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The coastal region of the UK is under intense aﬁthropogenic and environmental pressure that
results in negative environmental impacts. To manage coastal habitats, monitoring programs are
required that can provide indications of where environmental change has occurred. Remote
sensing has been recognised as one method of providing these monitoring programs, but
operational detection of land cover change is currently not achievable.

This study aimed to develop remote sensing methodologies that could be used for operational
monitoring of natural and semi-natural coastal habitats by governmental organisations such as
Environment Agency or English Nature. The errors associated with post-classification change
detection in the coastal zone using remotely sensed data were researched and methods of
deriving thematic and geometric per-pixel uncertainties from airborne sensor data were
investigated.

Methods of deriving a per-pixel geometric uncertainty model for the Compact Airborne
Spectrographic Imager (CASI) were examined. A correlation was found between angular
acceleration of the aircraft platform and geometric errors of automatically geocorrected CASI
imagery. This relationship was used in combination with a geometric uncertainty model to
provide a per-pixel model of instrument geometric uncertainty. The instrument geometric
uncertainty model was combined with a model of orthometric error to provide a probabilistic
geometric uncertainty model. A misregistration model was derived from the geometric
uncertainty model and a significant correlation was found between the predicted and actual
misregistration. Thematic uncertainty measures were derived from the output of the multi layer
perceptron (MLP) and probabilistic neural network (PNN). A correlation was found between the
thematic uncertainty measures derived and pixel thematic error. Heuristics to maximise the
accuracy of the thematic uncertainty measures were derived.

The geometric and thematic uncertainty measures were combined in a model of change
detection uncertainty. Using synthetic data and data from a sand dune test site the use of
uncertainty measures in change detection was found to be significantly more accurate compared

to a change detection model that did not include uncertainty.
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1 Introduction

1.1 Introduction

Within the UK the coastal region is under intense pressure due to requirements for agricultural,
housing, commercial and recreational land. Anthropogenic and natural forcings result in a
variety of negative environmental impacts in the coastal zone including erosion, pollution,
eutrophication, and the drainage and reclamation of intertidal areas. In recent years the
environmental importance of conserving coastal habitats has been recognised and certain of
these habitats are now protected under the 1992 European Community Habitats Directive (EEC,
1992). The Habitats Directive requires that monitoring of these protected habitats and reporting
of their extent and condition is carried out every five years. However, sea level rise and
anthropogenic pressures on the coastal zone have created an environment where changes occur
at a wide variety of temporal and spatial scales. This range of scales means that ground-based
resources available for coastal monitoring may be inadequate to cope with the large areas that
require coverage and may not provide all of the information required. Remote sensing has been
used for coastal mapping of habitats such as saltmarsh and sand dunes (Gross ef al., 1986;
Donoghue and Shennan, 1987; Gross ef al., 1987; Donoghue et al., 1994; Hobma, 1995;
Thomson, 1995; Fontana ef al., 1997; Zhang et al., 1997; Brown and Arbogast, 1999;
Shanmugan et al., 2003; Thomson et al., 2003), as well as change in those habitats (Smith ez al.,
1998; Seeliger et al., 2000). These studies indicate that there is the potential to provide an
overview of the changes taking place within coastal habitats at national scales using remote

sensing.

Over the last twenty years sensor technology has advanced a great deal with the introduction of
fine spatial and spectral resolution imaging sensors mounted on both aircraft and satellites.
There have been advances in sensor technology, huge increases in processing power and
memory capabilities and increases in the accuracy of automated classification and other
techniques. Despite these advances, operational methods of monitoring that can determine
changes in surface cover type have not been developed and further study is required to develop
the use of remote sensing for monitoring land cover change (Donoghue, 2002; Song ef al., 2002;

Parr ef al., 2003).

Understanding and quantifying the errors within remotely sensed data is essential to reduce the
impact of these errors on the accuracy of change detection. Recent studies have begun this

process, examining the errors and uncertainties within geographical information sciences and
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remote sensing and their propagation when datasets are merged or modelling is carried out
(Stanislawski et al., 1996; Steele et al., 1998; Pontius, 2000; Carmel et al., 2001; Crosetto and
Tarantola, 2001; Atkinson and Foody, 2002; Aires et al., 2004, Comber ef al., 2004; Liu ef al.,
2004; Mahapatra et al., 2004). The work reported in this study built on previous work on error
and uncertainty within remote sensing and developed it further, aiming to provide operational

methods of detecting land cover change in coastal habitats.

This study focused on methods of coastal land cover change detection that would be suitable for
two organisations, the Environment Agency (EA) and English Nature (EN). The EA is the
single largest flood defence authority in England and Wales and has a statutory requirement to
protect the environment (Environment Agency, 2005). The coastal zone is of particular interest
within the EA, as prevention of flooding and environmental protection can sometimes have
conflicting needs. The purpose of EN is to promote the conservation of England's wildlife and
natural features (English Nature, 2005). EN has a statutory duty to provide indicators of the
status of various coastal habitats and is also involved in the management of various protected
sites within England (English Nature, 2005). For these two organisations, monitoring is required
to provide the information on which coastal management decisions can be made, as well as for

statutory reporting.

Within EA and EN the requirement for accurate, precise and repeatable monitoring of land
cover type has been recognised and the potential of remote sensing has been identified (Brown
et al., 2003a). This study builds on a collaborative project between EA and EN, called “The
Development of Remote Sensing Techniques for Marine SAC Monitoring”, which identified
that further work is required to develop operational change detection methodologies for the
coastal zone (Brown ef al., 2003a). The study aimed to develop operational methods, suitable
for use by EA or EN, of predicting change in the land cover of natural and semi-natural coastal
habitats, such as saltmarsh and sand dunes, using remotely sensed data. Of particular interest
were methodologies that could determine the extent and category of change in land cover type

and identify where these changes were taking place.

Within this study there is a tension between the requirements to develop methodologies that had
the greatest potential to result in the most accurate outputs and those that were suitable for
reporting for the EA and EN. As the methodologies developed had to be suitable for operational
monitoring for EA and EN, methodological compromises were made during the study which
may not have been made if the aim of the study was to achieve the most accurate change

detection using remote sensing. These compromises are discussed in the relevant sections.
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1.2 Change detection

Many remote sensing studies involve the mapping of land cover or land use. Though baseline
land cover or land use data are important, it is detecting change in land cover or land use that is
ultimately of the greatest managerial, legislative and scientific interest. Some of these methods
predict changes in the area of land cover or land use classes. Predictions of the total change in
area of different land cover types may be suitable for some legislative reporting, but for
management decisions an output is required that provides indications of where change has taken

place and so only methods that could map change were examined in this study.

Several methods have been proposed for change detection using remote sensing that provide
various indicators of change. However, studies have generally concentrated on three broad

techniques (Mas, 1999):

1. Spectral change.
2. Multitemporal image classification.

3. Post-classification analysis.

1.2.1  Spectral change

Spectral change detection generally involves the use of vegetation indices (Nelson, 1983;
Townshend and Justice, 1995; Lyon et al., 1998; Yuan et al., 2002; Nordberg and Evertson,
2003) or change vectors (Lambin and Strahler, 1994; Johnson, and Kasischke, 1998; Melgani et
al., 2002; Chen et al., 2003a; Liu et al., 2004).

An index such as the normalised difference vegetation index (INDVI) (Tucker, 1979) that can be
correlated with a variable of interest such as green biomass may be used for change detection.
On a per-pixel basis the indices from two time periods are subtracted so that an NDVI
difference image is formed (Lyon et al., 1998; Nordberg and Evertson, 2003). This indicates
areas where changes in productivity or phenology have taken place and the magnitude of the

changes.

The change vector is the difference within feature space of a given pixel over time. The

magnitude of the vector indicates the magnitude of the change and the direction of the vector

indicates the type of change that has taken place. This approach may be used to detect gross
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changes in land cover type, such as deforestation, desertification, flooding or fire scars (Lambin
and Strahler, 1994; Melgani et al., 2002). It is a simple model of change and may be used to
provide an indication of the magnitude of change within feature space. However, spectral

change will not necessarily be linked to land cover change (Yamamoto et al., 2001).

If the spectral change method is used, a threshold level that indicates change must be
determined and this may be difficult to achieve (Smits and Annoni, 2000; Melgani et al., 2002;
Chen et al., 2003a). Though this method can provide indications of change, quantifying that
change may be difficult (Lu ez al., 2004). The spectral change approach is inappropriate if the
datasets that are available have different bandsets (Yamamoto et al., 2001) and it is difficult to
account for geometric errors. When the images are merged, geometric errors in either image will
result in the images not being precisely co-located in the combined dataset. This means that the
combined dataset contains the combined geometric errors, potentially resulting in change
detection errors (Townshend et al., 1992; Zhan et al., 2002). Accurate radiometric normalisation
is also required, otherwise changes will be predicted due to the changes in radiance rather than
changes in reflectance. Accurate radiometric normalisation may be difficult to achieve if the
images are obtained at different times of year (Mas, 1999). Data need to be acquired at similar
times of year as the spectral characteristics of surfaces change due to seasonal changes in
vegetation (Coppin ef al., 2004; Lunetta et al., 2004). The spectral change method also does not
predict land cover classes at 7, and #,, only general classes such as deforestation or no change

(Lu et al., 2004).

This project aimed to provide a method of detecting changes in land cover type for EA or EN
monitoring programs and it is likely that methodologies would be applied for long term
monitoring. Therefore, there may be a requirement to use data from different sensors and
acquire the data at different times of year. This linked with the need to provide estimates of the
amount of cover for all the land cover types present, means that spectral change techniques were

inappropriate for this study.

1.2.2  Multitemporal image classification

Multitemporal classification involves combining two images and classifying the combined
image to provide a thematic map of land cover change (Hame et al., 1998; Bruzzone and Prieto,
2000; Bruzzone et al., 2004; Guild et al, 2004). In remote sensing, classification is the process

by which sensor data are converted to thematic maps usually representing land cover or land use
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classes. In the case of multitemporal image classification, the thematic maps represent change

classes. The classification process is described in Appendix B.

Generally the multitemporal classification approach uses an unsupervised classification to
identify areas of change (Hame et al., 1998; Mas, 1999; Bruzzone and Prieto, 2000). There is
only one classification carried out using this method and so the potential effect of classification
errors will be less than a method that uses two classifications (Lu et /., 2004). As with the
spectral change method there may be problems with data from different sensors, especially if
the bandsets or spatial resolutions are different (Smits and Annoni, 2000). Geometric errors
within each image are difficult to account for, as the combined image incorporates

misregistration errors (Serra et al., 2003).

If the output change classes are required using this method then prior knowledge of the change
within the scene will be needed (Coppin et al., 2004). In theory, knowledge would be required
of all possible combinations of change that have taken place within the scene (Serra et al.,
2003). The number of change classes for which ground data are required is potentially the
number of classes squared, as every class at #; has the potential to become any of the other
classes at #,. Though this approach may be suitable in areas where the dynamics of change are
well understood, it is not a robust approach for habitat surveillance, as it is unrealistic to have

prior knowledge of where change will take place at the start of a monitoring program.

For a practical operational method of detecting change it is not realistic to expect prior
knowledge of where change will occur and what that change will be. The difficulty in obtaining
ground data for all land cover changes, combined with the lack of knowledge of where change
was taking place, mean that the multitemporal classification approach was unsuitable for

operational remote sensing within this study’s parameters.

1.2.3  Post-classification analysis

The other major approach for change detection is to classify images of different dates and then
compare the classifications (Arzandeh and Wang, 2003; Dewidar, 2004; Mehner et al., 2004;
Narumalani et al., 2004). For this technique, no prior knowledge of change is required. As the
different classified images are merged after the classification, geometric errors may be
accounted for at the merging stage. Classifications from different sensors may be used (Yang
and Lo, 2002; Serra et al., 2003; Narumalani ef al., 2004), though additional analysis may have

to be carried out if the spatial resolutions are different.
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There are limitations to this approach, as errors within either classification have the potential to
create errors in change detection (Coppin et al., 2004; Lu et al., 2004). If only thematic errors
are considered, the maximum theoretical error within the final change layer is the sum of the
errors of the two classifications. Even if the errors within the classifications are small, when
combined for change detection, the error of the change detection layer may be relatively large.
An acceptable classification accuracy limit of 85% has been suggested (Wright and Morrice,
1997), but in some cases it may not be possible to achieve this due to issues such as ground data

availability and spectral separability of the classes used.

To provide accurate measures of change using this technique, the errors within the process
should be modelled. Dependent on the classification method, it is possible to provide global and
per-pixel probabilities of the error within each classification in order to model and potentially
reduce change detection errors (Gong et al., 1996; Shi and Ehlers, 1996; Ediriwickrema, and
Khorram, 1997; de Bruin and Gorte, 2000; Mclver and Friedl, 2001; Liu et a/, 2004).

1.2.4 Comparison of change detection methods

Of the three main methods of change detection outlined above, the spectral change method is
unsuitable for thematic change detection, being more suited for detection of productivity
changes. To determine what change has occurred, the multitemporal image classification
method requires knowledge of areas where change will take place prior to the change occurring
and is therefore unsuitable as an approach for long term monitoring. Post-classification change
detection may propagate and potentially magnify errors and uncertainties within either of the
input classifications, but it is possible to incorporate and account for thematic and
misregistration errors in the final analysis. Therefore, the post-classification method was most

suited to this study.

1.3 Defining land cover change

In the process of determining whether change has taken place the question “What is change?”
should be answered. Land cover change occurs in two forms, conversion and modification
(Jansen and Gregorio, 2002). Conversion occurs when the land cover or land use changes from
one class to another, for example from forest to grassland. Modification occurs when the land

cover or land use class remains the same, but there is change within the class, for example the
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productivity of woodland may be reduced. The purpose of this study was to examine changes in

land cover type and so the priority was to identify land cover conversion.

Using post-classification change analysis, land cover conversion may be defined in two ways

(Lu et al., 2004):

1. Whether change has occurred. This may be defined using two classes: Change and No
change.
2. What type of change has occurred. For a pixel this may be defined by the class at #; and

the class at #,.

The methodologies derived in this study were analysed in the context of the two definitions of

land cover conversion above.

1.4 Error and uncertainty in change detection

In a post-classification framework the change detection process involves classifying at least two
images from different times that have spatial overlap, co-registering the images and overlaying
one classification on the other to determine thematic change. For any change method, the
accuracy of the final change detection output will be affected by the following factors (Lu et al.,
2004):

1. The accuracy of the input data such as classifications including the availability and
quality of ground data to train the classifier.

2. The accuracy of the co-registration.

3. The spatial distribution of the classes. The more heterogeneous the area being
monitored, the larger the probability that errors will occur (Serra et al., 2003; Lu et al,
2004).

4. The change detection algorithms used.

The change detection process is subject to various errors at each stage of the data acquiring,
classification and data merging processes and these errors may be modified, magnified or
reduced at each stage of the process (Veregin, 1996; Shi et al., 2004). Therefore, it is essential
to track changes in errors as data are changed from low level forms such as imagery to high

level abstractions such as themes (Gahegan and Ehlers, 2000). If these errors are not quantified
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then the accuracy of the final change map will not be known (Gahegan and Ehlers, 2000;

Agumya, and Hunter, 2002), a key factor if decisions are to be made on the basis of this map.

This study examined methods of detecting land cover change that could be used to inform
management decisions. These decisions should be based on the causes and effects of any land
cover changes. To determine these causes and effects there is a requirement to identify what
change has occurred where. By modelling change at the local, per-pixel level it is possible to
predict where change has occurred as well as how much change has occurred. To minimise the
error associated with per-pixel change detection, the error associated with change predictions
should be modelled at the per-pixel level. It is effectively impossible to quantify the actual error
on a per-pixel basis for a whole scene, therefore, the focus of any per-pixel error study should

be on the probability of error or the uncertainty associated with accuracy of a given pixel.

Uncertainty may be associated with factors such as the geometric positioning of the dataset or
the class allocated to a pixel and occurs in two forms: ambiguity and vagueness (Atkinson and

Foody, 2002).

Ambiguity is the uncertainty associated with crisp sets and is most commonly expressed as a
probability that a variable is correct (Atkinson and Foody, 2002). For example thematic
uncertainty may be expressed as the probability that a pixel has been allocated the correct class
during a hard classification or geometric uncertainty may be expressed as the probability that a

pixel has a geometric error less than one metre.

Vagueness relates to the aspects of fuzzy data models (Atkinson and Foody, 2002). In remote
sensing, a fuzzy dataset is generally one in which a pixel can simultaneously be a member of
more than one class (Zhang and Foody, 2001; Lo and Choi, 2004; Liu and Wu, 2005) or one in
which the boundaries between objects have non-zero width (Cheng and Molenaar, 1999; Zhang
and Kirby, 1999; Cheng, 2002; Shi and Liu, 2004). However, there is some confusion in the
literature, as in papers by Schneider (1999), Atkinson and Foody (2002), Ahlgvist et al. (2003),
Hagen (2003) and Wei and Zhang (2004) vagueness is variously described as:

1. An indication of fuzziness.

2. The uncertainty associated with fuzzy datasets.

3. Both fuzziness and fuzzy uncertainty.
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According to (Ricotta, 2004) fuzziness and uncertainty are separate concepts, as a dataset in
which multiple class membership occurs for a single object such as a pixel is not inherently
uncertain. In terms of thematic fuzziness, a pixel could be allocated with 50% membership to
two classes with complete certainty. In this case, a fuzzy data model may be applied to the pixel,
but there is no uncertainty associated with allocation of the classes. This may be unlikely, as it

will be difficult to determine precisely 50% membership to each class, but is a possibility.

To avoid confusion in this study the term vagueness was not be used. Fuzziness was used to
define when pixels had membership of more than one class. Fuzziness was said to increase as
pixels became more mixed or as a single class became less dominant. Uncertainty was described
as occurring when a variable could contain error but the magnitude of the error was not known.
Uncertainty measures were defined as probabilities of error or the confidence intervals

associated with a variable.

Measures of uncertainty may be used to define the probability of error in terms of a global
variable, for example the probability that any pixel within an image will have a geometric error
of between one and two metres. Alternatively, uncertainty may be defined in local or per-pixel
terms. This could be the probability that a specific pixel will have a geometric error of between

one and two metres.

To estimate the uncertainty associated with change detection, the uncertainty in each stage of
the change detection process must be quantified and the propagation of errors through the
change detection process modelled (Goodchild ez al., 1992; Heuvelink, 2002). As errors are
passed from source to derived data, the errors are modified such that the characteristics of the
error and therefore the uncertainty associated with it may be amplified or suppressed (Veregin,
1996; Shi et al., 2004). Errors within the final change data set could be due to errors in the
remote sensing or ground data sets, errors in the classifier, misregistration errors or due to lack

of spectral separability of classes (Song and Woodcock, 2003; Carmel and Dean, 2004).

Within much of remote sensing the pixel is assumed to be an accurate method of modelling the
environment, but this assumption may not be valid (Fisher, 1997). The spectral response of a
sensor varies spatially within a pixel (Manslow and Nixon, 2002) and is influenced by
surrounding pixels (Townshend ef al., 2000). This unequal response generally means that the
centre of a pixel influences the spectra received more than the edges. This can result in errors in
classifications, particularly if a pixel contains more than one cover class (Manslow and Nixon,

2002) or is surrounded by pixels of a different class (Townshend et al., 2000). In much of
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remote sensing, pixels are assumed to contain only a single class (Fisher 1997). However, where
mixed pixels occur, the hard model of a pixel may not be valid and therefore errors will exist

when this model is used (Arnot et al, 2004).

Despite these limitations, the pixel was assumed to be an accurate model of the environment to
limit the scope of this study, as problems with using the pixel model are an entire field of study
in their own right. Making this assumption on the validity of the pixel model, there are two main
types of error associated with the classified data input into the change detection process and
therefore two types of uncertainty that have to be modelled (Serra et al, 2003; Carmel and Dean,
2004):

1. Thematic: errors in the allocation of a given class to a pixel.

2. Geometric: errors in the position of a given pixel

1.4.1 Thematic errors

Thematic errors are the errors resulting from pixels being allocated to the incorrect class during
the classification process. These errors may be due to a variety of factors including sensor
errors, atmospheric or bi-directional effects, land cover classes not being represented accurately
by the training data or lack of spectral separability of classes (Song and Woodcock, 2003;
Carmel and Dean, 2004).

Thematic errors have the potential to result in errors in the prediction of change, but these errors
can interact and be modified during change detection. Thematic errors in either classification are
likely to result in errors in change detection (Figure 1.1b). However, thematic errors do not
necessarily result in change detection errors. For example if the position and class of a thematic
error was the same in both classifications then there would not be errors in prediction that

change would occur, though the class at #; and #, would be incorrect (Figure 1.1c¢).

1.4.2 Geometric error and misregistration

Assuming thematic datasets from two times are used in the change detection process, geometric
errors in either dataset are highly likely to result in errors in the final change detection layer.
Misregistration error is the positional error resulting from two or more images not being
accurately co-located. As geometric error is likely to have a complex, spatially dependent form,

misregistration errors are likely to be complex when layers are merged.
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4 L Actual change
between 7, and ¢,

(@)
4 t Predicted change
between 7, and £,
(b)
4 t Predicted change
between 7, and £,
(c)
Figure 1.1 Dependency of change detection errors on the interaction of thematic

error. Assuming two classes (yellow and blue) and no change between #, and 1,, the grey
pixels in the change image indicate error due to thematic error.

a) Actual classes at 7, and ¢,.

b) Thematic error at £, but not £,. This results in error in predicted change.

¢) The same thematic error at ¢, and £, in terms of position and class. This results in no
error in predicted change.

If misregistration errors are reduced, the ability to detect change accurately is increased (Dai

and Khorram, 1998; Roy, 2000; Chen ef al., 2003b). The effect of misregistration errors will be
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greatest at the boundary between classes (Dai and Khorram, 1998; Serra et al., 2003; Yamano
and Tamura, 2004) and generally results in incorrect prediction of change (Verbyla and Boles,
2000; Stow and Chen, 2002). This means that the spatial resolution at which movement of a
boundary can be detected will be related to the horizontal error of the data. However, this is
likely to be complex, as errors will be a function of the attitude of the boundary and the x and y
component of the error, such that misregistration may incorrectly exaggerate, reduce or obscure
change (Roy, 2000) (Figure 1.2). Misregistration errors will be a function of absolute error
(errors between each image and the absolute reference frame) as well as the relative error (the

error between images) (Stanislawski et al., 1996).

5 b Predicted change
between 7, and ¢,
(a)
L 1 Predicted change
between £, and £,
(b)
Figure 1.2 Dependency of change detection error on misregistration error direction.

Assuming two classes (yellow and blue) and no change between 7, and #,, the grey pixels in
the change image indicate error due to misregistration. Errors only occur at the
boundaries between classes and do not occur if misregistration is parallel to the boundary.
a) Misregistration in north-south direction

b) Misregistration in east-west direction
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1.4.3 Uncertainty and error propagation in change detection

Modelling of errors in change detection is essential, as thematic or positional errors within
classification layers may be magnified or modified as they are propagated through the change
detection model and interact with other variables (Arbia et al., 1998). For example,
misregistration errors have a larger impact when land cover classes are fragmented rather than

clumped (Verbyla and Boles, 2000; Carmel et al., 2001).

Though uncertainty in change detection has been considered in several studies, these studies
tend to concentrate on just per-pixel thematic uncertainty (Shi and Ehlers, 1996; de Bruin, 2000;
de Bruin and Gorte, 2000) or global measures of thematic and misregistration error (Carmel and
Dean, 2004). As there will be spatial variation in geometric and thematic errors, the use of
global measures of uncertainty could restrict change detection. A global error measure, one
which uses a single value to describe error for a whole image, will underestimate error in some
positions and overestimate it in others, resulting in a reduced accuracy or imprecise measure of
change. For this reason methods that determine the spatial distribution of misregistration and

thematic errors are most suitable for per-pixel change detection.

As error propagation and transformation occurs each time a conceptual or physical model is
constructed using geographical information systems or remote sensing (Lanter and Veregin,
1992; Arbia et al., 1998; Shi et al., 2004) all the input datasets will contain error. Errors in the
source data are transferred when operations such as classification or merging data layers are
carried out. This may result in the source and derived data having different error characteristics
(Veregin, 1996; Warren et al., 2002). It is, therefore, essential to identify errors and
uncertainties within all the data used and model the propagation and modification of the errors
throughout the change detection process (Lanter and Veregin 1992; de Zeeuw et al., 1999;
Crosetto et al., 2001; Heuvelink, 2002; Carmel and Dean, 2004). By modelling the errors, their
propagation and effects it may be possible to reduce the errors in land cover change detection.

The errors within datasets and their propagation are discussed in the relevant chapters.

1.5 Aims of the study

This study aimed to develop methods that could be used by EA or EN for operational
monitoring of natural and semi-natural coastal habitats using remote sensing. The approach
taken predicted the errors and uncertainties associated with change detection in the coastal zone

using remotely sensed data. These predictions of error and uncertainty were used to reduce the
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errors of land cover change detection. Figure 1.3 shows a diagram of the model of change

detection error used in this study. The research examined three main areas:

1. Geometric uncertainty and misregistration.
2. Thematic uncertainty.

3. Combining geometric and thematic uncertainty in change detection.

Radiometric calibration Radiometric
to at-sensor radiance calibration data

y

Ungeocorrected at-sensor
radiance data

Raw imagery data

: \ Geometric
Eledv:tts;on » Geocorrection 4| calibration data
Y \ Navigation
Spatially referenced at- data
sensor radiance data
\
Ground o : ' -
data »  Classification
Y
Spatially referenced
classified data
Yy
Change detection
Y
Change
detection data
Figure 1.3 Post-classification change detection model using automatically

geocorrected imagery. Blue boxes represent data. Yellow boxes represent processes. Data
inherently contain errors. Processes can modify those errors.

In Chapter 2 the study sites and remotely sensed and ground data are discussed. Chapter 3
examines the causes of geometric and misregistration errors in airborne data and methods of
predicting the magnitude and probability of these errors. To develop a greater understanding the
spatial variation in geometric error, the effect of various navigational variables on the geometric
accuracy of airborne imagery were tested. These results were used to derive models of the
geometric uncertainty and misregistration error. In Chapter 4 methods of deriving thematic

uncertainty measures from classifications were examined. The accuracy of these thematic
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uncertainty measures was tested and the variables that affected this accuracy were investigated.
To determine whether the use of uncertainty could be used to increase the accuracy of change
detection, the geometric and thematic uncertainty models were combined in land cover change
analysis using synthetic (Chapter 5) and ‘real-world’ data (Chapter 6). A summary of the
research carried out, recommendations for further study and the final conclusions are included

in Chapter 7
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2 Data

2.1 Introduction

In this chapter the test sites used in this study and the remotely sensed and ground data acquired
from the sites are described. All remotely sensed data were acquired by the EA and descriptions
are given of the EA’s airborne sensors used in this study and the navigational instruments used

to geocorrect the sensor data.

A test site at Coventry Airport (Figure 2.1) was used to determine what variables affected the
geometric errors associated with airborne imagery. Knowledge of the geometric errors was used
to derive geometric uncertainty model that described the per-pixel variation in the probability
and magnitude of geometric error. The geometric uncertainty model was used to derive a
misregistration model which was tested using data from an urban area of a study site at Ainsdale
near Southport, Merseyside (Figure 2.2). An area of sand dunes at Ainsdale (Figure 2.2) was
used to test methods of deriving thematic uncertainty models, as well as for assessing the effect
of thematic and misregistration uncertainty models on land cover change detection accuracy for

a semi-natural habitat.

2.2 Navigational data

To automatically georeference remotely sensed data the position and attitude of the sensor need
to be known. In the airborne platform used in this study the position and attitude are provided by

GPS (Global Positioning System) and IMU (Inertial Measurement Unit) respectively.

GPS provides x, y, z position data using the Navstar satellite system (Leick, 2004). The time
taken for coded signals from several Navstar satellites is measured and used to estimate distance
from a satellite. The satellite positions are known and the distance from the satellites may be
used to triangulate the position of the GPS receiver. The GPS system used was a combination
of the Ashtech Z-surveyor and Novatel MiLLennium®. The specified accuracy of these GPSs
when operating on a moving platform is a root mean square error (RMSE) of 10 mm or less plus
1 part per million terms of the separation between the aircraft and the ground GPS systems

(Novatel, 1999; ANGEL, 2000).

The IMU provided roll, pitch and heading attitude data. The IMU used was the Applanix POS
AV 410 laser ring gyro based on the Litton 200al IMU (Brown et al, 2003b). The
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manufacturer’s quoted accuracy is 0.015° RMSE for roll and pitch and 0.08° RMSE for heading
(Applanix, 2004).
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Figure 2.1 Coventry airport test site. Bottom image is true colour CASI imagery of
Coventry airport with ground control points overlaid. Grid spacing 500 m.
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2.3 CAsI

The Itres Instruments CASI 2 (Compact Airborne Spectrographic Imager) is a multispectral
pushbroom sensor operating in the visible and near infrared. The specifications of the CASI 2

used in this study are given in Table 2.1.

Table 2.1 CASI 2 specifications (Brown et al, 2003b; Itres 2005).

Swath width (pixels) 512
Lens field of view (deg) 37.8
Spectral range (nm) 415-960
Spectral resolution (nm) 1.9
Maximum no. wavebands 288
Dynamic range (bits) 12

The CASI can operate in one of three modes; spatial, spectral and enhanced spectral (Brown et
al, 2003a). In spatial mode up to 19 wavebands are collected for all 512 spatial pixels. In
spectral mode 288 contiguous wavebands are collected for 39 spatial pixels. Enhanced spectral
is a compromise between the full number of spatial pixels and the full number of wavebands.
The CASI data were acquired using spatial mode and the EA Vegetation 1 bandset (Table 2.2),

the standard approach for EA multispectral data acquisition of the terrestrial environment.

Table 2.2 EA Vegetation 1 CASI bandset.

Band |Central wavelength| +/- (nm) Band |Central wavelength | +/- (nm)
(nm) (nm)
1 444.7 5.7 8 710.1 4.9
2 470.8 5.8 9 719.7 4.9
3 490.4 6.7 10 750.4 4.9
4 549.5 5.8 11 761.9 3
5 670.9 59 12 780.1 5.9
6 682.4 4 13 860.1 5
7 700.5 4.9 14 880.4 9.8

2.3.1 CASI geocorrection

CASI geocorrection involves the following datasets: CASI imagery, aircraft GPS and IMU
attitude data from the aircraft, ground-based GPS position, a digital elevation model (DEM) and
geometric calibration data. The calibration data are estimates of the positional offset between
the GPS antenna and the CASI sensor and the angular offset between the IMU and the CASI
sensor. The navigational data are synchronised with the remotely sensed data using a time stamp

sent every second from the GPS, known as a pulse per second (PPS) signal.
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The geocorrection process involves the following stages:

1. Post-processing the GPS from the aircraft and a ground-based station. The post-
processed data are more precise than the GPS from the aircraft alone.

2. Synchronising the GPS position data, IMU attitude data and CASI imagery using the
PPS.

3. Applying the distance offsets between the aircraft GPS and the CASI sensor head.

4. Applying the angular offsets between the IMU attitude and the CASI sensor attitude.

5. Geocorrection of the CASI imagery using the positional and attitude data, a model of

the instrument optics and an elevation model.

The GPS post processing is carried out using Waypoint Grafnav (Waypoint, 2001). All other

stages use the Itres geocorrection software (Itres, 2000).

2.4 LiDAR

The Optech ALTM (airborne laser terrain mapper) 2033 operates using the principle of Light
Detection and Ranging (LiDAR) to derive a digital surface model (DSM). The LiDAR emits
laser pulses, which are reflected from a surface and part of the energy returns to the sensor. The
time the pulse takes is measured and used to estimate the distance to the surface. The surface the
pulse interacts with is generally vegetation, buildings, water or the ground. The distance to the
surface is combined with the position of the sensor derived from post-processed GPS and
attitude of the sensor derived from the IMU (Section 2.2). The x, y, z position of the pulse on the
surface is estimated. The Optech ALTM 2033 operates at a frequency of 33 kHz and uses a
rotating mirror to scan across the track of the aircraft resulting in the sawtooth scan pattern in
Figure 2.3. All LiDAR data were provided as a 2 m grid resampled using inverse distance

weighting.

2.5 Coventry Airport data

To test errors within the CASI geocorrection system, data were acquired over Coventry Airport
(Figure 2.1). The Coventry Airport site was used as it is where the EA airplane platform is
based, allowing remotely sensed data to be acquired easily and ground control points (GCPs)
have been precisely surveyed using GPS, allowing tests to be carried out of the CASI geometric

accuracy.
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Figure 2.3 LiDAR scan pattern. Dots represent LIDAR pulse footprints. This diagram
is not to scale.

13 CASI images with a spatial resolution of 1 m were acquired on 25" August and ot

September 2001 (Appendix C; Table C.1; Table C.3; Appendix D).

Nine GCPs that had been surveyed by the EA were used to test geometric errors of the CASI
data (Figure 2.1). The GCP x, y, z positions were surveyed using post-processed GPS. The
Ashtech Z-surveyor GPS used for the survey has a predicted RMSE error of 5 mm plus 1 part
per million for static surveys (ANGEL, 2000). All survey points were within 2 km of the base
station and so the RMSE error of the GCPs was estimated to be 7 mm. The points were chosen
so that they could be identified easily on 1 m spatial resolution CASI data and consisted of paint
markings on tarmac and the corners of artificial surfaces such as tarmac or concrete that were

bordered by grass.

To ensure that the elevation used for CASI geocorrection at the GCPs was as accurate as
possible, a nearest neighbour interpolation was carried out using the z-values of the GCPs and
the results resampled to a 10 m grid. By using nearest neighbour resampling the value of the
elevation used at the GCPs would be very accurate, minimising orthometric errors, even if
horizontal errors occurred. As the GCPs were very precisely surveyed, the orthometric errors at
the GCPs, where the horizontal errors were to be tested, would be of a similar order to errors in

the GCP positions, which had a predicted RMSE of 7 mm.
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2.6 Ainsdale data

The area used to test the misregistration, thematic and change detection models was at Ainsdale,
near Southport, UK (Figure 2.2). The southern section of the study area is a dune system with
mobile dunes bordering a beach and fixed dunes and dune slack occupy the area inland of the
mobile dunes (Figure 2.4). A portion of the fixed dunes and dune slack are wooded, with a
mixture of coniferous plantation and deciduous woodland and scrub (Figure 2.4). To the north
of the study site there is a developed area, consisting of a holiday camp near the beach and to
the east of the holiday camp an area of housing (Figure 2.2). The developed area was used to
test the misregistration model. The sand dune site was used to test the accuracy of thematic

uncertainty models and the impact of uncertainty on change detection.

The site was chosen as it represented a typical semi-natural coastal habitat that the EA and EN
require to be monitored for legislative or management purposes and contained an urban area that
could be used to test the misregistration model. The Ainsdale sand dune site was used for “The
Development of Remote Sensing Techniques for Marine SAC Monitoring” project mentioned
above (Brown et al., 2003a) and is of national and international ecological importance,
containing species such as the great crested newt (Triturus cristatus), sand lizard (Lacerta
agilis), natterjack toad (Bufo calamita) and the red squirrel (Sciurus vulgaris) (WS Atkins,
2004).

2.6.1 Ainsdale remotely sensed data

CASI and LiDAR were acquired over the Ainsdale test site on 28th August 2001 between 1330
and 1400 UT (Appendix C; Table C.2; Appendix D). CASI, LiDAR and true colour digital
photography were acquired over the Ainsdale test site on 11™ September 2002 between 0940
and 1010 UT (Appendix C; Table C.4; Appendix D). Ideally the 2001 and 2002 data would
have been acquired at the same time of day, but this could not be achieved due to weather
restrictions. On the day of the 2002 data acquisition a weather window was only available prior

to 1030 UT.

The digital photography used in this study was obtained using a Kodak Pro Back ™ Plus 4080
by 4080 pixel CCD mounted on a Hasselblad 205 body with a Zeiss Distagon 40° lens (Brown
et al, 2003b). The CASI images were geocorrected to a | m grid as described in Section 2.3.1
using the LiDAR data as a DEM. The images were mosaiced using ERDAS Imagine and the
overlap areas were histogram matched to radiometrically normalise the imagery (ERDAS,

2001). The digital photographs were orthocorrected to the CASI imagery using the LiDAR
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DSM and resampled using nearest neighbour interpolation to a 0.2 m grid. To assess the
geometric accuracy of the orthocorrection, two independent ground points per digital
photograph were derived from the CASI imagery points and were used to derive an RMSE
(Appendix F). The orthocorrection geometric RMSE value was 1.80 m.

Figﬁre 2.4 CASI image of Ainsdale study site with different habitat types overlaid.
Orange = beach; dark blue = mobile dunes; red = fixed dunes; purple = deciduous
woodland and scrub; light blue = coniferous woodland. Grid is 500 m.

2.6.2 Ainsdale ground data

Ground data of the Ainsdale site were acquired to train the classifiers, assess the accuracy of the
classifications and assess the accuracy of change detection algorithms. The 2001 ground data
were collected between 18" and 21% September 2001. The 2002 ground data were collected

between 16" and 20" September 2002. Both ground datasets were acquired within 24 days of
42



the remotely sensed data. It was unlikely that land cover changed between obtaining remotely

sensed and ground data.

Contiguous areas of a single land cover class (Table 2.3) were identified during the ground data
collection in 2001 and 2002. Additional ground data for accuracy assessment were not available
for the 2001 and so the areas were used as training and accuracy assessment data for the 2001
classification, though different areas were used for training and accuracy assessment. In 2002
additional accuracy assessment data points were also acquired in which the dominant class had
been identified and so the area data were only used for training the classification. The sampling
strategies considered for the 2002 accuracy assessment data are described in Appendix B. The
accuracy assessment data were acquired using a geographically stratified random sampling
approach as this method allowed a geographical spread of data to be acquired, every pixel had
an even chance of selection, a classification was not required prior to sampling and spatial
correlation does not affect this method greatly (Appendix B). The strata used were squares with
sides 60 m long. The size of the square was selected by estimating the maximum number of data
points that could be collected within the study area in the time available for ground data
collection. The co-ordinates of the central point of each sample site was obtained using a
Garmin GPS II+ differential GPS (dGPS) with a differential signal from the Trinity House Point
Lynas station approximately 85 km from the site (Trinity House, 2005). The positions were
averaged over a period of one minute. For each sample the ground cover of the classes in Table
2.3 was determined using a 1 m by 1 m quadrat centred on the position measured using the
dGPS. Water and sand on the seaward side of the frontal dune system were excluded from the
survey. This was due to differences in the tide between the flights and the ground surveying.
Therefore, it was not possible to determine the classes at the time of CASI data acquisition
using ground based sampling. The class at these points was determined by interpretation of
waveband fourteen of the CASI imagery with a central wavelength of 880.4 nm (Table 2.2).
Waveband fourteen was used as water has strong absorption at near infrared wavelengths. This
should have resulted in more accurate discrimination of sand and water using near infrared than
using wavebands in visible wavelengths. The wooded area of the study site also created
problems as the differential GPS signal was generally too weak to receive within these areas. In
many cases the canopy also restricted the satellite signals to the GPS unit, resulting in a loss of
positional accuracy and in many cases the GPS unit could not receive signals from enough
satellites to triangulate a position. For these areas, photo interpretation of true colour digital

photography was used.
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Table 2.3 Thematic classes for ground data collection.

Class name Class description
Water Water
Sand Sand
Marram Pure Marram grass
Grass Grasses other than Marram
Herbaceous vegetation
Moss
Reeds Reeds/Rushes
Creep Creeping willow
Buckthorn Sea buckthorn
Woodland Deciduous woodland
Coniferous woodland
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Figure 2.5 Position of transects at Ainsdale study site. Grid is 500m.

Six transect land cover datasets from around the study site were used to test the outputs of the

change models. Three were transects taken in areas where there was little or no change, three

were in areas where change was very likely to take place between 2001 and 2002 (Table 2.4;
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Figure 2.5). Of the three transects where change was likely to occur, one was on the frontal dune
system where sand was known to cover vegetation and two were in areas where tree felling was

planned (Wolstenholme, personal communication).

Table 2.4 Description of Ainsdale Sand Dunes change transects.
Transect Habitat type Cover type Change
no.
1 Fixed dune, dune slack Grass, Creep Little/none
2 Fixed dune, dune slack Grass, Creep Little/none
3 Fixed dune, woodland Grass, Woodland Little/none
4 Mobile dune Marram, Sand Sand movement
5 Woodland, fixed dune Grass, Buckthorn Buckthorn felled
6 Woodland, fixed dune Woodland, Grass, Creep Woodland felled

Positions of points along the transect were surveyed using dGPS. For Transects 2 and 4 the
surveyed points were marked by posts prior to the survey. For Transects 1 and 3 one of the
surveyed points was marked by a post. For Transects 5 and 6 there were no posts. Additional
posts were not allowed and so points were identified for the 2002 survey using dGPS. Along the
transects, a 1 m quadrat of the percentage land cover using the eight classes in Table 2.3 was

taken every 1 m.

In addition to the transect data for testing the change models, 1 ha square areas of little or no
change were identified in conjunction with the English Nature warden during the 2001 and 2002
study period (Wolstenholme, personal communication) (Figure 2.6). Three types of cover were

identified:

1. Coniferous woodland (CW): homogeneous stands of coniferous woodland.

2. Deciduous woodland and scrub (DS): heterogeneous areas of deciduous woodland
and scrub, with Grass and Creep classes between the trees and scrub

3. Fixed dune (FD): heterogeneous areas of fixed dune and dune slack, with a variety

of cover classes including Sand, Marram, Grass, Reed and Creep.

Three sample areas for each cover type were identified. Areas that were excluded from the
analysis included the frontal dune ridge in which erosion and accretion were taking place
(Brown, 2003a) and the dune area in the centre of the study site. This area had undergone
woodland felling between 1992 and 1997 (WS Atkins, 2004) and it was likely that changes due

to plant succession were occurring, as well as erosion and accretion of sand. The experiment
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assumed that no change had taken place in these areas between 2001 and 2002 and that any

change predicted was in error.
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Figuré 2.6 Ainsdale Sand Dune test site false colour 2001 CASI mosaic showing 1 ha
areas of no change used in testing stage. Grid represents 500 m.
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3 Geometric and misregistration uncertainty

3.1 Introduction

The purpose of the research in this chapter was to examine methods of deriving estimates of
misregistration error in airborne sensor data and modelling these misregistration errors for use

in per-pixel change detection (Figure 3.1).
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Figure 3.1 Section of airborne sensor change detection model covered in Chapter 2
highlighted in box.

3.2 Estimating misregistration errors

Misregistration errors are a function of the relative error between images and the absolute error
of images (Stanislawski et al., 1996) and there are two methods by which these errors may be

modelled:

1. By directly estimating misregistration error.
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2. By estimating geometric error for individual images and estimating misregistration error

from the combined geometric error for two images.

3.2.1 Direct estimation of misregistration error

Misregistration error may be estimated directly by deriving a global measure such as the RMSE
(Janssen and van der Wel, 1994). The RMSE is obtained by measuring misregistration error at
fixed points within two or more images. If a probabilistic approach was taken to change
detection a more appropriate approach would be to generate misregistration probability ellipses
from the x, y variance and covariance matrices (Stanislawski et al., 1996). This could be applied
on a per-pixel basis to generate a probability of membership based on misregistration errors.
However, both of these methods use global error values and misregistration errors often vary
spatially. It has been noted that geometric errors are most likely to occur in areas with large
terrain differences due to orthometric errors (Stow, 1999). Orthometric errors occur when the
elevation used in the geocorrection process is incorrect, resulting in horizontal displacement of
the position of the pixel (Figure 3.2). For data acquired using a sensor with a wide swath,

orthometric errors are likely to be greatest at the edge of imagery (Figure 3.2).
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Figure 3.2 Effect of DEM errors on positional accuracy assuming flat terrain.

If a global model of geometric error or misregistration, such as RMSE, was used it would
overestimate error in some areas and underestimate it in others. A local measure of
misregistration could be used to model misregistration more accurately than a global measure

by modelling spatial variation in the error.
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One method of estimating the local variation in misregistration would be to estimate the

misregistration at a number of points and interpolate between them across the area of interest.

This approach would be valid where ground cover does not change or where some areas are

known to remain the same. However, there are several limitations with this approach including:

3.2.2

In an environment where change is taking place, positional errors may be difficult to
estimate if control points are not known to be static.

It does not take into consideration local variation in terrain.

The edges of images are most likely to exhibit the greatest variation and extremes in
misregistration, as the orthometric errors will be greatest.

[f change detection is carried out using mosaiced images, the geometric errors of the
images used to form the mosaic are likely to be different. If this is the case then at the
join between images within the mosaic there will be a sudden change in the geometric
error vector. Interpolation will not be able to model this error accurately.

If misregistration error is derived empirically then values have to be interpolated to
obtain a local value. This will smooth predicted misregistration error values and miss
extremes of error.

There may be difficulty in finding control points from which the misregistration error
may be estimated from the imagery. Control points used for this purpose need to be
clearly identifiable in all images used and should not move between images. In natural
or semi-natural habitats it may be difficult to identify points, as boundaries tend to be
indistinct and gradual. This may also be a problem in the coastal zone where the
seaward edge of imagery is less likely to have fixed points and often exhibits change

due to erosion and accretion.

Indirect estimation of misregistration error

Indirect estimation of misregistration error, by estimating geometric error first, is more complex

than the direct approach. However, it can allow estimation of misregistration error to be carried

out without using fixed points within two or more images. This is an advantage when semi-

natural or natural habitats are being monitored or large amounts of change occur, minimising

the number of fixed points for direct estimation of misregistration error.

In automated geocorrection, positional and attitude navigational data are obtained from

instruments carried onboard the sensor platform. A geometric model using a terrain model and
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the position and the look direction of the sensor, derived from the navigational data, is used to

estimate the position of each pixel.

[f an automated approach to image geocorrection is used, a geometric uncertainty model could
be used to model misregistration uncertainty. Changes in navigational variables such as
acceleration have the potential to affect the accuracy of the input data for automated geometric
correction (Grejner-Brzezinska ef al., 1998; Mostafa et al., 2001; Mostafa and Hutton, 2001). If
a relationship between geometric accuracy and variables derived from navigational data were
found, it would be possible to derive measures of geometric error without taking measurements
based on fixed ground points. This would mean that geometric errors and therefore
misregistration errors could be derived in areas where change was taking place or where points

were difficult to identify on the ground.

In automated geocorrection, per-pixel geometric errors are caused by errors in the sensor x, y, z
positional data, or attitude data or the surface elevation model used. Geometric errors are likely
to increase as topographic variation increases (Stow, 1999). As may be seen in Figure 3.3,
variations in slope can alter the effect of errors in navigational data on geometric errors. The
aspect of the ground can also alter the magnitude and direction of geometric errors (Figure 3.4).
If a local measure of geometric error is derived from an automated system without the use of

ground control, then terrain effects have to be accounted for.

Sensor Sensor

Actual view Actual view »
angle angle Actual position
on ground
Assumed Assumed
view angle Actual position view angle
on ground
Predicted
position
A
Predicted
< positio
Geometric error
ie
Geometric error
() (b)
Figure 3.3 Example of variation in geometric error due to slope.

a) Slope = 0°.
b) Slope = 70°.
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Figure 3.4 Example of variation in geometric error due to variation of aspect relative
to viewing angle. The slope in the two diagrams is the same. Geometric error is largest
when aspect is away from sensor.
a) Aspect towards sensor.
b) Aspect away from sensor.

3.3 Misregistration

The magnitude of, and spatial variation in, misregistration errors are dependent on the system
used for co-registering images. The Ainsdale study site is coastal, with few obvious fixed points
that could be used for ground control and with change occurring particularly near to and below
the high water mark (Figure 2.2) (Wolstenholme, personal communication). For these reasons
an interpolation approach was not suitable. However, an approach that used an empirical model
of misregistration error derived from models of instrument error and orthometric error would be

suitable, as ground control in the study site would not be required.

3.4 Calibration of the CASI geocorrection system

Calibration of the CASI geocorrection system has two functions:

1. To calculate the positional and angular offsets between the navigational data and the CASI
instrument.

2. To estimate lens focal length and the central pixel of the CASI array.

The x, y, z distances between the CASI sensor head and the GPS antenna are measured

physically relative to the airframe.
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The angular offsets between the IMU and the CASI instrument, the lens focal length and the
central pixel of the CASI array are estimated by software supplied by Itres (Itres, 2000).
Imagery is acquired over a calibration site that contains precisely surveyed, obviously
identifiable GCPs and obviously identifiable points that occur in more than one image known as

tie points.

An iterative process is carried out that uses the position of the ground control points and tie
points to estimate the calibration variables. Initially, the focal length and the central pixel of the
CASI array are estimated. These values are used to estimate the angular offsets between the
CASI and the IMU. The angular offsets are then used to recalculate the focal length and central

pixel and the process is repeated until each of the variables converges.

3.5 CASI geocorrection system errors

During the geocorrection stage there are the following possibilities for error:

1. Errors in the synchronisation between CASI and the navigational data.
Positional errors in GPS.

Angular errors in the IMU.

Calibration errors in the distance offset between CASI and GPS.
Calibration errors in the angular offset between the CASI and IMU.
Calibration errors in the focal length of the lens.

Calibration errors in the central pixel of the array.

DEM errors.

® =N n A e

These errors may be split into two groups, instrument errors and orthocorrection errors.
Instrument errors consist of points one to seven above, orthocorrection errors will be a function

of the instrument errors and the DEM.

Instrument errors can either be angular errors or positional errors (Figure 3.5). Instrument
positional errors result in equivalent positional errors on the ground. Angular errors result in
positional errors that depend on the height of the instrument above ground and will be a function

of the angular error and height above ground.
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3.5.1 Synchronisation errors

Errors in the synchronisation between the CASI and navigational data result in either positional
errors or attitude errors. If the synchronisation is offset then positional errors will tend to be
along track, as velocity generally changes less than 15% during a flight line (O’Dwyer, personal
communication). Attitude errors due to synchronisation errors would be determined by the
angular velocity of the IMU. If the angular velocity was small then the attitude used would be
closer to the actual value. If the angular velocity was large then attitude would be less accurate.
If the synchronisation error is variable then positional errors would be variable, as would

attitude errors, but they would also be partially dependent on angular velocity.

Assumed Actual
position position
Sensor Sensor
Predicted
position
Actual position
on ground
H
i
|
—
System error
(a)
Sensor

Actual view
angle

Predicted
position

Assumed
view angle

Actual position
on ground

System error

(b)
Figure 3.5 CASI system geometric errors.
a) Horizontal positional system error.
b) Angular system error.
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3.5.2 GPS positional errors

Positional errors in the post-processed GPS are dependent on several variables including, the
geometry of the satellites, the number of satellites and the quality of the signal received from
satellites (Leick, 2004). The GPS system used for positional data in the EA’s aircraft (Section
2.2) is quoted as having an RMSE of 10 mm or less plus 1 part per million in terms of the
separation between the aircraft and the ground GPS system (Novatel, 1999; ANGEL, 2000). For
a typical 20 km baseline this translates to a 30 mm RMSE error. GPS errors result in positional

CIrors.

3.5.3 IMU attitude errors

An IMU consists of accelerometers and gyros (Mostafa et ai., 2001). The accelerometers
estimate the force applied to the IMU and from this calculate acceleration. The gyro outputs the
attitude of the IMU relative to gravitational potential and true north. By combining the post-
processed GPS and IMU data it is possible to reduce positional and attitude errors (Hong et al.,
2002; Mostafa ef al., 2001). However, at the time when the data for this study were acquired, it
was not possible to integrate these data streams for all data sets, as key initialisation stages were
not carried out when CASI data were acquired. When GPS and attitude data are merged to
increase the navigational accuracy, there is a requirement that at least 5 minutes of level flying
is carried out, with minimal changes in attitude and velocity. This was carried out when LiDAR
data were acquired, but not for ‘CASI only’ surveys such as those carried out over Coventry
airport for calibration and testing purposes. This meant that it was not possible to obtain an
integrated IMU and GPS post-processed solution and so this study examines the use of raw

IMU data in geocorrection.

Though there are several studies that examine IMU errors and provide a global measure of
accuracy (Grejner-Brzezinska et al, 1998; Hong et al., 2002; Mostafa ez al., 2001), there does
not appear to be literature to suggest why errors occur or to link them to environmental effects
on the IMU such as acceleration. The specifications of various IMUs provide a maximum
acceleration value (Cloud Cap Technology, 2005; BEI, 2005; Novatel, 2005), indicating that
this variable will have an influence on accuracy and could be used to provide a local indication
of errors within the IMU. Personal experience of the author having geocorrected more than 500
CASI images has shown that positional errors in geocorrected imagery appear to increase during
extreme movements of the airframe, particularly roll, pitch or heading changes. From these
observations it may be seen that there are two forms of velocity and acceleration that could

influence IMU accuracy; linear and angular. Linear velocity and acceleration are in the standard
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Euclidean x, y, z coordinates. Angular velocity and acceleration are the velocity and acceleration
in units of angle about a point, which in the case of this study was the IMU. IMU errors result in

angular errors.

3.5.4 Distance offset errors between CASI and GPS

The distance offset between the CASI lens and GPS antenna is measured directly. According to
the EA surveyor responsible for calibrating the system offset between the CASI and the GPS,
the maximum measurement errors are less than 15 mm (O’Dwyer, personal communication).

Distance offset errors result in positional errors.

3.5.5 CASI system calibration errors

The central pixel of the CASI, the focal length and the roll, pitch and heading offsets are
estimated during the calibration process. The central pixel and focal length of the CASI are

provided by the manufacturer, but the values are estimates and the errors can be reduced by

calibration (Itres, 2000).

Calibration is carried out using four overlapping images acquired at 90° to one another. The
image position and x, y, z position of the surveyed GCPs are entered into an Itres calibration
program (Itres, 2000). In addition, the image positions of easily identified tie points that occur
on at least two images are entered into the calibration program. Between 8 and 12 points per
image are entered into the program. The calibration program calculates the central pixel of the

CASI, the focal length and the roll, pitch and heading offsets.
Any systematic errors in the calibration process should be less than half a pixel (Itres, 2000).
Therefore, the combined errors of estimates of angular offset errors between CASI and IMU, the

focal length and central pixel should be less than half a pixel. Calibration errors would result in

angular errors.

3.5.6 All the CASI system instrument errors

The CASI system errors occur in two forms:

1. Systematic errors: due to calibration errors
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2. Non-systematic errors: due to imprecision in the variables used in the geocorrection. These

will be errors in the IMU or GPS data.

Positional errors are likely to be a relatively small component of the total, as GPS errors and
distance offset errors will be small compared to the 1 m spatial resolution CASI data used in this
study. Therefore, it is likely that angular errors make up the largest component of the CASI

system geometric errors.

3.5.7 Predicting CASI system errors

A global measure of CASI system errors may be derived by testing for systematic errors, as well
as the probability of errors of different magnitudes. To derive a local model of CASI system
errors, the errors need to be modelled with variables that can be derived from the system. Easy
to derive variables that have a potential to impact on accuracy are linear velocity, linear

acceleration, angular velocity and angular acceleration.

3.5.8 Orthometric errors

Orthometric errors are due to an incorrect elevation being used during the automated
geocorrection process. This can be as a result of errors in the DSM or DEM used for
geocorrection (Figure 3.2). For this study an Optech model LiDAR was used to derive DSMs
(Optech, 2002). The Optech LiDAR system has a quoted error of less than 0.25 m RMSE
(Ashkenazi et al., 1999). Errors in the DSM can result in orthometric errors. In automated
georeferencing these errors occur when the actual height of the surface being remotely sensed is
different from the DEM used and the predicted position of a pixel on the ground is displaced
from its actual position. The direction and magnitude of the error is a function of the error in the

predicted elevation at a pixel and the look angle of the CASI for that pixel (Figure 3.2).

3.5.9 Combined CASI system errors and orthometric errors

The vector of horizontal geometric error is a function of the CASI system error and the
orthometric error. However, the CASI system error can influence the orthometric error.
Assuming a varying terrain, if the position or view angle of the CASI is incorrect then the
elevation extracted from the DEM will be incorrect (Figure 3.6). This will result in an
orthometric error, which will be combined with the original instrument error to produce an

overall error. The overall error will be a combination of the orthometric and CASI system error
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vectors. The magnitude of the total positional error vector may be greater or less than either the

orthometric or instrument errors as may be seen in Figure 3.7.
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view angle on ground
Elevation
error v
. <
/ Total error
/ Orthometric error
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(b)
Figure 3.6 Effect of CASI system errors on positional accuracy assuming varying

terrain height.
a) Horizontal positional system error.
b) Angular system error.

The combination of geometric errors due to CASI instrument errors and DEM errors adds an

additional layer of complexity to the error model (Figure 3.7).
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Figure 3.7 Effect of CASI system and DEM errors on positional accuracy assuming
varying terrain height.
a) Horizontal positional system error.
b) Angular system error.

3.6 Method and results

To test errors within the CASI geocorrection system, CASI data of Coventry Airport were

acquired (Section 2.5). Nine GCPs (Section 2.5) were used to test geometric errors (Figure 2.1).
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63 GCPs were identified on 13 images. The position of each of the points was derived from the
imagery and compared with the position obtained from ground survey. To have a consistent
approach to identifying pixels in this study, in all analysis where positions were derived from
imagery by an interpreter the corners of pixels were used. As angular errors were identified as
being greater than positional errors, each of the geometric errors was recalculated to account for
differences in height above ground. It was assumed that errors were angular and therefore
proportional to height above ground. The errors were normalised to a height above ground level

of 900 m, the average height for the sorties over the Ainsdale test site.

To compare the geometric error with the various variables being tested the variable of interest
was sorted in ascending order for each point and binned in groups of nine to generate the
averaged geometric error and averaged test variables such as velocity and angular acceleration.

As there were 63 points, bins of nine resulted in an equal number of points per-bin.

3.6.1 Global CASI geocorrection errors

Initial geometric error results gave an RMSE of 1.33 m, a minimum of 0.37 m and a maximum
of2.58 m and a distribution as in Figure 3.8. However, the RMSE and the distribution represent
global measures of CASI system geometric error and uncertainty and do not provide an

indication of the spatial distribution of geometric errors.

Reductions in CASI geocorrection accuracy due to systematic errors could be compensated for
if they could be estimated. Systematic errors could occur in terms of absolute position or
relative to flight path. The mean error and standard deviation were calculated in terms of x, y

errors and along and across track errors.

The estimated total systematic error in the absolute position was 0.22 m (Figure 3.9). The
estimated systematic error relative to the flight path was larger, at 0.43 m (Figure 3.10). This
was as expected, as errors in calibration result in systematic errors in position relative to flight

direction, rather than absolute position.

Systematic errors were small relative to the size of the pixel, around 30% of a pixel in the along
and across track directions (Figure 3.10). Systematic errors were also small relative to the
variation in errors, with the across and along track being less than one third of one standard

deviation of the error. For these reasons and because the systematic error could not be estimated
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for the 2002 data, as CASI data were not acquired over a surveyed test site, systematic errors

were ignored for this study.
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Figure 3.8 Histogram of geometric error frequencies.
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Figure 3.9 Distribution of geometric errors as a function of x and y. Red box is mean,
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average total error = 0.22 m.
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Figure 3.10  Distribution of geometric errors as a function of flight direction. Red box is
mean, red lines are one standard deviation. Average across track error = 0.32 m; average
along track error =-0.29 m; average total error = 0.43 m.

The geometric error distribution (Figure 3.8) provided a global measure of CASI geocorrection
uncertainty, but did not indicate the temporal or spatial distribution of these errors. To determine
which variables affected the spatial distribution of geometric errors, linear regression models
were fitted to determine whether there were significant correlations between geometric error and

a variety of variables.

3.6.2 Lens focal length errors

Errors in lens focal length, resulting from errors during calibration could affect the spatial
distribution of geometric errors. Errors in the lens focal length are most likely to occur at the
edges of imagery. An incorrect focal length will result in the lens angle being incorrect and this

would result in larger errors at the edge of the swath (Figure 3.11).

Errors in the focal length of the lens result in greater geometric errors at the edge of imagery
and, therefore, at greater angles off-nadir. To determine whether errors in the estimated focal
length of the lens were impacting on geometric accuracy, a linear regression was fitted to
determine whether there was a correlation between off-nadir angle and geometric error. The
regression showed that the variables were not significantly correlated (Figure 3.12; F=1.39,

2=0.292).
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Figure 3.11 Effect of error in predicted lens focal length and therefore lens angle.
Errors are greatest at the edge of the swath and least at the centre.

3.6.3 Linking navigational variables with geometric error

The data for estimating navigational variables such as velocity were derived during the Itres
geocorrection process, which provided the position and attitude data for every CASI image line.
The integration time for all CASI data in this study and therefore the basic time differential

between navigational values used was 18 ms.

Velocity (v) was calculated using:

v = \/(x/l _x12)2 +(yll _yIZ)z +(Z/I _le)z
([2_t|)

3.1

When the velocity was estimated from the positional data from consecutive image lines, over an
18 ms period, velocity spikes occurred (Figure 3.13), probably due to GPS errors. To reduce

these effects, velocity was estimated over a variety of time steps (Figure 3.13). As the time
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period for velocity estimation was increased, the size of the velocity spikes was reduced (Figure

3.13). When velocity was estimated over 1 s, the spikes were negligible.
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Figure 3.12  Geometric error as a function of off nadir angle.

A linear regression was carried out to determine whether there was a significant correlation
between velocity and geometric error. There was no correlation between these variables (at 95%

confidence) with all regressions resulting in an R* of 0 (Table 3.1).

Table 3.1 Linear regression of velocity against average geometric error. Degrees of
freedom were 5.
No steps velocity | Time linear velocity R F Significance (p)
estimated over estimated over (s)
5 0.090 0.000 0.48 0.519
13 0.234 0.000 0.21 0.666
27 0.486 0.000 0.30 0.607
55 0.99 0.000 0.43 0.541
111 1.998 0.000 0.51 0.507
Acceleration (a) was calculated using;:
— Vans “ Vs 32

((t, +1,)/2)*

Where v,  is the average velocity between ¢, to £,.
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Figure 3.13  Effect of estimating velocity over different time steps. It may be seen that
when velocity is calculated from positional data 0.018 s apart, velocity spikes occur. As the
averaging time is increased towards 1 s, the velocity spikes become negligible.

This calculation assumes that #, - £, and £, - £; are equal. By resolving this equation in x, y, and z

it is possible to obtain the following equation:

i \/((xn =Kol (x,, _x:3))2 +({(V1=Y2)— (s _.V/3))2 +((z, - z,,)— (2, _213))2
(t,—t,)’

3.3

As would be expected from the velocity results, noise occurred in the acceleration values when
derived over short time periods. By estimating the velocity for the acceleration calculations over

longer time periods, the noise was reduced (Figure 3.14).
A linear regression was carried out to determine whether there was a significant correlation

between acceleration and geometric error. As may be seen from Table 3.2 the variables were not

significantly correlated (at 95% confidence) and had an R* of less than 0.013 for all regressions.
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Figure 3.14  Estimating acceleration using velocity calculations over different time
steps. It may be seen that when acceleration is calculated from velocity data 0.25 s apart,
acceleration spikes occur. As the averaging time is increased towards 1 s, the spikes
become negligible.

Table 3.2 Linear regression of acceleration against average geometric error. Degrees
of freedom were 5.
No. steps velocity for | Time for velocity R’ F Significance
acceleration estimated | calculations used for )
over acceleration (s)
5 0.090 0.000 0.22 0.659
13 0.234 0.000 0.16 0.706
27 0.486 0.000 0.23 0.652
55 0.990 0.002 0.50 0.511
111 1.998 0.013 1.08 0.346

The x, y, z coordinates of the attitude directional vector with length 1 were calculated from roll

(@), pitch (6) and heading (y):

z =cosécosg 34

x = +/(1-2z%) cos(atan( sin g +y) 3.5

\/1 —(cos@cos @)’ —(sin @)’
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= /(1-z*) sin(at = N
y \/(——ngm(a an(\/l—(COSé’cosqtﬁ)2 ~(sing)’ v

The distance » between the vectors at #; and £, is:

r=\/(x,l—x,2)2+(y,l—y,2)2+(zn—z,2)2 3.7

And the angular velocity (vag) is:

_ 2asin(r/2)
(tz - tl)

3.8

ang

It can be assumed that angular acceleration is the difference between vectors describing the

attitude between ¢, and #, and between #, and #; where ¢, - £, and ¢, - #; are equal.

The distance g between the ends of the vectors is:

q= \/(xpl _2x12 +xl3)2 +(yr1 _2_)/,2 +y13)2 +(Ztl _2212 +Zt3)2 3.9

And the angular acceleration (a,) is:

_ 2asin(q/2)

. 3.10
¢ (tz _t1)2

This calculation assumes that #, - £, and £, - £; are equal.

When angular velocity was calculated using consecutive values (18 ms) the results were noisy
(Figure 3.15). When calculating the second derivative, angular acceleration, this noise was
increased, resulting in the acceleration value calculated being mostly noise (Figure 3.16). To
minimise this effect, velocity values were averaged over 1, 3, 5, 7 and 9 steps. This reduced

noise, particularly in the acceleration values (Figure 3.17).
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Figure 3.17  Angular velocity calculated over 7 steps or 90 ms, with subsequent
acceleration values.

Angular velocity was not significantly correlated to geometric error (at 95% confidence) in all

regressions carried out (Table 3.3; Figure 3.18).

Table 3.3 Linear regression of average angular velocity against average geometric
error. Degrees of freedom were 5.
No steps angular Time velocity R a Significance (p)
velocity averaged |averaged over {ms)
over
1 18 0.120 1.82 0.236
3 54 0.244 2.93 0.147
5 90 0.126 1.87 0.230
7 126 0.117 1.79 0.238
9 162 0.078 1.51 0.274
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Figure 3.18  Geometric error as a function of angular velocity. Angular velocity was

calculated over 7 steps or 90 ms.

Average geometric error was correlated with acceleration (at 95% confidence) when the
velocity was averaged over 90 ms (Table 3.4; Figure 3.19).
The linear regression of geometric error as a function of angular acceleration resulted in the

following equation:

E=0.0742 a,, +1.1661 3.11

where E'is the geometric error.

Table 3.4 Linear regression of average angular acceleration against average
geometric error. Degrees of freedom were 5.
No. steps angular | Time that velocity R F Significance (p)
acceleration used in
averaged over acceleration
calculation
averaged over (ms)

3 18 0.000 0.92 0.381

5 54 0.064 1.41 0.289

7 90 0.651 12.21 0.017

9 126 0.377 4.63 0.084
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Figure 3.19 Geometric error as a function of angular acceleration. Acceleration
averaged over 7 steps or 90 ms. Linear regression line. R*=0.651; F=12.2; p = 0.017.

3.6.4 ILocal model of CASI instrument errors

The histogram in Figure 3.8 was estimated globally using all acceleration values. To account for
the effect of angular acceleration, each error value obtained in the test phase was used to derive
a geometric error distribution that was dependent on angular acceleration and flying height. To
do this for a given pixel, the original geometric error (E,gin) was modified using Equation

2.11, the angular acceleration (a )- A function was applied that normalised the equation

ang original
for the height above ground (z,c.) as a proportion of the z,g. assumed when Equation 2.11 was
derived (900 m) to give an acceleration dependent geometric error (Eouiies):

Enriginal (00742 a + 1 . 166 1) ZAGL

ME modified

Emmliﬁed = . 3 12
’ (0.0742 a,,,  +1.1661) 900
ang original
where a,, ed is the angular acceleration the distribution is being calculated for.
The modified geometric errors were combined to give an error distribution for angular
acceleration g as in Figure 3.20 where error distribution has been calculated for two

g modified

acceleration values and zxg;= 900 m. Increasing the acceleration increases the maximum error

values and mode and flattens the distribution curve.
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Figure 3.20  Effect of acceleration on predicted frequency of CASI instrument
geometric errors.

a) Acceleration 1° s

b) Acceleration 5° s>

A geometric error matrix with the same spatial resolution as the CASI imagery (1 m) was then
derived (Figure 3.21). The matrix described CASI instrument error in terms of the probability
that the pixel would occupy a given position within the matrix. The size of the matrix was

dependent on the geometric error histogram. For each pixel in the matrix the probability of the

geometric error being within that pixel (pg) was calculated using:

dmax

Piy= D fomeos(4 (b +0.5) =z b)) 3.13

bh=d

min

Where f;5.05 is the frequency geometric errors with a magnitude between b and 5+0.5. This
was the derived angular acceleration dependent distribution (Figure 3.20).

din 18 the minimum distance of the pixel from the centre of the matrix

dar 18 the maximum distance of the pixel from the centre of the matrix

A;is area of the pixel between b and 5+0.5 from the centre of the matrix

This was used to generate a matrix in which the probability of geometric error associated with
every pixel in the filter was estimated (Figure 3.21). The matrix was a local measure of CASI
instrument geometric uncertainty, as it was recalculated for every pixel and was dependent on

angular acceleration and height above ground.
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Figure 3.21 Probability of CASI instrument geometric error filter generated for an
angular acceleration of 1 deg s s”. The number within each block of the matrix
represents the probability that the pixel that should have occupied the centre of the matrix
actually occupied that position due to instrument geometric error. The size of the matrix is
dependent on the predicted geometric error distribution as in Figure 3.20.

The final CASI instrument geometric uncertainty model consisted of a geometric probability
filter that adjusted for changes in acceleration and height of the sensor by expanding and

contracting the distribution of geometric errors.

3.6.5 Orthometric error model

The CASI instrument error model was combined with the orthometric model, to provide an
overall geometric error model. Orthometric errors are taken into consideration using a simple
model based on the viewing geometry of the CASI instrument combined with the DEM used in
geocorrection. Two viewing geometry angles were derived from the airborne post-processed

GPS:

1. Off nadir angle. The angle between nadir (i.e. vertically below the sensor) and
the look direction of a pixel. Look direction being the direction of a pixel from
the sensor.

2. Azimuth angle. The horizontal angle between true north and the look direction

of a pixel.

For every pixel in the geometric error filter (Figure 3.21), the difference between the elevation
at that pixel derived from the DEM (z,,,) and the elevation used in the CASI automated
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geocorrection process (Z,.4,) provided the potential elevation error. The off nadir angle () and
the elevation error of the pixel were used to derive the magnitude of the orthometric error (0)

towards the CASI instrument using:

0= tan(}/)(zorlho - ZI)I:'M ) 3 1 4

The azimuth angle (@) and 0 were then used to estimate direction of orthometric error in x and

y:
Xouhe = SiD{a@) * 0 3.15
y()rlho = COS(a) . o 3 1 6

The orthometric error in x and y were combined with the assumed error for each pixel in the
matrix to provide an overall error vector. The predicted orthometric error was calculated using
code written in ERDAS Macro Language (Appendix E). Each error vector had a probability
associated with it derived from the matrix (Figure 3.21). The final local geometric uncertainty
model was a series of vectors with probabilities derived from a combination of the instrument

uncertainty and orthometric errors (Figure 3.22).
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Figure 3.22  Simplified illustration of geometric uncertainty model for one pixel.
Arrows represent geometric error vectors. The numbers represent the probability of the
vector occurring. The squares with the dashed line represent a possible location for the
pixel in the centre. The vectors are not whole pixels in x and y as each vector accounts for
orthometric errors, which will not be exactly one pixel.
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3.6.6 Misregistration model

To test the geometric error model, many easily recognisable points on a variety of slopes would
have needed to be surveyed. This was not practical for this study as additional survey time was
not available and so an alterative approach was taken. The geometric models for two CASI
images were combined to generate a misregistration model. Points on both automatically
geocorrected images could be identified and at these points the actual and model predicted
misregistration could be compared without the need for ground surveying. The potential errors
within each pixel in the matrix for 2001 were combined with the potential errors within each
pixel in the matrix for 2002. The combined probabilities were used to predict a mean

misregistration error.

xermr = (xarlhn,n - x()rlhn,m ) + (xpixel,n - xpixel,m ) 3 ¢ 1 7

yurmr = (yarlhn,n - y()rt/m,nl) + (ypixel,n - ypixel,m ) 3.18

Where x,,4,1s the error in x due to orthometric effects
Xpiver 1S the x offset from the central pixel of the matrix (Figure 3.21)
n is a pixel in matrix £

m is a pixel in matrix £,

The misregistration error between two pixels in matrix # and matrix £, (4, ) is given by:

_ 2 2,05
/un,m - (xerrur + yerrmr ) 3 . l 9

and overall misregistration g is given by:

£ &

DD PP

,U — n=1 m=l1 320
€nén

where g, is the number of pixels in the #; CASI instrument geometric uncertainty matrix
P, and p, are the probability of geometric error for matrix #; and matrix #, respectively.

They were derived from Figure 3.21.
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3.6.7 Testing misregistration models

CASI and LiDAR data acquired on 28th August 2001 and 11th September 2002 (Section 2.6.1)
over the urban area to the north-east of the Ainsdale test site were used to test the
misregistration models (Figure 2.2; Figure 3.23). The positions of 140 easily identifiable points
on the 2001 and 2002 datasets were measured (Figure 3.23) and the actual misregistration

measured between the images was compared to that estimated by the model.

overlaid as red points. Grid is 500m.

To account for some of the errors within the LIDAR DSMs the geometric models were tested

using the following DSM models:

1. Nearest neighbour DSM: the original 2 m LiDAR DSM was resampled to the same | m
grid as the CASI data using nearest neighbour resampling. This model did not account

for the uncertainty associated with the LIDAR data.
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2. Cubic convolution DSM: the original 2 m LIDAR DSM was resampled toa | m grid
using cubic convolution resampling. This model provided a potentially more realistic
model of the elevation surface, as values vary between adjacent pixels, something that
did not happen using nearest neighbour resampling.

3. LiDAR uncertainty: the model was run using the elevation values from the DSM in 1
above. The quoted errors in the LIDAR system (Ashkenazi, 1999) were used to account
for uncertainty in the LIDAR DSM. The predicted RMSE errors of the LiDAR are
0.8 m in the horizontal and 0.25 m in the vertical. Uncertainty in the vertical was
accounted for by estimating misregistration error using three DSM surfaces, the original
surface (DSM A), one with 0.25 m subtracted (DSM B) and one with 0.25 m added
(DSM C). To maintain a simple method of estimating misregistration, horizontal error
was accounted for using a | m error rather than 0.8 m. To generate a simple model of
LiDAR uncertainty the model was run with each of the three DSMs to account for
vertical errors. To account for horizontal errors the nine DSM values within a three by
three filter were used (Figure 3.24). This resulted in the geometric error being estimated

using 27 z values. Misregistration was estimated using:

¢ £ Era

DD HyPoPu
/j _ DSM =14 n=1 m=1 3.21
£1€p

41516
71819

Figure 3.24  Matrix used in LiDAR uncertainty model.

Each of the above DSM models was run with and without angular acceleration, resulting in six
different models. Without angular acceleration the geometric uncertainty model was a global
CASI instrument error model combined with a local orthometric model. When the angular
acceleration was used, the geometric uncertainty model was a local CASI instrument model

combined with a local orthometric model.

76



To compare the actual and predicted misregistration, predicted misregistration was sorted by
magnitude of error for every point and binned in groups of ten to generate averaged predicted
and averaged actual misregistration errors. Linear regressions were carried out on the averaged
predicted and averaged actual misregistration errors to determine whether there was a
significant correlation (Table 3.5). An F-test was carried out assuming that the predicted

misregistration error should equal the actual misregistration error (Table 3.6).

Table 3.5 Regression of predicted versus actual misregistration. Degrees of freedom
were 12,
Acceleration Model used R Constant | Slope | F- Significance
used value ()
Yes Nearest neighbour DSM | 0.389 -0.20 1.09 | 9.27 0.010
No Nearest neighbour DSM | 0.560 -2.06 2.10 | 17.52 0.001
Yes Cubic convolution DSM | 0.275 0.22 0.85 | 593 0.031
No Cubic convolution DSM | 0.315 -1.80 1.92 | 6.98 0.021
Yes LiDAR uncertainty 0.208 -0.34 1.15 | 4.4l 0.057
No LiDAR uncertainty 0.060 -0.84 1.43 1.84 0.200
Table 3.6 F-test assuming predicted misregistration equals actual misregistration.
Degrees of freedom were 12.
Acceleration used Model used F-value | Significance (p)
Yes Nearest neighbour DSM 7.59 0.017
No Nearest neighbour DSM 4.09 0.066
Yes Cubic convolution DSM 7.06 0.021
No Cubic convolution DSM 2.97 0.110
Yes LiDAR uncertainty 3.23 0.098
No LiDAR uncertainty 0.89 0.365

3.6.7.1 Nearest neighbour LIDAR DSM

Using the nearest neighbour LIDAR DSM in the geometric error model, a statistically
significant linear correlation (at 95% confidence) was found between predicted misregistration
and actual misregistration for both the model with angular acceleration and the model without
(Table 3.5; Figure 3.25; Figure 3.26). An F-test carried out assuming predicted misregistration
should equal actual misregistration was not significant (at 95% confidence) when angular
acceleration was not used in the geometric model (Table 3.6). When angular acceleration was

used the F-test was significant (at 95% confidence) (Table 3.6).
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Figure 3.25  Predicted versus actual misregistration not using acceleration in
misregistration model and the 2m LiDAR DSM. Dark line is regression line. Thin line
represents actual misregistration equals predicted misregistration.
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Figure 3.26  Predicted versus actual misregistration using acceleration in
misregistration model and the 2 m LiDAR DSM. Dark line is regression line. Thin line
represents actual misregistration equals predicted misregistration.

This shows that though there was a correlation between predicted and actual misregistration for
both models using the 2 m LiDAR DSM, when angular acceleration was not used, the model
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did not predict misregistration accurately. The optimum relationship between predicted and
actual misregistration would be one in which the slope was close to | and the offset was close to
0. The regression when angular acceleration was used resulted in an offset of 0.20 and a slope of
1.09 (Figure 3.26), compared to -2.06 and 2.10 respectively for the regression when angular

acceleration was not used (Figure 3.25).

3.6.7.2 Cubic convolution LiDAR DSM

Using the cubic convolution LIDAR DSM in the geometric error model, a statistically
significant correlation was found between predicted misregistration and actual misregistration
for the model using angular acceleration and the model that did not use angular acceleration
(Table 3.5; Figure 3.27; Figure 3.28). Again, an F-test carried out assuming that the predicted
misregistration should equal actual misregistration was not significant (at 95% confidence)

when angular acceleration was not used in the geometric model (Table 3.6).
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Figure 3.27  Predicted versus actual misregistration using the cubic convolution LiDAR
DSM in misregistration model but not using angular acceleration. Dark line is regression
line. Thin line represents actual misregistration equals predicted misregistration.

When angular acceleration was used the F-test was significant (Table 3.6). There was a
significant correlation between predicted and actual misregistration for both models using the
cubic convolution LiDAR DSM. However, when angular acceleration was not used, the model
did not predict misregistration accurately, as the regression offset was -1.80 and the slope 1.92
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(Table 3.5; Figure 3.27). The regression when angular acceleration was used resulted in an
offset of 0.22 and a slope of 0.85 (Figure 3.28), indicating that this model was not as accurate as
the model using the nearest neighbour LIDAR DSM.
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Figure 3.28  Predicted versus actual misregistration using acceleration in
misregistration model and the cubic convolution LIDAR DSM. Dark line is regression line.
Thin line represents actual misregistration equals predicted misregistration.

3.6.7.3 LiDAR uncertainty model

Using the LiDAR uncertainty misregistration model a statistically significant correlation was
not found between predicted and actual misregistration for the models that did and did not use
angular acceleration (at 95% confidence) (Table 3.5; Figure 3.29; Figure 3.30). F-tests carried
out assuming that the predicted misregistration should equal actual misregistration were not
significant for both models (at 95% confidence) (Table 3.6). These results indicated that these

models were the least accurate of those tested.
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Figure 3.29  Predicted versus actual misregistration using the LiDAR uncertainty
misregistration model but not using angular acceleration. Thin line represents actual
misregistration equals predicted misregistration.
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Figure 3.30  Predicted versus actual misregistration using acceleration in the LiDAR
uncertainty misregistration model. Thin line represents actual misregistration equals
predicted misregistration.
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3.7 Discussion and conclusions

3.7.1 CASI instrument error

This study examined the magnitude of CASI instrument geometric errors in order to derive a
probabilistic model of those errors. The correlation between error and a variety of variables was
tested, but a significant correlation was found only with angular acceleration (R*=0.651;
F=12.2; p=0.017) (Table 3.1; Table 3.2; Table 3.3; Table 3.4). The 63 points used for testing
geometric uncertainty were averaged in seven bins. Though there could have been correlations
between the magnitude of geometric error and other variables, the sample size in this study may
have been too small to find significance for some of the variables. If this were the case then
more precise models of geometric error could be derived for the CASI system using additional
variables if a larger sample size was used. Another limitation is that the variables were likely to
have a small effect on geometric error, but the precision of the measurements was one pixel or

I m.

A matrix based model of CASI instrument error was generated using a global measure of
uncertainty derived from the histogram of geometric errors and the empirically derived
regression model of the geometric error as a function of angular acceleration (Figure 3.21). The
probability of error associated with each pixel in the matrix was derived for every pixel in an
image. Every pixel within a CASI image had a matrix associated with it that provided the local

geometric error distribution due to CASI instrument errors.

3.7.2  Overall CASI geometric error

The matrix based CASI instrument uncertainty model was combined with an orthometric error
model based on a LIDAR DSM data to provide a model of CASI geometric uncertainty. The
model combined instrument errors and terrain effects in a probabilistic model of geometric
error. This modelled the spatial variation of geometric errors in CASI imagery. Though it was
not possible within this study to test the CASI geocorrection model directly, as ground data
were not available, it was possible to use the model to generate a misregistration model. By
combining the geometric uncertainty models for two sets of CASI imagery, it was possible to
combine the probabilistic models of geometric uncertainty into a single averaged prediction of

misregistration that could be tested against measured values.

Six misregistration models were tested that incorporated three different LIDAR DSM models.
Each of the LIDAR DSM models was tested with and without angular acceleration. Of the six
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models tested there was a significant relationship (at 95% confidence) between predicted and

actual misregistration for two.

The use of angular acceleration in the geometric uncertainty models resulted in a smaller
correlation between predicted and actual misregistration for the Nearest Neighbour and Cubic
Convolution models (Table 3.5). However, for the model to be accurate, predicted
misregistration should equal actual misregistration, and F-tests showed that this equal
relationship was only significant when angular acceleration was used (Table 3.6). This indicated
that use of angular acceleration produced more accurate, but less precise models of geometric
uncertainty compared to not using angular acceleration. The reduction in precision when
angular acceleration was used may indicate that the relationship between geometric error and
angular acceleration was not linear, the relationship was noisy or that other variables influenced

geometric error.

3.7.3 Effect of DSM on geometric error prediction

When angular acceleration was used in the misregistration model, the nearest neighbour DSM
method had the largest correlation between predicted and actual misregistration (R* = 0.389;
p=0.010) of the three DSM inputs (Table 3.5). The use of the cubic convolution DSM resulted
in much smaller but still statistically significant correlation (R* = 0.275; p=0.031). The LiDAR
uncertainty model had the smallest correlation and this was not significant (R* = 0.208;

p=0.057).

F'-tests assuming a one-to-one relationship between predicted and actual misregistration resulted
in the largest F-test value for the model using the nearest neighbour DSM (Table 3.6). Of all the
models tested, the one that used angular acceleration and the nearest neighbour DSM was the
most accurate, with the least difference from the optimum where the offset equalled 0 and the
slope equalled 1 from the regression of predicted against actual misregistration (Table 3.5). This
means that the model using the nearest neighbour DSM resulted in the most accurate,

statistically significant, one-to-one representation of misregistration.

The model used in this study to incorporate LIDAR uncertainty in a prediction of
misregistration was the least accurate method of predicting misregistration and the one-to-one
relationship between predicted and actual misregistration was not statistically significant (at

95% confidence).
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The model used was simplistic and a more accurate and possibly more complex model of
LiDAR uncertainty is required. To include a more accurate model of LiDAR uncertainty, a
fuller understanding of the errors and uncertainties within the data is needed. A three-
dimensional error probability distribution may be required, similar to the two-dimensional CASI
geometric error distribution derived in this study. However, determining LiDAR errors in three
dimensions simultaneously may be difficult. Errors in the vertical may be estimated by
comparing height from ground survey with height from LiDAR on a flat surface. Horizontal
positional errors can be determined where there is a vertical structure, such as the side of a
building. Determining vertical and horizontal errors simultaneously may be more difficult. On
flat surfaces, it is not possible to determine horizontal errors from elevation. On a vertical
structure, it is not possible to determine vertical error. It may be possible to use the LIDAR
intensity image, an additional product that provides an estimate of backscatter to determine a
three-dimensional LiDAR error model. If a survey were carried out over a flat surface that had
markings that would show up in the wavelength of the LiDAR used, it would be possible to
simultaneously measure horizontal and vertical errors using the intensity image. Ground survey
elevation could then be compared to LiDAR elevation and the intensity image could be used to
determine horizontal errors. The correlation between these errors and variables such as

measures of GPS quality and variables that effect IMU accuracy could be determined.

3.7.4 Modelling misregistration in change detection

The overall misregistration measure, £, used in this chapter was an average value and could be
used to model misregistration using an approach such as eroding the boundaries between classes
(Veregin, 1996; Serra et al., 2003). However, though this approach can increase accuracy of
change detection (Serra et al., 2003), there are limitations. Using x did not account for the range
of possible misregistration errors, as the range of possible misregistration errors were combined

to provide one value.

As p was a single value per-pixel, there were no probabilities associated with the misregistration
and no directional component to the misregistration, making , unsuitable as a local measure of

misregistration uncertainty and therefore it was not used in the final change detection model.

The geometric error vector and associated probability were potentially more suitable for use in a
change detection uncertainty model than g The probability values associated with each

geometric uncertainty vector may be combined with probabilistic measures of thematic
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uncertainty to provide an overall probabilistic measure of the uncertainty associated with change

detection.

3.7.5 Increasing model accuracy

Though studies have attempted to quantify errors for a variety of IMU models (Grejner-
Brzezinska et al, 1998; Hong et al., 2002; Mostafa et al., 2001), these have not discussed the
variation in errors or tried to find the relationships with variables such as angular acceleration.
Future work should be carried out that provides an increased understanding of these errors so

that geometric uncertainty can be understood and predicted with greater accuracy.

The work carried out in this study used raw IMU and post-processed GPS navigational data.
Errors in navigational data can be reduced by merging the attitude and positional data to derive
a post-processed navigational solution (Mostafa and Hutton, 2001; Toth, 2002). This approach
integrates GPS and IMU data to provide a navigational solution that has reduced errors.
However, the effect of acceleration on the accuracy of the post-processed navigational solution
is complex, as accelerations can reduce errors (Mostafa and Hutton, 2001). This means that the
input variables used in this study may not be suitable for input when using post-processed,

integrated GPS and IMU data.

3.7.6  Applying misregistration model to other platforms

The principles of geometric error model generation for the CASI instrument could be used for
other airborne systems. Airborne sensors such as HyMap (Kruse et al., 2000), AISA+ (Specim,
2004), AVIRIS (Boardman, 1999) can use post-processed GPS and IMU based systems to
provide navigational data for automatic geocorrection. The principles of generating a geometric

error model used in this study would be directly applicable to other instruments.

Though satellite systems are not exposed to the sudden alterations in motion that occur on an
airborne platform, some of the methods used in the CASI model would be applicable,
particularly the use of topographic data. It may be possible to derive a model of instrument error
for satellite based systems, though the variables may be different from airborne systems. Even if
it was not possible to derive a local model of instrument uncertainty, a global model could be
derived from the distribution of geometric errors. This could be combined with a local
orthometric error model derived from a DEM to provide a local model of geometric errors.

Though this model would not be as precise as one derived from a local model of instrument
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geometric errors, it would have a local function and would compensate for the increase in
geometric errors from satellite-based imagery with an increase in topographic variation (Stow,
1999). The Shuttle Radar Topography Mission (SRTM) in 2000 acquired data that would be
suitable for this purpose. SRTM acquired elevation data for all land areas between 60° North
and 56° South latitude, approximately 80% of the Earth’s land mass (Rabus et al., 2003). The
data have a horizontal spatial resolution of approximately 30 m, with a vertical accuracy of

16 m at 90% confidence (Rabus et al., 2003). This horizontal resolution is of a similar order to
medium resolution satellite based data such as Systeme Pour I’Observation de la Terre (SPOT)
High Resolution Visible (HRV) multispectral (20 m) (SPOT, 2005) and Landsat Thematic
Mapper (TM) (30 m) (NASA, 2002) making it potentially suitable for these and coarser
resolution satellite data such as MODIS (NASA, 2004).

3.7.7 Summary

In this chapter, probabilistic geometric error models were generated that modelled the spatial
function of geometric error in CASI imagery, using angular acceleration of the sensor, a global
model of the probability of CASI geometric errors and a simple orthometric error model. The
geometric uncertainty model consisted of a series of geometric error vectors, each with a

probability associated (Figure 3.22).

It was not possible to test the geometric uncertainty model and so a misregistration model that
provided an average misregistration error was derived from the geometric error. This
misregistration model accurately modelled the spatial function of misregistration error between
two CASI mosaics. Though the misregistration model was not suitable for probabilistic change
detection, the geometric uncertainty model it was derived from was suitable, as it provided error

vectors with associated probabilities on a per-pixel basis.
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4 Thematic uncertainty

4.1 Introduction

The purpose of the research in this chapter was to examine methods of deriving estimates of
thematic error for use in operational change detection (Figure 4.1). Estimates were made of
thematic error resulting from classifications of airborne sensor data and took the form of
thematic uncertainty measures. The relationships between the variables used in the setup of

classifiers and the accuracy of thematic uncertainty prediction were examined.
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Figure 4.1 Section of airborne sensor change detection model covered in Chapter 4.
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4.2 Hard and soft classifications

The purpose of this study was to examine methods of carrying out change detection using
remote sensing for input into management plans and legislative reporting for the EA and EN.
Potentially the change detection outputs will be examined by people without experience or
understanding of geographical information science and remote sensing. In this context,
relatively simple outputs that could be understood easily by both staff and stakeholders such as
the public, industry and politicians were required. Two approaches to pixel based change
detection could be taken, either hard or fuzzy. As multiple classes may exist within the area
defined by a pixel, a fuzzy approach to classification may more accurately model the
environment than a hard approach (Fisher, 1997; Amot et al., 2004). However, compared to a
hard classification, the outputs from a fuzzy classification are much more difficult to
understand, particularly for those with little or no geographical training, and are more difficult
to display (Lucieer and Kraak, 2004). For these reasons a hard classification approach was taken

in this study.

4.3 Deriving thematic uncertainty

Thematic errors are caused by factors such as errors in the image data due to inaccuracy in the
calibration, noise in the sensor system, atmospheric effects, bi-directional effects such as
shadowing, lack of spectral separability of classes, inaccurate training data or classifier errors
(Figure 4.1) (Song and Woodcock, 2003; Carmel and Dean, 2004). Though these errors result in
incorrect class allocation during the classification process, they are complex and outside the
scope of this study. To simplify this study, the effects of sensor error, atmosphere and errors in

ground data on thematic errors were assumed to be negligible and were not considered.

Thematic error measures may be derived on a per-class basis using the confusion matrix to
estimate the number of pixels of a given class that are incorrectly allocated (Appendix B). The
per-class error estimated from the confusion matrix could be used to derive a thematic
uncertainty measure such as the probability of error on a per-class basis. However, it is unlikely
that every pixel allocated to a given class has equal probability of membership of that class
(Bishop, 1995). If a given pixel is close to the class centroid it is more likely to be classified
correctly than a pixel that is further away from the class centroid (Bishop, 1995). A pixel that is
made up of equal amounts of two classes is less likely to be correctly classified than a pure

pixel, as there is likely to be confusion between the two classes.
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Spatially unreferenced global thematic measures will not account for the spatial variation in
probability of correct allocation. For pixels with a large probability of membership to a class,
the per-class measure will overestimate probability of error. As the error is overestimated, the
precision of change detection will be reduced. For pixels with a small probability of being
correctly allocated to a class, a per-class measure will underestimate error. This will result in
probability of error in change detection being underestimated, resulting in a larger probability of

change detection error.

To determine where thematic errors are likely to occur, more information on per-pixel
uncertainty is required than is available from the spatially unreferenced per-class measures that
may be derived from the confusion matrix (Foody, 2005). The estimation of the probability of
error on a pixel basis provides the opportunity to estimate more accurately the probability of
error in change detection. Several studies have derived per-pixel measures of thematic
uncertainty from classification outputs (Gong et al., 1996; Shi and Ehlers, 1996; Ediriwickrema,
and Khorram, 1997; de Bruin and Gorte, 2000; Mclver and Friedl, 2001; Liu et al., 2004).

In a per-pixel context for a hard classification, there are two measures that may be used to

predict thematic uncertainty:

1. A measure that indicates whether the correct class has been allocated to a pixel. This
requires definition of a single variable that indicates the probability of correct allocation
for the class allocated to that pixel.

2. A series of measures that indicate whether any class would be correct if allocated to that
pixel. This requires definition of variables that indicate the probability of correct

allocation for every class.

4.4 Classifiers for deriving thematic uncertainty measures

4.4.1 Maximum likelihood classifier

The most common of the traditional parametric approaches to classification is maximum
likelihood (ML) classifier (Schowengerdt, 1997; Campbell, 2002). The ML classifier provides
an approach for classifying remotely sensed data that is relatively easy to understand and to

carry out.
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In the ML approach, class mean vectors in feature space and variance-covariance matrices for
each class are generated from training data. Probability density functions for all classes are then
derived from these statistics. The posterior probabilities of class membership are estimated for
each pixel and the pixel is then allocated membership to the class that it has the greatest

probability of membership to.

If the data approximate a normal distribution, this approach can produce accurate classifications
(Benediktsson ef al., 1990). The analyst does not have to set any parameters for the
classification to run, just select suitable training data and classes. To an analyst who has a
minimal amount of statistical knowledge, the ML classifier is relatively simple to understand
and most commercially available image processing packages (for example ERDAS Imagine,

ENVI, IDRISI) have an easy to use ML classifier.

The ML classifier assumes the data approximate a multivariate Gaussian distribution (Campbell,
1981; Benediktsson et al., 1990). This is often not the case, especially when a class contains a
great deal of variation. For example, a woodland class may contain a variety of species, with
mixtures of coniferous and deciduous species, resulting in a multi-modal distribution of the

spectra.

The ML classifier is also very sensitive to the form and quality of ground data. There should be
enough sampling points to represent the full variety within each class. According to Swain
(1978) the amount of training data required for the ML classifier is linked to the dimensionality
of the data set being classified. The greater the number of dimensions, the larger the training
points sample size needs to be. If the training set is too small, ML classification accuracy may
be reduced as dimensionality is increased (Lee and Langrebe, 1993). According to the study by
Swain (1978), the sample size for each class should be at least 30 times and preferably 100
times the number of dimensions. Carrying out an ML classification using the 14 band bandset
collected over the study sites (Table 2.2) it may be impractical to acquire the required number of

training data for each class.

If the training data do not incorporate the variation within the classes used, the accuracy of the
classification may be reduced, even if the required numbers of pixels are used for each class
(Campbell, 1981). In many cases, training data are sampled in blocks of contiguous pixels. As
these pixels may exhibit autocorrelation, the class statistics (means, variances and covariances),
may inadequately represent the classes, leading to reduced classification accuracy (Campbell,

1981).
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A requirement for statistical classification approaches is that the training data should only
contain one land cover class (Paola and Schowengerdt; 1995). However, in the case of natural
and semi-natural habitats this may be very difficult to achieve, as certain classes generally occur

as mixtures with other classes.

The use of data from multiple sources has the potential to reduce ML classification accuracy
(Peddle ef al., 1994). When multisource data are used in ML classification there are scaling
issues that have to be considered, as the different data may not be in common units
(Benediktsson et al., 1990). Data sources are not equally reliable or useful in discriminating
between classes and the ML classifier does not have a mechanism for weighting data according
to importance (Benediktsson et al., 1990). Thematic data may have the potential to increase
class discrimination, but as they are non-parametric, they should not be used in ML

classification, but if used can result in reduced classification accuracy.

Though the ML classifier is one of the most commonly used in remote sensing (Richards,
2005), in this study there are factors that make its use inappropriate. These factors include the
use of remotely sensed data with large numbers of wavebands and small training data sets. As
the number of training pixels for some classes, including Reed and Buckthorn, was small it is
likely that the ML would have classified these classes inaccurately. Within some of the classes
used in this study there were a variety of different vegetation types that could result in multi-
modal distributions of spectral data. Using the ML classifier when data have multi-modal
distributions would be likely to result in a reduced classification accuracy compared with non-
parametric methods (Kanellopoulos ef al., 1992). Studies have shown that under the conditions
described above there are non-parametric classifiers such as neural networks that can classify
more accurately than the ML classifier (Kanellopoulos e al., 1992; Peddle et al., 1994; Yool,
1998).

4.4.2 Neural networks

Neural networks are the computing equivalent of a very simple biological brain. They provide a
possible solution to a variety of problems in remote sensing including classification and

biophysical property extraction.

Neural network and statistical methods of classification are fundamentally different in that

statistical approaches depend on an assumed model, while neural networks depend on data
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(Benediktsson et al., 1993; Atkinson and Tatnall, 1997; Zhou, 1999). This means that the
underlying assumptions made for statistical classification, such as the data are normally

distributed and data layers are not correlated, do not need to be met for neural networks.

As well as being distribution free, neural networks are importance free (Benediktsson ef al.,
1990; Zhou, 1999), meaning that the network will model the relative importance of the input
data surfaces during the training process without requiring operator input. This characteristic is
particularly critical when considering multisource data, as a priori knowledge of the level of
importance of data layers is not required. A neural network will set weightings to account for a
data layer’s importance during the training process (Zhou, 1999). These factors make neural

networks an appropriate method of classification for this study.

The most commonly used neural network classifier is the multi-layer perceptron (MLP) (Erbek
et al., 2004; Liu and Wu 2005). This network has been used previously in remote sensing
studies to derive thematic uncertainty measures (Gong et al., 1996; Foody, 2000).

Another network less frequently used in remote sensing than the MLP is the probabilistic neural
network (PNN) proposed by Specht (1990). The PNN was tested in this study as it is a non-
parametric method of outputting posterior probabilities for every class (Specht, 1990; Tresp et
al., 1997; Hart et al, 2001), making it particularly suitable for deriving thematic uncertainty

measures.

4.4.3 Multi-Layer Perceptron (MLP)

The basic unit of the MLP is the node (Figure 4.2), which mimics a biological neurone. The

node sums the inputs and performs a function on the summed input.

Input
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Figure 4.2 Neural network node.
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The MLP consists of three types of layers: input, hidden and output (Figure 4.3). The input layer
has as many nodes as there are input data layers. There may be one or more hidden layers with
the number of layers and nodes specified by the user. The output layer contains as many nodes
as there are output classes. Every node in the hidden and output layers is connected to all nodes
in the previous layer. As the signal passes between nodes it is modified by weights specific to

each node-node connection.

Input layer Hidden layer QOutput layer

757
LN

Figure 4.3 Multi Layer Perceptron Neural Network. The connections between the
nodes are weighted.

Input signals are passed through the MLP, being modified by the weights associated with the
connection between nodes and the functions of each node. The movement of input signals and
their modification through the network from input to output is the ‘feed-forward’ stage of the
MLP. The outputs of the MLP are activation levels at each output node. These activation levels
may be linked to a biophysical property or land cover class. Training data are entered into the
NN and the activation level of each of the output nodes is compared with the input values and
an error function is calculated. A learning algorithm is applied that alters the weightings within
the network to minimise the error. The whole process is then repeated until a specified number
of iterations have taken place, or the error is minimised or reduced below a predetermined level.
The alteration of weights through the ‘back-propagation’ of the error through the network is
carried out by the generalised delta rule (Atkinson and Tatnall, 1997; Kanellopoulos and
Wilkinson, 1997). This process allows the network to ‘learn’ the characteristics of the training
data set. The number of iterations used in training can affect the accuracy of the final

classification (Kavzoglu and Mather, 2003).
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As the number of iterations is increased the ability of the network to accurately classify the
training data is generally increased, but the network may become less accurate in classifying the
main data set (Atkinson and Tatnall, 1997). This effect is known as over-training and results in a
loss of the network’s ability to classify data it has not seen before (Atkinson and Tatnall, 1997;
Kavzoglu and Mather, 2003). The ability of a neural network to accurately classify data that are
not used in the training process is known as generalisation (Atkinson and Tatnall, 1997; Foody
and Arora, 1997; Kavzoglu and Mather, 2003). This is an important consideration when

constructing and training the network.

There are a number of factors that affect the ability of a network to generalise and therefore
optimise overall classification accuracy. These include the architecture of the network, the
training set and training time (Atkinson and Tatnall, 1997; Foody and Arora, 1997; Kavzoglu
and Mather, 2003). The structure of a network is crucial to its classification accuracy. Generally
the larger the network, the more accurate it is at classifying the training data (Kavzoglu and
Mather, 1999), but it may be less able to generalise. However, a study by Paola and
Schowengerdt (1997) found that the number of nodes in a single hidden layer could be varied a
great deal with only minimal effects on classification accuracy. This is likely to be data
dependent and should be tested with each new dataset used. Increasing the number of input data
layers often increases classification accuracy but this is not always the case (Arora and Foody,
1997; Foody and Arora, 1997; Kanellopoulos and Wilkinson, 1997). The training process may
be made more complex, as the number of nodes within the network has to be increased to deal
with the increased dimensionality (Kanellopoulos and Wilkinson, 1997). If there is correlation
between input data layers it is possible that classification accuracy may be reduced compared to
using a dataset with no correlation (Kanellopoulos and Wilkinson, 1997; Foody and Arora,
1997). The MLP provides an activation level for every output class of each pixel. In a hard
classification the pixel is allocated to the class with the largest activation level. However, the

activation levels for all classes may be used to provide additional information for each pixel.

4.4.4 Uncertainty measures from the MLP

MLP activation levels have been used as indicators of class membership on a per-pixel basis
(Gong et al., 1996). Gong et al. (1996) generated per-pixel measures of thematic uncertainty by
normalising activations so that the total output from every pixel summed to one, where a pixel
with a large normalised activation was assumed to have a large probability of correct class
allocation. However, there are other metrics that may be used as indicators of local thematic

uncertainty. Foody (2000) reasoned that MLP activation levels could be used to derive
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additional metrics in the confidence of correct pixel allocation in a hard classification. Three
main indicators of confidence were suggested; sum of activation levels, maximum activation
levels and entropy (Foody 2000). According to the study (Foody, 2000), a pixel was likely to be
correctly allocated when the total activation and the maximum activation were approximately
one and was more likely to be incorrectly allocated as both these activations tended away from

one.

Entropy is a measure of uncertainty and is calculated from the class membership probabilities

using the following equation:
H ==Y p(w)log, p(w) 4.1

where p(w) is the class membership and in the case of the MLP the normalised output activation

is assumed to be p(w).

Entropy is maximised when the membership of all classes is equal and minimised when
membership is to one class only. The relative entropy (ratio of the observed to the maximum
entropy) may be used to assess confidence in a classification. Pixels with small relative entropy
are assumed to be associated with one class. Those with large values are associated with
multiple classes and a hard classification is not appropriate (Maselli et al., 1994). Maselli et al.
(1994) did not quantify the error, though Foody (2000) did show a correlation between the
entropy of the classification and ground data, indicating that the classifier could identify mixed

pixels.

The MLP has the potential to provide measures of thematic uncertainty using a variety of
variables (Gong et al., 1996; Foody, 2000). This additional information may be used in change

detection to generate probabilities of change, increasing the information content provided.

Maximum activation, sum of activations and entropy provide a single measure of thematic
uncertainty for every pixel. Normalised activation provides a measure of thematic uncertainty
for every class at every pixel. This makes normalised activation a more suitable measure of
thematic uncertainty than the others described above, as the probability of change from any

class to any other class can be derived during change detection.
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4.4.5 Probabilistic Neural Network (PNN)

4.4.5.1 Bayesian statistics and kernel-based derivation of probability density functions

The purpose of classification is to derive membership of a thematic class from a vector u in
feature space corresponding to the sum of the one-dimensional vectors for each waveband of a
given pixel. In a Bayesian framework, the method by which this is carried out is by calculating
two values for each class, the prior probability and the class conditional probability density
function. The prior probability, P(C}), is the probability that given no other information, a pixel
selected at random will belong to class C;. By reversing this to apply to a classification problem,
it may be seen that given no other information a pixel should be allocated the class with the

greatest prior probability to maximise the probability of correct classification (Bishop, 1995).
The class conditional distribution, p(u| C ), represents the density function of #, given that a
pixel belongs to class C,. In a classification context the class conditional distribution may be

derived from sample data for class C,.

The proportion of pixels within the image that belong to class C; and have vector u (P(Cy u)) is:

P(Cruy= P(Cr).p(y Cy ) 4.2
and
P(Cy uy= p(u).P(Cy |u) 43

where p(u) is the unconditional density function, the density function for u irrespective of class
P(Cy |u) is the probability that the class is C; given u and is known as the posterior
probability.

Combining 4.2 and 4.3 results in:

p(u|C).P(C,)

P(C, |u)=
(C, ) o00)

44

where p(u) normalises the posterior probability.
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The posterior probability is derived from a density function known as the probability density
function (PDF), which is represented by the right-hand side of Equation 4.4. The PDF may be
derived from training data allowing classification to be carried out on the basis of posterior

probabilities.

However, a parametric Bayesian approach to classification may make assumptions about the
data used that are not valid. Remotely sensed data may have skewed or multi-modal
distributions, rendering a parametric approach to classification invalid. A non-parametric
approach to deriving the PDF from sample data was suggested by Parzen (1962). This involves
placing simple functions or kernels at locations in feature space derived from samples of the
population. The integral of these kernels may be used to provide an approximation of the PDF.
As the number of samples is increased, the approximation of the PDFs asymptotically
approaches the population density function (Specht, 1990). This approach allows a PDF to be

derived with no previous knowledge of the data distribution.

4.4.5.2 Probabilistic Neural Networks

One limitation of the method proposed by Parzen (1962) is that the entire training set must be
stored and used during classification and the amount of computation required is proportional to
the size of the training set. At the time of Parzen’s (1962) paper, the processing power required
to calculate PDFs using kernels was not available. As computational power increased, this
method became more practical and Specht (1990) proposed a neural network that used kernel
functions to calculate PDFs. This probabilistic neural network (PNN) used Gaussian radial

functions rather than the sigmoid functions commonly used by networks such as the MLP.

The PNN is a feedforward network that has three layers in the same layout as a MLP with a
single hidden layer (Figure 4.3): input, pattern and output. The input layer contains as many
nodes as there are input data layers. The pattern layer corresponds to the hidden layer in the
MLP and has as many nodes as there are training pixels. Each node models a kernel based on
the point represented in feature space by the training pixel. The output layer contains as many
layers as there are classes. Each node in the radial layer is only connected with the class output

node associated with the training data and sums the inputs from the pattern layer.

When the allocation stage of classification is carried out, the probability of membership to each

of the radial nodes is calculated and these are summed for each class and normalised to give a
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posterior probability of membership to each class. The pixel is then allocated to the class it has

the largest posterior probability of membership to.

In the simplest form of PNN as described above, it is assumed that pixels are randomly selected
from the complete population. However, if the proportions of pixels used for each class are not
equivalent to the prior probability then weights may be applied to compensate for the
differences between the training sample sizes and the prior probabilities. This is of particular
use when some of the classes used have relatively small prior probabilities. If random sampling
were used, the number of training samples for classes with small prior probabilities would be
small, potentially resulting in a sample that could not model the PDF accurately. To reduce this
effect, the number of training pixels may be increased and a weighting to account for prior
probabilities applied to the output in order to provide more accurate posterior probabilities. One
method is to use an equal number of training samples for each class and estimate the prior

probabilities from ground sampling or image interpretation.

The width of the kernel distribution is determined by the operator and is known as the
smoothing function, . When the smoothing function is too large, the estimated PDF is over
smoothed, resulting in an inaccurate classification (Bishop, 1995). As # — 0 the PDFs will
approach an exact representation of the density, for an infinite sample size. However, for a finite
sample, as # — 0O the PDF will approach a set of delta functions representing each training
sample, resulting in a noisy representation of the PDF. When % = 0 and assuming the training
samples used for different classes represent different points in feature space, the classification
accuracy of the training data will be close to 100%. However, any point in feature space not
represented in the training data will not be classified, resulting in an inability of the network to
generalise. This characteristic of PNNs means that care must be taken when determining the
smoothing function to be used. The training error may give an inaccurate indication of the
ability of the PNN to correctly classify non-training data. For this reason it is essential that the
correct smoothing function should be determined by testing the PNNs with separate data from

training data. The effect of # on the PDF may be seen in Figure 4.4.

PNNs have advantages over networks that are trained iteratively, as training only requires
generation of kernels for each of the training pixels. The only variable that needs to be
determined is the smoothing function and this may be determined by experimentation. However,
each training point is represented by a node in the radial layer and so the allocation process can

be very intensive computationally, especially if large training samples are used.
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Figure 4.4 Example of the kernel approach to density estimation for class C using

vector v. One-dimensional Gaussian kernels. Training samples at 0.4, 0.5 and 0.7.

The generation of the PDFs for each class by PNNs mean that the outputs may be interpreted

directly as posterior probabilities and, therefore, may be used to derive per-pixel uncertainties.

Though there are few remote sensing studies that have used PNNs, they have been used for
classification of magnetometry data for the detection of buried unexploded ordnance (Hart et
al., 2001), texture classification (Raghu and Yegnanarayana, 1998), cloud classification (Tian
and Azimi-Sadjadi, 2001; Wang et al., 2004), land use classification (Ashish et al., 2004) and
detecting classes that are not represented in training data during land cover classification

(Augusteijn and Folkert, 2002).

4.5 Neural networks for deriving thematic uncertainty

This study will use neural networks to derive per-pixel thematic uncertainty measures. When
setting up these networks there are various network variables that are defined during the training
stage that can alter the outputs. These variables influence the thematic accuracy and the
thematic uncertainty measures derived. In the case of the MLP these network variables are the
number of nodes in the hidden layer, the learning rate, momentum rate and number of iterations.
In the case of the PNN the only network variable is the smoothing function. Though previous
studies have derived heuristics for maximising thematic accuracy (Arora and Foody, 1997;
Foody and Arora, 1997; Kavzoglu and Mather, 2003), heuristics have not been derived for

maximising the accuracy of thematic uncertainty measures. In this chapter the derivation of
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thematic uncertainty measures using neural networks will be examined and heuristics will be

derived to maximise the accuracy of thematic uncertainty measures.

4.6 Method

4.6.1 Data

The CASI, LiDAR and true colour digital photography used in this chapter were acquired over
Ainsdale Sand Dunes on 11" September 2002 and are described in Section 2.6.1 (Appendix C;
Table C.4; Appendix D).

The ground data collected for training and assessing the accuracy of the classifiers were

collected between 16™ and 20™ September 2002 and are described in Section 2.6.2.

4.6.2 Training the neural networks

1000 training pixels per class were used to train the networks. For each class equal numbers of

pixels were selected at random from each training polygon.

Trajan 6.0 (Trajan, 2001) software was used to generate the MLPs. MLP networks were
generated with a range of nodes between 5 and 40 in a single hidden layer. Each network was
trained using between 250, 500, 750, 1000, 1500, 2000, 2500, 3000, 3500 and 4000 iterations.
To reduce the total number of networks tested, a fixed learning rate and momentum of 0.1 and
0.3 respectively were used for all architectures. These values had been used in previous studies
using these data (Brown ef al., 2003a) and did not result in large oscillations in error during

training and networks did not stick in local error minima during the training process.

Due to a bug in Trajan 6.0 when generating PNNs, Trajan 4.0 was used to generate these
networks. The nodes in the pattern layer of the PNNs generated modelled Gaussian distributions
with a o value equal to the smoothing function. PNN networks were generated with the
following range of smoothing functions: 0.0025, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08,0.09,0.1,0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, and 0.2. Prior probabilities for
use in the PNN were estimated by photo interpretation of 786 points using a geographically
stratified random sampling strategy, with the same units as the accuracy assessment data (60 m;

Section 2.6.2), but separate randomly selected points within each stratum (Table 4.1).
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Table 4.1 Estimated prior probabilities used in PNN trainin,

Water Sand Marram Grass Reeds Creep Buckthorn | Woodland

0.06870 | 0.08015 | 0.03944 | 0.37405 |0.02290 | 0.09542 0.01018 0.30916

4.6.3 Thematic uncertainty prediction

The ability of the networks to predict thematic uncertainty was tested in two ways:

1. Class independent thematic uncertainty.

2. Class specific thematic uncertainty.

4.6.3.1 Class independent thematic uncertainty

MLP and PNNs produce an activation from each output node that has the potential to provide an
indication of the thematic uncertainty for every class on a per-pixel basis. The link between

every output activation and thematic uncertainty was tested using all output activations. The

activation for every output of every pixel was averaged within the following bins 0—0.09,
0.1-0.19, 0.2-0.29, 0.3-0.39, 0.4-0.49, 0.5-0.59, 0.6-0.69, 0.7-0.79,

0.8—0.89, 0.9 —1.0. The mean of the activation and the proportion of times that any of the
activations within the bin was the correct class were calculated for each bin. An RMSE value
was calculated from mean activations and proportion of correct classes for all networks tested
and an F-test was carried out assuming that activation was equal to proportion of times a class
was correct. The RMSE measure derived provides an indication of how accurately the network
predicts thematic uncertainty, independent of class. This error statistic was defined as the class

independent thematic uncertainty RMSE.

4.6.3.2 Class specific thematic uncertainty

It was essential for the change detection process that a network was able to predict thematic
uncertainty for all classes. If this did not occur, the output from change detection would not be
an accurate representation of the probability of change for classes that were not accurately
classified. To provide a measure of whether the networks accurately predicted thematic
uncertainty for every class, the following procedure was carried out. For a specific class, the
proportion of times that pixel allocated to that class was correct (the user’s accuracy) and the
mean activation for all pixels allocated to that class were calculated. A RMSE value was
calculated from the difference between the user’s accuracy, and the mean activation for all

classes. An F-test was carried out assuming that the user’s accuracy should equal the mean
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activation for all classes. The RMSE measure derived provided an indication of how accurately
the network predicted thematic uncertainty, dependent on class and was defined as the class

specific thematic uncertainty RMSE.

4.6.3.3 Overall entropy

To determine how network activations change with network variables, a global measure of
entropy was used (Equation 4.1). Entropy is minimised when activations tend towards 0 and 1.
Entropy provided an indication of the confidence of the network in the classification produced.
This network confidence was not an indication of the probability of correct classification, and

did not necessarily provide a measure of uncertainty.

4.6.4 Effect of neural network setup and training variables

To determine whether there were heuristics that could be used to select the network that
classified and predicted thematic uncertainty most accurately the correlations between the
variables used when setting up and training MLPs and PNNs and thematic accuracy and
thematic uncertainty prediction were tested. The correlation was tested using linear, log-linear
and second order polynomial relationships in order to determine whether there were
relationships between network variables and thematic accuracy or thematic uncertainty. These
regression models were used as they could provide an indication of simple relationships for
deriving heuristics to maximise thematic accuracy and the accuracy of thematic uncertainty
measures. The correlation with the largest R* was assumed to be most representative of the

relationship.

4.7 Results

47.1 MLP
All MLP results are in Appendix G.

4.7.1.1 Global thematic accuracy

Of the MLPs tested, two had the maximum overall accuracy (P,). Both networks had 25 nodes
in the hidden layer, with one trained for 2000, the other 2250 iterations (Figure 4.5).

102



0.840 -

0.820 - Number
Nodes
NI
0.800 - ssigi== 10
15
4 cangc= G
oC 0.780 -
—o—25
o —a—30
0.760 - a— 35
A —o—40
l.,.-:.---&- ‘.n‘ "_¢.-... - " . * ‘e
0.740 - v
o
0.720 ‘1 T T T T T T T 1
0 500 1000 1500 2000 2500 3000 3500 4000
iterations
Figure 4.5 MLP P, as a function of iterations and architecture.

When the P, was averaged for all networks with a given number of nodes, it may be seen that
accuracy was maximised when the number of nodes in the hidden layer was 25 (Figure 4.6).
Though this result showed that beyond a certain number of nodes the overall accuracy
decreased, the decrease in accuracy beyond this point was exaggerated using average P,. At 40
nodes it appeared that there was a large reduction in accuracy using the averaged P,. Using a
second order polynomial regression this relationship was found to be significant (R*=0.866,

F=23.7, p=0.003).
A general increase in P, with an increase in the number of iterations may be seen when P, was

averaged for all networks at a given iteration (Figure 4.7). When tested using a log linear

regression a significant correlation was found (R*=0.949, F=243.8, p<0.001).
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4.7.1.2 Thematic uncertainty

The output activation levels were tested for suitability as uncertainty measures, using the
assumption that the output activation equalled probability of correct allocation. A linear
regression was carried out to determine the correlation between the predicted thematic
uncertainty in the form of output activation and the actual thematic uncertainty in the form of
the proportion of correct allocation. For the MLP the activation values for each pixel were

normalised to sum to one.

For all MLPs tested, the output activation and class independent thematic uncertainty were
correlated and the relationship was significant (at 95% confidence) (Appendix G; Table G.4 ;
Table G.5). The MLP with 10 nodes in the hidden layer and trained for 1000 iterations had the
smallest class independent thematic uncertainty RMSE of all the MLPs tested (RMSE=0.059,
R*=0.982, F=491.4, p<0.001) (Figure 4.8). This indicated that this MLP predicted thematic
uncertainty most accurately. The most accurate MLPs (25 nodes, 2000 iterations and 25 nodes,
2250 iterations) had class independent thematic uncertainty RMSE values 36% larger than the
value of the smallest RMSE (RMSE=0.092, R>=0.942, F=147.9, p <0.001) and (RMSE=0.095,
R*=0.943, F=150.1, p<0.001) respectively (Figure 4.8).

The architecture that resulted in the most accurate estimation of thematic uncertainty was ten
nodes in the hidden layer when the average class independent thematic uncertainty RMSE was
considered (Figure 4.9). There was an overall increase in class independent thematic uncertainty
RMSE above and below this value (Figure 4.9). However, when this relationship was tested
using all regression relationships no significant correlation was found (at 95% confidence)

(Appendix G; Table G.7).
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d) 30 nodes, 3500 iterations.

Class independent thematic uncertainty RMSE and the number of iterations were found to be
correlated using second order polynomial regression (R°=0.324, F=4.12, p=0.046) (Figure 4.10).
Above 1000 to 1500 iterations, class independent thematic uncertainty RMSE tended to increase
with number of iterations. When the number of iterations was less than this number, there was a
general trend for class independent thematic uncertainty RMSE to increase with a decrease in

the number of iterations.
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To determine whether there was a correlation between the ability of MLPs to accurately classify

data and predict class independent thematic uncertainty, P, and RMSE values for all the
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networks were compared (Figure 4.11). Using linear regression and an F-test it was determined

that there was no significant correlation between these variables (at 95% confidence) (Appendix
G; Table G.8).
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Figure 4.11 Class independent thematic uncertainty RMSE as a function of P,,.

Though the class independent thematic uncertainty RMSE provided a measure of how
accurately MLP activations represented thematic uncertainty, it did not provide a measure of
how accurately activations represented uncertainty for all of the classes. The class specific
thematic uncertainty RMSE provided an indication of the accuracy of activations for

representing thematic uncertainty on a per-class basis.

Using linear regression it was found that there was significant correlation (at 95% confidence)
between predicted and actual class specific thematic uncertainty for all MLPs (Appendix G).
The smallest class specific thematic uncertainty RMSE was for the MLP with 30 nodes in the
hidden layer and trained for 3500 iterations (RMSE=0.025, R’=0.985, F=459.7, p<0.001)
(Figure 4.12).
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The MLPs with the largest overall accuracy (25 nodes, 2000 iterations and 25 nodes, 2250
iterations) had a class independent thematic uncertainty RMSE values 55% and 61% larger than
the value of the smallest class independent thematic uncertainty RMSE respectively
(RMSE=0.055, R*=0.960, F=167.6, p<0.001) and (RMSE=0.064, R*=0.946, F=124.8, p<0.001)
(Figure 4.13).

The MLP that represented class independent thematic uncertainty most accurately (10 nodes,
1000 iterations) had class specific thematic uncertainty RMSE values 54% larger
(RMSE=0.054, R2=0.982, F=392.9, p<0.001) than the value of the smallest class specific
thematic uncertainty RMSE.
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line represents assumption of one to one relationship. Thick line represents linear
regression.
a) 10 nodes, 1000 iterations.
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¢) 25 nodes, 2250 iterations.
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A significant relationship between class specific thematic uncertainty error and the number of
nodes in the hidden layer (at 95% confidence) was not found (Figure 4.14). From Figure 4.12 it
may be seen that for most MLP architectures the trend was for class specific thematic
uncertainty RMSE to reduce as the number of iterations was increased. A log-linear regression
of averaged class specific thematic uncertainty RMSE values against iterations showed a

significant correlation (R*=0.922, F=155.5, p<0.001) (Figure 4.15).
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When the relationship between entropy and P, was tested using linear regression it was found
that they were negatively correlated and the relationship was significant (R*=0.579, F=153.9,
p<0.001) (Figure 4.16). Therefore as P, increased, activations tended towards 0 and 1.
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There was a significant correlation between entropy and number of nodes assuming a log-linear
relationship (R*=0.960, F=168.3, p<0.001) (Figure 4.17) and entropy and number of iterations
assuming a log-linear relationship (R’=0.910, DF=12, F=91.0, p<0.001) (Figure 4.18). MLP
entropy generally decreased with an increase in the number of nodes and the number of

iterations (Figure 4.17; Figure 4.18).
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Figure 4.17  Average entropy as function of the number of nodes. Log-linear regression
line.
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When the P,, class independent thematic uncertainty RMSE and class specific thematic
uncertainty RMSE were tested for correlation using linear regression there were no significant

relationships (at 95% confidence) between any of the variables (Appendix G; Table G.8).

It was not possible to determine the most accurate MLP, as accuracy depended on the measure
being used in terms of overall accuracy, class independent thematic uncertainty RMSE and class
specific thematic uncertainty RMSE (Table 4.2). Different MLP networks were the most

accurate dependent on the specific measure used to define accuracy.

Table 4.2 Most accurate MLP networks dependent on variable used to define
accuracy.
Nodes [terations P, Class independent Class specific thematic
thematic uncertainty uncertainty RMSE
RMSE
10 1000 0.791 0.059 0.054
25 2000 0.827 0.092 0.055
25 2250 0.827 0.095 0.064
30 3500 0.813 0.109 0.025
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472 PNN
All PNN results are in Appendix H.

4.7.2.1 Global thematic accuracy

The PNN with a smoothing function of 0.02 was the most accurate (Figure 4.19). Below this
value, a decrease in smoothing function resulted in a large drop in P,, with P, less than 0.5 for a
smoothing function of 0.0025 (Figure 4.19). Above a smoothing function of 0.02 an increase in
smoothing function resulted in a decrease in P, (Figure 4.19). From this it may be seen that P,

of the PNNs tested was dependent on the smoothing function.
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Figure 4.19  PNN P, as a function of smoothing function.

4.7.2.2 Thematic uncertainty

For all PNNs tested, apart from the one with a smoothing function of 0.0025 (RMSE=0.408,
F=3.03, p=0.120), the relationship between output activation and proportion of correct pixels

was significant using an F-test (Appendix H; Table H.2).

The PNN smoothing function affected class independent thematic uncertainty RMSE. The
smallest class independent thematic uncertainty RMSE occurred when the smoothing function
was 0.11 (Figure 4.20; Figure 4.21). For values of the smoothing function above and below 0.11

PNNs were less able to predict thematic uncertainty. At very small values of the smoothing
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function the activation predicted the thematic uncertainty less well. With a smoothing function

0f 0.005 the RMSE was 0.215 (F=9.71, p<0.05) (Figure 4.20).
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Figure 420  PNN class independent thematic uncertainty RMSE as a function of
smoothing function.
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As the PNN smoothing function was increased, entropy increased (Figure 4.22). This was

expected, as when the smoothing function was increased there would be greater overlap
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between the PDF of classes (Figure 4.4). This would result in activation levels tending away

from 0 and 1.
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Figure 422  PNN entropy as a function of smoothing function.

4.7.2.3 Per-class accuracy

The per-class accuracy was dependent on the smoothing function and the per-class metric used

(Figure 4.23; Figure 4.24; Table 4.3; Table 4.4).

Producer’s accuracy (Appendix B) was maximised for the Sand, Marram, Reeds, Creep and
Buckthorn classes with smoothing functions between 0.005 and 0.02. For all these classes apart
from Sand, the Producer’s accuracy fell to zero as the smoothing function was increased beyond
0.02. For the Woodland class, Producer’s accuracy was maximised for a smoothing function of
0.03. The Grass Producer’s accuracy was maximised at a smoothing function of 0.11 and the
Water class had 100% Producer’s accuracy for all smoothing functions tested apart from 0.005
and 0.01. The Water, Woodland, Sand and Grass classes were less affected by smoothing than
the other classes, with only small changes in Producer’s accuracy with changes in smoothing
function (Figure 4.23). The User’s accuracy (Appendix B) was maximised for Sand, Grass and

Creep with a smoothing function of 0.0025 (Figure 4.24).

These results show that class accuracy was related to smoothing function, but the smoothing

function that resulted in the most accurate class measures varied for each class.
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Table 4.3 Confusion matrix for PNN where #=0.02.

Water Sand Marram Grass Reeds Creep |Buckthorn|Woodland| Correct | Total ag:ier;zy
Water 57 3 0 | 0 0 0 0 57 61 0.93
Sand 0 60 2 3 0 0 0 0 60 65 0.92
Marram 0 0 9 3 0 0 0 0 9 12 0.75
Grass 0 | 17 243 7 30 0 13 243 311 0.78
Reeds 0 0 0 3 5 0 0 0 5 8 0.63
Creep 0 0 1 25 4 52 0 | 52 83 0.63
Buckthorn 0 0 0 0 0 0 5 1 ) 6 0.83
Woodland 0 0 1 18 0 0 2 219 219 240 0.91
Correct 57 60 9 243 5 52 5 219 650
Total 57 64 30 296 16 82 7 234 786
P;fcdl:'r;ec‘y S| 100 | 094 | 030 | 08 | 031 | 06 | 07 | 094 0.827
Table 4.4 Confusion matrix for PNN where #=0.11.
Water Sand Marram Grass Reeds Creep |Buckthormn|Woodiand| Correct | Total aiier;f:yw
Water 57 10 2 2 0 0 0 0 57 71 0.80
Sand 0 53 3 6 0 | 0 0 53 63 0.84
Marram 0 0 1 0 0 0 0 0 1 1 1.00
Grass 0 1 23 265 13 77 3 19 265 401 0.66
Reeds 0 0 0 0 0 0 0 0 0 0 0.00
Creep 0 0 0 1 0 0 2 2 0 0.00
Buckthomn 0 0 0 0 0 0 0 0 0 0 0.00
Woodland 0 0 1 22 3 4 2 213 213 243 0.87
Correct 57 53 1 2635 0 0 0 213 589
Total 57 64 30 296 16 82 7 234 786
P;fcdl:‘r;i‘y S| 100 | 083 | 003 | 09 | 000 | 000 | 000 | 09I 0.749

The PNN that had the smallest class specific thematic uncertainty RMSE was the one where the
smoothing function equalled 0.02 (Figure 4.25). Above and below this value there was an
increase in RMSE as the difference between the smoothing function value and 0.02 increased.
This indicated that the PNN that was most suitable for predicting the thematic uncertainty for all

classes was the PNN with a smoothing function of 0.02.

The difference that smoothing function made on the ability of PNNs to accurately classify
certain classes and predict thematic uncertainty of those classes may be seen in Figure 4.26. In
Figure 4.26a (#=0.02) the PNN predicted the class specific thematic uncertainty accurately. [n
Figure 4.26b (A=0.11) the PNN did not predict the class specific thematic uncertainty
accurately. There were two outliers in this plot for Marram and Creep classes. Only one pixel
was classified as Marram and this pixel was correct. Five pixels were classified as Creep, but all
these pixels were incorrect. [n addition, none of the accuracy assessment pixels were classified

as Buckthorn and Reeds.
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Figure 4.25  PNN class dependent thematic uncertainty RMSE as a function of
smoothing function.
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a) Smoothing function = 0.02.

b) Smoothing function = 0.11.

Different PNNs were the most accurate at predicting class and thematic uncertainty (Table 4.5).
The PNN where #=0.02 was the most accurate and predicted class specific thematic uncertainty
most accurately. The PNN where #=0.11 predicted class independent thematic uncertainty most

accurately.
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Table 4.5 Most accurate PNN networks dependent on variable used to define
accuracy.

Smoothing P, Class independent Class specific thematic
function thematic uncertainty uncertainty RMSE
RMSE
0.02 0.827 0.077 0.063
0.11 0.749 0.019 0.560

4.8 Discussion and Conclusions

The results showed that it was possible to derive thematic uncertainty measures that were
significantly correlated with the proportion of correct pixels (at 95% confidence), using the
output activations from both MLP and PNN neural networks. These thematic uncertainty

measures provided estimates of the probability of correct allocation on a per-pixel basis.

However, the neural network that was most appropriate for one purpose was not necessarily the
network that was most appropriate for another. For example, the PNN with a smoothing
function of 0.02 had the largest overall accuracy (P, = 0.827). This network also had a four
times greater error when predicting class independent thematic uncertainty (RMSE=0.077)
compared to the PNN with a smoothing function of 0.11 that had the smallest class independent
thematic uncertainty RMSE (RMSE=0.019). The difference between the P, of the PNN with the
smallest RMSE (P, = 0.749) and the PNN with the largest P, was 0.078.

48.1 MLP

4.8.1.1 Overall accuracy

The results obtained in this study are broadly in agreement with previous studies on the effects
of network variables on accuracy (Foody and Arora, 1997; Kavzoglu and Mather, 2003).
Heuristics derived to maximise thematic accuracy have been explained in terms of ability of a
network to model the complexity of the data, without becoming over trained or too complex and

not able to generalise (Kanellopoulos and Wilkinson, 1997).

Accuracy increased as the number of nodes in the hidden layer increased, probably due to the
network being able to model more complex distributions until it reached an optimum number of
nodes (Figure 4.6) (Kavzoglu and Mather, 2003). Below this optimum, networks were less able

to accurately model the complexity of the data. However, beyond the optimum point, the
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increase in potential of a network to model complex distributions may have reduced the ability

of a network to generalise and therefore accurately classify data other than that used in training.

Over the range of iterations used in this study for the MLP, overall accuracy generally increased
with an increase in the number of iterations (Figure 4.7). Initially an increase in number of
iterations resulted in an increase in accuracy. This was probably due to the network learning the
complexities of the training data distributions. However, beyond an optimum number of
iterations, MLPs learnt the training data too accurately, resulting in a decreased ability to
generalise and therefore became less able to accurately classify data they had not seen before
(Atkinson and Tatnall, 1997; Paola and Schowengerdt, 1997). It could be assumed from results
that the optimum number of iterations to maximise the MLP’s overall accuracy was not reached.
However, by examining the maximum activation as a function of iteration it may be seen that
though there was a general trend for accuracy to increase with number of iterations, the
maximum accuracy of the networks tested was achieved with 2000 iterations (Figure 4.27). It
was likely that the optimum number of iterations was dependent on the architecture of the MLP.
A smaller network is less complex and therefore will take a smaller number of iterations to learn

to model the distributions of the training data.
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Figure 4.27  Maximum MLP P, as a function of the number of iterations.

4.8.1.2 Thematic uncertainty

The results show that it was possible to derive measures that were significantly correlated (at
95% confidence), with per-pixel thematic uncertainty using the output activations from the

MLPs. These measures provided indications of the probability of correct allocation. From the
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results obtained it appeared that the ability of a network to accurately model thematic

uncertainty was also sensitive to network variables.

Identifying the MLP network that modelled thematic uncertainty most accurately was difficult
to define, as it depended on the definition of thematic uncertainty and there was no significant
correlation between the class independent and class specific thematic uncertainty measures (at
95% confidence) (Appendix G; Table G.8). If thematic uncertainty was defined as being class
independent, the most accurate network was different from the one that was most accurate if
class specific thematic uncertainty was considered (Table 4.2). Neither of these networks
matched the architecture for the most accurate network in terms of overall accuracy (Table 4.2).
When there were five nodes in the MLP the network did not predict thematic uncertainty
accurately. The MLP that predicted class independent thematic uncertainty most accurately had
10 nodes. As the number of nodes was increased beyond 10 there was a general decrease in the

ability to model class independent thematic uncertainty (Figure 4.9).

The large class independent thematic uncertainty RMSEs obtained from the five node networks
were likely to be due to the lack of complexity in the network. It may be argued that the
network’s ability to model the complexities of the data affected overall accuracy and prediction
of thematic uncertainty. At network sizes larger than ten nodes, the ability of the network to
model thematic uncertainty was reduced. This could be due to over training, where an increase
in the ability of the network to model the complexities of the training data results in an increase
in thematic uncertainty prediction error. However, in the case of the MLP, prediction of
thematic uncertainty is a by-product of the classification process. The training process
minimises the error of the overall classification and does not estimate posterior probabilities.
The decision boundaries for an MLP are not based on a PDF as with a Bayesian approach to
classification. To position the decision boundary between classes in a hard classification so that
overall accuracy is maximised there is no need for a probabilistic output. Classification accuracy
does not necessarily correlate with the ability of a network to predict thematic uncertainty. A
network may produce a large accuracy value, but the activations may tend towards the extremes
of 0 and 1. When the relationship between P, and normalised entropy was examined (Figure
4.16) there was a negative correlation, and so as accuracy increased, entropy decreased,
indicating that activations tended towards extremes. This is an indication that as the networks
were trained they became more confident in their outputs, though this increased confidence did

not result in a greater ability to predict uncertainty.
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If activations tend towards 0 or 1 for a classification containing thematic errors, thematic
uncertainty is less likely to be modelled accurately, as the full range of probabilities will not be
represented. There would be an exception if pixels were correctly allocated, as probabilities
could be represented as certainties (0 or 1). To model thematic uncertainty accurately, the

network has to be able to output activations over the full range of probabilities.

Entropy is a measure of uncertainty, and will be small when activations tend to 0 and 1. If the
entropy was small then it may be assumed that the network was not able to represent thematic
uncertainty unless pixels were correctly allocated, as it did not tend to output activations away
from 0 and 1. If this were the case then a network with small entropy would be less able to
represent uncertainty than one with large entropy. There was a significant but weak relationship
between class independent thematic uncertainty RMSE and entropy (R*=0.145, F=19.8,
p<0.001) (Figure 4.28) indicating that the ability of a network to model thematic uncertainty
was only partially a function of the ability of the network to output activations that were not
close to 0 or 1. Another interpretation would be that large entropy represented large uncertainty
in the thematic output and did not necessarily allow the network to model uncertainty
accurately. This was borne out as, relative to the other MLPs, the networks with 5 nodes had
large entropy values, but large class independent thematic uncertainty RMSE and small
accuracy values. This complex relationship meant that a relationship between P, and class
independent thematic uncertainty RMSE was unlikely and this was borne out by the results

(R*=0.012, F=2.4, p=0.126).

The thematic uncertainty results were made more complex when the class specific thematic
uncertainty as a function of network variables results was examined. There was no significant
correlation between class specific thematic uncertainty RMSE and number of nodes (at 95%
confidence) (Figure 4.12). However, there was a negative log-linear correlation between class
specific thematic uncertainty RMSE and the number of iterations (Figure 4.14) (R°=0.922,
F=155.5, p<0.001). The optimum network for predicting class specific thematic uncertainty (30
nodes, 3500 iterations) was not the optimum network for prediction of either class independent

thematic uncertainty or overall accuracy (Table 4.2).
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Figure 428  MLP entropy as a function of class independent thematic uncertainty
RMSE.

The accuracy of thematic uncertainty measures derived from the MLP was partially a function
of network variables such as number of iterations and number of nodes. However, these
heuristics should not be applied to other datasets, as variation in accuracy of thematic
uncertainty measures is also dependent on variables other than network architecture. These

include the land cover type being classified, the number of classes, the datasets used.

The possibility for the discrepancy between class independent and class specific thematic
uncertainty RMSE trends was likely to be due to the components of the RMSE value calculated.
Creep was the class that made up the greatest proportion of class specific thematic uncertainty
error for most iterations (Figure 4.29). The error in predicting the thematic uncertainty
associated with this class decreased as the number of iterations increased. From the ground data
it may be seen that the Creep class made up less than 1% of the total number of pixels (82
pixels of 786; Table 4.3). In terms of class specific thematic uncertainty this class had a

disproportionate effect compared to its relative area.
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The variation in the range of overall accuracy and errors in predicting thematic uncertainty
varied a great deal in the networks tested (Table 4.2). The minimum overall error derived from
P, was 0.173, 37% less than the maximum of 0.274 (Appendix G). There was a 66% variation
in class independent thematic uncertainty RMSE and a 54% variation in class specific thematic
uncertainty RMSE (Appendix G). The error when predicting thematic uncertainty varied more
than when predicting class. This may have been due to the error measures during training being
derived from thematic accuracy rather than thematic uncertainty. The training process therefore

minimised thematic error rather than the error associated with predicting thematic uncertainty.

482 PNN

4.8.2.1 Overall accuracy

The PNN P, was dependent on smoothing function. Below the optimum value for accuracy
(h=0.02), P, decreased rapidly with small changes in smoothing function. This was likely to be
due to the PDF being a noisy representation of the training data (Bishop, 1995). The network
was able to classify the training data very accurately, but could not generalise to the rest of the
dataset. For values of smoothing function above 0.02, P, decreased slowly with an increase in

smoothing function. This was likely to be due to the smoothing function and so the training
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kernels being too large, resulting in an over-smoothed PDF, which would be unrepresentative of

the posterior probabilities (Bishop, 1995).

4.8.2.2 Thematic uncertainty

The results show that it was possible to derive measures that were significantly correlated (at
95% confidence), with per-pixel thematic uncertainty using the output activations from the
PNNs. As with the MLPs, the most accurate PNN network and the one that predicted class
independent thematic uncertainty most accurately were not the same. The PNN with #=0.11 had
the smallest class independent thematic uncertainty RMSE and there was a large difference in
P, and class independent thematic uncertainty RMSE between this network and the most
accurate one (£=0.02, P, = 0.827, RMSE = 0.077; ~=0.11, P, = 0.749, RMSE = 0.019). This
indicates that the ability of a PNN to classify accurately was not reflected in its ability to predict

thematic uncertainty.

However, the class independent thematic uncertainty RMSE values did not fully describe
thematic uncertainty prediction using the PNN, as they did not provide per-class information
and, therefore, may not have fully represented the thematic uncertainty prediction error. By
examining the confusion matrices it was found that in all but six of the PNNs tested, at least one
class was not represented in the accuracy assessment data, as no pixels were allocated to the
class. Only in the classifications with a smoothing function between 0.0025 and 0.04 were all

the classes represented.

For the PNN with the smallest class independent thematic uncertainty RMSE (4#=0.11), none of
the pixels in the accuracy assessment were classified as Reeds or Buckthorn (Table 4.4), and the
Marram class was only represented by one classified pixel, even though there were 30 ground
data pixels in the accuracy assessment data. There were only five Creep class pixels, all of
which were misclassified, out of 82 in the accuracy assessment ground data. The PNN with
#=0.11 would not represent land cover accurately as these classes would be either under-
represented or not represented at all in the final classification. This was likely to be due to an
over-smoothed class conditional distribution resulting from too large a smoothing function. The
estimated prior probabilities for the Reeds, Buckthorn, Marram and Creep classes were all small
relative to the other vegetation classes, Woodland and Grass (Table 4.1). These small prior
probabilities linked with an over-smoothed class conditional distribution would result in

misclassification as a spectrally similar class, but with a larger prior probability. Most of the
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misclassifications resulted from the Reeds, Buckthorn, Marram and Creep classes being

misclassified as Woodland and Grass (Table 4.4).

By examining the thematic uncertainty on a per-pixel per-class basis, it may be seen that the
RMSE values based on all activations from the network did not necessarily represent
uncertainty accurately. Only six of the PNNs resulted in at least one pixel for each class during
the accuracy assessment stage. Of these, the PNN that represented class specific thematic
uncertainty most accurately on a per-pixel per-class basis had #=0.02, which coincided with the
largest overall accuracy. From the plot of per-class average activation against the proportion of
pixels correctly classified for the PNN with #=0.02, it may be seen that the network modelled
per-pixel uncertainty accurately for all classes (Figure 4.26). A linear regression of actual
proportion of pixels correctly classified as a function of the predicted value assuming that this
was the average activation showed that there was a significant correlation (R*= 0.886, F=55.5,

p<0.001).

4.8.3 Comparing the MLP and PNN

Both PNN and MLP networks were able to model thematic uncertainty on a per-pixel basis. For
both types of network, there did not appear to be a link between the thematic accuracy of a
network and the thematic uncertainty outputs. Though selecting the most accurate network or
the one that modelled thematic uncertainty most accurately was relatively simple, determining
network suitability for change detection was more difficult. This was because the requirements
of error prediction are different for a simple mapping exercise using the output from a
classification and monitoring such as change detection where two or more classifications are
combined. If a land cover map is required, the most accurate network was likely to be most
suitable. However, for change detection there was also a requirement for accurate prediction of
uncertainty, to estimate the probability of error of the output. In simple terms the optimum
network should have the largest accuracy and smallest class independent and class specific
thematic uncertainty RMSEs. These conditions did not coincide for the MLP or the PNN
networks. Therefore, a network used for change detection where output errors are modelled
should be selected carefully to reduce both thematic error and thematic uncertainty error. This is
likely to result in a compromise between small thematic uncertainty errors and small thematic

CITOrS.

It was shown that care had to be taken when examining the class independent and class specific

thematic uncertainty RMSE values as they did not necessarily fully represent thematic
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uncertainty accuracy. Using the class independent thematic uncertainty RMSE, there was no

indication of how accurately class specific thematic uncertainty was represented.

It was likely that the PNN most suited for change detection in which change from all eight
classes was a possibility was the one with #=0.02. This was because of all the PNNs tested this
network had the largest overall accuracy, was able to represent all classes within the

classification and could predict the probability that a given class was correct with the least error.

During the training process MLPs move the boundaries between classes in order to minimise
error (Bishop, 1995). This indicates that MLP activations only represent thematic uncertainty as
a by-product of the classification process and cannot be assumed to represent posterior
probabilities. PNNs use the posterior probability to determine the most probable class and the
decision boundaries between classes. As PNNs generate the posterior probability, the outputs
may be directly interpreted as thematic uncertainty. This indicates that PNNs should be more
suitable than the MLPs for deriving thematic uncertainty on a per-pixel basis. However, the
results obtained in this study do not necessarily indicate this, as the PNN that represented
thematic uncertainty most accurately (Table 4.5), had greater thematic uncertainty errors than
the MLP that represented thematic uncertainty most accurately (Table 4.2). Though the most
accurate PNN (% = 0.02) (Table 4.5) represented thematic uncertainty less accurately than some
of the MLPs (for example 10 nodes, 1000 iterations), when overall accuracy, class independent
thematic uncertainty and class specific thematic uncertainty were taken into account no single

PNN or MLP was most accurate (Table 4.2).

To simplify the study a single network type was selected for use in later chapters. The PNN’s
outputs are posterior probabilities, unlike the MLP for which the outputs need to be interpreted
as posterior probabilities. The PNN also produces a stable output, as the output will be the same
for the same training inputs and network variables. The accuracy of MLPs is dependent on
starting conditions, as well as network variables. Small changes in the initial conditions prior to
training can result in large differences in the final ability of the network to classify even with the
same input training data (Kanellopoulos and Wilkinson, 1997; Paola and Schowengerdt, 1997).

For these reasons the PNN was used in later chapters for change detection.

Care has to be taken when using indicators of the accuracy of thematic uncertainty measures
such as the class independent thematic uncertainty RMSE. These indicators may not fully
represent the ability of a network to predict thematic uncertainty. Within this study it was seen

that global measures of uncertainty such as the class independent thematic uncertainty RMSE
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can give an incorrect impression of how thematic uncertainty was represented by output
activations. The confusion matrix should be studied to determine whether all classes were
accurately classified, particularly in the case where some of the classes had a very small prior

probability and so were not accurately represented in the accuracy assessment stage.

4.8.4 Summary

In this chapter thematic uncertainty measures were produced that could be used to map the
spatial distribution of thematic errors in classifications for a model of change detection. These
thematic uncertainty measures were derived from the output of MLP and PNN classifiers and
provided indications of the thematic uncertainty for every class at every pixel. Other
classification methods may be used to provide per-pixel thematic uncertainty (for example de
Bruin and Gorte, 2000; Mclver and Friedl, 2001) and, therefore, used as input to per-pixel
change detection models. The outputs of PNNs are the posterior probability of correct allocation
for every class at every pixel and therefore PNNs are more suitable for a probabilistic study than

MLPs that do not output probabilities.

Though there were significant correlations between overall accuracy and thematic uncertainty as
a function of network variables for MLPs, heuristics for deriving the most suitable network for
change detection should not be made on the basis of these trends, as the variables were not
highly correlated and are likely to be very data dependent. This means that the most effective
method of determining a network to use should be based on empirical testing rather than using

pre-determined heuristics.
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5 Combining thematic and misregistration uncertainty using

synthetic data

5.1 Introduction

The purpose of this study was derive operational methods of determining land cover change
using remote sensing that would minimise the error associated with change detection. To do this
a model of land cover change that predicted the uncertainty associated with the process of
determining thematic change on a pixel by pixel basis was derived. Assuming that a hard
thematic model can represent the real world, the errors associated with change detection are due
to thematic errors in the classifications and misregistration between images that were classified.
Determining per-pixel change therefore required the per-pixel prediction of thematic error and
misregistration errors between classification data. As it is effectively impossible to determine
error on a per-pixel basis for a large area, measures of the probability of error or uncertainty
were required. The use of geometric and thematic uncertainty measures was tested to determine

whether these measures could increase the accuracy of change detection.

5.2 Use of thematic uncertainty measures in change detection

In the previous chapters, per-pixel measures of thematic and misregistration uncertainty were
derived. If these measures were to be of use in per-pixel change detection it must be possible to
combine them to generate a per-pixel prediction of change. If per-pixel measures of the
probability of change were to be generated then the misregistration and thematic error measures

must be probabilistic.

In Chapter 3 an overall misregistration error function, x, was derived (Section 3.6.6). However,
M was not suitable as a measure of misregistration uncertainty, as it was a single averaged value
for each pixel and was not a probabilistic output. To provide a per-pixel change uncertainty
output from the thematic and geometric uncertainty measures, it was necessary to preserve the
probabilistic nature of the input thematic and misregistration models. The geometric error model
that was used in the generation of the averaged misregistration model derived was probabilistic.
The output of the geometric error model consisted of a series of geometric error vectors for
every pixel with a probability associated with each vector (Figure 3.22). This uncertainty model
was suitable for use in per-pixel change detection, as it provided a local model of geometric
uncertainty. When the geometric uncertainty models are combined for two classifications at two

times, they can provide probabilistic measures of misregistration.
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In Chapter 4 outputs from MLP and PNN classifiers were used to derive per-pixel measures of
thematic uncertainty (Figure 5.1). These measures could be directly used in a change
uncertainty model, as they are probabilistic or could be interpreted as probabilistic and provide a

thematic uncertainty measure for every class at every pixel (Figure 5.1).

Classl Class 2
Vi

4

Class 4

N
s 8

Class § F Class 6 Class 7 Clas
Figure 5.1 Per-pixel uncertainty derived from PNN as a function of class for
subsection of 2002 Ainsdale data. White is large probability, black is small probability.

5.3 Fuzziness and thematic uncertainty

Errors in change detection are particularly likely to occur at boundaries between classes (Dai
and Khorram, 1998). This is partially if the boundary position is incorrect due to

misregistration. However, where there are fuzzy boundaries or ecotones it is difficult to position
the boundary accurately (Brown, 1998; Fortin et al., 2000; Molenaar and Cheng, 2000). Where
pixels are mixed the hard thematic model is limited (Fisher, 1997, Foody and Boyd, 1999). One
option would be to use fuzzy classification (Bastin, 1997; Foody, 1997; Foody and Boyd, 1999;
Maselli, 2001) in change detection. However, the aim of this study was to use hard classification
for thematic change detection, as potential users of the output are likely to require a traditional

thematic map (Section 4.2).

If the thematic uncertainty measures provided an indication of the uncertainty due to mixed
pixels, then this option would account for errors in the classification as well as the fuzziness
(Foody, 2000). However, thematic uncertainty and fuzziness are inherently different concepts

(Ricotta, 2004). Fuzziness is partial membership to a series of classes, whereas thematic
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uncertainty is a description of the error associated with the probability of membership to a series
of classes. In the context of hard classification, fuzziness may be considered a subset of
uncertainty. As the amount of mixing within a pixel increases, the probability that a given hard
class is correct is reduced due to confusion of the classes in feature space. It was therefore likely
that the thematic uncertainty measures derived in Chapter 4 would partially account for the
multiple class membership of a pixel as well as the uncertainty. In the case of pixels that contain
multiple classes, an increase in fuzziness would result in increased uncertainty in the correct
allocation. It follows that the thematic uncertainty measures derived could account for fuzziness

in terms of uncertainty in a hard classification.

In this study it was not possible to test whether the measures derived were both fuzzy and
probabilistic, as fuzzy accuracy assessment data were not acquired. The PNN outputs posterior
probabilities as with the ML classifier, though the PNN is non-parametric unlike the ML.
Previous studies have shown that the ML output can be used to predict multiple class
membership (Foody et al., 1992; Bastin, 1997). Therefore, posterior probability can be used to
model fuzziness and so the assumption was made that there was a link between fuzziness and
PNN output and that the thematic uncertainty measures derived were likely to account for the

multiple class membership, as well as uncertainty.

5.4 Combining geometric and thematic uncertainty measures

To combine the geometric and thematic uncertainty models derived in a per-pixel change

uncertainty model the following approach was taken (Figure 5.2):

1. For every geometric error vector of a given pixel, the thematic uncertainty values were
applied to the position of the pixel represented by the geometric error vector. As the
geometric error vector was not necessarily an integer value, there were likely to be four
pixels that a thematic uncertainty value was applied to due to a single geometric error
vector (Figure 3.22; Figure 5.2). The thematic uncertainty value was modified by the
proportion of a pixel the geometric error vector applies to and by the probability of the
vector.

2. Stage | was repeated for every class.

3. The new thematic uncertainty was normalised, so that the uncertainty for every pixel

equalled one.
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Figure 5.2 Combining the thematic and geometric uncertainty models. For each pixel
there are up to 77 orthometric error vectors and associated geometric error probabilities.
This represents the maximum size of the geometric error matrix in Figure 3.21.
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The new uncertainty layer was similar in appearance to the thematic uncertainty layer (Figure

5.1), but combined thematic and geometric uncertainty.

Change may be predicted in a number of ways, but in this chapter the ability of the combined

uncertainty model to determine change was assessed in three ways:

1. Predict whether a given pixel had changed or not between #, and #,.
2. Predict the most probable class of a given pixel at two times, and determine whether the
class had changed.

3. Predict the probability or magnitude of change in land cover class between ¢, and #,.

5.5 Method

To compare change detection methods, 256 pixel by 256 pixel synthetic images were generated
with a spatial resolution of 1 m, as with the Ainsdale CASI data. Each image was treated as a
complete and 100% accurate ground data set. For each change scenario one image was
generated for #; and one for #,. The images contained two classes. Class 1 was a square of
variable size in the centre of the image, Class 2 the area surrounding the square (Figure 5.3). For
1), the size of the classes was kept constant, but the size of the boundary between them was
changed. The sizes of the boundary width used were 0 m (a hard boundary), 5 m, 10 m, 15 m,

and 20 m. The mixing in the boundaries was assumed to be linear with distance.

The ¢, images were generated with the same variations in boundary fuzziness as for #,. For each
image at #;, a no change image was generated for #,. Images were also generated with varying
amounts of change between #; and #, (Figure 5.3). The boundary between the two classes was
moved varying distances in the #, image to generate differences of 5 m, 10 m, 20 m, 30 m and
40 m between #, and . In every case the change was a reduction in the size of Class 1. These
resulted in thirty change scenarios with varying amounts of change and varying widths of fuzzy

boundary.
For each image representing actual ground conditions, thematic and geometric errors were
applied to derive a synthetic image representing a classification derived from remotely sensed

data.

Geometric error was applied assuming angular acceleration between 1°s™'s™ and
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10%s's™! for #, and between 1°s™'s™ and 5°'s™ for t,. The average error was derived using
Equation 2.11 and a random error between —1 and +1 pixel was applied to the average. The
values used to generate the geometric error matched values observed in actual data. At the first
pixel in the flight line the direction of the error vector was along the flight path. At pixel 64 in
the flightline, the error vector was increased 90°. This was repeated at pixels 128 and 194. The
variation in the direction of the error vector was applied so that misregistration direction varied

across the imagery.

'

(c) (d)
Figure 5.3 Synthetic data class 1. The change distance is assumed to be the distance
that the boundary between the classes has moved.
a) Time 1, hard boundary.
b) Time 2, hard boundary. Boundary between classes moved 40 m.
¢) Time 1, Fuzzy boundary width =20 m.
d) Time 2, Fuzzy boundary width =20 m. Boundary between classes moved 40 m.

For the ¢, images the assumed flight direction was south, for £, flight direction was west. The
variation in flight direction was applied so that misregistration would vary across the image in
two dimensions. Topographic effects were not taken into account in order to simplify the

synthetic data model. The geometric error applied resulted in the misregistration in Figure 5.4
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Figure 5.4 Misregistration between synthetic images. As the flight directions of the
images at ¢, and ¢, were different by 90° and the geometric error vector was varied across
the image misregistration varies in two dimensions across the image.
a) Misregistration in x direction.
b) Misregistration in y direction.
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For each of the thirty change scenarios, five thematic error scenarios of 5%, 10%, 20%, 30%
and 40% were applied. Two randomised 256 pixel by 256 pixel images were derived, one for ¢,
and one for #,. These images contained random values between 0 and 100. For each of the
thematic error scenarios (between 5% and 40%), a pixel was assumed to be correct if the pixel
value of the randomised image was greater than the thematic error. For example for the 20%
thematic error scenario, all pixels with a value in the random image greater than 20 were

assumed to be correct. All other pixels were assumed to be incorrect.

If a pixel was designated correct, the thematic uncertainty was assumed to be a random value
between -0.25 and 0.25 of the fuzzy value, approximately four times the most accurate PNN
class specific thematic uncertainty RMSE in Chapter 4 (Table 4.5).

If the pixel was designated incorrect, a random thematic value between 0.5 and 1 was applied to
the incorrect class. For example if the class of a pixel that had been designated incorrect was
Class 1 in the original data then a value between 0.5 and 1 was applied to Class 2. This resulted
in a series of images containing thematic and geometric errors (Figure 5.5).

The following change detection models were compared:

1. No Uncertainty: hard classifications and no geometric or thematic uncertainty.
Misregistration: geometric uncertainty was derived, but not thematic uncertainty.

Thematic: thematic uncertainty was derived but not geometric uncertainty.

oW

Combined: combined thematic and geometric uncertainty.

The geometric uncertainty model and thematic uncertainty models were merged using code

written in Interactive Data Language (IDL) (Appendix I).
The confusion matrices of the change models were compared using two models with either two

or four classes. In the two-class change problem the classes were Change and No change. The

class of the pixel was assumed to be Change when:

(Class 1;- Class 15)>=0.5

The class of the pixel was assumed to be No change when:

(Class 1,;- Class 1)< 0.5
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(© (d)

Figure 5.5 Synthetic data class 1, with thematic and geometric errors applied
a) Time 1, hard boundary.

b) Time 2, hard boundary. Boundary between classes moved 40 m.

¢) Time 1, Fuzzy boundary width =20 m.

d) Time 2, Fuzzy boundary width = 20 m. Boundary between classes moved 40 m.

In the four-class change problem there were the following classes:

Sl

No change, Class 1
Change, Class 1 to Class 2
Change, Class 2 to Class |
No change, Class 2

To calculate which of the four classes each pixel belonged to, the class for ¢, and #, was derived

from the class with the largest thematic uncertainty. As this was effectively a method of

hardening a classification, the Thematic and No uncertainty models gave the same result. Using

the four class set would enable judgements to be made as to how accurately the models could

detect change and predict what change was taking place
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The RMSE between the actual and predicted thematic change vector magnitudes was also
compared for the four models. This enabled a comparison to be made of how accurately each

model predicted the thematic change vectors.

The error statistics were generated from the whole of an image and therefore a whole
population. This means that significance values did not need to be generated and any differences

were effectively significant.

To examine the spatial distribution of the errors within the change detection methods the change
images were observed when the thematic error was 20%. This value was used as it was the

closest value to the thematic error of the most accurate PNN in Chapter 4 (Table 4.5).

5.6 Results

All the results from the synthetic data are in Appendix J.

5.6.1 Thematic error

As thematic error of the input layers increased, the overall accuracy of the change detection
model decreased (Figure 5.6; Figure 5.7). The exceptions to this trend were the Misregistration
and Combined models when no change had taken place using the two-class Change/No change
model (Figure 5.6). The general trend of decreasing change detection accuracy with an
increased thematic error was expected, as an increase in the input errors was likely to lead to an
increase in the output errors. However, the near constant overall accuracy with an increased
thematic error for the Misregistration and Combined uncertainty models was unexpected. When
the thematic error was 20% both uncertainty models reduced the predicted change close to 0%

(Table 5.1).

In the two-class problem, change was only assumed when the difference vector between the two
times was greater than 0.5. As thematic errors were introduced randomly rather than in a
clumped form it was likely that the majority of pixels containing thematic error would be
surrounded by pixels that did not. In a pixel that contained thematic error, the geometric
uncertainty model was likely to result in thematic error being smoothed below the 0.5 threshold
by those correct pixels around it. Using the geometric uncertainty model each pixel was likely to
be strongly affected by the pixels surrounding it, as the geometric error matrix used values from

up to 76 of the surrounding pixels (Figure 3.21).
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Figure 5.6 Overall accuracy as a function of thematic error for two class change
model.

a) Time 1, hard boundary.

b) Time 2, hard boundary. Boundary between classes moved 40 m.

¢) Time 1, fuzzy boundary width =20 m.

d) Time 2, fuzzy boundary width = 20 m. Boundary between classes moved 40 m.

In the four-class problem, the No Uncertainty change detection method had a close to linear
negative relationship with thematic error for all change scenarios (Figure 5.7). At a thematic
error of less than 20%, the Combined and Misregistration change methods had a close to linear
relationship with overall accuracy and overall accuracy values were greater than 97% (Figure
5.7). With a thematic error of greater than 20%, overall accuracy decreased sharply with an
increase in thematic error, with the Misregistration method having the greatest decrease in

overall accuracy (Figure 5.7).
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Figure 5.7 Overall accuracy as a function of thematic error for four class change
model.

a) Time 1, hard boundary.

b) Time 2, hard boundary. Boundary between classes moved 40 m.

¢) Time 1, fuzzy boundary width = 20 m.

d) Time 2, fuzzy boundary width =20 m. Boundary between classes moved 40 m.

Using the Misregistration method when the thematic error was small was as accurate as or more
accurate than using the Combined method (Figure 5.6; Figure 5.7). However, as thematic error
increased, the Combined method became more accurate than the Misregistration method alone,
indicating that the effect of thematic uncertainty in change detection increased with increasing
thematic error (Figure 5.6). In the four-class problem this effect was increased and the
Misregistration method became much less accurate relative to the Combined method at large

thematic errors (Figure 5.7).
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Table 5.1 Synthetic change data confusion matrices for hard boundary and no
change assuming two classes using data with thematic error = 20%.

a) No Uncertainty model b) Misregistration model
Actual change Actual change

()

ah No User’s No User’s
_§ change Clhan e accurac change s accuracy
-0.3 No change | 44252 0 1.000 No change | 65460 0 1.000
8| Change 21284 0 0.000 Change 76 0 0.000
TCl 5 )

£ oEe k| e | aone | as7s Producer’s | 999 | 0.000 | 0.999

accuracy accuracy
¢) Thematic model d) Combined model
Actual change Actual change

Q 5 2
%0 No Change User’s No Change User’s
= change accuracy change accuracy
-0.3 No change | 46906 0 1.000 No change | 65531 0 1.000
5 Change 18630 0 0.000 Change 5 0 0.000
3 3y )

| Freductl's | oore | paon | 0718 Praducer's | 1456 | 5.000 1.000

accuracy accuracy

The increased importance of using thematic uncertainty measures in change detection as
thematic error increased was also observed when comparing the No Uncertainty and Thematic
change methods (Figure 5.6). At small thematic errors, the two methods had similar accuracies
for change detection. However, as thematic error increased, the difference in change detection
accuracy increased, with the Thematic uncertainty method having a larger accuracy than the No

Uncertainty method.

The reduction in accuracy as a function of an increase in thematic error also occurred in the
prediction of the thematic change vector magnitude (Figure 5.8). All methods of change

detection became less accurate as the thematic error increased.

The relative importance of thematic uncertainty as thematic error increased was also observed in
the plots of the RMSE between predicted and actual thematic change vectors, particularly the
plots of thematic change vector error as a function of thematic error for the areas of change only
(Figure 5.9). At small thematic errors the Misregistration method resulted in smaller errors in
the predicted thematic change vector than the Combined method, but as thematic error
increased, the Misregistration method became less accurate compared to the Combined method

(Figure 5.9).
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Figure 5.8 RMSE as a function of thematic error.

a) Time 1, hard boundary. Boundary between classes moved 5 m.

b) Time 2, fuzzy boundary width = 20 m. Boundary between classes moved 5 m.
¢) Time 1, hard boundary. Boundary between classes moved 40 m.

d) Time 2, fuzzy boundary width =20 m. Boundary between classes moved 40 m.
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Figure 5.9 RMSE as a function of thematic error only using pixels in which change

took place.

a) Time 1, hard boundary. Boundary between classes moved 5 m.

b) Time 2, fuzzy boundary width = 20 m. Boundary between classes moved S m.
¢) Time 1, hard boundary. Boundary between classes moved 40 m.

d) Time 2, fuzzy boundary width = 20 m. Boundary between classes moved 40 m.

5.6.2 Impact of fuzziness and change

5.6.2.1 Hard boundaries with no thematic change

In the images where no change took place and the classes had a hard boundary, change was
incorrectly predicted at points across the whole image for the No Uncertainty and Thematic
models (Figure 5.10). This also occurred in the transect data, with large negative and positive
predicted thematic change vectors in areas of no actual change (Figure 5.11). The confusion
matrices for these models show that the Producer’s accuracy for the No Change class was much

greater using the Misregistration and Combined methods classes in both the two-class and four-
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class problems (Table 5.1; Table 5.2). This indicated that the No Uncertainty and Thematic

models incorrectly predicted large amounts of change relative to the Misregistration and

Combined models.
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Figure 5.10  Synthetic data change layers where no change and hard boundaries
between classes. Black lines are positions of transects in Figure 5.11.

a) No Uncertainty model.

b) Misregistration model.

¢) Actual change.

d) Thematic model.

e) Combined model.

The Misregistration change model reduced the incorrect prediction of change compared to the
No Uncertainty and Thematic models, with the Combined method reducing these errors further
(Figure 5.10). These trends also occurred in the transect data (Figure 5.11), with the variation
from the actual thematic change vector being least in the Combined model and only slightly
greater in the Misregistration model. The No Uncertainty model had the greatest variations from
the actual thematic change vector with errors that were slightly greater than the Thematic model
(Figure 5.11). The observations above match the confusion matrices of the different change

detection methods (Table 5.1; Table 5.2).
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Table 5.2 Synthetic change data confusion matrices for hard boundaries between
classes and no change assuming four classes using data with thematic error = 20%.

a) No Uncertainty and Thematic models. b) Misregistration model
Actual change Actual change
No No ; No oa| NO 5
i I-1 22 I-1 X
%D bl Tl_’f"ge 14006 | 0 0 | 1815 | 0.885 L T'_’f"ge 21438 | 0 0 | 61 | 0997
S | Change 12 | 3486 | 0 0 | 7052 | 0.000 Change 1-2 | 208 | 0 0 | 221 | 0.000
D | Change2-1 | 3535 [ o 0 | 7211 | 0.000 Change2-1 | 238 | 0 0 | 536 | 0.000
2
o o O
g | Nochonge | g | o | o [EREEH| o060 Nochmgs | 20 | o | o [H331 Looo
S ! :
et = »
@ | Producer's | 4639 | 0,000 | 0.000 | 0.632 | 0.634 Producer’s |, 979 | 0.000 | 0.000 | 0.981 | 0.980
accuracy accuracy

¢) Combined model

Actual change

e Change|Change Ha User’s
Sl 1-2 2-1 S accurac
3 I-1 22 ’
b -
= N°°l'_’f‘"=e 21538 | 0 0 | 30 | 099
S | Change12 | 102 | 0 o | 117 | 0000
B | change21 | 248 | 0 0 | 307 | 0.000
2
(&) - o
g | Noshrse | g | o | o [43178 1000
S g
a | Producer’s | o83 | 0,000 | 0.000 | 0.990 | 0.987
accuracy

Areas incorrectly predicted as change occurred at the boundary between the two classes using
all change detection methods (Figure 5.10). A large decrease in incorrect prediction of change
occurred when the Misregistration and Combined models of change detection were used
compared to the Thematic and No Uncertainty models of change detection (Figure 5.10; Figure
5.11). Though the Combined model removed most of the incorrect prediction of change in the
homogeneous areas, it still incorrectly predicted change at the boundaries, but the predicted
thematic change vector was generally less than 0.5 (Figure 5.10). This error may be seen in the
transect data (Figure 5.11). At the boundary between the classes (50 m), a large negative
thematic change vector occurred in the Misregistration and Combined change methods, showing
that at the boundaries these methods did not completely remove the effects of misregistration

(Figure 5.11).
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Figure 5.11 Change vector along transects for No change and hard boundaries between
classes. Boundary at S0 m. Transect position shown in Figure 5.10. 0 m is on the left side of
the transect.

Very little change was predicted incorrectly using the Combined or Misregistration methods for
the two-class and four-class problems, with Producer’s and User’s accuracies for the No change
class all greater than 97.8% (Table 5.1; Table 5.2). This compared with Producer’s accuracy of
71.6% for the Thematic method and 67.5% for the No Uncertainty method using the two-class
problem. In the four-class problem using the No Uncertainty method, the Producer’s accuracy
of the No change classes were 63.9% and 63.2%. These results showed that when using the No
Uncertainty and Thematic methods a large number of pixels were misallocated to the Change

classes.

5.6.2.2 Fuzzy boundaries with no thematic change

In the images where no change occurred and the classes had a 20 m fuzzy boundary width
(Figure 5.12) change was only predicted incorrectly at the boundaries using the No Uncertainty
model. Using the Misregistration model a small increase in incorrect change prediction occurred
at one part of the boundary on the right side of the image (Figure 5.12). A small reduction in the
incorrect change prediction occurred over the fuzzy boundary using the Thematic model, which
may be observed as a faint square in the middle of the image (Figure 5.12). This was likely to
occur due to the thematic uncertainty values being closer to one another for ¢, and ¢,, due to

fuzziness in pixels and a corresponding reduction in predicted change in the thematic
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uncertainty. Using the Combined method when the boundary was fuzzy, very little error
occurred even at the boundary between the classes (Figure 5.12). These results may also be
observed in the transect data (Figure 5.13). The No Uncertainty method predicted change
incorrectly at points all along the transect (Figure 5.13). The Thematic method predicted
reduced change, particularly in the section of boundary (35 m to 55 m) (Figure 5.13). The
Misregistration method reduced the predicted thematic change vector below 0.5 along most of
the transect, apart from at 48 m (Figure 5.13). The Combined method reduced the error all along

the transect, with a thematic change vector smaller than 0.4 (Figure 5.13).
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Figure 5.12  Synthetic data change layers where there is no change and fuzzy boundary
width = 20 m. Black lines are positions of transects in Figure 5.13.

a) No Uncertainty model.

b) Misregistration model.

¢) Actual change.

d) Thematic model.

e) Combined model.

In the images with no actual change the Misregistration and Combined methods removed much
of the error due to change being incorrectly predicted (Figure 5.10; Figure 5.12). This was also
observed in the confusion matrices for the two and four-class change problems when the

thematic error was 20% and the classes had a hard boundary (Table 5.3; Table 5.4). In the two-

class and four-class change problems, the results of the no change scenario for a thematic error
148



of 20% where the classes had fuzzy boundaries were similar to the results where the classes had

hard boundaries (Table 5.1; Table 5.2; Table 5.3; Table 5.4).

Change vector

Distance (m)

| Hard — Misregistration — Thematic — Combined —Actual‘

Figure 5.13  Change vector along transects for No change and fuzzy boundary width =
20 m. Boundary between 35 m and 55 m. Transect position shown in Figure 5.12. 0 m is on
the left side of the transect.

Using the Combined or Misregistration methods the Producer’s and User’s accuracy for the No
change class was greater than 99% for the two-class problem and 92.8% for the four-class
problem (Table 5.3; Table 5.4). This compared with a Producer’s accuracy of 73.6% for the
Thematic method and 66.7% for the No Uncertainty method using the two-class problem (Table
5.3). In the four-class problem using the No Uncertainty change method when there were fuzzy
boundaries, for the No Change classes the Producer’s accuracies were 59.6% and 62.4% and the
User’s accuracies were 81.9% and 96.7% (Table 5.4). These results were similar to those where
classes had hard boundaries (Table 5.2) showing that unlike the Combined and Misregistration
methods, using No Uncertainty and Thematic methods a large number of pixels were

misallocated to the Change classes.
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Table 5.3 Synthetic change data confusion matrices for fuzzy boundary width =20 m
and no change assuming two classes using data with thematic error =20%.

a) No Uncertainty model b) Misregistration model
Actual change Actual change
o 2 7
%D No Ghiange User’s No Chismas User’s
= change accuracy change aceurac
o | No change | 43697 0 1.000 No change | 65490 0 1.000
b3
A Change 21839 0 0.000 Change 46 0 0.000
-c 3 >
£ | Producer’s | o c6n | 0000 | 0.667 Producer’s | 999 | 9000 | 0.999
accuracy accuracy
¢) Thematic model d) Combined model
Actual change Actual change
] 3 2
%D No Change User’s No Change User’s
3 change accuracy change accuracy
S| Nochange | 48225 0 1.000 No change | 65536 0 1.000
Q
K3} Change 17311 0 0.000 Change 0 0 0.000
] 9 )
£ | Producer's | 4736 | 0.000 | 0.736 Producer’s | | 450 | 0,000 | 1.000
accuracy accuracy
Table 5.4 Synthetic change data confusion matrices for fuzzy boundary width =20 m
and no change assuming four classes using data with thematic error =20%.
a) No Uncertainty and Thematic models. b) Misregistration model
Actual change Actual change
e Change|Change No User’s No Change|Change No User’s
Sk 1-2 2-1 ol accurac hangs 1-2 2-1 ehangs accurac
B I-1 ¥ ¥ -1 22 Y
%D L Cl’_‘f"ge 10079 | 0 0 | 2222 | 0819 o~ T'_’f"ge 15683 | 0 0 | 153 | 0990
S | Change12 | 2835 | 0 0 | 7953 | 0.000 Change 12 | 404 0 0 | 337 | 0.000
B Change2-1 | 2960 | © 0 | 8091 | 0.000 Change 2-1 | 557 0 0 | 710 | 0.000
= No change - No change - i R
5 se— || MEE | D 0 [30370| 0967 wa T |23 | @ 0 |47436| 0995
A, | Producer’s | 506 | 0.000 | 0.000 | 0.624 | 0617 Producer’s | 4 928 | 0.000 | 0.000 | 0.975 | 0.963
accuracy accuracy

¢) Combined model

Actual change

b Change |Change No User’s
change change
1-2 2-1 5 accuracy
o -1 22
g | Noshanee Jisgsol o | o | 131 | 0092
S | Change12 | 317 | 0 0 | 227 | 0.000
D [ Change2-1 | 494 | 0 | 0 | 446 | 0.000
—
Q
w5 | Noshree | a0 | 0 | 0 [47832| 0996
o :
q | Producer’s 16040 | 0.000 | 0.000 | 0.983 | 0.972
accuracy
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5.6.2.3 Hard boundaries with thematic change

In the change images where 40 m of change took place and the classes had hard boundaries, the
general pattern of actual change was observable in all images (Figure 5.14). In the homogeneous
areas of no change, similar patterns occurred to those in Figure 5.10 and Figure 5.12. In the area
of actual change, the No Uncertainty and Thematic methods of change detection predicted a
large proportion of pixels as undergoing no change (Figure 5.14). For many of the pixels, the

predicted thematic change vector was opposite to the actual thematic change vector (Figure

5.14). The predicted change was Class 2 to Class 1, when the actual change was Class 1 to
Class 2.
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Figure 5.14  Synthetic data change layers where change = 40 m and hard boundaries
between classes. Black lines are positions of transects in Figure 5.15.

a) No Uncertainty model.

b) Misregistration model.

¢) Actual change.

d) Thematic model.

e¢) Combined model.

For both the Misregistration and Combined change detection methods the predicted change was
less than the actual change, though the thematic change vectors generally had the correct sign

for much of the change area (Figure 5.14). This indicated that the No Uncertainty model was
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less accurate than the other methods at predicting the direction of the thematic change vector

(which classes a pixel was allocated at ¢, and ).

The exception was the edge of the area of change, where change was predicted less accurately
using the Misregistration and Combined methods. This may be observed in the transect data
(Figure 5.15). At the 60 m point on the transect the Misregistration and Combined methods did
not predict change to the edge of the change area (Figure 5.15). At the points where the No
Uncertainty and Thematic methods correctly predicted change, these methods had a thematic
change vector closer to the actual value than either the Misregistration or Combined methods
(Figure 5.15). However, the overall error of the thematic change vector for the Misregistration
and Combined methods was smaller than the No Uncertainty and Thematic uncertainty methods

as may be seen for the RMSE values for the area of change (Figure 5.9).
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Figure 5.15  Change vector along transects for change = 40 m and hard boundaries
between classes. Transect position shown in Figure 5.14. 0 m is on the left side of the
transect.

When change occurred for the classes with the hard boundaries, the No Uncertainty and
Thematic change methods had large errors. In the two-class problem the errors were largest in
the Change class with Producer’s accuracies of 65.4% and 67.8% and User’s accuracies of
45.1% and 42.9% for the Thematic and No Uncertainty methods respectively (Table 5.5). The

majority of errors in the Misregistration and Combined change methods were predicting areas of
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change as undergoing no change (Table 5.5). These methods removed most incorrect
predictions of change, with the Change class User’s accuracies of 99.8% and 99.5% for the
Combined and Misregistration methods respectively (Table 5.5). The No change User’s
accuracies were still large, with values of 92.8% (Combined) and 91.2% (Misregistration).
However, the Producer’s accuracies for the Change class were much smaller, with values of
78.2% (Combined) and 73% (Misregistration) indicating that these methods underestimated
change (Table 5.5).

Table 5.5 Synthetic change data confusion matrices for classes with hard boundary
and change = 40 m assuming two classes using data with thematic error = 20%.
a) No Uncertainty model b) Misregistration model
Actual change Actual change
L)) s ]
& No Change User’s No Change User’s
ig change accuracy change accurac
-§ No change | 32630 5562 0.854 No change | 48198 4673 0.912
o Change 15626 | 11718 0.429 Change 58 12607 0.995
- s ’
£| Producer’s | o 06 | 0678 | 0677 Producer’s | 505 | 0730 | 0.928
accuracy accuracy
¢) Thematic model d) Combined model
Actual change Actual change
[ i} ]
%n No Change User’s No Change User’s
= change accuracy change accuracy
-§ No change | 34524 5981 0.852 No change | 48230 3764 0.928
o Change 13732 | 11299 0.451 Change 26 13516 0.998
-U b 2
2| Producer’s | 515 | G654 | 0.699 Producer’s | 599 | 0782 | 0.942
accuracy accuracy

The accuracy of change detection when using the four-class problem was greater than the two-
class problem for both the Misregistration (92.8% and 98.3%) and Combined (94.2% and 99%)
methods (Table 5.6). For both these change methods, the Change 1-2 class had the smallest
Producer’s accuracy (Table 5.6). However, unlike the two-class problem (Table 5.5), the
amount of misclassification of areas of Change as areas of No change was more evenly
matched, with 457 Change pixels misclassified as No change and 213 No change pixels
misclassified as areas of Change in the Combined model (Table 5.6). Using the Misregistration
model 541 Change pixels were misclassified as No change and 561 No change pixels were

misclassified as areas of Change (Table 5.6).
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Table 5.6 Synthetic change data confusion matrices for classes with hard boundary
and change = 40 m assuming four classes using data with thematic error = 20%.

a) No Uncertainty and Thematic models. b) Misregistration model
Actual change Actual change
No No " No No i
change Change|Change thange User’s ko Change|Change = el U‘ser s
1-2 2-1 accuracy 1-2 2-1 accuracy
& 1-1 22 1-1 g
& | Noshnee | ggm | ams | o | 1784 | 0305 Nochange | 4551 | 285 | o | 4 | 0940
S | Change12 | 764 [10981| o | 7083 | 0583 Change1-2 | 72 [16738| 0 [ 279 | 0.979
D | Change2-1 | 718 | 737 | o | 7061 | 0.000 Change2-1 | I 1 0 | 209 | 0.000
e
Q
w5 | Nosrmes | yz0 2787 | o [27704| 0.904 Noghange | o | 256 | o [43140| 0994
[0
q, | Producer’s | o643 | 0.635 | 0.000 | 0.635 | 0636 Producer’s | 984 | 0.969 | 0.000 | 0989 | 0983
accuracy accuracy

¢) Combined model

Actual change

No No ,
change i e change it
12 2-1 =" | accuracy
L -1 22
%‘3 e Tf‘f“ge 4575 | 193 | o0 0 | 0.960
S | Change 12 | 49 [16823] o | 147 | 0988
B [ Change2-t [ 0 [ o | o | 17 | 0000
8
Q o
2 No ghzance 0 264 0 | 43468 | 0.994
S e
= cer’
A, | Producer's | 5989 | 0974 | 0.000 | 0.996 | 0.990
accuracy

5.6.2.4 Fuzzy boundaries with thematic change

In the change images where 40 m of change took place and the fuzzy boundary width was 20 m,
the general pattern of actual change occurred again in all images (Figure 5.16). In the
homogeneous areas of no change, the same patterns occurred as in all the previous synthetic
change diagrams (Figure 5.10; Figure 5.12; Figure 5.14). The No Uncertainty and Thematic
methods of change detection predicted a large proportion of Change pixels as being No change
or predicted a thematic change vector with the opposite sign to the actual thematic change
vector (Figure 5.16). As would be expected, the No Uncertainty change method did not show
the fuzzy nature of change and below the 0.5 threshold generally did not predict any change as
having occurred. The Thematic method did show the fuzzy nature of the change, as the thematic
change vectors at the edge of the edge of the change area were more representative of the actual

thematic change vectors than using the No Uncertainty change method (Figure 5.16).

The Misregistration change method did not predict the fuzzy nature of the actual change as
accurately as the Combined method (Figure 5.17). Though thematic change vectors at the edge

of the change area had a smaller magnitude than the change vectors in the centre of the change
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area, these did not indicate the fuzzy nature of the change (Figure 5.17). The Combined method
appeared to represent the fuzzy nature of the change at the edge of the area of change more
accurately than the Misregistration method (Figure 5.16; Figure 5.17). However, as with the
change when there were hard boundaries (Figure 5.14), the Combined and Misregistration
methods consistently underestimated the magnitude of the thematic change vector (Figure 5.16).

This may be seen in the transect data, where for most of the change area actual thematic change

vectors were greater than those predicted (Figure 5.17).
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Figure 5.16  Synthetic data change layers where change = 40 m and fuzzy boundary
width = 20 m. Black lines are positions of transects in Figure 5.17.

a) No Uncertainty model.

b) Misregistration model.

¢) Actual change.

d) Thematic model.

e¢) Combined model.
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Figure 5.17  Change vector along transects for change = 40 m and fuzzy boundary
width =20 m. Transect position shown in Figure 5.16. 0 m is on the left side of the
transect.

The No Uncertainty model of change detection had the largest Producer’s accuracy for the
Change class (64.5%) in the two-class problem (Table 5.7). This model detected more of the
actual change than any of the other models when the boundary was fuzzy. However, when
looking at the four-class problem using the No Uncertainty model, the Producer’s accuracy for
the class Change 1-2 was much smaller (59.7%) than the value obtained when the Combined
(93.9%) and Misregistration (92.5%) models were used (Table 5.8). Though the No Uncertainty
model could detect much of the change, it did not predict what change occurred. This was
supported by the prediction using the No Uncertainty model of 8857 pixels of class Change 2-1,
compared to 231 pixels using the Misregistration model and 17 pixels using the Combined
model, when in the actual data no pixels of this class occurred (Table 5.8). Though the No
Uncertainty model predicted more of the actual change in the two class problem than the other
models, the User’s accuracy of the Change class in both the No Uncertainty (36.0%) and
Thematic models (37.3%) was very small compared to the Misregistration (98.9%) and
Combined models (100%) (Table 5.7). In the two-class problem the actual change was 22.3% of
the total area. The No Uncertainty and Thematic models of change predicted 39.9% and 34.9%
change respectively, compared to the 12.4% by the Combined model and 14.2% by the
Misregistration model (Table 5.7).
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Table 5.7 Synthetic change data confusion matrices for fuzzy boundary width =20 m
and change = 40 m assuming two classes using data with thematic error =20%.

a) No Uncertainty model b) Misregistration model
Actual change Actual change
(5] 5 )
%D No Change User’s No Change User’s
= change accuracy change accuracy
% No change | 34201 5187 0.868 No change | 50842 | 5387 0.904
5 Change 16739 | 9409 0.360 Change 98 9209 0.989
=] 5 [}
2 roineer® | S eor | oadas. | s Producer's | no0p | g.631 | 6916
accuracy accuracy
¢) Thematic model d) Combined model
Actual change Actual change
Q > ’
%0 No Change User’s No Change User’s
3 change accuracy change accuracy
% No change | 36593 | 6074 0.858 No change | 50937 | 6501 0.887
5 Change 14347 8522 0.373 Change 3 8095 1.000
-U 3 'l
£ | Producer’s | 518 | 0584 | 0.688 Producer’s |y 909 | 0555 | 0.901
accuracy accuracy
Table 5.8 Synthetic change data confusion matrices for fuzzy boundary width = 20 m
and change = 40 m assuming four classes using data with thematic error = 20%.
a) No Uncertainty and Thematic models. b) Misregistration model
Actual change Actual change
s Change|Change e User’s Ll Change|Change i User’s
change 1-2 2-1 ahangs accurac ehmnge | 2c 2 lc e a accuracy
- 1-1 22 4 [ 2 | 32 ;
g | Moshree | iaso | 2317 | o | 202 | 0248 Nochmge 199831 275 [ o | 1 | oo
S | Change 12 | 566 | 8592 | 0 | 8133 | 0.497 Change 1-2 | 266 [13313| ©0 | 489 | 0946
B | Change2-1 | 377 | 719 | o | 7761 | 0.000 Change 2-1 1 7 0 | 223 | 0.000
iy | Nodhmee | g | 2772 | o [30700| 0914 Noghange | o | gos | o |47923| 0983
O . x
A, | Producer's | 576 | 0.597 | 0.000 | 0.631 | 0.622 Producer’s | 4 893 | 0.925 | 0.000 | 0.985 | 0.968
accuracy accuracy

¢) Combined model

Actual change

ki Change|Change ey User’s
change change
1-2 2-1 accuracy
- J 94
%ﬂ Nochange | 2245 | 182 | o | 0 | 0925
S | Change12 | 255 [13524] o [ 358 | 0957
B | Change2-1 | 0 0 0 17 | 0.000
R d
[&] o
g | Noshames | o | e94 | 0 |48261| 0986
E Mo
= TOCUCET'S | 1 898 | 0.939 | 0.000 | 0.992 | 0.977
accuracy
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5.6.3 Global measures of change

The effects of the different models in terms of global change detection were summarised by

comparing the amount of change predicted by each of the change models with the actual amount

of change for the classifications with 20% thematic error (Table 5.9; Table 5.10). In both the

two-class and four-class problems, the Combined and the Misregistration approaches only

slightly over-predicted change when no change took place (Table 5.9; Table 5.10). The

Thematic model overestimated change in all cases, and the No Uncertainty model overestimated

change more than all other models (Table 5.9; Table 5.10).

When change did take place the Thematic and No Uncertainty models overestimated the total

area of change. In the two-class problem the Combined and Misregistration models both

underestimated change (Table 5.9). The Combined model (20.7%) was closest to the actual

change (26.4%) when the boundaries were hard, and the Misregistration model (14.2%) was

closest to the actual change (26.4%) when the boundaries were fuzzy (Table 5.9). When the

results of the four-class problem were examined, both the Combined and Misregistration models

were much closer to the actual change than with the two-class problem (Table 5.10). In both the

hard and fuzzy boundary change scenarios the Misregistration model was within 0.2% of the

actual value and Combined model within 0.4% (Table 5.10). The total percentage change was

more accurately modelled using the four-class rather than the two-class approach.

Table 5.9

Percentage change using synthetic change data two-class problem,
thematic error =20%

Actual Change| Fuzzy boundary |Combined| Thematic | Misregistration | No Uncertainty | Actual change
(m) width (m) (%) (%0) (%) (%) (%)
0 0 0.0 284 28.4 0.1 32.5
0 20 0.0 26.4 26.4 0.1 333
40 0 20.7 38.2 38.2 19.3 41.7
40 20 12.4 34.9 34.9 14.2 399
Table 5.10 Percentage change using synthetic change data four-class problem,

thematic error =20%

Actual Change | Fuzzy boundary | Combined (%) | Misregistration | Thematic/No | Actual change
(m) width (m) (%) Uncertainty (%) (%)
0 0 1.2 1.8 32.5 0.0
0 20 2.3 3.1 33.3 0.0
40 0 26.0 26.4 41.7 26.4
40 20 21.6 21.8 39.9 22.0
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5.7 Discussion and Conclusions

The use of synthetic data enabled variables to be controlled that would be difficult or impossible
to control using environmental data. However, assumptions were made during the process of
generating the synthetic data that may have resulted in outputs that were not representative of
actual airborne data. Though synthetic data have the potential to provide information about the

change detection models derived in this study, care should be taken in any conclusions drawn.

As thematic error increased, the ability to detect change decreased, even when thematic and
geometric uncertainty measures were used (Figure 5.6; Figure 5.7). This indicates that even
when using thematic and geometric uncertainty measures, the maximum precision of change
detection is a function of the accuracy of the input data. Though methodologies were developed
to minimise the impact of errors, these were not able to remove the effect of the error in the

input data.

The impact of using thematic uncertainty varied as a function of thematic error. When
comparing overall accuracy and RMSE as a function of thematic error (Figure 5.6; Figure 5.7;
Figure 5.8; Figure 5.9) the Misregistration model was as accurate as or more accurate than the
Combined model at small thematic errors. However, as thematic error increased, the Combined
model became more accurate relative to the Misregistration method. The importance of using
thematic uncertainty as thematic error increased was also observed when the No Uncertainty
and Thematic change methods were compared (Figure 5.6; Figure 5.7). When thematic errors
were small, the two methods had similar levels of accuracy. As thematic error increased, the
difference in accuracy increased, with the Thematic uncertainty method having a larger
accuracy than the No Uncertainty method. This indicates that the suitability of using thematic
uncertainty varies according to thematic accuracy. As thematic error increased, the use of
thematic uncertainty when modelling change was likely to result in more accurate modelling of

change.

For all accuracy measures used, the change detection model that used combined per-pixel
thematic and geometric uncertainty was more accurate than the change detection models that
assumed no uncertainty or only used thematic per-pixel uncertainty. One of the reasons for this
was likely to be that the use of misregistration uncertainty smoothed thematic errors. By
applying the misregistration function, the thematic errors were smoothed across a wide area,
reducing their per-pixel effect. This may be seen in the change images and the change transects

(Figure 5.10 to Figure 5.17). In the simple synthetic data model with spatially random thematic
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error, this reduced change detection error, but in environmental data it is likely to reduce the
precision of the model, as areas of any class with a width of a similar order to the
misregistration error are likely to be smoothed such that they will be removed. However, in a
pixel based method of detecting change there will always be compromise between reduction of
misregistration errors (generally incorrect detection of change at boundaries) and missing small,

pixel order changes.

The Thematic and No Uncertainty change methods generally overestimated change (Table 5.9;
Table 5.10). This was likely to be because errors generally resulted in the incorrect prediction of
change. For a given pixel where no actual change took place, a thematic error in only one of the
input classifications would result in a 100% probability of change being predicted. For a pixel
where actual change took place, an error in one of the input classifications would only result in a
prediction of no change if the pixel was allocated the same class as the other input layer. The
probability of this happening will be inversely proportional to the number of classes, at largest
50% for two classes. As a majority of thematic errors will appear as change, this is likely to bias

outputs resulting in overestimation of change.

The Misregistration and Combined models generally underestimated change. This is because
these models smoothed the change surface, making them less sensitive to differences between
the input layers. Class boundaries were expanded beyond their actual position to compensate for
potential geometric error. This will result in ecotones appearing wider than they actually are and
result in a loss of sensitivity at boundaries particularly where change has taken place. The edges
of areas of actual change are less likely to be detected than the centre. This was observed in the
images of change and the change transects (Figure 5.14 to Figure 5.17), where change became
less obvious at the edge of the change areas, particularly where change occurred over a wide

rather than narrow ecotone.

The misregistration uncertainty model smoothed errors due to incorrect detection of change.
This may be seen in the plot of accuracy as a function of change detection accuracy for the two-
class problem and no change (Figure 5.6). Even as thematic error was increased, the accuracy of
change detection did not decrease (Figure 5.6). This smoothing effect may result in removal of
small objects with a width of the order of a few pixels, therefore increasing thematic error. If the
geometric error footprint can be reduced, the smoothing effect will be reduced increasing the

precision of change detection.
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5.7.1 Summary

In this chapter measures of misregistration and thematic uncertainty were tested for change
detection using synthetic data. Change detection with and without misregistration and thematic
uncertainty measures was tested. By adding misregistration and thematic uncertainty measures

in a change detection model the accuracy of change detection could be increased.
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