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ABSTRACT 

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS 

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 
" SYSTEMC-A: ANALOGUE AND MIXED-SIGNAL LANGUAGE FOR HIGH LEVEL 

SYSTEM DESIGN 

by Hessa Jassim AI-Junaid 

In the light of the growing popularity of mixed, analogue and digital ASICs and System on 

Chip, several high level hardware description languages (HDLs), such as VHDL and Verilog, 

have recently been extended to provide analogue and mixed-signal (AMS) modelling capabilities. 

SystemC is a new language added recently to the existing HDLs used by the digital electronic 

design community. This research has developed a new methodology that enables the extension 

of SystemC to the analogue domain and allows simulations of mixed-signal and mixed-domain 

systems on arbitrary levels of abstraction. The developed AMS extension is named SystemC-A 

and complies with SystemC semantics. In many respects, SystemC-A is more powerful than 

many existing HDLs. 

The contributions of this research can be summarised as follows: Firstly, new syntax elements 

and classes that extend SystemC to the analogue domain have been developed. The new language 

construct elements support analogue system variables, analogue components and user defined 

equations. In addition to the various abstraction levels provided by SystemC, the developed 

extension provides extra abstraction levels which are specific to analogue systems. A numeri­

cally efficient analogue kernel has been developed and implemented in which a novel equation 

formulation method for nonlinear algebraic and differential equations (DAEs) is developed. 

Secondly, a novel mixed-signal synchronisation method to integrate the analogue kernel with the 

digital one has been developed. The implementation of the lock-step synchronisation method 

provides an efficient handling of extremely small and zero time step sizes and enables analysis 

with arbitrary accuracy. Support for digital-analogue interfaces has been provided for easy and 

smooth integration of digital and analogue parts. 

Finally, SystemC-A is validated and optimised using a suite of numerically difficult analogue, 

mixed-signal, and mixed-domain examples. Their complexity ranges from simple sets of DAEs to 

highly complex mixed-signal systems, which are difficult to handle by existing HDLs. SystemC­

A supports different types of continuous-time analysis suitable for mixed-signal modelling. For 

example, it supports large-signal time domain noise analysis, which is traditionally difficult to 

implement in a mixed-signal context. 
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Chapter 1 

Introduction 

Design complexity and demanding time-to-market constraints have lead to con­

siderable challenges in the development of electronic design methodologies and 

Computer Aided Design (CAD) tools. Furthermore, the integration of a complete 

complex System on a single Chip (SoC) has begun a new era [1, 2, 3J. SoC has 

created a need to powerful CAD tools and methodologies which would be integrat­

ing information from multiple heterogenous sources (analogue parts, processors, 

RAM, ROM, etc.) and have the ability to work at high levels of abstraction [4J. 

On the other hand, advances in integrated circuit technology have been the driving 

force behind the extensive development of digital Hardware Description Languages 

(HDLs), whilst Analogue and Mixed-Signal (AMS) high level modelling is lagging 

behind the design community with immature design methodologies [5, 6J. This 

has created a gap in the design of the two different parts which threaten the rate 

of production. Despite the success of digital systems, analogue circuitry is still 

needed in particular in modern ASIC (Applications Specific Integrated Circuit) 

designed for telecommunication, wireless and computer network systems [1, 5J. 

The design of analogue blocks in SoC (e.g. Figure 1.1) and ASIC is still done to a 

large extent manually which requires time and effort together with specific skills 

1 
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[7J. All of these advances and challenges have put a pressure on CAD of AMS 

systems to keep up with the success of pure digital CAD. 

G RAM 
ADC DAC 

ROM 

G 
Voice 

Flash 
CODEC 

Memory I Bluetooth link 

control r-J-i ASB/APB I~ controller 

INTC I- 0 Timer 1 

I I 

B INTC Timer 0 

'------ll AMS blocks 

FIGURE 1.1: Example of a mixed-signal System on Chip in telecommunications 
[IJ. 

The Electronic Design Automation (EDA) industry and academia were trying 

extensively to meet these needs following different approaches [2J. One common 

approach is to model and simulate digital and analogue systems with digital HDLs 

and analogue design tools respectively. Digital HDLs such as VHDL [8], Verilog 

[9], SystemC [10J and System Verilog [l1J are used to model digital systems while 

analogue design or general purpose equation solving tools such as SPICE [12J 

and MATLAB [13J dominate in the modelling of analogue systems at different 

abstraction levels. Another approach is to extend classical HDLs intended orig-

inally to model digital systems to model analogue systems such that both parts 

are modelled and simulated in a single environment such as VHDL-AMS [14J and 

Verilog-AMS [15J. A third approach is to readapt software programming languages 
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such as C/C++ [16] to model analogue and digital hardware. It can be accom­

plished by adding special language constructs for hardware description and timing 

and defining hardware description semantics. 

The recent trend in digital modelling is toward C/C++ based modelling [17, 18] 

either through libraries or abstractions. C/C++ is already in use by hardware 

engineers at algorithmic level to estimate the system performances and verify 

the functional correctness of the design. There are various C/C++ based HDLs 

provided by EDA suppliers such as SystemC [10] and SystemVerilog [11], and from 

universities such as Handel-C [19J and SpecC [20J which then have been moved to 

the EDA tool providers. 

Of all the C/C++ based HDLs, SystemC [10J was the focused HDL since its very 

beginning. The first version of SystemC was released on September 1999 and 

since then it has gained a wide acceptance and support from industry. This broad 

acceptance suggests that the Open SystemC Initiative (OSCI) met an important 

need with the right approach. SystemC is a standardised modelling language 

intended to enable system level design and Intellectual Property (IP) exchange 

at multiple abstraction levels for systems containing both software and hardware 

components and can work as an alternative to existing HDLs [21J. 

The latest SystemC version (V2.0.1) has been in use since 2003. Although it re­

sembles the existing HDLs and adds more features for high level digital modelling, 

it does not support AMS modelling yet. This lack of analogue modelling capability 

and the popularity and reliability of SystemC provided the main motivation for 

this research (see Section 1.5). 

Within this context, this chapter is organised as follows: in Section 1.1 a broad view 

on system design stages (which is called top-down IC design methodology) is given 

illustrating the disadvantages of the use of different languages and tools at different 

levels of abstraction. Section 1.2 explains in detail the potential of SystemC which 
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motivate its use in this research. Section 1.4 defines AMS modelling and identifies 

its potential applications and the most important challenges to be tackled. Section 

1.5 presents the main objectives and contributions of this work and Section 1.6 

describes the challenges behind the choice of the case studies in order to validate 

SystemC-A. Finally, Section 1.7 outlines the structure of the thesis. 

1.1 System Design Methodology 

Top-down methodologies in Integrated Circuit (IC) design have been used for 

complex design tasks in many disciplines for a number of years [6]. Digital top­

down design is supported by many simulation levels (e.g. behavioural, RTL, logic, 

etc.) which has facilitated model generation at various steps of the design process. 

With the availability of digital HDLs, this model generation process has been 

greatly simplified and reduced the number of simulators needed to support top­

down design methodology for digital circuits. 

In the past, AMS designers had great difficulty in top-down design due to the 

lack of modelling tools and languages [22]. Typically, a transistor level net list 

description would have to be generated for each block in a design at each interme­

diate step in the top-down process. This usually resulted in little or no simulation 

support early in the design cycle with the result that conceptual or specification 

errors were not detected until later in the design cycle. This could have a serious 

impact on the design schedule as errors not detected early in the design cycle may 

force significant redesign of all or part of the circuit. 

The recent evolution of AMS HDLs made top-down design of AMS circuits fea­

sible. The customised top-down approach of AMS systems to the design flow in 

Figure 1.2 uses the following major levels of abstraction [23], where conceptual/al­

gorithmic level modelling serves as the highest abstraction level. 
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FIGURE 1.2: Design flow and levels of modelling abstractions. 

• Conceptual or algorithmic level, is where the specification of the design is 

mainly represented by signal flow diagrams with blocks described by math-

ematical equations. No structural details are considered. Designers can 

simulate at this level to prove the basic concepts of the system, and build 

a set of specifications for structural implementation. The system is mainly 

modelled at this level using C/C++ programming languages and sometimes 

application specific descriptions (such as Matlab/Simulink, Mathematica). 
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• System level, this is the first stage of the actual design, where the over­

all architecture of the system is designed and partitioned. Hardware and 

software parts are defined and both are specified in appropriate languages. 

In addition, the interfaces have to be specified. The hardware components 

are described at the behavioural level (for the analogue part, blocks are 

described by Differential and Algebraic Equations (DAE) and/or s-domain 

transfer functions and for the digital part blocks are described by difference 

algebraic equations and/or z-domain transfer functions). The system level 

partitioning and specifications are then verified using detailed co-simulation 

techniques . 

• Architectural level, is a high level decomposition of the hardware part into 

an architecture consisting of functional blocks required to realise the spec­

ified behavioural description. Also, this level includes partitioning between 

analogue and digital blocks. The specifications of the various blocks are 

defined and described in an HDL (e.g. VHDL and VHDL-AMS). The high 

level architecture is then verified against the specifications using behavioural 

simulations . 

• Register Transfer Level (RTL), is the highest structural level, where generic 

functions and variables are replaced by structural blocks. Blocks are defined 

as collections of circuits that store data and circuits that operate on data 

(storage and operators) (e.g. a variable is replaced by a register of a given 

size; an IF-statement is represented by a multiplexer, arithmetic operations 

are replaced with Arithmetic Logic Units (ALUs)). Simulation at this level 

verifies the logic definitions for the operators and sometimes verifies critical 

parameters like the clock frequency at which data is passed from one storage 

block to another. 

• Gate level, is a structural level where components are described in terms 

of digital primitives (Boolean logic gates with timing data). Storage and 
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operators are broken down into the digital functions that implement their 

function (e.g., a 2-to-1 multiplexer is represented by two AND gates and an 

OR gate). Timing of individual signal paths can be verified at gate level 

simulation . 

• Analogue cell and circuit levels, are the structural levels for the analogue 

blocks. In the selected technology process, the model at these levels repre­

sent a fully sized device level circuit schematic (with basic elements such as 

transistors, diodes, resistors, and capacitors). The resulting circuit of design 

is then verified against the specifications using SPICE-like circuit simulators. 

In cell level an equivalent circuit representation (macromodel) might be used 

to approximate similar behaviour of the original circuit in order to speed up 

analogue simulators . 

• Layout level, represents the layout of an IC which includes block placement, 

routing, and power-grid routing. Crosstalk and substrate coupling analysis 

are important in mixed-signal ICs. Proper test structures are inserted to 

make the IC testable. Detailed verification (e.g. timing analysis) is per­

formed. At this level, the system is verified by co-simulating the hardware 

part with the embedded software. Finally, masks are generated and the ICs 

are fabricated. Different testing techniques are performed during and after 

fabrication in order to reject faulty ICs. 

From the initial specifications to the final chip, the design goes through a number 

of translation and verification steps. The translation of the descriptions from one 

level of abstraction into the other is referred to as synthesis. Verification is used to 

check whether the design in the current level of abstraction is correct, conforming 

with the specifications. Both steps are performed using current HDLs. 

There are a number of problems with the top-down design approach which arise 

from using different specification languages [21J: 
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• Manual conversion from CjC++ to HDL: the designer creates and verifies 

the specification of his model using CjC++, and then translates the design 

manually into an HDL. This conversion is necessary because the logic syn­

thesis tools used by most equipment and IC manufacture require RTL HDL 

input. This process is very tedious and error prone and leads to a double 

verification load. 

• Separation between system model and HDL model: once the model of the 

system is converted to HDL, the HDL model becomes the focus of develop­

ment and the CjC++ model becomes out of date. 

• Different testbenches: testbenches that are created to validate the CjC++ 

functionality typically cannot be used to validate the HDL model. Thus, 

testbenches needs to be converted from CjC++ to HDL. 

Using top-down design methodology is expected to become the norm for designing 

mixed-signal circuits [24J. Using SystemC as a platform, on which the AMS exten­

sion will be developed, can enhance the top-down design methodology evolution 

for AMS systems. Being a system level language as well as an HDL, the SystemC 

design approach covers most of the design cycle and offers many advantages over 

the traditional design cycle, including the following [21 J: 

• Refinement methodology: the design does not have to be converted from a C­

level description to an HDL in one large effort. The design is refined in small 

sections to add the necessary hardware and timing constructs to produce a 

good design. Also, the designer can easily implement design changes and 

detect bugs during refinement . 

• Testbenches reuse: testbenches created at higher levels can be reused in 

lower levels of the design saving conversion time. Testbenches created to 

validate the system level can be used to test RTL design. 
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• Unified language: using SystemC enables the designer to utilise one lan­

guage for most of the design cycle, a language for hardware/software and 

analogue/ digital designs at different abstraction levels. 

Many EDA products built on SystemC have been announced [25, 26J. These 

products support modelling and specification of digital systems which is the first 

step in the design cycle. Some products took a step further and serve as an aid in 

hardware synthesis from SystemC [27J. 

1.2 Why SystemC? 

An EDA survey [28J has shown that more than 80% of the responding designers are 

using or planning to use C/C++. Another interesting result worth mentioning is of 

a worldwide online EDA survey conducted on November 2003 on design trends [29J. 

The survey respondent's backgrounds were, hardware engineers, system engineers, 

verification engineers and others. The survey has shown that the use of SystemC 

is expected to grow 3 times by 2004. Only 4% of the respondents currently use 

System Verilog. Handel-C also shows a significant growth, as an implementation 

language from C. ANSI C modelling usage is expected to stay relatively flat as 

models are done in a system language whereas VHDL is expected to lose a small 

amount of ground to system languages. 

This trend towards C/C++ based HDLs and the big support of SystemC in the 

industry have provided the motivation to use SystemC in this research as a system 

language and an HDL platform in which an AMS extension and new requirements 

will be added. C/C++ based HDLs offer many advantages as opposed to other 

HDLs [30, 31 J, some are summarised below: 
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Hardware / software migration 

Because of the growing amount of software running on any system, many of to­

day's chips incorporate processor cores running instruction codes compiled from 

programming languages, in particular C [32J. Thus, it is possible to move certain 

functions that are implemented in hardware to software instead of forcing an im­

plementation as an entirely dedicated hardware-based circuit. By doing so, faster 

simulations become available [31 J. 

Rich legacy code 

Moreover, among programming languages, C / C++ have been the most widely 

used in the last two decades. As a result there is a vast amount of legacy code 

and libraries that can be reused to quickly model systems. Based on its nature, 

C/C++ supports reusability of design descriptions [30J. 

Hardware / software unified language 

It has been observed [30J that system and software engineers tend to use C/C++ 

while their hardware counterparts are using HDLs such as VHDL and Verilog, 

and from the use of different description languages problems are arising. These 

problems can be solved by the adoption of a common C++ style for hardware and 

software parts of the system thus eliminating the Programming Language Interface 

(PLI) overhead. 

Furthermore, using SystemC enables designers to stay at the C-Ievel for most of the 

implementation cycle and serves as a single environment for electronic architects, 

verification and implementation engineers. In other words, SystemC facilitates the 

integration and verification of hardware and software (co-verification) components 

within one environment. The impact of co-verification is that it provides higher 
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simulation speed. In one case, IC simulation time was slashed from 20 days to 

only 8 hours [31J. 

Development efficiency 

There are numerous advantages of using CjC++ based tools, as limited resources 

in terms of design personnel and capital can be invested in the design cycle. If C­

based tools are used, there will be no need for specific compiler or specific training 

when hiring designers. Many engineers already have experience with CjC++ and 

for those that do not, training takes a shorter time and is available from many 

sources. 

CjC++ is also invaluable in reducing the man-hours needed for coding. The 

amount of coding is about 10% that of HDL [31]' which means that projects pre­

viously requiring 10 designers can now be handled by one only. This is possible 

because CjC++ supports a higher level of abstraction in coding. 

Higher abstraction levels 

Many people in the industry have complained about the slowness of existing circuit 

simulation at RTL [2J. The reason is simply that RTL is too low as an abstraction 

level to start designing multimillion gate systems. In most HDLs, descriptions are 

done at the RTL, which includes the concept of timing. In CjC++ based HDLs, 

however, the higher level of abstraction means that the specification can be made 

at the behavioral level or system level, describing only the functions ignoring cir­

cuit details. Furthermore, SystemC introduces one more abstraction level, called 

the Transaction Level (TL), higher than the RTL and lower than the system level 

[33J. SystemC is more likely to comply with new advances in the electronics in­

dustry and boost the simulation speed [29J as shown in Figure 1.3. 
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The industry is behind the new trend towards C/C++ based tools. The start 

and development of SystemC were established through the cooperation of a group 

of leading electronics companies [34J. The industry support comes from EDA 

vendors, IP providers, semiconductor, system design and embedded software com-

panies. The electronics community is becoming rich enough with SystemC-based 

different design and simulation environments [26, 25], verification tools [35, 26J 

and synthesis tools which cover most of the design cycle [27J. 

Improved simulation time 

For hardware applications, C/C++ have been used often to accelerate the design 

process since it can be efficiently compiled onto today's architectures and thus 

used to develop fast simulation models, since C code executes much faster than 

Verilog/VHDL code [32J. Other factors mentioned above such as better tools for 

verification, higher abstraction levels and shifting software functions to hardware 

will lead towards better simulation time. 
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N on-traditional standardisation 

The Open SystemC Initiative (OSCI) [10J is a step away from the traditional 

approach to establishing standards. One of the beauties of the open source process 

is that a great deal of emphasis is placed on those who contribute the most high 

quality content to the technical forum, making even political trade-offs merit­

oriented [36J. Another key benefit is speed of validation and adoption. With 

SystemC, the entire licensee base can immediately download, assess and modify a 

live, executable version of the standard, whereas with most traditional standards 

processes it can take years to produce the specification, followed by another year 

or two of adoption. 

More advantages are contained in Chapter 2 when surveying SystemC and also in 

Appendix B which gives a literature review of SystemC applications. 

1.3 SystemC-A versus VHDL-AMS 

SystemC-A is aimed to be a complementary language to existing HDLs. However, 

in many respects SystemC-A is more powerful than VHDL-AMS, the most popular 

HDL. This section summarises the main advantages of SystemC-A over VHDL­

AMS which will be realised in detail throughout the thesis. 

SystemC-A could reuse the heritage libraries of C/C++ to shorten developing new 

libraries such as those for optimisation and signal processing, while in most VHDL­

AMS simulators, math libraries are simple and need further additions. Also, while 

the type of standardisation process of VHDL-AMS had a prolong effect on its 

development, SystemC's standardisation process has strengthen its development. 

With regards to its new methods, SystemC-A includes an equation formulation 

method which gives the user the choice of simplicity in coding or faster simulation 
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speed. This equation formulation is unique to SystemC-A user and is not available 

in VHDL-AMS simulators. Also SystemC-A model has the advantage of faster 

simulation times which relate to some factors such as the synchronisation method 

and equation formulation method. Further SystemC-A demonstrate the ease of 

developing any kind of analysis. For instance, it supports time domain noise 

analysis which is not supported in some recent analogue simulators. On the other 

hand, SystemC-A benefits from the advantages of SystemC digital simulator such 

as the ability to co-model and co-simulate hardware and software in the same 

environment. Also the ability to model and simulate at high levels of abstraction 

such as the TLM while VHDL does not support modelling higher than RTL. 

1.4 Analogue and Mixed-Signal Modelling 

In the past, several approaches have been used to model AMS systems. One 

approach is to use a circuit simulator and model the digital components at a 

functional level [37J. Another approach is to use a logic simulator and model the 

analogue components at a functional level [38J. A more accurate approach is to 

use a circuit simulator for the analogue components linked to a logic simulator for 

the digital components [9J which requires tool couplings. 

The current approach in mixed-signal modelling is using AMS HDLs such as 

VHDL-AMS and Verilog-AMS. AMS HDLs describe the behaviour and structure 

of AMS systems using special language constructs, solving many modelling and 

simulation difficulties. However, AMS HDLs still need extra modelling effort to 

model at system level. Their performance in verification of a complex SoC is too 

low. This is due to the limitation of modelling software and hardware together. 

HDLs lack communication abstractions found in SystemC that make it possible to 

model at higher level of abstraction. On the other hand, any further development 
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in HDLs needs standardisation and this is considered a time consuming process. 

For example, the development and standardisation of VHDL-AMS took more than 

10 years. 

Issues related to synchronisation and interfacing between the analogue kernel, with 

its tiny integration steps, and digital kernel, with its events, are important and 

determine the efficiency of the overall simulation [23J. The speed of mixed-signal 

simulation is limited by the inherent speed disadvantage of analogue simulation. 

It varies according to factors such as simulation setup times, clock frequency, 

nonlinearities, part size, activity in the digital circuit, and time constraints in the 

analogue circuit. Mixed-simulator solutions take advantage of stable, highly-tuned 

algorithms and the user's experience in optimising and iterating simulation runs. 

The event-driven algorithms in a native mixed-signal simulator are typically not 

as efficient as those in the state of the art digital simulators, so they sacrifice speed 

and efficiency. 

Rising to meet the growing needs of their users, EDA vendors have made great 

advances in creating tools that are easy to use while still providing the accuracy 

essential for design analysis. Today mixed-signal simulation tools are as avail­

able as those used exclusively for analogue or digital designs and has led to dra­

matic improvement both in design quality and in time to market. The developed 

SystemC-A language is aimed to take a large share of the suggested map shown 

in Figure 1.4 along with the current analogue simulators and HDLs. 

1.4.1 Potential Applications and Challenges 

AMS modelling is used for a range of applications in the electronic industry such 

as amplifiers, data converters, RF circuits, filters and reference generators. Also 

in other areas such as the automotive [39], biomedical [40], mechanical [41], and 

other mixed-physical domain areas. 
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According to the 2003 edition of the International Technology Roadmap for Semi­

conductors (ITRS) [42J, today's SoCs are increasingly mixed-signal designs and 

facing a number of problems and challenges in the design methodologies and flows, 

design productivity, modelling, simulation, and verification. The modelling and 

simulation problems are of great concern in this research, which is trying to find 

solutions to enhance the process of modelling AMS systems. 

The main challenge is the need for higher levels of abstraction to describe AMS 

systems. There are three reasons for this [23J. At higher levels of the design 

methodology, the need for higher level models is necessary to describe the pin-to-

pin behaviour of the circuits rather than the internal structural implementation. 

Second, when using analogue IP macro-cells in a SoC context, the virtual compo-

nent has to be accompanied by its executable model that efficiently models the 

pin-to-pin behaviour. This model can then be used in SoC design and verification, 

without knowing the detailed circuit implementation of the virtual component. 

Third, the verification of mixed-signal systems is computationally too complex to 
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allow a full simulation of the entire design in practical terms. Therefore, higher 

description levels of the analogue sections would be extremely helpful. 

The above three problems can be solved by adopting modelling paradigms and 

languages from the digital world in the analogue domain. For example, behavioural 

and functional simulation levels have been developed for analogue circuits besides 

the well known circuit level. The main requirement of a future SoC HDL is to be 

a true mixed-signal, multilevel, mixed-domain simulator with special emphasis on 

system level design. 

The main difficulty with higher level analogue modelling (and not to be solved in 

this research) is the automatic characterisation of analogue circuits, in particular 

the automatic generation of analogue macro-models or behavioural models from 

a given design [23J. This problem needs to be addressed in the near future, as it 

might be the biggest hurdle to the adoption of high level modelling methodologies 

and AMS HDLs in industrial designs. 

SystemC-A could be an input specification for the synthesis process of analogue cir­

cuits. The acceptance of digital synthesis from SystemC could motivate a new syn­

thesis methods for SystemC-A. In the procedure of analogue synthesis, SystemC-A 

could benefit from the huge existing libraries of optimisation in C/C++ such as 

genetics algorithm and simulated annealing. Although synthesis of analogue cir­

cuits is not well established for VHDL-AMS, methods used in VHDL-AMS can 

migrate to SystemC-A. 

1.5 Research Objectives and Contributions 

The main objective of this research is to extend the capabilities of SystemC to 

model AMS systems at a high level of abstraction and to validate the developed 
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methods with suitable examples of mixed-signal mixed-domain systems. The de­

veloped system level language and the AMS extension to SystemC should be fully 

derived from SystemC and comply with its semantics. The main contributions out 

of this research are: 

l. Analogue and Mixed Signal AMS extension of SystemC 

The AMS extension includes the following: 

New syntax elements and classes to extend SystemC to the ana­

logue domain: Modelling of an analogue system requires a set of differential 

and algebraic equations (DAEs). DAEs should be easy to define, automati­

cally built and updated, and then numerically solved. For this purpose new 

language constructs have been developed, such as system variables, circuit 

components and user defined equations. 

High level nonlinear equation formulation Illethod: A numerically 

efficient analogue kernel has been constructed in order to simulate analogue 

systems and also to be linked to SystemC digital kernel. Within the analogue 

kernel, a novel high level equation formulation method has been developed 

based on the object-oriented feature of C++. 

Support for various abstraction levels: In addition to modelling at var­

ious abstraction levels provided by SystemC digital platform, the proposed 

extension provides extra abstraction levels which are specific to analogue sys­

tems. Although the main focus was on the system level to tackle complexity, 

the extension is capable of modelling at the net list level and at analogue be­

havioural level. 

2. Mixed-signal synchronisation method: A synchronisation algorithm 

is necessary when integrating an analogue kernel with a digital one. It is 

needed to synchronise the numerical integration time-stepping engine with 

the event-driven paradigm of the digital kernel. A new implementation of 
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the lock-step method, with efficient handling of zero step-sizes has been 

used for this purpose. Digital-analogue interfaces are also defined for easy 

and smooth modelling and simulation of the analogue and digital parts. 

3. Modelling and simulations of complex case studies: A wide range 

of analogue and mixed-signal examples has been used to validate the devel­

oped SystemC-A. Examples range from small sets of DAEs such as Lorenz 

chaos model and Van Der Pol oscillator equation to non-trivial mixed-signal 

systems such as switched mode power supply and phase-locked loop. Com­

plex non-electrical case studies such as ferromagnetic hysteresis and mixed­

domain automotive vibration isolation systems also have been modelled. Sec­

tion 1.6 lists the descriptions and challenges of the chosen case studies. 

Numerically efficient implementation of continuous-time analysis 

for system level modelling: Necessary continuous-time analysis suitable 

for mixed-signal system level modelling have been implemented. Examples 

are the computation of the quiescent state of the system (operating point) 

as well as mixed-signal transient and noise analysis. Noise analysis is of 

potential importance as, in a mixed-signal context, it is difficult to implement 

with traditional circuit simulators as it must be evaluated in the presence of 

large signal behavior. 

The research contributions of Chapters 3-8 are published or under revision, they 

are listed in Appendix A. 
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1.6 Descriptions and Challenges of the Chosen 

Case Studies 

The case studies have been carefully chosen to provide different modelling and 

simulation challenges for the validation of the new methods of SystemC-A. Most of 

the case studies are benchmarks which have been used in Southampton Validation 

Suite [43] to validate VHDL-AMS. Table 1.1 shows the different case studies with 

their challenges. 

TABLE 1.1: Descriptions and challenges of the chosen case studies. 
Case study Descriptions and challenges 
Van Der Pol Oscillator - popular, easy to compare, analogue system repre­

sented by nonlinear ODE. 
- modelled at behavioural level. 
- uses initial conditions. 
- one single controlled parameter may change the na-
ture of oscillations from sinusoidal to relaxation. 

Lorenz Chaos - popular, easy to compare, analogue system repre­
sented by nonlinear ODE. 
- modelled at behavioural level. 
- uses initial conditions. 
- simulated output never reaches a steady state. 

Switched Mode Power Supply SMPS - complex, mixed-signal, nonlinear system. 
- disparate time scale of its transients. 

Phase Locked Loop 

Ferromagnetic Hysteresis 

Automotive Vibration Isolation 

- has some difficulties when modelled in existing ana-
logue simulators. 
- needs excessive CPU times when modelled at circuit 
level. 
- modelled at multiple abstraction level in the same 
model. 
- make use of the following SystemC-A constructs: 
analogue circuit components, D / A interfaces, differ­
ent module connections. 
- almost all what mentioned for SMPS. 
- high level VCO model uses the output phase as sys-
tem variable. 
- design concerns of noise or jitter performance. 
- non-electrical system. 
- widely used model especially in SPICE and SABER. 
- model suffers from convergence problems, long anal-
ysis time and numerical instability. 
- state of the art in automotive suspension industry. 

mixed-domain system of complicated mixed 
electrical-mechanical hydraulic domains. 
- involves complex nonlinear DAEs. 
- involves complex control systems. 
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1.7 Thesis Structure 

The thesis is divided into three phases of nine chapters. The first phase is Chapter 

1 and 2 which are mostly background and literature review. The second phase is 

Chapter 3,4 and 5 which represent the novel and original core of SystemC-A. The 

third and final phase Chapter 6, 7 and 8 is modelling and simulation of a wide 

range of examples to validate the developed syntax and methods of SystemC-A. 

The research conclusion and future work are given in Chapter 9. The following is a 

chapter by chapter explanation with each chapter's main points and contributions. 

Chapter 2 overviews SystemC language and explains the approach of modelling 

hardware in a software language. Further, it gives an overview of all modelling 

attempts of AMS systems in SystemC or C/C++ from the literature. The chapter 

also reviews VHDL-AMS which has been an inspiration to this research. 

In Chapter 3, new methods are developed to facilitate modelling of analogue sys­

tems in an AMS environment in an accurate and efficient way. The methods 

include constructs to represent analogue system variables, analogue components 

to be modelled at lower or higher abstraction levels and analogue-digital interfaces. 

The purpose of Chapter 4 is twofold. The first aim is to overview the state of 

the art in numerical techniques for AMS simulation. The second aim is to build 

an efficient analogue kernel which is integrated with the SystemC digital kernel 

for solving analogue systems described by a set of DAEs. A novel object-oriented 

nonlinear equation formulation method is developed. 

Chapter 5 presents a novel synchronisation method to synchronise the developed 

analogue kernel with the SystemC digital kernel. The synchronisation is based on 

the lock-step method. The chapter illustrates the SystemC simulation cycle and 

the developed SystemC-A simulation cycle. It also overviews various synchronisa­

tion methods from the literature such as Backplane, Ping-pong, and Calaveras. 
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Chapter 6 presents four case studies to verify the functionality of SystemC-A 

mixed-signal simulator. The first two are simple case studies, the Van der pol 

oscillator and the Lorenz chaos. The other two are complex electrical case studies, 

a Switched Mode Power Supply (SMPS) and a 2GHz Phase Locked Loop (PLL)­

based frequency multiplier, where new noise simulation methods are developed to 

simulate the PLL. 

In Chapter 7, an electromagnetic case study of nonlinear ferromagnetic hysteresis 

based on Jiles-Atherton (JA) model is modelled and simulated as a challenge to 

SystemC-A to model non-electrical system. Due to the difficulties and instability of 

the current JA model, a new model is developed based on a timeless discretisation 

technique to integrate the magnetisation slope. 

A mixed-domain system of automotive vibration isolation is modelled and sim­

ulated in Chapter 8. The system is a nonlinear complicated mixed electrical­

mechanical-hydraulic domains and of excellent challenge for validating SystemC­

A functionalities. The system was regulated using a suite of three complex con­

trollers. 

Finally, Chapter 9 summarises the presented work and the main achievements are 

highlighted and discussed. A number of concluding remarks are drawn. Further 

aspects which are not covered in this research are highlighted and could provide a 

basis for future work. 



Chapter 2 

Literature Review 

Chapter 1 highlighted the importance and challenges of modelling AMS systems, 

suggesting SystemC as C++ based digital simulator to be linked to the proposed 

AMS extension to form SystemC-A mixed-signal simulation environment. Hence, 

before explaining the work, this chapter is to explain the following: Section 2.1 

illustrates SystemC, its definition, architecture and models of computation. Con­

cepts behind the idea of enabling a software language to model hardware are 

explained in Section 2.2. In Section 2.3 a literature review on modelling AMS 

systems is presented and serves as an orientation for this research. In Section 

2.4, VHDL-AMS is demonstrated as the most popular and widely used HDL. It's 

constructs and approaches in modeling AMS systems are playing a reference to 

the development of SystemC-A. 

2.1 SystemC 

In September 1999 the Open SystemC Initiative (aSCI) [10J was announced at 

the Embedded Systems Conference in San Jose, California. At the same time, 

23 
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the first version of SystemC VO.9 was announced and made available for free web 

download. OSCI is a growing community of leading electronics companies com­

prising EDA vendors, IF providers, semiconductor manufacturers, system design, 

and embedded software companies. In addition, OSCI includes universities and 

individuals dedicated to supporting and advancing SystemC as an open source 

standard to provide a common C++ modelling style for the entire electronics in­

dustry. To date, more than 37,684 registered licensees have downloaded SystemC 

from the OSCI website at www.systemc.org. 

The first version of SystemC VO.9 was the result of a technical cooperation between 

Synopsys, Coware, and Frontier Design who all are leading EDA vendors [34J. This 

collaboration is the first of its kind in the EDA industry and promises to quickly 

establish a de-facto modelling standard. 

In March 2000, SystemC Vl.O was released. That version of the language was 

limited to the behavioural and RTL modelling and it lacked many system level 

modelling features. Then, SystemC V2.0 was released in October 200l. It con­

tains many system level modelling features which include channels, interfaces and 

events [44J. The latest version of SystemC V2.0.1 was released in May 2003. It is 

reportedly a bug free version with major communications and interface enhance­

ments. OSCI submitted the SystemC LRM [10J to the IEEE for standardisation 

after an initial period of rapid adoption and evolution. On December 12, 2005, 

the IEEE approved the SystemC IEEE 1666 standard. A working group has been 

established in 2003 [45J aiming to extend SystemC to modelling AMS systems, 

but this aim has not been accomplished yet. 
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2.1.1 Language Definition 

SystemC [10J is defined as a C++ class library and methodology that can be used 

to effectively create a cycle-accurate model of software algorithms, hardware ar­

chitecture and build interfaces of SoC and system level designs. Using SystemC, 

a designer can create a system level model, quickly simulate to validate and opti­

mise the design, explore various algorithms, and then end up with an executable 

specification of the system. 

SystemC class library contains the necessary constructs to model system archi­

tecture, including hardware timing, concurrency, and reactive behaviour, that are 

missing in standard C++ [18J. C++ is an object-oriented programming language 

which has the ability to extend the language through classes, without adding new 

syntactic constructs. 

OSCI released several documents which define the SystemC syntax and semantics, 

namely the User Guide [21], Functional Specification [46J and lately the Langauge 

Reference Manual (LRM) [10J. These documents are included in the SystemC 

installation package. 

2.1.2 Design Flow 

Figure 2.1 illustrates a typical simulation methodology in SystemC environment 

[47J. The designer writes SystemC models at the system level, behavioural level, 

or RT level augmented by the SystemC class library. The class library consists 

of a set of header files describing the implementation of hardware objects such 

as concurrent and hierarchical modules, ports, and clocks. The class library also 

contains a lightweight kernel for scheduling the processes. The header file (sys­

temc.h) represents the class library and must be included in the user's code. The 

user's SystemC code and test bench can be compiled and linked together with the 
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class library using any standard ANSI C++ compliant compiler. The compilation 

result is an executable model of the design. Additionally, trace files can also be 

generated to view the history of selected signals using a standard waveform display 

tool. 

SystemC class 
library J 

C/C++ I 
~CTM development 

User's code and ~ 

environment 
testbench r--

systemc.h 
( compiler ) 
( linker ) 

make 

~ 
Executable Traces files 

model *.vcd 

FIGURE 2.1: SystemC design flow (see Section 2.1.2). 

2.1.3 Language Architecture 

Figure 2.2 summarises the SystemC language architecture [48J. In the figure, the 

C++ standard forms the basis of SystemC, while the heart of SystemC is its sim-

ulation kernel. Then, there are all other essential features of an HDL including 

modules, processes, ports, signals, a rich set of data types, clocks, cycle-based 

simulation, multiple abstraction levels, debugging support, waveform tracing and 

communication protocols. The following paragraphs explain some of the most im­

portant constructs of Systemc. 
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Methodology specific and 
user defined channels 

Core language Data types 
modules logic types (0 1 X Z) 
ports logic vectors 
processes bits & bit vectors 
interfaces arbitrary precision 
channels integers 
events fixed point 

I SystemC simulation kernel I 
I C++ Language standard I 
FIGURE 2.2: SystemC language architecture. 

Modules 

In SystemC the structural decomposition is specified with the SC_MODULE macro. 

Modules are the basic building blocks of any SystemC model. They can be hier-

archical, containing instances of other modules. Modules contain processes which 

are the basic units of concurrent activity within SystemC. 

Processes 

In VHDL [8J, concurrent behaviour is modelled using processes. In Verilog [9J, 

concurrent behaviour is modelled using always blocks. In SystemC, concurrent 

behaviour is also modelled using processes. Processes are used to describe func-

tionality and have an associated sensitivity list, a list of signals that trigger the 

execution of the process. SystemC provides three types of processes: 

• SC_METHOD: It behaves like a function call and executes its body from the 

beginning to the end every time it is invoked. SC_METHOD offers the best 

simulation performance since it does not have its own thread of execution 

and hence cannot be suspended. 
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• SC_THREAD: It has its own thread of execution. A thread can be suspended 

at any time point and resumed at that point the next time it is entered. The 

performance is usually somewhat slower than that of an SC_MODULE due 

to context-switching overhead . 

• SC_CTHREAD: A clocked thread has its own thread of execution and can 

be suspended and resumed at any point. A clocked thread is completely 

synchronised to a clock and is triggered by a transition on either positive 

edge or negative edge of a clock signal. 

Clocks 

SystemC provides a notation for clocks as special signals. Multiple clocks with 

arbitrary phase differences are supported. For example a 1/-l second clock can be 

declared as: 

The sensitive, sensitive_pas, sensitive_neg keywords can be used to synchronise a 

process with a clock. 

Ports, Channels and Interfaces 

The necessary elements of process communication in SystemC are ports, channels 

and interfaces. Modules are connected to each other via ports. SystemC supports 

single directional and bi-directional ports (scin, sc_out, sc_inout). Channels create 

connections between module ports allowing modules to communicate. Channels in 

SystemC can be either primitive or hierarchical. Primitive channels do not exhibit 

any visible structure, do not contain processes and cannot directly access other 

primitive channels. Examples of such channels are sc_signal (classical signals), 
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scmutex (used to model mutual exclusion) and scfifo (used to model queues). 

Hierarchical channels, on the other hand, are modules, which means that they can 

have structure, can contain other modules and processes and they can directly 

access other channels. 

Ports are connected to channels through interfaces, where interfaces define sets 

of methods channels must implement. Ports are objects through which modules 

and hence processes can access a channel interface. Figure 2.3 [49J shows a simple 

design with three modules connected to a channel. 

o Ports 

Interfaces 

channel 

Module 

FIGURE 2.3: An illustration of ports, channels and interfaces of SystemC (see 
Section 2.1.3). 

An example which illustrates a SystemC module is shown in Listing 2.1 of a 

D-flip flop with asynchronous reset [21J. The example illustrates the module's 

connectivity, declarations and process. 

2.1.4 Data Types 

In addition to the standard C++ data types, SystemC has a rich set of data types 

to support multiple hardware design domains and abstraction levels [21]. This 

is different to many other HDLs, such as Verilog, that only support bit and bit­

vectors as signal types. The fixed precision data types (scfixed, scufixed, scfix, 

scufix) allow for fast simulation and are not found in other HDLs. The arbitrary 
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precision types (sc_bigint, scbiguint, sc_bv, sc_lv) can be used for computations 

with large numbers whereas the fixed point data types can be used for DSP ap-

plications. There are no size limitations for arbitrary precision SystemC types. 

SystemC supports two-valued (sc_bit) and four-valued (se_logic) logic data types. 

1 #include "systemc.h"//SystemC class library 
2 
3 SCMODULE( d ff a) { 
4 scin<bool> clock ;//input and output ports 
5 scin <boo I> reset; 
6 sc_in <bool> din; 
7 sc_out <bool> dout; 
8 
9 void do_ffa O{// process body 

10 if (reset){ 
11 dout = false; 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

}; 

} 
else if (clock. event O){ 

dout = din; 
} 

SC_CTOR( dffa) {/ / constructor of module 
SC..METHOD( do_ffa ); / /a process 
sensitive(reset );// sensitivity list 
sensitive_pos (clock); 

} 
23 }; 

LISTING 2.1: SystemC example: D flip flop with asynchronous reset. 

2.1.5 Simulation Kernel 

The appropriate timing behaviour of an executable SystemC model is controlled by 

the simulation kernel [10]. The simulation kernel is a lightweight cycle-based sched-

uler that allows high speed simulations. It is responsible for activating processes 

according to their sensitivity list, executing statements within different processes 

concurrently, scheduling assignments to signals and propagating their changed 

values through the whole system hierarchically. 

The SystemC scheduler has support for both software and hardware-oriented mod­

elling. Similar to VHDL and Verilog, the SystemC scheduler supports delta cycles. 

A delta cycle consists of separate evaluate and update phases, and multiple delta 
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cycles may occur at a particular simulated time. Delta cycles are useful for mod-

elling fully-distributed, time synchronised computation as found for example in 

RTL hardware. In SystemC, using notify() with a zero time argument causes the 

event to be notified in the evaluate phase of the next delta cycle, while a call to 

requesLupdate() causes the update() method to be called in the update phase of 

the current delta cycle. Using these facilities, channels which model the behaviour 

of hardware signals can be constructed. The SystemC simulation algorithm is 

shown in Algorithm 2.1 [lOJ. 

Algorithm 2.1: SystemC simulation algorithm. 
1: Initialisation Phase: Execute all processes (except SC_CTHREADs) in an 

unspecified order. 
2: Evaluate Phase (EPh): Select a process that is ready to run and resume its 

execution. This may cause immediate event notifications to occur, which may 
result in additional processes being made ready to run in this same phase. 

3: If there are still processes ready to run, go to EPh. 
4: Update Phase: Execute any pending calls to updateO resulting from 

requesLupdateO calls made in EPh. 
5: If there are pending delayed notifications, determine which processes are 

ready to run due to the delayed notifications and go to EPh. 
6: If there are no more timed notifications, simulation is finished. 
7: Advance the current simulation time to the earliest pending timed 

notification. 
8: Determine which processes are ready to run due to the events that have 

pending notifications at the current time. Go to EPh. 

2.1.6 Models of Computation 

A Model of Computation (MoC) [48J can be defined by, the model of time employed 

(real-valued, integer-valued, untimed), the event ordering constraints within the 

system (globally ordered, partially ordered) or the rules for process activation. 

In SystemC, the simple and flexible synchronisation capabilities provided by events 

and wait() call allow a broad range of different channel types to be implemented 

without having to change the underlying simulation kernel [48J. All the required 
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functionality to create a specific MoC is already presented in the simulation kernel. 

Thus, SystemC supports very powerful generic MoCs [50]. While the global model 

of time is fixed to integer model, designers can construct specific channels to 

achieve their precise rules for communication between processes, process activation 

and system wide event ordering. Although continuous time modelling still cannot 

be constructed in SystemC, virtually any discrete time system can be modelled in 

SystemC. 

The most important MoC is the Transaction Level Modelling (TLM) [51]. TLM 

is a high level approach to modelling digital systems where the details of inter­

module communication are separated from the implementation details. Transac­

tions requests are made by calling the interface functions of the channel models 

that encapsulate the low level details of the information exchange. Transaction's 

interface thus focuses on the functionality of the data transfer rather than its 

implementation. Many researchers have demonstrated the SystemC capability to 

model systems at TLM [33, 51, 52] and indicated that using SystemC at TLM 

provides a gain in simulation speed. 

2.2 Modelling Hardware in C/C++ 

In the recent past, a few projects have been looking into methods of using C/C++ 

as an input to current design flows [2]. Modelling hardware in C/C++, requires 

the following list of HDL features [32J . 

• Concurrency: Hardware is inherently parallel, while C/C++ models are 

inherently sequential. Therefore, a notion of processes should be introduced 

to encapsulate programs and execute them concurrently. Then a system is 

described as a network of processes. 



Chapter 2 Literature Review 33 

• Signals : Hardware processes need to be connected to signals or channels to 

communicate with each other. 

• Reactivity : Hardware systems are reactive and in continuous interaction 

with their environment. Hence, reactivity is implemented in C++ through 

event-driven approach. 

• Data abstraction: In addition to the data types supported by C++ for se-

quential programming, hardware modelling needs arbitrary precision signed 

and unsigned integers, bit vectors and fixed point types. 

Many C/C++ and C-based HDLs have been developed and used for modelling 

and synthesis. Examples of C-based HDLs are, HardwareC [53J from Stanford 

University and CONES [54J from AT&T Bell Laboratories. Examples of C/C++ 

based languages other than SystemC are Esterel C [55J from Cadence, Handle-C 

[19J from Oxford University (now marketed by Celoxica), BachC [56J from Sharp 

Laboratories, SpecC [20J from the University of California, Ocapi from IMEC [57], 

SystemC++ from C Level Design Inc. and Cynlib from CynApps [58J. Some other 

flavours of C/C++ based languages have also been developed and used internally 

throughout the industry as illustrated in Table 2.l. 

I Language I Founder I Based on 

HardwareC Stanford University C 
CONES AT&T C 
SystemC Synopsys C/C++ 
Esterel C Cadence C/C++ 
Handel-C Oxford University C/C++ 
BachC Sharp Laboratories C/C++ 
SpecC University of California, Irvine SpecChart, C/C++ 
OCAPI IMEC C/C++ 
SystemC++ C Level Design C/C++ 
CynLib CynApps C/C++ 

TABLE 2.1: C/C++ based design languages. 
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2.3 Mixed-Signal Modelling With SystemC 

While using SystemC in modelling, verification, and synthesis of digital systems 

is well established and proven (Appendix B gives a literature survey on SystemC 

applications), the concept of extending SystemC to AMS systems design is novel. 

Recently, a number of research results have been presented suggesting different 

frameworks and methodologies. The AMS frameworks are based on different C++ 

classes, methods and libraries, some are dedicated to specific applications, some 

seem awkward to use. Each proposal has its strengths and weaknesses which will 

be discussed after giving overviews of them. 

For instance, O'Nils et al [59J presented a methodology for quantification of noise 

coupling in mixed-signal systems called BeNoC. The presented method facilitates 

seamless quantification of both the power distribution network and substrate noise 

coupling at behavioural level. Starting from a behavioural model of the system 

captured in SystemC, wrappers are added to each block in the behavioural model. 

These wrappers add an estimated power consumption model for each block, which 

is triggered by events. The noise coupling simulation is then done by connecting 

different blocks according to a virtual layout and technology parameters. The 

resulting noisy substrate or noisy power distribution network can then be fed back 

into the behavioural level. Thus, effects on the system behaviour can be analysed. 

The simulation results compared with circuit simulations in SPICE showed that 

their approach is two orders of magnitude faster than SPICE. Also, the simulation 

can be done long before the circuits have been designed. 

An AMS simulation framework is presented by Bonnerud et al [60J for simula­

tion of Analogue to Digital data Converters (ADC). The framework contains a 

C++ mixed-signal module library that includes a set of flexible and customisable 

primitive, compound modules and testbenches. The primitives implement func­

tional models of AMS basic building blocks such as flash ADC, switched capacitor 
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Digital to Analogue Converter (DAC), operational amplifier, track-and-hold am­

plifier, and analogue adder/subtractor. More application specific primitives are 

also included such as a switched capacitor multiplying DAC. Furthermore, they 

have implemented a clocking scheme for scheduling the analogue and mixed-signal 

blocks called virtual clock to avoid multiple executions of these blocks due to the 

SystemC kernel. They have illustrated the usability of the framework by applying 

it to two case studies of pipelined ADCs with background calibration, achieving 

comparable accuracy to that of MATLAB. 

Another AMS framework was presented by Conti et al [61 J which allows the de­

signer to describe analogue systems either at low or high level using analogue 

macromodels. Their time step scheme is based on the calculation of each analogue 

process to its adaptive time step and passing it to the blocks to which the pro­

cess outputs are connected. They suggested a new implementation of an analogue 

block. It is a module composed of two kinds of threads, the calculus thread and 

activation threads, one for each input module. Each activation thread starts when 

a change occurs on the signals coming from the corresponding input module. The 

calculus thread that updates the state and output is activated only by signals 

coming from the activation thread, and then sending them to the connected ana­

logue blocks. They have used two AMS examples to validate their framework, an 

oscillator made up of inverter chain and a complex mixed-signal fuzzy controller. 

The results were compared to other tools such as SPICE and Spectre achieving 

excellent results. The CPU time required for the 800n second oscillator simula­

tion is 4.9 seconds for SystemC and 15.8 seconds for WinSpice. For the second 

example, the CPU time required for Spectre transient simulation is 4 hours and 

38 minutes, only 3.3 seconds are necessary for a SystemC simulation with a factor 

of 5000 due to the very high level description used in SystemC. The framework is 

later called SystemC-WMS [62], where WMS stands for Wave Mixed Signal and 

energy wave signal is the analogue signal transmitted between analogue blocks. 
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Grimm et al [63J presented a top-down modelling and simulation methodology 

based on a refinement process by implementing a library called ASC. The de­

sign methodology refines an executable specification to concrete AMS architecture 

through three levels of refinement, executable, computation accurate model and 

pin accurate model. The ASC library provides an analogue or signal processing 

process type. The execution of the analogue processes is not controlled by the dis­

crete event kernel; however the execution is controlled by a coordinator interface. 

Via this interface, a coordinator can call the signal processing C++ method by 

remote method invocation. For complex analogue processes, they used an exter­

nal analogue simulator such as SABER or SPICE. By using multiple inheritances, 

analogue signals realise the interface used in discrete-event simulation. The signal 

class can be read or written by a discrete-event process without the need for an 

explicit converter as needed for example in VHDL-AMS for conversion between 

quantities and signals. The methodology was evaluated by designing a PWM 

controller. 

Another design methodology presented by Romberg and Grimm [64J based on 

refinement process. It started with a system specification captured by a new 

graphical design notations called HyCharts, and then translate it to SystemC with 

the AMS library ASC in [63J. The authors claimed that starting with Hycharts 

which based on formal semantics is precisely to capture the continuous/discrete 

behaviour. 

Einwich et al [65J presented a framework to support signal processing dominated 

application. The framework is based on analogue extension for linear DAEs and 

frequency domain simulation. The linear DAE solvers are integrated into the 

synchronous data flow design. The analogue extension includes a library of elec­

trical circuit components and transfer functions. The synchronisation between 

the synchronous dataflow and linear continuous time is using a fixed time step 
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and kept as simple as possible. Before the first delta cycle of a time step is ex­

ecuted, all analogue simulators are executed, reading the old discrete values and 

producing updated output signals which are then used by the digital processes. 

The main characteristics of their framework are: no overall analogue equation 

system, no iterations are used to solve the system, no solvability problem for the 

overall system, defining analogue module (sea_module), ports (sea_port), channels 

(sea_channel) and interfaces (sea_interface). The concept was illustrated with the 

design of a telecommunication system consisting of a subscriber line interface and 

a Codec filter system, including digital hardware and software and an analogue 

filter. Simulations were about 20 times faster than those of SABER. A simulation 

of a 40m seconds time interval took 122 seconds in SystemC, while on SABER -

2679 seconds. The framework is later called SystemC-AMS [66J. 

SystemC-AMS [66J is used by Markert et al [67J to model inertial navigation sys­

tem. The system consists of analogue sensors and digital coordinate transforma­

tion part together with a PC-based software part. The analogue sensors measure 

the signal from the environment and converts them to digital values. The system 

was originally modelled in VHDL-AMS in more details and SystemC-AMS offered 

the designers high level insight of the system. 

A framework called AnalogSL is presented by Grimm et al [68J for the creation 

of behavioural models of analogue power drivers. The main objective of their 

framework was to achieve a speed up over other simulators. AnalogSL provides 

classes of components such as resistors, capacitors, coils and transistors which can 

be instantiated to form a netlist and then simulated by a very fast and efficient 

algorithm for linear DAE. Analogue power drivers are usually designed bottom-up, 

from a net list to behavioural level. The coupling of the analogue behavioural model 

with discrete-event simulators corresponds to the coupling of different processes 

in discrete simulators. When an input value has changed, the method checks 
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whether the dominant cycles have changed, otherwise, it calculates the actual 

internal states and sets up new equations. 

A mixed-signal SystemC design environment has recently been proposed [40] 

for behavioural modelling, simulation, and performance evaluation of microelec­

tromechanical and microelectrofluidic SoCs. Composite microsystems combine 

microstructures with solid-state electronics to integrate multiple coupled-energy 

domains, e.g., electrical, mechanical, thermal, fluidic, and optical, on a SoC. 

Continuous-flow systems microelectrofluidic such as microvalves, micro pumps and 

channels are modelled by DAEs and PDAEs (partial DAEs) in Systemc. The con­

tinuous equations are solved by using the regular function procedures or process, 

and code various DAEs solvers with SystemC, such as derivative and integral, and 

add them into a SystemC component behaviour model. Moreover, besides the 

original simulation clock, they implemented a higher frequency clock to provide 

a series of time intervals for more accurate DAEs function solutions. They have 

used the relaxation based numerical integration techniques coded in SystemC to 

solve these DAEs. 

A method to link SystemC digital modules with Verilog-AMS has been proposed by 

Birrer and Hartong [69] in order to simulate AMS of analogue/RF systems. It was 

achieved by automatic flow envelops SystemC modules in Verilog-AMS warpers, 

where they can be used in a schematic flow and treated just like standard Verilog 

modules. 

The surveyed frameworks above presented new ideas and methodologies, however, 

none of them introduced a general environment to model and simulate AMS and 

mixed-domain with different abstraction levels for generic applications. Most of 

the frameworks are application specific extensions [59, 60, 65, 66, 63], or abstrac­

tion level specific [59, 60, 61, 68]. Some introduced tedious methods for timing 

[61, 63], others introduced non popular methods to capture models [64]' others 
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cannot handle complex analogue processes [63, 68, 66], and others bringing all 

the details of modelling to the user level [61, 66]. Nearly all the frameworks were 

validated using examples with small analogue parts and a big digital part. 

A study group was established in 2003 [45] following a proposal submitted to the 

SystemC board of directors to form an aSCI working group to develop AMS exten­

sions to SystemC. The founders presented and discussed the foundations on which 

the analogue and mixed-signal extensions of SystemC, named SystemC-AMS, will 

be based [70, 71, 45, 72, 66]. They set out a plan for a 3-phase development, each 

phase adding new capabilities as follows: 

1. Support for signal processing dominated applications. This includes: 

• Linear dynamic continuous-time, including transient, small-signal AC 

and noise simulation. Time-domain simulation with a fixed time step. 

• Predefined linear operators (Laplace transfer function, zero-pole trans-

fer function, state-space equations). 

• Linear network elements (electrical element library: R, L, C, sources). 

• Continuous behaviour encapsulated in static dataflow modules. 

• Synchronisation between discrete event and continuous time MoCs us­

ing static dataflow semantics. 

2. Support for RF /wireless applications. This includes: 

• Support of non linear DAEs and their simulation using variable time 

steps. 

• Formulation of implicit equations, e.g. true simultaneous statements. 

• Frequency-domain simulation. 

• A mixed-signal library with more complex functional (signal-flow) mod­

els, e.g. amplifiers, converters. 
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3. Support for automotive applications. This includes: 

• Specialised continuous-time MoCs, e.g. for power electronics or me-

chanical systems. 

• Support of network law models. 

• Add network-law mixed-domain models to the mixed-signal library. 

• Definition of a generic synchronisation mechanism between discrete­

time and continuous-time MoCs, including software MoCs. 

Although the SystemC-AMS study group was established in 2003, the develop­

ment is still in the initial stages. As the group reported in September 2005 [66J, 

SystemC-AMS currently lacks the ability to setup equation systems and an ana­

logue equation solver is still under development. 

SystemC users are waiting for AMS to SystemC to design and verify their entire 

system in one environment [40, 73J. For instance, Cuenin et al [73J designed an 

AMS IP which represents the external communications between a SoC and its 

environment. The AMS IP model is written in SystemC in combination with 

VHDL-AMS description of the analogue blocks. 

2.4 VHDL-AMS 

Today's HDLs are classified into three categories, digital, analogue, and AMS 

HDLs. Examples of digital HDLs are VHDL and Verilog, they are based on event­

driven techniques and a discrete mode of time. Analogue HDLs support the de­

scription of systems of DAEs. Examples of analogue HDLs are SpectreHDL from 

Cadence and Verilog-A from the Open Verilog International. Analogue HDLs sup­

port network semantics and behavioural descriptions. AMS HDLs support both 
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event-driven techniques and DAEs. The most popular AMS HDLs are VHDL­

AMS and Verilog-AMS. As the names imply, they are extensions to the classical 

Verilog and VHDL digital HDLs. Though, these languages have different strengths 

and weaknesses, they are intended to be used for the same types of circuits, in 

the same ways, to produce similar results. This section overviews VHDL-AMS 

one of these HDLs. VHDL-AMS constructs and implementations serve as inspira­

tions to SystemC-A development in order to follow methods familiar to the design 

community. 

VHDL-AMS [14J is one of the major mixed-signal HDLs on today's CAD tool 

market. It is a superset of the IEEE standard 1076-1993, with AMS extensions. 

The new, complete language is defined by the IEEE standard 1076.1-1999. The 

standardisation by the IEEE means that the language can be used by different tool 

vendors. The language definition does not specify the whole internal operation of 

the simulator in the analogue domain, leaving the details of implementation for 

the tool vendors. Many companies have been developing solutions for the im­

plementation of the language standard into their own simulation packages. For 

example, System Vision from Mentor Graphics, Simplorer from ANSOFT and IN­

CISIVE from Cadence Designs. There are several public domain VHDL-AMS 

parsers available for free use [74, 75, 76, 43J and also there are some validation 

examples published on the web [43J. 

VHDL-AMS aims to provide a language to simulate a variety of physical domains 

that model complex systems, such as mechanical [77J, chemical, automotive [78J, 

and mechatronic [79J systems. VHDL-AMS has also been used to model Micro­

Electro-Mechanical Systems (MEMS) [80J, and in the simulation of self organising 

neural systems [81J. VHDL-AMS allows different parts of the system to be de­

scribed at behavioural level [82J and component level of abstraction [83J. 

Currently, most digital systems can successfully be synthesised using VHDL. It is 
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hoped that VHDL-AMS will also provide a basis for a new approach to AMS circuit 

synthesis. For instance, a synthesis system for high frequency analogue filters from 

VHDL-AMS [84] has already been developed. A mixed-signal VHDL-AMS based 

synthesis system from behavioural models has also been proposed [85]. 

VHDL-AMS new language elements facilitate writing analogue models as a set 

of mathematical equations describing the behaviour of the model. Examples of 

language elements are: Simultaneous equation, Quantity, Terminal, Nature and 

Tolerance [86]. A typical VHDL-AMS model consists of an entity and one or more 

architectures. The entity specifies the interface of the model to its environment. 

It includes types of model's ports and the definition of its generic parameters. The 

architecture contains the implementation of the model in structural or behavioural 

descriptions or both. The following sections summarise some of VHDL-AMS fea-

tures extracted mainly from [86], [87], and [88]. 

2.4.1 Quantities 

Quantity objects represent the unknowns in DAEs. They can be scalar or com­

posite (arrays and records). Quantities can be declared anywhere a signal can be 

declared and it may appear in expressions, interfaces and simultaneous equations. 

Quantities have several forms, it can be a free quantity, or an interface quantity 

in a port list of a model to support signal flow modelling. It has two modes in 

and out specifying the direction of signal flow. For instance, Listing 2.2 shows 

the entity declaration of a signal flow model. A port declaration can be quantity, 

signal, or terminal declarations. 

1 entity example is 
2 port (quantity input 1 , input2: in REALi-scalar quantity 
3 quantity A, B, C: out REAL_vector(2 downto 0» i--array quantity 
4 end entity example i 

LISTING 2.2: VHDL-AMS entity declaration of a signal flow model. 
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Other forms of a quantity are branch quantity and source quantity, they will 

be explained in Section 2.4.3 and Section 2.4.7 respectively. Quantities have a 

number of predefined attributes, e.g. Q'Dot is a quantity holding the derivative of 

quantity Q with respect to time. Other attributes are Laplace transfer function 

(Q'ltf(num,den)) , time integral (Q'integ) and time delay (Q'delayed(t)). For a 

model to be solvable, the number of simultaneous equations defined should equal 

to the total sum number of through quantities plus free quantities plus interface 

quantities with mode out. 

2.4.2 Simultaneous Statements 

Simultaneous statements are used to describe DAEs. They are analogous to con­

current signal assignment in digital models. There are several simultaneous state­

ments, the simple simultaneous statement which is an expression usually denoting 

an equation. Simultaneous case statement chooses different simple simultane­

ous statements, depending on the condition of the case statement. Simultaneous 

if statement chooses different simple simultaneous statements, depending on the 

condition of the if statement. All simultaneous statements are concurrent, the or­

der in which they appear in the model is not important for the calculation of the 

result. Another form is simultaneous procedural statement to handle statements 

sequentially. Simultaneous statements may contain and refer to signals, quantities, 

constants, literals, and functions. 

An example of a VHDL-AMS model of a signal flow amplifier is shown in Listing 

2.3 [88]. The example illustrates the entity-architecture pair of a VHDL-AMS 

model with the new language constructs. 
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1 entity amplifier is 
2 generic (gain: REAL :=REAL' High) ;-- default infinity gain 
3 port (quantity input: in REAL; 
4 quantity output: out REAL); 
5 end entity amplifier; 
6 
7 architecture amp1 of amplifier is 
8 begin 
9 if gain = REAL' High use -- Simultaneous if statement 

10 input = 0.0; 
11 else 
12 output = gain * input; 
13 end use; 
14 end architecture amp1; 

LISTING 2.3: VHDL-AMS model of a signal flow amplifier. 

2.4.3 Provision for Network Topology 

Analogue systems presented in the form of networks, for example, electrical circuit 

obeying Kirchhoff's Laws, can be described in VHDL-AMS using Branch quanti-

ties, namely across and through quantities. Across quantities represent effort-like 

effects such as voltage, temperature, or pressure. Through quantities represent 

flow-like effects such as current, heat flow rate, or fluid flow rate. For instance, 

a resistor is governing by ohm's law which relates the voltage across (the across 

quantity) and the current through the resistor (the through quantity): i = ~. 

A branch quantity must be declared with reference to two terminals. A terminal 

is a fixed point in the structure of a physical model, e.g. an electrical node. It 

declared to be of some physical discipline (or nature), i.e electrical, thermal, fluidic, 

etc. Nature definition includes the types of across and through quantities incident 

to a terminal of the specified domain, and the common reference terminal shared 

by all terminals (e.g. electrical ground). 

The following statements declare two terminals tl and t2 of nature electrical, an 

across quantity v, and a through quantity i between the terminals. 
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terminal tI, t2: electrical; 
quantity v across i through tl to t2; 

The across quantity represents the potential difference between the terminals and 

the through quantity represent current-carrying branch. The data type of a branch 

quantity is derived from the nature of its terminals. In the example above the 

across quantity v is of type voltage, and the type of the through quantity i is 

current. 

2.4.4 Tolerances 

VHDL-AMS defines the concept of a tolerance group where each quantity belongs 

to such a group. This is to allow a user to control how close to zero the solution 

of the DAEs must be. The tolerance group of a quantity is defined in the subtype 

of the quantity or, at the quantity declaration or, in the nature declaration for a 

terminal. For example, voltage and current subtypes, 

subtype voltage is REAL tolerance "default_voltage"; 
subtype current is REAL tolerance "default_current"; 

where" default30ltage" and" defaulLcurrent" define the tolerance group of the 

subtypes. The simultaneous statements can also have a tolerance, it will override 

any declared tolerances. For example, 

X==Y'dot tolerance "low voltage"; 

However, the default tolerance group of a simple simultaneous statement is the 

tolerance group of its quantities. VHDL-AMS does not define how tolerances 

are used. It is the responsibility of the tool vendor to define how the tolerance 

characteristics are calculated. 
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2.4.5 Analogue/Digital (A/D) Interaction 

AID interface is implemented by quantity attribute Q'above(E). During a simu­

lation, when the value of a quantity Q crosses a threshold E, an event occurs on 

the Boolean signal Q'above(E). The value of Q'above(E) is TRUE if Q > E and 

FALSE if Q < E. There is also a hysteresis in the signal change. The result of 

Q'above(E) stays FALSE as long as Q has not reached the upper boundary of 

E, which is E+c5. Q'above(E) stays TRUE as long as Q is bigger than the lower 

boundary of E, which is E-c5. The size of c5 is implementation-dependent. 

An event is generated at the instant of the threshold crossing, deriving other 

digital parts, because the result of Q'above(E) is a digital boolean signal. This 

mechanism of threshold crossing can also be used for AID conversions in system 

model. For example, the following statement implements the behavior of an ideal 

comparator. 

S <= '1' when Q'above (0.0) else '0' 

where Q is a quantity and S is a signal. Q'above(E) can also be used in the 

sensitivity list of a process or a wait statement to trigger the process based on an 

analogue signal. 

2.4.6 Digital/ Analogue (D / A) Interaction 

D I A interface also needs a mechanism of translation of data values. When a 

digital signal appears in a simultaneous statement, it introduces a discontinuity in 

the DAEs solver because of its discontinuous nature. VHDL-AMS defines a break 

statement to complement the simultaneous statement and notify the analogue 

solver exactly about when the discontinuity occurs. The analogue solver responds 

by re-initialisation at the exact time where the break occurred. However, it seems 



Chapter 2 Literature Review 47 

it is a difficult task for tool vendor to implement the break statement. The break 

statement is not implemented yet in any recent VHDL-AMS simulator. 

An alternative mechanism is to use one of the predefined quantity attributes, 

S 'Ramp (trise, tfall) or S'Slew(rising slope, falling slope), where S is a signal of a 

floating point type. S'Ramp ramps linearly over the specified rise and fall time 

from the previous value of S to its new value, starting at the time of the event. 

S'Slew does the same, but with specified slopes. 

2.4.7 Small-Signal Frequency Domain and Noise Modelling 

VHDL-AMS provides the source quantity, to support small-signal frequency-domain 

(AC) and noise simulations. Source quantities provide stimulus for frequency do­

main simulation. There are two types, spectral source quantity and noise source 

quantity. Spectral source quantity allows the modeller to specify a magnitude M 

and phase cjJ of a stimulus in the form of a sin wave (v(t) = M cos(wt + cjJ)). The 

following statement gives an example of a spectral source quantity definition: 

quantity ac:real spectrum magnitude, math_2_pi*phase/360.0; 

During time-domain simulations, source quantities have a value of a zero. Noise 

source quantities are used in a similar manner, as illustrated bellow: 

quantity thermal_ noise:real noise 4.0*k_ boltzmann*temp*res; 

The expression following the reserved word noise specifies the noise power which 

is not required to be static. The noise source quantity is used in the model by 

simply adding thermaLnoise quantity to a simple simultaneous statement. E.g. 

to model the thermal noise in a resistor: 

v==i*resistance+ thermal noise; 
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2.5 Concluding Remarks 

This chapter has presented several subjects, SystemC and its applications espe­

cially modelling AMS systems, concepts of modelling hardware in C/C++ and 

an overview of VHDL-AMS. A number of concluding remarks could be made. 

Firstly, through the surveyed literature in SystemC applications, it was apparent 

that SystemC is powerful in industrial applications. Also, there is a trend towards 

C++ based HDLs for many reasons such as raising the abstraction level and conse­

quently gaining higher simulation speed and most importantly hardware/software 

co-design. However, the main focus was the ability of SystemC to be an environ­

ment of hardware and software modelling at system level design. Furthermore, 

the chapter demonstrated some initial attempts towards AMS modelling using 

SystemC which showed the need for such ability. Also, it showed what have been 

accomplished so far in the field and where it is stopped. 

Moreover, through the summary of VHDL-AMS as one of the existing tools and 

methodologies in the field of AMS, the chapter showed the strength and weakness 

of such a language. VHDL-AMS cannot cope with the recent need to co-model 

hardware and software for SoC applications. The developed AMS extension will 

closely follow the concepts developed in VHDL-AMS in particular the concepts 

explained in this chapter. 
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AMS Modelling Syntax 

This chapter describes new CAD methods and elements which are developed in the 

course of this research in order to model AMS systems and present a new language 

named SystemC-A. The new elements cover the most important aspects of AMS 

modelling. The AMS syntax has been designed to facilitate model development 

assuming minimal programming knowledge of a future user of SystemC-A. The 

style is similar to a SPICE-like net-list or VHDL-AMS simultaneous equation or 

interconnected blocks as in any HDL. 

Modelling of an analogue system requires a set of Differential and Algebraic Equa­

tions (DAE) which should be easy to define, automatically built and updated, and 

then numerically solved. Therefore, methods and constructs should be defined to 

support the simulation of analogue systems represented by DAEs. The new lan­

guage constructs will be proceeded by the prefix sca_, where se denotes SystemC 

and a for analogue. 

In Section 3.1 the chapter starts by introducing some of the C++ object-oriented 

concepts which are used in coding. Then, Section 3.2 introduces the first essential 

element necessary to support analogue systems, namely analogue system variable 

49 
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whose objects represent the unknowns in the set of DAEs, such as circuit nodes 

and flow variables. The next extension presented in Section 3.3 is component, a 

new class which can be extended according to a particular physical domain or 

application. Its objects can be used to build general systems such as electronic 

circuits. A component class contains a virtual build method through which sys­

tem equations are formed and solved at each time step. Section 3.4 deals with 

digital-analogue interaction issues, such as passing messages between the digital 

and analogue solvers and conversion between signals and system variables. Asso­

ciated issues such as dealing with small time step sizes, implementing analogue 

stepping are also discussed. Section 3.5 gives a note about abstraction levels pro­

vided by SystemC-A. Finally, Section 3.6 concludes the chapter. 

3.1 Preliminaries: Object-Oriented Programming 

c++ [89J is an object-oriented language and based on the principle of structured 

programming. When a task is too complex to be described, it is broken down 

into a set of smaller component tasks (classes). A C++ class is a format for 

holding and interacting with data and has an interface called constructor. An 

object is a particular instance of a class. A program is a collection of constructed 

classes and a testbench. The testbench is a high level module in hierarchy which 

contains global signals, instances of classes, and provides stimulus to the system. 

The three defining properties of object-oriented programming are encapsulation, 

inheritance, and polymorphism. Encapsulation is to hide the details of a compo­

nent into a class, to act as a fully encapsulated entity and used as a whole unit. 

Users need to know how to use it rather than how the class is working. Objects 

can only be accessed through their public interfaces, while the internal data and 

implementations remain hidden. This ensures that the code is safe from unwanted 

alterations. 
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c++ supports the idea of reuse through inheritance. A new class can be derived 

from an existing one and is called a derived class and thus inherits all its qualities 

but additional features can be added to it as needed. A hierarchy can be formed 

from derived classes. The existing class is called an abstract base class which may 

contain methods declared as virtual methods. When declaring a method of ab­

stract base class to be virtual, the derived classes can override and redefine this 

method and act as a base method, this is called polymorphism. Therefore, poly­

morphism allows different classes to support the same interface but with different 

implementations. By utilising the fundamentals of object-oriented programming, 

a data structure called linked-list can be defined to store data dynamically. It 

consists of a chain of classes, which contains data and nodes. Nodes are pointers 

that stores the memory address of the following class keeping the list linked to­

gether. Linked-lists support four basic operations: insertion, deletion, traversing, 

and searching. A C++ class consists of header and cpp files. cpp files are the main 

body of a class. Header files are libraries of code implementing useful functions 

written by the user or by others. A user includes header files in the topmost of a 

cpp file and then the compiler will write the contents of the header files into the 

executable code of his program. 

3.2 Analogue System Variables 

In order to provide a mechanism for modelling non-linear AMS systems, the new 

language should provide a notation for DAEs. In the set of DAEs the analogue 

system variables are the unknowns. 

The C++ concept of inheritance is used to define various types of analogue sys­

tem variables, such as node, flow, and free variables. In SystemC-A, they repre­

sent a hierarchy of system variables, all derived from an abstract base class called 
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sca_system_variable as illustrated in Figure 3.1. Currently only three types of 

variables derived from the base class have been defined, and this proved enough 

to model the application examples presented later in this thesis (Chapter 6, 7, 8). 

The variable classes hierarchy can be extended further to model other types of ap-

plications. In a SystemC-A description, the total number of variable objects must 

correspond with the total number of analogue equations provided by SystemC-A 

component objects. This is to have a symmetric system matrix. 

. --

Abstract base class 
sc_a_system 

_variable 

~------------------------~ 

User derived analogue system variable types 

FIG URE 3.1: Analogue system variable inheritance hierarchy. 

The base class constructor attaches each newly created system variable to a global 

linked-list as shown in Figure 3.2. The list will later be used by the analogue 

kernel to maintain the required connectivity between the system components and 

to build the underlying analogue equation set. This is done by scanning the linked-

list of variables and assign integer numbers to them, and then use these numbers as 

indices to the system matrix to perform element searching and insertion functions. 

Accordingly, the order of the system will be known, where it is equal to the number 

of system variables. 

System variables have a common method called X () to read a value of a particular 

system variable from system solution vector whenever required. The function's 
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System 
variable n 

Pointer to next 
system variable 

System 
variable n+ 1 

System 
variable 

N 

FIGURE 3.2: Linked-list of system variables. 
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null 

counterpart in SystemC is read() to read a port or a signal. Also, SystemC-A sup­

ports differentiator (Xdot()) and integrator (INTEG()) operators to be performed 

on system variables. Their use can be demonstrated as follows: 

A dot=Xdot(nl); 
B_intg=INTEG(nl); 

where nl is a system variable of any type. Integral and differential operators can 

be performed on non-SystemC-A variables by declaring a new SystemC-A variable 

(nlQ) and use the following version of the operators, 

A_dot=Xdot(nlQ,nl); 
B _intg=INTEG(nlQ,nl); 

The following subsections describe the three different types of analogue system 

variables derived from the base class to support the examples in Chapters 6, 7 and 

8. 

sc_a_node is used to represent a generic node. Objects of this class can be declared 

where a circuit would be defined. sc_a_node is instantiated in any SystemC module 

or SystemC-A component's constructor because it should be instantiated only once 

to maintain the correct order of the system. Objects of the sc_a_node class are 

instantiated as follows: 
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SC _MODULE(filter) {//SystemC module 

}; 

sc a node *nO, *nl, *n2; 

SC _ CTOR(filter) {/ /module constructor 

n2 = new sc_a_node(ln2"); 
nO = new sc_a_node(IO"); 
nl = new sc_a_node("nl"); 

} 
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A special node is the reference node or ground. The ground node does not have a 

particular syntax in SystemC-A. It is instantiated in the same way other nodes do 

but with node name of "0". When scanning the nodes, the analogue kernel can 

recognise the reference node from its name. Accordingly, the analogue kernel will 

not raise the order of the system when scanning the reference node. 

As in other HDLs, different types of ports and quantities can be developed III 

libraries to distinguish different physical domains, e.g. Nature in VHDL-AMS. 

Electrical, mechanical, and magnetic nodes as shown in Figure 3.3, can be derived 

from class sea_node for creating accurate physically based models. 

sc_a_node 

I I 
sc_a_electrical sc_a_mechanical sc_a_magnetic 

_node _node node -

J I I 
'-~.~-----------------~----------~-------~ 

User derived analogue system variable types 

FIGURE 3.3: Analogue nodes possible inheritance hierarchy. 
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sea_flow is used to represent flow variables in the Modified Nodal Analysis (MNA)­

like equation formulations [90] (will be explained in detail in Section 4.1.2). Ac-

cording to the MNA representation of some components, like a voltage source or 

an inductor, a current variable should be introduced in conjunction with the dec-

laration of any of these components. Hence, the right place for a current variable 

to be instantiated is in the constructor of such components, e.g.: 

inductor::inductor( ... ){j / inductor's constructor 

} 

The free system variable sea_free_variable is introduced to define variables when 

describing a system or part of it by differential and/or algebraic equations rather 

than a net list of circuit components. It is useful especially when modelling systems 

at behavioral level for describing the functionality of system blocks. For example, 

Eq.3.1 is the model of a voltage controlled oscillator (VeO) which contains one 

free system variable named e. 

. de 
e(t) = dt = f(v) = fe + df * Vfilter (3.1) 

sc_a-free_ variable can be instantiated in any class constructor. For the above 

veo example, it could be created by the constructor of the veo component that 

contains it as follows: 
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vco::vco( ... ){ 

theta = new sc_a_free_ variable("theta"); 

} 

3.3 Analogue Components 

Analogue circuit components (sc_a_component) have been developed to provide 

equations which describe analogue behaviour. Similarly to the system variable 

hierarchy, components are derived from an abstract base class. A component 

abstract base class contains virtual build method to be invoked by the analogue 

kernel. The build method will be explained in detail in Section 4.2. A sample 

component class hierarchy is illustrated in Figure 3.4 with examples of SPICE-like 

circuit elements such as resistor, capacitor, diode, and various types of autonomous 

sources. Arbitrary differential and algebraic equations can be included as user­

defined components. 

Abstract base class 

'----------------------------------------------------~ 
User derived component types 

FIGURE 3.4: SystemC-A analogue components inheritance hierarchy. 
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A component class constructor, which defines the component's interface may con­

tain a pair of node pointers and a value. An example of instantiating a capacitor 

is shown below: 

sc_a_capacitor *c1 = new sc_a_capacitor("c1", nodeA, nodeB, C) 

where c1 is the component name, nodeA and nodeB are names of analogue system 

variable objects of type sea_node and represent the two terminals to which the 

capacitor is connected, and C is the capacitance. The capacitance value can be a 

constant or a SystemC signal, which provides a mechanism to model time-varying 

capacitors, as shown below: 

sc_a_capacitor *c1 = new sc_a_capacitor("c1", nodeA, nodeB, &Cv) 

where Cv is a SystemC signal of type double (sesignal < double> Cv). 

For user-defined components, the constructor arguments may be different and 

depend on the system to be modelled. Arguments can be, for example, nodes or 

signals, as shown below in the VCO example constructor: 

vco *vcol = new vco(" vcol", nVfilter, &Vco); 

where vcol is the name of the component, n Vfilter is a system variable of type 

sc_a_node and Vco is a SystemC signal of type bool (sc_signal <boot> Vco). 

An example of SystemC-A component is an inductor model as shown in Listing 

3.1. The class's cpp file is defined in the code described in lines 1-32, whereas the 

class's header file is defined in code lines 34-49. The inductor model illustrates the 

format of the constructor (lines 7-11) within which necessary system variables are 

declared. Also, it shows the build method (BuildM and BuildB) which defines the 

component's contribution to the system matrix and will be explained in detail in 

Section 4.2. 
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#include "sc_a_inductor. h" 
#include "sc_a_flow. h" 

Ilinductor class constructors 
sc_a_inductor:: sc_a_inductor O{} 

sc_a_inductor:: sc_a_inductor (char nameC[5j, sc_a_system_variable *node_a, 
sc_a_system_variable *node_b, double value): 

sc_a_component (nameC, node_a, node_b, value) { 
iL = new sea_flow (" iL"); Ilinstantiate system variable of type sc_a_flow in 

} Ilconjunction with an inductor according to MNA formulation 

void sc_a_inductor:: BuildM(void){11 BuildM to add inductor's 
II contribution to Jacobian 

L = value; 
Jacobian(a, iL, 1); 
Jacobian (b, iL, -1); 
Jacobian(iL, a, 1); 
Jacobian (iL, b, -1); 
Jacobian (iL, iL, -S*L); 

II inductor has 5 elements to be contributed 

void sc_a_inductor:: BuildB{void){IIBuildB to add inductor's 

L = value; 
S = Sn (); 
Lidotn=Xdot (iL ); 
IE = X(iL); 
vba = X(b)-X(a); 
BuildRhs (a, -IE); 
BuildRhs (b, IE); 
BuildRhs (iL, vba + Lidotn ); 

Ilcontribution to Right hand side 
Ilinductance 
Ilget discretisation operator S 
Ilget the derivative 

Iladd contribution to Right hand side 

34 I I inductor header fi I e 
35 #include" sc_a_component. h" 
36 
37 class sc_a_inductor: public sc_a_component { 
38 public: 
39 sc_a_ind uctor (); 
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40 sc_a_inductor (char nameC[5j, sc_a_system_variable *node_a, sc_a_system_variable 
41 * node_b , double val ue ) ; 
42 virtual -sea_inductor (); 
43 void BuildB (void) ; 
44 void BuildM (void); 
45 
46 protected: 
47 double S, Lidotn, L, IE, vba; 
48 sc_a_system_variable *iL; 
49 }; 

LISTING 3.1: Typical analogue component class, an inductor. 

The component base class constructor attaches each newly created component to a 

global linked-list of system components as shown in Figure 3.5 to form a connected 

circuit. The list is used at the matrix build time in scanning all the components 

to invoke their build functions. 

A netlist of an analogue circuit can be constructed by declaring system variables 

of type node and analogue components as shown in Listing 3.2 of the loop filter in 
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Pointer to next 
component 

..... - sc_a_resistor 
., 

sc_a_capacitor .. I-
FIGURE 3.5: Linked-list of analogue components. 

a phase locked loop. Figure 3.6 shows its corresponding schematic. The circuit's 

database is constructed once, prior to a simulation. 

1 II instantiate nodes and components 
2 n2 = new sc_a_node (" n2" ); 
3 nO = new sc_a_node (" 0"); 
4 nl = new sc_a_node ("nl" ); 
5 sc_a_currentS_dc *Il = new sc_a_currentS_dc (" II", nl, nO, &Iin); 
6 sc_a_capacitor *cl = new sc_a_capacitor("cl", nl, n2, 3e-9); 
7 s c _ a _ res is tor * r 1 = new s c _ a _ res i s tor (" r 1", n2, nO, 1 e 3 ) ; 
8 sc_a_capacitor *c2 = new sc_a_capacitor("c2", n2, nO, 4e-9); 

LISTING 3.2: Components and nodes instantiations forming an electronic circuit 
in SystemC-A. 

nl I 
! 

11 t 
! 

c2= 
4nF 

I 
_1~c1=3nF 

FIGURE 3.6: Corresponding schematic of circuit description in Listing 3.2. 

Appendix C.l lists other SystemC-A component's models developed within this 

project such as a resistor, diode, MOSFET transistor, capacitor, and different 

types of voltage sources. 

3.4 Digital-Analogue Interactions 

In modelling mixed-signal systems digital-analogue interactions are unavoidable. 

Connectivity between analogue and digital models requires special consideration 
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since the two models have different language representations. The solution to 

this problem is to insert a special interface model directly between the digital 

and analogue parts. These interface models have no corresponding physical parts. 

The intended interfacing solution is similar to those adopted in VHDL-AMS and 

Verilog-AMS. AID and D I A interfaces are used only to change representations of 

signals between the digital and analogue domains. SystemC-A includes explicit 

interfaces modules readily available for the user. Alternatively, the high expertise 

user may write his interfaces hidden within the model. An example of an AMS 

system with explicit AID and implicit D I A interface models is shown in Listing 3.3 

and Figure 3.7 which represent a switched mode power supply (SMPS) testbench. 

The SMPS example is discussed in detail in Chapter 6. The following two Sections 

3.4.1 and 3.4.2 will explain the functions of these interfaces. 

2 / /SMPS mixed-signal model 
3 sc_signal<bool> Vd1; //instantiate digital and analogue signals for connection 
4 sc-signal <double> Val, Va2; 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

s c _a_i n terfaceD A 
D.A.IND(Vd1) ; 
D.A.OUTA(Va1) ; 
D.A.clk(Clk); 

D.A("D.A"); //instantiate digital-analogue interface module 

digital digital 1 (" digital1") ;//instantiate 
digital 1 . Vd_in(Va2); 
digital 1 .VcontD(Vd1); 
digital 1 . elk (Clk); 

digital module and bond its ports 

analog analogI (" analogI"); //instantiate 
analog1,Vout(Va2); 

digital module and bond its ports 

analog1,VcontA(Va1); 
analogI, elk (Clk); 

LISTING 3.3: Explicit Dj A and implicit AjD interfaces in SMPS testbench. 

3.4.1 Digital-Analogue Interface 

sca_interfaceDA shown at line 6 of Listing 3.3 is a SystemC module which contains 

an input port of type bool and an output port of type double. sca_interfaceDA 

ports are connected to signals of the corresponding types. A digital signal coming 

from a digital module is transformed into an analogue signal and directed towards 
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digitall analogI 

. V 
E1 Vd_m~ D_A 

Val VcontA V = 1 V Digital VcontD Vdl 
IVi ref Controller r ':lIND 

~ In - rl= ~ J IlJ ;'" .1 
andPWM OUTA 

implicit 
explicit interface 

interface 

sc_signal Va2 

FIGURE 3.7: SMPS Block diagram with analogue-digital interfaces. 

the analogue module through the output port. The simplest form of the interface is 

a set of switched ideal voltage sources. However, instability may be introduced in 

the analogue simulation due to large instability changes in node voltage when the 

digital node switches. Therefore, rather than changing abruptly, a transformation 

is done by a smoothing function explained in detail in Section 3.4.5. 

3.4.2 Analogue-Digital Interface 

Analogue-digital interface could be implicit as in Figure 3.7 or explicit and called 

sca_interfaceAD. sca_interfaceAD is a SystemC module takes an analogue signal 

of type double and produces a digital bool signal. The criteria to generate a digital 

event is simple and demonstrated in Figure 3.8. If the threshold voltage E defined 

is exceeded, an event with a state (high) is generated. An event with a state (low) 

is produced, if the analogue voltage falls below the threshold voltage. Due to the 

fact that the result is a digital boolean signal, an event is to be generated at every 

signal change. The digital part will react to this event if a concurrent statement 

reads this signal or if the sensitivity list of a process contains this signal. 
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Q 

E~---+------------*-----~----------

Q' 

true 

false+ __ '--_________ --" ___ -'-______ _ 

FIGURE 3.8: Demonstration of analogue to digital transformation at their in­
terface. 

3.4.3 Other Interfacing Methods 
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In Sections 3.4.1 and 3.4.2 AID and D I A interfaces that connect analogue and 

digital signals (sc_signal) are illustrated. SystemC-A offers more connection im-

plementations. It supports node to signal, signal to node, or node to node con-

nections. Node-signal connection is used by reading a value at a node and then 

writing it to a SystemC signal which may be connected to another module. 

value=X(a); / / read value from node 

aSig.write(value); / / write value to signal 

Node-node connection is used when there are two electronic circuits in two different 

modules and need to be connected via a shared node. It can be done by declaring 

a new node in the testbench and then do the same procedure as when connected 

signals in a testbench. Signal-node connection is used when a SystemC signal is 

used in a circuit component inputs, it can be done by reading the signal into its 

constructor's argument. All interfaces methods are used and tested by modelling 

a variety of examples in Chapter 6. 
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3.4.4 Analogue Stepping 

The time step of the analogue simulator is usually determined by the internal 

algorithm of the simulator, which means it cannot be defined by the user but 

sometimes there is an option for the user to determine the required fixed time step. 

Analogue simulators do not use events but instead employ an entirely different 

approach to time step control, namely, continuous step size adjustment, illustrated 

in Figure 3.9, where h = hn, hn+l, ... may have different values. This approach is 

used in most analogue simulators for obvious reasons. Firstly, the variable step 

approach can minimise the errors caused by the numerical integration methods 

used to solve differential equations in the circuit model. Secondly, simulation times 

are significantly shorter than those in a fixed step size approach. For example, for 

a step response, in a transient phase a small time step is needed to capture the 

details of the fast part of the transient while in the later part, when things are 

settling down, a longer time step can be used. 

Analogue World hn _/ hn+1 _/ __ D' . I ld .... ... Iglta Wor 

t n-I 

hn =tn -tn_1' hn+ 1 =tn+ 1-tn are different step sizes 

tn_1' tn' tn+l are analogue events generated by the analogue kernel 

FIGURE 3.9: Time stepping in analogue simulators. 

The implementation of analogue stepping is done based on the estimation of the 

Local Truncation Error (LTE) [91J. LTE at tn is an error due to a numerical 

approximation introduced in the time point tn- As LTE depends on the step size 

hn it can be controlled by the value of hn . The step size is determined by limiting 

an LTE estimate to an error bound EBn defined as shown in Eq.3.2, 3.3, 

(3.2) 
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EBn = RELTOL * /Xmax / + ABSTOL (3.3) 

where Xmax is the maximum value of a variable. RELTOL is the relative error 

tolerance within which system variables are required to converge. It allows to sim-

ulate high and low variables without adjusting the conversion criteria. ABSTOL 

is the absolute tolerance, it represents the smallest value of system variable that 

can be monitored. It forces a minimum value in the system matrix when a particu-

lar system variable is nearly zero. These are user defined parameters to determine 

how accurate the simulator calculates the solution. For example, RELTOL=le-3 

and ABSTOL=le-6 for voltage, le-9 for current. ABSTOL and RELTOL can 

have direct impact on convergence and simulation time and have to be chosen 

carefully. 

If the Trapezoidal method is used, which is of the second order, the upper step 

size bound can be determined from Eq.3.4: 

_ [ EBn ]1/3 
hn 

- C * DD3(t) (3.4) 

where DD3(t) denotes the 3rd order divided difference approximation and C = -112 

is the related constant for the Trapezoidal method. 

In order to synchronise the analogue and digital simulators at every time point, 

the analogue stepping is implemented using SystemC event notifications. The 

analogue module which is responsible for calculating the above estimated value of 

the upper step size bound hn notifies the digital kernel at the time point equal 

to (current time +hn ). The digital processes will be activated at this time point 

accordingly. 
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3.4.5 Small Step Sizes 

When connecting analogue and digital models, critical issues and problems arise 

and should be handled and solved in order to simulate the whole system correctly. 

Examples of such issues are the handling of small step sizes and the cancellation 

of events. 

Small step sizes may occur in D / A interfaces when a digital signal, interfaced to 

an analogue system variable, changes its value due to a digital event. Another case 

is the continuous cutting in step size by the analogue stepping algorithm in highly 

dynamic systems. Because of the limited precision provided by the computer's 

finite word length, small step sizes can cause large round-off errors and lead to 

inaccurate results or to non-convergence [92]. On the other hand, a zero step 

size may occur with repeated delta cycle which causes the system to be solved 

at h = 0 and undergo non-convergence. Small step sizes including the case of a 

delta cycle where h = 0 are handled in SystemC-A by smoothing the digital signal 

[93] as illustrated in Figure 3.10 using Backward Euler method. The smoothing is 

implemented based on Eq.3.5. 

S' = Snhn + TS~_l 
n T + hn 

(3.5) 

where Sn is the input digital signal of type bool. hn is the simulation time step 

size. S~ is the smoothed signal and S~_l is the past value of the smoothed signal. 

T is time constant which plays as a control factor to shape the signal. 

Smoothing a very short digital pulse with T 2: than the pulse width, will transform 

the pulse to a short spike and the events caused by the spike will be cancelled by 

the simulator if the signal level is less than a logic threshold as shown in Figure 

3.11. The analogue solver will prevent events from cancelling by defining a check 

for validity of values for both the pulse width and T. 
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Event on 
signal Sn 
----'t 

Digital World 
I 

> t 
t 

smoothing n 

·1 
Analogue World I 

FIGURE 3.10: Handling small time step sizes in SystemC-A analogue kernel. 

TI '----> 
smoothing 

T ~I 

s' n 

r'?:.T 
Cancelled 

event 

t 

FIGURE 3.11: illustration of cancelled events when T >pulse width. 

3.5 SystemC-A Abstraction Levels 
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While most of the abstraction levels of the digital design flow (see Figure 1.2) are 

supported by SystemC, SystemC-A supports additional abstraction levels for ana-

logue systems. SystemC-A provides methods and language constructs to support 

electrical circuit level and system level which includes behavioural level. Electrical 

circuit level is supported by the number of analogue circuit components models 

described in Section 3.3, which are created to be connected in SPICE-like circuit. 

System level is supported by the modularity characteristic of SystemC and SystemC­

A, which allow high level signal flow designs. System level also supported by the 

ability to co-model hardware and software. Modelling a system at behavioural 

level means describing the system by its DAEs. SystemC-A supports efficient 

nonlinear DAE formulation and solving methods. 
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3.6 Concluding Remarks 

This chapter has presented new CAD concepts and methods for the SystemC-A 

AMS extensions. Novel language constructs were defined such as an abstract class 

for defining system variables. The abstract class was extended to the required 

types of system variable, i.e node variable, flow variable and free variable, to rep­

resent the unknowns in the set of DAEs. Another important abstract class is the 

circuit component which can be extended to various kinds of standard or user­

defined analogue circuit components. Objects of the new elements allow building 

any general system such as an electronic circuit at different abstraction levels. 

The chapter also presents a solution to the issues of digital-analogue interaction. 

SystemC-A has its unique methods for interfacing analogue and digital parts repre­

sented in signal transformation and the ability to connect circuit nodes in different 

SystemC modules. The chapter also suggested solutions to some problems which 

might arise due to the interfaces such as implementing the analogue stepping, small 

step sizes and digital event cancellation. The proposed constructs allow modelling 

of analogue systems at circuit level as well as system level of abstraction, leading 

SystemC-A to be high level design language. 



Chapter 4 

Nonlinear Equation Formulation 

with Object-Oriented Jacobian 

approximation 

This chapter presents the implementation of the nonlinear analogue solver which is 

also called analogue kernel. It involves two main steps to simulate systems, formu­

lation and solving of the system's DAEs. A new method of equation formulation is 

proposed using C++ object-oriented features for the development of component's 

build methods. The equation formulation is called Object-Oriented Newton Quasi­

Newton (OO-NQN) method. It provides means of efficient automation of equation 

formulation with minimal user's knowledge of the solver algorithms details. 

The remainder of this chapter is organised as follows: Section 4.1 describes the 

numerical methods used in the implementation of the analogue kernel for for­

mulating and solving linear and nonlinear representations of systems during a 

transient simulation. Section 4.2 presents the build methods to support equation 

formulation to be solved using pure Newton method, where in Section 4.3 the al­

ternative Quasi-Newton method implementation is presented for which no Newton 

68 
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derivatives are available. Section 4.6 presents the analogue kernel structure and 

analogue-digital modelling and simulation flow in SystemC-A. Finally, Section 4.7 

gives the conclusion. 

4.1 Numerical Techniques for Analogue and Mixed-

Signal Simulation 

The techniques of computer-aided circuit analysis are relatively well established 

after their rapid development in the 1960s and 1970s [94]. These techniques in-

clude equation formulation and algorithms to solve the set of system equations 

for different types of circuits. There are many excellent books in the literature 

covering the topic of circuit analysis and design, e.g. books by Calahan (1972) 

[95], Chua and Lin (1975) [96], Vlach and Singhal (1983) [97], Ruehli (1986) [98], 

as well as some recent books such as Litovski and Zwolinski (1997) [99]. The ma­

terial of the following section is mainly from [99] and [100] to explain the theories 

behind the intended analogue kernel. 

4.1.1 Mathematical Model 

A nonlinear electronic circuit with lumped elements can be modelled by a set of 

nonlinear ordinary Differential and Algebraic Equations (DAEs) of the form: 

f(v(t), v(t), t) = 0 t 2: 0, v(O) = vo ( 4.1) 

where f : RN x RN X Rl --+ RN is a vector function, v(t) E RN is a vector of 

unknowns, v(O) is a vector of initial values, v(t) is a vector of unknown derivatives 

with respect to time, N is number of unknowns and t is time. The unknowns, which 

are also referred to as the primary circuit variables, are usually selected from the 
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set of system's node voltages, branch voltages, branch currents, capacitor charges 

and inductor fluxes. 

Eq.4.1 can be transformed to an algebraic set by replacing the time derivatives at 

each time point tn, n = 1,2, ... , by a discrete linear differentiation formula of the 

general form: 
p p 

hnv~ = .I:: aiVn-i + hn .I:: (3iVn-i (4.2) 
i=O i=O 

where, hn = tn - tn- 1 is the current time step, and ai, i3i are coefficients whose 

values depend on hn' hn- 1 , .... The formula in Eq.4.2 is said to be of order r if, 

(4.3) 

where LTE is the Local Truncation Error introduced due to the discretisation. The 

simplest case of the formula in Eq.4.2 is the first-order Backward Euler formula in 

Eq.4.4. 

(4.4) 

In this research, the Trapezoidal formula (Eq.4.5) is used. It is a popular second 

order form of the linear differentiation formula and the default method in SPICE 

and other analogue simulators. 

(4.5) 

An example of other methods is the second-order Shichman formula [lOlJ with 

variable step, 

(4.6) 
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It is a particular case of the variable-order variable-step Backward Differentiation 

Formula (BDF) [102]' 
p 

hn v'n = L aiVn-i 
i=O 

(4.7) 

BDFs are very desirable in circuit simulation due to their greater numerical effi-

ciency and excellent stability properties in the case of stiff systems, i.e. systems 

with a wide spread of time constants. 

It is useful to distinguish between the unknown present values of primary circuit 

variables Vn and the past values Vn-i, i = 1,2, ... ,p and rewrite the formula Eq.4.2 

in the following, more compact form: 

where the second term, 

p 

Xv,n £ L(aiVn-i + hnf3i vn-i) 
i=O 

(4.8) 

(4.9) 

contains only past information and ~ is the discretisation operator (S). In this 

research, Sand Xn are defined as in Eq.4.10 and Eq.4.11, where Trapezoidal 

method is used for the whole simulation time except for time=O, when Euler 

method is used. 

if time = 0 
1 

S=h' 
n 

if time = 0 Xn = SVn-l, else 

else (4.10) 

(4.11) 

Application of the discretisation in Eq.4.8 to the original equation Eq.4.1 yields a 

system of algebraic nonlinear equations for every discrete time point tn, 

(4.12) 
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Virtually all solution methods of Eq.4.12 are based on some form of the Newton­

Raphson (NR) linearisation which is derived from the Taylor expansion of Eq.4.12 

around the mth estimation v: of the solution vector vn . 

(4.13) 

where, jm = :1 Ivn=vrn ERNxN is the Jacobian matrix evaluated at vnm. 
UVn n 

If the terms of order higher than the first in Eq.4.13 are rejected, then Eq.4.12 

reduces to its linearised estimate, 

(4.14) 

where the solution is V~+l = v~ + b.v~ and RHsm = - f(v~) + jmv:. If 

IIV~+l-vnll < II v: -vnll (m = 0, 1,2, ... ), then the repeated application of Eq.4.14 

is a contraction mapping and the subsequent values v~ converge to the solution Vn 

of Eq.4.12. The standard algorithm for the solution of Eq.4.1 (the NR algorithm) 

can be summarised as shown in Algorithm 4.1. 

Algorithm 4.1: Newton Raphson non-linear solver. (n:time point counter, m:NR 
iteration counter, carbitrary small number, T:maximum analysis time.) 

1: n:= 0; 
2: t:= 0; 
3: repeat 
4: n := n + 1; 
5: tn := tn- 1 + hn; 
6: evaluate current values of differentiation operator ao, Xn; 
7: predict values of known variables v~ as initial guess for NR iterations; 
8: m:= 0; 
9: repeat 

10: m :=m+ 1; 
11: set up Jacobian Jm for current estimate of unknown variables v:; 
12: solve linearised equation jmb.V:+l = RHsm; 
13: until NR iterations converge i.e. IV~+l - v~1 < E 

14: select new step size hn+l on the basis of LTE estimation. 
15: until tn > T; 
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4.1.2 Equation Formulation 

The equations are ready to be formulated once they are discretised and linearised as 

shown in the summary in Figure 4.1 of procedural preparation of circuit simulation. 

Nonlinear ODE: 
f(v,v,t) = 0 

v (0) = Vo 

, Discretisation 

Discretised Nonlinear ODE: 
~ 

!(vn)=O 

NR Linearisatio n 

Linearised Algebraic Eq: 

J m /1v m
+

1 = RHS m 

MNA formulati on 

MNA system matrix: 

[= = ]AV =[ =] 
LU 

Solution: 
vn = vn-1 + /1vn 

FIGURE 4.1: Procedure of analogue circuit simulation. 

The analysis of the linearised system can be commonly viewed as a two stage 

process, equation formulation and numerical solution [99J. The Modified Nodal 

Analysis (MNA) method [90J has been widely used for formulating circuit equa-

tions in computer-aided network analysis. MNA retains the simplicity and other 

advantages of the classical nodal analysis while removing its main limitation, which 

is the inability to process voltage sources and current dependent circuit elements 

in a simple and efficient manner. 
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In MNA, the node equations are formulated using Kirchhoff's Current Law (KCL) 

in conjunction with branch constitutive equations to describe electronics circuits. 

The equations are formulated (represented in the computer program) automat i-

cally in a simple and comprehensive manner. The common approach for automatic 

equation formulation is the network element stamp method which represents the 

contribution of one particular element to the system of equations describing the 

network [99]. 

For example, the MNA stamp for a resistor connected between nodes i and j is, 

G -G -2 (4.15) 

j -G G 2 

where the rows represent equation numbers, and the columns represent variables, 

and C is the conductance. The Right Hand Side (RHS) represents the excitations 

of the linearised network. Table 4.1 shows several commonly used stamps. In the 

inductor stamp or voltage source stamp, a new variable is introduced representing 

a current through these elements. This was the main contribution of the MNA. 

TABLE 4.1: Sample component stamps used in automatic equation formulation. 

Resistor Inductor 

v· , Vj RHS V· , Vj IE RHS 
1 G -G -2 1 1 -IE 
J -G G 2 J -1 IE 

IE 1 -1 -SL I -Vij + SLiEn 

Diode Capacitor 

Vi Vj RHS Vi Vj RHS 
1 Cd -Cd -Id 1 SC -SC -Gun - ic 

J -Cd Cd Id .J -SC SC GUn + ic 
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4.1.3 Standard Solution of Linear Equations 

Once formulated, the system of linearised equations describing a circuit has to 

be solved. There are two approaches to this problem: direct methods and itera-

tive methods. Direct methods are able to solve the system in a fixed and finite 

number of steps, such methods are: the Gauss-Jordan method, Gaussian Elimina-

tion method and LU factorisation method. Iterative methods produce an infinite 

sequence of solutions that may converge to a consistent result if rather strong con-

ditions on the Jacobian matrix are satisfied, such methods are the Jacobi method, 

Gauss-Seidel method and relaxation methods. In most circuit simulators the lin-

earised Eq.4.14 is solved by means of direct methods such as Gaussian elimination 

or LU decomposition. These methods have proven to be reliable and accurate, 

thus LUis used in this research. 

Nonlinear circuit analysis in the time domain may require several thousand re-

peated solutions of a big dimension system (N > 500). The linearised equations 

describing the circuit are usually re-formulated at each NR iteration and each time 

point. Therefore, the efficiency of the equation solution method and the system 

matrix order should be considered as an important factor. Taking advantage of 

system matrix properties such as sparsity and symmetry to accelerate the solu­

tion process and reduce the memory needed. Also, adopting a suitable pivoting 

strategy is necessary. The pivoting process consists of reordering the equations by 

row pivoting (renumbering the variables), column pivoting, or both, so as to put 

a particularly desirable element in the diagonal position from which the pivot is 

about to be selected. The pivoting strategy is implemented in this research but 

optimising system matrix by methods depending on the sparsity is not considered. 
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4.2 Equation Build Method 

The build method supports the automatic OO-NQN equation formulation of the 

system to be modelled. It is a virtual method in the abstract component base class 

(sea_component) and inherited by all derived components. The build method 

consists of two functions, BuildM () and BuildB (). They contain C++ code which 

defines one or more DAEs. Figure 4.2 illustrates the use of the build functions in a 

capacitor model as a SystemC-A component. Also, it gives a better understanding 

of the elements of the build method and how the modeller can use them. 

C 

a--1/- b 

i = C dVab 
ab dt 

differential eg. 

= C(SVabn + X abn (V abn-l , vabn_l , ... )) discretised eg. 

Jacobian .~V = RHS system eg. 

Va Vb 

a [SC 
b -SC 

-SC]. = [-Scvan -CXan +SCvbn +CXbn] 
~vn+l 

SC SCvan + CXan - SCvbn - CXbn 

\\part ojcapacitor's SystemC-A model 
void sc_a_capacitor: :BuildM(void){ 

S=SO; 

} 

Jacobian(a,a,S*C); 
Jacobian(a,b,-S*C); 
Jacobian(b,a,-S*C); 
Jacobian(b,b,S*C); 

void sc_a_capacitor: :BuildB(void){ 
V dotn= Xdot( a)-Xdot(b); 
BuildRhs( a,-C*V dotn); 
BuildRhs(b,C*V dotn); 

} 

FIGURE 4.2: Capacitor mathematical model and its SystemC-A build functions. 

Figure 4.2 shows first the capacitor's differential equation and its representation 

after discretisation (see Eq.4.10 and Eq.4.11 for the definition of the discretisation 



Chapter 4 Nonlinear Equation Formulation with Object-Oriented Jacobian 
approximation 77 

operator S and previous terms Xn). Then it shows the capacitor's MNA stamp 

(Jacobian and RHS) and part of the SystemC-A model presenting the BuildM() 

and BuildB() functions which build the differential equation of the capacitor. 

BuildM() represents the component's contribution to the Jacobian, the associated 

function is Jacobian(}. It is a function to add a single contribution to the Jacobian 

matrix. For instance, the capacitor contribution in Table 4.1 needs four entries to 

the Jacobian, therefore four calls to the Jacobian() function is performed in the 

capacitor model shown in Figure 4.2. The arguments of Jacobian() are, first the 

two nodes to where the capacitor is connected and the third is the contribution 

element of its stamp. 

BuildB() represents the component's contribution to the right hand side RHS 

vector of the system equation defined in Eq.4.14. The associated function with 

BuildB() is BuildRhs() function. It is a function to add a single contribution 

to the RHS of the system equation. The arguments of BuildRhs() are, first the 

corresponding capacitor node and the second is the contribution element of its 

stamp. If the user modelled his system using BuildM() and BuildB(), the analogue 

kernel will build exact Jacobian values and will solve the system using pure NR 

method (shall be called Newton for simplicity from now on). 

Calls to BuildM(), which build the corresponding Jacobian entries are optional. 

If these calls are not provided, the solver will build the Jacobian using a secant 

approach with finite difference approximation of the Jacobian entries. This option 

will be described in Section 4.3. 

The resulting Jacobian stamp conforms to the MNA formulation. The entire 

equation set is formulated automatically at each Newton iteration by scanning the 

linked-list of components (see Figure 3.5) and invoking their build methods. 
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4.3 Object-Oriented Jacobian Approximation 

The use of pure Newton method by employing the combination of BuildM(} and 

BuildB(} to build the exact Jacobian, requires a model developer who has knowl­

edge about the Jacobian stamps in Table 4.l. This is not always the case. Although 

using pure Newton method leads to accurate solutions of a simulated system, the 

use of BuildM(} is optional. BuildM(} has a default body, which calculates New-

ton derivative approximations using the right hand side. In this case, the modeller 

defines his model using only BuildB () and the analogue kernel will approximate 

the required Jacobian automatically. 

The body of BuildB(} is generated from user-defined equations. The user of 

SystemC-A can use BuildB(} function only with its associated function Equa­

tian(}, where the arguments of Equatian(} function are the same as BuildRhs{}. 

The RHS vector will be provided by the modeller, while the Jacobian matrix will 

be estimated and then solved using Quasi-Newton method. Figure 4.3 summaries 

the OO-NQN equation formulation method. 

The model developer may override the default BuildM () by providing code to 

calculate pure Newton derivatives. In VHDL-AMS there is no provision for user-

defined derivatives so the default option must be used. However, vendor compo-

nents built into a VHDL-AMS system may use pure Newton derivatives in the 

way described here. 

4.3.1 Quasi-Newton Method 

In different versions of Newton's method, if the Jacobian is not readily available 

and rather is approximated, the methods called Quasi-Newton methods [103J. 

The Jacobian matrix is composed of partial derivatives as in Eq.4.16, therefore 

if it is not provided each derivative element should be approximated using finite 
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from sc_a_component derive 
new component X 

providing Jacobian I not providing Jacobian 

~ 
override BuildMO 

define BuildBO 
define BuildBO 

approximate ~ Jacobian 

Default BuildMO will run using 
Secant method 

use JacobianO in conjunction 
with BuildMO 

+ use BuildRhsO in conjunction 
with BuildBO Use EquationO in conjunction 

with BuildBO 

solved using 
I Solved using 

Newton Method 

~ 
Quasi-Newton 

method 

Component X model is ready 
to be simulated 

FIGURE 4.3: Summary of OO-NQN equation formulation method. 

difference derivative instead of the exact one. 

oil oil 
OXI OX2 

012 012 

J= OXI OX2 (4.16) 

Finite difference approximation is defined in Eq.4.17. It makes use of the system 

RHS (Ji(Xj)) and a scalar !:1Xj which is normally chosen between 10-6 and 10-3 . 

J
ij 

= Ofi = fi(Xj + !:1Xj) - fi(Xj) 
OXj !:1Xj 

( 4.17) 

This approximation method of the Jacobian is using the secant method [96J. It is 
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to use the slope of the line between two consecutive search points Xj and Xj + flxj 

to compute the next point xj+l (Eq.4.18) from secant that drawn between the two 

points, as demonstrated in Figure 4.4. 

(4.18) 

The advantage of the method is that the number of function's evaluations is half of 

that of the Newton's method because Jacobian need not be evaluated. However, 

its convergence rate is slightly less than Newton. 

F(x) 

f(X k+l) 

X k+l 
j 

__ ...-7!I f(X.k-l) 
I } 
I 
I 
I ~Xj ,... .., 
I I 

FIGURE 4.4: Illustration of the secant method. 

x. 
} 

4.4 SystemC-A Implementation of OO-NQN Eq-

uation Formulation 

SystemC-A utilised the advantage of object-oriented C++ inheritance and poly­

morphism (as explained in Section 3.1) to implement the automation of 00-

NQN equation formulation method. This was achieved by defining BuildM(} 
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and BuildB(} functions in the sc_a_component abstract class, as virtual methods. 

BuildB(} is defined as a pure virtual method as in Line 10 of Listing 4.1. This 

means that BuildB(} needs a body to be defined in any derived user's component 

model, otherwise the simulator will produce an error. 

Most importantly, BuildM(} virtual method defined in line 11 of Listing 4.1 has a 

default body. If the user does not provide the Jacobian by defining BuildM(} in 

his model, the default body in the abstract component class will be run instead. 

The default BuildM(} as implemented in Lines 59-86 of Listing 4.1 is the secant 

method approximation of the Jacobian. 

1 //component's header file 
2 #include "sc_a_system_variable .h" 
3 

class sc_a_component{ 
public: 

sc_a_component (); 

4 
5 
6 
7 
8 

sc_a_component (char nameC [5] ,sc_a_system_variable *node_a, sc_a_system_variable 

9 
10 
11 
12 
13 
14 
15 
16 
17 

* node_b ,double valueC); 
virtual -sc_a_component (); 
virtual void BuildB(void)=O;// pure virtual method {must override} 
virtual void BuildM(void); 
void setNext(sea_component *link) {next = link ;}; 
sc_a_component *getNext () {return next;}; 

18 

virtual void IC(void){} 
void Jacobian (sc_a_system_variable 
void BuildRhs (sc_a_system_variable 
void Equation (se-a_system_variable 

19 protected: 
20 char name [15] ; 
21 bool flag; 

*Ql, sc_a_system_variable *Q2, double value); 
*Ql, double val ue ) ; 
*Ql, double value); 

22 double *x_vector, *RHS, *rhsl, *rhs2, *rhs3; 
23 double Jacob, deltaX, value; 
24 in t i, j ,n, i 2, i 3 ; 
25 sc_a_system_variable *a,*b; 
26 sc_a_component *next; 
27 }; 
28 
29 //component's cpp file 
30 
31 sc_a_component:: sc_a_component(char nameC[5] , sc_a_system_variable 
32 *node_a, sc_a_system_variable *node_b, double valueC){ 
33 strcpy(name,nameC); 
34 a=node_a; 
35 b=node_b; 
36 value=valueC; 
37 if (mylist != NULL) 
38 mylist->insert ((sea_component *)this); 
39 else 
40 throw" mylist is empty"; 
41 deltaX=le -3; 
42 flag=false; 
43 } 
44 
45 void sea_component:: Jacobian (sc_a_system_variable *Ql, sc_a_system_variable *Q2, 
46 double value){ 
47 LSl->BuildM(Ql->geLcolomnNo (), Q2->geLcolomnNo (), value); 
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} 

void sc_a_component:: BuildRhs (sc_a_system_variable *Q1, double value){ 
LS1->BuildRhs (Q1->geLcolomnNo (), value); 

void sc_a_component:: Equation( sca_system_variable *Q1, double value){ 
RHS=build1->geLRHS (); 
RHS[Q1->geLcolomnNo ()]= value; 

} 

void sc_a_component:: BuildM (void){//approximate Jacobian using secant method 

for(i=l;i<n; i++){ 

} 

LS1->BuildRhs(i,RHS[i]);//build Rhs with f(all variables updated) 
rhs1 [i]=RHS[ i]; // save values of RHS of all component contributions 
rhs2[i]=0; 
RHS[ i ]=0; 

BuildB () ; //build without variable increment 
for (i3 =1; i3<n; i3++){ 

rhs2 [i3]=RHS[ i3]; 
RHS[ i ]=0; 

/ /save this component contribution to rhs 

} 

for(i=l;i<n;i++){ //special update, update single variable at a time 

} 

x_vector [i]=x_vector [i] + deltaX; 
BuildB (); //build with variable increment 
for(i3=1;i3<n; i3++) //save this component contribution to rhs after updating 

rhs3 [i3]=RHS[ i3]; 

x_vector[i]=x_vector[i] - deltaX;//restore x 
for (j =1;j <n; j++) 
{ 

} 

Jacob=(rhs3 [j]- rhs2 [j]) / deltaX; 
LS1->BuildM(j ,i,-Jacob);//take values to LS 

LISTING 4.1: SystemC-A model of the Component abstract class. 

The developed object-oriented secant algorithm can be summarised in Algorithm 

4.2. 

Algorithm 4.2: Object-oriented secant algorithm of approximating the Jacobian. 
1: evaluate equations (run BuildBO) with all variable updated to get f(x) 

vector for a component. 
2: for each variable Xj do 
3: choose suitable t::..Xj according to Xj magnitude 
4: Xj = Xj + t::..Xj increment Xj 

5: evaluate equations (run BuildBO) to get f(xj + t::..Xj) vector 
6: Xj = Xj - t::..Xj restore Xj 

7: for each row i do 
8: J.. = f;(xj+/::,.xj)-J;(x) 

'J /::"Xj 

9: end for 
10: end for 
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4.5 Object-Oriented Jacobian Approximation Ef-

ficiency 

All the examples modelled in Chapter 6, 7 and 8 were tested using both exact and 

approximated Jacobians of the OO-NQN method. The models with approximated 

Jacobian were as accurate as with the exact one, the percentage error between 

models simulated using both methods is negligible. With regard to the CPU 

time, Table 4.2 shows execution times of different case studies for both exact and 

approximated Jacobian methods. 

TABLE 4.2: Execution times when using exact and approximated Jacobian in 
case studies covered in Chapter 6 7 and 8 , 

example time step duration samples exact J approxi. J increase 
[sJ [sJ [sJ [sJ 

Van Der Pol Oscillator 0.1 150 1500 0.05 0.07 lAO 
Lorenz Chaos 0.01 150 15000 0.69 0.99 1.44 
PLL noise 2 0.2n 200p, lOOOO 72.91 80.99 1.11 
Ferromagnetic hysteresis 0.1 1lO 1100 0.14 0.17 1.22 
Automotive, OC O.lm 2.5 25000 27.35 50.55 1.84 
Automotive, PIC 0.05m 2.5 50000 60.69 1lO.61 1.82 
Automotive, VSC O.lm 2.5 25000 63.24 112.23 1.77 

The simulations were carried out on a PIlI PC with 512MB RAM. It is apparent 

from Table 4.2 that case studies using the Jacobian approximation took longer 

simulation times than the ones that using exact Jacobian. Approximating the 

Jacobian has added a number of operations due to functions calls which increased 

the CPU time of modelling a particular system. Function's calls are mainly of 

calling the RHS at different time points in order to evaluate Eq.4.17 as described 

in Algorithm 4.2. Different percentage increases in Table 4.2 of different examples 

are due to the size of the system, i.e. number of system variables. For instance, 

the automotive examples are very big and contain around 13 variables, therefore 

the increase in CPU time is quiet big. Using exact Jacobian approach has the 

advantage of simulation speed over the approximate Jacobian approach, leaving 

the choice between simulation speed and easiness to the model developer. This 
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choice is not provided to modeller using popular AMS HDLs, such as VHDL-AMS 

and Verilog-AMS. 

4.6 Analogue Kernel 

The analogue kernel is the core engine of any analogue simulator. It consists of 

layers of several algorithms. The main functionality of the analogue kernel is to 

solve the set of non-linear dynamic equations. The theories and algorithms behind 

it are explained in detail in Section 4.1. The flow chart in Figure 4.5 shows the 

details of the modelling and simulation flow of a general AMS system in SystemC­

A. The following paragraphs are to explain Figure 4.5. 

The simulation starts by the initialisation phase where the components construc-

tors in the user code run first, initialising all variables. Some components may have 

initial conditions which are scanned at very early stage by using the linked-list in 

Figure 3.5. 

Then, after coding the system model in different modules and construct the whole 

system in a test bench, the simulation is started by executing the following SystemC 

command which must be provided in the testbench directly after the user code: 

sc-start(); 

sc_start() may have different arguments to specify the simulation time. 

The engine is now ready to start formalising and solving the defined model using 

universally adopted and well established methods such as L U factorisation and 

Newton algorithms. The Newton nonlinear solver is first initialised (iteration 

z = 0) and then started. In every Newton iteration, the analogue components list 

is scanned to invoke their build functions which add the component's contributions 

to the Jacobian (J) and RHS of Eq.4.14. 
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FIGURE 4.5: SystemC-A modelling and simulation. 

No 

From the iterative loop of the Newton algorithm, the LV factorisation method is in­

voked. LV factorisation method is responsible for solving the linear set of equations 

(Eq.4.14) formulated at each Newton iteration for !:lx. The LV method employs 

a pivoting method to avoid zero diagonal element or non-convergence problems 
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due to small pivots. The basic pivoting strategy implemented in SystemC-A is, 

for each matrix's row/column find the largest element and then interchange this 

row/column with the current row/column. The reordered matrix should have all 

largest elements on its diagonal. The entire matrix must be reordered at each step 

of the factorisation. 

Once the system equations Eq.4.14 are solved for 6x, the solution x is updated 

(x = x + 6x) and tested for convergence. If the convergence condition is not 

satisfied the Newton algorithm continues iterating. If the convergence condition 

is satisfied, the analogue solver exits the Newton algorithm and the digital kernel 

proceeds with the digital processes if required which might involve multiple delta 

cycles. After the present time point is accepted and the solution is updated, the 

next time point is calculated using the current LTE estimate. Afterwards the 

solver schedules an event at the next time point. The current time in SystemC is 

obtained from sc_time_stamp().to_seconds(), thus the event is scheduled at, 

(4.19) 

where hn is the next time step. This process is discussed in more detail later 

in Section 5.4. Any of the triggered digital processes might trigger the analogue 

kernel and the cycle starts again. 

4.7 Concluding Remarks 

This chapter has first presented the numerical methods required to construct the 

analogue kernel. In this context, it reviewed the DAE's mathematical model, dis-

creteisation, linearisation, formulation and solving. Then, the chapter presented 

the Object Oriented Newton-Quasi Newton method (OO-NQN) for equation for­

mulation. OO-NQN was implemented by introducing a new SystemC-A build 
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method. OO-NQN has two approaches for constructing the Jacobian, building 

the exact Jacobian's elements using MNA component's stamps or approximating 

them using secant method. The advantages of OO-NQN is a compromise between 

simpler model or simulation speed. Finally, the analogue kernel with the devel-

oped constructs from Chapter 3 are put together to form an engine to simulate 

AMS systems. 



Chapter 5 

Time Synchronisation Between 

Analogue and Digital Kernels 

One of the most important problems in mixed-signal simulation is the time syn­

chronisation between the event-driven digital simulation and numerical integration 

in the analogue solver. Synchronisation is an essential issue affecting the simulation 

speed and accuracy. Another important issue to consider is the signal conversion 

on mixed-nets at the analogue-to-digital and digital-to-analogue interfaces. This 

is explained in detail in Chapter 3. 

The idea of synchronisation is to modify the time stepping engine in the analogue 

solver such that it fits into the digital event-driven paradigm. The synchronisation 

is then accomplished by the digital simulator, which processes the events in the 

chronological order of their time stamps. For this purpose, a new implementation 

of the lock-step method, with efficient handling of zero step-sizes is used. 

The remainder of this chapter is organised as follows. Section 5.1 begins with 

a description of the SystemC digital simulation cycle. Section 5.2 describes the 

SystemC-A mixed-signal simulation cycle, in which the AMS extensions are han­

dled as a modification to the original SystemC kernel. In Section 5.3, various 

88 
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synchronisation methods from the literature with their advantages and disadvan­

tages are discussed. In particular, the lock-step approach is chosen to be further 

investigated and implemented in this research, as described in Section 5.4. Finally, 

Section 5.5 concludes the chapter. 

5.1 SystemC Simulation Cycle 

Like in the case of most high level HDLs, a SystemC model consists of a hierar­

chical network of parallel processes. These processes exchange messages under the 

control of the simulation kernel process [10] and concurrently update the values 

of signals and variables. Signal assignment statements do not affect the target 

signals immediately, but the new values become effective in the next simulation 

cycle [104]. The kernel process resumes when all the user defined processes become 

suspended either by executing a wait() statement or upon reaching the last pro­

cess statement. On resumption, the kernel updates the signals and variables and 

suspends again while the user processes resume. If the time of the next earliest 

event (tn) is equal to the current simulation time (tc), the user processes execute 

a delta cycle, illustration of the SystemC simulation cycle is shown in Figure 5.1. 

5.2 Developed SystemC-A Mixed-Signal Simu­

lation cycle 

In SystemC-A mixed-signal simulator, the digital and analogue simulation cycles 

are combined into a single cycle. Hence, a set of computations of the analogue 

equations is executed between the digital evaluation points. To comply with the 

SystemC execution semantics, the proposed SystemC-A simulator comprises an 
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All processes suspended 

Digital 
Kernel 

FIGURE 5.1: Simulation cycle of a SystemC model (see Section 5.1). 

analogue kernel (see Figure 5.2), which is activated by the modified SystemC 

kernel and drives the user defined analogue descriptions. 

The SystemC-A simulation cycle shown in Figure 5.2 starts with the initialisation 

phase, where the initial signals and analogue system variables values are computed. 

The initial analogue equation system is determined by running the component's 

function (InitialC()) at the initialisation phase. The simulation cycle itself starts 

with a computation of analogue solution points. This continues until the next 

digital event is scheduled or event occurs at analogue-digital interface. To compute 

a digital evaluation point, signals are updated. After that, processes are executed. 

If the time for the next digital evaluation (tn ) is equal to the current simulation 

time (tJ, the digital simulator is called again with the same current simulation 

time (delta cycle). If tn is not equal to te, the analogue solver is called, and the next 

cycle begins. This continues until the end of the simulation is reached (tn = tend). 

The analogue kernel repeatedly executes the simulation cycle shown in Figure 5.3, 

which might involve delta cycles and backtracking. The analogue solver must have 



Chapter 5 Time Synchronisation Between Analogue and Digital Kernels 91 

Analogue 
kernel 

All processes suspended 

Digital 
Kernel 

FIGURE 5.2: Proposed SystemC-A simulation cycle. 

a capability to backtrack to the state ie- I (just before ie). Backtracking can be 

achieved by saving the analogue state at ie-I' 

Analogue simulators use continuous step size adjustment to minimise the errors 

caused by the numerical integration formula (see Section 3.4.4). It is therefore 

necessary for the analogue kernel in a SystemC environment to handle delta cycles 

in a manner similar to that of digital processes. However, the state of the analogue 

solver may not be updated until after the SystemC kernel advances the simulation 

time ahead of the current simulation time ie, unless a delta cycle occurs and 

reevaluation of the current step is necessary. 



Chapter 5 Time Synchronisation Between Analogue and Digital Kernels 92 

No (time has advanced) 

Analogue Delta cycle? 
t > t c c-l 

Restore analogue state at tc_l 
with h=O 

Solve analogue model at te 

Save current analogue state at 

te 

Select next step size h 
and schedule event at next 
local time point tn = te + h 

FIGURE 5.3: Simulation cycle of the analogue kernel process. 

5.3 Time Synchronisation Methods 

The major function of a mixed-signal simulator is synchronising the two distinct 

algorithms so information can be exchanged without incurring errors or undue 

overhead. There are two fundamental approaches to time synchronisation at the 

analogue and digital interfaces, pessimistic and optimistic [105, 106, 107J. In 

the pessimistic approach, the simulators progress with the same time step. This 

approach ensures that there is no need for backtracking and no results are thrown 

away. One well-known example is the lock-step method which is the technique 

used in this project. 

The optimistic approach allows each simulator to progress in time until it runs out 

of internal events. If an event from one simulator is generated before the end of 

this optimistic time interval, all results generated after that event are discarded. 

This means that simulators must be able to backtrack. Examples of optimistic 
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synchronisation methods are Backplane [108], Ping-pong [105J and Calaveras [109J. 

The idea and the disadvantages behind each technique are shown in Figure 5.4 

and explained in the following subsections. 

- analogue time I Digital III III I I III Lock-step 

Pessimistic step at every I Analogue I" 
digital event III I I III 

III III I I I III Backplane - synchronise at Digital 
periodic rate. 

Optimistic 
- more analogue Analogue I ~ ~I ~I ~I ~I ~I ~I ~I error is incurred. 

- reevaluate at Digital III III I I I III Ping-Pong 

Optimistic backtrack. 
- bad for highly I Analogue I I ~I ~I~I ~ ~I feedback systems. 

'" .J 
Roll-back 

- Synchronise only I 
Digital III III I I III Calaveras 

Optimistic when necessary. 
- Patented roll- I Analogue I I ~I back algorithm. ~I lj ~ 
- no reevaluation 
of circuit required. Roll-back 

FIGURE 5.4: Time synchronisation methods of analogue and digital kernels. 

5.3.1 Backplane Method 

The backplane synchronisation used to be a popular method for operating multi­

ple digital simulators concurrently using a fixed time step even if no data transfer 

is necessary. Initially, this approach aimed to provide the ability to run different 

types of digital simulator, such as VHDL and Verilog. Some simulation backplanes 

have attempted to attach analogue simulators [108], but performance has usually 

been less than optimum, because simulation backplanes typically force additional 

synchronisation events. Though these events may add little overhead to digital 
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simulators, they can cause additional analogue time steps that significantly in­

crease overall simulation time up to 1000 to 1 ratio of analogue to digital [109]. 

The effect can be enormous. Usually it is common to link an analogue simulator 

to a digital simulator that communicates with the backplane, instead of having 

the analogue simulator directly connected to the backplane. 

5.3.2 Ping-Pong Method 

A far more efficient way to perform mixed-signal simulation is to synchronise 

the analogue and digital portions of the simulation only when data need to be 

exchanged. Otherwise, the analogue and digital algorithms work independently, 

each taking the optimum time steps whenever possible. 

This technique is commonly referred as the ping-pong or roll-back method [105], 

because each portion of the simulator alternates taking time steps. The problem 

with this method is that one of the algorithms can get ahead of the other, which 

mean data needs to be exchanged at a previous time point. To maintain accuracy, 

the algorithm that is ahead of time must backtrack to regain synchronisation. 

This backtracking can be expensive in terms of CPU time because the analogue 

matrix must be reevaluated. With circuits that have tight feedback loops between 

analogue and digital, backtracking can slow down the simulation or even give 

erroneous results. 

5.3.3 Calaveras's Method 

Calaveras's Method is an improved version of the ping-pong method. The method 

is used exclusively by SABER simulator from Analogy [109]. When data needs 

to be exchanged, if the analogue simulator is ahead of time, it again rolls back in 
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time, but the analogue matrix instead of being re-evaluated, is interpolated at the 

synchronisation point. 

5.4 Lock-Step Method 

The alternative approach, adopted in this project, is the lock-step method. The 

analogue simulator calculates the step sizes and the digital simulator uses these 

values. The analogue kernel advances until the current simulation time and before 

suspending, schedules an event at the time equal to the current simulation time 

plus the next selected step size. Lock-step has been used by many commercial 

mixed-signal simulators, such as Lsim Power Analyst from Mentor Graphics and 

Pspice from Microsim Corporation. 

The lock-step pessimistic approach has been used in preference to optimistic ap­

proaches, because the prospect of wasting vast amounts of CPU time by the op­

timistic approach was considered too costly [105j. Another reason is that the 

adopted method eliminates the need for backtracking and no results are thrown 

away. There were claims that the lock-step method produces long run-times [110j. 

However, this is true when the method is used to synchronise analogue and digital 

simulator from two or more different environments, because of the communication 

overhead. When two solvers are synchronised within the same environment, the 

lock-step approach is not expected to produce significant overheads. For this rea­

son SystemC-A uses lock-step method which has been proved to be very accurate, 

fast, and reliable by the simulation of the examples presented in Chapter 6. 

The method is implemented in this research by modifying the SystemC kernel 

specified by (sc_simcontext. cpp) module from the SystemC library. The modifica­

tion is done by inserting a call to the analogue kernel before the evaluation phase 

of the digital simulation cycle, as shown in Listing 5.1. 
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1 void sc_simcontext:: crunch () { 
2 #i f de f DEBUG.svsTEMC 
3 int num_deltas = 0; 
4 II number of delta cycles 
5 #endif 
6 m_delta_count ++; 
7 while ( true ) { 
8 TS->TranS (); II <- added code 
9 II a call to the analogue solver 

10 I I EVALUATE PHASE 
11 
12 } 
13 
14 } 

----------------------------------------------------------------------
LISTING 5.1: Modification to the SystemC kernel to be coupled with the ana­

logue kernel. 

This approach ensures that the SystemC kernel will make a step in time no larger 

than the analogue kernel's step size. Since the analogue kernel is controlled by the 

SystemC kernel, no synchronisation deadlock may happen. The only causes for 

deadlock-like behaviour could arise due to a failure to converge in the analogue 

solver or due to unresolvable delta cycles. 

Most existing digital solvers cannot backtrack and therefore no fundamental changes 

are required if a mixed-signal system is integrated to the SystemC kernel. The 

lock-step synchronisation algorithm has been implemented as a modification to 

the digital kernel and can be described in the form of pseudo-code as in Algorithm 

5.1. 

Algorithm 5.1: Lock-step synchronisation method. 
1: time = 0 
2: initialise both the analogue and digital kernels. 
3: while (time <= end time) do 
4: while (immediate notifications are pending) do 
5: execute the analogue kernel 
6: distribute notifications generated by the analogue kernel on global nets. 
7: while (there are active processes) do 
8: run a selected process 
9: end while(there are active processes) 

10: update signals. 
11: check if a delta cycle is necessary 
12: end while(immediate notifications are pending) 
13: advance time to the next timed notification. 
14: end while(time <= end time) 
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5.5 Concluding Remarks 

The aim of this chapter was to develop a method to synchronise the developed 

analogue kernel in Chapter 4 and the digital SystemC kernel. In this context, the 

chapter explains first the SystemC digital simulation cycle and the SystemC-A 

simulation cycle. Further, the chapter reviewed some of the well known synchro­

nisation methods from the literature, suggesting the lock-step method to be used 

in this research. The implementation of the lock-step synchronisation method 

relies essentially on a simple modification of the SystemC kernel. The lock-step 

method has proven to be fast, accurate, and reliable by simulating the examples 

presented in Chapter 6, 7 and 8. 



Chapter 6 

Electrical System Modelling Case 

Studies 

The new methods and constructs of SystemC-A developed in Chapter 3, 4 and 5 

have been validated using a wide range of examples. The examples could be ana­

logue, mixed-signal, of different abstraction levels and from different domains. For 

this purpose, this chapter presents modelling four electrical case studies, ranging 

from simple to complex. The cases were chosen to test the simulator from different 

aspects. In Sections 6.1 and 6.2 the Van Der Pol oscillator and Lorenz chaos are 

modelled as systems of simple ODEs that demonstrate the modelling capabilities 

of SystemC-A at behavioural level. 

In Sections 6.3 and 6.4 a Switched Mode Power Supply (SMPS) and a 2GHz 

Phase Locked Loop PLL-based frequency multiplier are modelled as non-trivial 

systems. Systems of this kind usually put standard SPICE-like simulators into 

difficulties because of the disparate time scales of their transients. In the case of 

the SMPS, the analogue transient in the output circuit is four to five orders of 

magnitude slower than that of the fast switching waveform in the digital controller. 

A typical simulation in a system of this kind might require a few million time 

98 
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points. Excessive CPU times often occur when the entire system is modelled on 

the circuit level. The capacity of SystemC-A to enable mixed-signal modelling 

can vastly reduce simulation times where concepts need to be verified quickly and 

detailed circuit level modelling is not required. 

6.1 Van Der Pol Oscillator 

The Van Der Pol equation [111] is a model of a real electronic circuit studied 

in the 1920s, i.e. the days of vacuum tubes, by Balthazar Van Der Pol. In 

certain conditions, the tube acts like a normal resistor when the current is high. 

It becomes a negative resistor when the current is low. This behaviour leads to a 

relaxation oscillation. This system can also be represented as an RLC loop, but 

with the passive resistor replaced by an active element. The interplay between 

energy injection and energy absorption results in a periodic oscillation in voltages 

and currents. 

The Ordinary Differential Equation (ODE) (Eq.6.1) that describes this system is 

one of the most intensely studied equations in nonlinear dynamics. It serves as a 

basic model of self-sustained oscillations arising in systems of mechanical and elec-

tronics engineering, biology, biochemistry, and many other areas of applications. 

d2 x 2 dx 
- - JL(I- x )- + x = 0 
dt2 dt 

(6.1) 

JL is a constant that affects how non-linear the system is. It can change the nature 

of oscillations from sinusoidal to relaxation. For JL equal to zero, the system 

is actually just a linear oscillator. As JL grows, the non-linearity of the system 

cannot be ignored. The Van Der Pol equation is of a second order. It should be 

transformed to a set of two first order equations in order to be solved. Let x = Yl 
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and ~~ = Y2, this produces Eq.6.2 and Eq.6.3. 

- Y2 

100 

(6.2) 

(6.3) 

The two equations, after linearisation, contribute to the system Jacobian and RHS 

as follows: 

J ~y RHS 
S 1 

8~ 
-yin + Y2n 

(6.4) 

2YInY2n + 1 S - JL(l - YIn) -Y2n + JL(1 - YIn)Y2n - YIn 

6.1.1 Modelling and Simulation 

The SystemC-A model of the Van Der Pol equation, shown in Listing 6.1, demon-

strates the use of the new equation constructs and initial conditions function of 

SystemC-A. Modelling a typical equation such as Van Der Pol requires a few sim­

ple steps. Firstly, the model developer has to identify the variables of the equation 

set (in this case free variables which are objects of the class sca_free_variable) and 

define them in the class's constructor (lines 22-26). Secondly, the initial conditions 

have to be defined for the simulator (lines 28-31). Finally, the equation stamp is 

developed in the build functions (BuildM () and BuildB ()) to pass the equation 

contributions to the Jacobian and RHS every time the model is needed. 
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1 II header file 
2 
3 #include "systemcA.h" 
4 
5 IIVan Der Pol class is derived from component class 
6 class VanDerPol: public sc_a_component { 
7 pUblic: 
8 VanDerPol (); 
9 VanDerPol (char nameC [5]) ; 

10 virtual -VanDerPol(); 
11 void BuildM (void) ; 
12 void BuildB (void) ; 
13 void IC (void) ; 
14 
15 protected: 
16 sc_a_free_variable *yl, *y2; 
17 double mu, S, YIn, Y2n Yldotn, Y2dotn; 
18 }; 
19 
20 II cpp file 
21 
22 VanDerPol::VanDerPol(char nameC[5]):llclass constructor 
23 component (nameC,O , 0, O){ 
24 yl = new sc_a_free_variable("yl");llinstantiate Van Der Pol variables 
25 y2 = new sc_a_free_variable("y2"); 
26 } 
27 
28 void VanDerPol:: IC(void){11 Initial Conditions 
29 InitialC (yl ,0); II x=O 
30 InitiaIC(y2,0.1);11 xdot=O.l 
31 } 
32 
33 void VanDerPol:: BuildM (void){ 
34 mu=l.O; 
35 S=Sn (); Ilget discretisation operator 
36 Yln=X(yl); 
37 Y2n=X(y2); 
38 
39 Jacobian(yl ,yl ,S);lladd Van der Pol contribution to Jacobian 
40 Jacobian(yl,y2,-I); 
41 Jacobian (y2 ,yl ,2*Yln*Y2n +1); 
42 Jacobian(y2,y2,S - mu*(1-Yln*Yln)); 
43 } 
44 
45 void VanDerPol:: BuildB (void){ 
46 mu=l.O; 
47 Yln=X(yl); 
48 Y2n=X(y2); 
49 Yldotn=Xdot(yl);11 get derivatives 
50 Y2dotn=Xdot (y2 ) ; 
51 
52 BuildRhs (yl,- Yldotn + Y2n); Iladd Van der Pol contribution to RHS 
53 BuildRhs(y2,-Y2dotn + mu*(1 - Yln*Yln)*Y2n-Yln); 
54 

LISTING 6.1: SystemC-A model of Van Der Pol equations using exact Jacobian. 
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The use of BuildM () is optional, the user has the choice of simulating his model 

with same accuracy and a shorter simulation time using the exact Jacobian as 

shown in the model in Listing 6.1 or using the default method to approximate 

the Jacobian as shown in Listing 6.2. BuildB() is only used with conjunction of 
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Equation() function (more details are described in Section 4.3). 

2 void VanDerPol:: BuildB (void) { 
3 mu=l.O; 
4 Yln=X(yl); 
5 Y2n=X(y2); 
6 Yldotn=Xdot (yl); //get derivatives 
7 Y2dotn=Xdot (y2 ) ; 
8 
9 Equation(yl,-Yldotn + Y2n);//add Van der Pol contribution to RHS 

10 Equation(y2,-Y2dotn + mu*(l Yln*Yln)*Y2n -YIn); 
11 } 

------------------------------------------------------------
LISTING 6.2: SystemC-A model of Van Der Pol equations using estimated 

Jacobian formed by Quasi Newton method. 

The Van Der Pol equation set Eq.6.1 is simulated at behavioural level with the 

initial conditions Yl(O) = 0, Y2(0) = 0.1. The system was simulated with the 

maximum simulation time of 50 seconds to cover the transient time and several 

steady-state cycles. Simulation results of Figure 6.1 and Figure 6.2 have indicated 

close behaviour to the original Van Der Pol oscillator. Figure 6.1 shows time 

signals of both system variables Yl and Y2 for f.1 = 1. Figure 6.2 is the oscillator's 

phase plane, i.e. the plot of Y2 versus Yl. 

3 yl, y2 

FIGURE 6.1: SystemC-A simulated time signals of Van Der Pol equation. 
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FIGURE 6.2: SystemC-A simulation of Van Der Pol equation phase plane. 

The Van Der Pol equation is well known, therefore, the results can be verified 

by comparing them to results from other simulators such as MATLAB [112]. In 

addition, in C++ based languages, the user can easily export his results in text 

files and view 1 them or undertake more analysis in other softwares. This is a 

great advantage over some VHDL-AMS simulators [113] which export results in 

JPEG images only. 

6.2 Lorenz Chaos 

The so called "Lorenz attractor" [114] was first studied by Ed N. Lorenz, a me­

teorologist, around 1963. It was derived from a simplified model of convection 

flows in the Earth's atmosphere. It also arises naturally in models of lasers and 

dynamos. The system is expressed as the following three coupled non-linear ODEs 

lSystemC does not include an analogue signal viewer, therefore, all graphs presented in this 
thesis are produced using Excel spreadsheets generated from data stored in text files using the 
C++ cout command. 
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(Eq.6.5, Eq.6.6, Eq.6.7): 

dx 
dt 
dy 

dt 
dz 
dt 

- o-(y - x) 

X(p - z) - y 

xy - fJz 
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(6.5) 

(6.6) 

(6.7) 

The commonly used set of constant values is: (J = 10, p = 28, fJ = 8/3. Another 

common set is: (J = 28, P = 46.92, fJ = 4. (J is sometimes known as the Prandtl 

number and p is the Rayleigh number. The simulated output never reaches a 

steady state. Instead, it is an example of deterministic chaos. The Lorenz system 

is sensitive to the three constants (J, p, fJ, and to the initial conditions, a small 

change in the initial conditions might produce a qualitative change in the output. 

Linearisation of the equations produces the following stamp for the system Jaco-

bian and RHS. 

J ~y RHS 
S+(J -(J 0 .6. X -in + (JYn - (JXn 

-p+zn S+l Xn .6.y -Yn + PXn - Yn - XnZn 
(6.8) 

-yn -Xn S+p .6.z Z~ + XnYn - fJzn + X 

6.2.1 Modelling and Simulation 

The SystemC-A model of the Lorenz Chaos was developed by following the same 

steps as those for the Van Der Pol system, as presented in Listing 6.3. The model 

uses the default method of Quasi-Newton equation formulation. The class's in­

terface (lines 2-7) has zeros in its argument indicating that the system has no 

inputs. The system's parameters could be passed to the model from its interface, 

rather they defined inside the model (lines 16-18). The initial values of the system 
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variables were (x(O) = 0, y(O) = 5, z(O) = 25). The system was simulated with the 

maximum simulation time of 10 seconds. The simulated waveforms are shown in 

Figure 6.3 while Figure 6.4 shows the famous xz butterfly trajectory. The results 

were verified by a comparison to Matlab [115] simulations illustrating highly com­

parable figures. 

2 LorenzChaos: : LorenzChaos (char nameC [5] ) : 
3 sea_component (nameC,O , 0, O){//instantiate Lorenz system variables 
4 z = new sc_a_free_variable("z"); 
5 y = new sc_a_free_variable("y"); 
6 x = new sc_a_free_variable("x"); 
7 } 
8 
9 void LorenzChaos:: IC (void) { 

10 InitialC(x,O.O);//initial conditions of system variables 
11 InitialC(y,5.0); 
12 InitialC(z,25.0); 
13 
14 
15 void LorenzChaos:: BuildB (void) { 
16 sigma=10.0;//constant values of Lorenz equations 
17 rho =28.0; 
18 beta=8.0/3.0; 
19 Xn=X(x); 
20 Yn=X(y); 
21 Zn=X(z); 
22 Xdotn= Xdot(x);//get derivatives 
23 Ydotn= Xdot (y); 
24 Zdotn= Xdot (z ) ; 
25 
26 Equation (x,-Xdotn+sigma*Yn-sigma*Xn); / / Lorenz equation 1 
27 Equation(y,-Ydotn+rho*Xn-Yn-Xn*Zn);//Lorenz equation 2 
28 Equation (z,-Zdotn+Xn*Yn-beta*Zn); //Lorenz equation 3 
29 } 

LISTING 6.3: SystemC-A Lorenz chaos model. 

6.3 Switched-Mode Power Supply 

Switched Mode Power Supplies (SMPS) [116] are the current state of the art in 

high efficiency power supplies. In this example, a boost (step-up) SMPS is used as 

a typical 3.3V regulator. The circuit schematic is presented in Figure 6.5. SMPS 

modelling is not an easy task for model developers using existing simulators. It 

also provides high challenges to SystemC-A, since it is a complex mixed-signal 

system which needs excessive CPU times when simulated. Further, it utilise many 
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FIGURE 6.3: SystemC-A simulation of Lorenz chaos time signals. 
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FIGURE 6.4: SystemC-A simulation of Lorenz chaos xz butterfly trajectory. 
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SystemC-A constructs, in particular, AID and D I A interfaces and analogue circuit 

components. 

The ideal boost SMPS consists of five basic components, namely a diode, a ca-

pacitor, an inductor, a power semiconductor switch, and a PWM controller. The 

SMPS uses a high frequency switch with varying duty cycle to maintain the output 

voltage. The output voltage variations caused by the switching are filtered out by 

a filter. 

Analogue SC_MODULE 

VI 
IOmH 

V2 
5 ohms 

E=1.5 v 

JUl 
V control 

V4 

Co= 

ImF 

Digital SC_MODULE 

,..------, V 
Digital error 

Controller 

andPWM 

Ro= 

500 ohm 

V =IV 
ref 

V3=V 
out 

23k ohm 

10k ohm 

FIGURE 6.5: Boost 1.5V /3.3V switched mode power supply with digital control. 

6.3.1 Modelling and Simulation 

The SMPS SystemC-A model consists of two SystemC modules (SC_MODULE) 

and a testbench (higher module in hierarchy). One of the modules contains the 

analogue part of the system shown in Figure 6.5. The analogue module is mod-

elled using circuit-level components from the simple analogue components library 

developed for SystemC-A, they have practical values. This example illustrates 
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how to construct a SPICE-like analogue circuit in SystemC-A as shown in List­

ing 6.4. The model defines circuit nodes (lines 2-6) and circuit components (lines 

9-14), together with their parameters and connectivity. Listing 6.4 shows part of 

the analogue module, this part is contained in the module constructor since nodes 

and components should be instantiated only once prior to simulation. 

1 / / analogue module of SMPS 
2 nO = new sc_a_node("O" );//creat nodes 
3 n1 = new sc_a_node (" n1" ); 
4 n2 = new sc_a_node("n2"); 
5 n3 = new sc_a_node("n3"); 
6 n4 = new sc_a_node("n4"); 
7 
8 / / add components 
9 sc_a_voltageS_dc *v1 = new sc_a_voltageS_dc ("v1" ,n1 ,nO, 1. 5); 

10 sc_a_inductor d1 = new sc_a_inductor("ll" ,n1,n2,le-2,5); 
11 sc_a_diode *d1 = new sc_a_diode("d1",n2,n3,1,38.93,le-13); 
12 sc_a_capacitor *co = new sc_a_capacitor("co" ,n3,nO,le 3,1); 
13 sc_a_resistor *ro = new sc_a_resistor("ro" ,n3,nO,500); 
14 sc_a_mosfet *M1 = new sc_a_mosfet("M1",n2,n4,nO,1,1,le-8); 
15 

LISTING 6.4: SystemC-A analogue module in the SMPS. 

The PWM is modelled as a standard SC_MODULE at high level of abstraction, 

thus the SMPS contains two models at two different abstraction levels. Listing 6.5 

shows the digital module where Listing 3.3 (page 60) shows the SMPS testbench 

with interfaces between analogue and digital modules. The DA interface (inter­

jaceDA) , placed between the PWM and the MOSFET transistor, smoothes the 

signal values propagating to the analogue solver since abrupt changes may cause 

problems in the analogue analysis (details of this idea are explained in Section 

3.4). 

The system was simulated for 0.2 seconds, when it reached the required voltage. 

Figure 6.6 shows the transient of the output voltage illustrating that the SMPS 

reaches steady state at about 0.2 seconds. Sample results at steady state are 

presented in Figure 6.7. The results showed the ripple in the output voltage 

waveform, error signal of the output voltage, inductor current, fast switching of 

Vcontrol and voltage at node number 2 (V2)' SMPS simulation was smooth and did 

not encounter any numerical difficulties. Simulation statistics are shown in Table 
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6.1. A simulation of 200m seconds undergo a CPU time of 232.1 seconds which 

2 
3 

means 2 million time points. 

#include "systemc. h" 
# define steps 100 //duty cycle divided into 100 steps 

4 SCMODULE( d i gi t al){ 
5 sc_in<double>Vd_in;// input analogue port 

output digital port 6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

sc_out <bool>VcontD; / / 
scin <bool>clk; 

double VerroLacc; 
int D, tick_no; 

void control (){ //process to control duty cycles 

} 

double Gain2=10;// amplifier gain 
VerroLacc+=1-(Vd_in.read()/3.33);//calculate error of output voltage 

if (tick_no>steps){// this part will run once for each duty cycle 
ticLno=O; //get back to right value 
D=(VerroLacc/steps)*Gain2+66; //duty cycle 
VerroLacc=O; //for the next cycle calculations 

if (D<O) 
D=O; 

lito limit the duty cycle 0-95% 

if (D>0.95*steps) 
D=0.95*steps; 

}//end if 

if (tick_no<D) //produce output control signal 
VcontD. write (true); 

else 
VcontD. write (false); 

tick_no++; 
if(ticLno>=steps) //reset duty cycle 

tick_no=O; 

SC_CTOR( digital){ 
SC..METHOD( con trol ) ; 
sensitive« Vd_in; 
sensitive « clk; 
V error _acc = 1 00000; 
tick _no =2* st eps ; 

45 } 
46 }; 

LISTING 6.5: SystemC-A PWM module in the SMPS. 

TABLE 6.1: SMPS simulation statistics 
Simulation time I 200m seconds 

Time step 
N umber of steps 
CPU time 

O.lM seconds 
2 Millions 
232.1 seconds 
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FIGURE 6.6: SystemC-A simulation of SMPS transition output voltage. 

6.4 Phase Locked Loop 

Phase locked Loops (PLL) [117, 118] are used in numerous applications, such 

as data communication, microprocessors, RF applications, and wireless systems. 

PLLs are used in these applications to implement a variety of functions, such as 

clock generation, frequency synthesis, clock recovery, and demodulation, where it 

is necessary to generate a precise signal frequency with low spurs and good phase 

noise. Figure 6.8 shows a block diagram of a basic PLL used as frequency synthe-

siser. Frequency synthesisers are used to produce digitally-controlled, stable, high 

frequency sources from a low frequency reference. It consists of a reference source, 

phase detector, charge pump, loop filter, Voltage Controlled Oscillator (VCO), 

and a divider. The filter and the VCO are analogue parts while others are digital 

parts. The divide ratio in this example is constant (N = 2000), hence the loop 

will operate to force the VCO signal frequency to be exactly N times that of the 

reference signal. The phase detector and charge pump output either positive or 

negative charge pulses depending on whether the reference signal phase leads or 
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FIGURE 6.7: SMPS SystemC-A simulation results for a 200ms time window in 
steady state. 

lags the divided veo signal phase. These charge pulses are integrated by the loop 

filter to generate a tuning voltage. 

One of the major concerns in the design of PLLs is noise or jitter performance [118]. 

The jitter from the PLL directly acts to degrade the noise floor and selectivity of 

a transceiver [119]. Noise sources in the system cause perturbations in the veo 
control voltage resulting in variations in the output frequency. 
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FIGURE 6.8: Block diagram of 2GHz Phase Locked Loop with noise and jitter. 

6.4.1 Noise Module 

PLL noise behaviour is difficult to predict with traditional circuit simulators be­

cause of the repetitive large-signal switching events, which are an essential part of 

the PLL operation, hence noise performance must be evaluated in the time-domain. 

Most classical simulators, SPICE being the best example, are not capable of sim-

ulating noise in PLLs as they can normally calculate small-signal noise around 

a quiescent operating point. Currently, the best suited simulator for PLL noise 

analysis is SpectreRF [119], which is capable of predicting the noise behaviour 

about a periodic operating point. 

In SystemC-A suitable large-signal noise modules can be constructed with no 

difficulty. For this PLL example, a noise model is developed, it contains a stan-

dard function to generate a periodic process for a Gaussian white noise using the 

Box-Muller method. The function is to turn two uniformly distributed random 

sequences into two unity amplitude normal random X and Y (mean=O and vari­

ance=l) sequences which can be scaled to the required levels. Listing 6.6 shows 

the noise module to produce charge pump current noise. 
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1 II generate samples from white noise source 
2 II with a Gaussian normal amplitude distribution 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

double Ul, U2, VI, V2, X. Y, r, Inoise; 
do { 

Ul=rand()/3.2e4; II(O,i} 
U2=rand 0/3.2 e4; II (0, i) 
Vl=2*Ul-l; II(-i ,i) 
V2=2*U2-1; II(-i ,i) 
r = (VhVl)+(V2*V2); 

} while ((r = 0) II (r >= 1.0»; 

13 II transform into a normal distribution (Box-Muller transform) 
14 X = VI * sqrt(-2.0*log(r)/r)* 0.25; 
15 Y = V2 * sqrt(-2.0*log(r)/r)* 0.25; 
16 
17 II return scaled sample 
18 double scale=le-6; 
19 Inoise= scale * X; 

LISTING 6.6: C++ noise model. 

In this example two methods of modelling noise are implemented. Two different 

VCO models, presented in more detail in the following subsections, have been 

developed for both noise methods. The first method allows adding noise sources 

to analogue signals in any component and therefore provides a more accurate 

noise behaviour. The noise is injected by the controlled current source of the 

charge pump, although every PLL component is a potential noise source. The 

charge pump signal can be expressed as Eq.6.9. 

(6.9) 

Consequently, the phase of the VCO is subject to noise (referred to as phase noise) 

which will manifest itself as jitter in the output waveform, Eq.6.10. 

PhaSenoisy = Phase(e + Jitter(e)) (6.10) 

In the first method the total effect of noise is modelled in the VCO by scaling and 

adding the generated noise model output to the VCO phase where it is turned 

into jitter. In the second noise method [120], a noise source is added to perturb 

the VCO pulse directly. This perturbation represents the total effect of any noise 
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source in the PLL. The second method, although cruder than the first one, has 

the advantage of shorter CPU times since the system will be simulated with larger 

step sizes to cover variations in the VCO pulses every 0.5n second. 

6.4.2 veo model (1) 

The VCO generates a square wave whose frequency is proportional to the input 

signal level. In the VCO model the frequency is numerically integrated to compute 

the output phase which is used to generate the desired output signal. This is then 

followed by a modulus operation to keep the phase bounded, which prevents a 

loss of numerical precision that would otherwise occur when the phase becomes 

large after a long period of time. Output transitions are generated when the phase 

passes the value of 0.5 (the phase unit corresponds to a proportion of the duty 

cycle) in either direction. The VCO frequency is the rate of change of the phase, 

. de 
e(t) = dt = f(v) = fe + df * Vfilter (6.11) 

where Vfilter is the output voltage of the loop filter, fe is the center frequency of 

the VCO, and df = f;nax- fe is the VCO gain. 
Vrrtax 

As SystemC-A allows different types of analogue descriptions to work together, the 

VCO was modelled here at behavioural level as a SystemC-A component described 

by an equation rather than a netlist at circuit level. The veo is derived from the 

base sea_component class and contains build functions to add its contribution to 

the system Jacobian. Partial code of the VCO class is presented in Listing 6.7. 

Mixed OO-NQN equation formulation method is used to model the PLL, Listing 

6.7 shows that VCO equation is formulated using pure Newton method (the use 

of BuildM{) and BuildB{} functions). The circuit components in the loop filter 

are formulated using Quasi-Newton method. 
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1 II VCO modelled as analogue component with one analogue node and 
2 II one output boolean signal 
3 vco:: vco (char nameC[5] , sc_a_system_variable *node_a, sc_signal <boo I> *Vout): 
4 sc_a_component (nameC, node_a, 0, value){ 
5 Vco=Vout; 
6 theta = new sc_a_free_variable("theta"); Iitheta variable in VCO equation 
7 } 
8 
9 void vco:: BuildB (void) { 

10 
phase = X( theta); 
phase = fmod (phase, 1 .0) ; 

II 
II 

Pnoise = SampleNoise (); II 
PhaseNoisy = phase + Pnoise ;11 
if (PhaseNoisy > 0.5) II 

Vco->write (true); 
if (PhaseNoisy < 0.5) 

Vco->write (false); 

IIVCO parameters 

get the phase value from solution 
limit the phase between 0.0-1.0 
generate scaled sample noise 
add noise to phase 
produce VCO output 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

fmix=0.5e9, fmax=5e9, Vmax=3.3, fc = 2e9; 

32 } 
33 

df= (fmax-fc) I Vmax; II calculate VCO gain 
Qdotn = Xdot(theta); II get the derivative 
freq = fe + df * X(a);lltune VCO frequency using input voltage 
if (freq < fmin ) Illimit the frequency between fmin and fmax 

freq = fmin; 
else if (freq > fmin 

freq = fmax; 

II main VCO equation 
BuildRhs(theta,-Qdotn + freq); 

34 void veo:: BuildM (void) { 
35 fmin=0.5e9, fmax=5e9, Vmax=3.3, fe=2e9; 
36 df= (fmax-fe) I Vmax; 
37 S=S (); Ilget discretisation operator 
38 freq = fe + df * X( a); 
39 if (freq< fmin II freq>fmax) 
40 { 

} 

if (freq < fmin ) 
freq = fmin; 

else if (freq > fmin 
freq = fmax; 

Jaeobian(theta ,theta ,S); 
Jacobian(theta ,a,O); 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

else { 

} 
52 } 

Jaeobian(theta ,theta ,S); 
Jaeobian(theta ,a,-df); 

vector 
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----------------------------------------------------------------------
LISTING 6.7: SystemC-A VCO module using noise method (1). 

The veo interfaces are defined at line 3 of listing 6.7. The veo is connected to 

the filter by a node (sea_node), while the output of the veo is a Systeme signal 

of type boolean and connected to the divide by N module. The veo equation 

(Eq.6.11) has one variable e, which needs to be declared in the veo constructor 

(line 6). A sample noise is generated at line 13 and added to the phase. The output 

is produced by evaluating the phase values (lines 15-18). The veo equation RHS 
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is defined at line 31 and the jacobian elements are defined at lines 45-46 49-50, to 

integrate the frequency. The simulation results will be discussed after presenting 

the second noise method in the following section. 

6.4.3 veo model (2) 

The second VCO model is a SystemC digital module, rather than an analogue 

component with a frequency integrator, as shown in Listing 6.8. This VCO model 

allows the second method of noise analysis. The method is to directly perturb the 

VCO output signal. The VCO model utilises SystemC sc_event. SystemC scevent 

is used for process synchronisation. A process instant maybe triggered or resumed 

on the occurrence of an event (when the event is notified). In this example, 

VCOphase event is instantiated at line 6 and initialised at line 17. Process VfO is 

sensitive to the VCOphase event. VfO is functioning as follows: first it evaluates 

the time point and checks if time is proceeded to prevent multiple run at the same 

time. Then, the frequency is evaluated at line 28 using the input voltage Vfilter, 

consequently the phase is evaluated at line 34. A sample noise is generated at 

line 36 to represent jitter in VCO output signal. The jitter is added to Tnext 

variable to alter the time of the next pulse. The event is notified at perturbed 

phase periods using member function notify(t,SC_SEC) at line 41. 

This noise method has an advantage of speed over the previous method since a 

larger step size is needed for simulations. A minimum of O.2n seconds was used 

for this method while a O.Oln seconds was needed for the first noise method. 
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1 II VCO modelled as SC..MODULE 
2 SC.MODULE(VC02){ 
3 sc_in<double> Vfilter; Ilinput analogue port 

Iioutput boolean port 4 sc_out<bool> Vout; 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

sc_event VCOphase; 
sc_signal <bool> Vosc; 
void Vf(); 

Ilinstantiate an event on VCO signal 

double SampleNoise (); 
double freq, jitter, Tafter, 
float Tnow, Tnext; 

period; 

SC_CTOR(VC02) { 
SC..METHOD(Vf) ; 
dont-initialize (); 

IIVf process triggered by Ev_A 

sensitive « VCOphase; 
VCOphase. notify (0, SC_SEC); 
Vosc.write(O); 
Tnext=O; jitter =0; 
} 

Ilinitialise the event 

event 

21 }; 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

void VC02::Vf(){ 

} 

Tnow = sc_time_stamp (). to_seconds (); II get time 
if (Tnow>= Tnext){ II check if time proceeded 

} 

fmin=0.5e9, fmax=5e9, Vmax=3.3, df, fc=2e9; 
df= (fmax-fc) ! Vmax; 
freq = fc + df * (Vfilter.read()); 
if (freq < fmin ) 

freq = fmin; 
else 

freq = fmax; 

period=l!freq; 
amp=25e -12; 
jitter = SampleNoise()*amp; 
Tafter = (period*0.5); 
Tnext=Tnow+Tafter+j itt e r ; 
Vosc. write (! Vose. read ()); 

II no is e magnitude 
II scaled noise sample 

Iialter VCO period 

VCOphase. notify (Tnext-Tnow,SC_SEC);llcaleulations on VCO signal edges only 
Vout. write (Vose. read ()); 

LISTING 6.8: SystemC-A VCO module using noise method (2). 

6.4.4 Modelling and Simulation 

With the first noise method, the system was simulated using extremely small 

analogue steps, much smaller than those calculated by the LTE control strategy. 

This was required to reflect accurately the effects of noise and jitter. The second 

noise method uses a simpler veo model which does not require small step sizes 

as explained above. For the first noise method, to enforce a step size of laps or 

less, the charge pump module is sensitive to a lOOGHz clock, whereas the digital 

modules are sensitive only to their input signals (see Figure 6.9 and Listing 6.9). 
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Figure 6.9 illustrates the PLL model in SystemC-A represented as block diagrams 

with detailed connectivity, whereas Listing 6.9 presents PLL SystemC-A testbench 

model. 

Listing 6.9 is a standard SystemC SC_MODULE testbench which contains instan­

tiations of the different blocks comprising the PLL. As is the case in any HDL, the 

module starts by defining global signals to provide connectivity to the instantiated 

modules, followed by instantiating the modules themselves. In Listing 6.9 Clockl 

enforces the simulation time steps by overriding the larger values calculated by 

the analogue stepping strategy. Clock2 generates an input reference signal (Refer­

ence) with the frequency of lMHz. The display module (displayl) is represented 

as a SC_CTHREAD SystemC module to print the required signals at every clock 

pulse. 

The module interfaceAD developed as part of SystemC-A, could have been used 

in this example to convert signals between the analogue and digital blocks. In­

stead, an alternative approach based on direct connection between the modules 

was used. The VCO and divide by N modules share the same digital signal and 

conversion between the analogue and digital parts is done implicitly within the 

VCO. Interfaces between modules can be implemented in many different ways, for 

example directly through signal ports, which is recommended especially at system 

level, or by nodes at analogue circuit level. In this example the connection be­

tween the LPF and VCOI illustrates an analogue interface using node terminals. 

SystemC-A models of the phase detector, charge pump and filter, and Divide by 

N are provided in Appendix C.2. 
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FIGURE 6.9: PLL model in SystemC-A represented as block diagram with 
detailed signals. 

1 
2 

II PLL.h 

3 SCJV[ODULE( p II) { 
4 void Circuit (); 
5 sea_node *nVfilter ;llinstantiate a node to connect filter and veo 
6 
7 
8 
9 

10 }; 

SC_CTOR( p II) { 
Circuit ();llcircuit 

} 

11 II PLL. cpp 
12 
13 void pll::Circuit(){ 

should be instantiated in constructor 

14 II clock for analogue parts 
15 sc_clock CLOCKl("clockl", 0.2, SC_NS,0.5,0,SC_NS,true); 
16 
17 II clock to generate input reference signal 
18 sc_clock CLOCK2("clock2", 1, SC_US,0.5,0,SC_US,false); 
19 
20 II instantiate signals to connect different nodules with each other 
21 sesignal <bool> Ql, Q2; 
22 sesignal <bool> Divide; 
23 sc_signal <boo I> Reference; 
24 sc_signal <bool> Vco; 
25 sesignal <double> lout; 
26 
27 input inp("input");11 module to produce reference signal 
28 inp. Ref( Reference); 
29 inp. Clk(CWCKl); 
30 inp. Clk2 (CLOCK2); 
31 
32 detector dl("detector" );11 detector module 
33 dl . Refl (Reference); 
34 dl. DivVcol (Divide); 
35 d1. OutQl (Ql) ; 
36 dl.0utQ2(Q2); 
37 
38 filter fl("filter");11 charge pump and filter module 
39 f1 . OutQl (Ql ) ; 
40 f1 . OutQ2 (Q2 ) ; 
41 fl . clk (CLOCKl); 
42 f1 . Iou t ( Iou t ) ; 
43 nVfilter=f1.nl ; 
44 
45 DivideByN dvl("DivideByN");11 divider module 
46 d v 1. V co ( V co ) ; 

119 
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47 dv1 . DivVco (Divide); 
48 
49 display1 disp1("display1");// module to display all signals 
50 disp1 . elk 1 (CLOCK1); 
51 disp1.Vco(Vco); 
52 disp1 . Ref( Reference); 
53 dis pl. D i v ( D i v ide) ; 
54 disp1.Q1(Q1); 
55 dis pl. Q2 ( Q2 ) ; 
56 disp1 . lout (lout); 
57 disp1.nVfilter=f1.n1; 
58 
59 vco *vco1=new vco("vco1", nVfilter, &Vco);// instantiate VCO component 
60 sc_start (200,SC_US);//start simulation for 200u second 

LISTING 6.9: SystemC-A PLL model. 

The system response during the first eight micro seconds of the simulation, slow 

transients of the low pass filter voltage for both noise methods and histograms 

illustrating the veo jitter are shown in Figure 6.lO, Figure 6.11 and Figure 6.12 

respectively. The histograms present the veo jitter percentage occurrence for 5ps 

buckets and were calculated from the simulation results when the loop was in lock 

for both noise methods. Both sets of results illustrate similar behaviour. 
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FIGURE 6.10: SystemC-A simulation results of the 2GHz PLL frequency syn­
thesiser. 

6.4.5 Comparison with VHDL-AMS 

A comparison of analogue simulators is not necessarily a fair process because 

simulators vary in their algorithms, methods, accuracy criteria and many details 

are kept hidden. However, the developed PLL models have been used to compare 
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FIGURE 6.11: SystemC-A simulation of the low pass filter voltage for the two 
noise methods. 
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FIGURE 6.12: VCO jitter histogram for the two noise methods. 

the speed of SystemC-A with that of System Vision VHDL-AMS simulator from 

Mentor Graphics [113]. Simulations were carried out on a Windows 2000 computer 

with an AMD Athlon 1400 MHz processor and 512 MB RAM. A fixed time step was 

used in both simulators to suppress the effects of analogue time stepping factor. 

In the first noise method, where the 200/1 second time interval was analysed with 

the time step of O.Oln second, SystemC-A took 16 minutes and 55 second while 

System Vision took 1 hour and 4 minutes on the same machine. This represents a 
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factor of almost three times in favour of SystemC-A. The main reason behind the 

speed factor is the adoption of the efficient OO-NQN equation formulation method 

in SystemC-A, where this option is not provided in VHDL-AMS simulator. 

For simulations with the second noise method, the system was simulated again 

for an interval of 200M seconds and analysed with time step of 0.2n seconds. Sim­

ulations took only 80 seconds and 138 seconds in SystemC-A and System Vision 

respectively. Table 6.2 shows relevant statistics. 

TABLE 6.2: PLL simulation statistics. 
I Noise Method (1) Noise Method (2) 

N umber of steps 
Simulation time 
Time step 
SystemC-A CPU time 
System Vision CPU time 

20 Millions 
200MS 
O.Olns 
16m 55s 
1h 4m 14s 

6.5 Concluding Remarks 

1 Million 
200MS 
0.2ns 
1m 20s 
2m 18s 

The chapter has demonstrated modelling and simulation four case studies to verify 

SystemC-A functionality from different aspects. The first two case studies were 

Van Der Pol oscillator (nonlinear system described by second order ODE) and 

Lorenz chaos (nonlinear system represented by 3 coupled ODEs) to demonstrate 

the ability of SystemC-A to model at behavioral level using its new language 

constructs. Modelling these simple examples was straight forward and was accom-

plished in short time with familiar syntax due to the good format provided by 

SystemC-A to model system equations. 

The other two case studies were modelling SMPS and 2G Hz PLL to test and 

demonstrate some of SystemC-A language elements such as AjD and Dj A inter-

faces, analogue system variables and circuit-level electronic components. Further-

more, by modelling the last two case studies, SystemC-A has proved its capability 
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of handling highly complex systems which have disparate time scales of their tran­

sients and require excessive CPU times. Two efficient noise analysis techniques 

were developed when modelling the PLL. Finally, The examples demonstrate the 

capability of SystemC-A to model at different abstraction levels from system level 

down to circuit level. 



Chapter 7 

Electromagnetic System 

Modelling Case Study 

For the purpose of validating SystemC-A developed constructs and methods, 

Chapter 6 modelled and simulated a suite of electrical systems which involves 

many difficulties. However, in this chapter, Ferromagnetic Hysteresis is modelled 

and simulated to illustrate the powerful SystemC-A capabilities to model non­

electrical systems. 

Nonlinear ferromagnetic components are used in many circuits and systems such 

as inductors and transformers. The widely used Jiles-Atherton (JA) model of 

ferromagnetic hysteresis [121, 122, 123J is adopted here. The JA model has been 

used extensively for creating non-linear models of magnetic materials for use in 

circuit simulation. The JA model is implemented in many commercial circuit 

simulators, such as SPICE [12J and SABER [124J. JA model is used in preference 

to other models because it is based on physical phenomena while other models 

usually employ look-up tables [125J and controlled sources to perform piecewise­

linear approximation of different regions of the hysteresis curve. Look-up tables 

125 
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are not practical since the tables have to be recalculated each time the parameters 

of the core material change. 

Both VHDL-AMS and Verilog-AMS have been used to develop new models of 

ferromagnetic [126, 127, 128, 129]. Practical implementation of the JA model 

is not straightforward. It involves numerical integration of a discontinuous and 

non-linear differential equation. In addition, the model in its original form can 

sometimes produce a hysteresis curve with negative slopes which has no physical 

justification. Also, when simulating JA model, there were claims that the model 

suffers from convergence problems [130] and long analysis times [125]. 

The remainder of this chapter is organised as follows: In Section 7.1 a mathemati­

cal background of the JA model is briefly explained and a new Langevin's function 

is proposed for better numerical stability. The ferromagnetic hysteresis model is 

implemented in two different approaches. First, the model which involves using the 

simulator's analogue solver and suffers from numerical difficulties is implemented 

in Section 7.2 where the numerical difficulties are illustrated in Section 7.3. Then, 

a new model is presented in Section 7.4 which does not involve using the analogue 

solver and which overcomes most of the reported problems by using a special, 

timeless discretisation technique to integrate the magnetisation slope ~~. Unlike 

most existing implementations (e.g. [131, 132]), the new technique does not rely 

on time-based integration of ~~ and consequently does not involve the underlying 

analogue solver. Finally, Section 7.6 gives the conclusion. 

7.1 Theory of Jiles-Atherton Model 

This section describes the equations governing the JA model. In a saturable mag­

netic core, the relationship between its magnetic flux density B versus magnetic 
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field intensity H represents the shape of the magnetic hysteresis curve B H. An ac-

curate implementation of the BH hysteresis curve is very important since several 

figures of merits can be drawn from it, for example the saturation level, remanence 

(or retentivity) and coercivity as shown in Figure 7.l. Band H are related by 

• B 
I 
I 

Bsat 1- - - - - - - - - -- ~-""-~---,""",,,,-

I 
Retentivity ---~ 

I , 

Anhysteretic 
magnetization curve 

Saturation loop 

FIGURE 7.1: BH curve of magnetic hysteresis. 

H 

Eq.7.1 where /-Lo = 47f10-7H/m is the permeability of free space and Ai is the total 

magnetisation within the material [122]. 

B = /-Lo(H + M) (7.1) 

The effective magnetic field intensity H eff is defined by Eq.7.2 as the sum of the 

applied field H and some averaged contribution of the magnetisation M, where a 

is the average parameter of the magnetic field. 

Heff = H +aM (7.2) 
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If a magnetic material was able to return all of the magnetic energy that was input 

to it, the resulting magnetisation curve would take the form of a single valued 

sigmoid known as the anhysteretic magnetisation Man curve. Man as expressed in 

Eq.7.3 represents the lossless magnetisation of a material. 

(7.3) 

where Msat is the saturation level of M. L(H ejJ) is usually expressed by the well­

known Langevin's function in Eq.7.4, where a is shaping coefficient to adjust the 

curve according to the magnetic hardness of the material. 

HejJ a 
L(H if) = coth(-) - -

e a HejJ 
(7.4) 

This Langevin's function can become numerically singular for small values of the 

magnetic field H ejJ' It is standard practice to implement a simple approximation 

for small values of H ejJ as shown below: 

L(H ejJ) 
HejJ a 

for IH ejJ I > 10-3 coth(-) ---
a HejJ 

(7.5) 

L(H ejJ) 
HejJ 

for IH 1<10-3 

2a ejJ - (7.6) 

In this research a different approximation of Langevin's function is used (Eq.7.7) 

to avoid the numerical singularity. 

2 -1 HejJ 
Man = Msat - tan (-) (7.7) 

IT a2 

where a2 has the same meaning as a but with a different value. Normalised 

Langevin's function and the approximation in Eq. 7. 7 of the anhysteretic function 

are compared in Figure 7.2 and show a very similar behaviour. The advantages of 

the new approximation are simpler implementation and continuity through zero. 
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FIGURE 7.2: Original and modified anhysteretic functions. 
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H(kAlm) 

20 25 

The total magnetic field M in a ferromagnetic material is composed of the re-

versible Mrev and irreversible Mirr components (Eq.7.8). M irr represents the en-

ergy dissipated while the material is magnetised. 

(7.8) 

In the JA model these components are related by Eq.7.9. 

M rev = c(Man - M) (7.9) 

where c is the domain wall flexing constant. Substituting Eq.7.9 in Eq.7.8 results 

in Eq.7.10: 

(7.10) 
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The rate of change of the MiTT is proportional to the distance of the total mag­

netisation to Man as expressed by Eq.7.11: 

dMiTT 

dH ok + a(M - M) flo an 
(7.11 ) 

where is is the sign of dJ: and k is a material dependent variation which gives a 

measure of the hysteresis loop width. Finally, the total differential equation of hys­

teresis (Eq.7.12) is obtained by substituting Eq.7.11 in Eq.7.10 and differentiating 

both sides. 

dM 1 Man - M c dMan 
-= +--
dH (1 + c) ok + a(Man - M) (1 + c) dH 

flo 

(7.12) 

Other variations of the JA model are outlined in their series of papers [121, 122, 

123]. The most important challenge in the implementation of the JA model is the 

calculation of the magnetisation slope given by Eq.7.12. Eq.7.12 is a nonlinear 

differential equation with incremental terms which needs to be solved. Most im-

plementations of the JA model require conversion of the magnetisation derivative 

~1;J to time derivatives. This is usually implemented by calculating the derivative 

of H with respect to time ~~, and then integrating d:;: (e.g. using the VHDL-AMS 

'INTEG operator). 

For the proposed model in Section 7.4, the integration is implemented using two 

integration methods, Forward Euler and 4th order Runge-Kutta. The Forward 

Euler integration method to solve ~; = f(x, y) has the following finite difference 

form: 

Yi+l = Yi + hf(x, y) (7.13) 
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where Yi for i = 0, 1, ... are the calculated solution points at Xi, h is the time step. 

The 4th order Runge-Kutta method is described by the following formulas: 

1 
Yi + 6(k1 + 2k2 + 2k3 + k4) 

hf(Xi, Yi) 

h kl 
h f (Xi + 2"' Yi + 2 ) 

h k2 
hf (Xi + 2"' Yi + 2 ) 

where kl' k2' k3, and k4 are coefficients. 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

Although the latter method is more accurate, the simple Forward Euler method 

was also tried for comparison as the step size h is limited by factors other than 

the truncation error of the discretisation. 

An important feature of a JA model implementation is its treatment of minor 

loops. When minor loops oscillate between two values Hmin and Hmax , they grad-

ually drift towards an equilibrium loop. This phenomenon is known as accommo-

dation [133]. A good model should be capable of producing minor loops with no 

numerical difficulties for various minor loops sizes and in different positions. 

7.2 Modelling and Simulation of the Original Jiles-

Atherton Model 

The JA model was first created using the original equations with the commonly 

used time integration. The JA model is modelled in SystemC-A as a component 

class connected to a sine wave voltage source via two nodes. Components and 

nodes are instantiated in a test bench as in listing 7.1. 
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1 / / instantiate magnetic nodes 
2 pI = new sc_a_node("pl"); 
3 ml = new sc_a_node (" 0" ); 
4 
5 / / instantiate a sin wave voltage source and the JA model 

sc_a_voltageS_sin *11 = new sc_a_voltageS_sin("Vsin" ,pl,ml, 6 
7 
8 
9 

0.16,0,10000,0,0); 
//jrequency, offset, amplitude, delay, damping 

10 JA dAl = new JA("JAl" ,pI ,ml); 
11 JAl->generic(4000, 0.1, 1.6e6, 0.003, 2000, 1, 1, 4e-6); 
12 //(k, c, ms, alpha, a, ur, length, area) 
13 sc-start(20,SC_SEC);// start simulation jor 20 seconds 

LISTING 7.1: SystemC-A testbench for the Jiles-Atherton simulation. 

The model is simulated using the parameters shown in Table 7.1. Their values are 

identical to those used in the original paper by Jiles and Atherton [121] except for 

a2 which is used in Section 7.4 in modelling the modified JA. 

I Symbol I Definition I Value I 
k pinning parameter of the domain wall (A/m) 4000 
c domain wall reversible movement parameter 0.1 
Msat magnetic saturation 1.6M 
a averaging parameter of the magnetic field 0.003 
al parameter of the original anhysteresis curve shape 2000 
a2 parameter of the modified anhysteresis curve shape 3500 

TABLE 7.1: Jiles-Atherton model parameters. 

Listing 7.2 shows the JA component model. The JA constructor is defined in 

(lines 18-26). The model has four SystemC-A system variables, two is of type 

sc_a_node to describe the model connection nodes, and the other two are of type 

sea_free_variable to perform differentiation and integration involved in the JA 

model. A differentiator operator is used in line 32 to differentiate H eff' whereas 

an integration operator is used in line 55 to integrate d:;:. JA::generic() (lines 

72-75) is a function through which the user can provide the system parameters to 

the model from the testbench. JA::BuildB() (lines 28-61) implements the common 

way of solving the hysteresis equation by multiplying the time derivative of H by 

~t;J and then integrate d:;:. Langiven's function represented by Eq.7.4 (JA::Lang()) 

is implemented at lines 63-70. 
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class JA: public sc_a_component { 
pUblic: 

JA() ; 
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2 
3 
4 
5 
6 
7 
8 
9 

JA(char nameC[5] , sca_system_variable *node_a, sca_system_variable *node_b); 
virtual -JA(); 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

void BuildB (void) ; 
double Lang (double x); 
void generic (double k1, double c1, double ms1, double alpha1 , double a11, double urI, 

double len1 ,double areal); 
sc_a_system_variable *dMirrdt, HeQ; 

protected: 

}; 

doubleMUO, mg, h, he, B,man,mrev,mirr,mtotal,delta; 
double k, c, ms, alpha, aI, ur, len, area, flux; 
double dhdt ,dm,dmdh,dmdh1, dmirrdt, mirrcalc ,dMdt; 

II JA constructor 
JA: :JA(char nameC[5] , sc_a_system_variable*node_a, sc_a_system_variable*node_b): 

} 

component (nameC, node_a, node_b, 0) { 
dMirrdt = new sc_a_free_variable (" dMirrdt"); 
HeQ = new sc_a_free_variable("HeQ"); 
II initialise all variables 
MU0=4e-7*PI, mg=O, h=O,he=O,b=O,man=O,mrev=O, mtotal=O, de I ta =0; 
mirr=O, dhdt=0,dm=0,dmdh=0,dmdh1=0, dmirrdt=O, mirrcalc =0; 
k=O, c=O, ms=O, alpha=O, a1=0, ur=O, len=O, area=O; 

void JA:: BuildB () { 
h = X(a); 
Ilcalculate H effective and its derivative 
he = h + (alpha *ms * mtotal); 
dhdt=Xdot(HeQ,he);/1 Xdot(Systemvariable, value) 

II Get the field direction 
if (dhdt > 0.0) 

delta 1.0; 
else 

delta -1.0; 

II calculate anhysteretic and reverse Magnetisatwn 
man = Lang(he/a1); 
mrev = c * man / ( 1. 0 + c ); 

Ilcalculate incremental Magnetisation 
dm=man-mtotal; 

II calculate dMirrdH 
dmdh1=dm/( delta*k-alphMms*dm); 
if (dmdh1 > O)lllimit dmdh to positive values only 

dmdh=dmdh1 ; 
else 

dmdh=O; 

II calculate dMldH and then integrate to get Mirr 
dMdt=dhdt *dmdh; 
mirrcalc= Xinteg(dMirrdt ,dMdt);11 Xinteg(Systemvariable, value) 
mirr=l.O* mirrcalc /(l.O+c); 
II Calculate Total Magnetisation 
mtotal = mrev + mirr; 
II Calculate Flux Density 
B=MUO* (ms* mtotal+h); 

61 } 
62 
63 double JA::Lang(double xH IILangevin's function 
64 double lang_x; 
65 if (fabs (x) < 1.0e-3) 
66 lang_x 0.333 * x; 
67 else 
68 lang_x l/tanh(x) 1.0/x; 
69 return lang_x; 
70 
71 
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72 void JA:: generic (double kl, double c1, double msl, double alphal, 
73 double aI, double urI, double lenl, double areal){ 
74 k=kl; c=cl ;ms=msl; alpha=alphal; a=all; ur=url; len=lenl ; area=areal; 
75 

LISTING 7.2: SystemC-A implementation of the original Jiles-Atherton ferro­
magnetic hysteresis model. 

A VHDL-AMS model [127] is used in order to compare the results, Appendix D.2 

presents the code. The SystemC-A and VHDL-AMS models have the tendency of 

crashing at hysteresis cusps, i.e. at points where an abrupt change in the magneti-

sation slope occurs, despite trying various excitations, with various periods. For 

example, VHDL-AMS simulator produced the following errors: 

TIME 1.543564e+000: end of non-convergence points 

Newton: No convergence at time :1.543564E+009Nano ; try to pass over ... 

TIME 1.543564e+000: end of non-convergence points 

Newton: No convergence at time :4.629691E+009Nano ; try to pass over ... 

TIME 4.629691e+000: end of non-convergence points 

Figure 7.3 shows the input H waveform and output B for non-crashing state, while 

Figure 7.4 and Figure 7.5 shows the hysteresis curve resulted from the SystemC-A 

and VHDL-AMS simulations respectively. 

The model was simulated for more than 20 seconds when it crashed during sim-

ulation. SystemC-A hysteresis curve was compared to the VHDL-AMS curve 

indicating the same behaviour of crashing. 
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FIGURE 7.3: Sinusoidal Band H waveforms of ferromagnetic hysteresis simu­
lation in SystemC-A. 
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FIGURE 7.4: SystemC-A simulation of BH curve of the original JA model. 
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FIGURE 7.5: VHDL-AMS simulation of BH curve of the original JA model. 

7.3 Nonphysical Behaviour and Numerical Dif-

ficulties of Jiles-Atherton Model 

One of the well known shortcomings of the JA model is that it sometimes shows 

negative values of the magnetisation slope ~t;J at a cusp of the loop [134]. This 

behaviour is nonphysical. At a cusp, ~t;J can change abruptly and at that point 

dd~ must be zero because H is changing direction. As analogue simulation is a 

numerical march-in-time process using a sequence of discrete time points rather 

than continuous time, derivatives are estimated with finite-difference expressions. 

Consequently, it is possible that the calculated values of ~~ might be non-zero 

at a cusp, Figure 7.6 presents this numerical phenomenon. Figure 7.6 illustrates 

abrupt changes of ~~ on passing a cusp as a result from numerical approximation. 

The figure shows that when H is changing direction, ~~ decreases abruptly to a 

negative value. Part (C) of the figure shows the rectified derivative to remove this 

nonphysical behaviour. 

Not only does this model behaviour exhibit nonphysical results, but it also presents 

substantial computational difficulties as the slope ~~ passes through zero. Ana­

logue simulators usually handle abrupt changes in the solution by backtracking 
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FIGURE 7.6: Original and modified ~~ resulting from a DC sweep of H. 

and recalculating the solution with smaller time steps. This approach, however, is 

likely to fail, as has been reported [134], when dealing with the inherently discon­

tinuous magnetisation slope of the JA model. The modified model presented in 

the next section assures that the derivative ~~ is positive after reversal. Further, 

the use of explicit integration in a solution process controlled by the model, has 
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proved an effective way of avoiding convergence problems at the slope discontinuity 

points. 

7.4 Modelling and Simulation of the Modified 

Jiles-Atherton Model 

To overcome the difficulties in Section 7.3, this section presents a new model im-

plementation of the JA model. The new model is based on timeless discretisation 

technique to integrate the magnetisation slope ~~. The new method is more gen­

eral as it does not depend on the simulator's underlying analogue solver and uses 

an independent process. The process is responsible for directly performing time­

less integration of ~~ using H as the independent variable, not the time. The new 

JA model has been implemented in SystemC as digital SO_MODULE as shown in 

Listing 7.3. 

1 #include" systemc . h" I I header fi I e 
2 
3 SCJvlODULE(JA){ 
4 se-in<double> H; 
5 sc-out<double> Msig, Bsig; 
6 sc_signal <boo I> hchanged, trig; 
7 sc-signal <double> deltah, lasth 
8 
9 void core(); 

10 double Lang_mod (double x); 
11 void monitorH (); 
12 void Integral (); 
13 double MUO,mg, dhmax, He, E, man, mrev, mirr , mtotal ; 
14 double k, c, ms, alpha, a, area, mirr , flux; 
15 void generic (double k1, double c1, double ms1, 
16 double alpha 1 , double aI, double areal); 
17 
18 SC_CTOR(JA){ 
19 SCJvIEI'HOD( core) ; 
20 sen sit i v e < < H; 
21 
22 SC..lVlETIfOD(monitorH); 
23 sensitive_pos « hchanged; 
24 
25 SCJvlEI'HOD( Integral); 
26 sen sit i v e < < t rig; 
27 Ilinitialise all variable 
28 MU0=4e-7*PI ,mg=0,dhmax=12 ,He=O,E=O,man=O,mrev=O, mtotal=O, 
29 last h =0, del tah =O,a=O, mirr=O,k=O,c=O,ms=O, alpha=O, area=O; 
30 } 
31 }; 
32 IICPP f i I e 
33 #include "JA.h" 
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34 
35 void JA:: core () { 
36 // hchanged signal triggered by sufficient changes in field strength 
37 if (fabs(H lasth) > dhmax) 
38 hchanged = 1; 
39 
40 He = H + (alpha * ms * mtotal); //calculate effective field 
41 man = Lang_mod(He/a);//calculates anhysterestic from modified Langevin's function 
42 mrev = c * man / ( 1.0 + c ); //reversible magnetisation 
43 mtotal = mrev + mirr; //total magnetisation 
44 B=MUO*(ms*mtotal+H); 
45 Msig.write(mtotal); 
46 Bsig.write(B); 
47 } 
48 double JA:: Lang_mod (double x) { / /modified Langevin's function 
49 double lang_x; 
50 lang_x = (2/3.14159265)* atan (x); 
51 return lang_x; 
52 } 
53 void JA:: generic (double k1, double c1, double ms1, double alpha1, 
54 double aI, double areal) {k=k1 ; c=c1 ; ms=ms1; alpha=alpha1 ; a=a1 ; area=area1 ;} 
55 
56 void JA::monitorH(){//monitorH() is triggered by hchanged 
57 double dh; 
58 dh=H - lasth;//calculate dh 
59 if (fabs(dh) > dhmax){ 
60 deltah=dh; 
61 lasth = H; 
62 trig =l;//trigger Integral () 
63 hchanged=O;} 
64 } 
65 void JA::Integral(){//triggered by trig signal and perform integration 
66 double deltam, dm, dmdh, dmdh1, dh, dk; 
67 // Get the field direction 
68 i f (d e I t a h > 0) 
69 dk = k;l/rising 
70 else 
71 dk = -kif/falling 
72 
73 II Forward Euler integration method 
74 dh=deltah; 
75 del tam = man - mtotal; 
76 dmdh1 = deltam/((l+c)*(dk - (alpha*ms*deltam»); 
77 if (dmdh1> 0.0)// to assure positive derivatives 
78 dmdh = dmdh1; 
79 else 
80 dmdh = O. 0 ; 
81 dm = dh * dmdh; 
82 if (dm * dh < 0.0) 
83 dm = 0.0; 
84 
85 / / JA model 
86 mirr = mirr + dm 
87 } 
88 

LISTING 7.3: SystemC-A implementation of the proposed Jiles-Atherton ferro­
magnetic hysteresis model. 

The new JA model in Listing 7.3 is connected through ports to another mod­

ule which supplies input waveforms. The main model body process JA::core() 

at line 35 is triggered on changes of the external magnetic field H. It calcu-

lates the anhysterestic from the modified Langevin's function according to Eq.7.7 
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(JA::Lang_mod()) as well as the reversible and total magnetisation. JA::core() 

triggers the processes JA::monitorH() and JA::Integral() if an update of the mag­

netisation slope is necessary. The code in Listing 7.3 shows the Forward Euler 

implementation of the magnetisation slope integral and the Runge-Kutta version 

was implemented in a similar way. The timeless approach to the slope discretisa­

tion avoids using time as the independent variable and the integral is calculated 

using increments of the magnetic field H rather than time steps. 

Simulations of the new model in Listing 7.3 were working for all input values of 

H and never crashed at cusp reversals which indicates a numerical stability of 

the timeless magnetisation slope integration. To illustrate how the model handles 

asymmetric and non-symmetric minor loop behaviour, test benches were developed 

to simulate sequences of non-biased (i.e. symmetric) minor loops and asymmetric 

minor loops biased with a field value of 2kA/m. Figure 7.7 shows applied field 

strength excitations H together with flux density outputs B. For generality, a 

triangular waveform is used in a DC sweep, i.e. timeless simulations. The corre­

sponding BH curves with non-biased and biased minor loops are shown in Figure 

7.8. 

The results clearly demonstrate the property of long-term magnetisation memory 

loss in the JA model. As the JA model gradually loses its long term magnetisation 

memory, minor loops do not exhibit a closure after one cycle but eventually con­

verge to a closed loop as shown in Figure 7.8. While these experiments indicate 

the correctness and numerical reliability of the timeless discretisation technique 

for the magnetisation slope, this strange behaviour of minor loop sequences in the 

JA model has not been confirmed experimentally [135J. 

Simulation results showing major and minor loop behaviour are consistent with 

other reported implementations using different languages and simulation tools 

[131, 136J. In this context, it is worth pointing out that other, non-JA models 
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FIGURE 7.7: DC sweep simulations of the SystemC model showing the excita­
tion H and response B. Trace 1 includes minor loops biased at H = 2kAjm 

and trace 2 - non-biased minor loops. 

may exhibit different behaviour [137], specifically the Preisach model [138] which 

tends to produce different results for minor loop behaviour around turning points. 

7.5 Comparison with VHDL-AMS 

SystemC-A is capable of modelling non-electrical domain systems using the new 

language constructs and methods. Also, by being HDL based on C++, JA model 

was reformed into a new model to overcome most of the reported problem easily. 
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A comparison is done in implementation and in CPU time between SystemC and 

VHDL-AMS. Both implementations of the JA model in SystemC and VHDL­

AMS produced comparable results. Appendix D.3 shows the VHDL-AMS code. 

Figure 7.8 and Figure 7.9 show virtually the same behaviour for both simulators. 
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However, with respect to the CPU time, SystemC proved to be faster than VHDL­

AMS (see Table 7.2). The simulations were carried out on a PIlI PC with 512MB 

RAM for 110 samples of H and with the step size dh = 12 Aim. 
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FIGURE 7.9: VHDL-AMS simulations a) BH curve with symmetric minor loops 
(bias of H is OkA/m), b) BH curve with asymmetric minor loops, H bias of 

2kA/m. 

It ought to be reiterated that the Forward Euler and Runge-Kutta methods pro-

duced nearly identical results due to a very small sensitivity threshold of dh, which 
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SystemC-A 
VHDL-AMS 

I Runge-Kutta I Forward Euler 

0.380s 0.3708 
31.044s 30.5338 

TABLE 7.2: Simulation times of SystemC and VHDL-AMS for ferromagnetic 
hysteresis. 
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was about 0.12% of the maximum applied field value. As a consequence, the maxi­

mum relative difference in the calculated induction B between the two integration 

methods was approximately 1%, as shown in Figure 7.10. This suggests that the 

simple Forward Euler integration method is adequate for this application. The 4th 

order Runge-Kutta offered virtually no benefit in terms of accuracy, and the re­

lated code was more complex and there was a slight CPU time overhead as shown 

in Table 7.2. 
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FIGURE 7.10: b.B the difference between Euler and Runge-Kutta using Sys­
temC. 

7.6 Concluding Remarks 

This chapter has demonstrated modelling ferromagnetic hysteresis to illustrate 

SystemC-A capabilities in modelling non-electrical systems. The system is based 
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on the Jiles-Atherton model and was modelled in SystemC-A using two approaches. 

The first approach uses the common way of time discretisation of the magnetic 

slope. This method suffers from numerical difficulty and singularity. Taking the 

advantage of HDL, the ferromagnetic hysteresis was modelled using a second ap­

proach which adopt timeless discretisation. The second approach overcomes some 

reported problems that have occurred in other implementations, namely long sim­

ulation times, non-convergence and numerical instability. The new model was 

capable of producing minor loops with no numerical difficulties for various minor 

loops sizes and in different positions. A numerically reliable alternative function to 

eliminate the well known singularity of Langevin's function was also implemented. 

The simulation has shown that, due to extra limitations on the step size, both 

Euler and Runga-Kutta methods produce nearly identical results in terms of ac­

curacy. Hence, the use of Forward Euler is advisable due to its simplicity. For 

comparison purposes both approaches were implemented in VHDL-AMS showing 

matching results with SystemC-A models. However, SystemC-A has the advantage 

of simulation high speed. 



Chapter 8 

Mixed-domain System Modelling 

Case Study 

In this chapter, SystemC-A is validated by modelling and simulating a mixed­

domain case study. The system is automotive seating with vibration isolation. 

It is nonlinear complicated mixed electrical-mechanical-hydraulic domains. The 

traditional way of modelling such a combination at component level is to model 

each domain separately in different languages and/or environments. The system is 

an excellent choice to validate SystemC-A because it is involving complex DAEs, 

complex control systems and it is the state of the art in automotive suspension 

systems. The system to be modelled and simulated is designed originally by Liu 

and Wagner [139, 140]. They simulated the system in non-HDL environment 

(Matlab and Simulink) [13]. The system was also modelled in VHDL-AMS by 

Wang and Kazmierski [141]. 

The use of HDL in automotive design has been started recently and SystemC-A 

would be an excellent environment to model mixed-domain systems. It is because 

SystemC-A models systems in hierarchal analogue or digital modules which rep­

resent different parts of the system connected together through ports and signals. 

146 
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The remainder of this chapter is organised as follows: Section 8.1 describes briefly 

the vibration isolation seating system and illustrating the mathematical represen­

tations of its main parts, the chassis and seating, the actuator and the controllers. 

A suite of three different types of controllers are used to regulate the automo­

tive seat when subjected to road disturbances. The controllers are Proportional­

Integral Controller (PIC), Variable Structure Controller (VSC) and Optimal Con­

troller (OC). Section 8.2 illustrates the implementation of the system in SystemC­

A for different stimuli. The results are discussed and compared with VHDL-AMS 

simulations. Finally, Section 8.3 gives the conclusion. 

8.1 Vibration Isolation Seating System 

The attenuation of road disturbances of vehicle occupants is a very important issue 

in riding quality of light-duty and off-road vehicles. The passengers are subjected 

to high and prolonged disturbances on rough roads. One strategy is the use of 

vibration isolation systems to attenuate the vibrations between the passenger seat 

and the vehicle's floor by placing a well-controlled actuator in between. A good 

model of the whole system is therefore required to reflect all the details of the 

actual system. The system consists of three main parts, plant (i.e. the passenger 

seat and vehicle chassis), electromechanical actuator, and controller as shown in 

Figure 8.1. There are two sensors which monitor the seat and chassis and hence 

generate input signals to the controller. The control signal is connected to the 

actuator which is a force generator introduced to improve ride quality. 

8.1.1 Mathematical Model of Chassis and Seating System 

As shown in Figure 8.1 the vehicle mass Me and passenger/seat mass Ms are 

separated by a passive spring Ks and damper Cs. The seat is further isolated 
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FIGURE 8.1: Vibration isolation seating system. 

from the chassis by the force actuator in parallel with the spring and damper. An 

external displacement Xd represents the system input and acts through a passive 

spring J{e and damper Ce. The other input is the actuator's force Fa = ApD..P. 

The equation of motion for the seat can be written as: 

where Xs and Xc are the seat and chassis displacement respectively and PI and P2 

are the pressures in upper and lower actuator chambers respectively. Similarly, 
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the equation of motion for the chassis can be expressed as: 

d2Xe = _ Cs (dxe _ dxS) _ Ks (x _ x ) _ Ke (x _ Xd) 
dt2 M dt dt M e s M e e e e 

Ce (dxe dXd) Ap ( ) -- --- +- PI-P2 
Me dt dt Me 

(8.2) 

The output variables are selected to be the relative velocity Vrel and the relative 

displacement Xrel which defined in Eq.8.3 and 8.4. 

dt dt 

Xrel 

(8.3) 

(8.4) 

Table 8.1 lists and defines the seat and chassis parameters together with their 

values which are used in the simulations. 

I Symbol I Definition I Value 

Me mass of vehicle chassis (kg) 1.46e + 03 
Ms mass of passenger seat (kg) 1.0e + 02 
Ke chassis spring stiffness (N jm) 7.492e + 04 
Ks seat spring stiffness (N jm) 3.002e + 04 
Ce chassis damping (N.secjm) 5.82e + 03 
Cs seat damping (N.secjm) 1.1e + 03 
Ap effective piston face area (m2

) 2.1l5e - 03 

TABLE 8.1: Chassis and seat model parameters. 

8.1.2 Mathematical Model of Actuator 

The actuator is an electromechanical hydraulic system, which operates in parallel 

with springs and dampers. It consists of a DC motor, some mechanical parts 

(such as gear train and rack) and a hydraulic vibration absorber as illustrated in 

Figure 8.2 and Figure 8.3. The actuator input from the controller is a DC voltage 

(ea), which drives the motor to output a rotational torque (Tm). The gear train 

transmits the rotational velocity from the DC motor to the rack. 
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The rack converts the motors's rotational motion into translational velocity, which 

impacts the pressures of the upper and lower chambers of the hydraulic piston (PI 

and P2 respectively). The vehicle's chassis is attached to the hydraulic cylinder's 

piston rod and the seat sits on the cylinder cap. The actuator force is dependent on 

the pressure difference between the upper and lower chambers tlP. The generated 

force attenuates the vibrations by acting on the vehicle's chassis and passenger's 
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seat. 

The actuator's DAEs are from electrical, mechanical and hydraulic domains. The 

DC motor develops a torque Tm which is proportional to the armature current ia, 

where K t is motor-torque constant. 

(8.5) 

When the armature rotates, a back emf (eb) is induced and proportional to the 

flux and angular velocity d~~l as defined in Eq.8.6, where Kb is a constant. 

(8.6) 

Applying Kirchoff's voltage law to the electric circuit of the armature, 

(8.7) 

Applying Newton's law to the input rotational system dynamics (Jm), 

J d
2
eg1 b deg1 T = T 

m dt2 + m dt + gl m 
(8.8) 

Ideal gears are assumed by neglecting friction losses and gear mass, hence the 

equations of input and output angular velocities (W9l' wg2 ) and torques (Tgl, T g2 ) 

can be written as in Eq.8.9 and Eq.8.10. 

W g2 'rg 1 (8.9) 
wg1 'rg2 

Tg1 Wg2 

Tg2 Wg1 
(8.10) 



Chapter 8 Mixed-domain System Modelling Case Study 152 

Applying Newton's law to the load shaft (JI ) gives Eq.8.11. 

(8.11) 

The rack's linear velocity (\1;.2) can be determined as in Eq.8.12, and \1;.2 = \1;.1 

since the two hydraulic pistons are connected. 

(8.12) 

The torque (TL) on the load shaft (JI) is determined in Eq.8.13. 

(8.13) 

The hydraulic pressure in the upper and lower actuator chamber (shown in Figure 

8.3) are described in Eq.8.14 and Eq.8.15. 

Ap \l;.el - Ar1 \1;.1 (~: ) 

- Ap \l;.el + Ar2 \1;.2 ( ~: ) 

(8.14) 

(8.15) 

Table 8.2 lists and defines the actuator parameters together with their values which 

are used in the simulations. 

8.1.3 Controllers 

In order to attenuate road vibrations, a suite of different types of controllers were 

designed including linear, nonlinear, and intelligent designs. The controllers are 

Proportional-Integral (PIC), Variable Structure (VSC) and Optimal Controller 

(OC). Inputs to the controllers are the dynamic seat and chassis motions i.e. 

the displacement, velocity and acceleration of the passenger seat (xs, vs, as), the 

displacement and velocity of the vehicle chassis (xc, vc). Any single controller may 
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I Symbol I Definition I Value 
Kt motor torque constant (N.m/amp) 9.15e - 02 
Kb back emf constant (V.sec/rad) 5.20e - 02 
La armature inductance (H) 0.0 
Ra armature resistance (D) 1.0 
N Gear ratio 1.0 
Jm moment of inertia of motor (Kg.m2

) 2.11ge - 06 

/31 fluid bulk modulus of upper chamber (N/m2 ) 8.61e + 07 
bm viscous friction of motor (N.m/(rad/sec)) 7.06e - 04 
rg1 radius of gear 1 (m) 2.54e - 02 
rg2 radius of gear 2 (m) 2.54e - 02 
Jz moment of inertia of load shaft (Kg.m2

) 2.11ge - 06 

/32 fluid bulk modulus of lower chamber (N/m2 ) 8.81e + 07 
bl viscous friction of load shaft (N.m/(rad/sec)) 7.06e - 04 
Ap effective piston face area (m2) 2.115e - 03 
Ad area of upper rack end (m2) 5.067e - 05 
Ar2 area of lower rack end (m2) 5.067e - 05 

TABLE 8.2: Actuator model parameters. 

have any set of inputs. Output of the controller is the voltage sent to the DC 

motor (ea ). Reference [140J describes in details the controllers designs. 

The general state space model of the system to be controlled is given in Eq.8.16. 

It is required for designing the controllers. 

x Ax+Bu (8.16) 

y Cx+Du 

The plant's dynamics are represented in the state-space form as in Eq.8.17 and 

Eq.8.18, where xs, Xc, is, ic are the plant's states. 
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is 0 0 1 0 Xs 

Xc 0 0 0 1 Xc 
+ 

i·s 
_& Ks _Cs ~ Xs Ms Ms Ms Ms 

i·c 
Ks (Ks+Ke) Cs (Cs+Ce) 

Xc Me Me Me Me 

0 0 

0 0 [ :: ] (8.17) 
0 0 

Ke Ce 

Me Me 

[ ::] [~ -1 0 0] 
o 1 -1 

(8.18) 

8.1.3.1 Proportional-Integral Controller PIC 

The PIC is used to act on the error between the seat's set-point acceleration 

and the actual value (e = asp - as). Through the integral operator, the PIC 

brings quickly the error signal to zero. Eq.8.19 defines the PIC equation, where 

Kp = 13.5V 8 2 /m and KJ = 0.27V 8/m [140] are the proportional and integral 

gains respectively. They are selected using analytic and trial/error processes. 

(8.19) 
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8.1.3.2 Variable Structure Controller VSC 

The VSC relies on a high-speed switching feedback strategy to establish a robust 

control for uncertain plant models. The switching control algorithm drives the 

plant's state trajectory to a user selected switching line and then maintains the 

trajectory at that line. The switching line is chosen such that the system motion 

exhibits the desired stability and/or tracking characteristics. A switching line cr(x) 

is defined as in Eq.8.20, 

(8.20) 

where x is the plant's states vector and C is a vector of constants which determine 

the slope of the switching line in the phase plane. The line cr = 0 describes the 

system average behaviour with chosen dynamics. The first step in the controller 

design is to choose a Lyapunov's function (V) as in Eq.8.21 to guarantee stability 

of the switching line. 

(8.21) 

where cr2 is positive and nonzero everywhere except on the switching line (cr = 0). 

The switching line should satisfy the following condition: 

v = 2cro- < 0 (8.22) 

which implies that, 

(8.23) 
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After substituting and reordering Eq.8.23, the inequality relations for the control 

signal is obtained as follows: 

u={::: 
for (J" > 0 

(8.24) 
for (J" < 0 

The second step is to compute the controller's feedback gains which derive the 

plant's trajectories to the sliding surface. The full state feedback has the form of 

1), = Kx = k1Xl + ... knxn' with individual gains defined in Eq.8.25 

(8.25) 

where kil and ki2 represent the maximum and minimum limits on each gain. The 

gains are selected as kl =-94.8 N/m, k2=-5700 N/m, k3=-1440 Ns/m, and k4=437 

Ns/m. 

8.1.3.3 Optimal Controller OC 

The optimal controller is based on full state feedback Linear Quadratic Regulator 

(LQR). LQR controller problem is to find a control law u = ea = -Kx, such that 

(A - BK) is stable and minimises a specified linear quadratic performance index 

defined in Eq.8.26. In Eq.8.26, Q and R are the state and input weighting matrices, 

respectively. The performance index is selected based on a balanced tradeoffs 

between convergence speed to the system states and the input amplitudes. 

J(x,u,Q,R) = - (xTQ x+uTR u)dt, 1100 

2 0 
Q 2: 0, R> 0 (8.26) 
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The vector of feedback gains K is to be calculated using Eq.8.27. 

(8.27) 

where P can be found by solving Riccati equation defined in Eq.8.28. 

PA + ATp - PBR-1BTp + Q = 0 (8.28) 

The controller gains are found to be K=[-116 -6520 -1670 -460] by using MAT­

LAB's function ([K,P,E]=lqr(A,B,Q,R)), where E is the eigenvalues matrix of the 

closed loop system with optimal state feedback which determine the stability of 

the system. 

8.2 Modelling and Simulation 

The automotive system was modelled in SystemC-A making use of the modular 

modelling where the main parts of the system (plant, actuator and controller) 

were modelled as SystemC-A components at behavioural level as illustrated in 

Figure 8.4. The testbench (SystemC SC_MODULE) includes instances of all parts 

connected together by signals. The input stimulus is generated by a sinusoidal 

voltage source and connected to the chassis and seating module via nodes as 

shown in Listing 8.1. 

1 void test bench:: system () { 
2 II global connecting signals 
3 sc_signal <double> Vrel, as, deltaP , ea; 
4 II instantiating nodes and components 
5 n2 = new Node("O"); 
6 n1 = new Node (" n1" ) ; 
7 sc_a_voltageS_sin *11= new sc_a_voltageS_sin ("Vsin" ,n1, n2 ,5.125,0,1,0,0); 
8 seating *sl = new seating("sl" ,n1,&deltaP,&Vrel,&as); 
9 actuator *act1 = new actuator("act1",&Vrel,&ea,&deltaP); 

10 PI *pi1 = new PI("pi1",&as,&ea); 
11 
12 sc-start (2.5 ,SC_SEC); \\start simulation for 2.5Sec 
13 } 

LISTING 8.1: SystemC-A testbench of the automotive vibration isolation sys­
tem. 
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FIGURE 8.4: Block diagram of the automotive system implementation in 
SystemC-A. 
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Listing 8.2 gives SystemC-A model of the chassis and passenger's seat, whereas 

Listing 8.3 gives the actuator model. 

1 
2 seating::seating(char nameC[5j, sc_a_system_variable *node_a, 
3 se-signal <double>*deltaPl ,se-signal <double>*Vrell , 
4 s c _s i g n al <double>*asl ) : sc_a_componen t (nameC, node_a, 0,0) { 
5 deltaP _sig=deltaPl; 
6 VreLsig=Vrell; 
7 as_sig=asl ; 
8 xcQ = new sc_a_free_variable("xcQ"); Iisystem variables 
9 xsQ = new sc_a_free_variable("xsQ"); 

10 ysQ = new sc_a_free_variable("ysQ"); 
11 ycQ = new sc_a_free_variable("ycQ"); 
12 } 
13 
14 void seating::BuildB(){ 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

xd=X(a);llfirst input: road disturbance 
deltaP=deltaP_sig->read (); Iisecond input: deltaP 
Vrel=ys-yc; 
VreLsig->write (Vrel); Ilfirst output: relative velocity 

II between chassis and seat 
as=Xdot (ysQ); 
aLsig ->write (as); Iisecond output: acceleration of seat 
II the four equations of chassis and seat 
Equation(ysQ, -dysdt - (Cs/Ms)*(ys-yc) (Ks/Ms)*(xs-xc) 
Equation(xsQ, -dycdt - (Cs/Mc)*(yc-ys) - (Ks/Mc)*(xc-xs) -

(Ap/Ms) * deltaP); 
(Kc/Mc)*(xc-xd) -
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26 (Cc/Mc)*(yc-dxddt) + (Ap/Mc) * deltaP); 
27 Equation (xcQ, -dxsdt + ys ); 
28 Equation(ycQ, -dxcdt + yc ); 
29 } 

LISTING 8.2: SystemC-A implementation of the chassis and seating. 

1 actuator:: actuator (char nameC[5] , sc_signal <double>*Vrell , 
2 sc-signal <double> *eal, sc-signal <double>*deltaP 1): 
3 sc_a_com ponen t (nameC, node_a, 0,0) { 
4 VreLsig=Vrell ; 
5 ea_sig=eal; 
6 deltaP_sig=deltaPl; 
7 Iisystem variables 
8 TInQ = new sc_a_free_variable "TInQ"); 
9 ebQ = new sc_a_free_variable "ebQ"); 

10 TLQ = new sc_a_free_variable "TLQ"); 
11 VrQ = new sc_a_free_variable "VrQ"); 
12 iaQ = new sc_a_free_variable "iaQ"); 
13 wglQ = new sc_a_free_variable "wglQ"); 
14 wg2Q = new sc_a_free_variable "wg2Q"); 
15 UIQ = new sc_a_free_variable "UIQ"); 
16 U2Q = new sc_a_free_variable "U2Q"); 
17 PIQ = new sc_a_free_variable "PIQ"); 
18 P2Q = new sc_a_free_variable "P2Q"); 
19 TgQ = new sc_a_free_variable "TgQ"); 
20 deltaPQ = new sc_a_free_variable "deltaPQ"); 
21 } 
22 
23 void actuator:: IC(void){11 initial values 
24 In i t i a I C (U1 Q, l. 0 e - 4) ; 
25 I nit i a I C (U2Q, 1 . 0 e - 4 ) ; 
26 InitialC (PIQ, l. Oel0); 
27 InitialC(P2Q,I.0el0); 
28 
29 
30 void actuator:: BuildB () { 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 } 

Vrel=VreLsig->read 0;11 first input: relative velocity 
ea=ea_sig ->read 0; II second input: acceleration of seat 
deltaP_sig->write(deltaP);11 output: deltaP 
II DAEs 
Equation (TInQ, -Trn+Kh ia); 
Equation(ebQ, -eb+Kb*wgl); 
Equation (TLQ, -TL + (Ar2*P2 - ArhPl)* rg2); 
Equation (VrQ, -Vr + wg2ng2); 
Equation(iaQ, -ea + eb + Ra*ia + La*diadt); 
Equation (TgQ, -Jm*dwgldt- bm*wgl-Tg+TIn); 
Equation(wglQ, wg2/N - wgl); 
Equation (wg2Q, -Jl*dwg2dt- bl*wg2-TL+Tg); 
Equation (UIQ, -dUldt + Ap* Vrel - Arh Vr); 
Equation(U2Q, -dU2dt -Ap*Vrel + Ar2*Vr); 
Equation (deltaPQ, -deltaP+(PI-P2»; 
Equation(PIQ, -dPldt + betal*(Ap*Vrel - ArhVr)/Ul); 
Equation(P2Q, -dP2dt + beta2*(-Ap*Vrel + Ar2*Vr)/U2); 
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------------------------------------------------------------
LISTING 8.3: SystemC-A implementation of the actuator. 

In Listings 8.2 and 8.3, the component's constructor defines the number and type 

of the component's inputs and outputs for each controller. Also in the constructor, 

system variables are defined as well as the system constants. BuildB() functions 

include DAEs of the system which hint that the system modeled at behavioural 
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level. The chassis and seating module contains 4 system variables (lines 8-11 

of Listing 8.2) which need 4 Equation() functions (lines 24-28) to be defined in 

BuildB(), while the actuator has 13 system variables and needs 13 Equation() 

functions to be defined. 

To demonstrate one of the controllers representation in SystemC-A, Listing 8.4 

gives part of the implementation of the VSC. The model has no system variables 

and it just involves sequential statements. The inputs to the VSC are the plant's 

four states (xs, Xc, xs, xc) while the output is the voltage ea sent to the DC motor. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

void vS: : BuildB () { 

II controller parameters: 
Kll= -95.8; IIKll K12 
KI2= -93.8; 
K21= - 5704.6; IIK21 K22 
K22= -5702.6; 
K31= -1446.2; IIK31 K32 
K32= -1444.2; 
K41= 436.3; IIK41 K42 
K42= 438.3; 
cl= 1. 72; 
c2= 262.4; 
c3= 4.5; 
c4= 65.7; 
Lhead= 6.648e-02; 

are lower and upper 

are lower and upper 

are lower and upper 

are lower and upper 

17 sigma = c1*xc + c2*xs + c3*xcdot + c4*xsdot; 
18 pI sigma*xc; 
19 p2 = sigma*xs; 
20 p3 = sigma*xcdot; 
21 p4 = sigma*xsdot; 
22 i f (p 1 > O. 0 ) 
23 Kl = Kll; 
24 else 
25 KI = K12; 
26 
27 if (p2 > 0.0) 
28 K2 = K21; 
29 else 
30 K2 = K22; 
31 
32 if (p3 > o. 0) 
33 K3 = K31; 
34 else 
35 K3 = K32; 
36 
37 if (p4 >0.0) 
38 K4 = K41; 
39 else 
40 K4 = K42; 
41 

limits 

limits 

limits 

limi ts 

42 ea = Lhead * (xc *Kl + xs *K2 + xc dot *K3 + xsdot *K4) ; 

of Kl 

of K2 

of K3 

of K4 

43 ea_sig->write(ea);llcontroller output voltage sent to the DC motor 
44 } 

LISTING 8.4: SystemC-A implementation of the variable structure controller. 
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The analogue simulator used a time step of O.lm seconds. The system was sim­

ulated using two types of input stimuli: a single jolt sine wave and multiple sine 

waves with a White Gaussian Noise (WGN) (standard deviation =lcm). The two 

stimuli represent road disturbances Xd at frequency of 5.162Hz and amplitude of 

xdp_p=10cm. The most important variable to be monitored is the maximum value 

of passenger's seat displacement x sp- p . The passive system is first simulated to 

study the effect of applying different types of controllers to the system. 

8.2.1 Single Jolt Simulation 

Simulations of a single jolt sin wave were carried out for a duration of 2.5 seconds. 

The seat displacement response of the passive system together with responses when 

using different controllers are shown in Figure 8.5. The passive spring and damper 

can attenuate road disturbances Xdp-p from x sp- p = lOcm to x sp- p = 3.05cm. 

Compared to the passive system response, the optimal controller achieved the 

best isolation performance with a factor of 5.32 reduction in Xdp-p. Whereas the 

PIC and VSC achieved 2.02 and 4.54 respectively. 

8.2.2 Multiple Sin Waves with WGN Simulation 

Simulations of multiple sin waves with WGN were carried out for 1.0 second. The 

seat displacement response of the passive system together with responses when 

using different controllers are shown in Figure 8.6. The passive spring and damper 

can attenuate road disturbances Xdp-p from x sp- p = 10cm to x sp- p = 2.58cm. 

Compared to the passive system response, the optimal controller again achieved 

the best isolation performance with 4.26 reduction in Xdp--p. Whereas the PIC and 

VSC achieved 1.92 and 3.47 respectively. Reduction in performance was expected 

under multiple sin waves and noisy stimulus. 
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FIGURE 8.5: Single jolt sine wave disturbance simulation with responses of the 
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8.2.3 Comparison with VHDL-AMS 

The model of the vibration isolation seating system was modelled and simulated 

in VHDL-AMS [141J. SystemC-A shows accurate results by comparing its simu­

lation performance of x sp- p with VHDL-AMS results in Table 8.3. The maximum 

relative percentage differences in the maximum value of seat position x sp- p be-

tween SystemC-A and VHDL-AMS simulations was approximately 0.860% for the 

optimal controller under single jolt sin wave, and it was 2.642% for the passive 

system under multiple sin waves with WGN simulation. 

TABLE 8.3: SystemC-A and VHDL-AMS performance figures of the seat posi­
tion xsp- p (cm) for the passive system and the suite of controllers. 

Passive system 
PIC 
VSC 
OC 

SystemC-A VHDL-AMS % Relative error 
single jolt sin waves single jolt sin waves single jolt sin waves 
sin wave with WGN with WGN sin wave with WGN sin wave 

3.07 2.65 0.68% 
1.52 1.37 0.59% 
0.69 0.74 0.58% 
0.58 0.60 0.86% 

8.3 Concluding Remarks 

This chapter has demonstrated modelling automotive vibration isolation seating 

system to illustrate SystemC-A ability in modelling mixed-domain systems. The 

system is nonlinear complicated mixed electrical-mechanical-hydraulic domains 

providing a challengeable task for SystemC-A validation. The system was mod­

elled at behavioural level with three types of controllers, proportional-integral, 

variable structure and optimal controllers. The system was tested with two types 

of stimuli, a single jolt sine wave and multiple sine waves with a white Gaussian 

noise. Results were studied and the optimal controller has shown the best reduc­

tion in road disturbance for both input stimuli. Further, SystemC-A simulations 

were compared to published VHDL-AMS simulations, showing highly comparable 
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numerical figures, which proves that SystemC-A can be compared to well estab­

lished HDLs. 



Chapter 9 

Conclusions and Future Research 

The main aim of this research stems from the modelling difficulties of analogue and 

mixed-signal systems which have been facing the design community, as explained 

in Chapter 1. This research presents a new mixed-signal language capable of 

simulating a variety of general analogue models suitable for a number of application 

areas and levels of abstraction with special emphasis on high level ciesigns. The 

developed language is an extension of SystemC and has been named SystemC-A. 

The objective was achieved in a number of steps. 

In Chapter 2 the state of the art SystemC high level digital language was inves­

tigated and studied in order to provide the requirement for an efficient digital 

simulator as part of the aimed AMS modelling environment. Further, VHDL­

AMS language elements were overviewed to be an inspiration for this research 

AMS extension new elements. 

The next step was the development of the AMS extension which represents the 

first contribution of this thesis. It is described in Chapter 3 and 4. In Chapter 3, 

new language syntax and constructs were developed to represent 'analogue system 

variables such as node variable to describe general circuit nodes, fiow variable to 

166 
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describe MNA-like flow variables, and free variables, to represent variables in user­

defined differential and/or algebraic equations. All system variables represent the 

unknowns in the set of DAEs and can be extended to user-defined type variables. 

Another developed element is a construct representation of an analogue component 

which can be extended to circuit-level components or user-defined components. 

A library of circuit-level components was developed which provides fundamental 

components such as resistor, capacitor, inductor, diode, transistors and several 

kinds of voltage and current sources. Further more complex components can 

be derived using C++ inheritance mechanism. System variables and analogue 

component classes are to be used to build general analogue systems at circuit-level 

or system-level. Important analogue-digital interfaces are developed for different 

connection types and associated issues such as small time step sizes and analogue 

stepping are solved. 

Chapter 4 presents an efficient implementation of an analogue kernel to solve the 

analogue part of the simulated system. An object-oriented equation formulation 

method, called the Object-Oriented Newton-Quasi Newton method (OO-NQN), 

has been developed. A new SystemC-A element called build method is used to 

implement the OO-NQN method. The OO-NQN has two approaches to equation 

formulation associated with constructing the Jacobian. The first approach is to 

build exact Jacobian's elements using MNA component's stamps and hence, solve 

the system using the Newton Method. The other approach is mixed where some 

Jacobian elements are approximated using the secant method and hence solve 

the system by means of a Quasi-Newton approach. In the case studies, shorter 

simulation times were obtained where an exact Jacobian was used. However, the 

advantage of secant approximations is easiness and less expertise needed to create 

MNA Jacobian stamps, as well as simpler code. Therefore, OO-NQN provides a 

flexible means to compromise between simple modelling and simulation speed. 

In Chapter 5, an efficient version of the lock-step synchronisation technique has 
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been developed and represents the second contribution of this thesis. The lock-step 

technique was implemented, tested and found to be the most suitable synchroni­

sation technique to interface the analogue and digital parts modelled in the same 

language. The SystemC-A lock-step technique handles efficiently zero step-sizes, 

which occur frequently in a mixed-signal HDL, whose digital kernel may produce 

repeated delta cycles. 

The new language elements and SystemC-A methods developed in Chapter 3, 

4 and 5 were tested, verified and optimised. For this purpose, a wide range of 

examples were carefully chosen from different physical domains in order to validate 

SystemC-A from different aspects. The modelling and simulations of the case 

studies in Chapter 6, 7 and 8 is the third contribution of this thesis. 

In Chapter 6, a suite of four electrical case studies was modelled and simulated. 

The first two case studies were Van Der Pol oscillator and Lorenz chaos. They 

were modelled to illustrate the ability of SystemC-A to handle behavioural-level 

specifications using its new language constructs. The other case studies were a 

Switched Mode Power Supply (SMPS) and a 2GHz Phase Locked Loop (PLL)­

based frequency multiplier. The two examples are highly complex mixed-signal 

systems, which have disparate time scales of their transients, and therefore, require 

excessive CPU times and might put any standard analogue simulator in difficulties. 

All the simulations were successful and no modelling or numerical difficulties were 

encountered. For the PLL example two noise methods were developed to model 

and simulate the jitter in the VCO output signal. The first noise method pro­

vides a more accurate noise behaviour by using a noise source especially develop 

to add noise to any component's model. The other noise method provides faster 

simulations by altering the VCO pulse width directly to form a jitter. This per­

turbation represents the total effect of any noise source in the PLL. Furthermore, 

the developed PLL model with the two noise methods has been used to compare 
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the behaviour and speed of SystemC-A with that of SystemVision VHDL-AMS 

simulator from Mentor Graphics. There was a simulation speed factor of three in 

favour of SystemC-A. The main reason behind the speed factor is the adoption 

of the efficient OO-NQN equation formulation method in SystemC-A, while this 

option is not provided in the Mentor Graphics simulator. 

In Chapter 7, a non-electrical case study of ferromagnetic hysteresis is modelled 

based on the Jiles-Atherton mathematical model. This system provides real chal­

lenges to SystemC-A. The common implementation of the JA model involves nu­

merical integration of a discontinuous and non-linear differential equation. In 

addition, the model in its original form can sometimes produce a hysteresis curve 

with negative slopes for which there is no physical justification. Further, the model 

suffers from convergence problems and long analysis times. 

The ferromagnetic hysteresis model was implemented in SystemC-A in two differ­

ent ways. Firstly, for the purpose of demonstrating, the commonly used model 

which involves the simulator's analogue solver and suffers from numerical diffi­

culties was implemented and tested. These tests confirmed the usual reported 

problems as outlined in Section 7.3. Secondly, in the other approach, a new model 

was developed to overcome most of the encountered numerical problems. A novel, 

timeless discretisation technique was developed to integrate the magnetisation 

slope ~~ without involving the analogue solver. The new model was capable of 

producing minor loops with no numerical difficulties for various minor loops sizes 

and in different positions. A numerically reliable alternative function to eliminate 

the well known singularity of Langevin's function was also implemented. Both ap­

proaches were also implemented in VHDL-AMS for verification and comparison. 

The advantage of SystemC-A over VHDL-AMS in terms of simulation speed was 

also confirmed by those simulations. 
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Chapter 8 illustrated the capability of SystemC-A to model complex mixed-physical­

domain systems. A mixed-domain automotive case study was modelled and sim­

ulated. The system handles dynamics of a passenger seat with vibration isolation 

and active electronic control. The system is nonlinear and complex using equa­

tions from mixed, electrical, mechanical and hydraulic domains. It also involves 

complex digital controllers to regulate the automotive seat when subjected to road 

disturbances. The controllers tested were: Proportional-Integral Controller (PIC), 

Variable Structure Controller (VSC) and Optimal Controller (OC). The system 

was modelled at the behavioural level using mainly the new equation syntax and 

OO-NQN equation formulation. Simulations used two types of stimuli: a single 

jolt sine wave and multiple sine waves with a white Gaussian noise. The optimal 

controller has shown the best reduction of the road disturbance for both input 

stimuli. Further, SystemC-A simulations were compared to VHDL-AMS simula­

tions published in the literature, showing highly comparable numerical figures. 

It is important to indicate that the developed methods and constructs in this thesis 

are not restricted to the SystemC language. The work is potentially beneficial 

to development of analogue kernels for modern AMS HDLs such as VHDL-AMS, 

Verilog-AMS and other system design languages, including those based on C/C++. 

SystemC-A is the first attempt to extend SystemC to provide mixed-signal and 

mixed-domain modelling capability. A future adoption of SystemC-A may provide 

significant advantages in the modelling of modern heterogenous Systems on Chip. 

SystemC-A is an environment to model and simulate systems consisting of digital 

and analogue parts, as well as hardware/software parts at different abstraction 

levels, from circuit to concept level. SystemC-A has proved to be a powerful and 

an easy to learn alternative to existing HDLs. A number of other advantages are 

listed below: 

• Potential for automation: SystemC-A enhances the current design flow by 
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providing scope for an automated design flow for the analogue blocks and 

replacing the manual design method. 

• High abstraction levels: SystemC-A provides the required high level of design 

abstraction required for the multi-million transistor era. In addition it also 

supports low abstraction levels required when modelling critical parts of any 

system. 

• Speed: SystemC-A can simulate complex systems at much higher simulation 

speeds than those offered by existing HDLs. In PLL example, the CPU time 

of the model's simulation with SystemC-A is faster by three times than that 

of VHDL-AMS. 

• Powerful modelling features: SystemC-A is based on the C/C++ language 

which is familiar to most hardware/software designers. Also it has all the 

properties of general programming languages too. This gives a freedom in 

modelling and allows for description of very complex AMS systems in a user 

friendly manner. In many respects, SystemC-A resembles the semantics of 

standard HDLs. However, it has features which do not have their counter­

parts in existing HDLs, for example transient noise analysis . 

• Model reuse: In SystemC-A, a model can be derived as a derived class of 

a base model which gives an efficient way of model code reuse and helps 

significantly in the modelling process. 

SystemC-A has many areas which may be subject to further development and 

extensions. More work is required towards an integrated environment for mixed­

signal mixed-domain and multi-discipline applications. Possible further extensions 

may include alternative descriptions of analogue systems such as frequency domain 

descriptions, transfer functions or state-space representations. Support for more 

analogue simulation analyses would be desirable such as AC analysis and Fourier 

spectral analysis. 
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In the context of the growing popularity of MEMS applications as well aerospace 

and automotive virtual prototyping, while SystemC-A already provides support 

for mixed-physical-domain modelling, it could be further extended to support dis­

tributed structures modelled by partial differential equations. Adequate languages 

for supporting such applications do not yet exist. 

Also, the absence of a high level modelling notation for AMS systems is a big 

hurdle in the development of efficient synthesis methods. This issue needs to be 

addressed in the near future to aid automation of AMS and mixed-physical-domain 

design processes. Synthesis methods using a language based on CjC++ could be 

very flexible and some work has already been done for digital system synthesis 

[142, 143]. The SystemC-A notation could be a base for AMS and mixed-physic al­

domain system synthesis. The existing huge CjC++ libraries for numerical opti­

misation can shorten the development time of such synthesis environments. 
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Appendix B 

Review of SystemC Applications 

In the last few years, SystemC has received much attention from the electronics 

industry. Researchers have directed their research towards development and im­

provement of new methodologies including modelling, verification, in addition to 

synthesis for SoC designs at different abstraction levels. This appendix reviews 

SystemC applications from the literature in these areas. 

B.l Modelling 

There are a large number of success stories of using SystemC in modelling from real 

users as well as academic researchers. These appeared in most well known confer­

ence proceedings such as Design Automation Conference (DAC), Asia and South 

Pacific Design Automation Conference (ASP-DAC), Design and Verification Con­

ference (DVCON) and Design, Automation and Test in Europe Conference and 

Exhibition (DATE). 
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Network SoC from Samsung 

Samsung had a network SoC model written in RTL Verilog [144] which was al­

ready marketed but it did not meet performance expectations. They remodelled 

their SoC in SystemC TLM and achieved 99% cycle accuracy compared with the 

RTL Verilog version and over 100 times faster execution. Most importantly, with 

SystemC the engineers were able to better explore the system to find and track 

down its design problems. 

Exposure control unit from Bosch and University of Tuebingen 

A cooperative project between Robert Bosch GmbH, OFFIS Research laboratory 

and University of Tuebingen in Germany [145] was undertaken to model a com­

plex industrial application from the automotive domain, starting from high level 

C description down to a cycle accurate SystemC model for hardware synthesis. 

The aim of the project was to model the exposure control unit from the video 

part of the Bosch automotive driver assistance system. This case study showed 

that SystemC provides a helpful methodology for a seamless validation and re­

finement process in an industrial design flow. They have concluded that the main 

advantage of a SystemC-based refinement process is the fact that the specification 

remains executable during the design process, which means that the system can 

be validated at every stage of the design. 

Voice and signal processor from Fujitsu 

The hardware design team at Fujitsu Network Technologies Limited in Japan 

adopted a SystemC design flow for their latest project, voice and signal processor 

[146]. Their current tool-set could not handle the new multi-language require­

ments brought on by the addition of C/C++ They needed a verification solution 

that would work seamlessly, regardless of code differences. The team created a 
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development flow with three phases - design, verification, and synthesis. Firstly, 

the team produced an untimed model based on their existing C algorithm. At that 

point, they performed structural analysis and created a test bench to be used later 

in the design. Secondly, they created a functional model, in which they performed 

hardware allocations to optimise performance. In the next step, they created a 

bus cycle-accurate model using behavioural synthesis, giving them synthesisable 

code for the final design phase, which would create the RTL model. They were 

able to reuse their SystemC testbench for HDL verification. The SystemC flow 

reduced the verification portion of the project from two weeks to three days, and 

eliminated the need for hand coding and rewriting RTL. The SystemC simulations 

also ran approximately 150 times faster than the RTL simulations. 

Ethernet adapter from Ammasso 

In traditional server-to-server networking environments, administrators are faced 

with constant compromises between power, flexibility and cost. The team at 

Boston, Massachusetts based at Ammasso has developed a solution to eliminate 

this tradeoff [146J when creating a gigabit ethernet adapter using a 2-million­

gate Xilinx Virtex-II Pro FPGA. They realised from a design perspective that a 

higher level methodology would be important, rather than a low level, test bench 

approach. They thought that writing their code in C++ rather than VHDL or 

Verilog would increase the efficiency and accelerate the design process. They used 

SystemC as their verification platform for their high level design methodology. 

Although the team had no prior experience with SystemC, it took them only one 

month to integrate the EDA Cadence verification platform into their SystemC 

environment. 



Appendix B Review of SystemC Applications 178 

3D graphic processor 

Kogel et al [147J employed a methodology of system level design on the design of a 

100 million gate 3D graphic processor. It was a large scale industrial design project. 

The resulting modelling efficiency measured in lines of code and simulation speed 

is at least two orders of magnitude better compared to an RTL model. The work 

was accomplished within 2 months by a team of 4 engineers familiar with the 

application. 

Many other success stories relating to modelling using SystemC are reported on 

the Cadence [146J and CoWare homepages [148J. CoWare reported on their web 

site the feedback they received from leading systems and semiconductor companies 

they cooperate with, such as Infineon, Sony, InterDigital, Alcatel, STMicroelec­

tronics and Matsushita. In all the cases, productivity increased when SystemC­

based products were used in the system design flow. 

On the academic side, most researchers are using SystemC to test and demonstrate 

its capabilities, or to add enhancements by designing a range of basic to complex 

systems architectures. The following are typical results reported by the academic 

world: 

Bluetooth transceiver 

Modelling of the baseband in a Bluetooth Transceiver was done in the University 

of Ancona, Italy to demonstrate the modelling capabilities of SystemC at a high 

level of abstraction [149J. Bluetooth is an emerging standard for short distance 

communication. The high level executable description of the baseband allowed an 

analysis of the behaviour of the protocol in the presence of noise and also enables 

a high level performance analysis. Using SystemC reduced the design time and 

also the typical CPU time required for the simulations. 
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On-chip communication AMBA 

A case study of modelling an AMBA bus was presented by the University of An­

cona, Italy in cooperation with STMicroelectronics in France, to demonstrate the 

SystemC TLM [150]. AMBA defines an on-chip communication standard for de­

signing high performance embedded microcontrollers. The designers took advan­

tage of SystemC communication and synchronisation features, such as channels, 

interfaces and events, and were able to obtain important results. Firstly, with a 

higher level than RTL, they gained two orders of magnitude in simulation speed. 

Secondly, in a bus implementation, the de-scheduling feature implemented by dy­

namic sensitivity allows the simulation to run faster avoiding useless function calls. 

PCl bus interface 

Bruschi et al [151] described functional requirements of a customised PCl bus 

interface. They aimed not just to develop a model but to prove modularisation, 

designer team cooperation, ease of modelling, possibility of reuse, comparison with 

VHDL-RTL model and to mix various levels of abstraction during the design flow. 

The developed modules include the master simulator, transceiver manager, error 

checker and test application. They conclude that the learning curve even for de­

signers with little hardware design background is quite fast. 

Sobel edge detection image processing algorithm 

A case study of modelling a complex Sobel edge detection image processing al­

gorithm was done by Armstrong and Ronen [152]. The case study was part of a 

larger effort to assess the state of the art in design tools and languages suitable 

for Hardware/software co-design and co-verification. The system was modelled by 

different SystemC structures from abstract to more concrete in terms of imple­

mentation. Their criteria in assessing an HDL are based on six aspects. It should 
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be able to: 1) model systems in an abstract manner but still be able to model 

concurrency, 2) suit either a software or hardware implementation, 3) leverage 

existing high level design libraries written in C, 4) support synthesis into logic or 

embedded processor code, 5) enjoy large industrial support and finally 6) support 

ease of modelling. The results of this tool and language study indicated that Sys­

temC was a strong candidate to become the successor of VHDL and Verilog as a 

widely accepted modelling language and more suitable for system level modelling. 

B.2 Hardware/Software Co-Design and Co-Sim­

ulation 

Co-design and co-simulation are the processes of designing and simulation of sys­

tems specifications including both hardware and software. Different debugging 

tools are executed concurrently, to validate the algorithms and the system func­

tionality [153]. 

In a traditional design methodology, hardware and software design take place 

in isolation with hardware being integrated with software after the hardware is 

fabricated [153]. Bugs that cannot be fixed in software lead to costly re-fabrication 

and can adversely affect time-to-market. There is a need for a system design 

language that describes functionality of both software and hardware [18]. The 

lack of a unifying system specification language has been identified as one of the 

main obstacles adversely affecting SoC designs. Most of the future products will be 

SoCs including embedded software, which now represents about 80% of a typical 

system. 

SystemC and other languages based on C++ offer many features that can simplify 

the task of co-simulation [17]. Such languages offer a homogenous environment 

and high abstraction level of system specifications which give better component 
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reusability and reduce the design and verification time. Although SystemC is a 

powerful HDL, many issues concerning co-simulation such as embedded software 

generation still requires further research. Several co-simulation platforms based on 

SystemC have been developed by academic groups as well as EDA vendors[154, 

155]. Co-simulation using SystemC is divided into two parts, homogenous and 

heterogeneous. A homogeneous co-simulation environment uses a single engine 

for simulation [154, 155, 156, 157, 158, 159], whereas, heterogeneous co-simulation 

environment [160, 161, 162] is based on multi-language system descriptions. Using 

SystemC for all the design parts will permit heterogeneous co-simulation. 

Grein et al [154] presented a co-simulation environment using SystemC that pro­

vides modularity, scalability and flexibility in co-simulation of SoC designs with 

heterogeneous multi-processor target architectures. Modularity is achieved by 

modular interfaces, and scalability with easy integration of simulation models of 

sub-systems. Flexibility is achieved with the tradeoff between performance and 

accuracy. The presented environment focuses on mixed-level co-simulation be­

tween two specific abstraction levels (driver level and RTL). Experiments with an 

IS-95 cellular phone system design show the effectiveness of their co-simulation 

environment. 

A co-simulation technique focusing on software generation is presented by Herrera 

et al [155]. This technique reduces the embedded system design cost in co-design 

methodology. Another main advantage is that the same SystemC code is used 

for system level specification and after software/hardware partition for embedded 

software generation. The proposed methodology is based on the redefinition and 

overloading of SystemC class library construction elements. In order to evaluate 

the proposed technique, a simple design of a car Anti-lock Braking System (ABS) 

is developed using a classical top-down flow methodology. 
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Another methodology, which attempts to enhance the support of embedded soft­

ware modelling with SystemC, is SPACE (SystemC Partitioning of Architectures 

for Co-design of Embedded systems) [156J. In their methodology the application 

is partitioned into two parts, namely the software and hardware modules. Each 

partition can be connected to their platform via interfaces and then scheduled by 

the SystemC simulator. One of their contributions is that they can easily move a 

module from hardware to software and vice versa to allow architecture exploration. 

Fummi et al [157J presented two co-simulation methodologies based on SystemC 

and ISS (Instruction Set Simulator) as a model of the processor. The first one 

works at the SystemC kernel level and exploits potentialities of the GNU suite, 

whereas the second uses features offered by the operating system running on the 

ISS. The two methodologies improve co-simulation performance with respect to 

the state of the art methods and provide different tradeoffs between the simplicity 

of the programming model, the modelling power and co-simulation performance. 

The more SystemC is used for modelling hardware blocks, the more conspicuous 

gets the need for translating modules previously designed in HDLs into SystemC. 

Furthermore, heterogeneous co-simulation of multiple environments can be avoided 

by performing translation from one environment to another. Agliada et al [158J 

presented a method based on automatic translation of VHDL descriptions into Sys­

temC with equivalent behaviour under the assumption of cycle-based simulation. 

They consider a simple example of a CPU (written in VHDL) and surrounding 

blocks (designed in SystemC and VHDL). The manual translation of the CPU 

into SystemC is a complex task which requires approximately 30 hours, while the 

automatic translation takes a few milliseconds. They have concluded that simula­

tion time required by the SystemC only description is sensibly lower (50%) than 

that of VHDL simulation. The co-simulation of SystemC+ VHDL is slower than 

SystemC-based simulation since it requires interacting of an event-driven simulator 

with a cycle-based one. 
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Another approach towards a single co-simulation environment based on translating 

Verilog to SystemC [159J has been proposed by Mahmoudi et al The researchers 

claim that their conversion methodology covers the synthesisable subset of Verilog. 

Almost for all Verilog constructs, there is a SystemC equivalent except for delays, 

dynamic constructs and wait statements. A comparison between simulation speeds 

of SystemC and Verilog shows that there is a 27% speed up factor in SystemC 

simulation times over those of Verilog. 

Heterogeneous SystemC-VHDL co-simulation is presented by Bombana and Br­

uschi [160J. The task covers the possibility of modelling the application at RTL 

and/or behavioural SystemC level, mixing VHDL and SystemC modules both in 

the model itself and in the test bench. Also, the feasibility of applying synthesis, 

and the possibility of mixed representation co-simulation is demonstrated. 

Yuyama et al [161 J proposed a co-design methodology using SystemC and a high 

level synthesis tool named BachC [56J. The hardware part is implemented to a 

peripheral block through BachC, while the software part is converted to an em­

bedded software on the CPU. BachC is a C-based high level synthesis system. 

They developed a SystemC library to connect SystemC to BachC, and applied 

their methodology to JPEG encoder including an embedded CPU and a periph­

eral block. The peripheral block model is automatically translated to BachC. 

Comparing area and performance between BachC models and a hand-coded Ver­

ilog RTL model, the area from BachC is larger but its throughput can be better 

than that from the Verilog RTL model. The structure of the Verilog RTL model 

is fixed, while VHDL RTL models generated from the Bach system can be flexibly 

varied according to a given clock frequency. 

A top-down design methodology from C to silicon is proposed by Cai et al [162J. 

They have chosen SpecC [20], VCC [163J and SystemC as a modelling environment 

because they are all C-related and each has a strong support in at least one 
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design field. The methodology combines the design flows of SpecC and VCC 

with SystemC added as a back-end to them. This method quickly converts the C 

model to an implementation resulting in a decreased design cycle time. 

In a short period of time the SystemC popularity has generated a lot of support 

from the EDA industry. This is obvious from the rich collection of SystemC 

simulators. e.g. ConvergenSC System design from Coware [164], BlueHDL from 

Blue Pacific [25J and the tri-lingual ModelSim SE V6.0 from Mentor Graphics [165J. 

All these simulators are compliant with OSCI SystemC. Most of them can be used 

in conjunction with other languages and provide textual as well as graphical views 

of SystemC designs. 

B.3 Co-Verification 

Co-verification is the process used to demonstrate the correctness of a design con­

sisting of hardware and software. A big part of the design effort is dedicated to 

verification, especially in complex SoC designs [166J. Every time a design descrip­

tion at an identified abstraction level is converted to a description at a lower level, 

it is necessary to run a verification phase. Innovation in tools and methodology are 

needed to make the verification process faster and more precise. Verification tools 

enable the functionality, performance and testability of a design which needs to 

be evaluated prior to fabrication. This is essential in ensuring that the design will 

work first time and will remain robust and resilient in service under all operating 

conditions. 

The SystemC standard contains enough features for an effective verification of a 

real design [167J. This attracts the EDA vendors and researchers towards SystemC. 

Their contributions cover most of the verification options, mainly formal tech­

niques [168, 169J and simulation based techniques. Simulation based techniques 
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include the design to validate examples explained in section B.2, co-verification, 

transaction based simulations, AMS simulations which will be introduced later in 

section 2.3, and hardware based tools such as emulation systems, rapid prototype 

systems and hardware accelerators. 

Formal verification approaches use rigorous mathematical reasoning to show that 

a design meets all or parts of its specification [168]. The first example of SystemC 

based formal verification was introduced by Grobe and Drechsler [169] which allows 

proving the correctness of properties specified in linear temporal logic. 

Based on system level features in SystemC, the Transaction Based Verification 

(TBV) methodology is designed to raise the level of abstraction so that it is easy 

to create and reuse testbenches, easy to debug and run simulations. Based on 

this idea, there have been many SystemC TBV environments [170, 171, 167, 172, 

173], but the main contribution was from Cadence Design Systems verification 

engineers [170, 171] who created an environment called TestBuilder. TestBuilder 

supports functional verification, fills several missing pieces in SystemC 2.0 and 

acts as a verification layer on top of SystemC. TestBuilder has been accepted by 

the SystemC Steering Committee as a standard. 

Other co-verification environments [174, 175, 176] illustrate the benefits of using 

the same language for hardware and software design of a single system, enabling 

the development of very fast models at various levels of abstraction. 

Most of the SystemC verification approaches are based on the definition of fault 

models [177, 178, 179, 180] that take advantage of the transaction level and have 

the ability to use VHDL or Verilog. For instance, AMELTO and LAERTE++ 

[177, 178] from the University of Verona, Italy are multi-language environments 

developed to efficiently test embedded systems and IP cores. 
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A new approach of integrating SystemC with hardware based verification was 

introduced by Ramaswamy and Tessier [181]. Their approach represents an inte­

gration of SystemC and the IKOS Virtualogic emulation system which is a parallel 

logic verification tool, to improve the verification performance while maintaining 

verification fidelity across a range of abstraction levels. 

A SystemC verification group was formed on November 2001 aiming to explore 

infrastructure and methodology for using SystemC for functional verification. The 

first outcome from the group was the release of the SystemC Verification library 

(SCV) 1.0 in December 2003. SCV 1.0 [182] has been approved as an official OSCI 

standard and is available for download from the OSCI homepage. SCV is based 

on TestBuilder from Cadence Design Systems [146]. SCV provides a C++ signal 

class, which interfaces C++ to an HDL design at the signal level. SCV supports 

abstraction of tests to the transaction level. It provides a powerful randomisation 

facility, including multiple constrained random generators (integer, float, signal, or 

custom) that are able to execute simultaneously. SCV provides event expressions, 

the enabling technology for creating temporal expressions, monitors, and temporal 

checks. SCV supports both Verilog and VHDL. Since its release SCV has been 

widely used by the design community and was subject to further enhancements 

[183]. 

There are several commercial SystemC verification tools introduced by the EDA 

industry, such as Seamless from Mentor Graphics [35], CoCentric System Studio 

from Synopsys [26], N2C from CoWare [184], Nexus-PDK from Celoxica [185], and 

Visual Elite from Summit Design [186]. 
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B.4 Synthesis 

A synthesis process aims at finding the best equivalent representation in the next 

level of abstraction which guarantees the same functionality as the design in the 

current level of abstraction considering the constraints given by the designer [187J. 

There are three common synthesis steps: behavioural synthesis, logic synthesis and 

physical synthesis. They transform the initial specifications from behavioural to 

RTL, then from RTL to gate level and finally from gate level to layout respectively. 

In the traditional design methodology (see Section 1.1) system level designers 

typically use C j C++ based development environments to specify systems. Then 

hardware designers manually translate the executable specifications from CjC++ 

into HDL and continue adding more detail until the HDL code can be synthesised 

into a gate level netlist [188J. 

One of the problems with this methodology is that rewriting a CjC++ code into 

an equivalent HDL description is both time consuming and error prone. What is 

needed is a smooth and reliable methodology that allows the hardware designer to 

continue refining the C j C++ executable specification into a form that is acceptable 

as input for hardware synthesis, without the need to translate the CjC++ code 

into an HDL. Eliminating the translation step enables the reuse of the original 

CjC++ testbench, decreases the verification time and ensures compliance with 

the original specification. 

SystemC was not intentionally developed to create executable specifications of 

hardware components when aiming at synthesis. This used to be one of the most 

important disadvantages of SystemC when it was first announced. To overcome 

this problem designers tried to provide automatic hardware synthesis frameworks 

to the SystemC community [142, 143J. 
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A framework called SystemC-Plus [189J was developed under the European Com­

mission's project ODETTE. It is completely based on SystemC and provides syn­

thesis able object-oriented features. It translates an object-oriented input descrip­

tion into a description that can be processed by existing logic synthesis tools but 

it will not directly produce a gate level netlist. Another framework [190J per­

forms high level synthesis by taking SystemC behavioural input specifications to 

generate VHDL, Verilog or SystemC RTL output specifications. 

The EDA industry introduced many SystemC based synthesis tools, for exam­

ples CoCentric SystemC compiler from Synopsys [26J and Cynthesizer from Forte 

Design [27J. These tools are able to synthesise hardware descriptions written in 

SystemC into RTL or gate level netlists. EDA synthesis tools received a great 

attention from the designers, to the extent that designers have tried to detect 

weaknesses and cure them [191, 192J. 

B.5 Further Enhancement and Extensions 

Visualisations of designs described in SystemC are now available at system level 

[193, 194, 195J. Designers are getting interested in tools for SystemC that can 

easily describe systems and keep a global view of them. Difficulties for designers 

arise from the low abstraction level of results provided by a SystemC simula­

tion. Designers can obtain a "*.vcd" file (results file) which may be displayed by 

freeware viewers. Whatever tool is used to display simulation waveforms, only 

information about variables or signals can be obtained, but not on processes ac­

tivity or synchronisation between modules. Some authors have proposed to add a 

Graphical User Interface (GUI) to SystemC [193J based on a graphical view of an 

object-oriented description of the application. This requires a modification to the 

SystemC kernel. CoCentric introduced a tool [26J to graphically display complex 
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data structures, while Moigne [194] went further and introduced a tool to display 

synchronisation with events. 

The evolution of SystemC from VO.9 to V2.0.1 suggests that the environment is 

particularly geared towards framework functionalities and performance. In each 

new version, more libraries were added for communication methodologies and in­

terfaces between modules [196, 197]. Furthermore, methods are described for 

system modelling to cover a wide range of MoC [198]. Improvements have been 

suggested to speed up the SystemC engine e.g. by proposing new scheduling tech­

niques [199]. 

The concept of overloading operators in C++ easily suggests extensions to the 

language by adding new data types and mixing them with the native Systemc. 

For instance, a multi-valued logic to model and simulate multi-valued circuits can 

be added quite easily [200]. 

Another extension was suggested to allow performance evaluation at system level 

to avoid costly iterations in the design process. Such performance evaluation relies 

on timing properties (execution times, delays, periods, etc.) which are important 

especially in the performance verification of multiprocessing [201]. 

Existing simulation models that have been used for a reasonable amount of time 

and were iteratively improved over some generations of implementations are likely 

to be thrown away when changing to a new level or language. Methods are sug­

gested for an easy migration of C-models to SystemC-based designs e.g. by using 

global variables and interfaces [202]. 



Appendix C 

SystemC-A Models 

This appendix presents all SystemC-A models developed in this project which were 

not included within the context of this thesis's chapters. Section C.1 provides the 

listings of circuit-level components, while Section C.2 presents the remainder of 

modules of the PLL described in Section 6.4. 

C.l Circuit-Level Components 

Circuit-level components described in this section are resistor, capacitor, diode, 

MOSFET transistor, DC voltage source, sinusoidal voltage source, ramp voltage 

source and a sinusoidal current source. 

C.l.I 

1 #include" sc_a_resistor .h" 
2 
3 II resistor interface contains name, 2 nodes and a resistance 
4 sc_a_resistor:: sc_a_resistor (char nameC[5] , sc_a_system_variable *node_a, 
5 sc_a_system_variable *node_b ,double value): 
6 sc_a_componen t (nameC, node_a, node_b, val ue){} 
7 
8 void sea_resistor:: BuildM(void){ 
9 G=l/value; 

10 Jacobian(a,a,G); 

190 
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11 Jacobian(a,b,-G); 
12 Jacobian(b,a,-G); 
13 Jacobian(b,b,G); 
14 } 
15 
16 void sc_a_resistor:: BuildB (void){ 
17 G=I/value; 
18 double i=(X(a)-X(b))*G; 
19 BuildRhs(a,-i); 
20 BuildRhs(b,i); 
21 } 

LISTING C.l: SystemC-A model of a resistor. 

C.1.2 

#include "sc_a_capacitor. h" 
2 

3 II capacitor interface contains name, 2 nodes, capacitance and initia.l 
4 II capacitor voltage 
5 sc_a_capacitor:: sc_a_capacitor (char narneC[5], sc_a_systern_variable *node_a, 
6 sc_a_systern_variable *node_b ,double value ,double Vc): 
7 sc_a_cornponent (narneC, node_a, node_b, value){ 
8 VcO=Vc; 
9 

10 
11 void sea_capacitor:: BuildM (void){ 
12 C=value; 
13 S=S (); 
14 
15 Jacobian(a,a,S*C); 
16 Jacobian (a, b,-S*C); 
17 Jacobian(b,a,-S*C); 
18 Jacobian(b,b,S*C); 
19 } 
20 
21 void sea_capacitor:: BuildB (void){ 
22 C=value; 
23 Vdotn=Xdot (a)-Xdot (b); 
24 
25 BuildRhs (a,-C*Vdotn); 
26 BuildRhs(b,C*Vdotn); 
27 } 

LISTING C.2: SystemC-A model of a capacitor. 

C.1.3 

2 

3 II diode interface contains name, 2 nodes, Gdmax, lamda and saturation current. 
4 sc_a_diode:: sc_a_diode (char nameC[5] , sc_a_system_variable *node_a, 
5 sc_a_system_variable *node_b, double value, double larnda, double Is): 
6 sc_a_componen t (nameC, node_a, node_b, value) { 
7 Gdmax=value; Iidiode max conductance 
8 lam=lamda; 
9 satc=Is; 

10 
11 
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12 void sc_a_diode:: BuildM(void){ 
13 vdm=X(a)-X(b); 
14 Vdmax=log(Gdmax/(lam*satc))/lam;11 calculate diode max voltage 
15 if (vdm>Vdmax){lluse straight line model 
16 Idmax=satc*exp (lam*Vdmax); 
17 Gcl=lam*Idmax; 
18 } 
19 else Iluse exponential model 
20 Gcl=lam* satc *exp (lam*vdm); 
21 
22 Jacobian(a,a,Gd); 
23 Jacobian (a, b,-Gd); 
24 Jacobian(b,a,-Gd); 
25 Jacobian(b,b,Gd); 
26 
27 
28 void sea_diode:: BuildB (void){ 
29 vdm=X(a)-X(b); 
30 Vdmax=log (Gdmax/ (lam* satc)) /lam; 
31 if (vdm>Vdmax){lluse straight line model 
32 Idmax=satc*exp(lam*Vdmax); 
33 Id=Idmax+lam*Idmax*(vdm-Vdmax); 
34 } 
35 else Iluse exponential model 
36 I d=s at c * ( ex p (lam *vdm) -1) ; 
37 
38 BuildRhs(a,-Id); 
39 BuildRhs (b, Id ) ; 
40 } 

LISTING C.3: SystemC-A model of a diode. 

C.1.4 

1 #include" sc_a_mosfet. h" 
2 
3 II mosfet interface consists of name, 3 nodes, VT, K, Gdsmin 
4 sc_a_mosfet:: sc_a_mosfet (char nameC[5] , sc_a_system_variable 
5 *node_a, sc_a_system_variable *node_b, sc_a_system_variable *node_c ,double VTl, 
6 double Kl, double Gdsminl): 
7 sc_a_component (nameC, node_a, node_b, value) { 
8 c=node_c; 
9 VT=VTl ; I I gat e t h res h a I d vol tag e 

10 K=Kl; I I gain 
11 Gdsmin=Gdsminl ;11 defined to help the solver not to fail numerically 
12 
13 
14 void sea_mosfet::BuildM(void){ 
15 vd=X(a); 
16 vs=X( c); 
17 vg=X(b); 
18 gds=ggs=Ids =0; 
19 if (vd>vs){ 
20 vds=vd-vs; 
21 vgs=vg-vs; 
22 } 
23 else{ 
24 vds=vs-vd; 
25 vgs=vg-vd; 
26 } 
27 vgst=vgs-VT; 
28 double GI=le-3;llto solve problems in nonlinear solver 
29 if (vgst<=O){//cut off 
30 gds=O.O; 
31 ggs =0.0; 
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32 
33 else if (vds<vgst){// linear 
34 gds=K* (vgst -vds)+ GI; 
35 ggs=K* vds ; 
36 } 
37 else{//saturation 
38 gds=Gl; 
39 ggs=K*vgst; 
40 } 
41 
42 if(vd<vs)//other direction 
43 Ids=-Ids; 
44 
45 //a drain, b gate, c source 
46 J aco bian (a, a, gds+Gdsrnin) ; 
47 Jacobian(a,b,ggs); 
48 Jacobian (a, c ,-gds-Gdsrnin-ggs ) ; 
49 Jacobian(c,a,-gds-Gdsrnin); 
50 Jacobian(c,b,-ggs); 
51 Jacobian (c, c, gds+Gdsrnin+ggs); 
52 } 
53 
54 void sc_a_rnosfet:: BuildB (void){ 
55 vd=X(a); 
56 vs=X(c); 
57 vg=X(b); 
58 gds=ggs=Ids =0; 
59 
60 if (vd>vs){ 
61 vds=vd-vs; 
62 vgs=vg-vs; 
63 } 
64 else { 
65 vds=vs-vd; 
66 vgs=vg-vd; 
67 
68 vgst=vgs-VT; 
69 
70 double GI=le-3; 
71 if (vgst<=O) //cut off 
72 Ids =0.0; 
73 else if (vds<vgst)//linear 
74 Ids=K* (v gst *vds-vds* vds *0.5)+ vds * Gl ; 
75 else //saturation 
76 Ids =0.5*K*vgst * vgst+vds*GI; 
77 
78 if(vd<vs)//other direction 
79 Ids=-Ids; 
80 
81 //a drain, b gate, c source 
82 BuildRhs (a, Ids); 
83 BuildRhs (c, Ids); 
84 } 

LISTING C.4: SystemC-A model of a MOSFET transistor. 

C.1.5 

1 #include" sc_a_f1ow .h" 
2 #include" sc_a_voltageS_dc .h" 
3 
4 //dc voltage source interfaces contain name, 2 nodes and a value in volts 
5 sc_a_voltageS_dc:: sc_a_voltageS_dc (char narneC[5] , sc_a_systern_variable *node_a, 
6 sc_a_systern_variable *node_b, double value): 
7 sc_a_cornponent(narneC,node_a, node_b, value){ 
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8 il = new sea_flow (" il"); //according to MNA define flow variable 
9 } 

10 
11 void sc_a_voltageS_dc:: BuildM(void){ 
12 Jacobian(a,il,-I); 
13 Jacobian(b,il,I); 
14 Jacobian(il,a,I); 
15 Jacobian(il,b,-I); 
16 } 
17 
18 void sLa_voltageS_dc:: BuildB (void){ 
19 i=X( il ); 
20 vab=X( a)-X( b) ; 
21 E=value; 
22 
23 BuildRhs (il ,E-vab); //subtract v from node voltage (E-vl) 
24 BuildRhs (a, i); 
25 BuildRhs(b,-i );//subtract I from RHS (v*G--I) 
26 

LISTING C.5: SystemC-A model of a DC voltage source. 

C.1.6 Sine Wave Voltage Source sc_a_voltageS_sin 

1 #include "sc_a_voltageS_sin.h" 
2 
3 //sin wave voltage source interface contains name, 2 nodes and sine 
4 //wave generic values. 
5 sc _a_ vo I tageS_si n :: sc_a_ vo I t ageS _sin (char nameC [5] , sc_a_syst em_ variable *node_a, 
6 sc_a_system_variable *node_b, double value, double Voffset , double Amplitude, 
7 double Delay, double Damping): 
8 sc_a_voltageS (nameC, node_a, node_b, value){ 
9 freq=value; / / sine wave generic values 

10 V _off=Voffset ; 
11 Amp=Amplitude; 
12 TD=Delay; 
13 Theta=Damping; 
14 
15 
16 void sc_a_voltageS_sin:: BuildM(void){ 
17 Jacobian(a,il,-I); 
18 Jacobian(b,il,I); 
19 Jacobian(il,a,I); 
20 Jacobian(il,b,-I); 
21 
22 
23 void sLa_voltageS_sin:: BuildB (void){ 
24 I=X( i 1); 
25 t=geLtime (); 
26 value=V _off+Amp*sin (2*3.14* freq *(t-TD»*exp(-Theta*( t-TD»; 
27 Va=X(a); 
28 
29 BuildRhs(il,value-Va); 
30 BuildRhs (a, I ) ; 
31 BuildRhs (b, I); 
32 } 

----------------------------------------------------------------------
LISTING C.6: SystemC-A model of a sine wave voltage source. 
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C.1.7 

1 #include" sc_a_currentS_dc. h" 
2 
3 sc_a_currentS_dc:: sc_a_currentS_dc (char nameC[5] , sc_a_system_variable *node_a, 
4 sc_a_system_variable *node_b, const double *value): 
5 sc_a_component (nameC, node_a, node_b, * val ue) { 
6 Ivalue=value; 
7 
8 
9 void sca_currentS_dc:: BuildB (void){ 

10 Equation(a,*Ivalue); 
11 Equation (b,-(*Ivalue»; 
12 } 

LISTING C.7: SystemC-A model of a DC current source. 

C.2 Phase Locked Loop 

This section presents the different modules of the PLL case study modelled in 

Section 6.4. The modules are the detector, charge pump and filter, and divide by 

N. 

C.2.1 Detector 

1 #include "systemc. h" 
2 
3 
4 
5 
6 
7 
8 
9 

SC~ODULE(detector){ 
sc_in<bool> Refl, DivVcol;//inputs: reference and divider signals 
scout<bool> OutQl, OutQ2;// outputs: Q1 fj Q2 

void DETI ( ) ; 
bool Ql, Q2; 

10 SC_CTOR( detector){ 
11 SGMETHOD(DETl); 
12 donLinitialize (); 
13 sensitive_pos « Refl« DivVcol; 
14 Ql =false; 
15 Q2 =false ; 
16 } 
17 }; 
18 
19 void detector: :DETl(){ 
20 boo I clear; 
21 clear=false; 
22 //modelling NAND gate 
23 if ( Refl.event() && Q2) 
24 clear=true; 
25 
26 if ( DivVcol.event() && Ql) 
27 clear=true; 
28 



29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
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} 

/ / modelling D flip flop 
if ( clear )//if clear is true the two outputs are false 
{ 

} 

Q1=false; 
Q2=false; 

else { 

} 

if( Refl. event () 
Q1=true; 

if( DivVco1.event() 
Q2=true; 

OutQ1. write (Q1); 
OutQ2. write (Q2); 

LISTING C.S: SystemC-A model of the detector in PLL. 

C.2.2 Charge Pump and Filter 

1 #include "systemc h" 
2 #include "sc_a_node.h" 
3 
4 //integrator a.nd lead/lag low pass filter 
5 SC..MODlILE( f i I t e r ){ 
6 se-in<bool> clk ii/to enforce a fixed time step 
7 scin<bool> OutQ1, OutQ2;//inputs: Qlf.1Q2 from detector's output 
8 Sc_o1Jt<douhle> lout ii/output: charge pump c'urrent 
9 

10 void Vf () ; 
11 double Vc1, Vc2, C1, C2, R, h, lin; 
12 void in i t () ; 
13 Node *nO,*n1,*n2; 
14 
15 SC_CTOR( f i I t e r ){ 
16 SC..METHOD(Vf); 
17 dont-initialize (); 
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18 sensitive_pos « clk; //filter should be sensitive to clk to get noise signal 
19 /1 correctly 
20 in i t () ; 
21 //filter components values 
22 Vc1=Vc2=0.0; 
23 C1=3e -9; 
24 C2=4000e-12; 
25 R=le3; 
26 } 
27 }; 
28 
29 void filter:: init (){//filter modelled at circuit level 
30 n2=new sc_a .. node (" n2"); 
31 nO=new sc_a_node("O"); 
32 n1=new sc_a_node (" n1" ) ; 
33 sc_a_currentS_dc *Il=new sc_a_currentS_dc("Il", n1,nO,&lin); 
34 sc_a_capacitor *c1=new sc_a_capacitor("c1" ,n1,n2,3e-9,1); 
35 . s c _ a _ res i s tor * r 1 =new s c _ a _ res i s tor (" r 1" , n2 , nO ,Ie 3 ) ; 
36 sc_a_capacitor *c2=new sc_a_capacitor("c2" ,n2,nO,4e-9,1); 
37 } 
38 
39 void filter ::Vf(){ 
40 // charge pump 
41 if (OutQl. read ()) 
42 lin=500e-6; 
43 else if (OutQ2.read()) 
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44 lin =-500e -6; 
45 else 
46 Iin=O; 
47 
48 lout. write (lin); 
49 } 

----------------------------------------------------------------------
LISTING C.9: SystemC-A model of the charge pump and filter in PLL. 

C.2.3 Divide by N 

#include "systemc.h" 
2 

3 SCJvIODULE( DivideByN){ 
4 se-in<bool> Vco;//input: from vco 
5 sc_out<bool> DivVco;//output: divider signal 
6 
7 double tl,t2,width, jitter; 
8 int countl; 
9 boo I V; 

10 void Counter () ; 
11 
12 SC_CTOR( DivideByN){ 
13 SCJvIETHOD( Counter) ; 
14 donLinitialize O;//prevent run at vco=O 
15 sensitive_pos « Vco; 
16 countl=O, V=O, t2=0, tl=O, width=O, jitter=O; 
17 } 
18 }; 
19 
20 void DivideByN:: Counter () { 
21 if (Vco.event(»{ 
22 if (++countl >=2000){// divider ratio N=2000 
23 count 1 =0; 
24 V=!DivVco. read (); 
25 
26 
27 tl=sc_time_stamp (). to_seconds (); 
28 width=tl-t2; 
29 jitter=width-2.5e-l0;//calculate jitter w.r.t 2.5e-JO the 
30 //true signal width 
31 t2=tl; 
32 } 
33 DivVco. write (V); 
34 

LISTING C.10: SystemC-A model of the divide by N in PLL. 



Appendix D 

VHDL .. AMS Models 

This appendix lists VHDL-AMS models that are developed within the work of 

this project for comparisons with SystemC-A models. Section D.1 lists all the 

PLL's modules, while Section D.2 and D.3 present the original and proposed 

Jiles-Atherton ferromagnetic hysteresis models. For VHDL-AMS models of the 

automotive vibration isolation system please refer to [141]. 

D.I Phase Locked Loop 

This section presents the different modules of the PLL case study modelled for 

comaprision with SystemC-A model in Section 6.4. The modules are the detector, 

charge pump, filter, divide by N, VCO, and the testbench. 

D.l.I Detector 

I library IEEE; 
2 use i e e e . s t d _log i ell 64 . a II ; 
3 
4 -- digital phase detector 
5 entity PhaseDetector is 
6 port ( Ref, Div : in std_logic; -- inputs 
7 OutQI, OutQ2 : out std_logic -- outputs 
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); 
end entity PhaseDetector; 

architecture Structure of PhaseDetector is 
begin 

process (Ref, Div) 
variable clear: bit; 
variable Ql, Q2: std_logic:='O'; 

begin 
AND gate model 

clear:='O'; 
if Ref='I' and Q2='I' then 

clear :='1'; 
end if; 
if Div='I' and Ql='I' then 

clear .- '1'; 
end if; 

D flip flop model 
if clear = '1' then 

Ql ,- '0 '; 

else 
Q2 ,- '0 '; 

if Ref='I' then 
Ql := '1'; 

end if; 
if Div='I' then 

Q2 := '1 '; 
end if; 

end if; 

OutQl <= Ql; 
OutQ2 <= Q2; 

end process; 
end architecture Structure; 

LISTING D.1: VHDL-AMS model of the detector in PLL. 

D.1.2 Charge Pump 

Ii brary IEEE; 
use ieee. std_Iogie-1164. all; 
use ieee. electricaLsystems. all; 
use IEEE. math_real. all; 

-- charge pump 
entity CP is 
port(OutQl, OutQ2 :in std_Iogic; 

terminal Tpump : electrical); 
end entity CP; 

architecture behav of CP is 

digital inputs 
analogue output 

quantity vv across Ic through ELECTRlCAL.REF to Tpump; 
signal lin : real :=0.0; 
begin 
process (OutQl, OutQ2) 
begin 

if OutQl =' l' then 
lin <= 0.0005; 

elsif OutQ2 = '1' then 
lin <= 0.0005; 

else 
lin <= 0.0; 

end if; 
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26 end process; 
27 Ic=Iin'ramp; 
28 end architecture behav; 

2 
3 
4 

LISTING D.2: VHDL-AMS model of the charge pump in PLL. 

D.1.3 Filter 

LIBRARY ieee; 
use i e e e . s t d _log i ell 64 . all ; 
use ieee. electricaLsystems. all; 

5 LIBRARY edulib; 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

usework.all; 

- integr'ltor and lead/lag low pass filter 
entity CIRCUIT is 

port (terminal n1T,n2T: ELECIRICAL); 
end entity CIRCUIT; 

architecture arch_CIRCUIT of CIRCUIT is 
component RESISTOR 

generic ( RES : RESISTANCE ); 
port ( terminal PI : ELECIRICAL; 

terminal P2 : ELECIRICAL) ; 
end component RESISTOR; 

component CAPACITOR 
generic ( CAP : CAPACITANCE; 

V _IC : REAL:=REAL'IDW ); 
port ( terminal PI : ELECIRICAL; 

terminal P2 : ELECIRICAL) ; 
end component CAPACITOR; 

use components from System Vision Components library 
for R1: RESISTOR use entity EDULIB. RESISTOR (IDEAL ); 
for C1: CAPACITOR use entity EDULIB.CAPAClTOR(IDEAL); 
for C2: CAPACITOR use entity EDULIB.CAPAClTOR(IDEAL); 

begin 
R1 : RESISTOR 

C1 

generic map ( RES => 1000.0 ) 
port map ( PI => ELECTRICALREF, 

P2 => n2T ); 

CAPACITOR 
generic map ( CAP => 3.0E-9 
port map ( PI => nIT, 

P2 => n2T ); 
C2 : CAPACITOR 

generic map ( CAP => 4.0E-9 
port map ( PI => n2T, 

P2 => ELECTRICAL.REF ); 

46 end architect ure arch_CIRCUIT; 

LISTING D.3: VHDL-AMS model of the filter in PLL. 
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D.1.4 Divide by N 

library IEEE; 
2 use i e e e . s t d _log i c116 4 . all ; 
3 
4 -- Divider 
5 entity dividebyN is 
6 port ( Vco : in std_logic; --input 
7 DivVco : out std_logic --output 
8 ); 
9 end entity dividebyN; 

10 
11 architecture behav of dividebyN is 
12 begin 
13 process (V co) 
14 variable count : integer :=0; 
15 variable Divide: std_logic:= '0 '; 
16 variable N: integer :=2000; --divide by 2000 
17 begin 
18 DivVco<= Divide; 
19 if Vco = '1' then 
20 count:=count+l; 
21 if count >= N then 
22 count :=0; 
23 Divide:= not Divide; 
24 end if; 
25 end if; 
26 end process; 
27 end architecture behav; 

LISTING D.4: VHDL-AMS model of the divide by N in PLL. 

D.1.5 veo 

1 Ii brary IEEE; 
2 use IEEE. std_logic1l64. all; 
3 use IEEE. electricaLsystems. all; 
4 use IEEE. math_real. all; 
5 
6 entity -- modified VCO version of Ashenden book vco is 
7 generic (fmax real .- 5.0e9; Frequency when input voltage 
8 fmin real .- 2.0e9; Frequency when input voltage 
9 vmax real.- 3.3; Input voltage for fmax 

10 vmin real .- 0.0); Input voltage for fmin 
11 port (terminal v_input electrical; analogue input 
12 d_out out std_logic); -- digital output 
13 end entity vco; 
14 
15 architecture behavioral of vco is 
16 quantity period : real; 
17 quantity v across v_input to electricaLref; 
18 constant gain: real := (fmax - fmin)/(vmax - vmin);--- VCO gain 
19 begin 
20 process 
21 begin 
22 d_out<= '0'; 
23 wait until domain time_domain; 
24 loop 
25 d_out <= '0'; 
26 wait for period /2.0; 
27 d_out <= '1'; 
28 wait for period /2.0; 
29 end loop; 

vmax 
vmin 
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30 end process; 
31 
32 period = l.O/((v - vmin)*gain + fmin); 
33 end architecture behavioral; 

1 
2 
3 
4 
5 
6 
7 
8 
9 
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LISTING D.5: VHDL-AMS model of the veo in PLL. 

D.1.6 Testbench 

library IEEE; 
USE ieee. electricaLsystems. all; 
use IEEE. math_real. all; 
use i e e e . s t d _log i c _116 4 . a II ; 

Phase locked loop test bench 
entity PLL is 
port ( Input : in std_Iogic); 

end entity PLL; 

architecture MixedSignal of PLL is 
signal DivT: std_Iogic:='O '; 
signal Up,Down, VCO_out : std_Iogic:='O'; 
terminal CP_Filter, FilteLVCO : electrical; 

component PhaseDetector is 
port ( Ref, Div : in std_Iogic; -- inputs 

OutQ1, OutQ2 :out std_Iogic outputs 
) ; 

end component; 

component CP is 
port( OutQ1,OutQ2 :in std_Iogic; 

terminal Tpump : electrical 
) ; 

end component; 

component c i r cui tis 
port (terminal n1T,n2T: ELECIRICAL); 

end component; 

component veo is 
generic (fmax 

fmin 
vmax 
vrnin 

: real := 5.0e9; 
real .- 2.0e9; 
real .- 3.3; 
real .- 0.0); 

port ( terminal v_input : electrical; 
d_out out std_Iogic); 

end component; 

component dividebyN is 
port( Vco : in std_Iogic; 

DivVco : out std_Iogic); 
end component; 

begin 
detectorO: PhaseDetector 

port map (Ref => Input, 

charge_pump :CP 

Div => DivT, 
OutQl => Up, 
OutQ2 => Down); 

port map (OutQl=>Up, 
OutQ2=>Down, 
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57 Tpump=>CP _Filter); 
58 
59 Filter: Circuit 
60 port map (nIT =>CP_Filter , 
61 n2T => FilteLVco); 
62 VCOO: veo 
63 generic map(fmax => 5.0e9, 
64 fmin => 2.0e9, 
65 vmax => 3. 3 , 
66 vmin => 0.0) 
67 
68 port map ( v_input => FilteLVco , 
69 d_out=>VCO_out); 
70 
71 Divider: dividebyN 
72 port map ( vco => VCO_out, 
73 DivVco => DivT); 
74 
75 end architecture MixedSignal; 

LISTING D.6: VHDL-AMS testbench of the PLL. 

D.2 Original Jiles-Atherton Model 

This model is written by Wilson et al [126J. 

1 
2 Library IEEE; 
3 use ieee. electricaLsystems . all; 
4 use IEEE. math_real. all; 
5 
6 entity core2 is 
7 generic (k,c,ms,alpha,a,area:real); 
8 port (terminal p ,m : magnetic; 
9 quantity B: out real); 

10 end entity core2; 
11 
12 .ARCHIIECIURE core2_ja OF core2 IS 
13 CXX'iSI'ANI' MUO: real :=4.0e-7*MATH2I; 
14 CXX'iSI'ANI' mg: real :=MUO*area; 
15 QUANIIIY h across flux through p 'ID m; 
16 QUANIIIY he, dhdt ,dm,dmdh,dmdhl, dmirrdt ,mirr, mirrcalc: real :=0.0; 
17 QUANIIIY man, mtotal ,mrev: real :=0.0; 
18 QUANIIIY delta: real :=1.0; 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

FUNCTION lang (x : real) RETIJRN real 
variable lang_x : real := 0.0; 
BEGIN 

If abs(x) < 1.0e-3 then 
Lang_x: =0.333* x; 

Else 
Lang_x:=l.O/tanh (x) -l.O/x; 

End if; 
RETIJRN lang_x; 

END FUNCTION; 

BEGIN 
32 calculate he and derivative of h 
33 he = h + (alpha * ms * mtotal); 
34 dhdt=he'dot; 
35 
36 -- Get the field direction 

is --Langiven 's function 
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IF dhdt > 0.0 USE 
delta 

ELSE 
delta 

END USE; 

1. 0; 

-1.0; 

-- Anhysteretic Magnetization 
man = lang(he/a); 
mrev = c * man / ( 1.0 + c ); 

47 -- Calculate incremental Magnetization 
48 clm==man-mtotal; 
49 
50 -- calculate dM/dH and perform limitation on it 
51 dmdhl= dm/( delta*k - alpha*ms*dm); 
52 if dmdhl>O.O use 
53 dmdh=dmdhl ; 
54 else 
55 dmdh==O.O; 
56 end use; 
57 
58 -- calculate dM/dt and then integrate to get Mirr 
59 dmirrdt=dhdt*dmdh; 
60 mirrcalc=dmirrdt ' integ; 
61 mirr = 1.0 * mirrcalc / ( 1.0 + c ); 
62 
63 
64 
65 
66 
67 
68 
69 

- Calculate Total Magnetization 
mtotal = mrev + mirr; 

Calculate Flux and Flux Density 
flux = mg * (ms * mtotal + h); 
B = flux/area; 

70 END ARCHIIEX:JIURE cor e 2 _j a ; 

LISTING D.7: VHDL-AMS implementation of the original Jiles-Atherton ferro­

magnetic hysteresis model. 

D.3 Proposed Jiles-Atherton Model 

1 library disciplines; 
2 use disciplines. electromagnetic_system. all; 
3 
4 entity coreLja is 
5 generic (k, c , ms, alpha, a, area: rea I ) ; 
6 port (terminal p,m : magnetic); 
7 end entity core1_ja; 
8 
9 .ARallIECIURE coreLja OF corel IS 

10 c:x:>NITANr MUO: real :=4.0e-7*MATH..PI; 
11 c:x:>NITANr mg: rea I : =MUO* are a ; 
12 c:x:>NITANr dhmax: rea I : = 1 2 . 0 ; 
13 QUANIIIY H across flux through p TO m; 
14 QUANIIIY He,B, mrev, mirr, mtotal ,man: real :=0.0; 
15 SIGNAL lasth , deltah , mirrsig: real :=0.0; 
16 SIGNAL hchanged, trig: boolean:=false; 
17 
18 FUNCTION lang_mod (x : real) RETURN real is -Langiven 's function 
19 variable lang_x : real := 0.0; 
20 BEGIN 
21 lang_x := (2. O/MATH..PI) * arctan (x); 
22 RETURN lang_x; 
23 END FUNCTION; 
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24 
25 BEGIN 
26 - hchanged signal assignment triggered by sufficient changes in fi eld strength 
27 hchanged <= H'above(lasth+dhmax) or not H'above(lasth-dhmax); 
28 
29 - Simultaneous statement to calculate He 
30 He = H + (alpha * ms * mtotal); 
31 
32 Anhysteretic Magnetization 
33 man = lang_mod(He/a); 
34 mrev = c * man / ( 1.0 + c ); 
35 
36 -- Calculate Total Magnetization 
37 mirr = mirrsig; 
38 mtotal = mrev + mirrsig; 
39 
40 -- Calculate Flux and Flux Density 
41 flux = mg * ( ms * mtotal + H); 
42 B = flux/area; 
43 
44 -process to monitor H triggered by hchanged 
45 PfU)CESS (hchanged)IS 
46 VARIABLE dh : real := 0.0; 
47 BEGIN 
48 trig<=false; 
49 dh := (H-Iasth); 
50 if abs (dh) > dhmax then 
51 deltah <= dh; 
52 lasth <= H; 
53 t rig <=t rue ; 
54 end if; 
55 END PfU)CESS; 
56 
57 -- process to integrate dM/dH with Euler method 
58 PfU)CESS (trig) IS 
59 variable dk : real := 0.0; 
60 variable deltam ,dm,dmdh,dmdh1,dh: real; 
61 BEGIN 
62 if deltah > 0.0 then -- get field direction 
63 dk:=k ;-- rising 
64 else 
65 dk:= -k; --falling 
66 end if; 
67 
68 Forward Euler integration method 
69 dh := deltah; 
70 deltam:= man - mtotal; 
71 dmdh1 := deltam/((l.O +c)*(dk - (alpha*ms*deltam))); 
72 if dmdh1>0.0 then 
73 dmdh:=dmdh1 ; 
74 else 
75 dmdh:=O.O; 
76 end if; 
77 
78 dm:=dh*dmdh; 
79 
80 if dh * dm < 0.0 then 
81 dm:=O.O 
82 end if; 
83 
84 -- JA Model 
85 mirrsig <= mirrsig + dm; 
86 
87 END PfU)CESS; 
88 END.ARC:HI1:ECIURE cor e 1 _ j a ; 

LISTING D.S: VHDL-AMS implementation of the proposed Jiles-Atherton fer­
romagnetic hysteresis model. 
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