
UNIVERSITY OF SOUTHAMPTON

Propeller Tip Vortex Simulation Using Adaptive Grid

Refinement Based On Flow Feature Identification

by

Christos Pashias

Doctor of Philosophy

School of Engineering Sciences

August 2005

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

SCHOOL OF ENGINEERING SCIENCES

Doctor of Philosophy

PROPELLER TIP VORTEX SIMULATION USING
ADAPTIVE GRID REFINEMENT

BASED ON FLOW FEATURE IDENTIFICATION

By Christos Pashias

In this thesis a novel 2-D vortex identification scheme is refined and

extended to 3-D. The developed method is applied to a 3-D wing and two marine

propellers; DTMB P41 19 and INSEAN E779A. In addition a wake identification

scheme is developed and applied to a 3-D wing.

The vortex identification method is based on a simple mathematical

scheme applied on 2-D planes. The vortex is identified by locating the point

closest to the most variance in the velocity direction. The method is extended to

3-D by the use of a series of planes. MUltiple vortices can be identified using this

method.

The vortex and wake identification schemes have been applied in

conjunction with adaptive grid refinement on a 3-D wing showing improved

agreement with experimental results. The vortex dependency on grid size has been

demonstrated.

The vortex identification scheme has been extended such that it can

identify complex vortex core lines, typical of marine propellers. The method has

been successfully applied to two marine propellers and the results compared to

experiments. An improved agreement has been demonstrated for the grid adapted

cases.

Table of Contents

Introduction .. 2
1.1 Aims and objectives ... 2
1.2 Introduction .. 3

1.2.1 A brief history of the marine propeller .. 3
1.2.2 Background theory ... 4

1.3 Vortices .. 6
1.3.1 Vortices and nature .. 6
1.3.2 Structure of a plane vortex ... 7
1.3.3 Tip vortices .. 9
1.3.4 Vortex capturing using a fixed (structured) mesh 10
1.3.5 Adaptive Meshes .. 12
1.3.6 Vortex Identification Methods ... 15
1.3.7 Vortex capturing using structured adaptive grids 18
1.3.8 Vortex capturing using unstructured adaptive grids 18
1.3.9 Propeller tip vortex .. 20

1.4 Summary and Layout ... 22
2 Navier-Stokes Equations .. 23

2.1.1 Discretisation of the Governing Equations 25
2.1.2 Pressure-Velocity Coupling ... 28
2.1.3 Diffusion Terms ... 28
2.1.4 Pressure Gradient Term ... 29
2.1.5 Advection Term ... 29
2.1.6 I st Order Upwind Differencing Scheme .. 29
2.1.7 High Resolution Scheme .. 30
2.1.8 The Coupled System of Equations ... 30
2.1.9 Solution Method - The Coupled Solver ... 31
2.1.10 General Solution .. 31
2.1.11 Linear Equation Solution ... 34
2.1.12 Algebraic Multigrid ... 34
2.1.13 Discretisation Effects in CFX-5 ... 36
2.1.14 Numerical Diffusion .. 37
2.1.15 Numerical Dispersion .. 40

2.2 Turbulence modelling .. 4 1
2.3 In-viscid flow (Euler) ... 42

3 VORTFIND scheme .. 43
3.1 Numerics .. 43
3.2 Identifying the vortex core ... 45

3.2.1 VORTFIND Test case .. 46
3.2.2 Influence of grid on VORTFIND method 50
3.2.3 VORTFIND not conforming to computational nodes 52
3.2.4 VORTFIND on coarse grids .. 53

3.3 Summary .. 56
4 VFX: an extension of VORTFIND to 3-D .. 57

4.1 Wing test case .. 58
4.2 Initial grid dependency .. 63
4.3 Comparison with experimental data .. 63
4.4 Summary .. 68

5 Adapti ve Wake capture .. 69

5.1 Identifying the wake .. 69
5.2 Wake mesh ... 72
5.3 Results .. 74
SA Results for Wake and VFX mesh ... 78
5.5 Results for Wake and VFX mesh ... 79

6 Propeller mesh generation .. 80
6.1 Propeller Geometry .. 80
6.2 Propgen .. 81
6.3 Mesh considerations ... 83

7 VFX procedure for Propeller modelling .. 85
8 OTMB P4119 and numerical model .. 88

8.1 Results .. 90
8.2 Comparison with LOV data ... 93

8.2.1 Section pressure distribution .. 93
8.2.2 Circumferential averaged data ... 94
8.2.3 Phase averaged data ... 95

9 INSEAN E779A and numerical model. ... 97
9.1 Results .. 98
9.2 Comparison with LOV data ... 99

9.2.1 Circumferential averaged data ... 99
9.2.2 Contour plot comparison .. 100

10 Conclusions .. 103
10.1 Vortex capture .. 104
10.2 Propeller tip vortex .. 104
10.3 Structured vs. Unstructured ... 104
lOA Vortex identification methods on planes ... 105
10.5 Final Remark .. 105

11 Appendix A .. 117
12 Appendix B .. 206

11

List of Figures

Figure 1.1 - Solid-body rotation. Velocity varies linearly with distance 8
Figure 1.2 - Potential vortex. Velocity varies inversely proportional to distance

squared ... 8
Figure 1.3 - Rankine vortex. Consists of solid-body rotation and potential vortex.

Vorticity exists only in the solid-body rotation region 8
Figure 1.4 - Tip vortex of 3D wing ... 9
Figure 2.1 - Finite Volume Surface ... 25
Figure 2.2 - Integration points .. 27
Figure 2.3 - Solution procedure [88] .. 33
Figure 2.4 - Algebraic MuItigrid .. 36
Figure 2.5 - Flow that is not normal to the cell faces causes numerical diffusion. 37
Figure 2.6 - Numerical diffusion ... 38
Figure 2.7 - Flow direction is trivial on unstructured grids 39
Figure 2.8 - A small shift in the vortex position makes any advantages of an 0-

grid obsolete ... 39
Figure 2.9 - Numerical dispersion ... 40
Figure 3.1 - The plane is split into sectors and each sector is assigned a value43
Figure 3.2 - Schematic representation for determining the I function for 3 sectors.

The reference point is marked with a diamond44
Figure 3.3 _ i function contour plot for a plane 0.2c downstream of the trailing

edge .. 47
Figure 3.4 - Normalised II/ function contour plot for a plane 0.2c downstream of

the trailing edge .. 49
Figure 3.5 - Uniform spacing .. 51
Figure 3.6 - Non-uniform spacing ... 51
Figure 3.7 -iI/ function off the data points. 7 sectors (compare to Figure 3.4) 52
Figure 3.8 -II/ function on different grid densities .. 54
Figure 3.9 -in function on different grid densities not conforming to data nodes 55
Figure 4.1 - Planes where VFX is performed for a wing 58
Figure 4.2 - Refined mesh 3. Plane I. 17m ... 59
Figure 4.3 Spanwise position of vortex with different grids 60
Figure 4.4 - Vortex velocities for the different meshes ... 61
Figure 4.5 - Cp comparison for NACA0020 wing .. 62
Figure 4.6 - Average circumferential velocity from vortex core 65
Figure 4.7 - Velocities through the tip vortex. Top: Spanwise direction (z).

Bottom: Parallel to the tunnel floor (y) .. 66
Figure 5.1 - Selected points having velocity deficit after masking 70
Figure 5.2 - Selected points having velocity deficit at a plane one chord length

downstream of the trailing edge ... 71
Figure 5.3 - Selected points using strips and selecting top points at one chord

length downstream of trailing edge .. 71
Figure 5.4 - Wake shape captured by the wake identification algorithm 72
Figure 5.5 - Mesh using wake capture .. 73
Figure 5.6 - Velocity contours 44.4% of chord downstream of the trailing edge for

standard mesh (Top) and prism wake mesh (Bottom) 74
Figure 5.7 - Velocity contours 133.3% of chord downstream of the trailing edge

for standard mesh (Top) and prism wake mesh (Bottom) 75
Figure 5.8 - Wake survey comparison .. 77

III

Figure 5.9 - Spanwise loading for NACAOOl2 wing .. 78
Figure 6.1 - Propeller geometry definition used (Left); Kerwin definition [I 08J

(Right) .. 80
Figure 7.1 - VFX procedure for propellers. Red spheres are the jump points and

yellow crosses the VFX vortex cores ... 85
Figure 8.1 - Test section of the 24" VPWT at the David Taylor Model Basin 89
Figure 8.2 - Refinement regions for propeller mesh ... 90
Figure 8.3 - Cp comparison for LDV and CFD at 0.9r/R 93
Figure 8.4 - Average circumferential velocity comparison for CFD and LDV 94
Figure 8.5 - Phase averaged comparison at 0.9r/R and 0.3821 x/R 96
Figure 8.6 - Phase averaged comparison at 0.924r/R and 0.3821 x/R 96
Figure 9.1 - Geometry of the INSEAN E799A four bladed propeller model 97
Figure 9.2 - Circumferential averaged data at 0.20 xlR .. 99
Figure 9.3 - Axial velocitylU contours at 0.20 x/R. CFD left - LDV right 1 00
Figure 9.4 - Axial velocitylU contours at 0.65 xlR. CFD left - LDV right 101
Figure 9.5 - Radial velocity contours at 0.20 x/R. CFD left - LDV right 102
Figure 9.6 - Radial velocity contours at 0.65x/R. CFD left - LDV right.. 102

List of Tables

Table 1-1 - Taxonomy of Vortex detection algorithms ... 16
Table 3-1 - Position of Vortex centre48
Table 3-2 - Position of Vortex centre ... 50
Table 3-3 - Variation of vortex core with grid density .. 54
Table 3-4 - Variation of vortex core with grid density (VFX not on data nodes) .55
Table 4-1 - Grids for wing test case ... 59
Table 4-2 - Comparison of lift and drag for different vortex refinement. 67
Table 5-1 - Comparison of wake mesh and standard mesh forces 76
Table 5-2 - Comparison of forces .. 78
Table 8-1 - Mesh properties for refined meshes .. 91
Table 8-2 - KT and KQ variation for DTMB4119 with different meshes 92
Table 9-1 - INSEAN E799A force comparison ... 98

IV

N omenc1ature

p kgm-3 Density
]

V =_u

¢ Pitch angle nD

n-l

If/ Helix angle
2n Ir}

1/1 m I = 0
co-ordinates of the 11

n -1
Jixi,Jiyi m f3 _exist

cluster centre
Revolutions per

p m Propeller pitch n S-1

second
P Pa Pressure

Number of clusters Nc
Po Pa Reference pressure

Npi Points in ith cluster
r m Local radius

Nm Torque Q

VR
-1

= JV 2 + (2Jrnr)2 -1 Tangential velocity ms qe ms

S 2 Planform area ~ (p - Po) ~ 1-(~ : m

Cp YzpV) VR
T N Thrust

TO) Pa Wall shear -stress

b m Span Uoo ms -1 Free stream velocity

c m Chord 2-D section
-1 Advance speed Xs,y'~ m

Va ms co-ordinates
-1 Vt ms Axial velocity

+ ~TaJ p.f:.n +

Vt
-1 Tangential velocity y y = ms V

Vr ms -1 Radial velocity

L N Lift

D N;m
Drag; Propeller

diameter

Distance between 1 st
m

and 2nd grid point

L
CL

YzPSV
2

D
CD

YzPSV
2

T
KT =

pn2D4

Q
KQ pn2D5

v

Acknowledgements

Stephen R Turnock, my supervisor, for his guidance, patience and countless hours

he has invested in this research. Without him this research would not have been

possible.

AF Molland, for his advice, based on his invaluable experience that has helped on

numerous occasIOns.

Overseas Research Scholarships Scheme, for partly funding my research.

My fellow researchers, for sharing their experiences and advice when going through

the same problems they encountered in the past.

Emma M Barnett, for being there for me during the numerous obstacles encountered

during the period of the research and for nagging me to complete this work.

Stephen and Anne Barnett, for providing me with a home away from home.

Charis and Emilia Pashias, my parents, for giving me the opportunity to study and

their financial support throughout my University years.

1 Introduction

1.1 Aims and objectives

The work done on a fluid by a marine propeller generates a rotating propeller

wake where the shed vorticity rapidly coalesces into a tip vortex and a hub vortex

system for each blade. The accuracy of the computational prediction of propeller

performance or indeed any lifting surface is influenced strongly by the accuracy with

which this process of vortex formation is captured.

Current numerical methods are capable of capturing such flows but require a very

fine mesh in the appropriate regions of the flowfield. Efficient meshes, where an

appropriate mesh density is chosen for the local flowfield, cannot be generated a

priori. Adaptive meshes offer a solution to this problem but identifying the vortex is a

challenging task, with current methods being either complex with problems of

robustness or unable to identify the correct regions for refinement.

The aim of this research was to develop an adaptive refinement method suitable

for the detailed modeIling of vortical flows capable of being applied for the prediction

of propeIIer performance. The method must be capable of identifying multiple

vortices within the flow with minimal computational effort and without any user

interaction. The specific objectives are:

• to investigate methods of applying the existing two dimensional VORTFIND

method [1, 2] for predicting vortex cores to the complex three dimensional

flows found at the tip of a lifting surface and in particular the predominantly

helical flow field associated with marine propellers;

• to investigate adaptive refinement schemes suitable for use with the above

method;

• to apply the developed method to a control surface to capture the tip vortex

flow in order to test, validate and refine the method before applying it to the

complex flow field of marine propellers; and

• to apply the method to two standard marine propellers which have been

extensively tested and used widely for numerical method validation.

The methods developed in this research will provide an improved computational

tool that can be applied for the design and optimisation of the next generation of

marine propellers.

2

1.2 Introduction

1.2.1 A brief history of the marine propeller

Screws can be dated back to ancient times. Archytas, a Greek mathematician,

student of Pythagoras and friend of Plato, is credited for inventing the screw when he

put an inclined plane on a cylinder about 400 B.C. In 220 B.C. Archimedes famously

used a screw to lift water. The first to suggest the use of a screw for propulsion was

Leonardo Da Vinci in 1480-1510 when he sketches a helicopter. In 1752 Bernoulli is

the first to suggest propelling of boats using "vanes set at an angle of 60° to both the

arbor and the keel". The first to use a screw to propel a marine vessel was David

Bushnell to drive his submarine Turtle in 1776. From then on there are many

noteworthy applications of simple screws.

However, it was not until the 1800s, with the advent of the steam engine, when

propellers started to replace sail power for commercial shipping. Since then the

propeller has dominated the propulsion for marine transportation, and still does so

today, with almost all commercial ships propelled by screws.

Their design has changed over the centuries from Archimedes's wooden screw

to modern high performance composite propellers [3]. They are one of the most

widely used devices for producing thrust in a fluid medium; still used for aeroplanes,

helicopters and ships just to name a few. Sizes range in diameter from a few

centimetres used on models, to the world's largest propeller at 9.1 metres for a large

container ship.

However, as the requirements imposed on propellers have changed over the

years new research is required to meet those needs. The power transfen'ed through

propellers has increased in recent years and vessels can now achieve higher speeds

with a resultant risk of cavitation. These more heavily loaded propellers create

stronger tip vortices, which must be modelled accurately in order to predict the

performance of and design these modern propellers. The dynamic behaviour of the tip

vortex can be responsible for vibration and noise which is becoming increasingly

important in passenger vessels r 4]. The trend of modern propeller design toward high

blade tips has succeeded in reducing the pressure amplitudes in general, but is often

considered to cause a rise in pressure pulses of higher order. An explanation can be

found in the occulTence of less, but fluctuating, strong and bursting tip vortex

3

cavitation [5]. Thus is it very important to improve tip vortex modelling [6J and

develop the tools necessary to design the next generation of propellers.

1.2.2 Background theory

The basic principles of propeller operation are well understood [7, 8]; however

the detailed flow and physics, necessary to fully comprehend propellers, are still in

constant development and highly complex. The challenges of accurately modelling

propellers still fascinate and perplex enough to justify the resources of many

researchers today. In particular, marine propellers present more of a challenge than

their aerospace counterparts. Even though they both operate in fluids with similar

governing physics at low speeds the marine propeller still has many aspects that

complicate matters. In most cases, airs crews operate in uniform flow ahead of any

obstructions, whereas marine propellers operate in the wake of hulls requiring

unsteady simulations to capture their behaviour correctly. In addition to their vicinity

to the free surface cavitation issues can arise. Modelling cavitation, on its own

provides a challenge for current methods [4, 6]. Also the restriction in diameter

combined with cavitation considerations for blade areas leads to much lower aspect

ratio blades than their aerospace equivalents. The heavy loading combined with the

low aspect ratio results in significantly increased importance in tip vortex modelling.

The original theory, as first formulated by Rankine [9] excluded the viscous

effects, the rotation of the slipstream, and the uneven load distribution, with the scope

of evaluating the ideal efficiency of such a propulsive system (also called actuator

disc). The rotor is degenerated into a disc perpendicular to the thrust, and is capable of

sustaining a pressure difference between its two sides, and imparting linear

momentum to the fluid that passes through it. The mechanism of thrust generation

requires the evaluation of the mass flow through a stream tube bounded by the disc.

In 1878 William Froude developed the theory of a propeller blade's elements,

which reflects the generated efforts on each section of the blade [10]. However it was

not until Betz's [I I] work in 1919 and later Goldstein's [12] in 1929 employing

Prandtl's [13] lifting line theory that showed optimum propeIlers could be designed.

Prandtl assumed that the 3-D problem could be solved by concentrating the

circulation around the blades on individual lifting lines and that the flow on each line

can be regarded as 2-D. Using Goldstein's solution for the optimum propeller in

4

uniform flow with 2-D experimental section data optimum aircraft propellers could be

designed. This approach is successful for high aspect ratio blades for which the

underlying assumption that the flow is principally 2-D is more or less valid.

However for the low aspect ratio blades widely used for marine propellers this

assumption is not valid. It was not until 1952, when Lerbs [14] published his paper on

the extension of Goldstein's lifting line theory for propellers with arbitrary radial

distributions of circulation in both uniform and radially varying inflow, when at last

marine propellers could be modelled with some degree of accuracy. Although its

acceptance was slow, it still is, even today, universally accepted as a good procedure

for establishing the principal characteristics of the propeller at an early design stage.

The next major improvement in propeller modelling was the use of numerical

lifting-surface methods. Now the skew and the radial distribution of circulation could

be modelled. The formulation was published by Sparenberg in 1959 [15]. This led to a

burst in publications in 1961 and 1962 of computer based propeller lifting surface

codes. Most notable examples were Pien [16], Kerwin [17], van Manen & Bakker

[18] and English [19]. However due to the limited computing power of that era these

methods incorporated simplifying assumptions which since have been found

unnecessary with the rapid development of high performance computers. The basic

formulation however is essentially the same, Brockett 1981 [20] and Greeley &

Kerwin 1982 [21].

The above methods, although suitable for design purposes, provided limited

information on the section flow. Boundary element methods (BEM) or panel codes as

they are popularly known today, can model more realistic geometries taking into

account the section shape and thickness. In 1985 Hess & Valarezo [22] developed a

BEM for propellers based on Hess's [23 J lifting method. Since then the popularity of

panel codes has been widespread in all aerodynamic and hydrodynamic fields. The

computational resources available today are such that detailed optimisation studies

can be carried out within reasonable timescales even on powerful personal

computers [24]. However there are many underlying simplifications in their

formulation and as always, with the relentless development in computing power

things will move on quickly to more complex methods such as Reynolds Averaged

Navier-Stokes CRANS) codes for design purposes.

Most work on RANS methods was done in the late 1980's and improved greatly

in the early 1990's. The initial work was undertaken by Kim & Stern [25] in the late

5

80's and they showed the potential of such methods, although for an unrealistic

propeller geometry due to the limited computing resources available at the time. In the

1990' s researchers such as Uto [26] and Stanier [27] developed methods for realistic

propeller geometries with detailed flow features. Unsteady viscous computations were

first undertaken by Chen et al. [28] and showed the applicability of such methods for

unsteady propeller flows albeit obtaining poor results due to the limited mesh size

feasible at the time. Maksoud et al. [29] performed unsteady calculations for a

propeller operating in the wake of a ship using a non matching multi-block scheme.

As indicated by Stanier [30], Bull [31] and Maksoud et al. [32] and as will be

shown later in this work mesh quality and local density are key factors in obtaining

good results with RANS codes. In particular, it is essential to have a good mesh

topology in the vicinity of the tip vortex region as this has a strong influence on the

developed thrust and required torque.

1.3 Vortices

Vortices are present in most fluid flows and their behaviour can be considered

to be of fundamental importance A vortex is the rotation of multiple particles around a

common centre. They should not to be confused with vorticity which is used as a

measure of the rotationality present at a location within the flow.

Vortices come in all shapes and sizes: large scale vortices are responsible for

tornadoes and the behaviour of galaxies; medium scale vortices affect the

characteristics of most engineering structures, such as aircraft, ships and buildings;

small scale vortices are the building blocks of turbulent flow.

1.3.1 Vortices and nature

Vortices in nature have affected the evolution of many animals. Birds have

fingered feather wing tips to eliminate the effect of the tip vortex. Dolphins and other

fast fish have scimitar shaped fins as a solution to the same problem. Dolphins go one

step further by controlling the development of the turbulent boundary layer to reduce

friction drag. The resilient dolphin shin acts like a damper to absorb oscillatory energy

from the boundary layer and delay transition [33].

If a force is powerful enough to shape nature it will influence engineering

design as well. As always man tries to copy nature in his inventions. Elliptical

planform wings were designed to reduce induced drag caused by the tip vortex. The

6

Spitfire was superior to its opponents partly for this reason [34]. Then winglets

appeared on aircraft wing tips and yacht keels again influencing the strength and

location of the tip vortex system [33]. In addition, an artificial dolphin skin (Laminflo

[35]) has been tested on torpedoes giving a large increase in laminar flow with a

substantial decrease in the friction coefficient from 0.0026 to 0.0011 [33]. Just as

vortices have shaped nature over millions of years, vortices are today shaping man

made structures. As the human knowledge and understanding of vortices evolves so

do the shapes designed by engineers.

1.3.2 Structure of a plane vortex

There are two basic types of plane vortices: one where the velocity is slower at

the centre than the sides and another where it is faster at the centre. This results in two

basic types of velocity distribution as described below:

1. Consider a solid disc that rotates steadily around an axis through its centre.

The velocity of points on the disk increases linearly with distance from the centre

(Figure 1.1). Imagine the disc is hollow and it is filled with fluid. If the experiment is

repeated, the fluid will also rotate like a solid body, apart from a transition period at

the start. This is due viscous effects. Hence the velocity of the fluid particles increases

linearly with distance from the axis of rotation. This fluid motion is called 'solid-body

rotation' [36].

2. Consider a long circular rod rotating in a fluid. The highest velocity in the

fluid will occur on the surface of the rod where the fluid has the same velocity as the

rod due to viscous effects. Away from the surface of the rod the velocity diminishes in

inverse proportion to the radial distance squared (Figure 1.2). The centrifugal force

pushing outwards due do the rotation is balanced by the force due to the pressure

gradient. This is called a 'potential vortex' [36] as it is irrotational and can be

expressed in terms of a scalar potential.

An important difference between solid-body rotation and potential vortices is

that a potential vortex has no vorticity whereas solid-body rotation has constant

angular velocity and vorticity. In the case of the potential vortex the rod will still

experience a sold-body rotation. If the rod is replaced by fluid that is also

experiencing solid-body rotation a Rankine vortex is created (Figure 1.3). A Rankine

vortex is a good representation of a real vortex. A real vortex has a region where the

velocity varies linearly with distance from the centre. This is due to viscosity, and the

7

region is called the viscous core. Outside the viscous core the velocity varies inversely

proportional with distance squared. Capturing this regime transition with a RANS

code is difficult due to the fine mesh resolution required to capture the core region

which is dominated by viscous effects just like a boundary layer. In addition, enough

of the vortex decay must be captured correctly in the potential flow region since this

influences the overall vortex structure.

Solid-body rotation

Distance from axis

Figure 1.1 - Solid-body rotation. Velocity
varies linearly with distance

Rankine vortex

Distance from axis

Potential vortex

Distance from axis

Figure 1.2 - Potential vortex. Velocity varies
inversely proportional to distance squared

Vorticity in Rankine vortex

Distance from axis

Figure 1.3 - Rankine vortex. Consists of solid-body rotation and potential vortex. Vorticity
exists only in the solid-body rotation region.

8

1.3.3 Tip vortices

A foil experiencing three-dimensional flow has very different characteristics

than a foil experiencing two-dimensional flow . The flow will tend to spill over the

free ends from the positive pressure side to the negative pressure side. Such a flow

removes the pressure difference at the tips of the foil and decreases it over the entire

span.

Figure 1.4 - Tip vortex of 3D wing

The tip vortex also influences the flow over the entire lifting surface. Near the

tip the surface pressure is influenced by the reduction in pressure within the tip

vortex, especially on the suction side of the foil where the vortex is located. In

addition a downwash is created behind the trailing edge of the foil due to the vortex.

Aerodynamicists try to eliminate these effects or sometimes even exploit them, as is

the case with delta wing planforms operating at high angle of attacks. In thi s case the

leading-edge separation , which induces a non-linear lift increment called vortex­

induced lift, is highly dominant on delta wings [36].

In 1897 Lanchester realised that the tip vortex has a detrimental effect on

wings and secured a patent covering the use of end plates. In hi s book Aerodynamics

9

[37] he describes the structure of the tip vortex. Since then there have been many

studies of tip vortex flows and its influence on finite foils. Prandtl [38, 39] modelled

the effect of the tip vortex on the flow of a finite foil published in 1918 using his

lifting line theory.

Many methods to reduce the detrimental effect of the tip vortex have been

devised, from simple elliptical planforms to more complex tip winglets such as on

aircraft and yacht keels. In order to design and develop these tip vortex control

devices, numerical models of the flow near the tip of the foil are required

1.3.4 Vortex capturing using a fixed (structured) mesh

In order to capture vortical flow a numerical model capable of solving the

flow characteristics at any point within it is required. Such numerical methods are

based on solutions to the Euler (with zero viscosity) or the Reynolds Averaged

Navier-Stokes (RANS) codes based on some form of turbulent closure. Euler and

RANS have until recent years been limited to small simple cases due to limited

computing power. Recent advances in computational power have led to several

studies capturing numerically predicted vortex flows [40]. A large amount of

development has been done resulting in progressively more sophisticated and robust

models.

A sufficiently fine grid spacing is required in the region of the vortex core [41]

to capture the vortex. Dacles-Mariani and Zilliac [41] used a structured grid to capture

the tip vortex of a foil. A grid dependency study was calTied out using an analytical

vortex. The results showed that at least 15-20 grid points in the viscous core region

are needed to capture the vortex cOlTectly. In addition the vortex is more sensitive to

cross flow plane grid refinement than streamwise refinement. This means that the

cells can be stretched in the streamwise direction in an attempt to keep the grid size

down. An investigation of the influence of turbulence model indicated the difficulties

in capturing the vortex. Good agreement with measured results was found using 1.5

million grid points. The velocities were within 3% but the vortex core static pressure

was under predicted. This under prediction was accounted for by limitations coming

from the turbulence modelling. This is in agreement with later studies can'ied out by

Viot et al. [42]. This suggests that the turbulence model is critical to the results and

that a more suitable model should give better results.

10

Spall used a structured grid to solve the Euler equations for a NACAOOl2

rectangular wing [43]. A multi-block grid was used in an attempt to cluster the grid

points near the vortex core. The relative small vortex core diameter of 0.04c, proved a

challenge to cluster the grid in the correct region. The results showed that a slight

displacement of the vortex core outside this region results in a considerable

degradation in the solution. Results are presented for 1.5 million grid points with 10-

18 across the vortex core. The vortex core radius was dependent on grid spacing,

halving from a grid using 372,016 cells to 1,986,000 cells.

Berntsen et af. [44] used an Euler code with a structured multi-block grid to

model tip vortex cavitation. First a crude calculation was performed to derive the

general shape of the vortex. Following this investigation, the grid was clustered near

the centre of the vortex. This was repeated three times resulting in a grid in excess of

0.5 million cells. The resulting grid is good but requires a large amount of effort and

skill to generate. The process cannot be easily automated even for standard cases.

Visually the results were in good agreement with respect to cavity length. However

vortex core pressures were not predicted accurately.

Hsiao and Chahine r 45] used a 12-block structured mesh to model a

NACA 16020 finite-span elliptic hydrofoil including a dynamics bubble model for

cavitation. The mesh used consisted of 2.7 million cells and the mesh was regenerated

after each solution with modified clustering to ensure that 16 cells were always

present across the vortex core. An unspecified number of mesh regeneration steps

were required to cluster the grid in the vortex region.

From the above studies it is clear that to capture the vortex flow accurately a

fine grid spacing in the region of the vortex core is required. The reason is that in the

vortex core the pressure decreases rapidly. The vortex core pressure depends on the

vortex core's radius [33]. A small change in this radius results in a big change in the

minimum pressure. To capture the vortex radius corTectly a fine grid spacing is

required in the vicinity of the vortex core. The computational resources required to

generate a uniform grid with fine enough grid spacing are impractical. Using a coarser

grid with clustering of the fine mesh near the vortex improves the results without a

large increase in cost. The problem with such methods is that the location of the

vortex must be known to generate the mesh. This either requires solving the problem

in advance or a very detailed understanding of the flow to predict {/ priory the vortex

position. With either route, the vortex is not guaranteed to lie in the predicted area and

11

the mesh refinement will change the behaviour of the vortex and thus its position.

These effects are compounded as the vortex evolves downstream.

Vorticity confinement is a method to conserve and concentrate vorticity on a

regular grid [93]. It prevents the dissipation of vortical structures on coarse grids. This

method has been used by Lohner et al. to track vortices over large distances [94]. The

results show that the vortex is maintained further downstream using the vorticity

confinement method on coarse grids. However many researchers have expressed

concerns over the validity of this method since the vorticity confinement term acts as

a body force altering the conservation of momentum.

Although the above methods work, the grid cannot be generated a priori. The

solution to this problem is to use an adaptive scheme to refine the grid during the

solution process. Adaptive grids have been used successfully in many different flows,

to capture flow characteristics such as shockwaves in transonic flight [46, 47].

1.3.5 Adaptive Meshes

For well behaved problems a grid of uniform mesh spacing gives satisfactory

results. However, there are classes of problems where the solution is more difficult to

estimate in some regions (perhaps due to discontinuities, steep gradients, shocks, etc.)

than in others. A uniform grid can be used which has a spacing fine enough such that

the local errors estimated in these difficult regions are considered to be acceptable.

But this approach is computationally costly especially in three dimensions. In

addition, for time dependent problems it is difficult to predict in advance a mesh

spacing that will give acceptable results. The goal of mesh adaptation is the

determination of the optimum mesh-point distribution that results in equipartition of

the error for each individual simulation thus giving an optimum solution for a

specified grid size.

In adaptive grids the idea is to have grid points moved/inserted as the physical

solution develops, concentrating in regions of large variation in the solution as they

emerge. A base coarse grid is used as the starting point. As the solution proceeds the

regions requiring more resolution are identified by some parameter characterizing the

solution. A finer subgrid is superimposed only in these regions. Finer and finer

subgrids are added recursively until either a given maximum level of refinement is

reached or the local truncation error has dropped below the desired level.

12

There are many methods of mesh refinement [46,48,49]. One way is to

regenerate the mesh after every refinement cycle with grid points clustered in the

areas identified by the mesh criterion. This is time consuming and the solution might

have to be initialised again.

The second method is to subdivide the cells in the areas where mesh

refinement is required into smaller cells, thus decreasing the grid spacing. However

the grid quality is dependant on the initial mesh, unless a smoothing algorithm is

applied [50]. The other advantage is that the solution can be linearly interpolated at

the new grid points for the next iteration, thus speeding up the solution. In addition

there is no need to regenerate the entire mesh.

Apart from the methodology used to generate the different refined levels of the

grid, the other important factor when using adaptive refinement techniques is the

criterion used to adapt to. The mesh can be refined using any variable or combinations

of variables. Choosing a criterion suitable for the flow problem and what is trying to

be achieved is important since it will influence the final solution [51]. One of the most

frequently used schemes is an en·or based criterion approach.

Lohner [51] describes the components of such an adaptive refinement scheme.

Different error indicators/estimators are discussed as well as different mesh

refinement techniques for unstructured meshes. Results are presented for several test

cases. Nithiaratsu et al. [48] present the results for a transonic aerofoil and lid driven

cavity using different error indicators. From the presented results is it concluded that

for most cases a gradient based error indicator yields better results than a curvature

based indicator. Pelletier [52] also uses an error based adaptation criterion to obtain a

grid independent solution. He describes the required qualities of an error estimator.

Results are presented for a 20 aerofoil and a backward facing step.

Adaptive refinement can be applied to both structured and unstructured grids.

Structured grids have implicit connectivity, which for most cases reduces the memory

requirements since no grid connectivity information needs to be stored, whereas an

unstructured mesh explicitly defines the connectivity between all mesh elements.

However this proves to be a major obstacle when adaptive refinement techniques are

used with structured meshes. It is difficult to preserve the implicit connectivity after

grid refinement. A solution to this problem is to start with a structured mesh but have

explicit connectivity. This maintains some of the advantages of structures meshes and

at the same time simplifies the refinement scheme. However there is another problem

13

that has to be addressed. If each face of a cell volume in the grid must be connected to

only to one other face then if a hexahedron is refined into smaller hexahedra they

cannot be adjacent to an unrefined one. This can be solved in two ways: refining the

hexahedra into tetrahedra, resulting in a hybrid grid or allow a face to be connected to

multiple faces and perform what is termed as hanging node adaptation. If hanging

node meshes are not an option then the split through a hexahedral cell due to mesh

refinement has to propagate throughout the structured mesh to maintain the

connectivity of the mesh. This results in refined cells in areas other than the ones of

interest and unnecessarily large mesh sizes.

Unstructured grids are ideal for mesh refinement techniques since the

connectivity of the grid is explicit [46,49]. Cells can be subdivided into numerous

new cells without having to worry about the connectivity structure of the mesh.

When meshing complex geometries it is easier to use unstructured grids.

Unstructured grids can be generated automatically from a set of surfaces using various

schemes [53]. It is possible to generate structured grids for most problems but a

complicated multi-block structure has to be used for most cases. Even for a seemingly

simple elliptic foil, 16 blocks had to be used in order to model the tip correctly [44].

Apart from the treatment of complex geometries, the second advantage of

unstructured meshes is the ease with which solution-adaptive meshing may be

implemented. Since no inherent structure is assumed in the representation of the

mesh, mesh points may be added, deleted, or displaced, and the mesh connectivity

may be locally reconfigured in the affected regions.

One possible way to overcome the limitations and problems imposed by

structured grids is to use an overset method. Grids of different densities are laid over

each other with no connectivity restrictions. This enables the used of structured

meshes for complex geometries such as an aircraft in landing configuration as

performed by Rogers et al [54 J. A good reference of the capabilities and past

applications for overset techniques is given by Chan et al [55]. Unstructured overset

grids are possible but such schemes are still in development [54].

For tip vortex capture it is possible to overlay a finer grid about the identified

vortex core in order to capture the vortex. If such an approach is used structured 0-

grid would be the most suitable topology. However Chan et al [55] state that overset

methods require substantial user interaction and are laborious for complex geometries.

14

1.3.6 Vortex Identification Methods

For the successful application of an adaptive scheme, a suitable variable or

variables must be selected for use as the adaptation criterion/criteria. Pressure

gradients and local error functions have been used successfully. Such techniques are

suitable for most flows but fail to resolve flow features such as vortices adequately for

a given grid size [56]. In order to identify vortices several methods have been

developed and applied to a multitude of problems. The ten methods given below are

by no means a complete listing of vortex identification algorithms but are considered

to represent the current state of the art.

• Helidty Method by Levy [57]

• Vorticity Maxima Method by Strawn et al. [58]

• Streamline Method by Sadarjoen et al. [59]

• Swirl Parameter Method by Berdahl and Thompson [60]

• ;b Method by Jeong and Hussain [61]

• Predictor-Corrector Method by Banks and Singer [62]

• Eigenvector Method by Sujudi and Haimes [63]

• Parallel Vectors Method by Roth and Peikert [64]

• Combinatorial Method by Jiang et al. [65]

• Vortfind Method by Pemberon [1, 2]

Almost every published work carried out on vortex identification presents a

classification of the methods developed by its predecessors. Here the methods are

classified using three taxonomies as presented by Jiang et al. [66]

15

Method Region\Line Galilean Local\Global

Helicity Line Not invariant Local

Vorticity Maxima Line Invariant Local

Streamline Region Not invariant Global

Swirl Parameter Region Not invariant Local

A2 Region Invariant Local

Predictor-Corrector Line Invariant Global

Eigenvector Line Not Invariant Local

Parallel Vectors Line Not Invariant Local

Combinatorial Region Not Invariant Local

Vortfind Line Not Invariant Global

Table 1-1 - Taxonomy of Vortex detection algorithms

The first taxonomy classifies detection methods based on the definition of the

identified vortex. A vortex can be defined either as a region or as a line. A region­

based vortex definition specifies a group of cells that lie in the vortex region. A line­

based vortex definition, on the other hand, is a set of lines describing the vortex core

line. In general, region-based algorithms are easier to implement and computationally

cheaper than their line-based counterparts. Line-based algorithms must precisely

locate points to describe the vortex core line. However, line-based algorithms provide

more compact representations of vortices and can easily distinguish between multiple

vortices. The latter is problematic for region-based approaches [66].

The second taxonomy classifies detection methods based on whether or not

they are Galilean (Lagrangian) invariant. In a time varying flow field, a vortex

exhibits swirling motion only when viewed from a reference frame that moves with

the vortex [36]. A detection method is Galilean invariant if it produces the same

results when a uniform velocity is added to the existing velocity field.

The third taxonomy classifies detection methods based on whether the

identification process is of local or global nature. A detection method is considered to

be local if the identification process requires only operations within the local

neighborhood of a grid cell. On the other hand, a global method requires examining

many grid cells in order to identify vortices.

16

Each of the above methods has its advantages and disadvantages. Pressure

minimum methods find elongated regions of low pressure which usually indicate a

vortex core [62]. However minimum pressure does not always coincide with the

vortex core. In addition, regions of low pressure also exist in other features of many

flows which complicate the process further. Isosurfaces of low pressure are very

effective when capturing a single vortex in unobstructed flows. However when

multiple vortices exist the pressure surfaces become indistinct.

Methods using the eigenvalues of the velocity gradient to identify the vortex are

successful; however such methods also capture many smaller structures [62]. It is

common for vortex identification methods to use a combination of two criteria so as

to reduce the likelihood of misclassification, which is a common problem [62].

Sujudi and Haimes [63] present a popular method based on a velocity gradient

method and carry out computations on a cell by cell basis which facilitates parallel

processing. Godo et al. [67] and Roth and Peikert [64] say that such methods fail

when the vortex core line is curved such as that in turbomachinery flows. In addition

methods based on vorticity magnitudes, helicity, pressure [62] or ""2 [61]; are also

dismissed by the authors.

A noteworthy method is presented by Jiang et al. [65] which uses a similar

approach to the method developed initially by Pemberton [1, 2] and which is further

developed in this work. Both methods are based on a simple analysis of velocity field

on 2-D planes. They assign different values for different velocity directions and then

locate the vortex by stating that a vortex is near a region with varying sector values.

The difference is that Pemberton et al. use the distance of the different sector values

to calculate a function indicating the 'distance' from the vortex whereas Jiang et al.

flag the computational cell if it is surrounded by at least a specified number of sectors.

Both methods have their advantages and disadvantages. The combinatorial method

only uses cells adjacent to the reference cell or in close proximity whereas the

Vortfind method is a global method. This means that the combinatorial can have

reduced calculation times but also makes it prone to small localised flows which are

not vortex structures as reported in Jiang et al. [68]. Another major drawback of the

combinatorial method is that the mesh connectivity must be known. This restricts its

applicability to numerical simulations since to apply the method to experimental data

or data points not conforming to the grid the connectivity must be calculated

17

retrospectively which is a computationally intensi ve process. This is a similar issue

the gradient based methods encounter. Vortfind does not require any connectivity

information and can easily be applied to experimental data or data points not

conforming to grid locations. In addition the Vortfind method provides a continuous

smooth function whereas the combinatorial method does not.

When the current vortex identification schemes are applied to three-dimensional

flow problems they do not produce a continuous vortex core line [69, 70, 71]. This

problem is over come by refining neighbouring cells as well. Assuming that the

discontinuities are small this produces a more or less uniform mesh after refinement.

1.3.7 Vortex capturing using structured adaptive grids

Because of the difficulties of using adaptive schemes with structured grids

such studies are limited. Hentschel [72] uses a structured C-grid around a delta wing

to capture the tip vortex with a Baldwin-Lomax turbulence model. The grid

refinement scheme uses grids with three different levels of refinement. Vorticity

content is used as the refinement index and in the areas of interest the grid is swapped

between levels. Data is interpolated between the two levels. This effectively results in

a hanging node scheme. Since the finer level grids must be generated for parts of the

domain that might not be required to be refined, an unnecessary memory overhead

exists. In an attempt to reduce the overhead Hentschel [72] only creates finer grids for

selected parts of the domain only. Although this method works, it is very difficult to

apply even for simple problems.

1.3.8 Vortex capturing using unstructured adaptive grids

Most studies incorporating an unstructured grid use an adaptive grid

refinement scheme. Viol et al. [42] used two commercial RANS codes with an

unstructured grid to solve the tip vortex flow over an elliptic foil. Pressure was used to

refine the coarse mesh from 280,000 to 350,000 cells. All cells having a pressure drop

of more than 10% of the maximum pressure drop were refined. This resulted in a

refinement area approximately twice the viscous core radius. Different turbulence

models were investigated and their performance compared with experimental data.

The following conclusions were made by the authors:

• The agreement between numerical and experimental results is good for all

RANS codes and turbulence models tried.

18

• The local vortex core radii are over-estimated and thus the pressure on the

vortex axis under-predicted.

• Grid refinement has a relative low influence on the vortex and reduces the

vortex radii slightly.

• The K-E RNG and non-linear K-E turbulence model decreased the vortex core

radii compared with the K-E model.

Murayama et al. [69, 73] used an unstructured hybrid mesh to simulate the vortex

breakdown over a delta wing at high incidence. The mesh consisted of prisms in the

viscous regions and tetrahedra on the rest of the domain. Pyramids had to be used at

the junctions. A vortex identification technique based on critical point analysis was

used to define a vortex core line. The method identifies where the velocity becomes

zero [70]. The cells transversed by the vortex line were marked for refinement as well

as their neighbouring cells. The vortex core line generated by this method is not

continuous especially for the coarser grids. However, since the neighbouring cells are

also refined this results in a continuous refined region. The refined grid consisted in

excess of 0.5 million grid points and showed improvement over the original coarse

grid. A comparison with calculations using second derivatives of the total pressure as

the refinement criterion was made. The pressure adaptation required in excess of 0.8

million grid points to capture the vortex breakdown conectly. This was due to the fact

that a larger area around the vortex was identified for refinement than using the vortex

identification scheme. By selecting a different threshold value for the refinement it is

possible to reduce the refined area using a pressure based approach, but choosing the

conect threshold value requires trial and enor. Murayama et al. [74, 75] applied the

same method to a NACA0012 foil with similar conclusions.

19

1.3.9 Propeller tip vortex

Propellers are the most common form of propulsion in a fluid medium. They

efficiently convert rotational energy from the engine into forward thrust. Most

propellers have free blade tips. These tips create vortices which affect the thrust and

torque characteristics of the propeller. The design of the blade tip will be governed by

its resultant tip vortex structure. Marine propellers are restricted in diameter due to

draught restrictions compared to their aircraft counterparts. This constrains the aspect

ratio of the blades, which puts more of an emphasis on the induced drag. This creates

a strong tip vortex which can have a detrimental effect on the performance of the

propeller.

In addition, tip vortex cavitation is of major concern for marine propellers since it

is an important source of noise. Cavitation can result in erosion of the propeller or

even rudders placed downstream. Therefore, the track of the vortex is just as

important as its strength. Recent developments with twisted rudders [76] emphasise

the importance of correctly predicting the interaction between propeller and rudder.

The tip vortices generated by each blade of the propeller have a complex structure.

They form helixes that vary in pitch and contract with the wake downstream of the

propeller. Recent experimental work using advanced flow visualization and non­

intrusive measurement techniques [77] have revealed detailed features of the vortex

flow around marine propellers. However, due to the limitations of the experimental

techniques the pressure field remains unknown which is crucial to the prediction of

cavitation [78].

RANS computations can provide a detailed pressure field, and have been used

recently to predict tip vortex flow in turbomachinery [78, 79]. Unlike tip-clearance

flow, the tip vortex generated by a marine propeller is more concentrated and has a

tighter structure [78], which requires a more refined grid. Only a few studies present

propeller type tip vortex flow and although the thrust and torque coefficients agree

well with experiments they fail to predict the vortex strength [80]. The results from

[80] regardless of the turbulence model used were unlikely to have captured the tip

vortex since the grid resolution was insufficient at 200,000 grid points.

A later study [78] using 2.4 million grid points showed better results. A helical

domain was used with a structured mesh. The domain was helical in an attempt to

cluster the grid near the estimated tip vortex position. A study with a similar approach

20

applied to the Euler equation for a foil [43], showed that a slight displacement of the

vortex core outside the cluster region resulted in a considerable degradation of the

results. An adaptive procedure that can track the vortex has the potential to eliminate

this problem if successfully implemented. Such a method will offer a significant

improvement over non adaptive methods [56].

Dindar et al. [56] performed calculations for rotors using adaptive mesh

techniques. They used an unstructured grid to model one blade of the rotor

arrangement. Firstly an error indicator was used to refine the mesh and secondly a

vortex identification technique to refine the tip vortex. Two error based refinement

iterations were performed followed by two vortex identification ones. The vortex was

only identified after adequate mesh refinement was carried out first with the error

base scheme. They also indicated a potential problem of mesh refinement combined

with parallel computations. The mesh refinement might be carried out in a region

which is assigned to one processor only which will exceed the memory capacity of

that single processor. In addition the error based refinement although successful, is

identified as computationally inefficient in resolving localised flow features such as

tip vortices.

Bottasso & Shephard [SOl applied a finite element adaptive multigrid euler solver

to rotary wing aerodynamics. They used an error indicator based on vorticity to adapt

the mesh in the wake of the rotor. They discuss the issues with adaptive procedures

with regards to new cell quality and recommend that the refined mesh be projected on

the underlying geometry.

Abdel-Maksoud et al. [81 J present experimental and numerical results for a

propeller hub vortex. Different hub shapes are tested and compared with regards to

efficiency and cavitation performance. A 1.3 million volume mesh was used with

cells clustered near the hub vortex. The entire propeller was modelled in order to

capture the root vortex interaction which would not have been possible with a cyclic

boundary condition. The shear stress transport (SST) turbulence model is used and is

stated that this turbulence model performs better especially in the separated regions

but no evidence to support this is provided.

21

1.4 Summary and Layout

Tip vortices are important flow features which need to be identified and modelled

correctly. From existing work it is apparent that a fine mesh is required in the region

of the tip vortex. Non adaptive methods experience difficulties in having the required

mesh density in the vortex core. An adaptive mesh refinement scheme can prove

advantageous for such cases.

In Chapter 1 the basic details and existing work has been presented and

discussed. In the Chapter 2 the theory of the numerical model used is presented. The

Vortfind method is reviewed and refined in Chapter 3. The applicability of the method

would be discussed and its advantages/capabilities presented. In Chapter 4 the method

is extended to 3D and applied to a simple 3D wing to prove and validate the scheme.

An algorithm to capture thin shear wakes is developed in Chapter 5 and applied

to a 3D wing in isolation and in conjunction with the VFX method. The mesh

generation and tool development for marine propeIIers is reviewed in Chapter 6. The

application of VFX to marine propeIIers is in Chapter 7 where the identification of

complex vortex lines such as the helical propeller tip vortex is dealt with. Finally the

method is applied to two marine propeIIers and compared with experimental results in

Chapters 8&9.

22

2 Navier-Stokes Equations

To study vortical flows we need a numerical tool capable of modeling such

problems. One such family of tools is based on the Navier Stokes equations. Exact

analytical solutions to the Navier stokes equations exist only for a very limited

number of flows. For real flows the equations have to be replaced by algebraic

approximations, which have to be solved using an appropriate numerical method.

There are numerous programs to numerically solve the Navier Stokes equations

with many different schemes and approximations. Each scheme has its advantages

and disadvantages and the choice depends on what flow is going to be modeled. There

are many commercial codes available which have been developed over the past years.

They are robust and reliable with a wide range of mesh generation tools and utilities.

Rather than reinvent the wheel, it was decided to use a commercial solver and

concentrating the effort into the vortex identification scheme.

There were two commercial general purpose RANS solvers available at the

School of Engineering Sciences at the University of Southampton. CFX by AEA

Technologies [85] and Fluent by Fluent Inc [84]. Both are widely used in academia

and commercial applications and have broadly similar capabilities. The codes were

available on the university's computer facilities. Initial computations for the wings

were carried out on Solaris, a SunFire VX880 with 6 processors. Later computations

were performed on Iridis2, a large computational cluster consisting at the time of 300

Opteron processors. The cluster was expanded to 800 processors during the second

phase of the installation.

CFX was chosen for this study for the following reasons. CFX has a strong

marine following and the experience and knowledge was available in the Ship Science

department. The second reason is that CFX was considered to be a more integrated

package. The pre-processor, solver and post-processor are inter-linked allowing some

useful features and functions. For example when the mesh is refined near a surface the

new point is placed on the actual surface and not interpolated from the grid points

resulting in a better representation of the geometry. In addition it was found from

experience that the CFX coupled solver is more forgiving and robust concerning mesh

quality. Fluent was found to have trouble solving what many consider reasonable

quality grids for incompressible flows.

23

Incompressible turbulent flows are governed by the conservation laws for mass

and momentum, the Navier-Stokes equations:

• The continuity equation simply states that the rate of change of mass in a

control volume equals the rate of mass flux.

• The momentum equation states that the rate of change of momentum for the

control volume is equal to the rate at which momentum is entering or leaving

through the surface of the control volume, plus the sum of the forces acting on

the volume.

• The energy equation states that the rate of change in internal energy in the

control volume is equal to the rate at which enthalpy is entering, plus work

done on the control volume by the viscous stresses.

Continuity equation in conservation form:

ap + V' • (pV) = 0
at

Momentum equations in conservation form:

a(pu) ap aT aT aT
----'------'-+ V'. (puV) = __ +~+_\X ---2:..+ P f at ax ax ay az '
a (pv) ap aT. aT aT,
--+V'.(pvV)=--+~+__-' -,) +pf at ay ax ay az r

a(pw) ap aT aT, aT
---'----'-+ V' .(pwV) = __ +----5...+_-" ~+ Pi-at az ax ay az -

Energy equation in conservation form:

;/ He+ ~')]+voHe+ ~}]~p~;J ~:)+ ~(k ~)

(1.1)

(1.2)

+~(k aTJ- a(up) _ a(vp) _ a(wp) + a (UT,J + a(UTyx) + a(UTc,,) (1.3)

az az ax ay az ax ay az
a(VTn) a(VTn) a(VTc,) a(WT,) a(WT,o) a(WL)

+ . + . . + .. +" + . + " + p f.v
~ ~ ~ ~ ~ ~

The Navier-Stokes equations cannot be solved analytically for all but a few cases. A

numerical solution is sought for most cases. The computational effort to solve the

complete Navier-Stokes equations is costly and for most engineering flows the

equations are time averaged to get the Reynolds Averaged Navier-Stokes equations.

The principle is that for steady flow the fluctuations in the flow are very small and a

mean value is still valid.

24

Since the Navier-Stokes equations cannot be closed a turbulence model is

required to allow the solution of the RANS equations. There are many such

turbulence models available all of which have different advantages and di sadvantages.

An alternate more cost effective method to the direct numerical solution of the

Navier-Stokes equations (DNS) is Large Eddy Simulation (LES) where the small

scale turbulence is not modelled and only the larger turbulent flow features are

accounted for. For more information see [82, 83].

2.1.1 Discretisation of the Governing Equations

The following approach is based on that used within CFX for which more

details can be found in [85]. It is explained in order to explore some of the influences

of the approach to the eventual solutions used later in this work. The approach

involves di scretising the spatial domain into finite control volumes to create what is

called a mesh or grid. The governing equations are integrated over each control

volume, such that the relevant quantity (mass, momentum, energy etc.) is conserved

for each control volume.

The figure below shows a typical two dimensional mesh on which one surface of the

finite volume is represented by the shaded area.

Element face centroicl

Element

Finite Volume sLl liace

Figure 2.1 - Finite Volume SUIface

25

It is clear that each node is surrounded by a set of surfaces which comprise the finite

volume. All the solution variables and fluid properties are stored at the element nodes.

Consider the mean form of the conservation equations for mass, momentum and

energy, expressed in Cartesian coordinates:

(1.4)

These equations can be integrated over a fixed control volume, using Gauss'

divergence theorem to convert volume integrals to surface integrals as follows:

~ fpdv + fpUdn = 0 at I I
v s

where v and s denote volume and surface integrals respectively and dn. are the
}

(1.5)

differential Cartesian components of the outward normal surface vector. The surface

integrals are the integrations of the fluxes, whereas the volume integrals represent

source or accumulation terms.

The first step in solving these continuous equations numerically is to

approximate them using discrete functions. Now consider an isolated mesh element

such as the one shown in Figure 2.2.

26

Integration point

Element

Figure 2.2 - Integration points

" "
/

Finite Vo lume Surface

The surface fluxes must be discretely represented at the integration points to complete

the conversion of the continuous equation into their discrete form. The integration

points, iPn' are located midway from the element face centroid to the element's sides

(red dots in Figure 2.2). These integration points sUITound the finite volume if all

adjacent face elements are considered (Figure 2.2).

The discrete form of the integral equations are wlitten as :

where V is the control volume, the subscript ip denotes an integration point, the

summation is over all the integration points of the finite volume, 6n . is the discrete
}

outward surface vector, 6t is the timestep . For simplifi cation a First Order Backward

Eu ler scheme has been assumed in thi s equation, although a second order scheme was

used in this work. Superscripts 0 refers to the old time level. The discrete mass flow

through a surface of the finite volume is given by:

. ()" In;,) = pUt:J,.n, .
J J 'I'

(1.7)

27

2.1.2 Pressure-Velocity Coupling

A single cell, unstaggered, and collocated grid is used to overcome the

decoupling of pressure and/or velocity. The representation of mass conservation can

be written as:

(au) + ill
3

A(a4~] = 0
ax i 4 ax. m ,

where (1.8)

The continuity equation is a second order central difference approximation to

the first order derivative in velocity, modified by a fourth derivative in pressure which

acts to redistribute the influence of the pressure. The method is similar to that used by

Rhie and Chow [86], with a number of extensions which improve the robustness of

the discretisation when the pressure varies rapidly, or is affected by body forces.

2.1.3 Diffusion Terms

Following the standard finite element approach, shape functions are used to

evaluate the derivatives for all the diffusion terms. For example, for a derivative in the

x direction at integration point ip,

a¢1 = L aN" I cp, (1.9)
ax ip /I ax ip

The summation is over all the shape functions for the element. The Cartesian

derivatives of the shape functions can be expressed in terms of their local derivatives

via the Jacobian transformation matrix:

aN ax ay az ~I aN
ax as as as as
aN ax ay az aN

(1.10) = - -ay at at at at
aN ax ay az aN

-

az au au au au

28

The shape function gradients can be evaluated at the actual location of each

integration point (true tri-linear interpolation), or at the location where each ip surface

intersects the element edge (linear-linear interpolation).

2.1.4 Pressure Gradient Term

The surface integration of the pressure gradient in the momentum equations

involves evaluation of the expression:

(1.11)

The value of P is evaluated using the shape functions:
Ip

(1.12)

As with the diffusion terms, the shape function used to interpolate P can be

evaluated at the actual location of each integration point (true trilinear interpolation),

or at the location where each ip surface intersects the element edge (linear-linear

interpolation).

2.1.5 Advection Term

To complete the discretisation of the advection term, the variable cpo must be
Ip

related to the nodal values of cpo The advection schemes implemented in CFX-5 can be

cast in the form:
v

¢i{' = ¢1I{' + IN ¢.f..r (1.13)

v

where cp is the value at the upwind node, Vcp is the gradient of cp and r is the vector
up

from the upwind node to the ip. Particular choices for ~ give rise to different schemes.

2.1.6 1st Order Upwind Differencing Scheme

A value of ~= 0 leads to the first order Upwind Difference Scheme (UDS).

UDS is very robust (numerically stable) and is guaranteed to not introduce non­

physical overshoots and undershoots. However, it is also susceptible to a phenomenon

known as Numerical Diffusion or 'gradient smearing' (see 2.1.14 Numerical

Diffusion).

29

2.1.7 High Resolution Scheme

The High Resolution Scheme computes P locally to be as close to I as

possible without violating boundedness principles. The recipe for P is based on that of

Barth and Jesperson [87]. The high resolution scheme is therefore both accurate

(reducing to first order near discontinuities and in the free stream where the solution

has little variation) and bounded.

2.1.8 The Coupled System of Equations

The linear set of equations that arise by applying the Finite Volume Method to

all elements in the domain are discrete conservation equations. The system of

equations can be written in the form:

(1.14)

where cp is the solution, b the right hand side, a the coefficients of the equation, i is the

identifying number of the finite volume or node in question, and nb means

"neighbour", but also includes the central coefficient multiplying the solution at the /h

location. The node may have any number of such neighbours, so that the method is

equally applicable to both structured and unstructured meshes. The set of these, for all

finite volumes constitutes the whole linear equation system. For a scalar equation (e.g.
IIh

enthalpy or turbulent kinetic energy), each a. ,cp hand b is a single number. For the
1 11 1

coupled, 3D mass-momentum equation set they are a (4 x 4) matrix or a (4 xl)

vector, which can be expressed as:

30

a uu aUI' a UW a Up

a
nb =

a vu a vv avw a vp

I
a wu a wv a ww a wp

a pu a pv a pw app

and

u

v (1.15)
(A =

w

P i

bu

b.=
bv

I

bit'

bp

It is at the equation level that the coupling in question is retained and at no

point are any of the rows of the matrix treated any differently (e.g. different solution

algorithms for momentum versus mass). The advantages of such a coupled treatment

over a non-coupled or segregated approach are several: robustness, efficiency,

generality and simplicity. These advantages all combine to make the coupled solver

an extremely powerful feature of any CFD code. The principal drawback is the high

storage needed for all the coefficients.

2.1.9 Solution Method - The Coupled Solver

CFX-5 uses a coupled solver, which solves the hydrodynamic equations (for u,

v, W, p) as a single system. This solution approach uses a fully implicit discretisation

of the equations at any gi ven time step. For steady state problems the time-step

behaves like an 'acceleration parameter', to guide the approximate solutions in a

physically based manner to a steady-state solution. This reduces the number of

iterations required for convergence to a steady state, or to calculate the solution for

each time step in a time dependent analysis.

2.1.10 General Solution

The flow chart shown below illustrates the general solution procedure.

31

The solution of each set of equations shown in the flow chart consists of two

numerically intensive operations. For each timestep:

1. The non-linear equations are linearised (coefficient iteration) and assembled into

the solution matrix.

2. The linear equations are solved (equation solution iteration) using an Algebraic

Multigrid method.

The timestep iteration is controlled by the physical timestep (global) or local

timestep factor (local) setting to advance the solution in time for a steady state

simulation. In this case, there is only one linearisation (coefficient) iteration per

timestep.

32

Advance
in Time

NO

Maximum Time
Reaclled?

YES

Itemtion witllin
tile Timestep

NO

START

Initialise Solution Fielcls ancl
Advance in Time;' False Time

Solve Hyclrodyn8mic System

Solve Volume Fractions

Solve Additional Variables

Solve Radiation

Solve Energy

Solve Turbulence

Solve I\lass Fmctions

Solve Fully Coupled Particles

NO

YES

YES Coefficient Loa
Criteria Satisfied?

STOP

Figure 2.3 - Solution procedure [88]

33

.A.civance in
F81se Time

NO

Convergence
Cntel-Ia i rvlax

Iteration Sailsflecl?

YES

Solve One Way
Coupleel Particles

2.1.11 Linear Equation Solution

A Multigrid (MG) accelerated Incomplete Lower Upper (lLU) factorisation

technique is used for solving the discrete system of linearised equations. It is an

iterative solver whereby the exact solution of the equations is approached during the

course of several iterations.

The linearised system of discrete equations described above can be written in

the general matrix form

[A][¢]=[b] (1.16)

where [A] is the coefficient matrix, [<p] the solution vector and [b] the right hand side.

The above equation can be solved iteratively by starting with an approximate solution,
II 11+1

<p , that is to be improved by a correction, <p', to yield a better solution, <p ,I.e.

¢n+! = ¢n +¢'

where ¢' is a solution of
i&A..' 11

1Uf' = r (1.17)

with r n
, the residual, obtained from,

rn =b-A¢n

Repeated application of this algorithm will yield a solution of the desired accuracy.

By themselves, iterative solvers such as ILU tend to rapidly decrease in

performance as the number of computational mesh elements increases. Performance

also tends to rapidly decrease if there are large element aspect ratios present. The

performance of the solver can be greatly improved by employing a technique called

'multigrid' .

2.1.12 Algebraic Multigrid

The convergence behaviour of many matrix inversion techniques can be

enhanced by the use of a technique called 'multigrid'. The multigrid process involves

carrying out early iterations on a fine mesh and later iterations on progressively

coarser virtual ones. The results are then transferred back from the coarsest mesh to

the original fine mesh.

From a numerical standpoint, the multigrid approach offers a significant

advantage. For a given mesh size, iterative solvers are only efficient at reducing errors

34

which have a wavelength of the order of the mesh spacing. So, while shorter

wavelength errors disappear quite quickly, errors with longer wavelengths, of the

order of the domain size, can take an extremely long time to disappear. The MuItigrid

Method bypasses this problem by using a series of coarse meshes such that longer

wavelength errors appear as shorter wavelength errors relative to the mesh spacing.

To prevent the need to mesh the geometry using a series of different mesh spacings,

an Algebraic Multigrid is implemented.

Algebraic Multigrid [89] forms a system of discrete equations for a coarse

mesh by summing the fine mesh equations. This results in virtual coarsening of the

mesh spacing during the course of the iterations, and then re-refining the mesh to

obtain an accurate solution. This technique significantly improves the convergence

rates. Algebraic MuItigrid is less expensive than other multigrid methods since

discretisation of the non-linear equations is only performed once for the finest mesh.

CFX-5 uses a particular implementation of Algebraic Multigrid called

Additive Correction [90]. The coarse mesh equations can be created by merging the

original finite volumes to create larger ones as shown below. The diagram shows the

merged coarse finite volume meshes to be regular, but in general their shape becomes

very irregular. The coarse mesh equations thus impose conservation requirements

over a larger volume and in so doing reduce the error components at longer

wavelengths.

35

Original mesh

~ i
First coarse mesh (virtual)

Next coarse mesh (virtual)

Figure 2.4 - Algebraic Multigrid

2.1.13 Discretisation Effects in CFX-S

All numerical approximation schemes are prone to a degree of error. Some

errors are a result of truncation of additional terms in series expansions. Others are a

result of the order of the differencing scheme used for the approximation.

36

Many of these effects can be significantly reduced or eliminated altogether by

understanding why they occur, and when they are likely to affect the accuracy of the

solution.

2.1.14 Numerical Diffusion

Numerical diffusion is an important issue when modelling vortical structures.

Due to the re-circulating nature of the vortex it is very hard to avoid numerical

diffusion. Numerical diffusion is usually exhibited by difference equations where the

advection term has been approximated using an odd-order scheme, for instance, UDS,

which is first order accurate.

Consider a 3-dimensional Cartesian coordinate system. On a mesh of quadrilateral

elements, the flow direction may be normal to the faces of each element. In this case,

the flow from one element to the next can be accurately represented to the limit of the

mesh size.

In a case where the flow is not normal to the faces of the elements, perhaps in

a region where the flow is re-circulating, the flow must move from one element into

more than one element downstream. Consequently, some flow moves into each of the

adjacent elements as shown below.

.. - /
~

-'" .. /
~

-"" - /
~

Figure 2.5 - Flow that is not normal to the cell faces causes numerical diffusion

The effect of this over a whole flow domain is that the features of the flow are

smeared out. The diagram below illustrates the effect. If a step function is used to

define the inlet profile but is not aligned with the mesh, the step is progressively

smeared out as flow moves through the domain. This phenomenon is therefore

sometimes called 'gradient smearing'.

37

II l!

.. .Y '------------II~ X

Figure 2.6 - Numerical diffusion

The effect varies according to the alignment of the mesh with the flow

direction. It is therefore relatively straightforward to achieve highly accurate solutions

to simple flow problems, such as flow in a duct where alignment of the mesh with the

predominant flow is relatively simple. However, for situations in which the flow is

predominantly not aligned with the mesh, numerical diffusion effects limit the

accuracy of the solution.

Consider a similar flow, modelled on a totally unstructured tetrahedral mesh,

as shown below. With this type of mesh, there is no flow direction which is more or

less prone to numerical diffusion than any other. Consequently, the inaccuracy for

simple unidirectional flows is greater than for a mesh of hexahedral elements aligned

with the flow. However, the numerical diffusion errors for a mesh of tetrahedra are

consistent, and of the same order, throughout the flow domain. This means that for

real flows, tetrahedral control volumes will not exhibit additional inaccuracies in areas

such as recirculation, because there is no single flow direction which may be aligned

with the mesh.

It is a fact that using the UDS scheme with tetrahedral element meshes will

produce solutions that exhibit a larger degree of numerical diffusion than would exist

from a solution obtained with a similarly refined mesh of hexahedral elements.

However, this discrepancy diminishes rapidly as the advective discretisation is made

more second-order accurate, and by working towards a grid independent solution.

38

/

/

/

Figure 2.7 - Flow direction is trivial on unstructured grids

It is almost impossible to create a structured grid that minimises diffusion within a

vortex. In order for the grid to accompli sh this an O-grid inside the vortex must be

created that has its radial faces perpendicular to the vortical flow (Figure 2.8). It is

practically impossible to achieve this without solving the flow first. A slight offset in

the vortex core relative to the grid centre will make such a grid pointless. In addition

not all vortices are perfectly circular in shape which complicates things even further.

Figure 2.8 - A small shift in the vortex position makes any advantages of an O-grid
obsolete

39

If the true three dimensional nature of the tip vortex is considered then the

ideal mesh would also have a helical pattern to it. This is because the tip vortex has a

stream wise component as well which mean that in order for the cell faces to be

perpendicular to the flow a helical structure is required. The only advantage of have a

hexahedral mesh is that the longitudinal mesh size can be bigger thus decreasing the

mesh size.

As shown above an unstructured grid will have greater numerical diffusion

than an aligned structured grid, but for vortical flows this disadvantage disappears

quickly since the structured grid is no longer aligned.

2.1.15 Numerical Dispersion

Numerical dispersion is usuaIIy exhibited by discretised equations whose

advection term has been approximated using schemes that are even-order accurate.

When Numerical Advection Correction is fuIIy implemented with a value of ~=1.0 the

scheme is second-order accurate. This can lead, in some cases, to numerical

dispersion.

Dispersion results in oscillations or 'wiggles' in the solution particularly

where there are steep flow gradients. Again the effects can be illustrated using the

step function as shown in the diagram below; just before and just after the step, the

solution exhibits osciIIations which are the direct result of numerical dispersion.

II 1I

.
Figure 2.9 - Numerical dispersion

40

2.2 Turbulence modelling

Turbulence modelling has a major influence on the accuracy of vortex flows.

Many of the existing numerical simulations have difficulty capturing the vortex radius

correctly and this is frequently attributed to limitations associated with the turbulence

model. There have been many studies comparing the performance of different

turbulence models. For example, Osama et al. [91] compared the performance of

Baldwin-Lomax, Spallart-Allmaras and k-wturbulence models. All of the models

over predicted the radius of the vortex with the kmperforming the best out of the

models tested in the far-field region but more poorly near the wing surface.

Dacles-Mariani et al. [41] used a Baldwin-Lomax and a modified Baldwin­

Lomax turbulence model with promising results. Even though the vortex core velocity

profile was predicted within 3% of the experimental data the vortex decay just outside

the core was not correct, with the vortex having an influence over the flow twice the

distance as compared with the experimental results.

Wallin and Girimaji [92] investigated the effect of turbulence model on axial

vortex decay rate. They used several turbulence models from Reynolds stress

transport to eddy-viscosity k-£models. The k-£models over predicted the vortex

decay rate with Reynolds stress transport models giving better results.

An increasing amount of research is being carried out on large eddy simulation

(LES) and detached eddy simulation (DES). These methods address the physics of

turbulence directly and do not require turbulence closure approximations. They

require very fine meshes and are thus computationaIly expensive as demonstrated by

Arakawa et al [95] when modelling a wind turbine blade tip using the Earth

Simulator. DES only applies this methodology in certain regions of the flow. If an

adaptive grid based on vortex identification is used then DES can be applied in the

refined region to model a tip vortex.

For this research the k-£ model was used for the development of the VFX

method because of its speed, simplicity and robustness. The 2 equation SST model by

Menter [96] was used for subsequent simulations for its improved performance in

regions for separated flow.

41

2.3 In-viscidflow (Euler)

Far away from solid boundaries the effects of viscosity are usually small. If

viscous effects are neglected, the Navier-Stokes equations reduce to the Euler

equations. Euler equations are useful for high Reynolds number problems where the

effects of viscosity are usually confined to a small region near the body and a narrow

wake. Since the boundary layer near the solid surfaces does not have to be resolved a

coarser grid can be used which reduces computational costs and allows for more

complex geometries. For more information see [82, 83].

42

3 VORTFIND scheme

The VORTFIND scheme [1,2] is a method for identifying vortices in a two­

dimensional velocity field. It was developed by Pemberton [1] for his thesis and

applied to a few test cases such as a backward facing step and a 2-D bilge vortex.

Later as part of this research the method was applied to a 3-D system of bilge vortices

[97,98]. In this chapter the VORTFIND method is presented and the key parameters

investigated by applying it to a test case. The method is refined and extended before it

is extended to 3-D in the next chapter.

The definition of a vortex as described by Lugt [36] "A vortex is the rotating

motion of a multitude of material particles around a common centre" is used in the

context of this method. The VORTFIND scheme is based on a simple function of

local angles of velocity with respect to a reference point in the fluid. This function

exhibits a local minimum at the vortex core. A statistical method can then be applied

to locate the vortex core. It has been applied in two-dimensional velocity field with

good results [1,2].

3.1 Numerics

Consider a two-dimensional slice of fluid perpendicular to the axis of rotation

of the vortex. A cell centre is selected as the datum point. The x-axis is used as a

reference and the plane is divided into n sectors and each sector is assigned an integer

value p, (Figure 3.1).

~=1

~=2 ~=O

X-QXI5

~=n-l

Figure 3.1 - The plane is split into sectors and each sector is assigned a
value.

43

The angle a (Figure 3.2), which is the angle the velocity vector makes with the

reference axis (in thi s case x-axis), is calculated for all data points. Each data point is

then assigned a value f3 depending on which sector ali es in . The closest point to the

reference location for each value of fJ is found . These points have di stances labell ed

ro, r/, .. . , rll and f3= 0, I, ... ,n-I respectively (Figure 3.2). The di stance for the value of

f3 that is the same as the reference point will always be zero. Once the distances are

found the l function is computed as follows:

II-I

l = " r2 L..... /I

o
(1.18)

Referring back to Lugt 's definition, a vortex core is the point th at is closest to points

with differing values of fJ. At thi s point the l function exhibits a local minimum.

P=l

~~ +4------~.

:Y ~I
~ " , , ,

, ,

\, '-C.1

ro

1-"*=0
1-"*=0

a

~o

p=o

y

Figure 3.2 - Schematic representation for determining the l function for 3 sectors. The
reference point is marked with a diamond

44

3.2 Identifying the vortex core

The I function provides a useful picture of the vortex structures in the flow. It

can be used for adaptive refinement. However it is sometimes easier to adapt to the

vortex core line. In addition for visualisation purposes it is better to identify the vortex

core line [62]. The process of locating multiple vortex cores in the domain is one of

identifying local minima in the I function. The search method has a number of

constraints [I]:

• The I function is calculated without the use of any gradient values and it is

beneficial to use a search algorithm that refrains from doing so.

• Multiple local minima may exist which are all significant, especially for

adaptation.

• The search algorithm must have minimal computational requirements if is

going to be included in the solution process.

Given the above constraints Pemberton [I] found that a K-Means cluster

algorithm is appropriate for this case. The objective of a cluster algorithm is to

separate a set of data into clusters so that the members of each cluster differ as little as

possible with respect to a specified criterion [99]. The algorithm used is an adaptive

K-Means Algorithm [100]. Data points are assigned to clusters by minimizing J, the

sum of the distances squared from the cluster centre to the points within it (Eq.(l. I 9)).

J=Npl,i=N{

J = L (X ji - fiXi) + (Y ji - fi,J
j=l,i=1

(I. 19)

I N r ,

fiyi =N LYji
pi)=1

where fixi and fiyi are co-ordinates of the cluster centre, Npi is the number of points in

the /h cluster, Nc is the number of clusters and Xii, Yii are the co-ordinates of the /h

point in the /h cluster. The points are assigned to the different clusters until J is

minimized. Only two variables need to be preset in the K-Means cluster algorithm,

the maximum cluster radius and the minimum separation between adjacent clusters. If

a point is further away than the maximum cluster radius from a cluster then a new

4S

cluster is created. If two clusters are closer than the minimum separation then they are

merged.

For the case of a single vortex on the computational plane it has been found

that the node with the lowest I function is within a cell of the vortex core. Thus for

singfe vortices identifying the vortex core is trivial.

3.2.1 VORTFIND Test case

The VORTFINp scheme has not been applied to a tip vortex before. To test

the applicability of the method to tip vortex flows, it was applied to a wing operating

at an angle of attack. A 2-D plane that includes the tip vortex was used for the study.

A NACA0020 wing with a 1.Om span and 0.667m chord was used as the test

case of the VORTFIND method in 2-D. The grid was unstructured with 250,000

tetrahedral cells. A k-£ turbulence model was used and the chosen angle of attack was

10°. A plane 0.13m behind the wing trailing edge was used to calculate the I function.

The velocities are exported from the volume mesh at the points where a cell edge

intersects with the plane.

The effect of increasing the number of sectors used to calculate the I function

can be seen in Figure 3.3. As the number of sectors increases the I function gets

smoother. Above 5 sectors there is no longer significant difference in the I function.

46

0.0
-2 -1 2

y/C

Sectors = 3

-2 -1 2

y/c

Sectors = 5

-2 -1 0 2

y/c

Sectors = 7

47

0.0
-2 -1 2

y/c

Sectors = 4

3.0

2.5

2.0

-2 -1 0

y/c

Sectors = 6

Figure 3.3 - I function contour plot for a plane
O.2c downstream of the trailing edge.

As the number of sectors increases from 3
to 7, the I function varies in magnitude
since extra rll are added for each sector.

ylc zlb
Wing tip 0.000 1.000
Sectors = 3 0.069 0.891
Sectors = 4 0.066 0.899
Sectors = 5 0.061 0.886
Sectors = 6 0.030 0.835
Sectors = 7 0.039 0.848

Table 3-1 - Position of Vortex centre

Another thing to note from the I function plots is that as the number of sectors

increases the l function increases since one more distance is added for each additional

sector (Eq(l.18)). This can be a problem when using the I function with adaptive

refinement grids. If the grid is refined using a threshold I function value it is difficult

to choose the correct one and is more of a trial and error [69]. If the I function changes

with the number of sectors then the process is complicated further.

By di viding the l function by the number of sectors that exist in the solution minus

one, the l function can be normalised with respect to sector number.

II-I

I~,2
1=_-,,-0 __

11 n -1
j3 _ t'xisl

(1.20)

where nlLexis/ is the number of sectors that have at least on velocity vector.

The reason for not dividing by the number of sectors used is that in some flows

not every sector has a velocity vector assigned to it, so the distance squared for that

sector is not added to the I function. Also the sector of the reference grid point always

has a distance squared of zero so the l function is divided by the number of sectors

that have at least one vector minus one. The III function is calculated for the same case

as previously and shown in Figure 3.4.

The above has no effect on the shape of the contours of the l function or the

K means cluster algorithm (Table 3-1 &Table 3-2). The only difference is that the

values remain fairly constant with increasing number of sectors, especially near the

vortex centre. If the III function contour of 0.5 is observed, its position does not change

with increasing sectors. The same is not true for the I function. This simplifies the

adaptation process if a threshold value scheme is used.

48

2.5

2.0

~ 1.5

1.0

0.5

-2

2.5

2.0

~ 1.5

1.0

0.5

-2

2.5

2.0

~ 1.5

1.0

0.5

-2

-1 o
y/c

Sectors = 3

-1 o
y/C

Sectors = 5

-1 o
y/C

Sectors = 7

2

2

2

49

2.5

2.0

~ 1.5

1.0

0.5

-2

2.5

2.0

~ 1.5

1.0

0.5

-2

-1 o
y/C

Sectors = 4

-1 o
y/c

Sectors = 6

2

2

Figure 3.4 - Normalised in function contour
plot for a plane O.2c downstream of the trailing
edge.

As the number of sectors increases from 3
to 7, the l function remains fairly constant
in magnitude.

y/c
Wing tip 0.000
Sectors = 3 0.069
Sectors = 4 0.066
Sectors = 5 0.061
Sectors = 6 0.030
Sectors = 7 0.039

Table 3-2 - Position of Vortex centre.
Normalised I function

3.2.2 Influence of grid on VORTFIND method

z/b
1.000
0.891
0.899
0.886
0.835
0.848

The III function is derived from the velocity vectors of neighbouring data

points. It is dependant on the direction of the vectors belonging to different sectors.

However the minimum possible I" function is only dependent on the sampling

spacing. Consider a reference point with all its neighbouring points belonging to

different sectors. Obviously this point should exhibit the lowest 111 function. How low

the data point's In function can be is decided by the grid spacing. If the data points are

very close then the smaIl distances between them will result in a low III function. If the

points are far apart then the I" function will be higher even though the neighbouring

values are all in different sectors. A refined area can have a very low minimum I"

function whereas a coarse area has a higher minimum I" function.

Compare the I" function plot for the wing tip vortex with uniform sampling

spacing Figure 3.5, with the I" function for the same results but with samples taken at

the cell edges Figure 3.6. We can see that away from the vortex core the I" values are

very similar. This is because the limiting factor for the I" function is not the sample

spacing but the actual velocity flow field. As we approach the vortex core the values

for the uniform sampling spacing are higher. This is due to the smaller sample spacing

near the vortex core. Since the flow field is more varied in direction the limiting factor

becomes the sample spacing. Ideally the limiting factor should always be the flow

field and never the sampling space.

50

-0.4 -0.2 0.0

y

Figure 3.5 - Uniform spacing

-0.4 -02 00

y

Figure 3.6 - Non-uniform spacing

0.2 0.4

0.2 0.4

However this is not always practical due to the increased computational

overhead of such a fine sampling spacing. A uniform sampling spacing can overcome

some of the problems of having the sampling spacing as a limiting factor. Effectively

51

there is a lower limit on the ill function which is the same for the entire computational

plane. Using a non-uniform sampling spacing will potentially favour certain regions

which may cause problems in flows with multiple vortices.

3.2.3 VORTFIND not conforming to computational nodes

The in function so far has been calculated at locations corresponding to

computational nodes (i.e. locations were the velocity is specified). However the

In function can be calculated at any point along the plane and does not need to

conform to those points. The test case data was used to calculate the In function over a

uniform 51 x5l grid superimposed on the data on the nodes resulting from the mesh.

The In function is smooth and continuous over the computational plane. The

magnitude and shape is virtually the same as the one calculated on the data nodes.

This is a significant advantage over the combinatorial method [65] which is

discontinuous.

Even though the VORTFIND method is accurate enough to locate the cell the

vortex core lies in, on large grid spacing it is thus possible to find the point of

minimum in function within the identified cell using this not conforming procedure.

Even though the physical meaning of this point is dubious, it is nevertheless a useful

improved estimate on the position of the vortex core.

3.0

2.5

2.0

.0 1.5 -N

1.0

0.5

0.0
-2 -1 0 2

y/c

Figure 3.7 -In function off the data points. 7 sectors (compare to Figure 3.4)

52

3.2.4 VORTFIND on coarse grids

The minimum possible In function as explained previously depends on the grid

spacing. However there is another consideration concerning grid size. There is a limit

to how coarse a grid can be in order to identify the vortex. A series of grids has been

set up to investigate the lower limit of this coarseness. The initial grid is the same as

all the other test cases. The nodes are then decreased by a factor of 4, 8 and 16 and the

VORTFIND method carried out.

Inspecting the resulting In function contour plots we can see that we get similar

shapes for all node densities with similar minimum values in the vortex core.

Assuming the lowest III function as the vortex core there is a variation in the identified

centre (Table 3-3). This is due to the way the data node grid was coarsened. Alternate

nodes were deleted from the database which was not given in any particular order.

This resulted in an uneven coarsening of the data grid nodes which leads to the shift in

the vortex centre. However the shape of the III function over the sample plane remains

similar even for the lowest of data node densities. This is a key result as it indicates

one of the main advantages of the use of Vortfind as it still works well for a very

coarse mesh.

3.0 3.0
3.50 I><Y.><:) <:)

3.50
q~

3.00 q V
I><~ '00

2.5 2.5

2.0 2.0

.0
1.5

.0
1.5 -- N N

1.0 1.0 a
a
rV

0.5 0.5

0.0 0.0
-2 -1 2 -2 -1

y/C y/c

3038 nodes 760 nodes

53

3.0
3.5 ,," ~.

'0"
3.0 2.5

roo !:j

roCl

2.5
2.0

2.0 0'
..0 ..0

1.5
(11

N N
1.5

1.0 1.0

0.5 0.5

0.0
0.0

·3 ·2 ·1 2 3 ·2 ·1 2

y/c y/c

380 nodes 190 nodes

Figure 3.8 -t" function on different grid densities

Identified vortex centre
Number of data nodes

y/c zlb

3038 0.039 0.848
760 0.285 0.848
380 0.069 1.123
190 0.171 0.848

Table 3-3 - Variation of vortex core with grid density

The same procedure was carried out for the same data nodes using the III

function not conforming to the data nodes. The grid on which the III function was

calculated was 51 x51. Similar results can be observed. The contour plots have the

same characteristic shape. Similar variations in the identified vortex core position

exist (Table 3-4). This is because as explained these are due to the data nodes. Since

the data nodes are identical for both cases similar results were observed. Comparing

the two methods we can see very good agreement considering the resolution for the

51 x5l grid is in the order of 0.05b and 0.12c. A marked improvement over the

conforming approach is evident from the identified vortex centres.

54

2.5

2.0

~ 1.5

1.0

0.5

·2 ·1 o

y/c

3038 nodes

2.5

2.0

~ 1.5

1.0

0.5

·2 ·1

y/c

380 nodes

3.0 T"""7------~---=-3.=00o----~-."---=';tO-OO~

~~ 2~ ~~ v

2.5

2.0

~ 1.5

1.0

0.5

o
II)

·2 ·1

2.00

o
y/c

760 nodes

3.0 ...----d---,,:s-----c=-2".5.,..O--~-.,----n

~.

2.5

2.0

~ 1.5

a
1.0 "?

0.5

·2 ·1 o

y/c

190 nodes

Figure 3.9 -Ill function on different grid densities not conforming to data nodes

Identified vortex
Number of data nodes

y/c z/b

3038 0.08 0.90
760 0.08 0.90
380 0.08 1.14
190 0.16 0.90

Table 3-4 - Variation of vortex core with grid density
(VFX not on data nodes)

55

3.3 Summary

In this chapter the Vortfind method has been presented and tested. The method

was applied to a test case and its dependency on different parameters investigated.

The ability of the Vortfind method to perform well on very coarse grids has been

demonstrated, which is one of its major advantages.

In addition the Vortfind method has been reformulated for an arbitrary number

of sectors and has been normalised with respect to these sectors. This makes the

Vortfind method easier to implement in conjunction with mesh adaptation based on

threshold values as explained before.

The method has also been applied for the first time off the data nodes which has

proven that the In function is a continuous function over the plane. It performs

particularly well on coarse grids and has the potential to identify the vortex core at a

resolution which is better than the data grid.

56

4 VFX: an extension of VORTFIND to 3-D

The modified VORTFIND scheme can be easily implemented with two­

dimensional grids. However, before this work it has never been applied to three­

dimensional grids. A number of modifications must be made and evaluated before the

method can be used with any success. The method works in two-dimensional planes

perpendicular or near to perpendicular to the direction of the vortex core. These

planes can be extracted from the three-dimensional velocity field (Figure 4. I).

The planes can be extracted for every cell or for a predetermined spacing.

Extracting planes for every cell is computationally expensive; however since the

I function is defined at every cell it can be used as a criterion for adaptive refinement

without any further manipulation. A threshold value for the I function can be set and

the cell below that threshold refined. This eliminates the need for a cluster algorithm

to identify the vortex cores.

Using spaced planes reduces the computational requirement substantially, but

means that the vortex cores must be identified and a vortex core line constructed

through the domain. Then neighbouring cells to the vortex core line can be flagged for

refinement. The other advantage of this method is that it produces a continuous vortex

core line. The latter was chosen for its reduced computational requirements and

adapted for 3-D cases giving the VFX scheme.

57

Plane 1
Plant? 2.

Plane 3
Plane 4

Plane 5

Figure 4.1 - Planes where VFX is performed for a wing

4.1 Wing test case

To test the VFX method it was decided to validate it with an experimental case.

A NACA0020 wing operating at 100 angle of attack was chosen. The wing was tested

in the 11 ' x8 ' George Mitchell [101] low speed wind tunnel at the University of

Southampton and the recorded data included measurements of wing surface pressures.

The wing has a 1.0m span and 0.667m chord.

The numerical model was an approximation of the wind tunnel experiment,

neglecting the blockage effects of the walls. The inlet boundary was located at x= -

3.0c and the outlet at x= 5.2c. The side walls were located at y= ±3.0c and the roof at

Z= 4.5c. The wing leading edge root was at the origin. The floor is defined as a

symmetry plane in order to remove the need to capture the groundplane boundary

layer. For similar reasons the roof and walls are defined as openings and a velocity

defined on those boundaries.

The wing was modelled using an unstructured mesh using only tetrahedrons. The

base mesh had 3 15,566 cells. The cells were clustered near the wing surface, with a

maximum edge length of 0.045c. The maximum y+ was 100. A cylinder of finer cells

also having a maximum edge length of 0.045c extended downstream from the tip

58

aligned with the x axis. The wing was operating in a uniform free stream velocity of

20m/s at an angle of attack of 10°. A k-E turbulence model with wall functions was

used for its simplicity speed and robustness. This was used as a test case for the

development of the VFX method and not initially as an attempt to capture accurately

the flow field. Although other turbulence models could have been used the aim was to

ensure that all the steps in the VFX process worked. Planes of velocity were extracted

at 0.67, 1.17, 1.67,2.17,2.67 and 3.17m. The VFX method was used to compute the

vortex cores location for each plane. A tube, having O.Im radius and its axis passing

through the vortex cores was used to define the refinement region. The maximum cell

edge length was specified within this tube, resulting in a refined region in the mesh.

The resulting mesh was solved and the vortex core co-ordinates updated. Three

iterations were carried out; each time the maximum edge length within the tube was

decreased. The refined meshes had 518,997, 819,289 and 1,797,200 cells respectively.

Mesh Cells Nodes
Max. edge length Points across

in tube vortex core
Base 315,566 56,461 0.045c 8
Refine 1 518,977 91,397 O.03Oc 12
Refine 2 819,289 142,870 0.022c 15
Refine 3 1,767,200 305,113 0.OI5c 23

Table 4-1 - Grids for wing test case

Figure 4.2 - Refined mesh 3. Plane 1.17m

59

From the results it can be seen that as the number of cells in the vicinity of the

vortex core increases the vortex position changes. For the two finer meshes the

location of the vortex core line is fairly constant. The vortex shedding off the wing is

not located at the tip but further in as expected from theory and experimental

observations. The vortex contracts to 80% of the span as it moves 4 chord lengths

downstream. This positional dependency of the vortex on grid spacing means that

methods like Spall [43], which use a grid with points clustered a priori, run into

difficulties even for such a relatively simple case.

c
co
Q.
CJ)

N

0.95 +---+-1---+---+-1---+---+-+---+--+-+---+---+-+--+---+-+--+---+-+

0.90

0.85

0.80

0.75

" .. "'. -...:::: •••
"~'':'"':":- --" ~.~~~-- .. -o ..

•
.. .. \1.

Base
Refine1

- - ___ - - Refine2
_ .. -<>_. Refine3

-- . ..:..:.. .. . ~~".: : ... :.:.
-----~:..:...:.. 6..

-...." --
""- .. -.> -.<>

.
......

0.70 +---+-+---+---+-+--+-+---+---+-+--+-+---+---+-+--+-+---+---+-+

2 3

X/c

4 5

Figure 4.3 Span wise position of vortex with different grids

60

Inspecting the vortex velocities at O.7Sc downstream of the trailing edge for the

different meshes it can be seen that the results are similar to Dacles and Zilliac [41].

From Figure 4.4 it can be seen that the vortex velocities change significantly with grid

spacing. As the grid resolution increases the vortex core radius decreases. The two

finer grid spacings give similar results, implying that at least 15 points are needed in

the vortex core to capture the flow accurately. This agrees well with Dacles and

Zilliac who recommend 18 points through the vortex core.

o .25 +-+-+--t--+-+-+-+-+--+-+-t-+-+--+-~t-+-t--+-~--+-+--+-+--+--+-+--+-+

0.20

0.15

8

~ 0.10
cr

0.05

0.00

-0.2

Base Mesh
Refine 1
Refine 2
Refine 3

-0.1 0.0 0.1

y/span

Figure 4.4 - Vortex velocities for the different meshes

0.2 0.3 0.4

Comparing the surface pressures calculated using the finest mesh with

experimental data [10 1] good agreement can be seen (Figure 4.5). However, the

results do not show the large pressure drop towards the trailing edge. This is because

the clustering is not extended upstream of the trailing edge, and the influence of the

vortex on the surface pressures will not be fully captured.

61

700mm

1.5++~~~~~-+~~-r+-~-r+-~~~~~~-+~~-r+-r±

1.0 0·0

0.5 ~ 0.0 \ 0·.. ~ e:.:W~6 .. 0.~·Q)
8- -0.5

:~:~ 0 OJ.· .. __ Experimental

-2.0 000 ··0· CFD Results

-2. 5 1.-+-+-+--e-:+-+-+--f-+-+-+-+-If-+-+-+-+--f-+-+-+-+--~::;:;:=+=i=+=::;:;:=+=-!
0.0 0.2 0.4

Chord
830mm

0.6 0.8 1.0 1.2

1.5++~~~~~-+~~-r+-~-r~~~~-+~~-++-~-r+-r±

1.0

0.5

c. 0.0

o -0.5

-1.0

-1.5

-2.0ir-r+-~-r+-~-+~~~~+-~-+~~-+-r+-r+-r+-~-+~~

c.
o

c. o

0.5

0.0

-0.5

-1.0

0.5

0.0

-0.5

-1.0

0.0 0.2 0.4

Chord

940mm

0.6 0.8 1.0

~~ . . . d5
, .ro. ·0·

o 0
. 0
o .

0.0

o

0.2 0.4

Chord

970mm

Oqp

----~~~"" b O'.<Ooco··

o

0.6 0.8 1.0

1.2

1.2

-1.5 -'-+-r+-~-r-+-~-+~+-~~+-~-+~~-+-r+-r+-r+-~-+~~

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Chord

Figure 4.5 - Cp comparison for NACA0020 wing

62

4.2 Initial grid dependency

In order to ensure that the method described previously is independent of the

initial grid, the same geometry was modelled using a different meshing strategy. A

different meshing tool was used, ICEM 4 CFD [102], to generate the mesh. The base

mesh compromised of tetrahedra with a different mesh density and distribution than

the previous base mesh. The mesh was clustered in the vicinity of a line extending

downstream from the wing tip at angle 5° from the x axis, even though the angle of

attack was 10°. This is to prove that the initial clustering position is not crucial to the

final solution. In fact no clustering is necessary for the initial mesh as long as the

initial grid density is fine enough to resolve some of the tip vortex. However since a

very coarse base mesh is used a refined region was included.

The same iterative strategy as described above was used, updating the position of

the grid refinement and at the same time reducing the grid spacing. After three

refinements the position of the vortex was within the convergence criterion of the first

solution. This proves that the method is independent of the initial grid.

4.3 Comparison with experimental data

For better validation of the procedure detailed wake measurements were

deemed necessary in order to study the evolution of the tip vortex and wake. A

numerical model of a wing was compared to experimental data from a wind tunnel

model. The experiments were performed in a 0.9m x 0.6m, open circuit wind tunnel,

operated at a flow speed of 19.0 mls. The wing had a chord of 0.45m and a geometric

aspect ratio of 1.0. A NACAOO 1 2 section was used with constant thickness to chord

ratio along the wing [103]. Particle Image Velocimetry (PIV) and pitot tube data were

available for the steady case.

The numerical model consisted of a tetrahedral mesh with prisms layers on the

wing and tunnel walls to capture the viscous sub layer. The prism layer had a 10mm

height on the wing (l of 50) and 30mm on the tunnel walls. The VFX procedure was

implemented, using 5 planes downstream of the wing and the mesh refined on the

vortex core line. The position of the vortex core was settled after a few cycles as

discussed previously.

After the vortex line had settled the number of refined layers grown from the

vortex core line was varied. The cell edge was increased to keep the mesh size

63

constant. The mesh size can rise quickly with increasing layers grown from the vortex

core line. This is because the volume of the refined mesh increases with respect to

distance squared from the vortex core. For example 10 layers will have 4 times the

cells as 5 layers grown from the vortex core line.

From the results it can be seen that there is a trade off between cell size and

the number of layers grown. If the refined mesh does not extent far enough away from

the vortex core then the vortex is not captured correctly. As the number of layers of

refined cells grown from the vortex centre increases we can see that the vortex core

radius decreases and the maximum circumferential velocity increases (Figure 4.6).

However, since the cell size is increased with increasing number of layers to keep the

mesh size the same there comes a point where the mesh is not fine enough in the

vortex core to refine the vortex correctly.

64

From Figure 4.6 we can see that the vortex core radius is over predicted by 1-

2% of chord. The circumferential velocity is under predicted by 20%. However these

are the mean circumferential velocities around circles with their centres at the vortex

core. Any error is thus cumulative. In addition the PIV data is an average of multiple

images over time. Comparing the velocities through the vortex along the x and y

direction (Figure 4.7) we can clearly see where the discrepancy occurs.

The velocities for the y direction (perpendicular to the wing) are in very good

agreement with the PIV data. The core radius is 11 % of chord from the CFD

simulation and 10% from the PIV data. The maximum velocities are also in good

agreement.

For the spanwise direction it is different. The predicted maximum velocities

are well below the PIV data. The outermost position of maximum velocity is within

2% of chord, however in the wake the results are worse. This might be due to the

influence of the wake on the tip vortex. The mesh in the wake region is quite coarse

and not captured correctly.

• PIV data
····v·· Cell 4.0mm Layers 20

------- Cell4.0mm Layers 10
_ .. -<>._ .. - Cell 1.0mm Layers 4

- --- - Cell 0.5mm Layers 2
60 _.-0-.- Cell 0.5mm Layers 0

20

o 2 4 6 8 10 12 14

r/c%

Figure 4.6 - Average circumferential velocity from vortex core

6S

~ 0
8

::J
---5:

100

80

60

40

20

0

-20

-40

........... .. /
~ /

...... .. '

~ J
-60

-10 -5

r-.. v
/ \

(
I /.

..............

........... '.

5 10

-- PIVdata
........ CFD data

60 ~--------r--------+--------+---------r

-604---------~-------+--------~--------~

-10 -5 o 5 10

Ycoric%

Figure 4.7 - Velocities through the tip vortex. Top: Spanwise
direction (z). Bottom: Parallel to the tunnel floor (y)

66

The forces on the lifting surface vary significantly with grid refinement in the

vortex region. It can be seen that for the very fine mesh, which is only concentrated at

the vortex core, the lift and drag are out by 9.3% and 2.8% respectively. As the region

of the refined mesh grows out from the vortex radius the results tend closer to the

experimental data. The change in lift is very small but the drag improves significantly.

The lifting surface is operating near its stall angle and small changes in the angle of

attack result in large changes in the forces. Also the flow is unsteady in real life and

the lifting surface probably transitions between a partially separated and fully attached

condition.

Lift (N) Drag (N)
CL Co

Pressure Viscous Pressure Viscous

Cell 0.5mm
25.72 -0.036 2.665 0.482 0.59 0.073

Layers 0
Cell 0.5mm

25.703 -0.0356 2.665 0.481 0.59 0.073
Layers 2
Cell 1.0mm

25.892 -0.0359 2.678 0.482 0.6 0.073
Layers 4
Ce1l4.0mm

25.395 -0.0387 2.605 0.484 0.59 0.071
Layers 10
Ce1l4.0mm

25.528 -0.0404 2.610 0.480 0.59 0.071
Layers 20

Experiment - - - - 0.48 -

Table 4-2 - Comparison of lift and drag for different vortex refinement.

67

4.4 Summary

The Vortfind method has been extended successfully to three dimensional

flows. The resulting VFX method has been tested on a wing and was able to track the

tip vortex downstream of the foil. The mesh was refined in the region identified using

the VFX identified vortex core. The vortex core position stabilised with each

progressive refinement and the vortex propagated further downstream.

Detailed wake comparisons have been made for a second wing tested in a

wind tunnel where PIV data was available. Although the results have shown an

improvement with the refined mesh as far as the tip vortex definition is concerned,

there were discrepancies in the forces. It is believed that these were due to the

insufficient resolution of the boundary layer wake which is an important flow feature.

Resolving the boundary layer shear layer far downstream represents a difficult task,

especially for marine propellers where the shear layer is of a helicoidal form. Work by

Stanier [30] shows that resolving the boundary layer wake significantly improves the

results and Sanchez-Caja et al. [104] demonstrate that the wake structure deteriorates

very quickly outside the fine mesh region. Thus it would be beneficial to develop a

wake identification algorithm that can be used in conjunction with VFX.

68

5 Adaptive Wake capture

Downstream of any body exists a region of slower moving fluid known as a

wake. For a lifting surface, operating at small angles of attack, this is a thin shear

layer region formed when the fluid in the boundary layers from the upper and lower

surfaces merge at the trailing edge and then extend downstream. To capture this thin

shear layer a refined mesh is required. A method for identifying the position of the

wake using simple techniques is investigated and described in this chapter.

5.1 Identifying the wake

In order to follow the same philosophy with the VFX method the procedure for

identifying the wake must be based on simple mathematics. Ideally, it must not use

derivatives or complex functions of the solution.

The wake consists of a small region behind the aerofoil with a velocity deficit. If

a threshold velocity deficit is selected the regions in the flow having lower velocity

can be identified. The velocity deficit regions are identified from the same plane data

used for the VFX method. For the subsequent calculations the shear layers due to the

tunnel walls are ignored otherwise they will be erroneously selected as well. A region

O.05m from any wall was therefore masked out. This leaves the points belonging to

the wake but also the tip vortex region. The velocity deficit region due to the vortex

extends outwards of the geometric span of the aerofoil. If all this points are used to

determine the wake it causes problems. The wake behind an aerofoil only extends to

the vortex core. The position of the vortex core is already calculated using VFX. Any

points outwards of the vortex core can also be masked out.

A curve is fitted to the remaining points using a moving average filter. This is

performed for all the planes downstream. A refined grid can then be specified in the

region of the wake. To reduce the number of cells required in the wake a similar

approach to that used for shear layers near walls can be used. By using high aspect

prisms aligned to the wake the grid spacing along the wake can be kept large whereas

the transverse grid spacing can be reduced to capture the shear layer.

69

0.8

0.6

0.4

0.2

-0.3

• Selected points
-0- Curve Fit

-0.2 -0.1 0.0

y/c

•
• •

I .. • • • • • • • •
•

0.1 0.2

Figure 5.1 - Selected points having velocity deficit after masking

0.3

The wake capture method worked weIl within one chord length of the trailing

edge (Figure 5.1). Downstream the velocity deficit in the coarse wake was less and

thus the wake region was not selected. Only the vortex deficit region had a low

enough value to be selected (Figure 5.2). One possible solution was to select different

velocity thresholds for each plane, with the threshold velocity increasing away from

the aerofoiI. This was not deemed a feasible solution since an appropriate threshold

velocity is not known a priori. Such a method would require a time consuming trial

and error approach.

A more generic and robust solution was developed. The spanwise distance

between the root of the foil and the vortex core is subdivided into a number of strips.

The areas near the tunnel waIls and floor area masked out, as explained above, and the

remaining points for each strip are sorted in ascending velocity magnitude. The top

5% of the points are selected for each strip. From thereon the same approach is used

as described previously. This method ensures that the entire wake from the root to the

tip vortex is selected and all the way downstream (Figure 5.3). Also it is more robust

and less sensitive to user input.

70

1.0

..""",..
0.8

~ 0.6

0.4

0.2 • Selected points
-0-- Curve Fit

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

y/c

Figure 5.2 - Selected points having velocity deficit at a plane one chord length
downstream of the trailing edge

1.0

0.8

~ 0.6

0.4

0.2 • Selected points
-0-- Curve Fit

-0.3 -0.2 -0.1 0.0 0.1 0.2

y/c

• ••
•
•

0.3

Figure 5.3 - Selected points using strips and selecting top points at one chord length
downstream of trailing edge

71

5.2 Wake mesh

A surface was lofted through the wake lines identified from the wake algorithm

and the trailing edge of the wing. The resulting wake shape is as expected from classic

aerodynamic theory. It extends downstream of the wing and wraps up around the tip

vortex (Figure 5.4). The same mesh was used as for the standard models without the

wake capture. This consisted of a fine mesh on the wing surface and in the vortex

region. In addition a ten cell inflation layer on the wing and wall tunnel walls with

I cm and 3cm overall thickness respectively was used.

z

~y

Figure 5.4 - Wake shape captured by the wake identification algorithm

For the wake capture ten layers of prisms were extruded normal to the wake

sUlface captured either side .The prisms matched the inflation layer on the wing. The

thkkness of the prism layer in the way of the wake was 60mm. The streamwise mesh

spacing in the region of the wake is large to reduce the overall size of the mesh.

However, the transverse grid spacing is small to refine the shear layer in the wake

(Figure 5.5). If the prisms were replaced with tetrahedra having an aspect ratio of one

then thirty times more cells would be required to have the same transverse grid

spacing.

72

Figure 5.5 - Mesh using wake capture

73

5.3 Results

Comparing the results for the standard mesh with the pri sm wake mesh we can

see that there is a significant improvement. The minimum velocity for a plane

44.4%of chord downstream of the trailing edge is below 1.57m/s for the wake pri sm

mesh whereas for the standard mesh the velocity is not less than 1.68m/s. In addition

the wake pri sm mesh influences the tip vortex . The velocity deficit area above the

vortex is less pronounced with the wake prism mesh.

Velocity
(Contout 1)

2. OOOe+O 1
1 . 895e+O 1
1 .7590+0 1
1 .6640+0 1

- 1. 368e+ 0 1
1. 263e.,.01
1. 158e+Ol
1. 0530+0 1
9.414 e+OO
8.421e+OO
7.368.+00
6.3 16c+00
5 . 263 •• 00
4 . 211e+ 00
3 . 158e ... OO
2 . I 05eTOO
1_ 053e+OQ
O. OOOe+OO

1m , ' . 1)

Velocity
(Contour 1)

2.000e+Ol
I. 8950+0 1
1 .76ge+Ol

- 1. 6640+01
- 1 . 579c+.Ol

- 1. 474e+Ol
- 1 . 368e ... O 1

1. 2G3e..,.01
1. , 58e.,.Ol

1 .053e+Ol
9.474e+OO
8.4Z1e+OO
7.3580+00
6 . 3 16c+00
S. 263e+OO
4 . 211e ... OD
3 . , 58e OO
2 . 10Se+OO
1. 053e+OO
O. OODe+OO

1m " . 1)

?
- Y

E
c~ ~I\

rr
~

I
I

.I
f

----- -'

~

Figure 5.6 - Velocity contours 44.4% of chord downstream of the trailing edge for
standard mesh (Top) and pri sm wake mesh (Bottom)

74

,

Similar results are observed for a plane 133.3% of chord downstream of the

trailing edge. The same is true for the entire wake downstream of the wing.

/ ,

Velocity
(Contour 1)

2. OOOe+O 1
1. 895e+ O 1
1 .789.+01
1. 6840+01

- 1 . S79c+Ol
- 1. 474e+0 1
- 1. 368e+O 1

1. 263e+O l
1 .1 SBe+O l

1. 0S3e+O l
9.4 74e+OO
8.4 2 1e+OO
7,3680+00
6,3160+00
5 . 263.·00
-4.211 e.OO
3 . 1580.00
2 . I05e+OO
I . 053e+OO
O.OOOe+OQ

1m 5" · 1)

I
Z

- Y

- ---

11 '

r-- --..,

Velocity
(ContOUt 1)

2. OOOe+O 1
1 . 895e+O 1
1 .78ge+Ol
1. 684<>+01

- 1 . 579c:+O l
- 1 . 4 74e+Ol
- I. 368e ... 01

t .263eTOI
1. 1S8e.,.Ql
1. 0S3e+O l
9 . 474e+OQ
8. 4 21e+OO
7 .3 6Se+00
6,3160.00
5 . 263e+00
".211e.,.OO
3 .1 58e+00
2 . 10Se+OO
1. 053e+OO
o .OOOe+OQ

1m 5"·11

-,

I

/ 1

:;::......---

~

cg I

(\

<: D I(

Jr
l

~
I)

I

-- , ~
"I=' Q~

Figure 5.7 - Velocity contours 133.3% of chord downstream of the trailing edge for
standard mesh (Top) and pri sm wake mesh (Bottom)

75

The change in the forces on the wing is significant. There is a 9.9% reduction in

drag and a 5% reduction in lift. The lift to drag ratio increases by 5.3%. There is a

reduction in the pressure forces and an increase in the viscous forces (Table 5-1).

Pressure force (N) Viscous force (N)
CL Co LID

x Y z x Y z

Standard 2.665 -25.72 2.712 0.48 0.036 0.015 0.59 0.073 8.17

Prism wake 2.338 -24.40 2.660 0.49 0.045 0.013 0.56 0.065 8.60

1l% -12.2 -5. I -1.9 2.1 24.4 10.3 -5.0 -9.9 5.3

Experiment - - - - - - 0.48 - 7.56

Table 5-1 - Comparison of wake mesh and standard mesh forces

Comparing the results with experimental data from a wake transverse study [103]

we can see that the wake is better defined with the prism wake mesh. The results

agree more closely with the experimental results. The position of the wake is

predicted very well. The velocity deficit is less than the experimental results by about

15% of UlUo for the plane immediately downstream of the trailing edge. However for

the rest of the downstream planes the velocity deficit in the wake is within 5% of

U/Uo (Figure 5.8).

76

130

120

110

100
0

:J 90
:3

80

70

60

50
130

120

1 10

100
0

:J 90
:3

80

70

60

50
130

120

110

100
0

:J 90 :3
80

70

60

50
130

120

110

100
0

:J 90
:3

80

70

60

50
130

120

110

100
0

:J 90
:3

80

70

60

50

-10 -5 a

z/c 50% z/c 75%

-- Experiment
··· 0 ·· .. Wake Mesh
- -1'- Standard Mesh

5 10 15 20 25 30 35 40-10 -5 a
y/c%

5 10 15 20 25 30 35 40

y/c %

Figure 5.8 - Wake survey compari son

77

~
o
o:i
tJ

><

5.4 Results for Wake and VFX mesh

A mesh having the same cell size as for the VFX case with 10 layers grown

away from the vortex core (see Table 4-2), and having a wake mesh was generated.

However no inflation layer was used on the tunnel walls to reduce the mesh size. The

effect of the inflation layer having been found to be negligible.

Lift (N) Drag (N)
CL Co LID

Pressure Viscous Pressure Viscous
VFX 25.40 -0.0387 2.605 0.484 0.59 0.071 8.31
Prism wake 24.40 -0.045 2.338 0.49 0.56 0.065 8.62
VFX&

21.63 -0.0246 2.556 0.434 0.48 0.068 7.05
Prism wake
Experiment 23.04 3.18 0.48 - 7.61

Table 5-2 - Comparison of forces

From the results we can see that the drag is somewhere between the

two meshes. However the is a large reduction in lift. This gives a better lift to drag

ratio than the other two meshes which significantly over predict this. Looking at the

spanwise loading we can see the typical increase in loading due to the tip vortex.

3.0

"
2.5

2.0

--l
1.5 0

1.0

0.5

0.0
0.0 0.2 0.4 0.6 0.8 1.0

z/b

Figure 5.9 - Span wise loading for NACA0012 wing

78

5.5 Results/or Wake and VFX mesh

The importance of resolving the wake has been shown for a 3-D wing. A simple

algorithm for identifying the wake has been developed which can be used in

conjunction with the VFX method. The method has been automated and applied to a

3-D wing and the results compared to experimental data. The forces on the wing

changed significantly with the wake refinement. In addition, the velocity profiles in

the wake agree very well with pitot tube measurements from the wind tunnels tests.

When used in conjunction with the VFX method to resolve the tip vortex as

well, the lift changed significantly and coincided with the value obtained from the

experiments.

79

6 Propeller mesh generation

Experience shows that the choice of the grid for a given propeller can

influence the convergence of the solution and numerical prediction [30, 105]. The grid

density is a crucial factor in capturing the flow features in the fluid. Grid quality is

also of importance and must be addressed as reported by the lITe [106] & Stanier

[107] and discussed for hulls by Bull [31]. Mesh generation is a function of the

experience and ingenuity of the person involved, the meshing tools available and

restrictions imposed by the limitations of the solver.

6.1 Propeller Geometry

In order to define the propeller blade geometry the following system is used

[108, 8]. The blade is formed starting with a midchord line defined by the radial

distribution of skew angle Bn,{r) and rake xn,(r). By advancing a distance ±Y2 err)

along a helix of pitch angle (Air), the blade leading edge and trailing edge are

obtained. The surface formed by the helical lines is use as the reference upon which

the sections can be built. These sections are defined in standard aerofoil terms by a

chordwise distribution of camber f(s) and thickness t(s), where s is a curvilinear

coordinate along the helix. A brief description of the transformations developed and

used is given below. For a more detailed description of the process see [109].

Figure 6.1 - Propeller geometry definition used (Left); Kerwin definition [108] (Right)

80

The method used differs from the method described in Kerwin [108]. The

skew of the propeller is treated differently. The section is skewed along the generator

helix for that section whereas in Kerwin's system the section is skewed about the

propeller axis. The latter method changes the shape of the blade with varying pitch,

whereas the former preserves the same blade shape for all pitches. This makes

propeller design easier since the blade shape is not coupled to the pitch. For propellers

with no skew such as the DTMB P41 19 the two methods are identical. For heavily

skewed propellers there is significant variation between the two methods.

Care must be taken that the transformed 2-D sections lie on a cylindrical

surface instead of being offset perpendicular to the helix generator. Kouh & Liang

[110] and Kouh & Chen [11 I] neglected to ensure this which can lead to minor

geometrical difference which can be significant. Later Kouh et ai. [111] identified this

problem and corrected their methodology.

6.2 Propgen

To generate a mesh for a given propeller geometry a quick and simple tool

was required for a wide range of propellers. Propgen was developed specifically for

this purpose. It can handle most propeller geometries, including ducts. It can also

generate an inner duct ring for use with tip driven propellers [109]. The generated

model is a segment containing one blade only. The model is then assumed to be

rotationally symmetric for a steady state case and periodic boundary conditions can be

used to model the complete problem. This effectively reduces the grid size reducing

memory and computational costs. Complete geometries can also be generated by

copying the generated model.

The generation of the propeller requires an input of standard propeller table

data and section offsets. The propeller geometry is constructed from a set of section

curves. These sections ca be generated for any given radius by defining the chord,

thickness, skew, rake, pitch and 2-D section shape. The 2-D section is mapped onto a

cylindrical surface according to the specified variables using a transformation matrix

(Eq(1.2I)). For a more details on the section mapping see [109].

81

¢= tan-I (~)
2itr

r cos (If/ - ;' sin ¢)

PIf/ + y cos¢
2it .\

. (Y,·· m) -rSlll 1f/-7S111r

(1.21)

For use with panel codes an automatic wake sheet can be generated. The shape

of the wake sheet depends on the section characteristics and advance ratio.

Contraction effects can also be included. Any of the automatic variables can be

manuaIIy specified to provide more control and flexibility. For more information of

the wake model see [109].

Once the section curves have been generated they can be exported to another

program which can 10ft a surface through the sections to generate the blade. There are

several supported file outputs supported by Propgen: a fleximesh file for use with

Adaptflexi [112], or script files for Gridgen, CFX Build and ICEM. An additional

version of Propgen caIIed Solidprop can work with Solidworks to provide an iges file

which can be imported into many Computer Aided Design packages. Propgen has

been used successfuIIy to carry out the hydrodynamic optimisation of an electric tip

driven thruster using a panel code. In addition it provided the propeIIer geometry of a

Wageninnen propeIIer for CNC machining.

For use with the commercial grid generation package Gridgen, Propgen

generates a script file called glyph. Gridgen supports both structured and unstructured

meshes and can export grids in most commercial file formats. The script file contains

the geometry of the sections that define the propeIIer as well as connecting

information. The mesh parameters and controls are also contained in the script file

such that the whole process can be automated.

Gridgen uses transfinite interpolation [113] for faces constructed from their

outer edges. For complex curvatures this results in the surface being misinterpreted

[109]. This can be resolved by splitting the surface into smaller surfaces but this

82

restricts the mesh. An alternate method is to define the geometry using an iges file

containing surfaces instead of curves and project the mesh onto that surface.

To generate the surfaces the solid modelling package Solidworks was used to

create the propeller and domain surfaces for use with Gridgen or any other software

capable of importing iges files. The propeller geometry is automatically generated in

the solid modelling package using a built in program Solidprop, written for this

purpose.

Gridgen is a powerful structured grid generator providing excellent control on

the mesh. However, the unstructured capabilities of Gridgen were found to be limited

and the mesh generation process does not exploit many of the benefits of unstructured

meshes. ICEM was found to be more suited for unstructured meshes and has excellent

features. In addition ICEM has the capability of automatically creating inflation

layers which are crucial in obtaining good results when using unstructured meshes as

demonstrated for the wing. A script file for ICEM can be exported from Propgen to

automatically generate marine propeller meshes. In addition the propeller surface can

be created within ICEM from the existing curves producing a surface. The blade was

created from multiple B-spline surfaces each created from four surrounding curves.

The four curves were the two half sections and the leading and trailing edge curves

between those two sections. Wrapping the surface around the blade using only the two

complete sections was found to be inadequate. The leading and trailing edge curvature

was not reproduced correctly. The same was found if one surface was lofted though

all the sections.

6.3 Mesh considerations

Generating structured meshes for marine propellers can be very time

consuming. To build a structured mesh topology can be very complex resulting in

many blocks. The topology can be simplified by using degenerate blocks where a

block has 5 faces instead of six, but several solvers do not have this capability. The

alternative and most popular way is to truncate the blade tip such that there is a finite

chord at the blade tip [30]. In reality most open water marine propellers have zero

chord at the blade tip. This gives acceptable predictions as far as KT and KQ are

concerned. However, the tip vortex is strongly dependent on the tip geometry and thus

must be modelled as accurately as possible. Unstructured meshes are more versatile

when modelling complex geometries and do not encounter this problem. In addition

83

they are quicker to generate only requiring the bounding faces of the volume to

generate the mesh.

A structured mesh was generated using Propgen and Gridgen. The blade tip

was truncated to simplify the blocking structure. However it was decided quite early

on that this approximation was not acceptable for this research and instead of using a

more complicated blocking structure it was decided to use unstructured meshes

instead. This decision was also justified by the adaptive mesh friendliness of

unstructured meshes, which would prove advantageous at a later stage.

84

7 VFX procedure for Propeller modelling

In this chapter a scheme is presented for the application of the VFX method to a

marine propeller. The algorithm is described step by step and the effects of different

parameters discussed. The developed algorithm is later applied to two marine

propellers in chapters 8 & 9 and the results compared to available experimental data.

The tip vortex structure for a marine propeller is more complicated than the tip

vortex of a wing. The vortex core line follows a helical like path downstream of the

blade tip with varying pitch and contraction. In order to capture this complex vortex

an automated algorithm was devised for use with VFX. The only external input

required from the user is the desired plane spacing.

The blade tip is taken as the first jump point for the algorithm. A circular plane

having a radius 0.25 of the propeller diameter centred about the first jump point is

used to extract the stationary frame velocities. The velocities are extracted at the

points where the cell edges intersect with the plane. The VFX method is used to locate

the vortex core on the first plane. Using the velocity at the predicted vortex core a

new jump point is projected a given distance downstream. The rotation of the domain

must be taken into account when projecting the new jump point.

Figure 7.1 - YFX procedure for propellers. Red spheres are the jump points and yellow crosses the
YFX vortex cores.

85

A plane is then used to extract the velocities at the new jump point and the

procedure is repeated again. Figure 7.1 shows a graphical representation of this

procedure on the DTMB P4 I 19 propeller. The red spheres represent the jump points

and the Yellow crosses the VFX vortex cores.

Using the blade tip as the starting point for the algorithm means that the vortex is

not captured upstream. However the above procedure can be performed in the

upstream direction as well to track the vortex upstream of the starting point. A smaller

plane spacing is recommended for the upstream tracking since the tip vortex is likely

to be formed next to the leading edge of the blade which usually has a higher

curvature than the vortex helix. Thus a finer spacing will help to capture the vortex

more accurately.

The plane spacing and bounds can be varied. Because of the complex nature of

the vortex core geometry a small spacing of SOmm was chosen for the planes. If a

bigger spacing is used with small plane bounds then there is a risk that the jump point

wiII be too far away from the vortex core and it will not lie in the plane. It is clear that

a small plane spacing can be used with small planes; whereas a bigger plane spacing

requires larger planes. The computational effort increases both with number of planes

and plane size. However the computational effort increases with plane size squared so

it is better to have more small planes.

This procedure was tested on the DTMB P4119 using the velocities relative to

the rotating mesh but proved unsuccessful. The procedure was similar to the one

described above. The first jump point was the blade tip and the next plane was

projected in the direction of the relative velocity at the vortex core. The new plane

was normal to the velocity vector at the previous vortex core point. This procedure

proved highly sensiti ve to the orientation of the plane and failed after a few iterations.

The vortex decays very quickly outside the refined mesh and thus does not

propagate substantially with each mesh refinement, thus a large number of mesh

iterations are required. In order to increase the distance the vortex propagates with

each iteration, the characteristics of the identified vortex core line were used to define

a predicted vortex core downstream of the identified one. The predicted vortex core

line is a helix with its pitch and contraction the same as the average pitch and

contraction of the identified vortex core line. The mesh was then refined for both

identified and predicted vortex core lines. As long as the predicted vortex is near the

86

vortex region the number of refinement iterations is reduced dramatically. It is

possible that after the use of the predicted vortex that only the VFX method needs to

be applied once to locate the resulting vortex core line if needed.

87

8 DTMB P4119 and numerical model

The DTMB P4119 is a three bladed open water marine propeller tested at the

David Taylor Model Basin [77]. It is a propeller frequently used for numerical method

validation and was used at the Propeller RANS/Panel workshop [114]. Extensive tests

were performed both in the towing tank and water tunnel and detailed data is

available.

The propeller was tested in the 24"circulating water tunnel at the David Taylor

Model Basin and Laser Doppler Velocimetry CLDV) data for the boundary layer and

wake were obtained. For the open water tests the propeller was tested in a

conventional towing tank.

The geometry of the water tunnel is shown in Figure 8.1. The complex

geometry of the test section was not modelled in the numerical analysis. The

numerical model was a 1200 segment containing one blade of the propeller. Rotational

image boundaries were used to model the whole propeller. This reduces the

computational size of the domain. The outer boundary was a cylinder at a diameter of

38" which is equivalent to 3 times the propeller diameter. The outer boundary was set

as a free slip wall. The geometry of the drive shaft was modelled and extended all the

way to the outlet boundary. The support struts for the drive shaft were not modelled.

The base mesh for the DTMB P4119 consisted of 315,114 cells. No clustering

of cells was performed apart from near the surfaces of the propeller. An inflation layer

on the propeller blade was also incorporated consisting of 51,000 prisms giving a y+

value ranging from 30 to 40. The mesh was then progressively refined in the region of

the tip vortex according to the solution and the VFX method. The maximum cell edge

length in the refinement area was progressively decreased for each mesh.

88

rA

f----26"'---.,
A---;co-----.lr-----;::-o -j.~r- Hatch Cover

Water
~

-------5' 3"'------------1

Hatch Cover

r
~-itf-t\Tt-----'c::::::i:tli::::=r--Tr--tt------fjIt--~

l ____ ~/
Observation

Window

Figure 8.1 - Test section of the 24" VPWT at the David Taylor Model Basin

89

8.1 Results

After each solution the vortex is identified using VFX and the mesh refined in

the vicinity of the vortex core. The resulting meshes are shown in Table 8-1. The

mesh is refined around the vortex core line. A maximum cell edge length and number

of cell layers away from the vortex core line having this property are specified. This

results in a cylindrical region of refined cells with the vortex core line being its axis.

This is called the outer refinement region. In addition a smaller cylinder with a finer

mesh can al so be specified the same way called the inner refinement region . As

explained previously a predicted vortex core line is also used for refinement. No inner

refinement region was specified for the predicted core for any of the meshes.

Figure 8.2 - Refinement regions for propeller mesh

90

As the mesh is refined the vortex propagates further downstream. After 4

refinements the vortex no longer propagated downstream with further refinements.

Several mesh densities and strategies were used to propagate the vortex further

downstream with no success. A finer mesh was generated near the propeller and the

predicted refinement region was shortened in an attempt to cluster more cells near the

blade. The predicted region was deemed not to need refinement since the vortex

dissipated well upstream. Meshes Sb toSd were the resulting meshes (Table 8- I),

however the vortex did not propagate any further than O.SD.

Use of a transient solution solved the problem and the vortex propagated to

I .3D downstream to the end of the refined mesh where it quickly dissipated within a

short distance. This was for mesh Sd using one timestep of 0.1 s. This is because the

vortex has a tendency to wander even for steady flow problems. Using a steady state

scheme smears the wandering vortex over several timesteps where as a transient

scheme does not have this problem. By solving the flow as a transient problem no

averaging of the flow is performed and thus no smearing of the tip vortex is present.

The unsteadiness of the forces is presumed small enough such that there is no need to

solve for several timesteps and average the forces.

Mesh
Inner Outer Predicted

Max length Layers Max length Layers Max length Layers
Base - - - - - -

Refined 2 - - 0.004 5 - -

Refined 3 - - 0.003 4 0.005 4

Refined 4 - - 0.0015 5 0.004 5

Refined 5 - - 0.001 5 0.003 5

Refined 5b 0.001 1 0.003 4 0.004 5

Refined 5c 0.001 5 0.004 5 0.004 5

Refined 5d - - 0.0015 6 0.004 5

Refined 6

Table 8-1 - Mesh properties for refined meshes

91

With progressive refinement in the tip vortex region the predicted thrust and

torque are in better agreement with the open water experimental results. At the same

time the tip vortex is able to propagate further downstream. The over prediction of the

torque coefficient is a common problem of RANS predictions and it is accounted to

the inability of the k-£ model to predict the stagnation pressure on the blade [115].

The k-£ model has been shown by Bulten et al. [115] to produce higher stagnation

pressures thus over predicting the torque coefficient.

Mesh Size KT ~% KTexp Ka ~% Ka exp

Base 315,114 0.155 6.4 0.0286 2.1

Refined 2 367,247 0.153 4.8 0.0308 9.9

Refined 3 1,380,466 0.152 3.9 0.0305 9.1

Refined 4 1,205,930 0.151 3.6 0.0302 7.8

Refined 5 2,437,495 0.144 -1.2 0.0293 4.6

Refined 5b 1,461,281 0.155 6.5 0.0310 10.7

Refined 5c 1,906,560 0.151 3.6 0.0305 9.1

Refined 5d 2,650,308 0.158 8.2 0.0310 10.7

Refined 6 7,007,050 0.172 17.5 0.0328 17.2

Refined 6 unsteady 7,007,050 0.145 -0.9 0.0292 4.2

Experimental 0.146 0.028

Table 8-2 - KT and KQ variation for DTMB4ll9 with different meshes

92

8.2 Comparison with LDV data

8.2.1 Section pressure distribution

Comparing the Cp distribution for the section at 0.9 rlR similar results can be seen

as compared to the Grenoble workshop [114]. The Cp is over predicted near the

leading and trailing edge which was typical of most results. This is because the Cp has

been calculated from the pressure on the blade surface whereas the experimental Cp

was calculated using the LDV data by taking the velocity at the edge of the boundary

layer. A comparison of these two calculation methods in the Grenoble Workshop by

Stanier and Sanchez-Caja [116, 117] showed better agreement near the leading and

trailing edge with a significant change in the trailing edge area. The large difference

between the two calculation methods is associated with viscous effects near the

trailing edge and measurement difficulties at the leading edge [1l7].

0.15

0.10 ..

CL o 0.05 ..
I

0.00

-0.05

......

..

___ ---<o----"-.. - _ ~

............. --.. _ .. -----

..
....

.. ..
....

..

-- LDVdata
.. CFD

-0.1 0 +--,--,--.,.--.--+--.--.--.---.---+---r---r-.--.--+--.--r--r---,--i---,r--cr--.--r-I-

0.0 0.2 0.4 0.6 0.8 1.0

x/c

Figure 8.3 - Cp comparison for LDV and CFD at O.9rIR

93

8.2.2 Circumferential averaged data

Comparing the average circumferential velocities from the experimental LDV

results with the results from the 5d unsteady simulation, we can see that there is very

good agreement. The V x-I is in particularly good agreement in the vicinity of the

blade tip. The point of change in sign of Vx-l is within 0.01 rlR of the experimental

results which is an improvement over all the methods in the Grenoble Workshop

[114] which were at 0.025 r/R. This improved agreement is true for V t and Vr in the

vicinity of the blade tip. V t is over predicted near the hub which was typical of all the

methods in the Grenoble Workshop.

0.4

• Vx-1

--s:;;r- V;V

0.3 ----- VVV
---0--- Vx-1 Exp

............ V/V Exp

0.2 V;V Exp

;>
>~ /'

0.1
..-)/

I
X

> \ \
0.0

\ ---------\
~

-0.1
"y~.

0.2 0.4 0.6 0.8 1.0 1.2

r/R

Figure 8.4 - Average circumferential velocity comparison for CFD and LDV

94

8.2.3 Phase averaged data

The phase averaged data for a plane O.328IxlR downstream of the propeller is

compared with the LOV results at two radii near the tip vortex. The point where V x-I

and Vr change sign is located at O.924r/R. Most of the methods at the Grenoble

workshop failed to capture the detail in the flow well near the tip vortex. One of the

difficulties is that in order to compare the data at a specific radius the tip vortex

contraction has to be calculated correctly. If the tip vortex is not at the correct radius

then the data will be very different. The Grenoble editors recommended that the

analytical data be corrected depending on the tip vortex contraction for better

agreement. None of the contributors stated if the results they presented were corrected

or not. However the results presented in this work have no correction at all.

From Figure 8.5 & Figure 8.6 we can see an improvement over the results

presented in the Grenoble workshop. The tip vortex contraction and position is

captured correctly as can be seen from the point of inflection for Vx, Vr and position

of the peaks for V t • For both radii the position of the peaks and inflections are

predicted very well. The peak values are over predicted for Vt and Vr and under

predicted for V x. However this is still an improvement over the results presented at

the Grenoble workshop, especially for Yr. All the methods substantially under

predicted the peak magnitudes for Yr. The best result under predicted the peaks by at

least OAVr whereas the results presented here over predict Vr by a similar amount.

The best performing method at Grenoble was by Chen and Stern [118]. They used a

structured grid with clustering of 20x20 near the estimated tip vortex region. The

equations were solved as unsteady with time serving as a convergence parameter. As

discussed and shown previously the unsteady solution performs much better with

respect to the tip vortex and it is not surprising that this method was the best

performing at Grenoble with respect to the tip vortex. The clustering of the grid near

the tip vortex was also fundamental to the success. At short distances downstream of

the blade it is easy to estimate the tip vortex a priori, however further downstream

this method would prove impractical and the results would deteriorate if the clustering

is not in the region of the tip vortex.

95

0.8

0.6

0.4

0.2

-> 0.0

>>:...
-0.2

..-
'x

> -0.4

-0.6

-0.8

-1.0

-1.2

0

... ~ ~
...........

' . '.
'. '.

20

" . . '.

40

.
.

'.'

60

e [degrees]

00 ... • .. ""
o .0 ..

Vx-1 LDV

--0- - Vt LDV

---- Vr LDV

VX-1 CFD

Vt CFD

Vr CFD

80 100

Figure 8.5 - Phase averaged comparison at O.9rlR and O.3821xJR

0.5

-> 0.0

>>:...

'x
> -0.5

-1.0

o 20

......
.......

40

'. ".
' . . . • .

• .
• • • . " ...

60

""0 o 0
o

e [degrees]

." "
" " " " " " . ••...

",
" "

Vx-1 LDV

--0-_ Vt LDV

---- Vr LDV
Vx-1 CFD

Vt CFD

Vr CFD

80 100

Figure 8.6 - Phase averaged comparison at O.924r/R and O.3821xJR

96

120

120

9 INSEAN E779 A and numerical model

The INSEAN E799A is a four blade propeller, Wageningen modified type,

skewed, with a uniform pitch (P/D 1.1), a forward rake angle of 4°3" and a diameter

of 227.2 mm. The propeller was designed at the end of the 50' s for a twin-screw ferry.

In the 60's the model propeller was selected as the reference model for the Italian

Navy Cavitation Tunnel (C.E.I.M.M.) where all the measurements were carried out

[119] .

Extensive tests were performed both in the towing tank and water tunnel and

detailed data is available both from LDV [120,121,122,123,124,125,126,119] and

PIV [125,126, 127, 128] tests.

[IH[Of lUll:lUU~ T4C~H[$'i

[~PANOW S[AA[

MA.XltJUIA THrCk'NESS LINE

IT ===
~ ~ . ~

t= "'

.8

.6

.5

.3
fF"-".;;''---t- .25

f '" ----t
".3 -------i

'SIDE ELEVATION

Figure 9.1 - Geometry of the INSEAN E799A four bladed propeller model

rT
~ ~

The propeller was tested in the C.E.I.M.M. tunnel. The test section is a square,

closed jet type with dimensions of 0.6m x 0.6m x 2.6m. The propeller is dri ven by an

upstream shaft. The geometry of the test section was not modelled in the numerical

analysis. The test section in the numerical model was circular, like in the DTMB

P4119 case. The numerical model was a 90° segment containing one blade of the

propeller. Rotational image boundaries were used to model the whole propeller. The

outer boundary was a cylinder at a diameter equivalent to 3 times the propeller

diameter. The outer boundary was set as a free slip wall. The full geometry of the

97

drive shaft was modelled and extended all the way to the inlet boundary. Supports

struts and other protrusions were neglected.

The base mesh for the E799A consisted of 110,013 cells. No clustering of

cells was performed apart from near the surfaces of the propeller. In order to simplify

the mesh generation due to time restrictions no inflation layer was used near the blade

surfaces. Instead the near wall functions were relied upon for near wall modelling

with a y+ value of 100. The mesh was then progressively refined in the region of the

tip vortex according to the solution and the VFX method. The maximum cell edge

length in the refinement area was progressively decreased for each mesh.

9.1 Results

The refinement procedure was similar to the DTMB P4l19. As the mesh is

refined the vortex propagates further downstream. The thrust and torque improves

with mesh refinement. The thrust is predicted well whereas the torque is under­

predicted in the order of 7%. This difference can be attributed to the lack of mesh

density in the viscous shear layer since no inflation layer was used as previously

explained. The difference for not resolving the boundary and wake adequately is

significant as demonstrated for the wing case (5.3).

Three unsteady iterations were carried out each having three timesteps of 0.1 s.

The previous simulation was used as the starting point for the subsequent run. The

results presented are the forces for the final timestep of each simulation. The force

prediction showed improvement with increasing number of timesteps. In addition the

vortex propagated further downstream.

Mesh Size KT ~% KT exp Ka ~% Ka exp

Base 110,013 0.158 -2.7 0.0293 -7.9

Refined1 569,076 0.160 -1.5 0.0298 -6.3

Refined 2 1,067,513 0.159 -1.6 0.0294 -7.4

Refined 3 1,163,111 0.157 -2.9 0.0297 -6.5

Refined 4
1,620,593

0.157 -3.1 0.0293 -8.0

Refined 4 uns 0.161 -0.8 0.0299 -5.9

Refined 5 0.155 -4.2 0.0291 -8.4

Refined 5a uns3
3,041,667

0.156 -3.6 0.0293 -7.9

Refined 5b uns6 0.159 -1.9 0.0295 -7.2

Refined 5c uns9 0.159 -1.8 0.0295 -7.2

Experimental 0.162 0.0318

Table 9-1 - INSEAN E799A force comparison

98

9.2 Comparison with LDV data

9.2.1 Circumferential averaged data

Comparing the average circumferential velocities from the experimental LDV

results with the results from the 5c unsteady simulation, we can see that there is very

good agreement. Compared with the DTMB P4119 the flow acceleration is more

uniform from hub to tip. This is also reflected in the LDV data. The V x-I shows the

correct trend and again is in particularly good agreement in the vicinity of the blade

tip with regards to the span position of rapid change in V x-I. Vt and Vr show

agreement over the whole span with the exception being Vr at the blade tip. There is a

sudden reduction in LDV data Vr at the blade tip which is not reflected in the CFD

results.

0.4

0.2

-:>
>~

0.0
T""" ,

X

>

-0.2

-0.4

0.2

0-.0-._. _.-0-.-:.:8=.:.-*._.
-zr =~--v-~-~~~OL_

fr----

if
••

.....•.. .:.t~

--v-

...... ~.~~- ;:.:.­
~.;;;...:..-

--~ .. ----.......... •... ---<>---
............

-·-cr·-

0.4 0.6 0.8 1.0

r/R

Figure 9.2 - Circumferential averaged data at 0.20 x/R

99

Vx-1

V;V

Vt/V
Vx-1 Exp

VtN Exp

V;V Exp

1.2

9.2.2 Contour plot comparison

The contour plots for axial, radial and tangential velocity are compared at

0.20 xlR and 0.65 xlR with the data from the LDV tests. The contour plots are plotted

side by side (Figure 9.3 - Figure 9.5). The LDV data is available for all four blades of

the propeller. Each blade passage shows slightly different results . Only 1800 segments

are displayed for the LDV data. The data from the numerical simulation are

periodically symmetric; however for viewing purposes an 1800 segment is also

displayed. The propeller is rotating clockwise in all the contour plots .

From Figure 9.3 it can be seen that there is reasonable agreement with the

LDV data, with the position of the tip vortex being predicted very well. The axial

velocity deficit for the region of fluid outward of the tip vortex is also captured very

well. The accelerated region vi sible in the LDV data is present in the simulation

results; however it is larger than the experimental data. In addition the wake is not

very well defined. Thi s is because the mesh resolution in the way of the wake is not

adequate. As indicated before (5.3) to capture the wake correctly a small mesh

spacing is required, in the order of 20 nodes across the wake. However the position of

the wake is predicted well as well as the decelerated flow region near the hub.

Axial Solution
(Contour 3)

1 . 283e+OOO
1 . 243e+OOO
1 . 20Se+OOO
1 . 168e+OOO

-1. 13 1e+OOO
- 1. 096e+OOO

1 . 062e+OOO
1 . 030e+OOO
9 . 977e -OOl
9 . 668e-001
9 . 36ge-OOl
9.07ge-OOl
8 . 798e - 001
8 . S26e-OOl
8 . 262e -OOl
8.006e - OOl
7 . 7S8e-OOl
7 . S18e - OOl
7 . 28Se - OOl
7 . 060e -OOl

Figure 9.3 - Axial velocitylU contours at 0.20 xIR. CFD left - LDV right

100

The comparison at 0 .65 xlR (Figure 9.4) gives similar observations. There is

good agreement in the vortex position and general characteristics. The large deficit in

the hub has disappeared as reflected in the LOY data.

The wake roll-up is clearly visible in the LOY data where as it is not apparent in

the numerical results. This again is down to the coarse mesh in the vicinity of the

wake. As before, the wake velocity deficit is not captured due to this. The wake ro11-

up and velocity deficit was captured in the wing case where the mesh in the way of

the wake was more refined .

Axial Solution
(Contour 3)

1.283e+OOO
1 . 243e+OOO
1.205e+OOO
1 . 1G8e+OOO
1.131e+OOO

- 1. 096e+OOO
1.0G2e+OOO
1 .0 30e+OOO
9.977e - 001
9 . 668e - 001
9.36ge-001
9.07ge-OOl
8 . 798e - OOl
8 . S26e-001
8.262e-OOl
8 . 00Ge-OOl
7 .7S8e-OOl
7 .S18e- OOl
7 .28 5e -OOl
7.060e-OOl

1m sA-l]

I
Z

X. y

Figure 9.4 - Axial velocityfU contours at 0.65 xIR. CFD left - LDV right

The radial velocity comparison (Figure 9.5Figure 9.6) shows similar

conclusions to the ax ial results . The vortex is in the correct position, with an

inadequately resolved wake as explained previously.

The LOY vortex has a smaller diameter than the CFO results. We can see that

the vortex cuts across the sampling plane. There is the outward radial velocity region

which cOITesponds to the right hand side of the counter clockwise rotating vortex ,

followed by the inward radial velocity caused by the opposite side of the vortex

(marked by alTOWS on the CFO results in Figure 9.6) .

101

Vr
(Contour 4)

3.000e-OOl
2.57ge-OOl
2 . 158e-001
1.737e-OOl

- 1. 316e - OOl
- 8. 947e-002

4 . 737e-002
5 . 263e-003
-3.684e-002
-7 . 895e -002
- 1.211e - OOl
-1.632e-OOl
-2 . 053e-OOl
-2 .474e-OOl
-2 . 895e-OOl
- 3 . 316e -OOl
-3.737e-OOl
-4 . 158e-OOl
-4 . S7ge - OOl
-S . OOOe-OOl

[m 5" -1]

jZ
x.. y

Figure 9.5 - Radial velocity contours at 0.20 x1R. CFD left - LDV right

Figure 9.6 - Radial velocity contours at 0.6SxIR. CFD left - LDV right

102

10 Conclusions

The aim of this research was to develop a vortex identification algorithm capable

of being used for tip vortex mesh refinement for marine propellers. Such a method has

been developed and applied in conjunction with mesh refinement. The scheme

successfully identified the tip vortex for a wing and two propeller geometries. The

results show an improvement in KT and KQ prediction with each mesh refinement. In

addition it has been demonstrated that the steady state RANS equations smooth out

the tip vortex structure which has difficulty propagating downstream. Using an

unsteady formulation of the RANS equations allows the vortex to develop at

significantly larger distances downstream of the propeller as observed in experimental

tests.

The Vortfind method was modified and refined to make its use with mesh

adaptation easier. The method was reformulated such that it can be carried out for an

arbitrary number of sectors. In addition the I function was normalised to aid its use

with threshold type adaptation. The method was applied to 2D cases to study the

effects of the governing parameters, showing good results.

The method was extended for 3-D cases, by the use of planes. The resulting VFX

algorithm was initially tested on a wing. The VFX was able to identify the vortex core

with great accuracy, within a computational cell of the visual location of the vortex.

The VFX method was then used to refine the mesh in the vortex region of the wing.

The position of the vortex core was dependant on the mesh density stabilising for the

finer grids. The vortex velocity profiles also changed significantly with varying mesh

spacing.

The effect of the refinement on the forces and the flow has been clearly

demonstrated. In addition simple wake capture algorithm was developed and used to

refine the wake using prisms instead of tetrahedral to limit the mesh overhead. Both

vortex and wake refinement showed improved agreement with the experimental

results.

103

10.1 Vortex capture

From the results of the mesh study it has been shown that at least15

computational nodes across the vortex core are required to capture the flow of a

vortex. This agrees with DacIes and ZiIIiac [41]. In addition it has been shown that the

potential region of the vortex must also be captured correctly in order to get the

correct answer. If the mesh resolution in the outer region is not adequate the vortex

core wiII not be correct even if the mesh resolution is adequate.

10.2 Propeller tip vortex

The process was automated and applied to propeIIers where the method

succeeded to track the complex helicoidal blade tip vortex. The starting point

specified as the blade tip and the VFX algorithm automaticaIIy generated the

subsequent planes depending on the vortex core line identified. The propagation of

the tip vortex further downstream was found to be very short with each refinement

step. To accelerate the propagation the mesh was refined on a predicted vortex core

line which had a helicoidal shape with its pitch dependant on the upstream identified

tip vortex. This method successfuIIy sped up the vortex propagation downstream

typicaIIy requiring half the mesh adaptation steps than the normal procedure.

Once more the forces showed improvement over the unrefined mesh when

compared to experimental results. Apart from mesh refinement there was a marked

improvement in capturing the tip vortex by running a few iterations with an unsteady

scheme. Both the vortex dissipation and force discrepancy showed marked reductions.

If the grid is refined enough in the tip vortex region then it is possible to use

multi phase models to capture the tip vortex cavitation. If this is modeIIed successfuIIy

it will provide better understanding of the tip vortex physics. Before a solution to this

problem can be obtained a suitable mesh must be generated. This work wiII provide

the tools to generate such a refined mesh.

10.3 Structured vs. Unstructured

Structured meshes inherently have the boundary layer region extend downstream

in the wake, which give better results. However this does not automaticaIIy guarantee

better results with structured meshes. For simple cases such as the wings modeIIed

104

here the vortex position and wake are more or less straight downstream of the wing.

In other cases the blocking has to be modified to ensure that the fine mesh lies in the

wake and vortex otherwise they will not be captured. This is the case for propellers

where the vortex and wake have a helicoidal shape. Stanier reports that wake aligned

structured meshes gi ve better results [107]. Even for structured meshes knowing the

vortex position can be advantageous in the meshing of future simulations or even with

the use of moving meshes.

lOA Vortex identification methods on planes

Sujudi and Haimes [63] stated that plane methods were laborious. This is not

entirely true. It has been shown here that plane methods can easily be implemented

even for a vortex which has a helicoidal path. In addition, the computational effort is

substantially reduced due to the limited area of over which the method works.

However as the number of vortices increases plane methods do become more difficult

to implement. The method developed here can handle multiple vortices as long as

their axes are within 30-40° of each other since the Vortfind method is relatively

insensitive to plane alignment with the vortex axis [1]. For multiple vortices that have

their axis at larger angles the method will have to be extended such that there is

starting plane for each vortex. Then using the tracking procedure described for the

propeller on each individual vortex they can be identified without any restrictions on

the vortex paths.

10.5 Final Remark

The vortex identification scheme developed here is not limited to tip vortex flows.

It is a potentially powerful tool applicable to all swirling flows and the author hopes

that future researchers will extend, refine and use this tool for future research.

105

References

1 PEMBERTON RJ, "A vortex identification technique for grid adaptation", PhD

thesis, School of Engineering Sciences, Ship Science, 2003

2 PEMBERTON RJ, TURNOCK SR, DODD TJ, ROGERS E, "A novel method for

identifying vortical structures", Journal of Fluids and Structures, 16(8), pp. 1051-

1057,2002

3 RINA, "World's largest composite propeller successfully completes ship trials",

The Naval Architect July/August, 2003

4 ARNDT REA, "Cavitation in vorticalflows", Annu. Rev. Fluid Mech, 34:ppI43-

175,2002

5 ITTC, "The specialist committee on cavitation induced pressures: Final report

and recommendations to the 23rd lITe', Proceedings 23rd ITTC, VoUI, 2002

6 KUIPER G, "New developments around sheet and tip vortex cavitation on ships'

propellers", CAV2001: 4th International Symp. On Cavitation, Pasadena, 2001

7 ANDERSEN P, BRESLIN JP, "Hydrodynamics of ship propellers", Cambridge Univ.

Press., 1995

8 LEWIS EV, "Resistance, Propulsion and Vibration", Principles of Naval

Architecture, Volume II, SNAME, pp.165, 1988

9 RANKINE WJM, "A manual of civil engineering" Charles Grifin and Co, 4th

edition, 1865

10 TAYLOR DW, "Some aspects of the comparison of model and full-scale tests",

NACA, Report 219

11 BETZ A, "Schraubenpropeller mit geringstem Energieverlust", K. Ges. Wiss,

Gottingen Nachr. Math.-Phys. ppI93-217, 1919

12 GOLDSTEIN S, "On the vortex theory of screw propellers", Proc. R. Soc. London

Ser. A 123:440-465, 1929

13 PRANDTL L, "Application of modern hydrodynamics to aeronautics", NACA

Annual Report, 7th, pp 157-215, 1921

106

14 LERBS HW, "Moderately loaded propellers with a finite number of blades and an

arbitrary distribution of circulation", SNAME Trans. 60:73-117, 1952

15 SPARENBERG JA, "Application of lifting surface theory to ship screws", Proc. K.

Ned. Akad. Wet.-Asterdam, Ser. B62(5), pp286-298, 1959

16 PIEN PC, "The calculation of marine propellers based on lifting surface theory", J.

Ship Research, 5(2), pp 1-14, 1961

17 KERWIN JE, "The solution of propeller lifting surface problems by vortex lattice

methods", Report Department Ocean Engineering MIT, 1979

18 VAN MANEN JD, BAKKER AR, "Numerical results of Sparenberg's lifting surface

theory of ship screws", Proc. 4th Symposium on Naval Hydrodynamics, pp63-77

Washington, 1962

19 ENGLISH JW, "The application of a simplified lifting surface technique to the

design of marine propellers", Ship Div. Natl. Phys. Lab., Fetlham, England, 1962

20 BROCKETT TE, "Lifting surface hydrodynamics for design of rotating blades",

Proc. SNAME Propellers '81 Symp., Virginia, 1981

21 GREELEY OS, KERWIN JE, "Numerical methods for propeller design and analysis

in steady flow", SNAME Trans. 90:415-453, 1982

22 HESS JL, V ALAREZO WO, "Calculation of steady flow about propellers by means

of a surface panel method", AIAA Paper No. 85-0283, 1985

23 HESS JL, "Review of integral-equation techniques for solving potential-flow

problems with emphasis on the surface-source method", Comput. Methods Appl.

Mech. Eng., 5, pp.145-196, 1975

24 PASHIAS C, TURNOCK SR, ABU-SHARKH S, "Design optimisation of a bi­

directional integrated thruster", SNAME Propeller/Shafting Symposium 03, Virginia

Beach USA, Sept 2003

25 KIM HT, STERN F, "Viscous flow arollnd a propeller-shaft configuration with

il~finite pitch rectangular blades", Journal of Propulsion and Power, Vol.6, No.4,

pp.434-444, 1990

26 UTO S, "Computation of incompressible viscolls flow around a marine propeller",

Journal of SNAJ, Vol 172, pp.213-224, 1992

107

27 STANIER MJ, "Design and evaluation of new propeller blade sections", 2nd

International STG Symp. On Propu1sors and Cavitation, Hamburg, Germany, 1992

28 CHEN B, STERN F, KIM WJ, "Computation of unsteady marine propulsor blade and

wake flow", Proc 20th ONR Symposium on Naval Hydrodynamics, Santa Barbara,

1994

29 ASDEL-MAKSOUD M, MENTER FR, WUTTKE H, "Numerical computation of the

viscous flow around series 60 C!3=0.6 ship with rotating propeller", Proc. 3rd Osaka

Colloquium Advanced CFD Applications to Ship Flow and Hull Form Design, pp.25-

50, Osaka, 1998

30 STANIER MJ, "Numerical prediction of propeller scale effect", PhD. Thesis,

University of Southampton, 2001

31 BULL P, "The validation ofCFD predictions of nominal wake for the SUBOFF

fully appended geometry", 21 st ONR Symposium on Naval Hydrodynamics, pp 1061-

1076, 1996

32 IITC, "The propulsion committee: Final report and recommendations to the 22nd

lITe', Proceedings 22nd ITTC, Seoul and Shanghai, 1999

33 MARCHAl CA, "Aero-hydrodynamics of sailing", 2nd Edition, Ad1ard Cole

Nautical, 1979

34 THEODORE TA, "Introduction to the aerodynamics of flight", SP-367, Scientific

and Technical Information Office, National Aeronautics and Space Administration,

Washington, D. C. 1975

35 KRAMER M, "Boundary layer stabilization by distributed damping", Journal of

Aerospace Science 24, 1957

36 LUGT HJ, "Vortex flow in nature and technology", New York, John Wiley & Sons,

1983

37 LANCHESTERF, "Aerialflight, Vol. I: Aerodynamics", London: Constable, 1907.

38 PRANDTL L., "Essentials offluid dynamics", B1ackie & Son, 1952

39 PRANDTL L, TIETJENS OG, HARTlOG J, "Applied hydro and aeromechanics."

London, England: McGraw-Hill Book Company, Inc., 1934.

108

40 SPALART PR, "Airplaine trailing vortices", Annu. Rev. Fluid Mech. 30:107-138,

1998

41 DACLES-MARIANI J, ZILLIAC GG, "Numerical/Experimental study of a wingtip

vortex in the nearfield", AIAA Journal, Vo1.33, No.9 pp.1561-1568, 1995

42 VIOT X, FRUMAN D, DENISET F, BILLARD J, "Numerical simulation of tip vortices

roll-up", 22nd Symposium on Naval Hydrodynamics, 2000

43 SPALL RE, "Numerical study of a wing-tip vortex using the Euler equations",

Journal of Aircraft, Vo1.38, No.1, 2001

44 BERNTSEN GS, KJELDSEN M, ARNDT REA, "Numerical modelling of sheet and tip

vortex cavitation with Fluent 5", CA V200l: session B5.006, 2001

45 HSIAO CT, CHANINE GL, "Scaling of tip vortex cavitation inception noise with a

bubble dynamics model accounting for nucleus size distribution", International Symp.

On Cavitation Inception, Honolulu, 2003

46 MAVRIPLIS DJ, "Unstructured grid techniques", Annu. Rev. Fluid. Mech.,

29:473-514, 1997

47 MULLER JD, GILES MB, "Solution adaptive mesh refinement using adjoint error

analysis", AIAA Paper 2001-2550,2001

48 NITHIARASU P, ZIENKIEWICZ OC, "Adaptive mesh generation for fluid mechanics

problems", Int. J. Numer. Meth. Engng. 47:629-662, 2000

49 MA VRIPLIS DJ, "Adaptive meshing techniques for viscous flow calculations on

mixed element unstructured meshes", Int. J. Numer. Meth. Fluids, 34: 93-111, 2000

50 BOTTASSO CL, SHEPHARD MS, "Finite element adaptive multigrid euler solver for

rotary wing aerodynamics", AIAA Journal, Vo1.38, No.1, pp 50-56, 2000

51 LOHNER R, "Mesh adaptation in fluid mechanics", Engineering Fracture

Mechanics, Vo1.50, No.5/6, pp.819-847, 1995

52 PELLETIER D, "Adaptive finite element computations of complex flows", Int. J.

Numer. Meth. Fluids 31: 189-202, 1999

53 BARTH TJ, "Aspects of unstructured grids", VKI Lecture Series, 1994-05, revised

February 1995

109

54 ROGERS SE, ROTH K, NASH SM, BAKER MD, SLOTNICK JP, WHITLOCK M, CAO

HV, "Advances in overset CFD processes applied to subsonic high-lift aircraft", 18th

AIAA Applied Aerodynamics Conference, AIAA 2000-4216, Colorado, August 2000

55 CHAN WM, GOMEZ III RJ, ROGERS SE, BUNING PG, "Best practises in overset grid

generation", 32nd AIAA Fluid Dynamics Conference, AIAA 2002-3191, Missouri,

June 2002

56 DINDAR M, SHEPHARD MS, FLAHERTY JE, JANSEN K, "Adaptive CFD analysis for

rotorcraft aerodynamics", Comput. Methods Appl. Mech. Engrg. 189: 1055-1076,

2000

57 LEVY Y, DEGAN I D, SEGINER A, "Graphical visualization of vortical flows by

means ofhelicity", AIAA Journal, Vol.28, No.8, pp. 1347-1352, August 1990

58 STRAWN RC, KENWRIGHT DN, AHMAD J, "Computer visualisation of vortex wake

systems", AIAA Journal, Vol.37, No.4, pp. 511-512, April 1999

59 SADARJOEN IA, POST FH, MA B, BANKS DC, PAGENDARM H-G, "Selective

visualization of vortices in hydrodynamic flows", IEEE Visualization' 98, pp.419-422,

October 1998

60 BERDAHL CH, THOMPSON DS, "Eduction of swirling structure using the velocity

gradient tensor", AIAA Journal, Vo1.31, No.1, pp. 97-103, August 1990

61 JEONG J, HUSSAIN F, "On the identification of a vortex", Journal of Fluid

Mechanics, 285:69-94, 1995

62 BANKS D, SINGER B, "A predictor-corrector technique for visualizing unsteady

flow", IEEE Transactions Visualization and Computer Graphics 1: 151-163, 1995

63 SUJUDI D, HAIMES R, "ldent!fication of swirling flow in 3-D vetor fields", AIAA

12th Computational Fluid Dynamics Conference, Paper 95-1715, June 1995

64 ROTH M, PEIKERT R, "A higher-order method for finding vortex core lines",

Proceedings of the conference on Visualization '98, North Carolina, 1998

65 JIANG M, MACHIRAJU R, THOMPSON D, "A novel approach to vortex core region

detection", Joint Eurographics - IEEE TCVG Symposium on Visualization, pp.217-

225, May 2002

110

66 JIANG M, MACHIRAJU R, THOMPSON D, "Detection and visualization of vortices",

Department of Computer and Information Science, Ohio State University, 2002

67 GODO M, SCHECTERMAN M, LEGENSKY S, HAIMES R, "Applicability of vortex

cores to CFD simulations with realistic geometry models", 39th AIAA Aerospace

Sciences Meeting and Exhibit, AIAA-2001-0914, Reno, January 2001

68 JIANG M, MACHIRAJU R, THOMPSON D, "Geometric verification of swirling

features inflow fields", IEEE Visualization '02, pp.307-314, October 2002

69 MURA Y AMA M, NKAHASHI K, SAWADA K, "Simulation of vortex breakdown using

adaptive grid refinement with vortex-centre identification", AIAA Journal, Vo1.39,

No.7,2001

70 KENWRIGHT D, HAIMES R, "Vortex identification - applications in aerodynamics:

A case study", Proc. of the 8th conference on Visualization '97, Phoenix, Arizona,

United States, 1997

71 CESRAL JR, LOHNER R, "Flow visualization on unstructured grids using

geometrical cuts, vortex detection and shock surfaces", 39th AIAA Aerospace

Sciences Meeting and Exhibit, AIAA-2001-09IS, Reno, January 2001

72 HENTSCHEL R, "The creation of lift by sharp-edged delta wings. An analysis of a

self-adaptive numerical simulation using the concept of vorticity content", Aerospace

Science and Technology, No.2:79-90, 1998

73 MURA Y AMA M, NAKAHASHI K, SAWADA K, "Adaptive grid refinement coupled

with vortex core identification for vortexflow simulation about a delta wing",

Proceedings of International Symposium on Computational Fluid Dynamics, Bremen,

Germany, September 1999

74 MURA YAMA M, NAKAHASHI K, OSA YASHI S, "Numerical simulation ofvortical

flows using vorticity confinement coupled with unstructured grid" AIAA-200 1-0606,

39th Aerospace Sciences Meeting and Exhibit, Reno, U.S.A., January 2001

75 MURAYAMA M, NAKAHASHI K, OSA YASHI S, "Simulation of wing tip vortices

using vorticity confinement on unstructured grid" Proc. JSASS 14th International

Sessions in 38th Aircraft Symposium, Sendai, Japan, October 2000.

76 SHEN YT, "USS Bulkeley (DDG 84) Twisted rudder coordinated trial results",

Report No. NSWCCO-SO-TR-2000/0S6

I I I

77 JESSUP S, "Experimental data for RANS calculations and comparisons

(DTMB4ii9)" 22nd ITTC Propulsion Committee, Propeller RANS/Panel Method

Workshop, Grenoble, France, April 1998

78 HSIAO C-T, PAULEY LL, "Numerical computation of tip vortex flow generated by

a marine propeller", Transactions of the ASME, Vol.l21: 638-645, 1999

79 LEE Y-T, HAH C, LOELLBACH J, "investigation of tip clearance vortex structures

through numerical flow visualization", ASME Fluids Engineering Division

Conference, FED Vo1.229: 157-165,1996

80 OH K-J, KANG S-H, "Numerical calculation of the viscous flow around a propeller

shaft configuration", International Journal of Numerical Methods in Fluids, Vol 21: 1-

13,1995

81 ABDEL-MAKSOUD M, HELLWIG KATRIN, BLAUROCK J, "Numerical and

experimental investigation of the hub vortex flow of a marine propeller", 25th

Symposium on Naval Hydrodynamics, St. Johns, 2004

82 FERZIGER JH, PERIC MP, "Computational methods for fluid dynamics", 2nd edition,

Springer, 1999

83 ANDERSON, "Computational methods for fluid dynamics: Basics with

applications", McGraw-Hill Inc., 1995

84 Fluent v6.1, FLUENT INC, 10 Cavendish Court, NH 03766, USA

85 CFX-S.l, ANSYS INC., 275 Technology Drive, PA15317, USA

86 RHIE CM, CHOW WL, "A numerical study of the turbulent flow past an isolated

aerofoil with trailing edge separation", AIAA Paper 82-0998, 1982

87 BARTH TJ, JESPERSON DC, "The design and application of upwind schemes on

unstructured meshes", AIAA Paper 89-0366, 1989.

88 ANSYS INC., "Solver theory", CFX-5 Users Manual, 2000

89 RAW M, "Robustness of coupled algebraic multigrid for the Navier-Stokes

equations", AIAA 96-0297, 34th Aerospace and Sciences Meeting & Exhibit, January

15-18, Reno, NV, 1996

90 HUTCHINSON BR, RAITHBY GO, "A multigrid method based on the additive

correction strategy", Numerical Heat Transfer, Vol. 9, pp. 511-537, 1986.

112

91 OSAMA AK, TIN-CHEE W, IHAB A, LIu CH, "Prediction of near- andfar-field

vortex-wake turbulent flows", AIAA Atmosperic Flight Mechanics Conference,

Balitimore August, AIAA 95-3470-CP, 1995

92 WALLIN S, GIRIMAJI SS, "Evolution of an isolated turbulent trailing vortex",

AIAA Journal, Vo1.38, No.4, April, 2000

93 DIETZ W, FAN M, STEINHOFF J, WENREN Y, "Application of vorticity confinement

to the prediction of the flow over complex bodies", AIAA CFO conference, Anaheim,

CA, AIAA-200 1-2642, June, 2001

94 LOHNER R, YANG C, ROGER R, "Tracking vortices over large distances", 24th

Symposium on Naval Hydrodynamics, Fukuoka, Japan, July, 2002

95 ARAKAWA C, FLEIG 0, IIDA M, SHIMOOKA M, "Numerical approach for noise

reduction of wind turbine blade tip with Earth Simulator", Journal of the Earth

Simulator, Vol.2, 11-33, March 2005

96 MENTER FR, "Two-equation eddy-viscosity turbulence models for engineering

applications", AIAA Journal, 32(8), 1994

97 PA TTENDEN RJ, TURNOCK SR, P ASH lAS C, "Oblique ship flow predictions using

identification of vortex centres to control mesh adaptation", Proc. of CFO Workshop,

pp 454-459 , Tokyo, 2005

98 PATTENDEN RJ, TURNOCK SR, BISSUEL M, PASHIAS C, "Experiments and

numerical modelling of the flow around the kvlcc2 hullform at an angle of yaw", Proc

of 5th Osaka Colloquium on advanced research on ship viscous flow and hull form

design, pp 163-170, 2005

99 SPATH, "Cluster algorithm analysis for data reduction and classification of

objects", Ellis Horwood Ltd, Chichester, 1980

tOO YIN X, GERMA Y N, "A fast genetic algorithm with sharing scheme using cluster

methods in multimodal function optimisation", Proc. of the Int. Conf. on Artificial

Neural Nets and Genetic Algorithms, pp450-457, 1993

113

101 TURNOCK SR, "Prediction of ship-rudder interaction using parallel

computations and wind tunnel measurements", University of Southampton, Ph.D

Thesis, 1993

102 ICEM 4 CFD vS.O, ICEM CFD ENGINEERING, 2855 Telegraph Avenue,

CA94705, USA

103 TURNOCK SR, QUERARD ABG, "Measurements of the evolution of the wake and

tip vortex of a control suiface undergoing periodic motion", 2ih American Towing

Tank Conference, St. John's, Canada, August 2004

104 SANCHEZ-CAJA A, RAUTAHEIMO P, SIIKONEN T, "Simulation of incompressible

viscous flow around a ducted propeller using a RANS equation solver", 23 rd

Symposium on Naval Hydrodynamics, 2001

105 WS ATKINS CONSULTANTS AND MEMBERS OF THE NSC, "Best practice guidelines

for marine applications of computational fluid dynamics," URL:

http://pronet.wsatkins.co.uklmarnetiguidelines/guide.html/ [15 Dec 2002].

106 ITTC, "Report of resistance and flow committee", 20th ITTC San Francisco,

1993

107 STANIER M, "Numerical prediction of propeller scale effect", University of

Southampton, Ph.D Thesis, 200 I

108 KERWIN JE, "Marine propellers", Ann. Rev. Fluid Mech., 18:367-403, 1986

109 PASHIAS C, TURNOCK SR, "Hydrodynamic design of a bi-directional rim-driven

thruster", Ship Science report 128, University of Southampton, 2003

110 KOUH JS, LiANG WY, "Development of a computer aided propeller design

system", Journal SNAME, Vo1.I4(2), pp.I-17, 1995

111 KOUH JS, HAN CH, CHEN YJ, "A new geometric modelling method for marine

propellers", 9th Symp. on Practical Design of Ships and other Floating Structures,

Luebeck, 2004

112 RYCROFT NC, TURNOCK SR,"Three dimensional multiblock grid generation:

Fleximesh", Ship Science Report I 0 I, University of Southampton, November 1997

114

113 HALL CA, "Construction of curvilinear co-ordinate systems and applications to

mesh generation" International Journal for Numerical Methods in Engineering, 7:461-

477, 1973.

114 GINDROZ B, HOSHINO T, PYLKKANEN JV, editors, "Propeller RANS/Panel

method workshop proceedings" 22nd ITTC Propulsion Committee, Grenoble, 1998

115 BULTEN NWH, OPREA lA, "Consideration on deviations in torque prediction for

propellers and waterjets with RANS codes", Marine CFO 2005, pp.79-87,

Southampton, 2005

116 STANIER MJ, "The application of a RANS code to model propeller DTRC4119",

22nd ITTC Propulsion Committee Propeller RANSIPANEL Method Workshop,

Grenoble, April, 1998

117 SANCHEZ-CAJA A, "P4119 RANS calculations at VI'T', 22nd ITTC Propulsion

Committee Propeller RANSIPANEL Method Workshop, Grenoble, April, 1998

118 CHEN B, STERN F, "RANS simulation of marine-propulsor P4119 at design

condition", 22nd ITTC Propulsion Committee Propeller RANS/PANEL Method

Workshop, Grenoble, April, 1998

119 CALCAGNO G, 01 FELICE F, FELLI M, FRANCHI S, PEREIRA F, SALVATORE F,

"The INSEAN E779a propeller test case: a database for CFD validation", INSEAN

(Italian Ship Model Basin), Rome, Italy

120 CENEDESSE A, ACCARDO L, MILONE R, "Phase sampling technique in the

analysis of a propeller wake", First Intern. Conf. on Laser Anemometry: Advances

and applications, BHRA Fluid Engineering, Manchester, 1985

121 CENEDESSE A, ACCARDO L, MILONE R, "Phase sampling in the analysis of a

propeller wake", Experiments in Fluids 6, pp.55-60, 1988

122 STELLA A, GUJ G, OJ FELICE F, ELEFANTE M, "Propeller wake evolution

analysis by LDV', 22nd Symp. On Naval Hydrodynamics, 2000

123 STELLA A, GUJ G, OJ FELICE F, ELEFANTE M, "Propeller wake flow field

analysis by means of LDV phase sampling techniques", Experiments in Fluids

124 STELLA A, GUJ G, OJ FELICE F, ELEFANTE M, "Experimental investigation of

propeller wake evolution by means of LDV and flow visualization", Journal of Ship

Research, 2000

115

125 FELLI M, DI FLORIO D, FELICE F, CALACGNO G, "Propeller wake visualization

by laser anemometry", 6th Asian Symposium on Visualization, Pusan, South Korea,

2001

126 FELLI M, DI FLORIO D, FELICE F, "Comparison between PIV and LDV

techniquesin the analysis of a propeller wake", Journal of Visualization, Vo1.5, n.3,

2002

127 DI FELICE F, ROMANO G, ELEFANTE M, "Propeller wake analysis by means of

PIV', 23 rd Symposium on Naval Hydrodynamics, 2000

128 GIORDANO G, ROMANO GP, COSTANZO M, DI FELICE F, SOAVE M, "Propeller

wake velocity and pressure fields" , HSMV, Napoli, 2002

116

11 Appendix A

Propgen Source code

117

Option Explicit

Type section
x As Single
y As Single
z As Single
End Type

Type prop
radius As Single
chord As Single
rake As Single
skew As Single
pitch As Single
thickness As Single
End Type

Type section_info
thickness As Single
position As Single
le_id As Integer
te_id As Integer
num_points As Integer
End Type

Public working_path As String

'flag for volume mesh
Public volume_mesh As Integer

Public va As Single 'advance speed
Public rps As Single 'rev per second
Public no_oLwake_points As Integer
Public final_sectionO As section
Public sectionO As section
Public section_dataO As section_info
Public propdataO As prop
Public num_sections As Integer
Public num_ducCarc_points As Integer
Public blade_true, ring_true As Integer
Public pi As Double
Public num_Ieading_Iowecpoints, num_trailing_lowecpoints, num_upper_points As
Integer
Public num_edge_section_points As Integer
Public wakeO As section
Public D As Single

'cap variables
Public cap_section_points As Integer
Public cap_auto As Integer

118

Public cap_sidenode_id As Integer
Public cap_left_tempO As section
Public cap_IeftO As section
Public cap_rightO As section
Public cap_backO As section
Public cap_internal_yO As section
Public cap_internal_xO As section
Public cap_internal_zO As section
Public cap_draw As Integer
Public num_internaLx_points As Integer
Public num_internaLpoints As Integer
Public cap_panels_s As Integer
Public cap_panels_t As Integer
Public internal_fraction As Single
Public side_fraction As Single

Public wake_draw As Integer

'Hub variables
Public hub_offseCle As Integer
Public hub_ v _leading_factor As Single
Public hub_ v _trailing_factor As Single
Public hub_length As Single
Public hub_draw As Integer
Public hub_trailing_arc_connectO As section
Public hub_Ieading3rc_connectO As section
Public hub_trailing_edgeO As section
Public hub_leading_edgeO As section
Public hub_Ieading_endO As section
Public hub_trailing_endO As section
Public num_hub_section_points As Integer
Public hub_section_edgeO As section
Public no_oLhub_strips As Integer
Public hub_helix_leO As section
Public hub_helix_teO As section
Public hub_helix_bladesO As section
Public hub_panels_s, hub_panels_t As Integer
Public testO As section

'duct variables
Public ducCQ As Single
Public ducCP As Single
Public ducCthickness As Single
Public ducCimages As Integer
Public ducClowerO As section
Public ducctrailing_lowerO As section
Public ducCleading_lowerO As section
Public duccupperO As section
Public ducCleading_arcO As section

119

Public ducctrailing_arcO As section
Public ducCleading_lowecarcO As section
Public ducctrailing_lowecarcO As section
Public ducCdraw As Integer
Public ducC wakeO As section
Public duccwake_arcsO As section
Public ducClength As Single
Public ducCpanels_t, ducCuppecpanels_s As Integer
Public ducCfreewake_length As Single
Public ducCfreewake_panels_s, ducCfixedwake_panels_s As Integer
Public ducC wake_length As Single
Public ducCleading_lowecpanels_s As Single
Public ducctrailing_lower_panels_s As Single

'blade variables
Public transition_length As Single
Public wake_contraction_ value As Single
Public blade_tip_cluster As Single
Public blade_P As Single
Public blade_Q As Single
Public blade_panels_s, blade_panels_t, blade_fixedwake_panels_s,
blade_freewake_panels_s As Integer
Public blade_ wake_length, blade_freewake_length As Single
Public no_oCblades As Integer
Public Ieading_splineO As section
Public trailing_splineO As section
Public wake_pitch_set As Single

'ring variables
'Public second_ring_leading_endO As section
'Public second_rin~trailing_endO As section
'Public second_ring_section_edgeO As section
Public ring_panels_t As Integer
Public ring_width As Single
Public ring_split As Integer
Public rin~trailin~edgeO As section
Public ring_leadin~edgeO As section
Public ring_leadin~endO As section
Public rin~trailing_endO As section
Public num_ring_section_points As Integer
Public ring_section_edgeO As section
Public no_oCring_strips As Integer
Public ring_helix_leO As section
Public ring_helix_teO As section
Public ring_helix_bladesO As section

Public Sub read_working_pathO
Open "path.txt" For Input As #1
Input #1, working_path$

120

Close #1
End Sub
Public Sub hub_Ieadin~section(hub_length)
Dim num_edge_points, i, j As Integer
Dim psi, dpsi, r, P As Single
Dim angle, angle_step As Single
Dim tempO As section

num_edge_points = 100
ReDim hub_leading_end(J 0, num_edge_points)
ReDim temp(num_edge_points)

'set point to trailing edge of first section
hub_leading_end(I, I).x = final_section(1, section_data(1).le_id).x
hub_Ieading_end(I, 1).y = finaLsection(1, section_data(1).le_id).y
hub_Ieading_end(1, I).z = final_section(1, section_data(1).le_id).z

r = Sqr(hub_Ieading_end(J, I).z /\ 2 + hub_leading_end(1, l).x /\ 2)

P = propdata(1).pitch * D
If P = 0 Then P = 0.1
'calculate the start angle and the step angle

'calculate start psi so it matches with leading edge of section
psi = (finaLsection(l, section_data(1).le_id).y / P) * 2 * pi
'step dpsi for the set number of steps
dpsi = ((((-hub_length / 2) - hub_Ieadin~end(1, l).y) / P) * 2 * pi) /
(num_edge_points - 1)
psi = psi - dpsi
'helical edge
'**********************
For i = 1 To num_edge_points
psi = psi + dpsi
temp(i).x = r * Cos(psi)
temp(i).y = (P * psi) / (2 * pi)
temp(i).z = -r * Sin(psi)
Next

Dim s As Single

'distance between points
s = Sqr((temp(1).x - finaLsection(1, section_data(1).le_id).x) /\ 2 + (temp(l).z -
finaLsection(1, section_data(I).le_id).z) /\ 2)
angle = 2 * asin((s / 2) / r)
Call rotate(tempO, angle, 100)

For i = 2 To num_edge_points
hub_Ieading_end(1, i). x = temp(i).x
hub_leading_end(1, i).y = temp(i).y

121

hub_Ieading_end(I, i).z = temp(i).z
Next

End Sub

Public Sub hub_nodes(node_count, hub_node_connect)
Dim i As Integer

'hub nodes
'**

'hub leading end
'nodes at front of hub

'first section is backwards
node_count = node_count + 1
hub_node_connect(1) = node_count
Print #1, "node", node_count, hub_leading_end(1, 1 OO).x, hub_Ieadin~end(1, lOO).y,
hub_leading_end(l, lOO).z

'rest of sections
For i = 2 To no_oLhub_strips + 1
node_count = node_count + 1
hub_node_connect(i) = node_count
Print #1, "node", node_count, hub_Ieading_end(i, I).x, hub_Ieadin~end(i, I).y,
hub_Ieading_end(i, 1).z
Next

'hub leading v section between blades leading edges
'first is omitted since node defined with blade
'first node is 12
For i = 2 To no_oLhub_strips + 1
node_count = node_count + I
hub_node_connect(10 + i) = node_count
Print #1, "node", node_count, hub_Ieading_end(i, lOO).x, hub_Ieadin~end(i, lOO).y,
hub_Ieading_end(i, 100).z
Next

'hub trailing v section between blades trailing edges
'last node of section is omitted since node defined with blade
For i = 1 To no_oLhub_strips
node_count = node_count + I
hub_node_connect(20 + 2 + no_oLhub_strips - i) = node_count

122

Print #1, "node", node_count, hub_trailing_end(i, I).x, hub_trailing_end(i, I).y,
hub_trailing_end(i, l).z
Next

'hub trailing end
'nodes at end of hub
For i = 1 To no_oLhub_strips + 1
node_count = node_count + 1
hub_node_connect(30 + 2 + no_oLhub_strips - i) = node_count
Print #1, "node", node_count, hub_trai1ing_end(i, IOO).x, hub_trailing_end(i, 100).y,
hub_trailin~end(i, 100).z
Next

End Sub
Public Sub ring_nodes(node_count, ring_node_connect)

Dim i As Integer

'ring nodes
'**

'ring node on trailing edge of front blade
node_count = node_count + I
ring_node_connect(1) = node_count
Print #1, "node", node_count, ring_section_edge(l).x, ring_section_edge(l).y,
ring_section_edge(I).z

'ring node on trailing edge of front blade
node_count = node_count + I
ring_node_connect(2) = node_count
Print #1, "node", node_count, ring_section_edge(num_rin~section_points).x,
ring_section_edge(num_ring_section_points).y,
ri ng_secti on_ edge(n um_ri ng_secti on_poin ts).z

End Sub

Public Sub duccnodes(node_count, duccnode_connect)
'duct nodes
'**

Dim j As Integer

For j = 1 To 10
'leading lower edge of duct
node_count = node_count + I
duccnode_connect(j * 4 - 3) = node_count
Print #1, "node", node_count, ducCleadin~lower(j, I).x, ducCleading_lower(j, I).y,
ducCleading_lower(j, I).z

123

node_count = node_count + 1
duct_node_connectU * 4 - 2) = node_count
Print #1, "node", node_count, ducCleading_lowerU, num_Ieading_Iowecpoints).x,
duct_Ieading_IowerU, num_Ieading_Iowecpoints).y, duccleading_lowerU,
num_Ieading_Iowecpoints).z

'trailing lower edge of duct
node_count = node_count + 1
duccnode_connectU * 4 - 1) = node_count
Print #1, "node", node_count, ducCtrailing_IowerU, 1).x, ducCtrailing_lowerU, 1).y,
ducCtrailing_IowerU, 1).z
node_count = node_count + 1
duccnode_connectU * 4) = node_count
Print #1, "node", node_count, ducCtrailing_IowerU, num_trailing_Iowecpoints).x,
ducctrailing_IowerU, num_trailing_Iowecpoints).y, ducCtrailin~lowerU,
num_trailing_lowecpoints).z
Next

End Sub
Public Sub cap_nodes(node_count, cap_node_connect)
'cap nodes
'**

Dim j As Integer

'node at nose of cap
node_count = node_count + 1
cap_node_connect(1) = node_count
Print # 1, "node", node_count, cap_Ieft(l).x, cap_Ieft(l). y, cap_Ieft(l).z

'node at comer near blade
node_count = node_count + 1
cap_node_connect(2) = node_count
Print # 1, "node", node_count, cap_left(cap_section_points).x,
cap_Ieft(cap_section_points). y, cap_Ieft(cap_section_points).z

'node at other comer
node_count = node_count + 1
cap_node_connect(3) = node_count
Print #1, "node", node_count, cap_right(cap_section_points).x,
cap_right(cap_section_points). y, cap _right(cap_section_points).z

'node at middle of cap surface
node_count = node_count + 1
cap_node_connect(4) = node_count
Print #1, "node", node_count, cap_intemaLx(l).x, cap_intemaLx(l).y,
cap_internal_xC 1).z

'node at mid of cap_left
node_count = node_count + 1

124

cap_node_connect(5) = node_count
Print #1, "node", node_count, cap_Ieft(cap_sidenode_id).x,
cap_Ieft(cap_sidenode_id).y, cap_Ieft(cap_sidenode_id).z

'node at mid of capJight
node_count = node_count + 1
cap_node_connect(6) = node_count
Print #1, "node", node_count, cap_right(cap_sidenode_id).x,
capJight(cap_sidenode_id).y, cap_right(cap_sidenode_id).z

'node at middle of cap back
node_count = node_count + 1
cap_node_connect(7) = node_count
Print #1, "node", node_count, cap_internaLx(num_internal_x_points).x,
cap_internal_x(num_internal_x_points).y, cap_internaLx(num_internaLx_points).z

'this is not needed
'closes the cap to make a bullet
'**

'node at corner near blade
'node_count = node_count + 1
'cap_node_connect(8) = node_count
'Print # I, "node", node_count, cap_Ieft(cap_section_points).x, "0",
cap _left(cap _section_points).z

'node at middle of cap back
'node_count = node_count + 1
'cap_node_connect(9) = node_count
'Print #1, "node", node_count, cap_internaLx(num_internaLx_points).x, "0",
cap_internaLx(num_internaLx_points).z

'node at other corner
'node_count = node_count + 1
'cap_node_connect(1 0) = node_count
'Print #1, "node", node_count, cap_right(cap_section_points).x, "0",
cap _right(cap_section_points).z

End Sub
Public Sub second_cap_nodes(node_count, second_cap_node_connect)
'cap nodes
'**

Dim j As Integer

'node at nose of cap

125

node_count = node_count + 1
second_cap_node_connect(1) = node_count
Print #1, "node", node_count, cap_Ieft(1).x, -cap_left(1).y, cap_Ieft(1).z

'node at corner near blade
node_count = node_count + 1
second_cap_node_connect(2) = node_count
Print # 1, "node", node_count, cap_Ieft(cap_section_points).x, -
cap_left(cap_section_points) .y, cap_left(cap_section_points).z

'node at other corner
node_count = node_count + 1
second_cap_node_connect(3) = node_count
Print #1, "node", node_count, cap_right(cap_section_points).x, -
cap _ri ght(cap _section_points). y, cap_ri ght(cap_secti on_points).z

'node at middle of cap surface
node_count = node_count + 1
second_cap_node_connect(4) = node_count
Print #1, "node", node_count, cap_internaLx(1).x, -cap_internal_x(1).y,
cap_internal_xC 1).z

'node at mid of cap_left
node_count = node_count + 1
second_cap_node_connect(5) = node_count
Print #1, "node", node_count, cap_internaLy(1).x, -cap_internaLy(1).y,
cap_internaLy(1).z

'node at mid of cap_right
node_count = node_count + 1
second_cap_node_connect(6) = node_count
Print #1, "node", node_count, cap_internaLz(1).x, -cap_internaLz(1).y,
cap_internaLz(1).z

'node at middle of cap surface
node_count = node_count + 1
second_cap_node_connect(7) = node_count
Print #1, "node", node_count, cap_internaLx(num_internaLx_points).x,­
cap_internaLx(num_internaLx_points).y, cap_internaLx(num_internaLx_points).z

End Sub

Public Sub ducc.4ring_edges(edge_count, ducCnode_connect, duccedge_connect)
Dim i, j As Integer

'**

'duct edges

126

'**

Forj=ITol0
'lower trailing edge
edge_count = edge_count + 1
duccedge_connect(80 + j) = edge_count
Print #1, "edge", edge_count, "-4", num_leading_lowecpoints,
ducCleading_lower_panels_s, "1.0", "0.1"
Print #1, "startnode", duccnode_connect(4 * j - 3)
For i = 2 To num_leading_1owecpoints - 1
Print #1, (i - 1), duccleading_lowerU, i).x, ducCleadin~lowerU, i).y,
duccleading_lowerU, i).z
Next
Print #1, "finishnode", duccnode_connect(4 * j - 2)

'lower leading edge
edge_count = edge_count + I
duccedge_connect(70 + j) = edge_count
Print #1, "edge", edge_count, "-4", num_trailin~lowecpoints,
ducCtrailin~lowecpanels_s, "1.0", "0.1"
Print # 1, "startnode", duccnode_connect(4 * j - 1)
For i = 2 To num_trailing_1owecpoints - 1
Print #1, (i - 1), ducCtrailing_lowerU, i).x, ducctrailing_IowerU, i).y,
ducctrailing_IowerU, i).z
Next
Print #1, "finishnode", duccnode_connect(4 * j)

'upper edge
edge_count = edge_count + 1
duccedge_connectU * 2) = edge_count
Print #1, "edge", edge_count, "-4", num_uppecpoints, ducCuppecpaneIs_s, ''1.0'',
"0.1 "
Print #1, "startnode", duccnode_connect(4 * j)
For i = 2 To num_uppecpoints - 1
Print #1, (i - 1), ducCupperU, i).x, ducCupperU, i).y, duccupperU, i).z
Next
Print #1, "finishnode", duccnode_connect(4 * j - 3)

Nextj
For j = 1 To 9

'duct trailing arc joins to the wakesheet
edge_count = edge_count + 1
duccedge_connect(20 + j * 2 - 1) = edge_count
Print#l, "edge", edge_count, "-3", "36", duccpanels_t, "1.0", "0.1"
Print #1, "startnode", ducCnode_connect(4 * j - 3)
For i = 2 To 35
Print #1, (i - 1), ducCleading_arcU, i).x, ducCleading_arcU, i).y, duccleadin~arcU,
i).z
Next

127

Print #1, "finishnode", duct_node_connect(4 * j + I)

'duct leading arc
edge_count = edge_count + 1
duccedge_connect(20 + j * 2) = edge_count
Print#I, "edge",edge_count, "-1", "36",duct_panels_t, "1.0", "0.1"
Print#l, "startnode", ducCnode_connect(4 * j)
For i = 2 To 35
Print #1, (i - 1), ducCtrailing_arcU, i).x, ducCtrailing_arcU, i).y, ducctrailing_arcU,
i).z
Next
Print#I, "finishnode", duccnode_connect(4 * U + 1))

'duct lower trailing arc
edge_count = edge_count + 1
duccedge_connect(60 + j) = edge_count
Print #1, "edge", edge_count, "-2", "36", duccpane1s_t, "1.0", "0.1"
Print#l, "startnode", ducCnode_connect(4 * j - 2)
For i = 2 To 35
Print #1, (i - 1), ducCleading_lowecarcU, i).x, ducCleadin~lowecarcU, i).y,
duccleading_lowecarcU, i).z
Next
Print #1, "finishnode", ducCnode_connect(4 * j + 2)

'duct lower leading arc
edge_count = edge_count + 1
duccedge_connect(50 + j) = edge_count
Print #1, "edge", edge_count, "-2", "36", duct_panels_t, "1.0", "0.1"
Print #1, "startnode", duccnode_connect(4 * j - 1)
For i = 2 To 35
Print #1, (i - 1), ducctrailing_IowecarcU, i).x, ducctrailing_10wecarcU, i).y,
ducCtrailin~lowecarcU, i).z
Next
Print #1, "finishnode", duccnode_connect(4 * j + 3)

Nextj

End Sub
Public Sub duccno_ring_edges(edge_count, duccnode_connect, duccedge_connect)
Dim i, j As Integer

'**

'duct edges
'for no ring duct
'**

Forj=ITol0
'lower section
edge_count = edge_count + 1

128

ducCedge_connectU * 2 - 1) = edge_count
If j = 1 Or j = 10 Then Print #1, "edge", edge_count, "-4", section_data(O).Ie_id,
ducCuppecpanels_s, 2 - ducCP, duct_Q
If j <> 1 Andj <> 10 Then Print #1, "edge", edge_count, "-1 ", section_data(O).le_id,
duct_uppecpanels_s, 2 - ducCP, ducCQ
Print #1, "startnode", ducCnode_connectU * 4 - 3)
For i = 2 To section_data(O).le_id - 1
Print #1, (i - 1), ducClowerU, i).x, ducClowerU, i).y, ducClowerU, i).z
Next
Print #1, "finishnode", duccnode_connectU * 4)

'upper edge
edge_count = edge_count + 1
duccedge_connectU * 2) = edge_count
If j = 1 Or j = 10 Then Print #1, "edge", edge_count, "-4", num_uppecpoints,
ducCuppecpanels_s, ducCP, ducCQ
If j <> 1 And j <> 10 Then Print #1, "edge", edge_count, "-1 ", num_uppecpoints,
ducCuppecpanels_s, ducCP, ducCQ
Print #1, "startnode", duccnode_connectU * 4)
For i = 2 To num_upper_points - 1
Print #1, (i - 1), duccupperU, i).x, duccupperU, i).y, ducCupperU, i).z
Next
Print #1, "finishnode", duccnode_connectU * 4 - 3)
Next

For j = 1 To 9
'duct trailing arc joins to the wakesheet
edge_count = edge_count + 1
duccedge_connect(20 + j * 2 - 1) = edge_count
Print #1, "edge", edge_count, "-3", "36", duct_panels_t, "1.0", "0.1"
Print #1, "startnode", duccnode_connectU * 4 - 3)
For i = 2 To 35
Print #1, (i - 1), ducCleading3rcU, i).x, ducCleading3rcU, i).y, ducCleadin~arcU,
i).z
Next
Print #1, "finishnode", duccnode_connectU * 4 + 1)

'duct leading arc
edge_count = edge_count + 1
duccedge_connect(20 + j * 2) = edge_count
Print #1, "edge", edge_count, "-1", "36", duccpanels_t, "1.0", "0.1"
Print #1, "startnode", duccnode_connectU * 4)
For i = 2 To 35
Print #1, (i - 1), ducctrailing_arcU, i).x, ducctrailing_arcU, i).y, ducctrailing_arcU,
i).z
Next
Print #1, "finishnode", duccnode_connectU * 4 + 4)
Next
End Sub
Public Sub cap_faces(face_count, cap_node_connect, cap_edge_connect)

129

'nose face
face_count = face_count + 1
Print #1, "face", face_count, "16", "0"
Print #1, "linear"
Print #1, "origin node", cap_node_connect(1)
Print#I, "side", "0", "1 ", cap_edge_connect(1)
Print #1, "side", "1", "I",cap_edge_connect(8)
Print #1, "side", "2", "I ", cap_edge_connect(9)
Print #1, "side", "3", "1", cap_edge_connect(3)
Print #1, "sources", "0", "0", "0"

'face next to cap_right
face_count = face_count + 1
Print#I, "face", face_count, "16", "0"
Print #1, "linear"
Print #1, "origin node", cap_node_connect(4)
Print#I, "side", "0", "1", cap_edge_connect(7)
Print#I, "side", "1", "I",cap_edge_connect(6)
Print #1, "side", "2", "1 ", cap_edge_connect(4)
Print #1, "side", "3", "1", cap_edge_connect(9)
Print #1, "sources", "0", "0", "0"
'face next to cap_left
face_count = face_count + 1
Print #1, "face", face_count, "16", "0"
Print #1, "linear"
Print #1, "origin node", cap_node_connect(5)
Print#l, "side", "0", "I",cap_edge_connect(2)
Print # 1, "side", "1", "1", cap_edge_connect(5)
Print #1, "side", "2", "1 ", cap_edge_connect(7)
Print#I, "side", "3", "I",cap_edge_connect(8)
Print #1, "sources", "0", "0", "0"

'not needed
'creates cylinder for bullet
'**
'face_count = face_count + 1
'Print #1, "face", face_count, "16", "0"
'Print #1, "linear"
'Print #1, "origin node", cap_node_connect(2)
'Print #1, "side", "0", "1 ", cap_edge_connect(12)
'Print #1, "side", "1 ", "1 ", cap_edge_connect(lO)
'Print #1, "side", "2", "1 ", cap_edge_connect(l3)
'Print #1, "side", "3", "1", cap_edge_connect(5)
'Print #1, "sources", "0", "0", "0"

'face_count = face_count + 1
'Print #1, "face", face_count, "16", "0"
'Print #1, "linear"
'Print #1, "origin node", cap_node_connect(7)
'Print #1, "side", "0", "1", cap_edge_connect(l3)

130

'Print #1, "side", "I", "I", cap_edge_connect(1I)
'Print #1, "side", "2", "I", cap_edge_connect(14)
'Print #1, "side", "3", "I", cap_edge_connect(6)
'Print #1, "sources", "0", "0", "0"

End Sub
Public Sub second_cap_faces(face_count, second_cap_node_connect,
second_cap_edge_connect)
'nose face
face_count = face_count + 1
Print #1, "face", face_count, "16", "0"
Print #1, "linear"
Print #1, "origin node", second_cap_node_connect(1)
Print #1, "side", "0", "I", second_cap_edge_connect(3)
Print # 1, "side", "1", "1", second_cap_edge_connect(9)
Print #1, "side", "2", "I", second_cap_edge_connect(8)
Print #1, "side", "3", "I", second_cap_edge_connect(1)
Print #1, "sources", "0", "0", "0"

'face next to cap_right
face_count = face_count + 1
Print #1, "face", face_count, "16", "0"
Print # 1, "linear"
Print #1, "origin node", second_cap_node_connect(4)
Print #1, "side", "0", "I", second_cap_edge_connect(9)
Print #1, "side", "I", "I", second_cap_edge_connect(4)
Print #1, "side", "2", "I", second_cap_edge_connect(6)
Print #1, "side", "3", "I", second_cap_edge_connect(7)
Print#l, "sources", "0", "0", "0"
'face next to cap_left
face_count = face_count + I
Print#I, "face", face_count, "16", "0"
Print #1, "linear"
Print #1, "origin node", second_cap_node_connect(5)
Print #1, "side", "0", "I", second_cap_edge_connect(8)
Print #1, "side", "I", "I", second_cap_edge_connect(7)
Print #1, "side", "2", "I", second_cap_edge_connect(5)
Print#l, "side", "3", "I", second_cap_edge_connect(2)
Print #1, "sources", "0", "0", "0"
End Sub

Public Sub ducC 4ring_faces(face_count, duccnode_connect, duccedge_connect)
Dim j As Integer
'duct for ring
'has a gap on the lower side
'duct faces
'**

For j = 1 To 9
'leading lower face

131

face_count = face_count + 1
Print#I, "face", face_count, "16", "3"
Print # 1, "linear"
Print #1, "origin node", duccnode_connectU * 4 + 4)
Print #1, "side", "a", "I", duccedge_connect(7I + j)
Print # 1, "side", "1", "1", duccedge_connect(50 + j)
Print #1, "side", "2", "I", ducCedge_connect(70 + j)
Print #1, "side", "3", "I", duccedge_connect(20 + j * 2)
Print #1, "sources", "a", "a", "a"

'upper face
face_count = face_count + 1
Print#I, "face", face_count, "16", "3"
Print #1, "linear"
Print # 1, "origin node", duccnode_connectU * 4 + 1)
Print #1, "side", "0", "1 ", duccedge_connectU * 2 + 2)
Print#l, "side", "1 ", "1 ", duccedge_connect(20 + j * 2)
Print #1, "side", "2", "I", duccedge_connectU * 2)
Print #1, "side", "3", "1 ", duccedge_connect(20 + j * 2 - 1)
Print #1, "sources", "0", "0", "0"

'trailing lower face
face_count = face_count + 1
Print #1, "face", face_count, "16", "3"
Print #1, "linear"
Print #1, "origin node", duccnode_connectU * 4 + 2)
Print #1, "side", "0", "1", duccedge_connect(81 + j)
Print #1, "side", "1", "1 ", duccedge_connect(20 + j * 2 -1)
Print #1, "side", "2", "1 ", duccedge_connect(80 + j)
Print #1, "side", "3", "1 ", duccedge_connect(60 + j)
Print #1, "sources", "0", "0", "0"

Next

End Sub
Public Sub duccno_ring_faces(face_count, duccnode_connect, duccedge_connect)
Dim j As Integer

'duct for no ring

'duct faces
'**

'upper face
For j = 1 To 9
face_count = face_count + 1
Print #1, "face", face_count, "16", "3"
Print #1, "linear"
Print #1, "origin node", duccnode_connectU * 4 + 1)
Print #1, "side", "0", "1 ", duccedge_connectU * 2 + 2)

132

Print#I, "side", "1 ", "1 ", ducCedge_connect(20 + j * 2)
Print #1, "side", "2", "1", duccedge_connectU * 2)
Print #1, "side", "3", "1 ", duccedge_connect(20 + j * 2 - 1)
Print #1, "sources", "0", "0", "0"

'lower face
face_count = face_count + 1
Print #1, "face", face_count, "16", "3"
Print #1, "linear"
Print #1, "origin node", duccnode_connectU * 4 + 4)
Print #1, "side", "0", "1 ", duccedge_connectU * 2 + 1)
Print #1, "side", "1", "1", duccedge_connect(20 + j * 2 - 1)
Print #1, "side", "2", "1 ", duccedge_connectU * 2 - 1)
Print#l, "side", "3", "1 ", duccedge_connect(20 + j * 2)
Print#l, "sources", "0", "0", "0"

Next

End Sub
Public Sub missing_section_fochub(edge_count, blade_node_connect,
blade_ends_connect, blade_section_connect, blade_edge_connect, blade_paneIs_t,
blade_panels_s, hub_node_connect, ring_node_connect)
Dim q As Integer
Dim i As Integer
Dim num_uppecsection_nodes As Integer

'upper side of section
edge_count = edge_count + 1
blade_section_connect(2) = edge_count
num_uppecsection_nodes = 1 + section_data(1).num_points - section_data(l).1e_id
Print #1, "edge", edge_count, "-1 ", num_uppecsection_nodes, blade_panels_s,

blade_P, blade_Q
Print #1, "startnode", blade_node_connect(1)
q = section_data(1).1e_id

For i = 2 To num_uppecsection_nodes - 1
q=q+l
Print #1, (i - 1), finaLsection(1, q).x, finaLsection(1, q).y, finaLsection(1, q).z

Next
Print #1, "finishnode", blade_node_connect(2)

End Sub

Public Sub hub_edges(edge_count, hub_node_connect, hub_edge_connect,
blade_node_connect, blade_section_connect, hub_panels_t, hub_panels_s)
Dim i, j As Integer
Dim step, old_step, new_step
'hub edges
'**

133

'leading edge arcs on front of hub
'**
*
step = 120/ no_oChub_strips
old_step = 2 - step
new_step = 0

For j = 1 To no_oChub_strips
old_step = old_step + step
new_step = new_step + step
edge_count = edge_count + 1
hub_edge_connect(j) = edge_count
Print #1, "edge", edge_count, "-2", step, hub_panels_s, "1.0", "0.1"
Print #1, "startnode", hub_node_connect(j)
For i = old_step To new _step - 1
Print #1, (i + 1 - old_step), hub_Ieading_edge(i).x, hub_Ieading_edge(i).y,
hub_Ieading_edge(i).z
Next
Print #1, "finishnode", hub_node_connect(j + 1)

Nextj

'leading end of hub helixes
For j = 1 To no_oChub_strips + 1
edge_count = edge_count + 1
hub_edge_connect(10 + j) = edge_count

If j <> (no_oChub_strips + 1) And j <> 1 Then Print #1, "edge", edge_count, "-1",
"100", hub_panels_t, "1.0", "0. I"
If j = (no_oChub_strips + I) Or j = I Then Print #1, "edge", edge_count, "-4", "100",
hub_panels_t, "1.0", "0.1"
If j = I Then Print #1, "startnode", blade_node_connect(1)
If j <> 1 Then Print # I, "startnode", hub_node_connect(j)
For i = 2 To 99
Print #1, (i - I), hub_Ieading_end(j, i).x, hub_Ieading_end(j, i).y, hub_Ieading_end(j,
i).z
Next
If j = I Then Print # I, "finishnode", hub_node_connect(l)
If j <> I Then Print #1, "finishnode", hub_node_connect(10 + j)
Next

'leading V section
'**
*
step = 120/ no_oChub_strips
old_step = 2 - step
new_step = 0

134

For j = 1 To no_oChub_strips
old_step = old_step + step
new _step = new_step + step
edge_count = edge_count + I
hub_edge_connect(20 + j) = edge_count
Print #1, "edge", edge_count, "- 1 ", step, hub_panels_s, "1.0", "0.1"
If j = 1 Then Print #1, "startnode", blade_node_connect(1)
If j <> 1 Then Print #1, "startnode", hub_node_connect(10 + j)
For i = old_step To new_step - 1
Print #1, (i + 1 - old_step), hub_helix_le(i).x, hub_helix_le(i).y, hub_helix_le(i).z
Next
Print #1, "finishnode", hub_node_connect(lO + j + 1)
Nextj

'helixes between blades
'**
*
For j = 2 To no_oChub_strips
edge_count = edge_count + 1
hub_edge_connect(30 + j) = edge_count

Print #1, "edge", edge_count, "-1 ", "100", blade_panels_s, blade_P, blade_Q
Print #1, "startnode", hub_node_connect(10 + j)
For i = 2 To 99
Print #1, (i - I), hub_helix_blades(j, i).x, hub_helix_blades(j, i).y, hub_helix_blades(j,
i).z
Next
Print #1, "finishnode", hub_node_connect(20 + j)
Next

'second hub blade
'not defined with blade
edge_count = edge_count + 1
hub_edge_connect(30 + 1 + no_oChub_strips) = edge_count
Print #1, "edge", edge_count, "-4", section_data(l).le_id, blade_panels_s, 2 - blade_P,
blade_Q
Print #1, "startnode", hub_node_connect(20 + 1 + no_oChub_strips) 'trailing edge
For i = 2 To section_data(1).1e_id - 1
Print # I, (i - I), hub_section_edge(10, i).x, hub_section_edge(10, i).y,
hub_section_edge(1 0, i).z
Next
Print #1, "finishnode", hub_node_connect(lO + 1 + no_oChub_strips)

'leading V section
'**
*
step = 120/ no_oChub_strips
old_step = 2 - step
new_step = 0

135

For j = 1 To no_oLhub_strips
old_step = old_step + step
new_step = new_step + step
edge_count = edge_count + I
hub_edge_connect(40 + no_oLhub_strips + 1 - j) = edge_count
Print#l, "edge", edge_count, "-1", step, hub_panels_s, "1.0", "0.1"

Print #1, "startnode", hub_node_connect(20 + no_oLhub_strips + 2 - j)
For i = old_step To new_step - 1
Print #1, (i + 1 - old_step), hub_helix_te(i)ox, hub_helix_te(i)oy, hub_helix_te(i)oz
Next
If j = no_oLhub_strips Then Print #1, "finishnode", blade_node_connect(2)
If j <> no_oLhub_strips Then Print #1, "finishnode", hub_node_connect(20 +
no_oLhub_strips + 1 - j)
Nextj

'trailing end of hub helixes
For j = 1 To no_oLhub_strips + 1
edge_count = edge_count + 1
hub_edge_connect(50 + j) = edge_count

Ifj <> (no_oLhub_strips + I) Andj <> I Then Print#I, "edge", edge_count, "-I ",
"100", hub_panels_t, "100", "001"
If j = (no_oLhub_strips + I) Or j = 1 Then Print #1, "edge", edge_count, "-4", "100",
hub_panels_t, "100", "001"
If j = 1 Then Print #1, "startnode", blade_node_connect(2)
If j <> I Then Print #1, "startnode", hub_node_connect(20 + j)
For i = 2 To 99
Print #1, (i - 1), hub_trailing_end(no_oLhub_strips + 2 - j, i)ox,
hub_trailing_end(no_oLhub_strips + 2 - j, i)oY, hub_trailing_end(no_oLhub_strips +
2-j,i)oz
Next
Print #1, "finishnode", hub_node_connect(30 + j)
Next

'trailing edge arcs on front of hub
'**
*
step = 120/ no_oLhub_strips
old_step = 2 - step
new_step = 0

For j = I To no_oLhub_strips
old_step = old_step + step
new_step = new_step + step
edge_count = edge_count + I
hub_edge_connect(60 + j) = edge_count

136

Print #1, "edge", edge_count, "-2", step, hub_panels_s, "1.0", "0.1"
Print #1, "startnode", hub_node_connect(30 + j)
For i = old_step To new_step - 1
Print #1, (i + I - old_step), hub_trailing_edge(i).x, hub_trailing_edge(i).y,
hub_trailing_edge(i).z
Next
Print #1, "finishnode", hub_node_connect(30 + j + I)

Nextj

End Sub
Public Sub ring_edges(edge_count, ring_node_connect, ring_edge_connect,
blade_node_connect, ring_panels_t)
Dim i, j As Integer

'ring edges
'**

'leading edge
edge_count = edge_count + 1
ring_edge_connect(1) = edge_count
Print#l, "edge",edge_count, "-2", 121,ring_panels_t, "1.0", "0.1"
Print #1, "startnode", blade_node_connect(num_sections * 2 - 1)
For i = 2 To 120
Print #1, (i - I), ring_Ieading_edge(i).x, ring_Ieading_edge(i).y,
ring_leading_edge(i).z
Next
Print #1, "finishnode", ring_node_connect(2)

'trailing edge
edge_count = edge_count + I
ring_edge_connect(2) = edge_count
Print #1, "edge", edge_count, "-2",121, ring_panels_t, "1.0", "0.1"
Print #1, "startnode", blade_node_connect(num_sections * 2)
For i = 2 To 120
Print #1, (i - 1), ring_trailing_edge(i).x, ring_trailing_edge(i).y,
ring_trailing_edge(i).z
Next
Print # I, "finishnode", ring_node_connect(l)

'second ring section edge
edge_count = edge_count + 1
ring_edge_connect(3) = edge_count
Print #1, "edge", edge_count, "-1", section_data(l).le_id, blade_panels_s, "1.0", "0.1"
Print # I, "startnode", ring_node_connect(1) 'trailing edge
For i = 2 To num_ring_section_points - 1
Print #1, (i - 1), ring_section_edge(i).x, rin~section_edge(i).y, ring_section_edge(i).z
Next

137

Print #1, "finishnode", ring_node_connect(2)

End Sub

Public Sub cap_edges(edge_count, cap_node_connect, cap_edge_connect,
cap_panels_t, cap_panels_s)
Dim i, j As Integer
Dim lowecpoints As Integer
Dim upper_points As Integer

uppecpoints = cap_section_points - cap_sidenode_id + 1
lowecpoints = cap_sidenode_id
'cap edges
'**

'arc on left
'first part
edge_count = edge_count + 1
cap_edge_connect(1) = edge_count
Print #1, "edge", edge_count, "-4", lowecpoints, cap_panels_t, ''1.0'', "0.1"
Print #1, "startnode", cap_node_connect(l)
For i = 2 To cap_sidenode_id - 1
Print #1, (i - 1), cap_Ieft(i).x, cap_Ieft(i).y, cap_Ieft(i).z
Next
Print#l, "finishnode", cap_node_connect(5)

'arc on left
'second part
edge_count = edge_count + 1
cap_edge_connect(2) = edge_count
Print #1, "edge", edge_count, "-4", uppecpoints, cap_panels_s, "1.0", "0.1"
Print #1, "startnode", cap_node_connect(5)
For i = cap_sidenode_id + 1 To cap_section_points - 1
Print #1, (i - cap_sidenode_id), cap_Ieft(i).x, cap_Ieft(i).y, cap_left(i).z
Next
Print #1, "finishnode", cap_node_connect(2)

'arc on right
'first part
edge_count = edge_count + I
cap_edge_connect(3) = edge_count
Print #1, "edge", edge_count, "-4", Iowecpoints, cap_paneIs_t, "1.0", "0.1"
Print #1, "startnode", cap_node_connect(l)
For i = 2 To cap_sidenode_id - 1
Print #1, (i - 1), cap_right(i).x, cap_right(i).y, cap_right(i).z
Next
Print #1, "finishnode", cap_node_connect(6)

138

'arc on right
'second part
edge_count = edge_count + 1
cap_edge_connect(4) = edge_count
Print #1, "edge", edge_count, "-4", uppecpoints, cap_panels_s, "1.0", "0.1"
Print #1, "startnode", cap_node_connect(6)
For i = cap_sidenode_id + 1 To cap_section_points - 1
Print #1, (i - cap_sidenode_id), cap_right(i).x, cap_right(i).y, cap_right(i).z
Next
Print #1, "finishnode", cap_node_connect(3)

'arc on back
'first part
edge_count = edge_count + I
cap_edge_connect(5) = edge_count
Print #1, "edge",edge_count, "-2", "19",cap_panels_t, "1.0", "0.1"
Print #1, "startnode", cap_node_connect(2)
For i = 2 To 18
Print # 1, (i - 1), cap_back(i).x, cap_back(i).y, cap_back(i).z
Next
Print #1, "finishnode", cap_node_connect(7)

'arc on back
'second part
edge_count = edge_count + I
cap_edge_connect(6) = edge_count
Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1"
Print #1, "startnode", cap_node_connect(7)
For i = 19 To 35
Print #1, (i - 18), cap_back(i).x, cap_back(i).y, cap_back(i).z
Next
Print #1, "finishnode", cap_node_connect(3)

'arc internal_x
edge_count = edge_count + I
cap_edge_connect(7) = edge_count
Print #1, "edge", edge_count, "-1", num_internaLx_points, cap_panels_s, "1.0", "0.1"
Print #1, "startnode", cap_node_connect(4)
For i = 2 To num_internaLx_points - I
Print # I, (i - I), cap_internal_x(i).x, cap_internal_x(i).y, cap_internaLx(i).z
Next
Print #1, "finishnode", cap_node_connect(7)

'arc intern aLy
edge_count = edge_count + 1
cap_edge_connect(8) = edge_count
Print #1, "edge", edge_count, "-I ", num_internal_points + 2, cap_panels_t, "1.0",
"0.1 "

139

Print #1, "startnode", cap_node_connect(5)
For i = I To num_internaLpoints
Print #1, (i), cap_internaLy(i).x, cap_internal_y(i).y, cap_interna1_y(i).z
Next
Print #1, "finishnode", cap_node_connect(4)

'arc interna1_z
edge_count = edge_count + I
cap_edge_connect(9) = edge_count
Print #1, "edge", edge_count, "- I", num_internaLpoints + 2, cap_pane1s_t, ''1.0'',
"0. I"
Print #1, "startnode", cap_node_connect(6)
For i = I To num_interna1_points
Print #1, (i), cap_interna1_z(i).x, cap_internaLz(i).y, cap_internaLz(i).z
Next
Print #1, "finishnode", cap_node_connect(4)

'not needed
'creates bullet
'***
'arc on back
'first part
'edge_count = edge_count + I
'cap_edge_connect(lO) = edge_count
'Print #1, "edge", edge_count, "-2", "19", cap_pane1s_t, "1.0", "0.1"
'Print #1, "startnode", cap_node_connect(8)
'For i = 2 To 18
'Print #1, (i - I), cap_back(i).x, "0", cap_back(i).z
'Next
'Print #1, "finishnode", cap_node_connect(9)

'arc on back
'second part
'edge_count = edge_count + I
'cap_edge_connect(II) = edge_count
'Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1"
'Print #1, "startnode", cap_node_connect(9)
'For i = 19 To 35
'Print #1, Ci - 18), cap_backCi).x, "0", cap_back(i).z
'Next
'Print #1, "finishnode", cap_node_connect(lO)

'edge_count = edge_count + 1
'cap_edge_connect(12) = edge_count
'Print #1, "edge", edge_count, "-4", "2", cap_panels_t, "1.0", "0. I"
'Print # I, "startnode", cap_node_connect(2)
'Print #1, "finishnode", cap_node_connect(8)'

'edge_count = edge_count + I
'cap_edge_connect(13) = edge_count

140

'Print #1, "edge", edge_count, "-1 ", "2", cap_panels_t, "1.0", "0.1"
'Print #1, "startnode", cap_node_connect(7)
'Print #1, "finishnode", cap_node_connect(9)

'edge_count = edge_count + 1
'cap_edge_connect(14) = edge_count
'Print #1, "edge", edge_count, "-4", "2", cap_panels_t, "1.0", "0.1"
'Print #1, "startnode", cap_node_connect(3)
'Print #1, "finishnode", cap_node_connect(10)

End Sub
Public Sub second_cap_edges(edge_count, second_cap_node_connect,
second_cap_edge_connect, cap_panels_t, cap_panels_s)
Dim i, j As Integer
Dim lowecpoints As Integer
Dim uppecpoints As Integer

uppecpoints = cap_section_points - cap_sidenode_id + 1
lowecpoints = cap_sidenode_id
'cap edges
'**

'arc on left
'first part
edge_count = edge_count + I
second_cap_edge_connect(1) = edge_count
Print #1, "edge", edge_count, "-4", lowecpoints, cap_panels_t, ''1.0'', "0.1"
Print # 1, "startnode", second_cap_node_connect(1)
For i = 2 To cap_sidenode_id - 1
Print #1, (i - I), cap_Ieft(i).x, -cap_Ieft(i).y, cap_left(i).z
Next
Print #1, "finishnode", second_cap_node_connect(S)

'arc on left
'second part
edge_count = edge_count + I
second_cap_edge_connect(2) = edge_count
Print # I, "edge", edge_count, "-4", upper_points, cap_panels_s, "1.0", "0.1"
Print #1, "startnode", second_cap_node_connect(S)
For i = cap_sidenode_id + I To cap_section_points - I
Print #1, (i - cap_sidenode_id), cap_Ieft(i).x, -cap_IeftCi).y, cap_Ieft(i).z
Next
Print # I, "finishnode", second_cap_node_connect(2)

'arc on right
'first part

141

edge_count = edge_count + 1
second_cap_edge_connect(3) = edge_count
Print #1, "edge", edge_count, "-4", 10wecpoints, cap_panels_t, "1.0", "0.1"
Print # 1, "startnode", second_cap_node_connect(1)
For i = 2 To cap_sidenode_id - 1
Print #1, (i - 1), cap_right(i).x, -cap_right(i).y, cap_right(i).z
Next
Print #1, "finishnode", second_cap_node_connect(6)

'arc on right
'second part
edge_count = edge_count + 1
second_cap_edge_connect(4) = edge_count
Print #1, "edge", edge_count, "-4", upper_points, cap_panels_s, "1.0", "0.1"
Print #1, "startnode", second_cap_node_connect(6)
For i = cap_sidenode_id + 1 To cap_section_points - 1
Print #1, (i - cap_sidenode_id), cap_right(i).x, -cap_right(i).y, cap_right(i).z
Next
Print #1, "finishnode", second_cap_node_connect(3)

'arc on back
'first part
edge_count = edge_count + 1
second_cap_edge_connect(5) = edge_count
Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1"
Print #1, "startnode", second_cap_node_connect(2)
For i = 2 To 18
Print #1, (i - 1), cap_back(i).x, -cap_back(i).y, cap_back(i).z
Next
Print #1, "finishnode", second_cap_node_connect(7)

'arc on back
'second part
edge_count = edge_count + 1
second_cap_edge_connect(6) = edge_count
Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1"
Print #1, "startnode", second_cap_node_connect(7)
For i = 19 To 35
Print #1, (i - 18), cap_back(i).x, -cap_back(i).y, cap_back(i).z
Next
Print #1, "finishnode", second_cap_node_connect(3)

'arc internaI_x
edge_count = edge_count + I
second_cap_edge_connect(7) = edge_count
Print #1, "edge", edge_count, "-I ", num_internaLx_points, cap_panels_s, "1.0", "0.1"
Pri nt # 1, "startnode", second_cap_node_connect(4)
For i = 2 To num_internal_x_points - I

142

Print #1, (i - 1), cap_internaLx(i).x, -cap_internaLx(i).y, cap_internaLx(i).z
Next
Print #1, "finishnode", second_cap_node_connect(7)

'arc internaLy
edge_count = edge_count + 1
second_cap_edge_connect(8) = edge_count
Print #1, "edge", edge_count, "-1 ", num_internaLpoints + 2, cap_panels_t, "1.0",
"0.1 "
Print #1, "startnode", second_cap_node_connect(5)
For i = 1 To num_internal_points
Print #1, (i), cap_internal_y(i).x, -cap_internal_y(i).y, cap_internaLy(i).z
Next
Print #1, "finishnode", second_cap_node_connect(4)

'arc internaLz
edge_count = edge_count + I
second_cap_edge_connect(9) = edge_count
Print #1, "edge", edge_count, "-I ", num_internaLpoints + 2, cap_panels_t, "1.0",
"0.1 "
Print #1, "startnode", second_cap_node_connect(6)
For i = 1 To num_internal_points
Print #1, (i), cap_internaLz(i).x, -cap_internal_z(i).y, cap_internal_z(i).z
Next
Print #1, "finishnode", second_cap_node_connect(4)

End Sub

Public Sub outpuCflxO
Dim node_count, i, face_count As Integer
Dim edge_count, duccpanels_s, duccpanels_t As Integer
'Dim ring_panels_s, ring_panels_t As Integer
'Dim hub_panels_s, hub_panels_t As Integer
'Dim blade_panels_s, blade_panels_t As Integer
'Dim duccwake_panels_s, duccwake_panels_t As Integer
'Dim blade_wake_panels_s, blade_wake_panels_t As Integer
Dim cnodes, cedges, cfaces As Integer
Dim num_cap_nodes, num_cap_edges, num_cap_faces As Integer
Dim num_ring_nodes, num_duccnodes, num_hub_nodes, num_blade_nodes,
num_ducC wake_nodes, num_blade_ wake_nodes As Integer
Dim num_duccedges, num_ring_edges, num_hub_edges, num_blade_edges,
num_duccwake_edges, num_blade_wake_edges As Integer
Dim num_ducCfaces, num_ring_faces, num_hub_faces, num_blade_faces,
num_ducCwake_faces, num_blade_wake_faces As Integer

Dim cap_node_connect(7) As Integer 'should be 7
Dim cap_edge_connect(9) As Integer 'should be 9

143

Dim second_cap_node_connect(7) As Integer
Dim second_cap_edge_connect(9) As Integer

Dim duccnode_connect(60) As Integer
Dim duccedge_connect(90) As Integer
Dim ring_node_connect(60) As Integer
Dim ring_edge_connect(90) As Integer
Dim hub_node_connect(60) As Integer
Dim hub_edge_connect(90) As Integer
Dim blade_ends_connect(6) As Integer
Dim ducC wake_node_connect(20) As Integer
Dim ducC wake_edge_connect(38) As Integer

Dim blade_node_connectO As Integer
Dim blade_edge_connectO As Integer
Dim blade_section_connectO As Integer
Dim blade_ wake_ vertedge_connectO As Integer
Dim blade_ wake_secondedge_connectO As Integer

ReDim blade_node_connect(num_sections * 2)
ReDim blade_edge_connect((num_sections - 1) * 2)
ReDim blade_section_connect(num_sections * 2)

ReDim blade_ wake_node_connect(num_sections * 2)
ReDim blade_wake_edge_connect(num_sections)
ReDim blade_ wake_secondedge_connect(num_sections)
ReDim blade_wake_vertedge_connect(2 * (num_sections - 1))

node_count = -1
edge_count = -1
face_count = -1

num_cap_nodes = 7
num_ring_nodes = 2
num_ducCnodes = 40
num_hub_nodes = 4 * (no_oChub_strips + 1) - 2
num_ducCwake_nodes = 20
num_blade_nodes = num_sections * 2
num_blade_ wake_nodes = num_sections * 2

num_ring_edges = no_oCring_strips * 9 + 4
If ring_true = 1 Then
num_duccedges = 66
Else
num_duccedges = 38
End If
num_ring_edges = 3

144

num_cap_edges = 9
num_hub_edges = no_oLhub_strips * 7 + 2
num_duct_wake_edges = 38
num_blade_edges = num_sections * 2 + (num_sections - 1) * 2
num_blade_wake_edges = num_sections * 2 + (num_sections - 1) * 2

If rin~true = 1 Then
num_duct_faces = 27
num_ring_faces = 1
Else
num_ring_faces = 0
num_ducefaces = 18
End If
num_cap_faces = 3
num_hub_faces = no_oLhub_strips * 3
num_duce wake_faces = 18
num_blade_faces = (num_sections - 1) * 2
num_blade_ wake_faces = (num_sections - 1) * 2

enodes = 0
eedges = 0
efaces = 0

If frmMain.ring_flag.value = 1 Then
enodes = enodes + num_rin~nodes
eedges = eedges + num_ring_edges
efaces = efaces + num_ring_faces
End If
If frmMain.hub_flag.value = 1 Then
enodes = enodes + num_hub_nodes
eedges = eedges + num_hub_edges
efaces = efaces + num_hub_faces

If frmMain.blade_flag.value = 0 Then
enodes = enodes + 2
eedges = eedges + 1
End If

End If
If frmMain.cap_flag. value = 1 Then
enodes = enodes + num_cap_nodes * 2
eedges = eedges + num_cap_edges * 2
efaces = efaces + num_cap_faces * 2
End If
If frmMain.blade_flag.value = 1 Then
enodes = enodes + num_blade_nodes + num_blade_ wake_nodes
eedges = eedges + num_blade_edges + num_blade_wake_edges
efaces = efaces + num_blade_faces + num_blade_ wake_faces
End If

If frmMain.duceflag.value = 1 Then
en odes = enodes + num_ducenodes + num_duce wake_nodes

145

Cedges = cedges + num_duccedges + num_ducC wake_edges
cfaces = t_faces + num_ducCfaces + num_ducc wake_faces
End If

Open "out.flx" For Output As 1
Print #1, "Thruster"
Print #1, "GRID TYPE PANEL"
Print #1, Cnodes, cedges, cfaces, "0"

'node definition
'**
If frmMain.cap_flag. value = 1 Then
Call cap_nodes(node_count, cap_node_connect)
Call second_cap_nodes(node_count, second_cap_node_connect)
End If

If frmMain.duccflag. value = 1 Then
Call duccnodes(node_count, duccnode_connect)
Call ducC wake_nodes(node_count, ducC wake_node_connect)
End If
If frmMain.ring_flag.value = 1 Then Call ring_nodes(node_count,
ring_node_connect)
If frmMain.hub_flag.value = 1 Then
If frmMain.blade_flag.value = 0 Then Call missing_hub_nodes(node_count,
b1ade_node_connect)
Call hub_nodes(node_count, hub_node_connect)
End If
If frmMain. blade_flag. value = 1 Then
Call blade_nodes(node_count, b1ade_node_connect)
Call blade_ wake_nodes(node_count, blade_ wake_node_connect)
End If

'edge definition
'**

If frmMain.ducCflag.value = 1 Then
If rin~true = 1 Then

Call ducC 4ring_edges(edge_count, duccnode_connect, duccedge_connect)
Else

Call duccno_ring_edges(edge_count, ducCnode_connect, ducCedge_connect)
End If
Call ducC wake_edges(edge_count, ducC wake_node_connect,
ducC wake_edge_connect, ducCnode_connect)
End If
If frmMain.cap_flag. value = 1 Then
Call cap_edges(edge_count, cap_node_connect, cap_edge_connect, cap_panels_t,
cap_panels_s)

146

Call second_cap_edges(edge_count, second_cap_node_connect,
second_cap_edge_connect, cap_panels_t, cap_panels_s)
End If
IffrmMain.ring_fIag.value = 1 Then Call ring_edges(edge_count, rin~node_connect,
ring_edge_connect, blade_node_connect, ring_panels_t)

If frmMain.hub_fIag.value = I Then
If frmMain.blade_fIag.value = 0 Then Call missing_section_fochub(edge_count,
blade_node_connect, blade_ends_connect, blade_section_connect,
blade_edge_connect, blade_panels_t, blade_panels_s, hub_node_connect,
ring_node_connect)
Call hub_edges(edge_count, hub_node_connect, hub_edge_connect,
blade_node_connect, blade_section_connect, hub_panels_t, hub_panels_s)
End If
If frmMain.blade_fIag.value = I Then
Call blade_edges(edge_count, blade_node_connect, blade_ends_connect,
blade_section_connect, blade_edge_connect, blade_panels_t, blade_panels_s,
hub_node_connect, ring_node_connect)
Call blade_ wake_edges(edge_count, blade_ wake_node_connect,
blade_node_connect, blade_ wake_edge_connect, hub_node_connect,
ring_node_connect, blade_ wake_ vertedge_connect,
blade_wake_secondedge_connect)
End If

'face definition
'**

If frmMain.duccfIag. value = I Then
If ring_true = 1 Then
Call ducC 4ring_faces(face_count, ducCnode_connect, duccedge_connect)
Else
Call duccno_ring_faces(face_count, duccnode_connect, duccedge_connect)
End If
Call ducC wake_faces(face_count, ducC wake_node_connect,
ducC wake_edge_connect, duccedge_connect, ducCnode_connect)
End If
If frmMain.ring_fIag. value = I Then Call ring_faces(face_count, ring_node_connect,
ring_edge_connect, blade_section_connect)
If frmMain.cap_fIag. value = I Then
Call cap_faces(face_count, cap_node_connect, cap_edge_connect)
Call second_cap_faces(face_count, second_cap_node_connect,
second_cap_edge_connect)
End If

If frmMain.hub_fIag.value = I Then Call hub_faces(face_count, hub_node_connect,
hub_edge_connect, blade_section_connect, blade_edge_connect)

If frmMain.blade_fIag.value = 1 Then

147

Call blade_faces(face_count, blade_node_connect, blade_ends_connect,
blade_section_connect, blade_edge_connect, hub_edge_connect, ring_edge_connect,
hub_node_connect)
Call blade_ wake_faces(face_count, blade_ wake_node_connect,
blade_ wake_edge_connect, blade_edge_connect, blade_ wake_ vertedge_connect,
blade_ends_connect, blade_ wake_secondedge_connect, hub_node_connect,
blade_node_connect)
End If

Close #1
End Sub
Public Sub blade_ wake_faces(face_count, blade_ wake_node_connect,
blade_ wake_edge_connect, blade_edge_connect, blade_ wake_ vertedge_connect,
blade_ends_connect, blade_wake_secondedge_connect, hub_node_connect,
blade_node_connect)
Dim i As Integer

'faces for adapted wake
'**

For i = 1 To num sections - I
face_count = face_count + I
Print #1, "face", face_count, "2048", "1"
Print #1, "linear"
Print #1, "origin node", blade_node_connect((i) * 2)
Print #1, "side", "0", "I ", blade_wake_edge_connect(i)
Print #1, "side", "1", "1", blade_wake_vertedge_connect(i)
Print#I, "side", "2", "1", blade_wake_edge_connect(i + 1)
Print #1, "side", "3", "I ", blade_edge_connect((i) * 2)
Print#I, "sources", "0", "0", "0"
Next

'faces for fixed wake
'**
For i = I To num_sections - I
face_count = face_count + I
Print #1, "face", face_count, "4096", "1"
Print # 1, "linear"
Print #1, "origin node", blade_wake_node_connect((i - 1) * 2 + 1)
Print #1, "side", "0", "I ", blade_wake_secondedge_connect(i)
Print#l, "side", "I", "I", blade_wake_vertedge_connect((num_sections-l)+i)
Print #1, "side", "2", "I ", blade_ wake_secondedge_connect(i + 1)
Print#I, "side", "3", "I ", blade_wake_vertedge_connect(i)
Print #1, "sources", "0", "0", "0"
Next

End Sub
Public Sub blade_wake_edges(edge_count, blade_wake_node_connect,
blade_node_connect, blade_ wake_edge_connect, hub_node_connect,

148

ring_node_connect, blade_ wake_ vertedge_connect,
blade_ wake_secondedge_connect)
Dim j, i As Integer
Dim adapt, non_adapt As Integer

'free wake to 1/3 length
adapt = Int(no_oLwake_points * blade_freewake_length)

For j = 1 To num_sections
edge_count = edge_count + 1
blade_ wake_edge_connectU) = edge_count
If j = I Or j = num_sections Then
Print#l, "edge", edge_count, "-2", adapt, blade_freewake_panels_s, "0.3", "2.0"
Print #1, "startnode", blade_node_connect(U - 1) * 2 + 2)
End If
If j <> 1 And j <> num_sections Then
Print #1, "edge", edge_count, "-I ", adapt, blade_freewake_panels_s, "0.3", "2.0"
Print #1, "startnode", blade_node_connect(U - 1) * 2 + 2)
End If

For i = 2 To adapt - I
Print #1, (i - 1), wakeU, i).x, wakeU, i).y, wakeU, i).z

Next
Print #1, "finishnode", blade_wake_node_connect(U - 1) * 2 + 1)

Next

'edges perpendicular to the adapted wake sections
For j = I To num_sections - I
edge_count = edge_count + I
bIade_ wake_ vertedge_connectU) = edge_count
If j = (num_sections - I) Then Print #1, "edge", edge_count, "-1 ", "2",

Int(blade_panels_t * blade_tip_cluster), "1.0", "0. I"
If j <> (num_sections - I) Then Print #1, "edge", edge_count, "-1 ", "2",

blade_panels_t, "1.0", "0. I"
Print #1, "startnode", blade_wake_node_connectCU - 1) * 2 + 1)
Print #1, "finishnode", blade_wake_node_connect(U - 1) * 2 + 3)

Next

'fixed wake behind adapted wake
'**

For j = I To num_sections
edge_count = edge_count + I
blade_ wake_secondedge_connectU) = edge_count
If j = I Or j = num_sections Then Print #1, "edge", edge_count, "-2", non_adapt,

blade_fixedwake_panels_s, "1.0", "0. I"
If j <> I And j <> num_sections Then Print #1, "edge", edge_count, "- I ", non_adapt,
blade_fixedwake_panels_s, "1.0", "0. I"
Print#l, "startnode", blade_wake_node_connectCU - I) * 2 + I)

149

For i = (adapt + I) To no_oLwake_points - I
Print #1, (i - adapt), wakeU, i).x, wakeU, i).y, wakeU, i).z

Next
Print #1, "finishnode", blade_wake_node_connect(U - I) * 2 + 2)

Next

'edges perpendicular to the fixed wake sections (end of wake)
For j = I To num_sections - I
edge_count = edge_count + I
blade_wake_vertedge_connect((num_sections - I) + j) = edge_count
If j = (num_sections - 1) Then Print #1, "edge", edge_count, "-2", "2",

Int(blade_panels_t * blade_tip_cluster), "1.0", "0. I"
Ifj <> (num_sections - I) Then Print #1, "edge", edge_count, "-2", "2",

blade_panels_t, "1.0", "0. I"
Print #1, "startnode", blade_wake_node_connect(U - I) * 2 + 2)
Print #1, "finishnode", blade_wake_node_connect(U - I) * 2 + 4)

Next

End Sub
Public Sub blade_wake_nodes(node_count, blade_wake_node_connect)
'blade wake nodes
'**
'only two nodes per section one at the adaption amd one at the end

Dim i As Integer
Dim adapt As Integer

adapt = Int(no_oLwake_points * blade_freewake_length)
For i = I To num_sections

'adaption node
node_count = node count + 1
blade_wake_node_connect(((i - 1) * 2) + 1) = node_count
Print #1, "node", node_count, wake(i, adapt).x, wake(i, adapt).y, wake(i, adapt).z

'end node
node_count = node_count + I
blade_ wake_node_connect(((i - I) * 2) + 2) = node_count
Print #1, "node", node_count, wake(i, no_oLwake_points).x, wake(i,
no_oLwake_points).y, wakeCi, no_oLwake_points).z

Next
End Sub
Public Sub duccwake_faces(face_count, duccwake_node_connect,
ducC wake_edge_connect, duccedge_connect, ducCnode_connect)
Dim j As Integer

'duct wake sheet face
'***
For j = I To 9

150

'free wake
face_count = face_count + 1
Print #1, "face", face_count, "2048", "3"
Print #1, "linear"
Print#l, "origin node", duccnode_connectU * 4 + 1)
Print #1, "side", "0", "l",duct_wake_edge_connectU *2+ 1)
Print #1, "side", "1", "I",duccwake_edge_connect(20+j *2-1)
Print #1, "side", "2", "1 ", duccwake_edge_connectU * 2 - 1)
Print #1, "side", "3", "1 ", duccedge_connect(20 + j * 2 - 1)
Print #1, "sources", "0", "0", "0"

'fixed wake
face_count = face_count + 1
Print #1, "face", face_count, "4096", "3"
Print # 1, "linear"
Print #1, "origin node", duccwake_node_connectU * 2 + 1)
Print #1, "side", "0", "1 ", duccwake_edge_connectU * 2 + 2)
Print #1, "side", "1 ", "1 ", duccwake_edge_connect(20 + j * 2)
Print #1, "side", "2", "1 ", duccwake_edge_connectU * 2)
Print #1, "side", "3", "1 ", ducCwake_edge_connect(20 + j * 2 - 1)
Print #1, "sources", "0", "0", "0"

Next

End Sub

Public Sub ducC wake_nodes(node_count, ducC wake_node_connect)

Dim j As Integer

'duct wake nodes
'**
For j = 1 To 10
node_count = node_count + 1
ducC wake_node_connectU * 2 - 1) = node_count
Print #1, "node", node_count, duccwakeU, 2).x, duccwakeU, 2).y, duccwakeU, 2).z

node_count = node_count + 1
duccwake_node_connectU * 2) = node_count
Print #1, "node", node_count, duccwakeU, 3).x, duccwakeU, 3).y, duccwakeU, 3).z

Next

End Sub
Public Sub ducC wake_edges(edge_count, ducC wake_node_connect,
ducC wake_edge_connect, ducCnode_connect)
'duct wake edges
'**

151

Dim i, j As Integer

For j = 1 To 10
'staight line to 113 of wake for adaption
edge_count = edge_count + I
ducC wake_edge_connect(j * 2 - I) = edge_count
If j = 1 Or j = JO Then Print #1, "edge", edge_count, "-4", "2",
ducCfreewake_panels_s, "0.3", "2.0"
Ifj <> I Andj <> JO Then Print#I, "edge", edge_count, "-1", "2",
ducCfreewake_panels_s, "0.3", "2.0"
Print #1, "startnode", ducCnode_connect(j * 4 - 3)
Print #1, "finishnode", duccwake_node_connect(j * 2 -1)

'staight line from 113 to end of wake
edge_count = edge_count + 1
duccwake_edge_connect(j * 2) = edge_count
If j = I Or j = 10 Then Print #1, "edge", edge_count, "-4", "2",
ducCfixedwake_panels_s, "1.0", "0.1"
If j <> 1 And j <> 10 Then Print #1, "edge", edge_count, "-1 ", "2",
ducCfixedwake_panels_s, "1.0", "0.1 "
Print #1, "startnode", ducC wake_node_connect(j * 2 - 1)
Print # I, "finishnode", ducC wake_node_connect(j * 2)

Nextj

For j = 1 To 9

'first arc at 113 of wake for adaption
edge_count = edge_count + I
duccwake_edge_connect(20 + j * 2 - 1) = edge_count
Print#l, "edge",edge_count, "-I", "36",duccpanels_t, "l.0", "0.1"
Print #1, "startnode", duccwake_node_connect(j * 2 - 1)
For i = 2 To 35
Print #1, (i - 1), duccwake_arcs(j, I, i).x, duccwake_arcs(j, 1, i).y, duccwake_arcs(j,
1, i).z
Next
Print # I, "finishnode", ducC wake_node_connect(j * 2 + 1)

'arc at end of wake
edge_count = edge_count + 1
ducC wake_edge_connect(20 + j * 2) = edge_count
Print #1, "edge", edge_count, "-5", "36", duccpanels_t, "1.0", "0.1"
Print #1, "startnode", duccwake_node_connect(j * 2)
For i = 2 To 35
Print #1, (i - 1), duccwake_arcs(j, 2, i).x, duccwake_arcs(j, 2, i).y, duccwake_arcs(j,
2, i).z
Next
Print #1, "finishnode", duccwake_node_connect(j * 2 + 2)

152

Nextj

End Sub
Public Sub ducewakesheet(wake_Iength)
Dim i, j As Integer
ReDim duct_wake(lO, 3)
ReDim duce wake_arcs(I 0, 2, 36)

'set wake on the end of the duct. use upper section
For i = I To 10
ducewake(i, I).x = duceupper(i, num_uppecpoints).x
ducewake(i, 1).y = duceupper(i, num_uppecpoints).y
ducewake(i, 1).z = duceupper(i, num_uppecpoints).z

'line to wake adapt
ducewake(i, 2).x = duceupper(i, num_upper_points).x
ducewake(i, 2).y = duceupper(i, num_uppecpoints).y + ducefreewake_Iength *
wake_length
ducewake(i, 2).z = duceupper(i, num_uppecpoints).z

'end of the straight lines and wake sheet
ducewake(i, 3).x = duceupper(i, num_uppecpoints).x
ducewake(i, 3).y = duceupper(i, num_uppecpoints).y + wake_length
ducewake(i, 3).z = duceupper(i, num_uppecpoints).z
Next

For j = I To 10
'duct wake arcs
For i = I To 36
'adaption arc
ducewake_arcs(j, 1, i).x = duceleading_arc(j, i).x
duce wake_arcs(j, I, i).y = duceleading_arc(j, i).y + ducefreewake_Iength *
wake_length
duce wake_arcs(j, I, i).z = duceleading_arc(j, i).z

'arc at the end of wake
ducewake_arcs(j, 2, i). x = duceleading_arc(j, i).x
ducewake_arcs(j, 2, i).y = duceleading_arc(j, i).y + wake_length
duce wake_arcs(j, 2, i).z = duceleading_arc(j, i).z
Next

Next
End Sub
Public Sub blade_faces(face_count, blade_node_connect, blade_ends_connect,
blade_section_connect, blade_edge_connect, hub_edge_connect, ring_edge_connect,
hub_node_connect)
Dim i As Integer

153

'blade faces
'*************************************
For i = 1 To num_sections - 1

'upper face
face_count = face_count + 1
Print #1, "face", face_count, "16", "1"
Print #1, "linear"
Print #1, "origin node", blade_node_connect((i - 1) * 2 + 2)
Print #1, "side", "0", "1 ", blade_section_connect((i - 1) * 2 + 1)
Print #1, "side", "I", "1", blade_edge_connect((i -1) * 2+ 1)
Print #1, "side", "2", "1 ", blade_section_connect((i - 1) * 2 + 3)
Print # 1, "side", "3", "1", blade_edge_connect((i - 1) * 2 + 2)
Print #1, "sources", "0", "0", "0"

'lower face
face_count = face_count + I
Print #1, "face", face_count, "16", "1"
Print #1, "linear"
Print # I, "origin node", blade_node_connect((i - I) * 2 + 1)
Print #1, "side", "0", "1 ", blade_section_connect((i - 1) * 2 + 2)
Print #1, "side", "I ", "1 ", blade_edge_connect((i - 1) * 2 + 2)
Print #1, "side", "2", "1", blade_section_connect((i - 1) * 2 + 4)
Print #1, "side", "3", "I ", blade_edge_connect((i - 1) * 2 + 1)
Print #1, "sources", "0", "0", "0"

Next

End Sub
Public Sub pick_section_oLspline(curveO As section, secCnum, edge As String,
tempO As section, num_temp_points)

Dim i As Integer
Dim counter As Integer
Dim lower As Single
Dim upper As Single

If edge = "Ie" Then
If finaLsection(seccnum, section_data(secCnum).1e_id).x > finaLsection(seccnum

+ 1, section_data(seccnum + 1).Ie_id).x Then
upper = finaLsection(seccnum, section_data(seccnum).le_id).x
lower = finaLsection(seccnum + 1, section_data(seccnum + 1).le_id).x

End If
If finaLsection(seccnum, section_data(secCnum).1e_id).x < finaLsection(seccnum

+ 1, section_data(seccnum + 1).Ie_id).x Then
lower = finaLsection(seccnum, section_data(secCnum).le_id).x
upper = finaLsection(seccnum + I, section_data(seccnum + 1).lcid).x

End If
End If

If edge = "te" Then

154

If final_section(seccnum, section_data(seccnum).te_id).x > finaLsection(secCnum
+ 1, section_data(1ower).te_id).x Then

upper = final_section(seccnum, section_data(seccnum).te_id).x
lower = final_section(seccnum + 1, section_data(seccnum + I).te_id).x

End If
If finaLsection(secCnum, section_data(secCnum).te_id).x < final_section(seccnum
+ 1, section_data(1ower).te_id).x Then

lower = finaLsection(seccnum, section_data(secCnum).te_id).x
upper = finaLsection(seccnum + 1, section_data(secCnum + 1).te_id).x

End If
End If

counter = 0

For i = I To 10 1

If curve(i).x > lower And curve(i).x < upper Then
counter = counter + 1
temp(counter).x = curve(i).x
temp(counter).y = curve(i).y
temp(counter).z = curve(i).z
End If
Next

End Sub
Public Sub blade_edges(edge_count, blade_node_connect, blade_ends_connect,
blade_section_connect, blade_edge_connect, blade_panels_t, blade_paneIs_s,
hub_node_connect, ring_node_connect)
Dim num_uppecsection_nodes, j, q, i As Integer

Dim lower, upper As Integer
Dim num_temp_points As Integer
Dim temp(lOl) As section

'**

'blade_section_connect definition
'**

For j = I To num_sections
'lower side of section
edge_count = edge_count + I
blade_section_connect(Q - 1) * 2 + 1) = edge_count
If j = 1 Then Print #1, "edge", edge_count, "-2", section_dataU).le_id,

blade_panels_s, 2 - blade_P, blade_Q

155

Ifj <> 1 Then Print#l, "edge", edge_count, "-I", section_dataU).le_id,
blade_panels_s, 2 - blade_P, blade_Q

Print #1, "startnode", blade_node_connect(U - I) * 2 + 2)
For i = 2 To section_dataU).le_id - 1
Print #1, (i - 1), finaLsectionU, i).x, finaLsectionU, i).y, finaLsectionU, i).z

Next
Print #1, "finishnode", blade_node_connect(U -I) * 2 + 1)

'upper side of section
edge_count = edge_count + I
blade_section_connect((U - I) * 2) + 2) = edge_count
num_uppecsection_nodes = I + section_dataU).num_points - section_dataU).le_id
Print # 1, "edge", edge_count, "-I", num_uppecsection_nodes, blade_panels_s,

blade_P, blade_Q
Print#l, "startnode", blade_node_connect(U -I) * 2 + 1)
q = section_dataU).le_id

For i = 2 To num_upper_section_nodes - 1
q=q+1
Print #1, (i - I), finaLsectionU, q).x, finaLsectionU, q).y, finaLsectionU, q).z

Next
Print #1, "finishnode", blade_node_connect(U - 1) * 2 + 2)

Next

'**

'blade_edge_connect definition
'**

Dim g As Integer

j=O
For i = I To num_sections - I

'leading edge
Call pick_section_oCspline(1eading_splineO, i, "Ie", tempO, num_temp_points)
j = j + I
edge_count = edge_count + I
blade_edge_connectU) = edge_count
If i = (num_sections - I) Then Print #1, "edge", edge_count, "-1", (num_temp_points
+ 2), Int(blade_panels_t * blade_tip_cluster), "1.0", "0.1 "
If i <> (num_sections - I) Then Print #1, "edge", edge_count, "-1 ", (num_temp_points
+ 2), blade_panels_t, "1.0", "0.1"
Print#l, "startnode", blade_node_connect((i - 1) * 2 + 1)
For g = I To num_temp_points

Print #1, (g), temp(g).x, temp(g).y, temp(g).z
Next
Print#l, "finishnode", blade_node_connect((i - 1) * 2 + 3)

'trailing edge
Call pick_section_oCspline(trailing_splineO, i, "te", tempO, num_temp_points)

156

j = j + 1
edge_count = edge_count + 1
blade_edge_connectU) = edge_count
Ifi = (num_sections - 1) Then Print #1, "edge", edge_count, "-3", (num_temp_points
+ 2), Int(blade_panels_t * blade_tip_cluster), "1.0", "O.l"
If i <> (num_sections - I) Then Print #1, "edge", edge_count, "-3", (num_temp_points
+ 2), blade_panels_t, "1.0", "0.1"
Print #1, "startnode", blade_node_connect((i - 1) * 2 + 2)
For g = 1 To num_temp_points

Print #1, (g), temp(g).x, temp(g).y, temp(g).z
Next

Print #1, "finishnode", blade_node_connect((i - 1) * 2 + 4)
Next

End Sub
Public Sub blade_nodes(node_count, blade_node_connect)
Dim i As Integer

'blade nodes
'**

For i = 1 To num_sections

'section edges
node_count = node_count + 1
blade_node_connect(((i - 1) * 2) + 1) = node_count
Print #1, "node", node_count, final_section(i, section_data(i).le_id).x, finaLsection(i,
section_data(i).le_id).y, finaLsection(i, section_data(i).1e_id).z
node_count = node_count + 1
blade_node_connect(((i - 1) * 2) + 2) = node_count
Print #1, "node", node_count, finaLsection(i, section_data(i).te_id).x, finaLsection(i,
section_data(i).te_id).y, finaLsection(i, section_data(i).te_id).z

Next
End Sub
Public Sub missing_hub_nodes(node_count, blade_node_connect)
'nodes at the root needed for the hub when the blade is not exported
'**

'section edges
node_count = node_count + 1
blade_node_connect(1) = node_count
Print #1, "node", node_count, finaLsection(l, section_data(1).le_id).x,
finaLsection(1, section_data(l).le_id).y, finaLsection(l, section_data(l).1e_id).z
node_count = node_count + I
blade_node_connect(2) = node_count
Print #1, "node", node_count, finaLsection(l, section_data(l).te_id).x,
finaLsection(1, section_data(l).te_id).y, final_section(l, section_data(l).te_id).z

157

End Sub
Public Sub hub_faces(face_count, hub_node_connect, hub_edge_connect,
blade_section_connect, blade_edge_connect)
'**

Dim i As Integer

'hub leading faces
For i = I To no_oLhub_strips
face_count = face_count + I
Print#l, "face", face_count, "16", "I"
Pri nt # I, "linear"
Print #1, "origin node", hub_node_connect(i + 1)
Print #1, "side", "0", "I ", hub_edge_connect(10 + 1 + i)
Print #1, "side", "I ", "I ", hub_edge_connect(20 + i)
Print #1, "side", "2", "I", hub_edge_connect(lO + i)
Print #1, "side", "3", "1 ", hub_edge_connect(i)
Print #1, "sources", "0", "0", "0"
Next

'hub faces between blades
For i = I To no_oLhub_strips
face_count = face_count + 1
Print #1, "face", face_count, "16", "I"
Print #1, "linear"
Print #1, "origin node", hub_node_connect(i + I + 10)
Print #1, "side", "0", "I ", hub_edge_connect(30 + I + i)
Print #1, "side", "1", "I",hub_edge_connect(40+i)
If i = I Then Print #1, "side", "2", "I ", blade_section_connect(2)
If i <> 1 Then Print #1, "side", "2", "I ", hub_edge_connect(30 + i)
Print#I, "side", "3", "I",hub_edge_connect(20+i)
Print #1, "sources", "0", "0", "0"
Next
'hub trailing faces
For i = I To no_oLhub_strips
face_count = face_count + 1
Print #1, "face", face_count, "16", "I"
Print # 1, "linear"
Print #1, "origin node", hub_node_connect(i + 21)
Print #1, "side", "0", "I ", hub_edge_connect(50 + I + i)
Print # 1, "side", "1", "1", hub_edge_connect(60 + i)
Print #1, "side", "2", "I ", hub_edge_connect(50 + i)
Print #1, "side", "3", "I ", hub_edge_connect(40 + i)
Print #1, "sources", "0", "0", "0"
Next

158

End Sub

Public Sub ring_faces(face_count, ring_node_connect, ring_edge_connect,
blade_section_connect)

'**

'ring face

face_count = face_count + I
Print #1, "face", face_count, "16", "I"
Print #1, "linear"
Print #1, "origin node", ring_node_connect(1)
Print#I, "side", "0", "I",rin~edge_connect(3)
Print #1, "side", "1", "I",ring_edge_connect(1)
Print #1, "side", "2", "1 ", bIade_section_connect(num_sections * 2)
Print #1, "side", "3", "I ", ring_edge_connect(2)
Print #1, "sources", "0", "0", "0"

End Sub

Public Sub caps(hub_Iength)
Dim no_oCpoints As Integer
Dim i As Integer
Dim radius, offset As Single
Dim revolution_angle As Single

Dim cap_internaLy20 As section

'no of points for back section
'created automatically
no_oCpoints = 36

Dim scale_factor As Single

'radius of hub
radius = Sqr(finaLsection(1, section_data(1).le_id).x A 2 + finaI_section(1,
section_data(1).Ie_id).z A 2)

'positon of cap according to hub length
offset = hub_length / 2

'should be the same with the number of stators
no_oCblades = 4
revolution3ngle = 2 * pi / (duccimages * 2)

159

If cap_auto = I Then
cap_section_points = 36
ReDim cap_Ieft_temp(cap_section_points)
'automatically create an arc to make a spherical cap
Call arc(cap_IefCtempO, 0, pi /2, radius, 0, offset, 0, cap_section_points, 2)
Else
'match cap radius with hub radius
scale_factor = radius / cap_IefCtemp(cap_section_points).x

'otherwise already read
For i = I To cap_section_points
cap_Iefctemp(i).x = cap_IefCtemp(i).x * scale_factor
cap_Iefctemp(i).y = cap_IefCtemp(i).y * scale_factor + offset
cap_Iefctemp(i).z = cap_IefCtemp(i).z * scale_factor
Next
End If

'calculate total length of arc on hub
Dim totaLlength As Single
total_length = °
For i = I To cap_section_points - I
totaLlength = total_length + Sqr((cap_IefCtemp(i).x - cap_Ieft_temp(i + I).x) /\ 2 +
(cap_IefCtempO).y - cap_left_tempO + I).y) /\ 2 + (cap_IefCtemp(i).z­
cap_Ieft_temp(i + I).z) /\ 2)
Next

'fit a spline throught cap_left
'**

'calculate no of spline points for 20 points on internal
Dim distance As Single
Dim points_pecdistance As Single
Dim num_oLspline_points As Integer

distance = (side_fraction - internaLfraction) * totaLlength
points_pecdistance = cap_section_points / distance
num_oLspline_points = Abs(Int(total_length * points_pecdistance))

'call spline routine

ReDim cap_Ieft(num_oLspline_points + I)
ReDim cap_internal_y2(num_oLspline_points + I)
ReDim cap_right(num_oLspline_points + I)
ReDim cap_backCno_oLpoints)
ReDim cap_internal_y(num_oLspline_points + 1)
ReDim cap_internaLx(num_oLspline_points + 1)
ReDim cap_internal_z(nul11_oLspline_points + I)

160

Call s_spline(cap_IefCtempO, I, I, cap_IeftO, cap_section_points,
num_oCspline_points)
cap_section_points = num_oCspline_points + I

'arc at the back of cap
Call arc(cap_backO, pi /2, pi /2 + revolution_angle, radius, 0, offset, 0,
no_oCpoints, I)

'other arc of cap depending on no_oCstators
For i = I To cap_section_points
cap_right(i).x = cap_Ieft(i).x * Cos(revolution_angle) + cap_Ieft(i).z *
Sin(revol uti on_angle)
cap_right(i).y = cap_Ieft(i).y
cap_right(i).z = -cap_Ieft(i).x * Sin(revolution_angle) + cap_Ieft(i).z *
Cos(revol uti on_angle)
Next

'calculate new total length of arc on hub
'more accurate since spline
Dim lengthO As Single
ReDim length(cap_section_points)
totaLlength = 0
length(O) = 0
length(I) = 0
For i = 2 To cap_section_points
length(i) = lengthCi - I) + SqrCCcap_IeftCi).x - cap_IeftCi - I).x) A 2 + (cap_IeftCi).y -
cap_IeftCi - I).y) A 2 + (cap_leftCi).Z - cap_IeftCi - I).z) A 2)
Next
totaLlength = length(cap_section_points)

Dim break As Integer
'find id for point half-way along the line
break = 0
For i = I To cap_section_points

If length(i) > (totaLlength * (1 - side_fraction)) And break = 0 Then
cap_sidenode_id = i
break = I
End If

Next

Dim counter As Integer
Dim length_to_point As Single
Dim xl, yl, zl As Single

161

Dim x2, y2, z2 As Single
Dim d_Iength As Single
Dim length_fraction As Single

'Internal arc along hub axis
For i = 1 To cap_section_points

If length(i) > (totaLlength * (1 - internaLfraction)) Then
'interpolate first point
If counter = 0 Then

counter = counter + 1

xl = cap_Ieft(i - 1).x * Cos (revolution_angle / 2) + cap_Ieft(i - 1).z *
Sin(revolution_angle / 2)

yl = cap_Ieft(i - l).y
z 1 = -cap_Ieft(i - 1).x * Sin(revolution_angle / 2) + cap_Ieft(i - l).z *

Cos(revolution_angle / 2)

x2 = cap_Ieft(i).x * Cos(revolution_angle / 2) + cap_Ieft(i).z *
Sin(revolution_angle / 2)

y2 = cap_Ieft(i).y
z2 = -cap_Ieft(i).x * Sin(revolution_angle / 2) + cap_Ieft(i).z *

Cos(revolution3ngle / 2)

length_fraction = 1 - (length(i) - (totaLlength * (1 - internaLfraction))) / (length(i)
- length(i - 1))

cap_internal_x(counter).x = x I + (x2 - xl) * length_fraction
cap_internal_x(counter).y = yl + (y2 - yl) * length_fraction
cap_internal_x(counter).z = zl + (z2 - zl) * length_fraction

End If

counter = counter + 1
cap_internal_x(counter).x = cap_Ieft(i).x * Cos(revolution_angle / 2) + cap_Ieft(i).z

* Sin(revolution_angle /2)
cap_internal_x(counter).y = cap_Ieft(i).y
cap_internal_x(counter).z = -cap_Ieft(i).x * Sin(revolution_angle / 2) + cap_Ieft(i).z

* Cos(revolution_angle / 2)

End If
Next

num_internaLx_points = counter
counter = 0

'calculate length of internal x
Dim internaLlength As Single
internaUength = 0
For i = 1 To num_internal_x_points - I

162

internal_length = internal_length + Sqr((cap_internaLx(i).x - cap_internaLx(i + I).x)
/\ 2 + (cap_internaLx(i).y - cap_internal_x(i + I).y) /\ 2 + (cap_internal_x(i).z -
cap_internal_xCi + I).z) /\ 2)
Next

'calculate the other two internal sections on cap
Dim angle As Single

For i = I To cap_section_points

If length(i) > length(cap_sidenode_id) And (length(i) < (totaLlength -
internaLlength)) Then
angle = (revolution3ngle / 2) * ((1ength(i) - length(cap_sidenode_id)) / (total_length

- length(cap_sidenode_id) - internaLlength))
counter = counter + I
cap_internal_y(counter).x = cap_left(i).x * Cos(angle) + cap_Ieft(i).z * Sin(angle)
cap_internal_y(counter).y = cap_Ieft(i).y
cap_internaLy(counter).z = -cap_left(i).x * Sin(angle) + cap_Ieft(i).z * Cos(angle)

cap_internal_z(countef).x = cap_left(i).x * Cos(revolution_angle - angle) +
cap_left(i).z * Sin(revolution_angle - angle)
cap_internaLz(counter).y = cap_left(i).y
cap_internaLz(counter).z = -cap_left(i).x * Sin(revolution_angle - angle) +

cap_left(i).z * Cos(revolution_angle - angle)
End If

Next
num_internaLpoints = counter

'rotate cap to match hub
Dim hub_angle As Single
Dim angle_r As Single
Dim cap_angle As Single

hub_angle = gecangle(hub_trailing_edge(1).x, hub_trai1in~edge(l).z)
cap_angle = gecangle(cap_back(1).x, cap_back(1).z)

angle_r = hub_angle - cap3ngle
Call rotate(cap_leftO, angle_r, cap_section_points)
Call rotate(cap_backO, angle_f, no_oCpoints)
Call rotate(cap_rightO, angle_r, cap_section_points)
Call rotate(cap_internaLxO, angle_r, num_internaLx_points)
Call rotate(cap_internaLyO, angle_f, num_internaLpoints)
Call rotate(cap_internal_zO, angle_r, num_internaLpoints)
End Sub
Public Sub rotate(vO As section, angle, num_points)
Dim i As Integer
Dim tempO As section

163

ReDim temp(num_points)

For i = 1 To num_points
temp(i).x = v(i).x
temp(i).z = v(i).z
Next

For i = 1 To num_points
v(i).x = temp(i).x * Cos(angle) + temp(i).z * Sin(angle)
v(i).z = -temp(i).x * Sin(angle) + temp(i).z * Cos(angle)

Next

End Sub
Public Sub rotate_point(v As section, angle, num_points)
Dim i As Integer
Dim temp As section

temp.x = v.x
temp.z = V.z

For i = I To num_points
V.x = temp.x * Cos(angle) + temp.z * Sin(angle)
v.z = -temp.x * Sin(angle) + temp.z * Cos(angle)

Next

End Sub

Private Function gecangle(x As Single, z As Single) As Single
Dim f As Single
Dim angle As Single

f= x / z
Select Case f

Case Is > 0
If x> 0 Then angle = Atn(Abs(f))
If x < 0 Then angle = pi + Atn(Abs(f))
Case Is < 0
If x> 0 Then angle = pi - Atn(Abs(f))
If x < 0 Then angle = 2 * pi - Atn(Abs(f))
Case Is = 0
If z > 0 Then angle = 0
If z < 0 Then angle = pi
End Select
gecangle = angle
End Function

164

Public Sub ductO

Dim radius, x_offset, duccrev_angle As Single
Dim num_duccarc_points As Integer
Dim i, j As Integer
Dim starcangle, end_angle, offset As Single
Dim duccrev _angle_step As Single

ReDim ducCtrailing_lower(I 0, section_data(O).le_id)
ReDim ducCleading_lower(I 0, section_data(O).le_id)
num_uppecpoints = section_data(O).num_points - section_data(O).le_id + 1
ReDim duccupper(1 0, num_uppecpoints)
ReDim ducClower(1 0, section_data(O).le_id)

'scale section
For i = 1 To section_data(O).num_points
section(O, i).x = section(O, i).x * ducClength * D
section(O, i).y = section(O, i).y * ducClength * (ducCthickness / 0.1) * D
Next

num_Ieading_Iowecpoints = °
num_trailing_lower_points = °
'track down the lower side of the duct section and remove the ring width
For i = 1 To section_data(O).le_id
'lower sections for duct without ring
ducclower(l, i).x = -section(O, i).y
ducclower(l, i).y = section(O, i).x
ducClower(l, i).z = section(O, i).z

'lower section for duct with ring
'aft part of lower ducts section minus the ring width
If section(O, i).x <= (final_section(num_sections, section_data(num_sections).le_id).y
- ring_width * D / 100) Then

'interpolate for the point on the ring_width
If section(O, i-I).x > (finaLsection(num_sections,

section_data(num_sections).le_id).y - rin!L width * D / 100) Then
num_trailing_Iower_points = num_trailing_lowecpoints + 1
ducCtrailing_lower(l, num_trailing_Iower_points).y = finaLsection(num_sections,

section_data(num_sections).le_id).y - ring_width * D / 100
ducctrailing_lower(l, nllm_trailing_lower_points).x = -(((section(O, i-I).y -

section(O, i).y) / (section(O, i-I).x - section(O, i).x)) * ((finaLsection(nllm_sections,
section_data(nllm_sections).le_id).y) - ring_width * D / 100 - section(O, i).x) +
section(O, i).y)

dllcCtrailing_lower(l, nllm_trailing_lower_points).z = °
End If

nllm_trailing_lower_points = nllm_trailing_lowecpoints + 1
dllcCtrailing_lower(I, nllm_trailing_lower_points).y = section(O, i).x
dllcCtrailing_lower(l, nllm_trailing_lower_points).x = -section(O, i).y

165

ducCtrailing_lower(1, num_trailing_lowecpoints).z = °
End If
'forward part of lower ducts section minus the ring width
If section(O, i).x >= (final_section(num_sections, section_data(num_sections).te_id).y
+ ring_width * D / 100) Then
num_Ieadin~lower_points = num_Ieading_Iowecpoints + 1
ducCleading_lower(l, num_Ieading_Iowecpoints).y = section(O, i).x
ducCleading_lower(l, num_Ieading_Iowecpoints).x = -section(O, i).y
ducCleading_lower(1, num_Ieading_Iower_points).z = °
'interpolate for the point on the ring_width
If section(O, i + 1).x < (finaLsection(num_sections,

section_data(num_sections).te_id).y + ring_width * D / 100) Then
num_Ieading_Iowecpoints = num_Ieadin~lowecpoints + 1
ducCleading_lower(1, num_Ieading_Iowecpoints).y = finaLsection(num_sections,

section_data(num_sections).te_id).y + ring_width * D / 100
ducCleading_lower(1, num_Ieading_Iowecpoints).x = -(((section(O, i + l).y­

section(O, i).y) / (section(O, i + 1).x - section(O, i).x)) * (finaLsection(num_sections,
section_data(num_sections).te_id).y + ring_width * D / 100 - section(O, i).x) +
section(O, i).y)

ducCleading_lower(1, num_Ieading_Iowecpoints).z = °
End If

End If
Next

'upper part of duct section

num_uppecpoints = °
For i = section_data(O).le_id To section_data(O).num_points
num_uppecpoints = num_uppecpoints + 1
ducCupper(1, num_uppecpoints).y = section(O, i).x
ducCupper(1, num_uppecpoints).x = -section(O, i).y
duccupper(1, num_uppecpoints).z = °
Next

'move section to correct radius
radius = D / 2 'Sqr(finaLsection(num_sections, section_data(l).le_id).x 1\ 2 +
final_section(num_sections, section_data(1).le_id).z 1\ 2)

x_offset = radius '- ducCtrailin~lower(1, 1).x

For i = 1 To num_Ieading_Iowecpoints
duccleadin~lower(I, i). x = duccleadin~lower(1, i).x + x_offset
Next

For i = 1 To num_trailing_lower_points
ducctrailing_lower(I, i).x = ducctrailing_Iower(1, i).x + x_offset
Next

For i = 1 To num_uppecpoints

166

duccupper(l, i).x = duccupper(1, i).x + x_offset
Next

'lower sections for duct without ring
For i = 1 To section_data(O).le_id
ducClower(I, i).x = ducClower(1, i).x + x_offset
Next

'''other duct sections that are rotated
'duccimages = 4
'9 is the number of strips for duct ie 10 sections
'cannot use one because the shape is not circular
duccrev _angle_step = -2 * pi / duccimages / 9

For j = I To 9
duccrev _angle = ducCrev _angle + duccrev _angle_step
For i = 1 To num_Ieading_Iowecpoints
ducCIeading_Iower(j + 1, i).y = ducCleadin~Iower(1, i).y
ducCleading_lower(j + 1, i).x = Cos(duccrev_angIe) * ducCleading_Iower(1, i).x +
Sin(ducCrev _angle) * ducCleading_Iower(l, i).z
duccleading_lower(j + I, i).z = -Sin(duccrev _angle) * ducCleading_Iower(l, i).x +
Cos(duccrev 3ngle) * ducCleading_lower(I, i).z
Next

For i = I To num_trailing_lower_points
ducctrailin~lower(j + I, i).y = ducCtrailing_lower(1, i).y
ducctrailing_Iower(j + 1, i). x = Cos(duccrev _angle) * ducCtrailing_lower(1, i).x +
Sin(ducCrev _angle) * ducCtrailing_Iower(1, i).z
ducctrailing_Iower(j + 1, i).z = -Sin(duccrev _angle) * ducctrailing_Iower(1, i).x +
Cos(duccrev _angle) * ducctrailing_lower(l, i).z
Next

For i = 1 To num_uppecpoints
duccupper(j + 1, i).y = duccupper(l, i).y
duccupper(j + 1, i).x = Cos(ducCrev _angle) * duccupper(l, i).x +
Sine ducCrev _angle) * ducCupper(1, i).z
duccupper(j + 1, i).z = -Sin(ducCrev_angle) * duccupper(1, i).x +
Cos(duccrev_angle) * ducCupper(1, i).z
Next

'seconf lower section for duct without ring
For i = 1 To section_data(O).le_id
ducClower(j + I, i).y = ducUower(I, i).y
ducClower(j + I, i).x = Cos(duccrev_angle) * ducclower(1, i).x +
Sin(duccrev _angle) * ducclower(1, i).z
ducClower(j + I, i).z = -Sin(duccrev_angle) * ducclower(1, i).x +
Cos(duccrev _angle) * ducclower(l, i).z
Next

167

Nextj

'draw arcs of duct
num_duccarc_points = 36
ReDim ducCleading_arc(lO, num_duccarc_points)
ReDim ducCtrailing_arc(I 0, num_duccarc_points)
ReDim ducCleading_Iower _arc(I 0, num_duccarc_points)
ReDim ducctrailing_lower_arc(I 0, num_duccarc_points)

starcangle = pi / 2 - ducCrev _angle_step
For j = I To 9

starCangle = starcangle + ducCrev _angle_step
end_angle = starcangle + ducCrev _angle_step
'trailing edge arc
radius = Sqr(ducCupper(l, I).x 1\ 2 + duccupper(l, I).z 1\ 2)

offset = ducCupper(l, I).y
Call arcs(ducCtrailing3rcO, starcangle, end_angle, radius, 0, offset, 0,
num_duccarc_points, 1, j)

'leading edge arc
radius = Sqr(ducCleading_lower(l, I).x 1\ 2 + ducCleading_lower(l, I).z 1\ 2)

offset = ducCleading_lower(I, I).y
Call arcs(ducCleading_arcO, starcangle, end_angle, radius, 0, offset, 0,
num_duccarc_points, 1, j)

'trailing lower edge arc
radius = Sqr(ducCtrailing_lower(l, I).x 1\ 2 + ducctrailing_lower(1, l).z 1\ 2)

offset = ducctrailing_Iower(l, 1).y
Call arcs(ducctrailing_IowecarcO, starcangle, end_angle, radius, 0, offset, 0,
num_duccarc_points, 1, j)

'leading lower edge arc
radius = Sqr(ducCleading_lower(l, num_Ieading_Iowecpoints).x 1\ 2 +
ducCleadin~lower(I, num_Ieading_Iowecpoints).z 1\ 2)

offset = ducCleading_lower(1, num_Ieading_Iowecpoints).y
Call arcs(ducCleading_lowecarcO, starcangle, end_angle, radius, 0, offset, 0,
num_duccarc_points, I, j)
Nextj
End Sub

Public Sub ring_Ieading_section(rin~width)
Dim num_edge_points, i, j As Integer
Dim psi, dpsi, r, P As Single
Dim angle, angle_step As Single

168

'set point to trailing edge of first section
ring_Ieading_end(I, I).x = finaI_section(num_sections,
section_data(num_sections).le_id).x
ring_Ieading_end(1, I).y = final_section(num_sections,
section_data(num_sections).Ie_id).y
ring_Ieading_end(I, I).z = final_section(num_sections,
section_data(num_sections).le_id).z

r = Sqr(ring_Ieading_end(I, I).z 1\ 2 + ring_Ieading_end(I, I).x 1\ 2)

P = propdata(num_sections).pitch * D
If P = 0 Then P = 0.1
'calculate the start angle and the step angle

'calculate start psi so it matches with leading edge of section
psi = (finaLsection(num_sections, section_data(num_sections).le_id).y / P) * 2 * pi
'step dpsi for the set number of steps
dpsi = ((((-ring_width / 2) - ring_Ieading_end(l, I).y) / P) * 2 * pi) /
(num_edge_points - I)
psi = psi ' - dpsi
'helical edge
'**********************
For i = 2 To num_edge_points
psi = psi + dpsi
ring_Ieading_end(l, i).x = r * Cos(psi)
ring_Ieading_end(I, i).y = (P * psi) / (2 * pi)
ring_Ieading_end(1, i).z = -r * Sin(psi)
Next

End Sub

Public Sub hub_trailing_section(hub_length)
Dim psi, dpsi, r As Single
Dim P As Single
Dim num_edge_points, i, j As Integer
Dim angle

num_edge_points = 100
ReDim hub_trailing_endC 10, num_edge_points)

'set point to trailing edge of section
hub_trailing_endC I, I).x = finaLsection(I, section_data(1).te_id).x
hub_trailing_end(1, I).y = final_section(1, section_data(1).te_id).y
hub_trailing_end(1, I).z = final_section(1, section_data(1).te_id).z

r = SqrChub_trailing_end(l, I).z 1\ 2 + hub_trailing_end(1, l).x 1\ 2)

169

'set the pitch of the hub to the wake and not the blade so
'there are no problems with wake influence on hub
P = find_traiIing_edge_pitch(l)
IfP = 0 Then P = 0.01

'calculate dpsi such that the hub length is correct
dpsi = ((((hub_length / 2) - hub_trailing_end(l, 1).y) / (P * D)) * 2 * pi) /
(num_edge_points - 1)

'helical edge
'**********************
For i = 2 To num_edge_points
'use te as starting point to ensure perfect match
hub_traiIin~end(l, i).x = hub_trailing_end(l, i - I).x * Cos(-dpsi) -
hub_traiIing_end(l, i - 1).z * Sin(-dpsi)
hub_trailing_end(l, i).z = hub_traiIing_end(l, i - I).x * Sine -dpsi) +
hub_traiIin~end(I, i-I).z * Cos(-dpsi)
hub_trailing_end(l, i).y = hub_traiIing_end(l, i-I).y + (P * D * dpsi) / (2 * pi)

Next

End Sub
Public Sub ring_trailing_section(ring_width)
Dim psi, dpsi, r As Single
Dim P As Single
Dim num_edge_points, i, j As Integer
Dim angle

num_edge_points = 100
ReDim rin~trailing_end(I 0, num_edge_points)

'set point to trailing edge of section
ring_traiIing_end(1, I).x = finaLsection(num_sections,
secti on_data(num_sections). te_id).x
ring_traiIing_end(l, I). Y = final_section(num_sections,
section_data(num_sections). te_id). y
ring_traiIing_end(I, I).z = finaLsection(num_sections,
secti on_data(num_sections). te_id).z

r = Sqr(ring_trailing_end(l, I).z /\ 2 + ring_traiIing_end(l, I).x /\ 2)

P = propdata(num_sections).pitch
If P = 0 Then P = 0.1

'calculate the starting psi so it matches the trailing end
psi = (finaLsection(num_sections, section_data(num_sections).te_id).y / P) * 2 * pi

170

dpsi = ((((ring_width / 2) - ring_trailin~end(1, I).y) / P) * 2 * pi) / (num_edge_points
- 1)
psi = psi ' - dpsi

'helical edge
'**********************
For i = 2 To num_edge_points
psi = psi + dpsi
ring_trailing_end(1, i).x = r * Cos(psi)
ring_trailing_end(l, i).y = (P * psi) / (2 * pi)
ring_trailing_end(l, i).z = -r * Sin(psi)
Next

End Sub

Public Sub ring_arcO
Dim no_oCpoints As Integer
Dim xl, y1, x2, y2 As Single
Dim radius As Single
Dim ang1e_oCrevolution As Double
Dim angle, step_angle As Single
Dim starCangle, end_angle As Single
Dim f As Single

no_oCpoints = 121

ReDim ring_Ieadin~edge(no_oCpoints)
ReDim ring_trailing_edge(no_oCpoints)
'Call ca1culate_trailing_end_oCring(no_oCpoints)
'Call ca1cu1ate_1eading_end_oCring(no_oCpoints)
'Call ca1culate_second_end_oCring
radius = Sqr(final_section(num_sections, section_data(num_sections).le_id).x A 2 +
finaLsection(num_sections, section_data(num_sections).1e_id).z A 2)

'set beginning of arc for ring
f = (finaLsection(num_sections, section_data(num_sections).te_id).z / radius)
'position of end on ring

Select Case f
Case Is = -1
If f > 0 Then starcangle = pi
If f < 0 Then starcangle = 0
Case Is = 1
If f > 0 Then starcangle = 0
If f < 0 Then starcangle = pi
Case Is <> 1, -I
'If f > 0 Then
starcangle = pi / 2 - asin(f)
'If f < 0 Then starcangle = pi / 2 + asin(f)

171

End Select
end_angle = starcangle + 2 * pi / no_oCblades
'draws arc
Call arc(rin~trailing_edgeO, starcangle, end_angle, radius, 0,
finaLsection(num_sections, section_data(num_sections).te_id).y, 0, no_oCpoints, 1)

'other arc of ring

f = (finaLsection(num_sections, section_data(num_sections).le_id).z / radius)
'position of end on ring
Select Case f
Case Is =-1
If f > ° Then starcangle = °
If f < ° Then starcangle = pi
Case Is = 1
If f > ° Then starcangle = °
If f < ° Then starcangle = pi
Case Is <> 1, -1
If f > ° Then starcangle = pi / 2 - asin(f)
If f < ° Then starcangle = 3 * pi /2 + asin(f)
End Select
end_angle = starcangle + 2 * pi / no_oCblades
'draws arc
Call arc(ring_Ieading_edgeO, starcangle, end_angle, radius, 0,
final_section(num_sections, section_data(num_sections).le_id).y, 0, no_oCpoints, 1)
End Sub
Public Sub arcs(cyc1os0 As section, starcangle, end_angle, radius, x_offset, y_offset,
z_offset, no_oCpoints, Axis, section_number As Integer)
'draws arcs given a start and finish angle
'same as arc procedure but has two dimensional array support
'axis decides avout which axis
'0 is x, I is y, 2 is z
'x_offset etc is the position of the centre

Dim i As Integer
Dim angle_oCrevolution, step_angle, angle As Single

step_angle = (end_angle - starcangle) / (no_oCpoints - 1)
angle = start~angle - step_angle
If Axis = ° Then
For i = 1 To no_oCpoints
angle = angle + step_angle
cyc1os(section_number, i).x = x_offset
cyc1os(section_number, i).y = Sin(angle) * radius + y_offset
cyc1os(section_number, i).z = Cos (angle) * radius + z_offset
Next
End If

If Axis = I Then
For i = 1 To no_oCpoints

172

angle = angle + step_angle
cyclos(section_number, i).x = Sin(angle) * radius + x_offset
cyclos(section_number, i).y = y_offset
cyclos(section_number, i).z = Cos(angle) * radius + z_offset
Next
End If

If Axis = 2 Then
For i = I To no_oCpoints
angle = angle + step_angle
cyclos(section_number, i).x = Sin(angle) * radius + x_offset
cyclos(section_number, i).y = Cos(angle) * radius + y_offset
cyclos(section_number, i).z = z_offset

Next
End If

End Sub

Public Sub arc(cyclosO As section, starcangle, end_angle, radius, x_offset, y_offset,
z_offset, no_oCpoints, Axis)
'draws arcs given a start and finish angle
'axis decides about which axis
'0 is x, I is y, 2 is z
'x_offset etc is the position of the centre

Dim i As Integer
Dim angle_oCrevolution, step_angle, angle As Single

step_angle = (end_angle - starcangle) / (no_oCpoints - 1)
angle = starcangle - step_angle
If Axis = 0 Then
For i = I To no_oCpoints
angle = angle + step_angle
cyclos(i).x = x_offset
cyclos(i).y = Sin(angle) * radius + y_offset
cyclos(i).z = Cos(angle) * radius + z_offset
Next
End If

If Axis = I Then
For i = I To no_oCpoints
angle = angle + step3ng1e
cyclos(i).x = Sin(angle) * radius + x_offset
cyc1os(i).y = y_offset
cyclos(i).z = Cos(angle) * radius + z_offset
Next
End If

173

If Axis = 2 Then
For i = I To no_oLpoints
angle = angle + step_angle
cycIos(i).x = Sin(angle) * radius + x_offset
cycIos(i).y = Cos(angle) * radius + y_offset
cycIos(i).z = z_offset

Next
End If

End Sub
Private Sub caIculate_trailing_end_oLring(num_edge_points)
Dim psi, phi, dpsi, r As Single
Dim P As Single
Dim i As Integer

ReDim ring_trailing_end(num_edge_points)

'set point to trailing edge of section
ring_trailing_end(I).x = final_section(num_sections,
section_data(num_sections).te_id).x
ring_trailing_end(1). Y = final_section(num_sections,
section_data(num_sections).te_id).y
ring_trailing_end(1).z = finaLsection(num_sections,
section_data(num_sections). te_id).z

r = Sqr(ring_trailing_end(1).z A 2 + ring_trailing_end(l).x A 2)

'Calculate phi
P = propdata(num_sections).pitch
If P = 0 Then P = 0.1
phi = Atn(2 * pi * riP)
psi = section(num_sections, section_data(num_sections).te_id).x I Sqr(r A 2 + (P 1(2 *
pi)) A 2)
dpsi = ((((ring_width I 2) - ring_trailin~end(l).y) I P) * 2 * pi) I (num_edge_points -
I)
psi = psi' - dpsi
'helical edge
'**********************
For i = 2 To num_edge_points
psi = psi + dpsi
ring_trailing_end(i).x = r * Cos(psi)
ring_trailing_end(i).y = (P * psi) I (2 * pi)
ring_trailing_end(i).z = -r * Sin(psi)
Next
End Sub
Public Sub second_hub_endO
'routine that claculates the second end of the hub
'it takes the two helixs from and rotates them by 390/no_oLblades

174

'and half the section of the root blade
Dim i, j As Integer
Dim angle As Single
num_hub_section_points = section_data(l).le_id + I
ReDim hub_section_edge(I 0, num_hub_section_points)

angle = 2 * pi / no_oCblades

For i = 1 To section_data(l).le_id
hub_section_edge(lO, i).x = Cos(angle) * final_section(l, i).x + Sin(angle) *
finaLsection(l, i).z
hub_section_edge(lO, i).y = finaLsection(l, i).y
hub_section_edge(lO, i).z = -Sin(angle) * final_section(l, i).x + Cos(angle) *
finaLsection(l, i).z
Next
End Sub
Public Sub secondJing_endO
'routine that calculates the section on the other side of the ring

Dim i, j As Integer
Dim angle As Single
num_ring_section_points = Abs(section_data(num_sections).num_points -
section_data(num_sections).le_id) + 1
ReDim ring_section_edge(num_ring_section_points)

angle = 2 * pi / no_oCblades

For i = 1 To section_data(num_sections).le_id
ring_section_edge(i).x = Cos(angle) * final_section(num_sections, i).x + Sin(angle) *
final_section(num_sections, i).z
ring_section_edge(i).y = finaLsection(num_sections, i).y
ring_section_edge(i).z = -Sin(angle) * finaLsection(num_sections, i).x + Cos(angle) *
finaLsection(num_sections, i).z
Next
End Sub

Public Sub wakesheet(wake_Iength)
Dim i, j As Integer
Dim variabIe_P, average_P, P As Single
Dim psi, dpsi, r As Single
Dim contraction_factor As Single
Dim starcpsi, y_offset As Single
Dim wake_r As Single
Dim xsi As Single
Dim fun As Single
Dim slip_ratio As Single
Dim advance_ratio As Single
Dim n As Single
Dim pw As Single

175

no_oLwake_points = 300
ReDim wake(num_sections, no_oLwake_points)

transition_length = transition_length * D
'find average_pitch
For j = I To num_sections
average_P = average_P + propdataU).pitch
Next
average_P = average_P / num_sections

'advance speed

advanceJatio = va / (rps * D)
slip_ratio = 1 - advance_ratio / average_P

'final wake contraction
wake_r = (1 - wake_contraction_value) + wake_contraction_value * (0.887 - 0.125 *
slip_ratio)
'pitch_contraction = (1 - 0.293 * slip_ratio)
If wake_r > 1 Then wake_r = 1

If wake_pitch_set <= 0 Then
'final wake pitch
pw = 0.5 * (advance_ratio + average_P)
Else
'preset value
pw = wake_pitch_set
End If

'increment angle step for wake
dpsi = (2 * pi * wake_length / ((average_P / 2 + 4.5 * pw) / 5)) / no_oLwake_points

For j = I To num_sections
r = propdataU).radius

'blade pitch for each section
'P = propdataU).pitch
'P = find_traiIing_uppecedge_pitchU)
P = find_trailing_edge_pitchU)
If P < 0 Then P = 0.01

'set intial pitch of the wake to the propeller pitch
variable_P = P

'first point of wake on trailing edge
wakeU, 1).y = final_sectionU, section_dataU).te_id).y

176

wakeU, 1).x = finaLsectionU, section_dataU).te_id).x
wakeU, 1).z = finaLsectionU, section_dataU).te_id).z

wakeU, i).y = wakeU, i-I).y + (variable_P * D * dpsi) / (2 * pi)

If wakeU, i).y < transition_length Then
,

'transition polynomial for pitch variation
'same for contraction
xsi = (wakeU, i).y - wakeU, 1).y) / (transition_length - wakeU, 1).y)
If xsi < 0 Then xsi = 0
fun = Sqr(xsi) + 1.0 I3 * xsi - 1.92 * xsi /\ 2 + 1.228 * xsi /\ 3 - 0.321 * xsi /\ 4

variable_P = P - (P - pw) * fun
'variable_P = P - (P - pw) * (wakeU, i).y / transition_length)

Else
variable_P = pw
End If

wakeU, i).x = wakeU, i-I).x * Cos(-dpsi) - wakeU, i - l).z * Sine -dpsi)
wakeU, i).z = wakeU, i-I).x * Sin(-dpsi) + wakeU, i - 1).z * Cos(-dpsi)

Next

'contract the wake
'**

If wake_r < 1 Then
Dim f(7) As Single
f(2) = 0.27
f(3) = 0.5
f(4) = 0.65
f(5) = 0.7
f(6) = 0.87
f(7) = 0.95

For i = 2 To no_oL wake_points
If wakeU, i).y < transition_length Then
,

177

'transition polynomial for contraction shape
xsi = (wake(j, i).y - wake(j, I).y) 1 (transition_length - wake(j, I).y)
If xsi < 0 Then xsi = 0
fun = Sqr(xsi) + 1.013 * xsi - 1.92 * xsi 1\ 2 + 1.228 * xsi 1\ 3 - 0.32 I * xsi 1\ 4

'contarction value = I for full effect and =0 for no contraction
contraction_factor = I - (I - wake_r) * fun
Else
contraction_factor = wake_r
End If

'no contraction on first few points for first section to avoid intersection with hub
'If i = 2 Then contraction_factor = I
If i > I And i < 8 Then
contraction_factor = (l - (l - contraction_factor) * f(i))
End If
'smooth transition

wake(j, i).x = wake(j, i).x * contraction_factor
wake(j, i).z = wake(j, i).z * contraction_factor
Next
End If
'end of wake contraction

Next

End Sub
Private Function find_trailing_edge_pitch(j) As Single
Dim average_z As Double
Dim average_y As Double
Dim temp As Double

average_z = (finaLsection(j, 2).z + finaLsection(j, section_data(j).num_points - I).z)
12
average_y = (finaLsection(j, 2).y + finaLsection(j, section_data(j).num_points - l).y)
12

temp = (final_section(j, I).y - average_y) 1 (average_z - finaLsection(j, I).z)
find_trailing_edge_pitch = temp * 2 * pi * propdata(j).radius 1 D

End Function
Private Function find_trailing_upper_edge_pitch(j) As Single
Dim average_z As Double
Dim average_y As Double
Dim temp As Double

average_z = final_section(j, section_data(j).num_points - l).z
average_y = finaLsection(j, section_data(j).num_points - I).y

178

temp = (final_sectionU, I).y - average_y) / (average_z - finaLsectionU, I).z)
find_trailing_uppecedge_pitch = temp * 2 * pi * propdataU).radius / D

End Function

Private Sub calculate_second_end_oLringO
'routine that calculates the second section of the ring
Dim i, j, num_edge_points As Integer
Dim angle As Single
num_edge_points = 100
num_edge_section_points = Abs(section_data(num_sections).num_points -
section_data(num_sections).le_id) + I

angle = 2 * pi / no_oLblades

For i = I To section_data(num_sections).le_id
ring_section_edge(10, i).x = Cos(angle) * final_section(num_sections, i).x +
Sin(angle) * finaLsection(num_sections, i).z
ring_section_edge(I 0, i).y = final_section(num_sections, i).y
ring_section_edge(lO, i).z = -Sin(angle) * finaLsection(num_sections, i).x +
Cos(angle) * final_section(num_sections, i).z
Next

End Sub
Private Sub calculate_leading_end_oLring(num_edge_points)
Dim i As Integer
Dim psi, phi, dpsi, r, P As Single

'set point to trailing edge of section
ring_leading_end(I).x = finaLsection(num_sections,
section_data(num_sections).le_id).x
ring_Ieading_end(l).y = final_section(num_sections,
section_data(num_sections).le_id).y
ring_Ieading_end(I).z = finaLsection(num_sections,
section_data(num_sections).le_id).z

r = Sqr(ring_Ieading_end(l).z 1\ 2 + ring_Ieadin~end(l).x 1\ 2)

'Calculate phi
P = propdata(num_sections).pitch
IfP = 0 Then P = 0.1
phi = Atn(2 * pi * r / P)
psi = section(num_sections, section_data(num_sections).le_id).x / Sqr(r 1\ 2 + (P / (2 *
pi» 1\ 2)
dpsi = ((((-ring_width / 2) - ring_Ieading_end(l).y) / P) * 2 * pi) / (num_edge_points­
I)
psi = psi

179

'helical edge
'**********************
For i = 2 To num_edge_points
psi = psi + dpsi
ring_Ieading_end(i).x = r * Cos(psi)
ring_Ieading_end(i).y = (P * psi) / (2 * pi)
ring_Ieading_end(i).z = -r * Sin(psi)
Next

End Sub
Public Sub rans_domainO
Dim i, j As Integer
Dim variable_P, average_P, P As Single
Dim psi, dpsi, r As Single
Dim contraction_factor As Single
Dim starcpsi, y _offset As Single
Dim wake_r As Single
Dim xsi As Single
Dim fun As Single
Dim slip_ratio As Single
Dim advance_ratio As Single
Dim n As Single
Dim pw As Single
Dim wake_length As Single

no_oCwake_points = 300
ReDim wake(num_sections, no_oCwake_points)

wake_length = blade_ wake_length
transition_length = transition_length * D

'find average_pitch
For j = I To num_sections
average_P = average_P + propdataU).pitch
Next
average_P = average_P / num_sections

'advance speed

advance_ratio = va / (rps * D)
slip_ratio = I - advance_ratio / average_P

If wake_pitch_set <= 0 Then
'final wake pitch
pw = 0.5 * (advance_ratio + average_P)
Else
'preset value

180

pw = wake_pitch_set
End If

'increment angle step for wake
dpsi = (2 * pi * wake_length / ((average_P / 2 + 4.5 * pw) / 5)) / no_oLwake_points

Dim vectocmagnitude As Single

'first point of wake on trailing edge
wake(I, I) = finaLsection(I, section_data(I).te_id)
Call rotate_point(wake(l, 1),60 * pi / 180, 1)

'create starting point for outer helix
'by extending line perpenticular to hub to 2.5 D
wake(2, I).y = wake(l, I).y
vectocmagnitude = Sqr(wake(l, I).x 1\ 2 + wake(l, I).z 1\ 2)
wake(2, I).z = 1.25 * D * wake(l, I).z / vector_magnitude
wake(2, I).x = 1.25 * D * wake(I, I).x / vectocmagnitude

'create the to helixes
'**
*
For j = I To 2

'blade pitch for each section
P = find_trailinR-edge_pitch(l)

If P = 0 Then P = 0.01

'set intial pitch of the wake to the propeller pitch
variable_P = P

If j = 2 Then r = 1.24 * D
If j = I Then r = propdata(I).radius

wake(j, i).y = wake(j, i-I).y + (variable_P * D * dpsi) / (2 * pi)

If wake(j, i).y < transition_length Then

'transition polynomial for pitch variation

181

'same for contraction
xsi = (wakeU, i).y - wakeU, I).y) / (transition_length - wakeU, I).y)
fun = Sqr(xsi) + 1.013 * xsi - 1.92 * xsi A 2 + 1.228 * xsi A 3 - 0.321 * xsi A 4

variable_P = P - (P - pw) * fun

Else
variable_P = pw
End If

wakeU, i).x = wakeU, i - I).x * Cos(-dpsi) - wakeU, i - I).z * Sin(-dpsi)
wakeU, i).z = wakeU, i - I).x * Sin(-dpsi) + wakeU, i - l).z * Cos(-dpsi)

Next

Next

'**

'Create outer helix in hub area
'**

Dim tempe 1 00) As section

'point upstream
wake(3, I) = finaI_section(I, section_data(I) .Ie_id)
Call rotate_point(wake(3, 1),60 * pi /180, I)
vectocmagnitude = Sqr(wake(3, I).x A 2 + wake(3, I).z A 2)
wake(3, 1).z = 1.25 * D * wake(3, I).z / vector_magnitude
wake(3, 1).x = 1.25 * D * wake(3, 1).x / vectocmagnitude

Call helix_from_poincto_point(wake(3, I), wake(2, 1), tempO, 100)
Forj=ITol00

wake(3, j).x = tempU).x
wake(3, j).y = tempU).y
wake(3, j).z = tempU).z

Next

End Sub

Public Sub calculatcfinaI_sectionsO
Dim i, j As Integer

182

ReDim final_section(num_sections, section_data(l).num_points)
For j = I To num_sections
For i = I To section_dataU).num_points
final_sectionU, i).x = section(I, i).x * propdataU).chord
finaLsectionU, i).y = section(l, i).y * propdataU).chord

Next
Next
End Sub
Public Sub transform_section(section_number, chord, thickness)
Dim i As Integer

'set correct thickness %
'section fixed to 10% in fix sub
For i = I To section_data(section_number).num_points
section(section_number, i).y = section(section_number, i).y * (thickness / 0.1)
Next

'scale section to correct chord etc
For i = 1 To section_data(section_number).num_points
section(section_number, i).x = section(section_number, i).x * chord
section(section_number, i).y = section(section_number, i).y * chord
Next

End Sub
Public Sub helicaLsection(section_number, r, P, blade_rake)
Dim t As Single
Dim phi, psi, starCpsi As Single
Dim i As Integer
Dim y_offset As Single
Dim Ctotal As Single

'Calculate phi
If P = 0 Then P = 0.1
phi = Atn(P * D / (2 * pi * r))
starCpsi = propdata(section_number).skew / Sqr(r 1\ 2 + (P * D / (2 * pi)) 1\ 2)

'y_offset = -(starCpsi / (2 * pi)) * P * D

'Map onto helix
'**********************
For i = 1 To section_data(section_number).num_points
psi = starcpsi + section(section_number, i).x / Sqr(r 1\ 2 + (P * D / (2 * pi)) 1\ 2)
t = section(section_number, i).y
final_section(section_number, i).x = r * Cos(psi - t / r * Sin(phi))
finaLsection(section_number, i).y = y_offset + blade_rake + (P * psi * D) / (2 * pi) +
t * Cos(phi)
finaLsection(section_number, i).z = -r * Sin(psi - t / r * Sin(phi))
Next

183

End Sub
Public Sub hub_arc(hub_Iength)
Dim radius, f As Single
Dim no_oLpoints As Integer
Dim starcangle, end_angle As Single

no_oLpoints = 121

ReDim hub_trailing_edge(no_oLpoints)
ReDim hub_Ieading_edge(no_oLpoints)

radius = Sqr(final_section(1, section_data(l).1e_id).x /\ 2 + finaLsection(1,
section_data(1).le_id).z /\ 2)

'set beginning of arc for hub
f = (hub_trailing_end(1, 1 OO).z / radius) 'position of end on hub

Select Case f
Case Is =-1
If hub_Ieading_end(1, 1 OO).z > 0 Then starcangle = pi
If hub_leading_end(1, 1 OO).z < 0 Then starcangle = 0
Case Is = 1
If hub_Ieading_end(I, I OO).z > 0 Then starcangle = 0
If hub_Ieading_end(I, I OO).z < 0 Then starcangle = pi
Case Is <> 1, -1
If hub_trailin!Lend(1, 100).x > 0 Then starcangle = pi / 2 - Atn(f / Sqr(1 - f * f))
If hub_traiIi ng_end(l , 100).x < 0 Then starcangle = 3 * pi /2 + Atn(f / Sqr(1 - f * f))
End Select
end_angle = starcangle + 2 * pi / no_oLblades
'draws arc
Call arc(hub_trailing_edgeO, starcangle, end_angle, radius, 0, hub_length / 2, 0,
no_oLpoints, I)

'set beginning of arc for hub
f = (hub_Ieading_end(1, 1 OO).z / radius) 'position of end on hub

Select Case f
Case Is =-1
If hub_Ieading_end(1, 1 OO).z > 0 Then starcangle = pi
If hub_Ieading_end(I, 1 OO).z < 0 Then starcangle = 0
Case Is = 1
If hub_Ieading_end(1, 1 OO).z > 0 Then starcangle = 0
If hub_Ieading_end(1, 1 OO).z < 0 Then starcangle = pi
Case Is <> 1, -1
If hub_trailing_end(1, 100).x > 0 Then starcangle = pi / 2 - Atn(f / Sqr(1 - f * f))
If hub_trailing_end(l, 1 OO).x < 0 Then starcangle = 3 * pi /2 + Atn(f / Sqr(l - f * f))

184

End Select
end_angle = starCangIe + 2 * pi / no_oLbIades
'draws arc
Call arc(hub_Ieading_edgeO, starCangIe, end_angle, radius, 0, -hub_length / 2, 0,
no_oLpoints, 1)

End Sub

Public Sub hub_arc_near_bladeO
Dim radius, f As Single
Dim no_oLpoints As Integer
Dim starcangle, end_angle As Single

ReDim hub_trailing_arc_connect(no_oLpoints)
ReDim hub_Ieading_arc_connect(no_oLpoints)

radius = Sqr(finaLsection(l, section_data(l).le_id).x A 2 + final_section(1,
section_data(l).le_id).z A 2)

'set beginning of arc for hub
f = (hub_trailing_end(I).z / radius) 'position of end on hub

Select Case f
Case Is = -I
If hub_Ieading_end(I).z > ° Then starCangle = pi
If hub_Ieading_end(I).z < ° Then starcangle = °
Case Is = I
If hub_Ieading_end(I).z > ° Then starcangle = °
If hub_Ieadin~end(I).z < ° Then starcangIe = pi
Case Is <> I, - I
If hub_trailing_end(l).x > ° Then starcangle = pi /2 - Atn(f / Sqr(1 - f * f))
If hub_trailin~end(l).x < ° Then starcangle = 3 * pi /2 + Atn(f / Sqr(1 - f * f))
End Select
end_angle = starcangle + 2 * pi / no_oLblades
'draws arc
Call arc(hub_trailing_arc_connectO, starcangle, end_angle, radius, 0, hub_length / 2,
0, no_oLpoints, I)

'set beginning of arc for hub
f = (hub_Ieading_end(lOO).z / radius) 'position of end on hub

Select Case f
Case Is =-1
If hub_leading_end(I).z > ° Then starcangle = pi

185

If hub_Ieading_end(I).z < 0 Then starCangle = 0
Case Is = 1
If hub_Ieadin~end(l).z > 0 Then starcangle = 0
If hub_Ieading_end(I).z < 0 Then starcangle = pi
Case Is <> I, -1
If hub_trailing_end(l).x > 0 Then starcangle = pi / 2 - Atn(f / Sqr(l - f * f))
If hub_trailing_end(l).x < 0 Then starcangle = 3 * pi /2 + Atn(f / Sqr(l - f * f))
End Select
end_angle = starcangle + 2 * pi / no_oCblades
'draws arc
Call arc(hub_Ieading_arc_connectO, starcangle, end_angle, radius, 0, -hub_length /
2, 0, no_oCpoints, I)

End Sub
Public Sub fix_section(section_number)
Dim i, j As Integer
Dim min_x, max_x, factor, x As Single
Dim min_y, max_y, max_thick, thick As Single
Dim yup, ydn As Single
Dim max_yup, max_ydn As Single

min_x = 9999999
max_x = -99999999

'Call rotate_section(section_number)

'find min and max x
For i = I To section_data(section_number).num_points
If section(section_number, i).x > max_x Then
max_x = section(section_number, i).x
'save trailing edge id
section_data(section_number).te_id = i
End If
If section(section_number, i).x < min_x Then
min_x = section(section_number, i).x
'save leading edge id
section_data(section_number).le_id = i
End If
Next

'set chord length to unit length
'set zero x at mid chord
factor = max_x - min_x
'y _offset = section(section_number, section_data(section_number).te_id).y
For i = I To section_data(section_number).num_points
section(section_number, i).x = (section(section_number, i).x - (max_x + min_x) / 2) /
factor
section(section_number, i).y = section(section_number, i).y / factor

186

Next

'Open "temp" For Output As 1
'find position of max thickness
max_yup = 0
max_ydn = 0

For x = 0.5 To -0.5 Step -0.001
i = 0

Do
i =i + 1

Loop Until section(section_number, i).x < x
j = section_data(section_number).num_points '+ 1

Do
j = j - I

Loop Until section(section_number, j).x < x

yup = ((section(section_number, i).y - section(section_number, i - 1).y) /
Abs(section(section_number, i).x - section(section_number, i - 1).x)) *
(section(section_number, i).x - x) + section(section_number, i).y

ydn = ((section(section_number, j).y - section(section_number, j + 1).y) /
Abs(section(section_number, j).x - section(section_number, j + 1).x)) *
(section(section_number, j).x - x) + section(section_number, j).y

If yup > max_yup Then max_yup = yup
If ydn < max_ydn Then max_ydn = ydn
'Print #1, x, thick, yup, ydn

Next
thick = Abs(max_yup - max_ydn)
section_data(section_number).thickness = thick
section_data(section_number).position = x

'Close #1

'set section to 10% thickness
For i = 1 To section_data(section_number).num_points
section(section_number, i).y = section(section_number, i).y * (0.1 /
section_data(section_number). thi ckness)
Next

End Sub
Public Sub read_section(section_number As Integer, section_file$)
Dim i As Integer

Open section_file$ For Input As 1
Input #1, section_data(section_number).num_points
For i = 1 To section_data(section_number).num_points
Input #1, section(section_number, i).x, section(section_number, i).y
Next

187

Close #1

End Sub
Public Sub read_cap_section(vO As section, section_file$)
Dim i As Integer

Open section_file$ For Input As I
Input #1, cap_section_points
ReDim v(cap_section_points)
For i = I To cap_section_points
Input #1, v(i).y, v(i).x
v(i).z = 0
Next
Close #1

End Sub
Public Sub assign_ value(stcdummy$)
Dim group As String
Dim sub_group, property As String

'get first three characters to decide what part it is
'hub,duct etc
group = Left(str_dummy$, 3)

Select Case group
Case "vol"
Call gee val ue_from_stri ng(str _dumm y, vol ume_mesh)
Case "duc"
'**

'duct
'**

sub_group = Mid(str_dummy$, 6, 2)
'duct images
If sub~roup = "im" Then Call geevalue_from_string(stcdummy, ducCimages)
'duct thickness
If sub_group = "th" Then Call gec value_from_string(stcdummy, ducethickness)
'panel clustering
If sub~roup = "P=" Then Call gecvalue_from_string(stcdummy, ducCP)
If sub_group = "Q=" Then Call gecvalue_from_string(stcdummy, duct_Q)

If sub_group = "Ie" Then
property = Mid(stcdummy$, 8, I)
'length
If property = "n" Then Call geC value_from_string(stcdummy, ducClength)
'leading lower duct panels
If property = "a" Then Call geC value_from_string(str_dummy,

duceleadi ng_lowecpanels_s)

188

End If

'duct trailing lower panel s
If sub_group = "tr" Then Call gee value_from_string(stcdummy,
ducetrailing_lowecpanels_s)
'ducepanels_nt
If sub_group = "nt" Then Call gee value_from_string(stcdummy, ducepanels_t)
'ducepanels_uppecns
If sub_group = "up" Then Call geevalue_from_string(stcdummy,
duceuppecpanels_s)
'wake properties
If sub_group = "wa" Then
property = Mid(stcdummy$, I I, 6)
'free wake ns
If property = "free_n" Then Call geevalue_from_string(stcdummy,
ducefreewake_panels_s)
'fixed wake ns
If property = "fixed_" Then Call gee value_from_string(stcdummy,
ducefixed wake_panel s_s)
'wake length as multiples of chord
If property = "length" Then Call gee value_from_string(stcdummy,
duce wake_length)
'free wake length as a ratio of fixed wake length
If property = "free_I" Then Call gee value_from_string(stcdummy,
ducefreewake_Iength)
End If
'**

'blade options
'**

Case "bla"
'blade options
sub_group = Mid(stcdummy$, 7, 2)
'num of panels
If sub_group = "nt" Then Call gee value_from_string(stcdummy, blade_panels_t)
If sub-poup = "ns" Then Call geevalue_from_string(str_dummy, blade_panels_s)
If sub_group = "nu" Then Call geevalue_from_string(stcdummy, no_oLblades)
'increase panel in the radial direction by this factor
If sub_group = "ti" Then Call gee value_from_string(stcdummy, blade_tip_cluster)
'advance speed
If sub_group = "ad" Then Call geevalue_from_string(stcdummy, va)
'rev per second
If sub_group = "rp" Then Call geevalue_from_string(str_dummy, rps)
'panel clustering
If sub_group = "P=" Then Call geevalue_from_string(str_dummy, blade_P)
Ifsub_group = "Q=" Then Call geevalue_from_string(stcdummy, blade_Q)

'wake properties
If sub_group = "wa" Then

189

property = Mid(stcdummy$, 12, 6)
'wake length
If property = "length" Then Call geevalue_from_string(stcdummy,
blade_ wake_length)
'free wake length as % of wake length
If property = "free_I" Then Call get_value_from_string(stcdummy,
blade_freewake_length)
'fixed wake panels
If property = "fixed_" Then Call gee value_from_string(stcdummy,
blade_fixedwake_panels_s)
'free wake ns
If property = "free_n" Then Call gee value_from_string(stcdummy,
blade_freewake_panels_s)
'wake contraction amount I for full 0 for none
If property = "contra" Then Call gee value_from_string(stcdummy,
wake_contraction_ value)
'wake transition legth
If property = "transi" Then Call gee val ue_from_stri ng(stcdummy, transition_length)
'wake final pitch if negative calculated within the program
If property = "finaL" Then Call geevalue_from_string(stcdummy, wake_pitch_set)

End If
'**
'Ring options
'**
Case "rin"
sub_group = Mid(str_dummy$, 6, 2)

If sub_group = "sp" Then Call geevalue_from_string(stcdummy, ring_split)
If sub_group = "st" Then Call geevalue_from_string(stcdummy, no_oCring_strips)
If sub_group = "nt" Then Call gee value_from_string(str_dummy, rin~panels_t)
If sub_group = "wi" Then Call gee value_from_string(str_dummy, ring_width)
'**
'Hub options
'**
Case "hub"
sub_group = Mid(str_dummy$, 5, 2)
If sub_group = "st" Then Call geevalue_from_string(stcdummy, no_oChub_strips)
If sub_group = "nt" Then Call gee value_from_string(stcdummy, hub_panels_t)
If sub_group = "ns" Then Call geevalue_from_string(stcdummy, hub_panels_s)
If sub_group = "Ie" Then Call geevalue_from_string(stcdummy, hub_length)
If sub_group = "vI" Then Call gee value_from_string(stcdummy,
hub_ v _leading_factor)
If sub_group = "vt" Then Call gee value_from_string(str_dummy,
hub_ v _trailing_factor)
If sub_group = "of" Then Call gee value_from_string(str_dummy, hub_offsee1e)
'**
'Cap options
'**
Case "cap"

190

sub_group = Mid(stcdummy$, 5, 2)
If sub_group = "in" Then Call geevalue_from_string(stcdummy, internaLfraction)
If sub_group = "si" Then Call geevalue_from_string(stcdummy, side_fraction)
If sub_group = "nt" Then Call gee value_from_string(str_dummy, cap_panels_t)
If sub_group = "ns" Then Call geevalue_from_string(stcdummy, cap_panels_s)
If sub_group = "se" Then Call gee value_from_string(stcdummy, cap_auto)
End Select
End Sub
Public Sub geevalue_from_string(stcdummy, value)
Dim equal, counter As Integer

counter = 0
equal = 0
Do
counter = counter + I
If Mid(stcdummy, counter, 1) = "=" Then equal = 1
Loop While equal = 0
value = val(Right(str_dummy, (Len(str_dummy) - counter)))
End Sub
Public Sub read_Iine(str_dummy)
Dim comment As Integer
Do
comment = 0
Do
Input #7, stcdummy
Loop While str_dummy = ""
If Left(stcdummy, 1) = "!" Then comment = 1
Loop While comment = 1

End Sub

Public Sub read_prop_dataO
Dim header As String
Dim stcdummy As String
Dim i As Integer
Dim strdummy As String

Open working_pathS + "propelIer.dat" For Input As 1
Input #1, headerS
Input #1, stcdummy$
Call gee value_from_string(str_dummy$, num_sections)
Input #1, stcdummy$
Call gee value_from_string(stcdummy$, D)

ReDim propdata(-10 To num_sections)

Input #1, strdummy$
For i = 1 To num_sections
Input #1, propdata(i).radius, propdata(i).chord, propdata(i).skew, propdata(i).rake,
propdata(i) .pitch, propdata(i).thickness

191

propdata(i).radius = propdata(i).radius * D / 2
propdata(i).chord = propdata(i).chord * D
propdata(i).rake = Tan(propdata(i).rake / 57.3) * propdata(i).radius
propdata(i).skew = (propdata(i).skew / 57.3) * propdata(i).radius
Next
Close #1

Open working_path$ + "propoptions.txt" For Input As 7
Do
Call read_Iine(stcdummy$)
Call assign_ value(str_dummy$)
Loop Until EOF(7) = True
Close #7

End Sub
Public Sub spline_through_edgesO

Dim leading_pointsO As section
Dim trailing_pointsO As section
Dim i As Integer

ReDim leading_points(num_sections)
ReDim trailing_points(num_sections)

ReDim leading_spline(I 0 I)
ReDim trailing_spline(I 0 I)

For i = I To num sections
leading_points(i).x = finaLsection(i, section_data(i).le_id).x
leading_points(i).y = finaLsection(i, section_data(i).le_id).y
leading_points(i).z = final_section(i, section_data(i).le_id).z

trailing_points(i).x = finaLsection(i, section_data(i).te_id).x
trailing_points(i).y = finaLsection(i, section_data(i).te_id).y
trailing_points(i).z = finaLsection(i, section_data(i).te_id).z
Next

Call s_spline(1eading_pointsO, I, I, leading_spline, num_sections, 100)
Call s_spline(trailing_pointsO, I, 1, trailing_spline, num_sections, 100)

End Sub

Public Sub hub_section_stripO
Dim i As Integer
Dim angle, angle_step As Single

angle_step = (360/ no_oCblades / no_oChub_strips) / 57.2957795130823

192

angle = a
For i = -1 To -no_oLhub_strips Step -1
angle = angle + angle_step
propdata(i).thickness = propdata(l).thickness * eos(2 * angle)
Next

End Sub
Public Sub helix_from_blade_leading_edge20
Dim angle As Single
Dim cosangle As Single
Dim a, b, c, r, P As Single
Dim psi, dpsi, phi, new_phi As Single
Dim y_offset As Single
Dim end_psi As Single

Dim i, num_oLpoints As Integer

num_oLpoints = 121

b = Sqr((hub_Ieading_end(l, 1).x - hub_Ieading_end(l, 2).x) A 2 +
(hub_1eading3nd(l, I).y - hub_Ieading_end(l, 2).y) A 2 + (hub_leading_end(l, I).z­
hub_Ieading_end(l, 2).z) A 2)
c = Sqr((finaLsection(l, section_data(l).le_id).x - finaLsection(l,
section_data(l).le_id + 1).x) A 2 + (finaI_section(l, section_data(l).le_id).y -
finaI_section(l, section_data(l).Ie_id + l).y) A 2 + (finaLsection(l,
section_data(l).Ie_id).z - finaLsection(l, section_data(l).le_id + 1).z) A 2)
a = Sqr((hub_Ieading_end(l, 2).x - finaI_section(l, section_data(l).le_id + I).x) A 2 +
(hub_leading_end(l, 2).y - finaI_section(l, section_data(l).le_id + I).y) A 2 +
(hub_leading_end(l, 2).z - finaI_section(l, section_data(l).Ie_id + I).z) A 2)
cosangle = (b A 2 + C A 2 - a A 2) / (2 * b * c)
angle = Atn(-cosang1e / Sqr(-cosangle * cosangle + 1)) + 2 * Atn(l)

'set point to leading edge of first section
hub_helix_le(l).x = finaLsection(l, section_data(l).Ie_id).x
hub_helix_le(l).y = final_section(1, section_data(l).Ie_id).y
hub_helix_le(1).z = final_section(1, section_data(I).le_id).z

phi = Atn(propdata(I).pitch * D / (2 * pi * r))
new_phi = (phi + angle / 2)

P = Tan(new _phi) * 2 * pi * r + hub_ v _Ieadin~factor

If P = a Then P = 0.05
'calculate the start angle and the step angle

193

'calculate start psi so it matches with leading edge of section
psi = -Atn((final_section(I, section_data(I).le_id).z / r) / Sqr(-(finaLsection(1,
section_data(l).le_id).z / r) A 2 + 1»
end_psi = -(2 * pi / no_oLblades) * (propdata(l).pitch * D) / (P - (propdata(l).pitch *
D»
dpsi = end_psi / (num_oLpoints - 1)
psi = psi - dpsi
'helical edge
'**********************
For i = I To Int(num_oLpoints / 2)
psi = psi + dpsi
hub_helix_le(i).x = r * Cos(psi)
hub_helix_le(i).y = (P * psi) / (2 * pi)
hub_helix_le(i).z = -r * Sin(psi)
Next

y_offset = finaLsection(l, section_data(l).le_id).y - hub_helix_Ie(1).y

'move helix so it matches blade Ie
For i = 1 To num_oLpoints
hub_helix_le(i).y = hub_helix_le(i).y + y_offset
Next

Dim temp(70) As section

Call helix_from_poincto_point(hub_helix_le(lnt(num_oLpoints /2»,
hub_section_edge(1 0, section_data(1).le_id), tempO, num_oLpoints -
Int(num_oLpoints /2)

For i = Int(num_oLpoints / 2) + 1 To num_oLpoints
hub_helix_le(i).x = temp(i - Int(num_oLpoints /2».x
hub_helix_Ie(i).y = temp(i - Int(num_oLpoints /2».y
hub_helix_le(i).z = temp(i - Int(num_oLpoints / 2)).z
Next

End Sub
Public Sub ring_helix_from_blade_leading_edgeO
Dim angle As Single
Dim cosangle As Single
Dim a, b, c, r, P As Single
Dim psi, dpsi, phi, new_phi As Single
Dim y_offset As Single
Dim end_psi As Single

Dim i, num_oLpoints As Integer

num_oLpoints = 121

194

b = Sqr((ring_Ieading_end(1, I).x - ring_Ieading_end(1, 2).x) /\ 2 +
(ring_Ieading_end(1, I).y - ring_Ieading_end(l , 2).y) /\ 2 + (ring_Ieading_end(1, I).z
- ring_Ieading_end(1, 2).z) /\ 2)
c = Sqr((finaLsection(num_sections, section_data(num_sections).le_id).x -
finaLsection(num_sections, section_data(num_sections).le_id + I).x) /\ 2 +
(final_section(num_sections, section_data(num_sections).le_id).y -
finaLsection(num_sections, section_data(num_sections).le_id + I).y) /\ 2 +
(finaLsection(I, section_data(I).le_id).z - finaLsection(I, section_data(I).Ie_id +
I).z) /\ 2)
a = Sqr((ring_Ieading_end(I, 2).x - finaLsection(num_sections,
section_data(num_sections).le_id + I).x) /\ 2 + (ring_Ieading_end(1, 2).y­
finaLsection(num_sections, section_data(num_sections).le_id + I).y) /\ 2 +
(ring_Ieading_end(l, 2).z - finaLsection(num_sections,
section_data(num_sections).le_id + I).z) /\ 2)
cosangle = (b /\ 2 + C /\ 2 - a /\ 2) / (2 * b * c)
angle = Atn(-cosangle / Sqr(-cosangle * cosangIe + I)) + 2 * Atn(1)

'set point to leading edge of first section
ring_helix_le(1).x = finaLsection(num_sections, section_data(num_sections).le_id).x
ring_helix_le(1). y = final_section(num_sections, section_data(num_sections) .1e_id).y
ring_helix_le(I).z = finaLsection(num_sections, section_data(num_sections).1e_id).z

phi = Atn(propdata(num_sections).pitch * D / (2 * pi * r))
new_phi = (phi + angle / 2)

P = Tan(new _phi) * 2 * pi * r '+ ring_ v _Ieadin~factor

IfP = a Then P = 0.05
'calculate the start angle and the step angle

'calculate start psi so it matches with leading edge of section
psi = -Atn((final_section(num_sections, section_data(num_sections).le_id).z / r) /
Sqr(-(finaLsection(num_sections, section_data(num_sections).le_id).z / r) /\ 2 + I))
end_psi = -(pi / 2) * (propdata(num_sections).pitch * D) / (P -
(propdata(num_sections).pitch * D))
dpsi = end_psi / (num_oCpoints - I)
psi = psi - dpsi
'helical edge
'**********************
For i = I To Int(num_oCpoints / 2)
psi = psi + dpsi
ring_helix_le(i).x = r * Cos(psi)
ring_helix_le(i).y = (P * psi) / (2 * pi)
ring_helix_le(i).z = -f * Sin(psi)

195

Next

y_offset = finaLsection(num_sections, section_data(num_sections).Ie_id).y -
ring_helix_le(1). Y

'move helix so it matches blade Ie
For i = 1 To num_oLpoints
ring_helix_le(i).y = ring_helix_le(i).y + y_offset
Next

Dim temp(70) As section

Cal1 helix_from_poinCto_point(ring_helix_le(Int(num_oLpoints /2)),
ring_section_edge(lO, section_data(num_sections).le_id), tempO, num_oLpoints -
Int(num_oLpoints / 2))

For i = Int(num_oLpoints / 2) + I To num_oLpoints
ring_helix_le(i).x = temp(i - Int(num_oLpoints / 2)).x
ring_helix_le(i).y = temp(i - Int(num_oLpoints /2)).y
ring_helix_le(i).z = temp(i - Int(num_oLpoints / 2)).z
Next

End Sub

Public Sub helix_from_poinCto_point(pointl As section, point2 As section, storeO
As section, num_oLpoints As Integer)

Dim r, P As Single
Dim psi, dpsi, phi, new_phi As Single
Dim y_offset As Single
Dim end_psi As Single
Dim angle

Dim i As Integer

'calculate radius from first point, about y axis
r = Sqr(pointl.z A 2 + pointl.x A 2)
Ifr = 0 Then r = 0.03
'calculate start psi
If point I.x > 0 And point l.z < 0 Then psi = -asin(point I.z / r)
If pointl.x > 0 And pointl.z > 0 Then psi = 2 * pi - asin(pointl.z / r)
If point I.x < 0 And point I.z > 0 Then psi = 2 * pi - pi / 2 + asin(pointl.x / r)
If pointl.x < 0 And pointl.z < 0 Then psi = pi /2- asin(pointl.x / r)
'calculate end psi so it matches with trailing edge of section
'If point2.x > 0 Then end_psi = -Atn((point2.z / r) / Sqr(-(point2.z / r) A 2 + I))
'If point2.x < 0 Then end_psi = pi /2 - Atn((point2.x / r) / Sqr(-(point2.x / r) A 2 + I))
If point2.x > 0 And point2.z < 0 Then end_psi = -asin(point2.z / r)
If point2.x > 0 And point2.z > 0 Then end_psi = 2 * pi - asin(point2.z / r)

196

If point2.x < 0 And point2.z > 0 Then end_psi = 2 * pi - pi /2+ asin(point2.x / r)
If point2.x < 0 And point2.z < 0 Then end_psi = pi / 2 - asin(point2.x / r)

'calculate pitch
If psi < end_psi Then angle = end_psi - psi
If psi> end_psi Then angle = (2 * pi - psi) + end_psi
P = 2 * pi * (point2.y - point1.y) / angle

dpsi = angle / (num_oCpoints - 1)
psi = psi - dpsi

'helical edge
'**********************
For i = 1 To num_oCpoints
psi = psi + dpsi
store(i).x = r * Cos(psi)
store(i).y = (P * psi) / (2 * pi)
store(i).z = -r * Sin(psi)
Next

y_offset = pointl.y - store(1).y

'move helix so it matches blade Ie
For i = 1 To num_oCpoints
store(i).y = store(i).y + y_offset
Next

End Sub
Public Sub hub_interrnediate_helixO
Dim step, index, i, j As Integer
Dim temp(100) As section

index = 1
'helixes for front end of hub
For i = 1 To no_oChub_strips

index = index + step
Call helix_from_poinCto_point(hub_leading_edge(index), hub_helix_le(index),

tempO, 100)
For j = 1 To 100

hub_Ieading_end(i + I, j).x = tempU).x
hub_Ieading_end(i + I, j).y = temp(j).y
hub_Ieading_end(i + 1, j).z = temp(j).z

Next
Next

'helixes for the rear face
index = -step

197

For i = 1 To no_oChub_strips + 1
index = index + step
Call he1ix_from_poinCto_point(hub_helix_te(index + 1), hub_trailing_edge(121 -

index), tempO, 100)
For j = 1 To 100

hub_trai1ing_end(i, j).x = tempU).x
hub_trailin~end(i, j).y = tempU).y
hub_trailing_end(i, j).z = tempU).z

Next
Next

'helixes between faces
index = -step

ReDim hub_helix_blades(1 0, 100)

For i = 1 To no_oChub_strips + 1
index = index + step
Call helix_from_poinCto_point(hub_helix_le(index + 1), hub_helix_te(121 -

index), tempO, 100)
For j = 1 To 100

hub_helix_blades(i, j).x = tempU).x
hub_helix_blades(i, j).y = tempU).y
hub_helix_blades(i, j).z = temp(j).z

Next
Next

End Sub
Public Sub rin~intermediate_helixO
Dim step, index, i, j As Integer
Dim tempe 1 00) As section

'helixes for front end of ring
For i = 1 To no_oCrin~strips

index = index + step
Call helix_from_poinCto_point(ring_leading_edge(index), ring_he1ix_le(index),

tempO, 100)
For j = 1 To 100

ring_leading_end(i + 1, j).x = temp(j).x
ring_leading_end(i + 1, j).y = temp(j).y
ring_leading_end(i + I, j).z = temp(j).z

Next
Next

198

'helixes for the rear face
index = -step

For i = 1 To no_oCring_strips + 1
index = index + step
Call helix_from_poinCto_point(ring_helix_te(index + 1), rin~trailing_edge(121 -

index), tempO, 100)
For j = 1 To 100

ring_trailing_end(i, j).x = tempU).x
ring_trailing_end(i, j).y = temp(j).y
ring_trailing_end(i, j).z = temp(j).z

Next
Next

'helixes between faces
index = -step

ReDim ring_helix_blades(1 0, 100)

For i = 1 To no_oCrin~strips + I
index = index + step
Call helix_from_poinCto_point(ring_helix_le(index + 1), rin~helix_te(121 -

index), tempO, 100)
For j = 1 To 100

ring_helix_blades(i, j).x = temp(j).x
ring_helix_blades(i, j).y = temp(j).y
ring_helix_blades(i, j).z = temp(j).z

Next
Next

End Sub

Public Sub helix_from_blade_trailing_edge20
Dim angle As Single
Dim cosangle As Single
Dim a, b, c, r, P As Single
Dim psi, dpsi, phi, new_phi As Single
Dim y_offset As Single
Dim end_psi As Single

Dim i, num_oCpoints As Integer
num_oCpoints = 121

199

b = Sqr((hub_trailing_end(1, 1).x - hub_trailing_end(l, 2).x) /\ 2 +
(hub_trailing_end(1, I).y - hub_trailing_end(l, 2).y) /\ 2 + (hub_trailing_end(1, 1).z -
hub_trailing_end(l, 2).z) /\ 2)
c = Sqr((finaLsection(l, section_data(1).te_id).x - finaLsection(1,
section_data(l). te_id + I).x) /\ 2 + (final_section(1, section_data(1). te_id).y +
finaLsection(1, section_data(1).te_id + l).y) /\ 2 + (final_section(1,
section_data(1).Ie_id).z - final_section(l, section_data(1).Ie_id + 1).z) /\ 2)
a = Sqr((hub_trailing_end(I, 2).x - finaLsection(1, section_data(1).te_id + 1).x) /\ 2 +
(hub_trailing_end(1, 2).y + finaLsection(1, section_data(1).te_id + 1).y) /\ 2 +
(hub_trailing_end(l, 2).z - final_section(l, section_data(l).te_id + I).z) /\ 2)

cosangle = (b /\ 2 + C /\ 2 - a /\ 2) / (2 * b * c)
If cosangle < 0 Then cosangle = 0
If cosangle > 1 Then cosangle = 0.95
angle = Atn(-cosangle / Sqr(-cosangle * cosangle + 1)) + 2 * Atn(l)

'set point to trailing edge of first section
hub_helix_te(1).x = hub_section_edge(1 0, 1).x
hub_helix_te(1).y = hub_section_edge(10, I).y
hub_helix_te(l).z = hub_section_edge(lO, 1).z

phi = Atn(propdata(1).pitch / (2 * pi * r))
new_phi = (phi + angle / 2)

P = Tan(new _phi) * 2 * pi * r + hub_ v _trailin~factor

If P = 0 Then P = 0.05
'calculate the start angle and the step angle

'calculate start psi so it matches with trailing edge of section
If hub_section_edge(10, I).x > 0 Then psi = -Atn((hub_section_edge(10, I).z / r) /
Sqr(-(hub_section_edge(lO, l).z / r) /\ 2 + I))
If hub_section_edge(lO, I).x < 0 Then psi = pi / 2 - Atn((hub_section_edge(10, I).x /
r) / Sqr(-(hub_section_edge(l 0, 1).x / r) /\ 2 + 1))
'step dpsi for the set number of steps
end_psi = (2 * pi / no_oLblades) * propdata(l).pitch / (P - propdata(1).pitch)
dpsi = end_psi / (num_oLpoints - I)
psi = psi - dpsi

'helical edge
'**********************
For i = I To Int(num_oLpoints / 2)
psi = psi + dpsi
hub_helix_te(i).x = r * Cos(psi)
hub_helix_te(i).y = (P * psi) / (2 * pi)
hub_helix_te(i).z = -r * Sin(psi)
Next

200

'move helix so it matches blade Ie
For i = 1 To num_oCpoints
hub_helix_te(i).y = hub_helix_te(i).y + y_offset
Next

Dim temp(70) As section

Call helix_from_poinCto_point(finaLsection(l, section_data(l).te_id),
hub_helix_te(Int(num_oCpoints / 2)), tempO, num_oCpoints - Int(num_oCpoints /
2))

For i = Int(num_oCpoints / 2) + I To num_oCpoints
hub_helix_te(i).x = temp(num_oCpoints - i + 1).x
hub_helix_te(i).y = temp(num_oCpoints - i + I).y
hub_helix_te(i).z = temp(num_oCpoints - i + 1).z
Next

End Sub
Public Sub helix_from_blade_leading_edgeO
Dim angle As Single
Dim cosangle As Single
Dim ratio, P As Single
Dim psi, dpsi, phi, new_phi As Single
Dim y_offset As Single
Dim end_psi As Single

Dim i, num_oCpoints As Integer
num_oCpoints = 121

'set point to leading edge of first section
hub_helix_le(1).x = finaLsection(I, section_data(1).le_id).x
hub_helix_le(l).y = finaLsection(l, section_data(l).le_id).y
hub_helix_le(1).z = finaLsection(I, section_data(1).le_id).z

ratio = 2
P = -ratio * no_oCblades * hub_ v _leading_factor * (hub_Ieading_end(l, 1).y -
hub_leading_end(l, IOO).y) / D
If P = 0 Then P = -0.001

dpsi = (2 * pi / (ratio * no_oCblades)) / (num_oCpoints / ratio - 1)

'helical edge
'**********************

201

For i = 2 To Int(num_oCpoints / ratio)
hub_heIix_Ie(i).x = hub_helix_le(i - 1).x * Cos(-dpsi) - hub_helix_leO - l).z * Sin(­
dpsi)
hub_helix_le(i).y = hub_helix_leO - 1).y + (P * D * dpsi) / (2 * pi)
hub_heIix_Ie(i).z = hub_heIix_IeO - I).x * Sine -dpsi) + hub_helix_leO - 1).z * Cos(­
dpsi)
Next

Dim tempe 121) As section

Call helix_from_poinCto_point(hub_heIix_le(Int(num_oCpoints / ratio)),
hub __ section_edge(lO, section_data(l).Ie_id), tempO, num_oCpoints -
Int(num_oCpoints / ratio))

Dim Unit As Integer

i_init = Int(num_oCpoints / ratio)
For i = Int(num_oCpoints / ratio) + 1 To num_oCpoints

hub_helix_le(i).x = tempO - i_init).x
hub_heIix_Ie(i).y = temp(i - i_init).y
hub_helix_le(i).z = tempO - i_init).z
Next

End Sub
Public Sub helix_from_blade_trailing_edgeO
Dim angle As Single
Dim cosangle As Single
Dim ratio, P As Single
Dim psi, dpsi, phi, new_phi As Single
Dim y_offset As Single
Dim end_psi As Single

Dim i, num_oCpoints As Integer
num_oCpoints = 121

'set point to trailing edge of first section
hub_helix_te(I).x = hub_section_edge(1 0, 1).x
hub_heIix_te(l).y = hub_section_edge(lO, I).y
hub_helix_te(l).z = hub_section_edge(lO, I).z

ratio = 2
P = ratio * no_oCblades * hub_ v _trailing_factor * (hub_trailing_end(I, I).y -
hub_trailing_end(l, IOO).y) / D
If P = 0 Then P = 0.00 I

202

dpsi = -(2 * pi / (ratio * no_oLblades)) / (num_oLpoints / ratio - I)

'helical edge
'**********************
For i = 2 To Int(num_oLpoints / ratio)
hub_helix_te(i).x = hub_helix_teCi - I).x * Cos(-dpsi) - hub_helix_teCi - I).z * Sin(­
dpsi)
hub_helix_te(i).y = hub_helix_teCi - I).y + (P * D * dpsi) / (2 * pi)
hub_helix_te(i).z = hub_helix_te(i - I).x * Sine -dpsi) + hub_helix_teCi - I).z * Cos(­
dpsi)
Next

Dim tempe 121) As section

Call helix_from_poinCto_point(finaLsection(l, section_data(l).te_id),
hub_helix_te(Int(num_oLpoints / ratio)), tempO, num_oLpoints - Int(num_oLpoints
/ ratio))

For i = Int(num_oLpoints / ratio) + 1 To num_oLpoints
hub_helix_te(i).x = temp(num_oLpoints - i + I).x
hub_helix_te(i).y = temp(num_oLpoints - i + I).y
hub_helix_te(i).z = temp(num_oLpoints - i + l).z
Next

End Sub

Public Sub rin&-helix_from_blade_trailin&-edgeO
Dim angle As Single
Dim cosangle As Single
Dim a, b, c, r, P As Single
Dim psi, dpsi, phi, new_phi As Single
Dim y_offset As Single
Dim end_psi As Single

Dim i, num_oLpoints As Integer
num_oLpoints = 121

ReDim rin&-helix_te(num_oLpoints)

b = Sqr((ring_trailing_end(l, 1).x - rin&-trailing_end(l, 2).x) /\ 2 +
(ring_trailing_end(l, 1).y - ring_trailing_end(l, 2).y) /\ 2 + (rin&-trailin&-end(l, I).z -
ring_trailing_end(I, 2).z) /\ 2)
c = Sqr((final_section(num_sections, section_data(num_sections).te_id).x -
finaLsection(num_sections, section_data(num_sections).te_id + I).x) /\ 2 +
(finaLsection(num_sections, section_data(num_sections).te_id).y +
finaLsection(num_sections, section_data(num_sections).te_id + I).y) /\ 2 +
(final_section(I, section_data(I).Ie_id).z - finaLsection(1, section_data(I).le_id +
I).z) /\ 2)

203

a = Sqr((ring_trailin~end(l, 2).x - finaLsection(num_sections,
section_data(num_sections).te_id + I).x) /\ 2 + (ring_trailing_end(1, 2).y +
final_section(num_sections, section_data(num_sections).te_id + 1).y) /\ 2 +
(ring_trailing_end(l, 2).z - finaLsection(num_sections,
section_data(num_sections). te_id + 1).z) /\ 2)

cosangle = (b /\ 2 + C /\ 2 - a /\ 2) / (2 * b * c)
angle = Atn(-cosangle / Sqr(-cosangle * cosangle + I)) + 2 * Atn(1)

'set point to trailing edge of first section
ring_helix_te(I).x = ring_section_edge(1 0, I).x
ring_helix_te(l).y = ring_section_edge(lO, l).y
ring_helix_te(1).z = ring_section_edge(1 0, 1).z

phi = Atn(propdata(num_sections).pitch / (2 * pi * r))
new_phi = (phi + angle / 2)

If P = ° Then P = 0.05
'calculate the start angle and the step angle

'calculate start psi so it matches with trailing edge of section
Ifring_section_edge(lO, 1).x > ° Then psi = -Atn((ring_section_edge(lO, l).z / r) /
Sqr(-(ring_section_edge(lO, I).z / r) /\ 2 + 1))
Ifrin~section_edge(lO, I).x < ° Then psi = pi /2 - Atn((rin~section_edge(lO, I).x /
r) / Sqr(-(ring_section3dge(l 0, 1).x / r) /\ 2 + I))
'step dpsi for the set number of steps
'dpsi = ((((-1/2) - ring_leading_end(l, l).y) / P) * 2 * pi) / (100 - I)
end_psi = (pi /2) * propdata(num_sections).pitch / (P - propdata(num_sections).pitch)
dpsi = end_psi / (num_oLpoints - 1)
psi = psi - dpsi

'helical edge
'**********************
For i = 1 To Int(num_oLpoints / 2)
psi = psi + dpsi
ring_helix_te(i).x = r * Cos(psi)
ring_helix_te(i).y = (P * psi) / (2 * pi)
ring_helix_te(i).z = -r * Sin(psi)
Next

'move helix so it matches blade Ie
For i = 1 To num_oLpoints
ring_helix_te(i).y = ring_helix_te(i).y + y_offset

204

Next

Dim temp(70) As section

Call helix_from_poinCto_point(final_section(num_sections,
section_data(num_sections).te_id), ring_helix_te(lnt(num_oCpoints / 2)), tempO,
num_oCpoints - Int(num_oCpoints / 2))

For i = Int(num_oCpoints / 2) + I To num_oCpoints
ring_helix_te(i).x = temp(num_oCpoints - i + l).x
ring_helix_te(i).y = temp(num_oCpoints - i + I).y
ring_helix_te(i).z = temp(num_oCpoints - i + 1).z
Next

End Sub

205

12 Appendix B

Design Optimisation of a bi-directional integrated thruster

206

Design optimisation of a bi-directional integrated
thruster

Pashias C, Turnock S.R., Abu Sharkh SM.
University of Southampton, UK

Integrated thruster model

ABSTRACT

The maj ority of thrusters used f or the position control of tethered underwater vehicles have
asymmetric propulsion characteristics. This paper presents the results of a hydrodynamic
design optimisation ofa bi-directional integrated thruster. A surface panel method using the
perturbation potential method of Morino was used for the optimisation. The model was
validated with experimental data giving good agreement. Two versions of the prototype
thruster have now been built and tested. In this paper details are given of the design
optimisation process fo r the next generation of thruster fo r use on a work class Remotely
Operated Vehicle. A 2-D potential code coupled with integral boundQ/y layer equations has
been used to derive an optimum blade section shapefor equal performance in both directions.
Using the derived sections the complete thruster was optimised f or a given operating
condition.

NOMENCLATURE P Section pitch

r""",, ,o,ffi",,' = I - (~ J Q Torque

C p T Tlu'ust
V Advance veloci ty

0 Diameter V R = ~V2 + (2JrnR) 2
V

J Advance ratio = -- VI Total edge velocity
nD J Kr

T l] Efficiency ---

KT Thrust coefficient =
? D4 2Jr KQ

pn-

KQ Torque coeffi cient = Q
pn2D5

n Rotation speed rps

INTRODUCTION
A hydrodynamic design optimisation of

a bi-directional thruster is presented. This
on-going project (Hughes 2000) has been
developed for position control in Remotely
Operated Vehicles (ROV), to replace the
current hydraulic thrusters. Typically each
ROV has six thrusters: four for lateral and
two for vertical position control. Most
current thrusters have asymmetric
propulsion characteristics, because of either
off the shelf propellers or motor/shaft
blockage effects.

A bi-directional thruster has many
advantages over the current hydraulic
thrusters. Bi-directionality simplifies the
control problem since the same thrust is
produced for the forward and reverse
condition with the same rpm.

In addition an electric thruster has a
lower number of parts, thus reducing
maintenance costs. The electric thruster is
also lighter which translates into more
weight saving by reducing the syntactic
foam required for buoyancy. Also no
hydraulic fluid has to be pumped down the
umbilical cord that can be more than 3000m
long, reducing the weight of the cord which
means lighter handling gear on the mother
vessel.

The first phase of this project was to
integrate the permanent magnet (PM) motor
with the hydrodynamics of the thruster and
to test the concept. Two prototype thrusters
were built and tested. Phase one has been
completed but did not concentrate on the
hydrodynamic aspects of the thruster design.
A standard duct and section shape were
modified to give bi-directionality, which
does not give optimum perfonnance. The
second phase of the project is to optimise the
hydrodynamic performance of the integrated
thruster.

The hydrodynamic analysis of the
thruster is carried out using a surface panel
code. A mesh generation tool was developed
to allow quick definition of arbitrary
propellers. The code was validated against
standard propellers and experimental data.
New section shapes were developed for bi­
directional performance. The complete
thruster was then modelled and optimised
for a given operating condition to match the
motor specifications.

INTEGRATED THRUSTER DESIGN
The thruster is powered by a PM motor.

The PM ring is attached to the propeller tip
and the stator is integrated into the duct. The
propeller is driven from the tips and the
thrust supported by bearings on the shaft.
The bearings are supported by stators from
the duct.

Several bearing arrangements were
considered (Figure 1), including the thrust
bearings supporting the ring, which
eliminates the requirement for a hub. The
chosen arrangement enables thinner sections
to be used offering improved performance.
Since the thrust is supported at the hub and
the torque at the tip, the twist of the blade
helps support the forces.

(a) (b)

(c) (d)

C2:SJ Bearing

Figure 1 Possible bearing arrangements for
integrated thruster

THEORY
Ducted propellers have been widely

used in applications where propeller
diameter is limited. It is known that due ted
propellers are more efficient than open water
propellers under such operating conditions
(McMahon 1994). The presence of the duct
enables the propeller tip to sustain the
pressure differential between the back and
the face, thus generating more thrust and that
is the reason why ducted propeller have
larger chords near the tip than open water
propellers.

There is a strong interaction between
the duct and the rotor and because of the
complex nature of the problem a non­
viscous lifting surface panel method was
used. Such methods can model complex
problems quickly and have been used
successfully in the past. The ease and time
advantage over RANS codes (Tumock
2000) makes them ideal for optimisation
studies.

The in house parallel lifting surface
panel code, Palisupan (Tumock 1997), was
originally developed to solve rudder­
propeller interaction and follows the work of
Morino (Morino 1974), Newman (Newman
1986) and Lee (Lee 1987). It involves a
straightforward application of this method to
model the interaction between a rotating
propeller and duct.

Laplace's equation can be written as an
integral over the bounding surface 5 of a
source distribution per unit area s and a
normal dipole distribution per unit area m
distributed over the S. This can be expressed
in terms of a surface integral as:

¢ = f f [+.u + /J +. J Jll dS
SB

(I)

+ f f ~:(+.JJldS
Sir

where 5s is the surface of the body and 5w a
trailing wake sheet. In the expression r is the
distance from the point for which the potential
is being determined to the integration point on
the surface and a/an is a partial derivative in
the direction nom1al to the local surface.
Equation (I) is discretised to give the
following formulation for the potential at the
centre of a given panel:

M

+ Li1¢kWik
k~l

For solving complex flows with
multiple bodies the Interaction Velocity
Field (IVF) method (Tumock 1994) is used,
where the disturbance velocity field
generated by a body is superimposed on the
velocity field existing in the absence of the
body.

For a duct/propeller problem an iterative
process is employed as follows:

Step I. The propeller is solved in the
free stream velocity field.

Step 2. The propeller's disturbance
velocity is applied to the free
stream velocity field and the
duct solved.

Step 3. The duct's disturbance velocity
is applied to the free stream
velocity field of the propeller
and solved.

Step 4. Repeat steps 2 and 3 until the
solution has converged.

Typically six iterations are required to
converge within 0.5% of the total forces.
The method effectively splits up the problem
to smaller blocks reducing memory
requirements and processing time. A typical
run takes less than 15min on a Pentium III
IGhz.

For the thruster to be bi-directional a
1800 rotationally symmetric section shape is
required. Standard sections are not readily
available and a new section had to be
developed. A 2-D potential code coupled
with integral boundary layer equations as
implemented in X-Foil (Drela 1989) was
used because of its speed, ease of use and
reliability (Milgram 1997).

GEOMETRY AND MESH
GENERATION

In order to facilitate the optimisation
process a program has been developed to
generate the propeller, hub, end caps and
duct geometry from standard propeller
tables. The geometry is constructed from
four sided faces (Figure 2) and exported to
the mesh generation tool.

Figure 2 Perspective view of face structure
for geometry definition of hub , blade and
wake

Figure 3 Perspective view of panelling for
DMTB4119 propeller and hub

The faces can then be discretised into
the desired number of pane ls (Figure 3)
using transfinite interpolation (Hall 1973).
Since it is a steady flow problem only one
blade of the propeller is generated and the
image influence coefficients are used. This
again reduces memory and processing
requirements enabling more panels to be
used. The whole process can be automated
enabling variants to be created easily for
optimisation studies.

Wake
The wake model is crucial for correct

results . Wake relaxation methods have many
numerica l difficu lties and are often
unreliable. Because of the tip vortex the
wake near the tip of the blade rolls back on
itself creating problems (Caponnetto 1997).
In addition highly skewed panels can result
causing numerical problems. Getting the
relaxation to converge is another issue, even
when damping is applied (Hughes 1998). A
fixed wake model has been chosen because
it is robust and quick. Fixed wake models
have been used in the past giving as good
results without any problems as shown in the
22nd ITTC Propulsion Committee workshop
(Gindroz 1998).
The wake bisects the trailing edge of the
blade and smoothly varies from that initial
pitch to the final wake pitch. Since the
experimental data from the two prototype
tlu·usters were available, the final wake pitch
was varied until there was good agreement.

The wake transitions from the initial to
the final pitch in one propeller diameter.
Instead of using a linear transition a 4th order
polynomial was used which gives a smooth
wakes shape. The wake pitch depends on the
wake contraction and the polynomial is the
same as the one used for the wake
contraction (Hoshino 1991). A wake
sensitivity study was carried out and a wake
length of four diameters was found to be
more than adequate with extra length only
changing the thrust and torque by less than
1%.

0.9

0.8

0.7

0::: 0.6
"i:::

~-----
~~----Q) 0.5 ..>::

ro
s: 0.4 '--------------------

0.3

0.2 -------------------------

0.1

0

0 5 10 15 20 25

Distance along wake (cm)

Figure 4 Contraction shape for wake (Hoshino 1991)

Wake contraction has been accounted
for by setting it to a fixed value. A final
wake contraction is assumed depending on
the advance ratio. The wake contraction is
set to this value for distances more than one
diameter away from the blade. Between the
blade and one diameter the wake contraction
is modelled by a polynomial, which is based
on experimental results (Hoshino 1991).
Wake contraction increases with increased
propeller loading and from experimental
results is about 0.7D to 0.8D for most
propellers (Hoshi no 1991, Pereira 2002).

VALIDATION
To validate the mesh generation and the

numerical model, a standard propeller was
selected. The DTMB4119 is standard open
water three bladed propeller that has been
used in the past for validation purposes and
experimental data are readily available
(Jessup 1998). This propeller has been used
for the recent 2211d ITTC Propulsion
Committee workshop (Gindroz 1998).

For the DTMB4119 a panel sensitivity
study was carried out and 23 panels were
used for the blade in the spanwise direction
and 20 in the chordwisc direction giving a
total of 460 panels on the blade with an
additional 288 on the hub and 5920 wakc
panels.

Different wake parameters have been
investigated to find their influence on the

results. Wake contraction and initial pitch
have both been studied.

The initial pitch of the wake has been
set to three different values: the local section
pitch, the pitch of the bisector of the trailing
edge and the pitch of the back face on the
trailing edge. The influence has been found
to be small giving a change in KT of I % and
KQ 0.2% from one extreme to the other. The
wake geometry used has the initial pitch set
to bisect the trailing edge.

The effect of wake contraction was
found to have less than one per cent
influence on the KT and Ko. For advance
ratios close to one the effect was negligible
whereas for smaller advance ratios there was
a one per cent increase in KT and Ko rising
with decreasing advance ratio as expected.
As the influence was relatively small the
wake contraction was not modelled in
subsequent calculations.

The pressure distribution for an advance
ratio of 0.833 was compared to the
experimental data at rlR of 0.3,0.7 and 0.9.
The results were in good agreement with the
experimental results and other panel code
calculations. The pressures for the 0.9 radius
are slightly over predicted, which was the
norm for other codes (Hoshino 1998). In
addition the KT, KQ for a range of J was
compared, giving good agreement with the
experimental data.

0.6

0.5

0.4

0.2

0.1

o
0.4

o Experimental

~Panel

0.5 0.6

DTMB 4119 Kr KQ

o
o

0.7 0.8 0.9
Advance ratio J

CP distribution on DTMB4119 at 0.7R

0.080

0.070

0.060
o

0.050

0.040 I="

0.030

0.020

o
0.010

0.000

1.1 1.2

0.3 ,----. ·---------·-----·-------------------·l
o Panel

--:-~:.~~":"'" I 0.2

I
112

0.1

y 0

-0.1

-0.2

-0.3 -----_._--.-------------------
x/c

Figure 5 Validation data for the DTMB4119

The numerical model of the duct and
propeller was validated using
experimental data from the two prototype
thrusters. The thrusters were tested with
different propeller/duct combinations and
had symmetrical ducts and propellers with
a P/D of 1.4 and 1.0.

A gap of I % of the overall propeller
diameter was left between the inner
surface of the duct and the blade tip to
eliminate the high Cp caused by the
proximity of the blade tip to shielded
panels on the duct. The numerical results
were in relatively good agreement with
experimental data.

The slope of the KT and KQ curves do
not match exactly with the experimental
results. This is due to a number of reasons.

The duct imposes a velocity and hence
modifying the operating condition of the
propeller. Since no form of wake
relaxation was used this was not taken into
account. Also ensuring the correct wake
shape for heavily loaded propellers is
difficult (Takinaci 200 I). Another effect
not taken into account is that the propeller
contraction also affects the duct wake,
which will again alter the thrust of the
duct.

In addition in this model no
viscous interaction effects are included
and for simplicity the six stators are
neglected. However, as shown previously
(Hughes 2000, Hughes 2001) the relative
performance changes are captured well.

0.8 ,.--- -------- ,.-----~----.---- --------- - ._--- --~-----.~.---------.-.---.---

0.6

0.4

0
~ • 0 0.2

,::
~

~
0.0

0.1 0.2 0.3 0.4 0.5

-0.2

-0.4

Advance Ratio J

o Experimental

~Panel

0
0

00.6 0.7
0

C
0 D

D

0

08

D
I

I
I

_________ .-1

Figure 6 Prototype KT Ko
EFFECT OF THE RING

The nature of the design of the
integrated thruster includes a ring to which
the magnets are attached on the outer
surface. An investigation was carried out
as to whether it was necessary to include
this ring as a rotating surface in the panel
method.

The ring was modelled by a
cylindrical ring of panels aligned with the
pitch at the blade tip, connecting the
blades (Figure 7). In previous work
(Brown 1994), a similar ring attached to a
wake was used to simulate the effect of
the duct on the propeller, as a
simplification for preliminary design. The
effect of the ring was to seal the blade tips
and increase the thrust.

Since the ring in this case was in the
duct no wake was attached to it. The
propeller and ring combination were run
in isolation and the results were similar to
(Brown 1994). The ringed propeller was
then solved in combination with a duct
with a cut out ring (Figure 8).

Figure 7 Propeller with ring

1.6

1.4
~Norlng

1.2 - -e-Withring

'l 1 -

o 0.8

i 0.6

0.4 -

0.2 -

o
o 0.1 0.2 0.3

The effect of the ring has so far been
to make a non-physically large increase in
thrust and also torque. There is also an
increase in thrust from the duct. The
friction on the ring results in an increase in
torque, which offsets the gain in thrust and
the increase in efficiency is negligible
(Figure 9). The torque due to the friction
of the ring is approximately 7% of the
overall torque. The ring width was kept to
a minimum for the final design to keep
frictional drag as low as possible.

Other investigations have been carried
out to study the turbulent Taylor-Couette
flow in the gap between the ring and the
motor windings (Batten 2002). This
contribution to torque is not included in
the external hydrodynamic optimisation as
there is little interaction between the two
regimes.

For the optimisation studies presented
the effect of the ring is not included and a
constant tip gap of 1 % of D is used. This
is comparable in size to a typical panel
dimension on the duct and propeller.

Figure 8 Duct with cut out for ring

0.4

0.35

0.3

0.25

0.2 I='

0.15

0.1

0.05

0

0.4 0.5 0.6 0.7

Advance Ratio J

Figure 9 Effect of modelling the ring of the thruster

OPTIMISATION
The thruster was optimised to give

maximum bollard pull at zero advance
speed with the given motor characteristics.
There is an optimum motor rpm, which
depends on the viscous losses due to the
friction in the gap between the rotor ring
and the stator (Batten 2002). As the rpm
increase the motor efficiency increases but
so do the gap losses, so an optimum exists.

The typical operating depth of the
thruster will be from 300m to 3000m. At
those depths cavitation is not an issue
since the pressure is very high. Small
blade area ratios (BAR) can be used with
heavily loaded blades without cavitation
problems.

To speed up the optimisation process
the stators were neglected from the
numerical model. The stators can be used
to pre-swirl the flow, but their effect on
the overall performance is less than 1 % for
angles up to 5 degrees as shown by the
prototype experimental results (Hughes
2001).

Bi-directiona1 propeller section
Asymmetrical sections were not to be

used as previously explained. The new
section was required to have bi-directional
characteristics. A new section was
developed using X-Foil (Drela 1989).

Over 10,000 sections were
automatically created and tested (Ellsmore
2002). A quintic polynomial was used to
define the camber line. A leading and
trailing edge circle and two cubic splines
were used to define the thickness
distribution. The section shape was the
created by adding the thickness to the
camber line (Figure 12). The parameters
controlling the camber and thickness were
varied over a specified range and a series
of bi-directional sections was produced.
The sections were then analysed and
refinements made to possible candidates.

The developed section has almost the
same efficiency (95%) as the standard
asymmetrical Kaplan section (Lewis
1988). This improved the efficiency over
the old symmetrical section used in the
first generation prototype by 3%.

Duct profiles
Different duct profiles were modelled

and tested experimentally for the first
generation thrusters. The best duct shape

(SF2037) was found to be the one that
imposed the least increase in velocity at
the propeller plane: the section with the
flattest inner shape, which agrees with the
numerical model.

The duct must enclose the motor,
which typically has a length of 100mm
and thickness of 40mm. A new duct
section shape (MSN64212) was
developed with similar inner shape but
with sharper ends giving a smoother Cp

distribution. This section performs equally
well as the SF2037 but will be less prone
to separation at the trailing edge, although
this is not modelled in the current
numerical model.

0.5 0.75

-SN64212
-MSN64212
---"'-S37
-SF2037

Figure 10 Duct profiles tested

0.440 .- 0.0650

o .439 +-,......,,-------F=r---d=i--=~

0.438

J.437

0.436

0.435

0.434

0.433

0.0630

0.0610
~

0.0590

0.0570

0.0550

.KT
OKQ

Figure 11 KT, Ko for different ducts at 1=0.1

n) (~

b)

c)
~--------

Figure 12 Thickness distribution (a) is added
to the camber (b) to generate a symmetrical
section (c)

Duct length
Six different duct lengths were

modelled at three different advance
speeds. As the advance speed increases the
optimum duct length increases. For the
J=0.6 the optimum duct length is 2.4 times
the propeller diameter decreasing to 0.8
times the diameter for J=O. I. The
optimum duct length can be selected
depending on the application of the
thruster, but for a general-purpose case a
duct length of 1.8 times the propeller
diameter would be best. This gives less
than I % penalty for all the speeds
analysed whereas a short duct would have
a 3.8% penalty at J=0.6. Since a ROY
mostly uses the thruster for position
control at low speeds and does not move
at high speeds a shorter duct was chosen.
Also a compact thruster has practical
advantages.

The optimum duct length depends on
the thruster size since the thrust of the duct
does not scale the same as the propeller
thrust (Abdel-Maksoud 2002). The whole
problem is Reynolds number dependent
and the duct thrust lI1creases with
Reynolds number.

A factor not modelled in the current
method is the boundary layer effect of the
duct on the propeller tip. The longer ducts
have a thicker boundary layer at the
propeller tip, which increases the loading
at the propeller tip (Abdel­
Maksoud 2002). However in this case an
additional complication is the ring with
blade-tip junction. Suitable fairing aids in
minimising drag losses in this region.

---.- Efficiency

21!s_"--I!r--_-tr-_~r---1800 .~ J=0.1 ---&- Thrust
A A A

1.5 ----..r----j.k--... ----.t..~
t 600
I -

G~-BD~--cDr_--ED~--m ~
~1 - I ~

J=0.3 . ~

• __ --__ .----• .r--__ .r---.~40~
0.5 - I

• o
20

J=O.

8 • •
30 40 50

Duct length (em)

~
i 200

60

Figure 13 Duct length influence on thrust

Blade area ratio
Since cavitation is not an issue small

blade area ratios with highly loaded
sections are feasible. Four different BAR
of 0.5, 0.6, 0.7, 0.8 and 0.9 where
analysed. The pitch was adjusted for each
case such that the thrust produced was the
same. The chord and pitch distribution
along the blade where kept constant.

An increase in pitch is required with a
decrease in BAR to keep the thrust
constant (Figure 14). In this bollard
condition the efficiency can be express
better as follows (Lewis 1988):

(Ki)~
lJD = K (3)

Q

It can be seen that as the BAR
increases there is a reduction of the
required pitch to maintain constant thrust.
For higher BARs the variation in pitch is
very small. The optimum BAR for the
analysed advance ratio of 0.1 is 0.77.

1.10

1.05

o
a::

0.84

0.82

1.00 ~~---~I.::--------+ 0.80

0.95

0.5 0.6 0.7
BAR

0.8

Figure 14 Optimum BAR for J=O.1

COMPLETE THRUSTER

0.78

0.9

The first generation thruster has been
refined and revised. Improvements have
been made lI1 its hydrodynamic
performance .

The biggest gain in performance was
from the new bi-directional section shape
which accounts for an improvement in
efficiency at bollard pull (llD) of 5% over
the old propeller. Other refinements have
made smaller contributions. Some of the
improvements are not modelled by the
numerical model and are not reflected in
the results because of the potential flow

assumption. For example, such a gain is
the smoother duct shape. Although in the
numerical results it appears to have the
same performance as the old duct, in
reality it will perform better because it is
less prone to separation compared to the
old shape.

CONCLUSION
Numerical analysis is being

increasingly used for design applications.
The method outlined in this paper allows
results for a particular condition to be
acquired in about 15 minutes. However, as
demonstrated a significant number of such
calculations is required to achieve an
overall optimisation. As a result a step-by­
step approach has been used to first
optimise the components in isolation and
then make small changes for the complete
problem. Not withstanding the number of

assumptions/approximations made in the
numerical method, it has been proven as a
reliable design guide. The result of this
work has been an overall improvement of
performance of at least 5%. The final
design will be by necessity a compromise
between optimum hydrodynamic design
and practical/mechanical design issues. As
greater experience is gained with each
successive generation of integrated
electric thruster, it is envisaged that more
radical designs will be used and as a result
greater performance gains will be
possible.

The next step of this ongoing work is
to build and test the new thruster. In
addition the numerical model will be
improved by adapting the wake, which it
is believed will improve the numerical
predictions.

0.8 --------------------------------------~0.6

0.7

0.6

0 0.5
~
0 0.4

.::
~ 0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5

Advance ratio J

Figure 15 Performance of first and second generation propellers

0.7

0.6

0.5

f 0.4
0

f 0.3

0.2

0.1

0

0.0 0.1 0.2 0.3 0.4 0.5
Advance Ratio J

Figure 16 Optimised integrated thruster perfonnance

0.6

0.6

0.5

0.4

0.3 ~

r

0.2

0.1

o
0.7

0.5

0.4

0.3

~

0.2

0.1

0

0.7

ABDEL-MAKSOUD M and HEINKE HJ,
"Scale effects on ducted propellers." 241h
Symposium on Naval Hydrodynamics,
Fukuoka, Japan, July 2002
BATTEN W, BRESSLOFF NW and
TURNOCK SR, "Transition from vortex
to wall driven turbulence production in the
Taylor-Couette system with a rotating
inner cylinder." Intemational Joumal for
Numerical Methods in Fluids, Vol. 38 (3),
pp. 207-226, 2002
BROWN JB, "Computational
approximations for ducted propellers."
SNAME Propeller/Shafting Symposium
94, Paper 8.1-18, Virginia Beach USA,
Sept 1994
CAPONNETTO M, 'The aerodynamic
interference between two boats sailing
close-hauled." Int. Shipbuild. Progr., 44,
no 439: 241-256, 1997
DRELA M, "XFOIL: An Analysis and
Design System for Low Reynolds Number
Airfoils." Conference on Low Reynolds
Number Airfoil Aerodynamics, University
of Notre Dame, June 1989
ELLSMORE P, "Optimisation of a bi­
directional section." Part III individual
project, University of Southampton, 2002
GINDROZ B, HOSHINO T and
PYLKKANEN JV editors, "Propeller
RANSlPanel Method Workshop
Proceedings." 22nd ITTC Propulsion
Committee, Grenoble, 1998
HALL CA, "Construction of curvilinear
co-ordinate systems and applications to
mesh generation." Intemational Joumal
for Numerical Methods in Engineering,
7:461-477,1973.
HOSHINO T, "Numerical and
experimental analysis of propeller wake
by using a surface panel method and a 3-
component LDV." 181h Symposium on
Naval Hydrodynamics, 1991
HOSHINO T, "Comparative calculations
of propeller perfoTI11ance in steady and
unsteady flow using a surface panel
method." 22nd ITTC Propulsion
Committee, Propeller RANSlPanel
Method Workshop, Grenoble, France,
April 1998
HUGHES A W, TURNOCK SR and ABU­
SHARKH SM, "CFD modelling of a
novel electromagnetic tip driven thrustcr
for underwater vehicles", ISOPE 2000,
Seattle, June 2000.
HUGHES MJ and MASKEW B,
"Calculations for the DTMB4119 and

DTMB4679 propellers and a highly
skewed propeller for the Sein-Maru using
the VSAEROIPROF AN and USAERO
codes." 22nd ITTC Propulsion Committee,
Propeller RANSlPanel Method Workshop,
Grenoble, France, April 1998.
HUGHES A W, ABU-SHARKH Sand
TURNOCK SR, "Design and testing of a
novel electromagnetic tip-driven thruster."
The Proceedings of the lO'h Intemational
Offshore and Polar Engineering
Conference, Seattle, USA, pp.299-303,
June 2000
HUGHES A W, "Investigation of Tip­
Driven Thruster and Waterjet Propulsion
Systems." PhD thesis, University of
Southampton, 2001
JESSUP S, "Experimental data for RANS
calculations and comparisons
(DTMB4119)." 22nd ITTC Propulsion
Committee, Propeller RANSlPanel
Method Workshop, Grenoble, France,
April 1998
KERWIN JE, "Marine Propellers", Ann.
Rev. Fluid Mech., 18:367-403, 1986
LEE TJ, "A potential based method for the
analysis of marine propellers in steady
flow." PhD thesis, M.LT. Dept. of Ocean
Engineering, Aug 1987
LEWIS EV, "Principles of naval
architecture- Volume II: Resistance and
propulsion." SNAME, 1988
MCMAHON J, "Characteristics of ducted
propellers." SNAME Propeller/
Shafting Symposium 94, Paper
18.1-14, Virginia Beach USA, Sept
1994
MILGRAM J, "Hydrodynamics in
advanced sailing design." 21 sl Symposium
on Naval Hydrodynamics, 1997
MORINO Land KUO CC, "Subsonic
Potential aerodynamics for complex
configurations: A general theory." AIAA
Jou01al, V01.l2, No.2, pp 191-197, Feb
1974
NEWMAN IN, "Distribution of sources
and no011al dipoles over a quadrilateral
panel." Joumal of Engineering
Mathematics, Vo1.20, ppI13-126, 1986
PEREIRA F, SALVATORE F,
DI FELICE F and ELEF ANTE M,
"Experimental and numerical investigation
of the cavitation pattem on a marine
propeller." 241h Symposium on Naval
Hydrodynamics, Fukuoka, Japan, July
2002

STRECKW ALL H, "Hydrodynamic
analysis of three propellers using a surface
panel method for steady and unsteady
inflow conditions." 22nd ITTC Propulsion
Committee, Propeller RANSlPanel
Method Workshop, Grenoble, France,
April 1998
T AKINACI AC and A TLAR M, " On the
importance of boundary layer calculations
instead of viscous correction in heavily
loaded marine propellers while using a
surface panel method." Ocean
Engineering, 28:519-536, 2001
TURNOCK SR, MOLLAND AF and
WELLICOME JF, "Interaction velocity
field method for predicting ship rudder-

propeller interaction." SNAME
Propeller/Shafting Symposium 94, Paper
18.1-14, Virginia Beach USA, Sept 1994
TURNOCK SR, "Prediction of ship
rudder-propeller interaction using parallel
computations and wind tunnel
measurements." University of
Southampton, PhD Thesis, 1993
TURNOCK SR and WRIGHT AM,
"Directly coupled fluid structural model of
a ship rudder behind a propeller." Marine
Structures 13 :53-72, Elsevier 2000
TURNOCK SR, "Technical manual and
user guide for the surface panel code:
Palisupan." University of Southampton,
Ship Science Report No.1 00, Oct 1997

