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6 Combining thematic and misregistration uncertainty using 

airborne-sensor data 

6.1 Introduction 

In Chapter 5 the misregistration and thematic uncertainty models were combined in a 

probabilistic change detection model using synthetic data. In this chapter, the model used in 

Chapter 5 (Figure 5.2) was applied to CASI and LiDAR data of the Ainsdale Sand Dunes test 

site (Figure 2.2; Appendix D). 

In the previous chapter the use of both misregistration and thematic uncertainty resulted in an 

increased level of change detection acc'oracy compared to ignoring uncertainty. However, the 

synthetic data that were used in the testing stage may not accurately represent an actual CASI 

classification dataset. The synthetic data did not account for orthometric effects as elevation 

data were not incorporated in the geometric uncertainty model. 

The geometric uncertainty model accounts for errors that can arise due to the interaction of 

instrument error and misalignment with the surface terrain. This will be particularly useful 

where geometric errors due to terrain misalignment have the potential to be large. In an imager 

such as the CASI the edge of imagery is where the greatest orthometric errors tend to occur. 

Orthometric errors are also likely to occur where the terrain height varies a great deal, as it is 

more likely that the elevation used in orthocorrection will be incorrect. 

As well as orthometric effects there were other differences between the synthetic and remotely 

sensed data. The thematic errors in the synthetic data occurred randomly but in environmental 

remotely sensed data errors are also likely to occur in clumps, for example due to areas of 

shadowing or an area of vegetation that was not represented in the training data. The assumption 

was made in generating the synthetic data that the PNN accurately modelled multiple class 

membership, as well as uncertainty, which may not have been the case. The spatial distribution 

and number of classes in the synthetic data was very simple, with only two classes and a square 

representing one of those classes. 

6.2 Method 

The change detection models were tested using CASI and LiDAR data from the Ainsdale Sand 

Dunes test site from 28th August 2001 and 11 th September 2002 (Section 2.6.1; Appendix C; 
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Table C.2; Table C.4; Appendix D). CASI and LiDAR images were processed following the 

methods described in Section 2.3.1. A 1.5 km by 1.5 km section of the data was used for the 

final change analysis. 

The CASI data were classified using a PNN with a smoothing function (h) of 0.02, as this value 

produced the largest overall thematic accuracy and the most accurate measure of class specific 

thematic uncertainty in the 2002 test stage (Table 4.5). Training data were 1000 pixels per-class 

for the eight classes as in Chapter 4. For the 2002 data these pixels were reselected randomly, so 

that the training data were not the same as those used in Chapter 4. 

Using the same 60 m grid stratified random sampling method described in Section 2.6.2, but 

with different random points, points on the 2001 CASI data were interpreted to estimate a prior 

probability for each class (Table 6.1). This was used for input in the 2001 PNN classification. 

Estimated prior probabilities of2001 classes for PNN classification, Table 6.1 
d . d f . t t f f CAS I d t enve rom ID erpre a Ion 0 a a. 

Water Sand Marram Grass Reeds Creep Buckthorn Woodland 
0.05242 0.09274 0.04435 0.37500 0.02419 0.10081 0.00806 0.30242 

For the 2001 survey the only ground data were in polygon format. This meant that accuracy 

assessment data were not selected using the stratified random sampling method used in 2002. 

For this reason, the following procedure was used to select training and accuracy assessment 

data for 2001 : 

1. Polygons were evenly allocated to either training or accuracy assessment. 

2. Training data were selected randomly. For each class, an equal number of pixels per 

training polygon were selected. 

3. Using the same 60 m grid stratified random sampling method described in Chapter 

4, but different random points, points on the 2001 CASI data were interpreted to 

produce an estimated prior probability for each class (Table 6.2). These points were 

different from those derived for input to the PNN so that the accuracy assessment 

was not biased. 

4. Assuming a maximum number of five pixels per polygon to minimise 

autocorrelation, the estimated prior probabilities (Table 6.2) were used to determine 

the number of pixels that were randomly selected from the accuracy assessment 

polygon data. This resulted in 207 accuracy assessment pixels for the 2001 data. 
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Table 6.2 

Buckthorn Woodland 
0.01018 0.28880 

The outputs from the 2001 and 2002 PNN classification stages were per-pixel posterior 

probability data for each of the eight classes. The geometric uncertainty model was derived as 

described in Chapter 5. Using the PNN classification input, the four change models used in 

Chapter 5 were again tested: Combined uncertainty, Thematic uncertainty, Misregistration 

uncertainty and No Uncertainty. The accuracy of the different change models were tested using 

the areas identified as having undergone no change and the transect data (Section 2.6.2). 

To determine which pixels were predicted as having undergone change the thematic change 

vector was determined. If the class with the maximum probability at t) is e and the class with the 

maximum probability at t2 is s then thematic change vector (g g) is calculated using: 

bg = (PelJ - P'"'I ) + (P"2 - Pe'2) 

2 

where P, is the posterior probability of class e at t). 
"'I 

Change was predicted to occur when g g >= 0.5 

6.1 

Differences between the change detection results using uncertainty and not using uncertainty 

were tested for significance using the Wilcoxon matched pairs test (Fowler and Cohen, 1990). 

This is a non-parametric test for comparing matched samples. 

6.3 Results 

6.3.1 PNN classification accuracy 

Po for the 2001 classification (Figure 6.1) was 0.865. The 2001 Producer's and User's accuracy 

values were greater than 70% for all classes apart from the Reed class (Table 6.3). For the Reed 

class, both class accuracy measures were 20% (Table 6.3). 

164 



T bl 63 a e . C f ' t' fi 2001 PNN I ' ft f on uSlOn rna rIX or c assl Ica Ion use d fi h or c ange d t f e ec IOn. 
Water Sand Marram Grass Reeds Creep Buckthorn Woodland Correct Total User's 

accuracy 
Water 8 0 0 0 2 0 0 0 8 10 0.80 
Sand 0 22 0 0 0 0 0 0 22 22 1.00 

Marram 0 0 10 3 0 0 0 0 10 13 0.77 
Grass 0 0 3 62 1 0 0 1 62 67 0.93 
Reeds 0 0 0 2 1 1 0 1 1 5 0.20 

Creep 0 0 0 5 0 16 0 0 16 21 0.76 

Buckthorn 0 0 0 0 0 0 2 0 2 2 1.00 
Woodland 3 0 0 2 1 3 0 58 58 67 0.87 

Correct 8 22 10 62 1 16 2 58 179 
Total 11 22 13 74 5 20 2 60 207 

Producer's 0.73 1.00 0.77 0.84 0.20 0.80 1.00 0.97 
0.865 

accuracy 

Po for the 2002 classification (Figure 6.2) was 0,810. The Water, Sand and Woodland classes 

were all classified accurate ly with Producer' s and User' s accuracy values of greater than 89% 

(Table 6.4). The smallest User' s accuracies were 43% for the Reed class and 54% for the creep 

class, though these results were based on very small samples (Table 6.4). 

T bl 64 a e . C f ' . fi 2002 PNN I 'ft fi h on uSlon matriX or c ass I IcatlOn uSlDg or c ange d etectlOn. 
Water Sand Marram Grass Reeds Creep Buckthorn Woodland Correct Total User's 

Accuracy 
Water 55 2 0 0 0 0 0 0 55 57 0.96 
Sand 2 61 1 3 0 0 0 0 61 67 0.91 

Marram 0 1 14 6 0 0 0 0 14 21 0.67 
Grass 0 0 11 224 2 28 0 8 224 273 0.82 
Reeds 0 0 0 7 10 3 0 3 10 23 0.43 
Creep 0 0 2 34 4 50 0 2 50 92 0.54 

Buckthorn 0 0 0 0 0 0 5 3 5 8 0.63 
Woodland 0 0 2 22 0 1 2 218 218 245 0.89 

Correct 55 61 14 224 10 50 5 218 637 
Total 57 64 30 296 16 82 7 234 786 

Producer's 0.96 0.95 0.47 0.76 0.63 0.61 0.71 0.93 0.810 
accuracy 

Though the overall accuracy of the 2002 PNN used in Chapter 2 (Po = 0.827) was within 2% of 

the value obtained in this chapter, the class accuracy values were very different and generally 

smaller for the PNN used in this chapter (Table 6.4). The Water, Sand and Woodland class 

accuracy values were within 5%, but the Reeds and Buckthorn classes had a User' s accuracy 

that was 20% smaller for the PNN in this chapter (Table 4.3; Table 6.4). The difference in 

training data for the 2002 PNN classifications in this chapter and Chapter 4 appear to result in 

very different outputs in terms of class accuracy, indicating that PNNs are very dependent on 

input data. 
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III Water III Grass BuckthOl"n 

~ D Sand III Reed Woodland 

D Man"am II Creep D Unclassified 

Figure 6.1 2001 PNN classification of Ainsdale study area. Grid is 500 m. Area 1 is the 
extent of Figure 6.3. 
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Water 

Sand _ Reed Woodland 

Man'am Creep D Unclassified 

Figure 6.2 2002 PNN classification of Ainsdale study area. Grid is 500 m. Areas 2 and 
3 are the extent of Figure 6.4 and Figure 6.5 respectively. 

Many of the errors within both the classifications were due to shadowing. There was shadowing 

due to the tree canopy in both the 2001 and 2002 data that was misclassified as Water when it 

should have been either Grass or Creep (Area 1, Figure 6.1 , Figure 6.3; Area 2, Figure 6.2, 

Figure 6.4). There was also shadowing due to the frontal dune system that was misclassified as 

Water when it should have been Sand (Area 3; Figure 6.2, Figure 6.5). 
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Water 

D Sand 

D Marram 

Grass 

Reed 

Creep 

D Buckthorn 

Woodland 

Figure 6.3 2001 PNN classification of subsection of Ainsdale study area showing 
shadowed areas in Woodland misclassified as Water. Region shown is that defined as Area 
1 in Figure 6.1. Grid is 50 m. 

168 



Water 

D Sand 

D Marram 

Grass 

Reed 

Creep 

D Buckthorn 

'Voodland 

Figure 6.4 2002 PNN classification of subsection of Ainsdale study area showing 
shadowed areas at edge of woodland misclassified as Water. Region shown is that defined 
as Area 2 in Figure 6.2. Grid is 50 m. 
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Water Marram 

D Sand Grass 

Reed 

Creep 

D Buckthorn 

Woodland 

Figure 6.5 2002 PNN classification of subsection of Ainsdale study area showing areas 
shadowed by frontal dunes misclassified as Water. This is the narrow strip of water next 
to Marram class. Region shown is that defined as Area 3 in Figure 6.2. Grid is 50 m. 

6.3.2 Thematic uncertainty 

There were large differences in the accuracy of the thematic uncertainty measures derived from 

PNN classifications for 2001 and 2002 (Table 6.5). The class independent thematic uncertainty 

RMSE for 200 I was more than twice the value for 2002 (Table 6.5). The class specific thematic 

uncertainty RMSE for 2001 was almost three times the value for 2002 (Table 6.5). The thematic 

uncertainty accuracies were of a similar order for the testing stage of the PNN in Chapter 4 and 

the final classification for 2002 (Table 4.5 ; Table 6.5). 
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Table 6.5 Accuracy of thematic uncertainty measures for Ainsdale PNN 
classifications. 

Year Class independent thematic Class specific thematic 
uncertainty RMSE uncertainty RMSE 

2001 0.145 0.221 
2002 0.071 0.082 

6.3.3 Geometric uncertainty 

A geometric error value for every pixel was derived by multiplying the predicted error vector 

with the probability that the vector would occur and summing the value derived for all predicted 

error vectors (Figure 6.6; Figure 6.7). 

4m 

1m 

Figure 6.6 Predicted geometric error for Ainsdale test site 2001. The error is an 
averaged value. Grid is 500 m. 
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4m 

1m 

Figure 6.7 Predicted geometric error for Ainsdale test site 2002. The error is an 
averaged value. Grid is 500 m. 

As would be expected, predicted geometric error was greatest over the wooded areas, as these 

areas had the greatest variation in surface elevation. At the edges of images the probability of 

orthometric effects are increased (Figure 3.2) and these areas did have an increased predicted 

error (Figure 6.6; Figure 6.7). The large predicted geometric errors that occur in stripes 

perpendicular to the flight path (approximately 45°) are due to large angular acceleration 

(Figure 6.6; Figure 6.7). 

6.3.4 Change detection 

6.3 04.1 Identifying areas of change using the magnitude of thematic change vector 

Testing the areas of no change showed that the No Uncertainty method of determining change 

was the least accurate, with the largest error in all of the areas, apart from CWI and CW3 where 

it had the equal largest error with the Thematic method (Table 6.6). The Combined method had 
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the smallest error in all the deciduous woodland and scrub and the fixed dune areas. Where the 

Combined method did not have the smallest error, in the coniferous woodland, it was within 

1.2% of the smallest error (Table 6.6). The Misregistration method had the smallest error in the 

coniferous woodland areas, but had an error of between 1.6% and 8.7% above the Combined 

method error in the other areas (Table 6.6). 

Proportion of pixels incorrectly classified as change using thematic change Table 6.6 
vector' III areas 0 f h B Id' d' II fi h no c an~e. 0 III Icates sma est error or t at area. 

Area Combined Thematic Misregistration No Uncertainty 
CWI 0.007 0.028 0.006 0.028 
CW2 0.049 0.076 0.041 0.078 
CW3 0.036 0.034 0.024 0.034 
OSI 0.103 0.278 0.119 0.286 
OS2 0.122 0.463 0.179 0.511 
OS3 0.101 0.349 0.124 0.363 
FOI 0.090 0.344 0.130 0.387 
F02 0.140 0.396 0.227 0.483 
F03 0.064 0.328 0.125 0.415 

The Wilcoxon matched pairs test for the proportion of pixels classified as change showed that 

the Combined and Misregistration methods were both significantly more accurate (at 95% 

confidence) in areas of no change than the Thematic and No Uncertainty methods (Table 6.7). 

The Thematic method was significantly more accurate (at 95% confidence) than the No 

Uncertainty method, but there was no significant difference between Combined and the 

Misregistration methods (Table 6.7). 

Table 6.7 Wilcoxon matched pairs test p-values comparing change detection methods 
for proportion of pixels incorrectly classified as change using thematic change vector and 
assuming change occurs at vector with a magnitude greater than 0.5. Bold values indicate 
significance at 95% confidence. 

Thematic Misregistration No Uncertainty 
Combined 0.008 0.055 0.008 
Thematic / 0.004 0.004 

Misregistration / / 0.004 

The Combined method was significantly more accurate than the Misregistration method (at 95% 

confidence) when comparisons were made using the RMSE values of the thematic change 

vector and the resulting Wilcoxon tests (Table 6.8; Table 6.9). The Misregistration method was 

significantly more accurate than the Thematic method, which was significantly more accurate 

than the No Uncertainty method (Table 6.8; Table 6.9). 
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Table 6.8 RMSE of thematic change vector in areas of no change. Bold indicates the 
smallest error for that area. 

Area Combined Thematic Misregistration No Uncertainty 
CWI 0.055 0.134 0.055 0.167 
CW2 0.155 0.217 0.148 0.279 
CW3 0.134 0.141 0.114 0.184 
OSI 0.232 0.444 0.253 0.535 
OS2 0.286 0.558 0.327 0.715 
OS3 0.235 0.505 0.257 0.602 
F01 0.245 0.480 0.276 0.622 
F02 0.298 0.497 0.365 0.695 
F03 0.212 0.443 0.272 0.644 

Table 6.9 Wilcoxon matched pairs test p-values comparing change detection methods 
using thematic change vector RMSE, assuming the actual vector = O. Bold values indicate 
significance at 95% confidence. 

Thematic Misregistration No Uncertainty 
Combined 0.004 0.039 0.004 
Thematic / 0.004 0.004 

Misregistration / / 0.004 

From the transect results for the proportion of correct pixels the No Uncertainty method was the 

least accurate, with the smallest accuracy for Transects 1, 3 and 4 and the equal smallest 

accuracy with the Thematic method for Transects 2, 5 and 6 (Table 6.10). The Combined 

method had the largest accuracy in Transects 1, 2, 4 and 6 (Table 6.10). The Misregistration 

method had the largest accuracy in Transect 5 and the equal largest accuracy in Transect 3 

(Table 6.10). The Combined method was significantly more accurate than the No Uncertainty 

method (at 95% confidence) using the Wilcoxon matched pairs test (Table 6.11). There were no 

significant differences between the other methods (Table 6.11). 

Table 6.10 Proportion of correct transect pixels using thematic change vector 
thr h Id 0 5 B Id· d· tit fi th t t t es 0 .. 0 III lca es arges accuracy or a ransec. 

Transect no. Combined Thematic Misregistration No Uncertainty 
1 0.968 0.839 0.839 0.710 
2 1.000 0.818 0.955 0.818 
3 1.000 0.360 1.000 0.320 
4 0.903 0.903 0.871 0.871 
5 0.816 0.789 0.842 0.789 
6 0.895 0.789 0.789 0.789 
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Table 6.11 Transect Wilcoxon matched pairs test p-values comparing change 
detection methods. Bold values indicate si~nificance at 95% confidence. 

Thematic Misregistration No Uncertainty 
Combined 0.063 0.125 0.031 
Thematic / 0.250 0.250 

Misregistration / / 0.125 

The proportion of correct pixels for the transects where no change occurred were examined. The 

Combined method was the most accurate for Transects 1,2, and 4 (Table 6.12). The Combined 

and Misregistration methods were the most accurate for Transects 3, 5 and 6 (Table 6.12). The 

No Uncertainty method was the least accurate for Transects 1,3, and 4 (Table 6.12). The No 

Uncertainty and Thematic methods were the least accurate for Transects 2,5 and 6 (Table 6.12). 

The Combined method was found to be significantly more accurate than the No Uncertainty and 

Thematic methods (at 95% confidence) using a Wilcoxon matched pairs test (Table 6.13). The 

Misregistration method was significantly more accurate than the No Uncertainty method (at 

95% confidence) (Table 6.13). 

Table 6.12 Proportion of correct transect pixels for pixels where no change occurred 
using thematic change vector threshold 0.5. Bold indicates largest accuracy for that 
transect. 

Transect no. Combined Thematic Misregistration No Uncertainty 
1 0.968 0.839 0.839 0.710 
2 1.000 0.818 0.955 0.818 
3 1.000 0.360 1.000 0.320 
4 0.960 0.920 0.920 0.880 
5 1.000 0.706 1.000 0.706 
6 1.000 0.500 1.000 0.500 

Table 6.13 Transect pixels where no change occurred Wilcoxon matched pairs test p-
value B Id I'd' 'fi t 95% fid s. 0 p va ues In lcate SlgDl lcance a o con I ence. 

Thematic Misregistration No Uncertainty 
Combined 0.031 0.250 0.031 
Thematic / 0.125 0.250 

Misregistration / / 0.031 

For the transect pixels where change had occurred the No Uncertainty and Thematic methods 

had the largest overall accuracy for Transects 4 and 5 (Table 6.14). On transect 6, the No 

Uncertainty, Thematic and Combined methods had the same overall accuracy for the points 

where change occurred (Table 6.14). The Combined method had the smallest overall accuracy 

in Transect 5, the Misregistration method in Transects 4 and 6 (Table 6.14). 
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Table 6.14 Proportion of correct transect pixels for pixels where change had occurred 
using thematic change vector threshold 0.5. Bold indicates largest accuracy for that 
transect. 

Transect no. Combined Thematic Misregistration No Uncertainty 
4 0.667 0.833 0.667 0.833 
5 0.667 0.857 0.714 0.857 
6 0.867 0.867 0.733 0.867 

The confusion matrices for the different models derived from the change transects show the 

general effects of using misregistration and thematic uncertainty on change detection (Table 

6.15). The confusion matrices were calculated using the transects in which change occurred 

using every pixel on the transect. This means that autocorrelation was likely and so care has to 

be taken when interpreting the matrices. The Thematic model has very similar results to the No 

Uncertainty models. They show similar overall, Producer' s and User' s accuracies (Table 6.15). 

The Misregistration and the Combined models have similar results, with both these models 

having larger User's accuracies for the Change class and Producer's accuracies for the Change 

class (Table 6.15). These results indicate that the No Uncertainty and Thematic models tend to 

overestimate change and the Misregistration and Combined models tend to underestimate 

change. 

Table 6.15 Confusion matrices for Ainsdale transects in which change occurred. Care 
has to be taken when interpreting these matrices, as all pixels on transects were used and 
so autocorrelation will occur. 

a) No Uncertainty model b) Misregistration model 

Actual change Actual change 
No 

Change 
User's 

change accuracy 
No 

Change 
User's 

change accuracy 
No change 36 6 0.86 No change 44 12 0.79 

Change 10 36 0.78 Change 2 30 0.94 
Producer's 

0.78 0.86 0.818 
Producer' s 

0.96 0.71 0.841 accuracy accurac;~ 

c) Thematic model d) Combined model 

Actual change Actual change 
No 

Change 
User' s 

change accuracy 
No 

Change 
User' s 

change accuracy 

No change 37 6 0.86 No change 45 11 0.80 
Change 9 36 0.80 Change 1 31 0.97 

Producer's 
0.80 0.86 0.830 

Producer' s 
0.98 0.74 0.864 accuracy accuracy 
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6.3.4.2 Predicting the direction of the thematic change vector 

The effect of using thematic and geometric uncertainty for predicting the direction of the 

thematic change vector was also examined. The direction of the thematic change vector 

describes the class at fI and f2• Testing how accurately the change vector direction was predicted 

involved testing the accuracy of the different methods using an eight by eight class change 

scenario. This potentially involved all combinations of change between 2001 and 2002, which 

was 64 change classes. When the overall accuracy transect results are examined for the 64-class 

problem there did not appear to be one method that was most accurate (Table 6.16). The 

Thematic and No Uncertainty methods were the most accurate in Transects 1 and 6 and least 

accurate in all other transects (Table 6.16). The Misregistration method had the equal largest 

accuracy with the Combined method in Transects 2 and 3 (Table 6.16). The Combined method 

was most accurate in Transects 4 and 5 (Table 6.16). None of the methods was significantly 

more accurate (at 95% confidence) than the others using a Wilcoxon matched pairs test (Table 

6.17). 

Table 6.16 Proportion of transect pixels in which thematic change vector direction 
was correctly predicted. This involved 64 change classes. Bold indicates largest accuracy 
for that transect. 

Transect no. Combined Thematic Misre~stration No Uncertai~ 
1 0.548 0.645 0.484 0.645 
2 0.500 0.455 0.500 0.455 
3 0.640 0.200 0.640 0.200 
4 0.723 0.583 0.702 0.583 
5 0.605 0.368 0.579 0.368 
6 0.440 0.544 0.398 0.544 

Table 6.17 Transect Wilcoxon matched pairs test p-values comparing change 
detect' th d 64 h I Ion me o s uSlOg c ange c asses. 

Thematic Misregistration No Uncertainty 
Combined 0.313 0.125 0.313 
Thematic / 0.563 l.000 

Misregistration / / 0.563 

6.3.4.3 Visualising change detection 

Using the No Uncertainty model the deciduous woodland area to the south and east of the study 

site appeared to have the least change predicted (Figure 2.4; Figure 6.8). This was likely to be as 

a result of the homogeneolls land cover type and large class accuracy. The area identified as 

undergoing greatest change using the No Uncertainty model was the beach area (Figure 2.4; 

Figure 6.8). This was expected, as the data were flown at different states of the tide and there 

are sand banks that move a great deal from year to year (Wolstenholme, personal 
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communication). Though there were large areas where change was identified on the beach, there 

were also large homogeneous areas where little change was predicted (Figure 6.8). As the Sand 

and Water classes were classified accurately for both years (Table 6.3 ; Table 6.4) it was likely 

that the change identified in this area was an accurate representation of actual change. 

0.70 - 0.79 D 0.80 - 0.89 0.90 - 1.00 

Figure 6.8 Thematic change vector between classifications of 2001 and 2002 data 
using No Uncertainty change model. Grid is 500 m. 

LiDAR and photogrammetric data have been used to show large changes in the mobile dune 

system (Brown et al., 2003a), with areas of erosion to the south of the study site and accretion in 

the north. The No Uncertainty model predicted a great deal of both scattered and clumped 
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change areas in the mobile dune and fixed dune systems (Figure 2.4; Figure 6.8). Change was 

likely to occur in the mobile dune system, with the movement of sand and changes in Marram 

grass distribution (Rodwell et ai., 2000). However, the fixed dune was made up mainly of 

perennial species (Rodwell et ai., 2000) and therefore change was less likely. 

When the thematic uncertainty was added to the change detection model, the main difference 

compared to the No Uncertainty method was that in many areas the change vector was reduced 

(Figure 6.9). The beach and the seaward edge of the mobile dunes area stilI showed change to 

be highly probable, but for a great deal of the fixed dune system the thematic change vector was 

reduced compared with the No Uncertainty method (Figure 2.4; Figure 6.8; Figure 6.9). 

There were still some clumps where change was predicted in the fixed dune area and at the 

boundaries between the woodland and fixed dune (Figure 2.4; Figure 6.9). The areas predicted 

to be change at the boundary ofthe woodland were likely to be due to shadowing induced 

misclassifications such as those identified in Figure 6.3 and Figure 6.4. The clumped areas of 

change in the fixed dune system (Area 4, Figure 6.9, Figure 6.10) may have been partially the 

result of establishment of grasses. This area was woodland until 1992 (WS Atkins, 2004; 

Wolstenholme, personal communication) and may be undergoing succession. In this area there 

may also have been problems due to errors in the classification and the inability of the classifier 

to model mixed pixels in the uncertainty outputs (Figure 6.10). The area is a mixture of Marram, 

Sand and Grass classes. Small changes in the boundary of the classes in feature space may have 

resulted in large changes in the predicted distribution of those classes when pixels were mixed 

classes and the classifier failed to account for the mixing. 

When misregistration uncertainty was used in the change detection model, the main difference 

compared to the No Uncertainty method was that in many areas the thematic change vector was 

reduced (Figure 6.8; Figure 6.11). This was also the case in comparison to the Thematic method 

(Figure 6.9; Figure 6.11). The main difference compared with the Thematic method was that 

there appeared to be fewer areas in which large thematic change vectors were predicted. The 

beach and the seaward edge of the mobile dunes area still showed the change to be highly 

probable, but for a great deal of the fixed dune, mobile dune and deciduous woodland and scrub 

the thematic change vector was reduced compared with the Thematic method (Figure 2.4; 

Figure 6.9; Figure 6.11). There were still some clumps where change was predicted in the fixed 

dune area and at the boundary between woodland and fixed dune (Figure 2.4; Figure 6.11). 
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D 0.60 - 0.69 

D 0.70 - 0.79 D 0.80 - 0.89 0.90 - 1.00 

Figure 6.9 Thematic change vector between classifications of2001 and 2002 data 
using Thematic change model. Grid is 500 m. Area 4 is the extent of Figure 6.10. 
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Truecolour CAS I 

PNN classifications 

• Water o Sand 

o Marram 

Gr:.ss 

• Reed 

Creep 

o lIuckthorn 

Woodland 

Maximum thematic 
uncertainty 

1.0 

0.5 

0.0 

Combined thematic 
change vector 

D 0.00 - 0.49 0 0.70 - 0.79 

• 0.50 - 0.59 D 0.80 - 0.89 

0 0.60-0.69 0.90 - 1.00 

2001 2002 

Figure 6.10 Differences in 2001 and 2002 for area of fixed dune and change predicted 
using Combined method. Red polygons are areas where predicted thematic change vector 
is greater than 0.8 using the Combined method. Region shown is that defined as Area 4 in 
Figure 6.9. Grid is 50 m. 
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Figure 6.11 Thematic change vector between classifications of2001 and 2002 data 
using Misregistration change model. Grid is 500 m. 
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Figure 6.12 Thematic change vector between classifications of2001 and 2002 data 
using Combined change model. Grid is 500 m. Areas 5, 6 and 7 are the extent of Figure 
6.13, Figure 6.14 and Figure 6.15 respectively. 

The strip of change along much of the mobile dune system using the Combined change image 

was likely to be due to errors from shadowing in the 2002 data (Figure 6.5). The shadowed area 

was misclassified as Water in 2002 data, but was Sand in the 2001 data. 
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Figure 6.13 Overtopping of grasses by sand between 2001 and 2002 for area of mobile 
dune and change predicted using the Combined method. The red polygon is the area 
where overtopping occurs and predicted thematic change vector is greater than 0.7 using 
Combined method. Overtopping areas identified as red polygons on CASI imagery and 
black polygon on change image. Region shown is that defined as Area 5 in Figure 6.12. 
Grid is 50 m. 

The change identified at the southern end of the mobile dune system appeared to be erosion or 

overtopping of vegetation by sand (Area 5; Figure 6.12, Figure 6.13). 

There still appeared to be areas where change was incorrectly predicted due to shadowing from 

woodland (Area 6, Figure 6.12, Figure 6.14). The shadowing occurred in data from both years 

and resulted in areas of vegetation being misclassified as Water. However, the positioning of the 

shadow was different due to the data being flown at different times of day (Appendix C; Table 

C.2; Table CA). 

The change detection uncertainty output could be used to identify whether change has taken 

place or predict what change has occurred. For example, Figure 6.16 shows the areas predicted 

as changing to the Sand class in 2002. Large areas of the beach have changed to Sand in 2002. 

This is likely to be due to sand banks shifting between 2001 and 2002. There are also areas 

where overtopping by sand is likely to have occurred in and around the frontal dunes to the 

south west of the study area (Figure 6.16), as in Figure 6.13. 
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Figure 6.14 Change error due to shadowing at edge of woodland and change predicted 
using the Combined method. Red polygons are areas where predicted thematic change 
vector is greater than 0.7 using Combined method. Region shown is that defined as Area 6 
in Figure 6.12. Grid is 50 m. 
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Figure 6.15 Area of woodland removed between 2001 and 2002 and change predicted 
using Combined method. The red polygon is the area believed to be felled where the 
predicted thematic change vector is greater than 0.6 using Combined method. The blue 
line is section of transect 6 where ground data show that trees have been removed. Region 
shown is that defined as Area 7 in Figure 6.12. Grid is 50 m. 
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Figure 6.16 Areas predicted as changing to Sand in 2002 using Combined change 
model. This is the predicted thematic change vector from 2001 to 2002 from all classes 
apart from Sand in 2001 to Sand in 2002. Grid is 500 m. 

When the transect thematic change vectors were examined, several trends relating to the change 

detection could be seen (Figure 6.17 to Figure 6.22). In all transects the largest overall errors 

were obtained using the No Uncertainty method (Table 6.10), and these errors were greatest 

where there was no change (Table 6.12). Thematic errors appear to result in change being 

predicted where none occurred. This was paliicularly the case in Transect 3 where 68% of the 

transect was predicted as change, but the ground data predicted minimal change between 2001 
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and 2002 (Table 6.10; Figure 6.19). The Thematic method resulted in a similar effect, but this 

was reduced compared to the No Uncertainty method, with smaller thematic change vector 

magnitudes. However, many of the change vectors were still above the 0.5 threshold for 

determining change (Figure 6.19). 
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Figure 6.17 Ainsdale data transect 1 thematic change vector. Pixels are plotted as 
points to minimise confusion between change models. 
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The Misregistration method reduced the overestimation of change in areas of no change, but did 

not completely remove this effect as may be seen in Transects 1 and 2 (Figure 6.17; Figure 

6.18). The Combined method showed similar results in areas of no change to the Misregistration 

method, but the thematic change vector magnitudes were reduced, in many cases below the 0.5 

threshold (Figure 6.17; Figure 6.18). 

The effect of the misregistration uncertainty in areas of no change was most obvious in Transect 

3 (Figure 6.19). The No Uncertainty and Thematic methods had large errors, but the 

Misregistration and Combined methods reduced the thematic change vector magnitudes below 

the 0.5 threshold in all cases (Figure 6.19). 
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Figure 6.19 Ainsdale data transect 3 thematic change vectors. Pixels are plotted as 
points to minimise confusion between change models. 
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Figure 6.20 Ainsdale data transect 4 thematic change vectors. Pixels are plotted as 
points to minimise confusion between change models. 

In the transects where change occurred, the No Uncertainty and Thematic change vectors 

generally accurately identified where change occurred (Figure 6.20; Figure 6.21; Figure 6.22) 

but these methods both overestimated and underestimated the thematic change vector. The 

Combined and Misregistration methods generally underestimated the thematic change vector 

where change occun·ed (Figure 6.20; Figure 6.21; Figure 6.22). In the data there were five 

ChangelNo change boundaries, two each in transects 4 and 5, and one in transect 6. If the 0.5 

threshold was used to identify where change occurred, then the position of the ChangelNo 

change boundary predicted using the Combined method was within the change area in the 

Transect 4, Transect 5 (twice) and Transect 6 data (Figure 6.20; Figure 6.21; Figure 6.22). One 

of the predicted boundary positions was within the no change area in the Transect 4. Though no 

definite conclusions may be drawn from this, it tended to indicate that smoothing using the 

misregistration uncertainty methods resulted in the ChangelNo change boundary being shifted 

to within the area of change. This would result in change being underestimated if 

misregistration uncel1ainty was used, which agreed with the synthetic data in Table 5.9 and 

Table 5.10. 
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Figure 6.21 Ainsdale data transect 5 thematic change vectors. Pixels are plotted as 
points to minimise confusion between change models. 
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6.4 Discussion and Conclusions 

6.4.1 Uncertainty and change detection 

The synthetic data showed that as thematic error was reduced, the impact of thematic 

uncertainty in change detection was reduced. This was supported by the Ainsdale results in the 

areas of little or no change. In the fixed dune area the Creep, Grass and Reed classes were likely 

to be inaccurately classified (Table 6.3; Table 6.4). In the deciduous woodland and scrub areas 

there was a mixture of Creep, which had large thematic errors, and Grass and Woodland classes 

which were accurately classified (Table 6.3; Table 6.4). In both these types of area the 

Combined method was most accurate, followed by the Misregistration method, then the 

Thematic method and the No Uncertainty method was least accurate. In the coniferous 

woodland areas, which were likely to be classified accurately (Table 6.3; Table 6.4), the 

Misregistration method was more accurate than the Combined method, and the No Uncertainty 

method had similar accuracy values to the Thematic method (Table 6.6). 

When the Combined method was more accurate than the Misregistration method, the difference 

in accuracy between the methods was as large as 8.7% (Table 6.6). This result was also seen 

when the Thematic method was more accurate than the No Uncertainty method (Table 6.6). 

However, where the Misregistration method was more accurate than the Combined, the 

Combined method was within 2% of the Misregistration (Table 6.6). Where the No Uncertainty 

method was more accurate than the Thematic, the Thematic method was within 0.5% of the No 

Uncertainty (Table 6.6). This indicates that even when class and overall accuracy values were 

large, the use of thematic uncertainty only resulted in a small decrease in change detection 

accuracy. When class and overall accuracy values were small, use ofthematic uncertainty in 

per-pixel change detection reduced overestimation of change. 

As thematic accuracy increased, use of thematic uncertainty appeared to become less 

appropriate. This was likely to be due to uncertainty resulting in errors, as the uncertainty model 

contained errors and was therefore uncertain itself. If an output is 100% accurate in positional or 

thematic terms then the probability of having a correct output will be 100%. If an uncertainty 

measure is used in this situation then errors in the estimation of uncertainty will potentially 

result in errors in estimation of change. Though it is important to model uncertainty, as 

uncertainty levels increase, the ability to detect change will decrease (Edwards and Lowell, 

1996) and so any model of uncertainty should be as accurate as possible. 
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When the impact of just misregistration uncertainty and just thematic uncertainty were 

compared in the areas of little or no change it was seen that the Misregistration method was 

more accurate in all cases (Table 6.6). It was shown above that the relative importance of 

thematic uncertainty was increased in the fixed dune and the deciduous woodland and scrub 

areas where thematic error was large. Despite this, the difference in accuracy between the 

Misregistration and Thematic methods was greater in these areas than for the coniferous 

woodland areas (Table 6.6). Some of the increase in relative accuracy using misregistration 

uncertainty may have been due to smoothing of small areas containing thematic errors. 

However, it was also probable that in fragmented areas where misregistration had a greater 

impact (Serra et al., 2003), the use of misregistration uncertainty was likely to produce greater 

accuracy. 

Misregistration generally results in the incorrect prediction of change at the boundaries of 

classes (Verbyla and Boles, 2000; Stow and Chen, 2002). By accounting for misregistration, 

errors in change detection will be reduced. Stow and Chen (2002) found that compensating for 

misregistration reduced incorrect prediction of change, which agrees with the results in this 

study. 

In areas of change the No Uncertainty method was as accurate as the other methods for 

identifying the change (Table 6.14; Table 6.15). The most likely reason for this was that the No 

Uncertainty method overestimated change more than the other methods, identifying areas of 

change through error. This was supported by both the Ainsdale and synthetic results (Table 5.9; 

Table 5.10; Table 6.6). The Combined method smoothed change, and, particularly at 

boundaries, it reduced the sensitivity to change by over-compensating for misregistration. This 

may be seen in the transect data of the Ainsdale and the synthetic imagery. The Combined and 

Misregistration methods generally positioned the boundary between change and no change 

within the area of change (Figure 6.20; Figure 6.21; Figure 6.22), therefore underestimating 

change. The Thematic and No Uncertainty methods generally placed the boundary within the 

area of no change, therefore overestimating change (Figure 6.20; Figure 6.21; Figure 6.22). 

The change detection model that combined per-pixel thematic and geometric uncertainty 

measures was significantly more accurate (at 95% confidence) than a change detection model 

that did not use geometric or thematic uncertainty under the following conditions: 

1. When determining whether Change or No change had taken place (Table 6.10; Table 

6.11 p=0.031) 
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2. When identifYing whether change had taken place in areas of no change (Table 6.6, 

Table 6.7,p=0.008; Table 6.12, Table 6.13,p=0.031). 

The change detection model that combined per-pixel thematic and geometric uncertainty 

measures was not significantly more accurate (at 95% confidence) than a change detection 

model that did not use geometric or thematic uncertainty under the following conditions: 

3. When identifYing whether change had taken place in areas of change (Table 6.14). 

4. When identifYing what change had taken place (the sixty-four class problem) (Table 

6.16, Table 6.17, p=0.313). 

Results indicated that the use of thematic and geometric uncertainty increased change prediction 

accuracy for areas of no change (Table 6.6; Table 6.7; Table 6.12; Table 6.13), but decreased 

accuracy for areas of change (Table 6.14). Though the use of thematic and geometric 

uncertainty was significantly more accurate in this study for condition 1 above, this would 

partially depend on the ratio of change to no change pixels. An increase in the proportion of area 

where change was taking place would potentially reduce the relative accuracy of the Combined 

method compared to the No Uncertainty method. 

The use of uncertainty models did not significantly increase the accuracy of predicting what 

change had occurred (Table 6.16; Table 6.17). This would be likely to occur ifthe use of 

uncertainty did not result in an increase in the thematic accuracy of the classification data from 

either year. The effect of uncertainty was likely to be complex, with increases in accuracy due to 

smoothing in some areas, and a reduction in others. 

6.4.2 Fragmentation and class error 

When class heterogeneity was examined as a function of change detection error, spatial 

heterogeneity or fragmentation resulted in large errors compared to areas that were spatially 

homogeneous or clumped (Table 6.6). The coniferous woodland areas showed much less change 

incorrectly predicted than the deciduous woodland and scrub and the fixed dune areas, though 

this difference could not be tested for significance due to too small a sample size. This result 

agreed with the studies by Verbyla and Boles (2000) and Carmel et ai. (2001) who found that 

when land cover classes were heterogeneous or classes were fragmented, change detection 

errors were greater than when classes were homogenous or clumped. This was due to increased 

193 



class boundary length compared with un-fragmented landscapes and so the effects of 

misregistration were greater (Serra et aI., 2003). 

However, care has to be taken when interpreting the results for the areas of little or no change, 

as they were likely to be a function of class accuracy, as well as fragmentation. The Woodland 

class was more accurate than most of the other vegetation classes in terms of Producer's and 

User's accuracy in both the 2001 and 2002 classifications. The only class measures that were 

more accurate than the Woodland class were the User's accuracy of the Grass class and both 

class measures for the Buckthorn in the 2001 data (Table 6.3; Table 6.4). This would result in 

fewer errors in the change layer when compared to the fixed dune areas where the classes 

generally had smaller accuracy values (Table 6.3; Table 6.4). 

6.4.3 Impact of shadows on change detection 

Much of the error in change detection was due to the effect of shadows resulting in 

misclassification in the 2001 and 2002 imagery (Figure 6.3, Figure 6.4, Figure 6.5). Though the 

imagery was acquired at similar times of year (28th August 2001 and 11 th September 2002) they 

were acquired at different times of day (between 1330 and 1400 in 2001 and 0940 and 1010 in 

2002). This resulted in the direction that shadows lay being markedly different in either year and 

so misclassifications being in different areas in either year. If the imagery had been acquired at 

the same time of the day some of these errors would not have occurred as shadows were 

generally misclassified as Water in either year (Figure 6.3, Figure 6.4, Figure 6.5). But in 

operational remote sensing specifYing exact times for multiple flights is not practical as there 

may be the requirement to acquire data at multiple sites. This combined with weather and tidal 

restrictions may mean that specific times for data acquisition are difficult to achieve. 

6.4.4 Impact of imagery errors on thematic uncertainty 

The methodology developed did not compensate fully for thematic errors using uncertainty. 

Classification errors that were due to shadowing and other bi-directional effects did not 

necessarily result in smaller posterior probabilities output by the PNN. For this reason the 

thematic uncertainty method requires further development in order to compensate for variations 

in lighting. Operational methodologies are also required that can reduce the impact ofbi

directional effects, as the variations in lighting resulted in errors, particularly in those areas 

where there were large amounts of shadowing, such as at the edge of woodland (Figure 6.3; 

Figure 6.4) and near the steep-sided mobile dune system (Figure 6.5). 
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6.4.5 Defining change 

Within this study, change was defined in terms of land cover conversion (Jansen and Gregorio, 

2002). In a data model that does not use measures of uncertainty, change is defined easily, 

though not necessarily accurately. The use of uncertainty complicates this, as change may be 

defined at any arbitrary level of probability, as well as using various methods to define that 

change. This definition is complicated further if a fuzzy data model is used, as change then has 

to be defined in terms of probability as well as partial changes in cover. 

6.4.6 Fuzziness and change detection 

The results for Area 4 (Figure 6.9; Figure 6.10) suggested that the PNN did not accurately 

model the fuzziness associated with a pixel's membership to multiple classes. If fuzziness was 

modelled accurately then this area, consisting of mixed pixels, would have had small thematic 

change vectors, as pixels were a relatively even mixture of three class types. As the PNNs used 

did not model fuzziness, the areas where mixed pixels occurred were not modelled accurately in 

the change detection layer. 

There are three main alternatives that could explain this: 

1. PNNs cannot be used to model multiple class membership. 

2. PNNs cannot be used to model thematic uncertainty and multiple class membership 

simultaneously. 

3. The PNN used in this study was optimised for overall and thematic uncertainty 

accuracy, but it would be possible to select a network that provided an accurate fuzzy 

output or fuzzy data could be used in the training process. 

As identified by Ricotta (2004), fuzziness and uncertainty are two separate concepts and the 

PNN may be unable to accurately output fuzzy measures, as its outputs are inherently 

probabilistic. However, other classifiers that output posterior probabilities such as the ML have 

successfully been used to model fuzziness (F oody et ai., 1992; Bastin, 1997) making it likely 

that the PNN can provide an output that incorporates multiple class membership. 

Though PNNs can output indicators of multiple class membership or accurate posterior 

probabilities, they may not be able to do both simultaneously, as the optimum smoothing 
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function will be different for each output. In this case, PNN output could be optimised for either 

uncertainty or fuzziness, but which output would have to be determined prior to classification. 

Alternatively PNNs are capable of outputting a probabilistic measure that can incorporate 

fuzziness, but the PNNs used in this study were not optimised for producing both measures. 

This would require a stage in which PNNs were tested to maximise thematic accuracy, thematic 

uncertainty accuracy and fuzzy output accuracy. This would reduce errors in the final change 

layer by incorporating the effects of mixed pixels, which appear to be reducing accuracy in the 

final change detection map (Figure 6.9; Figure 6.10). 

6.4.7 Thematic change vector direction 

Using the Ainsdale data, the direction of the thematic change vector was used to determine what 

change had occurred. Using 64 change classes, no method is significantly (at 95% confidence) 

more accurate than another (Table 6.16). This may be expected, as the use of uncertainty will 

not necessarily increase the overall thematic accuracy and may reduce the thematic accuracy in 

certain places. In areas where spatially random thematic errors occur, the use of misregistration 

uncertainty will smooth errors. However, at the boundary between classes, where the 

misregistration error is small, the use of misregistration uncertainty may result in increased 

thematic errors due to over smoothing. As thematic accuracy of the input layers for the change 

process (the combined thematic and misregistration uncertainty for a given year) will not 

necessarily be increased then the accuracy of the change vector direction will not be increased. 

6.4.8 Limitations in ground data 

There are a number of limitations in the ground data acquired that restricted the outputs of this 

study. One limitation was that there were insufficient transect ground data. The limited number 

of transects meant that though one methodology was more accurate for the majority of the 

transects, significant differences were unlikely to be found. Another limitation was that there 

were no ground data for testing the impacts of mixed pixels on thematic uncertainty measures. 

This was due to the study being set up for hard classification and consideration was not given to 

the impacts of mixed pixels. Future studies should consider this and acquire ground data that 

incorporate multiple class membership. 
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6.4.9 Satellite based change detection using per-pixel uncertainty 

The land cover change model was specifically derived for a CASI airborne sensor. The 

complete method is directly transferable to other airborne systems, as long as the geometric 

uncertainty associated with the various navigational parameters can be determined. However, it 

also has potential for application using satellite-based systems. The methods of deriving 

thematic uncertainty are directly transferable to imagery from satellite systems. If the geometric 

error model can be adapted for satellite navigation systems then it may be used to predict 

geometric error, even if the geometric model uses a global measure of instrument navigational 

geometric uncertainty combined with a terrain model to determine potential orthometric errors. 

6.4.10 Accuracy and change detection 

Though the study by Wright and Morrice (1997) quoted a required overall accuracy for change 

detection of 85%, there is also a requirement for class accuracy values to be large as well. 

Even though per-pixel uncertainty may be used to increase change detection accuracy, accuracy 

of the input data needs to be maximised in order to minimise errors in change detection. The 

ability to detect change is partially a function of the errors within the input data layers (Edwards 

and Lowell, 1996; Carmel and Dean, 2004). As those errors are decreased, the potential to 

detect change increases. Though methods of estimating uncertainty are important to determine 

potential errors, future work needs to continue examining methods for reducing thematic and 

geometric errors. In terms of thematic accuracy, this will be a function of the quality of ground 

and remotely sensed data, as well as classification methods used. 

Errors in the spectral data used can result from instrument noise or errors during radiometric 

correction. These errors and bi-directional effects are likely to result in uncertainty in the 

classification process during the training stage due to the spectral characteristics of each class 

being less precisely represented. During the allocation process, errors in spectra may result in 

incorrect allocation of classes. Spectral variability may also result in thematic uncertainty being 

less accurately predicted. 

Instrument errors or errors due to bi-directional effects may result in the spectra of a given pixel 

appearing to be that of a different class. If this occurs then the classifier will not be able to 

determine that the class allocation is uncertain and so predicted thematic uncertainty will be 

small. This occurred in the 2002 data due to bi-directional effects. In the areas of shadow, pixels 
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were incorrectly allocated to the Water class rather than Grass, but the predicted probability of 

the pixel being allocated Water was close to 1. 

Some of these problems may be overcome by operational methods, such as minimising 

shadowing and bi-directional effects by acquiring data as close to solar midday as possible. In a 

multitemporal survey lines should be flown in the same direction and as closely as possible to 

up or down Sun (at the solar azimuth angle or a reciprocal bearing). However, this reduces the 

scope for remote sensing data acquisition, reducing the possibility of applying these techniques 

over large areas, particularly in the UK, where weather constraints already restrict data 

acquiring a great deal. For sites that are orientated east-west, it may be impractical to acquire 

data with consistent orientation. 

Geometric and therefore misregistration accuracy using an automated georeferencing system are 

a function of the accuracy ofthe positional, attitude and elevation data. Increases in the 

accuracy of these data are mainly a function of technological fixes. These include the potential 

increase in positional accuracy when the European Galileo satellite navigation constellation 

comes online in 2008 (ESA, 2005). The use of additional satellites offered by this system has 

the potential to increase positional accuracy, particularly errors due to restricted satellite 

numbers or geometries that may occur with the current GPS system (ESA, 2005). 
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7 Conclusions 

7.1 Introduction 

In previous chapters the errors that occur in change detection were discussed. Methodologies 

were developed that could be used to model those errors, increasing the accuracy of change 

detection. In this chapter the research carried out in this study is summarised, further areas of 

study are suggested and conclusions are drawn about the suitability of the approaches taken in 

this study for operational land cover change detection in natural and semi-natural habitats. 

7.2 Summary 

Methods of land cover change detection using remote sensing are not sufficiently accurate that 

UK governmental organisations such as the Environment Agency and English Nature use them 

operationally for legislative reporting or input for management plans. This study identified that 

misregistration and thematic errors within remotely sensed datasets were likely to be major 

factors causing change detection errors (Section 1.4). The study also identified that the 

prediction of the spatial variability of misregistration and thematic errors or the uncertainty 

associated with these errors could be used to increase change detection accuracy (Section 1.4.3). 

Previous studies examining change detection have derived per-pixel measures ofthematic 

uncertainty using a variety of classifiers (Shi and Ehlers, 1996; Ediriwickrema, and Khorram, 

1997; de Bruin and Gorte, 2000; Gong et al., 1996; McIver and Friedl, 2001) and derived 

methods of accounting for the variation in misregistration error on a per-pixel basis (Stow, 

1999), but had not combined the two in a per-pixel model of change detection. Within this study 

it was shown that it was possible to derive local thematic and geometric uncertainty measures 

and combine these to provide a local uncertainty measure of thematic change in post

classification change analysis. Figure 7.1 shows the model of uncertainty propagation used in 

this study. It combines geometric and thematic errors in the form of probabilities or 

uncertainties and propagates them through the change detection process. 

The study examined the derivation of a local geometric uncertainty model using a model of 

instrument error based on a general model of geometric uncertainty combined with a local 

measure of geometric error based on angular acceleration derived from the IMU (Section 3.6.4). 

The instrument geometric uncertainty model was combined with an orthometric error model that 

accounted for errors due to incorrect elevation values being used in the geometric correction 

process (Section 3.6.5). This resulted in per-pixel measures of geometric uncertainty. The 

geometric uncertainty models for two images were merged to provide per-pixel measures of 
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misregistration that was found to be significantly correlated with the actual misregistration 

measured on the images (Section 3.6.6). 
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Per-pixel model of I Orthometric 

geometric uncertainty I error model 

~ 
I 

Per-pixel model of thematic and 
f---+ 

Per-pixel model of 
geometric uncertainty change uncertainty 

t 
Per-pixel model of 

thematic uncertainty 

t 
I Classifier I 

t 
I CASI imagery I 

Figure 7.1 Model of change detection uncertainty propagation used in this study. 
Orange indicates geometric uncertainty, blue indicates thematic uncertainty and purple 
indicates combination of geometric and thematic uncertainty. 

The study showed that both PNN and MLP neural networks could produce outputs that were 

significantly correlated with thematic uncertainty (Section 4.7.1.2; Section 4.7.2.2). The study 

also examined the relationship between heuristics and accuracy ofthematic uncertainty 

measures for both types of network (Section 4.7.1.2; Section 4.7.2 .2). It was shown that the 

classifier that had the largest overall accuracy was not necessarily the classifier that would 

produce the most accurate measure of thematic uncertainty (Table 4.2; Table 4.5). For this 

reason it is essential that the final use of a classification is considered. An accurate measure of 

thematic unceliainty may be of use in determining where thematic errors are likely to occur. 

However, ifthe classification is inaccurate the accuracy ofthe final change detection will be 

reduced. To maximise the accuracy of the change detection may involve compromise between 

the overall accuracy of the classifications and the accuracy of the thematic uncertainty 
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measures. Further studies are required to examine the relationship between overall, class and 

thematic uncertainty accuracy with the precision and accuracy of change detection. 

The geometric uncertainty model and the thematic uncertainty model were merged to provide a 

combined uncertainty model for change detection (Section 5.4; Figure 5.2; Figure 7.1). This 

combined uncertainty model was compared to models in which uncertainty was not predicted, 

only used thematic uncertainty and only used misregistration uncertainty using synthetic data 

and data of a sand dune test site at Ainsdale, Southport. 

For all the synthetic data tested, the combined uncertainty model was found to be more accurate 

at predicting change than the model using thematic uncertainty only and the model using no 

uncertainty (Section 5.6). The model using misregistration uncertainty only was found to be 

generally less accurate than the combined uncertainty model using the synthetic data, unless the 

thematic error was small (Section 5.6). 

For the Ainsdale test site the model that combined per-pixel misregistration and thematic 

uncertainty resulted in significantly larger change detection accuracy than the method that used 

no uncertainty (Section 6.3). When the methods were tested in areas where change took place, 

the model that did not use uncertainty was generally more accurate than the model that 

combined uncertainty, but only three transects where change had taken place were tested 

(Section 6.3). 

This study indicates that as thematic accuracy increases, the use of thematic uncertainty in 

predictions of land cover change detection becomes less relevant. This is likely to be the case 

for misregistration as well. From this it may be concluded that there is likely to be a level of 

misregistration error at which the use of uncertainty results in increases in the error of change 

detection, though studies have shown that even small levels of misregistration may result in 

large change detection errors (Dai and Khorram, 1998; Stow and Chen, 2002). No conclusions 

on the use of thematic uncertainty in change detection can be drawn from this study, but the 

point at which using both misregistration and thematic uncertainty results in increases in change 

error is likely to vary according to the accuracy of the uncertainty models, the distribution of 

errors, the amount and distribution of change and the level of fragmentation of the surface being 

surveyed. 
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7.3 Future work 

7.3.1 Use of synthetic data for modelling change detection 

The synthetic data generated in this study were unlikely to be an accurate model of data 

generated using actual airborne data. The random nature of the thematic error introduced was 

not an accurate representation of error within the data, as may be seen from the actual CASI 

classification change detection (Figure 6.8). In the CASI data, errors due to effects such as 

shadowing are not spatially random and so future work with synthetic data should more 

accurately model the data in terms in the spatial distribution of thematic and geometric errors. 

Future work should also compare smoothing as a method of reducing errors with the methods 

derived in this study. It is likely that simple smoothing will be able to reduce certain errors, 

particularly spatially random errors. However, systematic or clumped errors are less likely to be 

reduced using this method and it would not account for the spatial variability in misregistration. 

7.3.2 Fuzziness and uncertainty 

Studies should be carried out that test whether the classification outputs used in this study 

simultaneously provide indications of fuzziness (the presence of more than one land cover class 

in a pixel) and thematic uncertainty (the probability that a given pixel has been allocated the 

incorrect class). Though the data in this study indicated that fuzziness was not modelled using 

the PNN, this should be tested further (Figure 6.10; Section 6.4.6). Posterior probabilities in the 

form of output from ML classifiers have been used to provide measures of fuzziness (F oody et 

al., 1992; Bastin, 1997), indicating that the PNN has the potential to output a soft classification. 

Previous work on the ML and MLP has shown that these classifiers can provide measures of 

fuzziness and uncertainty (F oody et al., 1992; Gong et al., 1996; Shi and Ehlers, 1996; Bastin, 

1997; Ediriwickrema, and Khorram, 1997; Foody, 1997; de Bruin and Gorte, 2000; Zhang et 

al., 2004), but this work has not focused on testing both measures simultaneously. As 

previously discussed (Section 5.3) it is likely that there is some correlation between fuzziness 

and uncertainty, as increased fuzziness will result in increased probability of confusion between 

classes. Even though fuzziness and uncertainty are completely separate models (Ricotta, 2004), 

it is also likely that fuzzy measures will automatically incorporate some uncertainty, for 

example, due to training data that do not completely represent a class, or classes that are not 

spectrally separate. It may be difficult to establish an accurate measure of thematic uncertainty 

that does not partially incorporate fuzziness and vice versa. Other classification methods may 

need to be developed that provide separate measures of fuzziness and thematic uncertainty. 
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One approach to predicting fuzziness would be to use fuzzy training data. By using fuzzy 

training data it is possible to derive a classification that more accurately models multiple class 

membership than if training data were made up of single classes (Foody, 1997; Foody, 1999). 

However, this is likely to have an impact on how accurately errors are modelled using the 

thematic uncertainty measures and different approaches to deriving these measures may be 

required. 

7.3.3 Geometric uncertainty and post-processing 

The automated geocorrection and, therefore, the geometric uncertainty model used separate 

navigational data from an IMU and post processed GPS. By combining the IMU and GPS it is 

possible to obtain a more precise positional and attitude data (Mostafa and Hutton, 2001; Toth, 

2002). The geometric error study should be extended to examine whether the similar 

relationships between geometric error and angular acceleration exist when IMU attitude data 

and GPS positional data are post processed together. Studies with more samples need to be 

carried out to determine whether other navigational parameters such as angular velocity are 

correlated with geometric error. 

7.3.4 Local uncertainty 

As thematic and geometric errors vary spatially (Lanter and Veregin, 1992; Stow, 1999), it may 

be seen that the effect of using global uncertainty measures for modelling change is dependent 

on the spatial distribution of errors within the input data layers. Where the global uncertainty 

measure is greater than the actual error, the sensitivity of change detection will be below the 

maximum potential value. Where the global uncertainty measure is smaller than actual error, the 

error of change detection will be increased compared to a larger uncertainty measure. From this 

it may be seen that the use of per-pixel uncertainty measures has the potential to maximise the 

sensitivity of change detection and minimise the error, by varying uncertainty measures 

according to the probable error. However, the effects of using global and local measures of 

uncertainty in change detection were not compared in this study so further work is required to 

test the relative accuracies of these methods. 
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7.4 Conclusions 

This study aimed to derive an accurate method of change detection using airborne sensor data 

that would be suitable for use by organisations such as English Nature or the Environment 

Agency that have to manage or report on the status and extent of coastal habitats. To increase 

the accuracy of land cover change detection, models of thematic and geometric per-pixel 

uncertainty were derived. The geometric uncertainty model provided measures of the magnitude 

and probability of geometric errors on a per-pixel basis. Thematic uncertainty models were 

derived from the output of neural network classifiers and provided measures of the probability 

of correct classification for every class on a per-pixel basis. These thematic and geometric 

uncertainty models were combined in change detection modelling to provide more accurate 

change detection outputs than could be achieved using traditional methods that do not account 

for uncertainty. Though the use of per-pixel uncertainty can be used to increase the accuracy of 

change detection for coastal habitats, further study needs to be carried out before these 

techniques can be applied in an operational context for regular monitoring. 

The work on per-pixel thematic uncertainty needs to be expanded to determine the effects of 

mixed pixels on uncertainty and examine methods of predicting thematic uncertainty in fuzzy 

classification. Airborne sensor geometric uncertainty models need to be expanded to account for 

the effect of navigational variables other than angular acceleration on geometric error. The work 

on per-pixel uncertainty should not be carried out in isolation, as other areas such as instrument 

noise, remote sensing data collection, ground data collection, radiometric normalisation, bi

directional effects and classifier accuracy are all essential if the goal of operational land cover 

change detection for a variety of habitats is to be achieved. 
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Appendix A Remotely sensed data for coastal mapping 

A.1 Multispectral imagery 

There are three main factors to be considered when selecting a multispectral sensor to monitor 

coastal vegetation; spatial resolution, waveband availability (wavelength and width) and 

monitoring opportunities. 

Much of the variation in land cover type within UK coastal habitats occurs at scales of a few 

metres (Rodwell et al., 2000) and so coarse spatial resolution data would be inappropriate for 

monitoring the diversity of species even if sub-pixel classifications are carried out. Ofthe 

medium resolution satellite sensor data that are readily available, Systeme Pour l'Observation 

de la Terre (SPOT) High Resolution Visible (HRV) and Landsat Thematic Mapper (TM) are 

therefore inappropriate as they have a finest multispectral spatial resolution of 10m (SPOT 5), 

and 30 m respectively (NASA, 2002; SPOT, 2005). 

The combination of a narrow seasonal window, possible tidal limitations and weather mean that 

frequent return time is very important, especially in the UK. Obtaining imagery when there are 

no clouds and tidal conditions are correct may be difficult (Smith et al., 1998). 

Table A.I Specifications of Current Multispectral Sensors readily available to 
acquire data in UK (Digital Globe, 2005; ITRES, 2005; NASA, 2002; Space Imaging, 2005; 
SPOT, 2005; USGS, 2005). 

Sensor/ Platform Spatial No. Spectral Return Cycle 
Resolution wavebands Range (days) 

(m) (11m) 
Landsat TM and 30 7 0.45-2.35 16 

Enhanced TM (ETM+) 5-6 (using all satellites) 
SPOTHRV 20 3 0.50-0.89 26 at nadir 

4 (SPOT 4) 1-4 off nadir 
10 0.50-1. 75 9 at nadir using all SPOT 

(SPOT 5) (SPOT 4) satellites 
1 off nadir using all SPOT 

satellites 
IKONOS 4 4 0.45-0.9 1.5 off nadir 
Quickbird 2.4 4 0.45-0.9 1.5 off nadir 

CASI (Airborne) 1-10 8-288 0.40-1 Mission dej:>endant 
Aerial Photography 0.075-0.5 30r4 0.45-0.90 Mission dependant 

IKONOS and Quickbird have the most suitable spatial resolution of satellite sensor data 

currently available, with a multispectral pixel size of 4 m and 2.4 m, respectively, and a return 
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time of approximately 1.5 days (Table A.l; Digital Globe, 2005; Space Imaging 2005). The 

Quickbird satellite was launched in October 2001 (Digital Globe, 2005), after the start of this 

study. There are limitations even with a return time as short as IKONOS and Quickbird. Cloud 

free conditions may be limited even when data may be acquired every few days. Another 

limitation of both systems is that they only provide four broad wavebands in the blue, green, red 

and near-infrared wavelengths. This may not provide the number of narrow wavebands required 

for an accurate classification of coastal habitats (Thomson et al., 1998). 

Airborne sensor systems generally provide fine spatial resolution data and the ability to target 

specific weather and tidal conditions. However, geocorrection of airborne imagery may be 

difficult and radiometric normalisation may be required if multiple image lines are acquired. 

Airborne sensors are less limited by the time constraints, as data may be acquired at any time 

when light levels are high enough. Missions may be targeted for a particular stage of the tide 

and weather conditions. Data may also be acquired under clouds, though there may be large 

variation in lighting levels. 

The CASI 2 system currently in operation at the Environment Agency provides standard 1 m to 

4 m spatial resolution data in up to 18 wavebands (Brown et al., 2003b; Itres, 2005). CASI 

imagery is automatically geocorrected using high precision attribute data and post-processed 

differential GPS to locate the CASI sensor head and its viewing geometry accurately (Brown et 

al.,2003b). 

Using aerial photography, the spatial resolution can be much finer than CASI, with systems 

currently available that can be flown operationally with a resolution of less than 5cm, though a 

resolution of 15 cm to 25 cm is more common. Even though there are now four waveband 

digital cameras that can provide high spatial resolution data in visible and near infrared, these 

wavebands are relatively wide (Strawbridge et al., 2000). 

Of the sensors mentioned above, IKONOS and aerial photography do not offer the number or 

the narrow wavelength wavebands that may be necessary to discriminate accurately between 

coastal vegetation classes (Thomson et al., 1998). Though the CASI sensor does not have the 

fine spatial resolution of aerial photography, it does have the capability to provide up to 18 

narrow targeted wavebands. This capability is important when automated classifications are to 

be carried out for the coastal zone. 
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A.2 Digital elevation model data 

If airborne multispectral imagery is to be automatically georeferenced a digital elevation model 

(DEM) or digital surface model (DSM) dataset must be used to account for terrain effects. For 

UK coastal habits DSMs or DEMs may be derived from three main sources; photogrammetry, 

laser terrain mappers and radar. 

Laser terrain mappers operate using the principle of Light Detection and Ranging (LiDAR). A 

laser pulse is fired towards the ground, the pulse reflects off the ground and returns to the 

instrument, where the time of flight is measured. This is used to estimate the slant distance 

between the instrument and the point on the ground. This process is repeated at frequencies of 

1 kHz to 100 kHz. A DEM may then be generated using the slant distances, the position of the 

instrument estimated using GPS and the attitude of the instrument estimated from an inertial 

motion unit (IMU). The points are then resampled to form a raster grid with a spatial resolution 

of between 0.5 m to 10m. The UK Environment Agency has been acquiring LiDAR data since 

1997 at 2 m or finer horizontal spatial resolution and has coverage of over 16% of England and 

Wales, much of it for the coastal region (Duncan, personal communication). 

Generating DEMs using photogrammetry requires the use of overlapping aerial photographs and 

either ground control points (GCPs) or high precision aircraft GPS and attitude data. 

Stereoscopic analysis of points on two overlapping images is used to generate height data. The 

principles of photogrammetry are described in detail in Burnside (1985). This approach may be 

used to provide x, y, z points with a greater horizontal and similar vertical precision to LiOAR 

(NSL, 2001). However, there are a number oflimitations with the photogrammetric approach. 

Though the points generated may be more precise than those generated with LiDAR, there may 

not be continuous coverage, as distinct points are not easy to identify in natural or semi-natural 

habitats. Photogrammetry also requires specialist experience, hardware and software and 

requires a large time and therefore cost investment to generate accurate OEMs. The financial 

cost of photogrammetric OEM generation is approximately 2.5 times that of LiDAR (NSL, 

2001) and the accuracy and precision may be compromised if inexperienced personnel carry out 

the analysis. 

Airborne radar interferometry is capable of providing high spatial resolution data under a 

variety of conditions, including during rain and through cloud, with similar vertical resolution to 

LiOAR (Sties et ai., 2000). Though airborne radar data may be acquired with a spatial 

resolution of approximately 2 m (NERC, 2002), to generate OEMs requires specialist 
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knowledge and software. Airborne radar OEMs are available from commercial sources, but 

these have a ground spatial resolution of 5 m and a vertical root mean square error (RMSE) of 

1 m (lntermap, 2005). 

The requirement for specialist knowledge and the cost implications of photogrammetry make it 

an inappropriate approach of OEM generation for this study. Though airborne radar has similar 

specifications in terms of spatial resolution it is not as precise as LiOAR. For these reasons 

LiOAR was the most appropriate for this study as there is no requirement for specialist 

knowledge, it may be used in featureless regions and data are readily available for coastal 

regions from the EA. Also CASI and LiOAR data may be acquired simultaneously by the EA, 

as these instruments are mounted in same aircraft platform (Brown et ai., 2003b). 

208 



Appendix B Classification 

In remote sensing classification is the process by which generally multispectral imagery data are 

converted to thematic data generally representing land cover or land use classes. There are two 

main approaches to classification: unsupervised and supervised. 

During an unsupervised classification, an algorithm splits feature space into clusters of data 

(Schowengerdt, 1997). To provide an output map, clusters are allocated membership to a class 

determined by an operator. Though the unsupervised approach to classification can provide 

accurate results there are several limitations that make it unsuitable for change detection 

(Campbell, 2002). The clusters identified may contain large numbers of pixels of more than one 

of the classes of interest. As the clusters are not trained on predefined classes they may not 

match the classes of interest on the ground (Schowengerdt, 1997). Clustering from two different 

times can result in clusters that incorporate different positions in feature space (Schowengerdt, 

1997; Campbell, 2002). This could result in changes being detected due to the clustering 

algorithm, rather than actual change occurring. 

Supervised classification can be carried out by an analyst visually interpreting the boundaries of 

classes or can be achieved using automated computer-based methods. Though the visual 

interpretation approach is used in operational remote sensing, it is time consuming and requires 

specialist knowledge of the habitats being classified. Using this approach, it is also not possible 

to derive per-pixel measures of error. As was discussed in the Section 1.4, the inability to derive 

per-pixel measures made the visual interpretation method unsuitable for this study. 

In computerised supervised classification, there are three main stages for all classifiers: 

1. Training 

2. Allocation 

3. Accuracy assessment 

B.1 Training 

Training is the process by which the spectral characteristics of each of the classes of interest are 

determined from selected pixels. How the spectral characteristics are determined is dependent of 

the classifier used. 
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8.2 Allocation 

These spectral characteristics are used in the allocation stage to determine the class of all pixels 

within an area of interest in an image. While the accuracy assessment stage does not have to be 

carried out to produce a map output, it is essential to determine the accuracy of that output. 

There are many different approaches to supervised classification. Two commonly used methods 

are the Maximum Likelihood (ML) classifier (Benediktsson et at., 1990; Schowengerdt, 1997; 

Campbell, 2002) and neural network classifiers, particularly the Multi Layer Perceptron (MLP) 

(Atkinson and Tatnall, 1997). 

8.4 Accuracy assessment 

Accuracy assessment is one of the most important stages in the classification process, as it 

provides a measure of the usefulness ofthe final classification in a particular application and 

may be used to compare the effectiveness of classifiers. Until the early 1980s, the accuracy 

assessment process was an afterthought in many studies (Congalton, 1991). Most of the 

techniques used were relatively simple and provided an overall accuracy statistic. In many 

cases, little effort was expended in acquiring reference data, resulting in too small a sample size 

for the number of classes generated. Interpretation of aerial photography or other remotely 

sensed imagery was commonly used to assess the accuracy of classifications (Congalton, 1991). 

The manual interpretation process was assumed to be error free, but this is highly unlikely, 

potentially introducing large errors when assessing classifiers. 

Since the 1980s a variety of methods have been developed for remote sensing studies and as the 

importance of the accuracy assessment stage has been realised, these have become much more 

commonly used. 

The aim of the accuracy assessment stage is to estimate thematic errors within the classification. 

This is achieved by comparing a pixel class as determined by ground sampling with the 

predicted class from the classification. However, the error value obtained is a function of 

positional, classification and reference dataset errors. The significance of these errors will be 

discussed in the Uncertainty section of this chapter. 
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B.4.1 Sampling design for accuracy assessment 

The sampling design is the method by which pixels are selected from the study area for use in 

the accuracy assessment process. There are a variety of approaches that may be used at this 

stage, of which the following are most commonly considered in remote sensing studies: simple 

random, systematic, stratified random and clustered (Lo and Watson, 1998; Stehman, 1999). 

B.4.1.I Simple random sampling 

In simple random sampling a predetermined number of units are selected randomly from the 

population. This approach meets the assumption that every pixel has an equal chance of being 

selected and is a very simple approach to implement (Lo and Watson, 1998). It has the 

advantage that the number of samples may be changed before, during or after the initial survey. 

As pixels have been selected randomly, reducing or increasing the number of pixels changes the 

sample size, but not the random nature of the sampling. 

However there are limitations, as the random sample is less likely than other design approaches 

to meet the criteria that samples are spatially well distributed (Stehman, 1999). 

B.4.1.2 Systematic sampling 

Using the systematic approach, pixels are selected using a regular sampling pattern started at a 

random point. This approach is simple to carry out and results in a good spatial coverage 

(Stehman, 1992; Stehman, 1999). The approach results in every pixel having an equal 

probability of being selected (Stehman 1999) though some researchers disagree with this 

(Congalton, 1988; Lo and Watson, 1998). They claim that because the first point is the only one 

to be randomly selected, there is not an equal chance ofthe other pixels being selected. 

However, prior to the first pixel being randomly chosen, all pixels have an even chance of being 

selected. 

The main disadvantage of the systematic approach is that if there is a strong spatial periodicity 

in the pattern of ground classes or the pattern of misclassification, it may be strongly biased, 

particularly if the frequency of sampling is similar to that of the ground data misclassification 

(Stehman, 1992; Stehman, 2000). 
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BA.1.3 Stratified random sampling 

In stratified sampling the population is split into strata and each of the strata is sampled equally 

(Lo and Watson, 1998). There are two main approaches to the stratification of the population in 

remote sensing. The strata may be based on thematic classes, such as the land cover classes used 

in a classification, or geographic units, such as a regular grid (Barber, 1988; Lo and Watson, 

1998). 

The advantage of the thematic approach is that all classes will be represented, as a fixed number 

of samples may be derived from each. However, the thematic classes have to be specified prior 

to ground data collection. This could be using the classification that is to be tested or by some 

other mapping. The requirement for prior mapping is likely to result in delays for ground data 

collection. This may be a potential problem, especially for areas that are dynamic, as change 

may occur between remote sensed data collection and ground data collection. Also the strata are 

likely to be different for different classifications. If a series of classifications are to be tested 

with large differences from the classification used to define the strata, then the sampling may be 

poorly distributed among classes that were represented differently in the different classifications 

(Stehman, 1999). 

The use of geographic strata will result in data collection across complete population. It may 

result in small sample sizes for classes with small areas, but has advantages over the use of 

thematic strata, in that it does not require prior knowledge ofthe site and there is no requirement 

for potentially delaying and biased image interpretation or classification prior to sampling. It 

also provides spatially distributed data and will reduce the effects of spatial correlation (Lo and 

Watson, 1998; Stehman, 2000) 

BA.IA Cluster sampling 

In cluster sampling the population are divided into mutually exclusive, exhaustive units. These 

may be thematic or geographic units as in stratified sampling. Individual units are selected at 

random and then these units are either randomly sampled, or a census is taken. This method 

generally reduces the time required for surveying, as sampling is restricted to a few areas rather 

than the whole of the study site (Barber, 1988; Stehman, 2001). This approach is generally only 

accurate if the units selected are representative of the population as a whole (Barber, 1988). If 

this is not the case the sample will be biased. Classification errors tend to be correlated spatially 

and so the cluster sampling is likely to result in imprecise sampling and therefore estimation 

errors (Stehman, 2000; Stehman, 2001). 
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B.4.2 The confusion matrix 

In traditional accuracy assessment, the class allocated to a pixel is considered correct or 

incorrect. The overall accuracy (Po) is calculated from the sum of the diagonal values divided by 

the total number of pixels (N): 

B.l 

where M is the number of classes. 

Table B.1 Confusion Matrix for three class classification. 

Reference Data 
Class 1 Class 2 Class 3 Row Totals 

(i+) 

Classified Class 1 XII X I2 X I3 SI ~ 
Data Class 2 X21 X 22 X23 S2 ~ 

Class 3 X31 X32 X33 S3-
Column Totals (+/) S+I S_2 S~3 

Error statistics may be generated using a confusion matrix (Table B.1) on a per-class basis to 

provide estimates of accuracy (Janssen and van der Wei, 1994, Campbell, 2002). The 

producer' s accuracy (Storey and Congalton, 1986) is the proportion of reference pixels that are 

correctly classified and provides an estimate of the proportion of pixels incorrectly omitted from 

a class and classified as another class during the classification. For a given class, the producer ' s 

accuracy (PA) is the ratio of correctly allocated pixels (the yellow box in Table B.1) to the total 

number of reference pixels belonging to the class (column total), and in the case of Class 1 

(Table B.l) would be: 

B.2 

The user' s accuracy (Storey and Congalton, 1986) is an indication of how many pixels allocated 

to a particular class by the classification actually belong to that class and provides an estimate of 

the proportion of pixels from other classes that were incorrectly included or commissioned into 

a class during the classification. For a given class, the user' s accuracy ( UA) is the ratio of 
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correctly allocated pixels (grey value) to the total number of pixels allocated to the class (row 

total) and in the case of Class 2 (Table B.l) the user's accuracy is: 

B.3 

This approach provides overall and per-class error estimates. 

B.4.3 Compensating for chance agreement 
The overall accuracy fails to consider the possibility that there is chance agreement between the 

classified pixels and the classification. There are methods that attempt to account for chance 

agreement between classified pixels and reference data, including Kappa (Cohen, 1960; 

Stehman, 1996), modified Kappa (Foody, 1992) and Tau (Ma and Redmond, 1995) coefficients. 

Though use of Kappa and other methods is common in remotely sensed studies there is an 

argument that there is no need to compensate for chance agreement (Foody, 2002; Turk, 2002). 

Measures of classification accuracy are derived by determining using a sampled set of ground 

points and determining for all sampled points whether the pixel representing a specific ground 

point has been allocated the correct class. Within this process there is no requirement to 

compensate for chance agreement, as a pixel that is correct due to chance is as representative of 

the final map as pixel that is correct without chance being a factor (Turk, 2002). Whether or not 

the overall accuracy of a map is due to chance or not is irrelevant, the factor that is important is 

the accuracy of the map and by removing chance agreement, kappa will underestimate the 

accuracy of the final map (Turk, 2002). As well as underestimating accuracy Kappa and Tau 

may incorrectly estimate chance agreement (Foody, 2002) and so in this study overall accuracy 

was used. 
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Appendix C Flight logs for airborne data acquisition 

Images of all remotely sensed data are in Appendix D. 

Table C.l Coventry geocorrection test data acquisition 25/08/01. 

Date 25/08/01 I Bandset EA VeKetation I I CASI mode Spatial 
Site I Coventry I Surveyor B Tarrant I Aperture 5 

Weather comments High cloud I Instruments CASI 
Image no. Line no. Start time (UT) End Time Heading (deg) 

5136 4 1035 1037 317 
5137 1 1040 1041 224 
5138 5 1043 1044 317 
5139 2 1047 1049 224 
5140 5 1051 1053 317 
5141 3 1055 1058 224 
5142 4 1100 1102 317 
5143 1 1105 1107 044 

Table C.2 Ainsdale Sand Dunes data acquisition 28/08/01. 

Date 28/08/01 I Bandset EA Vegetation I I CASI mode Spatial 
Site I Ainsdale I Surveyor C O'Dwyer I Aperture 5 

Weather comments High cirrus for later lines I Instruments CASI 
LiDAR 

Image no. Line no. Start time (UT) End Time HeadinK (deg) 
5151 5 1331 1333 030 
5153 4 1340 1342 030 
5154 1 1344 1346 210 
5155 3 1349 1351 030 
5156 2 1358 1400 210 

Table C.3 Coventry geocorrection test data acquisition 09/09/01. 

Date 09/09/01 I Bandset EA Vegetation 1 I CASI mode Spatial 
Site I Coventry I Surveyor B Tarrant I Aperture 5 

Weather comments Cloud at 1300 m I Instruments CASI 
Image no. Line no. Start time (UT) End Time Heading (deg) 

5162 4 1242 1244 317 
5163 2 1248 1249 317 
5164 7 1252 1254 225 
5165 7 1257 1259 045 
5166 8 1305 1307 225 
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Table C.4 Ainsdale Sand Dunes data acquisition 11/09/02. 

Date 11109/02 Bandset EA Vegetation 1 CASI mode Spatial 
Site 

I 
Ainsdale Surveyors C O'Dwyer Aperture 5 

K Brown 
Weather comments Sky clear over study site Instruments CASI 

LiDAR 
Digital photography 

Image no. Line no. Start time (UT) End Time Heading (deg) 
5360 5 0941 0943 210 
5361 2 0945 0948 030 
5362 4 0951 0954 210 
5363 3 0959 1002 030 
5364 1 1005 1008 210 
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Appendix D Remotely sensed data 
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Figure D.l Truecolour CASI data of Coventry test site acquired 25/08/01. 
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Figure D.2 Falsecolour CASI data of Ainsdale test site acquired 28/08/01. 
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Figure D.3 
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LiDAR data of Ainsdale test site acquired 28/08/01. 
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Figure D.4 Truecolour CASI data of Coventry test site acquired 09/09/01. 
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Figure D.S Falsecolour CASI data of Ainsdale test site acquired 11109/02. 
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LiDAR data of Ainsdale test site acquired 11109/02. 
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Figure D.7 Digital photography of Ainsdale test site acquired 11/09/02. 
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Appendix E 

model 

Program to generate orthometric error 

ERDAS EML (ERDAS Macro Language) program to generate orthometric error vectors based 

on error matrix in Figure 3.21. 

COMMENT "Generated from graphical model: c:/ainsdale/test.gmd"; 
#CASIDEM 
#LIDARDEM 
# TOTAL error 
# OFF NADIR ANGLE 
# AZIMUTH ANGLE 
# TOTAL error 
# TOTAL error 
# TOTAL error 
# TOTAL error 
# TOTAL error 
# 
# set cell size for the model 
# 
SET CELLSIZE MIN; 
# 
# set window for the model 
# 
SET WINDOW UNION; 
# 
# set area of interest for the model 
# 
SET AOI NONE; 
# 
# declarations 
# 
Float RASTER nl off nadir FILE OLD NEAREST NEIGHBOR AOI 
"c:1 ainsdalel demcutout.aoi" "c:1 ainsdale/200 I_off _nadir. img"; 

Float RASTER nS lidar FILE OLD NEAREST NEIGHBOR AOI "c:/ainsdale/demcutout.aoi" 
"c:/ainsdale/urban200 l_lidar.img"; 

Float RASTER n12 azimuth FILE OLD NEAREST NEIGHBOR AOI 
"c:/ainsdale/demcutout.aoi" "c:/ainsdale/200 1_ azimuth.img"; 

Integer RASTER n67 _ casi_ dem FILE OLD NEAREST NEIGHBOR AOI 
"c:1 ainsdalel demcutout.aoi" "c:/ ainsdale/urban200 1_ cas idem _ xyz. img"; 

Float RASTER n70 horizontal errors FILE DELETE IF EXISTING USEALL ATHEMATIC 
- - - -

FLOAT SINGLE "c:/ainsdalel/horizontal_errors200l_77.img"; 

FLOAT MATRIX n7_Custom_Float; 
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{ 
#####The following section was repeated 77 times for all combinations of position within the 
matrix 
##### to determine the potential orthometric error for each pixel in the matrix 

#define n2 _memory Float($n67 _ casi_ dem( 5» 
############################################ Start 1 
# 
# load matrix n7 Custom Float - -
# 
n7_Custom_Float = MATRIX(9, 9: 

0, 1, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0); 

# 
# normalize matrix n7 Custom Float - -
# 
if (global sum ($n7 _Custom_Float) NE 0) 

{n7 _Custom_Float = $n7 _Custom_Float / global sum ($n7_Custom_Float);} 
# 
# function definitions 
# orthometric error is defined as positive towards the sensor 

#define n20 1_ memory Float((TAN($n 1_ ofC nadir»*(\ 
( $n2 _memory )\ 
-\ 

(FOCAL MAX ($n5_lidar, $n7_Custom_Float»\ 
) ) 
#define n 1 ° 1_ memory Float(ST ACKLA YERS(\ 
(-SIN($n 12 _azimuth)*$n20 1_ memory),\ 
(-COS($n 12 _azimuth)*$n20 I_memory)\ 
)\ 
) 

########################################## 
## Merge data to provide an output layer that corresponds to 
## x, y orthometric error for each pixel in 77 pixel matrix 
########################################## 
n70_horizontal_errors = STACKLAYERS( 
$n 1 ° 1_ memory( 1), $n 1 ° 1_ memory(2) 
######Repeat for all 77 positions within the matrix############ 
); 
} 
QUIT; 
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Appendix F 

assessment 

Digital photography geometric accuracy 

Table F.l Digital photography independent ground points error. Total RMSE 1.80 m 

GCP Error (m) GCP Error (m) 
no. x y total no. x y total 
1 -0.20 0.58 0.61 23 -0.82 1.58 1.78 
2 -1.12 -0.92 1.45 24 -0.91 -2.20 2.38 
3 0.33 1.55 1.58 25 -0.18 0.10 0.20 
4 -0.01 -2.21 2.21 26 0.38 -0.39 0.55 
5 -3.72 0.84 3.81 27 -3.20 -1.69 3.62 
6 0.09 0.81 0.81 28 1.22 -0.59 1.35 
7 1.20 -2.44 2.72 29 -1.00 0.57 1.15 
8 -0.61 1.20 1.35 30 -0.21 -0.22 0.30 
9 0.71 0.07 0.71 31 -2.39 -0.76 2.50 
10 -0.46 -1.19 1.27 32 1.09 0.53 1.22 
11 0.45 -0.24 0.51 33 -1.50 0.08 1.50 
12 -0.94 -0.36 1.01 34 -0.09 -0.35 0.36 
13 -0.48 0.44 0.65 35 -1.46 -0.26 1.48 
14 1.21 0.02 1.21 36 0.72 -0.83 1.09 
15 1.68 0.01 1.68 37 -2.35 0.00 2.35 
16 0.96 0.80 1.25 38 0.64 1.11 1.28 
17 0.35 -0.69 0.77 39 -0.48 2.01 2.07 
18 0.94 -1.99 2.20 40 -0.51 0.94 1.07 
19 0.42 -0.45 0.61 41 0.43 -0.92 1.02 
20 2.32 0.43 2.36 42 2.35 0.13 2.36 
21 1.13 2.16 2.44 43 -1.49 -3.05 3.40 
22 -1.55 -2.94 3.33 44 0.36 -0.03 0.36 
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Appendix G MLP thematic uncertainty results 

Table G.l 

Nodes 

5 10 15 20 25 30 35 40 
250 0.726 0.766 0.770 0.804 0.798 0.796 0.779 0.776 

500 0.746 0.768 0.776 0.802 0.809 0.799 0.804 0.774 

750 0.747 0.781 0.779 0.805 0.807 0.808 0.800 0.777 

1000 0.747 0.791 0.775 0.809 0.810 0.813 0.805 0.776 

Iterations 1250 0.746 0.785 0.777 0.808 0.818 0.817 0.816 0.781 

1500 0.742 0.793 0.776 0.816 0.817 0.814 0.819 0.793 

1750 0.746 0.798 0.781 0.816 0.824 0.813 0.817 0.795 

2000 0.746 0.793 0.781 0.816 0.827 0.814 0.817 0.785 

2250 0.744 0.791 0.781 0.814 0.827 0.814 0.818 0.793 

2500 0.744 0.799 0.788 0.808 0.821 0.816 0.813 0.798 

2750 0.746 0.798 0.795 0.804 0.818 0.813 0.812 0.799 

3000 0.744 0.802 0.800 0.804 0.819 0.814 0.809 0.800 

3500 0.754 0.794 0.798 0.802 0.804 0.813 0.817 0.817 

4000 0.747 0.798 0.805 0.805 0.807 0.816 0.817 0.809 

Table G.2 MLP class independent thematic uncertainty RMSE. 

Nodes 

5 10 15 20 25 30 35 40 
250 0.098 0.102 0.096 0.077 0.103 0.145 0.104 0.174 

500 0.108 0.107 0.102 0.093 0.115 0.136 0.144 0.168 

750 0.115 0.074 0.118 0.101 0.112 0.111 0.117 0.142 

1000 0.115 0.059 0.107 0.104 0.105 0.120 0.114 0.131 

Iterations 1250 0.118 0.061 0.109 0.107 0.098 0.135 0.124 0.156 

1500 0.120 0.062 0.125 0.108 0.112 0.121 0.117 0.138 

1750 0.121 0.071 0.103 0.096 0.103 0.124 0.107 0.152 

2000 0.131 0.070 0.107 0.094 0.092 0.124 0.100 0.166 

2250 0.130 0.071 0.116 0.103 0.095 0.130 0.114 0.172 

2500 0.132 0.059 0.096 0.108 0.089 0.160 0.099 0.141 

2750 0.130 0.070 0.114 0.126 0.084 0.151 0.106 0.137 

3000 0.136 0.081 0.088 0.121 0.097 0.148 0.116 0.143 

3500 0.l39 0.120 0.125 0.088 0.118 0.109 0.108 0.115 

4000 0.137 0.084 0.137 0.099 0.125 0.115 0.125 0.158 
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Table G.3 MLP class specific thematic uncertainty RMSE. 

Nodes 

5 10 15 20 25 30 35 40 
250 0.053 0.036 0.072 0.075 0.084 0.070 0.101 0.069 

500 0.051 0.045 0.056 0.064 0.064 0.047 0.101 0.086 

750 0.047 0.054 0.055 0.052 0.056 0.048 0.079 0.077 

1000 0.044 0.054 0.050 0.047 0.056 0.046 0.066 0.079 

Iterations 1250 0.044 0.056 0.050 0.047 0.052 0.040 0.066 0.064 

1500 0.048 0.054 0.049 0.059 0.046 0.036 0.071 0.070 

1750 0.044 0.062 0.050 0.061 0.053 0.040 0.070 0.054 

2000 0.044 0.047 0.052 0.063 0.055 0.037 0.054 0.064 

2250 0.042 0.041 0.049 0.054 0.064 0.039 0.054 0.048 

2500 0.042 0.045 0.048 0.051 0.067 0.042 0.050 0.048 

2750 0.043 0.046 0.058 0.057 0.067 0.041 0.037 0.035 

3000 0.045 0.048 0.059 0.068 0.064 0.044 0.036 0.039 

3500 0.055 0.031 0.050 0.062 0.068 0.025 0.027 0.040 

4000 0.069 0.032 0.051 0.061 0.067 0.033 0.029 0.048 

Table G.4 MLP F-test results F-value for relationship between activation and 
proportion of correct pixels for class independent thematic uncertainty (degrees of 
freedom = 8). 

Nodes 

5 10 15 20 25 30 35 40 
250 55.0 49.2 49.9 88.170 50.4 20.4 4l.0 13.0 

500 38.9 42.7 42.4 54.192 37.4 23.0 24.6 12.4 

750 36.8 95.2 32.9 49.998 36.9 37.6 36.7 19.9 

1000 36.2 162.7 38.7 45.984 45.1 33.3 38.8 23.9 

Iterations 1250 33.6 147.1 37.7 42.933 52.4 27.3 33.0 15.4 

1500 32.4 143.2 29.4 4l.913 40.6 32.7 36.2 22.0 

1750 31.5 108.6 44.4 53.684 48.9 29.6 43.7 17.0 

2000 27.4 113.8 41.1 54.745 65.6 27.9 48.2 13.0 

2250 26.6 106.7 34.7 45.054 63.0 27.8 37.8 1l.5 

2500 25.3 163.0 53.1 42.193 65.8 17.3 5l.4 19.0 

2750 26.4 124.9 36.9 26.725 74.6 18.4 44.1 20.6 

3000 24.6 93.6 72.1 30.413 55.2 18.7 33.3 20.1 

3500 25.4 39.2 30.3 69.197 34.8 37.8 42.8 31.2 

4000 24.8 76.2 28.8 52.306 36.1 34.7 29.7 15.4 
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Table G.5 MLP F-test results p for relationship between activation and proportion of 
correct pixels (degrees of freedom = 8). 

Nodes 

5 10 15 20 25 30 35 40 
250 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 0.007 

500 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.001 0.008 

750 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 

1000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 

Iterations 1250 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.004 

1500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 

1750 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.003 

2000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.007 

2250 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.009 

2500 0.001 <0.001 <0.001 <0.001 <0.001 0.003 <0.001 0.002 

2750 <0.001 <0.001 <0.001 <0.001 <0.001 0.003 <0.001 0.002 

3000 0.001 <0.001 <0.001 <0.001 <0.001 0.003 <0.001 0.002 

3500 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

4000 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.004 

Table G.6 MLP F-test results F-value for relationship between average activation and 
proportion of correct pixels for class specific thematic uncertainty (degrees of freedom = 
6). 

Nodes 

5 10 15 20 25 30 35 40 
250 143.4 249.5 74.3 68.8 53.0 70.7 37.2 82.6 

500 160.0 168.3 114.1 83.8 90.5 145.4 35.1 59.3 

750 170.2 115.4 113.0 140.5 107.1 146.9 54.8 73.2 

1000 190.5 109.8 145.8 148.2 105.1 153.3 77.6 66.2 

Iterations 1250 188.1 96.1 140.5 148.2 118.7 199.6 73.6 94.4 

1500 161.2 109.9 154.7 93.3 148.4 230.3 62.2 77.5 

1750 192.8 79.7 141.5 83.8 109.1 181.4 61.7 127.0 

2000 187.1 136.7 131.7 81.0 98.6 202.3 105.6 93.3 

2250 215.5 190.3 143.7 108.5 76.4 176.5 102.9 155.9 

2500 217.2 155.3 144.7 123.0 70.4 140.1 124.0 149.5 

2750 200.7 152.6 102.0 102.8 71.3 145.9 217.4 275.0 

3000 186.7 147.2 87.1 72.7 76.8 128.0 249.4 222.8 

3500 130.3 367.8 121.6 98.6 65.6 378.1 409.9 183.0 

4000 85.6 324.9 112.0 92.0 64.2 207.8 360.0 109.2 
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Table G.7 MLP F-test results p for relationship between activation and proportion of 
correct pixels for class specific thematic uncertainty (degrees of freedom = 6). 

Nodes 

5 10 15 20 25 30 35 40 
250 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 

750 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

1000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Iterations 1250 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

1500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

1750 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

2000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

2250 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

2500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

2750 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

3000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

3500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

4000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Table G.8 MLP Normalised entropy. 

Nodes 

5 10 15 20 25 30 35 40 
250 0.239 0.204 0.158 0.126 0.139 0.121 0.123 0.111 

500 0.200 0.188 0.145 0.117 0.120 0.111 0.096 0.101 

750 0.200 0.196 0.141 0.112 0.112 0.112 0.096 0.089 

1000 0.196 0.196 0.140 0.109 0.111 0.107 0.091 0.084 

Iterations 1250 0.196 0.190 0.140 0.107 0.110 0.105 0.090 0.083 

1500 0.197 0.184 0.142 0.109 0.109 0.104 0.087 0.082 

1750 0.192 0.182 0.143 0.110 0.104 0.100 0.090 0.079 

2000 0.190 0.183 0.142 0.111 0.103 0.096 0.090 0.081 

2250 0.190 0.173 0.142 0.112 0.101 0.094 
I 

0.089 0.078 

2500 0.189 0.164 0.147 0.113 0.101 0.095 0.088 0.077 

2750 0.188 0.166 0.143 0.113 0.101 0.093 0.092 0.076 

3000 0.185 0.161 0.147 0.114 0.099 0.093 0.091 0.077 

3500 0.188 0.144 0.132 0.109 0.104 0.100 0.103 0.075 

4000 0.190 0.149 0.128 0.111 0.106 0.098 0.100 0.075 
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Table G.9 Statistics of regressions of averaged thematic accuracy and thematic 
uncertainty variables as a function of MLP network variables. 

Regression Independent variable Dependent variable DF R2 F P 
Linear Po No. nodes 6 0.323 4.3 0.082 

Polynomial Po No. nodes 5 0.866 23.7 0.003 
Log-linear Po No. nodes 6 0.609 11.9 0.014 

Linear Class independent RMSE No. nodes 6 0.224 3.0 0.133 
Polynomial Class independent RMSE No. nodes 5 0.397 3.3 0.122 
Log-linear Class independent RMSE No. nodes 6 0.016 1.1 0.332 

Linear Class specific RMSE No. nodes 6 0.064 1.5 0.269 
Polynomial Class specific RMSE No. nodes 5 0.000 0.7 0.541 
Log-linear Class specific RMSE No. nodes 6 0.095 1.7 0.236 

Linear Entropy No. nodes 6 0.882 53.1 <0.001 
Polynomial Entropy No. nodes 5 0.966 100.0 <0.001 
Log-linear Entropy No. nodes 6 0.960 168.3 <0.001 

Linear Po Iterations 12 0.691 30.1 <0.001 
Polynomial Po Iterations 11 0.919 74.9 <0.00 I 
Log-linear Po Iterations 12 0.949 243.8 <0.001 

Linear Class independent RMSE Iterations 12 0.077 2.1 0.175 
Polynomial Class independent RMSE Iterations II 0.324 4.1 0.046 
Log-linear Class independent RMSE Iterations 12 0.000 0.5 0.503 

Linear Class specific RMSE Iterations 12 0.703 31.8 <0.001 
Polynomial Class specific RMSE Iterations 11 0.878 47.9 <0.001 
Log-linear Class specific RMSE Iterations 12 0.922 155.5 <0.001 

Linear Entropy Iterations 12 0.637 23.8 <0.001 
Polynomial Entropy Iterations 11 0.826 31.9 <0.001 
Log-linear Entropy Iterations 12 0.910 131.9 <0.00 I 

Table G.I0 Statistics of regressions between MLP thematic accuracy and thematic 
uncertainty variables. 

Regression Independent variable Dependent variable DF R2 F P 
Linear Class independent RMSE Po 110 0.012 2.4 0.126 
Linear Po Class specific RMSE 110 0.000 0.0 0.949 
Linear Entropy Po 110 0.579 153.9 <0.001 
Linear Entropy Class independent RMSE 110 0.145 19.8 <0.001 
Linear Entropy Class specific RMSE 110 0.015 2.7 0.103 
Linear Class independent RMSE Class specific RMSE 110 0.000 0.1 0.743 
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Appendix H PNN thematic uncertainty results 

TableD.1 PNN thematic accuracy and uncertainty measures as a function of h. 

Class independent Class specific 
thematic uncertainty thematic uncertainty 

h Po Entropy RMSE RMSE 
0.005 0.758 0.021 0.215 0.366 
0.01 0.796 0.069 0.131 0.268 
0.02 0.827 0.134 0.077 0.063 
0.03 0.821 0.171 0.049 0.121 
0.04 0.804 0.198 0.043 0.178 
0.05 0.800 0.223 0.057 0.378 
0.06 0.786 0.246 0.039 0.399 
0.07 0.766 0.269 0.034 0.397 
0.08 0.762 0.290 0.034 0.420 
0.09 0.756 0.310 0.031 0.529 
0.1 0.751 0.329 0.026 0.541 
0.11 0.749 0.347 0.019 0.560 
0.12 0.743 0.364 0.020 0.708 
0.13 0.738 0.381 0.026 0.708 
0.14 0.737 0.397 0.035 0.708 
0.15 0.737 0.413 0.036 0.708 
0.16 0.734 0.429 0.047 0.709 
0.17 0.735 0.443 0.059 0.710 
0.18 0.732 0.458 0.074 0.711 
0.19 0.728 0.472 0.076 0.711 
0.2 0.721 0.485 0.081 0.712 
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Table H.2 PNN F-test results for relationship between activation and proportion of 
correct pixels (degrees of freedom = 8). 

h F-value p 
0.005 9.71 0.014 
0.01 28.37 <0.001 
0.02 98.60 <0.001 
0.03 250.39 <0.001 
0.04 343.25 <0.001 
0.05 200.10 <0.001 
0.06 446.07 <0.001 
0.07 568.85 <0.001 
0.08 587.81 <0.001 
0.09 679.04 <0.001 
0.1 999.38 <0.001 
0.11 1960.52 <0.001 
0.12 1757.39 <0.001 
0.13 1057.73 <0.001 
0.14 623.50 <0.001 
0.15 571.10 <0.001 
0.16 356.24 <0.001 
0.17 226.59 <0.001 
0.18 145.68 <0.001 
0.19 141.30 <0.001 
0.2 125.13 <0.001 
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Appendix I Program to combine misregistration and 

thematic uncertainty datasets 

IDL (Interactive Data Language) program to combine misregistration and thematic uncertainty 

datasets. 

Pro combine_uncertainty 
.********************************** , 
;**** IDL program file to merge geometric and thematic uncertainty layers 
.********************************** , 

.********************************** , 
;** Defining acceleration values for each of the 
;** error points derived from the Coventry data 
.********************************** , 
dist_ err _ orig = $ 
[0.770,0.893,2.219,1.3 81,1. 798,0.567,2.656,0.649,0.466,0.519,0.594,0.440,1.557, $ 
1.854,0.954,1.648,0.860,1.301,1.712, 1.848,0.511, 1.555,0.390, 1.414, 1.346,2.046 $ 
1.074,1.201,1.605,0.719,1.694,0.889, 1.408,2.148,0.611, 1.815, 1.397, 1.139, 1.692, $ 
1.102,2.338,1.098,1.766,0.446,0.923,1.558, 1.054,2.138, 1.398,0.884, 1.643,0.861, $ 
0.845,1.458,0.847,2.178] 

.********************************** , 
;** The following define the proportion of each pixel that falls 
;** within a specified distance 
;** For example matrix 'proportion_per_pixl_0' defines proportion 
;** of pixel within 0.5 and 1 pixels ofthe centre of the central pixel 
.********************************** , 
proportion~er~ixO_5 = $ 
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, $ 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

proportion~er~ixl_0 = $ 
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.035884243,0.208003265, $ 
0.035884243,0,0,0,0,0,0,0.208003265,0.024449967,0.208003265,0,0,0,0,0,0, $ 
0.035884243,0.208003265,0.035884243,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, $ 
0,0,0,0,0,0] 

proportion~er~ixl_5 = $ 
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.118822935,0.131177065, $ 
0.118822935,0,0,0,0,0,0,0.131177065,0,0.131177065,0,0,0,0,0,0,0.118822935, $ 
0.131177065, 0.118822935,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
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proportion _per ~ix2 _ 0 = $ 
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 .059332641,0.066442971,0.059332641,0,0,0, $ 
0,0,0.059332641,0.060977071 ,0.003914676,0.060977071 ,0.059332641 ,0,0,0,0, $ 
0.066442971 ,0.003914676,0,0.003914676,0.066442971 ,0,0,0,0,0.059332641, $ 
0.060977071,0.003914676,0.060977071 ,0.059332641 ,0,0,0,0,0,0.059332641, $ 
0.066442971,0.0593 32641,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

proportion_per~ix2_5 = $ 
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0 11882853,0.096502836,0.043809074, $ 
0.096502836,0.011882853,0,0,0,0,0.096502836,0.001302402,0,0.001302402, $ 
0.096502836,0,0,0,0,0.043809074,0,0,0,0.043809074,0,0,0,0,0.096502836, $ 
0.001302402,0,0.00 1302402,0.096502836,0,0,0,0,0.0 11882853,0.096502836, $ 
0.043809074,0.096502836,0.011882853,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

proportion~er~ix3_0 = $ 
[0,0,0,0,0,0,0,0,0,0.001216927,0.04780 1189,0.037273298,0.047801189,0.001216927, $ 
0,0,0,0.001216927,0.042663598,0.0353 74303,0.00 1278264,0.035374303, $ 
0.042663598,0.001216927,0,0,0.04 7801189,0.035374303,0,0,0,0.035374303, $ 
0.047801189,0,0,0.037273298,0.00 1278264,0,0,0,0.00 1278264,0.03 7273298,0, $ 
0,0.047801189,0.035374303,0,0,0,0.035374303,0.047801189,0,0,0.001216927, $ 
0.042663598,0.035374303,0.00 1278264,0.035374303,0.042663598,0.001216927, $ 
0,0,0,0.001216927,0.047801189,0.037273298,0.04 7801189,0.001216927,0,0,0,0, $ 
0,0,0,0,0] 

proportion~er_pix3_5 = $ 
[0,0,0,0,0,0,0,0,0,0.039995532,0.061517842,0.029200871 ,0.061517842,0.039995532, $ 
0,0,0,0.039995532,0.01777238,0,0,0,0.0 177723 8,0.039995532,0,0,0.061517842,0,0, $ 
0,0,0,0.061517842,0,0,0.029200871 ,0,0,0,0,0,0.029200871 ,0,0,0.061517842,0,0,0,0, $ 
0,0.061517842,0,0,0.039995532,0.0 1777238,0,0,0,0.0 1777238,0.039995532,0,0,0, $ 
0.039995532,0.061517842,0.029200871 ,0.061517842,0.039995532,0,0,0,0,0,0,0,0,0] 

proportion ~er _pix4 _ 0 = $ 
[0,0.004613213,0.0348964,0.023634415,0.0348964,0.004613213,0,0,0.0 1 0043429, $ 
0.052938433,0.0 15396424,0.000572984,0.0 15396424,0.05293 8433,0.01 0043429, $ 
0,0.004613213,0.052938433,6.02E-05,0,0,0,6.02E-05,0.052938433,0.004613213, $ 
0.0348964,0.0 15396424,0,0,0,0,0,0.0 15396424,0.0348964,0.023634415, $ 
0.000572984,0,0,0,0,0,0.000572984,0.023634415,0.0348964,0.015396424,0, $ 
0,0,0,0,0.0 15396424,0.0348964,0.004613213,0.05293 8433,6.02E-05,0,0,0, $ 
6.02E-05,0.052938433,0.004613213,0,0.0 1 0043429,0.05293 8433,0.0 15396424, $ 
0.000572984,0.015396424,0.052938433,0.0 1 0043429,0,0,0.004613213,0.0348964, $ 
0.023634415,0.0348964,0.004613213,0] 

proportion~er~ix4_5 = $ 
[0.003659723,0.042061 062,0.046134257,0.022406146,0.046134257,0.042061 062, $ 
0.003659723,0.003659723,0.02602581,0.00892898,0,0,0,0.00892898,0.02602581, $ 
0.003659723,0.042061 062,0.00892898,0,0,0,0,0,0.00892898,0.042061 062, $ 
0.046134257,0,0,0,0,0,0,0,0.046134257,0.022406146,0,0,0,0,0,0,0,0.022406146, $ 
0.046134257,0,0,0,0,0,0,0,0.046134257,0.042061 062,0.00892898,0,0,0,0,0, $ 
0.00892898,0.042061 062,0.003659723,0.02602581 ,0.00892898,0,0,0,0.00892898, $ 
0.02602581 ,0.003659723,0.003659723,0.042061 062,0.046134257,0.022406146, $ 
0.046134257,0.042061062,0.003659723] 
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.********************************** , 
;** Defining no. variables within different data sets 
.********************************** , 
points _ dist_ error = size( dist_ err _ orig) 
cols = long(l521) 
rows = long( 1521) 

no~oints = long(cols*rows) 

standard_multiplier = DOUBLE(I) 

.********************************** , 
;** The following section gets file names for input data 
.********************************** , 

.********************************** , 
;** Obtaining file names of files containing angular acceleration data 
;** modified by equation linking with geometric error and multiplied for 
;** height AGL to normalise to 900 m 
.********************************** , 
file = DIALOG_PICKFILE(lread, GET_PATH = path 1 , $ 
path = 'C:\ainsdale\processing\', $ 
Title = 'Select ASCII acceleration file " $ 
FILTER = ["* .asc"], lMUST _EXIST) 

.********************************** , 
;** Obtaining file names of files containing thematic uncertainty data 
.********************************** , 
file_them = DIALOG_PICKFILE(/read, path = pathl, $ 
Title = 'Select ASCII classification file', $ 
FILTER = ["*.asc"], IMUST_EXIST) 

.********************************** , 
;** Obtaining file names of files containing geometric error data 
.********************************** , 
file_geo = DIALOG_PICKFILE(/read, path = pathl, $ 
Title = 'Select ASCII geometric error file " $ 
FILTER = ["*.asc"], IMUST_EXIST) 

acce\_array = DBLARR(cols, rows) 
multiplied_array = DBLARR(cols, rows,77) 
errJreq = DBLARR(cols, rows,9) 

linel =" 
line2 =" 
line3 =" 
line4 =" 
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.********************************** , 
;**** Import acceleration data 
.********************************** , 
test = STRARR(noyoints) 
GET_LUN,lun 
OPENR, lun, file 
READF, lun, line! 
READF, lun, line2 
READF, lun, line3 
READF, lun, line4 
READF, lun, test 
FREE_LUN,lun 

FOR yminus = 0, rows-l DO BEGIN 
FOR x = 0, cols-l DO BEGIN 

line = strsplit(test«yminus)*cols+x), , " IEXTRACT) 

accel_array(x, yminus) = DOUBLE(line(2))11000 

ENDFOR 
END FOR 

PRINT, g, 'Acceleration data imported' 
multiplier = (accel_array * slope + intercept)/standard_multiplier 
;Loop to process every value in acceleration array 
FOR x = I, cols DO BEGIN 
FOR Y = 1, rows DO BEGIN 

.************************************************************** , 
;***** Loop to estimate frequency of errors as function of distance 
.************************************************************** , 

FOR a = 1, points_dist_error(l) DO BEGIN 

IF multiplied_dist_err(a-l) GE ° AND multiplied_dist_err(a-l) LT O.S THEN $ 
errjreq(x-l, y-l,O) = errJreq(x-l, y-l,O)+1 
IF multiplied_dist_err(a-l) GE O.S AND multiplied_dist_err(a-l) LT I THEN $ 
errjreq(x-l, y-l,l) = errjreq(x-l, y-l,I)+1 
IF multiplied_dist_err(a-l) GE 1 AND multiplied_dist_err(a-l) LT 1.S THEN $ 
err_freq(x-l, y-I,2) = errjreq(x-l, y-I,2)+1 
IF multiplied_dist_err(a-l) GE 1.S AND multiplied_dist_err(a-l) LT 2 THEN $ 
err _freq(x-l, y-I,3) = errjreq(x-l, y-l ,3)+ I 
IF multiplied_dist_err(a-l) GE 2 AND multiplied_dist_err(a-l) LT 2.S THEN $ 
err jreq(x-l, y-I,4) = err jreq(x-l, y-I,4)+ 1 
IF multiplied_dist_err(a-l) GE 2.S AND multiplied_dist_err(a-l) LT 3 THEN $ 
errjreq(x-l, y-I,S) = errjreq(x-l, y-I,S)+1 
IF multiplied_dist_err(a-l) GE 3 AND multiplied_dist_err(a-l) LT 3.S THEN $ 
errjreq(x-l, y-I,6) = errjreq(x-l, y-l,6)+1 
IF multiplied_dist_err(a-l) GE 3.S AND multiplied_dist_err(a-l) LT 4 THEN $ 
errjreq(x-l, y-I,7) = errjreq(x-l, y-l,7)+1 
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IF multiplied_dist_err(a-l) GE 4 THEN errjreq(x-l, y-l,8) = $ 
errjreq(x-l, y-l,8)+1 

ENDFOR 
ENDFOR 
ENDFOR 

FOR x = 1, cols DO BEGIN 
FOR Y = 1, rows DO BEGIN 
FOR a = 1, 77 DO BEGIN 

.************************************************************** , 
;***** Calculating per-pixel error frequencies from acceleration data 
.************************************************************** , 

multiplied_array(x-l, y-l,a-l) = $ 
((errjreq(x-l, y-l,O)*proportion~er~ixO_5(a-l» + $ 
(errjreq(x-l, y-l,I)*proportion~er~ixl_O(a-l» + $ 
(err_freq(x-l, y-l,2)*proportion~er~ixl_5(a-l» + $ 
(err_freq(x-l, y-I,3)*proportion_per~ix2_0(a-l» + $ 
(errjreq(x-l, y-l,4)*proportion~er~ix2_5(a-l» + $ 
(errjreq(x-l, y-l,5)*proportion_per_pix3_0(a-l» + $ 
(errjreq(x-l, y-l,6)*proportion~er~ix3_5(a-l» + $ 
(errJreq(x-l, y-l,7)*proportion~er~ix4_0(a-l» + $ 
(err jreq(x-l, y-l ,8)*proportion~er_pix4_5(a-l»)/points_dist_error(1) 

ENDFOR 
ENDFOR 
ENDFOR 

accel_ array = LONG(O) 
errjreq = LONG(O) 
PRINT, g, 'Finished calculating geometric error probabilities from acceleration data' 

.************************************************************** , 
;End of calculating geometric error uncertainty filter 
.************************************************************** , 

linel =" 
line2 =" 
line3 =" 
line4 =" 

.********************************** , 
; ***** Import geometric error data 
.********************************** , 

geo_error_array = DBLARR(cols, rows, 1 54) 
testl = STRARR(no~oints) 

GET_LUN,lun 
OPENR, lun, file_geo 
READF, lun, line 1 
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READF, lun, line2 
READF, lun, line3 
READF, lun, line4 
READF, lun, test 
FREE_LUN,lun 

FOR yminus = 0, rows-l DO BEGIN 
FOR x = 0, cols-l DO BEGIN 

line = strsplit(test((yminus)*cols+x), ", /EXTRACT) 
FOR v = 0, 153 DO BEGIN 

geo_error_array(x, yminus,v) = DOUBLE(line(v+2)) 

ENDFOR 
ENDFOR 
ENDFOR 

PRINT, g, 'Geometric error vector data imported' 

.********************************** , 
;***** Import thematic uncertainty data 
.********************************** , 

them_error_array = DBLARR(cols, rows,8) 
test = STRARR(no~oints) 

GET _ LUN, lun 
OPENR, lun, file_them 
READF, lun, linel 
READF, lun, line2 
READF, lun, line3 
READF, lun, line4 
READF, lun, test 
FREE_LUN,lun 

FOR yminus = 0, rows-l DO BEGIN 
FOR x = 0, cols-l DO BEGIN 

line = strsplit(test((yminus)*cols+x), ' ',/EXTRACT) 
FOR cla = 0, 7 DO BEGIN 

them_error_array(x, yminus,cla) = DOUBLE(line(cla+2)) 

ENDFOR 
ENDFOR 
ENDFOR 

PRINT, g, 'Classification data imported' 
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.************************************************ , 
;******** Defining x and y positions within matrix 
.************************************************ , 
x_filter~os = DBLARR(77) 
x_filter~os = [$ 
-3,-2,-1,0,1,2,3, $ 
-4,-3,-2,-1,0,1,2,3,4, $ 
-4,-3,-2,-1,0,1,2,3,4, $ 
-4,-3,-2,-1,0,1,2,3,4, $ 
-4,-3,-2,-1,0,1,2,3,4, $ 
-4,-3,-2,-1,0,1,2,3,4, $ 
-4,-3,-2,-1,0,1,2,3,4, $ 
-4,-3,-2,-1,0,1,2,3,4, $ 
-3,-2,-1,0,1,2,3] 

y_filter_pos = DBLARR(77) 
y_filter~os = [$ 
4,4,4,4,4,4,4, $ 
3,3,3,3,3,3,3,3,3, $ 
2,2,2,2,2,2,2,2,2, $ 
1,1,1,1,1,1,1,1,1, $ 
0,0,0,0,0,0,0,0,0, $ 
-1,-1,-1,-1,-1,-1,-1,-1,-1, $ 
-2,-2,-2,-2,-2,-2,-2,-2,-2,$ 
-3,-3,-3,-3,-3,-3,-3,-3,-3, $ 
-4 -4 -4 -4 -4 -4 -4] , , , , , , 

comb_uncer_array = DBLARR(cols, rows,8) 

.******************************************************************** , 
;Final processing for combined data 
.******************************************************************** , 
FOR yminus = 0, rows-l DO BEGIN 
FOR x = 0, cols-l DO BEGIN 

FOR filter_no = 0, 76 DO BEGIN 

.********************************** , 
;***** Calculating geometric error 
; * * * * * Orthometric error is defined in terms of error from 
;***** actual pixel position to error position . 
. ***** , 
;***** Position in matrix is defined as from 
;***** error position to actual position 
.***** , 
;***** To apply the error have to apply from error position 
;***** to actual position and so orthometric error is negative 
.********************************** , 

x_up = DOUBLE(CEIL(x_filter~os(filter_no) - $ 
geo_error_array(x, yminus, filter_no*2))) 
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y_up = DOUBLE(CEIL(y_filter~os(filter_no) - $ 
geo _error _ array(x, yminus, filter _ no*2+ 1))) 

x_offset = DOUBLE(x_filter~os(filter_no) - $ 
geo_error_array(x, yminus, filter_no*2)) 

y _offset = DOUBLE(y_filter~os(filter_no) - $ 
geo_error_array(x, yminus, filter_no *2+ 1)) 

.******************************************************************** , 
;** Repositioning to account for geometric error that is not an integer. 
;** Positions as follows 
;** 1 2 
;** 4 3 
.******************************************************************** , 

.********************************** , 
;***** Calculating proportion of thematic value applied to each pixel. 
.********************************** , 

proportion 1 = ABS((x_up - x_offset) * (y_offset - y_up + 1)) 
proportion2 = ABS((x_offset - x_up + 1) * (y_offset - y_up + 1)) 
proportion3 = ABS((x_offset - x_up + 1) * (y_up - y_offset)) 
proportion4 = ABS((x_up - x_offset) * (y_up - y_offset)) 

IF x + x_up LT cols - 2 AND x + x_up GT 2 AND yminus - y_up LT rows - 2 $ 
AND yminus - y_up GT 2 THEN BEGIN 
FOR class_no = 0,7 DO BEGIN 

comb_uncer_array(x + x_up-l, yminus - y_up, class_no) = $ 
comb_uncer_array(x + x_up-I, yminus - y_up, class_no) + $ 
(proportion 1 * them_error_array(x, yminus,class_no ) * $ 
multiplied_array(x, yminus,filter_no)) 

comb_uncer_array(x + x_up, yminus - y_up, class_no) = $ 
comb_uncer_array(x + x_up, yminus - y_up, class_no) + $ 
(proportion2 * them_error_array(x, yminus,class_no) * $ 
multiplied _array(x, yminus,filter _ no)) 

comb_uncer_array(x + x_up, yminus - y_up + 1, class_no) = $ 
comb_uncer_array(x + x_up, yminus - y_up + 1, class_no) + $ 
(proportion3 * them_error_array(x, yminus,class_no) * $ 
multiplied_array(x, yminus,filter_no)) 

comb_uncer_array(x + x_up-I, yminus - y_up + 1, class_no) = $ 
comb_uncer_array(x + x_up-I, yminus - y_up + 1, class_no) + $ 
(proportion4 * them_error_array(x, yminus,class_no) * $ 
multiplied_array(x, yminus,filter_no)) 

ENDFOR 
ENDIF 
ENDFOR 
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ENDFOR 
ENDFOR 

PRINT, g, 'Finished processing combination' 

.***************************** , 
; * * Saving output data 
.***************************** , 

save ~ath = path I + 'combined _'+ g_ no +' .asc' 
save~ath = STRJOIN((STRSPLIT(save~ath, ' ',/EXTRACT))) 
get_l un, lun 
openw, lun, save~ath, WIDTH = cols*100 
printf, lun, comb _ uncer _array 
FREE_LUN,lun 

END 
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Appendix J 

synthetic data 

Change detection model results using 

Table J.t No uncertainty model two-class problem Po using synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
0 0 0.897 0.813 0.675 0.575 0.518 
0 5 0.894 0.811 0.674 0.575 0.518 
0 10 0.890 0.807 0.671 0.573 0.517 
0 15 0.886 0.804 0.669 0.572 0.518 
0 20 0.882 0.801 0.667 0.571 0.517 
5 0 0.896 0.812 0.675 0.575 0.519 
5 5 0.890 0.807 0.671 0.574 0.518 
5 10 0.874 0.796 0.665 0.571 0.517 
5 15 0.875 0.796 0.664 0.570 0.517 
5 20 0.874 0.795 0.663 0.570 0.516 
10 0 0.898 0.814 0.676 0.576 0.519 
10 5 0.892 0.809 0.672 0.574 0.518 
10 10 0.885 0.804 0.668 0.573 0.517 
10 15 0.881 0.800 0.665 0.570 0.516 
10 20 0.861 0.784 0.658 0.568 0.516 
15 0 0.898 0.814 0.676 0.576 0.519 
15 5 0.893 0.810 0.672 0.574 0.518 
15 10 0.886 0.805 0.670 0.573 0.517 
15 15 0.881 0.800 0.666 0.571 0.517 
15 20 0.874 0.794 0.663 0.568 0.515 
20 0 0.898 0.814 0.676 0.576 0.519 
20 5 0.893 0.810 0.673 0.575 0.519 
20 10 0.887 0.805 0.670 0.573 0.518 
20 15 0.881 0.800 0.666 0.571 0.517 
20 20 0.876 0.795 0.662 0.567 0.514 
40 0 0.899 0.815 0.677 0.576 0.519 
40 5 0.894 0.810 0.673 0.575 0.518 
40 10 0.890 0.808 0.671 0.573 0.517 
40 15 0.886 0.804 0.668 0.572 0.517 
40 20 0.881 0.799 0.665 0.570 0.516 
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Table J.2 Misregistration model two-class problem Po using synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
0 0 0.997 0.998 0.999 0.998 0.998 
0 5 0.996 0.997 0.999 0.999 0.998 
0 10 0.996 0.997 0.999 0.999 0.998 
0 15 0.999 0.999 0.999 0.999 0.998 
0 20 0.999 1.000 0.999 0.999 0.997 
5 0 0.984 0.981 0.971 0.961 0.955 
5 5 0.982 0.978 0.969 0.960 0.956 
5 10 0.965 0.967 0.971 0.973 0.973 
5 15 0.978 0.985 0.993 0.997 0.997 
5 20 0.990 0.993 0.997 0.997 0.997 
10 0 0.988 0.984 0.966 0.934 0.916 
10 5 0.986 0.981 0.963 0.933 0.917 
10 10 0.978 0.972 0.950 0.925 0.913 
10 15 0.982 0.975 0.952 0.930 0.923 
10 20 0.952 0.950 0.949 0.948 0.947 
15 0 0.989 0.985 0.958 0.907 0.880 
15 5 0.987 0.983 0.957 0.907 0.882 
15 10 0.979 0.974 0.946 0.901 0.879 
15 15 0.981 0.975 0.945 0.906 0.891 
15 20 0.975 0.965 0.934 0.899 0.888 
20 0 0.989 0.985 0.951 0.882 0.847 
20 5 0.986 0.982 0.950 0.883 0.850 
20 10 0.980 0.974 0.939 0.877 0.849 
20 15 0.982 0.976 0.940 0.883 0.861 
20 20 0.977 0.967 0.927 0.877 0.860 
40 0 0.990 0.986 0.928 0.804 0.743 
40 5 0.988 0.983 0.928 0.808 0.751 
40 10 0.984 0.977 0.921 0.810 0.757 
40 15 0.986 0.979 0.924 0.821 0.774 
40 20 0.981 0.972 0.916 0.822 0.780 
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Table J.3 Thematic model two-class problem Po using synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
0 0 0.911 0.837 0.716 0.629 0.580 
0 5 0.914 0.841 0.720 0.635 0.585 
0 10 0.917 0.845 0.726 0.641 0.592 
0 15 0.920 0.849 0.731 0.647 0.599 
0 20 0.922 0.852 0.736 0.653 0.606 
5 0 0.906 0.832 0.710 0.622 0.571 
5 5 0.898 0.825 0.705 0.620 0.570 
5 10 0.892 0.823 0.707 0.625 0.579 
5 15 0.910 0.840 0.725 0.643 0.597 
5 20 0.915 0.846 0.731 0.650 0.603 
10 0 0.908 0.833 0.709 0.619 0.566 
10 5 0.901 0.827 0.705 0.617 0.566 
10 10 0.890 0.818 0.698 0.614 0.564 
10 15 0.883 0.812 0.695 0.612 0.564 
10 20 0.875 0.808 0.698 0.620 0.576 
15 0 0.907 0.832 0.707 0.616 0.561 
15 5 0.901 0.827 0.703 0.614 0.561 
15 10 0.892 0.819 0.699 0.612 0.560 
15 15 0.887 0.816 0.697 0.612 0.563 
15 20 0.874 0.805 0.689 0.606 0.558 
20 0 0.907 0.831 0.705 0.612 0.556 
20 5 0.901 0.826 0.702 0.612 0.557 
20 10 0.893 0.820 0.697 0.609 0.555 
20 15 0.887 0.816 0.695 0.609 0.557 
20 20 0.878 0.807 0.689 0.604 0.554 
40 0 0.907 0.829 0.699 0.602 0.541 
40 5 0.901 0.824 0.696 0.602 0.542 
40 10 0.895 0.820 0.693 0.600 0.542 
40 15 0.892 0.817 0.692 0.602 0.545 
40 20 0.884 0.811 0.688 0.599 0.545 
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Table J.4 Combined model two-class problem Po using synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
0 0 0.999 0.999 1.000 1.000 1.000 
0 5 1.000 1.000 1.000 1.000 1.000 
0 10 1.000 1.000 1.000 1.000 1.000 
0 15 1.000 1.000 1.000 1.000 1.000 
0 20 1.000 1.000 1.000 1.000 1.000 
5 0 0.982 0.979 0.971 0.962 0.957 
5 5 0.974 0.971 0.964 0.959 0.958 
5 10 0.973 0.974 0.975 0.975 0.975 
5 15 1.000 1.000 1.000 1.000 1.000 
5 20 1.000 1.000 1.000 1.000 1.000 
10 0 0.986 0.982 0.967 0.940 0.920 
10 5 0.981 0.976 0.959 0.934 0.921 
10 10 0.968 0.958 0.936 0.920 0.914 
10 15 0.959 0.944 0.928 0.925 0.924 
10 20 0.949 0.949 0.949 0.949 0.949 
15 0 0.986 0.983 0.963 0.918 0.885 
15 5 0.983 0.977 0.955 0.913 0.887 
15 10 0.971 0.962 0.934 0.899 0.882 
15 15 0.971 0.957 0.925 0.899 0.892 
15 20 0.952 0.934 0.900 0.890 0.889 
20 0 0.986 0.983 0.958 0.897 0.853 
20 5 0.983 0.978 0.950 0.893 0.856 
20 10 0.972 0.963 0.930 0.881 0.853 
20 15 0.972 0.959 0.922 0.881 0.864 
20 20 0.957 0.941 0.901 0.871 0.861 
40 0 0.988 0.984 0.942 0.832 0.754 
40 5 0.984 0.980 0.936 0.831 0.761 
40 10 0.976 0.968 0.922 0.826 0.765 
40 15 0.977 0.966 0.917 0.831 0.781 
40 20 0.965 0.951 0.901 0.828 0.786 
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Table J.S 
data. 

No uncertainty and Thematic models four-class problem Po using synthetic 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
0 0 0.894 0.803 0.634 0.485 0.357 
0 5 0.890 0.798 0.631 0.483 0.356 
0 10 0.883 0.793 0.626 0.480 0.354 
0 15 0.878 0.788 0.621 0.476 0.350 
0 20 0.872 0.782 0.617 0.472 0.348 
5 0 0.893 0.802 0.634 0.486 0.358 
5 5 0.887 0.796 0.629 0.482 0.355 
5 10 0.882 0.792 0.626 0.480 0.354 
5 15 0.877 0.787 0.621 0.475 0.350 
5 20 0.870 0.781 0.616 0.473 0.348 
10 0 0.895 0.803 0.635 0.486 0.358 
10 5 0.889 0.797 0.630 0.483 0.355 
10 10 0.883 0.793 0.626 0.480 0.354 
10 15 0.877 0.787 0.621 0.476 0.350 
10 20 0.869 0.780 0.617 0.473 0.348 
15 0 0.895 0.804 0.635 0.486 0.358 
15 5 0.890 0.798 0.631 0.483 0.355 
15 10 0.883 0.794 0.627 0.481 0.355 
15 15 0.878 0.788 0.622 0.477 0.351 
15 20 0.871 0.781 0.618 0.473 0.349 
20 0 0.895 0.804 0.635 0.486 0.358 
20 5 0.890 0.799 0.631 0.484 0.356 
20 10 0.884 0.794 0.628 0.481 0.355 
20 15 0.878 0.788 0.622 0.476 0.351 
20 20 0.872 0.783 0.618 0.473 0.348 
40 0 0.896 0.805 0.636 0.487 0.358 
40 5 0.891 0.799 0.632 0.483 0.356 
40 10 0.887 0.796 0.628 0.482 0.355 
40 15 0.883 0.792 0.625 0.478 0.352 
40 20 0.877 0.787 0.622 0.476 0.350 
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Table J.6 Misregistration model four-class problem Po using synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
0 0 0.990 0.989 0.980 0.903 0.633 
0 5 0.987 0.987 0.979 0.901 0.628 
0 10 0.983 0.982 0.973 0.893 0.620 
0 15 0.984 0.983 0.971 0.887 0.613 
0 20 0.981 0.978 0.963 0.877 0.606 
5 0 0.987 0.987 0.979 0.902 0.631 
5 5 0.986 0.985 0.977 0.898 0.627 
5 10 0.983 0.982 0.973 0.892 0.621 
5 15 0.984 0.982 0.970 0.885 0.613 
5 20 0.979 0.976 0.960 0.874 0.604 
10 0 0.990 0.990 0.982 0.904 0.632 
10 5 0.988 0.987 0.979 0.901 0.630 
10 10 0.984 0.983 0.973 0.893 0.622 
10 15 0.985 0.983 0.971 0.886 0.611 
10 20 0.981 0.977 0.961 0.873 0.603 
15 0 0.990 0.990 0.982 0.905 0.633 
15 5 0.988 0.988 0.980 0.901 0.629 
15 10 0.985 0.984 0.974 0.895 0.623 
15 15 0.985 0.983 0.971 0.887 0.613 
15 20 0.981 0.977 0.962 0.874 0.601 
20 0 0.990 0.990 0.981 0.904 0.632 
20 5 0.988 0.987 0.980 0.902 0.630 
20 10 0.984 0.984 0.975 0.895 0.623 
20 15 0.985 0.983 0.971 0.888 0.613 
20 20 0.982 0.979 0.964 0.875 0.603 
40 0 0.992 0.991 0.983 0.905 0.633 
40 5 0.989 0.989 0.981 0.903 0.631 
40 10 0.987 0.986 0.977 0.898 0.625 
40 15 0.988 0.987 0.976 0.893 0.619 
40 20 0.984 0.982 0.968 0.883 0.613 
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Table J.7 Combined model four-class problem Po using synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
0 0 0.990 0.989 0.987 0.978 0.921 
0 5 0.988 0.988 0.987 0.977 0.916 
0 10 0.985 0.984 0.982 0.969 0.903 
0 15 0.986 0.984 0.978 0.959 0.885 
0 20 0.985 0.982 0.972 0.946 0.869 
5 0 0.988 0.987 0.986 0.977 0.919 
5 5 0.987 0.986 0.985 0.976 0.914 
5 10 0.985 0.984 0.982 0.968 0.900 
5 15 0.987 0.986 0.978 0.958 0.883 
5 20 0.983 0.980 0.968 0.943 0.868 
10 0 0.990 0.990 0.988 0.980 0.921 
10 5 0.989 0.988 0.988 0.978 0.916 
10 10 0.985 0.984 0.981 0.967 0.900 
10 15 0.988 0.986 0.979 0.957 0.881 
10 20 0.984 0.982 0.970 0.941 0.861 
15 0 0.990 0.990 0.989 0.980 0.922 
15 5 0.990 0.989 0.988 0.978 0.916 
15 10 0.986 0.986 0.982 0.969 0.903 
15 15 0.987 0.986 0.979 0.958 0.883 
15 20 0.984 0.981 0.971 0.942 0.858 
20 0 0.990 0.990 0.989 0.979 0.921 
20 5 0.989 0.989 0.988 0.978 0.918 
20 10 0.986 0.985 0.983 0.969 0.903 
20 15 0.987 0.986 0.979 0.958 0.884 
20 20 0.986 0.983 0.972 0.944 0.862 
40 0 0.991 0.991 0.990 0.981 0.923 
40 5 0.990 0.990 0.989 0.980 0.919 
40 10 0.988 0.987 0.985 0.972 0.908 
40 15 0.991 0.989 0.984 0.966 0.894 
40 20 0.987 0.985 0.977 0.954 0.879 
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Table J.8 No uncertainty model thematic change vector RMSE using synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
0 0 0.323 0.433 0.571 0.652 0.695 
0 5 0.328 0.437 0.572 0.652 0.694 
0 10 0.336 0.442 0.575 0.654 0.695 
0 15 0.343 0.446 0.577 0.655 0.695 
0 20 0.350 0.451 0.579 0.656 0.696 
5 0 0.328 0.439 0.580 0.666 0.716 
5 5 0.329 0.439 0.577 0.662 0.710 
5 10 0.337 0.443 0.578 0.659 0.704 
5 15 0.345 0.448 0.579 0.658 0.701 
5 20 0.352 0.452 0.581 0.659 0.701 
10 0 0.325 0.439 0.585 0.677 0.737 
10 5 0.328 0.441 0.583 0.674 0.731 
10 10 0.335 0.443 0.583 0.669 0.723 
10 15 0.344 0.447 0.582 0.666 0.716 
10 20 0.355 0.454 0.584 0.664 0.711 
15 0 0.325 0.441 0.591 0.689 0.756 
15 5 0.327 0.441 0.589 0.684 0.749 
15 10 0.334 0.444 0.588 0.680 0.741 
15 15 0.342 0.448 0.586 0.676 0.733 
15 20 0.352 0.453 0.587 0.673 0.727 
20 0 0.326 0.442 0.597 0.699 0.773 
20 5 0.328 0.443 0.594 0.695 0.766 
20 10 0.335 0.446 0.593 0.691 0.758 
20 15 0.342 0.449 0.591 0.686 0.749 
20 20 0.349 0.453 0.591 0.682 0.742 
40 0 0.327 0.448 0.614 0.732 0.825 
40 5 0.328 0.448 0.611 0.728 0.817 
40 10 0.333 0.450 0.608 0.722 0.807 
40 15 0.338 0.451 0.605 0.716 0.797 
40 20 0.344 0.454 0.603 0.710 0.788 
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Table J.9 Misregistration model thematic change vector RMSE using synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
0 0 0.093 0.115 0.142 0.160 0.168 
0 5 0.098 0.118 0.142 0.159 0.168 
0 10 0.100 0.120 0.144 0.160 0.168 
0 15 0.093 0.114 0.142 0.159 0.168 
0 20 0.091 0.113 0.142 0.159 0.167 
5 0 0.137 0.158 0.194 0.225 0.252 
5 5 0.106 0.132 0.168 0.200 0.228 
5 10 0.102 0.124 0.155 0.182 0.204 
5 15 0.103 0.122 0.150 0.173 0.189 
5 20 0.102 0.122 0.150 0.173 0.189 
10 0 0.129 0.157 0.207 0.256 0.304 
10 5 0.103 0.135 0.185 0.234 0.282 
10 10 0.099 0.126 0.172 0.216 0.260 
10 15 0.105 0.125 0.163 0.201 0.240 
10 20 0.116 0.132 0.164 0.196 0.228 
15 0 0.129 0.161 0.222 0.283 0.346 
15 5 0.102 0.139 0.201 0.264 0.328 
15 10 0.101 0.132 0.190 0.248 0.307 
15 15 0.103 0.128 0.180 0.233 0.286 
15 20 0.110 0.131 0.175 0.223 0.271 
20 0 0.131 0.166 0.236 0.309 0.383 
20 5 0.106 0.145 0.217 0.290 0.364 
20 10 0.103 0.139 0.207 0.276 0.345 
20 15 0.104 0.133 0.196 0.262 0.326 
20 20 0.107 0.133 0.190 0.252 0.311 
40 0 0.131 0.177 0.275 0.376 0.477 
40 5 0.110 0.161 0.260 0.361 0.460 
40 10 0.105 0.152 0.248 0.346 0.442 
40 15 0.104 0.147 0.237 0.330 0.422 
40 20 0.106 0.145 0.230 0.319 0.406 
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Table J.10 Thematic model thematic change vector RMSE using synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
0 0 0.253 0.324 0.415 0.471 0.502 
0 5 0.250 0.321 0.412 0.467 0.498 
0 10 0.247 0.318 0.409 0.464 0.494 
0 15 0.246 0.316 0.406 0.460 0.490 
0 20 0.245 0.314 0.403 0.456 0.486 
5 0 0.267 0.338 0.432 0.491 0.528 
5 5 0.256 0.328 0.422 0.481 0.516 
5 10 0.250 0.322 0.414 0.472 0.506 
5 15 0.247 0.318 0.410 0.466 0.498 
5 20 0.247 0.316 0.406 0.462 0.493 
10 0 0.266 0.340 0.438 0.503 0.546 
10 5 0.258 0.332 0.430 0.494 0.536 
10 10 0.253 0.326 0.423 0.485 0.525 
10 15 0.250 0.322 0.417 0.477 0.515 
10 20 0.249 0.319 0.412 0.471 0.506 
15 0 0.269 0.344 0.446 0.515 0.565 
15 5 0.260 0.335 0.437 0.506 0.554 
15 10 0.255 0.330 0.431 0.497 0.543 
15 15 0.253 0.326 0.425 0.489 0.533 
15 20 0.251 0.323 0.420 0.483 0.523 
20 0 0.270 0.346 0.453 0.526 0.581 
20 5 0.263 0.340 0.445 0.517 0.571 
20 10 0.259 0.335 0.439 0.509 0.559 
20 15 0.256 0.331 0.433 0.501 0.549 
20 20 0.254 0.328 0.427 0.494 0.539 
40 0 0.279 0.359 0.475 0.561 0.629 
40 5 0.272 0.353 0.468 0.552 0.619 
40 10 0.266 0.347 0.460 0.543 0.607 
40 15 0.263 0.342 0.454 0.534 0.596 
40 20 0.261 0.339 0.448 0.526 0.585 

252 



Table J.11 Combined model thematic change vector RMSE using synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
0 0 0.077 0.090 0.107 0.117 0.122 
0 5 0.077 0.089 0.105 0.116 0.121 
0 10 0.072 0.085 0.102 0.114 0.120 
0 15 0.067 0.081 0.100 0.112 0.118 
0 20 0.064 0.080 0.099 0.111 0.117 
5 0 0.136 0.149 0.172 0.193 0.213 
5 5 0.102 0.119 0.143 0.166 0.185 
5 10 0.081 0.099 0.123 0.144 0.160 
5 15 0.073 0.090 0.113 0.132 0.146 
5 20 0.070 0.087 0.110 0.128 0.141 
10 0 0.133 0.153 0.187 0.221 0.255 
10 5 0.105 0.128 0.164 0.199 0.233 
10 10 0.090 0.113 0.148 0.182 0.213 
10 15 0.081 0.102 0.137 0.167 0.195 
10 20 0.077 0.097 0.129 0.157 0.181 
15 0 0.139 0.161 0.204 0.247 0.291 
15 5 0.111 0.137 0.182 0.227 0.272 
15 10 0.098 0.124 0.169 0.211 0.253 
15 15 0.091 0.116 0.159 0.200 0.238 
15 20 0.085 0.110 0.151 0.189 0.224 
20 0 0.143 0.169 0.219 0.270 0.322 
20 5 0.118 0.147 0.199 0.251 0.303 
20 10 0.106 0.135 0.187 0.238 0.287 
20 15 0.098 0.127 0.178 0.226 0.271 
20 20 0.093 0.121 0.170 0.216 0.258 
40 0 0.155 0.190 0.260 0.331 0.401 
40 5 0.135 0.173 0.244 0.315 0.385 
40 10 0.123 0.161 0.232 0.301 0.369 
40 15 0.116 0.153 0.222 0.289 0.353 
40 20 0.112 0.147 0.213 0.278 0.339 
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Table J.12 No uncertainty model thematic change vector RMSE for areas of change 
using synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
5 0 0.549 0.624 0.774 0.904 1.049 
5 5 0.498 0.568 0.669 0.767 0.859 
5 10 0.490 0.551 0.636 0.708 0.763 
5 15 0.484 0.541 0.625 0.692 0.732 
5 20 0.483 0.541 0.627 0.686 0.724 
10 0 0.429 0.537 0.715 0.877 1.046 
10 5 0.440 0.531 0.674 0.803 0.929 
10 10 0.444 0.521 0.645 0.749 0.844 
10 15 0.455 0.521 0.630 0.716 0.791 
10 20 0.469 0.532 0.629 0.702 0.761 
15 0 0.397 0.516 0.709 0.879 1.050 
15 5 0.406 0.508 0.674 0.820 0.966 
15 10 0.419 0.507 0.654 0.775 0.890 
15 15 0.430 0.510 0.638 0.745 0.839 
15 20 0.445 0.518 0.632 0.725 0.803 
20 0 0.382 0.503 0.705 0.879 1.053 
20 5 0.393 0.503 0.681 0.836 0.985 
20 10 0.405 0.504 0.663 0.800 0.924 
20 15 0.417 0.504 0.647 0.768 0.873 
20 20 0.428 0.509 0.639 0.747 0.838 
40 0 0.355 0.489 0.702 0.885 1.057 
40 5 0.364 0.490 0.688 0.861 1.021 
40 10 0.375 0.490 0.676 0.836 0.982 
40 15 0.383 0.490 0.662 0.814 0.947 
40 20 0.395 0.496 0.656 0.797 0.920 
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Table J.13 Misregistration model thematic change vector RMSE for areas of change 
using synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
5 0 0.456 0.499 0.602 0.720 0.849 
5 5 0.257 0.290 0.350 0.439 0.542 
5 10 0.204 0.214 0.242 0.293 0.359 
5 15 0.186 0.188 0.198 0.230 0.271 
5 20 0.167 0.174 0.189 0.218 0.253 
10 0 0.300 0.363 0.500 0.656 0.823 
10 5 0.205 0.257 0.366 0.498 0.642 
10 10 0.171 0.202 0.282 0.387 0.503 
10 15 0.176 0.186 0.234 0.312 0.407 
10 20 0.192 0.195 0.224 0.281 0.353 
15 0 0.254 0.322 0.472 0.639 0.817 
15 5 0.181 0.243 0.376 0.529 0.693 
15 10 0.164 0.206 0.315 0.443 0.581 
15 15 0.160 0.185 0.270 0.378 0.495 
15 20 0.170 0.183 0.246 0.337 0.436 
20 0 0.233 0.303 0.462 0.637 0.820 
20 5 0.176 0.243 0.388 0.550 0.718 
20 10 0.162 0.212 0.339 0.481 0.629 
20 15 0.155 0.191 0.298 0.424 0.554 
20 20 0.157 0.184 0.273 0.388 0.502 
40 0 0.189 0.268 0.445 0.631 0.819 
40 5 0.159 0.238 0.408 0.586 0.766 
40 10 0.145 0.216 0.375 0.543 0.712 
40 15 0.140 0.201 0.348 0.505 0.663 
40 20 0.143 0.195 0.329 0.477 0.625 
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Table J.14 Thematic model thematic change vector RMSE for areas of change using 
synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
5 0 0.518 0.570 0.678 0.772 0.874 
5 5 0.358 0.412 0.497 0.572 0.643 
5 10 0.293 0.345 0.419 0.477 0.525 
5 15 0.268 0.317 0.388 0.441 0.477 
5 20 0.259 0.307 0.376 0.425 0.457 
10 0 0.404 0.479 0.610 0.727 0.846 
10 5 0.338 0.409 0.521 0.621 0.716 
10 10 0.294 0.361 0.462 0.546 0.621 
10 15 0.273 0.333 0.427 0.498 0.558 
10 20 0.264 0.320 0.405 0.468 0.517 
15 0 0.376 0.460 0.599 0.724 0.845 
15 5 0.326 0.405 0.534 0.645 0.751 
15 10 0.296 0.370 0.487 0.582 0.670 
15 15 0.280 0.348 0.456 0.541 0.615 
15 20 0.271 0.335 0.434 0.511 0.573 
20 0 0.357 0.443 0.591 0.720 0.844 
20 5 0.326 0.408 0.544 0.660 0.771 
20 10 0.300 0.379 0.505 0.609 0.704 
20 15 0.286 0.360 0.476 0.571 0.653 
20 20 0.277 0.347 0.456 0.542 0.613 
40 0 0.338 0.432 0.586 0.719 0.843 
40 5 0.321 0.413 0.560 0.687 0.805 
40 10 0.304 0.394 0.535 0.654 0.763 
40 15 0.294 0.380 0.514 0.628 0.729 
40 20 0.288 0.370 0.498 0.605 0.699 
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Table J.15 Combined model thematic change vector RMSE for areas of change using 
synthetic data. 

Thematic error 
Change distance Fuzzy boundary 5 10 20 30 40 

(m) width (m) 
5 0 0.503 0.535 0.608 0.689 0.776 
5 5 0.281 0.308 0.355 0.417 0.484 
5 10 0.163 0.184 0.221 0.265 0.312 
5 15 0.117 0.133 0.163 0.197 0.230 
5 20 0.099 0.115 0.141 0.170 0.198 
10 0 0.354 0.403 0.500 0.608 0.721 
10 5 0.241 0.285 0.367 0.459 0.557 
10 10 0.172 0.209 0.280 0.356 0.435 
10 15 0.l32 0.164 0.225 0.288 0.353 
10 20 0.115 0.141 0.192 0.244 0.297 
15 0 0.312 0.365 0.471 0.587 0.707 
15 5 0.228 0.278 0.376 0.482 0.593 
15 10 0.178 0.223 0.310 0.402 0.496 
15 15 0.151 0.190 0.268 0.348 0.428 
15 20 0.l30 0.166 0.236 0.307 0.376 
20 0 0.292 0.345 0.458 0.579 0.705 
20 5 0.226 0.279 0.385 0.498 0.613 
20 10 0.185 0.235 0.333 0.434 0.536 
20 15 0.159 0.205 0.295 0.386 0.475 
20 20 0.143 0.185 0.267 0.350 0.429 
40 0 0.253 0.314 0.439 0.567 0.696 
40 5 0.219 0.280 0.401 0.525 0.649 
40 10 0.192 0.251 0.368 0.485 0.602 
40 15 0.176 0.232 0.343 0.454 0.563 
40 20 0.165 0.218 0.323 0.427 0.530 
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