycles of odd length (see Section 1.3.1). Hence, Gaussianity does not restrict (in 

the above sense) the interaction structure of Markov random fields defined on a graphs 

without cliques of size greater than two, such as bipartite graphs. On the other hand, it 

may well be possible that non-Gaussian models provide a better representation of data 

observed over graphs with cliques of size greater than two; see Besag and Tjelmeland 

(1998) and Lee et al. (2001). This would be an important aspect to consider in future 

research, since the graphs of irregular lattices do generally contain cliques of size greater 

than two. 

There have been debates in the spatial statistics literature about whether autoregressive 

models or covariance models-i.e., models parametrizing directly the covariance matrix 

rather than its inverse-are more suitable to analyze the spatial structure of a set of 

data. Our simple view on the subject is that, from a pure modelling point of view, 

the choice between the two classes of models should mainly be based on the fact that 

the former are useful when it is desired-perhaps because of the availability of some a 

priori information-to restrict the conditional independence structure of a set of random 

variables, while the latter should be preferred when it is desired to control directly the 

covariance function. IO The present paper can be regarded as an investigation of the 

behavior of a covariance matrix when its inverse has a linear structure. 

Finally, we believe that the graph theoretic treatment given in the paper would also be 

helpful to study the properties of inferential procedures in the context of spatial autoregres­

sions, but this certainly goes beyond the scope of the present paper. 

lOaf course, in practice, the choice between the two specifications may be based on other factors, such as 

the computational convenience of inferential procedures. 
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Appendix. Proofs 

Proof of Lemma 1.2.1 Setting Po = -1 and Wo = I, it is readily verified that the 

a CAR model is a family of densities (1.3) with 7)1 = pd(2T2) and SI(Y) = y'L-1WlY, for 

l = 0,1, ... ,p. Since the matrices Ware assumed to be linearly independent, the (p + 1)­

dimensional statistic s(y) is minimal sufficient. The canonical parameter space n is the set 

of parameters 7)1 such that 2::c ,p = -O:::f=o 7)1 Wl)-1 L is p.d. For any p and any WI, ... , Wp , 

I 2::c,p I is a continuous function of 7)0, ... , 7)p' by the definition of a determinant of a square 

matrix. Thus, I 2::c ,p I -+ ILl as (7)1' ... , 7)p) approaches the p-dimensional zero vector, with the 

consequence that there is always a non-empty p-ball centered at the p-dimensional zero vector 

where 2::c,p is p.d. That is, the parameter space of the model is non-empty for any p and any 

choice of the matrices WI, ... , vVp. Continuity of l2::c,pl also implies that the n is open, which 

completes the proof of the proposition. 

Proof of Lemma 1.2.2 By the discussion above the statement of the lemma, a SAR 

model is a regular exponential family if and only if each matrix B lIh , for h = 0,1, ... ,p 

and l2 = 1, ... , h, is a linear combination of the matrices EI,O, for l = 0, I, ... , p. Such a 

condition implies that if Bllh (i,j) =I- 0 for some pair of units i,j and some pair of indexes 

h, l2, then Bl,O (i,j) =I- 0 for at least one l = 0, I, ... ,p. Note that Bllh (i,j) =I- 0 if and only 

if there exists a unit k such that WI 1 (i, k) =I- 0 and Wi 2 (j, k) =I- 0, and that BI,o (i, j) =I- 0 

implies WI (i, j) > O. It follows that a necessary condition for a SAR model to be a regular 

exponential family is: if for any pair of units i, j and any pair of indexes h, l2 there exists a 

k such that Wi 1 (i, k) =I- 0 and Wl 2 (j, k) =I- 0, then WI (i,j) > 0 for at least one l = 0, ... ,p. 

But, in view of the assumption of irreducibility of 2:::f=o Wi, such a condition is equivalent to 

requiring that for any pair of units i, j, there is an l = 0, ... , p such that WI (i, j) > O. The 

proof of the lemma is therefore completed. 

Proof of Lemma 1.2.3 If I - pW is not full, then the SAR(l) model with spatial 

weights matrix W is a curved exponential family by Lemma 1.2.2. Thus, the dimension of 

.6.1 = span{V-l, V-I W + W'V-1, W'V-1 W}, i.e., the dimension of a a minimal sufficient 

statistic of a SAR(l) model, must be less than 3. That it is 2 is an obvious consequence of 

the fact that V-I and V-I W + W'V-1 are linearly independent. 

Proof of Lemma 1.2.5 The matrix 2::;'~ is the square of a matrix belonging to the 

(p + I)-dimensional subspace wp, Therefore, if wp is a quadratic subspace, 2::;'~ E Wp , i.e. 

the SAR(p) model with covariance matrix 2::s ,p is a regular exponential family. This proves 
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the sufficiency of the condition in the lemma. Conversely, if a SAR(p) model is a regular 

exponential family, ~:;:~ belongs to a (p + I)-dimensional subspace of C(n), say Gp . It then 

follows immediately that the matrices Wo, ... , Wp belong to Gp and that, since they are 

linearly independent by assumption, they span Gp. Hence Gp = Wp, which implies that Wp 

is a quadratic subspace, Definition 1.2.4 being satisfied with Q = ~:;:~/2. 

Proof of Proposition 1.3.3 Exploiting representation (1.4), which always holds in a 

neighborhood of P = 0, we obtain that 

It is then clear that the larger d( i, j) is, the slower ,i,j (p) goes to zero as P --) O. 

Proof of Proposition 1.3.5 For 0 < p < A;:;-1 and any pair of units i and j, (1.4) 

implies that li,j(P), and hence ,i,j(p) is positive. Next, let a superposed dot denote dif­

ferentiation with respect to p. Direct differentiation of ,i,j(p) = li,j(P)/[li,i(P)rj,j(p)]1/2 

shows that i<;)p) is positive in the region 0 < P < A;:;-1 if and only if 2'Yi,j(P)!ri,j(P) > 

'Yi,i(P)!ri,i(P) + 'Yj,j(p)!rj,j(p), We demonstrate that such an inequality holds by showing 

that 'Y i,j (p )r i, i (p) > 'Y i, i (p )r i,j (p) for any i =f- j and 0 < P < A;:;-I. Exploiting the expansion 

L(j,j) L~d(i,j) prwr(i,j) of li,j(P), the last inequality may be rewritten as 

t, r ' {rW(i,j) + i; {kWk(i,j)W,-k(i, i)} } > t,rl i; {kWk(i, i)W,-k(i,j)}, 

(1.6) 

which certainly holds if 

r r 

L {kWk(i,j)wr-k(i,i)} :::: L {kWk(i,i)wr-k(i,j)} , (1. 7) 
k=O k=O 

for each positive integer r and with strict inequality for at least one r. After some simple 

algebraic manipulation and letting r denote lr/2J - 1, the last condition turns out to be 

equivalent to requiring that 

r r 

L {(r - 2k) Wk(i, i)Wr-k(i,j)} :::: L {(r - 2k) Wr-k(i, i)Wk(i, j)} , (1.8) 
k=O k=O 

for each positive integer r (strict inequality certainly holding for r = 1). We now need some 

new notation: given z positive integers hI < h2 < ... < hz, we denote by Chl, ... ,hz the quantity 

Wr-hz(i,i) rr:=3{Wht-ht-l(i,i)Wh2-hl(i,j)}. Considering the graph with adjacency matrix 

W, Chl, ... ,hz can be interpreted as the weight of the all the walks (i, h, ... , lr-l, j) with lr-hl = 

... = lr-h z = i and no other repetition of i (here and in the rest of this proof, by weight of a 

34 



walk from i to j we mean the product of the weights of its steps, without including-as in the 

definition given in Section 1.3.1-the factor L(j,j), which has been conveniently eliminated 

in (1.6) above). We can then rewrite the right-hand side of (1.8) as 

(1.9) 

Observe that if a graph contains a walk (i,h, ... ,lr-1,j) with lr-h = ... = lr-hz = i and 

hI < h2 < ... < hz, then it also contains a walk (i,m1, ... ,mr-Lj) with same weight and with 

mhz-hz_l = ... = mh2-hl = i. It follows that the left-hand side of (1.8) must be at least as 

large as 
1'-1 l' 

rwr(i,j) + L L {[(z - 1) r + 2 (hI - hz)]Chl, .... ,hz} , (1.10) 
z=2 hI , ... ,hz=l 

where, evidently, 
1'-1 

Wr(i,j) = L L Chl, .... ,hz· (1.11) 
z=l hl, ... ,hz=l 

Let us now consider two cases, according to whether or not W r (i, j) is less than the right-hand 

side of (1.8). In the latter case (1.8) holds trivially, because the coefficients r - 2k are decreas­

ing in k. Conversely, it is easily seen that ifwr(i,j) is less than I:~=d(i,j){wr-k(i, i)Wk(i,j)}, 

then there is at least one walk of length r from i to j visiting i at least twice in its second half, 

that is, at least one of the coefficients Ch 1 , .... ,hz , for z > 1 and hI, ... , hz = 0, ... , f is positive. 

Then, putting (1.9), (1.10) and (1.11) together, it emerges that (1.8) holds for each positive 

r even when W r (i, j) is less than the right-hand side of (1.8), which completes the proof of 

the second and last part of Proposition 1.3.5. 

Proof of Proposition 1.3.6 Rewrite the covariance matrix ~e,l = (J - pW)-l L as 

The matrix L -1/2W L1/2 appearing in such an expression is symmetric because L -1 W is, and 

has eigenvalues AI, ... , An because it is similar to W. Thus, it admits a spectral decomposition 

L~=l AlqZqf, where ql is an eigenvector of L -1/2W L 1/2 associated to AI. It follows at once that 

~ =L1/2~( 1 qql)L1/2. 
e,l L..- 1 A I I 

1=1 - P I 

According to the Perron-Frobenius theorem for nonnegative irreducible matrices (applied to 

L -1/2W L1/2), An is a simple eigenvalue and there exists an entrywise positive eigenvector qn' 

It follows that the (eigenprojection) matrix qnq~ is entrywise positive, from which it is easily 

seen that ''/i,j(p) --7 (qnMqn)j/[(qn);(qn);P/2 = 1 as p --7 A;;\ for i,j = 1, ... ,n. 
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Proof of Proposition 1.3.7 Evidently, any correlation li,j (p) is symmetric about the 

origin or the vertical axis if and only if the covariance li,j (p) satisfies the same symmetry. 

Thus, it suffices to prove the proposition for any function li,j (p), with i i= j. If G is bipartite, 

then Al = An by Lemma 1.3.1, and therefore the power series representation (1.4) is valid 

over the whole parameter space of the CAR(l) model on G. It is well known that a bipartite 

graph does not contain any cycles of odd length, which entails that WT (i, j) = 0 if rand 

d(i,j) have different parity. This is because if WT(i,j) were different from zero for rand 

d( i, j) with different parity, there would be a closed walk in G of length r + d, which would 

be odd. Then G would not be bipartite, for a closed walk of odd length always contains a 

cycle of odd length. As a consequence, 

if d( i, j) is odd, 

if d( i, j) is even. 

The sufficiency of the conditions in (i) and (ii) is then a consequence of the symmetries of 

the function pT. The necessity part follows trivially from the fact that if G is not bipartite, 

then the function li,j(P) is neither odd nor even, as XLI i= _A;:;1 by Lemma 1.3.1. 

Proof of Proposition 1.3.8 By using a power series expansion of (I - pW)-1 (and of 

its transpose), it is easily seen that, for 0 < P < A;:;1, :Es,l is nonnegative. Hence, rPi,j(p) is 

positive for 0 < P < A;:;1 and any pair of units i and j. That rPi,j(p) is increasing in P can be 

proved by obvious modification of the argument used in the proof of Proposition 1.3.5. 

Proof of Lemma 1.3.9 When V = L = I, :Ee,l = (I - pW)-1 and :Es,1 = :E;,I' Clearly, 

in the region 0 < P < A;:;1, rPi,j (p) > li,j (p) for any i i= j, because rPi,j (p) = I:~o pTf;VT (i, j) 

and li,j (p) = I:~o (r + 1) pTWT (i, j). It follows that rPi,j (p) > li,j (p) if and only if 

(rPi,j(p))2 > rPi,j(P)rPi,j(P) 

(,i,j(p))2 li,i(P)/j,j(p)' 
(1.12) 

We show that (1.12) holds for any i i= j, by showing that ¢i,j(P)/i,i(P) > rPi,Jp)/i,j(P) for 

any i i= j. The last inequality may be rewritten as 

But this is clearly equivalent to 
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and therefore the lemma follows by applying inequality (1.7), which has been established in 

the course of proving Proposition 1.3.5. 
1 - 1 -

Proof of Proposition 1.3.10 RewriteL:s,l as V 2L:V2 , where f: = (I - pW)-l(J -

pW,)-l, with W = V-~WV~. Consider the spectral decomposition L~=l AZ (f:)qZ (f:)QZ (f:)' 

of f:, where q{ (f:) is an eigenvector of f: associated to the eigenvalue AZ (f:). By using a power 

series expansion of (I - pW)-l (and of its transpose), plus the fact that W is similar to W, 

one sees that, for 0 < p < A;;:-l, f: is nonnegative and irreducible. Thus An(f:) is simple by the 

Perron-Frobenius theorem, and is the only eigenvalue that does not go to a finite number as 

p -+ A;;:-l, because, as it is easily seen, f:-1 has rank n - 1 when p = A;;:-l. Next, observe that, 

as p -+ A;;:-l, qn(f:) -+ V- 1/ 2qn, where qn is the eigenvector of W associated to An (because 

when p = A;;:-l, f:-1 has an eigenvector V- 1/ 2qn corresponding to its smallest eigenvalue 0). 

The proposition is then proved by using a spectral decomposition of f: and applying a similar 

argument as in the last part of the proof of Proposition 1.3.6. 

Proof of Proposition 1.3.11 Expressing it as the ratio of the cofactor of L:;;:i(i,j) 

to the determinant of L:;;:i, it is apparent that ¢i,j (p) is a rational function and as such is 

completely determined by the values it takes on any non-empty open interval included in its 

domain. Hence, by the remark at the beginning of the proof of Proposition 1.3.7, in order to 

show that a correlation ¢i,j (p), for i #- j, is symmetric about the origin or about the vertical 

axis, it suffices to prove that the covariance ¢i,j (p) satisfies the same symmetry in the region 

Ipi < A;;:-l. For Ipl < A;;:-l, the covariance matrix of a SAR(l) model admits the representation 

00 00 

r=O r=O 

and therefore its (i, j)-th entry can be written as 

From this point on the proof is similar to that of Proposition 1.3.7. If G is bipartite and 

d( i, j) is odd, then it is impossible to find an l such that wr (i, l) W S (j, l) > 0 for positive 

integers T and s having the same parity. This is so because otherwise there would be a closed 

walk of length d( i, j) + T + s in G, which would be odd; therefore G could not bipartite, for 

a closed walk of odd length always contains a cycle of odd length. By the same argument, if 

G is bipartite and d( i, j) is even, then there is no l such that wr (i, l) W S (j, l) > 0 for some 

positive integers T and s having different parity. For Ipl < ,\;;:-1, we then have that for a 

37 



SAR(l) model on a bipartite graph, 

{ L~=l; r+s odd {pr+s L~l [V (l, l) wr(i, l)ws(j, l)]}, 
¢i,j(P) = 

L~=l; r+s even {pr+s L~l [V (l, l) wr(i, l)ws(j, l)]}, 

if d( i, j) is odd, 

if d( i, j) is even. 

The proposition follows from the fact that the function pr+s is odd if r + s is odd and even 

if r + s is even. 

Proof of Proposition 1.4.4 Rewrite L;c,l as (p-l I - A) # /(p Ip-l I - AI), where B# 

denotes the adjoint matrix of a matrix B, and let G\i be the graph obtained from G by 

deleting the vertex i. Then it is immediate that, for any i = I, ... , n, 

.. (P ( G\ i; P -1) ) q 
Ol,q(Z,z)= pP(G;p-l) , (1.13) 

where P(G) = p(G;p-l) denotes the characteristic polynomial Ip-lI - AI (in the formal 

variable p-l) of the adjacency matrix of G. Since a graph G is walk-regular if and only if 

P (G\i) does not depend on i E V(G) (Godsil, 1993, p. 81), the variances Ol,q(i, i) do not 

depend on i if and only if G is walk-regular. 

Proof of Theorem 1.4.5 (Sufficiency) Recall, the distance matrices of a distance-regular 

graph span a Bose-Mesner algebra. Since, as it is well known, a Bose-Mesner algebra is closed 

under matrix generalized inversion, we have that, when the graph G is distance-regular and 

for any 1 ::; p ::; d and q > 0, Op,q is a linear combination of the distance matrices of G. Thus 

Op,q is the covariance matrix of a G-stationary model, by Definition 1.4.3. (Necessity) Let 

D be Span {Ao, ... , Ad}. It is easily seen from representation (1.5) that Op,q E D (i.e. the 

model is G-stationary) implies Al E D, for 0 ::; r ::; d. Since these d + 1 powers are linearly 

independent (because for any 0 < t ::; d, Ai (i,j) i= 0 implies Al (i,j) = 0, 0 ::; r < t), 

they form a basis for D. Therefore, if the distance matrices of G belong to D, then they 

are polynomials of maximum degree d in AI, which is a sufficient condition for G to be 

distance-regular (Bannai and Ito, 1984, pp. 190-192). 

Proof of Theorem 1.4.6 (Sufficiency) Straightforward, because if G is distance-regular, 

then Span {Ao, ... , Ad} is an algebra of symmetric matrices and hence a quadratic subspace. 

Hence any model Nn(O,Od,q), q ;:::: 2, on a distance-regular graph is a regular exponential 

family by obvious extension of Lemma 1.2.5. (Necessity) For a model Nn(O, Od,q), q ;:::: 2, to 

be regular exponential, Od,~ must belong to a (d + I)-dimensional subspace of £(n), say <Pd,q' 

If Od,~ E <Pd,q, also Al E <Pd,q, 0 ::; r ::; d, because of representation (1.5). Since the matrices 

AI, 0 ::; r ::; d, are linearly independent they span <Pd,q, and hence G is distance-regular, by 

the same argument as in the proof of Theorem 1.4.5. 
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Chapter 2 

Power Properties of Invariant Tests 

for Spatial Autocorrelation in 

Linear Regression 

Abstract 

Many popular tests for residual spatial autocorrelation in the context of the linear re­

gression model belong to the class of invariant tests. This paper derives a number of exact 

properties of the power function of such tests. In particular, we extend the work of Kramer 

(2005, Journal of Statistical Planning and Inference 128, 489-496) by characterizing the cir­

cumstances under which the limiting power, as the autocorrelation increases, vanishes. More 

generally, the analysis in the paper sheds new light on how the power of invariant tests for 

spatial autocorrelation is affected by the matrix of regressors and by the spatial structure. 

A numerical study aimed at assessing the practical relevance of the theoretical results is 

included. 

Keywords: Cliff-Ord test; invariant tests; linear regression model; point optimal tests; power; 

similar tests; spatial autocorrelation. 
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2.1 Introduction 

Testing for residual spatial autocorrelation in the context of the linear regression model (e.g., 

Cliff and Ord, 1981, Anselin, 1988, Cressie, 1993) is now recognized as a crucial step in much 

empirical work in economics, geography and regional science. The present paper is concerned 

with finite sample power properties of tests used for this purpose. More specifically, our 

main objective is to understand how power is affected by the regressors and by the spatial 

structure. 

So far, the power properties of tests for residual spatial autocorrelation have received much 

less attention than those of tests for residual serial correlation, and have mainly been studied 

by Monte Carlo simulation (see Florax and de Graaff, 2004, and references therein). Very 

few attempts have been made to derive exact properties of such tests, two notable exceptions 

being King (1981) and Kramer (2005). The former paper has established that the most 

popular test for spatial autocorrelation in regression residuals, the Cliff-Ord test, is locally 

best invariant for an important class of alternatives. The latter paper has generalized some 

results previously available for tests of serial autocorrelation (see Kramer, 1985, and Zeisel, 

1989); in particular, Kramer (2005) has shown analytically that there are cases in which the 

power of some tests for spatial autocorrelation (namely, those whose associated test statistics 

can be expressed as ratios of quadratic forms in the regression residuals) can vanish as the 

spatial autocorrelation in the data increases. In general, it is fair to state that, while there 

is some evidence in the literature that the properties of tests for spatial autocorrelation can 

be very sensitive to the regressors and to the spatial structure, little is known about which 

combinations of regressors and spatial structures lead to low or high power. 

Of course-given the popularity of the linear regression model and the pervasiveness of 

the issue of spatial autocorrelation in many empirical investigations-a large number of pro­

cedures are available for the purpose of testing for residual spatial autocorrelation, and one 

can choose among them on the basis of the suspected form of autocorrelation or on the basis 

of the desired properties of the testing procedure. In this paper, we confine ourselves to a 

rather simple, but extremely popular, framework. We assume that the regression errors follow 

a (first-order) spatial autoregressive process (e.g., Cressie, 1993) and we focus on invariant 

tests (e.g., Lehmann and Romano, 2005). Even in this simple setup the analytical investi­

gation of exact power properties of tests is complicated. Because of the availability of many 

approximating techniques for power functions, this is not necessarily a problem when interest 

lies in the properties of a test in the context of a given model, i.e., when both the matrix of 
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regressors and the spatial structure are fixed. However, when interest is, as in this paper, in 

how the properties of a test depend on the regressors and on the spatial structure, none of 

the available numerical or analytical approximations is likely to yield conclusive results. One 

feature of our approach is that some new properties of the power function of invariant tests 

are deduced directly from the density of the pertinent maximal invariant avoiding the need 

for complicated expressions for power functions or approximations to them. 

Our contributions are as follows. Firstly, we extend the results of Kramer (2005) in several 

directions: we formulate conditions, that are in general very simple to check, for the limiting 

(as the autocorrelation increases) power of any invariant test to be 0, I, or in (0,1); we prove 

that, for any given spatial structure and irrespective of the size of the tests, there exists 

an infinite number of subspaces spanned by the regressors such that the limiting power of a 

locally best or point optimal invariant test vanishes; we characterize such "hostile" subspaces. 

Secondly, we discuss some conditions that are sufficient for unbiasedness of invariant tests 

for spatial autocorrelation and for monotonicity of their power function. Such conditions are 

not necessary, but they help to understand the causes of undesirable properties of the tests. 

These results call for caution in interpreting the outcome of tests for residual spatial 

autocorrelation, especially when the number of degrees of freedom is low and large autocor­

relation is suspected. The results have also implications outside a formal hypothesis testing 

framework, because they imply that there are circumstances in which the practice of inter­

preting the Cliff-Ord statistic, or even the Moran statistic when the model does not contain 

regressors, as an autocorrelation coefficient (e.g., Cliff and Ord, 1981, Anselin, 1988) cannot 

be justified. 

The remainder of the paper is organized as follows. Section 2.2 presents the theoretical 

framework of the paper, i.e., the testing problem and the tests considered. Section 2.3 

analyzes the limiting power of invariant tests for spatial autocorrelation. This is done by 

first considering the general case of a model with arbitrary regressors, and then specializing 

the results to zero-mean models. A numerical study of the practical relevance of the results 

is included. Further insights into the role played by the regressors and the spatial structure 

in determining the power of invariant tests of autocorrelation are gained in Section 2.4, 

by analyzing the conditions for unbiasedness of the tests and monotonicity of their power 

functions. Section 2.5 concludes. All proofs are collected in the Appendix. 
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2.2 The Setup 

2.2.1 The Testing Problem 

Consider a .fixed and finite set of n observational units, such as the regions of a country, and 

let y = (Yl, ... , Yn)', where Yi denotes the random variable observed at the i-th (according to 

some arbitrary ordering) unit. We assume that Y is modelled according to a Gaussian linear 

regression model, i.e., 

Y r-.; N(XfJ, a2~(p)), (2.1) 

where X is a non-stochastic n x k matrix of rank k < n, fJ is a k x 1 vector of unknown 

parameters, a 2 is an unknown positive parameter and p is a scalar unknown parameter 

belonging to some connected subset W of the set of values of p such that ~(p) is positive 

definite. We assume that the function p -> ~(p) is differentiable, and that the parameters of 

the model are identified (in the sense that the parameter space of the model does not contain 

two distinct points indexing the same distribution) and functionally independent. In this 

paper, we will often refer to the case of a general ~(p), but will be mostly concerned with 

the specific covariance structures implied by spatial autoregressive process. 

There are two distinct classes of Gaussian spatial autoregressive processes: conditional 

autoregressive (CAR) processes and simultaneous autoregressive (SAR) processes. They 

are both discussed extensively in many books and articles in the statistics and econometrics 

literature (e.g., Whittle, 1954, Besag, 1974, Cliff and Ord, 1981, Anselin, 1988, Cressie, 1993), 

to which we refer for details concerning the construction and interpretation of the models. 

Here, we only briefly define the covariance matrices implied by the models. As in most of the 

theoretical and empirical literature on spatial autoregressive processes, we confine ourselves 

to .first-order (or one-parameter) processes. Such processes are specified on the basis of a 

fixed n x n (spatial) weights matrix W, chosen to reflect a priori information on relations 

among the n observations. Typically, the (i, j)-th entry of W is set to zero if i and j are not 

neighbors according to some metric that is deemed to be relevant for the phenomenon under 

analysis, and is set to some non-zero number, possibly reflecting the degree of interaction, 

otherwise. For instance, if the observational units are the regions of a country, one may set 

W(i,j) = 1 if i and j share a common boundary, W(i,j) = 0 otherwise. 

Let I denote the n x n identity matrix. Provided it is symmetric and positive definite, 

the matrix ~(p) implied by a CAR specification is 

~(p) = (I - pW)-l L, 
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where L is a fixed n x n diagonal matrix such that L -1 W is symmetric ((J2 L( i, i) represents the 

variance of Yi conditional on all the remaining random variables in y). We remark that, even 

without reference to CAR models, structure (2.2) constitutes a very natural framework in 

which to study tests for autocorrelation; see, e.g., Anderson (1948), Kadiyala (1970), Kariya 

(1980), King (1980). 

On the other hand, provided that 1- pW is nonsingular, a SAR process implies 

(2.3) 

where V is a fixed n x n symmetric and positive definite matrix. 

For both CAR and SAR models, we assume: 

(i) W(i, i) = 0, for i = 1, ... , n; 

(ii) W(i,j) 2': 0, for i,j = 1, ... ,n; 

(iii) W is an irreducible matrix (e.g., Gantmacher, 1974, Ch. 13). 

Condition (i) is required by the way CAR models are constructed, and is assumed for 

SAR models merely for convenience. Condition (ii) is not required by the definition of the 

models, but is virtually always satisfied in empirical applications. Condition (iii) is a natural 

assumption in a spatial context; in graph theoretic terms, it amounts to requiring that the 

graph with adjacency matrix W (that is, the graph with the n observational units as vertices 

and an edge from i to j if and only W(i,j) i- 0) is strongly connected, i.e., has a path between 

any two distinct vertices (e.g., Cvetkovic et al., 1980, p. 18). Observe that (non-circular) 

AR(l) models are not in our class of SAR processes, because the matrix W necessary to 

write the covariance matrix of an AR(l) process as in equation (2.3) would be triangular and 

hence reducible. Also note that, as a consequence of the symmetry of L -1 W, in CAR models 

W(i,j) = ° if and only if W(j, i) = 0, for i,j = 1, ... ,n. This implies that, in CAR models, 

W can be assumed to be irreducible without loss of generality, because otherwise the model 

could be decomposed into the product of (at least) two processes. 

In the context of model (2.1), we wish to test the null hypothesis p = ° versus the one­

sided alternative p > ° (here and throughout, p > ° stands for jR+ n \]J, i.e., we leave it 

implicit that p must belong to the parameter space of the model). The choice of a one-sided 

alternative rather than a two-sided one is dictated by the fact that the former is more relevant 

in the context of many popular specification of :B(p), including those implied by CAR and 

SAR processes, due to the interpretation of p in such processes (see below). 
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We assume-and this is an important point for the reading of the present paper-that 

2::(0) = 1. Since, as far as our testing purposes are concerned, this does not involve any loss 

of generality, from now on and unless otherwise specified we reserve the term "CAR model" 

to refer to the family of distributions 

(2.4) 

(for a fixed W) and the term "SAR model" to refer to the family of distributions 

N(X{3, ()"2 [(1 - pW/) (I - pW)] -1), (2.5) 

(again, for a fixed W). The normalization to 2::(0) = 1 emphasizes a crucial difference be­

tween CAR and SAR models, with regards to our testing problem: for CAR models there is 

no loss of generality in assuming that W is a symmetric matrix, whereas for SAR models we 

have to allow explicitly the possibility of a nonsymmetric W. In fact, we shall see that there 

are substantial differences between SAR models with a symmetric weights matrix, hence­

forth referred to as symmetric BAR models, and SAR models with a nonsymmetric weights 

matrix-henceforth referred to as asymmetric BAR models. The most popular nonsymmetric 

weights matrices in applications are those obtained by row-standardizing a preliminary ma­

trix (e.g., Anselin, 1988). In the rest of the paper, a row-standardized W is one that can be 

written as W = D-1 A, where A is a symmetric (0 - 1) matrix and D is the diagonal matrix 

with D(i, i) = 2::7=1 A(i,j), i = 1, ... , n. 

By the Perron-Frobenius theorem, W admits a positive eigenvalue that is (algebraically 

and geometrically) simple and non-smaller in modulus than any other eigenvalue. We denote 

such an eigenvalue by A. For both CAR and SAR models we take the set jR+ n \If to be 

the interval (0, A-I). Such a restriction is necessary for positive definiteness of the covariance 

matrix of a CAR model. For a SAR model, it is not necessary, but has the advantage of guar­

anteeing connectedness of the parameter space and of avoiding some undesirable properties 

of the covariance structure implied by the model. 

When 0 < p < A-I, it is easily established (e.g., Gantmacher, 1974, p. 69) that conditions 

(ii) and (iii) imply that the covariance between any two variables Yi and Yj in both CAR and 

SAR models is strictly positive (similarly, it can be shown that when p < 0 the covariances 

may be positive or negative, but not all of them are positive in a left neighbor hood of A-I). 

Thus, the hypothesis p > 0 represents positive spatial autocorrelation, a much more common 

phenomenon in practice than negative spatial autocorrelation. 
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2.2.2 The Tests 

This paper is concerned with invariant tests (see, e.g., Lehmann and Romano, 2005). Roughly 

speaking, these are the tests that preserve the symmetries satisfied by the testing problem 

in question. More precisely, a test is said to be invariant with respect to a certain group of 

transformations of the sample space if it is based on a test statistic that is constant on each 

orbit of that group. A necessary and sufficient condition for this type of invariance is that 

the test statistic is a function of a maximal invariant under that group. 

Our problem of testing p = 0 against p > 0 in model (2.1) is invariant with respect 

to the group of transformations y -7 ay + Xb, where a E ]R?+ and b E ]R?k (e.g., Kariya, 

1980, or King, 1980). A maximal invariant under this group is v = Cy/IICyll, where C 
is an (n - k) x n matrix such that CC' is the identity matrix of order n - k and C'C is 

M = 1- X(X'X)-lX', and 11·11 denotes the Euclidean norm. For some positive integer m, 

let 8m = {v E ]R?m : IIv II = I} denote the unit m-dimensional sphere. The distribution of v 

depends on the single parameter p, and has density, with respect to the normalized Haar 

measure on 8n -k, 

n-k 

pdJ(v;p) = IC~(p)C'I-~ [v' (C~(p)C')-lv]--2 (2.6) 

(see Kariya, 1980, equation (3.7)). Since pdJ(v; p) does not depend on v when p vanishes, 

testing p = 0 in N (X f3, (72 ~(p)) by means of an invariant test reduces to testing uniformity 

of v on 8n -k. 

Besides the "principle of invariance", there are at least two other reasons why invari­

ant tests are particularly appealing for our testing problem. Firstly, invariant tests can be 

implemented easily. Since an invariant test statistic must depend on y only through v, its 

distribution under the null (and also under the alternative) is free of nuisance parameters, 

and hence critical values can, in general, be obtained accurately by Monte Carlo or other nu­

merical methods. In fact, the class of similar tests for p = 0 coincides with that of invariant 

tests (Hillier, 1987). Secondly, expression (2.6) turns out to be proportional to the marginal 

likelihood of p, which has often been found to provide a better basis for inference about p 

than the full likelihood of model (2.1) (particularly when k is large with respect to n); see, 

for instance, Diggle (1988), Tunnicliffe Wilson (1989) and Rahman and King (1997).1 

1 The literature on the comparison between maximum likelihood and restricted maximum likelihood, REML, 

is also relevant here, although REML usually refers to the marginal likelihood of all the covariance parameters, 

i.e., both p and 0-
2 in our case. 
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Despite the elimination of the nuisance parameters achieved in (2.6), it is well known that, 

in general, a uniformly most powerful invariant (UMPI) test does not exist for the testing 

problem under consideration. In such a situation, one can resort to a test that is optimal 

according to some exact criterion (see, for instance, Cox and Hinkley, 1974, p. 102), or to 

a test that has less clear-cut optimality properties but performs well in general, such as a 

likelihood ratio test (which is an invariant test, as proved for instance in Cox and Hinkley, 

1974, p. 173) or its restricted version based on pdJ(v;p). The present paper is particularly 

concerned with the tests-named point optimal invariant (POI) tests by King (1988)-that 

are the most powerful amongst all invariant tests against a specific alternative p = p > 0, and 

with the locally best invariant (LEI) test, which is obtained as the limiting case for p ---) O. In 

general, and certainly for our testing problem, the locally most powerful test coincides with 

the test maximizing the slope of the power function at p = 0 (see Lehmann and Romano, 

2005, p. 339). The choice of POI and LEI tests is mainly motivated by the fact that POI tests 

define the upper bound (the so-called power envelope, see below) to the power attainable by 

any invariant test of a fixed size, and by the popularity of LEI tests, especially in the context 

of the spatial models we are concerned with in this paper. 

The size of a critical region (henceforth c.r.) is denoted by a and, to avoid trivial cases 

and unless otherwise specified, is assumed to be in (0,1). The critical value for a size-a test 

will be denoted by Ca. The POI (or best invariant) C.r. at the point p, obtained by application 

of the Neyman-Pearson Lemma to the density (2.6), is defined by 

V' (CL;(p)C,)-l V < Ca. (2.7) 

Denoting by 7rp (p) the power of such a c.r., the power envelope of size-a invariant tests is the 

function that associates the value 1'1 p (p) to each p 2: O. When needed, we will emphasize the 

dependence of 7rp(p) on X by writing 7rp(p, X). The LEI C.r. for testing p = 0 against p> 0 

is defined by 

v'CAoC'v < Ca , (2.8) 

where Ao = dL;-l(p)/dp/p=o (King and Hillier, 1985). When -Ao is equal to some spatial 

weights matrix W (or to W + W'), as it is in the case of CAR or SAR models, the LEI test 

is known in the literature as Cliff-Ord test (see Cliff and Ord, 1981, and King, 1981). The 

Cliff-Ord test represents the generalization to regression residuals of the Moran test (Moran, 

1950), and is, by far, the most popular test for spatial autocorrelation in regression models. 2 

2Being based on only the first derivative of L; (p), the LBI tests for L; (p) = I have generally non-trivial 
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Before we continue, some notation is in order. For a q x q symmetric matrix Q, we denote 

by Al(Q), ... , Aq(Q) its eigenvalues, labeled in non-decreasing order of magnitude; by mi(Q) 

the multiplicity of Ai( Q), for i = 1, ... , q; by fl (Q), ... , fq( Q) a set of orthonormal (with respect 

to the Euclidean norm) eigenvectors of Q, with the eigenvector h(Q) being pertinent to the 

eigenvalue Ai (Q); by Ei ( Q) the eigenspace associated to Ai (Q), for i = 1, ... , q. In all of the 

above quantities, we suppress the reference to Q when Q is a (symmetric, with q = n) weights 

matrix. Thus, for a symmetric W, An = A. 

2.3 Limiting Power 

This section contains the main results of the paper. Broadly speaking, they concern the 

role of the regressors in determining power properties of invariant tests for autocorrelation. 

In Section 2.3.1, we discuss some preliminary results in the context of the general model 

(2.1). Then, we focus on the limiting behavior of the power function, as the autocorrelation 

increases, in CAR and SAR models, with general regressors in Section 2.3.2, and without 

regressors in Section 2.3.3. Finally, in Section 2.3.4 we report results from numerical experi­

ments aimed at assessing the practical relevance of the theoretical results. 

2.3.1 Preliminaries 

Consider the issue of how X in N (X j3, (j2 L: (p)) affects the the power properties of invariant 

tests of p = 0 versus p > 0, for some covariance structure L:(p). The following proposition sets 

the scene for the analysis to follow. It is concerned with comparing the envelope 7rp (p, X), 

for an X =1= 0, with the envelope when X = 0 (here and throughout a zero matrix is simply 

denoted by 0). 

Proposition 2.3.1 Consider testing p = 0 versus p > 0 in model N(Xj3, (j2L:(p)). For any 

X =1= 0, any p > 0, and any 0:, 

(2.9) 

In {2.9} equality is attained ~f and only if, for some i = 2, ... , n - 1, col(X) ~ Ei(L:(p)) and 

0: = Pr(v'L:-l(p)v < Aj-l(L:(p)). 

power against a large class of alternative specifications of B (p), which is at the same time a strength and a 

weakness of such tests. In any case, this does not detract from the fact that it is important to study their 

performance against particular alternatives, spatial autoregressive models in our case. 
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The conditions for equality in (2.9) are extremely restrictive, because they pose very severe 

constraints on X, 0:, and :E(p). Proposition 2.3.1 asserts that, except when these conditions 

are met, the presence of any X =I- 0 in N(X(3, (j2:E(p)) has a detrimental effect (with respect 

to the case X = 0, and as long as (3 is unknown) on the maximum power achievable by an 

invariant test for testing p = 0 versus p > O. 

Two comments arise naturally from Proposition 2.3.1. The first comment is that the 

comparison in the proposition involves models (the one with X = 0 and the one with an 

X =I- 0) with different degrees of freedom. An interesting question is which matrices X of 

a fixed dimension n x k are favorable, and which are less favorable, to our testing purposes 

(from the point of view of the maximum power achievable by invariant tests). Such a question 

is a difficult one, because, for a given matrix :E(p), in general the answer depends on p and 

0:. Some partial answers are available in the literature for regression models with AR(l) 

errors; see, e.g., Tillman (1975). The second comment is that, in practice, one is usually 

more concerned with the power of a specific test than with the power envelope. For a general 

:E(p), Proposition 2.3.1 does certainly not imply that the power function of a particular test 

when X = 0 is uniformly (over p > 0) non-smaller than when X =I- 0 (it is interesting, 

however, that such an implication does hold when :E(p) is that of a CAR model and the test 

in question is a POI or LBI test, because for a zero-mean CAR model the POI C.r. (2.7) does 

not depend on p, i.e., there exists a UMPI test, and hence the power function of any POI or 

LBI test coincides with 7fp (p, 0)). 

To deal with the issues raised in the previous paragraph, we will focus on large values 

of p in CAR and SAR models. Exact power properties of invariant tests will be deduced 

directly from the density of the maximal invariant v. For convenience, we now list some 

fundamental properties of pdf(v; p), valid for any fixed p. Let 0.p = C:E(p)C', and let 

Ei(0.p ) = Sn-k n Ei(0.p ) , 1 ::; i ::; n - k. The density pdf(v; p) is antipodally symmetric 

(that is, pdf(v; p) = pdf ( -v; p)) and, more specifically, is constant on the regions of constant 

v'0.;l v (geometrically, such regions are the intersection of the surfaces of a sphere and of an 

ellipsoid in JRn-k). It follows immediately that: 

(i) pdf(v; p) is maximized over Sn-k when v'0.;l v is minimized, that is, when v E En-k (0.p ). 

Note that En - k (0.p ) consists of two antipodal points if and only if mn-k (0.p ) = 1; 

(ii) pdf(v; p) is strictly decreasing as v moves from Ei(0.p ) to Ej(0.p ) along any geodesic of 

Sn-k, for any 1 ::; j < i ::; n - k; 
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(iii) upon rotation to a coordinate system provided by a set of n - k orthogonal eigenvectors 

of Op, pdf(v; p) is invariant to the sign of each component of the vector v. 

Property (i) will be used to derive some of the results to follow. Property (ii) implies that 

any invariant C.L that is not centrally symmetric (we say that an invariant C.L <P E Sn-k 

is centrally symmetric if t E <P implies -t E <p) is dominated uniformly over p (in terms of 

power) by a centrally symmetric C.L of the same size. Because of this reason, from now 

on we assume that an invariant C.L is centrally symmetric. This corresponds to enlarging 

the group of transformations with respect to which we require invariance to include also the 

transformation y ----+ -yo Property (iii) is not exploited directly in this paper, but is very 

useful when thinking geometrically about our testing problem, for it implies that the study 

of pdf( V; p) can be limited to a single orthant of Sn-k. 

The following preliminary result links the limit, as p approaches some positive value a 

(from the left, and with a an accumulation point of \If), of the power function of an arbitrary 

invariant C.L to the limiting eigenstructure of Op. We denote limOp by 0, the limit being 
p-->a 

taken entrywise. 

Lemma 2.3.2 Suppose that "L,(p) is positive definite for p E (0, a) and for p ----+ a. If An-k (0) 

is finite, then the power of any invariant c. r. for testing p = ° against p > ° in model 

N(X(3, (J2"L,(p)) tends, as p ----+ a, to a number strictly between ° and 1. If An-k (0) is infinite 

and simple, then the power of an invariant c. r. for the same testing problem tends, as p ----+ a, 

to 1 if the c. r. contains f n-k (0), to 0 otherwise. 

Lemma 2.3.2 holds for a very general class of matrices ~(p), including CAR and SAR 

models, and the (time-series) stationary AR(1) model. For the latter model, the power of 

the Durbin-Watson and some related tests as p ----+ 1 has been investigated extensively; see 

Kramer (1985), Zeisel (1989) and Bartels (1992). Lemma 2.3.2 shows how some results on 

the power of such tests can be extended to any invariant (similar) test for serial correlation. 

Of course, when a E \If the power of any C.L must be in (0,1), and this is reflected in 

Lemma 2.3.2 by the fact that An-k (0) is finite when a E \If. The possibility that, in the 

setting of Lemma 2.3.2, the power of a certain C.L vanishes as p goes to the boundary of \If 

should be regarded as a problem of the statistical model, rather than of a particular test. A 

simple geometric argument clarifies this point. Let v = n - lim {rank("L,-l (p))}, with "L,(p) 
p-->a 

as in Lemma 2.3.2. Note that for An-k (0) = 00 it is necessary that v > 0. When v > 0, the 

model N(X(3, (J2"L,(p)) tends, as p ----+ a, to a family of (improper) distributions defined on a 
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v-dimensional subspace, say Sv, of ]Rn. This is easily seen by observing that the contours of 

N(X(3, (T2:E(p)) are the ellipses (y - X(3)':E- 1(p)(y - X(3) = k, which also shows that, for 

any fixed (3, Sv is the translation of lim{En(:E(p))} by X(3. It is then clear that the limiting 
p-+a 

power, as p -7 a, of a certain test-not necessarily invariant-depends on the position of the 

C.r. in]Rn relative to Sv (if the test is invariant, the relative position does not depend on (3). 

In particular, the power of a test vanishes whenever the intersection between Sv and the c.r. 

has I-dimensional Lebesgue measure zero. In CAR and SAR models (when a = ,\ -1) and in 

stationary AR(I) models (when a = 1), v = 1.3 Note that the stationarity assumption on the 

AR(I) model is not superfluous, in that generally v = 0 otherwise. On the contrary, for the 

CAR and SAR models considered in this paper v is always 1. This represents an important 

difference between time-series and spatial autoregressive models, from the point of view of 

testing for residual autocorrelation. 

Clearly, the above geometric argument does not depend on the normality assumption, 

but holds for any elliptically symmetric distribution. It also holds for any c.r.; when the C.r. 

is invariant, the conditions in Lemma 2.3.2 can be exploited. Moreover, further progress can 

be made by focusing on a specific class of matrices :E(p) , those implied by CAR and SAR 

models in the rest of this section. 

2.3.2 Main Results 

In this subsection we focus on the power of invariant tests in CAR and SAR models when 

p -7 ,\-1 (from the left). Accordingly, from now on, by "limiting power" we mean the limit 

of the power function as p -7 ,\-1. The restriction to the case p -7 ,\-1 is of practical 

relevance, because (a) it corresponds to studying power when it is most needed, i.e., when 

the autocorrelation in the data, and hence the inefficiency of the OLS estimator of (3, is large; 

(b) often, in order to fit real data, spatial autoregressive models require a large value of p 

(e.g., Besag and Kooperberg, 1995). 

In order to state the key result of this section some new notation is needed. Henceforth, an 

invariant critical region defined as a subset of Sn-k is denoted by <Pv , whereas its image on the 

sample space]Rn is denoted by <Py . The column space ofthe matrix X, often referred to as the 

3 A very similar situation occurs in regression models such that ~(p), rather than ~-l(p), tends to a singular 

matrix as p tends to some vale a. In this case, the distributions are defined, as p --> a, in a subspace of ]Rn 

of dimension lim {rank(~(p))}. Examples are a spatial moving average model (i.e., a model with covariance 
p~a 

matrix equal to the inverse of that of a SAR model), and a fractionally integrated white noise, with p being 

the differencing parameter and a = 1/2 (see Kleiber and Kramer, 2005). 
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"regression space", is denoted by col(X). The entrywise positive and normalized eigenvector 

of W pertaining to .\ is denoted by f. Existence and uniqueness of f are guaranteed by the 

Perron-Frobenius theorem. 

Theorem 2.3.3 In GAR and BAR models, the limiting power of an invariant C.T. <Py faT 

testing p = 0 against p > 0 is: 

- in (0, 1) ~f f E col(X); 

- 1 ~f f E <py\col(X); 

- 0 otherwise. 

The theorem asserts that, to some degree, the limiting power of <Py is determined by 

which of three mutually disjoint subsets of the sample space f belongs to. Of course, the 

result can be restated on the space Bn-k of the maximal invariant, in which case f must be 

replaced by Of! IIGfll and the three subsets become {O}, <pv\{O} and <Pv U {O}. 

Theorem 2.3.3 is strongly related to Theorems 1 and 2 in Kramer (2005), the most 

important differences being: (a) the class of tests considered there (i.e., tests that can be 

expressed as ratios of quadratic forms in the regression residuals) and the class considered 

in the present paper (i.e., invariant tests) are different, although they certainly intersect; (b) 

our result does not require symmetry of W. We stress that Theorem 2.3.3 holds for any 

invariant (similar) C.L, regardless of the analytical form of the associated test statistic. Thus, 

it also holds for tests whose test statistics are analytically complicated, or, as in the case of a 

likelihood ratio test based on the full or the marginal likelihood, unavailable in closed form. 

The practical usefulness of Theorem 2.3.3 is in providing simple conditions for the limiting 

power of any invariant C.L to vanish, given any matrices X and W. Consider an invariant 

C.L that rejects p = 0 for small values of some statistic T(y), i.e., 

<Py = {y E ]Rn : T(y) < ca }. (2.10) 

Theorem 2.3.3 asserts that the limiting power of such a C.L is 0 if T(f) < Ca , 1 if T(f) ~ Ca , 

in (0,1) if f E col(X). These conditions are typically very simple to check because, in most 

cases, (i) f is either known (e.g., it is a vector of identical entries when ltV is row-standardized) 

or can be computed efficiently (e.g., by the power method); (ii) since <Py is similar, Ca can 

be obtained accurately by simulation methods. For instance, it is readily verified that, for 
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CAR or SAR models, the limiting power of a POI test is 0, 1, or strictly between 0 and 1, 

depending on whether 

(2.11) 

is respectively positive, negative, or zero (zero occurring if and only if 1 E col(X)). Anal­

ogously, the limiting power of a LBI test is 0, 1, or strictly between 0 and 1, depending on 

whether 

I' (M AoM caM) 1 (2.12) 

is respectively positive, negative or zero. Note that, since they refer to test statistics that are 

ratios of quadratic forms in y, the conditions based on (2.11) and (2.12) reduce, in the case 

of a symmetric SAR model, to conditions given in Kramer (2005). The specific form of the 

test statistics also implies that, for POI or LBI tests, Ca can also be obtained by exploiting 

one of the many approximations available for the distribution of a quadratic form in a vector 

uniformly distributed on a hypersphere. 

Further remarks concerning Theorem 2.3.3 follow. 

Remark 2.3.4 The condition f E col(X), under which the limiting power of an invariant test is 

in (0,1), is satisfied whenever W in a CAR or SAR model is row-standardized and an intercept is 

included in the regression, because row-standardization implies that f has identical entries. Note that 

here whether W refers to a model before or after normalization to E(O) = I is irrelevant, because the 

condition f E col(X) is invariant under any invertible linear transformation of y ~ N(Xj3,a-2E(p)), 

where E(p) is that of a CAR or SAR model. For any weights matrix that is not row-standardized, in 

general f tf col(X), with the consequence that the limiting power of an invariant test is either 0 or 1. 

Remark 2.3.5 An important and immediate consequence of Theorem 2.3.3 is that, in CAR and 

SAR models, the limit of the envelope 7r p (p) as p -> A -1 is 1 if f tf col( X), and is in (Q, 1) otherwise. 

Hence, as p -> A-I in CAR and SAR models, the null hypothesis p = 0 can be distinguished (by 

means of an invariant tests) from the alternative hypothesis p > 0 with zero type II error probability 

only if f tf col(X). 

Remark 2.3.6 Consider an invariant test, constructed on the basis of some assumed weights matrix. 

By Theorem 2.3.3, whether its limiting power is 0, 1, or in (0,1) depends on the "true" Wappearing 

in the CAR or SAR model only through f (which, for instance, is the same for any row-standardized 

W), and does not depend on whether the model is a CAR or a SAR model. This property implies 

some robustness of invariant tests to model misspecification, when the spatial autocorrelation is large. 

In the rest of this subsection we take a close look at the case in which the limiting power 

vanishes, and, consequently, we restrict attention to the case 1 rf- col(X). 
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Suppose that, for a given CAR or a SAR model, one finds, by application of Theorem 

2.3.3, that the limiting power of a certain C.r. <Py vanishes. Theorem 2.3.3 itself guarantees 

that if <Py is enlarged so as to include f, then its limiting power jumps to 1. From a practical 

point of view, a question of concern is how large <Py must be in order to avoid the vanishing 

of the limiting power. We define (allowing, for convenience and contrary to what is done 

elsewhere in the paper, 0: to take the value 1): 

Definition 2.3.7 For an invariant c. r. for testing p = 0 against p > 0 in a CAR or SAR 

model, 0:* is the infimum of the set of values of 0: E (0,1] such that the limiting power does 

not vanish. 

When f 1- col(X), 0:* is a measure of the distinguishability between the null hypothesis 

p = 0 and the alternative p -7 A-I. A large 0:* indicates that a large size is necessary to 

avoid the zero limiting power problem; 0:* = 1 means that the limiting power is 0 for any 0:; 

a* == 0 indicates that the limiting po\ver is 1 for any 0;.4 

When an invariant C.r. is in form (2.10) (and f 1- col(X)), 0:* is the probability that 

T(y) < T(f) under the null hypothesis y '" N(Xf3, a 21), or, by invariance, 

0:* = Pr(T(y) < T(f); y '" N(O, I)). (2.13) 

Thus, 0:* can be computed accurately by simulation or other numerical methods. We stress 

that 0:* depends on X (through col( X), because of the invariance property of the tests), W, 

the choice of test and the choice between a CAR and a SAR specification. In particular, 

for a given error process, a given test, and a given k, 0:* may depend to a very large extent 

on col(X). Numerical examples will be given in the next subsection. In the following, we 

will explore the dependence of 0:* on col(X) by studying the circumstances in which a* = 0 

and those in which 0:* = 1. We will first give a lemma that holds for any test based on a 

quadratic form in the maximal invariant, and then we will apply the lemma to POI and LBI 

tests. Extensions of the analysis below to more general tests (a likelihood ratio test, say) are 

possible, but may be more involved. 

Consider an invariant C.r. of the form 

<pv(B) = {v E Sn-k : v' Bv < coJ, (2.14) 

"Recall that we are here focusing on the case f t/: col(X). If f E col(X), a* is always zero, by Theorem 1, 

and hence uninformative. In order to study the power of invariant tests when f E col(X), one could define oc* 

as the infimum of the set of values such that the limiting power is greater than some positive value, but this 

is not pursued in the present paper. 
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where E is an (n - k) x (n - k) known symmetric matrix independent of 0:. For instance, 

any C.L based on a ratio of quadratic forms in the OLS residuals can be written in this form. 

Typically E will depend on X and W (but could depend on a weights matrix different from 

the one appearing in CAR models, thus allowing for the possibility of misspecification of W). 

We have: 

Lemma 2.3.8 Consider, in the context of CAR or symmetric BAR models, testing p = 0 

against p > 0 by means of a c.r. CJ?v(E). Provided that f 1- col(X), 0:* = 0 ~f and only if 

C fEEl (E), and 0:* = 1 ~f and only if C f E En-k(E). 

Lemma 2.3.8 implies that, in a CAR or SAR model and for a C.L CJ?v(E) , 0:* E (0,1) as 

long as G f is not an eigenvector of E associated to the smallest or the largest eigenvalue of E. 

The important question remains of whether the extremes 0:* = 0 and 0:* = 1 are attainable, 

and, if so, in which circumstances. In particular, it is of interest to understand whether for 

a fixed W in a CAR or SAR model, 0:* has a non-trivial (i.e., smaller than 1) upper bound 

as col(X) ranges over the set of all subspaces of ]Rn of low (with respect to n) dimension. 

Obviously, given a certain model and a certain C.L, one would hope that 0:* is small, since 

the limiting power vanishes whenever 0:* > 0:. 

To answer the above question we focus on POI tests (E = 01}1) and LEI tests (E = 

GAoG'). First, we consider the case 0:* = O. Two conditions that are easily seen to lead to 

0:* = 0 (i.e., to Gf E E1(E)) for POI and LEI tests are (i) W symmetric and X = 0 and 

(ii) W symmetric and f -.l col(X). More generally, the following sufficient condition can be 

established. 

Proposition 2.3.9 Consider, in the context of CAR or symmetric BAR models, testing 

p = 0 against p > 0 by means of a POI or LEI c.r. Provided that f 1- col(X), 0:* = 0 ~f 

En-k(Op) does not depend on p for p > o. 

Remark 2.3.10 Although the condition in Proposition 2.3.9 is not necessary, a simple geometric 

argument suggests that when the condition is not met 0;* is 0 only in very special circumstances. Let 

the center of the c.r. <Pv based on a certain test statistic be the set of points of Sn-k that are in <Pv 

for any 0;. For instance, the center of <pv(B) is E1(B) n Sn-k. Clearly, for a certain c.r., 0;* = 0 if 

and only if, as p ---> A-I, pdf(v; p) vanishes anywhere outside the center of that c.r. Now, as long as 

f tJ- col( X), pdf (v; p) tends, as p ---> A-I, to be concentrated in the direction of v = C f (see Section 

2.3.1). Thus, for a POI test (B = n;;l), 0;* = 0 if and only if Cf E E1(n;;1) = En-k(np). This is 

the case if En-dnp) does not depend on p for p > 0 (by Proposition 2.3.9), but, otherwise, poses a 
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strong restriction on the trajectories described on Sn-k by the eigenvectors in En-k(o'p). 

We now turn to characterize the case 00* = 1 for POI and LBI tests. Theorem 1 of Kramer 

(2005) contains the crucial statement that, in symmetric SAR models, "given any matrix W 

of weights, and independently of sample size, there is always some regressor X such that for 

the Cliff-Ord test the limiting power disappears" (note that here "some regressor X" means 

k = 1). Now, from Theorem 2.3.3 it is clear that whether or not a particular X (with k 2: 1) 

causes the limiting power to disappear depends on oo. Thus, if interpreted as holding for any 

a (less than 1), the above statement would imply that for any W there exist some particularly 

hostile regressors that cause a zero limiting power even when the size of the Cliff-Ord C.L 

(i.e., the LBI C.L) is very large. This is clearly an extremely strong property, in a negative 

sense, of a C.L Unfortunately, whether it holds or not for the Cliff-Ord test in the context of 

a symmetric SAR model remains to be established, because the proof of Kramer's theorem 

holds only when a ~ 0. 5 The next theorem settles the issue and places it in a more general 

context. Recall that ml denotes the multiplicity of AI, for a symmetric W. Unless VV satisfies 

particular symmetries, generally ml = 1 (see, for instance, Biggs, 1993). 

Theorem 2.3.11 Consider, in the context of CAR or symmetric BAR models, testing p = 0 

against p > 0 by means of a POI or LBI c.r. For any.fixed W, there exist ml-dimensional 

regression spaces such that the limiting power of the selected c. r. vanishes, irrespective of oo. 

For instance, when ml = 1, let X be a vector proportional to .fI + b f, for some b E R Then, 

the limiting power of POI and LBI tests vanishes, irrespective of a, ~f Ibl 2: b*, where b* is a 

threshold that depends on the model and on the c.r. Namely, letting 

b* is equal to b1 .Jb2 for a POI c. r. in a CAR model, b1 b2 b3 for a POI c. r. in a symmetric 

BAR model, b1 for a LBI c. r. in both models. 

Theorem 2.3.11 establishes that, for any fixed W in a CAR or symmetric SAR model, there 

are ml-dimensional regression spaces such that 00* = 1. In the presence of such regression 

spaces, the zero limiting power problem cannot be solved by increasing oo. Note that if an ml­

dimensional regression space causes a zero limiting power (of a POI or LBI test in a CAR or 

5This is because d1 in equation (12) of Kramer (2005) is not necessarily positive for any W, unless C\' --7 O. 

As a consequence, the regressors that Kramer constructs in his proof do not need to cause the limiting power 

to vanish when d1 < O. 
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symmetric SAR model), then also all the k-dimensional regression spaces, with k 2:: ml, that 

contain it but do not contain f will yield a zero limiting power, as an obvious consequence 

of the fact that the power of an invariant test does not depend on /3. 

We now aim to show that, in the context of Theorem 2.3.11, the vanishing of the limiting 

power is not an event of measure zero (in a sense to be specified). In order to do so, it is 

convenient to introduce some new notation. Let Ok,n denote the set, known as a Grassmann 

manifold, of all k-dimensional subspaces of lRn
, and let H k (0:) <::;:: G k,n, for 0 < 0: < 1, be the 

set of k-dimensional col (X) such that the limiting power of a POI or LBI c.r. of size less 

than 0: vanishes (for some CAR or symmetric SAR model). Clearly, Hk(O:I) <::;:: Hk(a2) for 

any al 2:: a2· 

A natural measure ofthe size of Hk(a) is the probability that col(X) E Hk(a), as col(X) 

ranges over Ok,n according to some probability distribution (with respect to the invariant 

measure on Ok,n, as given in James, 1954). Such a probability, which we denote by Zco can 

be interpreted as the probability of a zero limiting power of a size-o: POI or LBI test, in a 

CAR or symmetric SAR model (we stress that, for each realization of X, POI and LBI tests 

are derived by treating X as fixed). We have: 

Proposition 2.3.12 Consider, in the context of CAR or symmetric SAR models, testing 

p = 0 against p > 0 by means of a POI or LEI c. r. If col( X) has density that is almost 

everywhere positive on Ok,n, k 2:: ml, then Za > 0, for any Wand regardless of how large a 

or n - k is. 

Clearly, in some circumstances Za can be very small (e.g., Za is usually small when n - k 

or a are large). The important point made by Proposition 2.3.12 is that, under the stated 

conditions, Za is never zero. In Section 2.3.4 we will compute ZO.05 numerically for some 

choice of Wand of the probability distribution of col(X). 

We now provide an interpretation of the ml-dimensional regression spaces col(X) that, 

according to Theorem 2.3.11, are particularly hostile for testing p = 0 versus p > 0 when 

p is large. Starting from ml = 1, Theorem 2.3.11 asserts that the set of such regression 

spaces is a region, defined by b*, of the plane spanned by fr and fi for a POI test, it 

is easily seen that, as p increases, this set becomes smaller and more concentrated in the 

direction of f. Generalizing to ml 2:: 1, the set of the hostile regression spaces is a certain 

region of the (ml + I)-dimensional subspace of lRn spanned by the vectors fr, ... , fml' f (see 

the proof of the theorem). Consider the Moran statistic x'Wx/x'x associated to a vector 
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x E ]Rn and a symmetric W (the standard version of the Moran statistic would include a 

normalizing factor and a correction for the sample mean of x that are not relevant here). By 

the Rayleigh-Ritz theorem (e.g., Horn and Johnson, 1985), I represents a vector that is most 

auto correlated according to the Moran statistic, and iI, ... , I ml represent vectors that are 

least autocorrelated. Note that An, the value of the Moran static when x = I, is positive by 

the Perron-Frobenius theorem, and AI, the value of the Moran static when x = iI, ... , 1m!> is 

negative for tr[W] = I:7=1 Ai = 0 by assumption. Thus, Theorem 2.3.11 asserts that in CAR 

and symmetric SAR models it is difficult, or even impossible, to detect large positive spatial 

autocorrelation in the presence of regressors that can be expressed as the sum of a strongly 

positively autocorrelated component and a strongly negatively autocorrelated component, 

with the former component being the dominant one. 

We mention an extension of Theorem 2.3.11 that is directly related to the interpretation 

just given, and can be proved similarly to Theorem 2.3.11. If Ij+bI E col(X), with Ij tj. En-l 

and Ij tj. En, the limiting power of a LEI test in a CAR or symmetric SAR model is 1 for 

any a (i.e., a* = 0) provided that 

Expressions of this sort can be used to infer how W affects (through its spectrum, under 

Gaussianity) the power properties of tests of p = O. For instance, if W is such that A - An-l 

is large, then any vector X in a large region of the plane spanned by Ij and I yields a* = O. 

Some further remarks concerning Theorem 2.3.11 end this section. 

Remark 2.3.13 With regards to the statement from Kramer (2005) reported above, Theorem 2.3.11 

(i) establishes that the statement is correct when m1 = 1; (ii) provides a generalization to the case 

m1 > 1; (iii) provides a generalization to POI tests and to CAR models. 

Remark 2.3.14 The strongest implication of Theorem 2.3.11 is perhaps that regression spaces such 

that the limiting power of a POI test vanishes exist even when p is large (i.e., close to .>.-1) and a 

is large. This is surprising because, by Proposition 2.4.1 below, the power at p of a POI test must 

be larger than oc. Since, if I if:. col(X), 7rp (p) ---> 1 as P ---> .>.-1 (see Remark 2.3.5), it also holds that 

the supremum-as col( X) ranges over the set of all k-dimensional, k 2': m1, subspaces of JRn-of the 

maximum shortcoming (e.g., Lehmann and Romano, 2005, p. 337) of any POI or LBI c.r. is always 

one, for any Wand any oc. 

Remark 2.3.15 For POI and LBI tests and for any W, T(J), regarded as a function from Gk,n to 

JR, is continuous. Thus, by (2.13), oc* is itself a continuous, and generally smooth, function of col(X), 
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which implies, in particular, that the regression spaces that are sufficiently close (according to some 

distance on Gk,n) to regression spaces yielding a large (resp. small) a* yield a large (resp. small) a*. 

Remark 2.3.16 We have not attempted to generalize Theorem 2.3.11 to asymmetric SAR models, 

for two reasons. Firstly, such models generally do not satisfy the condition f ~ col(X) necessary 

for the zero limiting problem. This is because the nonsymmetric weights matrices generally used in 

SAR models are row-stochastic, implying, as already noted above, that f E col(X) as long as an 

intercept is included in the regression. Secondly, although the proof of Theorem 2.3.11 suggests that 

regression spaces (of low dimension) such that the limiting power of a POI or LEI c.r. vanishes for 

any a always exist also in the context of asymmetric SAR models, the exact characterization of such 

regression spaces appears to be more involved. It should be noted, however, that an approximated 

characterization can be obtained from Theorem 2.3.11, by approximating an asymmetric SAR model 

by a CAR model with L.;-l(p) = 1- p(W + WI) (Le., omitting terms in p2). 

2.3.3 Zero-Mean Models 

In this subsection we specialize some of the above results to zero-mean (or constant-mean, 

by obvious extension) CAR and SAR models. For our purposes, setting X = 0 in the models 

analyzed above has two main advantages. Firstly, it clarifies-by direct comparison with the 

regression case-the role played by the regressors in determining power. Secondly, it allows 

to focus on the effect of the specification of W on power. 

Let us start from the following corollary of Theorem 2.3.3. 

Corollary 2.3.17 In zero-mean CAR and SAR models, the limiting power of an invariant 

c. r. <Py for testing p = 0 against p > 0 is 1 for any CY if f E <Py, 0 otherwise. 

It is instructive to relate Corollary 2.3.17 to the Moran statistic yIWy/y'y. In the context 

of CAR and SAR models, the Moran statistic is usually interpreted as an autocorrelation 

coefficient. In view of this interpretation, the result in Corollary 2.3.17 is precisely what one 

would expect when W is symmetric, since in that case y = f maximizes the Moran statistic. 

The same cannot be said when W is nonsymmetric, because in that case the Moran statistic 

is not, in general, maximized by f. 

In fact, the differences between models with symmetric W (CAR and symmetric SAR 

models) and models with nonsymmetric W (asymmetric SAR models) are not only a matter 

of interpretation. We provide an example in the context of possibly the simplest SAR model; 

the same model was used by Whittle (1954) in his seminal paper on spatial autoregressions. 
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Example 2.3.18 A random variable is observed at n units placed along a line and, in the 

context of a zero-mean SAR process, it is to be tested whether p = 0 or p > o. Suppose 

that it is believed that there is only first-order interaction and that the interaction amongst 

first-order neighbors is stronger in one direction than in the other. Accordingly, W is chosen 

so that W(i,j) is equal to some fixed positive scalar wi-I if i - j = 1, to 1 if j - i = 1, and 

to 0 otherwise, for i, j = 1, ... , n. In Figure 2.1, we plot the power function of the LBI test, 

i.e., the Moran test, and the envelope 7rp (p) for n = 6, w = 10 and 0: = 0.01. The power has 

been computed numerically, via the Imhof method (Imhof, 1961), and is plotted against p),., 

which ranges between 0 and 1. 
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Figure 2.1: The power function of the Moran test (solid line) and the envelope 7rp (p) (dashed 

line) for the zero-mean asymmetric SAR model described in Example 2.3.18. 

Although it is based on a model with an artificial W (for more practically relevant models, 

see Section 2.3.4), Figure 2.1 illustrates the theoretically important point that in a SAR 

model with nonsymmetric W, the limiting power of the Moran test may vanish even when 

the model is not contaminated by regressors. On the contrary, when W is symmetric, the 

power function of the Moran test always goes to 1 as p ----) ),.-1 (by Lemma 2.3.8) and-as 

we shall see in Proposition 2.4.3 below-is monotonic. Note that this feature of the power 

function of the Moran test entails that there are zero-mean asymmetric SAR models in which 

the interpretation of the Moran statistic y'Wy/y'y as an autocorrelation coefficient cannot be 

justified, because for such models there exist values 0 < k < ),.-1 such that Pr(y'Wy/y'y > k) 

is not increasing over 0 < p < ),.-1. The next result gives further insights into the problem. 

Proposition 2.3.19 In zero-mean BAR models, the limiting power of a POlar LEI c.r. for 
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testing p = 0 against p > 0 is 1 for any a if and only ~f f is an eigenvector of WI. 

The weights matrices W satisfying the condition in Proposition 2.3.19 are those such that 

A is perfectly well-conditioned (e.g., Golub and Van Loan, 1996, p. 323). In practice, it turns 

out that the condition is very restrictive when W is nonsymmetric (whereas it is trivially 

satisfied when W is symmetric), and hence that in asymmetric SAR models typically a* > 0 

even when X = O. For row-standardized W's-the most popular, by far, nonsymmetric 

weights matrices in SAR models-the restrictiveness of the condition is emphasized by the 

following result. 

Corollary 2.3.20 In zero-mean asymmetric BAR models with row-stochastic W, the limiting 

power of a POI or LEI c. r. for testing p = 0 against p > 0 is 1 for any a ~f and only ~f W 

is doubly stochastic. 

Clearly, a nonsymmetric row-stochastic weights matrix W is doubly stochastic, i.e., has 

not only all rows but also all columns summing to I, only in very special cases.6 The condition 

in Proposition 2.3.19 remains very unlikely to be satisfied also for nonsymmetric W's that are 

not row-stochastic. This is essentially because, given any choice ofthe neighborhood structure 

of a set of observational units (i.e., any choice of the pairs of units deemed to be neighbors) 

the choice of weights yielding a well-conditioned A is typically a very particular one,7 and 

corresponds to some relevant notion of distance amongst the units only in exceptional cases. 

Having argued that the condition in Proposition 2.3.19 is generally not satisfied, the 

interesting issue becomes to understand which (nonsymmetric) matrices Ware associated to 

large values of a*. Let us return to our example of a SAR model defined on a line. 

Example 2.3.21 For the case of Example 2.3.18 above, the Imhof method (or some other 

numerical approximation to the null distribution of the Moran statistic) can be used to verify 

that a* is decreasing in n and increasing in Iw - 11. For the particular case of Figure 1, a* 

IS about 0.056. Note that if one closes the line to form a circle (by setting W(I, n) = w 

GFormally, this can be deduced from Birkhoff's theorem on doubly stochastic matrices, which states that 

any such matrix must be a convex combination of permutation matrices; e.g., Horn and Johnson, 1985. We 

remark that the doubly stochastic weights matrices used in SAR models by Pace and LeSage (2002) are 

symmetric. 

7That such a choice exists can be seen by starting from a (nonsymmetric) matrix W, and transforming it 

to S-lWS, where S is a diagonal matrix with S(i,i) = Ui/li)1/2, with I denoting the left eigenvector of W 

associated to A. 
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and W (n, 1) = 1), then W becomes a scalar multiple of a doubly stochastic matrix, and 

consequently a* = 0 by Proposition 2.3.19. 

Numerical investigations not reported here show that, typically, for a fixed n, large values 

of a* are associated to matrices W such that W(i,j)/W(j,i) is large for at least one pair 

(i,j) (we note that this type of asymmetry yields large values of a* even when X =1= 0). 

This suggests that the asymmetry introduced by using row-standardized weights matrices 

W = D-1 A (see Section 2.2.1) does not yield very large values of a* in zero-mean SAR 

models, because for such matrices W(i,j)/W(j,i)::::; u(A), i,j = 1, ... ,n, where u(A) denotes 

the ratio of the largest to the smallest row-sum of A. Note that the largest possible value of 

u(A) over all n x n matrices A is n-1, obtained for the adjacency matrix of a star graph (i.e., 

a graph with one vertex having n - 1 neighbors, and all other vertices having 1 neighbor). 

One can check that, even in this case, the value of a* associated to the corresponding row­

standardized W is very small, and decreasing in n.8 For instance, for the Moran test, when W 

is the row-standardized version of the adjacency matrix of a star graph, a* > 0.01 only when 

n < 6. Thus, to summarize, in SAR models asymmetry of W may cause the limiting power 

of POI and LBI tests to disappear even when X = 0; for row-standardized W's, however, 

this typically occurs only for very small values of a or n. 

2.3.4 Numerical Examples 

In this subsection we report numerical results aimed at illustrating how X and W affect 

the exact power of tests for residual spatial autocorrelation. More specifically, the objective 

is to show how sensitive power can be to X when p is large but not necessarily in a small 

neighborhood of A-I, in some situations of practical interest. For simplicity, we restrict 

attention to the power, which we denote by 7TLBI(p), of the Cliff-Ord test in the context of 

a SAR model. Related numerical investigations are contained in Kramer (2005). 

For some selected specifications of W, we conduct Monte Carlo experiments where X is 

drawn from some probability distribution, and the power is computed by the Imhof method. 

Because of its invariance property, the power of the Cliff-Ord test depends on X only through 

col(X). A natural choice for the distribution of X would then be to take vee (X) rv N(O, Ink)' 

8Interestingly, the effect of the asymmetry of a row-standardized weight matrix D-1 A (or any other non­

symmetric matrix that is similar to a symmetric matrix) can always be eliminated by suitably selecting V in 

(2.3). In fact, model (2.3) with W = D-1 A and V = D-1 is reduced, upon normalization to L:(O) = I, to a 

SAR model with symmetric weight matrix D-1/ 2 AD- 1/ 2 . 
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because this would imply that col(X) is uniformly distributed on the Grassmann manifold 

Gk,n (see James, 1954, for the definition of uniform distribution on Gk,n). Since, however, 

an intercept is in practice always included in the regression, we prefer to take X = [( I Xl]), 

with vec(X1) '" N(O, In (k-1)) (the effect on power of including an intercept will be discussed 

below). In the results reported below, k = 2, i.e., the regression includes just an intercept 

and an i.i.d. standard normal variate. The simulation is based on 106 replications of X. All 

computations are done in GAUSS v7. We set 0: = 0.05. 

We construct weights matrices from the maps of the n = 17 counties of Nevada and the 

n = 23 counties of Wyoming. We consider both a binary W, specified according to the queen 

criterion (i.e., W[i, j] = 1 if counties i and j share a common boundary or a common point, 

W[i, j] = 0 otherwise), and its row-standardized version. The average number of neighbors 

of a county is 4.35 in Nevada, 4.52 in Wyoming, whereas the sparseness of W (as measured 

by the percentage of zero entries) is 74.40 for Nevada and 80.34 for Wyoming. We shall see 

that, despite their similarities, these two spatial configurations are very different with respect 

to our testing purposes. 

Firstly, in order to show how sensitive 7fLBI(p) is to X, in Table 2.1 we display the 

percentage frequency distribution of 7fLBI(p) , with W as described above. We report values 

for P = 0.9>.-1 and P = 0.95>'-1, which represent points at which low power is particularly 

troublesome (because of the large inefficiency of the ordinary least squares estimator of (3), 

but that are not too close to >. -1. Note that, by Theorem 2.3.3, in our experiment lim 7f LBI(p) 

(as P ---+ >.-1) is either 0 or 1 when W is binary (as in that case f tj. col(X) almost surely), 

whereas it is in (0,1) when W is row-standardized (as in that case f = ( E col(X)). It 

appears from Table 2.1 that in the case of Nevada 7fLBI(p) depends to a very large extent on 

X, even at points that are relatively far from>. -1. The dependence is less pronounced in the 

case of Wyoming. 

Next, we consider the zero limiting power problem more closely, which requires restricting 

attention to binary weights matrices (so that f tj. col (X) almost surely). In Table 2.2 we 

display ZO.05 (see Section 2.3.2), obtained as the frequency of times that (2.12) (with Co: 

computed by the Imhof method) is positive in our experiment. Note that ZO.05 is very large 

in the case of Nevada, whereas it is very small in the case of Wyoming. The table also 

displays the average shortcoming (i.e., 7fp (p) - 7fLBI(p)) of the Cliff-Ord test at P = 0.9>.-1 

and P = 0.95>. -l, when lim 7fLBI(p) = 0 and when lim 7fLBI(p) = 1. It appears that the 

impact of the zero limiting power problem is not localized only in a very small neighborhood 
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Table 2.1: Percentage frequency distribution of the power 1fLBI(p) of the Cliff-Ord test, in 

model y = X,d + 10, where 10 is a SAR process and X contains an intercept and a standard 

normal variate. The power is computed by the Imhof method over 106 replications of X. 

1fLBI(p) 

P).. 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 

Nevada 

0.90 0.11 0.25 28.42 71.05 0.17 
binary W 

0.95 0.29 5.75 36.29 53.43 4.11 0.13 

0.90 0.02 0.16 41.47 58.35 
row-st W 

0.95 0.01 0.05 1.56 98.38 

Wyoming 

0.90 0.02 0.69 99.29 
binary W 

0.95 0.02 0.10 1.76 98.12 

0.90 0.50 99.50 
row-st W 

0.95 100 

of).. -1, because, on average, an X causing lim 'ifLBI(p) = 0 causes shortcomings at P = 0.9)..-1 

and P = 0.95).. -1 that are significantly larger than the corresponding shortcomings associated 

to an X such that lim 'if LEI (p) = 1. 9 

We remark that the probability Zoe is generally very sensitive to W, n, k, the choice of 

a test, a, and the distribution of X. In most situations, Zoe is small (but positive under 

the condition in Corollary 2.3.12) when n - k is large (although it is possible to construct 

matrices W, e.g., the adjacency matrix of a star graph or a very dense matrix, such that this 

is not the case). This suggests that, from a practical point of view, the zero limiting power 

problem is mainly a small sample problem. In general, and interestingly, Zoe is significantly 

larger when the regression includes an intercept. This is because, due to the nonnegativity of 

W, [ usually (and especially if the row sums of Ware all of similar magnitude) yields a large 

value of the Moran statistic, and therefore its presence tends to put more probability mass on 

the regression spaces close to the hostile ones defined by Theorem 2.3.11. When W is defined 

on a regular grid, one can study how Zoe depends on n explicitly (see Table 1 of Kramer, 

9Note that when ml = 1, as in the examples we are considering, and col(X) contains the span of a vector 

h +bf with large b, the power function goes to zero (by Theorem 2.3.11), but it does so very rapidly, because 

the condition f E col(X) is nearly satisfied and therefore the power function tends to be close to that when 

f E col(X), which goes to a positive number as p --> .>..-1. 
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Table 2.2: Probability of zero limiting power (ZO.05) and average shortcoming of the Cliff-Ord 

test, in the case of a binary W. 

ZO.05 

Nevada 0.77 

Wyoming 5.2.10-4 

avo shortc. at p>.. = 0.90 

JrLBJ(p) ---70 JrLBJ(p) ---7 1 

0.20 0.16 

0.15 0.03 

avo shortc. at p>.. = 0.95 

JrLBI(p) ---70 JrLBJ(P)---71 

0.32 0.24 

0.26 0.02 

2005). Note that Za is related to the measure a* by the relation Za = Pr(a* > a) (where the 

randomness of a* is due to that of X). In our experiment, a* varied between 2.8.10-4 and 

0.994 for the case of Nevada, between 2.1· 10-7 and 0.430 for the case of Wyoming. 

The main conclusion of our numerical study is that, in some cases of practical interest, the 

probability that the limiting power of the Cliff-Ord test vanishes may well be non-negligible. 

This obviously induces a large dependence of the power of the Cliff-Ord test on X when 

p -7 A-I, but the numerical results indicate that both the power and the shortcoming may 

still depend to a large extent on X for values of p in a rather large neighborhood of A-I. 

2.4 U nbiasedness and Monotonicity 

In this section we discuss some conditions on model N(X(3, (J'2:B(p)) that are sufficient for 

POI and LBI tests to be unbiased (for a general :B(p)) and to have power functions monotonic 

in p (for CAR or symmetric SAR models). The conditions are by no means necessary, but 

(i) are important to understand the structure of the testing problem under analysis; (ii) in 

the case of spatial autoregressive models, admit a simple interpretation. 

We start from the following known, and fundamental, fact: any POI test is strictly 

unbiased for testing p = 0 against the specific alternative p = p for which it is constructed 

to be optimal. This property, for the general regression model (2.1), was derived in Theorem 

1 of Kadiyala (1970) by an astute, but somewhat indirect, argument. For convenience, we 

restate the result in terms of the power envelope 7f p(p), and we point out (see the proof) that 

the result is a straightforward consequence of the Neyman-Pearson lemma. 

Proposition 2.4.1 In model N(X(3, (J'2:B(p)) , the inequality 'if p(p) > a holds for any p > O. 

Proposition 2.4.1 is a very general result, since it holds for any X and any :B(p). However, 

it cannot be used to establish unbiasedness of a particular invariant test for p = 0 against 
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p > 0, except of course when a UMPI test exists (which is a very restrictive condition, because 

it requires the C.r. defined by (2.7) to be independent of p). Next we formulate two conditions 

that, when taken together, lead to unbiasedness of POI and LBI tests. 

By a commuting family of matrices it is meant a finite or infinite set of matrices that are 

pairwise commutative under standard multiplication. 

Condition A The matrices ~(p), for p > 0, form a commuting family. 

Condition A is particularly relevant in the present paper because it is satisfied by CAR 

and symmetric SAR models. Except for very special cases, it is not satisfied by asymmetric 

SAR models. A well-known characterization of a commuting family of symmetric matrices 

is that all its members share the same eigenvectors. This explains, in view of Proposition 

2.3.9, why 0:* = ° in zero-mean CAR and symmetric SAR models, whereas generally 0:* > 0 

in zero-mean asymmetric SAR models. An important advantage of Condition A is that it 

allows a natural extension of many properties of the models N(O, (T2~(p)) to the models 

N(Xj3, (T2~(p)) that satisfy the next condition. 

Condition B For a fixed p > 0, col(X) is spanned by k linearly independent eigenvectors of 

~(p). 

An interpretation of Condition B in CAR and SAR models will be given at the end of this 

section. Because of the characterization mentioned above, if Condition A holds, Condition 

B does not depend on p. Condition B, in any of its many equivalent formulations, has 

played a crucial role in the theoretical analysis of regression models with non-spherical errors 

since Anderson (1948). Although Condition B is unlikely to be met in practice, in some 

circumstances one may expect it to hold approximately (see the end of this section for CAR 

and symmetric SAR models, and Durbin, 1970, for the case of serial correlation). There is 

evidence in the literature that the power properties of tests for p = ° when Condition B holds 

exactly are similar to those when Condition B holds approximately (e.g., Tillman, 1975, p. 

971). 

Letting col..L(X) denote the orthogonal complement of col(X), we have: 

Proposition 2.4.2 Assume that Conditions A and B hold. Then, in model N(Xj3, (T2~(p)), 

any POI or LBI c. r. for testing p = ° against p > ° is unbiased. The unbiasedness is strict 

except when col..L(X) is a subset of an eigenspace of ~(p), in which case the power is 0: for 

any p > 0. 
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In Proposition 2.4.2, as in Propositions 2.4.3 and 2.4.6 below, "any" means for any a and 

any p. It is worth pointing out that, in general, Conditions A and B are not sufficient for 

the existence of a UMPI test for the stated testing problem, and therefore Proposition 2.4.2 

is not a consequence of Proposition 2.4.1. An important counterexample in which a UMPI 

test exists is a CAR model satisfying Condition B (the reason why Condition B combines 

particularly well with a CAR specification is that the resulting model is an exponential family 

with number of sufficient statistics equal to the number of parameters, k + 2). It should also 

be noted that Conditions A and B are not sufficient for the monotonicity in p of the power 

functions of the tests in Proposition 2.4.2, not even when X = 0, because, given a 'L,(p) 

satisfYing Condition A, a reparametrization p -7 f (p) may destroy the mono tonicity of the 

power function without causing Condition A to fail. Note that while unbiasedness is a vital 

property of any c.r., monotonicity of the power function in p is a much stronger property and 

mayor may not be desirable depending on the specification of I;(p). In general, it is desirable 

whenever p is interpreted as an autocorrelation parameter. This is the case for CAR and 

SAR models. We can prove: 

Proposition 2.4.3 Assume that Condition B holds. Then, in CAR and symmetric BAR 

models the power function of any POI and LBI c.r. for testing p = ° against p > ° is non­

decreasing. It is strictly increasing except when col.l(X) is a subset of an eigenspace of W, 

in which case the power is a for any p > 0. 

Proposition 2.4.3 implies that in CAR and symmetric SAR models having zero mean 

or, more generally, satisfying Condition B, the LBI and POI test statistics can be regarded 

as indexes of (residual) autocorrelation, in that they are non-decreasing (as any correlation 

between pairs of variables in CAR and SAR models) in p, over (0, A-I). Another important 

consequence of Proposition 2.4.3 is the monotonicity of the envelope 7rp (p), for CAR and 

symmetric SAR models satisfying Condition B. One would expect the same property to hold 

for zero-mean asymmetric SAR models, but, so far, we have found neither a proof nor a 

counterexample (by numerical analysis). 

Remark 2.4.4 The power functions in Proposition 2.4.3 are, in fact, typically strictly increasing, 

because, unless n - k is small or an eigenspace of VV has large dimension (see Example 2.4.7 below), 

the chances of col.l(X) falling into an eigenspace of Ware very low. In the special case X = 0, the 

power functions must be strictly increasing, for col.l(X) =]Rn cannot be an eigenspace of W. 

Remark 2.4.5 For CAR models, Proposition 2.4.3 can alternatively be proved by showing that the 
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density pdf ( V; p) has a monotone likelihood ratio under Condition B, and then by using Theorem 3.4.1 

of Lehmann and Romano (2005). Such an argument, however, does not extend to symmetric SAR 

models. 

As it provides a link to the analysis in Section 2.3, the following result is also of interest. 

Proposition 2.4.6 Assume that Condition B holds. Then, in CAR and symmetric BAR 

models the limiting power of any POI and LBI c. r. for testing p = 0 against p > 0 is 1 

~f f tt col(X); strictly between a and 1 if f E col(X) and col...L(X) is not a subset of an 

eigenspace of W; a otherwise. 

We now provide a discussion of CAR and symmetric SAR models satisfying Condition B. 

From a practical perspective, the discussion is helpful to understand in which circumstances 

Condition B can be expected to hold approximately. We start from some examples. The 

most obvious case of a CAR model that satisfies Condition B is a model with mean assumed 

to be unknown but constant across observations and with a row-standardized W (see Section 

2.2.1). On setting L = D-1 and normalizing to ~(O) = I, the mean of the model becomes 
1 

proportional to D'i L, where L is the n-dimensional vector of all ones, and the covariance 

matrix becomes ~(p) = (J"2(I - pD-~AD-~)-l. Condition B is then satisfied because D~L is 

an eigenvector of D-~AD-~ (since L is an eigenvector of D-1 A) and hence of ~(p). When 

other regressors are included in the model, a case in which Condition B has some chances 

of being met in practice is when the number of eigenspaces of W (and hence of ~(p), for 

CAR and symmetric SAR models) is small relative to n. This typically occurs when W 

satisfies a large number of symmetries, in the sense of being invariant under a large group of 

permutations of its index set (e.g., Biggs, 1993). The extreme case of equicorrelation serves 

as an illustration. 

Example 2.4.7 In the context of CAR and SAR models, all regression errors are equicor­

related when W has constant off-diagonal entries (and zero diagonal entries). In that case, 

W is invariant with respect to the whole symmetric group on n elements and has only two 

eigenspaces, the one spanned by L and the hyperplane orthogonal to it. Thus, in the case 

of equicorrelation, in order for Condition B to be met it suffices that every regressor in the 

model satisfies a single linear constraint, namely, that its entries sum to zero. Interestingly, if 

X contains an intercept, then col...L(X) is a subset of an eigenspace of W, and thus the power 

function of a POI or LBI C.r. is fiat by Proposition 2.4.3. 
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The cases discussed above, albeit theoretically important, are of limited practical relevance 

in non-experimental contexts, since other regressors are typically used along with an intercept 

and the matrices Ware usually not highly regular. We therefore take a more general view. 

Call two units i and j neighbors if W(i,j) > O. Consider, for simplicity, the case when there 

is only one regressor, x = (Xl, ... , Xn)' say, and let Xi be the weighted average 2::#i W( i, j)Xj 

of the values of X observed at units that are neighbors of i (the extension to k > 1 is obvious). 

For CAR and symmetric SAR models, the eigenvectors of I;(p) are the same as those of W. 

Hence, in such models Condition B is met if and only if the ratio xi/ Xi does not depend on i, 

because, by the definition of an eigenvector of W, such a ratio must, for any i, be equal to the 

corresponding eigenvalue. Now, the ratio xi/xi may be regarded as a measure of "similarity" 

(as far as x is concerned) between i and its neighbors. This suggests that Condition B is 

approximately met (and hence the power of optimal invariant tests has desirable properties) 

when x is such that the degree of similarity between i and its neighbors does not change 

substantially with i. 

2.5 Conclusion 

The paper has investigated a number of properties of invariant/similar tests for autocorrela­

tion in the context of a linear regression model with errors following a first-order conditional 

or simultaneous spatial autoregressive process. The main message of our analysis is that 

the power properties of exact tests for residual spatial autocorrelation may depend to a very 

large extent on the regressors, especially when the number of degrees of freedom is small and 

the autocorrelation is large. Intuitively, this is largely due to the fact that CAR and SAR 

models tend, as the autocorrelation increases, to a family of (improper) distributions on a 

I-dimensional subspace of the sample space. If, in the context of a CAR or SAR model, the 

regressors are such that the intersection between such a subspace and a critical region has 

I-dimensional Lebesgue measure zero, then the power of that critical region vanishes in the 

limit. 

More formally, we have characterized the cases when the limiting power of invariant tests 

vanishes and we have shown that the minimum size 0'* such that the limiting power of a POI 

or LBI test does not vanish may, for some spatial structures, depend on col(X) to a very large 

extent. Furthermore, we have established that the sets of regression spaces col (X) causing a 

zero limiting power of a size-a POI or LBI test have non-zero (invariant) measure on the set 
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Gk,n of all k-dimensional subspaces of ffi.n, for any 0:, any spatial structure and any k > mI. 

In fact, in some circumstances, the probability content of these subsets (according to some 

distribution on Gk,n) may be far from negligible. 

A remark concerning the distributional assumptions underlying our results is in order. 

As is well known (e.g., Kariya, 1980), the density of the maximal invariant (2.6) remains the 

same for any elliptically symmetric distributions of y, so the assumption of Gaussianity is 

much more than what is required to study the properties of the test considered in this paper. 

It should be noted, however, that while the generalization of SAR models to non-Gaussian 

distributions is straightforward, that is not so for CAR models; see Besag (1974). 

Two possible extensions of our work are as follows. Firstly, although in this paper we 

have mostly focused on the power as p -+ A-I, the techniques we have used should also prove 

useful to study local power, namely by studying the right derivative of the power function at 

p = 0. Secondly, an extension to mixed regressive, spatial autoregressive models (e.g., Ord, 

1975, and Lee, 2002), which are not in the class of regression models (2.1) and therefore have 

not been considered in this paper, would be of interest . . 

Appendix: Proofs 

Proof of Proposition 2.3.1 For some matrix X, denote by G x the group of transforma­

tions y -+ ay + Xb, with a E ffi.+ and b E ffi.k, and by Yx (p) the size-o: POI C.r., defined on 

the sample space. By definition, Y x (p) is the size-o: C.L that is invariant under G x and has 

maximum probability content under N(X(3, ()2z::;(p)). Observe that, for any X, the proba­

bility content 7f p(p, X) of Yx (p) under N(X(3, ()2z::;(p)) is the same as under N(O, Z::;(p)) , by 

invariance under Gx. It immediately follows that, for any X i= 0, any p > 0, and any 0:, 

7fp(p, X) ::::; 7fp(p, 0), because Gx is strictly larger than Go (as all transformations in Go, i.e. 

y -+ ay, are in Gx , and there are transformations in Gx, i.e., those with b i= 0, that are not in 

Go). Since, by the Neyman-Pearson Lemma applied to pdf(v; p), Yo (p) is unique (up to a set 

of measure zero), a necessary and sufficient condition for 7fp(p, X) = 7fp(p, 0), X i= 0, is that 

Yx (p) = Yo (p), i.e., y'C'[(CZ::;(p)C,)-1 - calley < ° if and only if y'[z::;-I(p) - callY < 0. 

Since rank(C'RC) ::::; n - k for any (n - k) x (n - k) matrix R, Y x (p) = Yo (p), X of- 0, 

requires rank(Z::;-I(p) - cal) ::::; n - k, and hence Ca = \-I(:E(p)), i = 2, ... , n - 1, which 

is equivalent to 0: = Pr(y,z::;-I(p)y/y'y < Ail(z::;(p)), i = 2, ... , n - 2 (the cases i = 1, n are 

excluded because 0: is assumed to be in (0,1)). It is easily seen that if Ca = Ail(z::;(p)), 
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i = 2, ... , n - I, Yo (p) is invariant under y -t ay + Xb, and hence is equal to Yx (p), if and 

only if col(X) S;;; Ei('E,(p)). This completes the proof of the proposition. 
1 n-k 

Proof of Lemma 2.3.2 Let p = limpdf(v;p) = IDI-2 (v'D- 1v)--2-. If all the eigen-
p-+a 

values of 'E,(p) tend to a positive value as p -t a, then, by the Poincare separation theorem 

(e.g., Rao, 1973, p. 64), all the eigenvalues of D are positive. It follows that the term 
1 IDI-2 of p is positive and finite if An-k(D) < 00, and it vanishes otherwise. As for the 

term (v'D-1v)- n2k, this is infinite if An-k(D) = 00 and v E En-k(D), positive and finite 

in any other case. Combining the results, we have that if An-k(D) = 00, then p = 0 when 

v tj:. En-k(D). Hence, by property (i) of pdf(v; p), when An-k(D) is infinite and simple, p 

must be infinite when v E En-k(D). Also, we have that 0 < p < 00 if An-k(D) < 00. The 

lemma now follows straightforwardly, on recalling that we are assuming that any invariant 

C.L is centrally symmetric, so that it contains either both or neither of two antipodal points. 

Proof of Theorem 2.3.3 Nonnegativity and irreducibility of W imply that (I - pW)-1 

is entrywise positive, for any p > 0 (see, e.g., Gantmacher 1974, p. 69, and recall that when 

we write p > 0 we implicitly assume p < A-I). It follows that, for both CAR and SAR models 

and for any p > 0, 'E,(p) is positive and hence, by Perron's theorem (e.g., Horn and Johnson, 

1985, Theorem 8.2.11), that An['E,(p)] is simple. Also, observe that, for both CAR and SAR 

models, as p -t A-I, An['E,(p)] -t 00 and all of the other eigenvalues of 'E,(p) tend to a finite 

value, because, as it is easily verified, rank [(I - A -1 WI) (I - A-I W)] = n - 1. For CAR and 

symmetric SAR models and for any p > 0, fn['E,(p)] = f and thus the spectral decomposition 

'E,(p) = 2:~=1 {Ai ['E,(p )]fi['E,(p )If{['E,(p)]} shows that the matrix A~1 ['E,(p)] Dp tends to G f f'G' 

as p -t A-I. The same limit result holds also for asymmetric SAR models, since in that case 

fn['E,(p)] -t f as p -t A-I (because (J -A -1 W')(J -A -1 W) has an eigenvector f corresponding 

to its smallest eigenvalue 0). Now, since rank(G f f'G') :s; rank(f f') = 1, all eigenvalues of 

G f l' G' are zero except possibly one, which must then be equal to ~ = tr [G f l' G'] = f' M f. If 

f tj:. col (X), then ~ is a simple positive eigenvalue of G f l' G' and has an associated eigenvector 

equal to G f, for 

Gff'G'Gf = Gfi'Mf = ~Gf. 

It is easily seen that for any CAR or SAR model with f tj:. col(X), G f is also an eigenvector 

of lim Dp, with (simple) eigenvalue equal to lim {An ['E,(p)]~} = 00. If f E col(X), then 
P-+A -1 P-+A- 1 

Gf = 0 and thus Dp = 2:~:II{Ail['E,(p)]Gfd:G'}, which tends to a matrix whose entries are 

all finite. Hence, when f E col(X), lim An-k (Dp) must be finite. The theorem now follows 
P-+A- 1 

by applying Lemma 2.3.2 with a = A-I. 
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Proof of Lemma 2.3.8 From (2.13), we have that, provided that Cf # 0, a* = 0 if and 

only if Cf! IICfl1 = argmin{v'Bv}, and a* = 1 if and only if Cf! IICfl1 = argmax{v'Bv}. 
VESn_k VESn_k 

The proposition follows by application of the Rayleigh-Ritz theorem (e.g., Horn and Johnson, 

1985). 

Proof of Proposition 2.3.9 It can be deduced from the proof of Theorem 2.3.3 that, 

for a CAR or SAR model with f tf col(X), En-k(np ) tends, as p --'> A -1, to a I-dimensional 

subspace containing Cf. It follows that if En-k(np ) does not depend on p for p > 0, it must 

be spanned by C f for any p > 0, and hence, by Lemma 2.3.8 with B = n~l, a* = 0 for any 

POI test. Since this property holds for any p > 0, it also holds for the LBI test. 

Proof of Theorem 2.3.11 We start from the case of the LBI test, which is notationally 

simpler than that of POI tests. By Lemma 2.3.8, for CAR and symmetric SAR models the 

limiting power of a LBI test vanishes for any a (less than 1) if and only if f tf col(X) and 

C fEEl (CW C'). For a fixed W, consider the m1-dimensional subspaces belonging to the 

span of il, ... , fm! , f, and denote by 8 the set of all such subspaces that do not contain f 

and are not E 1 . It is easily shown that if col(X) E e, CWC' admits the eigenpairs (Ai, C Ii), 

i = m1 + I, ... , n -1. But then, by the symmetry of CWC' and the fact that the vectors C Ii, 

i = m1 + I, ... , n - 1 are pairwise orthogonal (because the Ii are), CWC' must also admit 

an eigenvector in the subspace spanned by Cil, ... , Cfm!, Cf. Since when col(X) E e such a 

subspace is I-dimensional, it follows that Cf is an eigenvector of CWC', i.e., 

CWMf = ~Cf (2.15) 

for some eigenvalue i Thus, a col(X) E e causing the limiting power of the LBI test to 

disappear for any a exists if and only if ~ :::; Am !+1. Observe that as col (X) E e approaches 

a subspace orthogonal to E 1 , M f / 11M fll tends to a vector in El, which implies that ~ --7 Al 

(note that, by the definition of e, no col(X) E e is orthogonal to E1). Thus, by the continuity 

of the eigenvalues of a matrix (CW C' here) in the entries of the matrix itself plus the fact 

that Al < Am! +1, a col( X) E e such that ~ :::; Am! +1 always exists. The extension to POI 

tests, for any p > 0, is straightforward and is obtained by replacing W with I;(p) and Ai by 

(1 - pAi)-r, i = I, ... , n, in the arguments used above, for any CAR (r = 1) or symmetric 

SAR model (r = 2). 

The second part of the theorem considers explicitly the case m1 = 1. Take X to be a 

vector proportional to il + bf, so that col(X) E e as long as b # O. For the LBI test, 

we just need to establish which values of b yield ~ :::; A2 (existence of an infinite number 
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of such values of b follows from the first part of the theorem). Recalling that the vectors 

hand J are normalized, it is easily seen that MJ = (f - bh)/(l + b2). Plugging such 

an expression in (2.15), and using the fact that Gh = -bCJ (since GX = 0), we obtain 

5. = (A + b2 A1) / (1 + b2). Hence, 5. ::; A2 requires Ibl 2::: [(A - A2) / (A2 - A1)]1/2, proving the part 

of the theorem relative to the LBI test when m1 = 1 (note that the non-uniqueness of h does 

not affect this result). By obvious extension, the limiting power of a POI test disappears for 

any a if Ibl 2::: ((An[f(p)]- Adr(p)])/(A2[f(p)]- Adf(p)])P/2. The proof of the theorem is 

then completed on substituting Ai[r(p)] = (1 - pAi)-P in the last inequality, with p = 1 for 

a CAR model and p = 2 for a symmetric SAR model. 

Proof of Proposition 2.3.12 By Theorem 2.3.11, for POI or LBI tests in CAR or 

symmetric SAR models with any W, there exist col(X) E Gk,n such that a* = 1. Let T(y) 

represents the test statistic associated to a POI or LBI test. Then, by equation (2.13), the 

subspaces col(X) yielding a* = 1 are those that maximize T(f), regarded as a function from 

Gk,n to R Next, observe that T(f) is continuous at its points of maximum, which implies 

that, for any a, it is possible to find a neighborhood (defined according to some distance 

on Gk,n) of the points of maximum such that any col(X) in this neighborhood causes the 

limiting power of size-a tests to disappear. This implies immediately that H k (a) has non-zero 

invariant measure on Gk,n (see James, 1954), for any 0 < a < 1 and for k = ml, and for any 

POI or LBI C.r. in any CAR or symmetric SAR model. Since the power of an invariant test 

does not depend on (3, the proposition also holds for k > m1. 

Proof of Corollary 2.3.17 The result follows immediately by taking C = I in Theorem 

2.3.3. 

Proof of Proposition 2.3.19 Observe that if J is an eigenvector of W', it must be 

associated to A. To see this, call ¢ the eigenvalue of W' associated to J. Transposing 

both left and right hand sides of the equation W' J = ¢J and post-multiplying them by 

J yield J'W J = ¢. But then ¢ = A, because it must also hold that !'W J = A. Let 

f(p) = [(1 - pW')(I - pW)]-l. By Lemma 2.3.8 with B = r-1(p), in order to prove the 

statement of the proposition regarding POI tests, we need to show that W' J = AJ is necessary 

and sufficient for J E En(f(p)), for any p > O. Clearly, if this holds for any p > 0, it also holds 

for p ----7 0, establishing the part of the proposition regarding the LBI test. The necessity is 

straightforward, because if f(p)J = An(f(p))J, then f-1(p)J = A;;l(f(p))J. From the latter 

equation we have (1 - pA)(I - pW')J = A;;l(f(p))J, which requires J to be an eigenvector 

of I - pW' and hence of W' (associated to A by the above argument). As for the sufficiency, 
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note that if w'l = AI, then 1 is clearly an eigenvector of r(p), for any p > O. By Perron's 

theorem (e.g., Horn and Johnson, 1985, Theorem 8.2.11), a vector in En(r(p)) is entrywise 

nonnegative (or nonpositive), for any p > O. But 1 is entrywise positive (by the Perron­

Frobenius theorem applied to W), and hence it must be in En(PpP~), for any p > 0, because 

if it were not, then, by the symmetry of PpP~, it should be orthogonal to an entrywise 

nonnegative vector, which is impossible. This completes the proof of the proposition. 

Proof of Corollary 2.3.20 If W is a row-stochastic matrix, then 1 has identical entries, 

and therefore the condition in Proposition 2.3.19 is satisfied if and only if the columns of W, 

as its rows, sum to 1. 

Proof of Proposition 2.4.1 The assertion follows by applying Corollary 3.2.1 of Lehmann 

and Romano (2005) to the density (2.6), plus the assumption of identification of model (2.1). 

Proof of Proposition 2.4.2 For a POI test, we need to prove that 'iTp(p) 2: CY for any 

positive p and p and any size CY. If unbiasedness holds for any p > 0, then it also holds for 

the LEI test. Letting 

Mp = 1- X[X'I;-l(p)X]-l X'I;-l(p), 

the matrix C' (CI;(p)C,)-l C can be rewritten as I;-l(p)Mp (e.g., Lemma 2 of King, 1980). 

Thus, for 0:::; p < A-I, 

(
y'I;-l(p)M-y ) 

'iTp(p) = Pr y'My P < cO<; Y rv N(O, I;(p)) . (2.16) 

Under Conditions A and B, Mp = M and, as is easily seen by exploiting the fact that 

Condition B is equivalent to the existence of an invertible matrix A such that I;(p)X = X A, 

the matrices I;-l(p) and M commute for any p > O. Hence, 

(
z'I;(P)I;-l(p)MZ ) 

'iTp(p) = Pr z'I;(p)Mz < Co< , 

where z rv N(O, 1). Moreover, under Conditions A and B, the matrix M has an eigenvalue 0 

with eigenspace spanned by the k eigenvectors of I; (p) that are in col( X), and an eigenvalue 

1 with eigenspace spanned by the remaining eigenvectors of I;(p). Let H be the set of indexes 

i of the n - k eigenvalues Ai[I;(p)] associated to a set of linearly independent eigenvectors of 

I;(p) that are not in col(X). Note that, when Condition A holds, H does not depend on p. 

Under Conditions A and B, the power of a POI c.r. can then be expressed as 

and its size as 

_( ) _ P (I.:iEHAi[I;(P)]Ail[I;(P)]Z; < ) 
'iT P P - r '" [( )] 2 Co<, L.JiEH Ai I; P zi 
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Observe now that the sequences Ai[~(p)], i E H, and Ail[~(p)], i E H, are oppositely 

ordered in the sense of Hardy et al., 1952, p. 43. Then, the application of Tchebychef's 

inequality (Hardy et al., 1952, Theorem 43) to the weighted arithmetic means (with weights 

zl/ LiEH z1) of the Ad~(p)], i E H, and of the Ail[~(p)], i E H, yields that 

iEH iEH iEH iEH 

for any vector z E ]Rn, with equality holding only if all the Ad~(p)l or all the Ail[~(p)], 

i E H, are the same. Rearranging the terms of the above inequality, one finds that the 

statistic appearing in expression (2.17) is stochastically larger (e.g., Lehmann and Romano, 

2005, p. 70) than that appearing in expression (2.18), and hence that 7rp(p) 2:: ex, for any 

p > 0, any p > 0 and any size ex. If there are at least two indexes i, j E H such that 

Ad~(p)l =J Aj[~(p)], i.e., if colJ..(X) is not a subset of an eigenspace of ~(p), then the last 

inequality is strict (as we are assuming ex =J 0, 1). The proof of the proposition is completed. 

Proof of Proposition 2.4.3 For a CAR or a symmetric SAR model, Ai [~(p) 1 = (1 - pAi) -r, 

for i = 1, ... , n, and with r = 1 for a CAR model, r = 2 for a symmetric SAR model. Inserting 

such expressions in equation (2.17) from the proof of Proposition 2.4.2, we obtain that the 

power function of a POI C.r. is non-decreasing in p if the statistic 

is non-increasing in p for any vector z E ]Rn. Direct differentiation of tp(p) with respect to p 

and some simple manipulation show that such a condition is satisfied if 

with the coefficients ai,j defined by 

L ai,jZ;Z; ::; 0, 
i,jEH 

(2.19) 

It is immediately verified that, for each i, j E H such that i =J j, ai,j + aj,i ::; 0, with strict 

inequality if Ai =J Aj. Thus, given that ai,i = 0 for any i E H, (2.19) holds, the inequality 

being strict if there exist at least one pair of distinct eigenvalues Ai, Aj with i,j E H, i.e., if 

colJ..(X) is not a subset of an eigenspace of Ml. The statement in the proposition relative to 

the POI C.r.s is therefore proved, and the one relative to LBI follows immediately. 

Proof of Proposition 2.4.6 Under Condition B, if Ii tj. col(X), for i = 1, ... , n, then 

Ii E colJ..(X). It follows that, if Ii tj. col(X), for i = 1, ... , n and when ~ (p) is that of 
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a CAR or symmetric SAR model, npCJi = C'L.(p)MJi = C'L.(p)Ji = Ai('L.(p))Cfi, i.e., 

{Cfi,Ji tf. col(X),j = l, ... ,n} is a set of n - k orthogonal eigenvectors of np. Thus, in 

particular, En-k(np ) does not depend on p. The proposition now follows by Theorem 2.3.3, 

and Propositions 2.3.9 and 2.4.3. 

75 



Chapter 3 

Spatial Design Matrices and 

Associated Quadratic Forms: 

Structure and Properties 

Abstract 

The paper provides significant simplifications and extensions of results obtained by Gor­

sich, Genton, and Strang (2002, Eigenstructures of spatial design matrices, Journal of Mul­

tivariate Analysis 80, 138-165) on the structure of spatial design matrices. These are the 

matrices implicitly defined by quadratic forms that arise naturally in modelling intrinsically 

stationary and isotropic spatial processes. We give concise structural formulae for these 

matrices, and simple generating functions for them. The generating functions provide for­

mulae for the cumulants of the quadratic forms of interest when the process is Gaussian, 

second-order stationary and isotropic. We use these to study the statistical properties of the 

associated quadratic forms, in particular those of the classical variogram estimator, under 

several assumptions about the actual variogram. 

Keywords: cumulants; intrinsically stationary processes; Kronecker products; quadratic forms; 

spatial design matrices; variogram. 
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3.1 Introduction 

In modelling spatial data-in general in d dimensions-observed at sites labelled by points in 

some subset of]Rd, it is often assumed that the process is intrinsically stationary and isotropic 

(see below and Cressie, 1993). Such models are then-intuitively at least-generalizations of 

familiar stationary time series models defined on the line (the case d = 1), and we shall see 

that there is quite a formal structure that reflects this relationship (Theorem 3.2.3 below). 

In this paper, as in the recent paper by Gorsich, Genton, and Strang (2002) (hereafter 

abbreviated to GGS), we assume that the observational sites are located on a uniform grid in 

]Rd, with n sites on each of d axes. Sites may then be labelled by elements of the set r = r( n, d) 

of sequences a = (a(1), ... , a(d)) of non-negative integers satisfying 0 :; a(i) :; (n - 1) for 

i = 1, ... , d, and, to avoid ambiguity, we order the sequences in r lexicographically. Extensions 

to the case of a rectangular grid are straightforward, but for simplicity we confine our results 

to the hypercubic grid. 

Denoting the observed process by {Z (a); a E r}, intrinsic stationarity entails the assump­

tions that E(Z(a)) is constant, and that, for a -::J (3, ,(a,{3) = Var(Z(a) - Z({3)) depends 

on (a,{3) only through (a - (3), and the isotropy assumption that ,(a,{3) depends on (a,{3) 

only through h = Iia - {311 2 , the squared Euclidean distance between the sites a and (3. In 

that case the function 2,(h) defined by 

2,(h) = Var(Z(a) - Z({3)) (3.1) 

is called the variogram of the process Z(a). Note that, here and throughout, we use h 

to denote the squared Euclidean distance Iia - {311 2 = 'L1=1 (a(i) - {3(i))2 between sites, 

rather than (as is more common) Iia - (311 itself. This is notationally more convenient later. 

Henceforth we take h to be strictly positive unless otherwise indicated. 

The natural estimator for 2,( h) is based on the function 

% = L (z(a) - z({3))2, 
N(h) 

(3.2) 

where z(a) denotes the observed value of Z(a), and N(h) is the set of (unordered) pairs 

(a,{3) satisfying Iia - {311 2 = h. Note that both ,(0) = 0 and qo = O. Statistics of this form 

are also of interest more generally in the context of modelling spatial processes. 

For h > 0 the expression on the right in (3.2) may be written as a quadratic form 

(3.3) 
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where z = (z(a); a E r) denotes the N-dimensional vector of observations, Lh and Ah are 

symmetric, and Dh is a diagonal matrix. Here and throughout N = n d = Irl, the cardinality 

of r, denotes the total sample size. The matrix of this quadratic form, Lh, is the N x N 

spatial design matrix at distance Vh, and Dh and -Ah are, respectively, the diagonal and 

off-diagonal parts of Lh. By expanding the right side of (3.2) it is easy to see that Ah has 

a one in positions labelled by pairs (00,(3) satisfying 1100 - (311 2 = h, and zeros elsewhere, 

and that the diagonal element in row a of Dh is the number of sequences (3 E f satisfying 

1100 - (311 2 
= h, i.e., the sum of the elements in row a of A h. The matrices Lh = Lh(n, d) 

in (3.3) are, in GGS, denoted by A(d) (nd, h), with h = 1100 - (311. The matrix Ah may be 

interpreted as the adjacency matrix of a graph G(f, h) with vertex set r and edges the pairs 

(00,(3) E r x r for which 1100 - (311 2 
= h. In that context Lh is known as the Laplacian matrix 

of the graph G(r, h) (see, Mohar, 1997, for instance). Statistics of the type (3.2) have been 

studied extensively for the case d = 1, beginning with von Neumann et al. (1941). 

As already mentioned, an important application of the quadratic forms % is to the esti­

mation of the variogram in geostatistics. Let Nh = IN (h) I denote the cardinality of the set 

N (h). The statistic 2;Y(h) = %/Nh, is an unbiased estimator of 2,(h), and is often referred 

to as the classical variogram estimator (see Section 3.3.2 below, and GGS and the references 

therein). However, for other purposes it is also of interest to consider the statistics 

qh = 2 L z(a)z((3) = z' AhZ, 
N(h) 

(3.4) 

based on just the off-diagonal part of Lh. To give just a few examples: (i) the statistic q'h, 
normalized by z' z, is used to test for spatial autocorrelation at distance Vh (see Moran, 

1950); (ii) if the covariance matrix of the process belongs to the linear span of (some of) the 

matrices Ah , that is, if the spatial process is not only intrinsically stationary and isotropic, 

but also second-order stationary, the statistic qjj (2Nh) is (when the process has zero mean) 

an unbiased estimator of the covariance function at distance Vh (see Section 3.3.2); (iii) if 

the process is assumed to be Gaussian with precision matrix (inverse covariance matrix) that 

is a linear combination of matrices IN and {Ah' h E Hp}, where Hp contains p distinct values 

of h and IN denotes the N x N identity matrix, then a p-th order conditional autoregression 

is obtained (Besag, 1974). The matrices Ah , h E Hp , play the role of spatial weights matrices, 

and the quadratic forms (z' z, q'h, h E Hp), are minimal sufficient statistics for the parameters 

of the model, and thus form the basis for inference on those parameters. 

The problem of interest here is to give structural formulae for the matrices Ah , and 
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thereby for Dh and Lh. Thus, we continue the work of GGS, whose aim was to analyze the 

eigenstructure of the matrices Lh, with a view to deducing the properties of statistics like qh 

and qi" or more specifically of the variogram estimator 2i(h). It is well-known that under 

Gaussian assumptions (and also more generally) the properties of qh and qi, depend upon Lh 

and Ah , respectively, only through their eigenvalues. Our purpose in the present paper will 

be to simplify and extend the results given in GGS. 

In Section 3.2 we first provide a complete structural representation of the matrices Ah and 

Lh, and then give generating functions that make their computation straightforward with a 

standard symbolic computation package. In principle this completely solves the eigenvalue 

problem, but in practice, since N is usually quite large, direct computation of the eigenvalues 

would be unreliable. And, as we shall see, except in special cases, both Ah and Lh are sums 

of non-commuting matrices. Since, in this case, it is generally not possible to express the 

eigenvalues of the sum in terms of those of the summands, general explicit formulae for the 

eigenvalues are unlikely to be accessible. 

Fortunately, our generating function results do permit the computation of the cumulants 

of the statistics of interest very simply and directly. In Section 3.3 we use these expressions 

to study the properties of the statistics % and qi, under the assumption that the process 

{Z(O'), 0' E r} is Gaussian, second-order stationary, and isotropic. In particular, in Section 

3.3.3 we show that the earlier results can be applied to the study of the properties of the 

classical variogram estimator 2i(h) under a variety of assumptions on the actual variogram 

2,(h). 

3.2 The Matrices A h , Dh and Lh 

In this section we give the main structural results for the matrices Ah, Dh and Lh. The 

elements of these matrices, indexed by pairs (0',(3) E r x r, are completely determined by 

n, d and h. The results express these matrices in d > 1 dimensions in terms of sums of 

Kronecker products of the corresponding matrices in dimension d = 1. We begin with the 

key result-a very simple structural formula for the matrices A h . 
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3.2.1 Off-Diagonal Part 

The matrices Ah are defined by 

1 if II ex - (3 112= h; 
(3.5) 

o otherwise. 

Evidently, setting Ao = IN, 2::h2:0Ah = IN, where Jq is the q x q matrix with all elements 

one. In dimension d = 1 we denote the n x n matrices Ar2 by Fro r = 0,1, ... , n - 1. That is: 

1 if Ii - jl = r; 
(3.6) 

o otherwise. 

Since 2::~~6 Fr = I n, we have that 

(3.7) 

by the multilinearity of the Kronecker (or direct) product '@'. Note that the elements of 

(3.8) 

are zeros and ones, so exactly one term F:! on the right in (3.7) has a one in any given position 

((3,8). In view of (3.7), the following result, proved in the Appendix, is not surprising: 

Proposition 3.2.1 Let rh = {ex E r: IIexl12 = h}. Then: 

(3.9) 

For example, if h = 1, r l consists of d sequences containing a single one and d - 1 zeros, 

so that 
d 

Al = L (In @ ... @ FI @ ... @ In), 
i=1 

with FI in the i-th position in the i-th term (see the discussion of equation (9) in GGS). 

Likewise, for h = 2, r2 consists of the (g) sequences that contain 2 ones and d - 2 zeros, so 

in the corresponding expression for A2 each term in the sum contains FI twice. Notice that, 

in both of these low-order cases, all the sequences that appear in rh are permutations of a 

single sequence. 

An alternative proof of Proposition 3.2.1 based on known graph-theoretic results is worth 

recording, because it shows immediately how to generalize the result to cover index sets more 

complex than the uniform grid r, e.g., the rectangular grid mentioned in the Introduction. 

We refer the reader to Cvetkovic et al. (1980) for more on the graph-theoretic details. 
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Given graphs GiCVi, Ei), i = 1, ... , d, with vertex sets Vi and edge sets Ei , the direct 

product of the Gi, GI x ... X Cd is the graph G~, say, defined as follows. The vertex set of 

G~ is the Cartesian product Vdx = VI X ... X Vd of the Vi, and if Xi, Yi E Vi for i = 1, ... , d, 

(Xl, ... , Xd) and (Ylo ... , Yd) are adjacent in G~ if and only if (Xi, yd E Ei for i = 1, ... , d. In our 

case, the matrices Fro r = 0, ... , n - 1, are the adjacency matrices of the (so-called distance) 

graphs Gr with common vertex sets Vr = V = {O, ... , n - I}, and with edge sets defined by: 

for i,j E {O, ... , n - I}, (i,j) E Er only when Ii - jl = r. Then, Vdx = f, and for each 0: E f 

we may define a product G~(o:) of the graphs Ga(i) as above. It is known that G~(o:) has 

adjacency matrix F(! (Cvetkovic et al., 1980, Theorem 2.21). Thus, for any subset U of f, 

the union of the graphs G~ (0:) has adjacency matrix Au = L.aEU F(!. Proposition 3.2.1 gives 

the case U = fh. 

Call two sequences (/3,8) h-neighbors if the sequence 0: defined by o:(i) = 1/3( i) -8( i) I, for 

i = 1, ... , d, is in fh. This definition of neighbors-based on the Euclidean distance between 

points-is natural in some contexts, but in others a neighborhood structure based, say, on 

the Ll-norm (the length of the shortest walk connecting /3 to 8) may be more appropriate. 

The observation in the previous paragraph makes it straightforward to extend the results to 

follow to this case (and to neighborhood structures defined by other Lp-norms) , but we omit 

the details. 

3.2.2 Diagonal Part 

The matrices Dh in (3.3) are diagonal matrices with diagonal elements Dh(O:) equal to the 

number of h - neighbors of 0:. In dimension d = 1 define, for each r = 0, ... , n - 1, the 

diagonal matrix Mr with i - th diagonal element the i - th row sum of Fro and then define, 

for 0: E f, 

(3.10) 

It is straightforward to prove: 

Proposition 3.2.2 Dh = L.aEI'h M(!. 

Notice that tdDhJ is the total number of non-zero elements in Ah , so that tr[DhJ = 2Nh· 

We have now established: 

Theorem 3.2.3 The spatial design matrix at distance Vh is given by: 

Lh = L (M~ - F:!), (3.11) 
aEI'h 

81 



where Mr;{ and Fr;{ are as defined in {3.10} and {3.8}. 

The above expressions for the matrices Ah, Dh, and Lh involve summing over the set 

rho We next examine this set more closely, and give formulae for these matrices that do not 

involve rho 

3.2.3 Generating Functions 

Since h must be a sum of squares of d of the integers (0,1, ... , n - 1), not all values of 

h :S d(n - 1)2 are feasible. This is so even when d 2:: 4, notwithstanding Lagrange's four­

square theorem (Hardy and Wright, 1979, Sec. 20.5), because no term in the decomposition 

of h can exceed (n 1)2. Thus, rh in Proposition 3.2.1 can be empty, and in that case we 

define Ah, Dh and Lh to be zero matrices. 

The values of h that yield non-vanishing matrices Lh can be read off from the expansion 

of the polynomial 

d(n-l)2 
(1 + t + t4 + ... + tr2 + ... + t(n-l)2)d = L mhth, 

h=O 

(3.12) 

in which the coefficient mh is evidently the number of ways in which h can be expressed 

as a sum of squares of d of the integers (0,1, ... , n 1), i.e., mh = Irhl is the number of 

h-neighbors of the origin. Except for the restriction h :S d(n - 1)2, the mh evidently depend 

on d but not directly on n. Letting fn(t) = I:;~~ tr2 , and using Wilf's (1994) notation, we 

may write 

(3.13) 

where [th] means "the coefficient of th in the expansion of the following function in powers 

of t". Note that [th] is identical to the operator (h!)-l(O/ot)hlt=o, and, as an operator, is 

therefore linear. A cumbersome formula for the mh can be deduced from (3.13), but using a 

modern symbolic computing package it is a simple matter to compute mh from (3.13) without 

having to rely on such formulae. 

Similarly, letting bn(t) = I: ~~Jr2 Xr, where the Xi are labels for the integers 0, 1, ... , n -1, 

obeying the usual rules of multiplication, we see that, from the formal expansion of (bn(t))d, 

(3.14) 

Thus, the sequence CY belongs to rh only if the product IIf=l Xa(i) appears on the right in 

(3.14). 
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The key to obtaining a simple representation for the matrices Ah, Dh, and hence Lh, is 

to notice that the scalar generating function (bn(t))d can be generalized in such a way that, 

when expanded, the coefficient of th is precisely Ah . To see this, define the matrix 

n-1 

Bn(t) = I>r2 Fr; (3.15) 
r=O 

an n x n Toeplitz matrix with (i, j) element t(i_j)2. By direct expansion of the d-th Kronecker 

power BCJ;(t) = ®~ Bn(t), it is clear that Ah is the coefficient of th in the expansion of BCJ;(t) 

in powers of t. That is, 

(3.16) 

Similarly, letting 
n-1 

Cn(t) = I:>r2
l\dr (3.17) 

r=O 

and G,~(t) = ®~ Gn(t) , we see that 

(3.18) 

We therefore have the simple generating-function representation for Lh given in: 

Theorem 3.2.4 The spatial design matrix at distance Jh is given by: 

Lh = [th](G~(t) - B~(t)). (3.19) 

These results evidently do not require knowledge of rh: it is built in to the generating 

function. On the other hand, the matrices appearing in these representations of Ah , Dh and 

Lh are N x N, and likely to be high-dimensional, so it might seem that these results would 

be of little practical value. On the contrary, we will see in the next section that they provide 

both analytically and computationally convenient information about the statistics qh and q'h 

discussed in the Introduction, and hence about the properties of the variogram estimator 

2.:y(h). Before doing so we note some further implications of these results. 

It is clear that, if ex E rh, so is every permutation of the elements of ex. Thus, rh must be 

a union of one or more orbits in r under the action of the symmetric group 3d (the group of 

permutations of d objects). A set of orbit representatives is provided by the set D = D( d, n) 

of non-decreasing sequences w = (w(l), ... ,w(d)) E r, with w(l) :=; w(2) :=; ... :=; w(d). Let 

Dh = {w ED: IIwl12 = h}, and, for j = 0, ... ,n-1, wED, let kw(j) denote the multiplicity 
n-1 

of j in w, so that Lj~J kw(j) = d, and write v(w) = je:okw(j)!, with, as usual, O! == 1. 
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With this notation it is easy to see that mh = d! 2:= wEnh (v( w)) -1, and since rh = {(TW : 

W E flh' (T E 3d}, where (TW denotes the permutation (T of w, we have that 

where F~ = 2:=aESd F:! is a symmetric function ofthe matrices FW(I) , ... , Fw(d)' By an obvious 

extension of this argument to the off-diagonal part, and setting M~ = 2:=aE Sd lY[~w, we can 

state: 

Theorem 3.2.5 The spatial design matrix at distance Vii is given by 

Lh = L V(~) (M~ - F~). 
wEnh 

(3.20) 

For many values of h equation (3.14) reveals that rh consists of a single orbit, which is 

to say that flh has a single element, say Who In that case Tnh = d!jv(wh), and Theorem 

3.2.5 gives the very simple result that Lh = (V(Wh))-I(M~h - F~h)' In the example following 

Proposition 3.2.1, for instance, h = 1, WI = (0, .. ,0,1) and V(Wl) = (d - I)!. 

Using these results we may also obtain the following generalization and simplification of 

Lemma 6.1 and Theorem 6.1 in GGS, which give upper bounds on the largest eigenvalues of 

Lh and Ah (for sets flh with low cardinality), and hence upper bounds for the normalized 

statistics z' L hZ j z' z and z' Ahz j z' Z. 

Lemma 3.2.6 Let >"h and {th denote the largest eigenvalues of Ah and Lh, respectively, and 
~ 2d - kw (O) 

let Uh = d! uwEn
h 

v(w) . Then >"h :; Uh and J-lh :; 2Uh· 

The proof of Lemma 3.2.6 is in the Appendix. If flh contains only the single sequence Wh, 

which contains only one non-zero term (so rh contains only what GGS call "non-diagonal 

directions" ), the matrices in the sum 2:=a:Er
h 

F1! are pairwise commutative, so the eigenvalues 

of Ah are simple functions of those of the single matrix Fr (r = Vii) involved. Under the 

same condition, Lh = (( d 1)!)-1 L::' , with L::' = ~ ~ES Lrgw , which is also a sum of 
h h ~v d h 

pairwise commutative matrices. Thus, as GGS note in Lemma 5.1, in the case of non-diagonal 

directions the eigenvalues of Lh are simple functions of those of the matrix (My'h - F "IFJ 

The necessary and sufficient conditions required to ensure pairwise commutativity of 

the summands in Theorem 3.2.5 are that flh contains only the single sequence Wh, and Wh 

contains no more than one (possibly repeated) non-zero integer. Note that Wh may correspond 

to what GGS would call "diagonal directions" , and that these conditions are always satisfied 

for h = 1,2,3 (for any d 2: h), but otherwise clearly hold only for special values of h. 
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3.3 Applications 

In this section we use the results established above to study the properties of the statistics 

q'h = z' Ahz and % = Z'LhZ. We consider first the case in which z rv N(O, IN), but in Section 

3.3.2 show how our earlier results can be used to deal with the more general case z rv N(O, I;), 

assuming the process is second-order stationary and isotropic. 

3.3.1 Properties of the Quadratic Forms q'h and qh 

Under the assumption z rv N(O, I), the distributions of the quadratic form q = z' Az, and its 

normalized form if. = z' Az/ z' z, can certainly be obtained (see James, 1964, for the former, 

and Hillier, 2001 for the latter), but both are sufficiently complicated as to inhibit their use 

for practical study of, and/or tabulation of, the distribution. On the other hand, it is well 

known that the cumulants of q = z' Az under the assumption z rv N(O, I;) are given by: 

, - 2P- 1r - 1 )It [( L1")Pl - 1 2 Kp - ,P L. r ",L., ,p - L, , ... (3.21 ) 

(see Kendall and Stuart, 1969, Chapter 3 for the definition of cumulants, and Chapter 15 for 

the result given in equation (3.21)). The results in Section 3.2 allow these cumulants to be 

computed quite straightforwardly when I; = IN and the matrix A in (3.21) is either Ah or 

Lh. These results are given next. First, for comparison, we summarize the properties of the 

analogue of q'h for the case d = l. 

In the case d = 1 the properties of the statistics Q; = Y' FrY, r = 1, ... , n - 1, with Y rv 

N(O, In), have been extensively studied. The following Lemma summarizes some elementary 

properties of the statistics Q;, all of which are either given in, or are easily deduced from, 

the comprehensive results in Anderson (1971): 

Lemma 3.3.1 For r = 1, ... , n - 1, let Q; = Y' FrY, and assume that y rv N(O, In). Then, 

E(Q;) = tr[Frl = 0; 

var(Q;) = 2tr[F;l = 2tr[Mrl = 4(n - r). 

Moreover, all odd cumulants of Q; vanish, so the density of Q; is symmetric about zero, and 

for r1 i= r2, Q;l and Q;2 are uncorrelated. 

Properties of the q'h 

With A = Ah and I; = IN in (3.21) we obtain the cumulants, K* h' of q'h. Much of Lemma 
P, 

3.3.1 generalizes easily to this case: 
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Lemma 3.3.2 For h 2: 1, any d 2: 1, and z rv N(O, IN), 

E(ql,) = tr[Ahl = 0, 

var(qlJ = 2tr[Ahl = 2tr[Dh], 

and, for hI, h2 2: 1, hI i- h2, q'h
1 

and q'h2 are uncorrelated. 

Lemma 3.3.2 is proved in the Appendix. Now, with the help of the generating function 

G!jf(t) for Dh, it is straightforward to obtain a generating function for the variances var(q'h), 

smce 

var(q'h) = 2tr[Dhl = 2tr {[thlG,~(t)} (using (3.18)) 

= 2[thltr {G!jf(t)} 

= 2[th](tr(Gn(t))d. (3.22) 

The last step here follows from a standard property of the trace operator for Kronecker 

products, and the penultimate step from the fact that the operator [th] commutes with the 

trace operator. Noting that tr[Mol = n, and tr[Mr] = 2(n - r), r = I, ... , n - I, it follows 

from the definition of Gn(t) that 

tr(Gn(t)) = (n + 2(n - l)t + ... + 2(n - r)tr2 + ... + 2t(n-ll \ (3.23) 

Since 2Nh = tr[Dh], these formulae provide simple and efficient methods for computing 

the values Nh: setting gn(t) = tr(Gn(t)) we have 

(3.24) 

In general, for d> 1, the density of q'h is not symmetric about zero. The analogue of the 

symmetry result for the case d = 1 in Lemma 3.3.1 is the weaker result given in: 

Lemma 3.3.3 Ifph is oddtr[A~] = 0 (independently of d). Hence, forh odd, the distribution 

of q'h (and also its normalized form fi'h = q'h/ z' z) is symmetric about zero. 

The next result is also of interest and, as Lemma 3.3.3, is proved in the Appendix. 

Lemma 3.3.4 For d = 2 and every h 2: 1, the distribution of q'h (and also its normalized 

form fi'h = q'h/z' z) is symmetric about zero. 

Lemma 3.3.4 generalizes Lemma 5 of Hillier and Martellosio (2006), which asserts that, 

for d = 2 and every h 2: 1, tr[A~], and hence fi:3,h' is zero. Note that Lemma 3.3.4 cannot be 
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extended to d > 2: for instance, when d = 3 and h = 2, tr[AKJ, and hence i'i:3,h' is positive, 

since the sequences (0,0,0), (I, I, 0), (0,1,1) are the vertices of an equilateral triangle of side 

h = 2 (an odd-cycle of step 2 in the terminology of the proof of Lemma 3.3.4). Summarizing 

the results of Lemmas 3.3.3 and 3.3.4, the somewhat unexpected result has been found that 

the distribution of q'h is generally not symmetric about zero when h is even and d > 2, 

although it is symmetric for any h :-::: 1 when d = 1 or 2 . 

Properties of the Qh 

We now deal with the case A = Lh and ~ = IN in (3.21). Since LhlN = 0 (where IN is 

an N x 1 vector of ones), the results to follow continue to hold under the assumption that 

z rv N(fllN,IN) , i.e., that the Z(a) have an unknown constant mean fl. We have, in either 

case, for the cumulants of Qh, i'i:p,h = 2P- 1 r(p)tr[L~], p = 1,2, '" Thus: 

(3.25) 

and 

(3.26) 

The result for the variance uses the facts that tr[DhAhJ = 0 and tr[Ar,J = tr[D,J The 

computation of tr[DhJ has been discussed above, and we can compute the term tr[D~J from 

the formula: 

Thus: 

(3.27) 

From the definition of Gn(t), tr[Gn(t)Gn(s)J = L~l~;FO dsr~tr[MrlMr2J, and it is easy to 

check that tr[McrJ = n and, for 1 ::; rl ::; r2 ::; n - 1, 

(3.28) 
otherwise. 

Thus, we again have a simple generating function for the variances of the statistics Qh, and 

hence for the variance of the variogram estimator in the "null" case (~ = IN) (see Section 

3.3.3 below). 
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Higher-order cumulants and product cumulants (e.g., covariances) for both the q'h and 

the % can be obtained by obvious extensions of these methods. For instance, 

(3.29) 

and 

(3.30) 

The generating functions in these expressions may, of course, simplify (as above), and this 

reduces the computational problem considerably. We leave other such extensions to the 

reader. 

3.3.2 Second-Order Stationary Isotropic Processes 

Under the assumption that the process is second-order stationary and isotropic-which is 

stronger than the intrinsic stationarity assumption mentioned in the introduction (see Cressie, 

1993)-we have, as an obvious consequence of equation (3.16): 

Proposition 3.3.6 ({the process {Z(a); a E r} is second-order stationary and isotropic, its 

covariance matrix E has the representation 

(3.31 ) 

where H is a some set of values of h containing zero (recall that Ao = hv), and the coefficients 

{c(h); hE H} must be such that E is positive definite. Thus, from (3.16), E = [SH(t)]B~(t), 

where 

[SH(t)] = L c(h)[th]. (3.32) 
hEH 

The operator [SH (t)] constructs a linear combination, with parameters c( h), ofthe coefficients 

of the powers th, h E H, that occur in the expansion of the function to which it is applied. 

Like the [th] themselves, [SH(t)] is clearly linear. If we now assume that z rv N(O, E), with 

E as in (3.31), and take h > 0, we easily see that: 

if hE H; 
(3.33) 

otherwise. 
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E(%) = tr[Lhl:] = 0-2tr[Dh] L c(k)tr[AhAk] 
kEH\{O} 

if hE H; 

otherwise, 
(3.34) 

where we have put c(O) = 0-2. Since, under these assumptions, ,(h) = 0-2 - c(h), this shows 

that 2i(h) = %/Nh is an unbiased estimator of the true variogram 2,(h), for all h > 0, 

as is well-known (Cressie, 1993). Obviously, to compute the unbiased estimator 2i(h) one 

needs to know the correct scale factor Nh, and this has hitherto been unavailable for the 

isotropic case in general; equation (3.24) gives a simple general procedure for computing it, 

generalizing the special case given in Lemma 7.1 in GGS. 

The variances and covariances of the statistics qh and % for several values of h are often 

needed in applications. For instance, the entire covariance matrix of a vector of statistics 

% at a set of values of h is required for variogram fitting by generalized least squares (see 

Genton, 1988, and Cressie, 1993, Sec. 2.6.2), and this has previously been unavailable for 

the isotropic case. The covariances cannot easily be written down in closed form, but when 

l: has the form (3.31) are easily represented in generating function form using the operators 

[SH(t)] defined in (3.32). Thus we easily obtain: 

Lemma 3.3.7 Suppose z ~ N(O, l:), with l: of the form (3.31). Then, for any hI 2:: h2 : 

(3.35 ) 

and 

(3.36) 

where 

(3.37) 

and 

(3.38) 

Note that cov(qh
1

' qh2) = 0 when hI f- h2 and hI, h2 t/:. H, and that the elements of the 

matrix defining v~(sl, 52, tl, t2) are positive. Thus, if the c(h) in (3.31) are positive and non­

decreasing in IHI, an increase in IHI must increase cov(qt) qh2). Extensions to higher-order 
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cumulants are obvious, but, as in the case ~ = IN, will entail a larger computational burden. 

Finally, we note that the approach used here can also be extended to the case where the 

precision matrix ~-1, rather than ~ itself, is a linear combination of the Ah. 

3.3.3 Properties of the Classical Variogram Estimator 

The above results for qh provide the tools for studying the properties of the classical variogram 

estimator for a second-order stationary and isotropic process under virtually any specification 

for the c(h). We do not intend to study the detailed properties of the variogram estimator 

here, but will show that the above results can be used to study the properties of 21' (h) 

under a variety of specifications for the variogram 2"((h) (for the intrinsically stationary, but 

non-isotropic case, see Cressie, 1985). 

We first consider the variance of 21' (h) = qh/Nh as a function of hand d, assuming 

~ = IN . In Figure 3.1 we plot var(21' (h)) = var(qh)/NK, computed using equations (3.24) 

and (3.27), for d = 1,2,3, 4, and h = 1, .. . , 16, with N held fixed at N = 212 , so that, for 

d = 1, 2, 3,4 we have n = 212 , 26 , 24,23 respectively. 

0.003 ,-------------------, 
¢ 

0.0028 

0.0026 

0.0024 

0.0022 

0.002 I 2 9 10 II 12 13 14 IS 16 

Figure 3.1: The variance of the classical estimator 2i'(h) as a function of hand d : d = 1 

(diamond) , 2 (cross ), 3 (square), 4 (line) ; N = 212; ~ = IN. 

Figure 3.1 shows that: (a) for each fixed dimension d > 1, the variance is quite volatile 

as h varies; and (b) the variance is not monotonic in d for fixed h (see for instance the value 

h = 9). Thus, in contrast to Figure 4 in GGS (where the variance could only be computed 

for "non-diagonal" directions), our results show that when "diagonal" directions are taken 

into account-as it is natural to do under the assumption of isotropy-var (21' (h)) is no 

longer monotonic either in d or in h. The volatility and non-monotonicity of the variances is 

attributable to variation in Nh, mh, and the structure of nh as h varies. The explanation is 
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Figure 3.2: The variance of the classical estimator 21(h) when the variogram is spherical. In 

(a) h = 2, in (b) h = 4 . The variance is plotted for many values of the range r from 0 to 10, 

N = 212 , d = 2 (thin line), d = 3 (thick line). 

purely number theoretic: the number of decompositions of a particular h as a sum of squares 

is not related in any simple way to the values nand d. 

The variance of the classical variogram estimator when :B is of the form (3.31) can be 

computed using (3.36) with hI = h2. Using this formula, one can study the behavior of 

var (21 (h)) under various specifications for the true variogram 2,(h), i.e., of the c(h) in 

(3.31). In Figure 3.2 we plot the variances for the case of a spherical variogram with sill 1, 

nugget 0 and range r, so that the c(h) in (3.31) are given by 

{

I - (3Vh/r + (Vh/r )3) /2 if 0 ::; h ::; r2; 
c(h) = c(h, r) = 

o if h > r2. 
(3.39) 

The value of N is kept fixed, as above, at N = 212. We plot the variances for d = 2 and 

d = 3 as a function of the range r (the variogram is not valid for d> 3). In Figure 3.2(a) we 

display the results for h = 2 (note that this is a diagonal direction in the sense of GGS~for 

any d), and in Figure 3.2(b) for h = 4. The corresponding figure for h = 1 is equivalent to 

Figure 7 in GGS, which was produced by simulation for N = 28 (note that GGS appear to 

have omitted a factor 2). 

In Figure 3.3 we repeat this exercise for the case of an exponential variogram with sill 1, 

nugget 0 and (practical) range r, so that the c(h) in (3.31) are given by: 

c(h) = c(h, r) = exp{ -3Vh/r}, h 2: O. (3.40) 

In this case, all feasible values of h will appear in equation (3.31), presenting a much larger 

computational task for the evaluation of var(21 (h)). Nevertheless, by exploiting the struc­

ture of the generating function (3.38) to streamline the computation, the variances can be 
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Figure 3.3: The variance of the classical estimator 2:Y(h) when the variogram is exponential. 

In (a) h = 2, in (b) h = 4. The variance is plotted for many values of the (practical) range r 

from 0 to 10, N = 212 , d = 2 (thin line), d = 3 (thick line), d = 4 (dashed line). 

computed efficiently. In Figure 3.3(a) we plot the variances as a function of r for h = 2, and 

in Figure 3.3(b) those for h = 4, in both cases for d = 2,3, and 4 (the exponential variogram 

is valid for all d). 

With a fixed number, N, of i.i.d. observations, we expect the variance to decrease, at 
1 

least for small h (h ::; Nd) as d increases, because the number of pairs of points available 

to estimate 2,(h) (for fixed h) cannot decrease as d increases, and usually increases. But, 

as dependence in the data increases, or h increases, one anticipates that this effect might 

be overturned. Both Figures 3.3(a) and 3.3(b) show that these expectations are correct: 

the variances are not monotonic in r, sometimes increasing with r initially, then decreasing. 

And the non-monotonicity is more pronounced for larger h, and for the case of a spherical 

variogram. Note that the lack of smoothness for low values of r evident in Figure 3.2 arises 

because the spherical variogram itself is not smooth. For sufficiently large values of T-the 

values most likely to be used in applications-the variance for fixed h is increasing in d for 

both variograms-as suggested by GGS. 

Of course, the usefulness of Lemma 3.3.7 is in providing a means to compute var(2:Y(h)) 

(and covariances) exactly in applications. For the exponential this is not a trivial compu­

tation, because as we note above, c(h) =I 0 for all feasible values of h, so that [SH(t)] in 

(3.32) contains all feasible values. In practice, however, perfectly satisfactory accuracy can 

be achieved by truncating the c( h, r) at some point. 
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3.4 Discussion 

We have provided simple formulae and generating functions for the spatial design matrices 

implicitly defined by quadratic forms that arise in the analysis of isotropic spatial models on 

uniform grids, extending and simplifying the results in Genton (1988), and Gorsich, Genton, 

and Strang (2002). Such models are a natural generalization of familiar time series models­

the one-dimensional case-and the structural results we have derived reflect this relation. 

These results show that in general these matrices are sums of non-commuting matrices­

Kronecker products of their counterparts for the one-dimensional case-and hence that their 

eigenvalues are unlikely to be expressible in terms of those of the summands. 

Fortunately, to study the properties of the associated quadratic forms the eigenvalues 

themselves are not needed: the generating functions for the matrices themselves induce gen­

erating functions for their cumulants. We provide detailed results on the means, variances 

and covariances of these statistics. As an important application of these results, we give 

simple formulae for the normalizing constant needed to produce an unbiased estimator of the 

variogram, and, assuming second-order stationarity, the covariance matrix needed to imple­

ment generalized least squares procedure for variogram estimation (see Cressie, 1993, Ch. 6). 

Finally, we briefly study some properties of the classical variogram estimator for the cases of 

some popular choices of the actual variogram. 

For the purposes of hypothesis testing the normalized statistics q'h = z' Ahz / z' z and 

qh = z' LhZ / z' Z are of greater interest. But since exact distribution theory for such statistics 

is difficult, various techniques for approximating the distributions based on just the low­

order cumulants have been developed (see, for instance, Durbin and Watson, 1951, Ali, 1987, 

or Henshaw, 1996). Although we do not implement them here, the results in Section 3.3 

make such techniques quite straightforward. It is easily seen that, under the assumption 

that z rv N(O, (12 IN )-usually the null hypothesis-the ratios q'h and qh are independent of 

their denominator, so that the moments of the ratios are ratios of the moments. Hence the 

cumulant results for q'h and % given in Section 3.3 can also be used to study or approximate 

the properties of q'h and qh under this assumption. 

It is, of course, both analytically and computationally convenient if the eigenvalues, or 

good approximations to them, of Lh and Ah are known. One possible device for developing 

approximations in the case d = 1 is to replace the Fr by their circular counterparts (see 

Anderson, 1971), and our results allow that approach to be adapted to higher dimensional 
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cases straightforwardly. Our work on that subject is reported in the next chapter of this 

thesis. 

Appendix. Proofs 

Proof of Proposition 3.2.1 For each pair ((3,5) E r x r, define a E r by a(i) = 

1(3(i) - 5(i)l, i = 1, ... , d. From the definition of Ah, (Ah),e,o = 1 if and only if IIal1 2 = h, or 

a E rho On the other hand, the ((3,5) element of (Fo:(I) Q9 Fo:(2) Q9 ... Q9 Fo:(d») is one if and 

only if 

1(3(i) - 5(i)1 = a(i), for i = 1, ... , d. 

Summing the F:! over rh must therefore yield Ah by the remark following (3.8). 

Proof of Lemma 3.2.6 Let gh = maxO:El'Dh(a) denote the maximum number of 

h-neighbors for any point in the grid r. The number mh is the number of h-neighbors 

of the origin, so that gh 2: mh. Under the condition that no sequence a E rh contains an ele­

ment a(i) > n/2, we have gh = Uh. To see this, suppose first that nh contains just the single 

sequence Who If kWh (0) = 0, gh = 2dmh because, under the stated condition, maxo:El' Dh(a) 

occurs at a sequence a for which the h-neighbors in all 2d directions enter Dh(a), and mh 

counts just the h-neighbors (3 in the direction for which the vector (3 - a has only positive 

components. If kWh (0) > 0, only 2d - kw h (0) distinct directions are needed. Repeating the 

argument for each wE nh proves the claim gh = Uh. Finally, when the condition that no a(i) 

exceeds n/2 is dropped, it is clear that gh ::::: Uh. The assertions Ah ::::: Uh, Mh ::::: 2Uh follow by 

Gershgorin's theorem (see Marcus and Mine, 1969). 

Proof of Lemma 3.3.2 The first two cumulants are straightforward. By a standard 

result, cov( q'h1, q'h) = 2tr[Ahl Ah2l; to show that this is zero, consider a diagonal element of 

Ah1 Ah2: 

(Ah1 Ah2)O:,o: = L(AhJo:,,e(Ah2 ),e,o: a E r. 
,eEl' 

The product (Ah1 )o:,,e(Ah2 ),e,o: vanishes unless both Iia - (311 2 = hI and 11(3 - al1 2 = h2, which 

is impossible. Hence, for each a E r, every term in the sum on the right here vanishes. 

Proof of Lemma 3.3.3 Consider a diagonal element of A~: 

(3.41 ) 

This is non-zero only if 

(3.42) 
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Expanding each term II,8i - ,8i+111
2 

as II,8i11
2 + II,8i+111

2 
2 (,8i, ,8i+1) and adding the p terms 

gives (with ,80 =,8p = 0:) : 

The left side is certainly an even integer, so when ph is odd we obtain a contradiction. Thus, 

when ph is odd, every term in the expression above for (A~)""", vanishes, for all 0: E r, 

implying tr[A~l = O. 

Proof of Lemma 3.3.4 It is required to prove that, for d = 2 and every h 2: 1, tr[A~l = 0 

for all odd p. By equations (3.41) and (3.42) in the previous proof, tr[A~l is non-zero only if 

there is a sequence (0:,,81' ... , ,8p-1, 0:) of elements of r( n, 2) such that two consecutive elements 

are at squared Euclidean distance h; we call such a sequence a "cycle", more precisely an 

odd-cycle when p is odd, and we refer to h as the "step" of the cycle. We then need to 

prove that no odd-cycles exist on a 2-dimensional grid. \Vhen h is odd, this is guaranteed 

by Lemma 3.3.3. Conversely, suppose that one or more odd-cycles of even step exist and 

let h* denote the minimum step of such cycles. Observe that any element of a cycle of even 

step must belong to the restriction f( n, 2) of r( n, 2), with an element 0: of r( n, 2) belonging 

to f(n,2) if and only if 0:(1) + 0:(2) is even. Thus an odd-cycle of step h* on r(n,2) is 

also an odd-cycle on f(n, 2). But, f(n,2) is itself, after suitable shrinking, a uniform grid, 

leading to the contradiction that h* cannot be the minimum even step of an odd-cycle on a 

2-dimensional uniform grid. This completes the proof of the lemma. 
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Chapter 4 

Circular Approximation to the 

Design Matrices of Isotropic 

Spatial Processes 

Abstract 

The low-order cumulants of the quadratic forms associated to the so-called spatial de­

sign matrices are needed for several inferential purposes in the context of isotropic processes 

defined on uniform grids. The computation required to obtain such cumulants may be inten­

sive when the grids are large, essentially because the eigenvalues of the design matrices are 

generally not known in closed form. To alleviate the problem, this paper develops a circu­

lar approximation to the spatial design matrices, and discusses its use in approximating the 

aforementioned cumulants, in the case of independent data and of second-order stationary 

and isotropic processes. 

Keywords: circulant matrices; isotropic spatial processes; Kronecker product; quadratic forms; 

second-order stationary processes; spatial design matrices. 
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4.1 Introduction 

Let r = r(71,l' .'" 71,d) be a d-dimensional uniform grid with 71,i sites on the i-th axis, i.e., 

the set of the N = rrf=l71,i sequences a = (a(l), ... , a( d)) of non-negative integers satisfying 

o ::; a( i) ::; 71,i - 1. For convenience, we order the sequences in r lexicographically. The so­

called spatial design matrices are matrices indexed by r that arise naturally in the analysis of 

isotropic spatial processes; see Genton (1998), Gorsich, Genton and Strang (2002) and Hillier 

and Martellosio (2006). Here we use the notation of the latter paper, hereafter abbreviated 

to HM. Call two elements a,;3 E r h-neighbors if the squared Euclidean distance between 

a and ;3 is h, i.e., Iia - ;311 2 
= 2.:.~=1 (a(i) - ;3(i))2 = h. A spatial design matrix Lh at a 

squared distance h = 1,2, ... has (a,;3) off-diagonal entry equal to -1 if a and ;3 are h­

neighbors and equal to 0 otherwise, and (a, a) entry equal to the number of h-neighbors of 

;3. For convenience, every matrix Lh is decomposed in (minus) its off-diagonal part Ah and 

its diagonal part Dh, so that Lh = Dh - Ah. Note that for each a E r, the (a, a) entry of 

Dh is equal to the a-th row sum of Ah. When h = 0, it is convenient to define Ao = IN· 

Let Fjn), for r = 0, ... ,71, -1, denote the 71, x n matrices with (i,j) entry equal to 1 if 

Ii - jl = rand 0 otherwise. By straightforward extension of Proposition 1 in HM, Ah admits 

the simple representation 

( 4.1) 

where r h = {a E r : IIal1 2 = h} and FJf denotes the Kronecker product of the matrices 

F~('t?, ... , Fl(~]. Let z = (Z(a); a E r)' be an N-dimensional vector of random variables 

observed on the grid and let N (h) denote the set of unordered pairs of sequences that are 

h-neighbors in r. Important statistics associated to Lh are 

and 

% = L (Z(a) - Z(;3))2 = z'Lh Z , 

N(h) 

qh = 2 L Z(a)Z(;3) = z' Ahz. 
N(h) 

These quadratic forms playa central role in various inferential procedures in the context 

of spatial processes defined on r. Part of the reason for this is that %/ Nh, where Nh denotes 

the cardinality of N (h), is an unbiased estimator of the variogram at distance Jh of an 

intrinsically stationary and isotropic process and q'h/ (2Nh) is (when E(z) = 0) an unbiased 

estimator of the covariance at distance Jh of a second-order stationary and isotropic process. 
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Moreover, the statistics iih = %/(ZIZ) and iiI', = qhJ(ZIZ) (often upon some normalization that 

is here irrelevant) are commonly employed for testing purposes. Indeed, when d = 1, iih is 

the von Neumann statistic at time lag v1i (von Neumann et al., 1941) and iiI', is the serial 

correlation coefficient at time lag v1i; when d > 1, iih is a Geary statistic (Geary, 1954) and 

iiI', is a Moran statistic (Moran, 1950). Note that when z is a vector of regression residuals, 

the von Neumann and the Moran statistics take the name of, respectively, Durbin-Watson 

and Cliff-Ord statistics (Durbin and Watson, 1951, Cliff and Ord, 1972). More applications 

are discussed in the introductions of Gorsich, Genton and Strang (2002) and HM. 

In this paper, we assume that the random vector z has a joint Gaussian distribution. 

Several authors, especially in geostatistics, have been concerned with the cumulants of the 

quadratic forms associated to the spatial design matrices under Gaussianity. Such cumulants 

have direct applications (for instance, the covariance matrix of % is required for generalized 

least squares fitting of the variogram) or are useful to derive approximations to the densities of 

the quadratic forms (for instance, Durbin and Watson, 1951, Ali, 1987, and Henshaw, 1966). 

Cressie (1985) considers the case when z is a Gaussian intrinsically stationary process and 

analyses variances and covariances (for different values of h) of the non-isotropic counterparts 

of %, which are equivalent to % only in one dimension. Genton (1988) deals with the isotropic 

case in a general dimension d, but only for the case of independent observations and when 

only non-diagonal directions are considered (that is, when Ah is defined by Ah (a,,B) = 1 if 

and only if Iia - ,B112 = 1 and a -,B contains d -1 zeros). Gorsich, Genton and Strang (2002) 

provide generalizations and, in addition, they study by simulation the variance of %/ Nh under 

second-order stationarity and isotropy. HM derive a complete structural representation of the 

matrices Ah and Lh and propose generating functions for the computation of the cumulants 

of the associated quadratic forms. 

Part of the difficulty in analyzing the properties of spatial design matrices and associated 

quadratic forms is that, for any n > 2, the matrices p;n) , r = 0, ... , n - 1, are not pairwise 

commutative. This makes it difficult, or perhaps even impossible, to express the eigenvalues of 

sums of matrices like (4.1) in terms of the eigenvalues of its summands. A consequence pointed 

out by HM, Section 3.1, is that the computation ofthe cumulants of % and q'h, albeit possible, 

becomes demanding when N is large. This is true not only under general assumptions-such 

as second-order stationarity and isotropy-on the underlying spatial process, but also (for 

the cumulants of order higher than two) for i.i.d. data. 

In the present contribution, we overcome these problems by approximating Ah with a 
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matrix Ah having a "more convenient" structure. Because it is constructed on the basis of 

circulant matrices, Ah is named circular spatial design matrix. As we shall show, such a 

matrix is useful to approximate the density or the cumulants of q'h, especially when the ni are 

large and of similar magnitude-which is precisely one of the cases in which an approximation 

is most needed. Given Ah, one can construct approximations to the full spatial design matrix 

Lh, the most natural one being Lh = Dh - Ah, where Dh is the diagonal matrix containing 

the row sums of Ah . For the sake of brevity, in this paper we focus on approximations to 

Ah, and we only indicate in a few remarks how extensions to approximations of Lh can be 

carried out. 

The plan of the rest of the paper is as follows. Section 4.2 introduces the preliminary 

notions that are necessary for the subsequent analysis. In Section 4.3 we construct the matrix 

A:h. Section 4.4 discusses the quality of the approximation of q'h by q;, = z' Ahz, when data are 

independent. Section 4.5 extends the assessment of the performance of the approximation 

to second-order stationary and isotropic processes. Section 4.6 concludes. All the proofs are 

relegated to the Appendix. 

4.2 Preliminaries 

We first examine the structure of the set rho Let (}'cx denote the action of a permutation 

()' E 3d on cx E r, 3d being the symmetric group of degree d. Note that for a particular h, a 

particular ()' E 3d and a particular cx E rh, the sequence (}'cx mayor may not be in rh; more 

precisely, for any ()' E 3d, we have that (}'cx E r h if and only if cx E rh and (}'cx E r. 

Let nmin = min{ ni, i = 1, ... , d}. The following condition allows a simple description of 

the set rho 

Condition A No sequence in rh contains an element greater than or equal to nmin. 

It is easily seen that under Condition A, (}'cx E r for any ()' E 3d and any cx E rill and, 

consequently, rh is the union of one or more orbits in r under the action of 3d. A set of orbit 

representatives is provided by the set of non-decreasing sequences wE r (nmin, ... , nmin) , with 

w(1) ::; w(2) ::; ... ::; w(d). For simplicity, we denote such a set by .0, without explicit reference 

to the dependence on d and nmin. The set rh n .0, which we denote by Dh, plays a crucial 

role in explaining the structure of the spatial design matrices. In the simple case when nh is 

a singleton and Condition A holds, rh is an orbit of the action of 3d on r, but, in general, 

the assumption of isotropy implies that nh has more than one element, which is to say that 
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r h is the union of two or more orbits. For example, when d = 2, h = 25 and nl, n2 > 5, we 

have flh = {(O, 5), (3, 4)}. In general, that is, whether Condition A holds or not, rh is the 

union of one or more subsets of orbits in r under the action of Sd. For example, when d = 2, 

h = 25 and nl = 5, n2 > 5, we have rh = {(O, 5), (3,4), (4, 3)}. Note that Condition A is 

always satisfied on a hypercubic grid. 

We now define the matrices which will be used later as the building blocks of our approx­

imation to Ah . Following Anderson (1971), let C be the circulant matrix 

The matrix C is orthogonal and, for a non-negative integer r, 

(4.2) 

where aT is the residue of r to modulus n. Its trace is 

{ 

n, 
tr [CT] = 

0, 

if aT = 0; 
(4.3) 

otherwise. 

For r = 0,1, ... , n - 1, define the matrices 

if r = 0 or r = ~; 

otherwise. 

The matrices pSn) have entries 

(p(n)) . . = {I, 
r ~,J 

0, 

ifli-jl=ror li-jl=n-r; 

otherwise, 

and their row sums are constant, by construction, equal to 1 if r = 0 or r = n/2, 2 otherwise. 

Note that pSn) = P~nJT and therefore only In/2J + 1 of the matrices pSn) are distinct, e.g. 

the matrices pSn) , r = 0, ... , l n/2 J (l.J denotes the floor function). Moreover, pSn) = pSn) , 
for r = 0 or n/2. 

Any matrix pSn) is invariant under the action of the dihedral group Dn of order 2n, in the 

sense that PgPSn) P~ = pSn) , for each g E Dn, Pg being the permutation matrix representation 

of g. Given such a strong invariance, it is natural to expect many multiplicities in the spectrum 

of each pSn). The eigenvalues of pSn) will be denoted by A~~d , A~~{, ... , A~~Ll and, if n is odd, 

they are 2 cos(27rri/n) , i = 1, ... , (n - 1)/2, each with multiplicity two and 2; if n is even 
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and r =J 0, n/2, they are 2 cos(21fri/n) , i = 1, ... , (n - 2)/2, each with multiplicity two, 2 

and 2( -It (Anderson, 1971, Theorem 6.5.3). Finally, if r = n/2, they are 1 and -1, each 

with multiplicity n/2, and if r = ° the eigenvalue 1 has multiplicity n. 

Remark 4.2.1 The matrices F~n), r = 0, ... , In/2J, are the distance matrices of the graph J(n with 

vertex set {O,l, ... ,n -I} and edges the pairs (i,i + 1), i = O,l, ... ,n 2, plus the pair (O,n -1) 

(see, for instance, Biggs, 1993). As observed in Section 2.1 of HM, graph theoretic interpretations 

are instructive because they suggest how to extend the results for uniform grids to other index sets. 

Here it is worth recalling that the matrices Lh and Ah are, respectively, the Laplacian matrix and the 

adjacency matrix of a graph G(f, h) with vertex set f and edges the pairs (n, ,8) E f x f such that 

lin - ;511 2 = h. 

Remark 4.2.2 Because the vertices of J(n can be conveniently arranged on a circle, the matrices F~n) , 

° ::; r ::; n/2, define the so-called circular serial correlation coefficients (see Anderson, 1971, Section 

6.5), which are known to have simpler statistical properties than the corresponding statistics based on 

the matrices F~n). In fact, the matrices F~n), r = 0, ... , l n/2 J, span an algebra, known as Bose-Mesner 

algebra (e.g., Bannai and Ito, 1984), which admits a basis of symmetric and pairwise orthogonal 

idempotents, and therefore is commutative, closed under multiplication and generalized inversion.! It 

is worth noting that closure under generalized matrix inversion implies that a second-order stationary 

model on a circle, viz. z '" N (0, "E) with "E E 2:~~2J c (r) F~n), is a full exponential family (e.g. Kass 

and Vos, 1997) when the covariances c (r), or some diffeomorphism of them, are regarded as unknown 

parameters. This property has well-known inferential advantages, but, unfortunately, is lost when 

moving to second-order stationary models on higher-dimensional grids (d. Section 4.5). 

4.3 Circular Spatial Design Matrices 

For a given h = 0,1, ... , 'Z,f=l (ni - 1)2, let us now consider the matrix 

(4.4) 

where 

Evidently, in dimension one we have Ah = Fj,!). 
We can regard Ah either as an approximation to the "true" matrix A h, or as an alternative 

spatial design matrix in its own right. Given Ah , it is natural to consider also the full spatial 

1 A simple way to verify this is to observe that Kn is distance-regular and to exploit the well-known result 

that the distance matrices of a distance-regular graph span a Bose-Mesner algebra; e.g., Biggs (1993). 
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design matrix Lh = Dh - Ah, where Dh is the diagonal matrix containing the row sums of 

Ah, and in fact, in some circumstances, this provides a useful approximation to Lh. We call 

the spatial design matrices Lh and Ah circular because they are obtained by replacing the 

matrices F~(:; in Lh and Ah with their circular counterparts p~(:;. In this paper we focus 

on approximations to Ah . 

In order to describe the structure of Ah , some new notation is in order. Let 6 be the 

collection of all (proper and improper) subsets of {I, ... , d}. For D E 6, define the sequence 

ED = (ED(1), ... , ED(d)) by 

for'i E D; 

otherwise. 

Geometrically, the 2d sequences ED are the corners of the grid r(nl + 1, ... , nd + 1). 

For a pair (--y,8) E r x r, we define the sequence a')'c5 E r by a')'c5(i) = I~((i) - 8(i)l, 

i = 1, ... , d. Then 

Proposition 4.3.1 For each (--y,8) E r x r, 

~f:3 D E 6 such that Ila')'c5 - ED 112 = h; 
(4.5) 

otherwise. 

Thus, in general, the entry (Ah )')',c5 is 1 not only for the pairs (--y,8) such that a E rh (for 

such pairs (A.h )')',c5 = 1 because {O, ... , O} E 6), but also for some other pairs (--y,8) such that 

a tj. rho More precisely, jh and Ah are the same matrix only in the special circumstance 

mentioned in the following corollary. 

Corollary 4.3.2 jh = Ah ~f and only ~f, for each a E rh and each i = 1, ... , d, a (i) is 0 or 

ni/2. 

In more general circumstances, it can be deduced from Proposition 4.3.1 that, when h is 

small relative to the magnitude of the sides of the grid, the large part of the entries of Ah 

and Ah are the same. Formally, we have: 

Corollary 4.3.3 For a pair (--y,8) E r x r, (.lih - A h )')',c5 = 0 ~f a')'c5 (i) < ni - ..;h, for every 

i = 1, ... , d. 

Trivially, like the Pr (see Remark 4.2.2 above), the matrices P;! are pairwise commutative: 

d d 

pO p.0 = 1":/\ (p(n;) p(n:)) = 1":/\ (p(n;) p(n;)) = p.0 pO 
a {3 '6' a(z) {3(z) '6' {3(z) a(z) {3 a' 

(4.6) 
i=l i=l 

and hence they admit a set of common eigenvectors. It is then straightforward to prove: 
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Lemma 4.3.4 For U a subset off, the eigenvalues of Au = L,aEUFJ! are given by: 

A~(f3) = L (IIt=lA~(;,j,i3(i)) , f3 E f. (4.7) 
exEU 

In particular, for any h (and any d and n1, ... , nd), the eigenvalues of Ah are At (f3), f3 E f. 

To obtain such eigenvalues, the sequences in fh are needed. For any grid, and for any h, 

these can be derived by expanding the generating function 

(4.8) 

Namely, (X E fh if and only if IIt=l xa(i) appears as a coefficient of t h in the expansion 

of (4.8), where h L,1=1 (ni - 1)2. Note that, because of Corollary 4.3.3, the limit (for 

n1, ... , nd -+ (0) values of A~h (f3), f3 E r, are the asymptotic eigenvalues of Ah ; for related 

work, in the non-isotropic case, see Martin (1986). 

The graph G(f, h) on f having adjacency matrix Ah is derived from G(f, h) simply by 

joining the "opposite sides" of the uniform grid f, i.e., by wrapping a uniform grid onto a 

torus of same dimension. 2 It is easily seen that the graphs G (f, h), contrary to the graphs 

G(f, h), are regular (i.e. each vertex has the same number of neighbors), for instance by 

showing that their adjacency matrices Ah have constant row sums: 

d d 

L F:! @ lni = L @ Fl(:i In; 
i=l 

d d 

L II (2 - 6ex(i),0 - 6a (i),;<) @lni = mhlN, say, (4.9) 
aErh i=l i=l 

where lv denotes a v x 1 vector of ones, and 6r,s is 1 if r = s, 0 otherwise (the Kronecker 

delta). When nl = ... = nd = n, we have from the last equality that the constant row sum 

d 

mh = L 2d- iqi, 

i=O 
(4.10) 

qi being the number of sequences in fh with exactly i elements equal to 0 or n/2. Now, 

2:.t=o qi is equal to the cardinality of fh' denoted by mh in HM, and therefore, if no (X E fh 

2 Of course, the idea of replacing a lattice by its toroidal counterpart to approximate properties of stochastic 

processes is very natural in many contexts; see, for instace, Anderson (1971) for the case d = 1, Besag and 

Moran (1975) for the case d = 2. 
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contains either 0 or n/2, mh = 2dmh. It is also worth mentioning that rnh is the maximum 

eigenvalue of Ah (and thus the maximum value of the statistic if'h/ z' z, usually employed for 

testing purposes), by Gershgorin's theorem (e.g., Marcus and Minc, 1969) plus the fact that 

mh is an eigenvalue of Ah (with eigenvector IN). 

The computation of mh from equations (4.9) or (4.10) requires previous computation 

of the elements of rho This can be avoided by computing mh from the expansion of an 

appropriate generating function. In fact, it is easily seen that 

(4.11) 

where [th] is the operator extracting the coefficient of t h from the expansion in powers of t of 

the function which follows (see Wilf, 1994). 

The sum of all elements in Ah is Nmh, which we denote by 2Nh, so that Nh is the 

number of (unordered) h-neighbors on the toroidal grid or, in graph theoretic terminology, 

the number of edges in G(r, h). The corresponding quantity for non-toroidal grids has been 

defined in the introduction under the name of Nh. Twice this quantity can be obtained from 

(4.12) 

see HM, eq. (26). 

4.4 Accuracy of the Circular Approximation for LLd. Data 

In this section we assess the accuracy of the circular approximation Ah, when it is used in 

the quadratic form if'h = z' Ahz to approximate q'h = Z' Ahz, and when z "-' N(O,IN) (or 

z "-' N(O, (J"2 IN )). The assumption z "-' N(O,IN) arises, for instance, as the null hypothesis in 

tests of autocorrelation. Let Kp (q) denote the p-th cumulant of a statistic q. As measures of 

accuracy, we consider the ratios of cumulants 

Since q'h and the sum of squares z' z are independent when z rv N(O, (J"2 IN), 77p ,h are also the 

ratios of the cumulants of the quadratic forms normalized by z' z (usually employed as test 

statistics). As for the estimator q'h/(2Nh)-which we denote by ~h-of the auto covariance 

function of a second-order stationary and isotropic process, we define 
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where, with obvious notation, (h = qh/(2Nh). Observe that rPp,h = (7)2,h)P /7)p,h, by using the 

easy-to-check fact that the variance of q'h for independent Gaussian data is 40"2 Nh (cf. HM, 

Lemma 3). When kp(q'h) = kp(q'h) = 0, we define 7)p,h = rPp,h = 1. 

In Section 4.4.1 we derive some preliminary properties of the quadratic forms if,:. Then 

in Sections 4.4.2 and 4.4.2 we study the some properties of the ratios 7)p,h and rPp,h' 

4.4.1 The Quadratic Forms Associated to Ah 

The distributions of the quadratic forms q'h and of qh are complicated objects, even when 

z rv N(O, IN)' Nevertheless, the cumulants of q'h and qh are simple functions-power sums-
~ ~ 

of the known eigenvalues of Ah and Lh, respectively (the eigenvalues of Ah have been given 

immediately after Lemma 4.3.4; those of Lh are obtained simply by adding mh)' To be 

precise, recall that the p-th cumulant of a quadratic form y'My in a vector y rv N(fJ" IN) is 

2P- I(p -I)! (tr [MPj + pfL'MPfJ,) , p = 1,2, ... (4.13) 

(see, for instance, Kendall and Stuart, 1969, Chapter 15). Thus, the cumulants of qh are the 

same under z rv N(O, IN) and z rv N(elN, IN) (i.e., the variables in z have constant mean f)), 

since lN is an eigenvector of Lh associated to the eigenvalue O. As for q'h, the p-th cumulant 

under z rv N(elN , IN) is equal to the p-th cumulant under z '" N(O, IN) plus m~, because lN 

is an eigenvector of Ah associated to the eigenvalue rnh. 
We now briefly derive some basic properties of the quadratic forms q'h. It is convenient to 

start from the one-dimensional case. Letting Q; = z' FSn) z denote q;2 when d = 1, we have: 

Lemma 4.4.1 For rl, r2 = 1,2, ... , In/2J - 1, 

(iii) the density of Q;l is symmetric about zero ~f and only ~f either n is even and rl is odd 

or n is an even multiple of rl. 

For the remaining cases rl, r2 = In/2 J , ... , n 1, note that Q;l = Q~-rl and (for even n) 

Q~/2 = Q~/2 = z' F~/~z (see HM, Lemma 2). To generalize Lemma 4.4.1 to d 2 1, consider 

the following condition. 

Condition B No 0: E rh contains an element 0: (i) greater than or equal to nd2. 
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Condition B is typically satisfied in applications, because one is usually concerned with 

distance h such that Nh is not too small (with respect to N I , say); this is the case, for 

instance, in variogram estimation (see Journel and Huijbregts, 1978). The generalization of 

parts (i) and (ii) of Lemma 4.4.1 is: 

(ii) Zh~1 and q'h
2

, hI -I h2, are uncorrelated ~f Condition B holds for h = hI, h2· 

When Condition B does not hold for h = hI or h2, the covariance between q'h
l 

and q'h
2 

can 

be computed from the eigenvalues of Ahl and A h2 , given by Lemma 4.3.4. This is because, 

as a result of (4.6), the Ah commute: 

and therefore cov (q'h ,q'h ) = 2 2:=(3E[, {A['Qil ((3) A['Qil ((3)}. 
1 2 hI h2 

Let us now consider the symmetry of the density of q'h for a general dimension d. Denote 

by /'i,p (q) the p-th cumulant of a statistic q, and recall that the density of q is symmetric 

about the origin if and only if /'i,p (q) = 0 for all odd p. The symmetry of the density of q'h is 

discussed in Section 3.1 of HM. Obviously, we would like to approximate q'h with a statistic 

whose density maintains the symmetries ofthe density of q'h, or, at least, such that kp(q'h) = 0 

is necessary and sufficient for kp( q'h) = 0 for small odd p. In order to establish whether this 

is the case, let us consider, for a given p, the following extension of Condition B. 

Condition C No a E rh contains an element a (i) greater than or equal to ndp. 

We then have: 

Lemma 4.4.3 If kp(q'h) = 0 then kp(q'h) = O. The converse does not hold in general, but it 

does hold ~f p = 1, p is even, or under Condition C. 

With regards to the question of whether kp(Zh~) = 0 is necessary and sufficient for kp( q'h) = 

o for small odd p, the lemma asserts that this is the case for p at least up to nmin/ h. 

We remark that whether or not the density of q'h is symmetric can be established by 

looking at the eigenvalues of Ah . Indeed, because of the condition on the odd cumulants, the 

density of q'h is symmetric about zero if and only if the spectrum of Ah is symmetric about 

zero (in the sense that for each (3 E r, there is r E r such that AQil[' (r) = -A['Qil ((3)). 
h h 
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4.4.2 Variances 

In many applications attention is confined to the second-order structure of the quadratic 

forms qh; see, for instance, Genton (1999). We now study the ratio of variances rJ2,h = 

var C0:) /var (q;,). By Lemma 4.4.2, 172,h = ¢2,h = ih/Nh. Throughout this subsection we 

assume that the distance h is feasible on a given grid, i.e., that Nh #- O. It is also convenient 

to assume that Condition B holds. 

Clearly, rJ2,h is completely determined by the values of h, d, nl, ... , nd. The dependence of 

rJ2,h on h (for given d and nl, ... , nd) or on d (for given h and having decided how nl, "', nd 

transform when d changes) is non-monotonic and non-smooth. This is essentially because 

of the number theoretic nature of the problem under analysis, which arises from the fact 

that rh is the set of decompositions of the integer h as a sum of squares Lf=1 0' (i)2, with 

o ~ 0' (i) ~ ni - 1 (a restricted version of a "Waring's problem"; Hardy and Wright, 1979, 

Chapter XX). 

Nevertheless, it is sufficient to examine a few numerical examples to convince oneself that, 

in general, rJ2,h increases with h and does not decrease with d (when N is held fixed or when 

nl = ... = nd = nand n is held fixed). In some of the particular cases discussed below it is 

easy to check that rJ2,h is indeed increasing with h and non-decreasing with d (see Corollaries 

4.4.6 and 4.4.7). 

The dependence of rJ2,h on the n/s is simpler and can be revealed by deriving a suitable 

representation of rJ2,h' This is done in the next proposition, which holds for any grid r 
and any distance h. Three corollaries concerned with three particular cases follow from the 

proposition. 

Proposition 4.4.4 Let ka (0) be the number of zeros in a sequence 0' E rho Then, 

N'\' 2-ku (O) 
L..,aErh 

7J2,h = LaEr
h 

{2-ku(O)II1=1 (ni - 0'( i))} . 
( 4.14) 

Recall that the sequences 0' E r h needed to evaluate (4.14) can be easily derived from 

(4.8). Formula (4.14) simplifies considerably if the sides of the grid are of equal length and 

Sd acts transitively on rho In these circumstances the set nh (defined in Section 4.2), has a 

single element, say Who 

Corollary 4.4.5 IfnI = ... = nd = nand nh = {Wh}, then 

rJ2,h= II ( (.)). n-wh J 
Wh(j)i'0 
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In particular, for h = 1,2, 3-the only distances such that the action of Sd on fh is transitive 

in any dimension d-the ratio rJ2,h does not depend on d, as shown by the following corollary 

(note that it is necessary that d ~ h for h to be feasible and n > 2 for Condition B to hold). 

Corollary 4.4.6 When nl = ... = nd = nand h = 1,2 or 3, TJ2,h = [n/(n l)]h. 

Another case when the ratio of variances rJ2,h takes a simple form is when only "non­

diagonal directions" are considered (see Gorsich, Genton and Strang, 2002). This is the case 

when fh has-or is restricted to have-only sequences lying on the main axes of f. 

Corollary 4.4.7 If only non-diagonal directions are considered, then 

d 
(4.15) rJ2,h = d _ Jh "d 1..' 

L.n=1 ni 

Note that on a hypercubic grid, (4.15) reduces to the simple formula TJ2,h = n/(n - Jh). 
Next, we investigate how rJ2,h behaves as the grid gets larger. It is an immediate con­

sequence of Corollary 4.3.3 that rJ2,h -7 1 from above as nl, ... , nd -7 00. Moreover, direct 

differentiation of (4.14) with respect to ni shows that rJ2,h is strictly decreasing in each ni, 

i = 1, ... , d (see also Lemma 4.4.10 below). Thus, similarly to what happens in the time series 

case (d = 1), the circular approximation works better when at least one ni is large. It is then 

natural to ask whether, given the sample size N, the approximation is more accurate when 

the grid f is embedded in a hyper-cube or when it is embedded in a hyper-rectangle. To 

answer this question, it is convenient to neglect the restriction that the ni's must be integers. 

Proposition 4.4.8 Given N, arg min {rJ2,h} = (N I /d, ... , N I / d), for any h and any d. 
(nl, ... ,nd)E(lR+ )d 

Thus, the ideal situation for the application of the circular approximation is when the 

sides of the grid are of the same, or similar, length. 

Using the formulae given in this section, the computation of rJ2,h is straightforward for 

any h and on any grid f (nl' ... , nd). To give an indication of the performance of the circular 

approximation, some values of rJ2,h are reported in Table 4.1. 

4.4.3 Higher-Order Cumulants 

In this section, we extend the analysis of the accuracy of the circular approximation to the 

higher-order cumulants. 

Note that for some combinations of values of hand p on some grid f, K,p (q/'J may vanish. 

For instance, by Lemma 3.3.3 in Chapter 3, K,p (q/'J = 0 on any grid when ph is odd, or, by 
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h\n 20 40 60 80 100 1000 

1 1.0526 1.0256 1.0169 1.0127 1.0386 1.0010 

2 1.1080 1.0519 1.0342 1.0255 1.0203 1.0020 

5 1.1696 1.0796 1.0520 1.0386 1.0307 1.0030 

Table 4.1: The values of 'rJ2,h' for h = 1,2,5, on a 2-dimensional square grid of side n = 

20,40, ... , 100. 

Lemma 3.3.4 in Chapter 3, Kp (qi,) = 0 on any 2-dimensional grid when p is odd. Because of 

this reason in this subsection we assume that, for a given p, r is large enough as for Condition 

C to hold. In that case, by Lemma 4.4.3, when Kp (qi,) = 0, Kp ((f;;J = 0 too, and TJp,h = 1 by 

definition. 

The next lemma shows that Kp(q;~)-which can be obtained directly from the known 

eigenvalues of Ah-provides an upper bound for Kp (qi')' 

Lemma 4.4.9 For p = 1,2, ... such that Kp (qi,) i- 0, 'TJp,h > 1. 

We can also generalize the statement made above that 'TJ2,h is strictly decreasing in each 

ni, i = 1, ... , d. 

Lemma 4.4.10 For p = 1,2, ... such that Kp (qi,) i- 0, the ratio 'TJp,h is strictly decreasing in 

each ni, i = 1, ... , d, and strictly increasing in p. 

As far as the normalized versions ~h and ~h of the quadratic forms q;; and (f;; are concerned, 

we have the following conjecture, which extends to any p > 2 what we know for p = 2 (as 

(h,h = Nh/Nh 2: 1). No numerical counterexamples or a proof have been found. 

Conjecture 4.4.11 For p = 1,2, ... such that Kp (q;;) i- 0, ¢p,h 2: 1. 

The conjecture does no need to hold when Condition C is violated. In that case Kp ((f;;) 

may be much greater than Kp (qi,) (due to the fact that there may be p-sided polygons of side 

h which are embedded in the toroidal version of r but not in r itself), and the normalization 

by 2Nh and 2Nh may not be sufficient to revert the order of the inequality Kp ((f;;) > Kp (q;;) 

established by Lemma 4.4.9. 

Lemma 4.4.12 For p = 1,2, ... such that Kp(q;;) i- 0, the ratio ¢p,h is strictly increasing in 

p. 
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In view of Lemma 4.4.10, one would expect ¢p,h to be decreasing in each ni, i = 1, ... , d. 

This is indeed always the case in the numerical studies we have performed, but a proof as 

simple as that for 7]p,h does not seem possible. 

In Table 4.2 some values of 7]4,1 are reported (note that 7]3,1 is not defined, as k3 (q!) = 0 on 

any uniform grid); kp((ji,) is computed by exploiting the known eigenvalues of Ah, and kp(qi,J 

by differentiating the generating functions given in HM. Table 4.3 gives the corresponding 

values of ¢p,h' 

d\n 20 40 60 80 100 

2 1.3673 1.1670 1.1084 1.0801 1.0634 

3 1.3646 1.1657 1.1076 1.0795 1.0629 

4 1.3631 1.1653 1.1072 1.0793 1.0627 

Table 4.2: Some values of 774,1 on ad-dimensional hypercubic uniform grid of side n. 

d\n 20 40 60 80 100 

2 1.1138 1.0548 1.0361 1.0269 1.0215 

3 1.1116 1.0536 1.0353 1.0263 1.0210 

4 1.1104 1.0532 1.0350 1.0261 1.0208 

Table 4.3: Some values of ¢4,1 on ad-dimensional hypercubic uniform grid of side n. 

4.5 Second-Order Stationary Isotropic Processes 

In this section, we analyze the performance of the circular approximation for deriving the 

properties of ~h = qh!(2Nh) , when the underlying spatial process is second-order stationary 

and isotropic processes. A stochastic process {Z (0:),0: E A ~ ]Rd} is said to be second­

order stationary and isotropic if E(Z(o:)) is constant and cov(Z(o:), Z(fJ)) depends on the 

sites 0: and fJ only through 110: - fJll. Thus, when A = r, the covariance matrix of z can be 

represented as 

~ = L c(h)Ah , 

hEH 

where H is a set of squared distances including h = 0, and c(h) is the covariance between pairs 

of variables observed at sites at squared distance h. We assume that the c(h)'s, hE H, are 
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such that 2:: is positive-definite, and that the joint density of the spatial process is Gaussian 

(but extensions to more general elliptically symmetric distributions are certainly possible, in 

much the same way as, for instance, in Genton, 1999). For the sake of simplicity, we also 

assume E(Z(ex)) = 0. 

In Section 3.2 of HM a procedure is given to compute the cumulants of q'h and qh for a 

second-order stationary and isotropic processes. Although such a procedure is in principle 

applicable on any uniform grid to derive cumulants of any order, in practice the computation 

may become very intensive when the grid is large and/or the cardinality of H is large. 

This is true even for low-order cumulants, and for product cumulants such as the covariances 

between two quadratic forms q'h or qh for two different values h. Because of this computational 

problem, and given also that in applications one generally needs to consider quadratic forms 

for several values of h, an approximation is desirable. 

In the following, we limit ourselves to the mean and the variance of f,h = q'h/(2Nh), but 

extensions to higher-order cumulants or to qh are straightforward. Observe that 2Nh can be 

readily evaluated from the generating function (4.12) and recall that the p-th cumulant of 

a quadratic form z' M z in z rv N(O, 2::) is given by ""p = 2P- 1 (p - 1)!tr[(M2::)P], p = 1,2, ... 

(e.g., Kendall and Stuart, 1969, Chapter 15). We have 

1 1 { c( h), if h E H; 
E (f,h) = -N tr[Ah2::] = -T '" c(k)tr[AhAk] = 

2 h 2Nh ~ ° kEH , otherwise, 

because tr [AhAk] = 2Nh if h = k and vanishes otherwise. From the results in Section 3.2 of 

HM, and particularly their Lemma 7, one obtains 

1 2 1 h d 
var (f,h) = N2 tr[(Ah2::) ] = -2 [(81 82) ][SH(t1)][SH(t2)]Vn (81, 82, tl, t2), 

2 h 2Nh 
(4.16) 

where [SH(t)] is a linear operator constructed as 

[SH(t)] = L c(h) [th], 
hEH 

and 
d 

V(81, 82, tl, t2) = II tr[Eni (sl)Eni (tdEni (82)Eni (t2)], 
i=l 

with 
n-1 

En (t) = L t
r2 

Fr. 

r=O 

Expression (4.16) makes it clear that the memory usage and the computation required 

to obtain var(f,h) may be large, because of the required multiplication of big matrices (when 
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at least one ni is large) and of the large number of accesses to the generating function 

V(8I' 82, tI, t2) (when the cardinality of H is large). In order to approximate var(~h)' we 

define a "circular process" z rv N(O, ~), with 

~ = L c(h)Ah. 
hEH 

At this stage, we do not insist on a particular relationship between c(h) and c(h), but we will 

shortly see that, given a simplifying assumption, it is convenient to set c(h) = c(h). 

A natural (method of moments) estimator of c(h) is ~h = 0~/(2Nh)' Its expected value 

when z rv N(O,~) is, for a fixed h, 

E(~h) = ~tr[Ah~l = ~ L c(h)tr[AhAkl· 
2Nh 2Nh kEH 

(4.17) 

Note that the term c(h)tr[A~1/(2Nh) = c(h), for h E H, always gives a non-zero contribution 

to E((fiJ; additional terms are present only if H contains squared distances k (different from 

h) such that tr[AhAkl does not vanish. 

Let us now assume that Condition B holds for any h E H. Note that such an assumption 

limits the range of dependence in the process z, in that it entails that two variables Z (a) and 

Z (f3) are correlated only if the i-th component of a - f3 is less than nd2 , for each i = 1, ... , d. 

This, of course, is likely to be reasonable when all the ni's are large, but may be restrictive 

otherwise. 

The main analytical advantage of assuming that Condition B holds for any h E H is that 

it entails that the matrices A k , k E H, are-as their non-circular counterparts-disjoint. As 

a consequence, 

if hE H; 

otherwise. 

In this case, under the stated assumption, it is appropriate to take c(h) = c(h), for h E H, 

so that, for any h, ~h and ~h have the same expectation. An approximation to var(~h) is 

therefore given by 

which, in view of the pairwise commutativity of the matrices Ah, can be computed with very 
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little computational effort from 

(recall that the eigenvalues A~k ((3), k E H, (3 E r, can be derived from the combination of 

Lemma 4.3.4 and the generating function (4.8)). 

To demonstrate the performance ofvar(Zh) in approximating var(~h)' we use the example 

of a spatial process with a spherical variogram with sill 1, nugget ° and range r. Such a process 

is second-order stationary and isotropic with covariances given by 

{

1- ~(3Vh/r + (Vh/r)3), 
c(h) = c(h, r) = 

0, 
(4.18) 

In Figure 4.1(a) var(~h) and var(Zh) are plotted as a function of r for d = 2, nl = n2 = 50 

and h = 1,4 (although it is not visible in the figure, varCZh) < var(~h) when r ::::; 1, as 

predicted by Conjecture 4.4.11). Figure 4.1(b) is the same as Figure 4.1(a), but for the 

statistic %/ Nh-the (unbiased) classical estimator of the variogram of the process-rather 

than for ~h. 

4.6 Concl us ions 

The paper has developed a circular approximation to the spatial design matrices of isotropic 

processes on d-dimensional uniform grids, and has investigated the performance of the ap­

proximation when it is used to compute the cumulants of the quadratic forms qi,. Such 

quadratic forms, suitably normalized, are recurrent in many inferential procedures in the 

context of isotropic spatial processes. 

The approximation is useful when it is most needed, that is, when the uniform grids are 

large. The saving in computational time can be enormous for i.i.d. Gaussian data, because 

in that case the cumulants are simple functions of the eigenvalues of the design matrices, 

and the eigenvalues of the circular spatial design matrices, contrary to the non-circular ones, 

are known in closed form. We have shown that the same argument applies, under suitable 

assumptions, to Gaussian second-order stationary and isotropic processes. 

Extensions to the quadratic forms % in the full spatial design matrices Lh have been 

considered only briefly. Further work is required before recommending the circular approxi­

mation for that case. 
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Figure 4.1: For a spatial process defined on a 2-dimensional square grid of side 50, and with a 

spherical variogram, (a) displays var(~,J (solid lines) and var(~h) (dotted lines) as a function 

of the range, for h = 1 (dark lines), and h = 4 (light lines); (b) is the same as (a) but for 

var(qh/Nh) and var(Zjh/ Nh)' 

Appendix. Proofs 

Proof of Proposition 4.3.1 Flb,o) = 1 only if either /r(i) - o(i)1 = fJ(i) or n - fJ(i) 

for each i = 1, ... , d. Hence, the b,O) element of Ah is one if and only if 0:,0 belongs to the 

set {ED - fJ, fJ E rh, DE .6.}. That is, there must exist D E .6. such that 110:,0 - EDI12 = h. 

Proof of Corollary 4.3.2 Observe that the condition in the corollary implies that there 

is no pair b,o) E r x r such that 11,- 011 2 i= hand 110:,0 - EDI12 = h for a D E .6., with 

D i= {O, ... , O}. The sufficiency of the condition is then a simple consequence of Proposition 

4.3.1. Its necessity follows from the fact that if there is an 0: E rh having a component 0: (i) 

different from ° or nd2, then there is at least one pair b,6") such that (Ah)"o i= (Ah),,5, 

again by Proposition 4.3.1. 
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Proof of Corollary 4.3.3 Clearly, (Ah -Ah),,5 is zero if rand r5 are h-neighbors. If rand 

r5 are not h-neighbors (i.e., (Ah),,8 = 0), then it can be deduced from Proposition 4.3.1 that 

(Ah),,8 = 0 if a,8 (i) < ni - Vh, i = 1, ... , d, because under such a condition Ila,8 - Ed 2 = 

I:~=l (a,5(i) ED(i))2 is greater than h for any D E ~ other than D = {O, ... , O}. 

Proof of Lemma 4.3.4 Let Xl, ... , Xn be the common eigenvectors of each FT" Then, for 

each 13 E r, 

a.EU 

so that the A~ (13), 13 E r, are eigenvalues of Au. 

Proof of Lemma 4.4.1 (i) For rl = 1,2, ... , In/2J - 1, E(Q;l) = tr[P;;)] = 0 and 

var(Q;l) = 2tr[(p;;))2] = 2tr[(CT'l + C-T'l )2] = 2tr[C2T'l + C-2T'l + 2In], which by equation 

(4.3), is equal to 2tr [2In] = 4n. 

(ii) The covariance between Q;l and Q;2 is 2tr[P;;) p;;)] , which does not vanish if and 

only if there is at least one integer 0 ~ i ~ n - 1 such that Ii - rll = Ii - r21. This is clearly 

impossible if rl =I r2, and rl, r2 = 1,2, ... , In/2J - 1; 

(iii) The density of Q;l is symmetric about zero if and only if all its odd cumulants 

vanish, that is, if and only if tr[(P;;))P] = 0 for all odd p. Since, for rl = 1,2, ... , l n/2 J - 1, 

p;;1) = CT'l + C-T'l, such a condition is equivalent to I:~=o (~)tr[CT'l(2k-p)] = 0 for all odd 

p. By equation (4.2), tr [CT'l] is equal to n if aT'l = 0, to 0 otherwise, for each rl. Thus, 

by equation (4.3), the density of Q;l is symmetric about zero if and only if aT'l(2k-p) =I 0, 

k = 0,1, ... ,p. If n is even and rl is odd, aT'l(2k-p) =I 0, k = 0,1, ... ,p, because rl(2k - p) 

is odd. If n is an even multiple of rl, aT'l(2k-p) =I 0, for k = 0,1, ... ,p, because 2k - p is 

odd. Sufficiency of the condition in the Proposition is thus proved; its necessity follows from 

the fact that in all the remaining cases, there exists at least one triple (p, rl, k) such that 

aT'J(2k-p) = O. This is so because if n is odd aT'l(2k-p) = 0 for k = p = n, and if rl is an even 

multiple of n, aT'l(2k-p) is always O. 

Proof of Lemma 4.4.2 (i) For hI = 1,2, ... , I:f=l (ni _1)2, E(([hl) = 0 because E(([hJ = 

tr[Ahl] and no a E r(nl, ... , nd) can be an hI-neighbor of itself. The variance is var(([hl ) = 

-2 -
2tr[Ahl ] = 2mhN = 4Nh. 

(ii) The covariance between two distinct quadratic forms ([hI and %2 is 2tr[Ahl Ah2]' 

Now, the diagonal element of AhlAh2 indexed by r E r is I:5Er(AhJ"5(Ah2),,,,' and thus 
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cov(Zi'l'l,Zi'h2) = 0 unless there is at least one pair "1,6 and two (different) subsets D1 and D2 

of 6 such that Iia - EDll12 = hI and Iia - EDJ
2 = h2, where a(i) = 1"1 (i) - 6 (i)l, i = 1, ... , d. 

That is, two distinct quadratic forms Zi'h
l 

and Zi'h2 are correlated if and only if there exists 

an a E r at distance hI from one vertex of r (nl + 1, ... , nd + 1) and at distance h2 from 

another. It is easily deduced that a necessary condition for Zit and Zi'h2 to be correlated is 

that there exist a E rhl and f3 E rh2 such that, for at least one i = 1, ... , d, a (i) + f3 (i) = ni· 

As a consequence, Zit and Zi'h2 are uncorrelated if no a E r hl U rh2 contains an element 

a (i) 2: ni/2, which completes the proof of the lemma. 

Proof of Lemma 4.4.3 From (4.13), K,p (q'h) = 2p-l(p-1)!tr[A~l and K,p (Zi'h) = 2P-
l (p_ 

1)!tr[A~l. The first part of the lemma is then trivial and follows from the fact that Ah and 

Ah are nonnegative matrices and Ah = Ah + Rh, with Rh a nonnegative matrix. The case 

p = 1 is also trivial, since in that case E (Zi'h) and E (q'h) are both zero. Next, observe that 

the (ry, "I) entry of A~ is 

(4.19) 

which is non-zero if and only if there is at least one (p - I)-tuple (61, ... , 6p-l) such that 

( 4.20) 

Similarly, 

(4.21) 

which, in view of Proposition 4.3.1, is non-zero if and only if there is at least one (p - I)-tuple 

(61, ... , 6p-d such that 

3Dj E 6 : Ilaj - EDj 112 = h, for j = 1, ... ,p, ( 4.22) 

where the ai's are defined by aj(i) = 16j-l(i) 6j(i)l, i = 1, ... , d, with 60 = 6p = "I. Call a 

distance h feasible if r contains at least one pair of h-neighbors; then, for even p, kp(Zi'h) = 0 

is necessary and sufficient for kp(q'l') = 0 simply because if h is not feasible then both (AD", 

and (A~)", are zero for any "I E r, while if h is feasible then both K,p (Zh:) and K,p (q'h) are 

positive (because for any pair of h-neighbors (ry, 6), the (p - I)-tuple (6, "I, 6, ... , "I, 6) satisfies 

both (4.20) and (4.22)). To prove the part of the Lemma relative to Condition C, we show 

that, under Condition C, kp(Zii',) i- 0 implies kp(q'h) i- O. First, observe that A~ (ry,ry) does 

not depend on "I, as is easily seen by considering formula (4.4) plus the fact that the product 
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of any two F,~n) matrices has constant diagonaL If kp(!j;,) =Ie 0, then for each 'Y E f, there 

is at least one (p - I)-tuple (ch, ... , 6p-d satisfying (4.22). This clearly implies that, under 

Condition C, it is always possible to find a p-tuple b, 61, ... , 6p-l) such that (4.22) is satisfied 

with Dj = {O, ... , O}, for j = 1, ... ,p. But this in turn implies that the same p-tuple satisfies 

(4.20), and hence that kp(q;,) =Ie 0, as was to be proved. To complete the proof, we need to 

show that when p 2: 3 and without Condition C, kp(q;,) may be zero even if kp(!j;,) is not. 

This is so because even if there is not a 'Y and a (p - I)-tuple (61, ... , 6p-l) that satisfy (4.20), 

it may still be possible, by taking at least one of the Dj's to be different from {O, ... , O}, to find 

a'Y and a (p - I)-tuple that satisfy (4.22). For example, for d = 2 and h = 20, the sequences 

61 = (4,2) and 62 = (2,6) satisfy (4.22) when 'Y = (0,0), and thus k3 (!j20) > 0, although 

k3 (q20) must be 0, since, as it is well-known (e.g., Beeson, 1992), there is no equilateral 

triangle with vertices on a 2-dimensional planar lattice. 

Proof of Proposition 4.4.4 Under Condition B, we have from the generating function 

(4.11) that 

mh = L 2d- k",(0). 

aErh 

On the other hand, from (4.12) we obtain 

L {2d- k,,(0) TIf=1 (ni - a(i)) } . 
aErh 

The expression in the proposition follows simply by taking 2Nh = Nmh. 

Proof of Corollary 4.4.5 Assume that nl = ... = nd = n, and, for any w E nh, 
n-l 

let v(w) = n kw(j)!, where kw(j) denotes the multiplicity of j in w. Then, the numera-
)=0 

tor in (4.14) is nd I:wEO,,{ d!2-w (0) /v(w)}, and the denominator is I:wEOh {d!2-w(0)rrf=1 (n -

w(i))/v(w)}. The corollary follows straightforwardly on assuming nh = {Wh}. 

Proof of Corollary 4.4.6 For h = 1,2,3, Inhl = 1 for any dimension d 2: h, because 

any decomposition in d squares of h consists of h ones and d - h zeros. The corollary obtains 

by applying Corollary 4.4.5. 

Proof of Corollary 4.4.7 If only non-diagonal directions are considered, ka (0) = d - 1, 

for any a E rho Then, the expression in the corollary follows from (4.14), on noting that the 

only non-zero element of a E rh must be Vh. 
Proof of Proposition 4.4.8 From expressions (4.11) and (4.12) it is clear that 2Nh = 

Nmh and 2Nh are symmetric polynomials in nl, ... , nd. Then the rational function 'TJ2,h = 
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Nh/Nh admits a basis in terms of the elementary symmetric functions of nl, ... , nd (e.g., 

Macdonald, 1995). Expressed in such a basis, 'TJ2,h can be differentiated easily with respect 

to nl, ... , nd, keeping N fixed. Imposing that the Jacobian is zero and verifying that the 

obtained solution is a minimum completes the proof of the lemma. 

Proof of Lemma 4.4.9 Clearly, K,p ((fh) 2:: 0 and K,p (qh) 2:: 0, because Ah and Ah are 

nonnegative matrices, and K,p Cit:) 2:: K,p (qh)' because Ah = Ah + Rh, with Rh a nonnegative 

matrix. We have to show that when K,p ((fh) > 0, K,p ((fh) is strictly greater than "'v (qh). This 

amounts to proving that (a) (A~)", 2:: (AD~I'~f' for each, E r, and (b) there is at least one 

, E r such that (A~)", > (A~)", (when K,p((fh) > 0). Assertion (a) follows from the fact 

that if a (p - I)-tuple (01, ... , Op-l) satisfies expression (4.20) given in the proof of Lemma 

4.4.3 for a given" then it also satisfies expression (4.22) given in the same proof for the same 

" with each Dj equal to {O, ... , O}. A sequence I always satisfying (b) is the origin (0, ... , 0); 

to see why this is so, let us denote by aP the sequence with elements aD(i) = lED - a (i)l, 

for a sequence a E r and a set D E .6.. Then, it is clear that if I = (0, ... ,0), then, for each 

(01, ... , Op-l) satisfying (4.20), any of the 2d tuples (of, ... ,0;;-1), for aD E .6., satisfies the 

conditions (4.22), with each Dj equal to D. This completes the proof of the lemma. 

Proof of Lemma 4.4.10 The lemma is a straightforward consequence of expressions 

(4.19)-(4.22) given in the proof of Lemma 4.4.3. 

Proof of Lemma 4.4.12 Same as the previous proof. 
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Chapter 5 

Concluding Remarks 

This thesis represents our contribution to the econometric and statistical literature on para­

metric spatial processes defined on regular or irregular lattices. In this final chapter, we 

summarize our main findings and indicate directions for further work. 

Chapter 1 has provided a novel interpretation of the correlation structure of spatial au­

toregressive models. The interpretation, based on some formal graph theory, explains several 

known peculiarities of the correlations implied by the models when they are constructed over 

irregular lattices. It has also allowed to prove new results regarding the second-order prop­

erties of the models. In addition, the adoption of a graph theoretic perspective has enabled 

us to clarify the role played by the presence of symmetries and regularities in the set of 

observational units. 

The most natural extension of Chapter 1 is to use the graph theoretic framework that has 

been developed there to study the properties of inferential procedures in the context of spatial 

autoregressive models. Recently, a graph theoretic approach which has some connections to 

ours has been used in Martin (2005a and 2005b) to devise a solution to some computational 

problems arising when estimating CAR and SAR models by maximum likelihood. 

Chapter 2 has investigated exact power properties of invariant tests for spatial autocorre­

lation in the context of the linear regression model. We have studied how the power is affected 

by the matrix of regressor and by the assumed spatial structure. Some relevant results of the 

paper are: we have given conditions for unbiasedness and monotonicity of the power function 

of the tests; we have shown that, for any assumed spatial structure, a matrix of regressor 

exists such that the limiting power of locally best tests and point optimal tests vanishes; 

we have argued that there is a fundamental difference between the case of symmetric and 

non-symmetric weights matrices as far as the power of the tests is concerned. 
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Chapter 2 is prone to several extensions, many of which have already been indicated. 

It seems possible that the results of the paper can be adapted to the context of a time 

series first-order autoregressive (AR(I)) model, in particular to investigate how the power 

of invariant tests of unit roots depends on the regressors. Such an adaptation should be 

based on approximating the covariance matrix of an AR(I) model with a matrix belonging 

to the span of I and another fixed matrix, as done in the seminal work by Anderson (1948). 

Additionally, the possibility of extending the framework developed in the paper to problems 

in estimation based on the density of the maximal invariant (i.e., estimation based on the 

marginal likelihood) deserves attention in further work. 

Chapter 3 has provided a complete structural representation of the spatial design matrices 

of isotropic processes on uniform grids, and has given generating functions which make the 

computation of the matrices straightforward. The generating functions for the spatial design 

matrices also induce generating functions for the cumulant of the quadratic forms associated 

to such matrices. A particular consequence of these results is that the variance of the classical 

variogram estimator can be computed exactly. This has been done explicitly in the paper for 

some popular assumptions on the actual variogram. 

One question that provides an interesting connection between Chapter 2 and Chapter 

3, and that arises quite naturally when studying the properties of the statistics qh and q", 

is which of the two statistics is better, in some sense to be specified, to test for spatial au­

tocorrelation in the context of a linear regression model. Recall that ifh = qh/ (z' z) is the 

generalization of a von Neumann statistic, while if" = q,,/ (z' z) is the generalization of a 

serial correlation coefficient. Curiously, the dominant test for serial correlation in regression 

errors-the Durbin-Watson test-is based on ifh, whereas the dominant test in higher dimen­

sion (d > I)-the Cliff-Ord test-is based on if". The question referred to above is, in more 

precise terms, for which class of models, and which values of their parameters, tests based on 

% are more (or less) powerful than tests based on q". 
Chapter 4 has developed a circular approximation to the spatial design matrices. We have 

shown that the approximation is useful to obtain the cumulants of the quadratic forms associ­

ated to the spatial design matrices, in that it reduces dramatically the required computational 

effort. 

An important extension of Chapter 4 would be to perform a large numerical study of the 

performance of the circular approximation for both % and q,:, and for a variety of isotropic 

spatial processes on grids of dimension 2 and 3 and with popular covariance functions or 
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variograms. While-given the results in Chapter 4-it is known that the approximation 

improves as each side ni of the grid increases, it would certainly be useful for practitioners to 

have an idea of the magnitude of the errors involved when, for instance, approximating the 

variance of the classical variogram estimator, for a given spatial process on a given grid. 
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