
UNIVERSITY OF. SOUTHAMPTON
.. ;;~f'< ~ 'f."

SystemC-A: Analogue and

Mixed-Signal Language For High

Level System Design

by

Hessa J assim AI-Junaid

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and 1\1athematics

School of Electronics and Computer Science

May 2006

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy
" SYSTEMC-A: ANALOGUE AND MIXED-SIGNAL LANGUAGE FOR HIGH LEVEL

SYSTEM DESIGN

by Hessa Jassim AI-Junaid

In the light of the growing popularity of mixed, analogue and digital ASICs and System on

Chip, several high level hardware description languages (HDLs), such as VHDL and Verilog,

have recently been extended to provide analogue and mixed-signal (AMS) modelling capabilities.

SystemC is a new language added recently to the existing HDLs used by the digital electronic

design community. This research has developed a new methodology that enables the extension

of SystemC to the analogue domain and allows simulations of mixed-signal and mixed-domain

systems on arbitrary levels of abstraction. The developed AMS extension is named SystemC-A

and complies with SystemC semantics. In many respects, SystemC-A is more powerful than

many existing HDLs.

The contributions of this research can be summarised as follows: Firstly, new syntax elements

and classes that extend SystemC to the analogue domain have been developed. The new language

construct elements support analogue system variables, analogue components and user defined

equations. In addition to the various abstraction levels provided by SystemC, the developed

extension provides extra abstraction levels which are specific to analogue systems. A numeri­

cally efficient analogue kernel has been developed and implemented in which a novel equation

formulation method for nonlinear algebraic and differential equations (DAEs) is developed.

Secondly, a novel mixed-signal synchronisation method to integrate the analogue kernel with the

digital one has been developed. The implementation of the lock-step synchronisation method

provides an efficient handling of extremely small and zero time step sizes and enables analysis

with arbitrary accuracy. Support for digital-analogue interfaces has been provided for easy and

smooth integration of digital and analogue parts.

Finally, SystemC-A is validated and optimised using a suite of numerically difficult analogue,

mixed-signal, and mixed-domain examples. Their complexity ranges from simple sets of DAEs to

highly complex mixed-signal systems, which are difficult to handle by existing HDLs. SystemC­

A supports different types of continuous-time analysis suitable for mixed-signal modelling. For

example, it supports large-signal time domain noise analysis, which is traditionally difficult to

implement in a mixed-signal context.

Contents

List of Figures

List of Tables

List of Listings

Abbreviations

Acknowledgements

1 Introduction
1.1 System Design Methodology
1.2 Why SystemC?
1.3 SystemC-A versus VHDL-AMS
1.4 Analogue and Mixed-Signal Modelling

1.4.1 Potential Applications and Challenges
1.5 Research Objectives and Contributions
1.6 Descriptions and Challenges of the Chosen Case Studies
1.7 Thesis Structure.

2 Literature Review
2.1 SystemC

2.1.1 Language Definition
2.1.2 Design Flow
2.1.3 Language Architecture
2.1.4 Data Types
2.1.5 Simulation Kernel ...
2.1.6 Models of Computation

2.2 Modelling Hardware in C/C++
2.3 Mixed-Signal Modelling With SystemC
2.4 VHDL-AMS............

2.4.1
2.4.2
2.4.3
2.4.4
2.4.5

Quantities
Simultaneous Statements
Provision for Network Topology
Tolerances
Analogue/Digital (A/D) Interaction.

11

vi

VIII

IX

Xl

xiii

1
4
9

13
14
15
17
20
21

23
23
25
25
26
29
30

31
32
34
40
42
43
44
45
46

CONTENTS III

2.4.6 Digital/ Analogue (D / A) Interaction. 46
2.4.7 Small-Signal Frequency Domain and Noise Modelling 47

2.5 Concluding Remarks 48

3 AMS Modelling Syntax 49
3.1 Preliminaries: Object-Oriented Programming 50
3.2 Analogue System Variables. 51

3.2.1 sc_a_node ... 53
3.2.2 sea_flow 55
3.2.3 sc_a_free_ variable 55

3.3 Analogue Components 56
3.4 Digital-Analogue Interactions 59

3.4.1 Digital-Analogue Interface 60
3.4.2 Analogue-Digital Interface 61
3.4.3 Other Interfacing Methods 62
3.4.4 Analogue Stepping ... 63
3.4.5 Small Step Sizes. 65

3.5 SystemC-A Abstraction Levels. 66
3.6 Concluding Remarks 67

4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 68
4.1 Numerical Techniques for Analogue and Mixed-Signal Simulation 69

4.1.1 Mathematical Model 69
4.1.2 Equation Formulation 73
4.1.3 Standard Solution of Linear Equations 75

4.2 Equation Build Method 76
4.3 Object-Oriented Jacobian Approximation. . . 78

4.3.1 Quasi-Newton Method 78
4.4 SystemC-A Implementation of OO-NQN Equation Formulation 80
4.5 Object-Oriented Jacobian Approximation Efficiency 83
4.6 Analogue Kernel .. 84
4.7 Concluding Remarks 86

5 Time Synchronisation Between Analogue and Digital Kernels 88
5.1 SystemC Simulation Cycle 89
5.2 Developed SystemC-A Mixed-Signal Simulation cycle 89
5.3 Time Synchronisation Methods 92

5.3.1 Backplane Method . 93
5.3.2 Ping-Pong Method . 94
5.3.3 Calaveras's Method . 94

5.4 Lock-Step Method . 95
5.5 Concluding Remarks 97

6 Electrical System Modelling Case Studies 98

CONTENTS

6.1 Van Der Pol Oscillator
6.1.1 Modelling and Simulation

6.2 Lorenz Chaos
6.2.1 Modelling and Simulation

6.3 Switched-Mode Power Supply ..
6.3.1 Modelling and Simulation

6.4 Phase Locked Loop . .
6.4.1 Noise Module
6.4.2 VCO model (1)
6.4.3 VCO model (2)
6.4.4 Modelling and Simulation
6.4.5 Comparison with VHDL-AMS

6.5 Concluding Remarks

IV

99

· 100
· 103
· 104
· 105
· 107
· 110
· 112
· 114

· 116
· 117
· 121
· 123

7 Electromagnetic System Modelling Case Study 125
7.1 Theory of Jiles-Atherton Model 126
7.2 Modelling and Simulation of the Original Jiles-Atherton Model ... 131
7.3 Nonphysical Behaviour and Numerical Difficulties of Jiles-Atherton

Model .. . 136
7.4 Modelling and Simulation of the Modified Jiles-Atherton Model . 138
7.5 Comparison with VHDL-AMS . 141
7.6 Concluding Remarks 144

8 Mixed-domain System Modelling Case Study 146
8.1 Vibration Isolation Seating System 147

8.1.1 Mathematical Model of Chassis and Seating System. . 147
8.1.2 Mathematical Model of Actuator 149
8.1.3 Controllers

8.1.3.1 Proportional-Integral Controller PIC
8.1.3.2 Variable Structure Controller VSC
8.1.3.3 Optimal Controller OC

8.2 Modelling and Simulation
8.2.1 Single Jolt Simulation
8.2.2 Multiple Sin Waves with WGN Simulation
8.2.3 Comparison with VHDL-AMS

8.3 Concluding Remarks

9 Conclusions and Future Research

Appendices

A Publications

B Review of SystemC Applications
B.1 Modelling

· 152
· 154
· 155
· 156
· 157
· 161
· 161
· 164
· 164

166

172

173

175
· 175

CONTENTS

B.2 Hardware/Software Co-Design and Co-Simulation
B.3 Co-Verification
B.4 Synthesis
B.5 Further Enhancement and Extensions.

C SystemC-A Models
C.1 Circuit-Level Components

C .1.1 Resistor sc_a_resistor . .
C.1.2 Capacitor sc_a_capacitor
C.1.3 Diode sc_a_diode
C.1.4 MOSFET sc_a_mosfet .
C.1.5 DC Voltage Source sc_a_voltageS_dc .
C.1.6 Sine Wave Voltage Source sc_a30ltageS_sin .
C.1. 7 Current Source sca_currentS_dc .

C.2 Phase Locked Loop
C.2.1 Detector
C.2.2 Charge Pump and Filter
C.2.3 Divide by N

D VHDL-AMS Models
D.1 Phase Locked Loop

D.1.1 Detector ..
D.1.2 Charge Pump
D.1.3 Filter
D.1.4 Divide by N
D.1.5 VCO
D.1.6 Testbench .

D.2 Original Jiles-Atherton Model
D.3 Proposed Jiles-Atherton Model

References

v

· 180
· 184
· 187
· 188

190
· 190
· 190
· 191
· 191
· 192
· 193
· 194
· 195
· 195
· 195
· 196
· 197

198
· 198
· 198
· 199
· 200
· 201
· 201
· 202
· 203
· 204

206

List of Figures

1.1 Example of a mixed-signal System on Chip in telecommunications
[1]. 2

1.2 Design flow and levels of modelling abstractions " 5
1.3 Increasing abstraction level boosts simulation speed [29]. 12
1.4 A suggested map of SystemC-A with the current analogue simu-

lators and HDLs classified based on abstraction levels and design
units 16

2.1 SystemC design flow (see Section 2.1.2). 26
2.2 SystemC language architecture. 27
2.3 An illustration of ports, channels and interfaces of SystemC (see

Section 2.1.3). 29

3.1 Analogue system variable inheritance hierarchy. 52
3.2 Linked-list of system variables.. 53
3.3 Analogue nodes possible inheritance hierarchy. . 54
3.4 SystemC-A analogue components inheritance hierarchy. 56
3.5 Linked-list of analogue components. 59
3.6 Corresponding schematic of circuit description in Listing 3.2. 59
3.7 SMPS Block diagram with analogue-digital interfaces. 61
3.8 Demonstration of analogue to digital transformation at their inter-

face. 62
3.9 Time stepping in analogue simulators. 63
3.10 Handling small time step sizes in SystemC-A analogue kernel. 66
3.11 illustration of cancelled events when T >pulse width. 66

4.1 Procedure of analogue circuit simulation. 73
4.2 Capacitor mathematical model and its SystemC-A build functions.. 76
4.3 Summary of OO-NQN equation formulation method. 79
4.4 Illustration of the secant method. . . . 80
4.5 SystemC-A modelling and simulation. 85

5.1 Simulation cycle of a SystemC model (see Section 5.1). 90
5.2 Proposed SystemC-A simulation cycle. 91
5.3 Simulation cycle of the analogue kernel process. 92
5.4 Time synchronisation methods of analogue and digital kernels. 93

VI

LIST OF FIGURES Vll

6.1 SystemC-A simulated time signals of Van Der Pol equation. . 102
6.2 SystemC-A simulation of Van Der Pol equation phase plane. . 103
6.3 SystemC-A simulation of Lorenz chaos time signals. 106
6.4 SystemC-A simulation of Lorenz chaos xz butterfly trajectory. . 106
6.5 Boost 1.5V /3.3V switched mode power supply with digital control. 107
6.6 SystemC-A simulation of SMPS transition output voltage. 110
6.7 SMPS SystemC-A simulation results for a 200ms time window in

steady state. III
6.8 Block diagram of 2GHz Phase Locked Loop with noise and jitter. . 112
6.9 PLL model in SystemC-A represented as block diagram with de­

tailed signals. 119
6.10 SystemC-A simulation results of the 2GHz PLL frequency synthesiser.121
6.11 SystemC-A simulation of the low pass filter voltage for the two noise

methods. 122
6.12 VCO jitter histogram for the two noise methods. . . 122

7.1 BH curve of magnetic hysteresis. 127
. 129 7.2 Original and modified anhysteretic functions

7.3 Sinusoidal Band H waveforms of ferromagnetic hysteresis simula-
tion in SystemC-A. ., . 135

7.4 SystemC-A simulation of BH curve of the original JA model. . 135
7.5 VHDL-AMS simulation of BH curve of the original JA model. . 136
7.6 Original and modified ~'ii resulting from a DC sweep of H. .. . 137
7.7 DC sweep simulations of the SystemC model showing the excitation

H and response B. Trace 1 includes minor loops biased at H =
2kA/m and trace 2 - non-biased minor loops 141

7.8 SystemC simulations showing the minor loop behaviour; main loop
amplitude - 10 kA/m, minor loop amplitude - 1 kA/m, bias of H
in minor loops a) OkA/m, b) 2 kA/m. 142

7.9 VHDL-AMS simulations a) BH curve with symmetric minor loops
(bias of H is OkA/m), b) BH curve with asymmetric minor loops,
H bias of 2kA/m. 143

7.10 !:1B the difference between Euler and Runge-Kutta using SystemC. 144

8.1
8.2
8.3
8.4

8.5

8.6

Vibration isolation seating system.
Actuator's DC motor and gear mechanisation.
Actuator's hydraulic mechanisation.
Block diagram of the automotive system implementation in SystemC-

148
. 150
. 150

A 158
Single jolt sine wave disturbance simulation with responses of the
three controllers. 162
Noisy sine wave disturbance simulation with responses of the three
controllers. 163

List of Tables

1.1 Descriptions and challenges of the chosen case studies. 20

2.1 CjC++ based design languages. 33

4.1 Sample component stamps used in automatic equation formulation. 74
4.2 Execution times when using exact and approximated Jacobian in

case studies covered in Chapter 6, 7 and 8. 83

6.1 SMPS simulation statistics 109
6.2 PLL simulation statistics. 123

7.1 Jiles-Atherton model parameters. 132
7.2 Simulation times of SystemC and VHDL-AMS for ferromagnetic

hysteresis. 144

8.1 Chassis and seat model parameters. 149
8.2 Actuator model parameters. 153
8.3 SystemC-A and VHDL-AMS performance figures of the seat posi-

tion x sp- p (cm) for the passive system and the suite of controllers .. 164

Vlll

List of Listings

2.1 SystemC example: D flip flop with asynchronous reset.
2.2 VHDL-AMS entity declaration of a signal flow model.
2.3 VHDL-AMS model of a signal flow amplifier.

30
42
44

3.1 Typical analogue component class, an inductor. 58
3.2 Components and nodes instantiations forming an electronic circuit

in SystemC-A. 59
3.3 Explicit D I A and implicit AID interfaces in SMPS testbench. . . . 60
4.1 SystemC-A model of the Component abstract class. 81
5.1 Modification to the SystemC kernel to be coupled with the analogue

kernel. 96
6.1 SystemC-A model of Van Der Pol equations using exact Jacobian .. 101
6.2 SystemC-A model of Van Der Pol equations using estimated Jaco-

bian formed by Quasi Newton method. . . . 102
6.3 SystemC-A Lorenz chaos model. 105
6.4 SystemC-A analogue module in the SMPS. . 108
6.5 SystemC-A PWM module in the SMPS. . . 109
6.6 C++ noise model. 113
6.7 SystemC-A VCO module using noise method (1). . 115
6.8 SystemC-A VCO module using noise method (2). . 117
6.9 SystemC-A PLL model. 119
7.1 SystemC-A testbench for the Jiles-Atherton simulation. . 132
7.2 SystemC-A implementation of the original Jiles-Atherton ferromag-

netic hysteresis model. 133
7.3 SystemC-A implementation of the proposed Jiles-Atherton ferro-

magnetic hysteresis model. 138
8.1 SystemC-A testbench of the automotive vibration isolation system. 157
8.2 SystemC-A implementation of the chassis and seating. 158
8.3 SystemC-A implementation of the actuator. 159
8.4 SystemC-A implementation of the variable structure controller.. . 160
C.1 SystemC-A model of a resistor. . . 190
C.2 SystemC-A model of a capacitor. 191
C.3 SystemC-A model of a diode. 191
C.4 SystemC-A model of a MOSFET transistor. . 192
C.5 SystemC-A model of a DC voltage source. . . 193
C.6 SystemC-A model of a sine wave voltage source. . 194

IX

LIST OF LISTINGS x

C.7 SystemC-A model of a DC current source. 195
C.8 SystemC-A model of the detector in PLL. 195
e.9 SystemC-A model of the charge pump and filter in PLL. . 196
e.10 SystemC-A model of the divide by N in PLL. . . 197
D.1 VHDL-AMS model of the detector in PLL. 198
D.2 VHDL-AMS model of the charge pump in PLL. . 199
D.3 VHDL-AMS model of the filter in PLL. 200
D.4 VHDL-AMS model of the divide by N in PLL. . 201
D.5 VHDL-AMS model of the VCO in PLL. 201
D.6 VHDL-AMS testbench of the PLL. 202
D.7 VHDL-AMS implementation of the original Jiles-Atherton ferro-

magnetic hysteresis model. 203
D.8 VHDL-AMS implementation of the proposed Jiles-Atherton ferro­

magnetic hysteresis model. 204

Abbreviations

ABSTOL

A/D

ADC

AHDL

AMS

AMS HDL

ANSI

ASIC

BDF

CAD

D/A

DAC

DAE

DSP
EB

EDA

GUI

HDL

IC

IP

ISS

KCL
LRM

LTE

MEMS

MNA

MoC

NR
ODE

Absolute Tolerance

Analogue/Digital

Analogue to Digital Converter

Analogue Hardware Description Language

Analogue and Mixed-Signal

Analogue and Mixed Signal HDL

American National Standards Institute

Applications Specific Integrated Circuit

Backward Differentiation Formula

Computer Aided Design

Digitalj Analogue

Digital to Analogue Converter

Differential and Algebraic Equation

Digital Signal Processing

Error Bound

Electronic Design Automation

Graphical User Interface

Hardware Description Language

Integrated Circuit

Intellectual Property

Instruction Set Simulator

Kirchhoff's Current Law

Langauge Reference Manual

Local Truncation Error

Micro Electro Mechanical System

Modified Nodal Analysis

Model of Computation

Newton Raphson

Ordinary Differential Equation

Xl

ABBREVIATIONS

OO-NQN

OSCI

PDAE

PLI

PLL

PWM

RELTOL

RF
RHS

RTL

SCV

SMPS

SoC

TBV

TLM

VCO

Object Oriented Newton-Quasi Newton

Open SystemC Initiative

Partial DAE
Programming Language Interface

Phase Locked Loop

Pulse Width Modulation

Relative Tolerance

Radio Frequency

Right Hand Side

Register Transfer Level

SystemC Verification library

Switched Mode Power Supply

System on Chip

Transaction Based Verification

Transaction Level Modelling

Voltage Controlled Oscillator

Xll

VHDL Very high speed integrated circuit Hardware Description Language

VHDL-AMS VHDL for Analogue and Mixed Signal

WGN White Gaussian Noise

Acknowledgements

I would like to express my thanks and appreciation to my supervisor DR. Tom

Kazmierski who has provided the brilliant ideas which are the mainframe of this

research, and precious guidance both in academy and life, when I needed it most.

Also, I would like to acknowledge and express my appreciation to Prof. Bashir

Al-Hashimi for being the examiner for both the nine-month report and the MPhil

transfer. I am grateful for his comments and suggestions on my work.

I wish to acknowledge the School of Electronics and Computer Science ECS in

the University of Southampton for the high standards of materials and computing

facilities and for funding me to attend overseas conferences. A special gratitude

to all the staff of the ECS who supported us as postgraduate students after the

massive fire in Mountbatten building. Thanks to all my colleagues and friends at

the Electronic System Design group for their continuous willingness to help.

I would like to express my thanks to the University of Bahrain for the scholarship

and the funding during my PhD.

I am forever thankful to my husband Ebrahim Al-Gallaf for his love and strong

encouragement to pursue my studies.

Xlll

To my baby Nayef

XIV

Chapter 1

Introduction

Design complexity and demanding time-to-market constraints have lead to con­

siderable challenges in the development of electronic design methodologies and

Computer Aided Design (CAD) tools. Furthermore, the integration of a complete

complex System on a single Chip (SoC) has begun a new era [1, 2, 3J. SoC has

created a need to powerful CAD tools and methodologies which would be integrat­

ing information from multiple heterogenous sources (analogue parts, processors,

RAM, ROM, etc.) and have the ability to work at high levels of abstraction [4J.

On the other hand, advances in integrated circuit technology have been the driving

force behind the extensive development of digital Hardware Description Languages

(HDLs), whilst Analogue and Mixed-Signal (AMS) high level modelling is lagging

behind the design community with immature design methodologies [5, 6J. This

has created a gap in the design of the two different parts which threaten the rate

of production. Despite the success of digital systems, analogue circuitry is still

needed in particular in modern ASIC (Applications Specific Integrated Circuit)

designed for telecommunication, wireless and computer network systems [1, 5J.

The design of analogue blocks in SoC (e.g. Figure 1.1) and ASIC is still done to a

large extent manually which requires time and effort together with specific skills

1

Chapter 1 Introduction 2

[7J. All of these advances and challenges have put a pressure on CAD of AMS

systems to keep up with the success of pure digital CAD.

G RAM
ADC DAC

ROM

G
Voice

Flash
CODEC

Memory I Bluetooth link

control r-J-i ASB/APB I~ controller

INTC I- 0 Timer 1

I I

B INTC Timer 0

'------ll AMS blocks

FIGURE 1.1: Example of a mixed-signal System on Chip in telecommunications
[IJ.

The Electronic Design Automation (EDA) industry and academia were trying

extensively to meet these needs following different approaches [2J. One common

approach is to model and simulate digital and analogue systems with digital HDLs

and analogue design tools respectively. Digital HDLs such as VHDL [8], Verilog

[9], SystemC [10J and System Verilog [l1J are used to model digital systems while

analogue design or general purpose equation solving tools such as SPICE [12J

and MATLAB [13J dominate in the modelling of analogue systems at different

abstraction levels. Another approach is to extend classical HDLs intended orig-

inally to model digital systems to model analogue systems such that both parts

are modelled and simulated in a single environment such as VHDL-AMS [14J and

Verilog-AMS [15J. A third approach is to readapt software programming languages

Chapter 1 Introduction 3

such as C/C++ [16] to model analogue and digital hardware. It can be accom­

plished by adding special language constructs for hardware description and timing

and defining hardware description semantics.

The recent trend in digital modelling is toward C/C++ based modelling [17, 18]

either through libraries or abstractions. C/C++ is already in use by hardware

engineers at algorithmic level to estimate the system performances and verify

the functional correctness of the design. There are various C/C++ based HDLs

provided by EDA suppliers such as SystemC [10] and SystemVerilog [11], and from

universities such as Handel-C [19J and SpecC [20J which then have been moved to

the EDA tool providers.

Of all the C/C++ based HDLs, SystemC [10J was the focused HDL since its very

beginning. The first version of SystemC was released on September 1999 and

since then it has gained a wide acceptance and support from industry. This broad

acceptance suggests that the Open SystemC Initiative (OSCI) met an important

need with the right approach. SystemC is a standardised modelling language

intended to enable system level design and Intellectual Property (IP) exchange

at multiple abstraction levels for systems containing both software and hardware

components and can work as an alternative to existing HDLs [21J.

The latest SystemC version (V2.0.1) has been in use since 2003. Although it re­

sembles the existing HDLs and adds more features for high level digital modelling,

it does not support AMS modelling yet. This lack of analogue modelling capability

and the popularity and reliability of SystemC provided the main motivation for

this research (see Section 1.5).

Within this context, this chapter is organised as follows: in Section 1.1 a broad view

on system design stages (which is called top-down IC design methodology) is given

illustrating the disadvantages of the use of different languages and tools at different

levels of abstraction. Section 1.2 explains in detail the potential of SystemC which

Chapter 1 Introduction 4

motivate its use in this research. Section 1.4 defines AMS modelling and identifies

its potential applications and the most important challenges to be tackled. Section

1.5 presents the main objectives and contributions of this work and Section 1.6

describes the challenges behind the choice of the case studies in order to validate

SystemC-A. Finally, Section 1.7 outlines the structure of the thesis.

1.1 System Design Methodology

Top-down methodologies in Integrated Circuit (IC) design have been used for

complex design tasks in many disciplines for a number of years [6]. Digital top­

down design is supported by many simulation levels (e.g. behavioural, RTL, logic,

etc.) which has facilitated model generation at various steps of the design process.

With the availability of digital HDLs, this model generation process has been

greatly simplified and reduced the number of simulators needed to support top­

down design methodology for digital circuits.

In the past, AMS designers had great difficulty in top-down design due to the

lack of modelling tools and languages [22]. Typically, a transistor level net list

description would have to be generated for each block in a design at each interme­

diate step in the top-down process. This usually resulted in little or no simulation

support early in the design cycle with the result that conceptual or specification

errors were not detected until later in the design cycle. This could have a serious

impact on the design schedule as errors not detected early in the design cycle may

force significant redesign of all or part of the circuit.

The recent evolution of AMS HDLs made top-down design of AMS circuits fea­

sible. The customised top-down approach of AMS systems to the design flow in

Figure 1.2 uses the following major levels of abstraction [23], where conceptual/al­

gorithmic level modelling serves as the highest abstraction level.

Chapter 1 Introduction

Algorithmic Level

S stem Level

Architecture Level

Logic Design

Logic synthesis

System Design

System
Architecture

Desi n

.9,ale. h.~~I. _. _. _. _. . _. _. _. _._

Layout Design

Fabrication

Analogue or Mixed­
Signal

_. _. _. _. . _. _. _. _J\~l~¥~ ~~.!1
Level

Circuit Design

AMS synthesis

_. _. _. _. • _. _. _. Q.r£'l!il~~.el

5

FIGURE 1.2: Design flow and levels of modelling abstractions.

• Conceptual or algorithmic level, is where the specification of the design is

mainly represented by signal flow diagrams with blocks described by math-

ematical equations. No structural details are considered. Designers can

simulate at this level to prove the basic concepts of the system, and build

a set of specifications for structural implementation. The system is mainly

modelled at this level using C/C++ programming languages and sometimes

application specific descriptions (such as Matlab/Simulink, Mathematica).

Chapter 1 Introduction 6

• System level, this is the first stage of the actual design, where the over­

all architecture of the system is designed and partitioned. Hardware and

software parts are defined and both are specified in appropriate languages.

In addition, the interfaces have to be specified. The hardware components

are described at the behavioural level (for the analogue part, blocks are

described by Differential and Algebraic Equations (DAE) and/or s-domain

transfer functions and for the digital part blocks are described by difference

algebraic equations and/or z-domain transfer functions). The system level

partitioning and specifications are then verified using detailed co-simulation

techniques .

• Architectural level, is a high level decomposition of the hardware part into

an architecture consisting of functional blocks required to realise the spec­

ified behavioural description. Also, this level includes partitioning between

analogue and digital blocks. The specifications of the various blocks are

defined and described in an HDL (e.g. VHDL and VHDL-AMS). The high

level architecture is then verified against the specifications using behavioural

simulations .

• Register Transfer Level (RTL), is the highest structural level, where generic

functions and variables are replaced by structural blocks. Blocks are defined

as collections of circuits that store data and circuits that operate on data

(storage and operators) (e.g. a variable is replaced by a register of a given

size; an IF-statement is represented by a multiplexer, arithmetic operations

are replaced with Arithmetic Logic Units (ALUs)). Simulation at this level

verifies the logic definitions for the operators and sometimes verifies critical

parameters like the clock frequency at which data is passed from one storage

block to another.

• Gate level, is a structural level where components are described in terms

of digital primitives (Boolean logic gates with timing data). Storage and

Chapter 1 Introduction 7

operators are broken down into the digital functions that implement their

function (e.g., a 2-to-1 multiplexer is represented by two AND gates and an

OR gate). Timing of individual signal paths can be verified at gate level

simulation .

• Analogue cell and circuit levels, are the structural levels for the analogue

blocks. In the selected technology process, the model at these levels repre­

sent a fully sized device level circuit schematic (with basic elements such as

transistors, diodes, resistors, and capacitors). The resulting circuit of design

is then verified against the specifications using SPICE-like circuit simulators.

In cell level an equivalent circuit representation (macromodel) might be used

to approximate similar behaviour of the original circuit in order to speed up

analogue simulators .

• Layout level, represents the layout of an IC which includes block placement,

routing, and power-grid routing. Crosstalk and substrate coupling analysis

are important in mixed-signal ICs. Proper test structures are inserted to

make the IC testable. Detailed verification (e.g. timing analysis) is per­

formed. At this level, the system is verified by co-simulating the hardware

part with the embedded software. Finally, masks are generated and the ICs

are fabricated. Different testing techniques are performed during and after

fabrication in order to reject faulty ICs.

From the initial specifications to the final chip, the design goes through a number

of translation and verification steps. The translation of the descriptions from one

level of abstraction into the other is referred to as synthesis. Verification is used to

check whether the design in the current level of abstraction is correct, conforming

with the specifications. Both steps are performed using current HDLs.

There are a number of problems with the top-down design approach which arise

from using different specification languages [21J:

Chapter 1 Introduction 8

• Manual conversion from CjC++ to HDL: the designer creates and verifies

the specification of his model using CjC++, and then translates the design

manually into an HDL. This conversion is necessary because the logic syn­

thesis tools used by most equipment and IC manufacture require RTL HDL

input. This process is very tedious and error prone and leads to a double

verification load.

• Separation between system model and HDL model: once the model of the

system is converted to HDL, the HDL model becomes the focus of develop­

ment and the CjC++ model becomes out of date.

• Different testbenches: testbenches that are created to validate the CjC++

functionality typically cannot be used to validate the HDL model. Thus,

testbenches needs to be converted from CjC++ to HDL.

Using top-down design methodology is expected to become the norm for designing

mixed-signal circuits [24J. Using SystemC as a platform, on which the AMS exten­

sion will be developed, can enhance the top-down design methodology evolution

for AMS systems. Being a system level language as well as an HDL, the SystemC

design approach covers most of the design cycle and offers many advantages over

the traditional design cycle, including the following [21 J:

• Refinement methodology: the design does not have to be converted from a C­

level description to an HDL in one large effort. The design is refined in small

sections to add the necessary hardware and timing constructs to produce a

good design. Also, the designer can easily implement design changes and

detect bugs during refinement .

• Testbenches reuse: testbenches created at higher levels can be reused in

lower levels of the design saving conversion time. Testbenches created to

validate the system level can be used to test RTL design.

Chapter 1 Introduction 9

• Unified language: using SystemC enables the designer to utilise one lan­

guage for most of the design cycle, a language for hardware/software and

analogue/ digital designs at different abstraction levels.

Many EDA products built on SystemC have been announced [25, 26J. These

products support modelling and specification of digital systems which is the first

step in the design cycle. Some products took a step further and serve as an aid in

hardware synthesis from SystemC [27J.

1.2 Why SystemC?

An EDA survey [28J has shown that more than 80% of the responding designers are

using or planning to use C/C++. Another interesting result worth mentioning is of

a worldwide online EDA survey conducted on November 2003 on design trends [29J.

The survey respondent's backgrounds were, hardware engineers, system engineers,

verification engineers and others. The survey has shown that the use of SystemC

is expected to grow 3 times by 2004. Only 4% of the respondents currently use

System Verilog. Handel-C also shows a significant growth, as an implementation

language from C. ANSI C modelling usage is expected to stay relatively flat as

models are done in a system language whereas VHDL is expected to lose a small

amount of ground to system languages.

This trend towards C/C++ based HDLs and the big support of SystemC in the

industry have provided the motivation to use SystemC in this research as a system

language and an HDL platform in which an AMS extension and new requirements

will be added. C/C++ based HDLs offer many advantages as opposed to other

HDLs [30, 31 J, some are summarised below:

Chapter 1 Introduction 10

Hardware / software migration

Because of the growing amount of software running on any system, many of to­

day's chips incorporate processor cores running instruction codes compiled from

programming languages, in particular C [32J. Thus, it is possible to move certain

functions that are implemented in hardware to software instead of forcing an im­

plementation as an entirely dedicated hardware-based circuit. By doing so, faster

simulations become available [31 J.

Rich legacy code

Moreover, among programming languages, C / C++ have been the most widely

used in the last two decades. As a result there is a vast amount of legacy code

and libraries that can be reused to quickly model systems. Based on its nature,

C/C++ supports reusability of design descriptions [30J.

Hardware / software unified language

It has been observed [30J that system and software engineers tend to use C/C++

while their hardware counterparts are using HDLs such as VHDL and Verilog,

and from the use of different description languages problems are arising. These

problems can be solved by the adoption of a common C++ style for hardware and

software parts of the system thus eliminating the Programming Language Interface

(PLI) overhead.

Furthermore, using SystemC enables designers to stay at the C-Ievel for most of the

implementation cycle and serves as a single environment for electronic architects,

verification and implementation engineers. In other words, SystemC facilitates the

integration and verification of hardware and software (co-verification) components

within one environment. The impact of co-verification is that it provides higher

Chapter 1 Introduction 11

simulation speed. In one case, IC simulation time was slashed from 20 days to

only 8 hours [31J.

Development efficiency

There are numerous advantages of using CjC++ based tools, as limited resources

in terms of design personnel and capital can be invested in the design cycle. If C­

based tools are used, there will be no need for specific compiler or specific training

when hiring designers. Many engineers already have experience with CjC++ and

for those that do not, training takes a shorter time and is available from many

sources.

CjC++ is also invaluable in reducing the man-hours needed for coding. The

amount of coding is about 10% that of HDL [31]' which means that projects pre­

viously requiring 10 designers can now be handled by one only. This is possible

because CjC++ supports a higher level of abstraction in coding.

Higher abstraction levels

Many people in the industry have complained about the slowness of existing circuit

simulation at RTL [2J. The reason is simply that RTL is too low as an abstraction

level to start designing multimillion gate systems. In most HDLs, descriptions are

done at the RTL, which includes the concept of timing. In CjC++ based HDLs,

however, the higher level of abstraction means that the specification can be made

at the behavioral level or system level, describing only the functions ignoring cir­

cuit details. Furthermore, SystemC introduces one more abstraction level, called

the Transaction Level (TL), higher than the RTL and lower than the system level

[33J. SystemC is more likely to comply with new advances in the electronics in­

dustry and boost the simulation speed [29J as shown in Figure 1.3.

Chapter 1 Introduction

Transaction
level in

SystemC

RTL level
inC

RTL level
inHDL

..

..

10

··········r·
.

I

I
10' 10' 104 10' 106 107

Time point per second

FIGURE 1.3: Increasing abstraction level boosts simulation speed [29].

Electronics industry support

12

The industry is behind the new trend towards C/C++ based tools. The start

and development of SystemC were established through the cooperation of a group

of leading electronics companies [34J. The industry support comes from EDA

vendors, IP providers, semiconductor, system design and embedded software com-

panies. The electronics community is becoming rich enough with SystemC-based

different design and simulation environments [26, 25], verification tools [35, 26J

and synthesis tools which cover most of the design cycle [27J.

Improved simulation time

For hardware applications, C/C++ have been used often to accelerate the design

process since it can be efficiently compiled onto today's architectures and thus

used to develop fast simulation models, since C code executes much faster than

Verilog/VHDL code [32J. Other factors mentioned above such as better tools for

verification, higher abstraction levels and shifting software functions to hardware

will lead towards better simulation time.

Chapter 1 Introduction 13

N on-traditional standardisation

The Open SystemC Initiative (OSCI) [10J is a step away from the traditional

approach to establishing standards. One of the beauties of the open source process

is that a great deal of emphasis is placed on those who contribute the most high

quality content to the technical forum, making even political trade-offs merit­

oriented [36J. Another key benefit is speed of validation and adoption. With

SystemC, the entire licensee base can immediately download, assess and modify a

live, executable version of the standard, whereas with most traditional standards

processes it can take years to produce the specification, followed by another year

or two of adoption.

More advantages are contained in Chapter 2 when surveying SystemC and also in

Appendix B which gives a literature review of SystemC applications.

1.3 SystemC-A versus VHDL-AMS

SystemC-A is aimed to be a complementary language to existing HDLs. However,

in many respects SystemC-A is more powerful than VHDL-AMS, the most popular

HDL. This section summarises the main advantages of SystemC-A over VHDL­

AMS which will be realised in detail throughout the thesis.

SystemC-A could reuse the heritage libraries of C/C++ to shorten developing new

libraries such as those for optimisation and signal processing, while in most VHDL­

AMS simulators, math libraries are simple and need further additions. Also, while

the type of standardisation process of VHDL-AMS had a prolong effect on its

development, SystemC's standardisation process has strengthen its development.

With regards to its new methods, SystemC-A includes an equation formulation

method which gives the user the choice of simplicity in coding or faster simulation

Chapter 1 Introduction 14

speed. This equation formulation is unique to SystemC-A user and is not available

in VHDL-AMS simulators. Also SystemC-A model has the advantage of faster

simulation times which relate to some factors such as the synchronisation method

and equation formulation method. Further SystemC-A demonstrate the ease of

developing any kind of analysis. For instance, it supports time domain noise

analysis which is not supported in some recent analogue simulators. On the other

hand, SystemC-A benefits from the advantages of SystemC digital simulator such

as the ability to co-model and co-simulate hardware and software in the same

environment. Also the ability to model and simulate at high levels of abstraction

such as the TLM while VHDL does not support modelling higher than RTL.

1.4 Analogue and Mixed-Signal Modelling

In the past, several approaches have been used to model AMS systems. One

approach is to use a circuit simulator and model the digital components at a

functional level [37J. Another approach is to use a logic simulator and model the

analogue components at a functional level [38J. A more accurate approach is to

use a circuit simulator for the analogue components linked to a logic simulator for

the digital components [9J which requires tool couplings.

The current approach in mixed-signal modelling is using AMS HDLs such as

VHDL-AMS and Verilog-AMS. AMS HDLs describe the behaviour and structure

of AMS systems using special language constructs, solving many modelling and

simulation difficulties. However, AMS HDLs still need extra modelling effort to

model at system level. Their performance in verification of a complex SoC is too

low. This is due to the limitation of modelling software and hardware together.

HDLs lack communication abstractions found in SystemC that make it possible to

model at higher level of abstraction. On the other hand, any further development

Chapter 1 Introduction 15

in HDLs needs standardisation and this is considered a time consuming process.

For example, the development and standardisation of VHDL-AMS took more than

10 years.

Issues related to synchronisation and interfacing between the analogue kernel, with

its tiny integration steps, and digital kernel, with its events, are important and

determine the efficiency of the overall simulation [23J. The speed of mixed-signal

simulation is limited by the inherent speed disadvantage of analogue simulation.

It varies according to factors such as simulation setup times, clock frequency,

nonlinearities, part size, activity in the digital circuit, and time constraints in the

analogue circuit. Mixed-simulator solutions take advantage of stable, highly-tuned

algorithms and the user's experience in optimising and iterating simulation runs.

The event-driven algorithms in a native mixed-signal simulator are typically not

as efficient as those in the state of the art digital simulators, so they sacrifice speed

and efficiency.

Rising to meet the growing needs of their users, EDA vendors have made great

advances in creating tools that are easy to use while still providing the accuracy

essential for design analysis. Today mixed-signal simulation tools are as avail­

able as those used exclusively for analogue or digital designs and has led to dra­

matic improvement both in design quality and in time to market. The developed

SystemC-A language is aimed to take a large share of the suggested map shown

in Figure 1.4 along with the current analogue simulators and HDLs.

1.4.1 Potential Applications and Challenges

AMS modelling is used for a range of applications in the electronic industry such

as amplifiers, data converters, RF circuits, filters and reference generators. Also

in other areas such as the automotive [39], biomedical [40], mechanical [41], and

other mixed-physical domain areas.

Chapter 1 Introduction

General-purpose
language
constructs

processes

equations

Primitive
components

\
Analogue
systems

SystemC

VHDL-AMS

Gate RTL

System V erilog

Transaction

developed
SystemC-A

system

FIGURE 1.4: A suggested map of SystemC-A with the current analogue simu­
lators and HDLs classified based on abstraction levels and design units.

16

According to the 2003 edition of the International Technology Roadmap for Semi­

conductors (ITRS) [42J, today's SoCs are increasingly mixed-signal designs and

facing a number of problems and challenges in the design methodologies and flows,

design productivity, modelling, simulation, and verification. The modelling and

simulation problems are of great concern in this research, which is trying to find

solutions to enhance the process of modelling AMS systems.

The main challenge is the need for higher levels of abstraction to describe AMS

systems. There are three reasons for this [23J. At higher levels of the design

methodology, the need for higher level models is necessary to describe the pin-to-

pin behaviour of the circuits rather than the internal structural implementation.

Second, when using analogue IP macro-cells in a SoC context, the virtual compo-

nent has to be accompanied by its executable model that efficiently models the

pin-to-pin behaviour. This model can then be used in SoC design and verification,

without knowing the detailed circuit implementation of the virtual component.

Third, the verification of mixed-signal systems is computationally too complex to

Chapter 1 Introduction 17

allow a full simulation of the entire design in practical terms. Therefore, higher

description levels of the analogue sections would be extremely helpful.

The above three problems can be solved by adopting modelling paradigms and

languages from the digital world in the analogue domain. For example, behavioural

and functional simulation levels have been developed for analogue circuits besides

the well known circuit level. The main requirement of a future SoC HDL is to be

a true mixed-signal, multilevel, mixed-domain simulator with special emphasis on

system level design.

The main difficulty with higher level analogue modelling (and not to be solved in

this research) is the automatic characterisation of analogue circuits, in particular

the automatic generation of analogue macro-models or behavioural models from

a given design [23J. This problem needs to be addressed in the near future, as it

might be the biggest hurdle to the adoption of high level modelling methodologies

and AMS HDLs in industrial designs.

SystemC-A could be an input specification for the synthesis process of analogue cir­

cuits. The acceptance of digital synthesis from SystemC could motivate a new syn­

thesis methods for SystemC-A. In the procedure of analogue synthesis, SystemC-A

could benefit from the huge existing libraries of optimisation in C/C++ such as

genetics algorithm and simulated annealing. Although synthesis of analogue cir­

cuits is not well established for VHDL-AMS, methods used in VHDL-AMS can

migrate to SystemC-A.

1.5 Research Objectives and Contributions

The main objective of this research is to extend the capabilities of SystemC to

model AMS systems at a high level of abstraction and to validate the developed

Chapter 1 Introduction 18

methods with suitable examples of mixed-signal mixed-domain systems. The de­

veloped system level language and the AMS extension to SystemC should be fully

derived from SystemC and comply with its semantics. The main contributions out

of this research are:

l. Analogue and Mixed Signal AMS extension of SystemC

The AMS extension includes the following:

New syntax elements and classes to extend SystemC to the ana­

logue domain: Modelling of an analogue system requires a set of differential

and algebraic equations (DAEs). DAEs should be easy to define, automati­

cally built and updated, and then numerically solved. For this purpose new

language constructs have been developed, such as system variables, circuit

components and user defined equations.

High level nonlinear equation formulation Illethod: A numerically

efficient analogue kernel has been constructed in order to simulate analogue

systems and also to be linked to SystemC digital kernel. Within the analogue

kernel, a novel high level equation formulation method has been developed

based on the object-oriented feature of C++.

Support for various abstraction levels: In addition to modelling at var­

ious abstraction levels provided by SystemC digital platform, the proposed

extension provides extra abstraction levels which are specific to analogue sys­

tems. Although the main focus was on the system level to tackle complexity,

the extension is capable of modelling at the net list level and at analogue be­

havioural level.

2. Mixed-signal synchronisation method: A synchronisation algorithm

is necessary when integrating an analogue kernel with a digital one. It is

needed to synchronise the numerical integration time-stepping engine with

the event-driven paradigm of the digital kernel. A new implementation of

Chapter 1 Introduction 19

the lock-step method, with efficient handling of zero step-sizes has been

used for this purpose. Digital-analogue interfaces are also defined for easy

and smooth modelling and simulation of the analogue and digital parts.

3. Modelling and simulations of complex case studies: A wide range

of analogue and mixed-signal examples has been used to validate the devel­

oped SystemC-A. Examples range from small sets of DAEs such as Lorenz

chaos model and Van Der Pol oscillator equation to non-trivial mixed-signal

systems such as switched mode power supply and phase-locked loop. Com­

plex non-electrical case studies such as ferromagnetic hysteresis and mixed­

domain automotive vibration isolation systems also have been modelled. Sec­

tion 1.6 lists the descriptions and challenges of the chosen case studies.

Numerically efficient implementation of continuous-time analysis

for system level modelling: Necessary continuous-time analysis suitable

for mixed-signal system level modelling have been implemented. Examples

are the computation of the quiescent state of the system (operating point)

as well as mixed-signal transient and noise analysis. Noise analysis is of

potential importance as, in a mixed-signal context, it is difficult to implement

with traditional circuit simulators as it must be evaluated in the presence of

large signal behavior.

The research contributions of Chapters 3-8 are published or under revision, they

are listed in Appendix A.

Chapter 1 Introduction 20

1.6 Descriptions and Challenges of the Chosen

Case Studies

The case studies have been carefully chosen to provide different modelling and

simulation challenges for the validation of the new methods of SystemC-A. Most of

the case studies are benchmarks which have been used in Southampton Validation

Suite [43] to validate VHDL-AMS. Table 1.1 shows the different case studies with

their challenges.

TABLE 1.1: Descriptions and challenges of the chosen case studies.
Case study Descriptions and challenges
Van Der Pol Oscillator - popular, easy to compare, analogue system repre­

sented by nonlinear ODE.
- modelled at behavioural level.
- uses initial conditions.
- one single controlled parameter may change the na-
ture of oscillations from sinusoidal to relaxation.

Lorenz Chaos - popular, easy to compare, analogue system repre­
sented by nonlinear ODE.
- modelled at behavioural level.
- uses initial conditions.
- simulated output never reaches a steady state.

Switched Mode Power Supply SMPS - complex, mixed-signal, nonlinear system.
- disparate time scale of its transients.

Phase Locked Loop

Ferromagnetic Hysteresis

Automotive Vibration Isolation

- has some difficulties when modelled in existing ana-
logue simulators.
- needs excessive CPU times when modelled at circuit
level.
- modelled at multiple abstraction level in the same
model.
- make use of the following SystemC-A constructs:
analogue circuit components, D / A interfaces, differ­
ent module connections.
- almost all what mentioned for SMPS.
- high level VCO model uses the output phase as sys-
tem variable.
- design concerns of noise or jitter performance.
- non-electrical system.
- widely used model especially in SPICE and SABER.
- model suffers from convergence problems, long anal-
ysis time and numerical instability.
- state of the art in automotive suspension industry.

mixed-domain system of complicated mixed
electrical-mechanical hydraulic domains.
- involves complex nonlinear DAEs.
- involves complex control systems.

Chapter 1 Introduction 21

1.7 Thesis Structure

The thesis is divided into three phases of nine chapters. The first phase is Chapter

1 and 2 which are mostly background and literature review. The second phase is

Chapter 3,4 and 5 which represent the novel and original core of SystemC-A. The

third and final phase Chapter 6, 7 and 8 is modelling and simulation of a wide

range of examples to validate the developed syntax and methods of SystemC-A.

The research conclusion and future work are given in Chapter 9. The following is a

chapter by chapter explanation with each chapter's main points and contributions.

Chapter 2 overviews SystemC language and explains the approach of modelling

hardware in a software language. Further, it gives an overview of all modelling

attempts of AMS systems in SystemC or C/C++ from the literature. The chapter

also reviews VHDL-AMS which has been an inspiration to this research.

In Chapter 3, new methods are developed to facilitate modelling of analogue sys­

tems in an AMS environment in an accurate and efficient way. The methods

include constructs to represent analogue system variables, analogue components

to be modelled at lower or higher abstraction levels and analogue-digital interfaces.

The purpose of Chapter 4 is twofold. The first aim is to overview the state of

the art in numerical techniques for AMS simulation. The second aim is to build

an efficient analogue kernel which is integrated with the SystemC digital kernel

for solving analogue systems described by a set of DAEs. A novel object-oriented

nonlinear equation formulation method is developed.

Chapter 5 presents a novel synchronisation method to synchronise the developed

analogue kernel with the SystemC digital kernel. The synchronisation is based on

the lock-step method. The chapter illustrates the SystemC simulation cycle and

the developed SystemC-A simulation cycle. It also overviews various synchronisa­

tion methods from the literature such as Backplane, Ping-pong, and Calaveras.

Chapter 1 Introduction 22

Chapter 6 presents four case studies to verify the functionality of SystemC-A

mixed-signal simulator. The first two are simple case studies, the Van der pol

oscillator and the Lorenz chaos. The other two are complex electrical case studies,

a Switched Mode Power Supply (SMPS) and a 2GHz Phase Locked Loop (PLL)­

based frequency multiplier, where new noise simulation methods are developed to

simulate the PLL.

In Chapter 7, an electromagnetic case study of nonlinear ferromagnetic hysteresis

based on Jiles-Atherton (JA) model is modelled and simulated as a challenge to

SystemC-A to model non-electrical system. Due to the difficulties and instability of

the current JA model, a new model is developed based on a timeless discretisation

technique to integrate the magnetisation slope.

A mixed-domain system of automotive vibration isolation is modelled and sim­

ulated in Chapter 8. The system is a nonlinear complicated mixed electrical­

mechanical-hydraulic domains and of excellent challenge for validating SystemC­

A functionalities. The system was regulated using a suite of three complex con­

trollers.

Finally, Chapter 9 summarises the presented work and the main achievements are

highlighted and discussed. A number of concluding remarks are drawn. Further

aspects which are not covered in this research are highlighted and could provide a

basis for future work.

Chapter 2

Literature Review

Chapter 1 highlighted the importance and challenges of modelling AMS systems,

suggesting SystemC as C++ based digital simulator to be linked to the proposed

AMS extension to form SystemC-A mixed-signal simulation environment. Hence,

before explaining the work, this chapter is to explain the following: Section 2.1

illustrates SystemC, its definition, architecture and models of computation. Con­

cepts behind the idea of enabling a software language to model hardware are

explained in Section 2.2. In Section 2.3 a literature review on modelling AMS

systems is presented and serves as an orientation for this research. In Section

2.4, VHDL-AMS is demonstrated as the most popular and widely used HDL. It's

constructs and approaches in modeling AMS systems are playing a reference to

the development of SystemC-A.

2.1 SystemC

In September 1999 the Open SystemC Initiative (aSCI) [10J was announced at

the Embedded Systems Conference in San Jose, California. At the same time,

23

Chapter 2 Literature Review 24

the first version of SystemC VO.9 was announced and made available for free web

download. OSCI is a growing community of leading electronics companies com­

prising EDA vendors, IF providers, semiconductor manufacturers, system design,

and embedded software companies. In addition, OSCI includes universities and

individuals dedicated to supporting and advancing SystemC as an open source

standard to provide a common C++ modelling style for the entire electronics in­

dustry. To date, more than 37,684 registered licensees have downloaded SystemC

from the OSCI website at www.systemc.org.

The first version of SystemC VO.9 was the result of a technical cooperation between

Synopsys, Coware, and Frontier Design who all are leading EDA vendors [34J. This

collaboration is the first of its kind in the EDA industry and promises to quickly

establish a de-facto modelling standard.

In March 2000, SystemC Vl.O was released. That version of the language was

limited to the behavioural and RTL modelling and it lacked many system level

modelling features. Then, SystemC V2.0 was released in October 200l. It con­

tains many system level modelling features which include channels, interfaces and

events [44J. The latest version of SystemC V2.0.1 was released in May 2003. It is

reportedly a bug free version with major communications and interface enhance­

ments. OSCI submitted the SystemC LRM [10J to the IEEE for standardisation

after an initial period of rapid adoption and evolution. On December 12, 2005,

the IEEE approved the SystemC IEEE 1666 standard. A working group has been

established in 2003 [45J aiming to extend SystemC to modelling AMS systems,

but this aim has not been accomplished yet.

Chapter 2 Literature Review 25

2.1.1 Language Definition

SystemC [10J is defined as a C++ class library and methodology that can be used

to effectively create a cycle-accurate model of software algorithms, hardware ar­

chitecture and build interfaces of SoC and system level designs. Using SystemC,

a designer can create a system level model, quickly simulate to validate and opti­

mise the design, explore various algorithms, and then end up with an executable

specification of the system.

SystemC class library contains the necessary constructs to model system archi­

tecture, including hardware timing, concurrency, and reactive behaviour, that are

missing in standard C++ [18J. C++ is an object-oriented programming language

which has the ability to extend the language through classes, without adding new

syntactic constructs.

OSCI released several documents which define the SystemC syntax and semantics,

namely the User Guide [21], Functional Specification [46J and lately the Langauge

Reference Manual (LRM) [10J. These documents are included in the SystemC

installation package.

2.1.2 Design Flow

Figure 2.1 illustrates a typical simulation methodology in SystemC environment

[47J. The designer writes SystemC models at the system level, behavioural level,

or RT level augmented by the SystemC class library. The class library consists

of a set of header files describing the implementation of hardware objects such

as concurrent and hierarchical modules, ports, and clocks. The class library also

contains a lightweight kernel for scheduling the processes. The header file (sys­

temc.h) represents the class library and must be included in the user's code. The

user's SystemC code and test bench can be compiled and linked together with the

Chapter 2 Literature Review 26

class library using any standard ANSI C++ compliant compiler. The compilation

result is an executable model of the design. Additionally, trace files can also be

generated to view the history of selected signals using a standard waveform display

tool.

SystemC class
library J

C/C++ I
~CTM development

User's code and ~

environment
testbench r--

systemc.h
(compiler)
(linker)

make

~
Executable Traces files

model *.vcd

FIGURE 2.1: SystemC design flow (see Section 2.1.2).

2.1.3 Language Architecture

Figure 2.2 summarises the SystemC language architecture [48J. In the figure, the

C++ standard forms the basis of SystemC, while the heart of SystemC is its sim-

ulation kernel. Then, there are all other essential features of an HDL including

modules, processes, ports, signals, a rich set of data types, clocks, cycle-based

simulation, multiple abstraction levels, debugging support, waveform tracing and

communication protocols. The following paragraphs explain some of the most im­

portant constructs of Systemc.

Chapter 2 Literature Review 27

Methodology specific and
user defined channels

Core language Data types
modules logic types (0 1 X Z)
ports logic vectors
processes bits & bit vectors
interfaces arbitrary precision
channels integers
events fixed point

I SystemC simulation kernel I
I C++ Language standard I
FIGURE 2.2: SystemC language architecture.

Modules

In SystemC the structural decomposition is specified with the SC_MODULE macro.

Modules are the basic building blocks of any SystemC model. They can be hier-

archical, containing instances of other modules. Modules contain processes which

are the basic units of concurrent activity within SystemC.

Processes

In VHDL [8J, concurrent behaviour is modelled using processes. In Verilog [9J,

concurrent behaviour is modelled using always blocks. In SystemC, concurrent

behaviour is also modelled using processes. Processes are used to describe func-

tionality and have an associated sensitivity list, a list of signals that trigger the

execution of the process. SystemC provides three types of processes:

• SC_METHOD: It behaves like a function call and executes its body from the

beginning to the end every time it is invoked. SC_METHOD offers the best

simulation performance since it does not have its own thread of execution

and hence cannot be suspended.

Chapter 2 Literature Review 28

• SC_THREAD: It has its own thread of execution. A thread can be suspended

at any time point and resumed at that point the next time it is entered. The

performance is usually somewhat slower than that of an SC_MODULE due

to context-switching overhead .

• SC_CTHREAD: A clocked thread has its own thread of execution and can

be suspended and resumed at any point. A clocked thread is completely

synchronised to a clock and is triggered by a transition on either positive

edge or negative edge of a clock signal.

Clocks

SystemC provides a notation for clocks as special signals. Multiple clocks with

arbitrary phase differences are supported. For example a 1/-l second clock can be

declared as:

The sensitive, sensitive_pas, sensitive_neg keywords can be used to synchronise a

process with a clock.

Ports, Channels and Interfaces

The necessary elements of process communication in SystemC are ports, channels

and interfaces. Modules are connected to each other via ports. SystemC supports

single directional and bi-directional ports (scin, sc_out, sc_inout). Channels create

connections between module ports allowing modules to communicate. Channels in

SystemC can be either primitive or hierarchical. Primitive channels do not exhibit

any visible structure, do not contain processes and cannot directly access other

primitive channels. Examples of such channels are sc_signal (classical signals),

Chapter 2 Literature Review 29

scmutex (used to model mutual exclusion) and scfifo (used to model queues).

Hierarchical channels, on the other hand, are modules, which means that they can

have structure, can contain other modules and processes and they can directly

access other channels.

Ports are connected to channels through interfaces, where interfaces define sets

of methods channels must implement. Ports are objects through which modules

and hence processes can access a channel interface. Figure 2.3 [49J shows a simple

design with three modules connected to a channel.

o Ports

Interfaces

channel

Module

FIGURE 2.3: An illustration of ports, channels and interfaces of SystemC (see
Section 2.1.3).

An example which illustrates a SystemC module is shown in Listing 2.1 of a

D-flip flop with asynchronous reset [21J. The example illustrates the module's

connectivity, declarations and process.

2.1.4 Data Types

In addition to the standard C++ data types, SystemC has a rich set of data types

to support multiple hardware design domains and abstraction levels [21]. This

is different to many other HDLs, such as Verilog, that only support bit and bit­

vectors as signal types. The fixed precision data types (scfixed, scufixed, scfix,

scufix) allow for fast simulation and are not found in other HDLs. The arbitrary

Chapter 2 Literature Review 30

precision types (sc_bigint, scbiguint, sc_bv, sc_lv) can be used for computations

with large numbers whereas the fixed point data types can be used for DSP ap-

plications. There are no size limitations for arbitrary precision SystemC types.

SystemC supports two-valued (sc_bit) and four-valued (se_logic) logic data types.

1 #include "systemc.h"//SystemC class library
2
3 SCMODULE(d ff a) {
4 scin<bool> clock ;//input and output ports
5 scin <boo I> reset;
6 sc_in <bool> din;
7 sc_out <bool> dout;
8
9 void do_ffa O{// process body

10 if (reset){
11 dout = false;
12
13
14
15
16
17
18
19
20
21
22

};

}
else if (clock. event O){

dout = din;
}

SC_CTOR(dffa) {/ / constructor of module
SC..METHOD(do_ffa); / /a process
sensitive(reset);// sensitivity list
sensitive_pos (clock);

}
23 };

LISTING 2.1: SystemC example: D flip flop with asynchronous reset.

2.1.5 Simulation Kernel

The appropriate timing behaviour of an executable SystemC model is controlled by

the simulation kernel [10]. The simulation kernel is a lightweight cycle-based sched-

uler that allows high speed simulations. It is responsible for activating processes

according to their sensitivity list, executing statements within different processes

concurrently, scheduling assignments to signals and propagating their changed

values through the whole system hierarchically.

The SystemC scheduler has support for both software and hardware-oriented mod­

elling. Similar to VHDL and Verilog, the SystemC scheduler supports delta cycles.

A delta cycle consists of separate evaluate and update phases, and multiple delta

Chapter 2 Literature Review 31

cycles may occur at a particular simulated time. Delta cycles are useful for mod-

elling fully-distributed, time synchronised computation as found for example in

RTL hardware. In SystemC, using notify() with a zero time argument causes the

event to be notified in the evaluate phase of the next delta cycle, while a call to

requesLupdate() causes the update() method to be called in the update phase of

the current delta cycle. Using these facilities, channels which model the behaviour

of hardware signals can be constructed. The SystemC simulation algorithm is

shown in Algorithm 2.1 [lOJ.

Algorithm 2.1: SystemC simulation algorithm.
1: Initialisation Phase: Execute all processes (except SC_CTHREADs) in an

unspecified order.
2: Evaluate Phase (EPh): Select a process that is ready to run and resume its

execution. This may cause immediate event notifications to occur, which may
result in additional processes being made ready to run in this same phase.

3: If there are still processes ready to run, go to EPh.
4: Update Phase: Execute any pending calls to updateO resulting from

requesLupdateO calls made in EPh.
5: If there are pending delayed notifications, determine which processes are

ready to run due to the delayed notifications and go to EPh.
6: If there are no more timed notifications, simulation is finished.
7: Advance the current simulation time to the earliest pending timed

notification.
8: Determine which processes are ready to run due to the events that have

pending notifications at the current time. Go to EPh.

2.1.6 Models of Computation

A Model of Computation (MoC) [48J can be defined by, the model of time employed

(real-valued, integer-valued, untimed), the event ordering constraints within the

system (globally ordered, partially ordered) or the rules for process activation.

In SystemC, the simple and flexible synchronisation capabilities provided by events

and wait() call allow a broad range of different channel types to be implemented

without having to change the underlying simulation kernel [48J. All the required

Chapter 2 Literature Review 32

functionality to create a specific MoC is already presented in the simulation kernel.

Thus, SystemC supports very powerful generic MoCs [50]. While the global model

of time is fixed to integer model, designers can construct specific channels to

achieve their precise rules for communication between processes, process activation

and system wide event ordering. Although continuous time modelling still cannot

be constructed in SystemC, virtually any discrete time system can be modelled in

SystemC.

The most important MoC is the Transaction Level Modelling (TLM) [51]. TLM

is a high level approach to modelling digital systems where the details of inter­

module communication are separated from the implementation details. Transac­

tions requests are made by calling the interface functions of the channel models

that encapsulate the low level details of the information exchange. Transaction's

interface thus focuses on the functionality of the data transfer rather than its

implementation. Many researchers have demonstrated the SystemC capability to

model systems at TLM [33, 51, 52] and indicated that using SystemC at TLM

provides a gain in simulation speed.

2.2 Modelling Hardware in C/C++

In the recent past, a few projects have been looking into methods of using C/C++

as an input to current design flows [2]. Modelling hardware in C/C++, requires

the following list of HDL features [32J .

• Concurrency: Hardware is inherently parallel, while C/C++ models are

inherently sequential. Therefore, a notion of processes should be introduced

to encapsulate programs and execute them concurrently. Then a system is

described as a network of processes.

Chapter 2 Literature Review 33

• Signals : Hardware processes need to be connected to signals or channels to

communicate with each other.

• Reactivity : Hardware systems are reactive and in continuous interaction

with their environment. Hence, reactivity is implemented in C++ through

event-driven approach.

• Data abstraction: In addition to the data types supported by C++ for se-

quential programming, hardware modelling needs arbitrary precision signed

and unsigned integers, bit vectors and fixed point types.

Many C/C++ and C-based HDLs have been developed and used for modelling

and synthesis. Examples of C-based HDLs are, HardwareC [53J from Stanford

University and CONES [54J from AT&T Bell Laboratories. Examples of C/C++

based languages other than SystemC are Esterel C [55J from Cadence, Handle-C

[19J from Oxford University (now marketed by Celoxica), BachC [56J from Sharp

Laboratories, SpecC [20J from the University of California, Ocapi from IMEC [57],

SystemC++ from C Level Design Inc. and Cynlib from CynApps [58J. Some other

flavours of C/C++ based languages have also been developed and used internally

throughout the industry as illustrated in Table 2.l.

I Language I Founder I Based on

HardwareC Stanford University C
CONES AT&T C
SystemC Synopsys C/C++
Esterel C Cadence C/C++
Handel-C Oxford University C/C++
BachC Sharp Laboratories C/C++
SpecC University of California, Irvine SpecChart, C/C++
OCAPI IMEC C/C++
SystemC++ C Level Design C/C++
CynLib CynApps C/C++

TABLE 2.1: C/C++ based design languages.

Chapter 2 Literature Review 34

2.3 Mixed-Signal Modelling With SystemC

While using SystemC in modelling, verification, and synthesis of digital systems

is well established and proven (Appendix B gives a literature survey on SystemC

applications), the concept of extending SystemC to AMS systems design is novel.

Recently, a number of research results have been presented suggesting different

frameworks and methodologies. The AMS frameworks are based on different C++

classes, methods and libraries, some are dedicated to specific applications, some

seem awkward to use. Each proposal has its strengths and weaknesses which will

be discussed after giving overviews of them.

For instance, O'Nils et al [59J presented a methodology for quantification of noise

coupling in mixed-signal systems called BeNoC. The presented method facilitates

seamless quantification of both the power distribution network and substrate noise

coupling at behavioural level. Starting from a behavioural model of the system

captured in SystemC, wrappers are added to each block in the behavioural model.

These wrappers add an estimated power consumption model for each block, which

is triggered by events. The noise coupling simulation is then done by connecting

different blocks according to a virtual layout and technology parameters. The

resulting noisy substrate or noisy power distribution network can then be fed back

into the behavioural level. Thus, effects on the system behaviour can be analysed.

The simulation results compared with circuit simulations in SPICE showed that

their approach is two orders of magnitude faster than SPICE. Also, the simulation

can be done long before the circuits have been designed.

An AMS simulation framework is presented by Bonnerud et al [60J for simula­

tion of Analogue to Digital data Converters (ADC). The framework contains a

C++ mixed-signal module library that includes a set of flexible and customisable

primitive, compound modules and testbenches. The primitives implement func­

tional models of AMS basic building blocks such as flash ADC, switched capacitor

Chapter 2 Literature Review 35

Digital to Analogue Converter (DAC), operational amplifier, track-and-hold am­

plifier, and analogue adder/subtractor. More application specific primitives are

also included such as a switched capacitor multiplying DAC. Furthermore, they

have implemented a clocking scheme for scheduling the analogue and mixed-signal

blocks called virtual clock to avoid multiple executions of these blocks due to the

SystemC kernel. They have illustrated the usability of the framework by applying

it to two case studies of pipelined ADCs with background calibration, achieving

comparable accuracy to that of MATLAB.

Another AMS framework was presented by Conti et al [61 J which allows the de­

signer to describe analogue systems either at low or high level using analogue

macromodels. Their time step scheme is based on the calculation of each analogue

process to its adaptive time step and passing it to the blocks to which the pro­

cess outputs are connected. They suggested a new implementation of an analogue

block. It is a module composed of two kinds of threads, the calculus thread and

activation threads, one for each input module. Each activation thread starts when

a change occurs on the signals coming from the corresponding input module. The

calculus thread that updates the state and output is activated only by signals

coming from the activation thread, and then sending them to the connected ana­

logue blocks. They have used two AMS examples to validate their framework, an

oscillator made up of inverter chain and a complex mixed-signal fuzzy controller.

The results were compared to other tools such as SPICE and Spectre achieving

excellent results. The CPU time required for the 800n second oscillator simula­

tion is 4.9 seconds for SystemC and 15.8 seconds for WinSpice. For the second

example, the CPU time required for Spectre transient simulation is 4 hours and

38 minutes, only 3.3 seconds are necessary for a SystemC simulation with a factor

of 5000 due to the very high level description used in SystemC. The framework is

later called SystemC-WMS [62], where WMS stands for Wave Mixed Signal and

energy wave signal is the analogue signal transmitted between analogue blocks.

Chapter 2 Literature Review 36

Grimm et al [63J presented a top-down modelling and simulation methodology

based on a refinement process by implementing a library called ASC. The de­

sign methodology refines an executable specification to concrete AMS architecture

through three levels of refinement, executable, computation accurate model and

pin accurate model. The ASC library provides an analogue or signal processing

process type. The execution of the analogue processes is not controlled by the dis­

crete event kernel; however the execution is controlled by a coordinator interface.

Via this interface, a coordinator can call the signal processing C++ method by

remote method invocation. For complex analogue processes, they used an exter­

nal analogue simulator such as SABER or SPICE. By using multiple inheritances,

analogue signals realise the interface used in discrete-event simulation. The signal

class can be read or written by a discrete-event process without the need for an

explicit converter as needed for example in VHDL-AMS for conversion between

quantities and signals. The methodology was evaluated by designing a PWM

controller.

Another design methodology presented by Romberg and Grimm [64J based on

refinement process. It started with a system specification captured by a new

graphical design notations called HyCharts, and then translate it to SystemC with

the AMS library ASC in [63J. The authors claimed that starting with Hycharts

which based on formal semantics is precisely to capture the continuous/discrete

behaviour.

Einwich et al [65J presented a framework to support signal processing dominated

application. The framework is based on analogue extension for linear DAEs and

frequency domain simulation. The linear DAE solvers are integrated into the

synchronous data flow design. The analogue extension includes a library of elec­

trical circuit components and transfer functions. The synchronisation between

the synchronous dataflow and linear continuous time is using a fixed time step

Chapter 2 Literature Review 37

and kept as simple as possible. Before the first delta cycle of a time step is ex­

ecuted, all analogue simulators are executed, reading the old discrete values and

producing updated output signals which are then used by the digital processes.

The main characteristics of their framework are: no overall analogue equation

system, no iterations are used to solve the system, no solvability problem for the

overall system, defining analogue module (sea_module), ports (sea_port), channels

(sea_channel) and interfaces (sea_interface). The concept was illustrated with the

design of a telecommunication system consisting of a subscriber line interface and

a Codec filter system, including digital hardware and software and an analogue

filter. Simulations were about 20 times faster than those of SABER. A simulation

of a 40m seconds time interval took 122 seconds in SystemC, while on SABER -

2679 seconds. The framework is later called SystemC-AMS [66J.

SystemC-AMS [66J is used by Markert et al [67J to model inertial navigation sys­

tem. The system consists of analogue sensors and digital coordinate transforma­

tion part together with a PC-based software part. The analogue sensors measure

the signal from the environment and converts them to digital values. The system

was originally modelled in VHDL-AMS in more details and SystemC-AMS offered

the designers high level insight of the system.

A framework called AnalogSL is presented by Grimm et al [68J for the creation

of behavioural models of analogue power drivers. The main objective of their

framework was to achieve a speed up over other simulators. AnalogSL provides

classes of components such as resistors, capacitors, coils and transistors which can

be instantiated to form a netlist and then simulated by a very fast and efficient

algorithm for linear DAE. Analogue power drivers are usually designed bottom-up,

from a net list to behavioural level. The coupling of the analogue behavioural model

with discrete-event simulators corresponds to the coupling of different processes

in discrete simulators. When an input value has changed, the method checks

Chapter 2 Literature Review 38

whether the dominant cycles have changed, otherwise, it calculates the actual

internal states and sets up new equations.

A mixed-signal SystemC design environment has recently been proposed [40]

for behavioural modelling, simulation, and performance evaluation of microelec­

tromechanical and microelectrofluidic SoCs. Composite microsystems combine

microstructures with solid-state electronics to integrate multiple coupled-energy

domains, e.g., electrical, mechanical, thermal, fluidic, and optical, on a SoC.

Continuous-flow systems microelectrofluidic such as microvalves, micro pumps and

channels are modelled by DAEs and PDAEs (partial DAEs) in Systemc. The con­

tinuous equations are solved by using the regular function procedures or process,

and code various DAEs solvers with SystemC, such as derivative and integral, and

add them into a SystemC component behaviour model. Moreover, besides the

original simulation clock, they implemented a higher frequency clock to provide

a series of time intervals for more accurate DAEs function solutions. They have

used the relaxation based numerical integration techniques coded in SystemC to

solve these DAEs.

A method to link SystemC digital modules with Verilog-AMS has been proposed by

Birrer and Hartong [69] in order to simulate AMS of analogue/RF systems. It was

achieved by automatic flow envelops SystemC modules in Verilog-AMS warpers,

where they can be used in a schematic flow and treated just like standard Verilog

modules.

The surveyed frameworks above presented new ideas and methodologies, however,

none of them introduced a general environment to model and simulate AMS and

mixed-domain with different abstraction levels for generic applications. Most of

the frameworks are application specific extensions [59, 60, 65, 66, 63], or abstrac­

tion level specific [59, 60, 61, 68]. Some introduced tedious methods for timing

[61, 63], others introduced non popular methods to capture models [64]' others

Chapter 2 Literature Review 39

cannot handle complex analogue processes [63, 68, 66], and others bringing all

the details of modelling to the user level [61, 66]. Nearly all the frameworks were

validated using examples with small analogue parts and a big digital part.

A study group was established in 2003 [45] following a proposal submitted to the

SystemC board of directors to form an aSCI working group to develop AMS exten­

sions to SystemC. The founders presented and discussed the foundations on which

the analogue and mixed-signal extensions of SystemC, named SystemC-AMS, will

be based [70, 71, 45, 72, 66]. They set out a plan for a 3-phase development, each

phase adding new capabilities as follows:

1. Support for signal processing dominated applications. This includes:

• Linear dynamic continuous-time, including transient, small-signal AC

and noise simulation. Time-domain simulation with a fixed time step.

• Predefined linear operators (Laplace transfer function, zero-pole trans-

fer function, state-space equations).

• Linear network elements (electrical element library: R, L, C, sources).

• Continuous behaviour encapsulated in static dataflow modules.

• Synchronisation between discrete event and continuous time MoCs us­

ing static dataflow semantics.

2. Support for RF /wireless applications. This includes:

• Support of non linear DAEs and their simulation using variable time

steps.

• Formulation of implicit equations, e.g. true simultaneous statements.

• Frequency-domain simulation.

• A mixed-signal library with more complex functional (signal-flow) mod­

els, e.g. amplifiers, converters.

Chapter 2 Literature Review 40

3. Support for automotive applications. This includes:

• Specialised continuous-time MoCs, e.g. for power electronics or me-

chanical systems.

• Support of network law models.

• Add network-law mixed-domain models to the mixed-signal library.

• Definition of a generic synchronisation mechanism between discrete­

time and continuous-time MoCs, including software MoCs.

Although the SystemC-AMS study group was established in 2003, the develop­

ment is still in the initial stages. As the group reported in September 2005 [66J,

SystemC-AMS currently lacks the ability to setup equation systems and an ana­

logue equation solver is still under development.

SystemC users are waiting for AMS to SystemC to design and verify their entire

system in one environment [40, 73J. For instance, Cuenin et al [73J designed an

AMS IP which represents the external communications between a SoC and its

environment. The AMS IP model is written in SystemC in combination with

VHDL-AMS description of the analogue blocks.

2.4 VHDL-AMS

Today's HDLs are classified into three categories, digital, analogue, and AMS

HDLs. Examples of digital HDLs are VHDL and Verilog, they are based on event­

driven techniques and a discrete mode of time. Analogue HDLs support the de­

scription of systems of DAEs. Examples of analogue HDLs are SpectreHDL from

Cadence and Verilog-A from the Open Verilog International. Analogue HDLs sup­

port network semantics and behavioural descriptions. AMS HDLs support both

Chapter 2 Literature Review 41

event-driven techniques and DAEs. The most popular AMS HDLs are VHDL­

AMS and Verilog-AMS. As the names imply, they are extensions to the classical

Verilog and VHDL digital HDLs. Though, these languages have different strengths

and weaknesses, they are intended to be used for the same types of circuits, in

the same ways, to produce similar results. This section overviews VHDL-AMS

one of these HDLs. VHDL-AMS constructs and implementations serve as inspira­

tions to SystemC-A development in order to follow methods familiar to the design

community.

VHDL-AMS [14J is one of the major mixed-signal HDLs on today's CAD tool

market. It is a superset of the IEEE standard 1076-1993, with AMS extensions.

The new, complete language is defined by the IEEE standard 1076.1-1999. The

standardisation by the IEEE means that the language can be used by different tool

vendors. The language definition does not specify the whole internal operation of

the simulator in the analogue domain, leaving the details of implementation for

the tool vendors. Many companies have been developing solutions for the im­

plementation of the language standard into their own simulation packages. For

example, System Vision from Mentor Graphics, Simplorer from ANSOFT and IN­

CISIVE from Cadence Designs. There are several public domain VHDL-AMS

parsers available for free use [74, 75, 76, 43J and also there are some validation

examples published on the web [43J.

VHDL-AMS aims to provide a language to simulate a variety of physical domains

that model complex systems, such as mechanical [77J, chemical, automotive [78J,

and mechatronic [79J systems. VHDL-AMS has also been used to model Micro­

Electro-Mechanical Systems (MEMS) [80J, and in the simulation of self organising

neural systems [81J. VHDL-AMS allows different parts of the system to be de­

scribed at behavioural level [82J and component level of abstraction [83J.

Currently, most digital systems can successfully be synthesised using VHDL. It is

Chapter 2 Literature Review 42

hoped that VHDL-AMS will also provide a basis for a new approach to AMS circuit

synthesis. For instance, a synthesis system for high frequency analogue filters from

VHDL-AMS [84] has already been developed. A mixed-signal VHDL-AMS based

synthesis system from behavioural models has also been proposed [85].

VHDL-AMS new language elements facilitate writing analogue models as a set

of mathematical equations describing the behaviour of the model. Examples of

language elements are: Simultaneous equation, Quantity, Terminal, Nature and

Tolerance [86]. A typical VHDL-AMS model consists of an entity and one or more

architectures. The entity specifies the interface of the model to its environment.

It includes types of model's ports and the definition of its generic parameters. The

architecture contains the implementation of the model in structural or behavioural

descriptions or both. The following sections summarise some of VHDL-AMS fea-

tures extracted mainly from [86], [87], and [88].

2.4.1 Quantities

Quantity objects represent the unknowns in DAEs. They can be scalar or com­

posite (arrays and records). Quantities can be declared anywhere a signal can be

declared and it may appear in expressions, interfaces and simultaneous equations.

Quantities have several forms, it can be a free quantity, or an interface quantity

in a port list of a model to support signal flow modelling. It has two modes in

and out specifying the direction of signal flow. For instance, Listing 2.2 shows

the entity declaration of a signal flow model. A port declaration can be quantity,

signal, or terminal declarations.

1 entity example is
2 port (quantity input 1 , input2: in REALi-scalar quantity
3 quantity A, B, C: out REAL_vector(2 downto 0» i--array quantity
4 end entity example i

LISTING 2.2: VHDL-AMS entity declaration of a signal flow model.

Chapter 2 Literature Review 43

Other forms of a quantity are branch quantity and source quantity, they will

be explained in Section 2.4.3 and Section 2.4.7 respectively. Quantities have a

number of predefined attributes, e.g. Q'Dot is a quantity holding the derivative of

quantity Q with respect to time. Other attributes are Laplace transfer function

(Q'ltf(num,den)) , time integral (Q'integ) and time delay (Q'delayed(t)). For a

model to be solvable, the number of simultaneous equations defined should equal

to the total sum number of through quantities plus free quantities plus interface

quantities with mode out.

2.4.2 Simultaneous Statements

Simultaneous statements are used to describe DAEs. They are analogous to con­

current signal assignment in digital models. There are several simultaneous state­

ments, the simple simultaneous statement which is an expression usually denoting

an equation. Simultaneous case statement chooses different simple simultane­

ous statements, depending on the condition of the case statement. Simultaneous

if statement chooses different simple simultaneous statements, depending on the

condition of the if statement. All simultaneous statements are concurrent, the or­

der in which they appear in the model is not important for the calculation of the

result. Another form is simultaneous procedural statement to handle statements

sequentially. Simultaneous statements may contain and refer to signals, quantities,

constants, literals, and functions.

An example of a VHDL-AMS model of a signal flow amplifier is shown in Listing

2.3 [88]. The example illustrates the entity-architecture pair of a VHDL-AMS

model with the new language constructs.

Chapter 2 Literature Review 44

1 entity amplifier is
2 generic (gain: REAL :=REAL' High) ;-- default infinity gain
3 port (quantity input: in REAL;
4 quantity output: out REAL);
5 end entity amplifier;
6
7 architecture amp1 of amplifier is
8 begin
9 if gain = REAL' High use -- Simultaneous if statement

10 input = 0.0;
11 else
12 output = gain * input;
13 end use;
14 end architecture amp1;

LISTING 2.3: VHDL-AMS model of a signal flow amplifier.

2.4.3 Provision for Network Topology

Analogue systems presented in the form of networks, for example, electrical circuit

obeying Kirchhoff's Laws, can be described in VHDL-AMS using Branch quanti-

ties, namely across and through quantities. Across quantities represent effort-like

effects such as voltage, temperature, or pressure. Through quantities represent

flow-like effects such as current, heat flow rate, or fluid flow rate. For instance,

a resistor is governing by ohm's law which relates the voltage across (the across

quantity) and the current through the resistor (the through quantity): i = ~.

A branch quantity must be declared with reference to two terminals. A terminal

is a fixed point in the structure of a physical model, e.g. an electrical node. It

declared to be of some physical discipline (or nature), i.e electrical, thermal, fluidic,

etc. Nature definition includes the types of across and through quantities incident

to a terminal of the specified domain, and the common reference terminal shared

by all terminals (e.g. electrical ground).

The following statements declare two terminals tl and t2 of nature electrical, an

across quantity v, and a through quantity i between the terminals.

Chapter 2 Literature Review 45

terminal tI, t2: electrical;
quantity v across i through tl to t2;

The across quantity represents the potential difference between the terminals and

the through quantity represent current-carrying branch. The data type of a branch

quantity is derived from the nature of its terminals. In the example above the

across quantity v is of type voltage, and the type of the through quantity i is

current.

2.4.4 Tolerances

VHDL-AMS defines the concept of a tolerance group where each quantity belongs

to such a group. This is to allow a user to control how close to zero the solution

of the DAEs must be. The tolerance group of a quantity is defined in the subtype

of the quantity or, at the quantity declaration or, in the nature declaration for a

terminal. For example, voltage and current subtypes,

subtype voltage is REAL tolerance "default_voltage";
subtype current is REAL tolerance "default_current";

where" default30ltage" and" defaulLcurrent" define the tolerance group of the

subtypes. The simultaneous statements can also have a tolerance, it will override

any declared tolerances. For example,

X==Y'dot tolerance "low voltage";

However, the default tolerance group of a simple simultaneous statement is the

tolerance group of its quantities. VHDL-AMS does not define how tolerances

are used. It is the responsibility of the tool vendor to define how the tolerance

characteristics are calculated.

Chapter 2 Literature Review 46

2.4.5 Analogue/Digital (A/D) Interaction

AID interface is implemented by quantity attribute Q'above(E). During a simu­

lation, when the value of a quantity Q crosses a threshold E, an event occurs on

the Boolean signal Q'above(E). The value of Q'above(E) is TRUE if Q > E and

FALSE if Q < E. There is also a hysteresis in the signal change. The result of

Q'above(E) stays FALSE as long as Q has not reached the upper boundary of

E, which is E+c5. Q'above(E) stays TRUE as long as Q is bigger than the lower

boundary of E, which is E-c5. The size of c5 is implementation-dependent.

An event is generated at the instant of the threshold crossing, deriving other

digital parts, because the result of Q'above(E) is a digital boolean signal. This

mechanism of threshold crossing can also be used for AID conversions in system

model. For example, the following statement implements the behavior of an ideal

comparator.

S <= '1' when Q'above (0.0) else '0'

where Q is a quantity and S is a signal. Q'above(E) can also be used in the

sensitivity list of a process or a wait statement to trigger the process based on an

analogue signal.

2.4.6 Digital/ Analogue (D / A) Interaction

D I A interface also needs a mechanism of translation of data values. When a

digital signal appears in a simultaneous statement, it introduces a discontinuity in

the DAEs solver because of its discontinuous nature. VHDL-AMS defines a break

statement to complement the simultaneous statement and notify the analogue

solver exactly about when the discontinuity occurs. The analogue solver responds

by re-initialisation at the exact time where the break occurred. However, it seems

Chapter 2 Literature Review 47

it is a difficult task for tool vendor to implement the break statement. The break

statement is not implemented yet in any recent VHDL-AMS simulator.

An alternative mechanism is to use one of the predefined quantity attributes,

S 'Ramp (trise, tfall) or S'Slew(rising slope, falling slope), where S is a signal of a

floating point type. S'Ramp ramps linearly over the specified rise and fall time

from the previous value of S to its new value, starting at the time of the event.

S'Slew does the same, but with specified slopes.

2.4.7 Small-Signal Frequency Domain and Noise Modelling

VHDL-AMS provides the source quantity, to support small-signal frequency-domain

(AC) and noise simulations. Source quantities provide stimulus for frequency do­

main simulation. There are two types, spectral source quantity and noise source

quantity. Spectral source quantity allows the modeller to specify a magnitude M

and phase cjJ of a stimulus in the form of a sin wave (v(t) = M cos(wt + cjJ)). The

following statement gives an example of a spectral source quantity definition:

quantity ac:real spectrum magnitude, math_2_pi*phase/360.0;

During time-domain simulations, source quantities have a value of a zero. Noise

source quantities are used in a similar manner, as illustrated bellow:

quantity thermal_ noise:real noise 4.0*k_ boltzmann*temp*res;

The expression following the reserved word noise specifies the noise power which

is not required to be static. The noise source quantity is used in the model by

simply adding thermaLnoise quantity to a simple simultaneous statement. E.g.

to model the thermal noise in a resistor:

v==i*resistance+ thermal noise;

Chapter 2 Literature Review 48

2.5 Concluding Remarks

This chapter has presented several subjects, SystemC and its applications espe­

cially modelling AMS systems, concepts of modelling hardware in C/C++ and

an overview of VHDL-AMS. A number of concluding remarks could be made.

Firstly, through the surveyed literature in SystemC applications, it was apparent

that SystemC is powerful in industrial applications. Also, there is a trend towards

C++ based HDLs for many reasons such as raising the abstraction level and conse­

quently gaining higher simulation speed and most importantly hardware/software

co-design. However, the main focus was the ability of SystemC to be an environ­

ment of hardware and software modelling at system level design. Furthermore,

the chapter demonstrated some initial attempts towards AMS modelling using

SystemC which showed the need for such ability. Also, it showed what have been

accomplished so far in the field and where it is stopped.

Moreover, through the summary of VHDL-AMS as one of the existing tools and

methodologies in the field of AMS, the chapter showed the strength and weakness

of such a language. VHDL-AMS cannot cope with the recent need to co-model

hardware and software for SoC applications. The developed AMS extension will

closely follow the concepts developed in VHDL-AMS in particular the concepts

explained in this chapter.

Chapter 3

AMS Modelling Syntax

This chapter describes new CAD methods and elements which are developed in the

course of this research in order to model AMS systems and present a new language

named SystemC-A. The new elements cover the most important aspects of AMS

modelling. The AMS syntax has been designed to facilitate model development

assuming minimal programming knowledge of a future user of SystemC-A. The

style is similar to a SPICE-like net-list or VHDL-AMS simultaneous equation or

interconnected blocks as in any HDL.

Modelling of an analogue system requires a set of Differential and Algebraic Equa­

tions (DAE) which should be easy to define, automatically built and updated, and

then numerically solved. Therefore, methods and constructs should be defined to

support the simulation of analogue systems represented by DAEs. The new lan­

guage constructs will be proceeded by the prefix sca_, where se denotes SystemC

and a for analogue.

In Section 3.1 the chapter starts by introducing some of the C++ object-oriented

concepts which are used in coding. Then, Section 3.2 introduces the first essential

element necessary to support analogue systems, namely analogue system variable

49

Chapter 3 AMS Modelling Syntax 50

whose objects represent the unknowns in the set of DAEs, such as circuit nodes

and flow variables. The next extension presented in Section 3.3 is component, a

new class which can be extended according to a particular physical domain or

application. Its objects can be used to build general systems such as electronic

circuits. A component class contains a virtual build method through which sys­

tem equations are formed and solved at each time step. Section 3.4 deals with

digital-analogue interaction issues, such as passing messages between the digital

and analogue solvers and conversion between signals and system variables. Asso­

ciated issues such as dealing with small time step sizes, implementing analogue

stepping are also discussed. Section 3.5 gives a note about abstraction levels pro­

vided by SystemC-A. Finally, Section 3.6 concludes the chapter.

3.1 Preliminaries: Object-Oriented Programming

c++ [89J is an object-oriented language and based on the principle of structured

programming. When a task is too complex to be described, it is broken down

into a set of smaller component tasks (classes). A C++ class is a format for

holding and interacting with data and has an interface called constructor. An

object is a particular instance of a class. A program is a collection of constructed

classes and a testbench. The testbench is a high level module in hierarchy which

contains global signals, instances of classes, and provides stimulus to the system.

The three defining properties of object-oriented programming are encapsulation,

inheritance, and polymorphism. Encapsulation is to hide the details of a compo­

nent into a class, to act as a fully encapsulated entity and used as a whole unit.

Users need to know how to use it rather than how the class is working. Objects

can only be accessed through their public interfaces, while the internal data and

implementations remain hidden. This ensures that the code is safe from unwanted

alterations.

Chapter 3 AMS Modelling Syntax 51

c++ supports the idea of reuse through inheritance. A new class can be derived

from an existing one and is called a derived class and thus inherits all its qualities

but additional features can be added to it as needed. A hierarchy can be formed

from derived classes. The existing class is called an abstract base class which may

contain methods declared as virtual methods. When declaring a method of ab­

stract base class to be virtual, the derived classes can override and redefine this

method and act as a base method, this is called polymorphism. Therefore, poly­

morphism allows different classes to support the same interface but with different

implementations. By utilising the fundamentals of object-oriented programming,

a data structure called linked-list can be defined to store data dynamically. It

consists of a chain of classes, which contains data and nodes. Nodes are pointers

that stores the memory address of the following class keeping the list linked to­

gether. Linked-lists support four basic operations: insertion, deletion, traversing,

and searching. A C++ class consists of header and cpp files. cpp files are the main

body of a class. Header files are libraries of code implementing useful functions

written by the user or by others. A user includes header files in the topmost of a

cpp file and then the compiler will write the contents of the header files into the

executable code of his program.

3.2 Analogue System Variables

In order to provide a mechanism for modelling non-linear AMS systems, the new

language should provide a notation for DAEs. In the set of DAEs the analogue

system variables are the unknowns.

The C++ concept of inheritance is used to define various types of analogue sys­

tem variables, such as node, flow, and free variables. In SystemC-A, they repre­

sent a hierarchy of system variables, all derived from an abstract base class called

Chapter 3 AMS Modelling Syntax 52

sca_system_variable as illustrated in Figure 3.1. Currently only three types of

variables derived from the base class have been defined, and this proved enough

to model the application examples presented later in this thesis (Chapter 6, 7, 8).

The variable classes hierarchy can be extended further to model other types of ap-

plications. In a SystemC-A description, the total number of variable objects must

correspond with the total number of analogue equations provided by SystemC-A

component objects. This is to have a symmetric system matrix.

. --

Abstract base class
sc_a_system

_variable

~------------------------~

User derived analogue system variable types

FIG URE 3.1: Analogue system variable inheritance hierarchy.

The base class constructor attaches each newly created system variable to a global

linked-list as shown in Figure 3.2. The list will later be used by the analogue

kernel to maintain the required connectivity between the system components and

to build the underlying analogue equation set. This is done by scanning the linked-

list of variables and assign integer numbers to them, and then use these numbers as

indices to the system matrix to perform element searching and insertion functions.

Accordingly, the order of the system will be known, where it is equal to the number

of system variables.

System variables have a common method called X () to read a value of a particular

system variable from system solution vector whenever required. The function's

Chapter 3 AMS Modelling Syntax

System
variable n

Pointer to next
system variable

System
variable n+ 1

System
variable

N

FIGURE 3.2: Linked-list of system variables.

53

null

counterpart in SystemC is read() to read a port or a signal. Also, SystemC-A sup­

ports differentiator (Xdot()) and integrator (INTEG()) operators to be performed

on system variables. Their use can be demonstrated as follows:

A dot=Xdot(nl);
B_intg=INTEG(nl);

where nl is a system variable of any type. Integral and differential operators can

be performed on non-SystemC-A variables by declaring a new SystemC-A variable

(nlQ) and use the following version of the operators,

A_dot=Xdot(nlQ,nl);
B _intg=INTEG(nlQ,nl);

The following subsections describe the three different types of analogue system

variables derived from the base class to support the examples in Chapters 6, 7 and

8.

sc_a_node is used to represent a generic node. Objects of this class can be declared

where a circuit would be defined. sc_a_node is instantiated in any SystemC module

or SystemC-A component's constructor because it should be instantiated only once

to maintain the correct order of the system. Objects of the sc_a_node class are

instantiated as follows:

Chapter 3 AMS Modelling Syntax

SC _MODULE(filter) {//SystemC module

};

sc a node *nO, *nl, *n2;

SC _ CTOR(filter) {/ /module constructor

n2 = new sc_a_node(ln2");
nO = new sc_a_node(IO");
nl = new sc_a_node("nl");

}

54

A special node is the reference node or ground. The ground node does not have a

particular syntax in SystemC-A. It is instantiated in the same way other nodes do

but with node name of "0". When scanning the nodes, the analogue kernel can

recognise the reference node from its name. Accordingly, the analogue kernel will

not raise the order of the system when scanning the reference node.

As in other HDLs, different types of ports and quantities can be developed III

libraries to distinguish different physical domains, e.g. Nature in VHDL-AMS.

Electrical, mechanical, and magnetic nodes as shown in Figure 3.3, can be derived

from class sea_node for creating accurate physically based models.

sc_a_node

I I
sc_a_electrical sc_a_mechanical sc_a_magnetic

_node _node node -

J I I
'-~.~-----------------~----------~-------~

User derived analogue system variable types

FIGURE 3.3: Analogue nodes possible inheritance hierarchy.

Chapter 3 AMS Modelling Syntax 55

sea_flow is used to represent flow variables in the Modified Nodal Analysis (MNA)­

like equation formulations [90] (will be explained in detail in Section 4.1.2). Ac-

cording to the MNA representation of some components, like a voltage source or

an inductor, a current variable should be introduced in conjunction with the dec-

laration of any of these components. Hence, the right place for a current variable

to be instantiated is in the constructor of such components, e.g.:

inductor::inductor(...){j / inductor's constructor

}

The free system variable sea_free_variable is introduced to define variables when

describing a system or part of it by differential and/or algebraic equations rather

than a net list of circuit components. It is useful especially when modelling systems

at behavioral level for describing the functionality of system blocks. For example,

Eq.3.1 is the model of a voltage controlled oscillator (VeO) which contains one

free system variable named e.

. de
e(t) = dt = f(v) = fe + df * Vfilter (3.1)

sc_a-free_ variable can be instantiated in any class constructor. For the above

veo example, it could be created by the constructor of the veo component that

contains it as follows:

Chapter 3 AMS Modelling Syntax 56

vco::vco(...){

theta = new sc_a_free_ variable("theta");

}

3.3 Analogue Components

Analogue circuit components (sc_a_component) have been developed to provide

equations which describe analogue behaviour. Similarly to the system variable

hierarchy, components are derived from an abstract base class. A component

abstract base class contains virtual build method to be invoked by the analogue

kernel. The build method will be explained in detail in Section 4.2. A sample

component class hierarchy is illustrated in Figure 3.4 with examples of SPICE-like

circuit elements such as resistor, capacitor, diode, and various types of autonomous

sources. Arbitrary differential and algebraic equations can be included as user­

defined components.

Abstract base class

'--~
User derived component types

FIGURE 3.4: SystemC-A analogue components inheritance hierarchy.

Chapter 3 AMS Modelling Syntax 57

A component class constructor, which defines the component's interface may con­

tain a pair of node pointers and a value. An example of instantiating a capacitor

is shown below:

sc_a_capacitor *c1 = new sc_a_capacitor("c1", nodeA, nodeB, C)

where c1 is the component name, nodeA and nodeB are names of analogue system

variable objects of type sea_node and represent the two terminals to which the

capacitor is connected, and C is the capacitance. The capacitance value can be a

constant or a SystemC signal, which provides a mechanism to model time-varying

capacitors, as shown below:

sc_a_capacitor *c1 = new sc_a_capacitor("c1", nodeA, nodeB, &Cv)

where Cv is a SystemC signal of type double (sesignal < double> Cv).

For user-defined components, the constructor arguments may be different and

depend on the system to be modelled. Arguments can be, for example, nodes or

signals, as shown below in the VCO example constructor:

vco *vcol = new vco(" vcol", nVfilter, &Vco);

where vcol is the name of the component, n Vfilter is a system variable of type

sc_a_node and Vco is a SystemC signal of type bool (sc_signal <boot> Vco).

An example of SystemC-A component is an inductor model as shown in Listing

3.1. The class's cpp file is defined in the code described in lines 1-32, whereas the

class's header file is defined in code lines 34-49. The inductor model illustrates the

format of the constructor (lines 7-11) within which necessary system variables are

declared. Also, it shows the build method (BuildM and BuildB) which defines the

component's contribution to the system matrix and will be explained in detail in

Section 4.2.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 }
33

Chapter 3 AMS Modelling Syntax

#include "sc_a_inductor. h"
#include "sc_a_flow. h"

Ilinductor class constructors
sc_a_inductor:: sc_a_inductor O{}

sc_a_inductor:: sc_a_inductor (char nameC[5j, sc_a_system_variable *node_a,
sc_a_system_variable *node_b, double value):

sc_a_component (nameC, node_a, node_b, value) {
iL = new sea_flow (" iL"); Ilinstantiate system variable of type sc_a_flow in

} Ilconjunction with an inductor according to MNA formulation

void sc_a_inductor:: BuildM(void){11 BuildM to add inductor's
II contribution to Jacobian

L = value;
Jacobian(a, iL, 1);
Jacobian (b, iL, -1);
Jacobian(iL, a, 1);
Jacobian (iL, b, -1);
Jacobian (iL, iL, -S*L);

II inductor has 5 elements to be contributed

void sc_a_inductor:: BuildB{void){IIBuildB to add inductor's

L = value;
S = Sn ();
Lidotn=Xdot (iL);
IE = X(iL);
vba = X(b)-X(a);
BuildRhs (a, -IE);
BuildRhs (b, IE);
BuildRhs (iL, vba + Lidotn);

Ilcontribution to Right hand side
Ilinductance
Ilget discretisation operator S
Ilget the derivative

Iladd contribution to Right hand side

34 I I inductor header fi I e
35 #include" sc_a_component. h"
36
37 class sc_a_inductor: public sc_a_component {
38 public:
39 sc_a_ind uctor ();

58

40 sc_a_inductor (char nameC[5j, sc_a_system_variable *node_a, sc_a_system_variable
41 * node_b , double val ue) ;
42 virtual -sea_inductor ();
43 void BuildB (void) ;
44 void BuildM (void);
45
46 protected:
47 double S, Lidotn, L, IE, vba;
48 sc_a_system_variable *iL;
49 };

LISTING 3.1: Typical analogue component class, an inductor.

The component base class constructor attaches each newly created component to a

global linked-list of system components as shown in Figure 3.5 to form a connected

circuit. The list is used at the matrix build time in scanning all the components

to invoke their build functions.

A netlist of an analogue circuit can be constructed by declaring system variables

of type node and analogue components as shown in Listing 3.2 of the loop filter in

Chapter 3 AMS Modelling Syntax 59

Pointer to next
component

..... - sc_a_resistor
.,

sc_a_capacitor .. I-
FIGURE 3.5: Linked-list of analogue components.

a phase locked loop. Figure 3.6 shows its corresponding schematic. The circuit's

database is constructed once, prior to a simulation.

1 II instantiate nodes and components
2 n2 = new sc_a_node (" n2");
3 nO = new sc_a_node (" 0");
4 nl = new sc_a_node ("nl");
5 sc_a_currentS_dc *Il = new sc_a_currentS_dc (" II", nl, nO, &Iin);
6 sc_a_capacitor *cl = new sc_a_capacitor("cl", nl, n2, 3e-9);
7 s c _ a _ res is tor * r 1 = new s c _ a _ res i s tor (" r 1", n2, nO, 1 e 3) ;
8 sc_a_capacitor *c2 = new sc_a_capacitor("c2", n2, nO, 4e-9);

LISTING 3.2: Components and nodes instantiations forming an electronic circuit
in SystemC-A.

nl I
!

11 t
!

c2=
4nF

I
_1~c1=3nF

FIGURE 3.6: Corresponding schematic of circuit description in Listing 3.2.

Appendix C.l lists other SystemC-A component's models developed within this

project such as a resistor, diode, MOSFET transistor, capacitor, and different

types of voltage sources.

3.4 Digital-Analogue Interactions

In modelling mixed-signal systems digital-analogue interactions are unavoidable.

Connectivity between analogue and digital models requires special consideration

Chapter 3 AMS Modelling Syntax 60

since the two models have different language representations. The solution to

this problem is to insert a special interface model directly between the digital

and analogue parts. These interface models have no corresponding physical parts.

The intended interfacing solution is similar to those adopted in VHDL-AMS and

Verilog-AMS. AID and D I A interfaces are used only to change representations of

signals between the digital and analogue domains. SystemC-A includes explicit

interfaces modules readily available for the user. Alternatively, the high expertise

user may write his interfaces hidden within the model. An example of an AMS

system with explicit AID and implicit D I A interface models is shown in Listing 3.3

and Figure 3.7 which represent a switched mode power supply (SMPS) testbench.

The SMPS example is discussed in detail in Chapter 6. The following two Sections

3.4.1 and 3.4.2 will explain the functions of these interfaces.

2 / /SMPS mixed-signal model
3 sc_signal<bool> Vd1; //instantiate digital and analogue signals for connection
4 sc-signal <double> Val, Va2;
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

s c _a_i n terfaceD A
D.A.IND(Vd1) ;
D.A.OUTA(Va1) ;
D.A.clk(Clk);

D.A("D.A"); //instantiate digital-analogue interface module

digital digital 1 (" digital1") ;//instantiate
digital 1 . Vd_in(Va2);
digital 1 .VcontD(Vd1);
digital 1 . elk (Clk);

digital module and bond its ports

analog analogI (" analogI"); //instantiate
analog1,Vout(Va2);

digital module and bond its ports

analog1,VcontA(Va1);
analogI, elk (Clk);

LISTING 3.3: Explicit Dj A and implicit AjD interfaces in SMPS testbench.

3.4.1 Digital-Analogue Interface

sca_interfaceDA shown at line 6 of Listing 3.3 is a SystemC module which contains

an input port of type bool and an output port of type double. sca_interfaceDA

ports are connected to signals of the corresponding types. A digital signal coming

from a digital module is transformed into an analogue signal and directed towards

Chapter 3 AMS Modelling Syntax 61

digitall analogI

. V
E1 Vd_m~ D_A

Val VcontA V = 1 V Digital VcontD Vdl
IVi ref Controller r ':lIND

~ In - rl= ~ J IlJ ;'" .1
andPWM OUTA

implicit
explicit interface

interface

sc_signal Va2

FIGURE 3.7: SMPS Block diagram with analogue-digital interfaces.

the analogue module through the output port. The simplest form of the interface is

a set of switched ideal voltage sources. However, instability may be introduced in

the analogue simulation due to large instability changes in node voltage when the

digital node switches. Therefore, rather than changing abruptly, a transformation

is done by a smoothing function explained in detail in Section 3.4.5.

3.4.2 Analogue-Digital Interface

Analogue-digital interface could be implicit as in Figure 3.7 or explicit and called

sca_interfaceAD. sca_interfaceAD is a SystemC module takes an analogue signal

of type double and produces a digital bool signal. The criteria to generate a digital

event is simple and demonstrated in Figure 3.8. If the threshold voltage E defined

is exceeded, an event with a state (high) is generated. An event with a state (low)

is produced, if the analogue voltage falls below the threshold voltage. Due to the

fact that the result is a digital boolean signal, an event is to be generated at every

signal change. The digital part will react to this event if a concurrent statement

reads this signal or if the sensitivity list of a process contains this signal.

Chapter 3 AMS Modelling Syntax

Q

E~---+------------*-----~----------

Q'

true

false+ __ '--_________ --" ___ -'-______ _

FIGURE 3.8: Demonstration of analogue to digital transformation at their in­
terface.

3.4.3 Other Interfacing Methods

62

In Sections 3.4.1 and 3.4.2 AID and D I A interfaces that connect analogue and

digital signals (sc_signal) are illustrated. SystemC-A offers more connection im-

plementations. It supports node to signal, signal to node, or node to node con-

nections. Node-signal connection is used by reading a value at a node and then

writing it to a SystemC signal which may be connected to another module.

value=X(a); / / read value from node

aSig.write(value); / / write value to signal

Node-node connection is used when there are two electronic circuits in two different

modules and need to be connected via a shared node. It can be done by declaring

a new node in the testbench and then do the same procedure as when connected

signals in a testbench. Signal-node connection is used when a SystemC signal is

used in a circuit component inputs, it can be done by reading the signal into its

constructor's argument. All interfaces methods are used and tested by modelling

a variety of examples in Chapter 6.

Chapter 3 AMS Modelling Syntax 63

3.4.4 Analogue Stepping

The time step of the analogue simulator is usually determined by the internal

algorithm of the simulator, which means it cannot be defined by the user but

sometimes there is an option for the user to determine the required fixed time step.

Analogue simulators do not use events but instead employ an entirely different

approach to time step control, namely, continuous step size adjustment, illustrated

in Figure 3.9, where h = hn, hn+l, ... may have different values. This approach is

used in most analogue simulators for obvious reasons. Firstly, the variable step

approach can minimise the errors caused by the numerical integration methods

used to solve differential equations in the circuit model. Secondly, simulation times

are significantly shorter than those in a fixed step size approach. For example, for

a step response, in a transient phase a small time step is needed to capture the

details of the fast part of the transient while in the later part, when things are

settling down, a longer time step can be used.

Analogue World hn _/ hn+1 _/ __ D' . I ld Iglta Wor

t n-I

hn =tn -tn_1' hn+ 1 =tn+ 1-tn are different step sizes

tn_1' tn' tn+l are analogue events generated by the analogue kernel

FIGURE 3.9: Time stepping in analogue simulators.

The implementation of analogue stepping is done based on the estimation of the

Local Truncation Error (LTE) [91J. LTE at tn is an error due to a numerical

approximation introduced in the time point tn- As LTE depends on the step size

hn it can be controlled by the value of hn . The step size is determined by limiting

an LTE estimate to an error bound EBn defined as shown in Eq.3.2, 3.3,

(3.2)

Chapter 3 AMS Modelling Syntax 64

EBn = RELTOL * /Xmax / + ABSTOL (3.3)

where Xmax is the maximum value of a variable. RELTOL is the relative error

tolerance within which system variables are required to converge. It allows to sim-

ulate high and low variables without adjusting the conversion criteria. ABSTOL

is the absolute tolerance, it represents the smallest value of system variable that

can be monitored. It forces a minimum value in the system matrix when a particu-

lar system variable is nearly zero. These are user defined parameters to determine

how accurate the simulator calculates the solution. For example, RELTOL=le-3

and ABSTOL=le-6 for voltage, le-9 for current. ABSTOL and RELTOL can

have direct impact on convergence and simulation time and have to be chosen

carefully.

If the Trapezoidal method is used, which is of the second order, the upper step

size bound can be determined from Eq.3.4:

_ [EBn]1/3
hn

- C * DD3(t) (3.4)

where DD3(t) denotes the 3rd order divided difference approximation and C = -112

is the related constant for the Trapezoidal method.

In order to synchronise the analogue and digital simulators at every time point,

the analogue stepping is implemented using SystemC event notifications. The

analogue module which is responsible for calculating the above estimated value of

the upper step size bound hn notifies the digital kernel at the time point equal

to (current time +hn). The digital processes will be activated at this time point

accordingly.

Chapter 3 AMS Modelling Syntax 65

3.4.5 Small Step Sizes

When connecting analogue and digital models, critical issues and problems arise

and should be handled and solved in order to simulate the whole system correctly.

Examples of such issues are the handling of small step sizes and the cancellation

of events.

Small step sizes may occur in D / A interfaces when a digital signal, interfaced to

an analogue system variable, changes its value due to a digital event. Another case

is the continuous cutting in step size by the analogue stepping algorithm in highly

dynamic systems. Because of the limited precision provided by the computer's

finite word length, small step sizes can cause large round-off errors and lead to

inaccurate results or to non-convergence [92]. On the other hand, a zero step

size may occur with repeated delta cycle which causes the system to be solved

at h = 0 and undergo non-convergence. Small step sizes including the case of a

delta cycle where h = 0 are handled in SystemC-A by smoothing the digital signal

[93] as illustrated in Figure 3.10 using Backward Euler method. The smoothing is

implemented based on Eq.3.5.

S' = Snhn + TS~_l
n T + hn

(3.5)

where Sn is the input digital signal of type bool. hn is the simulation time step

size. S~ is the smoothed signal and S~_l is the past value of the smoothed signal.

T is time constant which plays as a control factor to shape the signal.

Smoothing a very short digital pulse with T 2: than the pulse width, will transform

the pulse to a short spike and the events caused by the spike will be cancelled by

the simulator if the signal level is less than a logic threshold as shown in Figure

3.11. The analogue solver will prevent events from cancelling by defining a check

for validity of values for both the pulse width and T.

Chapter 3 AMS Modelling Syntax

Event on
signal Sn
----'t

Digital World
I

> t
t

smoothing n

·1
Analogue World I

FIGURE 3.10: Handling small time step sizes in SystemC-A analogue kernel.

TI '---->
smoothing

T ~I

s' n

r'?:.T
Cancelled

event

t

FIGURE 3.11: illustration of cancelled events when T >pulse width.

3.5 SystemC-A Abstraction Levels

66

While most of the abstraction levels of the digital design flow (see Figure 1.2) are

supported by SystemC, SystemC-A supports additional abstraction levels for ana-

logue systems. SystemC-A provides methods and language constructs to support

electrical circuit level and system level which includes behavioural level. Electrical

circuit level is supported by the number of analogue circuit components models

described in Section 3.3, which are created to be connected in SPICE-like circuit.

System level is supported by the modularity characteristic of SystemC and SystemC­

A, which allow high level signal flow designs. System level also supported by the

ability to co-model hardware and software. Modelling a system at behavioural

level means describing the system by its DAEs. SystemC-A supports efficient

nonlinear DAE formulation and solving methods.

Chapter 3 AMS Modelling Syntax 67

3.6 Concluding Remarks

This chapter has presented new CAD concepts and methods for the SystemC-A

AMS extensions. Novel language constructs were defined such as an abstract class

for defining system variables. The abstract class was extended to the required

types of system variable, i.e node variable, flow variable and free variable, to rep­

resent the unknowns in the set of DAEs. Another important abstract class is the

circuit component which can be extended to various kinds of standard or user­

defined analogue circuit components. Objects of the new elements allow building

any general system such as an electronic circuit at different abstraction levels.

The chapter also presents a solution to the issues of digital-analogue interaction.

SystemC-A has its unique methods for interfacing analogue and digital parts repre­

sented in signal transformation and the ability to connect circuit nodes in different

SystemC modules. The chapter also suggested solutions to some problems which

might arise due to the interfaces such as implementing the analogue stepping, small

step sizes and digital event cancellation. The proposed constructs allow modelling

of analogue systems at circuit level as well as system level of abstraction, leading

SystemC-A to be high level design language.

Chapter 4

Nonlinear Equation Formulation

with Object-Oriented Jacobian

approximation

This chapter presents the implementation of the nonlinear analogue solver which is

also called analogue kernel. It involves two main steps to simulate systems, formu­

lation and solving of the system's DAEs. A new method of equation formulation is

proposed using C++ object-oriented features for the development of component's

build methods. The equation formulation is called Object-Oriented Newton Quasi­

Newton (OO-NQN) method. It provides means of efficient automation of equation

formulation with minimal user's knowledge of the solver algorithms details.

The remainder of this chapter is organised as follows: Section 4.1 describes the

numerical methods used in the implementation of the analogue kernel for for­

mulating and solving linear and nonlinear representations of systems during a

transient simulation. Section 4.2 presents the build methods to support equation

formulation to be solved using pure Newton method, where in Section 4.3 the al­

ternative Quasi-Newton method implementation is presented for which no Newton

68

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 69

derivatives are available. Section 4.6 presents the analogue kernel structure and

analogue-digital modelling and simulation flow in SystemC-A. Finally, Section 4.7

gives the conclusion.

4.1 Numerical Techniques for Analogue and Mixed-

Signal Simulation

The techniques of computer-aided circuit analysis are relatively well established

after their rapid development in the 1960s and 1970s [94]. These techniques in-

clude equation formulation and algorithms to solve the set of system equations

for different types of circuits. There are many excellent books in the literature

covering the topic of circuit analysis and design, e.g. books by Calahan (1972)

[95], Chua and Lin (1975) [96], Vlach and Singhal (1983) [97], Ruehli (1986) [98],

as well as some recent books such as Litovski and Zwolinski (1997) [99]. The ma­

terial of the following section is mainly from [99] and [100] to explain the theories

behind the intended analogue kernel.

4.1.1 Mathematical Model

A nonlinear electronic circuit with lumped elements can be modelled by a set of

nonlinear ordinary Differential and Algebraic Equations (DAEs) of the form:

f(v(t), v(t), t) = 0 t 2: 0, v(O) = vo (4.1)

where f : RN x RN X Rl --+ RN is a vector function, v(t) E RN is a vector of

unknowns, v(O) is a vector of initial values, v(t) is a vector of unknown derivatives

with respect to time, N is number of unknowns and t is time. The unknowns, which

are also referred to as the primary circuit variables, are usually selected from the

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 70

set of system's node voltages, branch voltages, branch currents, capacitor charges

and inductor fluxes.

Eq.4.1 can be transformed to an algebraic set by replacing the time derivatives at

each time point tn, n = 1,2, ... , by a discrete linear differentiation formula of the

general form:
p p

hnv~ = .I:: aiVn-i + hn .I:: (3iVn-i (4.2)
i=O i=O

where, hn = tn - tn- 1 is the current time step, and ai, i3i are coefficients whose

values depend on hn' hn- 1 , The formula in Eq.4.2 is said to be of order r if,

(4.3)

where LTE is the Local Truncation Error introduced due to the discretisation. The

simplest case of the formula in Eq.4.2 is the first-order Backward Euler formula in

Eq.4.4.

(4.4)

In this research, the Trapezoidal formula (Eq.4.5) is used. It is a popular second

order form of the linear differentiation formula and the default method in SPICE

and other analogue simulators.

(4.5)

An example of other methods is the second-order Shichman formula [lOlJ with

variable step,

(4.6)

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 71

It is a particular case of the variable-order variable-step Backward Differentiation

Formula (BDF) [102]'
p

hn v'n = L aiVn-i
i=O

(4.7)

BDFs are very desirable in circuit simulation due to their greater numerical effi-

ciency and excellent stability properties in the case of stiff systems, i.e. systems

with a wide spread of time constants.

It is useful to distinguish between the unknown present values of primary circuit

variables Vn and the past values Vn-i, i = 1,2, ... ,p and rewrite the formula Eq.4.2

in the following, more compact form:

where the second term,

p

Xv,n £ L(aiVn-i + hnf3i vn-i)
i=O

(4.8)

(4.9)

contains only past information and ~ is the discretisation operator (S). In this

research, Sand Xn are defined as in Eq.4.10 and Eq.4.11, where Trapezoidal

method is used for the whole simulation time except for time=O, when Euler

method is used.

if time = 0
1

S=h'
n

if time = 0 Xn = SVn-l, else

else (4.10)

(4.11)

Application of the discretisation in Eq.4.8 to the original equation Eq.4.1 yields a

system of algebraic nonlinear equations for every discrete time point tn,

(4.12)

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 72

Virtually all solution methods of Eq.4.12 are based on some form of the Newton­

Raphson (NR) linearisation which is derived from the Taylor expansion of Eq.4.12

around the mth estimation v: of the solution vector vn .

(4.13)

where, jm = :1 Ivn=vrn ERNxN is the Jacobian matrix evaluated at vnm.
UVn n

If the terms of order higher than the first in Eq.4.13 are rejected, then Eq.4.12

reduces to its linearised estimate,

(4.14)

where the solution is V~+l = v~ + b.v~ and RHsm = - f(v~) + jmv:. If

IIV~+l-vnll < II v: -vnll (m = 0, 1,2, ...), then the repeated application of Eq.4.14

is a contraction mapping and the subsequent values v~ converge to the solution Vn

of Eq.4.12. The standard algorithm for the solution of Eq.4.1 (the NR algorithm)

can be summarised as shown in Algorithm 4.1.

Algorithm 4.1: Newton Raphson non-linear solver. (n:time point counter, m:NR
iteration counter, carbitrary small number, T:maximum analysis time.)

1: n:= 0;
2: t:= 0;
3: repeat
4: n := n + 1;
5: tn := tn- 1 + hn;
6: evaluate current values of differentiation operator ao, Xn;
7: predict values of known variables v~ as initial guess for NR iterations;
8: m:= 0;
9: repeat

10: m :=m+ 1;
11: set up Jacobian Jm for current estimate of unknown variables v:;
12: solve linearised equation jmb.V:+l = RHsm;
13: until NR iterations converge i.e. IV~+l - v~1 < E

14: select new step size hn+l on the basis of LTE estimation.
15: until tn > T;

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 73

4.1.2 Equation Formulation

The equations are ready to be formulated once they are discretised and linearised as

shown in the summary in Figure 4.1 of procedural preparation of circuit simulation.

Nonlinear ODE:
f(v,v,t) = 0

v (0) = Vo

, Discretisation

Discretised Nonlinear ODE:
~

!(vn)=O

NR Linearisatio n

Linearised Algebraic Eq:

J m /1v m
+

1 = RHS m

MNA formulati on

MNA system matrix:

[= =]AV =[=]
LU

Solution:
vn = vn-1 + /1vn

FIGURE 4.1: Procedure of analogue circuit simulation.

The analysis of the linearised system can be commonly viewed as a two stage

process, equation formulation and numerical solution [99J. The Modified Nodal

Analysis (MNA) method [90J has been widely used for formulating circuit equa-

tions in computer-aided network analysis. MNA retains the simplicity and other

advantages of the classical nodal analysis while removing its main limitation, which

is the inability to process voltage sources and current dependent circuit elements

in a simple and efficient manner.

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 74

In MNA, the node equations are formulated using Kirchhoff's Current Law (KCL)

in conjunction with branch constitutive equations to describe electronics circuits.

The equations are formulated (represented in the computer program) automat i-

cally in a simple and comprehensive manner. The common approach for automatic

equation formulation is the network element stamp method which represents the

contribution of one particular element to the system of equations describing the

network [99].

For example, the MNA stamp for a resistor connected between nodes i and j is,

G -G -2 (4.15)

j -G G 2

where the rows represent equation numbers, and the columns represent variables,

and C is the conductance. The Right Hand Side (RHS) represents the excitations

of the linearised network. Table 4.1 shows several commonly used stamps. In the

inductor stamp or voltage source stamp, a new variable is introduced representing

a current through these elements. This was the main contribution of the MNA.

TABLE 4.1: Sample component stamps used in automatic equation formulation.

Resistor Inductor

v· , Vj RHS V· , Vj IE RHS
1 G -G -2 1 1 -IE
J -G G 2 J -1 IE

IE 1 -1 -SL I -Vij + SLiEn

Diode Capacitor

Vi Vj RHS Vi Vj RHS
1 Cd -Cd -Id 1 SC -SC -Gun - ic

J -Cd Cd Id .J -SC SC GUn + ic

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 75

4.1.3 Standard Solution of Linear Equations

Once formulated, the system of linearised equations describing a circuit has to

be solved. There are two approaches to this problem: direct methods and itera-

tive methods. Direct methods are able to solve the system in a fixed and finite

number of steps, such methods are: the Gauss-Jordan method, Gaussian Elimina-

tion method and LU factorisation method. Iterative methods produce an infinite

sequence of solutions that may converge to a consistent result if rather strong con-

ditions on the Jacobian matrix are satisfied, such methods are the Jacobi method,

Gauss-Seidel method and relaxation methods. In most circuit simulators the lin-

earised Eq.4.14 is solved by means of direct methods such as Gaussian elimination

or LU decomposition. These methods have proven to be reliable and accurate,

thus LUis used in this research.

Nonlinear circuit analysis in the time domain may require several thousand re-

peated solutions of a big dimension system (N > 500). The linearised equations

describing the circuit are usually re-formulated at each NR iteration and each time

point. Therefore, the efficiency of the equation solution method and the system

matrix order should be considered as an important factor. Taking advantage of

system matrix properties such as sparsity and symmetry to accelerate the solu­

tion process and reduce the memory needed. Also, adopting a suitable pivoting

strategy is necessary. The pivoting process consists of reordering the equations by

row pivoting (renumbering the variables), column pivoting, or both, so as to put

a particularly desirable element in the diagonal position from which the pivot is

about to be selected. The pivoting strategy is implemented in this research but

optimising system matrix by methods depending on the sparsity is not considered.

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 76

4.2 Equation Build Method

The build method supports the automatic OO-NQN equation formulation of the

system to be modelled. It is a virtual method in the abstract component base class

(sea_component) and inherited by all derived components. The build method

consists of two functions, BuildM () and BuildB (). They contain C++ code which

defines one or more DAEs. Figure 4.2 illustrates the use of the build functions in a

capacitor model as a SystemC-A component. Also, it gives a better understanding

of the elements of the build method and how the modeller can use them.

C

a--1/- b

i = C dVab
ab dt

differential eg.

= C(SVabn + X abn (V abn-l , vabn_l , ...)) discretised eg.

Jacobian .~V = RHS system eg.

Va Vb

a [SC
b -SC

-SC]. = [-Scvan -CXan +SCvbn +CXbn]
~vn+l

SC SCvan + CXan - SCvbn - CXbn

\\part ojcapacitor's SystemC-A model
void sc_a_capacitor: :BuildM(void){

S=SO;

}

Jacobian(a,a,S*C);
Jacobian(a,b,-S*C);
Jacobian(b,a,-S*C);
Jacobian(b,b,S*C);

void sc_a_capacitor: :BuildB(void){
V dotn= Xdot(a)-Xdot(b);
BuildRhs(a,-C*V dotn);
BuildRhs(b,C*V dotn);

}

FIGURE 4.2: Capacitor mathematical model and its SystemC-A build functions.

Figure 4.2 shows first the capacitor's differential equation and its representation

after discretisation (see Eq.4.10 and Eq.4.11 for the definition of the discretisation

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 77

operator S and previous terms Xn). Then it shows the capacitor's MNA stamp

(Jacobian and RHS) and part of the SystemC-A model presenting the BuildM()

and BuildB() functions which build the differential equation of the capacitor.

BuildM() represents the component's contribution to the Jacobian, the associated

function is Jacobian(}. It is a function to add a single contribution to the Jacobian

matrix. For instance, the capacitor contribution in Table 4.1 needs four entries to

the Jacobian, therefore four calls to the Jacobian() function is performed in the

capacitor model shown in Figure 4.2. The arguments of Jacobian() are, first the

two nodes to where the capacitor is connected and the third is the contribution

element of its stamp.

BuildB() represents the component's contribution to the right hand side RHS

vector of the system equation defined in Eq.4.14. The associated function with

BuildB() is BuildRhs() function. It is a function to add a single contribution

to the RHS of the system equation. The arguments of BuildRhs() are, first the

corresponding capacitor node and the second is the contribution element of its

stamp. If the user modelled his system using BuildM() and BuildB(), the analogue

kernel will build exact Jacobian values and will solve the system using pure NR

method (shall be called Newton for simplicity from now on).

Calls to BuildM(), which build the corresponding Jacobian entries are optional.

If these calls are not provided, the solver will build the Jacobian using a secant

approach with finite difference approximation of the Jacobian entries. This option

will be described in Section 4.3.

The resulting Jacobian stamp conforms to the MNA formulation. The entire

equation set is formulated automatically at each Newton iteration by scanning the

linked-list of components (see Figure 3.5) and invoking their build methods.

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 78

4.3 Object-Oriented Jacobian Approximation

The use of pure Newton method by employing the combination of BuildM(} and

BuildB(} to build the exact Jacobian, requires a model developer who has knowl­

edge about the Jacobian stamps in Table 4.l. This is not always the case. Although

using pure Newton method leads to accurate solutions of a simulated system, the

use of BuildM(} is optional. BuildM(} has a default body, which calculates New-

ton derivative approximations using the right hand side. In this case, the modeller

defines his model using only BuildB () and the analogue kernel will approximate

the required Jacobian automatically.

The body of BuildB(} is generated from user-defined equations. The user of

SystemC-A can use BuildB(} function only with its associated function Equa­

tian(}, where the arguments of Equatian(} function are the same as BuildRhs{}.

The RHS vector will be provided by the modeller, while the Jacobian matrix will

be estimated and then solved using Quasi-Newton method. Figure 4.3 summaries

the OO-NQN equation formulation method.

The model developer may override the default BuildM () by providing code to

calculate pure Newton derivatives. In VHDL-AMS there is no provision for user-

defined derivatives so the default option must be used. However, vendor compo-

nents built into a VHDL-AMS system may use pure Newton derivatives in the

way described here.

4.3.1 Quasi-Newton Method

In different versions of Newton's method, if the Jacobian is not readily available

and rather is approximated, the methods called Quasi-Newton methods [103J.

The Jacobian matrix is composed of partial derivatives as in Eq.4.16, therefore

if it is not provided each derivative element should be approximated using finite

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 79

from sc_a_component derive
new component X

providing Jacobian I not providing Jacobian

~
override BuildMO

define BuildBO
define BuildBO

approximate ~ Jacobian

Default BuildMO will run using
Secant method

use JacobianO in conjunction
with BuildMO

+ use BuildRhsO in conjunction
with BuildBO Use EquationO in conjunction

with BuildBO

solved using
I Solved using

Newton Method

~
Quasi-Newton

method

Component X model is ready
to be simulated

FIGURE 4.3: Summary of OO-NQN equation formulation method.

difference derivative instead of the exact one.

oil oil
OXI OX2

012 012

J= OXI OX2 (4.16)

Finite difference approximation is defined in Eq.4.17. It makes use of the system

RHS (Ji(Xj)) and a scalar !:1Xj which is normally chosen between 10-6 and 10-3 .

J
ij

= Ofi = fi(Xj + !:1Xj) - fi(Xj)
OXj !:1Xj

(4.17)

This approximation method of the Jacobian is using the secant method [96J. It is

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 80

to use the slope of the line between two consecutive search points Xj and Xj + flxj

to compute the next point xj+l (Eq.4.18) from secant that drawn between the two

points, as demonstrated in Figure 4.4.

(4.18)

The advantage of the method is that the number of function's evaluations is half of

that of the Newton's method because Jacobian need not be evaluated. However,

its convergence rate is slightly less than Newton.

F(x)

f(X k+l)

X k+l
j

__ ...-7!I f(X.k-l)
I }
I
I
I ~Xj ,... ..,
I I

FIGURE 4.4: Illustration of the secant method.

x.
}

4.4 SystemC-A Implementation of OO-NQN Eq-

uation Formulation

SystemC-A utilised the advantage of object-oriented C++ inheritance and poly­

morphism (as explained in Section 3.1) to implement the automation of 00-

NQN equation formulation method. This was achieved by defining BuildM(}

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 81

and BuildB(} functions in the sc_a_component abstract class, as virtual methods.

BuildB(} is defined as a pure virtual method as in Line 10 of Listing 4.1. This

means that BuildB(} needs a body to be defined in any derived user's component

model, otherwise the simulator will produce an error.

Most importantly, BuildM(} virtual method defined in line 11 of Listing 4.1 has a

default body. If the user does not provide the Jacobian by defining BuildM(} in

his model, the default body in the abstract component class will be run instead.

The default BuildM(} as implemented in Lines 59-86 of Listing 4.1 is the secant

method approximation of the Jacobian.

1 //component's header file
2 #include "sc_a_system_variable .h"
3

class sc_a_component{
public:

sc_a_component ();

4
5
6
7
8

sc_a_component (char nameC [5] ,sc_a_system_variable *node_a, sc_a_system_variable

9
10
11
12
13
14
15
16
17

* node_b ,double valueC);
virtual -sc_a_component ();
virtual void BuildB(void)=O;// pure virtual method {must override}
virtual void BuildM(void);
void setNext(sea_component *link) {next = link ;};
sc_a_component *getNext () {return next;};

18

virtual void IC(void){}
void Jacobian (sc_a_system_variable
void BuildRhs (sc_a_system_variable
void Equation (se-a_system_variable

19 protected:
20 char name [15] ;
21 bool flag;

*Ql, sc_a_system_variable *Q2, double value);
*Ql, double val ue) ;
*Ql, double value);

22 double *x_vector, *RHS, *rhsl, *rhs2, *rhs3;
23 double Jacob, deltaX, value;
24 in t i, j ,n, i 2, i 3 ;
25 sc_a_system_variable *a,*b;
26 sc_a_component *next;
27 };
28
29 //component's cpp file
30
31 sc_a_component:: sc_a_component(char nameC[5] , sc_a_system_variable
32 *node_a, sc_a_system_variable *node_b, double valueC){
33 strcpy(name,nameC);
34 a=node_a;
35 b=node_b;
36 value=valueC;
37 if (mylist != NULL)
38 mylist->insert ((sea_component *)this);
39 else
40 throw" mylist is empty";
41 deltaX=le -3;
42 flag=false;
43 }
44
45 void sea_component:: Jacobian (sc_a_system_variable *Ql, sc_a_system_variable *Q2,
46 double value){
47 LSl->BuildM(Ql->geLcolomnNo (), Q2->geLcolomnNo (), value);

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 82

}

void sc_a_component:: BuildRhs (sc_a_system_variable *Q1, double value){
LS1->BuildRhs (Q1->geLcolomnNo (), value);

void sc_a_component:: Equation(sca_system_variable *Q1, double value){
RHS=build1->geLRHS ();
RHS[Q1->geLcolomnNo ()]= value;

}

void sc_a_component:: BuildM (void){//approximate Jacobian using secant method

for(i=l;i<n; i++){

}

LS1->BuildRhs(i,RHS[i]);//build Rhs with f(all variables updated)
rhs1 [i]=RHS[i]; // save values of RHS of all component contributions
rhs2[i]=0;
RHS[i]=0;

BuildB () ; //build without variable increment
for (i3 =1; i3<n; i3++){

rhs2 [i3]=RHS[i3];
RHS[i]=0;

/ /save this component contribution to rhs

}

for(i=l;i<n;i++){ //special update, update single variable at a time

}

x_vector [i]=x_vector [i] + deltaX;
BuildB (); //build with variable increment
for(i3=1;i3<n; i3++) //save this component contribution to rhs after updating

rhs3 [i3]=RHS[i3];

x_vector[i]=x_vector[i] - deltaX;//restore x
for (j =1;j <n; j++)
{

}

Jacob=(rhs3 [j]- rhs2 [j]) / deltaX;
LS1->BuildM(j ,i,-Jacob);//take values to LS

LISTING 4.1: SystemC-A model of the Component abstract class.

The developed object-oriented secant algorithm can be summarised in Algorithm

4.2.

Algorithm 4.2: Object-oriented secant algorithm of approximating the Jacobian.
1: evaluate equations (run BuildBO) with all variable updated to get f(x)

vector for a component.
2: for each variable Xj do
3: choose suitable t::..Xj according to Xj magnitude
4: Xj = Xj + t::..Xj increment Xj

5: evaluate equations (run BuildBO) to get f(xj + t::..Xj) vector
6: Xj = Xj - t::..Xj restore Xj

7: for each row i do
8: J.. = f;(xj+/::,.xj)-J;(x)

'J /::"Xj

9: end for
10: end for

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 83

4.5 Object-Oriented Jacobian Approximation Ef-

ficiency

All the examples modelled in Chapter 6, 7 and 8 were tested using both exact and

approximated Jacobians of the OO-NQN method. The models with approximated

Jacobian were as accurate as with the exact one, the percentage error between

models simulated using both methods is negligible. With regard to the CPU

time, Table 4.2 shows execution times of different case studies for both exact and

approximated Jacobian methods.

TABLE 4.2: Execution times when using exact and approximated Jacobian in
case studies covered in Chapter 6 7 and 8 ,

example time step duration samples exact J approxi. J increase
[sJ [sJ [sJ [sJ

Van Der Pol Oscillator 0.1 150 1500 0.05 0.07 lAO
Lorenz Chaos 0.01 150 15000 0.69 0.99 1.44
PLL noise 2 0.2n 200p, lOOOO 72.91 80.99 1.11
Ferromagnetic hysteresis 0.1 1lO 1100 0.14 0.17 1.22
Automotive, OC O.lm 2.5 25000 27.35 50.55 1.84
Automotive, PIC 0.05m 2.5 50000 60.69 1lO.61 1.82
Automotive, VSC O.lm 2.5 25000 63.24 112.23 1.77

The simulations were carried out on a PIlI PC with 512MB RAM. It is apparent

from Table 4.2 that case studies using the Jacobian approximation took longer

simulation times than the ones that using exact Jacobian. Approximating the

Jacobian has added a number of operations due to functions calls which increased

the CPU time of modelling a particular system. Function's calls are mainly of

calling the RHS at different time points in order to evaluate Eq.4.17 as described

in Algorithm 4.2. Different percentage increases in Table 4.2 of different examples

are due to the size of the system, i.e. number of system variables. For instance,

the automotive examples are very big and contain around 13 variables, therefore

the increase in CPU time is quiet big. Using exact Jacobian approach has the

advantage of simulation speed over the approximate Jacobian approach, leaving

the choice between simulation speed and easiness to the model developer. This

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 84

choice is not provided to modeller using popular AMS HDLs, such as VHDL-AMS

and Verilog-AMS.

4.6 Analogue Kernel

The analogue kernel is the core engine of any analogue simulator. It consists of

layers of several algorithms. The main functionality of the analogue kernel is to

solve the set of non-linear dynamic equations. The theories and algorithms behind

it are explained in detail in Section 4.1. The flow chart in Figure 4.5 shows the

details of the modelling and simulation flow of a general AMS system in SystemC­

A. The following paragraphs are to explain Figure 4.5.

The simulation starts by the initialisation phase where the components construc-

tors in the user code run first, initialising all variables. Some components may have

initial conditions which are scanned at very early stage by using the linked-list in

Figure 3.5.

Then, after coding the system model in different modules and construct the whole

system in a test bench, the simulation is started by executing the following SystemC

command which must be provided in the testbench directly after the user code:

sc-start();

sc_start() may have different arguments to specify the simulation time.

The engine is now ready to start formalising and solving the defined model using

universally adopted and well established methods such as L U factorisation and

Newton algorithms. The Newton nonlinear solver is first initialised (iteration

z = 0) and then started. In every Newton iteration, the analogue components list

is scanned to invoke their build functions which add the component's contributions

to the Jacobian (J) and RHS of Eq.4.14.

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 85

No

Digital process

es

No

Convergence?

Any threshold crossing?

yes yes
Next event time?

Digital process

Analog delta cycle?

No

Accept present time point and
finilise updating solution

Calculate next time point

yes

end

FIGURE 4.5: SystemC-A modelling and simulation.

No

From the iterative loop of the Newton algorithm, the LV factorisation method is in­

voked. LV factorisation method is responsible for solving the linear set of equations

(Eq.4.14) formulated at each Newton iteration for !:lx. The LV method employs

a pivoting method to avoid zero diagonal element or non-convergence problems

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 86

due to small pivots. The basic pivoting strategy implemented in SystemC-A is,

for each matrix's row/column find the largest element and then interchange this

row/column with the current row/column. The reordered matrix should have all

largest elements on its diagonal. The entire matrix must be reordered at each step

of the factorisation.

Once the system equations Eq.4.14 are solved for 6x, the solution x is updated

(x = x + 6x) and tested for convergence. If the convergence condition is not

satisfied the Newton algorithm continues iterating. If the convergence condition

is satisfied, the analogue solver exits the Newton algorithm and the digital kernel

proceeds with the digital processes if required which might involve multiple delta

cycles. After the present time point is accepted and the solution is updated, the

next time point is calculated using the current LTE estimate. Afterwards the

solver schedules an event at the next time point. The current time in SystemC is

obtained from sc_time_stamp().to_seconds(), thus the event is scheduled at,

(4.19)

where hn is the next time step. This process is discussed in more detail later

in Section 5.4. Any of the triggered digital processes might trigger the analogue

kernel and the cycle starts again.

4.7 Concluding Remarks

This chapter has first presented the numerical methods required to construct the

analogue kernel. In this context, it reviewed the DAE's mathematical model, dis-

creteisation, linearisation, formulation and solving. Then, the chapter presented

the Object Oriented Newton-Quasi Newton method (OO-NQN) for equation for­

mulation. OO-NQN was implemented by introducing a new SystemC-A build

Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian
approximation 87

method. OO-NQN has two approaches for constructing the Jacobian, building

the exact Jacobian's elements using MNA component's stamps or approximating

them using secant method. The advantages of OO-NQN is a compromise between

simpler model or simulation speed. Finally, the analogue kernel with the devel-

oped constructs from Chapter 3 are put together to form an engine to simulate

AMS systems.

Chapter 5

Time Synchronisation Between

Analogue and Digital Kernels

One of the most important problems in mixed-signal simulation is the time syn­

chronisation between the event-driven digital simulation and numerical integration

in the analogue solver. Synchronisation is an essential issue affecting the simulation

speed and accuracy. Another important issue to consider is the signal conversion

on mixed-nets at the analogue-to-digital and digital-to-analogue interfaces. This

is explained in detail in Chapter 3.

The idea of synchronisation is to modify the time stepping engine in the analogue

solver such that it fits into the digital event-driven paradigm. The synchronisation

is then accomplished by the digital simulator, which processes the events in the

chronological order of their time stamps. For this purpose, a new implementation

of the lock-step method, with efficient handling of zero step-sizes is used.

The remainder of this chapter is organised as follows. Section 5.1 begins with

a description of the SystemC digital simulation cycle. Section 5.2 describes the

SystemC-A mixed-signal simulation cycle, in which the AMS extensions are han­

dled as a modification to the original SystemC kernel. In Section 5.3, various

88

Chapter 5 Time Synchronisation Between Analogue and Digital Kernels 89

synchronisation methods from the literature with their advantages and disadvan­

tages are discussed. In particular, the lock-step approach is chosen to be further

investigated and implemented in this research, as described in Section 5.4. Finally,

Section 5.5 concludes the chapter.

5.1 SystemC Simulation Cycle

Like in the case of most high level HDLs, a SystemC model consists of a hierar­

chical network of parallel processes. These processes exchange messages under the

control of the simulation kernel process [10] and concurrently update the values

of signals and variables. Signal assignment statements do not affect the target

signals immediately, but the new values become effective in the next simulation

cycle [104]. The kernel process resumes when all the user defined processes become

suspended either by executing a wait() statement or upon reaching the last pro­

cess statement. On resumption, the kernel updates the signals and variables and

suspends again while the user processes resume. If the time of the next earliest

event (tn) is equal to the current simulation time (tc), the user processes execute

a delta cycle, illustration of the SystemC simulation cycle is shown in Figure 5.1.

5.2 Developed SystemC-A Mixed-Signal Simu­

lation cycle

In SystemC-A mixed-signal simulator, the digital and analogue simulation cycles

are combined into a single cycle. Hence, a set of computations of the analogue

equations is executed between the digital evaluation points. To comply with the

SystemC execution semantics, the proposed SystemC-A simulator comprises an

Chapter 5 Time Synchronisation Between Analogue and Digital Kernels 90

All processes suspended

Digital
Kernel

FIGURE 5.1: Simulation cycle of a SystemC model (see Section 5.1).

analogue kernel (see Figure 5.2), which is activated by the modified SystemC

kernel and drives the user defined analogue descriptions.

The SystemC-A simulation cycle shown in Figure 5.2 starts with the initialisation

phase, where the initial signals and analogue system variables values are computed.

The initial analogue equation system is determined by running the component's

function (InitialC()) at the initialisation phase. The simulation cycle itself starts

with a computation of analogue solution points. This continues until the next

digital event is scheduled or event occurs at analogue-digital interface. To compute

a digital evaluation point, signals are updated. After that, processes are executed.

If the time for the next digital evaluation (tn) is equal to the current simulation

time (tJ, the digital simulator is called again with the same current simulation

time (delta cycle). If tn is not equal to te, the analogue solver is called, and the next

cycle begins. This continues until the end of the simulation is reached (tn = tend).

The analogue kernel repeatedly executes the simulation cycle shown in Figure 5.3,

which might involve delta cycles and backtracking. The analogue solver must have

Chapter 5 Time Synchronisation Between Analogue and Digital Kernels 91

Analogue
kernel

All processes suspended

Digital
Kernel

FIGURE 5.2: Proposed SystemC-A simulation cycle.

a capability to backtrack to the state ie- I (just before ie). Backtracking can be

achieved by saving the analogue state at ie-I'

Analogue simulators use continuous step size adjustment to minimise the errors

caused by the numerical integration formula (see Section 3.4.4). It is therefore

necessary for the analogue kernel in a SystemC environment to handle delta cycles

in a manner similar to that of digital processes. However, the state of the analogue

solver may not be updated until after the SystemC kernel advances the simulation

time ahead of the current simulation time ie, unless a delta cycle occurs and

reevaluation of the current step is necessary.

Chapter 5 Time Synchronisation Between Analogue and Digital Kernels 92

No (time has advanced)

Analogue Delta cycle?
t > t c c-l

Restore analogue state at tc_l
with h=O

Solve analogue model at te

Save current analogue state at

te

Select next step size h
and schedule event at next
local time point tn = te + h

FIGURE 5.3: Simulation cycle of the analogue kernel process.

5.3 Time Synchronisation Methods

The major function of a mixed-signal simulator is synchronising the two distinct

algorithms so information can be exchanged without incurring errors or undue

overhead. There are two fundamental approaches to time synchronisation at the

analogue and digital interfaces, pessimistic and optimistic [105, 106, 107J. In

the pessimistic approach, the simulators progress with the same time step. This

approach ensures that there is no need for backtracking and no results are thrown

away. One well-known example is the lock-step method which is the technique

used in this project.

The optimistic approach allows each simulator to progress in time until it runs out

of internal events. If an event from one simulator is generated before the end of

this optimistic time interval, all results generated after that event are discarded.

This means that simulators must be able to backtrack. Examples of optimistic

Chapter 5 Time Synchronisation Between Analogue and Digital Kernels 93

synchronisation methods are Backplane [108], Ping-pong [105J and Calaveras [109J.

The idea and the disadvantages behind each technique are shown in Figure 5.4

and explained in the following subsections.

- analogue time I Digital III III I I III Lock-step

Pessimistic step at every I Analogue I"
digital event III I I III

III III I I I III Backplane - synchronise at Digital
periodic rate.

Optimistic
- more analogue Analogue I ~ ~I ~I ~I ~I ~I ~I ~I error is incurred.

- reevaluate at Digital III III I I I III Ping-Pong

Optimistic backtrack.
- bad for highly I Analogue I I ~I ~I~I ~ ~I feedback systems.

'" .J
Roll-back

- Synchronise only I
Digital III III I I III Calaveras

Optimistic when necessary.
- Patented roll- I Analogue I I ~I back algorithm. ~I lj ~
- no reevaluation
of circuit required. Roll-back

FIGURE 5.4: Time synchronisation methods of analogue and digital kernels.

5.3.1 Backplane Method

The backplane synchronisation used to be a popular method for operating multi­

ple digital simulators concurrently using a fixed time step even if no data transfer

is necessary. Initially, this approach aimed to provide the ability to run different

types of digital simulator, such as VHDL and Verilog. Some simulation backplanes

have attempted to attach analogue simulators [108], but performance has usually

been less than optimum, because simulation backplanes typically force additional

synchronisation events. Though these events may add little overhead to digital

Chapter 5 Time Synchronisation Between Analogue and Digital Kernels 94

simulators, they can cause additional analogue time steps that significantly in­

crease overall simulation time up to 1000 to 1 ratio of analogue to digital [109].

The effect can be enormous. Usually it is common to link an analogue simulator

to a digital simulator that communicates with the backplane, instead of having

the analogue simulator directly connected to the backplane.

5.3.2 Ping-Pong Method

A far more efficient way to perform mixed-signal simulation is to synchronise

the analogue and digital portions of the simulation only when data need to be

exchanged. Otherwise, the analogue and digital algorithms work independently,

each taking the optimum time steps whenever possible.

This technique is commonly referred as the ping-pong or roll-back method [105],

because each portion of the simulator alternates taking time steps. The problem

with this method is that one of the algorithms can get ahead of the other, which

mean data needs to be exchanged at a previous time point. To maintain accuracy,

the algorithm that is ahead of time must backtrack to regain synchronisation.

This backtracking can be expensive in terms of CPU time because the analogue

matrix must be reevaluated. With circuits that have tight feedback loops between

analogue and digital, backtracking can slow down the simulation or even give

erroneous results.

5.3.3 Calaveras's Method

Calaveras's Method is an improved version of the ping-pong method. The method

is used exclusively by SABER simulator from Analogy [109]. When data needs

to be exchanged, if the analogue simulator is ahead of time, it again rolls back in

Chapter 5 Time Synchronisation Between Analogue and Digital Kernels 95

time, but the analogue matrix instead of being re-evaluated, is interpolated at the

synchronisation point.

5.4 Lock-Step Method

The alternative approach, adopted in this project, is the lock-step method. The

analogue simulator calculates the step sizes and the digital simulator uses these

values. The analogue kernel advances until the current simulation time and before

suspending, schedules an event at the time equal to the current simulation time

plus the next selected step size. Lock-step has been used by many commercial

mixed-signal simulators, such as Lsim Power Analyst from Mentor Graphics and

Pspice from Microsim Corporation.

The lock-step pessimistic approach has been used in preference to optimistic ap­

proaches, because the prospect of wasting vast amounts of CPU time by the op­

timistic approach was considered too costly [105j. Another reason is that the

adopted method eliminates the need for backtracking and no results are thrown

away. There were claims that the lock-step method produces long run-times [110j.

However, this is true when the method is used to synchronise analogue and digital

simulator from two or more different environments, because of the communication

overhead. When two solvers are synchronised within the same environment, the

lock-step approach is not expected to produce significant overheads. For this rea­

son SystemC-A uses lock-step method which has been proved to be very accurate,

fast, and reliable by the simulation of the examples presented in Chapter 6.

The method is implemented in this research by modifying the SystemC kernel

specified by (sc_simcontext. cpp) module from the SystemC library. The modifica­

tion is done by inserting a call to the analogue kernel before the evaluation phase

of the digital simulation cycle, as shown in Listing 5.1.

Chapter 5 Time Synchronisation Between Analogue and Digital Kernels 96

1 void sc_simcontext:: crunch () {
2 #i f de f DEBUG.svsTEMC
3 int num_deltas = 0;
4 II number of delta cycles
5 #endif
6 m_delta_count ++;
7 while (true) {
8 TS->TranS (); II <- added code
9 II a call to the analogue solver

10 I I EVALUATE PHASE
11
12 }
13
14 }

--
LISTING 5.1: Modification to the SystemC kernel to be coupled with the ana­

logue kernel.

This approach ensures that the SystemC kernel will make a step in time no larger

than the analogue kernel's step size. Since the analogue kernel is controlled by the

SystemC kernel, no synchronisation deadlock may happen. The only causes for

deadlock-like behaviour could arise due to a failure to converge in the analogue

solver or due to unresolvable delta cycles.

Most existing digital solvers cannot backtrack and therefore no fundamental changes

are required if a mixed-signal system is integrated to the SystemC kernel. The

lock-step synchronisation algorithm has been implemented as a modification to

the digital kernel and can be described in the form of pseudo-code as in Algorithm

5.1.

Algorithm 5.1: Lock-step synchronisation method.
1: time = 0
2: initialise both the analogue and digital kernels.
3: while (time <= end time) do
4: while (immediate notifications are pending) do
5: execute the analogue kernel
6: distribute notifications generated by the analogue kernel on global nets.
7: while (there are active processes) do
8: run a selected process
9: end while(there are active processes)

10: update signals.
11: check if a delta cycle is necessary
12: end while(immediate notifications are pending)
13: advance time to the next timed notification.
14: end while(time <= end time)

Chapter 5 Time Synchronisation Between Analogue and Digital Kernels 97

5.5 Concluding Remarks

The aim of this chapter was to develop a method to synchronise the developed

analogue kernel in Chapter 4 and the digital SystemC kernel. In this context, the

chapter explains first the SystemC digital simulation cycle and the SystemC-A

simulation cycle. Further, the chapter reviewed some of the well known synchro­

nisation methods from the literature, suggesting the lock-step method to be used

in this research. The implementation of the lock-step synchronisation method

relies essentially on a simple modification of the SystemC kernel. The lock-step

method has proven to be fast, accurate, and reliable by simulating the examples

presented in Chapter 6, 7 and 8.

Chapter 6

Electrical System Modelling Case

Studies

The new methods and constructs of SystemC-A developed in Chapter 3, 4 and 5

have been validated using a wide range of examples. The examples could be ana­

logue, mixed-signal, of different abstraction levels and from different domains. For

this purpose, this chapter presents modelling four electrical case studies, ranging

from simple to complex. The cases were chosen to test the simulator from different

aspects. In Sections 6.1 and 6.2 the Van Der Pol oscillator and Lorenz chaos are

modelled as systems of simple ODEs that demonstrate the modelling capabilities

of SystemC-A at behavioural level.

In Sections 6.3 and 6.4 a Switched Mode Power Supply (SMPS) and a 2GHz

Phase Locked Loop PLL-based frequency multiplier are modelled as non-trivial

systems. Systems of this kind usually put standard SPICE-like simulators into

difficulties because of the disparate time scales of their transients. In the case of

the SMPS, the analogue transient in the output circuit is four to five orders of

magnitude slower than that of the fast switching waveform in the digital controller.

A typical simulation in a system of this kind might require a few million time

98

Chapter 6 Electrical System Modelling Case Studies 99

points. Excessive CPU times often occur when the entire system is modelled on

the circuit level. The capacity of SystemC-A to enable mixed-signal modelling

can vastly reduce simulation times where concepts need to be verified quickly and

detailed circuit level modelling is not required.

6.1 Van Der Pol Oscillator

The Van Der Pol equation [111] is a model of a real electronic circuit studied

in the 1920s, i.e. the days of vacuum tubes, by Balthazar Van Der Pol. In

certain conditions, the tube acts like a normal resistor when the current is high.

It becomes a negative resistor when the current is low. This behaviour leads to a

relaxation oscillation. This system can also be represented as an RLC loop, but

with the passive resistor replaced by an active element. The interplay between

energy injection and energy absorption results in a periodic oscillation in voltages

and currents.

The Ordinary Differential Equation (ODE) (Eq.6.1) that describes this system is

one of the most intensely studied equations in nonlinear dynamics. It serves as a

basic model of self-sustained oscillations arising in systems of mechanical and elec-

tronics engineering, biology, biochemistry, and many other areas of applications.

d2 x 2 dx
- - JL(I- x)- + x = 0
dt2 dt

(6.1)

JL is a constant that affects how non-linear the system is. It can change the nature

of oscillations from sinusoidal to relaxation. For JL equal to zero, the system

is actually just a linear oscillator. As JL grows, the non-linearity of the system

cannot be ignored. The Van Der Pol equation is of a second order. It should be

transformed to a set of two first order equations in order to be solved. Let x = Yl

Chapter 6 Electrical System Modelling Case Studies

and ~~ = Y2, this produces Eq.6.2 and Eq.6.3.

- Y2

100

(6.2)

(6.3)

The two equations, after linearisation, contribute to the system Jacobian and RHS

as follows:

J ~y RHS
S 1

8~
-yin + Y2n

(6.4)

2YInY2n + 1 S - JL(l - YIn) -Y2n + JL(1 - YIn)Y2n - YIn

6.1.1 Modelling and Simulation

The SystemC-A model of the Van Der Pol equation, shown in Listing 6.1, demon-

strates the use of the new equation constructs and initial conditions function of

SystemC-A. Modelling a typical equation such as Van Der Pol requires a few sim­

ple steps. Firstly, the model developer has to identify the variables of the equation

set (in this case free variables which are objects of the class sca_free_variable) and

define them in the class's constructor (lines 22-26). Secondly, the initial conditions

have to be defined for the simulator (lines 28-31). Finally, the equation stamp is

developed in the build functions (BuildM () and BuildB ()) to pass the equation

contributions to the Jacobian and RHS every time the model is needed.

Chapter 6 Electrical System Modelling Case Studies

1 II header file
2
3 #include "systemcA.h"
4
5 IIVan Der Pol class is derived from component class
6 class VanDerPol: public sc_a_component {
7 pUblic:
8 VanDerPol ();
9 VanDerPol (char nameC [5]) ;

10 virtual -VanDerPol();
11 void BuildM (void) ;
12 void BuildB (void) ;
13 void IC (void) ;
14
15 protected:
16 sc_a_free_variable *yl, *y2;
17 double mu, S, YIn, Y2n Yldotn, Y2dotn;
18 };
19
20 II cpp file
21
22 VanDerPol::VanDerPol(char nameC[5]):llclass constructor
23 component (nameC,O , 0, O){
24 yl = new sc_a_free_variable("yl");llinstantiate Van Der Pol variables
25 y2 = new sc_a_free_variable("y2");
26 }
27
28 void VanDerPol:: IC(void){11 Initial Conditions
29 InitialC (yl ,0); II x=O
30 InitiaIC(y2,0.1);11 xdot=O.l
31 }
32
33 void VanDerPol:: BuildM (void){
34 mu=l.O;
35 S=Sn (); Ilget discretisation operator
36 Yln=X(yl);
37 Y2n=X(y2);
38
39 Jacobian(yl ,yl ,S);lladd Van der Pol contribution to Jacobian
40 Jacobian(yl,y2,-I);
41 Jacobian (y2 ,yl ,2*Yln*Y2n +1);
42 Jacobian(y2,y2,S - mu*(1-Yln*Yln));
43 }
44
45 void VanDerPol:: BuildB (void){
46 mu=l.O;
47 Yln=X(yl);
48 Y2n=X(y2);
49 Yldotn=Xdot(yl);11 get derivatives
50 Y2dotn=Xdot (y2) ;
51
52 BuildRhs (yl,- Yldotn + Y2n); Iladd Van der Pol contribution to RHS
53 BuildRhs(y2,-Y2dotn + mu*(1 - Yln*Yln)*Y2n-Yln);
54

LISTING 6.1: SystemC-A model of Van Der Pol equations using exact Jacobian.

101

The use of BuildM () is optional, the user has the choice of simulating his model

with same accuracy and a shorter simulation time using the exact Jacobian as

shown in the model in Listing 6.1 or using the default method to approximate

the Jacobian as shown in Listing 6.2. BuildB() is only used with conjunction of

Chapter 6 Electrical System Modelling Case Studies 102

Equation() function (more details are described in Section 4.3).

2 void VanDerPol:: BuildB (void) {
3 mu=l.O;
4 Yln=X(yl);
5 Y2n=X(y2);
6 Yldotn=Xdot (yl); //get derivatives
7 Y2dotn=Xdot (y2) ;
8
9 Equation(yl,-Yldotn + Y2n);//add Van der Pol contribution to RHS

10 Equation(y2,-Y2dotn + mu*(l Yln*Yln)*Y2n -YIn);
11 }

--
LISTING 6.2: SystemC-A model of Van Der Pol equations using estimated

Jacobian formed by Quasi Newton method.

The Van Der Pol equation set Eq.6.1 is simulated at behavioural level with the

initial conditions Yl(O) = 0, Y2(0) = 0.1. The system was simulated with the

maximum simulation time of 50 seconds to cover the transient time and several

steady-state cycles. Simulation results of Figure 6.1 and Figure 6.2 have indicated

close behaviour to the original Van Der Pol oscillator. Figure 6.1 shows time

signals of both system variables Yl and Y2 for f.1 = 1. Figure 6.2 is the oscillator's

phase plane, i.e. the plot of Y2 versus Yl.

3 yl, y2

FIGURE 6.1: SystemC-A simulated time signals of Van Der Pol equation.

Chapter 6 Electrical System Modelling Case Studies 103

3 Y2

-2.5 2 2.5

-3

FIGURE 6.2: SystemC-A simulation of Van Der Pol equation phase plane.

The Van Der Pol equation is well known, therefore, the results can be verified

by comparing them to results from other simulators such as MATLAB [112]. In

addition, in C++ based languages, the user can easily export his results in text

files and view 1 them or undertake more analysis in other softwares. This is a

great advantage over some VHDL-AMS simulators [113] which export results in

JPEG images only.

6.2 Lorenz Chaos

The so called "Lorenz attractor" [114] was first studied by Ed N. Lorenz, a me­

teorologist, around 1963. It was derived from a simplified model of convection

flows in the Earth's atmosphere. It also arises naturally in models of lasers and

dynamos. The system is expressed as the following three coupled non-linear ODEs

lSystemC does not include an analogue signal viewer, therefore, all graphs presented in this
thesis are produced using Excel spreadsheets generated from data stored in text files using the
C++ cout command.

Chapter 6 Electrical System Modelling Case Studies

(Eq.6.5, Eq.6.6, Eq.6.7):

dx
dt
dy

dt
dz
dt

- o-(y - x)

X(p - z) - y

xy - fJz

104

(6.5)

(6.6)

(6.7)

The commonly used set of constant values is: (J = 10, p = 28, fJ = 8/3. Another

common set is: (J = 28, P = 46.92, fJ = 4. (J is sometimes known as the Prandtl

number and p is the Rayleigh number. The simulated output never reaches a

steady state. Instead, it is an example of deterministic chaos. The Lorenz system

is sensitive to the three constants (J, p, fJ, and to the initial conditions, a small

change in the initial conditions might produce a qualitative change in the output.

Linearisation of the equations produces the following stamp for the system Jaco-

bian and RHS.

J ~y RHS
S+(J -(J 0 .6. X -in + (JYn - (JXn

-p+zn S+l Xn .6.y -Yn + PXn - Yn - XnZn
(6.8)

-yn -Xn S+p .6.z Z~ + XnYn - fJzn + X

6.2.1 Modelling and Simulation

The SystemC-A model of the Lorenz Chaos was developed by following the same

steps as those for the Van Der Pol system, as presented in Listing 6.3. The model

uses the default method of Quasi-Newton equation formulation. The class's in­

terface (lines 2-7) has zeros in its argument indicating that the system has no

inputs. The system's parameters could be passed to the model from its interface,

rather they defined inside the model (lines 16-18). The initial values of the system

Chapter 6 Electrical System Modelling Case Studies 105

variables were (x(O) = 0, y(O) = 5, z(O) = 25). The system was simulated with the

maximum simulation time of 10 seconds. The simulated waveforms are shown in

Figure 6.3 while Figure 6.4 shows the famous xz butterfly trajectory. The results

were verified by a comparison to Matlab [115] simulations illustrating highly com­

parable figures.

2 LorenzChaos: : LorenzChaos (char nameC [5]) :
3 sea_component (nameC,O , 0, O){//instantiate Lorenz system variables
4 z = new sc_a_free_variable("z");
5 y = new sc_a_free_variable("y");
6 x = new sc_a_free_variable("x");
7 }
8
9 void LorenzChaos:: IC (void) {

10 InitialC(x,O.O);//initial conditions of system variables
11 InitialC(y,5.0);
12 InitialC(z,25.0);
13
14
15 void LorenzChaos:: BuildB (void) {
16 sigma=10.0;//constant values of Lorenz equations
17 rho =28.0;
18 beta=8.0/3.0;
19 Xn=X(x);
20 Yn=X(y);
21 Zn=X(z);
22 Xdotn= Xdot(x);//get derivatives
23 Ydotn= Xdot (y);
24 Zdotn= Xdot (z) ;
25
26 Equation (x,-Xdotn+sigma*Yn-sigma*Xn); / / Lorenz equation 1
27 Equation(y,-Ydotn+rho*Xn-Yn-Xn*Zn);//Lorenz equation 2
28 Equation (z,-Zdotn+Xn*Yn-beta*Zn); //Lorenz equation 3
29 }

LISTING 6.3: SystemC-A Lorenz chaos model.

6.3 Switched-Mode Power Supply

Switched Mode Power Supplies (SMPS) [116] are the current state of the art in

high efficiency power supplies. In this example, a boost (step-up) SMPS is used as

a typical 3.3V regulator. The circuit schematic is presented in Figure 6.5. SMPS

modelling is not an easy task for model developers using existing simulators. It

also provides high challenges to SystemC-A, since it is a complex mixed-signal

system which needs excessive CPU times when simulated. Further, it utilise many

Chapter 6 Electrical System Modelling Case Studies 106

50 x,y, Z

40

30

20

10

0
Time[s]

2

-10

-20

-30

FIGURE 6.3: SystemC-A simulation of Lorenz chaos time signals.

50 Z

45

5

x

-20 -15 -10 -5 o 5 10 15 20

FIGURE 6.4: SystemC-A simulation of Lorenz chaos xz butterfly trajectory.

Chapter 6 Electrical System Modelling Case Studies 107

SystemC-A constructs, in particular, AID and D I A interfaces and analogue circuit

components.

The ideal boost SMPS consists of five basic components, namely a diode, a ca-

pacitor, an inductor, a power semiconductor switch, and a PWM controller. The

SMPS uses a high frequency switch with varying duty cycle to maintain the output

voltage. The output voltage variations caused by the switching are filtered out by

a filter.

Analogue SC_MODULE

VI
IOmH

V2
5 ohms

E=1.5 v

JUl
V control

V4

Co=

ImF

Digital SC_MODULE

,..------, V
Digital error

Controller

andPWM

Ro=

500 ohm

V =IV
ref

V3=V
out

23k ohm

10k ohm

FIGURE 6.5: Boost 1.5V /3.3V switched mode power supply with digital control.

6.3.1 Modelling and Simulation

The SMPS SystemC-A model consists of two SystemC modules (SC_MODULE)

and a testbench (higher module in hierarchy). One of the modules contains the

analogue part of the system shown in Figure 6.5. The analogue module is mod-

elled using circuit-level components from the simple analogue components library

developed for SystemC-A, they have practical values. This example illustrates

Chapter 6 Electrical System Modelling Case Studies 108

how to construct a SPICE-like analogue circuit in SystemC-A as shown in List­

ing 6.4. The model defines circuit nodes (lines 2-6) and circuit components (lines

9-14), together with their parameters and connectivity. Listing 6.4 shows part of

the analogue module, this part is contained in the module constructor since nodes

and components should be instantiated only once prior to simulation.

1 / / analogue module of SMPS
2 nO = new sc_a_node("O");//creat nodes
3 n1 = new sc_a_node (" n1");
4 n2 = new sc_a_node("n2");
5 n3 = new sc_a_node("n3");
6 n4 = new sc_a_node("n4");
7
8 / / add components
9 sc_a_voltageS_dc *v1 = new sc_a_voltageS_dc ("v1" ,n1 ,nO, 1. 5);

10 sc_a_inductor d1 = new sc_a_inductor("ll" ,n1,n2,le-2,5);
11 sc_a_diode *d1 = new sc_a_diode("d1",n2,n3,1,38.93,le-13);
12 sc_a_capacitor *co = new sc_a_capacitor("co" ,n3,nO,le 3,1);
13 sc_a_resistor *ro = new sc_a_resistor("ro" ,n3,nO,500);
14 sc_a_mosfet *M1 = new sc_a_mosfet("M1",n2,n4,nO,1,1,le-8);
15

LISTING 6.4: SystemC-A analogue module in the SMPS.

The PWM is modelled as a standard SC_MODULE at high level of abstraction,

thus the SMPS contains two models at two different abstraction levels. Listing 6.5

shows the digital module where Listing 3.3 (page 60) shows the SMPS testbench

with interfaces between analogue and digital modules. The DA interface (inter­

jaceDA) , placed between the PWM and the MOSFET transistor, smoothes the

signal values propagating to the analogue solver since abrupt changes may cause

problems in the analogue analysis (details of this idea are explained in Section

3.4).

The system was simulated for 0.2 seconds, when it reached the required voltage.

Figure 6.6 shows the transient of the output voltage illustrating that the SMPS

reaches steady state at about 0.2 seconds. Sample results at steady state are

presented in Figure 6.7. The results showed the ripple in the output voltage

waveform, error signal of the output voltage, inductor current, fast switching of

Vcontrol and voltage at node number 2 (V2)' SMPS simulation was smooth and did

not encounter any numerical difficulties. Simulation statistics are shown in Table

Chapter 6 Electrical System Modelling Case Studies 109

6.1. A simulation of 200m seconds undergo a CPU time of 232.1 seconds which

2
3

means 2 million time points.

#include "systemc. h"
define steps 100 //duty cycle divided into 100 steps

4 SCMODULE(d i gi t al){
5 sc_in<double>Vd_in;// input analogue port

output digital port 6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

sc_out <bool>VcontD; / /
scin <bool>clk;

double VerroLacc;
int D, tick_no;

void control (){ //process to control duty cycles

}

double Gain2=10;// amplifier gain
VerroLacc+=1-(Vd_in.read()/3.33);//calculate error of output voltage

if (tick_no>steps){// this part will run once for each duty cycle
ticLno=O; //get back to right value
D=(VerroLacc/steps)*Gain2+66; //duty cycle
VerroLacc=O; //for the next cycle calculations

if (D<O)
D=O;

lito limit the duty cycle 0-95%

if (D>0.95*steps)
D=0.95*steps;

}//end if

if (tick_no<D) //produce output control signal
VcontD. write (true);

else
VcontD. write (false);

tick_no++;
if(ticLno>=steps) //reset duty cycle

tick_no=O;

SC_CTOR(digital){
SC..METHOD(con trol) ;
sensitive« Vd_in;
sensitive « clk;
V error _acc = 1 00000;
tick _no =2* st eps ;

45 }
46 };

LISTING 6.5: SystemC-A PWM module in the SMPS.

TABLE 6.1: SMPS simulation statistics
Simulation time I 200m seconds

Time step
N umber of steps
CPU time

O.lM seconds
2 Millions
232.1 seconds

Chapter 6 Electrical System Modelling Case Studies 110

3.5 Vout[V)

3.0

2.5

2.0

1.5

1.0

0.5

O.O~ __ -, ____ ,-__ -, ____ ,-__ -, ____ ,-__ -, ____ ,-__ -,~T~im~e[~sl

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

FIGURE 6.6: SystemC-A simulation of SMPS transition output voltage.

6.4 Phase Locked Loop

Phase locked Loops (PLL) [117, 118] are used in numerous applications, such

as data communication, microprocessors, RF applications, and wireless systems.

PLLs are used in these applications to implement a variety of functions, such as

clock generation, frequency synthesis, clock recovery, and demodulation, where it

is necessary to generate a precise signal frequency with low spurs and good phase

noise. Figure 6.8 shows a block diagram of a basic PLL used as frequency synthe-

siser. Frequency synthesisers are used to produce digitally-controlled, stable, high

frequency sources from a low frequency reference. It consists of a reference source,

phase detector, charge pump, loop filter, Voltage Controlled Oscillator (VCO),

and a divider. The filter and the VCO are analogue parts while others are digital

parts. The divide ratio in this example is constant (N = 2000), hence the loop

will operate to force the VCO signal frequency to be exactly N times that of the

reference signal. The phase detector and charge pump output either positive or

negative charge pulses depending on whether the reference signal phase leads or

Chapter 6 Electrical System Modelling Case Studies

O.4m Vout[V]

0.2m

3.33

-0.2m

-O.4m

-0.6m
O.IS

0.2

0.1

0
O.IS

-0.1

21

19

17

15
O.IS

contra v I[V]

-

o
O.IS

V2[V]
4

3

2

o
O.IS

-

,-

0.IS5 0.19

0.IS5 0.19

.- - .- r- - r- r- r- .-

0.IS5 0.19

r- ,- ,- r- r- ,-

O.1S5 0.19

0.195

0.195

;-- .-- -

0.195

r- ,-

0.195

.-

111

Time[s]

0.2

Time[s]

0.2

r-

0.2
Time[s]

,- c-

0.2
Time[s]

FIGURE 6.7: SMPS SystemC-A simulation results for a 200ms time window in
steady state.

lags the divided veo signal phase. These charge pulses are integrated by the loop

filter to generate a tuning voltage.

One of the major concerns in the design of PLLs is noise or jitter performance [118].

The jitter from the PLL directly acts to degrade the noise floor and selectivity of

a transceiver [119]. Noise sources in the system cause perturbations in the veo
control voltage resulting in variations in the output frequency.

Chapter 6 Electrical System Modelling Case Studies

Ch arge
Pump

Ire! ffl IMHz
/ ~ "

I--
()

I Inois~ LPF Phase "'-Tj
pump

f"cJiv
Detector

jInoise
I

,----. r---r- :1"\ . +c1
\)

i I T/ (\t c21 noise:C~j ~r1
-~ T ~

Y downl source ~

Divide
by 2000

VCO with
phase noise

Phasenoisy

112

f'vco
2GHz

FIGURE 6.8: Block diagram of 2GHz Phase Locked Loop with noise and jitter.

6.4.1 Noise Module

PLL noise behaviour is difficult to predict with traditional circuit simulators be­

cause of the repetitive large-signal switching events, which are an essential part of

the PLL operation, hence noise performance must be evaluated in the time-domain.

Most classical simulators, SPICE being the best example, are not capable of sim-

ulating noise in PLLs as they can normally calculate small-signal noise around

a quiescent operating point. Currently, the best suited simulator for PLL noise

analysis is SpectreRF [119], which is capable of predicting the noise behaviour

about a periodic operating point.

In SystemC-A suitable large-signal noise modules can be constructed with no

difficulty. For this PLL example, a noise model is developed, it contains a stan-

dard function to generate a periodic process for a Gaussian white noise using the

Box-Muller method. The function is to turn two uniformly distributed random

sequences into two unity amplitude normal random X and Y (mean=O and vari­

ance=l) sequences which can be scaled to the required levels. Listing 6.6 shows

the noise module to produce charge pump current noise.

Chapter 6 Electrical System Modelling Case Studies 113

1 II generate samples from white noise source
2 II with a Gaussian normal amplitude distribution
3
4
5
6
7
8
9

10
11
12

double Ul, U2, VI, V2, X. Y, r, Inoise;
do {

Ul=rand()/3.2e4; II(O,i}
U2=rand 0/3.2 e4; II (0, i)
Vl=2*Ul-l; II(-i ,i)
V2=2*U2-1; II(-i ,i)
r = (VhVl)+(V2*V2);

} while ((r = 0) II (r >= 1.0»;

13 II transform into a normal distribution (Box-Muller transform)
14 X = VI * sqrt(-2.0*log(r)/r)* 0.25;
15 Y = V2 * sqrt(-2.0*log(r)/r)* 0.25;
16
17 II return scaled sample
18 double scale=le-6;
19 Inoise= scale * X;

LISTING 6.6: C++ noise model.

In this example two methods of modelling noise are implemented. Two different

VCO models, presented in more detail in the following subsections, have been

developed for both noise methods. The first method allows adding noise sources

to analogue signals in any component and therefore provides a more accurate

noise behaviour. The noise is injected by the controlled current source of the

charge pump, although every PLL component is a potential noise source. The

charge pump signal can be expressed as Eq.6.9.

(6.9)

Consequently, the phase of the VCO is subject to noise (referred to as phase noise)

which will manifest itself as jitter in the output waveform, Eq.6.10.

PhaSenoisy = Phase(e + Jitter(e)) (6.10)

In the first method the total effect of noise is modelled in the VCO by scaling and

adding the generated noise model output to the VCO phase where it is turned

into jitter. In the second noise method [120], a noise source is added to perturb

the VCO pulse directly. This perturbation represents the total effect of any noise

Chapter 6 Electrical System Modelling Case Studies 114

source in the PLL. The second method, although cruder than the first one, has

the advantage of shorter CPU times since the system will be simulated with larger

step sizes to cover variations in the VCO pulses every 0.5n second.

6.4.2 veo model (1)

The VCO generates a square wave whose frequency is proportional to the input

signal level. In the VCO model the frequency is numerically integrated to compute

the output phase which is used to generate the desired output signal. This is then

followed by a modulus operation to keep the phase bounded, which prevents a

loss of numerical precision that would otherwise occur when the phase becomes

large after a long period of time. Output transitions are generated when the phase

passes the value of 0.5 (the phase unit corresponds to a proportion of the duty

cycle) in either direction. The VCO frequency is the rate of change of the phase,

. de
e(t) = dt = f(v) = fe + df * Vfilter (6.11)

where Vfilter is the output voltage of the loop filter, fe is the center frequency of

the VCO, and df = f;nax- fe is the VCO gain.
Vrrtax

As SystemC-A allows different types of analogue descriptions to work together, the

VCO was modelled here at behavioural level as a SystemC-A component described

by an equation rather than a netlist at circuit level. The veo is derived from the

base sea_component class and contains build functions to add its contribution to

the system Jacobian. Partial code of the VCO class is presented in Listing 6.7.

Mixed OO-NQN equation formulation method is used to model the PLL, Listing

6.7 shows that VCO equation is formulated using pure Newton method (the use

of BuildM{) and BuildB{} functions). The circuit components in the loop filter

are formulated using Quasi-Newton method.

Chapter 6 Electrical System Modelling Case Studies

1 II VCO modelled as analogue component with one analogue node and
2 II one output boolean signal
3 vco:: vco (char nameC[5] , sc_a_system_variable *node_a, sc_signal <boo I> *Vout):
4 sc_a_component (nameC, node_a, 0, value){
5 Vco=Vout;
6 theta = new sc_a_free_variable("theta"); Iitheta variable in VCO equation
7 }
8
9 void vco:: BuildB (void) {

10
phase = X(theta);
phase = fmod (phase, 1 .0) ;

II
II

Pnoise = SampleNoise (); II
PhaseNoisy = phase + Pnoise ;11
if (PhaseNoisy > 0.5) II

Vco->write (true);
if (PhaseNoisy < 0.5)

Vco->write (false);

IIVCO parameters

get the phase value from solution
limit the phase between 0.0-1.0
generate scaled sample noise
add noise to phase
produce VCO output

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

fmix=0.5e9, fmax=5e9, Vmax=3.3, fc = 2e9;

32 }
33

df= (fmax-fc) I Vmax; II calculate VCO gain
Qdotn = Xdot(theta); II get the derivative
freq = fe + df * X(a);lltune VCO frequency using input voltage
if (freq < fmin) Illimit the frequency between fmin and fmax

freq = fmin;
else if (freq > fmin

freq = fmax;

II main VCO equation
BuildRhs(theta,-Qdotn + freq);

34 void veo:: BuildM (void) {
35 fmin=0.5e9, fmax=5e9, Vmax=3.3, fe=2e9;
36 df= (fmax-fe) I Vmax;
37 S=S (); Ilget discretisation operator
38 freq = fe + df * X(a);
39 if (freq< fmin II freq>fmax)
40 {

}

if (freq < fmin)
freq = fmin;

else if (freq > fmin
freq = fmax;

Jaeobian(theta ,theta ,S);
Jacobian(theta ,a,O);

41
42
43
44
45
46
47
48
49
50
51

else {

}
52 }

Jaeobian(theta ,theta ,S);
Jaeobian(theta ,a,-df);

vector

115

--
LISTING 6.7: SystemC-A VCO module using noise method (1).

The veo interfaces are defined at line 3 of listing 6.7. The veo is connected to

the filter by a node (sea_node), while the output of the veo is a Systeme signal

of type boolean and connected to the divide by N module. The veo equation

(Eq.6.11) has one variable e, which needs to be declared in the veo constructor

(line 6). A sample noise is generated at line 13 and added to the phase. The output

is produced by evaluating the phase values (lines 15-18). The veo equation RHS

Chapter 6 Electrical System Modelling Case Studies 116

is defined at line 31 and the jacobian elements are defined at lines 45-46 49-50, to

integrate the frequency. The simulation results will be discussed after presenting

the second noise method in the following section.

6.4.3 veo model (2)

The second VCO model is a SystemC digital module, rather than an analogue

component with a frequency integrator, as shown in Listing 6.8. This VCO model

allows the second method of noise analysis. The method is to directly perturb the

VCO output signal. The VCO model utilises SystemC sc_event. SystemC scevent

is used for process synchronisation. A process instant maybe triggered or resumed

on the occurrence of an event (when the event is notified). In this example,

VCOphase event is instantiated at line 6 and initialised at line 17. Process VfO is

sensitive to the VCOphase event. VfO is functioning as follows: first it evaluates

the time point and checks if time is proceeded to prevent multiple run at the same

time. Then, the frequency is evaluated at line 28 using the input voltage Vfilter,

consequently the phase is evaluated at line 34. A sample noise is generated at

line 36 to represent jitter in VCO output signal. The jitter is added to Tnext

variable to alter the time of the next pulse. The event is notified at perturbed

phase periods using member function notify(t,SC_SEC) at line 41.

This noise method has an advantage of speed over the previous method since a

larger step size is needed for simulations. A minimum of O.2n seconds was used

for this method while a O.Oln seconds was needed for the first noise method.

Chapter 6 Electrical System Modelling Case Studies 117

1 II VCO modelled as SC..MODULE
2 SC.MODULE(VC02){
3 sc_in<double> Vfilter; Ilinput analogue port

Iioutput boolean port 4 sc_out<bool> Vout;
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

sc_event VCOphase;
sc_signal <bool> Vosc;
void Vf();

Ilinstantiate an event on VCO signal

double SampleNoise ();
double freq, jitter, Tafter,
float Tnow, Tnext;

period;

SC_CTOR(VC02) {
SC..METHOD(Vf) ;
dont-initialize ();

IIVf process triggered by Ev_A

sensitive « VCOphase;
VCOphase. notify (0, SC_SEC);
Vosc.write(O);
Tnext=O; jitter =0;
}

Ilinitialise the event

event

21 };
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

void VC02::Vf(){

}

Tnow = sc_time_stamp (). to_seconds (); II get time
if (Tnow>= Tnext){ II check if time proceeded

}

fmin=0.5e9, fmax=5e9, Vmax=3.3, df, fc=2e9;
df= (fmax-fc) ! Vmax;
freq = fc + df * (Vfilter.read());
if (freq < fmin)

freq = fmin;
else

freq = fmax;

period=l!freq;
amp=25e -12;
jitter = SampleNoise()*amp;
Tafter = (period*0.5);
Tnext=Tnow+Tafter+j itt e r ;
Vosc. write (! Vose. read ());

II no is e magnitude
II scaled noise sample

Iialter VCO period

VCOphase. notify (Tnext-Tnow,SC_SEC);llcaleulations on VCO signal edges only
Vout. write (Vose. read ());

LISTING 6.8: SystemC-A VCO module using noise method (2).

6.4.4 Modelling and Simulation

With the first noise method, the system was simulated using extremely small

analogue steps, much smaller than those calculated by the LTE control strategy.

This was required to reflect accurately the effects of noise and jitter. The second

noise method uses a simpler veo model which does not require small step sizes

as explained above. For the first noise method, to enforce a step size of laps or

less, the charge pump module is sensitive to a lOOGHz clock, whereas the digital

modules are sensitive only to their input signals (see Figure 6.9 and Listing 6.9).

Chapter 6 Electrical System Modelling Case Studies 118

Figure 6.9 illustrates the PLL model in SystemC-A represented as block diagrams

with detailed connectivity, whereas Listing 6.9 presents PLL SystemC-A testbench

model.

Listing 6.9 is a standard SystemC SC_MODULE testbench which contains instan­

tiations of the different blocks comprising the PLL. As is the case in any HDL, the

module starts by defining global signals to provide connectivity to the instantiated

modules, followed by instantiating the modules themselves. In Listing 6.9 Clockl

enforces the simulation time steps by overriding the larger values calculated by

the analogue stepping strategy. Clock2 generates an input reference signal (Refer­

ence) with the frequency of lMHz. The display module (displayl) is represented

as a SC_CTHREAD SystemC module to print the required signals at every clock

pulse.

The module interfaceAD developed as part of SystemC-A, could have been used

in this example to convert signals between the analogue and digital blocks. In­

stead, an alternative approach based on direct connection between the modules

was used. The VCO and divide by N modules share the same digital signal and

conversion between the analogue and digital parts is done implicitly within the

VCO. Interfaces between modules can be implemented in many different ways, for

example directly through signal ports, which is recommended especially at system

level, or by nodes at analogue circuit level. In this example the connection be­

tween the LPF and VCOI illustrates an analogue interface using node terminals.

SystemC-A models of the phase detector, charge pump and filter, and Divide by

N are provided in Appendix C.2.

Chapter 6 Electrical System Modelling Case Studies

SCMODULE

Refl
OutQI

dlOutQ2
DivVcoI

detector

Divide

SCMODULE

nVfilte

elk

SC MODULE

VcoOut
Dvl

DivVco

Divide byN

Veol

veo

VcoOut

FIGURE 6.9: PLL model in SystemC-A represented as block diagram with
detailed signals.

1
2

II PLL.h

3 SCJV[ODULE(p II) {
4 void Circuit ();
5 sea_node *nVfilter ;llinstantiate a node to connect filter and veo
6
7
8
9

10 };

SC_CTOR(p II) {
Circuit ();llcircuit

}

11 II PLL. cpp
12
13 void pll::Circuit(){

should be instantiated in constructor

14 II clock for analogue parts
15 sc_clock CLOCKl("clockl", 0.2, SC_NS,0.5,0,SC_NS,true);
16
17 II clock to generate input reference signal
18 sc_clock CLOCK2("clock2", 1, SC_US,0.5,0,SC_US,false);
19
20 II instantiate signals to connect different nodules with each other
21 sesignal <bool> Ql, Q2;
22 sesignal <bool> Divide;
23 sc_signal <boo I> Reference;
24 sc_signal <bool> Vco;
25 sesignal <double> lout;
26
27 input inp("input");11 module to produce reference signal
28 inp. Ref(Reference);
29 inp. Clk(CWCKl);
30 inp. Clk2 (CLOCK2);
31
32 detector dl("detector");11 detector module
33 dl . Refl (Reference);
34 dl. DivVcol (Divide);
35 d1. OutQl (Ql) ;
36 dl.0utQ2(Q2);
37
38 filter fl("filter");11 charge pump and filter module
39 f1 . OutQl (Ql) ;
40 f1 . OutQ2 (Q2) ;
41 fl . clk (CLOCKl);
42 f1 . Iou t (Iou t) ;
43 nVfilter=f1.nl ;
44
45 DivideByN dvl("DivideByN");11 divider module
46 d v 1. V co (V co) ;

119

Chapter 6 Electrical System Modelling Case Studies 120

47 dv1 . DivVco (Divide);
48
49 display1 disp1("display1");// module to display all signals
50 disp1 . elk 1 (CLOCK1);
51 disp1.Vco(Vco);
52 disp1 . Ref(Reference);
53 dis pl. D i v (D i v ide) ;
54 disp1.Q1(Q1);
55 dis pl. Q2 (Q2) ;
56 disp1 . lout (lout);
57 disp1.nVfilter=f1.n1;
58
59 vco *vco1=new vco("vco1", nVfilter, &Vco);// instantiate VCO component
60 sc_start (200,SC_US);//start simulation for 200u second

LISTING 6.9: SystemC-A PLL model.

The system response during the first eight micro seconds of the simulation, slow

transients of the low pass filter voltage for both noise methods and histograms

illustrating the veo jitter are shown in Figure 6.lO, Figure 6.11 and Figure 6.12

respectively. The histograms present the veo jitter percentage occurrence for 5ps

buckets and were calculated from the simulation results when the loop was in lock

for both noise methods. Both sets of results illustrate similar behaviour.

Chapter 6 Electrical System Mode11ing Case Studies

o
Iu 2u 3u 4u 5u 6u 7u

121

Time [s]
8u

FIGURE 6.10: SystemC-A simulation results of the 2GHz PLL frequency syn­
thesiser.

6.4.5 Comparison with VHDL-AMS

A comparison of analogue simulators is not necessarily a fair process because

simulators vary in their algorithms, methods, accuracy criteria and many details

are kept hidden. However, the developed PLL models have been used to compare

Chapter 6 Electrical System Modelling Case Studies

3 IVfih,,[V]

I 2.5,
2 ~

I

1.5

0.5

0.02 0.04 0.06 0.08 0.1 0.12

Time[ms]

0.14 0.16 0.18 0.2

FIGURE 6.11: SystemC-A simulation of the low pass filter voltage for the two
noise methods.

[%]

70

60

50

40

30

20

10

o

122

noise
method 1

5
noise

25 . method 2 [ps]

FIGURE 6.12: VCO jitter histogram for the two noise methods.

the speed of SystemC-A with that of System Vision VHDL-AMS simulator from

Mentor Graphics [113]. Simulations were carried out on a Windows 2000 computer

with an AMD Athlon 1400 MHz processor and 512 MB RAM. A fixed time step was

used in both simulators to suppress the effects of analogue time stepping factor.

In the first noise method, where the 200/1 second time interval was analysed with

the time step of O.Oln second, SystemC-A took 16 minutes and 55 second while

System Vision took 1 hour and 4 minutes on the same machine. This represents a

Chapter 6 Electrical System Modelling Case Studies 123

factor of almost three times in favour of SystemC-A. The main reason behind the

speed factor is the adoption of the efficient OO-NQN equation formulation method

in SystemC-A, where this option is not provided in VHDL-AMS simulator.

For simulations with the second noise method, the system was simulated again

for an interval of 200M seconds and analysed with time step of 0.2n seconds. Sim­

ulations took only 80 seconds and 138 seconds in SystemC-A and System Vision

respectively. Table 6.2 shows relevant statistics.

TABLE 6.2: PLL simulation statistics.
I Noise Method (1) Noise Method (2)

N umber of steps
Simulation time
Time step
SystemC-A CPU time
System Vision CPU time

20 Millions
200MS
O.Olns
16m 55s
1h 4m 14s

6.5 Concluding Remarks

1 Million
200MS
0.2ns
1m 20s
2m 18s

The chapter has demonstrated modelling and simulation four case studies to verify

SystemC-A functionality from different aspects. The first two case studies were

Van Der Pol oscillator (nonlinear system described by second order ODE) and

Lorenz chaos (nonlinear system represented by 3 coupled ODEs) to demonstrate

the ability of SystemC-A to model at behavioral level using its new language

constructs. Modelling these simple examples was straight forward and was accom-

plished in short time with familiar syntax due to the good format provided by

SystemC-A to model system equations.

The other two case studies were modelling SMPS and 2G Hz PLL to test and

demonstrate some of SystemC-A language elements such as AjD and Dj A inter-

faces, analogue system variables and circuit-level electronic components. Further-

more, by modelling the last two case studies, SystemC-A has proved its capability

Chapter 6 Electrical System Modelling Case Studies 124

of handling highly complex systems which have disparate time scales of their tran­

sients and require excessive CPU times. Two efficient noise analysis techniques

were developed when modelling the PLL. Finally, The examples demonstrate the

capability of SystemC-A to model at different abstraction levels from system level

down to circuit level.

Chapter 7

Electromagnetic System

Modelling Case Study

For the purpose of validating SystemC-A developed constructs and methods,

Chapter 6 modelled and simulated a suite of electrical systems which involves

many difficulties. However, in this chapter, Ferromagnetic Hysteresis is modelled

and simulated to illustrate the powerful SystemC-A capabilities to model non­

electrical systems.

Nonlinear ferromagnetic components are used in many circuits and systems such

as inductors and transformers. The widely used Jiles-Atherton (JA) model of

ferromagnetic hysteresis [121, 122, 123J is adopted here. The JA model has been

used extensively for creating non-linear models of magnetic materials for use in

circuit simulation. The JA model is implemented in many commercial circuit

simulators, such as SPICE [12J and SABER [124J. JA model is used in preference

to other models because it is based on physical phenomena while other models

usually employ look-up tables [125J and controlled sources to perform piecewise­

linear approximation of different regions of the hysteresis curve. Look-up tables

125

Chapter 7 Electromagnetic System Modelling Case Study 126

are not practical since the tables have to be recalculated each time the parameters

of the core material change.

Both VHDL-AMS and Verilog-AMS have been used to develop new models of

ferromagnetic [126, 127, 128, 129]. Practical implementation of the JA model

is not straightforward. It involves numerical integration of a discontinuous and

non-linear differential equation. In addition, the model in its original form can

sometimes produce a hysteresis curve with negative slopes which has no physical

justification. Also, when simulating JA model, there were claims that the model

suffers from convergence problems [130] and long analysis times [125].

The remainder of this chapter is organised as follows: In Section 7.1 a mathemati­

cal background of the JA model is briefly explained and a new Langevin's function

is proposed for better numerical stability. The ferromagnetic hysteresis model is

implemented in two different approaches. First, the model which involves using the

simulator's analogue solver and suffers from numerical difficulties is implemented

in Section 7.2 where the numerical difficulties are illustrated in Section 7.3. Then,

a new model is presented in Section 7.4 which does not involve using the analogue

solver and which overcomes most of the reported problems by using a special,

timeless discretisation technique to integrate the magnetisation slope ~~. Unlike

most existing implementations (e.g. [131, 132]), the new technique does not rely

on time-based integration of ~~ and consequently does not involve the underlying

analogue solver. Finally, Section 7.6 gives the conclusion.

7.1 Theory of Jiles-Atherton Model

This section describes the equations governing the JA model. In a saturable mag­

netic core, the relationship between its magnetic flux density B versus magnetic

Chapter 7 Electromagnetic System Modelling Case Study 127

field intensity H represents the shape of the magnetic hysteresis curve B H. An ac-

curate implementation of the BH hysteresis curve is very important since several

figures of merits can be drawn from it, for example the saturation level, remanence

(or retentivity) and coercivity as shown in Figure 7.l. Band H are related by

• B
I
I

Bsat 1- - - - - - - - - -- ~-""-~---,""",,,,-

I
Retentivity ---~

I ,

Anhysteretic
magnetization curve

Saturation loop

FIGURE 7.1: BH curve of magnetic hysteresis.

H

Eq.7.1 where /-Lo = 47f10-7H/m is the permeability of free space and Ai is the total

magnetisation within the material [122].

B = /-Lo(H + M) (7.1)

The effective magnetic field intensity H eff is defined by Eq.7.2 as the sum of the

applied field H and some averaged contribution of the magnetisation M, where a

is the average parameter of the magnetic field.

Heff = H +aM (7.2)

Chapter 7 Electromagnetic System Modelling Case Study 128

If a magnetic material was able to return all of the magnetic energy that was input

to it, the resulting magnetisation curve would take the form of a single valued

sigmoid known as the anhysteretic magnetisation Man curve. Man as expressed in

Eq.7.3 represents the lossless magnetisation of a material.

(7.3)

where Msat is the saturation level of M. L(H ejJ) is usually expressed by the well­

known Langevin's function in Eq.7.4, where a is shaping coefficient to adjust the

curve according to the magnetic hardness of the material.

HejJ a
L(H if) = coth(-) - -

e a HejJ
(7.4)

This Langevin's function can become numerically singular for small values of the

magnetic field H ejJ' It is standard practice to implement a simple approximation

for small values of H ejJ as shown below:

L(H ejJ)
HejJ a

for IH ejJ I > 10-3 coth(-) ---
a HejJ

(7.5)

L(H ejJ)
HejJ

for IH 1<10-3

2a ejJ - (7.6)

In this research a different approximation of Langevin's function is used (Eq.7.7)

to avoid the numerical singularity.

2 -1 HejJ
Man = Msat - tan (-) (7.7)

IT a2

where a2 has the same meaning as a but with a different value. Normalised

Langevin's function and the approximation in Eq. 7. 7 of the anhysteretic function

are compared in Figure 7.2 and show a very similar behaviour. The advantages of

the new approximation are simpler implementation and continuity through zero.

Chapter 7 Electromagnetic System Modelling Case Study

-25 -20 -15

Modified
Langevin

-10 -5

Anhysteretic (-)

0.8

0.6

0.4

5

\

-0.6

--<===~~ _____ -0_.81_ Original
Langevin

-1

10 15

FIGURE 7.2: Original and modified anhysteretic functions.

129

H(kAlm)

20 25

The total magnetic field M in a ferromagnetic material is composed of the re-

versible Mrev and irreversible Mirr components (Eq.7.8). M irr represents the en-

ergy dissipated while the material is magnetised.

(7.8)

In the JA model these components are related by Eq.7.9.

M rev = c(Man - M) (7.9)

where c is the domain wall flexing constant. Substituting Eq.7.9 in Eq.7.8 results

in Eq.7.10:

(7.10)

Chapter 7 Electromagnetic System Modelling Case Study 130

The rate of change of the MiTT is proportional to the distance of the total mag­

netisation to Man as expressed by Eq.7.11:

dMiTT

dH ok + a(M - M) flo an
(7.11)

where is is the sign of dJ: and k is a material dependent variation which gives a

measure of the hysteresis loop width. Finally, the total differential equation of hys­

teresis (Eq.7.12) is obtained by substituting Eq.7.11 in Eq.7.10 and differentiating

both sides.

dM 1 Man - M c dMan
-= +--
dH (1 + c) ok + a(Man - M) (1 + c) dH

flo

(7.12)

Other variations of the JA model are outlined in their series of papers [121, 122,

123]. The most important challenge in the implementation of the JA model is the

calculation of the magnetisation slope given by Eq.7.12. Eq.7.12 is a nonlinear

differential equation with incremental terms which needs to be solved. Most im-

plementations of the JA model require conversion of the magnetisation derivative

~1;J to time derivatives. This is usually implemented by calculating the derivative

of H with respect to time ~~, and then integrating d:;: (e.g. using the VHDL-AMS

'INTEG operator).

For the proposed model in Section 7.4, the integration is implemented using two

integration methods, Forward Euler and 4th order Runge-Kutta. The Forward

Euler integration method to solve ~; = f(x, y) has the following finite difference

form:

Yi+l = Yi + hf(x, y) (7.13)

Chapter 7 Electromagnetic System Modelling Case Study 131

where Yi for i = 0, 1, ... are the calculated solution points at Xi, h is the time step.

The 4th order Runge-Kutta method is described by the following formulas:

1
Yi + 6(k1 + 2k2 + 2k3 + k4)

hf(Xi, Yi)

h kl
h f (Xi + 2"' Yi + 2)

h k2
hf (Xi + 2"' Yi + 2)

where kl' k2' k3, and k4 are coefficients.

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

Although the latter method is more accurate, the simple Forward Euler method

was also tried for comparison as the step size h is limited by factors other than

the truncation error of the discretisation.

An important feature of a JA model implementation is its treatment of minor

loops. When minor loops oscillate between two values Hmin and Hmax , they grad-

ually drift towards an equilibrium loop. This phenomenon is known as accommo-

dation [133]. A good model should be capable of producing minor loops with no

numerical difficulties for various minor loops sizes and in different positions.

7.2 Modelling and Simulation of the Original Jiles-

Atherton Model

The JA model was first created using the original equations with the commonly

used time integration. The JA model is modelled in SystemC-A as a component

class connected to a sine wave voltage source via two nodes. Components and

nodes are instantiated in a test bench as in listing 7.1.

Chapter 7 Electromagnetic System Modelling Case Study 132

1 / / instantiate magnetic nodes
2 pI = new sc_a_node("pl");
3 ml = new sc_a_node (" 0");
4
5 / / instantiate a sin wave voltage source and the JA model

sc_a_voltageS_sin *11 = new sc_a_voltageS_sin("Vsin" ,pl,ml, 6
7
8
9

0.16,0,10000,0,0);
//jrequency, offset, amplitude, delay, damping

10 JA dAl = new JA("JAl" ,pI ,ml);
11 JAl->generic(4000, 0.1, 1.6e6, 0.003, 2000, 1, 1, 4e-6);
12 //(k, c, ms, alpha, a, ur, length, area)
13 sc-start(20,SC_SEC);// start simulation jor 20 seconds

LISTING 7.1: SystemC-A testbench for the Jiles-Atherton simulation.

The model is simulated using the parameters shown in Table 7.1. Their values are

identical to those used in the original paper by Jiles and Atherton [121] except for

a2 which is used in Section 7.4 in modelling the modified JA.

I Symbol I Definition I Value I
k pinning parameter of the domain wall (A/m) 4000
c domain wall reversible movement parameter 0.1
Msat magnetic saturation 1.6M
a averaging parameter of the magnetic field 0.003
al parameter of the original anhysteresis curve shape 2000
a2 parameter of the modified anhysteresis curve shape 3500

TABLE 7.1: Jiles-Atherton model parameters.

Listing 7.2 shows the JA component model. The JA constructor is defined in

(lines 18-26). The model has four SystemC-A system variables, two is of type

sc_a_node to describe the model connection nodes, and the other two are of type

sea_free_variable to perform differentiation and integration involved in the JA

model. A differentiator operator is used in line 32 to differentiate H eff' whereas

an integration operator is used in line 55 to integrate d:;:. JA::generic() (lines

72-75) is a function through which the user can provide the system parameters to

the model from the testbench. JA::BuildB() (lines 28-61) implements the common

way of solving the hysteresis equation by multiplying the time derivative of H by

~t;J and then integrate d:;:. Langiven's function represented by Eq.7.4 (JA::Lang())

is implemented at lines 63-70.

Chapter 7 Electromagnetic System Modelling Case Study

class JA: public sc_a_component {
pUblic:

JA() ;

133

2
3
4
5
6
7
8
9

JA(char nameC[5] , sca_system_variable *node_a, sca_system_variable *node_b);
virtual -JA();

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

void BuildB (void) ;
double Lang (double x);
void generic (double k1, double c1, double ms1, double alpha1 , double a11, double urI,

double len1 ,double areal);
sc_a_system_variable *dMirrdt, HeQ;

protected:

};

doubleMUO, mg, h, he, B,man,mrev,mirr,mtotal,delta;
double k, c, ms, alpha, aI, ur, len, area, flux;
double dhdt ,dm,dmdh,dmdh1, dmirrdt, mirrcalc ,dMdt;

II JA constructor
JA: :JA(char nameC[5] , sc_a_system_variable*node_a, sc_a_system_variable*node_b):

}

component (nameC, node_a, node_b, 0) {
dMirrdt = new sc_a_free_variable (" dMirrdt");
HeQ = new sc_a_free_variable("HeQ");
II initialise all variables
MU0=4e-7*PI, mg=O, h=O,he=O,b=O,man=O,mrev=O, mtotal=O, de I ta =0;
mirr=O, dhdt=0,dm=0,dmdh=0,dmdh1=0, dmirrdt=O, mirrcalc =0;
k=O, c=O, ms=O, alpha=O, a1=0, ur=O, len=O, area=O;

void JA:: BuildB () {
h = X(a);
Ilcalculate H effective and its derivative
he = h + (alpha *ms * mtotal);
dhdt=Xdot(HeQ,he);/1 Xdot(Systemvariable, value)

II Get the field direction
if (dhdt > 0.0)

delta 1.0;
else

delta -1.0;

II calculate anhysteretic and reverse Magnetisatwn
man = Lang(he/a1);
mrev = c * man / (1. 0 + c);

Ilcalculate incremental Magnetisation
dm=man-mtotal;

II calculate dMirrdH
dmdh1=dm/(delta*k-alphMms*dm);
if (dmdh1 > O)lllimit dmdh to positive values only

dmdh=dmdh1 ;
else

dmdh=O;

II calculate dMldH and then integrate to get Mirr
dMdt=dhdt *dmdh;
mirrcalc= Xinteg(dMirrdt ,dMdt);11 Xinteg(Systemvariable, value)
mirr=l.O* mirrcalc /(l.O+c);
II Calculate Total Magnetisation
mtotal = mrev + mirr;
II Calculate Flux Density
B=MUO* (ms* mtotal+h);

61 }
62
63 double JA::Lang(double xH IILangevin's function
64 double lang_x;
65 if (fabs (x) < 1.0e-3)
66 lang_x 0.333 * x;
67 else
68 lang_x l/tanh(x) 1.0/x;
69 return lang_x;
70
71

Chapter 7 Electromagnetic System Modelling Case Study 134

72 void JA:: generic (double kl, double c1, double msl, double alphal,
73 double aI, double urI, double lenl, double areal){
74 k=kl; c=cl ;ms=msl; alpha=alphal; a=all; ur=url; len=lenl ; area=areal;
75

LISTING 7.2: SystemC-A implementation of the original Jiles-Atherton ferro­
magnetic hysteresis model.

A VHDL-AMS model [127] is used in order to compare the results, Appendix D.2

presents the code. The SystemC-A and VHDL-AMS models have the tendency of

crashing at hysteresis cusps, i.e. at points where an abrupt change in the magneti-

sation slope occurs, despite trying various excitations, with various periods. For

example, VHDL-AMS simulator produced the following errors:

TIME 1.543564e+000: end of non-convergence points

Newton: No convergence at time :1.543564E+009Nano ; try to pass over ...

TIME 1.543564e+000: end of non-convergence points

Newton: No convergence at time :4.629691E+009Nano ; try to pass over ...

TIME 4.629691e+000: end of non-convergence points

Figure 7.3 shows the input H waveform and output B for non-crashing state, while

Figure 7.4 and Figure 7.5 shows the hysteresis curve resulted from the SystemC-A

and VHDL-AMS simulations respectively.

The model was simulated for more than 20 seconds when it crashed during sim-

ulation. SystemC-A hysteresis curve was compared to the VHDL-AMS curve

indicating the same behaviour of crashing.

Chapter 7 Electromagnetic System Modelling Case Study

10

2

O~--~--~~--~+---,---~----,-~~~--~----~~~

-2

-4

-6

-8

-10

FIGURE 7.3: Sinusoidal Band H waveforms of ferromagnetic hysteresis simu­
lation in SystemC-A.

-10 -8 -6 -4 -2

2 8[T]

-0.5

-1

i
-2 J

4 6 8 10

FIGURE 7.4: SystemC-A simulation of BH curve of the original JA model.

135

Chapter 7 Electromagnetic System Modelling Case Study 136

1.6 B[T]

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2

-1.6 H[kNm]
-"··r-

-10 -8 -6 -4 -2 0 2 4 6 8 10

FIGURE 7.5: VHDL-AMS simulation of BH curve of the original JA model.

7.3 Nonphysical Behaviour and Numerical Dif-

ficulties of Jiles-Atherton Model

One of the well known shortcomings of the JA model is that it sometimes shows

negative values of the magnetisation slope ~t;J at a cusp of the loop [134]. This

behaviour is nonphysical. At a cusp, ~t;J can change abruptly and at that point

dd~ must be zero because H is changing direction. As analogue simulation is a

numerical march-in-time process using a sequence of discrete time points rather

than continuous time, derivatives are estimated with finite-difference expressions.

Consequently, it is possible that the calculated values of ~~ might be non-zero

at a cusp, Figure 7.6 presents this numerical phenomenon. Figure 7.6 illustrates

abrupt changes of ~~ on passing a cusp as a result from numerical approximation.

The figure shows that when H is changing direction, ~~ decreases abruptly to a

negative value. Part (C) of the figure shows the rectified derivative to remove this

nonphysical behaviour.

Not only does this model behaviour exhibit nonphysical results, but it also presents

substantial computational difficulties as the slope ~~ passes through zero. Ana­

logue simulators usually handle abrupt changes in the solution by backtracking

Chapter 7 Electromagnetic System Modelling Case Study

10

8

6

4

2

137

Of----------.------~--.---------._--~----~r_------__.

-2

-4

-6

-8

-10

0.18

1
dM/dH

0.16 original

0.14

0.12

0.1

0.08

0.06

0.04

0.02

10 40 sample 50

o +---------+-~~-------,,---~~~~----------~~~~----,
-0.02

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

10 20

dM/dH (B)

0 10 20
(C)

30 40

30 40

50
sample

50
sample

FIGURE 7.6: Original and modified ~~ resulting from a DC sweep of H.

and recalculating the solution with smaller time steps. This approach, however, is

likely to fail, as has been reported [134], when dealing with the inherently discon­

tinuous magnetisation slope of the JA model. The modified model presented in

the next section assures that the derivative ~~ is positive after reversal. Further,

the use of explicit integration in a solution process controlled by the model, has

Chapter 7 Electromagnetic System Modelling Case Study 138

proved an effective way of avoiding convergence problems at the slope discontinuity

points.

7.4 Modelling and Simulation of the Modified

Jiles-Atherton Model

To overcome the difficulties in Section 7.3, this section presents a new model im-

plementation of the JA model. The new model is based on timeless discretisation

technique to integrate the magnetisation slope ~~. The new method is more gen­

eral as it does not depend on the simulator's underlying analogue solver and uses

an independent process. The process is responsible for directly performing time­

less integration of ~~ using H as the independent variable, not the time. The new

JA model has been implemented in SystemC as digital SO_MODULE as shown in

Listing 7.3.

1 #include" systemc . h" I I header fi I e
2
3 SCJvlODULE(JA){
4 se-in<double> H;
5 sc-out<double> Msig, Bsig;
6 sc_signal <boo I> hchanged, trig;
7 sc-signal <double> deltah, lasth
8
9 void core();

10 double Lang_mod (double x);
11 void monitorH ();
12 void Integral ();
13 double MUO,mg, dhmax, He, E, man, mrev, mirr , mtotal ;
14 double k, c, ms, alpha, a, area, mirr , flux;
15 void generic (double k1, double c1, double ms1,
16 double alpha 1 , double aI, double areal);
17
18 SC_CTOR(JA){
19 SCJvIEI'HOD(core) ;
20 sen sit i v e < < H;
21
22 SC..lVlETIfOD(monitorH);
23 sensitive_pos « hchanged;
24
25 SCJvlEI'HOD(Integral);
26 sen sit i v e < < t rig;
27 Ilinitialise all variable
28 MU0=4e-7*PI ,mg=0,dhmax=12 ,He=O,E=O,man=O,mrev=O, mtotal=O,
29 last h =0, del tah =O,a=O, mirr=O,k=O,c=O,ms=O, alpha=O, area=O;
30 }
31 };
32 IICPP f i I e
33 #include "JA.h"

Chapter 7 Electromagnetic System Modelling Case Study 139

34
35 void JA:: core () {
36 // hchanged signal triggered by sufficient changes in field strength
37 if (fabs(H lasth) > dhmax)
38 hchanged = 1;
39
40 He = H + (alpha * ms * mtotal); //calculate effective field
41 man = Lang_mod(He/a);//calculates anhysterestic from modified Langevin's function
42 mrev = c * man / (1.0 + c); //reversible magnetisation
43 mtotal = mrev + mirr; //total magnetisation
44 B=MUO*(ms*mtotal+H);
45 Msig.write(mtotal);
46 Bsig.write(B);
47 }
48 double JA:: Lang_mod (double x) { / /modified Langevin's function
49 double lang_x;
50 lang_x = (2/3.14159265)* atan (x);
51 return lang_x;
52 }
53 void JA:: generic (double k1, double c1, double ms1, double alpha1,
54 double aI, double areal) {k=k1 ; c=c1 ; ms=ms1; alpha=alpha1 ; a=a1 ; area=area1 ;}
55
56 void JA::monitorH(){//monitorH() is triggered by hchanged
57 double dh;
58 dh=H - lasth;//calculate dh
59 if (fabs(dh) > dhmax){
60 deltah=dh;
61 lasth = H;
62 trig =l;//trigger Integral ()
63 hchanged=O;}
64 }
65 void JA::Integral(){//triggered by trig signal and perform integration
66 double deltam, dm, dmdh, dmdh1, dh, dk;
67 // Get the field direction
68 i f (d e I t a h > 0)
69 dk = k;l/rising
70 else
71 dk = -kif/falling
72
73 II Forward Euler integration method
74 dh=deltah;
75 del tam = man - mtotal;
76 dmdh1 = deltam/((l+c)*(dk - (alpha*ms*deltam»);
77 if (dmdh1> 0.0)// to assure positive derivatives
78 dmdh = dmdh1;
79 else
80 dmdh = O. 0 ;
81 dm = dh * dmdh;
82 if (dm * dh < 0.0)
83 dm = 0.0;
84
85 / / JA model
86 mirr = mirr + dm
87 }
88

LISTING 7.3: SystemC-A implementation of the proposed Jiles-Atherton ferro­
magnetic hysteresis model.

The new JA model in Listing 7.3 is connected through ports to another mod­

ule which supplies input waveforms. The main model body process JA::core()

at line 35 is triggered on changes of the external magnetic field H. It calcu-

lates the anhysterestic from the modified Langevin's function according to Eq.7.7

Chapter 7 Electromagnetic System Modelling Case Study 140

(JA::Lang_mod()) as well as the reversible and total magnetisation. JA::core()

triggers the processes JA::monitorH() and JA::Integral() if an update of the mag­

netisation slope is necessary. The code in Listing 7.3 shows the Forward Euler

implementation of the magnetisation slope integral and the Runge-Kutta version

was implemented in a similar way. The timeless approach to the slope discretisa­

tion avoids using time as the independent variable and the integral is calculated

using increments of the magnetic field H rather than time steps.

Simulations of the new model in Listing 7.3 were working for all input values of

H and never crashed at cusp reversals which indicates a numerical stability of

the timeless magnetisation slope integration. To illustrate how the model handles

asymmetric and non-symmetric minor loop behaviour, test benches were developed

to simulate sequences of non-biased (i.e. symmetric) minor loops and asymmetric

minor loops biased with a field value of 2kA/m. Figure 7.7 shows applied field

strength excitations H together with flux density outputs B. For generality, a

triangular waveform is used in a DC sweep, i.e. timeless simulations. The corre­

sponding BH curves with non-biased and biased minor loops are shown in Figure

7.8.

The results clearly demonstrate the property of long-term magnetisation memory

loss in the JA model. As the JA model gradually loses its long term magnetisation

memory, minor loops do not exhibit a closure after one cycle but eventually con­

verge to a closed loop as shown in Figure 7.8. While these experiments indicate

the correctness and numerical reliability of the timeless discretisation technique

for the magnetisation slope, this strange behaviour of minor loop sequences in the

JA model has not been confirmed experimentally [135J.

Simulation results showing major and minor loop behaviour are consistent with

other reported implementations using different languages and simulation tools

[131, 136J. In this context, it is worth pointing out that other, non-JA models

Chapter 7 Electromagnetic System Modelling Case Study

?
-0.51

I

-1 ~

i
-1.5 i

I

-2 J

10 40 50 60 70 80

(8)

141

90 100 110
samples

FIGURE 7.7: DC sweep simulations of the SystemC model showing the excita­
tion H and response B. Trace 1 includes minor loops biased at H = 2kAjm

and trace 2 - non-biased minor loops.

may exhibit different behaviour [137], specifically the Preisach model [138] which

tends to produce different results for minor loop behaviour around turning points.

7.5 Comparison with VHDL-AMS

SystemC-A is capable of modelling non-electrical domain systems using the new

language constructs and methods. Also, by being HDL based on C++, JA model

was reformed into a new model to overcome most of the reported problem easily.

Chapter 7 Electromagnetic System Modelling Case Study

-10 -5 10

(a)

-2

-10 -5 10

(b)

FIGURE 7.8: SystemC simulations showing the minor loop behaviour; main
loop amplitude - 10 kA/m, minor loop amplitude - 1 kA/m, bias of H in minor

loops a) OkA/m, b) 2 kA/m.

142

A comparison is done in implementation and in CPU time between SystemC and

VHDL-AMS. Both implementations of the JA model in SystemC and VHDL­

AMS produced comparable results. Appendix D.3 shows the VHDL-AMS code.

Figure 7.8 and Figure 7.9 show virtually the same behaviour for both simulators.

Chapter 7 Electromagnetic System Modelling Case Study 143

However, with respect to the CPU time, SystemC proved to be faster than VHDL­

AMS (see Table 7.2). The simulations were carried out on a PIlI PC with 512MB

RAM for 110 samples of H and with the step size dh = 12 Aim.

1.6

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2

-1.6

-10 -8 -6 -4 -2 0 2 4 6 8 10

(a)

8[T]

1.6

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2

-1.6

-10 -8 -6 -4 -2 0 2 4 6 8 10

(b)

FIGURE 7.9: VHDL-AMS simulations a) BH curve with symmetric minor loops
(bias of H is OkA/m), b) BH curve with asymmetric minor loops, H bias of

2kA/m.

It ought to be reiterated that the Forward Euler and Runge-Kutta methods pro-

duced nearly identical results due to a very small sensitivity threshold of dh, which

Chapter 7 Electromagnetic System Modelling Case Study

SystemC-A
VHDL-AMS

I Runge-Kutta I Forward Euler

0.380s 0.3708
31.044s 30.5338

TABLE 7.2: Simulation times of SystemC and VHDL-AMS for ferromagnetic
hysteresis.

144

was about 0.12% of the maximum applied field value. As a consequence, the maxi­

mum relative difference in the calculated induction B between the two integration

methods was approximately 1%, as shown in Figure 7.10. This suggests that the

simple Forward Euler integration method is adequate for this application. The 4th

order Runge-Kutta offered virtually no benefit in terms of accuracy, and the re­

lated code was more complex and there was a slight CPU time overhead as shown

in Table 7.2.

0.015

0.01

0.005

o +L--------~~~=_----._--------~~--------._----~~~
10 40 sample 50

-0.005

-0.01

-0.015

-0.02

FIGURE 7.10: b.B the difference between Euler and Runge-Kutta using Sys­
temC.

7.6 Concluding Remarks

This chapter has demonstrated modelling ferromagnetic hysteresis to illustrate

SystemC-A capabilities in modelling non-electrical systems. The system is based

Chapter 7 Electromagnetic System Modelling Case Study 145

on the Jiles-Atherton model and was modelled in SystemC-A using two approaches.

The first approach uses the common way of time discretisation of the magnetic

slope. This method suffers from numerical difficulty and singularity. Taking the

advantage of HDL, the ferromagnetic hysteresis was modelled using a second ap­

proach which adopt timeless discretisation. The second approach overcomes some

reported problems that have occurred in other implementations, namely long sim­

ulation times, non-convergence and numerical instability. The new model was

capable of producing minor loops with no numerical difficulties for various minor

loops sizes and in different positions. A numerically reliable alternative function to

eliminate the well known singularity of Langevin's function was also implemented.

The simulation has shown that, due to extra limitations on the step size, both

Euler and Runga-Kutta methods produce nearly identical results in terms of ac­

curacy. Hence, the use of Forward Euler is advisable due to its simplicity. For

comparison purposes both approaches were implemented in VHDL-AMS showing

matching results with SystemC-A models. However, SystemC-A has the advantage

of simulation high speed.

Chapter 8

Mixed-domain System Modelling

Case Study

In this chapter, SystemC-A is validated by modelling and simulating a mixed­

domain case study. The system is automotive seating with vibration isolation.

It is nonlinear complicated mixed electrical-mechanical-hydraulic domains. The

traditional way of modelling such a combination at component level is to model

each domain separately in different languages and/or environments. The system is

an excellent choice to validate SystemC-A because it is involving complex DAEs,

complex control systems and it is the state of the art in automotive suspension

systems. The system to be modelled and simulated is designed originally by Liu

and Wagner [139, 140]. They simulated the system in non-HDL environment

(Matlab and Simulink) [13]. The system was also modelled in VHDL-AMS by

Wang and Kazmierski [141].

The use of HDL in automotive design has been started recently and SystemC-A

would be an excellent environment to model mixed-domain systems. It is because

SystemC-A models systems in hierarchal analogue or digital modules which rep­

resent different parts of the system connected together through ports and signals.

146

Chapter 8 Mixed-domain System Modelling Case Study 147

The remainder of this chapter is organised as follows: Section 8.1 describes briefly

the vibration isolation seating system and illustrating the mathematical represen­

tations of its main parts, the chassis and seating, the actuator and the controllers.

A suite of three different types of controllers are used to regulate the automo­

tive seat when subjected to road disturbances. The controllers are Proportional­

Integral Controller (PIC), Variable Structure Controller (VSC) and Optimal Con­

troller (OC). Section 8.2 illustrates the implementation of the system in SystemC­

A for different stimuli. The results are discussed and compared with VHDL-AMS

simulations. Finally, Section 8.3 gives the conclusion.

8.1 Vibration Isolation Seating System

The attenuation of road disturbances of vehicle occupants is a very important issue

in riding quality of light-duty and off-road vehicles. The passengers are subjected

to high and prolonged disturbances on rough roads. One strategy is the use of

vibration isolation systems to attenuate the vibrations between the passenger seat

and the vehicle's floor by placing a well-controlled actuator in between. A good

model of the whole system is therefore required to reflect all the details of the

actual system. The system consists of three main parts, plant (i.e. the passenger

seat and vehicle chassis), electromechanical actuator, and controller as shown in

Figure 8.1. There are two sensors which monitor the seat and chassis and hence

generate input signals to the controller. The control signal is connected to the

actuator which is a force generator introduced to improve ride quality.

8.1.1 Mathematical Model of Chassis and Seating System

As shown in Figure 8.1 the vehicle mass Me and passenger/seat mass Ms are

separated by a passive spring Ks and damper Cs. The seat is further isolated

Chapter 8 Mixed-domain System Modelling Case Study 148

x,f ______________ ~~-p-a-ss-e-n-g-er~'s-s-e-a-tM--s--~~~---L~
actuator

& Electronic
Fa a ,_ , ~

sensor

x, } ______ -L-______ v_e_h_ic-:;::le""'~s ;=ch~a:::_s-si-S-M-c--------'
Vehicle's wheel

FIGURE 8.1: Vibration isolation seating system.

from the chassis by the force actuator in parallel with the spring and damper. An

external displacement Xd represents the system input and acts through a passive

spring J{e and damper Ce. The other input is the actuator's force Fa = ApD..P.

The equation of motion for the seat can be written as:

where Xs and Xc are the seat and chassis displacement respectively and PI and P2

are the pressures in upper and lower actuator chambers respectively. Similarly,

Chapter 8 Mixed-domain System Modelling Case Study 149

the equation of motion for the chassis can be expressed as:

d2Xe = _ Cs (dxe _ dxS) _ Ks (x _ x) _ Ke (x _ Xd)
dt2 M dt dt M e s M e e e e

Ce (dxe dXd) Ap () -- --- +- PI-P2
Me dt dt Me

(8.2)

The output variables are selected to be the relative velocity Vrel and the relative

displacement Xrel which defined in Eq.8.3 and 8.4.

dt dt

Xrel

(8.3)

(8.4)

Table 8.1 lists and defines the seat and chassis parameters together with their

values which are used in the simulations.

I Symbol I Definition I Value

Me mass of vehicle chassis (kg) 1.46e + 03
Ms mass of passenger seat (kg) 1.0e + 02
Ke chassis spring stiffness (N jm) 7.492e + 04
Ks seat spring stiffness (N jm) 3.002e + 04
Ce chassis damping (N.secjm) 5.82e + 03
Cs seat damping (N.secjm) 1.1e + 03
Ap effective piston face area (m2

) 2.1l5e - 03

TABLE 8.1: Chassis and seat model parameters.

8.1.2 Mathematical Model of Actuator

The actuator is an electromechanical hydraulic system, which operates in parallel

with springs and dampers. It consists of a DC motor, some mechanical parts

(such as gear train and rack) and a hydraulic vibration absorber as illustrated in

Figure 8.2 and Figure 8.3. The actuator input from the controller is a DC voltage

(ea), which drives the motor to output a rotational torque (Tm). The gear train

transmits the rotational velocity from the DC motor to the rack.

Chapter 8 Mixed-domain System Modelling Case Study

DC motor

Gears are attached to
hydraulics via rack

FIGURE 8.2: Actuator's DC motor and gear mechanisation.

Passenger seat

Pl'V I
Arl·Vrl

A rack'-
p ;,.

~

P2, V 2 1
A r2 ·Vr2

Vehicle chassis

FIGURE 8.3: Actuator's hydraulic mechanisation.

150

The rack converts the motors's rotational motion into translational velocity, which

impacts the pressures of the upper and lower chambers of the hydraulic piston (PI

and P2 respectively). The vehicle's chassis is attached to the hydraulic cylinder's

piston rod and the seat sits on the cylinder cap. The actuator force is dependent on

the pressure difference between the upper and lower chambers tlP. The generated

force attenuates the vibrations by acting on the vehicle's chassis and passenger's

Chapter 8 Mixed-domain System Modelling Case Study 151

seat.

The actuator's DAEs are from electrical, mechanical and hydraulic domains. The

DC motor develops a torque Tm which is proportional to the armature current ia,

where K t is motor-torque constant.

(8.5)

When the armature rotates, a back emf (eb) is induced and proportional to the

flux and angular velocity d~~l as defined in Eq.8.6, where Kb is a constant.

(8.6)

Applying Kirchoff's voltage law to the electric circuit of the armature,

(8.7)

Applying Newton's law to the input rotational system dynamics (Jm),

J d
2
eg1 b deg1 T = T

m dt2 + m dt + gl m
(8.8)

Ideal gears are assumed by neglecting friction losses and gear mass, hence the

equations of input and output angular velocities (W9l' wg2) and torques (Tgl, T g2)

can be written as in Eq.8.9 and Eq.8.10.

W g2 'rg 1 (8.9)
wg1 'rg2

Tg1 Wg2

Tg2 Wg1
(8.10)

Chapter 8 Mixed-domain System Modelling Case Study 152

Applying Newton's law to the load shaft (JI) gives Eq.8.11.

(8.11)

The rack's linear velocity (\1;.2) can be determined as in Eq.8.12, and \1;.2 = \1;.1

since the two hydraulic pistons are connected.

(8.12)

The torque (TL) on the load shaft (JI) is determined in Eq.8.13.

(8.13)

The hydraulic pressure in the upper and lower actuator chamber (shown in Figure

8.3) are described in Eq.8.14 and Eq.8.15.

Ap \l;.el - Ar1 \1;.1 (~:)

- Ap \l;.el + Ar2 \1;.2 (~:)

(8.14)

(8.15)

Table 8.2 lists and defines the actuator parameters together with their values which

are used in the simulations.

8.1.3 Controllers

In order to attenuate road vibrations, a suite of different types of controllers were

designed including linear, nonlinear, and intelligent designs. The controllers are

Proportional-Integral (PIC), Variable Structure (VSC) and Optimal Controller

(OC). Inputs to the controllers are the dynamic seat and chassis motions i.e.

the displacement, velocity and acceleration of the passenger seat (xs, vs, as), the

displacement and velocity of the vehicle chassis (xc, vc). Any single controller may

Chapter 8 Mixed-domain System Modelling Case Study 153

I Symbol I Definition I Value
Kt motor torque constant (N.m/amp) 9.15e - 02
Kb back emf constant (V.sec/rad) 5.20e - 02
La armature inductance (H) 0.0
Ra armature resistance (D) 1.0
N Gear ratio 1.0
Jm moment of inertia of motor (Kg.m2

) 2.11ge - 06

/31 fluid bulk modulus of upper chamber (N/m2) 8.61e + 07
bm viscous friction of motor (N.m/(rad/sec)) 7.06e - 04
rg1 radius of gear 1 (m) 2.54e - 02
rg2 radius of gear 2 (m) 2.54e - 02
Jz moment of inertia of load shaft (Kg.m2

) 2.11ge - 06

/32 fluid bulk modulus of lower chamber (N/m2) 8.81e + 07
bl viscous friction of load shaft (N.m/(rad/sec)) 7.06e - 04
Ap effective piston face area (m2) 2.115e - 03
Ad area of upper rack end (m2) 5.067e - 05
Ar2 area of lower rack end (m2) 5.067e - 05

TABLE 8.2: Actuator model parameters.

have any set of inputs. Output of the controller is the voltage sent to the DC

motor (ea). Reference [140J describes in details the controllers designs.

The general state space model of the system to be controlled is given in Eq.8.16.

It is required for designing the controllers.

x Ax+Bu (8.16)

y Cx+Du

The plant's dynamics are represented in the state-space form as in Eq.8.17 and

Eq.8.18, where xs, Xc, is, ic are the plant's states.

Chapter 8 Mixed-domain System Modelling Case Study 154

is 0 0 1 0 Xs

Xc 0 0 0 1 Xc
+

i·s
_& Ks _Cs ~ Xs Ms Ms Ms Ms

i·c
Ks (Ks+Ke) Cs (Cs+Ce)

Xc Me Me Me Me

0 0

0 0 [::] (8.17)
0 0

Ke Ce

Me Me

[::] [~ -1 0 0]
o 1 -1

(8.18)

8.1.3.1 Proportional-Integral Controller PIC

The PIC is used to act on the error between the seat's set-point acceleration

and the actual value (e = asp - as). Through the integral operator, the PIC

brings quickly the error signal to zero. Eq.8.19 defines the PIC equation, where

Kp = 13.5V 8 2 /m and KJ = 0.27V 8/m [140] are the proportional and integral

gains respectively. They are selected using analytic and trial/error processes.

(8.19)

Chapter 8 Mixed-domain System Modelling Case Study 155

8.1.3.2 Variable Structure Controller VSC

The VSC relies on a high-speed switching feedback strategy to establish a robust

control for uncertain plant models. The switching control algorithm drives the

plant's state trajectory to a user selected switching line and then maintains the

trajectory at that line. The switching line is chosen such that the system motion

exhibits the desired stability and/or tracking characteristics. A switching line cr(x)

is defined as in Eq.8.20,

(8.20)

where x is the plant's states vector and C is a vector of constants which determine

the slope of the switching line in the phase plane. The line cr = 0 describes the

system average behaviour with chosen dynamics. The first step in the controller

design is to choose a Lyapunov's function (V) as in Eq.8.21 to guarantee stability

of the switching line.

(8.21)

where cr2 is positive and nonzero everywhere except on the switching line (cr = 0).

The switching line should satisfy the following condition:

v = 2cro- < 0 (8.22)

which implies that,

(8.23)

Chapter 8 Mixed-domain System Modelling Case Study 156

After substituting and reordering Eq.8.23, the inequality relations for the control

signal is obtained as follows:

u={:::
for (J" > 0

(8.24)
for (J" < 0

The second step is to compute the controller's feedback gains which derive the

plant's trajectories to the sliding surface. The full state feedback has the form of

1), = Kx = k1Xl + ... knxn' with individual gains defined in Eq.8.25

(8.25)

where kil and ki2 represent the maximum and minimum limits on each gain. The

gains are selected as kl =-94.8 N/m, k2=-5700 N/m, k3=-1440 Ns/m, and k4=437

Ns/m.

8.1.3.3 Optimal Controller OC

The optimal controller is based on full state feedback Linear Quadratic Regulator

(LQR). LQR controller problem is to find a control law u = ea = -Kx, such that

(A - BK) is stable and minimises a specified linear quadratic performance index

defined in Eq.8.26. In Eq.8.26, Q and R are the state and input weighting matrices,

respectively. The performance index is selected based on a balanced tradeoffs

between convergence speed to the system states and the input amplitudes.

J(x,u,Q,R) = - (xTQ x+uTR u)dt, 1100

2 0
Q 2: 0, R> 0 (8.26)

Chapter 8 Mixed-domain System Modelling Case Study 157

The vector of feedback gains K is to be calculated using Eq.8.27.

(8.27)

where P can be found by solving Riccati equation defined in Eq.8.28.

PA + ATp - PBR-1BTp + Q = 0 (8.28)

The controller gains are found to be K=[-116 -6520 -1670 -460] by using MAT­

LAB's function ([K,P,E]=lqr(A,B,Q,R)), where E is the eigenvalues matrix of the

closed loop system with optimal state feedback which determine the stability of

the system.

8.2 Modelling and Simulation

The automotive system was modelled in SystemC-A making use of the modular

modelling where the main parts of the system (plant, actuator and controller)

were modelled as SystemC-A components at behavioural level as illustrated in

Figure 8.4. The testbench (SystemC SC_MODULE) includes instances of all parts

connected together by signals. The input stimulus is generated by a sinusoidal

voltage source and connected to the chassis and seating module via nodes as

shown in Listing 8.1.

1 void test bench:: system () {
2 II global connecting signals
3 sc_signal <double> Vrel, as, deltaP , ea;
4 II instantiating nodes and components
5 n2 = new Node("O");
6 n1 = new Node (" n1") ;
7 sc_a_voltageS_sin *11= new sc_a_voltageS_sin ("Vsin" ,n1, n2 ,5.125,0,1,0,0);
8 seating *sl = new seating("sl" ,n1,&deltaP,&Vrel,&as);
9 actuator *act1 = new actuator("act1",&Vrel,&ea,&deltaP);

10 PI *pi1 = new PI("pi1",&as,&ea);
11
12 sc-start (2.5 ,SC_SEC); \\start simulation for 2.5Sec
13 }

LISTING 8.1: SystemC-A testbench of the automotive vibration isolation sys­
tem.

Chapter 8 Mixed-domain System Modelling Case Study

testbench

x V rei' rei

.. F
actuator

r-------------1

: controllers :
1 1

1 I 1
1 PIC 1
1 1

a

road
disturbance

,--------------
1 ' plant
1

I
chassis

seat I
1

1

1

- - - - - - - - - - - - - - _I

1 VSC 1

: - : xs' vs' as 1 I~-------------~~~--~----------~

OC f- 1
1 1

: : _______ x c~,_v....!c'__ _________ __l

L- _____________ J

FIGURE 8.4: Block diagram of the automotive system implementation in
SystemC-A.

158

Listing 8.2 gives SystemC-A model of the chassis and passenger's seat, whereas

Listing 8.3 gives the actuator model.

1
2 seating::seating(char nameC[5j, sc_a_system_variable *node_a,
3 se-signal <double>*deltaPl ,se-signal <double>*Vrell ,
4 s c _s i g n al <double>*asl) : sc_a_componen t (nameC, node_a, 0,0) {
5 deltaP _sig=deltaPl;
6 VreLsig=Vrell;
7 as_sig=asl ;
8 xcQ = new sc_a_free_variable("xcQ"); Iisystem variables
9 xsQ = new sc_a_free_variable("xsQ");

10 ysQ = new sc_a_free_variable("ysQ");
11 ycQ = new sc_a_free_variable("ycQ");
12 }
13
14 void seating::BuildB(){
15
16
17
18
19
20
21
22
23
24
25

xd=X(a);llfirst input: road disturbance
deltaP=deltaP_sig->read (); Iisecond input: deltaP
Vrel=ys-yc;
VreLsig->write (Vrel); Ilfirst output: relative velocity

II between chassis and seat
as=Xdot (ysQ);
aLsig ->write (as); Iisecond output: acceleration of seat
II the four equations of chassis and seat
Equation(ysQ, -dysdt - (Cs/Ms)*(ys-yc) (Ks/Ms)*(xs-xc)
Equation(xsQ, -dycdt - (Cs/Mc)*(yc-ys) - (Ks/Mc)*(xc-xs) -

(Ap/Ms) * deltaP);
(Kc/Mc)*(xc-xd) -

Chapter 8 Mixed-domain System Modelling Case Study

26 (Cc/Mc)*(yc-dxddt) + (Ap/Mc) * deltaP);
27 Equation (xcQ, -dxsdt + ys);
28 Equation(ycQ, -dxcdt + yc);
29 }

LISTING 8.2: SystemC-A implementation of the chassis and seating.

1 actuator:: actuator (char nameC[5] , sc_signal <double>*Vrell ,
2 sc-signal <double> *eal, sc-signal <double>*deltaP 1):
3 sc_a_com ponen t (nameC, node_a, 0,0) {
4 VreLsig=Vrell ;
5 ea_sig=eal;
6 deltaP_sig=deltaPl;
7 Iisystem variables
8 TInQ = new sc_a_free_variable "TInQ");
9 ebQ = new sc_a_free_variable "ebQ");

10 TLQ = new sc_a_free_variable "TLQ");
11 VrQ = new sc_a_free_variable "VrQ");
12 iaQ = new sc_a_free_variable "iaQ");
13 wglQ = new sc_a_free_variable "wglQ");
14 wg2Q = new sc_a_free_variable "wg2Q");
15 UIQ = new sc_a_free_variable "UIQ");
16 U2Q = new sc_a_free_variable "U2Q");
17 PIQ = new sc_a_free_variable "PIQ");
18 P2Q = new sc_a_free_variable "P2Q");
19 TgQ = new sc_a_free_variable "TgQ");
20 deltaPQ = new sc_a_free_variable "deltaPQ");
21 }
22
23 void actuator:: IC(void){11 initial values
24 In i t i a I C (U1 Q, l. 0 e - 4) ;
25 I nit i a I C (U2Q, 1 . 0 e - 4) ;
26 InitialC (PIQ, l. Oel0);
27 InitialC(P2Q,I.0el0);
28
29
30 void actuator:: BuildB () {
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 }

Vrel=VreLsig->read 0;11 first input: relative velocity
ea=ea_sig ->read 0; II second input: acceleration of seat
deltaP_sig->write(deltaP);11 output: deltaP
II DAEs
Equation (TInQ, -Trn+Kh ia);
Equation(ebQ, -eb+Kb*wgl);
Equation (TLQ, -TL + (Ar2*P2 - ArhPl)* rg2);
Equation (VrQ, -Vr + wg2ng2);
Equation(iaQ, -ea + eb + Ra*ia + La*diadt);
Equation (TgQ, -Jm*dwgldt- bm*wgl-Tg+TIn);
Equation(wglQ, wg2/N - wgl);
Equation (wg2Q, -Jl*dwg2dt- bl*wg2-TL+Tg);
Equation (UIQ, -dUldt + Ap* Vrel - Arh Vr);
Equation(U2Q, -dU2dt -Ap*Vrel + Ar2*Vr);
Equation (deltaPQ, -deltaP+(PI-P2»;
Equation(PIQ, -dPldt + betal*(Ap*Vrel - ArhVr)/Ul);
Equation(P2Q, -dP2dt + beta2*(-Ap*Vrel + Ar2*Vr)/U2);

159

--
LISTING 8.3: SystemC-A implementation of the actuator.

In Listings 8.2 and 8.3, the component's constructor defines the number and type

of the component's inputs and outputs for each controller. Also in the constructor,

system variables are defined as well as the system constants. BuildB() functions

include DAEs of the system which hint that the system modeled at behavioural

Chapter 8 Mixed-domain System Modelling Case Study 160

level. The chassis and seating module contains 4 system variables (lines 8-11

of Listing 8.2) which need 4 Equation() functions (lines 24-28) to be defined in

BuildB(), while the actuator has 13 system variables and needs 13 Equation()

functions to be defined.

To demonstrate one of the controllers representation in SystemC-A, Listing 8.4

gives part of the implementation of the VSC. The model has no system variables

and it just involves sequential statements. The inputs to the VSC are the plant's

four states (xs, Xc, xs, xc) while the output is the voltage ea sent to the DC motor.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

void vS: : BuildB () {

II controller parameters:
Kll= -95.8; IIKll K12
KI2= -93.8;
K21= - 5704.6; IIK21 K22
K22= -5702.6;
K31= -1446.2; IIK31 K32
K32= -1444.2;
K41= 436.3; IIK41 K42
K42= 438.3;
cl= 1. 72;
c2= 262.4;
c3= 4.5;
c4= 65.7;
Lhead= 6.648e-02;

are lower and upper

are lower and upper

are lower and upper

are lower and upper

17 sigma = c1*xc + c2*xs + c3*xcdot + c4*xsdot;
18 pI sigma*xc;
19 p2 = sigma*xs;
20 p3 = sigma*xcdot;
21 p4 = sigma*xsdot;
22 i f (p 1 > O. 0)
23 Kl = Kll;
24 else
25 KI = K12;
26
27 if (p2 > 0.0)
28 K2 = K21;
29 else
30 K2 = K22;
31
32 if (p3 > o. 0)
33 K3 = K31;
34 else
35 K3 = K32;
36
37 if (p4 >0.0)
38 K4 = K41;
39 else
40 K4 = K42;
41

limits

limits

limits

limi ts

42 ea = Lhead * (xc *Kl + xs *K2 + xc dot *K3 + xsdot *K4) ;

of Kl

of K2

of K3

of K4

43 ea_sig->write(ea);llcontroller output voltage sent to the DC motor
44 }

LISTING 8.4: SystemC-A implementation of the variable structure controller.

Chapter 8 Mixed-domain System Modelling Case Study 161

The analogue simulator used a time step of O.lm seconds. The system was sim­

ulated using two types of input stimuli: a single jolt sine wave and multiple sine

waves with a White Gaussian Noise (WGN) (standard deviation =lcm). The two

stimuli represent road disturbances Xd at frequency of 5.162Hz and amplitude of

xdp_p=10cm. The most important variable to be monitored is the maximum value

of passenger's seat displacement x sp- p . The passive system is first simulated to

study the effect of applying different types of controllers to the system.

8.2.1 Single Jolt Simulation

Simulations of a single jolt sin wave were carried out for a duration of 2.5 seconds.

The seat displacement response of the passive system together with responses when

using different controllers are shown in Figure 8.5. The passive spring and damper

can attenuate road disturbances Xdp-p from x sp- p = lOcm to x sp- p = 3.05cm.

Compared to the passive system response, the optimal controller achieved the

best isolation performance with a factor of 5.32 reduction in Xdp-p. Whereas the

PIC and VSC achieved 2.02 and 4.54 respectively.

8.2.2 Multiple Sin Waves with WGN Simulation

Simulations of multiple sin waves with WGN were carried out for 1.0 second. The

seat displacement response of the passive system together with responses when

using different controllers are shown in Figure 8.6. The passive spring and damper

can attenuate road disturbances Xdp-p from x sp- p = 10cm to x sp- p = 2.58cm.

Compared to the passive system response, the optimal controller again achieved

the best isolation performance with 4.26 reduction in Xdp--p. Whereas the PIC and

VSC achieved 1.92 and 3.47 respectively. Reduction in performance was expected

under multiple sin waves and noisy stimulus.

Chapter 8 Mixed-domain System Modelling Case Study 162

5
xicm]

Disturbance

3

Time [s]
-1 0.5 1.5 2 2.5
-3

-5

2 xs[cm]
Passive reponse

0
Time [s]

1.5 2 2.5
-1

-2
xJcm] 1

PI controller
0.5 response

0
Time [s]

1.5 2 2.5
-0.5

-1
0.6 xs[cm] Variable Structure
0.4 controller response

0.2

0
Time [s]

-0.2 1.5 2 2.5

-0.4
0.4 xJcm] Optimal controller

0.3 response

0.2

0.1

0
Time s

-0.1 1.5 2 2.5

-0.2

-0.3

FIGURE 8.5: Single jolt sine wave disturbance simulation with responses of the
three controllers.

Chapter 8 Mixed-domain System Modelling Case Study

6

4

2

0

-2

-4

-6
2

1.5

0.5

0

-0.5

-1
1

0.5

0

-0.5

-1
0.6

0.4

0.2

0

-0.2

-0.4

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

xd[cm]

xs[cm]

0.1

x)cm]

xJcm]

Disturbance

Passive reponse

0.2 0.3

0.2

PI controller
response

Variable Structure

Optimal controller

FIGURE 8.6: Noisy sine wave disturbance simulation with responses of the three
controllers.

163

Chapter 8 Mixed-domain System Modelling Case Study 164

8.2.3 Comparison with VHDL-AMS

The model of the vibration isolation seating system was modelled and simulated

in VHDL-AMS [141J. SystemC-A shows accurate results by comparing its simu­

lation performance of x sp- p with VHDL-AMS results in Table 8.3. The maximum

relative percentage differences in the maximum value of seat position x sp- p be-

tween SystemC-A and VHDL-AMS simulations was approximately 0.860% for the

optimal controller under single jolt sin wave, and it was 2.642% for the passive

system under multiple sin waves with WGN simulation.

TABLE 8.3: SystemC-A and VHDL-AMS performance figures of the seat posi­
tion xsp- p (cm) for the passive system and the suite of controllers.

Passive system
PIC
VSC
OC

SystemC-A VHDL-AMS % Relative error
single jolt sin waves single jolt sin waves single jolt sin waves
sin wave with WGN with WGN sin wave with WGN sin wave

3.07 2.65 0.68%
1.52 1.37 0.59%
0.69 0.74 0.58%
0.58 0.60 0.86%

8.3 Concluding Remarks

This chapter has demonstrated modelling automotive vibration isolation seating

system to illustrate SystemC-A ability in modelling mixed-domain systems. The

system is nonlinear complicated mixed electrical-mechanical-hydraulic domains

providing a challengeable task for SystemC-A validation. The system was mod­

elled at behavioural level with three types of controllers, proportional-integral,

variable structure and optimal controllers. The system was tested with two types

of stimuli, a single jolt sine wave and multiple sine waves with a white Gaussian

noise. Results were studied and the optimal controller has shown the best reduc­

tion in road disturbance for both input stimuli. Further, SystemC-A simulations

were compared to published VHDL-AMS simulations, showing highly comparable

Chapter 8 Mixed-domain System Modelling Case Study 165

numerical figures, which proves that SystemC-A can be compared to well estab­

lished HDLs.

Chapter 9

Conclusions and Future Research

The main aim of this research stems from the modelling difficulties of analogue and

mixed-signal systems which have been facing the design community, as explained

in Chapter 1. This research presents a new mixed-signal language capable of

simulating a variety of general analogue models suitable for a number of application

areas and levels of abstraction with special emphasis on high level ciesigns. The

developed language is an extension of SystemC and has been named SystemC-A.

The objective was achieved in a number of steps.

In Chapter 2 the state of the art SystemC high level digital language was inves­

tigated and studied in order to provide the requirement for an efficient digital

simulator as part of the aimed AMS modelling environment. Further, VHDL­

AMS language elements were overviewed to be an inspiration for this research

AMS extension new elements.

The next step was the development of the AMS extension which represents the

first contribution of this thesis. It is described in Chapter 3 and 4. In Chapter 3,

new language syntax and constructs were developed to represent 'analogue system

variables such as node variable to describe general circuit nodes, fiow variable to

166

Chapter 9 Conclusions and Future Research 167

describe MNA-like flow variables, and free variables, to represent variables in user­

defined differential and/or algebraic equations. All system variables represent the

unknowns in the set of DAEs and can be extended to user-defined type variables.

Another developed element is a construct representation of an analogue component

which can be extended to circuit-level components or user-defined components.

A library of circuit-level components was developed which provides fundamental

components such as resistor, capacitor, inductor, diode, transistors and several

kinds of voltage and current sources. Further more complex components can

be derived using C++ inheritance mechanism. System variables and analogue

component classes are to be used to build general analogue systems at circuit-level

or system-level. Important analogue-digital interfaces are developed for different

connection types and associated issues such as small time step sizes and analogue

stepping are solved.

Chapter 4 presents an efficient implementation of an analogue kernel to solve the

analogue part of the simulated system. An object-oriented equation formulation

method, called the Object-Oriented Newton-Quasi Newton method (OO-NQN),

has been developed. A new SystemC-A element called build method is used to

implement the OO-NQN method. The OO-NQN has two approaches to equation

formulation associated with constructing the Jacobian. The first approach is to

build exact Jacobian's elements using MNA component's stamps and hence, solve

the system using the Newton Method. The other approach is mixed where some

Jacobian elements are approximated using the secant method and hence solve

the system by means of a Quasi-Newton approach. In the case studies, shorter

simulation times were obtained where an exact Jacobian was used. However, the

advantage of secant approximations is easiness and less expertise needed to create

MNA Jacobian stamps, as well as simpler code. Therefore, OO-NQN provides a

flexible means to compromise between simple modelling and simulation speed.

In Chapter 5, an efficient version of the lock-step synchronisation technique has

Chapter 9 Conclusions and Future Research 168

been developed and represents the second contribution of this thesis. The lock-step

technique was implemented, tested and found to be the most suitable synchroni­

sation technique to interface the analogue and digital parts modelled in the same

language. The SystemC-A lock-step technique handles efficiently zero step-sizes,

which occur frequently in a mixed-signal HDL, whose digital kernel may produce

repeated delta cycles.

The new language elements and SystemC-A methods developed in Chapter 3,

4 and 5 were tested, verified and optimised. For this purpose, a wide range of

examples were carefully chosen from different physical domains in order to validate

SystemC-A from different aspects. The modelling and simulations of the case

studies in Chapter 6, 7 and 8 is the third contribution of this thesis.

In Chapter 6, a suite of four electrical case studies was modelled and simulated.

The first two case studies were Van Der Pol oscillator and Lorenz chaos. They

were modelled to illustrate the ability of SystemC-A to handle behavioural-level

specifications using its new language constructs. The other case studies were a

Switched Mode Power Supply (SMPS) and a 2GHz Phase Locked Loop (PLL)­

based frequency multiplier. The two examples are highly complex mixed-signal

systems, which have disparate time scales of their transients, and therefore, require

excessive CPU times and might put any standard analogue simulator in difficulties.

All the simulations were successful and no modelling or numerical difficulties were

encountered. For the PLL example two noise methods were developed to model

and simulate the jitter in the VCO output signal. The first noise method pro­

vides a more accurate noise behaviour by using a noise source especially develop

to add noise to any component's model. The other noise method provides faster

simulations by altering the VCO pulse width directly to form a jitter. This per­

turbation represents the total effect of any noise source in the PLL. Furthermore,

the developed PLL model with the two noise methods has been used to compare

Chapter 9 Conclusions and Future Research 169

the behaviour and speed of SystemC-A with that of SystemVision VHDL-AMS

simulator from Mentor Graphics. There was a simulation speed factor of three in

favour of SystemC-A. The main reason behind the speed factor is the adoption

of the efficient OO-NQN equation formulation method in SystemC-A, while this

option is not provided in the Mentor Graphics simulator.

In Chapter 7, a non-electrical case study of ferromagnetic hysteresis is modelled

based on the Jiles-Atherton mathematical model. This system provides real chal­

lenges to SystemC-A. The common implementation of the JA model involves nu­

merical integration of a discontinuous and non-linear differential equation. In

addition, the model in its original form can sometimes produce a hysteresis curve

with negative slopes for which there is no physical justification. Further, the model

suffers from convergence problems and long analysis times.

The ferromagnetic hysteresis model was implemented in SystemC-A in two differ­

ent ways. Firstly, for the purpose of demonstrating, the commonly used model

which involves the simulator's analogue solver and suffers from numerical diffi­

culties was implemented and tested. These tests confirmed the usual reported

problems as outlined in Section 7.3. Secondly, in the other approach, a new model

was developed to overcome most of the encountered numerical problems. A novel,

timeless discretisation technique was developed to integrate the magnetisation

slope ~~ without involving the analogue solver. The new model was capable of

producing minor loops with no numerical difficulties for various minor loops sizes

and in different positions. A numerically reliable alternative function to eliminate

the well known singularity of Langevin's function was also implemented. Both ap­

proaches were also implemented in VHDL-AMS for verification and comparison.

The advantage of SystemC-A over VHDL-AMS in terms of simulation speed was

also confirmed by those simulations.

Chapter 9 Conclusions and Future Research 170

Chapter 8 illustrated the capability of SystemC-A to model complex mixed-physical­

domain systems. A mixed-domain automotive case study was modelled and sim­

ulated. The system handles dynamics of a passenger seat with vibration isolation

and active electronic control. The system is nonlinear and complex using equa­

tions from mixed, electrical, mechanical and hydraulic domains. It also involves

complex digital controllers to regulate the automotive seat when subjected to road

disturbances. The controllers tested were: Proportional-Integral Controller (PIC),

Variable Structure Controller (VSC) and Optimal Controller (OC). The system

was modelled at the behavioural level using mainly the new equation syntax and

OO-NQN equation formulation. Simulations used two types of stimuli: a single

jolt sine wave and multiple sine waves with a white Gaussian noise. The optimal

controller has shown the best reduction of the road disturbance for both input

stimuli. Further, SystemC-A simulations were compared to VHDL-AMS simula­

tions published in the literature, showing highly comparable numerical figures.

It is important to indicate that the developed methods and constructs in this thesis

are not restricted to the SystemC language. The work is potentially beneficial

to development of analogue kernels for modern AMS HDLs such as VHDL-AMS,

Verilog-AMS and other system design languages, including those based on C/C++.

SystemC-A is the first attempt to extend SystemC to provide mixed-signal and

mixed-domain modelling capability. A future adoption of SystemC-A may provide

significant advantages in the modelling of modern heterogenous Systems on Chip.

SystemC-A is an environment to model and simulate systems consisting of digital

and analogue parts, as well as hardware/software parts at different abstraction

levels, from circuit to concept level. SystemC-A has proved to be a powerful and

an easy to learn alternative to existing HDLs. A number of other advantages are

listed below:

• Potential for automation: SystemC-A enhances the current design flow by

Chapter 9 Conclusions and Future Research 171

providing scope for an automated design flow for the analogue blocks and

replacing the manual design method.

• High abstraction levels: SystemC-A provides the required high level of design

abstraction required for the multi-million transistor era. In addition it also

supports low abstraction levels required when modelling critical parts of any

system.

• Speed: SystemC-A can simulate complex systems at much higher simulation

speeds than those offered by existing HDLs. In PLL example, the CPU time

of the model's simulation with SystemC-A is faster by three times than that

of VHDL-AMS.

• Powerful modelling features: SystemC-A is based on the C/C++ language

which is familiar to most hardware/software designers. Also it has all the

properties of general programming languages too. This gives a freedom in

modelling and allows for description of very complex AMS systems in a user

friendly manner. In many respects, SystemC-A resembles the semantics of

standard HDLs. However, it has features which do not have their counter­

parts in existing HDLs, for example transient noise analysis .

• Model reuse: In SystemC-A, a model can be derived as a derived class of

a base model which gives an efficient way of model code reuse and helps

significantly in the modelling process.

SystemC-A has many areas which may be subject to further development and

extensions. More work is required towards an integrated environment for mixed­

signal mixed-domain and multi-discipline applications. Possible further extensions

may include alternative descriptions of analogue systems such as frequency domain

descriptions, transfer functions or state-space representations. Support for more

analogue simulation analyses would be desirable such as AC analysis and Fourier

spectral analysis.

Chapter 9 Conclusions and Future Research 172

In the context of the growing popularity of MEMS applications as well aerospace

and automotive virtual prototyping, while SystemC-A already provides support

for mixed-physical-domain modelling, it could be further extended to support dis­

tributed structures modelled by partial differential equations. Adequate languages

for supporting such applications do not yet exist.

Also, the absence of a high level modelling notation for AMS systems is a big

hurdle in the development of efficient synthesis methods. This issue needs to be

addressed in the near future to aid automation of AMS and mixed-physical-domain

design processes. Synthesis methods using a language based on CjC++ could be

very flexible and some work has already been done for digital system synthesis

[142, 143]. The SystemC-A notation could be a base for AMS and mixed-physic al­

domain system synthesis. The existing huge CjC++ libraries for numerical opti­

misation can shorten the development time of such synthesis environments.

Appendix A

Publications

The following are papers published or under review during the course of this thesis

work.

1. T. Kazmierski and H. AI-Junaid, "Synchronisation of Analogue and Digital

Solvers in Mixed-Signal Simulation on a SystemC Platform," in Proceedings

of Forum on Specification and Design Languages FDL, Frankfurt Germany,

23-26 September 2003.

2. H. AI-Junaid and T. Kazmierski, "SEAMS - A SystemC Environment With

Analog And Mixed-Signal Extensions," in Proceedings of IEEE International

Symposium on Circuit and Systems ISCAS, pages pp. 281-284, Vancouver

Canada, 23-26 May 2004.

3. H. AI-Junaid and T. Kazmierski, " An Extension to SystemC to Allow Mod­

elling of Analogue and Mixed-Signal Systems at Different Abstraction Lev­

els," in Proceedings of lEE SoC Design, Test and Technology Seminar,

Loughborough University, United Kingdom, 15 September 2004.

173

Appendix A Publications 174

4. H. AI-Junaid and T. Kazmierski, "An Analogue and Mixed-Signal Extension

to SystemC," lEE Journal of Circuits, Devices and Systems, issue 152, no.

6, pp. 682-690, December 2005.

5. H. AI-Junaid and T. Kazmierski, "HDL Models of Ferromagnetic Core Hys­

teresis Using Timeless Discretisation of the Magnetic Slope," in Proceedings

of Design, Automation and Test in Europe DATE, Munich, Germany, 6-10

March 2006.

6. H. AI-Junaid, T. Kazmierski, Peter Wilson, and Jerzy Baranowski, "Time­

less Discretization of the Magnetization Slope in Modeling of Ferromagnetic

Hysteresis," IEEE Transaction of Computer Aided Design TCAD, Accepted

for publication, 2006.

7. H. AI-Junaid, T. Kazmierski, "System-level hierarchical equation formula­

tion for analogue-mixed signal hardware description languages," under re­

view, lEE letters, 2006.

8. H. AI-Junaid, T. Kazmierski and Leran Wang, "SystemC-A Modelling of an

Automotive Seating Vibration Isolation System," under review, Forum on

Specification and Design Languages FDL, 2006.

Appendix B

Review of SystemC Applications

In the last few years, SystemC has received much attention from the electronics

industry. Researchers have directed their research towards development and im­

provement of new methodologies including modelling, verification, in addition to

synthesis for SoC designs at different abstraction levels. This appendix reviews

SystemC applications from the literature in these areas.

B.l Modelling

There are a large number of success stories of using SystemC in modelling from real

users as well as academic researchers. These appeared in most well known confer­

ence proceedings such as Design Automation Conference (DAC), Asia and South

Pacific Design Automation Conference (ASP-DAC), Design and Verification Con­

ference (DVCON) and Design, Automation and Test in Europe Conference and

Exhibition (DATE).

175

Appendix B Review of SystemC Applications 176

Network SoC from Samsung

Samsung had a network SoC model written in RTL Verilog [144] which was al­

ready marketed but it did not meet performance expectations. They remodelled

their SoC in SystemC TLM and achieved 99% cycle accuracy compared with the

RTL Verilog version and over 100 times faster execution. Most importantly, with

SystemC the engineers were able to better explore the system to find and track

down its design problems.

Exposure control unit from Bosch and University of Tuebingen

A cooperative project between Robert Bosch GmbH, OFFIS Research laboratory

and University of Tuebingen in Germany [145] was undertaken to model a com­

plex industrial application from the automotive domain, starting from high level

C description down to a cycle accurate SystemC model for hardware synthesis.

The aim of the project was to model the exposure control unit from the video

part of the Bosch automotive driver assistance system. This case study showed

that SystemC provides a helpful methodology for a seamless validation and re­

finement process in an industrial design flow. They have concluded that the main

advantage of a SystemC-based refinement process is the fact that the specification

remains executable during the design process, which means that the system can

be validated at every stage of the design.

Voice and signal processor from Fujitsu

The hardware design team at Fujitsu Network Technologies Limited in Japan

adopted a SystemC design flow for their latest project, voice and signal processor

[146]. Their current tool-set could not handle the new multi-language require­

ments brought on by the addition of C/C++ They needed a verification solution

that would work seamlessly, regardless of code differences. The team created a

Appendix B Review of SystemC Applications 177

development flow with three phases - design, verification, and synthesis. Firstly,

the team produced an untimed model based on their existing C algorithm. At that

point, they performed structural analysis and created a test bench to be used later

in the design. Secondly, they created a functional model, in which they performed

hardware allocations to optimise performance. In the next step, they created a

bus cycle-accurate model using behavioural synthesis, giving them synthesisable

code for the final design phase, which would create the RTL model. They were

able to reuse their SystemC testbench for HDL verification. The SystemC flow

reduced the verification portion of the project from two weeks to three days, and

eliminated the need for hand coding and rewriting RTL. The SystemC simulations

also ran approximately 150 times faster than the RTL simulations.

Ethernet adapter from Ammasso

In traditional server-to-server networking environments, administrators are faced

with constant compromises between power, flexibility and cost. The team at

Boston, Massachusetts based at Ammasso has developed a solution to eliminate

this tradeoff [146J when creating a gigabit ethernet adapter using a 2-million­

gate Xilinx Virtex-II Pro FPGA. They realised from a design perspective that a

higher level methodology would be important, rather than a low level, test bench

approach. They thought that writing their code in C++ rather than VHDL or

Verilog would increase the efficiency and accelerate the design process. They used

SystemC as their verification platform for their high level design methodology.

Although the team had no prior experience with SystemC, it took them only one

month to integrate the EDA Cadence verification platform into their SystemC

environment.

Appendix B Review of SystemC Applications 178

3D graphic processor

Kogel et al [147J employed a methodology of system level design on the design of a

100 million gate 3D graphic processor. It was a large scale industrial design project.

The resulting modelling efficiency measured in lines of code and simulation speed

is at least two orders of magnitude better compared to an RTL model. The work

was accomplished within 2 months by a team of 4 engineers familiar with the

application.

Many other success stories relating to modelling using SystemC are reported on

the Cadence [146J and CoWare homepages [148J. CoWare reported on their web

site the feedback they received from leading systems and semiconductor companies

they cooperate with, such as Infineon, Sony, InterDigital, Alcatel, STMicroelec­

tronics and Matsushita. In all the cases, productivity increased when SystemC­

based products were used in the system design flow.

On the academic side, most researchers are using SystemC to test and demonstrate

its capabilities, or to add enhancements by designing a range of basic to complex

systems architectures. The following are typical results reported by the academic

world:

Bluetooth transceiver

Modelling of the baseband in a Bluetooth Transceiver was done in the University

of Ancona, Italy to demonstrate the modelling capabilities of SystemC at a high

level of abstraction [149J. Bluetooth is an emerging standard for short distance

communication. The high level executable description of the baseband allowed an

analysis of the behaviour of the protocol in the presence of noise and also enables

a high level performance analysis. Using SystemC reduced the design time and

also the typical CPU time required for the simulations.

Appendix B Review of SystemC Applications 179

On-chip communication AMBA

A case study of modelling an AMBA bus was presented by the University of An­

cona, Italy in cooperation with STMicroelectronics in France, to demonstrate the

SystemC TLM [150]. AMBA defines an on-chip communication standard for de­

signing high performance embedded microcontrollers. The designers took advan­

tage of SystemC communication and synchronisation features, such as channels,

interfaces and events, and were able to obtain important results. Firstly, with a

higher level than RTL, they gained two orders of magnitude in simulation speed.

Secondly, in a bus implementation, the de-scheduling feature implemented by dy­

namic sensitivity allows the simulation to run faster avoiding useless function calls.

PCl bus interface

Bruschi et al [151] described functional requirements of a customised PCl bus

interface. They aimed not just to develop a model but to prove modularisation,

designer team cooperation, ease of modelling, possibility of reuse, comparison with

VHDL-RTL model and to mix various levels of abstraction during the design flow.

The developed modules include the master simulator, transceiver manager, error

checker and test application. They conclude that the learning curve even for de­

signers with little hardware design background is quite fast.

Sobel edge detection image processing algorithm

A case study of modelling a complex Sobel edge detection image processing al­

gorithm was done by Armstrong and Ronen [152]. The case study was part of a

larger effort to assess the state of the art in design tools and languages suitable

for Hardware/software co-design and co-verification. The system was modelled by

different SystemC structures from abstract to more concrete in terms of imple­

mentation. Their criteria in assessing an HDL are based on six aspects. It should

Appendix B Review of SystemC Applications 180

be able to: 1) model systems in an abstract manner but still be able to model

concurrency, 2) suit either a software or hardware implementation, 3) leverage

existing high level design libraries written in C, 4) support synthesis into logic or

embedded processor code, 5) enjoy large industrial support and finally 6) support

ease of modelling. The results of this tool and language study indicated that Sys­

temC was a strong candidate to become the successor of VHDL and Verilog as a

widely accepted modelling language and more suitable for system level modelling.

B.2 Hardware/Software Co-Design and Co-Sim­

ulation

Co-design and co-simulation are the processes of designing and simulation of sys­

tems specifications including both hardware and software. Different debugging

tools are executed concurrently, to validate the algorithms and the system func­

tionality [153].

In a traditional design methodology, hardware and software design take place

in isolation with hardware being integrated with software after the hardware is

fabricated [153]. Bugs that cannot be fixed in software lead to costly re-fabrication

and can adversely affect time-to-market. There is a need for a system design

language that describes functionality of both software and hardware [18]. The

lack of a unifying system specification language has been identified as one of the

main obstacles adversely affecting SoC designs. Most of the future products will be

SoCs including embedded software, which now represents about 80% of a typical

system.

SystemC and other languages based on C++ offer many features that can simplify

the task of co-simulation [17]. Such languages offer a homogenous environment

and high abstraction level of system specifications which give better component

Appendix B Review of SystemC Applications 181

reusability and reduce the design and verification time. Although SystemC is a

powerful HDL, many issues concerning co-simulation such as embedded software

generation still requires further research. Several co-simulation platforms based on

SystemC have been developed by academic groups as well as EDA vendors[154,

155]. Co-simulation using SystemC is divided into two parts, homogenous and

heterogeneous. A homogeneous co-simulation environment uses a single engine

for simulation [154, 155, 156, 157, 158, 159], whereas, heterogeneous co-simulation

environment [160, 161, 162] is based on multi-language system descriptions. Using

SystemC for all the design parts will permit heterogeneous co-simulation.

Grein et al [154] presented a co-simulation environment using SystemC that pro­

vides modularity, scalability and flexibility in co-simulation of SoC designs with

heterogeneous multi-processor target architectures. Modularity is achieved by

modular interfaces, and scalability with easy integration of simulation models of

sub-systems. Flexibility is achieved with the tradeoff between performance and

accuracy. The presented environment focuses on mixed-level co-simulation be­

tween two specific abstraction levels (driver level and RTL). Experiments with an

IS-95 cellular phone system design show the effectiveness of their co-simulation

environment.

A co-simulation technique focusing on software generation is presented by Herrera

et al [155]. This technique reduces the embedded system design cost in co-design

methodology. Another main advantage is that the same SystemC code is used

for system level specification and after software/hardware partition for embedded

software generation. The proposed methodology is based on the redefinition and

overloading of SystemC class library construction elements. In order to evaluate

the proposed technique, a simple design of a car Anti-lock Braking System (ABS)

is developed using a classical top-down flow methodology.

Appendix B Review of SystemC Applications 182

Another methodology, which attempts to enhance the support of embedded soft­

ware modelling with SystemC, is SPACE (SystemC Partitioning of Architectures

for Co-design of Embedded systems) [156J. In their methodology the application

is partitioned into two parts, namely the software and hardware modules. Each

partition can be connected to their platform via interfaces and then scheduled by

the SystemC simulator. One of their contributions is that they can easily move a

module from hardware to software and vice versa to allow architecture exploration.

Fummi et al [157J presented two co-simulation methodologies based on SystemC

and ISS (Instruction Set Simulator) as a model of the processor. The first one

works at the SystemC kernel level and exploits potentialities of the GNU suite,

whereas the second uses features offered by the operating system running on the

ISS. The two methodologies improve co-simulation performance with respect to

the state of the art methods and provide different tradeoffs between the simplicity

of the programming model, the modelling power and co-simulation performance.

The more SystemC is used for modelling hardware blocks, the more conspicuous

gets the need for translating modules previously designed in HDLs into SystemC.

Furthermore, heterogeneous co-simulation of multiple environments can be avoided

by performing translation from one environment to another. Agliada et al [158J

presented a method based on automatic translation of VHDL descriptions into Sys­

temC with equivalent behaviour under the assumption of cycle-based simulation.

They consider a simple example of a CPU (written in VHDL) and surrounding

blocks (designed in SystemC and VHDL). The manual translation of the CPU

into SystemC is a complex task which requires approximately 30 hours, while the

automatic translation takes a few milliseconds. They have concluded that simula­

tion time required by the SystemC only description is sensibly lower (50%) than

that of VHDL simulation. The co-simulation of SystemC+ VHDL is slower than

SystemC-based simulation since it requires interacting of an event-driven simulator

with a cycle-based one.

Appendix B Review of SystemC Applications 183

Another approach towards a single co-simulation environment based on translating

Verilog to SystemC [159J has been proposed by Mahmoudi et al The researchers

claim that their conversion methodology covers the synthesisable subset of Verilog.

Almost for all Verilog constructs, there is a SystemC equivalent except for delays,

dynamic constructs and wait statements. A comparison between simulation speeds

of SystemC and Verilog shows that there is a 27% speed up factor in SystemC

simulation times over those of Verilog.

Heterogeneous SystemC-VHDL co-simulation is presented by Bombana and Br­

uschi [160J. The task covers the possibility of modelling the application at RTL

and/or behavioural SystemC level, mixing VHDL and SystemC modules both in

the model itself and in the test bench. Also, the feasibility of applying synthesis,

and the possibility of mixed representation co-simulation is demonstrated.

Yuyama et al [161 J proposed a co-design methodology using SystemC and a high

level synthesis tool named BachC [56J. The hardware part is implemented to a

peripheral block through BachC, while the software part is converted to an em­

bedded software on the CPU. BachC is a C-based high level synthesis system.

They developed a SystemC library to connect SystemC to BachC, and applied

their methodology to JPEG encoder including an embedded CPU and a periph­

eral block. The peripheral block model is automatically translated to BachC.

Comparing area and performance between BachC models and a hand-coded Ver­

ilog RTL model, the area from BachC is larger but its throughput can be better

than that from the Verilog RTL model. The structure of the Verilog RTL model

is fixed, while VHDL RTL models generated from the Bach system can be flexibly

varied according to a given clock frequency.

A top-down design methodology from C to silicon is proposed by Cai et al [162J.

They have chosen SpecC [20], VCC [163J and SystemC as a modelling environment

because they are all C-related and each has a strong support in at least one

Appendix B Review of SystemC Applications 184

design field. The methodology combines the design flows of SpecC and VCC

with SystemC added as a back-end to them. This method quickly converts the C

model to an implementation resulting in a decreased design cycle time.

In a short period of time the SystemC popularity has generated a lot of support

from the EDA industry. This is obvious from the rich collection of SystemC

simulators. e.g. ConvergenSC System design from Coware [164], BlueHDL from

Blue Pacific [25J and the tri-lingual ModelSim SE V6.0 from Mentor Graphics [165J.

All these simulators are compliant with OSCI SystemC. Most of them can be used

in conjunction with other languages and provide textual as well as graphical views

of SystemC designs.

B.3 Co-Verification

Co-verification is the process used to demonstrate the correctness of a design con­

sisting of hardware and software. A big part of the design effort is dedicated to

verification, especially in complex SoC designs [166J. Every time a design descrip­

tion at an identified abstraction level is converted to a description at a lower level,

it is necessary to run a verification phase. Innovation in tools and methodology are

needed to make the verification process faster and more precise. Verification tools

enable the functionality, performance and testability of a design which needs to

be evaluated prior to fabrication. This is essential in ensuring that the design will

work first time and will remain robust and resilient in service under all operating

conditions.

The SystemC standard contains enough features for an effective verification of a

real design [167J. This attracts the EDA vendors and researchers towards SystemC.

Their contributions cover most of the verification options, mainly formal tech­

niques [168, 169J and simulation based techniques. Simulation based techniques

Appendix B Review of SystemC Applications 185

include the design to validate examples explained in section B.2, co-verification,

transaction based simulations, AMS simulations which will be introduced later in

section 2.3, and hardware based tools such as emulation systems, rapid prototype

systems and hardware accelerators.

Formal verification approaches use rigorous mathematical reasoning to show that

a design meets all or parts of its specification [168]. The first example of SystemC

based formal verification was introduced by Grobe and Drechsler [169] which allows

proving the correctness of properties specified in linear temporal logic.

Based on system level features in SystemC, the Transaction Based Verification

(TBV) methodology is designed to raise the level of abstraction so that it is easy

to create and reuse testbenches, easy to debug and run simulations. Based on

this idea, there have been many SystemC TBV environments [170, 171, 167, 172,

173], but the main contribution was from Cadence Design Systems verification

engineers [170, 171] who created an environment called TestBuilder. TestBuilder

supports functional verification, fills several missing pieces in SystemC 2.0 and

acts as a verification layer on top of SystemC. TestBuilder has been accepted by

the SystemC Steering Committee as a standard.

Other co-verification environments [174, 175, 176] illustrate the benefits of using

the same language for hardware and software design of a single system, enabling

the development of very fast models at various levels of abstraction.

Most of the SystemC verification approaches are based on the definition of fault

models [177, 178, 179, 180] that take advantage of the transaction level and have

the ability to use VHDL or Verilog. For instance, AMELTO and LAERTE++

[177, 178] from the University of Verona, Italy are multi-language environments

developed to efficiently test embedded systems and IP cores.

Appendix B Review of SystemC Applications 186

A new approach of integrating SystemC with hardware based verification was

introduced by Ramaswamy and Tessier [181]. Their approach represents an inte­

gration of SystemC and the IKOS Virtualogic emulation system which is a parallel

logic verification tool, to improve the verification performance while maintaining

verification fidelity across a range of abstraction levels.

A SystemC verification group was formed on November 2001 aiming to explore

infrastructure and methodology for using SystemC for functional verification. The

first outcome from the group was the release of the SystemC Verification library

(SCV) 1.0 in December 2003. SCV 1.0 [182] has been approved as an official OSCI

standard and is available for download from the OSCI homepage. SCV is based

on TestBuilder from Cadence Design Systems [146]. SCV provides a C++ signal

class, which interfaces C++ to an HDL design at the signal level. SCV supports

abstraction of tests to the transaction level. It provides a powerful randomisation

facility, including multiple constrained random generators (integer, float, signal, or

custom) that are able to execute simultaneously. SCV provides event expressions,

the enabling technology for creating temporal expressions, monitors, and temporal

checks. SCV supports both Verilog and VHDL. Since its release SCV has been

widely used by the design community and was subject to further enhancements

[183].

There are several commercial SystemC verification tools introduced by the EDA

industry, such as Seamless from Mentor Graphics [35], CoCentric System Studio

from Synopsys [26], N2C from CoWare [184], Nexus-PDK from Celoxica [185], and

Visual Elite from Summit Design [186].

Appendix B Review of 8ystemC Applications 187

B.4 Synthesis

A synthesis process aims at finding the best equivalent representation in the next

level of abstraction which guarantees the same functionality as the design in the

current level of abstraction considering the constraints given by the designer [187J.

There are three common synthesis steps: behavioural synthesis, logic synthesis and

physical synthesis. They transform the initial specifications from behavioural to

RTL, then from RTL to gate level and finally from gate level to layout respectively.

In the traditional design methodology (see Section 1.1) system level designers

typically use C j C++ based development environments to specify systems. Then

hardware designers manually translate the executable specifications from CjC++

into HDL and continue adding more detail until the HDL code can be synthesised

into a gate level netlist [188J.

One of the problems with this methodology is that rewriting a CjC++ code into

an equivalent HDL description is both time consuming and error prone. What is

needed is a smooth and reliable methodology that allows the hardware designer to

continue refining the C j C++ executable specification into a form that is acceptable

as input for hardware synthesis, without the need to translate the CjC++ code

into an HDL. Eliminating the translation step enables the reuse of the original

CjC++ testbench, decreases the verification time and ensures compliance with

the original specification.

SystemC was not intentionally developed to create executable specifications of

hardware components when aiming at synthesis. This used to be one of the most

important disadvantages of SystemC when it was first announced. To overcome

this problem designers tried to provide automatic hardware synthesis frameworks

to the SystemC community [142, 143J.

Appendix B Review of SystemC Applications 188

A framework called SystemC-Plus [189J was developed under the European Com­

mission's project ODETTE. It is completely based on SystemC and provides syn­

thesis able object-oriented features. It translates an object-oriented input descrip­

tion into a description that can be processed by existing logic synthesis tools but

it will not directly produce a gate level netlist. Another framework [190J per­

forms high level synthesis by taking SystemC behavioural input specifications to

generate VHDL, Verilog or SystemC RTL output specifications.

The EDA industry introduced many SystemC based synthesis tools, for exam­

ples CoCentric SystemC compiler from Synopsys [26J and Cynthesizer from Forte

Design [27J. These tools are able to synthesise hardware descriptions written in

SystemC into RTL or gate level netlists. EDA synthesis tools received a great

attention from the designers, to the extent that designers have tried to detect

weaknesses and cure them [191, 192J.

B.5 Further Enhancement and Extensions

Visualisations of designs described in SystemC are now available at system level

[193, 194, 195J. Designers are getting interested in tools for SystemC that can

easily describe systems and keep a global view of them. Difficulties for designers

arise from the low abstraction level of results provided by a SystemC simula­

tion. Designers can obtain a "*.vcd" file (results file) which may be displayed by

freeware viewers. Whatever tool is used to display simulation waveforms, only

information about variables or signals can be obtained, but not on processes ac­

tivity or synchronisation between modules. Some authors have proposed to add a

Graphical User Interface (GUI) to SystemC [193J based on a graphical view of an

object-oriented description of the application. This requires a modification to the

SystemC kernel. CoCentric introduced a tool [26J to graphically display complex

Appendix B Review of SystemC Applications 189

data structures, while Moigne [194] went further and introduced a tool to display

synchronisation with events.

The evolution of SystemC from VO.9 to V2.0.1 suggests that the environment is

particularly geared towards framework functionalities and performance. In each

new version, more libraries were added for communication methodologies and in­

terfaces between modules [196, 197]. Furthermore, methods are described for

system modelling to cover a wide range of MoC [198]. Improvements have been

suggested to speed up the SystemC engine e.g. by proposing new scheduling tech­

niques [199].

The concept of overloading operators in C++ easily suggests extensions to the

language by adding new data types and mixing them with the native Systemc.

For instance, a multi-valued logic to model and simulate multi-valued circuits can

be added quite easily [200].

Another extension was suggested to allow performance evaluation at system level

to avoid costly iterations in the design process. Such performance evaluation relies

on timing properties (execution times, delays, periods, etc.) which are important

especially in the performance verification of multiprocessing [201].

Existing simulation models that have been used for a reasonable amount of time

and were iteratively improved over some generations of implementations are likely

to be thrown away when changing to a new level or language. Methods are sug­

gested for an easy migration of C-models to SystemC-based designs e.g. by using

global variables and interfaces [202].

Appendix C

SystemC-A Models

This appendix presents all SystemC-A models developed in this project which were

not included within the context of this thesis's chapters. Section C.1 provides the

listings of circuit-level components, while Section C.2 presents the remainder of

modules of the PLL described in Section 6.4.

C.l Circuit-Level Components

Circuit-level components described in this section are resistor, capacitor, diode,

MOSFET transistor, DC voltage source, sinusoidal voltage source, ramp voltage

source and a sinusoidal current source.

C.l.I

1 #include" sc_a_resistor .h"
2
3 II resistor interface contains name, 2 nodes and a resistance
4 sc_a_resistor:: sc_a_resistor (char nameC[5] , sc_a_system_variable *node_a,
5 sc_a_system_variable *node_b ,double value):
6 sc_a_componen t (nameC, node_a, node_b, val ue){}
7
8 void sea_resistor:: BuildM(void){
9 G=l/value;

10 Jacobian(a,a,G);

190

Appendix C SystemC-A Models 191

11 Jacobian(a,b,-G);
12 Jacobian(b,a,-G);
13 Jacobian(b,b,G);
14 }
15
16 void sc_a_resistor:: BuildB (void){
17 G=I/value;
18 double i=(X(a)-X(b))*G;
19 BuildRhs(a,-i);
20 BuildRhs(b,i);
21 }

LISTING C.l: SystemC-A model of a resistor.

C.1.2

#include "sc_a_capacitor. h"
2

3 II capacitor interface contains name, 2 nodes, capacitance and initia.l
4 II capacitor voltage
5 sc_a_capacitor:: sc_a_capacitor (char narneC[5], sc_a_systern_variable *node_a,
6 sc_a_systern_variable *node_b ,double value ,double Vc):
7 sc_a_cornponent (narneC, node_a, node_b, value){
8 VcO=Vc;
9

10
11 void sea_capacitor:: BuildM (void){
12 C=value;
13 S=S ();
14
15 Jacobian(a,a,S*C);
16 Jacobian (a, b,-S*C);
17 Jacobian(b,a,-S*C);
18 Jacobian(b,b,S*C);
19 }
20
21 void sea_capacitor:: BuildB (void){
22 C=value;
23 Vdotn=Xdot (a)-Xdot (b);
24
25 BuildRhs (a,-C*Vdotn);
26 BuildRhs(b,C*Vdotn);
27 }

LISTING C.2: SystemC-A model of a capacitor.

C.1.3

2

3 II diode interface contains name, 2 nodes, Gdmax, lamda and saturation current.
4 sc_a_diode:: sc_a_diode (char nameC[5] , sc_a_system_variable *node_a,
5 sc_a_system_variable *node_b, double value, double larnda, double Is):
6 sc_a_componen t (nameC, node_a, node_b, value) {
7 Gdmax=value; Iidiode max conductance
8 lam=lamda;
9 satc=Is;

10
11

Appendix C SystemC-A Models 192

12 void sc_a_diode:: BuildM(void){
13 vdm=X(a)-X(b);
14 Vdmax=log(Gdmax/(lam*satc))/lam;11 calculate diode max voltage
15 if (vdm>Vdmax){lluse straight line model
16 Idmax=satc*exp (lam*Vdmax);
17 Gcl=lam*Idmax;
18 }
19 else Iluse exponential model
20 Gcl=lam* satc *exp (lam*vdm);
21
22 Jacobian(a,a,Gd);
23 Jacobian (a, b,-Gd);
24 Jacobian(b,a,-Gd);
25 Jacobian(b,b,Gd);
26
27
28 void sea_diode:: BuildB (void){
29 vdm=X(a)-X(b);
30 Vdmax=log (Gdmax/ (lam* satc)) /lam;
31 if (vdm>Vdmax){lluse straight line model
32 Idmax=satc*exp(lam*Vdmax);
33 Id=Idmax+lam*Idmax*(vdm-Vdmax);
34 }
35 else Iluse exponential model
36 I d=s at c * (ex p (lam *vdm) -1) ;
37
38 BuildRhs(a,-Id);
39 BuildRhs (b, Id) ;
40 }

LISTING C.3: SystemC-A model of a diode.

C.1.4

1 #include" sc_a_mosfet. h"
2
3 II mosfet interface consists of name, 3 nodes, VT, K, Gdsmin
4 sc_a_mosfet:: sc_a_mosfet (char nameC[5] , sc_a_system_variable
5 *node_a, sc_a_system_variable *node_b, sc_a_system_variable *node_c ,double VTl,
6 double Kl, double Gdsminl):
7 sc_a_component (nameC, node_a, node_b, value) {
8 c=node_c;
9 VT=VTl ; I I gat e t h res h a I d vol tag e

10 K=Kl; I I gain
11 Gdsmin=Gdsminl ;11 defined to help the solver not to fail numerically
12
13
14 void sea_mosfet::BuildM(void){
15 vd=X(a);
16 vs=X(c);
17 vg=X(b);
18 gds=ggs=Ids =0;
19 if (vd>vs){
20 vds=vd-vs;
21 vgs=vg-vs;
22 }
23 else{
24 vds=vs-vd;
25 vgs=vg-vd;
26 }
27 vgst=vgs-VT;
28 double GI=le-3;llto solve problems in nonlinear solver
29 if (vgst<=O){//cut off
30 gds=O.O;
31 ggs =0.0;

Appendix C SystemC-A Models 193

32
33 else if (vds<vgst){// linear
34 gds=K* (vgst -vds)+ GI;
35 ggs=K* vds ;
36 }
37 else{//saturation
38 gds=Gl;
39 ggs=K*vgst;
40 }
41
42 if(vd<vs)//other direction
43 Ids=-Ids;
44
45 //a drain, b gate, c source
46 J aco bian (a, a, gds+Gdsrnin) ;
47 Jacobian(a,b,ggs);
48 Jacobian (a, c ,-gds-Gdsrnin-ggs) ;
49 Jacobian(c,a,-gds-Gdsrnin);
50 Jacobian(c,b,-ggs);
51 Jacobian (c, c, gds+Gdsrnin+ggs);
52 }
53
54 void sc_a_rnosfet:: BuildB (void){
55 vd=X(a);
56 vs=X(c);
57 vg=X(b);
58 gds=ggs=Ids =0;
59
60 if (vd>vs){
61 vds=vd-vs;
62 vgs=vg-vs;
63 }
64 else {
65 vds=vs-vd;
66 vgs=vg-vd;
67
68 vgst=vgs-VT;
69
70 double GI=le-3;
71 if (vgst<=O) //cut off
72 Ids =0.0;
73 else if (vds<vgst)//linear
74 Ids=K* (v gst *vds-vds* vds *0.5)+ vds * Gl ;
75 else //saturation
76 Ids =0.5*K*vgst * vgst+vds*GI;
77
78 if(vd<vs)//other direction
79 Ids=-Ids;
80
81 //a drain, b gate, c source
82 BuildRhs (a, Ids);
83 BuildRhs (c, Ids);
84 }

LISTING C.4: SystemC-A model of a MOSFET transistor.

C.1.5

1 #include" sc_a_f1ow .h"
2 #include" sc_a_voltageS_dc .h"
3
4 //dc voltage source interfaces contain name, 2 nodes and a value in volts
5 sc_a_voltageS_dc:: sc_a_voltageS_dc (char narneC[5] , sc_a_systern_variable *node_a,
6 sc_a_systern_variable *node_b, double value):
7 sc_a_cornponent(narneC,node_a, node_b, value){

Appendix C SystemC-A Models 194

8 il = new sea_flow (" il"); //according to MNA define flow variable
9 }

10
11 void sc_a_voltageS_dc:: BuildM(void){
12 Jacobian(a,il,-I);
13 Jacobian(b,il,I);
14 Jacobian(il,a,I);
15 Jacobian(il,b,-I);
16 }
17
18 void sLa_voltageS_dc:: BuildB (void){
19 i=X(il);
20 vab=X(a)-X(b) ;
21 E=value;
22
23 BuildRhs (il ,E-vab); //subtract v from node voltage (E-vl)
24 BuildRhs (a, i);
25 BuildRhs(b,-i);//subtract I from RHS (v*G--I)
26

LISTING C.5: SystemC-A model of a DC voltage source.

C.1.6 Sine Wave Voltage Source sc_a_voltageS_sin

1 #include "sc_a_voltageS_sin.h"
2
3 //sin wave voltage source interface contains name, 2 nodes and sine
4 //wave generic values.
5 sc _a_ vo I tageS_si n :: sc_a_ vo I t ageS _sin (char nameC [5] , sc_a_syst em_ variable *node_a,
6 sc_a_system_variable *node_b, double value, double Voffset , double Amplitude,
7 double Delay, double Damping):
8 sc_a_voltageS (nameC, node_a, node_b, value){
9 freq=value; / / sine wave generic values

10 V _off=Voffset ;
11 Amp=Amplitude;
12 TD=Delay;
13 Theta=Damping;
14
15
16 void sc_a_voltageS_sin:: BuildM(void){
17 Jacobian(a,il,-I);
18 Jacobian(b,il,I);
19 Jacobian(il,a,I);
20 Jacobian(il,b,-I);
21
22
23 void sLa_voltageS_sin:: BuildB (void){
24 I=X(i 1);
25 t=geLtime ();
26 value=V _off+Amp*sin (2*3.14* freq *(t-TD»*exp(-Theta*(t-TD»;
27 Va=X(a);
28
29 BuildRhs(il,value-Va);
30 BuildRhs (a, I) ;
31 BuildRhs (b, I);
32 }

--
LISTING C.6: SystemC-A model of a sine wave voltage source.

Appendix C SystemC-A Models 195

C.1.7

1 #include" sc_a_currentS_dc. h"
2
3 sc_a_currentS_dc:: sc_a_currentS_dc (char nameC[5] , sc_a_system_variable *node_a,
4 sc_a_system_variable *node_b, const double *value):
5 sc_a_component (nameC, node_a, node_b, * val ue) {
6 Ivalue=value;
7
8
9 void sca_currentS_dc:: BuildB (void){

10 Equation(a,*Ivalue);
11 Equation (b,-(*Ivalue»;
12 }

LISTING C.7: SystemC-A model of a DC current source.

C.2 Phase Locked Loop

This section presents the different modules of the PLL case study modelled in

Section 6.4. The modules are the detector, charge pump and filter, and divide by

N.

C.2.1 Detector

1 #include "systemc. h"
2
3
4
5
6
7
8
9

SC~ODULE(detector){
sc_in<bool> Refl, DivVcol;//inputs: reference and divider signals
scout<bool> OutQl, OutQ2;// outputs: Q1 fj Q2

void DETI () ;
bool Ql, Q2;

10 SC_CTOR(detector){
11 SGMETHOD(DETl);
12 donLinitialize ();
13 sensitive_pos « Refl« DivVcol;
14 Ql =false;
15 Q2 =false ;
16 }
17 };
18
19 void detector: :DETl(){
20 boo I clear;
21 clear=false;
22 //modelling NAND gate
23 if (Refl.event() && Q2)
24 clear=true;
25
26 if (DivVcol.event() && Ql)
27 clear=true;
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Appendix C SystemC-A Models

}

/ / modelling D flip flop
if (clear)//if clear is true the two outputs are false
{

}

Q1=false;
Q2=false;

else {

}

if(Refl. event ()
Q1=true;

if(DivVco1.event()
Q2=true;

OutQ1. write (Q1);
OutQ2. write (Q2);

LISTING C.S: SystemC-A model of the detector in PLL.

C.2.2 Charge Pump and Filter

1 #include "systemc h"
2 #include "sc_a_node.h"
3
4 //integrator a.nd lead/lag low pass filter
5 SC..MODlILE(f i I t e r){
6 se-in<bool> clk ii/to enforce a fixed time step
7 scin<bool> OutQ1, OutQ2;//inputs: Qlf.1Q2 from detector's output
8 Sc_o1Jt<douhle> lout ii/output: charge pump c'urrent
9

10 void Vf () ;
11 double Vc1, Vc2, C1, C2, R, h, lin;
12 void in i t () ;
13 Node *nO,*n1,*n2;
14
15 SC_CTOR(f i I t e r){
16 SC..METHOD(Vf);
17 dont-initialize ();

196

18 sensitive_pos « clk; //filter should be sensitive to clk to get noise signal
19 /1 correctly
20 in i t () ;
21 //filter components values
22 Vc1=Vc2=0.0;
23 C1=3e -9;
24 C2=4000e-12;
25 R=le3;
26 }
27 };
28
29 void filter:: init (){//filter modelled at circuit level
30 n2=new sc_a .. node (" n2");
31 nO=new sc_a_node("O");
32 n1=new sc_a_node (" n1") ;
33 sc_a_currentS_dc *Il=new sc_a_currentS_dc("Il", n1,nO,&lin);
34 sc_a_capacitor *c1=new sc_a_capacitor("c1" ,n1,n2,3e-9,1);
35 . s c _ a _ res i s tor * r 1 =new s c _ a _ res i s tor (" r 1" , n2 , nO ,Ie 3) ;
36 sc_a_capacitor *c2=new sc_a_capacitor("c2" ,n2,nO,4e-9,1);
37 }
38
39 void filter ::Vf(){
40 // charge pump
41 if (OutQl. read ())
42 lin=500e-6;
43 else if (OutQ2.read())

Appendix C SystemC-A Models 197

44 lin =-500e -6;
45 else
46 Iin=O;
47
48 lout. write (lin);
49 }

--
LISTING C.9: SystemC-A model of the charge pump and filter in PLL.

C.2.3 Divide by N

#include "systemc.h"
2

3 SCJvIODULE(DivideByN){
4 se-in<bool> Vco;//input: from vco
5 sc_out<bool> DivVco;//output: divider signal
6
7 double tl,t2,width, jitter;
8 int countl;
9 boo I V;

10 void Counter () ;
11
12 SC_CTOR(DivideByN){
13 SCJvIETHOD(Counter) ;
14 donLinitialize O;//prevent run at vco=O
15 sensitive_pos « Vco;
16 countl=O, V=O, t2=0, tl=O, width=O, jitter=O;
17 }
18 };
19
20 void DivideByN:: Counter () {
21 if (Vco.event(»{
22 if (++countl >=2000){// divider ratio N=2000
23 count 1 =0;
24 V=!DivVco. read ();
25
26
27 tl=sc_time_stamp (). to_seconds ();
28 width=tl-t2;
29 jitter=width-2.5e-l0;//calculate jitter w.r.t 2.5e-JO the
30 //true signal width
31 t2=tl;
32 }
33 DivVco. write (V);
34

LISTING C.10: SystemC-A model of the divide by N in PLL.

Appendix D

VHDL .. AMS Models

This appendix lists VHDL-AMS models that are developed within the work of

this project for comparisons with SystemC-A models. Section D.1 lists all the

PLL's modules, while Section D.2 and D.3 present the original and proposed

Jiles-Atherton ferromagnetic hysteresis models. For VHDL-AMS models of the

automotive vibration isolation system please refer to [141].

D.I Phase Locked Loop

This section presents the different modules of the PLL case study modelled for

comaprision with SystemC-A model in Section 6.4. The modules are the detector,

charge pump, filter, divide by N, VCO, and the testbench.

D.l.I Detector

I library IEEE;
2 use i e e e . s t d _log i ell 64 . a II ;
3
4 -- digital phase detector
5 entity PhaseDetector is
6 port (Ref, Div : in std_logic; -- inputs
7 OutQI, OutQ2 : out std_logic -- outputs

198

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Appendix D VHDL-AMS Models

);
end entity PhaseDetector;

architecture Structure of PhaseDetector is
begin

process (Ref, Div)
variable clear: bit;
variable Ql, Q2: std_logic:='O';

begin
AND gate model

clear:='O';
if Ref='I' and Q2='I' then

clear :='1';
end if;
if Div='I' and Ql='I' then

clear .- '1';
end if;

D flip flop model
if clear = '1' then

Ql ,- '0 ';

else
Q2 ,- '0 ';

if Ref='I' then
Ql := '1';

end if;
if Div='I' then

Q2 := '1 ';
end if;

end if;

OutQl <= Ql;
OutQ2 <= Q2;

end process;
end architecture Structure;

LISTING D.1: VHDL-AMS model of the detector in PLL.

D.1.2 Charge Pump

Ii brary IEEE;
use ieee. std_Iogie-1164. all;
use ieee. electricaLsystems. all;
use IEEE. math_real. all;

-- charge pump
entity CP is
port(OutQl, OutQ2 :in std_Iogic;

terminal Tpump : electrical);
end entity CP;

architecture behav of CP is

digital inputs
analogue output

quantity vv across Ic through ELECTRlCAL.REF to Tpump;
signal lin : real :=0.0;
begin
process (OutQl, OutQ2)
begin

if OutQl =' l' then
lin <= 0.0005;

elsif OutQ2 = '1' then
lin <= 0.0005;

else
lin <= 0.0;

end if;

199

Appendix D VHDL-AMS Models

26 end process;
27 Ic=Iin'ramp;
28 end architecture behav;

2
3
4

LISTING D.2: VHDL-AMS model of the charge pump in PLL.

D.1.3 Filter

LIBRARY ieee;
use i e e e . s t d _log i ell 64 . all ;
use ieee. electricaLsystems. all;

5 LIBRARY edulib;
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

usework.all;

- integr'ltor and lead/lag low pass filter
entity CIRCUIT is

port (terminal n1T,n2T: ELECIRICAL);
end entity CIRCUIT;

architecture arch_CIRCUIT of CIRCUIT is
component RESISTOR

generic (RES : RESISTANCE);
port (terminal PI : ELECIRICAL;

terminal P2 : ELECIRICAL) ;
end component RESISTOR;

component CAPACITOR
generic (CAP : CAPACITANCE;

V _IC : REAL:=REAL'IDW);
port (terminal PI : ELECIRICAL;

terminal P2 : ELECIRICAL) ;
end component CAPACITOR;

use components from System Vision Components library
for R1: RESISTOR use entity EDULIB. RESISTOR (IDEAL);
for C1: CAPACITOR use entity EDULIB.CAPAClTOR(IDEAL);
for C2: CAPACITOR use entity EDULIB.CAPAClTOR(IDEAL);

begin
R1 : RESISTOR

C1

generic map (RES => 1000.0)
port map (PI => ELECTRICALREF,

P2 => n2T);

CAPACITOR
generic map (CAP => 3.0E-9
port map (PI => nIT,

P2 => n2T);
C2 : CAPACITOR

generic map (CAP => 4.0E-9
port map (PI => n2T,

P2 => ELECTRICAL.REF);

46 end architect ure arch_CIRCUIT;

LISTING D.3: VHDL-AMS model of the filter in PLL.

200

Appendix D VHDL-AMS Models

D.1.4 Divide by N

library IEEE;
2 use i e e e . s t d _log i c116 4 . all ;
3
4 -- Divider
5 entity dividebyN is
6 port (Vco : in std_logic; --input
7 DivVco : out std_logic --output
8);
9 end entity dividebyN;

10
11 architecture behav of dividebyN is
12 begin
13 process (V co)
14 variable count : integer :=0;
15 variable Divide: std_logic:= '0 ';
16 variable N: integer :=2000; --divide by 2000
17 begin
18 DivVco<= Divide;
19 if Vco = '1' then
20 count:=count+l;
21 if count >= N then
22 count :=0;
23 Divide:= not Divide;
24 end if;
25 end if;
26 end process;
27 end architecture behav;

LISTING D.4: VHDL-AMS model of the divide by N in PLL.

D.1.5 veo

1 Ii brary IEEE;
2 use IEEE. std_logic1l64. all;
3 use IEEE. electricaLsystems. all;
4 use IEEE. math_real. all;
5
6 entity -- modified VCO version of Ashenden book vco is
7 generic (fmax real .- 5.0e9; Frequency when input voltage
8 fmin real .- 2.0e9; Frequency when input voltage
9 vmax real.- 3.3; Input voltage for fmax

10 vmin real .- 0.0); Input voltage for fmin
11 port (terminal v_input electrical; analogue input
12 d_out out std_logic); -- digital output
13 end entity vco;
14
15 architecture behavioral of vco is
16 quantity period : real;
17 quantity v across v_input to electricaLref;
18 constant gain: real := (fmax - fmin)/(vmax - vmin);--- VCO gain
19 begin
20 process
21 begin
22 d_out<= '0';
23 wait until domain time_domain;
24 loop
25 d_out <= '0';
26 wait for period /2.0;
27 d_out <= '1';
28 wait for period /2.0;
29 end loop;

vmax
vmin

201

Appendix D VHDL-AMS Models

30 end process;
31
32 period = l.O/((v - vmin)*gain + fmin);
33 end architecture behavioral;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

LISTING D.5: VHDL-AMS model of the veo in PLL.

D.1.6 Testbench

library IEEE;
USE ieee. electricaLsystems. all;
use IEEE. math_real. all;
use i e e e . s t d _log i c _116 4 . a II ;

Phase locked loop test bench
entity PLL is
port (Input : in std_Iogic);

end entity PLL;

architecture MixedSignal of PLL is
signal DivT: std_Iogic:='O ';
signal Up,Down, VCO_out : std_Iogic:='O';
terminal CP_Filter, FilteLVCO : electrical;

component PhaseDetector is
port (Ref, Div : in std_Iogic; -- inputs

OutQ1, OutQ2 :out std_Iogic outputs
) ;

end component;

component CP is
port(OutQ1,OutQ2 :in std_Iogic;

terminal Tpump : electrical
) ;

end component;

component c i r cui tis
port (terminal n1T,n2T: ELECIRICAL);

end component;

component veo is
generic (fmax

fmin
vmax
vrnin

: real := 5.0e9;
real .- 2.0e9;
real .- 3.3;
real .- 0.0);

port (terminal v_input : electrical;
d_out out std_Iogic);

end component;

component dividebyN is
port(Vco : in std_Iogic;

DivVco : out std_Iogic);
end component;

begin
detectorO: PhaseDetector

port map (Ref => Input,

charge_pump :CP

Div => DivT,
OutQl => Up,
OutQ2 => Down);

port map (OutQl=>Up,
OutQ2=>Down,

202

Appendix D VHDL-AMS Models

57 Tpump=>CP _Filter);
58
59 Filter: Circuit
60 port map (nIT =>CP_Filter ,
61 n2T => FilteLVco);
62 VCOO: veo
63 generic map(fmax => 5.0e9,
64 fmin => 2.0e9,
65 vmax => 3. 3 ,
66 vmin => 0.0)
67
68 port map (v_input => FilteLVco ,
69 d_out=>VCO_out);
70
71 Divider: dividebyN
72 port map (vco => VCO_out,
73 DivVco => DivT);
74
75 end architecture MixedSignal;

LISTING D.6: VHDL-AMS testbench of the PLL.

D.2 Original Jiles-Atherton Model

This model is written by Wilson et al [126J.

1
2 Library IEEE;
3 use ieee. electricaLsystems . all;
4 use IEEE. math_real. all;
5
6 entity core2 is
7 generic (k,c,ms,alpha,a,area:real);
8 port (terminal p ,m : magnetic;
9 quantity B: out real);

10 end entity core2;
11
12 .ARCHIIECIURE core2_ja OF core2 IS
13 CXX'iSI'ANI' MUO: real :=4.0e-7*MATH2I;
14 CXX'iSI'ANI' mg: real :=MUO*area;
15 QUANIIIY h across flux through p 'ID m;
16 QUANIIIY he, dhdt ,dm,dmdh,dmdhl, dmirrdt ,mirr, mirrcalc: real :=0.0;
17 QUANIIIY man, mtotal ,mrev: real :=0.0;
18 QUANIIIY delta: real :=1.0;
19
20
21
22
23
24
25
26
27
28
29
30
31

FUNCTION lang (x : real) RETIJRN real
variable lang_x : real := 0.0;
BEGIN

If abs(x) < 1.0e-3 then
Lang_x: =0.333* x;

Else
Lang_x:=l.O/tanh (x) -l.O/x;

End if;
RETIJRN lang_x;

END FUNCTION;

BEGIN
32 calculate he and derivative of h
33 he = h + (alpha * ms * mtotal);
34 dhdt=he'dot;
35
36 -- Get the field direction

is --Langiven 's function

203

37
38
39
40
41
42
43
44
45
46

Appendix D VHDL-AMS Models

IF dhdt > 0.0 USE
delta

ELSE
delta

END USE;

1. 0;

-1.0;

-- Anhysteretic Magnetization
man = lang(he/a);
mrev = c * man / (1.0 + c);

47 -- Calculate incremental Magnetization
48 clm==man-mtotal;
49
50 -- calculate dM/dH and perform limitation on it
51 dmdhl= dm/(delta*k - alpha*ms*dm);
52 if dmdhl>O.O use
53 dmdh=dmdhl ;
54 else
55 dmdh==O.O;
56 end use;
57
58 -- calculate dM/dt and then integrate to get Mirr
59 dmirrdt=dhdt*dmdh;
60 mirrcalc=dmirrdt ' integ;
61 mirr = 1.0 * mirrcalc / (1.0 + c);
62
63
64
65
66
67
68
69

- Calculate Total Magnetization
mtotal = mrev + mirr;

Calculate Flux and Flux Density
flux = mg * (ms * mtotal + h);
B = flux/area;

70 END ARCHIIEX:JIURE cor e 2 _j a ;

LISTING D.7: VHDL-AMS implementation of the original Jiles-Atherton ferro­

magnetic hysteresis model.

D.3 Proposed Jiles-Atherton Model

1 library disciplines;
2 use disciplines. electromagnetic_system. all;
3
4 entity coreLja is
5 generic (k, c , ms, alpha, a, area: rea I) ;
6 port (terminal p,m : magnetic);
7 end entity core1_ja;
8
9 .ARallIECIURE coreLja OF corel IS

10 c:x:>NITANr MUO: real :=4.0e-7*MATH..PI;
11 c:x:>NITANr mg: rea I : =MUO* are a ;
12 c:x:>NITANr dhmax: rea I : = 1 2 . 0 ;
13 QUANIIIY H across flux through p TO m;
14 QUANIIIY He,B, mrev, mirr, mtotal ,man: real :=0.0;
15 SIGNAL lasth , deltah , mirrsig: real :=0.0;
16 SIGNAL hchanged, trig: boolean:=false;
17
18 FUNCTION lang_mod (x : real) RETURN real is -Langiven 's function
19 variable lang_x : real := 0.0;
20 BEGIN
21 lang_x := (2. O/MATH..PI) * arctan (x);
22 RETURN lang_x;
23 END FUNCTION;

204

Appendix D VHDL-AMS Models 205

24
25 BEGIN
26 - hchanged signal assignment triggered by sufficient changes in fi eld strength
27 hchanged <= H'above(lasth+dhmax) or not H'above(lasth-dhmax);
28
29 - Simultaneous statement to calculate He
30 He = H + (alpha * ms * mtotal);
31
32 Anhysteretic Magnetization
33 man = lang_mod(He/a);
34 mrev = c * man / (1.0 + c);
35
36 -- Calculate Total Magnetization
37 mirr = mirrsig;
38 mtotal = mrev + mirrsig;
39
40 -- Calculate Flux and Flux Density
41 flux = mg * (ms * mtotal + H);
42 B = flux/area;
43
44 -process to monitor H triggered by hchanged
45 PfU)CESS (hchanged)IS
46 VARIABLE dh : real := 0.0;
47 BEGIN
48 trig<=false;
49 dh := (H-Iasth);
50 if abs (dh) > dhmax then
51 deltah <= dh;
52 lasth <= H;
53 t rig <=t rue ;
54 end if;
55 END PfU)CESS;
56
57 -- process to integrate dM/dH with Euler method
58 PfU)CESS (trig) IS
59 variable dk : real := 0.0;
60 variable deltam ,dm,dmdh,dmdh1,dh: real;
61 BEGIN
62 if deltah > 0.0 then -- get field direction
63 dk:=k ;-- rising
64 else
65 dk:= -k; --falling
66 end if;
67
68 Forward Euler integration method
69 dh := deltah;
70 deltam:= man - mtotal;
71 dmdh1 := deltam/((l.O +c)*(dk - (alpha*ms*deltam)));
72 if dmdh1>0.0 then
73 dmdh:=dmdh1 ;
74 else
75 dmdh:=O.O;
76 end if;
77
78 dm:=dh*dmdh;
79
80 if dh * dm < 0.0 then
81 dm:=O.O
82 end if;
83
84 -- JA Model
85 mirrsig <= mirrsig + dm;
86
87 END PfU)CESS;
88 END.ARC:HI1:ECIURE cor e 1 _ j a ;

LISTING D.S: VHDL-AMS implementation of the proposed Jiles-Atherton fer­
romagnetic hysteresis model.

References

[lJ M. Hamour, R. Saleh, S. Mirabbasi, and A. Ivanov, "Analog IP Design Flow

for SoC Applications," in Proceedings International Symposium on Circuits

and Systems, Bangkok, Thailand, 25-28 May 2003.

[2J A. Habibi and S. Tahar, "A Survey on System-On-a-Chip Design Lan­

guages," in Proceedings IEEE International Workshop on System-on-Chip,

Alberta, Canada, June-July 2003.

[3J C. Rowen, "Reducing SoC Simulation and Development Time," IEEE Com­

puter, vol. 35, no. 12, pp. 29-34, December 2002.

[4J J. Henkel, "Closing the SoC Design Gap," IEEE Computer, vol. 36, no. 9,

pp. 119--121, September 2003.

[5J F. Pichon, S. Blanc, and B. Candaele, "Mixed-Signal Modelling in VHDL for

System-On-Chip Applications," in Proceedings European Design and Test

Conference, Paris, France, 6-9 March 1995.

[6J J. Barby, S. Rehan, and M. Elmasry, "AHDL Modelling to Support Top­

down Design of Mixed-Signal ASICs," in Proceedings 7th Annual IEEE In­

ternational ASIC Conference and Exhibit, New-York USA, 19-23 September

1994.

[7J K. ODA, L. Prado, and A. Gadient, "A New Methodology for

Analog/Mixed-Signal (AMS) SoC Design That Enables AMS Design Reuse

206

REFERENCES 207

and Achieves Full-Custom Performance," in Proceedings IEEE/DATC Elec­

tronic Design Processes Workshop, Monterey, USA, 21-23 April 2003.

[8] P. Ashenden, The Designer's Guide to VHDL, Morgan Kaufmann, 2000.

[9] IEEE Standard for Verilog Hardware Description Language, IEEE Std.

1364-2001, 13th edition, 2001.

[10] Open SystemC Initiative OSCI, SystemC Language Reference Manual,

www.systemc.org, 2003.

[11] Accellera, System Verilog language Reference Manual 3.1, 2004.

[12] W. Banzhaf, Computer-Aided Circuit Analysis using SPICE, Prentice Hall,

1989.

[13] D. Hanselman and B. Littlefield, Mastering MATLAB 6, Prentice Hall,

2003.

[14] IEEE Inc, IEEE Standard VHDL language Reference Manual (Integrated

with VHDL-AMS Changes),IEEE std 1076.1,1997.

[15] Open Veri log International, Verilog-AMS Language Reference Manual 2.0,

January 2000.

[16] R. Roth and D. Ramanathan, "A High-level Hardware Design Methodol­

ogy Using CjC++," in Proceedings High Level Design Validation and Test

Workshop, San Diego, USA, 1999.

[17] G. Arnout, "C for System Level Design," in Proceedings Design, Automation

and Test in Europe Conference and Exhibition, Messe Munich, Germany, 9-

12 March 1999.

[18] S. liao, "Towards a New Standard for System-Level Design," in Proceed­

ings International Symposium on Hardware/Software Codesign, San Diego

California USA, 3-5 May 2000.

REFERENCES 208

[19] Computing Labortary, Handel-C Manual, Oxford University.

[20] D. Gajski and J. Zhu, SpecC: Specification language and Design Methodology,

Kluwer Academic Publishers, 2000.

[21] Open SystemC Initiative OSCI Documents, SystemC 2.0.1 User's Guide,

1996-2002.

[22] D. Leenaerts, G. Gielen, and R. Rutenbar, "CAD Solutions and Outstanding

Challenges for Mixed-Signal and RF IC Design," in Proceedings IEEE/ ACM

International Conference on Computer Aided Design, San Jose California

USA, 4-8 November 2001.

[23] G. Gielen and R. Rutenbar, "Computer-Aided Design of Analog and Mixed­

Signal Integrated Circuits," IEEE, vol. 88, no. 12, pp. 1825 - 1854, December

2000.

[24] K. Kundert, H. Chang, D. Jefferies, G. Lamant, E. Malavasi, and F. Sendig,

"Design of Mixed-Signal Systems-on-a-Chip," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 12,

pp. 1561 1571, December 2000.

[25] Blue Pacific, BlueHDL User's Manual, at www.bluepc.com. version 09-20-01

edition, 2001.

[26] synopsys Products and Solution,

www.synopsys.com. 2003.

System Studio Datasheet,

[27] Forte Design Systems, Cynthesizer Datasheet, at www.forteds.com. 2004.

[28] EDA today, Electronic Design Automation User Study, 1999.

[29] Celoxica, Survey of System Design Trends, December 2003.

at

[30] ICCAD 2000 Roundtable, IEEE Design and Test of Computers, May-June

2001.

REFERENCES 209

[31 J Nikkei Publications NEAsia Online, C Language in Chip Design Shorten

Time-to-Market, September 2004.

[32J L. Semeria, Applying Pointer Analysis to the Synthesis of Hardware From

C, Phd thesis, Standford University, June 200l.

[33J N. Calazans, E. Moreno, F. Hessel, V. Rosa, F. Moraes, and E. Carara,

"From VHDL Register Transfer Level to SystemC Transaction Level Mod­

eling: a Comparative Case Study," in Proceedings 16th Symposium on In­

tegrated Circuits and Systems Design, Sao Paulo, BRAZIL, 8-11 September

2003.

[34J Open SystemC Initiative OSCI Documents, "Overview of the Open SystemC

Initiative," 1999.

[35J Mentor Graphics Corporation, Seamless Datasheet, at www.mentor.com.

5th edition.

[36J J. Kunkel and K. Kranen, "SystemC Demonstrates Rapid Progress," EE

Times, 26 September 2000.

[37J D. Smith, S. Majdecki, and D. Johmson, "Interactive Control of Analog

System Simulation," VLSI Systems Design, vol. 8, no. 7, pp. 46-54, 1987.

[38J D. Thelen and J. MacDonald, "Simulating Mixed Analog-Digital Circuits

on a Digital Simulator," in Proceedings IEEE International Conference on

Computer-Aided Design, 7-10 November 1988.

[39J D. Metzner and J. Schafer, "Architecture Development of Mixed Signal

ICs for Automotive Applications," in Proceedings IEEE International Be­

havioral Modeling and Simulation Conference, Santa Rosa, California, USA,

7-8 October 2002.

REFERENCES 210

[40] T. Zhang, K. Chakrabarty, and R. Fair, "Behavioral Modeling and Per­

formance Evaluation of Microelectrofiuidics-Based PCR Systems Using Sys­

temC," IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 23, no. 6, pp. 843 ~ 858, June 2004.

[41] S. Levitan, J. Martinez, T. Kurzweg, A. Davare, M. Kahrs, M. Bails, and

D. Chiarulli, "System Simulation of Mixed-Signal Multi-Domain Microsys­

terns With Piecewise Linear Models," IEEE Transactions on Computer­

Aided Design of Integrated Circuits and Systems, vol. 22, no. 2, pp. 139-156,

February 2003.

[42] D. Edenfeld, A. Kahng, M. Rodgers, and Y. Zorian, "2003 Technology

Roadmap for Semiconductors," IEEE Computer Society, pp. 47~56, January

2004.

[43] Southampton University, VHDL-AMS Validation Suite,

http) /www.syssim.ecs.soton.ac.uk/validsui.html. 1997.

[44] J. Bhasker, A SystemC Primer, Star Galaxy Publishing, 2002.

[45] A. Vachoux, Ch. Grimm, and K. Einwich, "SystemC-AMS Requirements,

Design Objectives and Rationale," in Proceedings Design, Automation and

Test in Europe Conference and Exhibition, Messe Munich, Germany, 3-7

March 2003.

[46] Open SystemC Initiative OSCI Documents, Functional Specification for

SystemC 2.0.1, Version 2.0-Q, 2002.

[47] J. Gerlach and W. Rosenstiel, "System Level Design Using the SystemC

Modelling Platform," in Proceedings Forum on Specification and Design

Languages, Copenhagen Denmark, 26-29 June 2001.

[48] Open SystemC Initiative OSCI Documents, An Introduction to System Level

Modelling in SystemC 2.0, 2001.

REFERENCES 211

[49J P. Panda, "SystemC- A modelling Platform Supporting Multiple Design

Abstractions," in Proceedings 14th International Symposium on Systems

Synthesis, Montreal Canada, 1-3 October 2001.

[50J H. Patel, "HEMLOCK: Heterogeneous Model of Computation Kernel for

SystemC," M.S. thesis, Virginia Polytechnic Institute and State University,

December 2003.

[51J S. Pasricha, "Transaction Level Modeling of SoC Using SystemC 2.0," m

Proceedings Synopsys User Group Conference, Bangalore, India, May 2002.

[52J R. Hilderink and S. Klostermann, "Transaction Level Modelling of SOC

Platform Using SystemC," in Proceedings Design, Automation and Test in

Europe Conference and Exhibition, Paris, France, 4-8 March 2002.

[53J D. Ku and G. De Micheli, High-Level Synthesis of A SICs Under Timing and

Synchronization Constraints, Kluwer Academic Publishers, Boston, USA,

1992.

[54J Ch. Stoud, R. Munoz, and D. Pierce, "Behavioral Model Synthesis with

Cones," IEEE Design and Test of Computers, vol. 5, no. 3, pp. 22--30, June

1988.

[55J L. Lavagno and E. Sentovich, "ECL: A Specification Environment for

System-Level Design," in Proceedings Design Automation Conference, New

Orleans, USA, June 1999.

[56J N. Koichi, K. Andrew, Y. Akihisa, K. Takashi, and N. Toshio, "Hardware

Compiler BachC," Tech. Rep., Sharp Laboratories of Europe Limited, 2001.

[57J IMAC, GCAPI, http://www.imec.be/ocapi.

[58J CynApps, CYNLIB, http://www.cynapps.com.

REFERENCES 212

[59] M. O'Nils J. Lundgren and B. Oelmann, "A SystemC Extension for Be­

havioural Level Quantification of Noise Coupling in Mixed-Signal Systems,"

in Proceedings IEEE International Symposium on Circuits and Systems,

Bangkok, Thailand, 25-28 May 2003.

[60] T. Bonnerud, B. Hernes, and T. Ytterdal, "A Mixed-Signal Functional Level

Simulation Framework Based on SystemC," in Proceedings IEEE Custom

Integrated Circuits Conference, San Diego California USA, 6-9 May 2001.

[61] M. Conti, M. Caldari, S. Orcioni, and G. Biagetti, "Analog Circuit Modelling

in SystemC," in Proceedings Forum on Specification and Design Languages,

Frankfurt, Germany, 23-26 September 2003.

[62] S. Orcioni, G. Biagetti, and M. Conti, "SystemC-WMS: A Wave Mixed Sig­

nal simulator," in Proceedings Forum on Specification and Design Langauges,

Lausanne, Switzerland, 27-30 September 2005.

[63] Ch. Grimm, Ch. Meise, W. Heupke, and K. Waldschmidt, "Refinement of

Mixed-signal Systems with SystemC," in Proceedings Design, Automation

and Test in Europe Conference and Exhibition, Messe Munich, Germany, 3-7

March 2003.

[64] J. Romberg and Ch. Grimm, "Refinement of Hybrid Systems From Formal

Models to Design Languages," in Proceedings Design, Automation and Test

in Europe Conference and Exhibition, Messe Munich, Germany, 3-7 March

2003.

[65] K. Einwich, Ch. Clauss, G. Noessing, P. Schwarz, and H. Zojer, "SystemC

Extensions for Mixed-Signal System Design," in Proceedings Forum on Spec­

ification and Design Languages, Lyon France, 3-7 September 2001.

[66] K. Einwich, "Application of SystemC/SystemC-AMS for the Specification

of a Complex Wired Telecommunication System," in Proceedings Forum on

REFERENCES 213

Specification and Design Langauges, Lausanne, Switzerland, 27-30 Septem­

ber 2005.

[67J E. Markert, G. Herrmann, and D. Muller, "System Model of an Inertial

Navigation System Using SystemC-AMS," in Proceedings Forum on Spec­

ification and Design Langauges, Lausanne, Switzerland, 27-30 September

2005.

[68J Ch. Grimm, P. Oehler, Ch. Meise, K. Waldschmidt, and W. Fey, "AnalogSL:

A Library for Modelling Analog Power Drivers with C++," in Proceedings

Forum on Specification and Design Languages, Lyon France, 3-7 September

2001.

[69J P. Birrer and W. Hartong, "Incorporating SystemC in Analog/Mixed-Signal

Design Flow," in Proceedings Forum on Specification and Design Langauges,

Lausanne, Switzerland, 27-30 September 2005.

[70J A. Vachoux, Ch. Grimm, and K. Einwich, "Analog and Mixed Signal Mod­

elling with SystemC-AMS," in Proceedings IEEE International Symposium

on Circuits and Systems, Bangkok, Thailand, 25-28 May 2003.

[71] K. Einwich and Ch. Grimm, "Mixed Signal Extensions for SystemC," in Pro­

ceedings Forum on Specification and Design Languages, Marseille, France, 24

- 27 September 2002.

[72J K. Einwich, "SystemC-AMS Steps Towards an Implementation," in Pro­

ceedings Forum on Specification and Design Languages, Frankfurt, Germany,

23-26 September 2003.

[73J T. Cuenin, O. Romain, and P. Garda, "Design and modelling of an i2c bus

controller," in Proceedings Forum on Specification and Design Languages,

Frankfurt, Germany, 23-26 September 2003.

REFERENCES 214

[74J University of Cincinnati Electronic Design Automation Research Cen­

tre, Distributed Processing Laboratory, VHDL-AMS Analyzer Ver 0.4,

http)/www.ece.uc.edu/ vasu/index.html, 1997.

[75J VHDL-AMS Frontend, Java- Version, http://www.ti.informatik.uni-

frankfurt.de/grimm/hybrid.html#VHDL-AMS, 1997.

[76J LEDA S.A., VHDL-AMS compiler, http://worldserver.oleane.com/leda.

[77J D. Muller, "Subproject A2-System-Level Modelling and System Simulation

with VHDL-AMS Examplified by a Full Circle Panoramic," in Proceedings

Microsystem Symposium, Delft, The Netherlands, 10-11 September 1998.

[78J E. Moser, "VHDL-AMS the Missing Link in System Design Experiment

with Unified Modelling in Automotive Engineering," in Proceedings Design,

A utomation and Test in Europe Conference and Exhibition, Paris, France,

23-26 February 1998.

[79] 1. Sharp, O. Zinke, and A. Patterson, "Using VHDL-AMS for a Motor­

Controller Design and Simulation," in Proceedings DAK Forum, Trondheim,

Norway, 27-28 October 1999.

[80] J. Hanna and R. Hillman, "A Mixed Basis for Micro-System Modelling," m

Proceedings International Conference on Modelling and Simulation of Mi­

crosystems, San Juan Puerto Rico USA, 19-21 April 1999.

[81] J. Alejandro 1. Alcantud and T. Kazmierski, "VHDL-AMS Modelling of

Self-Organizing Neural Systems," in Proceedings IEEE International Sym­

posium on Circuits and Systems, Geneva, Switzerland, 28-31 May 2000.

[82] N. Milet, G. Monnerie, A. Fakhkakh, D. Geofferoy, Y. Herve, H. LEVI,

and J. Charlot, "A VHDL-AMS Library of RF Blocks Models," in Proceed­

ings IEEE International Workshops on Behavioral Modeling and Simulation,

Santa-Rosa USA, 11-12 October 2001.

REFERENCES 215

[83J C. Lallement, F. Pcheux, and Y. Herv, "VHDL-AMS Design of a MOST

Model Including Deep Submicron and Thermal-Electronic Effects," in Pro­

ceedings IEEE International Workshops on Behavioral Modeling and Simu­

lation, Santa-Rosa USA, 11-12 October 200l.

[84J F. Hamid and T. Kazmierski, "Analogue Filter Synthesis From VHDL­

AMS," in Proceedings Forum on Specification and Design Languages, Lyon,

France, 3-7 September 200l.

[85J A. Doboli, "The Definition of VHDL-AMS Subset for Behavioural Synthesis

of Analogue Systems," in Proceedings IEEE International Workshops on

Behavioral Modeling and Simulation, Orlando USA, 27-28 October 1998.

[86J U. Heinkle, M. Padeffke, W. Haas, T. Buerner, H. Braisz, T. Gentner, and

A. Grassmann, The VHDL Reference: Practical Guide to Computer-Aided

Integrated Circuit Design including VHDL-AMS, Wiley Publisher, 2000.

[87J P. Ashenden, G. Peterson, and D. Teegarden, The System Designer's Guide

to VHDL-AMS, Morgan Kaufmann, 2000.

[88J E. Christen and K.Bakalar, "VHDL-AMS-A Hardware Description Lan­

guage for Analogue and Mixed-Signal Applications," IEEE Trans. On Cir­

cuit and Systems-II: Analogue and Digital Signal Processing, vol. 46, no. 10,

pp. 1263~ 1272, October 1999.

[89J Jesse Liberty, Teach yourself c++ m 24 hours, Sams Publishing, 3rd

edition, 2002.

[90J C. Ho, A. Ruehli, and P. Brennan, "The Modified Nodal Approach to

Network Analysis," IEEE Transactions on Circuit and systems, vol. CAS-

22, no. 6, June 1975.

REFERENCES 216

[91] K. Nichols, T. Kazmierski, M. Zwolinski, and A. Brown, "Overview of

SPICE-Like Circuit Simulation Algorithms," lEE circuits Devices Systems,

vol. 141, no. 4, pp. 242-250, Augest 1994.

[92] K. Nichols, J. Lin, A. Brown, T. Kazmierski, and M. Zwolinski, "Reliabil­

ity of circuit-level simulation," in Proceedings lEE Colloquium on SPICE:

Surviving Problems in Circuit Evaluation, 30 January 1993.

[93] T. Kazemirski, "Fuzzy-Logic Digital-Analogue Interfaces for Accurate

Mixed-Signal Simulation," in Proceedings Design, Automation and Test in

Europe Conference and Exhibition, Paris, France, 23-26 February 1998.

[94] M. Daniel and C. Gwyn, "CAD Systems for IC Design," IEEE Tansactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. CAD-I,

no. 1, January 1982.

[95] D. Calahan, Computer Aided Network Design, McGraw-Hill, 1972.

[96] L. Chua and P. Lin, Computer-Aided Analysis of Electronic Circuits: Algo­

rithms and Computational Techniques, Prentice Hall, 1975.

[97] J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design,

Van Nostrand Reinhold, 1983.

[98] A. Ruehli, Circuit Analysis, Simulation and Design, North-Holland, 1986.

[99] V. Litovski and M. Zwolinski, VLSI Circuit Simulation and Optimization,

Chapman and Hall, 1997.

[100] T. Kazmierski, Chapter 3 Techniques of Circuit Simulation in Computer­

Aided Tools for VLSI System Design, Peter Peregrinus Ltd., Stevenage,

U.K., 1986.

REFERENCES 217

[101] H. Shichman, "Integration System of a Nonlinear Network Analysis Pro­

gram," IEEE Transactions on Circuit Theory, vol. CT-17, pp. 378-386,

August 1970.

[102] W. Van Bokhoven, "Linear Implicit Differentiation Formulas of Variable

Step and Order," IEEE Transactions on Circuits and Systems, vol. 22, no.

2, pp. 109-115, February 1975.

[103] E. Haber, "Quasi-Newton Methods for Large-Scale Electromagnetic Inverse

Problem," lOP publishing inverse problems, , no. 21, pp. 305--323, 2005.

[104] W. Mueller, J. Ruf, D. Hoffmann, J. Gerlach, Th. Kropf, and W. Rosenstiehl,

"The Simulation Semantics of SystemC," in Proceedings Design, Automat'ion

and Test in Europe Conference and Exhibition, Messe Munich, Germany, 13-

16 March 2001.

[105] T. Kujanpaa, "Mixed Analog/Digital Circuit Simulation in APLAC," Tech.

Rep. CT-37, Helsinki University of Technology, Department of Electrical and

Communication Engineering, Circuit Theory laboratory, 1998.

[106] D. Lungeanu and C. Richard Shi, "Distributed Event-Driven Simulation of

VHDL-SPICE Mixed-Signal Circuits," in Proceedings International Confer­

ence on Computer Design, Texas, USA, 23-26 September 2001.

[107] D. Overhauser and R. Saleh, "Evaluating Mixed-Signal Simulators," In

Proceedings IEEE Custom Integrated Circuits Conference, Santa Clara CA,

USA, May 1995.

[108] M. Zwolinski, C. Garagate, Z. Mrcarica, T. Kazmierski, and A. Brown,

"Anatomy of a Simulation Backplane," lEE Computers and Digital Tech­

niques, vol. 142, no. 6, pp. 377- 385, November 1995.

[109] Analogy Inc, Guide to Mixed-Signal Simulation, Book one: VHDL-AMS,

1996-1999.

REFERENCES 218

[110] A. Brown and M. Zwolinski, "The Continuous-Discrete Interface - What

Does This Really Mean? Modelling and Simulation Issues ," in Proceedings

International Symposium on Circuits and Systems, 25-28 May 2003.

[111] S. Strogatz, Nonlinear Dynamics and Chaos, Addison-Wesley, 1994.

[112] MathWork, MATLAB, Vander Pol Oscillator demo (deedemol).

[113] Mentor Graphics Corporation, www.mentor.com. System Vision Data sheet.

[114] J. Gleick, Chaos: Making a New Science, Minerva Publisher, November

1996.

[115] MathWork, MATLAB, Lorenz Chaos demo (deedemo2).

[116] S. Ben-Yaakov, "SPICE Simulation of PWM DC-DC Convertor Systems:

Voltage Feedback, Continuous Inductor Conduction Mode," lEE Electronics

Letters, vol. 25, no. 16, pp. 1061 1063, August 1989.

[117] B. Antao, F. El-Turky, and R. Leonowich, "Mixed-Mode Simulation of

Phase-Locked Loops," in Proceedings IEEE Custom Integrated Circuits Con­

ference, 9-12 May 1993.

[118] N. Godambe and C. Richard Shi, "Behavioral Level Noise Modeling and

Jitter Simulation of Phase-Locked Loops \Vith Faults Using VHDL-AMS,"

in Proceedings IEEE VLSI Test Symposium, 27 April-l May 1997.

[119] M. Takahashi, K. Ogawa, and K. Kundert, "VCO Jitter Simulation and

its Comparison with Measurement," in Proceedings Asia and South Pacific

Design Automation Conference, Wanchai, Hong Kong, 18-21 January 1999.

[120] X. Mao, H. Yang, and H. Wang, "Behavioral Modeling and Simulation of

Jitter and Phase Noise in Fractional-N PLL Frequency Synthesizer," in Pro­

ceedings IEEE International Behavioral Modeling and Simulation Workshop,

San Jose, California, USA, 21-22 October 2004.

REFERENCES 219

[121] D. Jiles and D. Atherton, "Theory of Ferromagnetic Hysteresis," Journal

of Applied Physics, vol. 55, no. 6, pp. 2115~2120, 15 March 1984.

[122] D. Jiles and D. Atherton, "Theory of Ferromagnetic Hysteresis," Journal of

Magnetism and Magnetic Materials, vol. 61, no. 1-2, pp. 48-60, September

1986.

[123] D. Jiles and J. Thoelke, "Theory of Ferromagnetic Hysteresis: Determi­

nation of Model Parameters from Experimental Hyteresis Loops," IEEE

Transactions on Magnetics, vol. 25, no. 5, pp. 3928~3930, September 1989.

[124] C. Chuang and C. Harrison, "Analogue Behavioural Modelling and Simu­

lation Using VHDL and Saber-MAST," in Proceedings lEE Colloquium on

Mixed Mode Modelling and Simulation, November 1994.

[125] A. Maxim, D. Andreu, and J. Boucher, "A Novel Behavioral Method of

SPICE Macromodeling of Magnetic Components Including The Tempera­

ture and Frequency Dependencies," in Proceedings IEEE Applied Power

Electronics Conference and Exposition, USA, 15-19 February 1998.

[126] P. Wilson and T. Kazmierski, "A Novel Approach to Mixed-Domain Behav­

ioral Modeling of Ferromagnetic Hysteresis in VHDL-AMS," in Proceedings

Forum on Specification and Design Langauges, Lille-France, 13-17 Septem­

ber 2004.

[127] P. Wilson, J. Ross, A. Brown, T. Kazmierski, and J. Baranowski, "Efficient

Mixed-Domain Behavioural Modelling of Ferromagnetic Hysteresis imple­

mented in VHDL-AMS," in Proceedings Design, Automation and Test in

Europe Conference and Exhibition, Paris, France, 16-20 February 2004.

[128] T. Kazmierski and J. Baranowski, "A Modified Jiles-Atherton Model of Fer­

romagnetic Hysteresis for Behavioral Circuit Simulation in VHDL-AMS,"

REFERENCES 220

in Proceedings IEEE Behavioral Modeling and simulation Workshop, Or­

lando, USA, October 1999.

[129] M. Williams, R. Vogelsong, and K. Kundert, "Simulation and Modeling of

Nonlinear Magnetics," in The Designer Guide, www.designers-guide.com.

March 2002.

[130] W. Archer, M. Deveney, and R. Nagel, "Non-Linear Transformer Modeling

and Simulation," in Proceedings IEEE Midwest Symposium on Circuits and

Systems, LA USA, 3-5 August 1994.

[131] H. Brachtendorf and R. Laur, "A Hysteresis Model for Hard Magnetic Core

Materials," IEEE Transactions on Magnetics, vol. 33, no. 1, pp. 723 727,

January 1997.

[132] K. Ngo, "Sub circuit Modeling of Magnetic Cores with Hysteresis in PSpice,"

IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 4, pp.

1425-1434, October 2002.

[133] E. Della Torre and F. Vajda, "Properties of Accommodation Models," IEEE

Transactions on Magnetics, vol. 31, no. 3, pp. 1775~ 1780, May 1995.

[134] A. Brown, J. Ross, and K. Nichols, "Time-Domain Simulation of Mixed N on­

linear Magnetic and Electronic Systems," IEEE Transactions on Magnetics,

vol. 37, no. 1, pp. 522~532, January 2001.

[135] K. Carpenter, "A Differential Equation Approach to Minor Loops in the

Jiles-Atherton Hysteresis Model," IEEE Transactions on Magnetics, vol.

27, no. 6, pp. 4404-4406, November 1991.

[136] A. Benabou, S. Clnet, and F. Piriou, "Comparison of Preisach and Jile­

sAtherton Models to Take into Account Hysteresis Phenomenon for Finite

Element Analysis," Journal of Magnetism and Magnetic Materials, vol. 261,

no. 1-2, pp. 139~ 160, April 2003.

REFERENCES 221

[137] F. Ossart and G. Meunier, "Comparision Between Various Hysteresis Models

and Experimental Data," IEEE Transactions on Magnetics, vol. 26, no. 5,

pp. 2837~2839, September 1990.

[138] F. Preisach, "Uber Die Magnetische Nachwirkung," Zeitschrift Fur Physik,

p. 277302, 1935.

[139] X. Liu and J. Wagner, "Design of Vibration Isolation Actuator for Auto­

motive Seating Systems-Part1:Modelling and passive isolator performance,"

Journal of Vehicle Design, vol. 29, no. 4, pp. 335~356, April 2002.

[140] X. Liu and J. Wagner, "Design of Vibration Isolation Actuator for Auto­

motive Seating Systems-Part2:Controller design and actuator performance,"

Journal of Vehicle Design, vol. 29, no. 4, pp. 357~375, April 2002.

[141] L. Wang and T.J. Kazmierski, "VHDL-AMS Modeling of an Automotive

Vibration Isolation Seating System," in Proceedings 3rd International Con­

ference on Circuits, Signals and Systems, CA USA, 24-26 October 2005.

[142] H. Schlebusch, "SystemC Based Hardware Synthesis Becomes Reality," m

Proceedings 26th EUROMICRO Conference, Maastricht, The Netherlands,

5-7 September 2000.

[143] P. Cavalloro, A. Allara, M. Bombana, and F. Ferrandi, "Requirements for

Synthesis Oriented Modeling in SystemC," in Proceedings Forum on Speci­

fication and Design Languages, Lyon France, 3-7 September 200l.

[144] H. Jang, M. Kang, M. Lee, K. Chae, K. Lee, and K. shim, "High-Level

System Modelling and Architecture Exploration with SystemC on a Network

SoC: S3C2510 Case Study," in Proceedings Design, Automation and Test in

Europe Conference and Exhibit'ion, Paris, France, 16-20 February 2004.

REFERENCES 222

[145] A. Braun, T. Schubert, M. Stark, K. Haug, J. Gerlach, and W. Rosen­

stiel, "Case Study: SystemC-Based Design of an Industrial Exposure Con­

trol Unit," in Proceedings Forum on Specification and Design Languages,

Frankfurt, Germany, 23-26 September 2003.

[146] Cadence Design Systems homepage, http://www.cadence.com.

[147] T. Kogel, A. Wieferink, H. Meyr, and A. Kroll, "SystemC Based Architec­

ture Exploration of 3D Graphics Processor," in Proceedings IEEE Workshop

on Signal Processing Systems, Antwerp, Belgium, 26-28 September 2001.

[148] Coware Inc., Success Stories, http://www.coware.comj.

[149] I'd. Caldari, M. Conti, P. Crippa, G. Marozzi, F. Di Gennaro, and

C. Turchetti, "SystemC Modelling of a Bluetooth Transeiver: Dynamic

Management of Packet Type in a Noisy Channel," in Proceedings Forum on

Specification and Design Languages, Frankfurt, Germany, 23-26 September

2003.

[150] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralist, and C. Turchetti,

"Transaction-Level Models for AMBA Bus Architecture Using SystemC

2.0," in Proceedings Design, Automation and Test in Europe Conference

and Exhibition, Messe Munich, Germany, 3-7 March 2003.

[151] F. Bruschi, F. Ferrandi, D. Sciuto, and M. Bombana, "SystemC Specification

of a Telecom PCI-Compatible Interface," in Proceedings Design, Automation

and Test in Europe Conference and Exhibition, Paris, France, 4-8 March

2002.

[152] J. Armstrong and Y. Ronen, "Modelling with SystemC: A Case Study,"

in Proceedings Conference on Hardware Description Languages, San Jose,

USA, 11-12 March 2002.

REFERENCES 223

[153J L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Poncino, "Sys­

temC Cosimulation and Emulation of Multiprocessor SoC Designs," IEEE

Computer, vol. 36, no. 4, pp. 53-59, April 2003.

[154J P. Gerin, S. Yoo, G. Nicolescu, and A. Jerraya, "Scalable and Flexible

Cosimulation of SoC Designs with Heterogeneous Multi-Processor Target

Architectures," in Proceedings Asia and South Pacific Design Automation

Conference, Yokohama Japan, 30 January - 2 February 200l.

[155J F. Herrera, H. Posadas, P. Sanchez, and E. Villar, "Systematic Embedded

Software Generation from SystemC," in Proceedings Design, Automation

and Test in Europe Conference and Exhibition, Messe Munich, Germany,

3-7 March 2003.

[156J J. Chevalier, O. Benny, M. Rondonneau, G. Bois, E. Aboulhamid, and

F. Boyer, "SPACE: A Hardware/Software SystemC Modelling Platform

Including an RTOS," in Proceedings Forum on Specification and Design

Languages, Frankfurt, Germany, 23-26 September 2003.

[157J F. Fummi, S. Martini, G. Perbellini, and M. Poncino, "Native ISS-SystemC

Integration of Multi-Processor SoC," in Proceedings Design, Automation and

Test in Europe Conference and Exhibition, Paris, France, 16-20 February

2004.

[158J N. Agliada, A. Fin, F. Fummi, M. Martignano, and G. Pravadelli, "On the

Reuse of VHDL Modules into SystemC Designs," in Proceedings Forum on

Specification and Design Languages, Lyon France, 3-7 September 200l.

[159J L. Mahmoudi, A. Abutalebi, O. Nadjarbashi, and S. Hessabi, "Verilog2SC: A

Methodology for Converting Verilog HDL to SystemC," in Proceedings Con­

ference on Hardware Description Languages, San Jose, USA, 11-12 March

2002.

REFERENCES 224

[160J M. Bombana and F. Bruschi, "SystemC-VHDL Co-simulation and Synthesis

in the HW Domain," in Proceedings Design, Automation and Test in Europe

Conference and Exhibition, Messe Munich, Germany, 3-7 March 2003.

[161J Y. Yuyama, K. Takai, K. Kobayashi, and H. Onodera, "Hardware and

Software Codesign with Using SystemC and Bach," in Proceedings Design,

Automation and Test in Europe Conference and Exhibition, Paris, France,

4-8 March 2002.

[162J L. Cai, P. Kritzinger, M. Olivares, and D. Gajski, "Top-Down System

Level Design Methodology Using SpecC, vec and SystemC," in Proceedings

Design, Automation and Test in Europe Conference and Exhibition, Paris,

France, 4-8 March 2002.

[163J Cadence Inc, Virtual Component Co-design VCC 2.1 Production Documen­

tation, 1998.

[164J Co\i\Tare, ConvergenSC Product Family Document, at www.coware.com.

[165J Mentor Graphics Corporation, ModelSim SE Datasheet, at www.model.com.

version 6.0 edition, 2004.

[166J A. Habibi and S. Tahar, "A Survey: System-on-a-Chip Design and Verifica­

tion," Tech. Rep., Concordia University, Canada, January 2003.

[167J A. Fin, F. Fummi, M. Martignano, and M. Signoretto, "SystemC: A Ho­

mogenous Environment to Test Embedded Systems," in Proceedings Interna­

tional Symposium on Hardware/Software Codesign, Copenhagen, Denmark,

25-27 April 2001.

[168J C. Kern and M. Greenstreet, "Formal Verification in Hardware Design: A

Survey," ACM Transactions on Design Automation of Electronic Systems,

vol. 4, pp. 123~ 193, April 1999.

REFERENCES 225

[169] D. Grobe and R. Drechsler, "Formal Verification of LTL Formulas for

SystemC Designs," in International Symposium on Circuits and Systems,

Bangkok, Thailand, 25-28 May 2003.

[170] C. Norris and S. Swan, "Using Transaction-Based Verification in SystemC,"

Tech. Rep., Cadence Design Systems, www.cadence.com. June 2002.

[171] S. Cox, M. Glasser, W. Grundmann, C. Norris, W. Paulsen, J. Pierce,

J. Rose, D. Shea, and K. Whiting, "Creating a C++ Library for Transaction­

Based Test Bench Authoring," in Proceedings Forum on Specification and

Design Languages, Lyon France, 3-7 September 2001.

[172] J. DeGroat, A. Raman, and B. Younis, "A Design Project for System Design

with SystemC," in Proceedings IEEE International Conference on Micro­

electronic Systems Education, California USA, 1-2 June 2003.

[173] R. Jindal and K. Jain, "Verification of Transactional-Level SystemC Models

Using RTL Testbenches," in Proceedings ACM and IEEE International Con­

ference on Formal Methods and Models for Co-Design, Mont Saint-Michel

France, 24 - 26 June 2003.

[174] L. Semeria and A. Ghosh, "Methodology for Hardware/Software Co-

verification in C/C++," in Proceedings IEEE International High Level De­

sign Validation and Test Workshop, San Diego USA, November 1999.

[175] A. Hoffmann, T. Kogel, and H. Meyr, "A Framework for Hardware/Software

Co-verification," in Proceedings Design, Automation and Test in Europe

Conference and Exhibition, Messe Munich, Germany, 13-16 March 2001.

[176] G. Post, P. Venkataraghavan, T. Ray, and D. Seetharaman, "A SystemC­

Based Verification Methodology for Complex Wireless Software IP," in Pro­

ceedings Design, Automation and Test in Europe Conference and Exhibition,

Paris, France, 16-20 February 2004.

REFERENCES 226

[177] A. Fin, F. Fummi, and G. Pravadelli, "AMLETO: A Multi-Language Envi­

ronment for Functional Test Generation," in Proceedings International Test

Conference, Maryland USA, November 2001.

[178] A. Fin and F. Fummi, "LAERTE++: An Object Oriented High-level TPG

for SystemC Designs," in Proceedings Forum on Specification and Design

Languages, Frankfurt, Germany, 23-26 September 2003.

[179] F. Bruschi, F. Ferrandi, M. Chiamenti, D. Sciuto, and P. Milano, "Error

Simulation Based on the SystemC Design Description Language," in Pro­

ceedings Design, Automation and Test in Europe Conference and Exhibition,

Paris, France, 4-8 March 2002.

[180] F. Ferrandi, M. Rendine, and D. Sciuto, "Functional Verification for Sys­

temC Descriptions Using Constraint Solving," in Proceedings Design, Au­

tomation and Test in Europe Conference and Exhibition, Paris, France, 4-8

March 2002.

[181] R. Ramaswamy and R. Tessier, "The Integration of SystemC and Hardware­

Assisted Verification," in Proceedings International Conference on Field­

Programmble Logic and Applications, Montpelier, France, September 2002.

[182] Members of the SystemC Verification Working Group, "SystemC Verifica­

tion Standard Specification," 2002.

[183] F. Carbognani, Ch. Lennard, C. Norris, A. Cochrane, and P. Bates, "Quali­

fying Precision of Abstract SystemC Models Using the SystemC Verification

Standard," in Proceedings Design, A utomation and Test in Europe ConfeT­

ence and Exhibition, Messe Munich, Germany, 3-7 March 2003.

[184] CoWare, Co WaTe N2C SystemDesigner Datasheet, at www.coware.com.

2003.

[185] Celoxica, Nexus-PDK Datasheet, at www.Celoxica.coill, 2003.

REFERENCES 227

[186] Summit Design, Elite Datasheet, at www.summit-design.com. 2004.

[187] E. Grimpe and F. Oppenheimer, "Extending the SystemC Synthesis Subset

by Object-Oriented Features," in Proceedings Hardware/software Codesign

and System Synthesis, California USA, 1-3 October 2003.

[188] G. De Micheli, "Hardware Synthesis From C/C++ Models)" in Proceedings

Design, Automation and Test in Europe Conference and Exhibition, Messe

Munich, Germany, 9-12 March 1999.

[189] E. Grimpe and F. Oppenheimer, "Aspects of Object-Oriented Hardware

Modeling with SystemC-Plus," in Proceedings Forum on Specification and

Design Languages, Lyon France, 3-7 September 2001.

[190] G. Economakos, P. Oikonomakos, and 1. Panagopoulos, "Behavioural Syn­

thesis with SystemC," in Proceedings Design, Automation and Test in Eu­

rope Conference and Exhibition, Messe Munich, Germany, 13-16 March 200l.

[191] E. Bernard and R. Mueller, "SystemC: A Case Study on Behavioural Syn­

thesis and Simulation Performance," in Proceedings Forum on Specification

and Design Languages, Lyon France, 3-7 September 200l.

[192] F. Bruschi and F. Ferrandi, "Synthesis of Complex Control Structures From

Behavioural SystemC Models," in Proceedings Design, Automation and Test

'in Europe Conference and Exhibition, Messe Munich, Germany, 3-7 March

2003.

[193] L. Charest, M. Reid, E. Aboulhamid, and G. Bois, "A Methodology for Inter­

facing Open Source SystemC with a Third Party Software," in Proceedings

Design, Automation and Test in Europe Conference and Exhibition, Messe

Munich, Germany, 13-16 March 2001.

[194] R. Moigne, O. Pasqier, and J-P. Calvez, "A Graphical Tool for System­

Level Modeling and Simulation with SystemC," in Proceedings Forum on

REFERENCES 228

Specification and Design Languages, Frankfurt, Germany, 23-26 September

2003.

[195] D. Grobe, R. Dorechsler, L. Linhard, and G. Angst, "Efficient Automatic

Visualization of SystemC Designs," in Proceedings Forum on Specification

and Design Languages, Frankfurt, Germany, 23-26 September 2003.

[196] M. Coppola, S. Curaba, M. Grammatikakis, and G. Maruccia, "IPSIM:

SystemC 3.0 Enhancements for Communication Refinement," in Proceedings

Design, Automation and Test in Europe Conference and Exhibition, Messe

Munich, Germany, 3-7 March 2003.

[197] R. Siegmund and D. Muller, "SystemCSV: An Extension of SystemC for

Mixed Multi-Level Communication Modelling and Interface-Based System

Design," in Proceedings Design, Automation and Test in Europe Conference

and Exhibition, Messe .l'.1unich, Germany, 13-16 March 2001.

[198] F. Herrera, P. Sanchez, and E. Villar, "Modelling of CSP, KPN and SR

Systems with SystemC," in Proceedings Forum on Specification and Design

Languages, Frankfurt, Germany, 23-26 September 2003.

[199] D. Perez, G. Mouchard, and O. Temam, "A New Optimized Implementation

of the SystemC Engine Using Acyclic Scheduling," in Proceedings Design,

Automation and Test in Europe Conference and Exhibition, Paris, France,

16-20 February 2004.

[200] D. Grobe, G. Fey, and R. Drechsler, "Modeling Multi-Valued Circuits in

SystemC," in Proceedings 33rd International Symposium on Multiple Valued

Logic, Tokyo, Japan, 16-19 May 2003.

[201] H. Posadas, F. Herrera, P. Sanchez, E. Villar, and F. Blasco, "System-Level

Performance Analysis in SystemC," in Proceedings Design, Automation and

REFERENCES 229

Test in Europe Conference and Exhibition, Paris, France, 16-20 February

2004.

[202] O. Blaurock, "C-Model Integration and Software Development Using

System-Level Simulation at TLM in a SystemC-based Design Flow," in

Proceedings Forum on Specification and Design Languages, Frankfurt, Ger­

many, 23-26 September 2003.

