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The coastal region of the UK is under intense anthropogenic and environmental pressure that 

results in negative environmental impacts. To manage coastal habitats, monitoring programs are 

required that can provide indications of where environmental change has occurred. Remote 

sensing has been recognised as one method of providing these monitoring programs, but 

operational detection of land cover change is currently not achievable. 

This study aimed to develop remote sensing methodologies that could be used for operational 

monitoring of natural and semi-natural coastal habitats by governmental organisations such as 

Environment Agency or English Nature. The errors associated with post-classification change 

detection in the coastal zone using remotely sensed data were researched and methods of 

deriving thematic and geometric per-pixel uncertainties from airborne sensor data were 

investigated. 

Methods of deriving a per-pixel geometric uncertainty model for the Compact Airborne 

Spectrographic Imager (CAS!) were examined. A correlation was found between angular 

acceleration of the aircraft platform and geometric errors of automatically geocorrected CASI 

imagery. This relationship was used in combination with a geometric uncertainty model to 

provide a per-pixel model of instrument geometric uncertainty. The instrument geometric 

uncertainty model was combined with a model of orthometric error to provide a probabilistic 

geometric uncertainty model. A misregistration model was derived from the geometric 

uncertainty model and a significant correlation was found between the predicted and actual 

misregistration. Thematic uncertainty measures were derived from the output of the multi layer 

perceptron (MLP) and probabilistic neural network (PNN). A correlation was found between the 

thematic uncertainty measures derived and pixel thematic error. Heuristics to maximise the 

accuracy of the thematic uncertainty measures were derived. 

The geometric and thematic uncertainty measures were combined in a model of change 

detection uncertainty. Using synthetic data and data from a sand dune test site the use of 

uncertainty measures in change detection was found to be significantly more accurate compared 

to a change detection model that did not include uncertainty. 
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1 Introduction 

1.1 Introduction 

Within the UK the coastal region is under intense pressure due to requirements for agricultural, 

housing, commercial and recreational land. Anthropogenic and natural forcings result in a 

variety of negative environmental impacts in the coastal zone including erosion, pollution, 

eutrophication, and the drainage and reclamation of intertidal areas. In recent years the 

environmental importance of conserving coastal habitats has been recognised and certain of 

these habitats are now protected under the 1992 European Community Habitats Directive (EEC, 

1992). The Habitats Directive requires that monitoring of these protected habitats and reporting 

of their extent and condition is carried out every five years. However, sea level rise and 

anthropogenic pressures on the coastal zone have created an environment where changes occur 

at a wide variety of temporal and spatial scales. This range of scales means that ground-based 

resources available for coastal monitoring may be inadequate to cope with the large areas that 

require coverage and may not provide all of the information required. Remote sensing has been 

used for coastal mapping of habitats such as saltmarsh and sand dunes (Gross et at., 1986; 

Donoghue and Shennan, 1987; Gross et at., 1987; Donoghue et at., 1994; Hobma, 1995; 

Thomson, 1995; Fontana et at., 1997; Zhang et at., 1997; Brown and Arbogast, 1999; 

Shanmugan et at., 2003; Thomson et at., 2003), as well as change in those habitats (Smith et at., 

1998; Seeliger et at., 2000). These studies indicate that there is the potential to provide an 

overview of the changes taking place within coastal habitats at national scales using remote 

sensing. 

Over the last twenty years sensor technology has advanced a great deal with the introduction of 

fine spatial and spectral resolution imaging sensors mounted on both aircraft and satellites. 

There have been advances in sensor technology, huge increases in processing power and 

memory capabilities and increases in the accuracy of automated classification and other 

techniques. Despite these advances, operational methods of monitoring that can determine 

changes in surface cover type have not been developed and further study is required to develop 

the use of remote sensing for monitoring land cover change (Donoghue, 2002; Song et at., 2002; 

Parr et at., 2003). 

Understanding and quantifying the errors within remotely sensed data is essential to reduce the 

impact of these errors on the accuracy of change detection. Recent studies have begun this 

process, examining the errors and uncertainties within geographical information sciences and 
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remote sensing and their propagation when datasets are merged or modelling is carried out 

(Stanislawski et al., 1996; Steele et ai., 1998; Pontius, 2000; Carmel et al., 2001; Crosetto and 

Tarantola, 2001; Atkinson and Foody, 2002; Aires et al., 2004, Comber et al., 2004; Liu et al., 

2004; Mahapatra et al., 2004). The work reported in this study built on previous work on error 

and uncertainty within remote sensing and developed it further, aiming to provide operational 

methods of detecting land cover change in coastal habitats. 

This study focused on methods of coastal land cover change detection that would be suitable for 

two organisations, the Environment Agency (EA) and English Nature (EN). The EA is the 

single largest flood defence authority in England and Wales and has a statutory requirement to 

protect the environment (Environment Agency, 2005). The coastal zone is of particular interest 

within the EA, as prevention of flooding and environmental protection can sometimes have 

conflicting needs. The purpose of EN is to promote the conservation of England's wildlife and 

natural features (English Nature, 2005). EN has a statutory duty to provide indicators of the 

status of various coastal habitats and is also involved in the management of various protected 

sites within England (English Nature, 2005). For these two organisations, monitoring is required 

to provide the information on which coastal management decisions can be made, as well as for 

statutory reporting. 

Within EA and EN the requirement for accurate, precise and repeatable monitoring of land 

cover type has been recognised and the potential of remote sensing has been identified (Brown 

et al., 2003a). This study builds on a collaborative project between EA and EN, called "The 

Development of Remote Sensing Techniques for Marine SAC Monitoring", which identified 

that further work is required to develop operational change detection methodologies for the 

coastal zone (Brown et al., 2003a). The study aimed to develop operational methods, suitable 

for use by EA or EN, of predicting change in the land cover of natural and semi-natural coastal 

habitats, such as saltmarsh and sand dunes, using remotely sensed data. Of particular interest 

were methodologies that could determine the extent and category of change in land cover type 

and identify where these changes were taking place. 

Within this study there is a tension between the requirements to develop methodologies that had 

the greatest potential to result in the most accurate outputs and those that were suitable for 

reporting for the EA and EN. As the methodologies developed had to be suitable for operational 

monitoring for EA and EN, methodological compromises were made during the study which 

may not have been made if the aim ofthe study was to achieve the most accurate change 

detection using remote sensing. These compromises are discussed in the relevant sections. 
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1.2 Change detection 

Many remote sensing studies involve the mapping of land cover or land use. Though baseline 

land cover or land use data are important, it is detecting change in land cover or land use that is 

ultimately of the greatest managerial, legislative and scientific interest. Some of these methods 

predict changes in the area of land cover or land use classes. Predictions of the total change in 

area of different land cover types may be suitable for some legislative reporting, but for 

management decisions an output is required that provides indications of where change has taken 

place and so only methods that could map change were examined in this study. 

Several methods have been proposed for change detection using remote sensing that provide 

various indicators of change. However, studies have generally concentrated on three broad 

techniques (Mas, 1999): 

1. Spectral change. 

2. Multitemporal image classification. 

3. Post-classification analysis. 

1.2.1 Spectral change 

Spectral change detection generally involves the use of vegetation indices (Nelson, 1983; 

Townshend and Justice, 1995; Lyon et at., 1998; Yuan et at., 2002; Nordberg and Evertson, 

2003) or change vectors (Lamb in and Strahler, 1994; Johnson, and Kasischke, 1998; Melgani et 

at., 2002; Chen et at., 2003a; Liu et at., 2004). 

An index such as the normalised difference vegetation index (NDVI) (Tucker, 1979) that can be 

correlated with a variable of interest such as green biomass may be used for change detection. 

On a per-pixel basis the indices from two time periods are subtracted so that an NDVI 

difference image is formed (Lyon et at., 1998; Nordberg and Evertson, 2003). This indicates 

areas where changes in productivity or phenology have taken place and the magnitude of the 

changes. 

The change vector is the difference within feature space of a given pixel over time. The 

magnitude of the vector indicates the magnitude of the change and the direction of the vector 

indicates the type of change that has taken place. This approach may be used to detect gross 
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changes in land cover type, such as deforestation, desertification, flooding or fire scars (Lambin 

and Strahler, 1994; Melgani et al., 2002). It is a simple model of change and may be used to 

provide an indication of the magnitude of change within feature space. However, spectral 

change will not necessarily be linked to land cover change (Yamamoto et al., 2001). 

If the spectral change method is used, a threshold level that indicates change must be 

determined and this may be difficult to achieve (Smits and Annoni, 2000; Melgani et al., 2002; 

Chen et al., 2003a). Though this method can provide indications of change, quantifying that 

change may be difficult (Lu et al., 2004). The spectral change approach is inappropriate if the 

datasets that are available have different bandsets (Yamamoto et al., 2001) and it is difficult to 

account for geometric errors. When the images are merged, geometric errors in either image will 

result in the images not being precisely co-located in the combined dataset. This means that the 

combined dataset contains the combined geometric errors, potentially resulting in change 

detection errors (Townshend et al., 1992; Zhan et al., 2002). Accurate radiometric normalisation 

is also required, otherwise changes will be predicted due to the changes in radiance rather than 

changes in reflectance. Accurate radiometric normalisation may be difficult to achieve if the 

images are obtained at different times of year (Mas, 1999). Data need to be acquired at similar 

times of year as the spectral characteristics of surfaces change due to seasonal changes in 

vegetation (Coppin et al., 2004; Lunetta et al., 2004). The spectral change method also does not 

predict land cover classes at tl and t2, only general classes such as deforestation or no change 

(Lu et al., 2004). 

This project aimed to provide a method of detecting changes in land cover type for EA or EN 

monitoring programs and it is likely that methodologies would be applied for long term 

monitoring. Therefore, there may be a requirement to use data from different sensors and 

acquire the data at different times of year. This linked with the need to provide estimates of the 

amount of cover for all the land cover types present, means that spectral change techniques were 

inappropriate for this study. 

1.2.2 Multitemporal image classification 

Multitemporal classification involves combining two images and classifying the combined 

image to provide a thematic map of land cover change (Hame et al., 1998; Bruzzone and Prieto, 

2000; Bruzzone et al., 2004; Guild et aI, 2004). In remote sensing, classification is the process 

by which sensor data are converted to thematic maps usually representing land cover or land use 
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classes. In the case of multitemporal image classification, the thematic maps represent change 

classes. The classification process is described in Appendix B. 

Generally the multitemporal classification approach uses an unsupervised classification to 

identify areas of change (Harne et aI., 1998; Mas, 1999; Bruzzone and Prieto, 2000). There is 

only one classification carried out using this method and so the potential effect of classification 

errors will be less than a method that uses two classifications (Lu et al., 2004). As with the 

spectral change method there may be problems with data from different sensors, especially if 

the bandsets or spatial resolutions are different (Smits and Annoni, 2000). Geometric errors 

within each image are difficult to account for, as the combined image incorporates 

misregistration errors (Serra et al., 2003). 

If the output change classes are required using this method then prior knowledge of the change 

within the scene will be needed (Coppin et al., 2004). In theory, knowledge would be required 

of all possible combinations of change that have taken place within the scene (Serra et al., 

2003). The number of change classes for which ground data are required is potentially the 

number of classes squared, as every class at t1 has the potential to become any of the other 

classes at t2' Though this approach may be suitable in areas where the dynamics of change are 

well understood, it is not a robust approach for habitat surveillance, as it is unrealistic to have 

prior knowledge of where change will take place at the start of a monitoring program. 

For a practical operational method of detecting change it is not realistic to expect prior 

knowledge of where change will occur and what that change will be. The difficulty in obtaining 

ground data for all land cover changes, combined with the lack of knowledge of where change 

was taking place, mean that the multitemporal classification approach was unsuitable for 

operational remote sensing within this study's parameters. 

1.2.3 Post-classification analysis 

The other major approach for change detection is to classify images of different dates and then 

compare the classifications (Arzandeh and Wang, 2003; Dewidar, 2004; Mehner et al., 2004; 

Narumalani et al., 2004). For this technique, no prior knowledge of change is required. As the 

different classified images are merged after the classification, geometric errors may be 

accounted for at the merging stage. Classifications from different sensors may be used (Yang 

and Lo, 2002; Serra et al., 2003; Narumalani et al., 2004), though additional analysis may have 

to be carried out if the spatial resolutions are different. 

24 



There are limitations to this approach, as errors within either classification have the potential to 

create errors in change detection (Coppin et at., 2004; Lu et at., 2004). If only thematic errors 

are considered, the maximum theoretical error within the final change layer is the sum of the 

errors of the two classifications. Even if the errors within the classifications are small, when 

combined for change detection, the error of the change detection layer may be relatively large. 

An acceptable classification accuracy limit of 85% has been suggested (Wright and Morrice, 

1997), but in some cases it may not be possible to achieve this due to issues such as ground data 

availability and spectral separability of the classes used. 

To provide accurate measures of change using this technique, the errors within the process 

should be modelled. Dependent on the classification method, it is possible to provide global and 

per-pixel probabilities of the error within each classification in order to model and potentially 

reduce change detection errors (Gong et ai., 1996; Shi and Ehlers, 1996; Ediriwickrema, and 

Khorram, 1997; de Bruin and Gorte, 2000; McIver and Friedl, 2001; Liu et at, 2004). 

1.2.4 Comparison of change detection methods 

Of the three main methods of change detection outlined above, the spectral change method is 

unsuitable for thematic change detection, being more suited for detection of productivity 

changes. To determine what change has occurred, the muititemporal image classification 

method requires knowledge of areas where change will take place prior to the change occurring 

and is therefore unsuitable as an approach for long term monitoring. Post-classification change 

detection may propagate and potentially magnifY errors and uncertainties within either of the 

input classifications, but it is possible to incorporate and account for thematic and 

misregistration errors in the final analysis. Therefore, the post-classification method was most 

suited to this study. 

1.3 Defining land cover change 

In the process of determining whether change has taken place the question "What is change?" 

should be answered. Land cover change occurs in two forms, conversion and modification 

(Jansen and Gregorio, 2002). Conversion occurs when the land cover or land use changes from 

one class to another, for example from forest to grassland. Modification occurs when the land 

cover or land use class remains the same, but there is change within the class, for example the 
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productivity of woodland may be reduced. The purpose of this study was to examine changes in 

land cover type and so the priority was to identifY land cover conversion. 

Using post-classification change analysis, land cover conversion may be defined in two ways 

(Lu et al., 2004): 

1. Whether change has occurred. This may be defined using two classes: Change and No 

change. 

2. What type of change has occurred. For a pixel this may be defined by the class at tI and 

the class at f2. 

The methodologies derived in this study were analysed in the context of the two definitions of 

land cover conversion above. 

1.4 Error and uncertainty in change detection 

In a post-classification framework the change detection process involves classifYing at least two 

images from different times that have spatial overlap, co-registering the images and overlaying 

one classification on the other to determine thematic change. For any change method, the 

accuracy of the final change detection output will be affected by the following factors (Lu et al., 

2004): 

1. The accuracy of the input data such as classifications including the availability and 

quality of ground data to train the classifier. 

2. The accuracy of the co-registration. 

3. The spatial distribution of the classes. The more heterogeneous the area being 

monitored, the larger the probability that errors will occur (Serra et al., 2003; Lu et aI, 

2004). 

4. The change detection algorithms used. 

The change detection process is subject to various errors at each stage of the data acquiring, 

classification and data merging processes and these errors may be modified, magnified or 

reduced at each stage of the process (Veregin, 1996; Shi ef al., 2004). Therefore, it is essential 

to track changes in errors as data are changed from low level forms such as imagery to high 

level abstractions such as themes (Gahegan and Ehlers, 2000). If these errors are not quantified 
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then the accuracy of the final change map will not be known (Gahegan and Ehlers, 2000; 

Agumya, and Hunter, 2002), a key factor if decisions are to be made on the basis of this map. 

This study examined methods of detecting land cover change that could be used to inform 

management decisions. These decisions should be based on the causes and effects of any land 

cover changes. To determine these causes and effects there is a requirement to identifY what 

change has occurred where. By modelling change at the local, per-pixel level it is possible to 

predict where change has occurred as well as how much change has occurred. To minimise the 

error associated with per-pixel change detection, the error associated with change predictions 

should be modelled at the per-pixel level. It is effectively impossible to quantifY the actual error 

on a per-pixel basis for a whole scene, therefore, the focus of any per-pixel error study should 

be on the probability of error or the uncertainty associated with accuracy of a given pixel. 

Uncertainty may be associated with factors such as the geometric positioning of the dataset or 

the class allocated to a pixel and occurs in two forms: ambiguity and vagueness (Atkinson and 

Foody, 2002). 

Ambiguity is the uncertainty associated with crisp sets and is most commonly expressed as a 

probability that a variable is correct (Atkinson and Foody, 2002). For example thematic 

uncertainty may be expressed as the probability that a pixel has been allocated the correct class 

during a hard classification or geometric uncertainty may be expressed as the probability that a 

pixel has a geometric error less than one metre. 

Vagueness relates to the aspects of fuzzy data models (Atkinson and Foody, 2002). In remote 

sensing, a fuzzy dataset is generally one in which a pixel can simultaneously be a member of 

more than one class (Zhang and Foody, 2001; Lo and Choi, 2004; Liu and Wu, 2005) or one in 

which the boundaries between objects have non-zero width (Cheng and Molenaar, 1999; Zhang 

and Kirby, 1999; Cheng, 2002; Shi and Liu, 2004). However, there is some confusion in the 

literature, as in papers by Schneider (1999), Atkinson and Foody (2002), Ahlqvist et al. (2003), 

Hagen (2003) and Wei and Zhang (2004) vagueness is variously described as: 

1. An indication of fuzziness. 

2. The uncertainty associated with fuzzy datasets. 

3. Both fuzziness and fuzzy uncertainty. 
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According to (Ricotta, 2004) fuzziness and uncertainty are separate concepts, as a dataset in 

which multiple class membership occurs for a single object such as a pixel is not inherently 

uncertain. In terms of thematic fuzziness, a pixel could be allocated with 50% membership to 

two classes with complete certainty. In this case, a fuzzy data model may be applied to the pixel, 

but there is no uncertainty associated with allocation of the classes. This may be unlikely, as it 

will be difficult to determine precisely 50% membership to each class, but is a possibility. 

To avoid confusion in this study the term vagueness was not be used. Fuzziness was used to 

define when pixels had membership of more than one class. Fuzziness was said to increase as 

pixels became more mixed or as a single class became less dominant. Uncertainty was described 

as occurring when a variable could contain error but the magnitude of the error was not known. 

Uncertainty measures were defined as probabilities of error or the confidence intervals 

associated with a variable. 

Measures of uncertainty may be used to define the probability of error in terms of a global 

variable, for example the probability that any pixel within an image will have a geometric error 

of between one and two metres. Alternatively, uncertainty may be defined in local or per-pixel 

terms. This could be the probability that a specific pixel will have a geometric error of between 

one and two metres. 

To estimate the uncertainty associated with change detection, the uncertainty in each stage of 

the change detection process must be quantified and the propagation of errors through the 

change detection process modelled (Goodchild et aI., 1992; Heuvelink, 2002). As errors are 

passed from source to derived data, the errors are modified such that the characteristics of the 

error and therefore the uncertainty associated with it may be amplified or suppressed (V ere gin, 

1996; Shi et al., 2004). Errors within the final change data set could be due to errors in the 

remote sensing or ground data sets, errors in the classifier, misregistration errors or due to lack 

of spectral separability of classes (Song and Woodcock, 2003; Carmel and Dean, 2004). 

Within much of remote sensing the pixel is assumed to be an accurate method of modelling the 

environment, but this assumption may not be valid (Fisher, 1997). The spectral response of a 

sensor varies spatially within a pixel (Manslow and Nixon, 2002) and is influenced by 

surrounding pixels (Townshend et at., 2000). This unequal response generally means that the 

centre of a pixel influences the spectra received more than the edges. This can result in errors in 

classifications, particularly if a pixel contains more than one cover class (Manslow and Nixon, 

2002) or is surrounded by pixels of a different class (Townshend et al., 2000). In much of 
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remote sensing, pixels are assumed to contain only a single class (Fisher 1997). However, where 

mixed pixels occur, the hard model of a pixel may not be valid and therefore errors will exist 

when this model is used (Arnot et aI, 2004). 

Despite these limitations, the pixel was assumed to be an accurate model of the environment to 

limit the scope of this study, as problems with using the pixel model are an entire field of study 

in their own right. Making this assumption on the validity of the pixel model, there are two main 

types of error associated with the classified data input into the change detection process and 

therefore two types of uncertainty that have to be modelled (Serra et aI, 2003; Carmel and Dean, 

2004): 

1. Thematic: errors in the allocation of a given class to a pixel. 

2. Geometric: errors in the position of a given pixel 

1.4.1 Thematic errors 

Thematic errors are the errors resulting from pixels being allocated to the incorrect class during 

the classification process. These errors may be due to a variety of factors including sensor 

errors, atmospheric or bi-directional effects, land cover classes not being represented accurately 

by the training data or lack of spectral separability of classes (Song and Woodcock, 2003; 

Carmel and Dean, 2004). 

Thematic errors have the potential to result in errors in the prediction of change, but these errors 

can interact and be modified during change detection. Thematic errors in either classification are 

likely to result in errors in change detection (Figure 1.1 b). However, thematic errors do not 

necessarily result in change detection errors. For example ifthe position and class of a thematic 

error was the same in both classifications then there would not be errors in prediction that 

change would occur, though the class at t1 and t2 would be incorrect (Figure 1.1 c). 

1.4.2 Geometric error and misregistration 

Assuming thematic datasets from two times are used in the change detection process, geometric 

errors in either dataset are highly likely to result in errors in the final change detection layer. 

Misregistration error is the positional error resulting from two or more images not being 

accurately co-located. As geometric error is likely to have a complex, spatially dependent form, 

misregistration errors are likely to be complex when layers are merged. 

29 



(a) 

(b) 

(c) 

Actual change 
between 11 and 12 

Predicted change 
between 11 and 12 

Predicted change 
between 11 and 12 

Figure 1.1 Dependency of change detection errors on the interaction of thematic 
error. Assuming two classes (yellow and blue) and no change between 11 and 12, the grey 
pixels in the change image indicate error due to thematic error. 
a) Actual classes at 11 and 12. 

b) Thematic error at 11 but not 12, This results in error in predicted change. 
c) The same thematic error at 11 and 12 in terms of position and class. This results in no 
error in predicted change. 

If misregistration errors are reduced, the ability to detect change accurately is increased (Oai 

and Khorram, 1998; Roy, 2000; Chen et al. , 2003 b). The effect of misregistration errors will be 
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greatest at the boundary between classes (Dai and Khorram, 1998; Serra et al., 2003; Yamano 

and Tamura, 2004) and generally results in incorrect prediction of change (Verbyla and Boles, 

2000; Stow and Chen, 2002). This means that the spatial resolution at which movement of a 

boundary can be detected will be related to the horizontal error of the data. However, this is 

likely to be complex, as errors will be a function of the attitude of the boundary and the x and y 

component of the error, such that misregistration may incorrectly exaggerate, reduce or obscure 

change (Roy, 2000) (Figure 1.2). Misregistration errors will be a function of absolute error 

(errors between each image and the absolute reference frame) as well as the relative error (the 

error between images) (Stanislawski et al., 1996). 

(a) 

(b) 

Predicted change 
between II and 12 

Predicted change 
between II and 12 

Figure 1.2 Dependency of change detection error on misregistration error direction. 
Assuming two classes (yellow and blue) and no change between II and 12, the grey pixels in 
the change image indicate error due to misregistration. Errors only occur at the 
boundaries between classes and do not occur if misregistration is parallel to the boundary. 
a) Misregistration in north-south direction 
b) Misregistration in east-west direction 
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1.4.3 Uncertainty and error propagation in change detection 

Modelling of errors in change detection is essential, as thematic or positional errors within 

classification layers may be magnified or modified as they are propagated through the change 

detection model and interact with other variables (Arbia et al., 1998). For example, 

misregistration errors have a larger impact when land cover classes are fragmented rather than 

clumped (Verbyla and Boles, 2000; Carmel et al., 2001). 

Though uncertainty in change detection has been considered in several studies, these studies 

tend to concentrate onjust per-pixel thematic uncertainty (Shi and Ehlers, 1996; de Bruin, 2000; 

de Bruin and Gorte, 2000) or global measures of thematic and misregistration error (Carmel and 

Dean, 2004). As there will be spatial variation in geometric and thematic errors, the use of 

global measures of uncertainty could restrict change detection. A global error measure, one 

which uses a single value to describe error for a whole image, will underestimate error in some 

positions and overestimate it in others, resulting in a reduced accuracy or imprecise measure of 

change. For this reason methods that determine the spatial distribution of misregistration and 

thematic errors are most suitable for per-pixel change detection. 

As error propagation and transformation occurs each time a conceptual or physical model is 

constructed using geographical information systems or remote sensing (Lanter and Veregin, 

1992; Arbia et al., 1998; Shi et al., 2004) all the input datasets will contain error. Errors in the 

source data are transferred when operations such as classification or merging data layers are 

carried out. This may result in the source and derived data having different error characteristics 

(Veregin, 1996; Warren et al., 2002). It is, therefore, essential to identify errors and 

uncertainties within all the data used and model the propagation and modification ofthe errors 

throughout the change detection process (Lanter and Veregin 1992; de Zeeuw et al., 1999; 

Crosetto etal., 2001; Heuvelink, 2002; Carmel and Dean, 2004). By modelling the errors, their 

propagation and effects it may be possible to reduce the errors in land cover change detection. 

The errors within datasets and their propagation are discussed in the relevant chapters. 

1.5 Aims of the study 

This study aimed to develop methods that could be used by EA or EN for operational 

monitoring of natural and semi-natural coastal habitats using remote sensing. The approach 

taken predicted the errors and uncertainties associated with change detection in the coastal zone 

using remotely sensed data. These predictions of error and uncertainty were used to reduce the 
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errors of land cover change detection. Figure 1.3 shows a diagram of the model of change 

detection error used in this study. The research examined three main areas: 

1. Geometric uncertainty and misregistration. 

2. Thematic uncertainty. 

3. Combining geometric and thematic uncertainty in change detection. 

Radiometric calibration Radiometric 
I Raw imagery data I to at-sensor radiance calibration data 

Ungeocorrected at-sensor 
radiance data 

Geometric 
Elevation 

Geocorrection ~ calibration data 
data 

~ ~ Navigation 

Spatially referenced at- data 

sensor radiance data 

Ground 
data Classification 

Spatially referenced 
classified data 

I Change detection I 

Change 
detection data 

Figure 1.3 Post-classification change detection model using automatically 
geocorrected imagery. Blue boxes represent data. Yellow boxes represent processes. Data 
inherently contain errors. Processes can modify those errors. 

In Chapter 2 the study sites and remotely sensed and ground data are discussed. Chapter 3 

examines the causes of geometric and misregistration errors in airborne data and methods of 

predicting the magnitude and probability ofthese errors. To develop a greater understanding the 

spatial variation in geometric error, the effect of various navigational variables on the geometric 

accuracy of airborne imagery were tested. These results were used to derive models of the 

geometric uncertainty and misregistration error. In Chapter 4 methods of deriving thematic 

uncertainty measures from classifications were examined. The accuracy of these thematic 
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uncertainty measures was tested and the variables that affected this accuracy were investigated. 

To determine whether the use of uncertainty could be used to increase the accuracy of change 

detection, the geometric and thematic uncertainty models were combined in land cover change 

analysis using synthetic (Chapter 5) and 'real-world' data (Chapter 6). A summary of the 

research carried out, recommendations for further study and the final conclusions are included 

in Chapter 7 
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2 Data 

2.1 Introduction 

In this chapter the test sites used in this study and the remotely sensed and ground data acquired 

from the sites are described. All remotely sensed data were acquired by the EA and descriptions 

are given of the EA's airborne sensors used in this study and the navigational instruments used 

to geocorrect the sensor data. 

A test site at Coventry Airport (Figure 2.1) was used to determine what variables affected the 

geometric errors associated with airborne imagery. Knowledge of the geometric errors was used 

to derive geometric uncertainty model that described the per-pixel variation in the probability 

and magnitude of geometric error. The geometric uncertainty model was used to derive a 

misregistration model which was tested using data from an urban area of a study site at Ainsdale 

near Southport, Merseyside (Figure 2.2). An area of sand dunes at Ainsdale (Figure 2.2) was 

used to test methods of deriving thematic uncertainty models, as well as for assessing the effect 

of thematic and misregistration uncertainty models on land cover change detection accuracy for 

a semi-natural habitat. 

2.2 Navigational data 

To automatically georeference remotely sensed data the position and attitude of the sensor need 

to be known. In the airborne platform used in this study the position and attitude are provided by 

GPS (Global Positioning System) and IMU (Inertial Measurement Unit) respectively. 

GPS provides x, y, z position data using the Navstar satellite system (Leick, 2004). The time 

taken for coded signals from several Navstar satellites is measured and used to estimate distance 

from a satellite. The satellite positions are known and the distance from the satellites may be 

used to triangulate the position of the GPS receiver. The GPS system used was a combination 

of the Ashtech Z-surveyor and Novatel MiLLennium®. The specified accuracy of these GPSs 

when operating on a moving platform is a root mean square error (RMSE) of 10 mm or less plus 

1 part per million terms of the separation between the aircraft and the ground GPS systems 

(Novatel, 1999; ANGEL, 2000). 

The IMU provided roll, pitch and heading attitude data. The IMU used was the Applanix POS 

AV 410 laser ring gyro based on the Litton 200al IMU (Brown et ai, 2003b). The 
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manufacturer's quoted accuracy is 0.015° RMSE for roll and pitch and 0.08° RMSE for heading 

(Applanix, 2004). 
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Figure 2.1 Coventry airport test site. Bottom image is true colour CASI imagery of 
Coventry airport with ground control points overlaid. Grid spacing 500 m. 
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Figure 2.2 Ainsdale test site. Bottom image is true colour CASI imagery of Ainsdale. 
Grid spacing 500 m. 
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2.3 CASI 

The Itres Instruments CASI 2 (Compact Airborne Spectrographic Imager) is a multispectral 

pushbroom sensor operating in the visible and near infrared. The specifications of the CASI 2 

used in this study are given in Table 2.1. 

Table 2.1 C ASI2 specifications (Brown et ai, 2003b; Itres 2005). 
Swath width (pixels) 512 

Lens field of view (deg) 37.8 
Spectral range (nm) 415-960 

Spectral resolution (nm) 1.9 
Maximum no. wavebands 288 

Dynamic range (bits) 12 

The CASI can operate in one of three modes; spatial, spectral and enhanced spectral (Brown et 

ai, 2003a). In spatial mode up to 19 wavebands are collected for all 512 spatial pixels. In 

spectral mode 288 contiguous wavebands are collected for 39 spatial pixels. Enhanced spectral 

is a compromise between the full number of spatial pixels and the full number of wavebands. 

The CASI data were acquired using spatial mode and the EA Vegetation 1 bandset (Table 2.2), 

the standard approach for EA multispectral data acquisition of the terrestrial environment. 

Table 2 2 . EA V t f 1 CASI b dset. ej!e a Ion an 
Band Central wavelength +/- (nm) Band Central wavelength +/- (nm) 

(nm) (nm) 
1 444.7 5.7 8 710.1 4.9 
2 470.8 5.8 9 719.7 4.9 
3 490.4 6.7 10 750.4 4.9 
4 549.5 5.8 11 761.9 3 
5 670.9 5.9 12 780.1 5.9 
6 682.4 4 13 860.1 5 
7 700.5 4.9 14 880.4 9.8 

2.3.1 CASI geocorrection 

CASI geocorrection involves the following datasets: CASI imagery, aircraft GPS and IMU 

attitude data from the aircraft, ground-based GPS position, a digital elevation model (DEM) and 

geometric calibration data. The calibration data are estimates of the positional offset between 

the GPS antenna and the CASI sensor and the angular offset between the IMU and the CASI 

sensor. The navigational data are synchronised with the remotely sensed data using a time stamp 

sent every second from the GPS, known as a pulse per second (PPS) signal. 
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The geocorrection process involves the following stages: 

1. Post-processing the GPS from the aircraft and a ground-based station. The post

processed data are more precise than the GPS from the aircraft alone. 

2. Synchronising the GPS position data, IMU attitude data and CASI imagery using the 

PPS. 

3. Applying the distance offsets between the aircraft GPS and the CASI sensor head. 

4. Applying the angular offsets between the IMU attitude and the CASI sensor attitude. 

5. Geocorrection of the CASI imagery using the positional and attitude data, a model of 

the instrument optics and an elevation model. 

The GPS post processing is carried out using Waypoint Grafnav (Waypoint, 2001). All other 

stages use the Itres geocorrection software (ltres, 2000). 

2.4 LiDAR 

The Optech ALTM (airborne laser terrain mapper) 2033 operates using the principle of Light 

Detection and Ranging (LiDAR) to derive a digital surface model (DSM). The LiDAR emits 

laser pulses, which are reflected from a surface and part of the energy returns to the sensor. The 

time the pulse takes is measured and used to estimate the distance to the surface. The surface the 

pulse interacts with is generally vegetation, buildings, water or the ground. The distance to the 

surface is combined with the position of the sensor derived from post-processed GPS and 

attitude of the sensor derived from the IMU (Section 2.2). The x, y, z position of the pulse on the 

surface is estimated. The Optech AL TM 2033 operates at a frequency of 33 kHz and uses a 

rotating mirror to scan across the track of the aircraft resulting in the sawtooth scan pattern in 

Figure 2.3. All LiDAR data were provided as a 2 m grid resampled using inverse distance 

weighting. 

2.5 Coventry Airport data 

To test errors within the CASI geocorrection system, data were acquired over Coventry Airport 

(Figure 2.1). The Coventry Airport site was used as it is where the EA airplane platform is 

based, allowing remotely sensed data to be acquired easily and ground control points (GCPs) 

have been precisely surveyed using GPS, allowing tests to be carried out of the CASI geometric 

accuracy. 
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Direction of 
flight 

Figure 2.3 LiDAR scan pattern. Dots represent LiDAR pulse footprints. This diagram 
is not to scale. 

13 CASI images with a spatial resolution of 1 m were acquired on 25 th August and 9th 

September 2001 (Appendix C; Table C.l; Table C.3 ; Appendix D). 

Nine GCPs that had been surveyed by the EA were used to test geometric errors of the CASI 

data (Figure 2.1). The GCP x, y, z positions were surveyed using post-processed GPS. The 

Ashtech Z-surveyor GPS used for the survey has a predicted RMSE error of 5 mm plus 1 part 

per million for static surveys (ANGEL, 2000). All survey points were within 2 kIn of the base 

station and so the RMSE error of the GCPs was estimated to be 7 mm. The points were chosen 

so that they could be identified easily on 1 m spatial resolution CASI data and consisted of paint 

markings on tarmac and the corners of artificial surfaces such as tarmac or concrete that were 

bordered by grass. 

To ensure that the elevation used for CASI geocorrection at the GCPs was as accurate as 

possible, a nearest neighbour interpolation was carried out using the z-values of the GCPs and 

the results resampled to a 10 m grid. By using nearest neighbour resampling the value of the 

elevation used at the GCPs would be very accurate, minimising orthometric errors, even if 

horizontal errors occurred. As the GCPs were very precisely surveyed, the orthometric errors at 

the GCPs, where the horizontal errors were to be tested, would be of a similar order to errors in 

the GCP positions, which had a predicted RMSE of 7 mm. 
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2.6 Ainsdale data 

The area used to test the misregistration, thematic and change detection models was at Ainsdale, 

near Southport, UK (Figure 2.2). The southern section of the study area is a dune system with 

mobile dunes bordering a beach and fixed dunes and dune slack occupy the area inland of the 

mobile dunes (Figure 2.4). A portion of the fixed dunes and dune slack are wooded, with a 

mixture of coniferous plantation and deciduous woodland and scrub (Figure 2.4). To the north 

of the study site there is a developed area, consisting of a holiday camp near the beach and to 

the east of the holiday camp an area of housing (Figure 2.2). The developed area was used to 

test the misregistration model. The sand dune site was used to test the accuracy of thematic 

uncertainty models and the impact of uncertainty on change detection. 

The site was chosen as it represented a typical semi-natural coastal habitat that the EA and EN 

require to be monitored for legislative or management purposes and contained an urban area that 

could be used to test the misregistration model. The Ainsdale sand dune site was used for "The 

Development of Remote Sensing Techniques for Marine SAC Monitoring" project mentioned 

above (Brown et al., 2003a) and is of national and international ecological importance, 

containing species such as the great crested newt (Triturus cristatus), sand lizard (Lacerta 

agilis), natterjack toad (Bufo calamita) and the red squirrel (Sciurus vulgaris) (WS Atkins, 

2004). 

2.6.1 Ainsdale remotely sensed data 

CASI and LiDAR were acquired over the Ainsdale test site on 28th August 2001 between 1330 

and 1400 UT (Appendix C; Table C.2; Appendix D). CASI, LiDAR and true colour digital 

photography were acquired over the Ainsdale test site on 11 th September 2002 between 0940 

and 1010 UT (Appendix C; Table C.4; Appendix D). Ideally the 2001 and 2002 data would 

have been acquired at the same time of day, but this could not be achieved due to weather 

restrictions. On the day of the 2002 data acquisition a weather window was only available prior 

to 1030 UT. 

The digital photography used in this study was obtained using a Kodak Pro Back ™ Plus 4080 

by 4080 pixel CCD mounted on a Hasselblad 205 body with a Zeiss Distagon 40° lens (Brown 

et ai, 2003b). The CASI images were geocorrected to aim grid as described in Section 2.3.1 

using the LiDAR data as a OEM. The images were mosaiced using ERDAS Imagine and the 

overlap areas were histogram matched to radiometrically normalise the imagery (ERDAS, 

2001). The digital photographs were 011hocorrected to the CASI imagery using the LiDAR 
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DSM and resampled using nearest neighbour interpolation to a 0.2 m grid. To assess the 

geometric accuracy of the orthocorrection, two independent ground points per digital 

photograph were derived from the CASI imagery points and were used to derive an RMSE 

(Appendix F). The orthocorrection geometric RMSE value was 1.80 m. 

Figure 2.4 CASI image of Ainsdale study site with different habitat types overlaid. 
Orange = beach; dark blue = mobile dunes; red = fixed dunes; purple = deciduous 
woodland and scrub; light blue = coniferous woodland. Grid is 500 m. 

2.6.2 Ainsdale ground data 

Ground data of the Ainsdale site were acquired to train the classifiers, assess the accuracy of the 

classifications and assess the accuracy of change detection algorithms. The 2001 ground data 

were collected between 18th and 21 5t September 2001. The 2002 ground data were collected 

between 16th and 20th September 2002. Both ground datasets were acquired within 24 days of 
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the remotely sensed data. It was unlikely that land cover changed between obtaining remotely 

sensed and ground data. 

Contiguous areas of a single land cover class (Table 2.3) were identified during the ground data 

collection in 2001 and 2002. Additional ground data for accuracy assessment were not available 

for the 200 I and so the areas were used as training and accuracy assessment data for the 200 I 

classification, though different areas were used for training and accuracy assessment. In 2002 

additional accuracy assessment data points were also acquired in which the dominant class had 

been identified and so the area data were only used for training the classification. The sampling 

strategies considered for the 2002 accuracy assessment data are described in Appendix B. The 

accuracy assessment data were acquired using a geographically stratified random sampling 

approach as this method allowed a geographical spread of data to be acquired, every pixel had 

an even chance of selection, a classification was not required prior to sampling and spatial 

correlation does not affect this method greatly (Appendix B). The strata used were squares with 

sides 60 m long. The size of the square was selected by estimating the maximum number of data 

points that could be collected within the study area in the time available for ground data 

collection. The co-ordinates ofthe central point of each sample site was obtained using a 

Garmin GPS II+ differential GPS (dGPS) with a differential signal from the Trinity House Point 

Lynas station approximately 85 km from the site (Trinity House, 2005). The positions were 

averaged over a period of one minute. For each sample the ground cover of the classes in Table 

2.3 was determined using a I m by I m quadrat centred on the position measured using the 

dGPS. Water and sand on the seaward side of the frontal dune system were excluded from the 

survey. This was due to differences in the tide between the flights and the ground surveying. 

Therefore, it was not possible to determine the classes at the time of CASI data acquisition 

using ground based sampling. The class at these points was determined by interpretation of 

waveband fourteen of the CASI imagery with a central wavelength of 880.4 nm (Table 2.2). 

Waveband fourteen was used as water has strong absorption at near infrared wavelengths. This 

should have resulted in more accurate discrimination of sand and water using near infrared than 

using wavebands in visible wavelengths. The wooded area of the study site also created 

problems as the differential GPS signal was generally too weak to receive within these areas. In 

many cases the canopy also restricted the satellite signals to the GPS unit, resulting in a loss of 

positional accuracy and in many cases the GPS unit could not receive signals from enough 

satellites to triangulate a position. For these areas, photo interpretation of true colour digital 

photography was used. 
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Table 2.3 Th ematlc c asses or groun a a co ec Ion. ddt II f 
Class name Class description 

Water Water 
Sand Sand 

Marram Pure Marram grass 
Grass Grasses other than Marram 

Herbaceous vegetation 
Moss 

Reeds Reeds/Rushes 
Creep Cre~in~ wi llow 

Buckthorn Sea buckthorn 
Woodland Deciduous woodland 

Coniferous woodland 

Figure 2.5 Position of transects at Ainsdale study site. Grid is 500m. 

Six transect land cover datasets from around the study site were used to test the outputs of the 

change models. Three were transects taken in areas where there was little or no change, three 

were in areas where change was velY likely to take place between 2001 and 2002 (Table 2.4; 
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Figure 2.5). Of the three transects where change was likely to occur, one was on the frontal dune 

system where sand was known to cover vegetation and two were in areas where tree felling was 

planned (Wolstenholme, personal communication). 

T bl 24 a e . D 'f eSCrIpl Ion 0 fA' diS d D IDS a e an h nnes C an2e t t ransec s. 
Transect Habitat type Cover type Change 

no. 
1 Fixed dune, dune slack Grass, Creep Little/none 
2 Fixed dune, dune slack Grass, Creep Little/none 
3 Fixed dune, woodland Grass, Woodland Little/none 
4 Mobile dune Marram, Sand Sand movement 
5 Woodland, fixed dune Grass, Buckthorn Buckthorn felled 
6 Woodland, fixed dune Woodland, Grass, Creep Woodland felled 

Positions of points along the transect were surveyed using dGPS. For Transects 2 and 4 the 

surveyed points were marked by posts prior to the survey. For Transects 1 and 3 one of the 

surveyed points was marked by a post. For Transects 5 and 6 there were no posts. Additional 

posts were not allowed and so points were identified for the 2002 survey using dGPS. Along the 

transects, aim quadrat of the percentage land cover using the eight classes in Table 2.3 was 

taken every 1 m. 

In addition to the transect data for testing the change models, 1 ha square areas of little or no 

change were identified in conjunction with the English Nature warden during the 2001 and 2002 

study period (Wolstenholme, personal communication) (Figure 2.6). Three types of cover were 

identified: 

1. Coniferous woodland (CW): homogeneous stands of coniferous woodland. 

2. Deciduous woodland and scrub (OS): heterogeneous areas of deciduous woodland 

and scrub, with Grass and Creep classes between the trees and scrub 

3. Fixed dune (FD): heterogeneous areas of fixed dune and dune slack, with a variety 

of cover classes including Sand, Marram, Grass, Reed and Creep. 

Three sample areas for each cover type were identified. Areas that were excluded from the 

analysis included the frontal dune ridge in which erosion and accretion were taking place 

(Brown, 2003a) and the dune area in the centre of the study site. This area had undergone 

woodland felling between 1992 and 1997 (WS Atkins, 2004) and it was likely that changes due 

to plant succession were occurring, as well as erosion and accretion of sand. The experiment 
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assumed that no change had taken place in these areas between 2001 and 2002 and that any 

change predicted was in error. 

Figure 2.6 Ainsdale Sand Dune test site false colour 2001 CASI mosaic showing 1 ha 
areas of no change used in testing stage. Grid represents 500 m. 
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3 Geometric and misregistration uncertainty 

3.1 Introduction 

The purpose of the research in this chapter was to examine methods of deriving estimates of 

misregistration error in airborne sensor data and modelling these misregistration errors for use 

in per-pixel change detection (Figure 3.1). 

Raw imagery data 

Elevation 
data 

Radiometric calibration 
to at-sensor radiance 

Ungeocorrected at-sensor 
radiance data 

Radiometric 
calibration data 

Geometric 
calibration data 

Navigation 
data 

Figure 3.1 Section of airborne sensor change detection model covered in Chapter 2 
highlighted in box. 

3.2 Estimating misregistration errors 

Misregistration errors are a function of the relative error between images and the absolute error 

of images (Stanislawski et al. , 1996) and there are two methods by which these errors may be 

modelled: 

1. By directly estimating misregistration error. 
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2. By estimating geometric error for individual images and estimating misregistration error 

from the combined geometric error for two images. 

3.2.1 Direct estimation of misregistration error 

Misregistration error may be estimated directly by deriving a global measure such as the RMSE 

(Janssen and van der Wei, 1994). The RMSE is obtained by measuring misregistration error at 

fixed points within two or more images. If a probabilistic approach was taken to change 

detection a more appropriate approach would be to generate misregistration probability ellipses 

from the x, y variance and covariance matrices (Stanislawski et aI., 1996). This could be applied 

on a per-pixel basis to generate a probability of membership based on misregistration errors. 

However, both of these methods use global error values and misregistration errors often vary 

spatially. It has been noted that geometric errors are most likely to occur in areas with large 

terrain differences due to orthometric errors (Stow, 1999). Orthometric errors occur when the 

elevation used in the geocorrection process is incorrect, resulting in horizontal displacement of 

the position of the pixel (Figure 3.2). For data acquired using a sensor with a wide swath, 

orthometric errors are likely to be greatest at the edge of imagery (Figure 3.2). 

Figure 3.2 

Actual position 
on ground 

Predicted 
position 

--+-----------:loI!r,....· .... -.... -..... -..... +. - Actual elevation 

- ......... ----------_-~- Predicted elevation 
No orthometric 

error ----. 
Orthometric error 

Effect of DEM errors on positional accuracy assuming flat terrain. 

If a global model of geometric error or misregistration, such as RMSE, was used it would 

overestimate error in some areas and underestimate it in others. A local measure of 

misregistration could be used to model misregistration more accurately than a global measure 

by modelling spatial variation in the error. 
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One method of estimating the local variation in misregistration would be to estimate the 

misregistration at a number of points and interpolate between them across the area of interest. 

This approach would be valid where ground cover does not change or where some areas are 

known to remain the same. However, there are several limitations with this approach including: 

1. In an environment where change is taking place, positional errors may be difficult to 

estimate if control points are not known to be static. 

2. It does not take into consideration local variation in terrain. 

3. The edges of images are most likely to exhibit the greatest variation and extremes in 

misregistration, as the orthometric errors will be greatest. 

4. If change detection is carried out using mosaiced images, the geometric errors of the 

images used to form the mosaic are likely to be different. If this is the case then at the 

join between images within the mosaic there will be a sudden change in the geometric 

error vector. Interpolation will not be able to model this error accurately. 

5. If misregistration error is derived empirically then values have to be interpolated to 

obtain a local value. This will smooth predicted misregistration error values and miss 

extremes of error. 

6. There may be difficulty in finding control points from which the misregistration error 

may be estimated from the imagery. Control points used for this purpose need to be 

clearly identifiable in all images used and should not move between images. In natural 

or semi-natural habitats it may be difficult to identity points, as boundaries tend to be 

indistinct and gradual. This may also be a problem in the coastal zone where the 

seaward edge of imagery is less likely to have fixed points and often exhibits change 

due to erosion and accretion. 

3.2.2 Indirect estimation of misregistration error 

Indirect estimation of misregistration error, by estimating geometric error first, is more complex 

than the direct approach. However, it can allow estimation of misregistration error to be carried 

out without using fixed points within two or more images. This is an advantage when semi

natural or natural habitats are being monitored or large amounts of change occur, minimising 

the number of fixed points for direct estimation of misregistration error. 

In automated geocorrection, positional and attitude navigational data are obtained from 

instruments carried onboard the sensor platform. A geometric model using a terrain model and 
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the position and the look direction of the sensor, derived from the navigational data, is used to 

estimate the position of each pixel. 

If an automated approach to image geocorrection is used, a geometric uncertainty model could 

be used to model misregistration uncertainty. Changes in navigational variables such as 

acceleration have the potential to affect the accuracy of the input data for automated geometric 

correction (Grejner-Brzezinska et al., 1998; Mostafa et al., 2001; Mostafa and Hutton, 2001). If 

a relationship between geometric accuracy and variables derived from navigational data were 

found, it would be possible to derive measures of geometric error without taking measurements 

based on fixed ground points. This would mean that geometric errors and therefore 

misregistration errors could be derived in areas where change was taking place or where points 

were difficult to identify on the ground. 

In automated geocorrection, per-pixel geometric errors are caused by errors in the sensor x, y, z 

positional data, or attitude data or the surface elevation model used. Geometric errors are likely 

to increase as topographic variation increases (Stow, 1999). As may be seen in Figure 3.3 , 

variations in slope can alter the effect of errors in navigational data on geometric errors . The 

aspect of the ground can also alter the magnitude and direction of geometric errors (Figure 3.4). 

If a local measure of geometric error is derived from an automated system without the use of 

ground control, then terrain effects have to be accounted for. 

Assumed 
Actual position view angle 

on ground 

Geometric error 

(a) 

Actual position 
on ground 

I 
l ~ I 

Geometric error 

(b) 
Figure 3.3 Example of variation in geometric error due to slope. 
a) Slope = 00

• 

b) Slope = 700
• 
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Predicted 
position ----11\0~ 

-
Geometric error 

(a) 

Predicted-----''''''ot. 
position 

Actual position 
on ground 

Geometric error 

(b) 
Figure 3.4 Example of variation in geometric error due to variation of aspect relative 
to viewing angle. The slope in the two diagrams is the same. Geometric error is largest 
when aspect is away from sensor. 
a) Aspect towards sensor. 
b) Aspect away from sensor. 

3.3 Misregistration 

The magnitude of, and spatial variation in, misregistration errors are dependent on the system 

used for co-registering images. The Ainsdale study site is coastal, with few obvious fixed points 

that could be used for ground control and with change occurring particularly near to and below 

the high water mark (Figure 2.2) (Wolstenholme, personal communication). For these reasons 

an interpolation approach was not suitable. However, an approach that used an empirical model 

of misregistration error derived from models of instrument error and orthometric error would be 

suitable, as ground control in the study site would not be required. 

3.4 Calibration of the CASI geocorrection system 

Calibration of the CASI geocorrection system has two functions: 

1. To calculate the positional and angular offsets between the navigational data and the CASI 

instrument. 

2. To estimate lens focal length and the central pixel of the CASI array. 

The x, y, z distances between the CASI sensor head and the GPS antenna are measured 

physically relative to the airframe. 
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The angular offsets between the IMU and the CASI instrument, the lens focal length and the 

central pixel of the CASI array are estimated by software supplied by Itres (Itres, 2000). 

Imagery is acquired over a calibration site that contains precisely surveyed, obviously 

identifiable GCPs and obviously identifiable points that occur in more than one image known as 

tie points. 

An iterative process is carried out that uses the position of the ground control points and tie 

points to estimate the calibration variables. Initially, the focal length and the central pixel of the 

CASI array are estimated. These values are used to estimate the angular offsets between the 

CASI and the IMU. The angular offsets are then used to recalculate the focal length and central 

pixel and the process is repeated until each of the variables converges. 

3.5 CASI geocorrection system errors 

During the geocorrection stage there are the following possibilities for error: 

1. Errors in the synchronisation between CASI and the navigational data. 

2. Positional errors in GPS. 

3. Angular errors in the IMU. 

4. Calibration errors in the distance offset between CASI and GPS. 

5. Calibration errors in the angular offset between the CASI and IMU. 

6. Calibration errors in the focal length of the lens. 

7. Calibration errors in the central pixel of the array. 

8. OEM errors. 

These errors may be split into two groups, instrument errors and orthocorrection errors. 

Instrument errors consist of points one to seven above, orthocorrection errors will be a function 

of the instrument errors and the OEM. 

Instrument errors can either be angular errors or positional errors (Figure 3.5). Instrument 

positional errors result in equivalent positional errors on the ground. Angular errors result in 

positional errors that depend on the height of the instrument above ground and will be a function 

of the angular error and height above ground. 
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3.5.1 Synchronisation errors 

Errors in the synchronisation between the CASI and navigational data result in either positional 

errors or attitude errors. If the synchronisation is offset then positional errors will tend to be 

along track, as velocity generally changes less than 15% during a flight line (O'Dwyer, personal 

communication). Attitude errors due to synchronisation errors would be determined by the 

angular velocity of the IMU. If the angular velocity was small then the attitude used would be 

closer to the actual value. If the angular velocity was large then attitude would be less accurate. 

If the synchronisation error is variable then positional errors would be variable, as would 

attitude errors, but they would also be partially dependent on angular velocity. 

Assumed Actual 

System error 

(a) 

System error 

(b) 
Figure 3.5 CASI system geometric errors. 
a) Horizontal positional system error. 
b) Angular system error. 
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3.5.2 GPS positional errors 

Positional errors in the post-processed GPS are dependent on several variables including, the 

geometry of the satellites, the number of satellites and the quality of the signal received from 

satellites (Leick, 2004). The GPS system used for positional data in the EA's aircraft (Section 

2.2) is quoted as having an RMSE of 10 mm or less plus 1 part per million in terms of the 

separation between the aircraft and the ground GPS system (Novate I, 1999; ANGEL, 2000). For 

a typical 20 km baseline this translates to a 30 mm RMSE error. GPS errors result in positional 

errors. 

3.5.3 lMU attitude errors 

An IMU consists of accelerometers and gyros (Mostafa et al., 2001). The accelerometers 

estimate the force applied to the IMU and from this calculate acceleration. The gyro outputs the 

attitude of the IMU relative to gravitational potential and true north. By combining the post

processed GPS and IMU data it is possible to reduce positional and attitude errors (Hong et al., 

2002; Mostafa et al., 2001). However, at the time when the data for this study were acquired, it 

was not possible to integrate these data streams for all data sets, as key initialisation stages were 

not carried out when CASI data were acquired. When GPS and attitude data are merged to 

increase the navigational accuracy, there is a requirement that at least 5 minutes of level flying 

is carried out, with minimal changes in attitude and velocity. This was carried out when LiDAR 

data were acquired, but not for 'CASI only' surveys such as those carried out over Coventry 

airport for calibration and testing purposes. This meant that it was not possible to obtain an 

integrated IMU and GPS post-processed solution and so this study examines the use of raw 

IMU data in geocorrection. 

Though there are several studies that examine IMU errors and provide a global measure of 

accuracy (Grejner-Brzezinska et ai, 1998; Hong et aI., 2002; Mostafa et al., 2001), there does 

not appear to be literature to suggest why errors occur or to link them to environmental effects 

on the IMU such as acceleration. The specifications of various IMUs provide a maximum 

acceleration value (Cloud Cap Technology, 2005; BEl, 2005; Novatel, 2005), indicating that 

this variable will have an influence on accuracy and could be used to provide a local indication 

of errors within the IMU. Personal experience of the author having geocorrected more than 500 

CASI images has shown that positional errors in geocorrected imagery appear to increase during 

extreme movements of the airframe, particularly roll, pitch or heading changes. From these 

observations it may be seen that there are two forms of velocity and acceleration that could 

influence IMU accuracy; linear and angular. Linear velocity and acceleration are in the standard 
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Euclidean x, y, z coordinates. Angular velocity and acceleration are the velocity and acceleration 

in units of angle about a point, which in the case of this study was the IMU. IMU errors result in 

angular errors. 

3.5.4 Distance offset errors between CASI and GPS 

The distance offset between the CASI lens and GPS antenna is measured directly. According to 

the EA surveyor responsible for calibrating the system offset between the CASI and the GPS, 

the maximum measurement errors are less than 15 mm (O'Dwyer, personal communication). 

Distance offset errors result in positional errors. 

3.5.5 CASI system calibration errors 

The central pixel of the CASI, the focal length and the roll, pitch and heading offsets are 

estimated during the calibration process. The central pixel and focal length of the CASI are 

provided by the manufacturer, but the values are estimates and the errors can be reduced by 

calibration (Itres, 2000). 

Calibration is carried out using four overlapping images acquired at 90° to one another. The 

image position and x. y. z position of the surveyed GCPs are entered into an Itres calibration 

program (Itres, 2000). In addition, the image positions of easily identified tie points that occur 

on at least two images are entered into the calibration program. Between 8 and 12 points per 

image are entered into the program. The calibration program calculates the central pixel of the 

CASI, the focal length and the roll, pitch and heading offsets. 

Any systematic errors in the calibration process should be less than half a pixel (Itres, 2000). 

Therefore, the combined errors of estimates of angular offset errors between CASI and IMU, the 

focal length and central pixel should be less than half a pixel. Calibration errors would result in 

angular errors. 

3.5.6 All the CASI system instrument errors 

The CASI system errors occur in two forms: 

1. Systematic errors: due to calibration errors 
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2. Non-systematic errors: due to imprecision in the variables used in the geocorrection. These 

will be errors in the IMU or GPS data. 

Positional errors are likely to be a relatively small component of the total, as GPS errors and 

distance offset errors will be small compared to the 1 m spatial resolution CASI data used in this 

study. Therefore, it is likely that angular errors make up the largest component of the CASI 

system geometric errors. 

3.5.7 Predicting CASI system errors 

A global measure of CASI system errors may be derived by testing for systematic errors, as well 

as the probability of errors of different magnitudes. To derive a local model of CAS I system 

errors, the errors need to be modelled with variables that can be derived from the system. Easy 

to derive variables that have a potential to impact on accuracy are linear velocity, linear 

acceleration, angular velocity and angular acceleration. 

3.5.8 Orthometric errors 

Orthometric errors are due to an incorrect elevation being used during the automated 

geocorrection process. This can be as a result of errors in the OSM or OEM used for 

geocorrection (Figure 3.2). For this study an Optech model LiOAR was used to derive OSMs 

(Optech, 2002). The Optech LiOAR system has a quoted error of less than 0.25 m RMSE 

(Ashkenazi et at., 1999). Errors in the OSM can result in orthometric errors. In automated 

georeferencing these errors occur when the actual height of the surface being remotely sensed is 

different from the OEM used and the predicted position of a pixel on the ground is displaced 

from its actual position. The direction and magnitude of the error is a function of the error in the 

predicted elevation at a pixel and the look angle of the CASI for that pixel (Figure 3.2). 

3.5.9 Combined CASI system errors and orthometric errors 

The vector of horizontal geometric error is a function of the CASI system error and the 

orthometric error. However, the CASI system error can influence the orthometric error. 

Assuming a varying terrain, if the position or view angle of the CASI is incorrect then the 

elevation extracted from the OEM will be incorrect (Figure 3.6). This will result in an 

orthometric error, which will be combined with the original instrument error to produce an 

overall error. The overall error will be a combination of the orthometric and CASI system error 
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vectors. The magnitude of the total positional error vector may be greater or less than either the 

orthometric or instrument errors as may be seen in Figure 3.7. 

Assumed 
position 

Elevation I 

Actual 
position 

, .I 

Actual position 
on ground 

i Orthometric error 

I 
System error 

(a) 

Predicted 
Actual position 

on ground 

error~_ 
-+--;,l«t----~ 

System error 

(b) 
Figure 3.6 Effect of CASI system errors on positional accuracy assuming varying 
terrain height. 
a) Horizontal positional system error. 
b) Angular system error. 

The combination of geometric errors due to CASI instrument errors and OEM errors adds an 

additional layer of complexity to the error model (Figure 3.7). 
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Figure 3.7 Effect of CASI system and DEM errors on positional accuracy assuming 
varying terrain height. 
a) Horizontal positional system error. 
b) Angular system error. 

3.6 Method and results 

To test errors within the CASI geocorrection system, CASI data of Coventry Airport were 

acquired (Section 2.5). Nine GCPs (Section 2.5) were used to test geometric errors (Figure 2.1). 
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63 GCPs were identified on 13 images. The position of each of the points was derived from the 

imagery and compared with the position obtained from ground survey. To have a consistent 

approach to identifYing pixels in this study, in all analysis where positions were derived from 

imagery by an interpreter the comers of pixels were used. As angular errors were identified as 

being greater than positional errors, each of the geometric errors was recalculated to account for 

differences in height above ground. It was assumed that errors were angular and therefore 

proportional to height above ground. The errors were normalised to a height above ground level 

of 900 m, the average height for the sorties over the Ainsdale test site. 

To compare the geometric error with the various variables being tested the variable of interest 

was sorted in ascending order for each point and binned in groups of nine to generate the 

averaged geometric error and averaged test variables such as velocity and angular acceleration. 

As there were 63 points, bins of nine resulted in an equal number of points per-bin. 

3.6.1 Global CASI geocorrection errors 

Initial geometric error results gave an RMSE of 1.33 m, a minimum of 0.37 m and a maximum 

of2.58 m and a distribution as in Figure 3.8. However, the RMSE and the distribution represent 

global measures of CASI system geometric error and uncertainty and do not provide an 

indication of the spatial distribution of geometric errors. 

Reductions in CASI geocorrection accuracy due to systematic errors could be compensated for 

ifthey could be estimated. Systematic errors could occur in terms of absolute position or 

relative to flight path. The mean error and standard deviation were calculated in terms of x, y 

errors and along and across track errors. 

The estimated total systematic error in the absolute position was 0.22 m (Figure 3.9). The 

estimated systematic error relative to the flight path was larger, at 0.43 m (Figure 3.10). This 

was as expected, as errors in calibration result in systematic errors in position relative to flight 

direction, rather than absolute position. 

Systematic errors were small relative to the size of the pixel, around 30% of a pixel in the along 

and across track directions (Figure 3.10). Systematic errors were also small relative to the 

variation in errors, with the across and along track being less than one third of one standard 

deviation of the error. For these reasons and because the systematic error could not be estimated 
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for the 2002 data, as CASI data were not acquired over a surveyed test site, systematic errors 

were ignored for this study. 

Figure 3.8 
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Figure 3.9 Distribution of geometric errors as a function of x and y. Red box is mean, 
red lines are one standard deviation. Average x error = 0.09 m; average y error = 0.20 m; 
average total error = 0.22 m. 
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Figure 3.10 Distribution of geometric errors as a function of flight direction. Red box is 
mean, red lines are one standard deviation. Average across track error = 0.32 m; average 
along track error = -0.29 m; average total error = 0.43 m. 

The geometric error distribution (Figure 3.8) provided a global measure of CAS I geocorrection 

uncertainty, but did not indicate the temporal or spatial distribution of these errors. To determine 

which variables affected the spatial distribution of geometric errors, linear regression models 

were fitted to determine whether there were significant correlations between geometric error and 

a variety of variables. 

3.6.2 Lens focal length errors 

Errors in lens focal length, resulting from errors during calibration could affect the spatial 

distribution of geometric errors. Errors in the lens focal length are most likely to occur at the 

edges of imagery. An incorrect focal length will result in the lens angle being incorrect and this 

would result in larger errors at the edge of the swath (Figure 3.11). 

Errors in the focal length of the lens result in greater geometric errors at the edge of imagery 

and, therefore, at greater angles off-nadir. To determine whether errors in the estimated focal 

length of the lens were impacting on geometric accuracy, a linear regression was fitted to 

determine whether there was a correlation between off-nadir angle and geometric error. The 

regression showed that the variables were not significantly correlated (Figure 3.12; F=I.39, 

p=O.292). 
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Figure 3.11 Effect of error in predicted lens focal length and therefore lens angle. 
Errors are greatest at the edge of the swath and least at the centre. 

3.6.3 Linking navigational variables with geometric error 

The data for estimating navigational variables such as velocity were derived during the Itres 

geocorrection process, which provided the position and attitude data for every CASI image line. 

The integration time for all CASI data in this study and therefore the basic time differential 

between navigational values used was 18 ms. 

Velocity (v) was calculated using: 

3.1 

When the velocity was estimated from the positional data from consecutive image lines, over an 

18 ms period, velocity spikes occurred (Figure 3.13), probably due to GPS errors. To reduce 

these effects, velocity was estimated over a variety of time steps (Figure 3.13). As the time 
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period for velocity estimation was increased, the size of the velocity spikes was reduced (Figure 

3.13). When velocity was estimated over 1 s, the spikes were negligible. 
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Figure 3.12 Geometric error as a function of off nadir angle. 

A linear regression was carried out to determine whether there was a significant correlation 

between velocity and geometric error. There was no correlation between these variables (at 95% 

confidence) with all regressions resulting in an R2 of 0 (Table 3.1). 

Table 3.1 Linear regression of velocity against average geometric error. Degrees of 
freedom were 5. 
No steps velocity Time linear velocity R2 F Significance (P) 

estimated over estimated over (s) 
5 0.090 0.000 0.48 0.519 
13 0.234 0.000 0.21 0.666 
27 0.486 0.000 0.30 0.607 
55 0.99 0.000 0.43 0.541 
III 1.998 0.000 0.51 0.507 

Acceleration (a) was calculated using: 

a = Vll/12 - VI2/13 

C(tl +t2)/2)2 
3.2 

Where VII t2 is the average velocity between tl to t2. 
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Figure 3.13 Effect of estimating velocity over different time steps. It may be seen that 
when velocity is calculated from positional data 0.018 s apart, velocity spikes occur. As the 
averaging time is increased towards 1 s, the velocity spikes become negligible. 

This calculation assumes that t, - t2 and t2 - t3 are equal. By resolving this equation in x, y, and z 

it is possible to obtain the following equation: 

a = J((xl , - x(2)-(XI2 - X(3))2 + ((YI' - Y( 2)-(YI2 - Y(3 ))2 + ((z/I - Z(2 )-(ZI2 -Z(3))2 3.3 

(t2- t ,)2 

As would be expected from the velocity results, noise occurred in the acceleration values when 

derived over short time periods. By estimating the velocity for the acceleration calculations over 

longer time periods, the noise was reduced (Figure 3.14). 

A linear regression was carried out to determine whether there was a significant correlation 

between acceleration and geometric error. As may be seen from Table 3.2 the variables were not 

significantly correlated (at 95% confidence) and had an R2 0fless than 0.013 for all regressions. 
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Figure 3.14 Estimating acceleration using velocity calculations over different time 
steps. It may be seen that when acceleration is calculated from velocity data 0.25 s apart, 
acceleration spikes occur. As the averaging time is increased towards 1 s, the spikes 
become negligible. 

Table 3.2 Linear regression of acceleration against average geometric error. Degrees 
of freedom were 5. 

No. steps velocity for Time for velocity RL F Significance 
acceleration estimated calculations used for (P) 

over acceleration (s) 
5 0.090 0.000 0.22 0.659 
13 0.234 0.000 0.16 0.706 
27 0.486 0 .000 0.23 0.652 
55 0.990 0.002 0.50 0.511 
III 1.998 0.013 1.08 0.346 

The x, y , z coordinates of the attitude directional vector with length 1 were calculated from roll 

(¢), pitch (B) and heading ( ljI): 

z = cosBcos¢ 3.4 

~ ? sm¢ x = (1 - z -) cos(atan( + 1//) 
J1-(cosBcos¢)2 - (sin¢)2 

3.5 
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y=~(1-z2)sin(atan( sin¢ +V/) 
~1- (cosO COS¢)2 - (sin¢)2 

3.6 

The distance r between the vectors at t1 and t2 is: 

3.7 

And the angular velocity (vang) is: 

2asin(r 12) 
v = ---'------'-

ang (t2- t1) 
3.8 

It can be assumed that angular acceleration is the difference between vectors describing the 

attitude between tl and t2 and between t2 and t3 where t1 - t2 and t2 - t3 are equal. 

The distance q between the ends of the vectors is: 

3.9 

And the angular acceleration (aang) is: 

3.10 

This calculation assumes that tl - t2 and t2 - t3 are equal. 

When angular velocity was calculated using consecutive values (18 ms) the results were noisy 

(Figure 3.15). When calculating the second derivative, angular acceleration, this noise was 

increased, resulting in the acceleration value calculated being mostly noise (Figure 3.16). To 

minimise this effect, velocity values were averaged over 1,3,5, 7 and 9 steps. This reduced 

noise, particularly in the acceleration values (Figure 3.17). 
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Figure 3.16 Angular acceleration values calculated over 1 step or 18 ms. 
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Figure 3.17 Angular velocity calculated over 7 steps or 90 ms, with subsequent 
acceleration values. 

Angular velocity was not significantly correlated to geometric error (at 95% confidence) in all 

regressions carried out (Table 3.3; Figure 3.18). 

Table 3.3 Linear regression of average angular velocity against average geometric 
error. D egrees 0 ff d 5 ree om were 

No steps angular Time velocity R2 F Significance (P) 
velocity averaged averaged over (ms) 

over 
1 18 0.120 1.82 0.236 
3 54 0.244 2.93 0.147 
5 90 0.126 1.87 0.230 
7 126 0.117 1.79 0.238 
9 162 0.078 1.51 0.274 
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Figure 3.18 Geometric error as a function of angular velocity. Angular velocity was 
calculated over 7 steps or 90 ms. 

Average geometric error was correlated with acceleration (at 95% confidence) when the 

velocity was averaged over 90 ms (Table 3.4; Figure 3.19). 

The linear regression of geometric error as a function of angular acceleration resulted in the 

following equation: 

E=0.0742 aang+1.1661 3.11 

where E is the geometric error. 

Table 3.4 
t . 

Linear regression of average angular acceleration against average 
geome ric error. D ff d 5 egrees 0 ree om were 

No. steps angular Time that velocity R2 F Significance (P) 
acceleration used in 

averaged over acceleration 
calculation 

averaged over (ms) 
3 18 0.000 0.92 0.381 
5 54 0.064 1.41 0.289 
7 90 0.651 12.21 0.017 
9 126 0.377 4.63 0.084 
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Figure 3.19 Geometric error as a function of angular acceleration. Acceleration 
averaged over 7 steps or 90 ms. Linear regression line. R 2=0.651; F=12.2; p = 0.017. 

3.6.4 Local model of CASI instrument errors 

The histogram in Figure 3.8 was estimated globally using all acceleration values. To account for 

the effect of angular acceleration, each error value obtained in the test phase was used to derive 

a geometric error distribution that was dependent on angular acceleration and flying height. To 

do this for a given pixel, the original geometric error (Eoriginal) was modified using Equation 

2.11, the angular acceleration (a ang .. I). A function was applied that normalised the equation 
orrgma 

for the height above ground (zAGd as a proportion of the ZAGL assumed when Equation 2.11 was 

derived (900 m) to give an acceleration dependent geometric error (Emodified): 

EOriginal(0.0742 aang . +1.1661) z E - modified AGL 

modified - (0.0742 a +1.1661)·900 
ang original 

3.12 

where a g is the angular acceleration the distribution is being calculated for. 
an modified 

The modified geometric errors were combined to give an error distribution for angular 

acceleration aang . as in Figure 3.20 where error distribution has been calculated for two 
modified 

acceleration values and ZAGL = 900 m. Increasing the acceleration increases the maximum error 

values and mode and flattens the distribution curve. 
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Figure 3.20 Effect of acceleration on predicted frequency of CASI instrument 
geometric errors. 
a) Acceleration 10 S-2 

b) Acceleration 50 S-2 

A geometric error matrix with the same spatial resolution as the CASI imagery (l m) was then 

derived (Figure 3.21). The matrix described CASI instrument error in terms ofthe probability 

that the pixel would occupy a given position within the matrix. The size of the matrix was 

dependent on the geometric error histogram. For each pixel in the matrix the probability of the 

geometric error being within that pixel (pEj) was calculated using: 

dmax 

PEj = I f h1b+0.5 (A; /(7r(b+O .S)2 -7r b2» 3.13 
b=dmin 

Where /6lh+05 is the frequency geometric errors with a magnitude between band b+O.S. This 

was the derived angular acceleration dependent distribution (Figure 3.20). 

dlll ;1I is the minimum distance of the pixel from the centre of the matrix 

d lllCLr is the maximum distance of the pixel from the centre of the matrix 

Ai is area of the pixel between band b+O.S from the centre of the matrix 

This was used to generate a matrix in which the probability of geometric error associated with 

every pixel in the filter was estimated (Figure 3.2 1). The matrix was a local measure of CASI 

instrument geometric uncertainty, as it was recalculated for every pixel and was dependent on 

angular acceleration and height above ground. 
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0.00002 0.00084 0.00065 0.00084 0.00002 

0.00002 0.00200 0.02535 0.02095 0.02535 0.00200 0.00002 

0.00084 0.02535 0.05500 0.09522 0.05500 0.02535 0.00084 

0.00065 0.02095 0.09522 0;09501 0.09522 0.02095 0.00065 

0.00084 0.02535 0.05500 0.09522 0.05500 0.02535 0.00084 

0.00002 0.00200 0.02535 0.02095 0.02535 0.00200 0.00002 

0.00002 0.00084 0.00065 0.00084 0.00002 

Figure 3.21 Probability of CASI instrument geometric error filter generated for an 
angular acceleration of 1 deg S·l S·l. The number within each block of the matrix 
represents the probability that the pixel that should have occupied the centre of the matrix 
actually occupied that position due to instrument geometric error. The size of the matrix is 
dependent on the predicted geometric error distribution as in Figure 3.20. 

The final CASl instrument geometric uncertainty model consisted of a geometric probability 

filter that adjusted for changes in acceleration and height of the sensor by expanding and 

contracting the distribution of geometric errors. 

3.6.5 Orthometric error model 

The CASI instrument error model was combined with the orthometric model, to provide an 

overall geometric error model. Orthometric errors are taken into consideration using a simple 

model based on the viewing geometry of the CASI instrument combined with the DEM used in 

geocorrection. Two viewing geometry angles were derived from the airborne post-processed 

GPS: 

1. Off nadir angle. The angle between nadir (i.e. vertically below the sensor) and 

the look direction of a pixel. Look direction being the direction of a pixel from 

the sensor. 

2. Azimuth angle. The horizontal angle between true north and the look direction 

of a pixel. 

For every pixel in the geometric error filter (Figure 3.21), the difference between the elevation 

at that pixel derived from the DEM (ZIJEM) and the elevation used in the CASI automated 
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geocorrection process (Zol'lho) provided the potential elevation error. The off nadir angle (y) and 

the elevation error of the pixel were used to derive the magnitude of the orthometric error (0) 

towards the CAS! instrument using: 

0= tan(y)(zol'lho - Z DEM) 3.14 

The azimuth angle (a) and 0 were then used to estimate direction of orthometric error in x and 

y: 

- . ( ) * x Ol'lho - SIn a 0 

Y Ol'lho = cos(a) * 0 

3.15 

3.16 

The orthometric error in x and y were combined with the assumed error for each pixel in the 

matrix to provide an overall error vector. The predicted orthometric error was calculated using 

code written in ERDAS Macro Language (Appendix E). Each error vector had a probability 

associated with it derived from the matrix (Figure 3.21). The final local geometric uncertainty 

model was a series of vectors with probabilities derived from a combination ofthe instrument 

uncertainty and orthometric errors (Figure 3.22). 

1- -------

,--
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1- - - - - - - --I , , 

~ ________ ~ I 

.. --------~ 

Figure 3.22 Simplified illustration of geometric uncertainty model for one pixel. 
Arrows represent geometric error vectors. The numbers represent the probability ofthe 
vector occurring. The squares with the dashed line represent a possible location for the 
pixel in the centre. The vectors are not whole pixels in x and y as each vector accounts fo r 
orthometric errors, which will not be exactly one pixel. 
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3.6.6 Misregistration model 

To test the geometric error model, many easily recognisable points on a variety of slopes would 

have needed to be surveyed. This was not practical for this study as additional survey time was 

not available and so an alterative approach was taken. The geometric models for two CASI 

images were combined to generate a misregistration model. Points on both automatically 

geocorrected images could be identified and at these points the actual and model predicted 

misregistration could be compared without the need for ground surveying. The potential errors 

within each pixel in the matrix for 2001 were combined with the potential errors within each 

pixel in the matrix for 2002. The combined probabilities were used to predict a mean 

misregistration error. 

x error = (xortho,n - Xorlho,m) + (x pixel,n - X Pixel,m) 

Yerror = (Yortho,n - Yorlho,m) + (y pixel,n - Y pixel,m) 

Where XOrlho is the error in x due to orthometric effects 

Xpixel is the x offset from the central pixel of the matrix (Figure 3.21) 

n is a pixel in matrix tI 

m is a pixel in matrix t2 

The misregistration error between two pixels in matrix tI and matrix t2 (Jin,m) is given by: 

( 
2 2) 0.5 

f.1n,m = Xerror + Yerrror 

and overall misregistration Ji is given by: 

En En. 

I I f1.1l,mPnPm 
f1. = n=I 111=1 

&11&12 

where Ell is the number of pixels in the tI CASI instrument geometric uncertainty matrix 

3.17 

3.18 

3.19 

3.20 

P n and Pm are the probability of geometric error for matrix tI and matrix t2 respectively. 

They were derived from Figure 3.21. 
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3.6.7 Testing misregistration models 

CASI and LiDAR data acquired on 28th August 2001 and 11th September 2002 (Section 2.6.1) 

over the urban area to the north-east of the Ainsdale test site were used to test the 

misregistration models (Figure 2.2; Figure 3.23). The positions of 140 easily identifiable points 

on the 2001 and 2002 datasets were measured (Figure 3.23) and the actual misregistration 

measured between the images was compared to that estimated by the model. 

Figure 3.23 CASI data of Ainsdale urban misregistration test site with test points 
overlaid as red points. Grid is 500m. 

To account for some of the errors within the LiDAR DSMs the geometric models were tested 

using the following DSM models: 

I . Nearest neighbour DSM: the original 2 m LiDAR DSM was resampled to the same I m 

grid as the CASI data using nearest neighbour resampling. This model did not account 

for the uncertainty associated with the LiDAR data. 
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2. Cubic convolution DSM: the original 2 m LiDAR DSM was resampled to a I m grid 

using cubic convolution resampling. This model provided a potentially more realistic 

model of the elevation surface, as values vary between adjacent pixels, something that 

did not happen using nearest neighbour resampling. 

3. LiDAR uncertainty: the model was run using the elevation values from the DSM in 1 

above. The quoted errors in the LiDAR system (Ashkenazi, 1999) were used to account 

for uncertainty in the LiDAR DSM. The predicted RMSE errors of the LiDAR are 

0.8 m in the horizontal and 0.25 m in the vertical. Uncertainty in the vertical was 

accounted for by estimating misregistration error using three DSM surfaces, the original 

surface (DSM A), one with 0.25 m subtracted (DSM B) and one with 0.25 madded 

(DSM C). To maintain a simple method of estimating misregistration, horizontal error 

was accounted for using aim error rather than 0.8 m. To generate a simple model of 

LiDAR uncertainty the model was run with each of the three DSMs to account for 

vertical errors. To account for horizontal errors the nine DSM values within a three by 

three filter were used (Figure 3.24). This resulted in the geometric error being estimated 

using 27 z values. Misregistration was estimated using: 

9C ell e l 2 

L L L f.in,mPnPm 
f.i = DSM=IA n=1 m=1 3.21 

8 11 8 12 

1 2 3 

4 5 6 

7 8 9 

Figure 3.24 Matrix used in LiDAR uncertainty model. 

Each of the above DSM models was run with and without angular acceleration, resulting in six 

different models. Without angular acceleration the geometric uncertainty model was a global 

CASI instrument error model combined with a local orthometric model. When the angular 

acceleration was used, the geometric uncertainty model was a local CASI instrument model 

combined with a local orthometric model. 
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To compare the actual and predicted misregistration, predicted misregistration was sorted by 

magnitude of error for every point and binned in groups often to generate averaged predicted 

and averaged actual misregistration errors. Linear regressions were carried out on the averaged 

predicted and averaged actual misregistration errors to determine whether there was a 

significant correlation (Table 3.5). An F-test was carried out assuming that the predicted 

misregistration error should equal the actual misregistration error (Table 3.6). 

Table 3.5 
were 12. 

Regression of predicted versus actual misregistration. Degrees of freedom 

Acceleration Model used R2 Constant Slope F- Significance 
used value (P) 

Yes Nearest neighbour DSM 0.389 -0.20 1.09 9.27 0.010 
No Nearest neighbour DSM 0.560 -2.06 2.10 17.52 0.001 
Yes Cubic convolution DSM 0.275 0.22 0.85 5.93 0.031 
No Cubic convolution DSM 0.315 -1.80 1.92 6.98 0.021 
Yes LiDAR uncertainty 0.208 -0.34 l.l5 4.41 0.057 
No LiDAR uncertainty 0.060 -0.84 1.43 1.84 0.200 

Table 3.6 F-test assuming predicted misregistration equals actual misregistration. 
Degrees of freedom were 12. 

Acceleration used Model used F-value Significance (P) 

Yes Nearest neighbour DSM 7.59 0.017 
No Nearest neighbour DSM 4.09 0.066 
Yes Cubic convolution DSM 7.06 0.021 
No Cubic convolution DSM 2.97 0.110 
Yes LiDAR uncertainty 3.23 0.098 
No LiDAR uncertainty 0.89 0.365 

3.6.7.1 Nearest neighbour LiDAR DSM 

Using the nearest neighbour LiDAR DSM in the geometric error model, a statistically 

significant linear correlation (at 95% confidence) was found between predicted misregistration 

and actual misregistration for both the model with angular acceleration and the model without 

(Table 3.5; Figure 3.25; Figure 3.26). An F-test carried out assuming predicted misregistration 

should equal actual misregistration was not significant (at 95% confidence) when angular 

acceleration was not used in the geometric model (Table 3.6). When angular acceleration was 

used the F-test was significant (at 95% confidence) (Table 3.6). 

77 



2.7 

2.5 

E 
';;' 2.3 
o 

I f 2.1 

E 
l 
ii: 1.9 
:: 
E 
& 
E 1.7 

~ 

1.5 

• 

• • 
• • 

1.3~----~-----'------~----~-----'------r-----. 

1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 

Average predicted misregistration (m) 

Figure 3.25 Predicted versus actual misregistration not using acceleration in 
misregistration model and the 2m LiDAR DSM. Dark line is regression line. Thin line 
represents actual misregistration equals predicted misregistration. 
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Figure 3.26 Predicted versus actual misregistration using acceleration in 
misregistration model and the 2 m LiDAR DSM. Dark line is regression line. Thin line 
represents actual misregistration equals predicted misregistration. 

This shows that though there was a correlation between predicted and actual misregistration for 

both models using the 2 m LiDAR DSM, when angular acceleration was not used, the model 
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did not predict misregistration accurately. The optimum relationship between predicted and 

actual misregistration would be one in which the slope was close to I and the offset was close to 

o. The regression when angular acceleration was used resulted in an offset of 0.20 and a slope of 

1.09 (Figure 3.26), compared to -2.06 and 2.10 respectively for the regression when angular 

acceleration was not used (Figure 3.25). 

3.6.7.2 Cubic convolution LiDAR DSM 

Using the cubic convolution LiDAR DSM in the geometric error model, a statistically 

significant correlation was found between predicted misregistration and actual misregistration 

for the model using angular acceleration and the model that did not use angular acceleration 

(Table 3.5; Figure 3.27; Figure 3.28). Again, an F-test carried out assuming that the predicted 

misregistration should equal actual misregistration was not significant (at 95% confidence) 

when angular acceleration was not used in the geometric model (Table 3.6). 
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Figure 3.27 Predicted versus actual misregistration using the cubic convolution LiDAR 
DSM in misregistration model but not using angular acceleration. Dark line is regression 
line. Thin line represents actual misregistration equals predicted misregistration. 

When angular acceleration was used the F-test was significant (Table 3.6). There was a 

significant correlation between predicted and actual misregistration for both models using the 

cubic convolution LiDAR DSM. However, when angular acceleration was not used, the model 

did not predict misregistration accurately, as the regression offset was -1.80 and the slope 1.92 
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(Table 3.5; Figure 3.27). The regression when angular acceleration was used resulted in an 

offset of 0.22 and a slope of 0.85 (Figure 3.28), indicating that this model was not as accurate as 

the model using the nearest neighbour LiDAR DSM. 
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Figure 3.28 Predicted versus actual misregistration using acceleration in 
misregistration model and the cubic convolution LiDAR DSM. Dark line is regression line. 
Thin line represents actual misregistration equals predicted misregistration. 

3.6.7.3 LiDAR uncertainty model 

Using the LiDAR uncertainty misregistration model a statistically significant correlation was 

not found between predicted and actual misregistration for the models that did and did not use 

angular acceleration (at 95% confidence) (Table 3.5; Figure 3.29; Figure 3.30). F-tests carried 

out assuming that the predicted misregistration should equal actual misregistration were not 

significant for both models (at 95% confidence) (Table 3.6). These results indicated that these 

models were the least accurate of those tested. 
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Figure 3.29 Predicted versus actual misregistration using the LiDAR uncertainty 
misregistration model but not using angular acceleration. Thin line represents actual 
misregistration equals predicted misregistration. 
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Figure 3.30 Predicted versus actual misregistration using acceleration in the LiDAR 
uncertainty misregistration model. Thin line represents actual misregistration equals 
predicted misregistration. 
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3.7 Discussion and conclusions 

3.7.1 CASI instrument error 

This study examined the magnitude of CASI instrument geometric errors in order to derive a 

probabilistic model of those errors. The correlation between error and a variety of variables was 

tested, but a significant correlation was found only with angular acceleration (R2=O.651; 

F=12.2;p=O.OI7) (Table 3.1; Table 3.2; Table 3.3; Table 3.4). The 63 points used for testing 

geometric uncertainty were averaged in seven bins. Though there could have been correlations 

between the magnitude of geometric error and other variables, the sample size in this study may 

have been too small to find significance for some of the variables. If this were the case then 

more precise models of geometric error could be derived for the CASI system using additional 

variables if a larger sample size was used. Another limitation is that the variables were likely to 

have a small effect on geometric error, but the precision of the measurements was one pixel or 

1 m. 

A matrix based model of CASI instrument error was generated using a global measure of 

uncertainty derived from the histogram of geometric errors and the empirically derived 

regression model of the geometric error as a function of angular acceleration (Figure 3.21). The 

probability of error associated with each pixel in the matrix was derived for every pixel in an 

image. Every pixel within a CASI image had a matrix associated with it that provided the local 

geometric error distribution due to CAS I instrument errors. 

3.7.2 Overall CASI geometric error 

The matrix based CASI instrument uncertainty model was combined with an orthometric error 

model based on a LiDAR DSM data to provide a model of CASI geometric uncertainty. The 

model combined instrument errors and terrain effects in a probabilistic model of geometric 

error. This modelled the spatial variation of geometric errors in CASI imagery. Though it was 

not possible within this study to test the CASI geocorrection model directly, as ground data 

were not available, it was possible to use the model to generate a misregistration model. By 

combining the geometric uncertainty models for two sets of CASI imagery, it was possible to 

combine the probabilistic models of geometric uncertainty into a single averaged prediction of 

misregistration that could be tested against measured values. 

Six misregistration models were tested that incorporated three different LiDAR DSM models. 

Each of the LiDAR DSM models was tested with and without angular acceleration. Of the six 
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models tested there was a significant relationship (at 95% confidence) between predicted and 

actual misregistration for two. 

The use of angular acceleration in the geometric uncertainty models resulted in a smaller 

correlation between predicted and actual misregistration for the Nearest Neighbour and Cubic 

Convolution models (Table 3.5). However, for the model to be accurate, predicted 

misregistration should equal actual misregistration, and F-tests showed that this equal 

relationship was only significant when angular acceleration was used (Table 3.6). This indicated 

that use of angular acceleration produced more accurate, but less precise models of geometric 

uncertainty compared to not using angular acceleration. The reduction in precision when 

angular acceleration was used may indicate that the relationship between geometric error and 

angular acceleration was not linear, the relationship was noisy or that other variables influenced 

geometric error. 

3.7.3 Effect ofDSM on geometric error prediction 

When angular acceleration was used in the misregistration model, the nearest neighbour DSM 

method had the largest correlation between predicted and actual misregistration (R2 = 0.389; 

p=0.010) of the three DSM inputs (Table 3.5). The use of the cubic convolution DSM resulted 

in much smaller but still statistically significant correlation (R2 
= 0.275; p=0.031). The LiDAR 

uncertainty model had the smallest correlation and this was not significant (R2 
= 0.208; 

p=0.057). 

F-tests assuming a one-to-one relationship between predicted and actual misregistration resulted 

in the largest F-test value for the model using the nearest neighbour DSM (Table 3.6). Of all the 

models tested, the one that used angular acceleration and the nearest neighbour DSM was the 

most accurate, with the least difference from the optimum where the offset equalled 0 and the 

slope equalled 1 from the regression of predicted against actual misregistration (Table 3.5). This 

means that the model using the nearest neighbour DSM resulted in the most accurate, 

statistically significant, one-to-one representation of misregistration. 

The model used in this study to incorporate LiDAR uncertainty in a prediction of 

misregistration was the least accurate method of predicting misregistration and the one-to-one 

relationship between predicted and actual misregistration was not statistically significant (at 

95% confidence). 
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The model used was simplistic and a more accurate and possibly more complex model of 

LiDAR uncertainty is required. To include a more accurate model of LiDAR uncertainty, a 

fuller understanding of the errors and uncertainties within the data is needed. A three

dimensional error probability distribution may be required, similar to the two-dimensional CASI 

geometric error distribution derived in this study. However, determining LiDAR errors in three 

dimensions simultaneously may be difficult. Errors in the vertical may be estimated by 

comparing height from ground survey with height from LiDAR on a flat surface. Horizontal 

positional errors can be determined where there is a vertical structure, such as the side of a 

building. Determining vertical and horizontal errors simultaneously may be more difficult. On 

flat surfaces, it is not possible to determine horizontal errors from elevation. On a vertical 

structure, it is not possible to determine vertical error. It may be possible to use the LiDAR 

intensity image, an additional product that provides an estimate of backscatter to determine a 

three-dimensional LiDAR error model. If a survey were carried out over a flat surface that had 

markings that would show up in the wavelength of the LiDAR used, it would be possible to 

simultaneously measure horizontal and vertical errors using the intensity image. Ground survey 

elevation could then be compared to LiDAR elevation and the intensity image could be used to 

determine horizontal errors. The correlation between these errors and variables such as 

measures of GPS quality and variables that effect IMU accuracy could be determined. 

3.7.4 Modelling misregistration in change detection 

The overall misregistration measure, JI, used in this chapter was an average value and could be 

used to model misregistration using an approach such as eroding the boundaries between classes 

(Veregin, 1996; Serra et al., 2003). However, though this approach can increase accuracy of 

change detection (Serra et al., 2003), there are limitations. Using JI did not account for the range 

of possible misregistration errors, as the range of possible misregistration errors were combined 

to provide one value. 

As JI was a single value per-pixel, there were no probabilities associated with the misregistration 

and no directional component to the misregistration, making JI unsuitable as a local measure of 

misregistration uncertainty and therefore it was not used in the final change detection model. 

The geometric error vector and associated probability were potentially more suitable for use in a 

change detection uncertainty model than JI. The probability values associated with each 

geometric uncertainty vector may be combined with probabilistic measures of thematic 
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uncertainty to provide an overall probabilistic measure of the uncertainty associated with change 

detection. 

3.7.5 Increasing model accuracy 

Though studies have attempted to quantify errors for a variety ofIMU models (Grejner

Brzezinska et ai, 1998; Hong et ai., 2002; Mostafa et ai., 2001), these have not discussed the 

variation in errors or tried to find the relationships with variables such as angular acceleration. 

Future work should be carried out that provides an increased understanding of these errors so 

that geometric uncertainty can be understood and predicted with greater accuracy. 

The work carried out in this study used raw IMU and post-processed GPS navigational data. 

Errors in navigational data can be reduced by merging the attitude and positional data to derive 

a post-processed navigational solution (Mostafa and Hutton, 2001; Toth, 2002). This approach 

integrates GPS and IMU data to provide a navigational solution that has reduced errors. 

However, the effect of acceleration on the accuracy of the post-processed navigational solution 

is complex, as accelerations can reduce errors (Mostafa and Hutton, 2001). This means that the 

input variables used in this study may not be suitable for input when using post-processed, 

integrated GPS and IMU data. 

3.7.6 Applying misregistration model to other platforms 

The principles of geometric error model generation for the CASI instrument could be used for 

other airborne systems. Airborne sensors such as HyMap (Kruse et ai., 2000), AISA+ (Specim, 

2004), A VIRIS (Boardman, 1999) can use post-processed GPS and IMU based systems to 

provide navigational data for automatic geocorrection. The principles of generating a geometric 

error model used in this study would be directly applicable to other instruments. 

Though satellite systems are not exposed to the sudden alterations in motion that occur on an 

airborne platform, some ofthe methods used in the CASI model would be applicable, 

particularly the use of topographic data. It may be possible to derive a model of instrument error 

for satellite based systems, though the variables may be different from airborne systems. Even if 

it was not possible to derive a local model of instrument uncertainty, a global model could be 

derived from the distribution of geometric errors. This could be combined with a local 

orthometric error model derived from a OEM to provide a local model of geometric errors. 

Though this model would not be as precise as one derived from a local model of instrument 
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geometric errors, it would have a local function and would compensate for the increase in 

geometric errors from satellite-based imagery with an increase in topographic variation (Stow, 

1999). The Shuttle Radar Topography Mission (SRTM) in 2000 acquired data that would be 

suitable for this purpose. SRTM acquired elevation data for all land areas between 60° North 

and 56° South latitude, approximately 80% of the Earth's land mass (Rabus et ai., 2003). The 

data have a horizontal spatial resolution of approximately 30 m, with a vertical accuracy of 

16 m at 90% confidence (Rabus et ai., 2003). This horizontal resolution is of a similar order to 

medium resolution satellite based data such as Systeme Pour l'Observation de la Terre (SPOT) 

High Resolution Visible (HRV) multispectral (20 m) (SPOT, 2005) and Landsat Thematic 

Mapper (TM) (30 m) (NASA, 2002) making it potentially suitable for these and coarser 

resolution satellite data such as MODIS (NASA, 2004). 

3.7.7 Summary 

In this chapter, probabilistic geometric error models were generated that modelled the spatial 

function of geometric error in CASI imagery, using angular acceleration of the sensor, a global 

model of the probability of CAS I geometric errors and a simple orthometric error model. The 

geometric uncertainty model consisted of a series of geometric error vectors, each with a 

probability associated (Figure 3.22). 

It was not possible to test the geometric uncertainty model and so a misregistration model that 

provided an average misregistration error was derived from the geometric error. This 

misregistration model accurately modelled the spatial function of misregistration error between 

two CASI mosaics. Though the misregistration model was not suitable for probabilistic change 

detection, the geometric uncertainty model it was derived from was suitable, as it provided error 

vectors with associated probabilities on a per-pixel basis. 
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4 Thematic uncertainty 

4.1 Introduction 

The purpose of the research in this chapter was to examine methods of deriving estimates of 

thematic error for use in operational change detection (Figure 4.1). Estimates were made of 

thematic error resulting from classifications of airborne sensor data and took the form of 

thematic uncertainty measures . The relationships between the variables used in the setup of 

classifiers and the accuracy of thematic uncertainty prediction were examined. 

-- - -- --- - - - --- - -- - -- - ---- - -- - ---- - -- - - -- - - --- --- - - - - ---- - -- - ----- - - -- -- - ---- - -- - - - -- - - -- - -- -- --~ 
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Figure 4.1 Section of airborne sensor change detection model covered in Chapter 4. 
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4.2 Hard and soft classifications 

The purpose of this study was to examine methods of carrying out change detection using 

remote sensing for input into management plans and legislative reporting for the EA and EN. 

Potentially the change detection outputs will be examined by people without experience or 

understanding of geographical information science and remote sensing. In this context, 

relatively simple outputs that could be understood easily by both staff and stakeholders such as 

the public, industry and politicians were required. Two approaches to pixel based change 

detection could be taken, either hard or fuzzy. As multiple classes may exist within the area 

defined by a pixel, a fuzzy approach to classification may more accurately model the 

environment than a hard approach (Fisher, 1997; Arnot et al., 2004). However, compared to a 

hard classification, the outputs from a fuzzy classification are much more difficult to 

understand, particularly for those with little or no geographical training, and are more difficult 

to display (Lucieer and Kraak, 2004). For these reasons a hard classification approach was taken 

in this study. 

4.3 Deriving thematic uncertainty 

Thematic errors are caused by factors such as errors in the image data due to inaccuracy in the 

calibration, noise in the sensor system, atmospheric effects, bi-directional effects such as 

shadowing, lack of spectral separability of classes, inaccurate training data or classifier errors 

(Figure 4.1) (Song and Woodcock, 2003; Carmel and Dean, 2004). Though these errors result in 

incorrect class allocation during the classification process, they are complex and outside the 

scope of this study. To simplify this study, the effects of sensor error, atmosphere and errors in 

ground data on thematic errors were assumed to be negligible and were not considered. 

Thematic error measures may be derived on a per-class basis using the confusion matrix to 

estimate the number of pixels of a given class that are incorrectly allocated (Appendix B). The 

per-class error estimated from the confusion matrix could be used to derive a thematic 

uncertainty measure such as the probability of error on a per-class basis. However, it is unlikely 

that every pixel allocated to a given class has equal probability of membership of that class 

(Bishop, 1995). If a given pixel is close to the class centroid it is more likely to be classified 

correctly than a pixel that is further away from the class centroid (Bishop, 1995). A pixel that is 

made up of equal amounts oftwo classes is less likely to be correctly classified than a pure 

pixel, as there is likely to be confusion between the two classes. 
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Spatially unreferenced global thematic measures will not account for the spatial variation in 

probability of correct allocation. For pixels with a large probability of membership to a class, 

the per-class measure will overestimate probability of error. As the error is overestimated, the 

precision of change detection will be reduced. For pixels with a small probability of being 

correctly allocated to a class, a per-class measure will underestimate error. This will result in 

probability of error in change detection being underestimated, resulting in a larger probability of 

change detection error. 

To determine where thematic errors are likely to occur, more information on per-pixel 

uncertainty is required than is available from the spatially unreferenced per-class measures that 

may be derived from the confusion matrix (Foody, 2005). The estimation of the probability of 

error on a pixel basis provides the opportunity to estimate more accurately the probability of 

error in change detection. Several studies have derived per-pixel measures of thematic 

uncertainty from classification outputs (Gong et aI., 1996; Shi and Ehlers, 1996; Ediriwickrema, 

and Khorram, 1997; de Bruin and Gorte, 2000; McIver and Friedl, 2001; Liu et ai., 2004). 

In a per-pixel context for a hard classification, there are two measures that may be used to 

predict thematic uncertainty: 

1. A measure that indicates whether the correct class has been allocated to a pixel. This 

requires definition of a single variable that indicates the probability of correct allocation 

for the class allocated to that pixel. 

2. A series of measures that indicate whether any class would be correct if allocated to that 

pixel. This requires definition of variables that indicate the probability of correct 

allocation for every class. 

4.4 Classifiers for deriving thematic uncertainty measures 

4.4.1 Maximum likelihood classifier 

The most common of the traditional parametric approaches to classification is maximum 

likelihood (ML) classifier (Schowengerdt, 1997; Campbell, 2002). The ML classifier provides 

an approach for classifying remotely sensed data that is relatively easy to understand and to 

carry out. 
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In the ML approach, class mean vectors in feature space and variance-covariance matrices for 

each class are generated from training data. Probability density functions for all classes are then 

derived from these statistics. The posterior probabilities of class membership are estimated for 

each pixel and the pixel is then allocated membership to the class that it has the greatest 

probability of membership to. 

If the data approximate a normal distribution, this approach can produce accurate classifications 

(Benediktsson et ai., 1990). The analyst does not have to set any parameters for the 

classification to run, just select suitable training data and classes. To an analyst who has a 

minimal amount of statistical knowledge, the ML classifier is relatively simple to understand 

and most commercially available image processing packages (for example ERDAS Imagine, 

ENVI, IDRISI) have an easy to use ML classifier. 

The ML classifier assumes the data approximate a multivariate Gaussian distribution (Campbell, 

1981; Benediktsson et al., 1990). This is often not the case, especially when a class contains a 

great deal of variation. For example, a woodland class may contain a variety of species, with 

mixtures of coniferous and deciduous species, resulting in a multi-modal distribution of the 

spectra. 

The ML classifier is also very sensitive to the form and quality of ground data. There should be 

enough sampling points to represent the full variety within each class. According to Swain 

(1978) the amount of training data required for the ML classifier is linked to the dimensionality 

ofthe data set being classified. The greater the number of dimensions, the larger the training 

points sample size needs to be. If the training set is too small, ML classification accuracy may 

be reduced as dimensionality is increased (Lee and Langrebe, 1993). According to the study by 

Swain (1978), the sample size for each class should be at least 30 times and preferably 100 

times the number of dimensions. Carrying out an ML classification using the 14 band bandset 

collected over the study sites (Table 2.2) it may be impractical to acquire the required number of 

training data for each class. 

Ifthe training data do not incorporate the variation within the classes used, the accuracy of the 

classification may be reduced, even if the required numbers of pixels are used for each class 

(Campbell, 1981). In many cases, training data are sampled in blocks of contiguous pixels. As 

these pixels may exhibit autocorrelation, the class statistics (means, variances and covariances), 

may inadequately represent the classes, leading to reduced classification accuracy (Campbell, 

1981 ). 
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A requirement for statistical classification approaches is that the training data should only 

contain one land cover class (Paola and Schowengerdt; 1995). However, in the case of natural 

and semi-natural habitats this may be very difficult to achieve, as certain classes generally occur 

as mixtures with other classes. 

The use of data from multiple sources has the potential to reduce ML classification accuracy 

(Peddle et al., 1994). When multisource data are used in ML classification there are scaling 

issues that have to be considered, as the different data may not be in common units 

(Benediktsson et al., 1990). Data sources are not equally reliable or useful in discriminating 

between classes and the ML classifier does not have a mechanism for weighting data according 

to importance (Benediktsson et al., 1990). Thematic data may have the potential to increase 

class discrimination, but as they are non-parametric, they should not be used in ML 

classification, but if used can result in reduced classification accuracy. 

Though the ML classifier is one of the most commonly used in remote sensing (Richards, 

2005), in this study there are factors that make its use inappropriate. These factors include the 

use of remotely sensed data with large numbers of wavebands and small training data sets. As 

the number of training pixels for some classes, including Reed and Buckthorn, was small it is 

likely that the ML would have classified these classes inaccurately. Within some of the classes 

used in this study there were a variety of different vegetation types that could result in multi

modal distributions of spectral data. Using the ML classifier when data have multi-modal 

distributions would be likely to result in a reduced classification accuracy compared with non

parametric methods (Kanellopoulos et al., 1992). Studies have shown that under the conditions 

described above there are non-parametric classifiers such as neural networks that can classifY 

more accurately than the ML classifier (Kanellopoulos et al., 1992; Peddle et aI., 1994; Y 001, 

1998). 

4.4.2 Neural networks 

Neural networks are the computing equivalent of a very simple biological brain. They provide a 

possible solution to a variety of problems in remote sensing including classification and 

biophysical property extraction. 

Neural network and statistical methods of classification are fundamentally different in that 

statistical approaches depend on an assumed model, while neural networks depend on data 
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(Benediktsson et aI., 1993; Atkinson and Tatnall, 1997; Zhou, 1999). This means that the 

underlying assumptions made for statistical classification, such as the data are normally 

distributed and data layers are not correlated, do not need to be met for neural networks . 

As well as being distribution free, neural networks are importance free (Benediktsson et al., 

1990; Zhou, 1999), meaning that the network will model the relative importance of the input 

data surfaces during the training process without requiring operator input. This characteristic is 

particularly critical when considering multisource data, as a priori knowledge of the level of 

importance of data layers is not required. A neural network will set weightings to account for a 

data layer's importance during the training process (Zhou, 1999). These factors make neural 

networks an appropriate method of classification for this study. 

The most commonly used neural network classifier is the multi-layer perceptron (MLP) (Erbek 

et al., 2004; Liu and Wu 2005). This network has been used previously in remote sensing 

studies to derive thematic uncertainty measures (Gong et al., 1996; Foody, 2000). 

Another network less frequently used in remote sensing than the MLP is the probabilistic neural 

network (PNN) proposed by Specht (1990). The PNN was tested in this study as it is a non

parametric method of outputting posterior probabilities for every class (Specht, 1990; Tresp et 

al., 1997; Hart et ai, 2001), making it particularly suitable for deriving thematic uncertainty 

measures. 

4.4.3 Multi-Layer Perceptron (MLP) 

The basic unit of the MLP is the node (Figure 4.2), which mimics a biological neurone. The 

node sums the inputs and performs a function on the summed input. 

Input !lL Output 

Inpet 

Node 
Function 

Figure 4.2 Neural network node. 
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The MLP consists of three types of layers: input, hidden and output (Figure 4.3). The input layer 

has as many nodes as there are input data layers. There may be one or more hidden layers with 

the number of layers and nodes specified by the user. The output layer contains as many nodes 

as there are output classes. Every node in the hidden and output layers is connected to all nodes 

in the previous layer. As the signal passes between nodes it is modified by weights specific to 

each node-node connection. 

Input layer Hidden layer Output layer 

Figure 4.3 Multi Layer Perceptron Neural Network. The connections between the 
nodes are weighted. 

Input signals are passed through the MLP, being modified by the weights associated with the 

connection between nodes and the functions of each node. The movement of input signals and 

their modification through the network from input to output is the ' feed-forward ' stage of the 

MLP. The outputs of the MLP are activation levels at each output node. These activation levels 

may be linked to a biophysical property or land cover class. Training data are entered into the 

NN and the activation level of each of the output nodes is compared with the input values and 

an error function is calculated. A learning algorithm is applied that alters the weightings within 

the network to minimise the error. The whole process is then repeated until a specified number 

of iterations have taken place, or the error is minimised or reduced below a predetermined level. 

The alteration of weights through the ' back-propagation' of the error through the network is 

carried out by the generalised delta rule (Atkinson and Tatnall, 1997; Kanellopoulos and 

Wilkinson, 1997). This process allows the network to ' learn ' the characteristics of the training 

data set. The number of iterations used in training can affect the accuracy of the final 

classification (Kavzoglu and Mather, 2003). 
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As the number of iterations is increased the ability of the network to accurately classify the 

training data is generally increased, but the network may become less accurate in classifying the 

main data set (Atkinson and Tatnall, 1997). This effect is known as over-training and results in a 

loss of the network's ability to classify data it has not seen before (Atkinson and Tatnall, 1997; 

Kavzoglu and Mather, 2003). The ability of a neural network to accurately classify data that are 

not used in the training process is known as generalisation (Atkinson and Tatnall, 1997; Foody 

and Arora, 1997; Kavzoglu and Mather, 2003). This is an important consideration when 

constructing and training the network. 

There are a number of factors that affect the ability of a network to generalise and therefore 

optimise overall classification accuracy. These include the architecture of the network, the 

training set and training time (Atkinson and Tatnall, 1997; Foody and Arora, 1997; Kavzoglu 

and Mather, 2003). The structure of a network is crucial to its classification accuracy. Generally 

the larger the network, the more accurate it is at classifying the training data (Kavzoglu and 

Mather, 1999), but it may be less able to generalise. However, a study by Paola and 

Schowengerdt (1997) found that the number of nodes in a single hidden layer could be varied a 

great deal with only minimal effects on classification accuracy. This is likely to be data 

dependent and should be tested with each new dataset used. Increasing the number of input data 

layers often increases classification accuracy but this is not always the case (Arora and Foody, 

1997; Foody and Arora, 1997; Kanellopoulos and Wilkinson, 1997). The training process may 

be made more complex, as the number of nodes within the network has to be increased to deal 

with the increased dimensionality (Kanellopoulos and Wilkinson, 1997). If there is correlation 

between input data layers it is possible that classification accuracy may be reduced compared to 

using a dataset with no correlation (Kanellopoulos and Wilkinson, 1997; Foody and Arora, 

1997). The MLP provides an activation level for every output class of each pixel. In a hard 

classification the pixel is allocated to the class with the largest activation level. However, the 

activation levels for all classes may be used to provide additional information for each pixel. 

4.4.4 Uncertainty measures from the MLP 

MLP activation levels have been used as indicators of class membership on a per-pixel basis 

(Gong et ai., 1996). Gong et al. (1996) generated per-pixel measures of thematic uncertainty by 

normalising activations so that the total output from every pixel summed to one, where a pixel 

with a large normalised activation was assumed to have a large probability of correct class 

allocation. However, there are other metrics that may be used as indicators of local thematic 

uncertainty. Foody (2000) reasoned that MLP activation levels could be used to derive 
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additional metrics in the confidence of correct pixel allocation in a hard classification. Three 

main indicators of confidence were suggested; sum of activation levels, maximum activation 

levels and entropy (Foody 2000). According to the study (Foody, 2000), a pixel was likely to be 

correctly allocated when the total activation and the maximum activation were approximately 

one and was more likely to be incorrectly allocated as both these activations tended away from 

one. 

Entropy is a measure of uncertainty and is calculated from the class membership probabilities 

using the following equation: 

H = - LP(w)log2 pew) 4.1 
x 

where pew) is the class membership and in the case of the MLP the normalised output activation 

is assumed to be pew). 

Entropy is maximised when the membership of all classes is equal and minimised when 

membership is to one class only. The relative entropy (ratio of the observed to the maximum 

entropy) may be used to assess confidence in a classification. Pixels with small relative entropy 

are assumed to be associated with one class. Those with large values are associated with 

multiple classes and a hard classification is not appropriate (Maselli et al., 1994). Maselli et al. 

(1994) did not quantifY the error, though Foody (2000) did show a correlation between the 

entropy of the classification and ground data, indicating that the classifier could identifY mixed 

pixels. 

The MLP has the potential to provide measures of thematic uncertainty using a variety of 

variables (Gong et al., 1996; Foody, 2000). This additional information may be used in change 

detection to generate probabilities of change, increasing the infonnation content provided. 

Maximum activation, sum of activations and entropy provide a single measure of thematic 

uncertainty for every pixel. Normalised activation provides a measure of thematic uncertainty 

for every class at every pixel. This makes normalised activation a more suitable measure of 

thematic uncertainty than the others described above, as the probability of change from any 

class to any other class can be derived during change detection. 
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4.4.5 Probabilistic Neural Network (PNN) 

4.4.5.1 Bayesian statistics and kernel-based derivation of probability density functions 

The purpose of classification is to derive membership of a thematic class from a vector u in 

feature space corresponding to the sum of the one-dimensional vectors for each waveband of a 

given pixel. In a Bayesian framework, the method by which this is carried out is by calculating 

two values for each class, the prior probability and the class conditional probability density 

function. The prior probability, P(Ck), is the probability that given no other information, a pixel 

selected at random will belong to class Ck • By reversing this to apply to a classification problem, 

it may be seen that given no other information a pixel should be allocated the class with the 

greatest prior probability to maximise the probability of correct classification (Bishop, 1995). 

The class conditional distribution, p( ul Ck ), represents the density function of u, given that a 

pixel belongs to class Ck • In a classification context the class conditional distribution may be 

derived from sample data for class Ck • 

The proportion of pixels within the image that belong to class Ck and have vector u (P(Ck,u)) is: 

4.2 

and 

P(Ck ,u) = p(u),P(Ck lu) 4.3 

where p(u) is the unconditional density function, the density function for u irrespective of class 

P(Ck lu) is the probability that the class is Ck given u and is known as the posterior 

probability. 

Combining 4.2 and 4.3 results in: 

4.4 

where p(u) normalises the posterior probability. 
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The posterior probability is derived from a density function known as the probability density 

function (PDF), which is represented by the right-hand side of Equation 4.4. The PDF may be 

derived from training data allowing classification to be carried out on the basis of posterior 

probabilities. 

However, a parametric Bayesian approach to classification may make assumptions about the 

data used that are not valid. Remotely sensed data may have skewed or multi-modal 

distributions, rendering a parametric approach to classification invalid. A non-parametric 

approach to deriving the PDF from sample data was suggested by Parzen (1962). This involves 

placing simple functions or kernels at locations in feature space derived from samples of the 

population. The integral of these kernels may be used to provide an approximation of the PDF. 

As the number of samples is increased, the approximation ofthe PDFs asymptotically 

approaches the population density function (Specht, 1990). This approach allows a PDF to be 

derived with no previous knowledge of the data distribution. 

4.4.5.2 Probabilistic Neural Networks 

One limitation of the method proposed by Parzen (1962) is that the entire training set must be 

stored and used during classification and the amount of computation required is proportional to 

the size of the training set. At the time of Parzen' s (1962) paper, the processing power required 

to calculate PDFs using kernels was not available. As computational power increased, this 

method became more practical and Specht (1990) proposed a neural network that used kernel 

functions to calculate PDFs. This probabilistic neural network (PNN) used Gaussian radial 

functions rather than the sigmoid functions commonly used by networks such as the MLP. 

The PNN is a feedforward network that has three layers in the same layout as a MLP with a 

single hidden layer (Figure 4.3): input, pattern and output. The input layer contains as many 

nodes as there are input data layers. The pattern layer corresponds to the hidden layer in the 

MLP and has as many nodes as there are training pixels. Each node models a kernel based on 

the point represented in feature space by the training pixel. The output layer contains as many 

layers as there are classes. Each node in the radial layer is only connected with the class output 

node associated with the training data and sums the inputs from the pattern layer. 

When the allocation stage of classification is carried out, the probability of membership to each 

of the radial nodes is calculated and these are summed for each class and normalised to give a 
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posterior probability of membership to each class. The pixel is then allocated to the class it has 

the largest posterior probability of membership to. 

In the simplest form of PNN as described above, it is assumed that pixels are randomly selected 

from the complete population. However, if the proportions of pixels used for each class are not 

equivalent to the prior probability then weights may be applied to compensate for the 

differences between the training sample sizes and the prior probabilities. This is of particular 

use when some of the classes used have relatively small prior probabilities. If random sampling 

were used, the number of training samples for classes with small prior probabilities would be 

small, potentially resulting in a sample that could not model the PDF accurately. To reduce this 

effect, the number of training pixels may be increased and a weighting to account for prior 

probabilities applied to the output in order to provide more accurate posterior probabilities. One 

method is to use an equal number of training samples for each class and estimate the prior 

probabilities from ground sampling or image interpretation. 

The width of the kernel distribution is determined by the operator and is known as the 

smoothing function, h. When the smoothing function is too large, the estimated PDF is over 

smoothed, resulting in an inaccurate classification (Bishop, 1995). As h ~ 0 the POFs will 

approach an exact representation of the density, for an infinite sample size. However, for a finite 

sample, as h ~ 0 the PDF will approach a set of delta functions representing each training 

sample, resulting in a noisy representation of the PDF. When h = 0 and assuming the training 

samples used for different classes represent different points in feature space, the classification 

accuracy of the training data will be close to 100%. However, any point in feature space not 

represented in the training data will not be classified, resulting in an inability of the network to 

generalise. This characteristic ofPNNs means that care must be taken when determining the 

smoothing function to be used. The training error may give an inaccurate indication of the 

ability of the PNN to correctly classifY non-training data. For this reason it is essential that the 

correct smoothing function should be determined by testing the PNNs with separate data from 

training data. The effect of h on the PDF may be seen in Figure 4.4. 

PNNs have advantages over networks that are trained iteratively, as training only requires 

generation of kernels for each ofthe training pixels. The only variable that needs to be 

determined is the smoothing function and this may be determined by experimentation. However, 

each training point is represented by a node in the radial layer and so the allocation process can 

be very intensive computationally, especially if large training samples are used. 
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Figure 4.4 Example of the kernel approach to density estimation for class C using 
vector v. One-dimensional Gaussian kernels. Training samples at 0.4, 0.5 and 0.7. 

The generation of the PDFs for each class by PNNs mean that the outputs may be interpreted 

directly as posterior probabilities and, therefore, may be used to derive per-pixel uncertainties. 

Though there are few remote sensing studies that have used PNNs, they have been used for 

classification of magnetometry data for the detection of buried unexploded ordnance (Hart et 

al., 2001), texture classification (Raghu and Yegnanarayana, 1998), cloud classification (Tian 

and Azimi-Sadjadi, 2001 ; Wang et al. , 2004), land use classification (Ash ish et al., 2004) and 

detecting classes that are not represented in training data during land cover classification 

(Augusteijn and Folkert, 2002). 

4.5 Neural networks for deriving thematic uncertainty 

This study will use neural networks to derive per-pixel thematic uncertainty measures. When 

setting up these networks there are various network variables that are defined during the training 

stage that can alter the outputs. These variables influence the thematic accuracy and the 

thematic uncertainty measures derived. In the case ofthe MLP these network variables are the 

number of nodes in the hidden layer, the learning rate, momentum rate and number of iterations. 

In the case of the PNN the only network variable is the smoothing function. Though previous 

studies have derived heuristics for maximising thematic accuracy (Arora and Foody, 1997; 

Foody and Arora, 1997; Kavzoglu and Mather, 2003), heuristics have not been derived for 

maximising the accuracy of thematic uncertainty measures. In this chapter the derivation of 

99 



thematic uncertainty measures using neural networks will be examined and heuristics will be 

derived to maximise the accuracy of thematic uncertainty measures. 

4.6 Method 

4.6.1 Data 

The CASI, LiDAR and true colour digital photography used in this chapter were acquired over 

Ainsdale Sand Dunes on 11 th September 2002 and are described in Section 2.6.1 (Appendix C; 

Table C.4; Appendix D). 

The ground data collected for training and assessing the accuracy of the classifiers were 

collected between 16th and 20th September 2002 and are described in Section 2.6.2. 

4.6.2 Training the neural networks 

1000 training pixels per class were used to train the networks. For each class equal numbers of 

pixels were selected at random from each training polygon. 

Trajan 6.0 (Trajan, 2001) software was used to generate the MLPs. MLP networks were 

generated with a range of nodes between 5 and 40 in a single hidden layer. Each network was 

trained using between 250,500, 750, 1000, 1500,2000,2500,3000,3500 and 4000 iterations. 

To reduce the total number of networks tested, a fixed learning rate and momentum of 0.1 and 

0.3 respectively were used for all architectures. These values had been used in previous studies 

using these data (Brown et al., 2003a) and did not result in large oscillations in error during 

training and networks did not stick in local error minima during the training process. 

Due to a bug in Trajan 6.0 when generating PNNs, Trajan 4.0 was used to generate these 

networks. The nodes in the pattern layer of the PNNs generated modelled Gaussian distributions 

with a (J value equal to the smoothing function. PNN networks were generated with the 

following range of smoothing functions: 0.0025, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 

0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, and 0.2. Prior probabilities for 

use in the PNN were estimated by photo interpretation of 786 points using a geographically 

stratified random sampling strategy, with the same units as the accuracy assessment data (60 m; 

Section 2.6.2), but separate randomly selected points within each stratum (Table 4.1). 
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Table 4.1 Estimated prior probabilities used in PNN training. 
I Water I Sand I Marram Grass I Reeds I Creep Buckthorn 1 Woodland J 
I 0.06870 I 0.08015 I 0.03944 0.37405 I 0.02290 I 0.09542 0.01018 1 0.30916 J 

4.6.3 Thematic uncertainty prediction 

The ability of the networks to predict thematic uncertainty was tested in two ways: 

1. Class independent thematic uncertainty. 

2. Class specific thematic uncertainty. 

4.6.3.1 Class independent thematic uncertainty 

MLP and PNNs produce an activation from each output node that has the potential to provide an 

indication of the thematic uncertainty for every class on a per-pixel basis. The link between 

every output activation and thematic uncertainty was tested using all output activations. The 

activation for every output of every pixel was averaged within the following bins 0 - 0.09, 

0.1-0.19,0.2-0.29,0.3-0.39,0.4-0.49,0.5-0.59, 0.6-0.69, 0.7-0.79, 

0.8 - 0.89, 0.9 -1.0. The mean of the activation and the proportion of times that any of the 

activations within the bin was the correct class were calculated for each bin. An RMSE value 

was calculated from mean activations and proportion of correct classes for all networks tested 

and an F-test was carried out assuming that activation was equal to proportion oftimes a class 

was correct. The RMSE measure derived provides an indication of how accurately the network 

predicts thematic uncertainty, independent of class. This error statistic was defined as the class 

independent thematic uncertainty RMSE. 

4.6.3.2 Class specific thematic uncertainty 

It was essential for the change detection process that a network was able to predict thematic 

uncertainty for all classes. If this did not occur, the output from change detection would not be 

an accurate representation of the probability of change for classes that were not accurately 

classified. To provide a measure of whether the networks accurately predicted thematic 

uncertainty for every class, the following procedure was carried out. For a specific class, the 

proportion oftimes that pixel allocated to that class was correct (the user's accuracy) and the 

mean activation for all pixels allocated to that class were calculated. A RMSE value was 

calculated from the difference between the user's accuracy, and the mean activation for all 

classes. An F-test was carried out assuming that the user's accuracy should equal the mean 
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activation for all classes. The RMSE measure derived provided an indication of how accurately 

the network predicted thematic uncertainty, dependent on class and was defined as the class 

specific thematic uncertainty RMSE. 

4.6.3.3 Overall entropy 

To determine how network activations change with network variables, a global measure of 

entropy was used (Equation 4.1). Entropy is minimised when activations tend towards 0 and I. 

Entropy provided an indication of the confidence of the network in the classification produced. 

This network confidence was not an indication ofthe probability of correct classification, and 

did not necessarily provide a measure of uncertainty. 

4.6.4 Effect of neural network setup and training variables 

To determine whether there were heuristics that could be used to select the network that 

classified and predicted thematic uncertainty most accurately the correlations between the 

variables used when setting up and training MLPs and PNNs and thematic accuracy and 

thematic uncertainty prediction were tested. The correlation was tested using linear, log-linear 

and second order polynomial relationships in order to determine whether there were 

relationships between network variables and thematic accuracy or thematic uncertainty. These 

regression models were used as they could provide an indication of simple relationships for 

deriving heuristics to maximise thematic accuracy and the accuracy of thematic uncertainty 

measures. The correlation with the largest R2 was assumed to be most representative of the 

relationship. 

4.7 Results 

4.7.1 MLP 

All MLP results are in Appendix G. 

4.7.1.1 Global thematic accuracy 

Of the MLPs tested, two had the maximum overall accuracy (Po). Both networks had 25 nodes 

in the hidden layer, with one trained for 2000, the other 2250 iterations (Figure 4.5). 
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Figure 4.5 MLP Po as a function of iterations and architecture. 

When the Po was averaged for all networks with a given number of nodes, it may be seen that 

accuracy was maximised when the number of nodes in the hidden layer was 25 (Figure 4.6). 

Though this result showed that beyond a certain number of nodes the overall accuracy 

decreased, the decrease in accuracy beyond this point was exaggerated using average p()_ At 40 

nodes it appeared that there was a large reduction in accuracy using the averaged p () ' Using a 

second order polynomial regression this relationship was found to be significant (R2=0.866, 

F=23.7,p=0.003). 

A general increase in Po with an increase in the number of iterations may be seen when Po was 

averaged for all networks at a given iteration (Figure 4.7). When tested using a log linear 

regression a significant correlation was found (R2=0_949, F=243 .8,p<0.001). 
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Figure 4.6 Average Po as a function of number of nodes in MLP hidden layer. Second 
order polynomial regression line. 
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4.7.1.2 Thematic uncertainty 

The output activation levels were tested for suitability as uncertainty measures, using the 

assumption that the output activation equalled probability of correct allocation. A linear 

regression was carried out to determine the correlation between the predicted thematic 

uncertainty in the form of output activation and the actual thematic uncertainty in the form of 

the proportion of correct allocation. For the MLP the activation values for each pixel were 

normalised to sum to one. 

For all MLPs tested, the output activation and class independent thematic uncertainty were 

correlated and the relationship was significant (at 95% confidence) (Appendix G; Table GA ; 

Table G.5). The MLP with 10 nodes in the hidden layer and trained for 1000 iterations had the 

smallest class independent thematic uncertainty RMSE of all the MLPs tested (RMSE=0.059, 

R2=0.982, F=491A, p<O.OO 1) (Figure 4.8). This indicated that this MLP predicted thematic 

uncertainty most accurately. The most accurate MLPs (25 nodes, 2000 iterations and 25 nodes, 

2250 iterations) had class independent thematic uncertainty RMSE values 36% larger than the 

value of the smallest RMSE (RMSE=0.092, R2=0.942, F=147.9,p <0.001) and (RMSE=0.095, 

R2=0.943, F= 150.1, p<O.OO 1) respectively (Figure 4.8). 

The architecture that resulted in the most accurate estimation of thematic uncertainty was ten 

nodes in the hidden layer when the average class independent thematic uncertainty RMSE was 

considered (Figure 4.9). There was an overall increase in class independent thematic uncertainty 

RMSE above and below this value (Figure 4.9). However, when this relationship was tested 

using all regression relationships no significant correlation was found (at 95% confidence) 

(Appendix G; Table G.7). 
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Figure 4.8 Proportion of correct pixels as a function of MLP activation. Thin line 
represents assumption of one to one relationship. Thick line represents linear regression. 
a) 10 nodes, 1000 iterations. 
b) 25 nodes, 2000 iterations. 
c) 25 nodes, 2250 iterations. 
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Class independent thematic uncertainty RMSE and the number of iterations were found to be 

correlated using second order polynomial regression (R2=0.324, F=4.12, p=0.046) (Figure 4.10). 

Above 1000 to 1500 iterations, class independent thematic uncertainty RMSE tended to increase 

with number of iterations. When the number of iterations was less than this number, there was a 

general trend for class independent thematic uncertainty RMSE to increase with a decrease in 

the number of iterations. 
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Figure 4.9 Average class iudependent thematic uncertainty RMSE as a function of 
nodes in hidden layer. 
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iterations. Secoud order polyuomial regression line. 

To detennine whether there was a correlation between the ability of MLPs to accurately classify 

data and predict class independent thematic uncertainty, Po and RMSE values for all the 
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networks were compared (Figure 4.1 1). Using linear regression and an F-test it was determined 

that there was no significant correlation between these variables (at 95% confidence) (Appendix 

G; Table G.8). 
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Figure 4.11 Class independent thematic uncertainty RMSE as a function of Po. 

Though the class independent thematic uncertainty RMSE provided a measure of how 

accurately MLP activations represented thematic uncertainty, it did not provide a measure of 

how accurately activations represented uncertainty for all of the classes. The class specific 

thematic uncertainty RMSE provided an indication of the accuracy of activations for 

representing thematic uncertainty on a per-class basis. 

Using linear regression it was found that there was significant correlation (at 95% confidence) 

between predicted and actual class specific thematic uncertainty for all MLPs (Appendix G). 

The smallest class specific thematic uncertainty RMSE was for the MLP with 30 nodes in the 

hidden layer and trained for 3500 iterations (RMSE=0.025, R2=0.985, F=459 .7, p<0.001) 

(Figure 4.12). 
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Class specific thematic uncertainty RMSE as a function of the number of 

The MLPs with the largest overall accuracy (25 nodes, 2000 iterations and 25 nodes, 2250 

iterations) had a class independent thematic uncertainty RMSE values 55% and 61 % larger than 

the value of the smallest class independent thematic uncertainty RMSE respectively 

(RMSE=0.055, R2=0.960, F=167.6,p<0.001) and (RMSE=0.064, R2=0.946, F=124.8 , p <0.001) 

(Figure 4.13). 

The MLP that represented class independent thematic uncertainty most accurately (10 nodes, 

1000 iterations) had class specific thematic uncertainty RMSE values 54% larger 

(RMSE=0.054, R2=0.982 , F=392 .9, p<0.001) than the value of the smallest class specific 

thematic uncertainty RMSE. 
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Figure 4.13 Proportion of correct pixels per class as a function ofMLP activation. Thin 
line represents assumption of one to one relationship. Thick line represents linear 
regression. 
a) 10 nodes, 1000 iterations. 
b) 25 nodes, 2000 iterations. 
c) 25 nodes, 2250 iterations. 
d) 30 nodes, 3500 iterations. 

A significant re lationship between class specific thematic uncertainty error and the number of 

nodes in the hidden layer (at 95% confidence) was not found (Figure 4.14). From Figure 4.12 it 

may be seen that for most MLP architectures the trend was for class specific thematic 

uncertainty RMSE to reduce as the number of iterations was increased. A log-linear regression 

of averaged class specific thematic uncertainty RMSE values against iterations showed a 

significant correlation (R2=0.922, F= 155.5, p<O.OO 1) (Figure 4.15). 
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Figure 4.14 Average class specific thematic uncertainty RMSE as a function of the 
number of nodes in the MLP hidden layer. 
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Figure 4.15 Average class specific thematic uncertainty average RMSE as a function of 
the number of iterations. Log-linear regression line. 

When the relationship between entropy and Po was tested using linear regression it was found 

that they were negatively correlated and the relationship was significant (R2=O.579, F=153.9, 

p<O.OO 1) (Figure 4.16). Therefore as Po increased, activations tended towards 0 and 1. 
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There was a significant correlation between entropy and number of nodes assuming a log-linear 

relationship (R2=O.960, F= 168.3, p<O.OO 1) (Figure 4.17) and entropy and number of iterations 

assuming a log-linear relationship (R2=O.910, DF=12, F=91.0 , p<O.OOl) (Figure 4.18). MLP 

entropy generally decreased with an increase in the number of nodes and the number of 

iterations (Figure 4.17; Figure 4.18). 
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When the Po, class independent thematic uncertainty RMSE and class specific thematic 

uncertainty RMSE were tested for correlation using linear regression there were no significant 

relationships (at 95% confidence) between any ofthe variables (Appendix G; Table G.8). 

It was not possible to determine the most accurate MLP, as accuracy depended on the measure 

being used in terms of overall accuracy, class independent thematic uncertainty RMSE and class 

specific thematic uncertainty RMSE (Table 4.2). Different MLP networks were the most 

accurate dependent on the specific measure used to define accuracy. 

Table 4.2 Most accurate MLP networks dependent on variable used to define 
accuracy. 
Nodes Iterations Po Class independent Class specific thematic 

thematic uncertainty uncertainty RMSE 
RMSE 

10 1000 0.791 0.059 0.054 
25 2000 0.827 0.092 0.055 
25 2250 0.827 0.095 0.064 
30 3500 0.813 0.109 0.025 
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4.7.2 PNN 

All PNN results are in Appendix H. 

4.7.2.1 Global thematic accuracy 

The PNN with a smoothing function of 0.02 was the most accurate (Figure 4.19). Below this 

value, a decrease in smoothing function resulted in a large drop in Po, with Po less than 0.5 for a 

smoothing function of 0.0025 (Figure 4.19). Above a smoothing function of 0.02 an increase in 

smoothing function resulted in a decrease in Po (Figure 4.19). From this it may be seen that Po 

of the PNNs tested was dependent on the smoothing function. 
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Figure 4.19 PNN Po as a function of smoothing function. 

4.7.2.2 Thematic uncertainty 

For all PNNs tested, apart from the one with a smoothing function of 0.0025 (RMSE=0.408, 

F=3 .03, p=0.120), the relationship between output activation and proportion of correct pixels 

was significant using an F-test (Appendix H; Table H.2). 

The PNN smoothing function affected class independent thematic uncertainty RMSE. The 

smallest class independent thematic uncertainty RMSE occurred when the smoothing function 

was 0.11 (Figure 4.20; Figure 4.21). For values of the smoothing function above and below 0.11 

P~'Ns were less able to predict thematic uncertainty. At very small values of the smoothing 
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function the activation predicted the thematic uncertainty less well. With a smoothing function 

of 0.005 the RMSE was 0.215 (F= 9.71,p<0.05) (Figure 4.20). 
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Figure 4.20 PNN class iudependent thematic uncertainty RMSE as a function of 
smoothing function. 
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As the PNN smoothing function was increased, entropy increased (Figure 4.22). This was 

expected, as when the smoothing function was increased there would be greater overlap 
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between the PDF of classes (Figure 4.4). This would result in activation levels tending away 

from 0 and 1. 

0.50 • • 
0.45 • • • 
0.40 • • • 
0.35 • • 

• 
0.30 • • is: • ~ 0.25 • 

w • 
0.20 • 

• 0.15 • 
0.10 

• 0.05 

• 
0.00 

0.00 0.05 0.10 0.15 0.20 

Smoothing function 

Figure 4.22 PNN entropy as a function of smoothing function. 

4.7.2.3 Per-class accuracy 

The per-class accuracy was dependent on the smoothing function and the per-class metric used 

(Figure 4.23; Figure 4.24; Table 4.3; Table 4.4). 

Producer's accuracy (Appendix B) was maximised for the Sand, Marram, Reeds, Creep and 

Buckthorn classes with smoothing functions between 0.005 and 0.02. For all these classes apart 

from Sand, the Producer's accuracy fell to zero as the smoothing function was increased beyond 

0.02. For the Woodland class, Producer's accuracy was maximised for a smoothing function of 

0.03. The Grass Producer's accuracy was maximised at a smoothing function of 0.11 and the 

Water class had 100% Producer's accuracy for all smoothing functions tested apart from 0.005 

and 0.01. The Water, Woodland, Sand and Grass classes were less affected by smoothing than 

the other classes, with only small changes in Producer's accuracy with changes in smoothing 

function (Figure 4.23). The User's accuracy (Appendix B) was maximised for Sand, Grass and 

Creep with a smoothing function of 0.0025 (Figure 4.24). 

These results show that class accuracy was related to smoothing function, but the smoothing 

function that resulted in the most accurate class measures varied for each class. 
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Table 4.3 Confusion matrix for PNN where h=O.02. 
Water Sand Marrarn Grass Reeds Creep Buckthorn Woodland Correct Total 

User's 
accuracy 

Water 57 3 0 I 0 0 0 0 57 61 0.93 

Sand 0 60 2 3 0 0 0 0 60 65 0.92 

Marrarn 0 0 9 3 0 0 0 0 9 12 0.75 

Grass 0 I 17 243 7 30 0 13 243 311 0.78 

Reeds 0 0 0 3 5 0 0 0 5 8 0.63 

Creep 0 0 I 25 4 52 0 I 52 83 0.63 

Buckthorn 0 0 0 0 0 0 5 I 5 6 0.83 

Woodland 0 0 I 18 0 0 2 219 219 240 0.91 

Correct 57 60 9 243 5 52 5 219 650 

Total 57 64 30 296 16 82 7 234 786 

Producer's 
1.00 0.94 0.30 0.82 0.31 0.63 0.71 0.94 0.827 

accuracy 

Table 4.4 Confusion matrix for PNN where h=O.l1. 
Water Sand Marrarn Grass Reeds Creep Buckthorn Woodland Correct Total 

User's 
accuracy 

Water 57 10 2 2 0 0 0 0 57 71 0.80 

Sand 0 53 3 6 0 I 0 0 53 63 0.84 

Marrarn 0 0 1 0 0 0 0 0 I I 1.00 

Grass 0 I 23 265 13 77 3 19 265 401 0.66 

Reeds 0 0 0 0 0 0 0 0 0 0 0.00 

Creep 0 0 0 I 0 0 2 2 0 5 0.00 

Buckthorn 0 0 0 0 0 0 0 0 0 0 0.00 

Woodland 0 0 I 22 3 4 2 2 13 213 245 0.87 

Correct 57 53 I 265 0 0 0 213 589 

Total 57 64 30 296 16 82 7 234 786 

Producer's 
1.00 0.83 0.03 0.90 0.00 0.00 0.00 0.91 0.749 

accuracy 

The PNN that had the smallest class specific thematic uncertainty RMSE was the one where the 

smoothing function equalled 0.02 (Figure 4.25). Above and below this value there was an 

increase in RMSE as the difference between the smoothing function value and 0.02 increased. 

This indicated that the PNN that was most suitable for predicting the thematic uncertainty for all 

classes was the PNN with a smoothing function of 0.02. 

The difference that smoothing function made on the ability of PNNs to accurately classify 

certain classes and predict thematic uncertainty ofthose classes may be seen in Figure 4.26. In 

Figure 4.26a (h=0.02) the PNN predicted the class specific thematic uncertainty accurately. In 

Figure 4.26b (h=O.ll) the PNN did not predict the class specific thematic uncertainty 

accurately. There were two outliers in this plot for Marram and Creep classes. Only one pixel 

was classified as Marram and this pixel was correct. Five pixels were classified as Creep, but all 

these pixels were incorrect. In addition, none of the accuracy assessment pixels were classified 

as Buckthorn and Reeds. 
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a) Smoothing function = 0.02. 
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Different PNNs were the most accurate at predicting class and thematic unce11ainty (Table 4.5). 

The PNN where h=O .02 was the most accurate and predicted class specific thematic uncertainty 

most accurate ly. The PNN where h=O.11 predicted class independent thematic uncertainty most 

accurately. 
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Table 4.5 
accurac 

Most accurate PNN networks dependent on variable used to define 
. 

Smoothing Po Class independent Class specific thematic 
function thematic uncertainty uncertainty RMSE 

RMSE 
0.02 0.827 0.077 0.063 
0.11 0.749 0.019 0.560 

4.8 Discussion and Conclusions 

The results showed that it was possible to derive thematic uncertainty measures that were 

significantly correlated with the proportion of correct pixels (at 95% confidence), using the 

output activations from both MLP and PNN neural networks. These thematic uncertainty 

measures provided estimates of the probability of correct allocation on a per-pixel basis. 

However, the neural network that was most appropriate for one purpose was not necessarily the 

network that was most appropriate for another. For example, the PNN with a smoothing 

function of 0.02 had the largest overall accuracy (Po = 0.827). This network also had a four 

times greater error when predicting class independent thematic uncertainty (RMSE=O.077) 

compared to the PNN with a smoothing function of 0.11 that had the smallest class independent 

thematic uncertainty RMSE (RMSE=0.019). The difference between the Po of the PNN with the 

smallest RMSE (Po = 0.749) and the PNN with the largest Po was 0.078. 

4.8.1 MLP 

4.8.1.1 Overall accuracy 

The results obtained in this study are broadly in agreement with previous studies on the effects 

of network variables on accuracy (Foody and Arora, 1997; Kavzoglu and Mather, 2003). 

Heuristics derived to maximise thematic accuracy have been explained in terms of ability of a 

network to model the complexity of the data, without becoming over trained or too complex and 

not able to generalise (Kanellopoulos and Wilkinson, 1997). 

Accuracy increased as the number of nodes in the hidden layer increased, probably due to the 

network being able to model more complex distributions until it reached an optimum number of 

nodes (Figure 4.6) (Kavzoglu and Mather, 2003). Below this optimum, networks were less able 

to accurately model the complexity of the data. However, beyond the optimum point, the 
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increase in potential of a network to model complex distributions may have reduced the ability 

of a network to generalise and therefore accurately classify data other than that used in training. 

Over the range of iterations used in this study for the MLP, overall accuracy generally increased 

with an increase in the number of iterations (Figure 4.7). Initially an increase in number of 

iterations resulted in an increase in accuracy. This was probably due to the network learning the 

complexities of the training data distributions. However, beyond an optimum number of 

iterations, MLPs learnt the training data too accurately, resulting in a decreased ability to 

generalise and therefore became less able to accurately classify data they had not seen before 

(Atkinson and Tatnall, 1997; Paola and Schowengerdt, 1997). It could be assumed from results 

that the optimum number of iterations to maximise the MLP's overall accuracy was not reached. 

However, by examining the maximum activation as a function of iteration it may be seen that 

though there was a general trend for accuracy to increase with number of iterations, the 

maximum accuracy of the networks tested was achieved with 2000 iterations (Figure 4.27). It 

was likely that the optimum number of iterations was dependent on the architecture of the MLP. 

A smaller network is less complex and therefore will take a smaller number of iterations to learn 

to model the distributions of the training data. 
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Figure 4.27 Maximum MLP Po as a function of the number of iterations. 

4.8.1.2 Thematic uncertainty 

The results show that it was possible to derive measures that were significantly correlated (at 

95% confidence), with per-pixel thematic uncertainty using the output activations from the 

MLPs. These measures provided indications of the probability of correct allocation. From the 
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results obtained it appeared that the ability of a network to accurately model thematic 

uncertainty was also sensitive to network variables. 

Identifying the MLP network that modelled thematic uncertainty most accurately was difficult 

to define, as it depended on the definition of thematic uncertainty and there was no significant 

correlation between the class independent and class specific thematic uncertainty measures (at 

95% confidence) (Appendix G; Table G.8). If thematic uncertainty was defined as being class 

independent, the most accurate network was different from the one that was most accurate if 

class specific thematic uncertainty was considered (Table 4.2). Neither of these networks 

matched the architecture for the most accurate network in terms of overall accuracy (Table 4.2). 

When there were five nodes in the MLP the network did not predict thematic uncertainty 

accurately. The MLP that predicted class independent thematic uncertainty most accurately had 

10 nodes. As the number of nodes was increased beyond 10 there was a general decrease in the 

ability to model class independent thematic uncertainty (Figure 4.9). 

The large class independent thematic uncertainty RMSEs obtained from the five node networks 

were likely to be due to the lack of complexity in the network. It may be argued that the 

network's ability to model the complexities of the data affected overall accuracy and prediction 

of thematic uncertainty. At network sizes larger than ten nodes, the ability of the network to 

model thematic uncertainty was reduced. This could be due to over training, where an increase 

in the ability of the network to model the complexities of the training data results in an increase 

in thematic uncertainty prediction error. However, in the case of the MLP, prediction of 

thematic uncertainty is a by-product of the classification process. The training process 

minimises the error of the overall classification and does not estimate posterior probabilities. 

The decision boundaries for an MLP are not based on a PDF as with a Bayesian approach to 

classification. To position the decision boundary between classes in a hard classification so that 

overall accuracy is maximised there is no need for a probabilistic output. Classification accuracy 

does not necessarily correlate with the ability of a network to predict thematic uncertainty. A 

network may produce a large accuracy value, but the activations may tend towards the extremes 

of 0 and 1. When the relationship between Po and normalised entropy was examined (Figure 

4.16) there was a negative correlation, and so as accuracy increased, entropy decreased, 

indicating that activations tended towards extremes. This is an indication that as the networks 

were trained they became more confident in their outputs, though this increased confidence did 

not result in a greater ability to predict uncertainty. 
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If activations tend towards 0 or 1 for a classification containing thematic errors, thematic 

uncertainty is less likely to be modelled accurately, as the full range of probabilities will not be 

represented. There would be an exception if pixels were correctly allocated, as probabilities 

could be represented as certainties (0 or I). To model thematic uncertainty accurately, the 

network has to be able to output activations over the full range of probabilities. 

Entropy is a measure of uncertainty, and will be small when activations tend to 0 and 1. If the 

entropy was small then it may be assumed that the network was not able to represent thematic 

uncertainty unless pixels were correctly allocated, as it did not tend to output activations away 

from 0 and 1. If this were the case then a network with small entropy would be less able to 

represent uncertainty than one with large entropy. There was a significant but weak relationship 

between class independent thematic uncertainty RMSE and entropy (R2=0.145, F=19.8, 

p<O.OO I) (Figure 4.28) indicating that the ability of a network to model thematic uncertainty 

was only partially a function of the ability of the network to output activations that were not 

close to 0 or I. Another interpretation would be that large entropy represented large uncertainty 

in the thematic output and did not necessarily allow the network to model uncertainty 

accurately. This was borne out as, relative to the other MLPs, the networks with 5 nodes had 

large entropy values, but large class independent thematic uncertainty RMSE and small 

accuracy values. This complex relationship meant that a relationship between Po and class 

independent thematic uncertainty RMSE was unlikely and this was borne out by the results 

(R2=0.012, F=2.4,p=0.126). 

The thematic uncertainty results were made more complex when the class specific thematic 

uncertainty as a function of network variables results was examined. There was no significant 

correlation between class specific thematic uncertainty RMSE and number of nodes (at 95% 

confidence) (Figure 4.12). However, there was a negative log-linear correlation between class 

specific thematic uncertainty RMSE and the number of iterations (Figure 4.14) (k=0.922, 

F=155.5,p<0.001). The optimum network for predicting class specific thematic uncertainty (30 

nodes, 3500 iterations) was not the optimum network for prediction of either class independent 

thematic uncertainty or overall accuracy (Table 4.2). 
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The accuracy ofthematic uncertainty measures derived from the MLP was partially a function 

of network variables such as number of iterations and number of nodes. However, these 

heuristics should not be applied to other datasets, as variation in accuracy of thematic 

uncertainty measures is also dependent on variables other than network architecture. These 

include the land cover type being classified, the number of classes, the datasets used. 

The possibility for the discrepancy between class independent and class specific thematic 

uncertainty RMSE trends was likely to be due to the components of the RMSE value calculated. 

Creep was the class that made up the greatest proportion of class specific thematic uncertainty 

error for most iterations (Figure 4.29). The error in predicting the thematic uncertainty 

associated with this class decreased as the number of iterations increased. From the ground data 

it may be seen that the Creep class made up less than 11 % of the total number of pixels (82 

pixels of 786; Table 4.3). In terms of class specific thematic uncertainty this class had a 

disproportionate effect compared to its relative area. 
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Figure 4.29 Absolute difference between predicted and actual proportion of correct 
pixels on a per-class basis. 

The variation in the range of overall accuracy and errors in predicting thematic uncertainty 

varied a great deal in the networks tested (Table 4.2), The minimum overall error derived from 

Po was 0.173, 37% less than the maximum of 0.274 (Appendix G). There was a 66% variation 

in class independent thematic uncertainty RMSE and a 54% variation in class specific thematic 

uncertainty RMSE (Appendix G). The error when predicting thematic uncertainty varied more 

than when predicting class. This may have been due to the error measures during training being 

derived from thematic accuracy rather than thematic uncertainty. The training process therefore 

minimised thematic error rather than the error associated with predicting thematic uncertainty, 

4.8.2 PNN 

4.8.2 .1 Overall accuracy 

The PNN Po was dependent on smoothing function . Below the optimum value for accuracy 

(h=0.02), Po decreased rapidly with small changes in smoothing function. This was likely to be 

due to the PDF being a noisy representation of the training data (Bishop, 1995). The network 

was able to classifY the training data very accurately, but could not generalise to the rest of the 

dataset. For values of smoothing function above 0.02, Po decreased slowly with an increase in 

smoothing function. This was likely to be due to the smoothing function and so the training 
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kernels being too large, resulting in an over-smoothed PDF, which would be unrepresentative of 

the posterior probabilities (Bishop, 1995). 

4.8.2.2 Thematic uncertainty 

The results show that it was possible to derive measures that were significantly correlated (at 

95% confidence), with per-pixel thematic uncertainty using the output activations from the 

PNNs. As with the MLPs, the most accurate PNN network and the one that predicted class 

independent thematic uncertainty most accurately were not the same. The PNN with h=O.11 had 

the smallest class independent thematic uncertainty RMSE and there was a large difference in 

Po and class independent thematic uncertainty RMSE between this network and the most 

accurate one (h=0.02, Po = 0.827, RMSE = 0.077; h=0.11, Po = 0.749, RMSE = 0.019). This 

indicates that the ability of a PNN to classify accurately was not reflected in its ability to predict 

thematic uncertainty. 

However, the class independent thematic uncertainty RMSE values did not fully describe 

thematic uncertainty prediction using the PNN, as they did not provide per-class information 

and, therefore, may not have fully represented the thematic uncertainty prediction error. By 

examining the confusion matrices it was found that in all but six of the PNNs tested, at least one 

class was not represented in the accuracy assessment data, as no pixels were allocated to the 

class. Only in the classifications with a smoothing function between 0.0025 and 0.04 were all 

the classes represented. 

For the PNN with the smallest class independent thematic uncertainty RMSE (h=O.II), none of 

the pixels in the accuracy assessment were classified as Reeds or Buckthorn (Table 4.4), and the 

Marram class was only represented by one classified pixel, even though there were 30 ground 

data pixels in the accuracy assessment data. There were only five Creep class pixels, all of 

which were misclassified, out of 82 in the accuracy assessment ground data. The PNN with 

h=O.11 would not represent land cover accurately as these classes would be either under

represented or not represented at all in the final classification. This was likely to be due to an 

over-smoothed class conditional distribution resulting from too large a smoothing function. The 

estimated prior probabilities for the Reeds, Buckthorn, Marram and Creep classes were all small 

relative to the other vegetation classes, Woodland and Grass (Table 4.1). These small prior 

probabilities linked with an over-smoothed class conditional distribution would result in 

misclassification as a spectrally similar class, but with a larger prior probability. Most of the 
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misclassifications resulted from the Reeds, Buckthorn, Marram and Creep classes being 

misclassified as Woodland and Grass (Table 4.4). 

By examining the thematic uncertainty on a per-pixel per-class basis, it may be seen that the 

RMSE values based on all activations from the network did not necessarily represent 

uncertainty accurately. Only six of the PNNs resulted in at least one pixel for each class during 

the accuracy assessment stage. Of these, the PNN that represented class specific thematic 

uncertainty most accurately on a per-pixel per-class basis had h=0.02, which coincided with the 

largest overall accuracy. From the plot of per-class average activation against the proportion of 

pixels correctly classified for the PNN with h=0.02, it may be seen that the network modelled 

per-pixel uncertainty accurately for all classes (Figure 4.26). A linear regression of actual 

proportion of pixels correctly classified as a function of the predicted value assuming that this 

was the average activation showed that there was a significant correlation (R2= 0.886, F=55.5, 

p<O.OOI). 

4.8.3 Comparing the MLP and PNN 

Both PNN and MLP networks were able to model thematic uncertainty on a per-pixel basis. For 

both types of network, there did not appear to be a link between the thematic accuracy of a 

network and the thematic uncertainty outputs. Though selecting the most accurate network or 

the one that modelled thematic uncertainty most accurately was relatively simple, determining 

network suitability for change detection was more difficult. This was because the requirements 

of error prediction are different for a simple mapping exercise using the output from a 

classification and monitoring such as change detection where two or more classifications are 

combined. If a land cover map is required, the most accurate network was likely to be most 

suitable. However, for change detection there was also a requirement for accurate prediction of 

uncertainty, to estimate the probability of error of the output. In simple terms the optimum 

network should have the largest accuracy and smallest class independent and class specific 

thematic uncertainty RMSEs. These conditions did not coincide for the MLP or the PNN 

networks. Therefore, a network used for change detection where output errors are modelled 

should be selected carefully to reduce both thematic error and thematic uncertainty error. This is 

likely to result in a compromise between small thematic uncertainty errors and small thematic 

errors. 

It was shown that care had to be taken when examining the class independent and class specific 

thematic uncertainty RMSE values as they did not necessarily fully represent thematic 
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uncertainty accuracy. Using the class independent thematic uncertainty RMSE, there was no 

indication of how accurately class specific thematic uncertainty was represented. 

It was likely that the PNN most suited for change detection in which change from all eight 

classes was a possibility was the one with h=0.02. This was because of all the PNNs tested this 

network had the largest overall accuracy, was able to represent all classes within the 

classification and could predict the probability that a given class was correct with the least error. 

During the training process MLPs move the boundaries between classes in order to minimise 

error (Bishop, 1995). This indicates that MLP activations only represent thematic uncertainty as 

a by-product of the classification process and cannot be assumed to represent posterior 

probabilities. PNNs use the posterior probability to determine the most probable class and the 

decision boundaries between classes. As PNNs generate the posterior probability, the outputs 

may be directly interpreted as thematic uncertainty. This indicates that PNNs should be more 

suitable than the MLPs for deriving thematic uncertainty on a per-pixel basis. However, the 

results obtained in this study do not necessarily indicate this, as the PNN that represented 

thematic uncertainty most accurately (Table 4.5), had greater thematic uncertainty errors than 

the MLP that represented thematic uncertainty most accurately (Table 4.2). Though the most 

accurate PNN (h = 0.02) (Table 4.5) represented thematic uncertainty less accurately than some 

of the MLPs (for example 10 nodes, 1000 iterations), when overall accuracy, class independent 

thematic uncertainty and class specific thematic uncertainty were taken into account no single 

PNN or MLP was most accurate (Table 4.2). 

To simplify the study a single network type was selected for use in later chapters. The PNN's 

outputs are posterior probabilities, unlike the MLP for which the outputs need to be interpreted 

as posterior probabilities. The PNN also produces a stable output, as the output will be the same 

for the same training inputs and network variables. The accuracy of MLPs is dependent on 

starting conditions, as well as network variables. Small changes in the initial conditions prior to 

training can result in large differences in the final ability of the network to classify even with the 

same input training data (Kanellopoulos and Wilkinson, 1997; Paola and Schowengerdt, 1997). 

For these reasons the PNN was used in later chapters for change detection. 

Care has to be taken when using indicators of the accuracy of thematic uncertainty measures 

such as the class independent thematic uncertainty RMSE. These indicators may not fully 

represent the ability of a network to predict thematic uncertainty. Within this study it was seen 

that global measures of unceliainty such as the class independent thematic uncertainty RMSE 
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can give an incorrect impression of how thematic uncertainty was represented by output 

activations. The confusion matrix should be studied to determine whether all classes were 

accurately classified, particularly in the case where some of the classes had a very small prior 

probability and so were not accurately represented in the accuracy assessment stage. 

4.8.4 Summary 

In this chapter thematic uncertainty measures were produced that could be used to map the 

spatial distribution of thematic errors in classifications for a model of change detection. These 

thematic uncertainty measures were derived from the output of MLP and PNN classifiers and 

provided indications of the thematic uncertainty for every class at every pixel. Other 

classification methods may be used to provide per-pixel thematic uncertainty (for example de 

Bruin and Gorte, 2000; McIver and Friedl, 2001) and, therefore, used as input to per-pixel 

change detection models. The outputs ofPNNs are the posterior probability of correct allocation 

for every class at every pixel and therefore PNNs are more suitable for a probabilistic study than 

MLPs that do not output probabilities. 

Though there were significant correlations between overall accuracy and thematic uncertainty as 

a function of network variables for MLPs, heuristics for deriving the most suitable network for 

change detection should not be made on the basis of these trends, as the variables were not 

highly correlated and are likely to be very data dependent. This means that the most effective 

method of determining a network to use should be based on empirical testing rather than using 

pre-determined heuristics. 
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5 Combining thematic and misregistration uncertainty using 

synthetic data 

5.1 Introduction 

The purpose of this study was derive operational methods of determining land cover change 

using remote sensing that would minimise the error associated with change detection. To do this 

a model of land cover change that predicted the uncertainty associated with the process of 

determining thematic change on a pixel by pixel basis was derived. Assuming that a hard 

thematic model can represent the real world, the errors associated with change detection are due 

to thematic errors in the classifications and misregistration between images that were classified. 

Determining per-pixel change therefore required the per-pixel prediction of thematic error and 

misregistration errors between classification data. As it is effectively impossible to determine 

error on a per-pixel basis for a large area, measures of the probability of error or uncertainty 

were required. The use of geometric and thematic uncertainty measures was tested to determine 

whether these measures could increase the accuracy of change detection. 

5.2 Use of thematic uncertainty measures in change detection 

In the previous chapters, per-pixel measures of thematic and misregistration uncertainty were 

derived. If these measures were to be of use in per-pixel change detection it must be possible to 

combine them to generate a per-pixel prediction of change. If per-pixel measures of the 

probability of change were to be generated then the misregistration and thematic error measures 

must be probabilistic. 

In Chapter 3 an overall misregistration error function, f.1, was derived (Section 3.6.6). However, 

f.1 was not suitable as a measure of misregistration uncertainty, as it was a single averaged value 

for each pixel and was not a probabilistic output. To provide a per-pixel change uncertainty 

output from the thematic and geometric uncertainty measures, it was necessary to preserve the 

probabilistic nature of the input thematic and misregistration models. The geometric error model 

that was used in the generation of the averaged misregistration model derived was probabilistic. 

The output of the geometric error model consisted of a series of geometric error vectors for 

every pixel with a probability associated with each vector (Figure 3.22). This uncertainty model 

was suitable for use in per-pixel change detection, as it provided a local model of geometric 

uncertainty. When the geometric uncertainty models are combined for two classifications at two 

times, they can provide probabilistic measures of misregistration. 
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In Chapter 4 outputs from MLP and PNN classifiers were used to derive per-pixel measures of 

thematic uncertainty (Figure 5.1). These measures could be directly used in a change 

uncertainty model, as they are probabilistic or could be interpreted as probabilistic and provide a 

thematic uncertainty measure for every class at every pixel (Figure 5.1). 

Class1 Class 3 Class 4 

Class 5 Class 6 Class 7 Class 8 
Figure 5.1 Per-pixel uncertainty derived from PNN as a function of class for 
subsection of 2002 Ainsdale data. White is large probability, black is small probability. 

5.3 Fuzziness and thematic uncertainty 

Errors in change detection are particularly likely to occur at boundaries between classes (Dai 

and Khorram, 1998). This is partially if the boundary position is incorrect due to 

misregistration. However, where there are fuzzy boundaries or ecotones it is difficult to position 

the boundary accurately (Brown, 1998; Fortin et al., 2000; Molenaar and Cheng, 2000). Where 

pixels are mixed the hard thematic model is limited (Fisher, 1997; Foody and Boyd, 1999). One 

option would be to use fuzzy classification (Bastin, 1997; Foody, 1997; Foody and Boyd, 1999; 

Maselli, 2001) in change detection. However, the aim ofthis study was to use hard classification 

for thematic change detection, as potential users of the output are likely to require a traditional 

thematic map (Section 4.2). 

If the thematic uncertainty measures provided an indication ofthe uncertainty due to mixed 

pixels, then this option would account for errors in the classification as well as the fuzziness 

(Foody, 2000). However, thematic uncertainty and fuzziness are inherently different concepts 

(Ricotta, 2004). Fuzziness is partial membership to a series of classes, whereas thematic 
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uncertainty is a description of the error associated with the probability of membership to a series 

of classes. In the context of hard classification, fuzziness may be considered a subset of 

uncertainty. As the amount of mixing within a pixel increases, the probability that a given hard 

class is correct is reduced due to confusion of the classes in feature space. It was therefore likely 

that the thematic uncertainty measures derived in Chapter 4 would partially account for the 

multiple class membership of a pixel as well as the uncertainty. In the case of pixels that contain 

multiple classes, an increase in fuzziness would result in increased uncertainty in the correct 

allocation. It follows that the thematic uncertainty measures derived could account for fuzziness 

in terms of uncertainty in a hard classification. 

In this study it was not possible to test whether the measures derived were both fuzzy and 

probabilistic, as fuzzy accuracy assessment data were not acquired. The PNN outputs posterior 

probabilities as with the ML classifier, though the PNN is non-parametric unlike the ML. 

Previous studies have shown that the ML output can be used to predict multiple class 

membership (Foody et al., 1992; Bastin, 1997). Therefore, posterior probability can be used to 

model fuzziness and so the assumption was made that there was a link between fuzziness and 

PNN output and that the thematic uncertainty measures derived were likely to account for the 

multiple class membership, as well as uncertainty. 

5.4 Combining geometric and thematic uncertainty measures 

To combine the geometric and thematic uncertainty models derived in a per-pixel change 

uncertainty model the following approach was taken (Figure 5.2): 

l. For every geometric error vector of a given pixel, the thematic uncertainty values were 

applied to the position of the pixel represented by the geometric error vector. As the 

geometric error vector was not necessarily an integer value, there were likely to be four 

pixels that a thematic uncertainty value was applied to due to a single geometric error 

vector (Figure 3.22; Figure 5.2). The thematic uncertainty value was modified by the 

proportion of a pixel the geometric error vector applies to and by the probability of the 

vector. 

2. Stage 1 was repeated for every class. 

3. The new thematic uncertainty was normalised, so that the uncertainty for every pixel 

equalled one. 
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Figure 5.2 Combining the thematic and geometric uncertainty models. For each pixel 
there are up to 77 orthometric error vectors and associated geometric error probabilities. 
This represents the maximum size of the geometric error matrix in Figure 3.21. 
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The new uncertainty layer was similar in appearance to the thematic uncertainty layer (Figure 

5.1), but combined thematic and geometric uncertainty. 

Change may be predicted in a number of ways, but in this chapter the ability of the combined 

uncertainty model to determine change was assessed in three ways: 

1. Predict whether a given pixel had changed or not between 1\ and f2. 

2. Predict the most probable class of a given pixel at two times, and determine whether the 

class had changed. 

3. Predict the probability or magnitude of change in land cover class between 1\ and f2. 

5.5 Method 

To compare change detection methods, 256 pixel by 256 pixel synthetic images were generated 

with a spatial resolution of 1 m, as with the Ainsdale CASI data. Each image was treated as a 

complete and 100% accurate ground data set. For each change scenario one image was 

generated for t\ and one for f2. The images contained two classes. Class 1 was a square of 

variable size in the centre ofthe image, Class 2 the area surrounding the square (Figure 5.3). For 

fJ, the size of the classes was kept constant, but the size of the boundary between them was 

changed. The sizes of the boundary width used were 0 m (a hard boundary), 5 m, 10 m, 15 m, 

and 20 m. The mixing in the boundaries was assumed to be linear with distance. 

The t2 images were generated with the same variations in boundary fuzziness as for fl. For each 

image at fJ, a no change image was generated for f2. Images were also generated with varying 

amounts of change between f\ and 12 (Figure 5.3). The boundary between the two classes was 

moved varying distances in the f2 image to generate differences of 5 m, 10 m, 20 m, 30 m and 

40 m between f\ and f2. In every case the change was a reduction in the size of Class 1. These 

resulted in thirty change scenarios with varying amounts of change and varying widths of fuzzy 

boundary. 

For each image representing actual ground conditions, thematic and geometric errors were 

applied to derive a synthetic image representing a classification derived from remotely sensed 

data. 

Geometric error was applied assuming angular acceleration between lOS-IS-1 and 
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100S-IS-1 for tl and between l os-ls-1 and 50s-ls-1 for t2' The average error was derived using 

Equation 2.11 and a random error between -1 and + 1 pixel was applied to the average. The 

values used to generate the geometric error matched values observed in actual data. At the first 

pixel in the flight line the direction of the error vector was along the flight path. At pixel 64 in 

the flightline, the error vector was increased 90°. This was repeated at pixels 128 and 194. The 

variation in the direction of the error vector was applied so that misregistration direction varied 

across the imagery. 

(a) (b) 

(c) (d) 
Figure 5.3 Synthetic data class 1. The change distance is assumed to be the distance 
that the boundary between the classes has moved. 
a) Time 1, hard boundary. 
b) Time 2, hard boundary. Boundary between classes moved 40 m. 
c) Time 1, Fuzzy boundary width = 20 m. 
d) Time 2, Fuzzy boundary width = 20 m. Boundary between classes moved 40 m. 

For the tl images the assumed flight direction was south, for t2 flight direction was west. The 

variation in flight direction was applied so that misregistration would vary across the image in 

two dimensions. Topographic effects were not taken into account in order to simplify the 

synthetic data model. The geometric error applied resulted in the misregistration in Figure 5.4 
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Figure 5.4 Misregistration between synthetic images. As the flight directions of the 
images at 11 and 12 were different by 90° and the geometric error vector was varied across 
the image misregistration varies in two dimensions across the image. 
a) Misregistration in x direction. 
b) Misregistration in y direction. 
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For each of the thirty change scenarios, five thematic error scenarios of5%, 10%,20%,30% 

and 40% were applied. Two randomised 256 pixel by 256 pixel images were derived, one for t1 

and one for t2. These images contained random values between 0 and 100. For each of the 

thematic error scenarios (between 5% and 40%), a pixel was assumed to be correct if the pixel 

value of the randomised image was greater than the thematic error. For example for the 20% 

thematic error scenario, all pixels with a value in the random image greater than 20 were 

assumed to be correct. All other pixels were assumed to be incorrect. 

If a pixel was designated correct, the thematic uncertainty was assumed to be a random value 

between -0.25 and 0.25 of the fuzzy value, approximately four times the most accurate PNN 

class specific thematic uncertainty RMSE in Chapter 4 (Table 4.5). 

If the pixel was designated incorrect, a random thematic value between 0.5 and 1 was applied to 

the incorrect class. For example if the class of a pixel that had been designated incorrect was 

Class I in the original data then a value between 0.5 and 1 was applied to Class 2. This resulted 

in a series of images containing thematic and geometric errors (Figure 5.5). 

The following change detection models were compared: 

1. No Uncertainty: hard classifications and no geometric or thematic uncertainty. 

2. Misregistration: geometric uncertainty was derived, but not thematic uncertainty. 

3. Thematic: thematic uncertainty was derived but not geometric uncertainty. 

4. Combined: combined thematic and geometric uncertainty. 

The geometric uncertainty model and thematic uncertainty models were merged using code 

written in Interactive Data Language (IDL) (Appendix I). 

The confusion matrices of the change models were compared using two models with either two 

or four classes. In the two-class change problem the classes were Change and No change. The 

class of the pixel was assumed to be Change when: 

(Class 111 - Class 1/2) >= 0.5 

The class of the pixel was assumed to be No change when: 

(Class 111 - Class 1/2) < 0.5 
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(c) (d) 
Figure 5.5 Synthetic data class 1, with thematic and geometric errors applied 
a) Time 1, hard boundary. 
b) Time 2, hard boundary. Boundary between classes moved 40 m. 
c) Time 1, Fuzzy boundary width = 20 m. 
d) Time 2, Fuzzy boundary width = 20 m. Boundary between classes moved 40 m. 

In the four-class change problem there were the following classes: 

I . No change, Class 1 

2. Change, Class 1 to Class 2 

3. Change, Class 2 to Class 1 

4. No change, Class 2 

To calculate which of the four classes each pixel belonged to, the class for t[ and t2 was derived 

from the class with the largest thematic uncertainty. As this was effectively a method of 

hardening a classification, the Thematic and No uncertainty models gave the same result. Using 

the four class set would enable judgements to be made as to how accurately the models could 

detect change and predict what change was taking place 
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The RMSE between the actual and predicted thematic change vector magnitudes was also 

compared for the four models. This enabled a comparison to be made of how accurately each 

model predicted the thematic change vectors. 

The error statistics were generated from the whole of an image and therefore a whole 

population. This means that significance values did not need to be generated and any differences 

were effectively significant. 

To examine the spatial distribution ofthe errors within the change detection methods the change 

images were observed when the thematic error was 20%. This value was used as it was the 

closest value to the thematic error of the most accurate PNN in Chapter 4 (Table 4.5). 

5.6 Results 

All the results from the synthetic data are in Appendix J. 

5.6.1 Thematic error 

As thematic error of the input layers increased, the overall accuracy of the change detection 

model decreased (Figure 5.6; Figure 5.7). The exceptions to this trend were the Misregistration 

and Combined models when no change had taken place using the two-class ChangelNo change 

model (Figure 5.6). The general trend of decreasing change detection accuracy with an 

increased thematic error was expected, as an increase in the input errors was likely to lead to an 

increase in the output errors. However, the near constant overall accuracy with an increased 

thematic error for the Misregistration and Combined uncertainty models was unexpected. When 

the thematic error was 20% both uncertainty models reduced the predicted change close to 0% 

(Table 5.1). 

In the two-class problem, change was only assumed when the difference vector between the two 

times was greater than 0.5. As thematic errors were introduced randomly rather than in a 

clumped form it was likely that the majority of pixels containing thematic error would be 

surrounded by pixels that did not. In a pixel that contained thematic error, the geometric 

uncertainty model was likely to result in thematic error being smoothed below the 0.5 threshold 

by those correct pixels around it. Using the geometric uncertainty model each pixel was likely to 

be strongly affected by the pixels surrounding it, as the geometric error matrix used values from 

up to 76 of the surrounding pixels (Figure 3.21). 
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Figure 5.6 Overall accuracy as a function of thematic error for two class change 
model. 
a) Time 1, hard boundary. 
b) Time 2, hard boundary. Boundary between classes moved 40 m. 
c) Time 1, fuzzy boundary width = 20 m. 
d) Time 2, fuzzy boundary width = 20 m. Boundary between classes moved 40 m. 

In the four-class problem, the No Uncertainty change detection method had a close to linear 

negative relationship with thematic error for all change scenarios (Figure 5.7). At a thematic 

error of less than 20%, the Combined and Misregistration change methods had a close to linear 

re lationship with overall accuracy and overall accuracy values were greater than 97% (Figure 

5.7). With a thematic error of greater than 20%, overall accuracy decreased sharply with an 

increase in thematic error, with the Misregistration method having the greatest decrease in 

overall accuracy (Figure 5.7). 
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Figure 5.7 
model. 

Overall accuracy as a function of thematic error for four class change 

a) Time 1, hard boundary. 
b) Time 2, hard boundary. Boundary between classes moved 40 m. 
c) Time 1, fuzzy boundary width = 20 m. 
d) Time 2, fuzzy boundary width = 20 m. Boundary between classes moved 40 m. 

Using the Misregistration method when the thematic error was small was as accurate as or more 

accurate than using the Combined method (Figure 5.6; Figure 5.7). However, as thematic error 

increased, the Combined method became more accurate than the Misregistration method alone, 

indicating that the effect of thematic uncertainty in change detection increased with increasing 

thematic error (Figure 5.6). In the four-class problem this effect was increased and the 

Misregistration method became much less accurate relative to the Combined method at large 

thematic errors (Figure 5.7). 
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Table 5.1 Synthetic change data confusion matrices for hard boundary and no 
change assuming two classes using data with thematic error = 20%. 

a) No Uncertainty model b) Misregistration model 

Actual change 
No 

Change 
change 

No change 44252 0 

Change 21284 0 
Producer's 

0.675 0.000 accuracy 

c) Thematic model 

Actual change 
No 

Change change 
No change 46906 0 

Change 18630 0 
Producer's 

0.716 0.000 
accuracy 

User' s 
accuracy 

1.000 

0.000 

0.675 

User's 
accuracy 

1.000 

0.000 

0.716 

Actual change 
No Change 

change 
No change 65460 0 

Change 76 0 
Producer's 

0.999 0.000 
accuracy 

d) Combined model 

Actual change 
No Change 

change 
No change 65531 0 

Change 5 0 
Producer's 

1.000 0.000 
accuracy 

User' s 
accuracy 

1.000 

0.000 

0.999 

User's 
accuracy 

1.000 

0.000 

1.000 

The increased importance of using thematic uncertainty measures in change detection as 

thematic error increased was also observed when comparing the No Uncertainty and Thematic 

change methods (Figure 5.6). At small thematic errors, the two methods had similar accuracies 

for change detection. However, as thematic error increased, the difference in change detection 

accuracy increased, with the Thematic uncertainty method having a larger accuracy than the No 

Uncertainty method. 

The reduction in accuracy as a function of an increase in thematic error also occurred in the 

prediction ofthe thematic change vector magnitude (Figure 5.8). All methods of change 

detection became less accurate as the thematic error increased. 

The relative importance of thematic uncertainty as thematic error increased was also observed in 

the plots of the RMSE between predicted and actual thematic change vectors, particularly the 

plots ofthematic change vector error as a function of thematic error for the areas of change only 

(Figure 5.9). At small thematic errors the Misregistration method resulted in smaller errors in 

the predicted thematic change vector than the Combined method, but as thematic error 

increased, the Misregistration method became less accurate compared to the Combined method 

(Figure 5.9). 
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Figure 5.8 RMSE as a function of thematic error. 
a) Time 1, hard boundary. Boundary between classes moved 5 m. 
b) Time 2, fuzzy boundary width = 20 m. Boundary between classes moved 5 m. 
c) Time 1, hard boundary. Boundary between classes moved 40 m. 
d) Time 2, fuzzy boundary width = 20 m. Boundary between classes moved 40 m. 
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Figure 5.9 RMSE as a function of thematic error only using pixels in which change 
took place. 
a) Time 1, hard boundary. Boundary between classes moved 5 m. 
b) Time 2, fuzzy boundary width = 20 m. Boundary between classes moved 5 m. 
c) Time 1, hard boundary. Boundary between classes moved 40 m. 
d) Time 2, fuzzy boundary width = 20 m. Boundary between classes moved 40 m. 

5.6.2 Impact of fuzziness and change 

5.6.2.1 Hard boundaries with no thematic change 

Ln the images where no change took place and the classes had a hard boundary, change was 

incorrectly predicted at points across the whole image for the No Uncertainty and Thematic 

models (Figure 5.10). This also occurred in the transect data, with large negative and positive 

predicted thematic change vectors in areas of no actual change (Figure 5.11). The confusion 

matrices for these models show that the Producer's accuracy for the No Change class was much 

greater using the Misregistration and Combined methods classes in both the two-class and four-
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class problems (Table 5.1; Table 5.2). This indicated that the No Uncertainty and Thematic 

models incorrectly predicted large amounts of change relative to the Misregistration and 

Combined models. 
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Figure 5.10 Synthetic data change layers where no change and hard boundaries 
between classes. Black lines are positions oftransects in Figure 5.11. 
a) No Uncertainty model. 
b) Misregistration model. 
c) Actual change. 
d) Thematic model. 
e) Combined model. 

The Misregistration change model reduced the incorrect prediction of change compared to the 

No Uncertainty and Thematic models, with the Combined method reducing these errors further 

(Figure 5.10). These trends also occurred in the transect data (Figure 5.11), with the variation 

from the actual thematic change vector being least in the Combined model and only slightly 

greater in the Misregistration model. The No Uncertainty model had the greatest variations from 

the actual thematic change vector with errors that were slightly greater than the Thematic model 

(Figure 5.11). The observations above match the confusion matrices of the different change 

detection methods (Table 5.1 ; Table 5.2). 
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Table 5.2 Synthetic change data confusion matrices for hard boundaries between 
classes and no change assuming four classes using data with thematic error = 20%. 
a) No Uncertainty and Thematic models. b) Misregistration model 

A t 1 h c ua c an~e A 1 h ctua c an~e 
No 

Change Change 
No User's 

change change 
I -I 

1-2 2- 1 
2-2 

accuracy 

No 
Change Change 

No User's 
change change 

I- I 
1-2 2- 1 2-2 accuracy 

No change 
14006 0 0 1815 0.885 

I-I 
No change 

21438 0 0 61 0.997 
I - I 

Change 1-2 3486 0 0 7052 0.000 Change 1-2 208 0 0 22 1 0.000 

Change 2-1 3535 0 0 n il 0.000 Change 2-1 238 0 0 536 0.000 

No change 
877 0 0 27554 0.969 2-2 

No change 20 0 0 428 14 1.000 
2-2 

Producer's 
0.639 0.000 0.000 0.632 0.634 

Producer's 
0.979 0.000 0.000 0.981 0.980 

accuracy accuracy 

c) Combined model 

A t 1 h c ua c an~ e 
No 

Change Change 
No 

User's 
change change 

I-I 
1-2 2- 1 

2-2 
accuracy 

No change 
21538 0 0 30 0.999 I-I 

Change 1-2 102 0 0 117 0.000 

Change 2-1 248 0 0 307 0.000 

No change 
16 0 0 43 178 1.000 2-2 

Producer's 
0.983 0.000 0.000 0.990 0.987 

accuracy 

Areas incorrectly predicted as change occurred at the boundary between the two classes using 

all change detection methods (Figure 5.10). A large decrease in incorrect prediction of change 

occurred when the Misregistration and Combined models of change detection were used 

compared to the Thematic and No Uncertainty models of change detection (Figure 5.10; Figure 

5.11). Though the Combined model removed most of the incorrect pred iction of change in the 

homogeneous areas, it still incorrectly predicted change at the boundaries, but the predicted 

thematic change vector was generally less than 0.5 (Figure 5.10). This error may be seen in the 

transect data (Figure 5.11). At the boundary between the classes (50 m), a large negative 

thematic change vector occurred in the Misregistration and Combined change methods, showing 

that at the boundaries these methods did not completely remove the effects of misregistration 

(F igure 5.11). 
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Figure 5.11 Change vector along transects for No change and hard boundaries between 
classes. Boundary at 50 m. Transect position shown in Figure 5.10. 0 m is on the left side of 
the transect. 

Very little change was predicted incorrectly using the Combined or Misregistration methods for 

the two-class and four-class problems, with Producer's and User' s accuracies for the No change 

class all greater than 97.8% (Table 5.1; Table 5.2). This compared with Producer' s accuracy of 

71.6% for the Thematic method and 67.5% for the No Uncertainty method using the two-class 

problem. In the four-class problem using the No Uncertainty method, the Producer' s accuracy 

of the No change classes were 63.9% and 63.2%. These results showed that when using the No 

Uncertainty and Thematic methods a large number of pixels were misallocated to the Change 

classes. 

5.6.2.2 Fuzzy boundaries with no thematic change 

In the images where no change occurred and the classes had a 20 m fuzzy boundary width 

(Figure 5.12) change was only predicted incorrectly at the boundaries using the No Uncertainty 

model. Using the Misregistration model a small increase in incorrect change prediction occurred 

at one part of the boundary on the right side of the image (Figure 5.12). A small reduction in the 

incorrect change prediction occurred over the fuzzy boundary using the Thematic model, which 

may be observed as a faint square in the middle of the image (Figure 5.12). This was likely to 

occur due to the thematic uncertainty values being closer to one another for f\ and f 2, due to 

fuzziness in pixels and a corresponding reduction in predicted change in the thematic 
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uncertainty. Using the Combined method when the boundary was fuzzy, very little error 

occurred even at the boundary between the classes (Figure 5.12). These results may also be 

observed in the transect data (Figure 5.13). The No Uncertainty method predicted change 

incorrectly at points all along the transect (Figure 5.13). The Thematic method predicted 

reduced change, particularly in the section of boundary (35 m to 55 m) (Figure 5.13). The 

Misregistration method reduced the predicted thematic change vector below 0.5 along most of 

the transect, apart from at 48 m (Figure 5.13). The Combined method reduced the error all along 

the transect, with a thematic change vector smaller than 0.4 (Figure 5.13). 
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Figure 5.12 Synthetic data change layers where there is no change and fuzzy boundary 
width = 20 m. Black lines are positions of transects in Figure 5.13. 
a) No Uncertainty model. 
b) Misregistration model. 
c) Actual change. 
d) Thematic model. 
e) Combined model. 

In the images with no actual change the Misregistration and Combined methods removed much 

of the error due to change being incorrectly predicted (Figure 5.10; Figure 5.12). This was also 

observed in the confusion matrices for the two and four-class change problems when the 

thematic error was 20% and the classes had a hard boundary (Table 5.3 ; Table 5.4). In the two

class and four-class change problems, the results of the no change scenario for a thematic error 
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of 20% where the classes had fuzzy boundaries were similar to the results where the classes had 

hard boundaries (Table 5.1; Table 5.2; Table 5.3; Table 5.4). 
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Figure 5.13 Change vector along transects for No change and fuzzy boundary width = 
20 m. Boundary between 35 m and 55 m. Transect position shown in Figure 5.12. 0 m is on 
the left side of the transect. 

Using the Combined or Misregistration methods the Producer's and User's accuracy for the No 

change class was greater than 99% for the two-class problem and 92.8% for the four-class 

problem (Table 5.3 ; Table 5.4). This compared with a Producer's accuracy of73.6% for the 

Thematic method and 66.7% for the No Uncertainty method using the two-class problem (Table 

5.3). In the four-class problem using the No Uncertainty change method when there were fuzzy 

boundaries, for the No Change classes the Producer' s accuracies were 59.6% and 62.4% and the 

User' s accuracies were 81.9% and 96.7% (Table 5.4). These results were similar to those where 

classes had hard boundaries (Table 5.2) showing that unlike the Combined and Misregistration 

methods, using No Uncertainty and Thematic methods a large number of pixels were 

misallocated to the Change classes. 
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Table 5.3 Synthetic change data confusion matrices for fuzzy boundary width = 20 m 
and no change assuming two classes using data with thematic error = 20%. 

a) No Uncertainty model b) Misregistration model 

Actual change 
No 

Change 
change 

No change 43697 0 

Change 21839 0 
Producer's 

0.667 0.000 
accuracy 

c) Thematic model 

Actual change 
No 

Change change 
No change 48225 0 

Change 17311 0 
Producer' s 

0.736 0.000 
accurac~ 

User's 
accuracy 

l.000 

0.000 

0.667 

User' s 
accuracy 

l.000 

0.000 

0.736 

Actual change 
No 

Change 
change 

No change 65490 0 

Change 46 0 
Producer's 

0.999 0.000 
accuracy 

d) Combined model 

Actual change 
No 

Change 
change 

No change 65536 0 

Change 0 0 
Producer's 

l.000 0.000 
accuracy 

User' s 
accuracy 

l.000 

0.000 

0.999 

User' s 
accuracy 

l.000 

0.000 

1.000 

Table 5.4 Synthetic change data confusion matrices for fuzzy boundary width = 20 m 
and no change assuming four classes using data with thematic error = 20%. 
a) No Uncertainty and Thematic models. b) Misregistration model 

A t 1 h c ua c an~e A tu 1 h c a c an~e 
No 

Change Change 
No 

User's 
change change 

I-I 
1-2 2-1 

2-2 
accuracy 

No 
Change Change 

No User's 
change change 

I- I 
1-2 2-1 

2-2 accuracy 

No change 
10079 0 0 2222 0.819 

I-I 
No change 

15683 0 0 153 0.990 
I- I 

Change 1-2 2835 0 0 7953 0.000 Change 1-2 404 0 0 337 0.000 

Change 2-1 2960 0 0 809 1 0.000 Change 2-1 557 0 0 710 0.000 

No change 
1026 0 0 30370 0.967 

2-2 
No change 

256 0 0 47436 0.995 
2-2 

Producer's 
0.596 0.000 0.000 0.624 0.6 17 

Producer's 
0.928 0.000 0.000 0.975 0.963 

accuracy accuracy 

c) Combined model 

A 1 h ctua c an~e 
No 

Change Change 
No 

User's 
change change 

I - I 
1-2 2-1 

2-2 
accuracy 

No change 
15889 0 0 131 0.992 

I-I 

Change 1-2 317 0 0 227 0.000 

Change 2-1 494 0 0 446 0.000 

No change 
200 0 0 47832 0.996 

2-2 
Producer's 

0.940 0.000 0.000 0.983 0.972 
accuracy 
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5.6.2.3 Hard boundaries with thematic change 

In the change images where 40 m of change took place and the classes had hard boundaries, the 

general pattern of actual change was observable in all images (Figure 5.14). [n the homogeneous 

areas of no change, similar patterns occurred to those in Figure 5.10 and Figure 5.12. [n the area 

of actual change, the No Uncertainty and Thematic methods of change detection predicted a 

large proportion of pixels as undergoing no change (Figure 5.14). For many of the pixels, the 

predicted thematic change vector was opposite to the actual thematic change vector (Figure 

5.14). The predicted change was Class 2 to Class 1, when the actual change was Class 1 to 

Class 2. 

(d) (e) 

(c) 

Change vect or 

-1.00 to -0.70 

-0.69 to -0.50 

D -0.49 to -0.30 

D -0.29 to 0.29 

D 0.30 to 0.49 

• 0.50 to 0.69 

• 0.70 to 1.00 

Figure 5.14 Synthetic data change layers where change = 40 m and hard boundaries 
between classes. Black lines are positions of transects in Figure 5.15. 
a) No Uncertainty model. 
b) Misregistration model. 
c) Actual change. 
d) Thematic model. 
e) Combined model. 

For both the Misregistration and Combined change detection methods the predicted change was 

less than the actual change, though the thematic change vectors generally had the correct sign 

for much ofthe change area (Figure 5.14). This indicated that the No Uncertainty model was 
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less accurate than the other methods at predicting the direction of the thematic change vector 

(which classes a pixel was allocated at t, and t2)' 

The exception was the edge of the area of change, where change was predicted less accurately 

using the Misregistration and Combined methods. This may be observed in the transect data 

(Figure 5.15). At the 60 m point on the transect the Misregistration and Combined methods did 

not predict change to the edge of the change area (Figure 5.15). At the points where the No 

Uncertainty and Thematic methods correctly predicted change, these methods had a thematic 

change vector closer to the actual value than either the Misregistration or Combined methods 

(Figure 5.15). However, the overall error of the thematic change vector for the Misregistration 

and Combined methods was smaller than the No Uncertainty and Thematic uncertainty methods 

as may be seen for the RMSE values for the area of change (Figure 5.9). 
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Figure 5.15 Change vector along transects for change = 40 m and hard boundaries 
between classes. Transect position shown in Figure 5.14. 0 m is on the left side of the 
transect. 
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When change occurred for the classes with the hard boundaries, the No Uncertainty and 

Thematic change methods had large errors. In the two-class problem the errors were largest in 

the Change class with Producer' s accuracies of 65.4% and 67.8% and User' s accuracies of 

45.1 % and 42.9% for the Thematic and No Uncertainty methods respectively (Table 5.5). The 

majority of errors in the Misregistration and Combined change methods were predicting areas of 
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change as undergoing no change (Table 5.5). These methods removed most incorrect 

predictions of change, with the Change class User's accuracies of99.8% and 99.5% for the 

Combined and Misregistration methods respective ly (Table 5.5). The No change User's 

accuracies were still large, with values of 92.8% (Combined) and 91.2% (Misregistration). 

However, the Producer's accuracies for the Change class were much smaller, with values of 

78.2% (Combined) and 73% (Misregistration) indicating that these methods underestimated 

change (Table 5.5). 

Table 5.5 Synthetic change data confusion matrices for classes with hard boundary 
and change = 40 m assuming two classes using data with thematic error = 20%. 

a) No Uncertainty model b) Misregistration model 

Actual change 
No 

Change 
User's 

change accuracy 
No change 32630 5562 0.854 

Change 15626 11718 0.429 
Producer's 

0.676 0.678 0.677 
accuracy 

c) Thematic model 

Actual change 
No 

Change 
User's 

change accuracy 
No change 34524 5981 0.852 

Change 13732 11299 0.451 
Producer's 

0.715 0.654 0.699 
accuracy 

Actual change 
No 

Change 
change 

No change 48198 4673 

Change 58 12607 
Producer's 

0.999 0.730 
accuracy 

d) Combined model 

Actual change 
No 

Change 
change 

No change 48230 3764 

Change 26 13516 
Producer' s 

0.999 0.782 
accuracy 

User's 
accuracy 

0.912 

0.995 

0.928 

User' s 
accuracy 

0.928 

0.998 

0.942 

The accuracy of change detection when using the four-class problem was greater than the two

class problem for both the Misregistration (92.8% and 98.3%) and Combined (94.2% and 99%) 

methods (Table 5.6). For both these change methods, the Change 1-2 class had the smallest 

Producer' s accuracy (Table 5.6). However, un like the two-class problem (Table 5.5), the 

amount of misclassification of areas of Change as areas of No change was more evenly 

matched, with 457 Change pixels misclassified as No change and 213 No change pixels 

misclassified as areas of Change in the Combined model (Table 5.6). Using the Misregistration 

mode l 54 1 Change pixels were misclassified as No change and 561 No change pixels were 

misclassified as areas of Change (Table 5.6). 
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Table 5.6 Synthetic change data confusion matrices for classes with hard boundary 
and change = 40 m assuming four classes using data with thematic error = 20%. 
a) No Uncertainty and Thematic models. b) Misregistration model 

A t 1 h c ua c anfe A tu 1 h c a c an~e 
No 

Change Change 
No 

User's 
change change 

I- I 
1-2 2-1 

2-2 
accuracy 

No Change Change 
No User's 

change change 
I-I 

1-2 2-1 
2-2 

accuracy 

No change 
2972 2775 0 1784 0.395 I - I 

No change 4551 285 0 4 0.940 
I -I 

Change 1-2 764 1098 1 0 7083 0.583 Change 1-2 72 16738 0 279 0.979 

Change 2-1 718 737 0 7061 0.000 Change 2-1 I I 0 209 0.000 

No change 
170 2787 0 27704 0.904 2-2 

No change 
0 256 0 43140 0.994 2-2 

Producer's 
0.643 0.635 0.000 0.635 0.636 

Producer's 
0.984 0.969 0.000 0.989 0.983 accuracy accuracy 

c) Combined model 

A 1 h ctua c anfe 
No 

Change Change 
No 

User's 
change change 

I-I 
1-2 2-1 

2-2 
accuracy 

No change 
4575 193 0 0 0.960 I - I 

Change 1-2 49 16823 0 147 0.988 

Change 2-1 0 0 0 17 0.000 

No change 
0 264 0 43468 0.994 2-2 

Producer's 
0.989 0.974 0.000 0.996 0.990 accuracy 

5.6.2.4 Fuzzy boundaries with thematic change 

In the change images where 40 m of change took place and the fuzzy boundary width was 20 m, 

the general pattern of actual change occurred again in all images (Figure 5.16). In the 

homogeneous areas of no change, the same patterns occurred as in all the previous synthetic 

change diagrams (Figure 5.10; Figure 5. 12; Figure 5.14). The No Uncertainty and Thematic 

methods of change detection predicted a large proportion of Change pixels as being No change 

or predicted a thematic change vector with the opposite sign to the actual thematic change 

vector (Figure 5.16). As wou ld be expected, the No Uncertainty change method did not show 

the fuzzy nature of change and below the 0.5 threshold generally did not predict any change as 

having occurred. The Thematic method did show the fuzzy nature of the change, as the thematic 

change vectors at the edge of the edge of the change area were more representative of the actual 

thematic change vectors than using the No Uncertainty change method (Figure 5.16). 

The Misregistration change method did not predict the fuzzy nature of the actual change as 

accurate ly as the Combined method (Figure 5.17). Though thematic change vectors at the edge 

of the change area had a smaller magnitude than the change vectors in the centre of the change 
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area, these did not indicate the fuzzy nature of the change (Figure 5.17). The Combined method 

appeared to represent the fuzzy nature of the change at the edge of the area of change more 

accurately than the Misregistration method (Figure 5.16; Figure 5.17). However, as with the 

change when there were hard boundaries (Figure 5.14), the Combined and Misregistration 

methods consistently underestimated the magnitude of the thematic change vector (Figure 5.16). 

This may be seen in the transect data, where for most of the change area actual thematic change 

vectors were greater than those predicted (Figure 5.17). 
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Figure 5.16 Synthetic data change layers where change = 40 m and fuzzy boundary 
width = 20 m. Black lines are positions of transects in Figure 5.17. 
a) No Uncertainty model. 
b) Misregistration model. 
c) Actual change. 
d) Thematic model. 
e) Combined model. 
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Figure 5.17 Change vector along transects for change = 40 m and fuzzy boundary 
width = 20 m. Transect position shown in Figure 5.16.0 m is on the left side of the 
transect. 

The No Uncertainty model of change detection had the largest Producer' s accuracy for the 

Change class (64.5%) in the two-class problem (Table 5.7). This model detected more ofthe 

actual change than any of the other models when the boundary was fuzzy. However, when 

looking at the four-class problem using the No Uncertainty model, the Producer's accuracy for 

the class Change 1-2 was much smaller (59 .7%) than the value obtained when the Combined 

(93.9%) and Misregistration (92.5%) models were used (Table 5.8). Though the No Uncertainty 

model could detect much of the change, it did not predict what change occurred. This was 

supported by the prediction using the No Uncertainty model of 8857 pixels of class Change 2- 1, 

compared to 231 pixels using the Misregistration model and 17 pixels using the Combined 

model , when in the actual data no pixels of this class occurred (Table 5.8). Though the No 

Uncertainty model predicted more of the actual change in the two class problem than the other 

models, the User' s accuracy ofthe Change class in both the No Uncertainty (36 .0%) and 

Thematic mode ls (37.3%) was very small compared to the Misregistration (98 .9%) and 

Combined models (100%) (Table 5.7). In the two-class problem the actual change was 22.3% of 

the total area. The No Uncertainty and Thematic models of change predicted 39.9% and 34.9% 

change respectively, compared to the 12.4% by the Combined model and 14.2% by the 

Misregistration model (Table 5.7). 
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Table 5.7 Synthetic change data confusion matrices for fuzzy boundary width = 20 m 
and change = 40 m assuming two classes using data with thematic error = 20%. 

a) No Uncertainty model b) Misregistration model 

Actual change Actual change 
No User's No User' s 

change 
Change 

accuracy change 
Change 

accuracy 
No change 34201 5187 0.868 

Change 16739 9409 0.360 
Producer's 

0.671 0.645 0.665 
accuracy 

c) Thematic model 

Actual change 
No User's 

No change 50842 5387 

Change 98 9209 
Producer's 

0.998 0.631 
accuracy 

d) Combined model 

Actual change 
No 

0.904 

0.989 

0.916 

User's 
change 

Change 
accuracy change 

Change 
accuracy 

No change 36593 6074 0.858 No change 50937 6501 0.887 

Change 14347 8522 0.373 Change 3 8095 1.000 
Producer's 

0.718 0.584 0.688 
Producer's 

1.000 0.555 0.901 
accuracy accuracy 

Table 5.8 Synthetic change data confusion matrices for fuzzy boundary width = 20 m 
and change = 40 m assuming four classes using data with thematic error = 20%. 
a) No Uncertainty and Thematic models. b) Misregistration model 

A t 1 h c ua c an~e A t 1 h c ua c an~e 
No 

Change Change 
No 

User's 
change change 

1-1 
1-2 2- 1 

2-2 
accuracy 

No 
Change Change 

No 
User's 

change change 
1-1 

1-2 2-1 
2-2 

accuracy 

No change 
1439 2317 0 2042 0.248 

1-1 
No change 

2233 275 0 1 0.890 
1-1 

Change 1-2 566 8592 0 8 133 0.497 Change 1-2 266 133 13 0 489 0.946 

Change 2-1 377 719 0 7761 0.000 Change 2- 1 1 7 0 223 0.000 

No change 
11 8 2772 0 30700 0.914 

2-2 
No change 

0 805 0 47923 0.983 
2-2 

Producer's 
0.576 0.597 0.000 0.631 0.622 

Producer' s 
0.893 0.925 0.000 0.985 0.968 accuracy accuracy 

c) Combined model 

A t 1 h c ua c an~e 
No 

Change Change 
No 

User's 
change change 

1-1 
1-2 2-1 

2-2 
accuracy 

No change 
2245 182 0 0 0.925 

1-1 

Change 1-2 255 13524 0 358 0.957 

Change 2- 1 0 0 0 17 0.000 

No change 
0 694 0 48261 0.986 

2-2 
Producer's 

0.898 0.939 0.000 0.992 0.977 
accuracy 
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5.6.3 Global measures of change 

The effects of the different models in terms of global change detection were summarised by 

comparing the amount of change predicted by each of the change models with the actual amount 

of change for the classifications with 20% thematic error (Table 5.9; Table 5.10). In both the 

two-class and four-class problems, the Combined and the Misregistration approaches only 

slightly over-predicted change when no change took place (Table 5.9; Table 5.10). The 

Thematic model overestimated change in all cases, and the No Uncertainty model overestimated 

change more than all other models (Table 5.9; Table 5.10). 

When change did take place the Thematic and No Uncertainty models overestimated the total 

area of change. In the two-class problem the Combined and Misregistration models both 

underestimated change (Table 5.9). The Combined model (20.7%) was closest to the actual 

change (26.4%) when the boundaries were hard, and the Misregistration model (14.2%) was 

closest to the actual change (26.4%) when the boundaries were fuzzy (Table 5.9). When the 

results ofthe four-class problem were examined, both the Combined and Misregistration models 

were much closer to the actual change than with the two-class problem (Table 5.10). In both the 

hard and fuzzy boundary change scenarios the Misregistration model was within 0.2% of the 

actual value and Combined model within 0.4% (Table 5.10). The total percentage change was 

more accurately modelled using the four-class rather than the two-class approach. 

Table 5.9 Percentage change using synthetic change data two-class problem, 
thematic error = 20% 
Actual Change Fuzzy boundary Combined Thematic Misregistration No Uncertainty Actual change 

(m) width (m) (%) (%) (%) (%) (%) 
0 0 0.0 28.4 28.4 0.1 32.5 
0 20 0.0 26.4 26.4 0.1 33.3 

40 0 20.7 38.2 38.2 19.3 41.7 

40 20 12.4 34.9 34.9 14.2 39.9 

Table 5.10 Percentage change using synthetic change data four-class problem, 
thematic error = 20% 

Actual Change Fuzzy boundary Combined (%) Misregistration ThematiclNo Actual change 
(m) width (m) (%) Uncertainty (%) (%) 
0 0 1.2 1.8 32.5 0.0 
0 20 2.3 3.1 33.3 0.0 

40 0 26.0 26.4 41.7 26.4 

40 20 21.6 21.8 39.9 22.0 
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5.7 Discussion and Conclusions 

The use of synthetic data enabled variables to be controlled that would be difficult or impossible 

to control using environmental data. However, assumptions were made during the process of 

generating the synthetic data that may have resulted in outputs that were not representative of 

actual airborne data. Though synthetic data have the potential to provide information about the 

change detection models derived in this study, care should be taken in any conclusions drawn. 

As thematic error increased, the ability to detect change decreased, even when thematic and 

geometric uncertainty measures were used (Figure 5.6; Figure 5.7). This indicates that even 

when using thematic and geometric uncertainty measures, the maximum precision of change 

detection is a function of the accuracy of the input data. Though methodologies were developed 

to minimise the impact of errors, these were not able to remove the effect of the error in the 

input data. 

The impact of using thematic uncertainty varied as a function of thematic error. When 

comparing overall accuracy and RMSE as a function of thematic error (Figure 5.6; Figure 5.7; 

Figure 5.8; Figure 5.9) the Misregistration model was as accurate as or more accurate than the 

Combined model at small thematic errors. However, as thematic error increased, the Combined 

model became more accurate relative to the Misregistration method. The importance of using 

thematic uncertainty as thematic error increased was also observed when the No Uncertainty 

and Thematic change methods were compared (Figure 5.6; Figure 5.7). When thematic errors 

were small, the two methods had similar levels of accuracy. As thematic error increased, the 

difference in accuracy increased, with the Thematic uncertainty method having a larger 

accuracy than the No Uncertainty method. This indicates that the suitability of using thematic 

uncertainty varies according to thematic accuracy. As thematic error increased, the use of 

thematic uncertainty when modelling change was likely to result in more accurate modelling of 

change. 

For all accuracy measures used, the change detection model that used combined per-pixel 

thematic and geometric uncertainty was more accurate than the change detection models that 

assumed no uncertainty or only used thematic per-pixel uncertainty. One of the reasons for this 

was likely to be that the use of misregistration uncertainty smoothed thematic errors. By 

applying the misregistration function, the thematic errors were smoothed across a wide area, 

reducing their per-pixel effect. This may be seen in the change images and the change transects 

(Figure 5.10 to Figure 5.17). In the simple synthetic data model with spatially random thematic 
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error, this reduced change detection error, but in environmental data it is likely to reduce the 

precision of the model, as areas of any class with a width of a similar order to the 

misregistration error are likely to be smoothed such that they will be removed. However, in a 

pixel based method of detecting change there will always be compromise between reduction of 

misregistration errors (generally incorrect detection of change at boundaries) and missing small, 

pixel order changes. 

The Thematic and No Uncertainty change methods generally overestimated change (Table 5.9; 

Table 5.10). This was likely to be because errors generally resulted in the incorrect prediction of 

change. For a given pixel where no actual change took place, a thematic error in only one of the 

input classifications would result in a 100% probability of change being predicted. For a pixel 

where actual change took place, an error in one of the input classifications would only result in a 

prediction of no change if the pixel was allocated the same class as the other input layer. The 

probability of this happening will be inversely proportional to the number of classes, at largest 

50% for two classes. As a majority of thematic errors will appear as change, this is likely to bias 

outputs resulting in overestimation of change. 

The Misregistration and Combined models generally underestimated change. This is because 

these models smoothed the change surface, making them less sensitive to differences between 

the input layers. Class boundaries were expanded beyond their actual position to compensate for 

potential geometric error. This will result in ecotones appearing wider than they actually are and 

result in a loss of sensitivity at boundaries particularly where change has taken place. The edges 

of areas of actual change are less likely to be detected than the centre. This was observed in the 

images of change and the change transects (F igure 5.14 to Figure 5.17), where change became 

less obvious at the edge of the change areas, particularly where change occurred over a wide 

rather than narrow ecotone. 

The misregistration uncertainty model smoothed errors due to incorrect detection of change. 

This may be seen in the plot of accuracy as a function of change detection accuracy for the two

class problem and no change (Figure 5.6). Even as thematic error was increased, the accuracy of 

change detection did not decrease (Figure 5.6). This smoothing effect may result in removal of 

small objects with a width of the order of a few pixels, therefore increasing thematic error. If the 

geometric error footprint can be reduced, the smoothing effect will be reduced increasing the 

precision of change detection. 
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5.7.1 Summary 

In this chapter measures of misregistration and thematic uncertainty were tested for change 

detection using synthetic data. Change detection with and without misregistration and thematic 

uncertainty measures was tested. By adding misregistration and thematic uncertainty measures 

in a change detection model the accuracy of change detection could be increased. 
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