UNIVERSITY OF SOUTHAMPTON

Propeller Tip Vortex Simulation Using Adaptive Grid
Refinement Based On Flow Feature Identification

by

Christos Pashias

Doctor of Philosophy
School of Engineering Sciences

August 2005

UNIVERSITY OF SOUTHAMPTON
ABSTRACT
SCHOOL OF ENGINEERING SCIENCES

Doctor of Philosophy

PROPELLER TIP VORTEX SIMULATION USING
ADAPTIVE GRID REFINEMENT
BASED ON FLOW FEATURE IDENTIFICATION

By Christos Pashias

In this thesis a novel 2-D vortex identification scheme is refined and
extended to 3-D. The developed method is applied to a 3-D wing and two marine
propellers; DTMB P4119 and INSEAN E779A. In addition a wake identification
scheme is developed and applied to a 3-D wing.

The vortex identification method is based on a simple mathematical
scheme applied on 2-D planes. The vortex is identified by locating the point
closest to the most variance in the velocity direction. The method is extended to
3-D by the use of a series of planes. Multiple vortices can be identified using this
method.

The vortex and wake identification schemes have been applied in
conjunction with adaptive grid refinement on a 3-D wing showing improved
agreement with experimental results. The vortex dependency on grid size has been
demonstrated.

The vortex identification scheme has been extended such that it can
identify complex vortex core lines, typical of marine propellers. The method has
been successfully applied to two marine propellers and the results compared to
experiments. An improved agreement has been demonstrated for the grid adapted

cases.

Table of Contents

1

5

INtrOAUCTION ...ttt ettt 2
1.1 AIMS aANA ODJECHIVES ...ttt 2
1.2 INrOdUCHION ...t e 3

1.2.1 A brief history of the marine propellercccccoveviineiiiiiinnnnne 3

1.2.2 Background theory..........ccocoiiiiiiiiiiii 4
1.3 VOTTICES ..ttt ettt ettt eb e st ebe et ebe et anis 6

1.3.1 VOrtices and NALUTEcocueiiiiiiriiiiiie et 6

1.3.2 Structure of @ plane VOITeXcccveicviiriiiiiiriie it 7

1.3.3 THD VOTHICES ..ottt 9

1.3.4 Vortex capturing using a fixed (structured) mesh...............c.......... 10

1.3.5 Adaptive Meshes........ccccoiiiiiiiiiiii 12

1.3.6 Vortex Identification Methods..........cccoooeiviiiiiiiiiiniec e, 15

1.3.7 Vortex capturing using structured adaptive gridsccccccvvvenenne, 18

1.3.8 Vortex capturing using unstructured adaptive grids............c......... 18

1.3.9 Propeller P VOITEXcccuiiiiiiiiiiiiiiiiceeiceiie et 20
1.4 Summary and Layout..........ccccoiiiiiiiniiiiiii e 22

Navier-Stokes EQUAtiONS.ccoiiiiiiiiiiiiicie e 23

2.1.1 Discretisation of the Governing Equationsccccoeveovieinenne. 25

2.1.2 Pressure-Velocity Coupling......coovvviiiiieiiiieiiiiceece e 28

2.1.3 Diffusion TermSoouiiiieiiiieit e 28

2.1.4 Pressure Gradient Termccccooiiiiiiiiinii e 29

2.1.5 Advection Termccociiiiiiiiiie e 29

2.1.6 1st Order Upwind Differencing Scheme.............ccocooiiiiiieininnn, 29

2.1.7 High Resolution Scheme...........ccccooviiiiiiiiiiiicccec 30

2.1.8 The Coupled System of EQUAtionS.........cccoooiieiiiiiiiiiiiiiiiie e, 30

2.19 Solution Method - The Coupled SoIVer.........ccoceeviiiiiiiiiiiniienn, 31

2.1.10 General SOIULIONcciiiiiiiiiiit et 31

2.1.11 Linear Equation SoIutioncccccceoiiiiiiieiiiiieie e 34

2.1.12 Algebraic Multigridccooouiiiiiiiiiiii e 34

2.1.13 Discretisation Effects in CEX-5.......cccccccoiiiniiiiiiiiies 36

2.1.14 Numerical Diffusionccccccoiiiiiiiiiiiii e 37

2.1.15 Numerical DISPErSiONcoviiiviiieiiieciiii et 40
2.2 Turbulence Modellingcccooviiiiiiiiiii e 41
2.3 In-viscid flow (BUIET)......cccviiiiiiiiiiciie e 42

VORTFIND SChemecccuviiiiiiiii e 43
3.1 INUIMIETICS ..t e e 43
32 Identifying the VOTTEX COTE......cooviiiiiiiiiiii it 45

3.2.1 VORTEFIND TSt CASE...cuviiirieiiieiiieiiieeii ettt 46

3.2.2 Influence of grid on VORTFIND methodccccoovviiiiiiiinnnn. 50

323 VORTFIND not conforming to computational nodes 52

324 VORTFIND 0n coarse gridsccoovereiioiiiiieeieiniee e 53
3.3 SUMIMATY 1ottt e eae e e e 56

VEX: an extension of VORTFIND t0 3-Dccccooviviiiiiiiiiiiiii e, 57
4.1 WINE LESE CASE ..vevieeiiieiie ettt ettt ettt ettt e st e et eanee e 58
4.2 Initial grid dependencyc.cccciiiiiiiiiiii i 63
4.3 Comparison with experimental dataccooeveeiiiiiiiiiiiiee e, 63
4.4 SUMIMATY Lo 68

Adaptive Wake CAPLUTE........occuiiiiiiiiiiiie e 69

5.1 Identifying the wakeccccoooiiiiiiiiiii e 69

5.2 WaKe MeSh..ciiiiiiiii e 72
53 RESUIES ...t 74
5.4 Results for Wake and VEX mesh........ccoccooiiiiiiiiiiiie 78
5.5 Results for Wake and VEX mesh.......c.cccoooiiiiiiniiicce, 79

6 Propeller mesh generation...........cooiiiiiiiiiiiciiiiicie e 80
6.1 Propeller GEOMEIIYcooiiiiiiiiiiiie et 80
6.2 PTODZEN .ottt et 81
6.3 Mesh CONSIAEIAtIONS.couiiiiiiiiiiiicie et 83

7 VFX procedure for Propeller modellingcccccoooiiiiiiniiiiiciicceic 85
8 DTMB P4119 and numerical modelccocriiiiiiiniiiiiiicece e 88
8.1 RESUIES ..o 90
8.2 Comparison with LDV data........c.ccoooiiiiiiiiiiiiiiiiieeccie e 93
8.2.1 Section pressure distribution.........c.ccoceeviviiiiiiiiic e, 93
8.2.2 Circumferential averaged data.............cccoeoiiiiiiiniiiiii e, 94
8.2.3 Phase averaged data..........cccoooiiiviiiiiiiiei e, 95

9 INSEAN E779A and numerical model............ccooveiiiiiiiniiiciincce e, 97
9.1 RESUILS ... 98
9.2 Comparison with LDV data.........cccocooiiiiniiiniiiiiiiic 99
9.2.1 Circumferential averaged data.............occoooviiiiiiieiiiii e, 99
9.2.2 Contour plot COMPATISON......eiiiiiieiieeitireeiieeeiee e e 100

10 CONCIUSIONS ...ttt ettt ae s 103
JO.1 VOTITEX CAPIUTC....coiiiiiiiiiiiie et ettt et ettt et e s e 104
10.2 Propeller tIP VOITEXcccvuiiiiiiiiiiieii ettt 104
10.3 Structured vS. UNSIIUCUTEdoveeiieiiieiiieiieeeit et 104
10.4 Vortex identification methods on planesccoceevievivenieeieinniennn. 105
10.5 Final Remark..........coooiiiiii e 105

11 ADPPENAIX A .ot 117
12 ADPPENIX B ..o 206

List of Figures

Figure 1.1 — Solid-body rotation. Velocity varies linearly with distance................. 8
Figure 1.2 — Potential vortex. Velocity varies inversely proportional to distance
SQUATEA ..ottt ettt ettt et 8
Figure 1.3 — Rankine vortex. Consists of solid-body rotation and potential vortex.
Vorticity exists only in the solid-body rotation region.ccccocvveeiviniiiennn. 8
Figure 1.4 — Tip vortex of 3D WINZ ...cccooviiiiiiiiiieiiceciie e 9
Figure 2.1 - Finite Volume Surfacec.c.occoooiiiiiiiiiiiiiiic 25
Figure 2.2 - Integration POINLScceciuiiiiiiiiiiiiii it 27
Figure 2.3 - Solution procedure [88]........ccouiiiiimiiiiiiiiiiiiiiiieeie e 33
Figure 2.4 - Algebraic Multigrid...........cccooiiiiiiiiiiiic e 36
Figure 2.5 - Flow that is not normal to the cell faces causes numerical diffusion.37
Figure 2.6 - Numerical diffusionccoooiiiiiiiii e 38
Figure 2.7 - Flow direction is trivial on unstructured gridsccccovevricrieninnncns 39
Figure 2.8 — A small shift in the vortex position makes any advantages of an O-
BIIA ODSOLELE ..ottt 39
Figure 2.9 - Numerical diSPersionc..c.ooiciviiiiieiiieieieie et 40

Figure 3.1 - The plane is split into sectors and each sector is assigned a value. ...43
Figure 3.2 — Schematic representation for determining the / function for 3 sectors.

The reference point is marked with a diamond..........c.ccccoooveiiiiniiinne. 44
Figure 3.3 - [function contour plot for a plane 0.2c downstream of the trailing
B . ettt e 47
Figure 3.4 - Normalised /, function contour plot for a plane 0.2c downstream of
the tralling €de......ccocoiiiiiiiiiii 49
Figure 3.5 — Uniform Spacingcociiiiiiiiiiiiiiii it 51
Figure 3.6 — Non-uniform SPaCiNg........cocciuiieiiieiiie ittt 51
Figure 3.7 — [, function off the data points. 7 sectors (compare to Figure 3.4)52
Figure 3.8 — [, function on different grid densitiesccceeveiiiiieeniiieniiciiieee 54
Figure 3.9 — I, function on different grid densities not conforming to data nodes 55
Figure 4.1 - Planes where VFX is performed for a wing...........c.cccoooiiininnn, 58
Figure 4.2 - Refined mesh 3. Plane 1.17m.......ccociiiiiiiiiii 59
Figure 4.3 Spanwise position of vortex with different gridscocceiiie. 60
Figure 4.4 — Vortex velocities for the different meshes..............ccoociiins 61
Figure 4.5 — Cp comparison for NACAOQO020 WINGccovvviiemiiiiiiiiiiiiiicniieeeieceae 62
Figure 4.6 — Average circumferential velocity from vOrtex corec.ccoourennne. 65
Figure 4.7 — Velocities through the tip vortex. Top: Spanwise direction (z).
Bottom: Parallel to the tunnel floor (y)coocooviiiiiiiiiiii 66
Figure 5.1 — Selected points having velocity deficit after masking....................... 70
Figure 5.2 — Selected points having velocity deficit at a plane one chord length
downstream of the trailing edge............cccviiiiiiiiiiii 71
Figure 5.3 — Selected points using strips and selecting top points at one chord
length downstream of trailing €dge.........coocvvviiiiiiiiiiiiiiiiic e 71
Figure 5.4 — Wake shape captured by the wake identification algorithm.............. 72
Figure 5.5 — Mesh using wake Capturecocoeviiiiiiiiiiieiiee e 73
Figure 5.6 — Velocity contours 44.4% of chord downstream of the trailing edge for
standard mesh (Top) and prism wake mesh (Bottom)cccccccoviiiiinnen. 74
Figure 5.7 — Velocity contours 133.3% of chord downstream of the trailing edge
for standard mesh (Top) and prism wake mesh (Bottom)c.oceeee 75
Figure 5.8 — Wake survey COMPAriSONccccooviiiiiiiiniiciiiiiiic e 77

i

Figure 5.9 — Spanwise loading for NACAOOI2 Wing.......ccocovviiiiiiiiiiiniiiii, 78
Figure 6.1 - Propeller geometry definition used (Left); Kerwin definition [108]

(RIGNE) 1 80
Figure 7.1 — VEX procedure for propellers. Red spheres are the jump points and

yellow crosses the VEX VOTteX COTES.......ooiuiiiiiriiiiiiieiiiiee et 85
Figure 8.1 — Test section of the 24” VPWT at the David Taylor Model Basin.....89
Figure 8.2 — Refinement regions for propeller meshcccocooeoiiinciiinenn, 90
Figure 8.3 — Cp comparison for LDV and CFD at 0.9r/R ... 93
Figure 8.4 — Average circumferential velocity comparison for CFD and LDV94
Figure 8.5 — Phase averaged comparison at 0.91/R and 0.3821x/Rc........ 96
Figure 8.6 - Phase averaged comparison at 0.924r/R and 0.3821x/R.................... 96
Figure 9.1 — Geometry of the INSEAN E799A four bladed propeller model 97
Figure 9.2 — Circumferential averaged data at 0.20 x/Rc.ccoiiiiiiiinn, 99

Figure 9.3 — Axial velocity/U contours at 0.20 x/R. CFD left - LDV right........ 100
Figure 9.4 — Axial velocity/U contours at 0.65 x/R. CED left — LDV right........ 101

Figure 9.5 — Radial velocity contours at 0.20 x/R. CFD left — LDV right 102
Figure 9.6 — Radial velocity contours at 0.65x/R. CFD left - LDV right............ 102
List of Tables

Table 1-1 - Taxonomy of Vortex detection algorithmscc.ccccoviieiiininicinnneen. 16
Table 3-1 - Position of VOIteX CENIIEcc.uiiiriiieiiiiiiiiiiiiie ettt 48
Table 3-2 - Position of VOrtex CEentre.oooiiiiiiiiiiiiiiiniiice e 50
Table 3-3 - Variation of vortex core with grid densitycccccocviviiiiiiiiiiiiiieens 54
Table 3-4 - Variation of vortex core with grid density (VFX not on data nodes) .55
Table 4-1 - Grids fOr WINE teSE CASE....ccivuvriieeeiiiieeetieee et eeeeetee e eravr e e eeieieeae e 59
Table 4-2 - Comparison of lift and drag for different vortex refinement. 67
Table 5-1 - Comparison of wake mesh and standard mesh forcesc.c.c..c..... 76
Table 5-2 - Comparison Of fOrcescccciiiiiiiiiiiiiiiiic e, 78
Table 8-1 - Mesh properties for refined meshes ... 91
Table 8-2 - Kt and Kq variation for DTMB4119 with different meshes............... 92
Table 9-1 - INSEAN E799A force compariSOncccevuiiiieniiiiiciiieinieciecennenn 98

Nomenclature

i, Hyi

Cr

CL

CI)

Kr

kgm

Pa
Pa

ms

Density

Pitch angle

Helix angle
co-ordinates of the
cluster centre
Propeller pitch
Pressure
Reference pressure

Local radius
=V +(2znr)’

_(p=p) =1—[1
novi
Span
Chord
Advance speed
Axial velocity
Tangential velocity
Radial velocity
Lift
Drag; Propeller
diameter
Distance between 1%
and 2" grid point
L
Y pSV?
_D
KPSV
T
pn*D*

_ 0
pn’D’

J -

Z” m2n

n st

N, -

Npi -

0 Nm

g6 ms

S m’
N

Tw Pa

U, ms

XoYs m

+
y -

n—1

0

l” 1
nﬁ' _exist

Revolutions per
second

Number of clusters
Points in i™ cluster
Torque

Tangential velocity
Planform area
Thrust

Wall shear-stress
Free stream velocity
2-D section

co-ordinates

. T,/ pAn

y =
|4

Acknowledgements

Stephen R Turnock, my supervisor, for his guidance, patience and countless hours
he has invested in this research. Without him this research would not have been

possible.

AF Molland, for his advice, based on his invaluable experience that has helped on

numerous occasions.
Overseas Research Scholarships Scheme, for partly funding my research.

My fellow researchers, for sharing their experiences and advice when going through

the same problems they encountered in the past.

Emma M Barnett, for being there for me during the numerous obstacles encountered

during the period of the research and for nagging me to complete this work.
Stephen and Anne Barnett, for providing me with a home away from home.

Charis and Emilia Pashias, my parents, for giving me the opportunity to study and

their financial support throughout my University years.

1 Introduction

1.1 Aims and objectives

The work done on a fluid by a marine propeller generates a rotating propeller
wake where the shed vorticity rapidly coalesces into a tip vortex and a hub vortex
system for each blade. The accuracy of the computational prediction of propeller
performance or indeed any lifting surface is influenced strongly by the accuracy with
which this process of vortex formation is captured.

Current numerical methods are capable of capturing such flows but require a very
fine mesh in the appropriate regions of the flowfield. Efficient meshes, where an
appropriate mesh density is chosen for the local flowfield, cannot be generated a
priori. Adaptive meshes offer a solution to this problem but identifying the vortex is a
challenging task, with current methods being either complex with problems of
robustness or unable to identify the correct regions for refinement.

The aim of this research was to develop an adaptive refinement method suitable
for the detailed modelling of vortical flows capable of being applied for the prediction
of propeller performance. The method must be capable of identifying multiple
vortices within the flow with minimal computational effort and without any user
interaction. The specific objectives are:

® to investigate methods of applying the existing two dimensional VORTFIND
method [1, 2] for predicting vortex cores to the complex three dimensional
flows found at the tip of a lifting surface and in particular the predominantly
helical flow field associated with marine propellers;

e to investigate adaptive refinement schemes suitable for use with the above
method;

e to apply the developed method to a control surface to capture the tip vortex
flow in order to test, validate and refine the method before applying it to the
complex flow field of marine propellers; and

e to apply the method to two standard marine propellers which have been
extensively tested and used widely for numerical method validation.

The methods developed in this research will provide an improved computational

tool that can be applied for the design and optimisation of the next generation of

marine propellers.

o

1.2 Introduction

1.2.1 A brief history of the marine propeller

Screws can be dated back to ancient times. Archytas, a Greek mathematician,
student of Pythagoras and friend of Plato, is credited for inventing the screw when he
put an inclined plane on a cylinder about 400 B.C. In 220 B.C. Archimedes famously
used a screw to lift water. The first to suggest the use of a screw for propulsion was
Leonardo Da Vinci in 1480-1510 when he sketches a helicopter. In 1752 Bernoulli is
the first to suggest propelling of boats using “vanes set at an angle of 60° to both the
arbor and the keel”. The first to use a screw to propel a marine vessel was David
Bushnell to drive his submarine Turtle in 1776. From then on there are many
noteworthy applications of simple screws.

However, it was not until the 1800s, with the advent of the steam engine, when
propellers started to replace sail power for commercial shipping. Since then the
propeller has dominated the propulsion for marine transportation, and still does so
today, with almost all commercial ships propelled by screws.

Their design has changed over the centuries from Archimedes’s wooden screw
to modern high performance composite propellers [3]. They are one of the most
widely used devices for producing thrust in a fluid medium; still used for aeroplanes,
helicopters and ships just to name a few. Sizes range in diameter from a few
centimetres used on models, to the world’s largest propeller at 9.1 metres for a large
container ship.

However, as the requirements imposed on propellers have changed over the
years new research is required to meet those needs. The power transferred through
propellers has increased in recent years and vessels can now achieve higher speeds
with a resultant risk of cavitation. These more heavily loaded propellers create
stronger tip vortices, which must be modelled accurately in order to predict the
performance of and design these modern propellers. The dynamic behaviour of the tip
vortex can be responsible for vibration and noise which is becoming increasingly
important in passenger vessels [4]. The trend of modern propeller design toward high
blade tips has succeeded in reducing the pressure amplitudes in general, but is often
considered to cause a rise in pressure pulses of higher order. An explanation can be

found in the occurrence of less, but fluctuating, strong and bursting tip vortex

cavitation [5]. Thus is it very important to improve tip vortex modelling [6] and

develop the tools necessary to design the next generation of propellers.

1.2.2 Background theory

The basic principles of propeller operation are well understood [7, 8]; however
the detailed flow and physics, necessary to fully comprehend propellers, are still in
constant development and highly complex. The challenges of accurately modelling
propellers still fascinate and perplex enough to justify the resources of many
researchers today. In particular, marine propellers present more of a challenge than
their aerospace counterparts. Even though they both operate in fluids with similar
governing physics at low speeds the marine propeller still has many aspects that
complicate matters. In most cases, airscrews operate in uniform flow ahead of any
obstructions, whereas marine propellers operate in the wake of hulls requiring
unsteady simulations to capture their behaviour correctly. In addition to their vicinity
to the free surface cavitation issues can arise. Modelling cavitation, on its own
provides a challenge for current methods [4, 6]. Also the restriction in diameter
combined with cavitation considerations for blade areas leads to much lower aspect
ratio blades than their aerospace equivalents. The heavy loading combined with the
low aspect ratio results in significantly increased importance in tip vortex modelling.

The original theory, as first formulated by Rankine [9] excluded the viscous
effects, the rotation of the slipstream, and the uneven load distribution, with the scope
of evaluating the ideal efficiency of such a propulsive system (also called actuator
disc). The rotor 1s degenerated into a disc perpendicular to the thrust, and is capable of
sustaining a pressure difference between its two sides, and imparting linear
momentum to the fluid that passes through it. The mechanism of thrust generation
requires the evaluation of the mass flow through a stream tube bounded by the disc.

In 1878 William Froude developed the theory of a propeller blade’s elements,
which reflects the generated efforts on each section of the blade [10]. However it was
not until Betz’s [11] work in 1919 and later Goldstein’s [12] in 1929 employing
Prandtl’s [13] lifting line theory that showed optimum propellers could be designed.
Prandtl assumed that the 3-D problem could be solved by concentrating the
circulation around the blades on individual lifting lines and that the flow on each line

can be regarded as 2-D. Using Goldstein’s solution for the optimum propeller in

uniform flow with 2-D experimental section data optimum aircraft propellers could be
designed. This approach is successful for high aspect ratio blades for which the
underlying assumption that the flow is principally 2-D is more or less valid.

However for the low aspect ratio blades widely used for marine propellers this
assumption is not valid. It was not until 1952, when Lerbs [14] published his paper on
the extension of Goldstein’s lifting line theory for propellers with arbitrary radial
distributions of circulation in both uniform and radially varying inflow, when at last
marine propellers could be modelled with some degree of accuracy. Although its
acceptance was slow, it still is, even today, universally accepted as a good procedure
for establishing the principal characteristics of the propeller at an early design stage.

The next major improvement in propeller modelling was the use of numerical
lifting-surface methods. Now the skew and the radial distribution of circulation could
be modelled. The formulation was published by Sparenberg in 1959 [15]. This led to a
burst in publications in 1961 and 1962 of computer based propeller lifting surface
codes. Most notable examples were Pien [16], Kerwin [17], van Manen & Bakker
(18] and English [19]. However due to the limited computing power of that era these
methods incorporated simplifying assumptions which since have been found
unnecessary with the rapid development of high performance computers. The basic
formulation however is essentially the same, Brockett 1981 [20] and Greeley &
Kerwin 1982 [21].

The above methods, although suitable for design purposes, provided limited
information on the section flow. Boundary element methods (BEM) or panel codes as
they are popularly known today, can model more realistic geometries taking into
account the section shape and thickness. In 1985 Hess & Valarezo [22] developed a
BEM for propellers based on Hess’s [23] lifting method. Since then the popularity of
panel codes has been widespread in all aerodynamic and hydrodynamic fields. The
computational resources available today are such that detailed optimisation studies
can be carried out within reasonable timescales even on powerful personal
computers [24]. However there are many underlying simplifications in their
formulation and as always, with the relentless development in computing power
things will move on quickly to more complex methods such as Reynolds Averaged
Navier-Stokes (RANS) codes for design purposes.

Most work on RANS methods was done in the late 1980°s and improved greatly

in the early 1990’s. The initial work was undertaken by Kim & Stern [25] in the late

80’s and they showed the potential of such methods, although for an unrealistic
propeller geometry due to the limited computing resources available at the time. In the
1990’s researchers such as Uto [26] and Stanier [27] developed methods for realistic
propeller geometries with detailed flow features. Unsteady viscous computations were
first undertaken by Chen et al. [28] and showed the applicability of such methods for
unsteady propeller flows albeit obtaining poor results due to the limited mesh size
feasible at the time. Maksoud et al. [29] performed unsteady calculations for a
propeller operating in the wake of a ship using a non matching multi-block scheme.
As indicated by Stanier [30], Bul] [31] and Maksoud et al. [32] and as will be
shown later in this work mesh quality and local density are key factors in obtaining
good results with RANS codes. In particular, it is essential to have a good mesh
topology in the vicinity of the tip vortex region as this has a strong influence on the

developed thrust and required torque.

1.3 Vortices

Vortices are present in most fluid flows and their behaviour can be considered
to be of fundamental importance A vortex is the rotation of multiple particles around a
common centre. They should not to be confused with vorticity which is used as a
measure of the rotationality present at a location within the flow.

Vortices come in all shapes and sizes: large scale vortices are responsible for
tornadoes and the behaviour of galaxies; medium scale vortices affect the
characteristics of most engineering structures, such as aircraft, ships and buildings;

small scale vortices are the building blocks of turbulent flow.

1.3.1 Vortices and nature

Vortices in nature have affected the evolution of many animals. Birds have
fingered feather wing tips to eliminate the effect of the tip vortex. Dolphins and other
fast fish have scimitar shaped fins as a solution to the same problem. Dolphins go one
step further by controlling the development of the turbulent boundary layer to reduce
friction drag. The resilient dolphin shin acts like a damper to absorb oscillatory energy
from the boundary layer and delay transition [33].

If a force is powerful enough to shape nature it will influence engineering
design as well. As always man tries to copy nature in his inventions. Elliptical

planform wings were designed to reduce induced drag caused by the tip vortex. The

Spitfire was superior to its opponents partly for this reason [34]. Then winglets
appeared on aircraft wing tips and yacht keels again influencing the strength and
location of the tip vortex system [33]. In addition, an artificial dolphin skin (Laminflo
[35]) has been tested on torpedoes giving a large increase in laminar flow with a
substantial decrease in the friction coefficient from 0.0026 to 0.0011[33]. Just as
vortices have shaped nature over millions of years, vortices are today shaping man
made structures. As the human knowledge and understanding of vortices evolves so

do the shapes designed by engineers.

1.3.2 Structure of a plane vortex

There are two basic types of plane vortices: one where the velocity is slower at
the centre than the sides and another where it is faster at the centre. This results in two
basic types of velocity distribution as described below:

1. Consider a solid disc that rotates steadily around an axis through its centre.
The velocity of points on the disk increases linearly with distance from the centre
(Figure 1.1). Imagine the disc is hollow and it is filled with fluid. If the experiment is
repeated, the fluid will also rotate like a solid body, apart from a transition period at
the start. This is due viscous effects. Hence the velocity of the fluid particles increases
linearly with distance from the axis of rotation. This fluid motion is called ‘solid-body
rotation’ [36].

2. Consider a long circular rod rotating in a fluid. The highest velocity in the
fluid will occur on the surface of the rod where the fluid has the same velocity as the
rod due to viscous effects. Away from the surface of the rod the velocity diminishes in
inverse proportion to the radial distance squared (Figure 1.2). The centrifugal force
pushing outwards due do the rotation is balanced by the force due to the pressure
gradient. This is called a ‘potential vortex’ [36] as it is irrotational and can be
expressed in terms of a scalar potential.

An important difference between solid-body rotation and potential vortices is
that a potential vortex has no vorticity whereas solid-body rotation has constant
angular velocity and vorticity. In the case of the potential vortex the rod will still
experience a sold-body rotation. If the rod is replaced by fluid that is also
experiencing solid-body rotation a Rankine vortex is created (Figure 1.3). A Rankine
vortex is a good representation of a real vortex. A real vortex has a region where the

velocity varies linearly with distance from the centre. This is due to viscosity, and the

region 1s called the viscous core. Outside the viscous core the velocity varies inversely

proportional with distance squared. Capturing this regime transition with a RANS

code is difficult due to the fine mesh resolution required to capture the core region

which is dominated by viscous effects just like a boundary layer. In addition, enough

of the vortex decay must be captured correctly in the potential flow region since this

influences the overall vortex structure.

Solid-body rotation

Velocity

Potential vortex

Velocity

Distance from axis

Distance from axis

Figure 1.1 — Solid-body rotation. Velocity Figure 1.2 — Potential vortex. Velocity varies
inversely proportional to distance squared

varies linearly with distance

Rankine vortex

Velocity

Vorticity in Rankine vortex

Vorticity

Distance from axis

|

%

Distance from axis

Figure 1.3 — Rankine vortex. Consists of solid-body rotation and potential vortex. Vorticity

exists only in the solid-body rotation region.

1.3.3 Tip vortices

A foil experiencing three-dimensional flow has very different characteristics
than a foil experiencing two-dimensional flow. The flow will tend to spill over the
free ends from the positive pressure side to the negative pressure side. Such a flow
removes the pressure difference at the tips of the foil and decreases it over the entire

span.

Figure 1.4 — Tip vortex of 3D wing

The tip vortex also influences the flow over the entire lifting surface. Near the
tip the surface pressure is influenced by the reduction in pressure within the tip
vortex, especially on the suction side of the foil where the vortex is located. In
addition a downwash is created behind the trailing edge of the foil due to the vortex.
Aerodynamicists try to eliminate these effects or sometimes even exploit them, as is
the case with delta wing planforms operating at high angle of attacks. In this case the
leading-edge separation, which induces a non-linear lift increment called vortex-
induced lift, is highly dominant on delta wings [36].

In 1897 Lanchester realised that the tip vortex has a detrimental effect on

wings and secured a patent covering the use of end plates. In his book Aerodynamics

[37] he describes the structure of the tip vortex. Since then there have been many
studies of tip vortex flows and its influence on finite foils. Prandtl [38, 39] modelled
the effect of the tip vortex on the flow of a finite foil published in 1918 using his
lifting line theory.

Many methods to reduce the detrimental effect of the tip vortex have been
devised, from simple elliptical planforms to more complex tip winglets such as on
aircraft and yacht keels. In order to design and develop these tip vortex control

devices, numerical models of the flow near the tip of the foil are required

1.3.4 Vortex capturing using a fixed (structured) mesh

In order to capture vortical flow a numerical model capable of solving the
flow characteristics at any point within it is required. Such numerical methods are
based on solutions to the Euler (with zero viscosity) or the Reynolds Averaged
Navier-Stokes (RANS) codes based on some form of turbulent closure. Euler and
RANS have until recent years been limited to small simple cases due to limited
computing power. Recent advances in computational power have led to several
studies capturing numerically predicted vortex flows [40]. A large amount of
development has been done resulting in progressively more sophisticated and robust
models.

A sufficiently fine grid spacing is required in the region of the vortex core [41]
to capture the vortex. Dacles-Mariani and Zilliac [41] used a structured grid to capture
the tip vortex of a foil. A grid dependency study was carried out using an analytical
vortex. The results showed that at least 15-20 grid points in the viscous core region
are needed to capture the vortex correctly. In addition the vortex is more sensitive to
cross flow plane grid refinement than streamwise refinement. This means that the
cells can be stretched in the streamwise direction in an attempt to keep the grid size
down. An investigation of the influence of turbulence model indicated the difficulties
in capturing the vortex. Good agreement with measured results was found using 1.5
million grid points. The velocities were within 3% but the vortex core static pressure
was under predicted. This under prediction was accounted for by limitations coming
from the turbulence modelling. This is in agreement with later studies carried out by
Viot et al. [42]. This suggests that the turbulence model is critical to the results and

that a more suitable model should give better results.

Spall used a structured grid to solve the Euler equations for a NACA0012
rectangular wing [43]. A multi-block grid was used in an attempt to cluster the grid
points near the vortex core. The relative small vortex core diameter of 0.04c, proved a
challenge to cluster the grid in the correct region. The results showed that a slight
displacement of the vortex core outside this region results in a considerable
degradation in the solution. Results are presented for 1.5 million grid points with 10-
18 across the vortex core. The vortex core radius was dependent on grid spacing,
halving from a grid using 372,016 cells to 1,986,000 cells.

Berntsen et al. [44] used an Euler code with a structured multi-block grid to
model tip vortex cavitation. First a crude calculation was performed to derive the
general shape of the vortex. Following this investigation, the grid was clustered near
the centre of the vortex. This was repeated three times resulting in a grid in excess of
0.5 million cells. The resulting grid 1s good but requires a large amount of effort and
skill to generate. The process cannot be easily automated even for standard cases.
Visually the results were in good agreement with respect to cavity length. However
vortex core pressures were not predicted accurately.

Hsiao and Chahine [45] used a 12-block structured mesh to model a
NACA16020 finite-span elliptic hydrofoil including a dynamics bubble model for
cavitation. The mesh used consisted of 2.7 million cells and the mesh was regenerated
after each solution with modified clustering to ensure that 16 cells were always
present across the vortex core. An unspecified number of mesh regeneration steps
were required to cluster the grid in the vortex region.

From the above studies it is clear that to capture the vortex flow accurately a
fine grid spacing in the region of the vortex core is required. The reason is that in the
vortex core the pressure decreases rapidly. The vortex core pressure depends on the
vortex core’s radius [33]. A small change in this radius results in a big change in the
minimum pressure. To capture the vortex radius correctly a fine grid spacing is
required in the vicinity of the vortex core. The computational resources required to
generate a uniform grid with fine enough grid spacing are impractical. Using a coarser
grid with clustering of the fine mesh near the vortex improves the results without a
large increase in cost. The problem with such methods is that the Jocation of the
vortex must be known to generate the mesh. This either requires solving the problem
in advance or a very detailed understanding of the flow to predict a priory the vortex

position. With either route, the vortex is not guaranteed to lie in the predicted area and

11

the mesh refinement will change the behaviour of the vortex and thus its position.
These effects are compounded as the vortex evolves downstream.

Vorticity confinement is a method to conserve and concentrate vorticity on a
regular grid [93]. It prevents the dissipation of vortical structures on coarse grids. This
method has been used by Lohner ef al. to track vortices over large distances [94]. The
results show that the vortex is maintained further downstream using the vorticity
confinement method on coarse grids. However many researchers have expressed
concerns over the validity of this method since the vorticity confinement term acts as
a body force altering the conservation of momentum.

Although the above methods work, the grid cannot be generated a priori. The
solution to this problem is to use an adaptive scheme to refine the grid during the
solution process. Adaptive grids have been used successfully in many different flows,

to capture flow characteristics such as shockwaves in transonic flight [46, 47].

1.3.5 Adaptive Meshes

For well behaved problems a grid of uniform mesh spacing gives satisfactory
results. However, there are classes of problems where the solution is more difficult to
estimate in some regions (perhaps due to discontinuities, steep gradients, shocks, etc.)
than in others. A uniform grid can be used which has a spacing fine enough such that
the local errors estimated in these difficult regions are considered to be acceptable.
But this approach is computationally costly especially in three dimensions. In
addition, for time dependent problems it is difficult to predict in advance a mesh
spacing that will give acceptable results. The goal of mesh adaptation is the
determination of the optimum mesh-point distribution that results in equipartition of
the error for each individual simulation thus giving an optimum solution for a
specified grid size.

In adaptive grids the idea is to have grid points moved/inserted as the physical
solution develops, concentrating in regions of large variation in the solution as they
emerge. A base coarse grid is used as the starting point. As the solution proceeds the
regions requiring more resolution are identified by some parameter characterizing the
solution. A finer subgrid is superimposed only in these regions. Finer and finer
subgrids are added recursively until either a given maximum level of refinement is

reached or the local truncation error has dropped below the desired level.

12

There are many methods of mesh refinement [46, 48, 49]. One way is to
regenerate the mesh after every refinement cycle with grid points clustered in the
areas identified by the mesh criterion. This is time consuming and the solution might
have to be initialised again.

The second method is to subdivide the cells in the areas where mesh
refinement is required into smaller cells, thus decreasing the grid spacing. However
the grid quality is dependant on the initial mesh, unless a smoothing algorithm is
applied [50]. The other advantage is that the solution can be linearly interpolated at
the new grid points for the next iteration, thus speeding up the solution. In addition
there is no need to regenerate the entire mesh.

Apart from the methodology used to generate the different refined levels of the
grid, the other important factor when using adaptive refinement techniques is the
criterion used to adapt to. The mesh can be refined using any variable or combinations
of variables. Choosing a criterion suitable for the flow problem and what is trying to
be achieved is important since it will influence the final solution [51]. One of the most
frequently used schemes is an error based criterion approach.

Lohner [51] describes the components of such an adaptive refinement scheme.
Different error indicators/estimators are discussed as well as different mesh
refinement techniques for unstructured meshes. Results are presented for several test
cases. Nithiaratsu et al. [48] present the results for a transonic aerofoil and lid driven
cavity using different error indicators. From the presented results is it concluded that
for most cases a gradient based error indicator yields better results than a curvature
based indicator. Pelletier [52] also uses an error based adaptation criterion to obtain a
grid independent solution. He describes the required qualities of an error estimator.
Results are presented for a 2D aerofoil and a backward facing step.

Adaptive refinement can be applied to both structured and unstructured grids.
Structured grids have implicit connectivity, which for most cases reduces the memory
requirements since no grid connectivity information needs to be stored, whereas an
unstructured mesh explicitly defines the connectivity between all mesh elements.
However this proves to be a major obstacle when adaptive refinement techniques are
used with structured meshes. It is difficult to preserve the implicit connectivity after
grid refinement. A solution to this problem is to start with a structured mesh but have
explicit connectivity. This maintains some of the advantages of structures meshes and

at the same time simplifies the refinement scheme. However there is another problem

13

that has to be addressed. If each face of a cell volume in the grid must be connected to
only to one other face then if a hexahedron is refined into smaller hexahedra they
cannot be adjacent to an unrefined one. This can be solved in two ways: refining the
hexahedra into tetrahedra, resulting in a hybrid grid or allow a face to be connected to
multiple faces and perform what is termed as hanging node adaptation. If hanging
node meshes are not an option then the split through a hexahedral cell due to mesh
refinement has to propagate throughout the structured mesh to maintain the
connectivity of the mesh. This results in refined cells in areas other than the ones of
interest and unnecessarily large mesh sizes.

Unstructured grids are ideal for mesh refinement techniques since the
connectivity of the grid is explicit [46, 49]. Cells can be subdivided into numerous
new cells without having to worry about the connectivity structure of the mesh.

When meshing complex geometries it is easier to use unstructured grids.
Unstructured grids can be generated automatically from a set of surfaces using various
schemes [53]. It is possible to generate structured grids for most problems but a
complicated multi-block structure has to be used for most cases. Even for a seemingly
simple elliptic foil, 16 blocks had to be used in order to model the tip correctly [44].
Apart from the treatment of complex geometries, the second advantage of
unstructured meshes is the ease with which solution-adaptive meshing may be
implemented. Since no inherent structure is assumed in the representation of the
mesh, mesh points may be added, deleted, or displaced, and the mesh connectivity
may be locally reconfigured in the affected regions.

One possible way to overcome the limitations and problems imposed by
structured grids is to use an overset method. Grids of different densities are laid over
each other with no connectivity restrictions. This enables the used of structured
meshes for complex geometries such as an aircraft in landing configuration as
performed by Rogers et al [54]. A good reference of the capabilities and past
applications for overset techniques is given by Chan et al [55]. Unstructured overset
grids are possible but such schemes are still in development [54].

For tip vortex capture it is possible to overlay a finer grid about the identified
vortex core in order to capture the vortex. If such an approach is used structured O-
grid would be the most suitable topology. However Chan et al [55] state that overset

methods require substantial user interaction and are laborious for complex geometries.

1.3.6 Vortex Identification Methods

For the successful application of an adaptive scheme, a suitable variable or
variables must be selected for use as the adaptation criterion/criteria. Pressure
gradients and local error functions have been used successfully. Such techniques are
suitable for most flows but fail to resolve flow features such as vortices adequately for
a given grid size [56]. In order to identify vortices several methods have been
developed and applied to a multitude of problems. The ten methods given below are
by no means a complete listing of vortex identification algorithms but are considered

to represent the current state of the art.

e Helicity Method by Levy [57]

e Vorticity Maxima Method by Strawn et al. [58]

e Streamline Method by Sadarjoen et al. [59]

e Swirl Parameter Method by Berdahl and Thompson [60]
e A, Method by Jeong and Hussain [61]

e Predictor-Corrector Method by Banks and Singer [62]

e FEigenvector Method by Sujudi and Haimes [63]

e Parallel Vectors Method by Roth and Peikert [64]

e Combinatorial Method by Jiang et al. [65]

e Vortfind Method by Pemberon [1, 2]

Almost every published work carried out on vortex identification presents a
classification of the methods developed by its predecessors. Here the methods are

classified using three taxonomies as presented by Jiang et al. [66]

15

Method Region\Line Galilean Local\Global
Helicity Line Not invariant | Local
Vorticity Maxima Line Invariant Local
Streamline Region Not invariant | Global
Swirl Parameter Region Not invariant | Local
A Region [nvariant Local
Predictor-Corrector | Line Invariant Global
Eigenvector Line Not Invariant | Local
Parallel Vectors Line Not Invariant | Local
Combinatorial Region Not Invariant | Local
Vortfind Line Not Invariant | Global

Table 1-1 - Taxonomy of Vortex detection algorithms

The first taxonomy classifies detection methods based on the definition of the
identified vortex. A vortex can be defined either as a region or as a line. A region-
based vortex definition specifies a group of cells that lie in the vortex region. A line-
based vortex definition, on the other hand, is a set of lines describing the vortex core
line. In general, region-based algorithms are easier to implement and computationally
cheaper than their line-based counterparts. Line-based algorithms must precisely
locate points to describe the vortex core line. However, line-based algorithms provide
more compact representations of vortices and can easily distinguish between multiple
vortices. The latter 1s problematic for region-based approaches [66].

The second taxonomy classifies detection methods based on whether or not
they are Galilean (LLagrangian) invariant. In a time varying flow field, a vortex
exhibits swirling motion only when viewed from a reference frame that moves with
the vortex [36]. A detection method is Galilean invariant if it produces the same
results when a uniform velocity is added to the existing velocity field.

The third taxonomy classifies detection methods based on whether the
identification process is of local or global nature. A detection method is considered to
be local if the identification process requires only operations within the local
neighborhood of a grid cell. On the other hand, a global method requires examining

many grid cells in order to identify vortices.

16

Each of the above methods has its advantages and disadvantages. Pressure
minimum methods find elongated regions of low pressure which usually indicate a
vortex core [62]. However minimum pressure does not always coincide with the
vortex core. In addition, regions of low pressure also exist in other features of many
flows which complicate the process further. Isosurfaces of low pressure are very
effective when capturing a single vortex in unobstructed flows. However when
multiple vortices exist the pressure surfaces become indistinct.

Methods using the eigenvalues of the velocity gradient to identify the vortex are
successful; however such methods also capture many smaller structures [62]. It is
common for vortex identification methods to use a combination of two criteria so as
to reduce the likelihood of misclassification, which is a common problem [62].

Sujudi and Haimes [63] present a popular method based on a velocity gradient
method and carry out computations on a cell by cell basis which facilitates parallel
processing. Godo et al. [67] and Roth and Peikert [64] say that such methods fail
when the vortex core line is curved such as that in turbomachinery flows. In addition
methods based on vorticity magnitudes, helicity, pressure [62] or A, [61]; are also
dismissed by the authors.

A noteworthy method is presented by Jiang er al. [65] which uses a similar
approach to the method developed initially by Pemberton [1, 2] and which is further
developed in this work. Both methods are based on a simple analysis of velocity field
on 2-D planes. They assign different values for different velocity directions and then
locate the vortex by stating that a vortex is near a region with varying sector values.
The difference is that Pemberton ef al. use the distance of the different sector values
to calculate a function indicating the ‘distance’ from the vortex whereas Jiang et al.
flag the computational cell if it is surrounded by at least a specified number of sectors.
Both methods have their advantages and disadvantages. The combinatorial method
only uses cells adjacent to the reference cell or in close proximity whereas the
Vortfind method is a global method. This means that the combinatorial can have
reduced calculation times but also makes it prone to small localised flows which are
not vortex structures as reported in Jiang et al. [68]. Another major drawback of the
combinatorial method is that the mesh connectivity must be known. This restricts its
applicability to numerical simulations since to apply the method to experimental data

or data points not conforming to the grid the connectivity must be calculated

retrospectively which is a computationally intensive process. This is a similar issue
the gradient based methods encounter. Vortfind does not require any connectivity
information and can easily be applied to experimental data or data points not
conforming to grid locations. In addition the Vortfind method provides a continuous
smooth function whereas the combinatorial method does not.

When the current vortex identification schemes are applied to three-dimensional
flow problems they do not produce a continuous vortex core line [69, 70, 71]. This
problem is over come by refining neighbouring cells as well. Assuming that the

discontinuities are small this produces a more or less uniform mesh after refinement.

1.3.7 Vortex capturing using structured adaptive grids

Because of the difficulties of using adaptive schemes with structured grids
such studies are limited. Hentschel [72] uses a structured C-grid around a delta wing
to capture the tip vortex with a Baldwin-Lomax turbulence model. The grid
refinement scheme uses grids with three different levels of refinement. Vorticity
content is used as the refinement index and in the areas of interest the grid is swapped
between levels. Data is interpolated between the two levels. This effectively results in
a hanging node scheme. Since the finer level grids must be generated for parts of the
domain that might not be required to be refined, an unnecessary memory overhead
exists. In an attempt to reduce the overhead Hentschel [72] only creates finer grids for
selected parts of the domain only. Although this method works, it is very difficult to

apply even for simple problems.

1.3.8 Vortex capturing using unstructured adaptive grids

Most studies incorporating an unstructured grid use an adaptive grid
refinement scheme. Viol et al. [42] used two commercial RANS codes with an
unstructured grid to solve the tip vortex flow over an elliptic foil. Pressure was used to
refine the coarse mesh from 280,000 to 350,000 cells. All cells having a pressure drop
of more than 10% of the maximum pressure drop were refined. This resulted in a
refinement area approximately twice the viscous core radius. Different turbulence
models were investigated and their performance compared with experimental data.
The following conclusions were made by the authors:

e The agreement between numerical and experimental results is good for all

RANS codes and turbulence models tried.

e The local vortex core radii are over-estimated and thus the pressure on the

vortex axis under-predicted.

e Grid refinement has a relative low influence on the vortex and reduces the

vortex radii slightly.

e The k—¢ RNG and non-linear x—¢ turbulence model decreased the vortex core

radii compared with the k—€ model.

Murayama et al. [69, 73] used an unstructured hybrid mesh to simulate the vortex
breakdown over a delta wing at high incidence. The mesh consisted of prisms in the
viscous regions and tetrahedra on the rest of the domain. Pyramids had to be used at
the junctions. A vortex identification technique based on critical point analysis was
used to define a vortex core line. The method identifies where the velocity becomes
zero [70]. The cells transversed by the vortex line were marked for refinement as well
as their neighbouring cells. The vortex core line generated by this method is not
continuous especially for the coarser grids. However, since the neighbouring cells are
also refined this results in a continuous refined region. The refined grid consisted in
excess of 0.5 million grid points and showed improvement over the original coarse
grid. A comparison with calculations using second derivatives of the total pressure as
the refinement criterion was made. The pressure adaptation required in excess of 0.8
million grid points to capture the vortex breakdown correctly. This was due to the fact
that a larger area around the vortex was identified for refinement than using the vortex
identification scheme. By selecting a different threshold value for the refinement it is
possible to reduce the refined area using a pressure based approach, but choosing the
correct threshold value requires trial and error. Murayama et al. [74, 75] applied the

same method to a NACAQOQ12 foil with similar conclusions.

1.3.9 Propeller tip vortex

Propellers are the most common form of propulsion in a fluid medium. They
efficiently convert rotational energy from the engine into forward thrust. Most
propellers have free blade tips. These tips create vortices which affect the thrust and
torque characteristics of the propeller. The design of the blade tip will be governed by
its resultant tip vortex structure. Marine propellers are restricted in diameter due to
draught restrictions compared to their aircraft counterparts. This constrains the aspect
ratio of the blades, which puts more of an emphasis on the induced drag. This creates
a strong tip vortex which can have a detrimental effect on the performance of the
propeller.

In addition, tip vortex cavitation is of major concern for marine propellers since it
is an important source of noise. Cavitation can result in erosion of the propeller or
even rudders placed downstream. Therefore, the track of the vortex is just as
important as its strength. Recent developments with twisted rudders [76] emphasise
the importance of correctly predicting the interaction between propeller and rudder.

The tip vortices generated by each blade of the propeller have a complex structure.
They form helixes that vary in pitch and contract with the wake downstream of the
propeller. Recent experimental work using advanced flow visualization and non-
intrusive measurement techniques [77] have revealed detailed features of the vortex
flow around marine propellers. However, due to the limitations of the experimental
techniques the pressure field remains unknown which is crucial to the prediction of
cavitation [78].

RANS computations can provide a detailed pressure field, and have been used
recently to predict tip vortex flow in turbomachinery [78, 79]. Unlike tip-clearance
flow, the tip vortex generated by a marine propeller is more concentrated and has a
tighter structure [78], which requires a more refined grid. Only a few studies present
propeller type tip vortex flow and although the thrust and torque coefficients agree
well with experiments they fail to predict the vortex strength [80]. The results from
[80] regardless of the turbulence model used were unlikely to have captured the tip
vortex since the grid resolution was insufficient at 200,000 grid points.

A later study [78] using 2.4 million grid points showed better results. A helical
domain was used with a structured mesh. The domain was helical in an attempt to

cluster the grid near the estimated tip vortex position. A study with a similar approach

20

applied to the Euler equation for a foil [43], showed that a slight displacement of the
vortex core outside the cluster region resulted in a considerable degradation of the
results. An adaptive procedure that can track the vortex has the potential to eliminate
this problem if successfully implemented. Such a method will offer a significant
improvement over non adaptive methods [56].

Dindar et al. [56] performed calculations for rotors using adaptive mesh
techniques. They used an unstructured grid to model one blade of the rotor
arrangement. Firstly an error indicator was used to refine the mesh and secondly a
vortex identification technique to refine the tip vortex. Two error based refinement
iterations were performed followed by two vortex identification ones. The vortex was
only identified after adequate mesh refinement was carried out first with the error
base scheme. They also indicated a potential problem of mesh refinement combined
with parallel computations. The mesh refinement might be carried out in a region
which is assigned to one processor only which will exceed the memory capacity of
that single processor. In addition the error based refinement although successful, is
identified as computationally inefficient in resolving localised flow features such as
tip vortices.

Bottasso & Shephard [50] applied a finite element adaptive multigrid euler solver
to rotary wing aerodynamics. They used an error indicator based on vorticity to adapt
the mesh in the wake of the rotor. They discuss the issues with adaptive procedures
with regards to new cell quality and recommend that the refined mesh be projected on
the underlying geometry.

Abdel-Maksoud et al. [81] present experimental and numerical results for a
propeller hub vortex. Different hub shapes are tested and compared with regards to
efficiency and cavitation performance. A 1.3 million volume mesh was used with
cells clustered near the hub vortex. The entire propeller was modelled in order to
capture the root vortex interaction which would not have been possible with a cyclic
boundary condition. The shear stress transport (SST) turbulence model is used and is
stated that this turbulence model performs better especially in the separated regions

but no evidence to support this is provided.

21

1.4 Summary and Layout

Tip vortices are important flow features which need to be identified and modelled
correctly. From existing work it is apparent that a fine mesh is required in the region
of the tip vortex. Non adaptive methods experience difficulties in having the required
mesh density in the vortex core. An adaptive mesh refinement scheme can prove
advantageous for such cases.

In Chapter 1 the basic details and existing work has been presented and
discussed. In the Chapter 2 the theory of the numerical model used is presented. The
Vortfind method is reviewed and refined in Chapter 3. The applicability of the method
would be discussed and its advantages/capabilities presented. In Chapter 4 the method
is extended to 3D and applied to a simple 3D wing to prove and validate the scheme.

An algorithm to capture thin shear wakes is developed in Chapter 5 and applied
to a 3D wing in isolation and in conjunction with the VEX method. The mesh
generation and tool development for marine propellers is reviewed in Chapter 6. The
application of VFX to marine propellers is in Chapter 7 where the identification of
complex vortex lines such as the helical propeller tip vortex is dealt with. Finally the
method is applied to two marine propellers and compared with experimental results in

Chapters 8&9.

22

2 Navier-Stokes Equations

To study vortical flows we need a numerical tool capable of modeling such
problems. One such family of tools is based on the Navier Stokes equations. Exact
analytical solutions to the Navier stokes equations exist only for a very limited
number of flows. For real flows the equations have to be replaced by algebraic
approximations, which have to be solved using an appropriate numerical method.

There are numerous programs to numerically solve the Navier Stokes equations
with many different schemes and approximations. Each scheme has its advantages
and disadvantages and the choice depends on what flow is going to be modeled. There
are many commercial codes available which have been developed over the past years.
They are robust and reliable with a wide range of mesh generation tools and utilities.
Rather than reinvent the wheel, it was decided to use a commercial solver and
concentrating the effort into the vortex identification scheme.

There were two commercial general purpose RANS solvers available at the
School of Engineering Sciences at the University of Southampton. CFX by AEA
Technologies [85] and Fluent by Fluent Inc [84]. Both are widely used in academia
and commercial applications and have broadly similar capabilities. The codes were
available on the university’s computer facilities. Initial computations for the wings
were carried out on Solaris, a SunFire VX880 with 6 processors. Later computations
were performed on Iridis2, a large computational cluster consisting at the time of 300
Opteron processors. The cluster was expanded to 800 processors during the second
phase of the installation.

CFX was chosen for this study for the following reasons. CFX has a strong
marine following and the experience and knowledge was available in the Ship Science
department. The second reason 1s that CFX was considered to be a more integrated
package. The pre-processor, solver and post-processor are inter-linked allowing some
useful features and functions. For example when the mesh is refined near a surface the
new point is placed on the actual surface and not interpolated from the grid points
resulting in a better representation of the geometry. In addition it was found from
experience that the CFX coupled solver is more forgiving and robust concerning mesh
quality. Fluent was found to have trouble solving what many consider reasonable

quality grids for incompressible flows.

23

Incompressible turbulent flows are governed by the conservation laws for mass

and momentum, the Navier-Stokes equations:

e The continuity equation simply states that the rate of change of mass in a
control volume equals the rate of mass flux.

e The momentum equation states that the rate of change of momentum for the
control volume is equal to the rate at which momentum is entering or leaving
through the surface of the control volume, plus the sum of the forces acting on
the volume.

e The energy equation states that the rate of change in internal energy in the
control volume is equal to the rate at which enthalpy is entering, plus work
done on the control volume by the viscous stresses.

Continuity equation in conservation form:
0
a—p+V0(pV):0 (1.1)
t

Momentum equations in conservation form:

a(pu) op or,. 87 . 0T
Ve Vi=-Lt XX v

5 TVelpV)=m Tt o A
d(pv) op 07, 81 0T

Ve Vi=—— 1.2
8(pw) _9p, 97, aT oT..
\%
A A e W W TR

Energy equation in conservation form:

d v? Vil o(,0T) d(,dT
g{p[e+7]}+V0{p{e+7Jv} pq&kax[kg] ay[kgl

82 8z ox dy 0z ox dy 0z '
alvr,.) 9d{vr,) od{vr, alwr,.
+ (V[-_\) + (VT.\.‘) + (‘f»‘) + 8(»1}1\,:) + (WT.‘«) + a(WT::) +,va
ox dy 0z ox oy oz

The Navier-Stokes equations cannot be solved analytically for all but a few cases. A
numerical solution is sought for most cases. The computational effort to solve the
complete Navier-Stokes equations is costly and for most engineering flows the
equations are time averaged to get the Reynolds Averaged Navier-Stokes equations.
The principle is that for steady flow the fluctuations in the flow are very small and a

mean value is still valid.

24

Since the Navier-Stokes equations cannot be closed a turbulence model is
required to allow the solution of the RANS equations. There are many such
turbulence models available all of which have different advantages and disadvantages.
An alternate more cost effective method to the direct numerical solution of the
Navier-Stokes equations (DNS) is Large Eddy Simulation (LES) where the small
scale turbulence is not modelled and only the larger turbulent flow features are

accounted for. For more information see [82, 83].

2.1.1 Discretisation of the Governing Equations

The following approach is based on that used within CFX for which more
details can be found in [85]. It is explained in order to explore some of the influences
of the approach to the eventual solutions used later in this work. The approach
involves discretising the spatial domain into finite control volumes to create what is
called a mesh or grid. The governing equations are integrated over each control
volume, such that the relevant quantity (mass, momentum, energy etc.) is conserved
for each control volume.

The figure below shows a typical two dimensional mesh on which one surface of the

finite volume is represented by the shaded area.

Element face centroid

Element

Noce RS Finite Volume surface

Figure 2.1 - Finite Volume Surface

25

It is clear that each node is surrounded by a set of surfaces which comprise the finite
volume. All the solution variables and fluid properties are stored at the element nodes.
Consider the mean form of the conservation equations for mass, momentum and

energy, expressed in Cartesian coordinates:

N

d 5 o 9 U, 2,
S (PU) =P U;) = =S o = by | 5t || (4
at(p ')+ax.(pﬂ/ ,) o +8x,. {’u"-”(axj ox, U (1.4)

9 9 _ 9| |92
ot (p¢)+ axj (pluj¢) - axj (reﬂ' [axj J\J—i_ S‘?

These equations can be integrated over a fixed control volume, using Gauss’

divergence theorem to convert volume integrals to surface integrals as follows:

% [pdv+[pUdn, =0

n; + |5, (1.5)

X

— Jp¢dv+ JpU Pdn; = '[l“ [¢}/n + J.S dv

JpU dv+ Jp/[U.dn, ——JPdn + J,ueﬂ {BU

where v and s denote volume and surface integrals respectively and dnj are the

differential Cartesian components of the outward normal surface vector. The surface
integrals are the integrations of the fluxes, whereas the volume integrals represent
source or accumulation terms.

The first step in solving these continuous equations numerically is to
approximate them using discrete functions. Now consider an isolated mesh element

such as the one shown in Figure 2.2.

26

Integration point

Elernent

Finite Yolurne Surface
Figure 2.2 - Integration points

The surface fluxes must be discretely represented at the integration points to complete
the conversion of the continuous equation into their discrete form. The integration
points, ip , are located midway from the element face centroid to the element’s sides
(red dots in Figure 2.2). These integration points surround the finite volume if all
adjacent face elements are considered (Figure 2.2).

The discrete form of the integral equations are written as:

ov| PP +>(pU,An,) =0
At " I/
U-U) < U, , 9, 5
v +;m,,,(u,)m=;(PA”,)”,+; H, Tr,+7x,’ My | +8,V (1.6)

ip

P9’ ' ¢
pv . +Zm,,,¢,.l,zz ngAn. +S,V

/ o
ip ip Jip
where V is the control volume, the subscript ip denotes an integration point, the

summation is over all the integration points of the finite volume, An/. is the discrete

outward surface vector, At is the timestep. For simplification a First Order Backward
Euler scheme has been assumed in this equation, although a second order scheme was
used in this work. Superscripts o refers to the old time level. The discrete mass flow

through a surface of the finite volume is given by:

miy =(pU ,An,) (1.7)

"
ip

27

2.1.2 Pressure-Velocity Coupling

A single cell, unstaggered, and collocated grid is used to overcome the

decoupling of pressure and/or velocity. The representation of mass conservation can

3 4
0x)i 4, \OX"),

where (1.8)

be written as:

The continuity equation is a second order central difference approximation to
the first order derivative in velocity, modified by a fourth derivative in pressure which
acts to redistribute the influence of the pressure. The method is similar to that used by
Rhie and Chow [86], with a number of extensions which improve the robustness of

the discretisation when the pressure varies rapidly, or is affected by body forces.

2.1.3 Diffusion Terms

Following the standard finite element approach, shape functions are used to
evaluate the derivatives for all the diffusion terms. For example, for a derivative in the
x direction at integration point ip,

99
ox

¢, (1.9

ip

oN,
B Z ox

ip n

The summation is over all the shape functions for the element. The Cartesian
derivatives of the shape functions can be expressed in terms of their local derivatives

via the Jacobian transformation matrix:

- q-1 -

[ON| [ox 9y oz | [oN]
x| |ds 9s os| | os
oON ox dy 0z oN
Ay | | o || o
ON ox dy 0z oN
o) 3w w L

(1.10)

28

The shape function gradients can be evaluated at the actual location of each
integration point (true tri-linear interpolation), or at the location where each ip surface

intersects the element edge (linear-linear interpolation).

2.1.4 Pressure Gradient Term

The surface integration of the pressure gradient in the momentum equations

involves evaluation of the expression:
(PAn,) (L.11)

p

The value of P’,p is evaluated using the shape functions:

RP:ZNII(Sip’tip’Uip)R, (112)

As with the diffusion terms, the shape function used to interpolate P can be
evaluated at the actual location of each integration point (true trilinear interpolation),
or at the location where each ip surface intersects the element edge (linear-linear

interpolation).

2.1.5 Advection Term
To complete the discretisation of the advection term, the variable ¢, must be

related to the nodal values of ¢. The advection schemes implemented in CFX-5 can be

cast in the form:

¢,»p=¢,,p+ﬂV¢-A; (1.13)

v
where ?,, is the value at the upwind node, V¢ is the gradient of ¢ and r is the vector

from the upwind node to the ip. Particular choices for B give rise to different schemes.

2.1.6 1st Order Upwind Differencing Scheme

A value of B= 0 leads to the first order Upwind Difference Scheme (UDS).
UDS is very robust (numerically stable) and is guaranteed to not introduce non-
physical overshoots and undershoots. However, it is also susceptible to a phenomenon
known as Numerical Diffusion or ‘gradient smearing’ (see 2.1.14 Numerical

Diffusion).

2.1.7 High Resolution Scheme

The High Resolution Scheme computes B locally to be as close to 1 as
possible without violating boundedness principles. The recipe for § is based on that of
Barth and Jesperson [87]. The high resolution scheme is therefore both accurate
(reducing to first order near discontinuities and in the free stream where the solution

has little variation) and bounded.

2.1.8 The Coupled System of Equations

The linear set of equations that arise by applying the Finite Volume Method to
all elements in the domain are discrete conservation equations. The system of

equations can be written in the form:

Z a’p =b, (1.14)

nb;

where ¢ is the solution, b the right hand side, a the coefficients of the equation, i is the
identifying number of the finite volume or node in question, and nb means
“neighbour”, but also includes the central coefficient multiplying the solution at the i
location. The node may have any number of such neighbours, so that the method is
equally applicable to both structured and unstructured meshes. The set of these, for all

finite volumes constitutes the whole linear equation system. For a scalar equation (e.g.
nh
enthalpy or turbulent kinetic energy), each a, , ¢ , and b, is a single number. For the

coupled, 3D mass-momentum equation set they are a (4 x 4) matrix ora (4 x 1)

vector, which can be expressed as:

auu au\' auw aLl[)
anb _ avu avv avw avp
"=
awu aWV aWW aW[I
a!’” al"’ aI’W aI’P i
and
u
v (1.15)
¢ =
w
LP
bll
b
b={"
b\V
b
L 7

It is at the equation level that the coupling in question is retained and at no
point are any of the rows of the matrix treated any differently (e.g. different solution
algorithms for momentum versus mass). The advantages of such a coupled treatment
over a non-coupled or segregated approach are several: robustness, efficiency,
generality and simplicity. These advantages all combine to make the coupled solver
an extremely powerful feature of any CFD code. The principal drawback is the high

storage needed for all the coefficients.

2.1.9 Solution Method - The Coupled Solver

CFX-5 uses a coupled solver, which solves the hydrodynamic equations (for u,
v, w, p) as a single system. This solution approach uses a fully implicit discretisation
of the equations at any given time step. For steady state problems the time-step
behaves like an ‘acceleration parameter’, to guide the approximate solutions in a
physically based manner to a steady-state solution. This reduces the number of
iterations required for convergence to a steady state, or to calculate the solution for

each time step in a time dependent analysis.

2.1.10 General Solution

The flow chart shown below illustrates the general solution procedure.

The solution of each set of equations shown in the flow chart consists of two
numerically intensive operations. For each timestep:

1. The non-linear equations are linearised (coefficient iteration) and assembled into
the solution matrix.

2. The linear equations are solved (equation solution iteration) using an Algebraic

Multigrid method.

The timestep iteration is controlled by the physical timestep (global) or local
timestep factor (local) setting to advance the solution in time for a steady state
simulation. In this case, there is only one linearisation (coefficient) iteration per

timestep.

32

Initialise Solution Fields and
Advance in Time / False Time

v

r Solve Hydrodynamic System o

Y

Solve Volume Fractions

v

Solve Additional Variables

Y

lteration within
the Timesiep

A Solve Radiation
Advance v Advance in
in Time False Time
Solve Energy A

Y

Solve Turbulence

v

Solve Mass Fractions

Y

Solve Fully Coupled Particles NO

Y

NO

Convergence
Criteria ' Max
lteration Satisfied?

Maximum Time
Reached?

Coefficient Loo
Criteria Satisfied?2

Solve One Way
Coupled Particles

Figure 2.3 - Solution procedure [88]

2.1.11 Linear Equation Solution

A Multigrid (MG) accelerated Incomplete Lower Upper (ILU) factorisation
technique is used for solving the discrete system of linearised equations. It is an
iterative solver whereby the exact solution of the equations is approached during the
course of several iterations.

The linearised system of discrete equations described above can be written in

the general matrix form

[A][¢] =[] (1.16)

where [A] is the coefficient matrix, [¢] the solution vector and [b] the right hand side.

The above equation can be solved iteratively by starting with an approximate solution,

n+l

¢ , that is to be improved by a correction, @’, to yield a better solution, ¢ , i.e.

¢n+1 — ¢n +¢’
where ¢’ is a solution of

Ay = (1.17)

with r”, the residual, obtained from,
rll o b — A¢H

Repeated application of this algorithm will yield a solution of the desired accuracy.
By themselves, iterative solvers such as ILU tend to rapidly decrease in
performance as the number of computational mesh elements increases. Performance
also tends to rapidly decrease if there are large element aspect ratios present. The
performance of the solver can be greatly improved by employing a technique called

‘multigrid’.

2.1.12 Algebraic Multigrid

The convergence behaviour of many matrix inversion techniques can be
enhanced by the use of a technique called ‘multigrid’. The multigrid process involves
carrying out early iterations on a fine mesh and later iterations on progressively
coarser virtual ones. The results are then transferred back from the coarsest mesh to
the original fine mesh.

From a numerical standpoint, the multigrid approach offers a significant

advantage. For a given mesh size, iterative solvers are only efficient at reducing errors

34

which have a wavelength of the order of the mesh spacing. So, while shorter
wavelength errors disappear quite quickly, errors with longer wavelengths, of the
order of the domain size, can take an extremely long time to disappear. The Multigrid
Method bypasses this problem by using a series of coarse meshes such that longer
wavelength errors appear as shorter wavelength errors relative to the mesh spacing.
To prevent the need to mesh the geometry using a series of different mesh spacings,
an Algebraic Multigrid is implemented.

Algebraic Multigrid [89] forms a system of discrete equations for a coarse
mesh by summing the fine mesh equations. This results in virtual coarsening of the
mesh spacing during the course of the iterations, and then re-refining the mesh to
obtain an accurate solution. This technique significantly improves the convergence
rates. Algebraic Multigrid is less expensive than other multigrid methods since
discretisation of the non-linear equations is only performed once for the finest mesh.

CFX-5 uses a particular implementation of Algebraic Multigrid called
Additive Correction [90]. The coarse mesh equations can be created by merging the
original finite volumes to create larger ones as shown below. The diagram shows the
merged coarse finite volume meshes to be regular, but in general their shape becomes
very irregular. The coarse mesh equations thus impose conservation requirements
over a larger volume and in so doing reduce the error components at longer

wavelengths.

. * . - +* * + +
ol LAY e LAY .. ‘e ‘|-
- . . - . +*
» - - L4 - L]
nanananar Original mesh
+) L) L)
- 4 Ld L
4| * - e | e
- .
. -
LR

First coarse mesh (virtual)

Next coarse mesh (virtual)

Figure 2.4 - Algebraic Multigrid

2.1.13 Discretisation Effects in CFX-5

All numerical approximation schemes are prone to a degree of error. Some
errors are a result of truncation of additional terms in series expansions. Others are a

result of the order of the differencing scheme used for the approximation.

36

Many of these effects can be significantly reduced or eliminated altogether by
understanding why they occur, and when they are likely to affect the accuracy of the

solution.

2.1.14 Numerical Diffusion

Numerical diffusion is an important issue when modelling vortical structures.
Due to the re-circulating nature of the vortex it is very hard to avoid numerical
diffusion. Numerical diffusion is usually exhibited by difference equations where the
advection term has been approximated using an odd-order scheme, for instance, UDS,
which is first order accurate.
Consider a 3-dimensional Cartesian coordinate system. On a mesh of quadrilateral
elements, the flow direction may be normal to the faces of each element. In this case,
the flow from one element to the next can be accurately represented to the limit of the
mesh size.

In a case where the flow is not normal to the faces of the elements, perhaps in
aregion where the flow is re-circulating, the flow must move from one element into
more than one element downstream. Consequently, some flow moves into each of the

adjacent elements as shown below.

|
'
AVEANEA

Figure 2.5 - Flow that is not normal to the cell faces causes numerical diffusion

The effect of this over a whole flow domain is that the features of the flow are
smeared out. The diagram below illustrates the effect. If a step function is used to
define the inlet profile but is not aligned with the mesh, the step is progressively
smeared out as flow moves through the domain. This phenomenon is therefore

sometimes called ‘gradient smearing’.

N -

Figure 2.6 - Numerical diffusion

The effect varies according to the alignment of the mesh with the flow
direction. It is therefore relatively straightforward to achieve highly accurate solutions
to simple flow problems, such as flow in a duct where alignment of the mesh with the
predominant flow is relatively simple. However, for situations in which the flow is
predominantly not aligned with the mesh, numerical diffusion effects limit the
accuracy of the solution.

Consider a similar flow, modelled on a totally unstructured tetrahedral mesh,
as shown below. With this type of mesh, there is no flow direction which is more or
less prone to numerical diffusion than any other. Consequently, the inaccuracy for
simple unidirectional flows is greater than for a mesh of hexahedral elements aligned
with the flow. However, the numerical diffusion errors for a mesh of tetrahedra are
consistent, and of the same order, throughout the flow domain. This means that for
real flows, tetrahedral control volumes will not exhibit additional inaccuracies in areas
such as recirculation, because there is no single flow direction which may be aligned
with the mesh.

It is a fact that using the UDS scheme with tetrahedral element meshes will
produce solutions that exhibit a larger degree of numerical diffusion than would exist
from a solution obtained with a similarly refined mesh of hexahedral elements.
However, this discrepancy diminishes rapidly as the advective discretisation is made

more second-order accurate, and by working towards a grid independent solution.

. A
. el
. A

Figure 2.7 - Flow direction is trivial on unstructured grids

It is almost impossible to create a structured grid that minimises diffusion within a
vortex. In order for the grid to accomplish this an O-grid inside the vortex must be
created that has its radial faces perpendicular to the vortical flow (Figure 2.8). It is
practically impossible to achieve this without solving the flow first. A slight offset in

the vortex core relative to the grid centre will make such a grid pointless. In addition

not all vortices are perfectly circular in shape which complicates things even further.

Figure 2.8 — A small shift in the vortex position makes any advantages of an O-grid
obsolete

If the true three dimensional nature of the tip vortex is considered then the
ideal mesh would also have a helical pattern to it. This is because the tip vortex has a
stream wise component as well which mean that in order for the cell faces to be
perpendicular to the flow a helical structure is required. The only advantage of have a
hexahedral mesh is that the longitudinal mesh size can be bigger thus decreasing the
mesh size.

As shown above an unstructured grid will have greater numerical diffusion
than an aligned structured grid, but for vortical flows this disadvantage disappears

quickly since the structured grid is no longer aligned.

2.1.15 Numerical Dispersion

Numerical dispersion is usually exhibited by discretised equations whose
advection term has been approximated using schemes that are even-order accurate.
When Numerical Advection Correction is fully implemented with a value of B=1.0 the
scheme is second-order accurate. This can lead, in some cases, to numerical
dispersion.

Dispersion results in oscillations or ‘wiggles’ in the solution particularly
where there are steep flow gradients. Again the effects can be illustrated using the
step function as shown in the diagram below; just before and just after the step, the

solution exhibits oscillations which are the direct result of numerical dispersion.

IIA H?

Figure 2.9 - Numerical dispersion

40

1 anlN -

2.2 Turbulence modelling

Turbulence modelling has a major influence on the accuracy of vortex flows.
Many of the existing numerical simulations have difficulty capturing the vortex radius
correctly and this is frequently attributed to limitations associated with the turbulence
model. There have been many studies comparing the performance of different
turbulence models. For example, Osama et al. [91] compared the performance of
Baldwin-Lomax, Spallart-Allmaras and k- @ turbulence models. All of the models
over predicted the radius of the vortex with the k@ performing the best out of the
models tested in the far-field region but more poorly near the wing surface.

Dacles-Mariani et al. [41] used a Baldwin-Lomax and a modified Baldwin-
Lomax turbulence model with promising results. Even though the vortex core velocity
profile was predicted within 3% of the experimental data the vortex decay just outside
the core was not correct, with the vortex having an influence over the flow twice the
distance as compared with the experimental results.

Wallin and Girimaji [92] investigated the effect of turbulence model on axial
vortex decay rate. They used several turbulence models from Reynolds stress
transport to eddy-viscosity k-£ models. The k-£ models over predicted the vortex
decay rate with Reynolds stress transport models giving better results.

An increasing amount of research is being carried out on large eddy simulation
(LES) and detached eddy simulation (DES). These methods address the physics of
turbulence directly and do not require turbulence closure approximations. They
require very fine meshes and are thus computationally expensive as demonstrated by
Arakawa et al [95] when modelling a wind turbine blade tip using the Earth
Simulator. DES only applies this methodology in certain regions of the flow. If an
adaptive grid based on vortex identification is used then DES can be applied in the
refined region to model a tip vortex.

For this research the k-€ model was used for the development of the VFX
method because of its speed, simplicity and robustness. The 2 equation SST model by
Menter [96] was used for subsequent simulations for its improved performance in

regions for separated flow.

41

2.3 In-viscid flow (Euler)

Far away from solid boundaries the effects of viscosity are usually small. If
viscous effects are neglected, the Navier-Stokes equations reduce to the Euler
equations. Euler equations are useful for high Reynolds number problems where the
effects of viscosity are usually confined to a small region near the body and a narrow
wake. Since the boundary layer near the solid surfaces does not have to be resolved a
coarser grid can be used which reduces computational costs and allows for more

complex geometries. For more information see [82, 83].

42

3 VORTFIND scheme
The VORTFIND scheme [1, 2] is a method for identifying vortices in a two-

dimensional velocity field. It was developed by Pemberton [1] for his thesis and
applied to a few test cases such as a backward facing step and a 2-D bilge vortex.
Later as part of this research the method was applied to a 3-D system of bilge vortices
[97, 98]. In this chapter the VORTFIND method is presented and the key parameters
investigated by applying it to a test case. The method is refined and extended before it
is extended to 3-D in the next chapter.

The definition of a vortex as described by Lugt [36] “A vortex is the rotating
motion of a multitude of material particles around a common centre” is used in the
context of this method. The VORTFIND scheme is based on a simple function of
local angles of velocity with respect to a reference point in the fluid. This function
exhibits a local minimum at the vortex core. A statistical method can then be applied
to locate the vortex core. It has been applied in two-dimensional velocity field with

good results [1, 2].

3.1 Numerics

Consider a two-dimensional slice of fluid perpendicular to the axis of rotation
of the vortex. A cell centre is selected as the datum point. The x-axis is used as a
reference and the plane is divided into n sectors and each sector is assigned an integer

value g, (Figure 3.1).

B=1

¥=360°/n

Figure 3.1 - The plane is split into sectors and each sector is assigned a
value.

The angle o (Figure 3.2), which is the angle the velocity vector makes with the
reference axis (in this case x-axis), is calculated for all data points. Each data point is
then assigned a value £ depending on which sector & lies in. The closest point to the
reference location for each value of fis found. These points have distances labelled
Foo iy oo ryand =0, 1, ... ,n-1 respectively (Figure 3.2). The distance for the value of
[that is the same as the reference point will always be zero. Once the distances are

found the [function is computed as follows:

n-1
1=>r (1.18)
0

Referring back to Lugt’s definition, a vortex core is the point that is closest to points

with differing values of . At this point the / function exhibits a local minimum.

ol =1
4+
/=1
=1 =1
piser—
“« 54 ‘I

R
- B 7 $ v\p:. =0
[=2 o S
= A4 I‘
\ =0
=2 =0

=2
[=0
\ e y
S o '/'[::O L& X
[=2

Figure 3.2 — Schematic representation for determining the / function for 3 sectors. The
reference point is marked with a diamond

44

3.2 Identifying the vortex core

The [function provides a useful picture of the vortex structures in the flow. It
can be used for adaptive refinement. However it is sometimes easier to adapt to the
vortex core line. In addition for visualisation purposes it is better to identify the vortex
core line [62]. The process of locating multiple vortex cores in the domain is one of
identifying local minima in the / function. The search method has a number of
constraints [1]:

e The [function is calculated without the use of any gradient values and it is

beneficial to use a search algorithm that refrains from doing so.

e Multiple local minima may exist which are all significant, especially for

adaptation.

e The search algorithm must have minimal computational requirements if is

going to be included in the solution process.

Given the above constraints Pemberton [1] found that a K-Means cluster
algorithm is appropriate for this case. The objective of a cluster algorithm is to
separate a set of data into clusters so that the members of each cluster differ as little as
possible with respect to a specified criterion [99]. The algorithm used is an adaptive
K-Means Algorithm [100]. Data points are assigned to clusters by minimizing J, the

sum of the distances squared from the cluster centre to the points within it (Eq.(1.19)).

2

j=N17"i=N‘ 2
J = .Zl (xji_'u-\'i) +(yf’_/l"'i)
j=li=
1 &
My _N—pi Jj=1 Xji (1.19)
N

| N
H=—— Z Yii

pi J=1

where 44 and 14 are co-ordinates of the cluster centre, N,; is the number of points in
the i cluster, N, is the number of clusters and xj;, y; are the co-ordinates of the j[h
point in the i cluster. The points are assigned to the different clusters until J is
minimized. Only two variables need to be preset in the K-Means cluster algorithm,
the maximum cluster radius and the minimum separation between adjacent clusters. If

a point is further away than the maximum cluster radius from a cluster then a new

cluster is created. If two clusters are closer than the minimum separation then they are
merged.

For the case of a single vortex on the computational plane it has been found
that the node with the lowest / function is within a cell of the vortex core. Thus for

single vortices identifying the vortex core is trivial.

3.2.1 VORTFIND Test case

The VORTFIND scheme has not been applied to a tip vortex before. To test
the applicability of the method to tip vortex flows, it was applied to a wing operating
at an angle of attack. A 2-D plane that includes the tip vortex was used for the study.

A NACAO0020 wing with a 1.0m span and 0.667m chord was used as the test
case of the VORTFIND method in 2-D. The grid was unstructured with 250,000
tetrahedral cells. A k-¢ turbulence model was used and the chosen angle of attack was
10°. A plane 0.13m behind the wing trailing edge was used to calculate the [function.
The velocities are exported from the volume mesh at the points where a cell edge
intersects with the plane.

The effect of increasing the number of sectors used to calculate the / function
can be seen in Figure 3.3. As the number of sectors increases the / function gets

smoother. Above 5 sectors there is no longer significant difference in the / function.

46

C

y/

=4

Sectors

=3

Sectors

=6

y/c

Sectors

c
=5

Sectors

Figure 3.3 - I function contour plot for a plane

0.2c downstream of the trailing edge.

As the number of sectors increases from 3

to 7, the [function varies in magnitude
since extra r, are added for each sector.

<
"

©
=

q/z

=7

Sectors

47

y/c z/b
Wing tip 0.000 1.000
Sectors =3 0.069 0.891
Sectors =4 0.066 0.899
Sectors = 5 0.061 0.886
Sectors =6 0.030 0.835
Sectors =7 0.039 0.848

Table 3-1 - Position of Vortex centre

Another thing to note from the / function plots is that as the number of sectors
increases the / function increases since one more distance is added for each additional
sector (Eq(1.18)). This can be a problem when using the / function with adaptive
refinement grids. If the grid is refined using a threshold / function value it is difficult
to choose the correct one and is more of a trial and error [69]. If the / function changes
with the number of sectors then the process is complicated further.

By dividing the / function by the number of sectors that exist in the solution minus

one, the [function can be normalised with respect to sector number.

[=—0— (1.20)

Mg i —
where ng s 18 the number of sectors that have at least on velocity vector.

The reason for not dividing by the number of sectors used is that in some flows
not every sector has a velocity vector assigned to it, so the distance squared for that
sector is not added to the / function. Also the sector of the reference grid point always
has a distance squared of zero so the / function is divided by the number of sectors
that have at least one vector minus one. The [, function is calculated for the same case
as previously and shown in Figure 3.4.

The above has no effect on the shape of the contours of the / function or the
K means cluster algorithm (Table 3-1&Table 3-2). The only difference is that the
values remain fairly constant with increasing number of sectors, especially near the
vortex centre. If the /, function contour of 0.5 is observed, its position does not change
with increasing sectors. The same is not true for the / function. This simplifies the

adaptation process if a threshold value scheme is used.

48

y/c

y/c

=4

Sectors

=3

Sectors

y/c

y/c

=6

Sectors

=5

Sectors

Figure 3.4 - Normalised [, function contour

plot for a plane 0.2c downstream of the trailing

As the number of sectors increases from 3

to 7, the [function remains fairly constant

in magnitude.

y/c

=7

Sectors

49

y/c z/b
Wing tip 0.000 1.000
Sectors =3 0.069 0.891
Sectors =4 0.066 0.899
Sectors =5 0.061 0.886
Sectors =6 0.030 0.835
Sectors =7 0.039 0.848

Table 3-2 - Position of Vortex centre.
Normalised / function

3.2.2 Influence of grid on VORTFIND method

The [, function is derived from the velocity vectors of neighbouring data
points. It is dependant on the direction of the vectors belonging to different sectors.
However the minimum possible /, function is only dependent on the sampling
spacing. Consider a reference point with all its neighbouring points belonging to
different sectors. Obviously this point should exhibit the lowest /, function. How low
the data point’s [, function can be is decided by the grid spacing. If the data points are
very close then the small distances between them will result in a low [, function. If the
points are far apart then the /, function will be higher even though the neighbouring
values are all in different sectors. A refined area can have a very low minimum /,,
function whereas a coarse area has a higher minimum /, function.

Compare the /, function plot for the wing tip vortex with uniform sampling
spacing Figure 3.5, with the /, function for the same results but with samples taken at
the cell edges Figure 3.6. We can see that away from the vortex core the [, values are
very similar. This is because the limiting factor for the /, function is not the sample
spacing but the actual velocity flow field. As we approach the vortex core the values
for the uniform sampling spacing are higher. This is due to the smaller sample spacing
near the vortex core. Since the flow field is more varied in direction the limiting factor
becomes the sample spacing. Ideally the limiting factor should always be the flow

field and never the sampling space.

0~ xn—’/
G RY
0.1+ YRR INRG,
NN 0
%S S ’\«r
23,4]
%Q’\\\\ S
S . : . L2
-0.4 -0.2 0.0 0.2 0.4

Y

Figure 3.5 — Uniform spacing

0.6 /
Vv

0.5
0.4 4
0.2 4

0.1 3 3 N
.2, 2
03 % o B
& s
=,
AN , . : s
2 0.4

-0.4 -0.2 0.0 0

oy
I\

Figure 3.6 — Non-uniform spacing

However this is not always practical due to the increased computational

overhead of such a fine sampling spacing. A uniform sampling spacing can overcome

some of the problems of having the sampling spacing as a limiting factor. Effectively

51

there is a lower limit on the /, function which is the same for the entire computational
plane. Using a non-uniform sampling spacing will potentially favour certain regions

which may cause problems in flows with multiple vortices.

3.2.3 VORTFIND not conforming to computational nodes

The [, function so far has been calculated at Jocations corresponding to
computational nodes (i.e. locations were the velocity is specified). However the
I, function can be calculated at any point along the plane and does not need to
conform to those points. The test case data was used to calculate the /, function over a
uniform 51x51 grid superimposed on the data on the nodes resulting from the mesh.
The [/, function is smooth and continuous over the computational plane. The
magnitude and shape is virtually the same as the one calculated on the data nodes.
This is a significant advantage over the combinatorial method [65] which is
discontinuous.

Even though the VORTFIND method is accurate enough to locate the cell the
vortex core lies in, on large grid spacing it is thus possible to find the point of
minimum /, function within the identified cell using this not conforming procedure.
Even though the physical meaning of this point is dubious, it is nevertheless a useful

improved estimate on the position of the vortex core.

3.0

2.5

2.0 1

1.5 12

z/b

1.0 -
0.5 1
g
0.0 ;
-2 -1 0 1 2
y/c

Figure 3.7 — I, function off the data points. 7 sectors (compare to Figure 3.4)

52

3.2.4 VORTFIND on coarse grids

The minimum possible /, function as explained previously depends on the grid
spacing. However there is another consideration concerning grid size. There is a limit
to how coarse a grid can be in order to identify the vortex. A series of grids has been
set up to investigate the lower limit of this coarseness. The initial grid is the same as
all the other test cases. The nodes are then decreased by a factor of 4, 8 and 16 and the
VORTFIND method carried out.

Inspecting the resulting /, function contour plots we can see that we get similar
shapes for all node densities with similar minimum values in the vortex core.
Assuming the lowest [, function as the vortex core there is a variation in the identified
centre (Table 3-3). This is due to the way the data node grid was coarsened. Alternate
nodes were deleted from the database which was not given in any particular order.
This resulted in an uneven coarsening of the data grid nodes which leads to the shift in
the vortex centre. However the shape of the /, function over the sample plane remains
similar even for the lowest of data node densities. This is a key result as it indicates
one of the main advantages of the use of Vortfind as it still works well for a very

coarse mesh.

z/b

3038 nodes 760 nodes

53

Nl

z/b
1.50
z/b

y/c
380 nodes 190 nodes

Figure 3.8 — 1, function on different grid densities

Identified vortex centre
Number of data nodes
y/c z/b
3038 0.039 0.848
760 0.285 0.848
380 0.069 1.123
190 0.171 0.848

Table 3-3 - Variation of vortex core with grid density

The same procedure was carried out for the same data nodes using the /,
function not conforming to the data nodes. The grid on which the /, function was
calculated was 51x51. Similar results can be observed. The contour plots have the
same characteristic shape. Similar variations in the identified vortex core position
exist (Table 3-4). This is because as explained these are due to the data nodes. Since
the data nodes are identical for both cases similar results were observed. Comparing
the two methods we can see very good agreement considering the resolution for the
51x51 grid is in the order of 0.05b and 0.12c. A marked improvement over the

conforming approach is evident from the identified vortex centres.

54

z/b

3.0

2.5 1

2.0

z/b
P

3038 nodes

y/c
380 nodes

z/b

y/c
190 nodes

Figure 3.9 — I, function on different grid densities not conforming to data nodes

Identified vortex
Number of data nodes

y/c z/b
3038 0.08 0.90
760 0.08 0.90
380 0.08 1.14
190 0.16 0.90

Table 3-4 - Variation of vortex core with grid density

(VFX not on data nodes)

55

3.3 Summary

In this chapter the Vortfind method has been presented and tested. The method
was applied to a test case and its dependency on different parameters investigated.
The ability of the Vortfind method to perform well on very coarse grids has been
demonstrated, which is one of its major advantages.

In addition the Vortfind method has been reformulated for an arbitrary number
of sectors and has been normalised with respect to these sectors. This makes the
Vortfind method easier to implement in conjunction with mesh adaptation based on
threshold values as explained before.

The method has also been applied for the first time off the data nodes which has
proven that the /, function is a continuous function over the plane. It performs
particularly well on coarse grids and has the potential to identify the vortex core at a

resolution which is better than the data grid.

56

4 VEX: an extension of VORTFIND to 3-D

The modified VORTFIND scheme can be easily implemented with two-
dimensional grids. However, before this work it has never been applied to three-
dimensional grids. A number of modifications must be made and evaluated before the
method can be used with any success. The method works in two-dimensional planes
perpendicular or near to perpendicular to the direction of the vortex core. These
planes can be extracted from the three-dimensional velocity field (Figure 4.1).

The planes can be extracted for every cell or for a predetermined spacing.
Extracting planes for every cell is computationally expensive; however since the
[function is defined at every cell it can be used as a criterion for adaptive refinement
without any further manipulation. A threshold value for the / function can be set and
the cell below that threshold refined. This eliminates the need for a cluster algorithm
to 1dentify the vortex cores.

Using spaced planes reduces the computational requirement substantially, but
means that the vortex cores must be identified and a vortex core line constructed
through the domain. Then neighbouring cells to the vortex core line can be flagged for
refinement. The other advantage of this method is that it produces a continuous vortex
core line. The latter was chosen for its reduced computational requirements and

adapted for 3-D cases giving the VFX scheme.

57

Plane 1
Plane 2
Plane 3
Plane 4
Plane 5

Figure 4.1 - Planes where VFX is performed for a wing
4.1 Wing test case

To test the VEX method it was decided to validate it with an experimental case.
A NACA0020 wing operating at 10° angle of attack was chosen. The wing was tested
in the 11’ x8" George Mitchell [101] low speed wind tunnel at the University of
Southampton and the recorded data included measurements of wing surface pressures.
The wing has a 1.0m span and 0.667m chord.

The numerical model was an approximation of the wind tunnel experiment,
neglecting the blockage effects of the walls. The inlet boundary was located at x=—
3.0c and the outlet at x=5.2c. The side walls were located at y= +3.0c and the roof at
z=4.5c. The wing leading edge root was at the origin. The floor is defined as a
symmetry plane in order to remove the need to capture the groundplane boundary
layer. For similar reasons the roof and walls are defined as openings and a velocity
defined on those boundaries.

The wing was modelled using an unstructured mesh using only tetrahedrons. The
base mesh had 315,566 cells. The cells were clustered near the wing surface, with a
maximum edge length of 0.045¢. The maximum y* was 100. A cylinder of finer cells

also having a maximum edge length of 0.045¢ extended downstream from the tip

58

aligned with the x axis. The wing was operating in a uniform free stream velocity of
20m/s at an angle of attack of 10°. A k-¢ turbulence model with wall functions was
used for its simplicity speed and robustness. This was used as a test case for the
development of theVFX method and not initially as an attempt to capture accurately
the flow field. Although other turbulence models could have been used the aim was to
ensure that all the steps in the VFX process worked. Planes of velocity were extracted
at 0.67, 1.17, 1.67, 2.17, 2.67 and 3.17m. The VFX method was used to compute the
vortex cores location for each plane. A tube, having 0.1m radius and its axis passing
through the vortex cores was used to define the refinement region. The maximum cell
edge length was specified within this tube, resulting in a refined region in the mesh.
The resulting mesh was solved and the vortex core co-ordinates updated. Three
iterations were carried out; each time the maximum edge length within the tube was

decreased. The refined meshes had 518,997, 819,289 and 1,797,200 cells respectively.

Mesh Cells Nodes Max..edge length | Points across

in tube vortex core
Base 315,566 56,461 0.045¢ 8
Refine | 518,977 91,397 0.030c 12
Refine 2 819,289 142,870 0.022¢ 15
Refine 3 1,767,200 305,113 0.015¢ 23

Table 4-1 - Grids for wing test case

Figure 4.2 - Refined mesh 3. Plane 1.17m

From the results it can be seen that as the number of cells in the vicinity of the
vortex core increases the vortex position changes. For the two finer meshes the
location of the vortex core line is fairly constant. The vortex shedding off the wing is
not located at the tip but further in as expected from theory and experimental
observations. The vortex contracts to 80% of the span as it moves 4 chord lengths
downstream. This positional dependency of the vortex on grid spacing means that
methods like Spall [43], which use a grid with points clustered a priori, run into

difficulties even for such a relatively simple case.

0.95 4 }
1
0.90 4
)
0.85 4
c j_
CU -
Q
£
N
0.80 41
—@— Base LI
075 + v AR Refinet +
——-8-—— Refine2 - T
——0-— Refine3 |
v |
0 70 T T —t — l| f—t— II - }———} =—|I — :
1 2 3 4 5

x/c

Figure 4.3 Spanwise position of vortex with different grids

60

Inspecting the vortex velocities at 0.75¢c downstream of the trailing edge for the
different meshes it can be seen that the results are similar to Dacles and Zilliac [41].
From Figure 4.4 it can be seen that the vortex velocities change significantly with grid
spacing. As the grid resolution increases the vortex core radius decreases. The two
finer grid spacings give similar results, implying that at least 15 points are needed in
the vortex core to capture the flow accurately. This agrees well with Dacles and

Zilliac who recommend 18 points through the vortex core.

0.25 +—+—"+——+—"r4—+—+—+—+—F—+——+—+—+—4

L

a/U.

o=

T Base Mesh T
0.00 + ooeiinnnns Refine 1 -+
T ———— Refine2 T
—— Refine 3
+——t—t
-0.2 -0.1 0.0 0.1 02 0.3 0.4

y/span

Figure 4.4 — Vortex velocities for the different meshes

Comparing the surface pressures calculated using the finest mesh with
experimental data [101] good agreement can be seen (Figure 4.5). However, the
results do not show the large pressure drop towards the trailing edge. This is because
the clustering is not extended upstream of the trailing edge, and the influence of the

vortex on the surface pressures will not be fully captured.

61

—e— Experimental
-0 CFD Results

1.5 ¢

1.0 ¥
0.5
00 ¥
05 F
15 %

Cp

-2.0

1.0 ¢+

051

0.0 +

Cp

1.0 ¥

451

Cp

e
-

Chord

Figure 4.5 - Cp comparison for NACA0020 wing

62

4.2 Initial grid dependency

In order to ensure that the method described previously is independent of the
initial grid, the same geometry was modelled using a different meshing strategy. A
different meshing tool was used, ICEM 4 CFD [102], to generate the mesh. The base
mesh compromised of tetrahedra with a different mesh density and distribution than
the previous base mesh. The mesh was clustered in the vicinity of a line extending
downstream from the wing tip at angle 5° from the x axis, even though the angle of
attack was 10°. This is to prove that the initial clustering position is not crucial to the
final solution. In fact no clustering is necessary for the initial mesh as long as the
initial grid density is fine enough to resolve some of the tip vortex. However since a
very coarse base mesh is used a refined region was included.

The same iterative strategy as described above was used, updating the position of
the grid refinement and at the same time reducing the grid spacing. After three
refinements the position of the vortex was within the convergence criterion of the first

solution. This proves that the method is independent of the initial grid.

4.3 Comparison with experimental data

For better validation of the procedure detailed wake measurements were
deemed necessary in order to study the evolution of the tip vortex and wake. A
numerical model of a wing was compared to experimental data from a wind tunnel
model. The experiments were performed in a 0.9m x 0.6m, open circuit wind tunnel,
operated at a flow speed of 19.0 m/s. The wing had a chord of 0.45m and a geometric
aspect ratio of 1.0. A NACAOQO12 section was used with constant thickness to chord
ratio along the wing [103]. Particle Image Velocimetry (PIV) and pitot tube data were
available for the steady case.

The numerical model consisted of a tetrahedral mesh with prisms layers on the
wing and tunnel walls to capture the viscous sub layer. The prism layer had a 10mm
height on the wing (y* of 50) and 30mm on the tunnel walls. The VFX procedure was
implemented, using 5 planes downstream of the wing and the mesh refined on the
vortex core line. The position of the vortex core was settled after a few cycles as
discussed previously.

After the vortex line had settled the number of refined layers grown from the

vortex core line was varied. The cell edge was increased to keep the mesh size

63

constant. The mesh size can rise quickly with increasing layers grown from the vortex
core line. This is because the volume of the refined mesh increases with respect to
distance squared from the vortex core. For example 10 layers will have 4 times the
cells as 5 layers grown from the vortex core line.

From the results it can be seen that there is a trade off between cell size and
the number of layers grown. If the refined mesh does not extent far enough away from
the vortex core then the vortex is not captured correctly. As the number of layers of
refined cells grown from the vortex centre increases we can see that the vortex core
radius decreases and the maximum circumferential velocity increases (Figure 4.6).
However, since the cell size is increased with increasing number of layers to keep the
mesh size the same there comes a point where the mesh is not fine enough in the

vortex core to refine the vortex correctly.

64

From Figure 4.6 we can see that the vortex core radius is over predicted by 1-
2% of chord. The circumferential velocity is under predicted by 20%. However these
are the mean circumferential velocities around circles with their centres at the vortex
core. Any error is thus cumulative. In addition the PIV data is an average of multiple
images over time. Comparing the velocities through the vortex along the x and y
direction (Figure 4.7) we can clearly see where the discrepancy occurs.

The velocities for the y direction (perpendicular to the wing) are in very good
agreement with the PIV data. The core radius is 11% of chord from the CFD
simulation and 10% from the PIV data. The maximum velocities are also in good
agreement.

For the spanwise direction it is different. The predicted maximum velocities
are well below the PIV data. The outermost position of maximum velocity is within
2% of chord, however in the wake the results are worse. This might be due to the
influence of the wake on the tip vortex. The mesh in the wake region is quite coarse

and not captured correctly.

— e L
1ttt 71

PIV data

Cell 4.0mm Layers 20
Cell 4.0mm Layers 10
Cell 1.0mm Layers 4
Cell 0.5mm Layers 2
Cell 0.5mm Layers 0

qelUO%

1/'c%

Figure 4.6 — Average circumferential velocity from vortex core

w/U_%

100

80

60

40

20

-20

-40

-60

80

60

| ANE
//

i !

PN ?

L
o

o
Zcore/ c%

5 10

—— PIV data
........ CFD data

b %é
! N |
5? N

L
o

ycore

0
/c%

(6]
—_
o

Figure 4.7 — Velocities through the tip vortex. Top: Spanwise
direction (z). Bottom: Parallel to the tunnel floor (y)

66

The forces on the lifting surface vary significantly with grid refinement in the
vortex region. It can be seen that for the very fine mesh, which is only concentrated at
the vortex core, the lift and drag are out by 9.3% and 2.8% respectively. As the region
of the refined mesh grows out from the vortex radius the results tend closer to the
experimental data. The change in Iift is very small but the drag improves significantly.
The lifting surface is operating near its stall angle and small changes in the angle of
attack result in large changes in the forces. Also the flow is unsteady in real life and

the lifting surface probably transitions between a partially separated and fully attached

condition.
. y
Lift (N) Drag (N)
CL CD
Pressure | Viscous | Pressure | Viscous
Cell 0.5mm 2572 | 0036 | 2665 | 0482 | 059 | 0.073
Layers O
Cell 0.5mm 25703 | -0.0356 | 2.665 | 0481 | 0.59 | 0.073
Layers 2
Cell 1.0mm 25892 | -0.0359 | 2.678 | 0482 | 06 | 0.073
Layers 4
Cell 4.0mm 25395 | -0.0387 | 2.605 | 0.484 | 059 | 0.071
Layers 10
Cell 4.0mm 25.528 | -0.0404 | 2.610 | 0480 | 0.59 | 0.071
Layers 20
Experiment - - -) 0.48)

Table 4-2 - Comparison of lift and drag for different vortex refinement.

67

4.4 Summary

The Vortfind method has been extended successfully to three dimensional
flows. The resulting VFX method has been tested on a wing and was able to track the
tip vortex downstream of the foil. The mesh was refined in the region identified using
the VFX identified vortex core. The vortex core position stabilised with each
progressive refinement and the vortex propagated further downstream.

Detailed wake comparisons have been made for a second wing tested in a
wind tunnel where PIV data was available. Although the results have shown an
improvement with the refined mesh as far as the tip vortex definition is concerned,
there were discrepancies in the forces. It is believed that these were due to the
insufficient resolution of the boundary layer wake which is an important flow feature.
Resolving the boundary layer shear layer far downstream represents a difficult task,
especially for marine propellers where the shear layer is of a helicoidal form. Work by
Stanier [30] shows that resolving the boundary layer wake significantly improves the
results and Sanchez-Caja et al. [104] demonstrate that the wake structure deteriorates
very quickly outside the fine mesh region. Thus it would be beneficial to develop a

wake identification algorithm that can be used in conjunction with VFX.

68

5 Adaptive Wake capture

Downstream of any body exists a region of slower moving fluid known as a
wake. For a lifting surface, operating at small angles of attack, this is a thin shear
layer region formed when the fluid in the boundary layers from the upper and lower
surfaces merge at the trailing edge and then extend downstream. To capture this thin
shear layer a refined mesh is required. A method for identifying the position of the

wake using simple techniques is investigated and described in this chapter.

5.1 Identifying the wake

In order to follow the same philosophy with the VFX method the procedure for
identifying the wake must be based on simple mathematics. Ideally, it must not use
derivatives or complex functions of the solution.

The wake consists of a small region behind the aerofoil with a velocity deficit. If
a threshold velocity deficit is selected the regions in the flow having lower velocity
can be identified. The velocity deficit regions are identified from the same plane data
used for the VFX method. For the subsequent calculations the shear layers due to the
tunnel walls are ignored otherwise they will be erroneously selected as well. A region
0.05m from any wall was therefore masked out. This leaves the points belonging to
the wake but also the tip vortex region. The velocity deficit region due to the vortex
extends outwards of the geometric span of the aerofoil. If all this points are used to
determine the wake it causes problems. The wake behind an aerofoil only extends to
the vortex core. The position of the vortex core is already calculated using VFX. Any
points outwards of the vortex core can also be masked out.

A curve is fitted to the remaining points using a moving average filter. This is
performed for all the planes downstream. A refined grid can then be specified in the
region of the wake. To reduce the number of cells required in the wake a similar
approach to that used for shear layers near walls can be used. By using high aspect
prisms aligned to the wake the grid spacing along the wake can be kept large whereas

the transverse grid spacing can be reduced to capture the shear layer.

69

R T
0.8 + 4
[]
[
] [J o
06+ o I I
o] ' [J [] '.
N . I
04+ ot . I
] 88 o o 88 [
] 8 ° ° 3 I
02T ® Selected points - ® L § T
1 —O— CurveFit 83 ° 88 o
0.0 -ttt
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

y/c

Figure 5.1 — Selected points having velocity deficit after masking

The wake capture method worked well within one chord length of the trailing
edge (Figure 5.1). Downstream the velocity deficit in the coarse wake was less and
thus the wake region was not selected. Only the vortex deficit region had a low
enough value to be selected (Figure 5.2). One possible solution was to select different
velocity thresholds for each plane, with the threshold velocity increasing away from
the aerofoil. This was not deemed a feasible solution since an appropriate threshold
velocity is not known a priori. Such a method would require a time consuming trial
and error approach.

A more generic and robust solution was developed. The spanwise distance
between the root of the foil and the vortex core is subdivided into a number of strips.
The areas near the tunnel walls and floor area masked out, as explained above, and the
remaining points for each strip are sorted in ascending velocity magnitude. The top
5% of the points are selected for each strip. From thereon the same approach is used
as described previously. This method ensures that the entire wake from the root to the
tip vortex is selected and all the way downstream (Figure 5.3). Also it is more robust

and less sensitive to user input.

70

1.2 b
1.0 4+ I
. |
0.8 + +
o

SR +
0.4+ 1
021 @ Selected points +
~—O— Curve Fit [

0.0 L B lr T lf{ T , T™TT T : T : T
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

y/c

Figure 5.2 — Selected points having velocity deficit at a plane one chord length
downstream of the trailing edge

124y
1.0 -(+
0.8 +
o)
N 06 ﬂ-
0.4+
[J [J
] []
0.2 + ® Selected points i ' '.' -+
—O— Curve Fit 0
0.0 -ttt
-0.3 0.2 -0.1 0.0 0.1 0.2 0.3

Figure 5.3 — Selected points using strips and selecting top points at one chord length
downstream of trailing edge

71

5.2 Wake mesh

A surface was lofted through the wake lines identified from the wake algorithm
and the trailing edge of the wing. The resulting wake shape is as expected from classic
aerodynamic theory. It extends downstream of the wing and wraps up around the tip
vortex (Figure 5.4). The same mesh was used as for the standard models without the
wake capture. This consisted of a fine mesh on the wing surface and in the vortex
region. In addition a ten cell inflation layer on the wing and wall tunnel walls with

lcm and 3cm overall thickness respectively was used.

z
MLY
Figure 5.4 — Wake shape captured by the wake identification algorithm

For the wake capture ten layers of prisms were extruded normal to the wake
surface captured either side .The prisms matched the inflation layer on the wing. The
thickness of the prism layer in the way of the wake was 60mm. The streamwise mesh
spacing in the region of the wake is large to reduce the overall size of the mesh.
However, the transverse grid spacing is small to refine the shear layer in the wake
(Figure 5.5). If the prisms were replaced with tetrahedra having an aspect ratio of one
then thirty times more cells would be required to have the same transverse grid

spacing.

72

| \
1T 4™
=

Pres
(Rud

Figure 5.5 — Mesh using wake capture

e

[Pa]

73

5.3 Results

Comparing the results for the standard mesh with the prism wake mesh we can

see that there is a significant improvement. The minimum velocity for a plane

44.4%of chord downstream of the trailing edge is below 1.57m/s for the wake prism

mesh whereas for the standard mesh the velocity is not less than 1.68m/s. I

n addition

the wake prism mesh influences the tip vortex. The velocity deficit area above the

vortex is less pronounced with the wake prism mesh.

Velocity
(Centour 1)

il qulql‘

C=NWBUNAN WY = = == =t =

.000e+01
8952401

789e+01

.684e+01
.579¢+01
.474e+01
.368e+01
.262e+01

158e+01

.053e+01
.474e+00
.421e+00
.368e+00
.316c+00
.263e+00
.211e+00

158e+00
105e+00

-053e+00
.000e+00

Velocity

(Contour

|

N

O - NWAUDNWW = — — = = = ot =

1

.000e+01
.895e+01
.78%a+01
.684e+01
.579¢+01
.474e+01
.368e+01

262e~01

. 158e+01
.053e+01
.4742+00
.421e+00
.368e+00
.316c+00

263e+00
211e+00
158e+00
105e+00
053e+00

.000e+00

{
e

L

NSRS NN

Figure 5.6 — Velocity contours 44.4% of chord downstream of the trailing edge for

standard mesh (Top) and prism wake mesh (Bottom)

74

Similar results are observed for a plane 133.3% of chord downstream of the

trailing edge. The same is true for the entire wake downstream of the wing.

Velocity
(Conteur 1)
.000e+01
1.895e+01
1.789%+01
1.684e+01
1.579¢+01
1.474e+01
1.368e+01
1.262e+01
1.158e+01
1.053e+01
9.474e+00
8.4212+00
7.368e+00
L3
5
4
5,
2
1
]

! |]'I!!E

.316c+00
.253e+00
.211e+00
. 158e+00
. 105e+00
053e+00
.000e+00

Velocity
(Corrtour 1)

2.000e+01

1.895e+01

1.78%92+01
I — 1.684e+D1
1.579¢+01
1. 474e+01
1.368e+01
1.263e+01
1.158e+01
1.0532+01
2.474e+00
8.4210+00
7.368e+00
6
5
a4
3
2
1
0

. 316¢+00
.263e+00
.211e+00
. 158e+00
. 105e+00
.053e+00
.000e+00

[m 21

Figure 5.7 — Velocity contours 133.3% of chord downstream of the trailing edge for
standard mesh (Top) and prism wake mesh (Bottom)

75

The change in the forces on the wing is significant. There is a 9.9% reduction in

drag and a 5% reduction in lift. The lift to drag ratio increases by 5.3%. There is a

reduction in the pressure forces and an increase in the viscous forces (Table 5-1).

Pressure force (N)

Viscous force (N)

CL Co L/D

X y z X y z
Standard 2,665 | -25.72 | 2.712 | 0.48 | 0.036 | 0.015 | 0.59 | 0.073 | 8.17
Prism wake | 2.338 | -24.40 | 2.660 | 0.49 | 0.045 | 0.013 | 0.56 | 0.065 | 8.60
A% -12.2 | -5.1 -1.9 | 2.1 24.4 10.3 -5.0 -9.9 53
Experiment - - - - - - 0.48 - 7.56

Table 5-1 - Comparison of wake mesh and standard mesh forces

Comparing the results with experimental data from a wake transverse study [103]

we can see that the wake is better defined with the prism wake mesh. The results

agree more closely with the experimental results. The position of the wake is

predicted very well. The velocity deficit is less than the experimental results by about

15% of U/Uy for the plane immediately downstream of the trailing edge. However for

the rest of the downstream planes the velocity deficit in the wake is within 5% of

U/Up (Figure 5.8).

76

U,

U,

U,

un,

U,

130

120

110

110

100

90

80

80

70

60

50

z/c 50%

z/c 75%

Figure 5.8 — Wake survey comparison

7 7 —e— Experiment
n n ~o--- Wake Mesh
. - —-+— Standard Mesh
T T L T T T T T T T T T T T L T T T
10 -5 0 5 10 15 20 25 30 35 40-10 -5 0 5 10 15 20 25 30 35
y/C% yl/c %

40

x/c 74.7% x/c 51.6% x/c 30.7% x/c 8.0%

x/c 130.4%

77

5.4 Results for Wake and VFX mesh

A mesh having the same cell size as for the VFX case with 10 layers grown

away from the vortex core (see Table 4-2), and having a wake mesh was generated.

However no inflation layer was used on the tunnel walls to reduce the mesh size. The

effect of the inflation layer having been found to be negligible.

Lift (N) Drag (N)
Pressure | Viscous | Pressure | Viscous G o L/b
VFX 25.40 -0.0387 2.605 0.484 0.59 0.071 8.31
Prism wake 24.40 -0.045 2.338 0.49 0.56 | 0.065 8.62
VEX & 21.63 -0.0246 2.556 0.434 0.48 0.068 7.05
Prism wake
Experiment 23.04 3.18 0.48 - 7.61

Table 5-2 - Comparison of forces

From the results we can see that the drag is somewhere between the
two meshes. However the is a large reduction in lift. This gives a better lift to drag
ratio than the other two meshes which significantly over predict this. Looking at the

spanwise loading we can see the typical increase in loading due to the tip vortex.

30 I g Il ' ! 4 n | 4 i ' . | I 1 ! L | ! 4 | ! |
. t t 1 1 T T T 1 y T t T 1 T T T T T T T T 1 T T T

25 T +

20§ !

0.5 + 1

00 " A 4 Il + ' 4 . | I) TR ! e ‘ 4 | n 4 4 n
. t t T y T 1 T y 1 T T t T y T T t t 1 T t 1 T T T

0.0 0.2 0.4 0.6 0.8 1.0
z/b
Figure 5.9 - Spanwise loading for NACA0012 wing

78

5.5 Results for Wake and VFX mesh

The importance of resolving the wake has been shown for a 3-D wing. A simple
algorithm for identifying the wake has been developed which can be used in
conjunction with the VFX method. The method has been automated and applied to a
3-D wing and the results compared to experimental data. The forces on the wing
changed significantly with the wake refinement. In addition, the velocity profiles in
the wake agree very well with pitot tube measurements from the wind tunnels tests.

When used in conjunction with the VFX method to resolve the tip vortex as
well, the lift changed significantly and coincided with the value obtained from the

experiments.

79

6 Propeller mesh generation

Experience shows that the choice of the grid for a given propeller can
influence the convergence of the solution and numerical prediction [30, 105]. The grid
density is a crucial factor in capturing the flow features in the fluid. Grid quality 1s
also of importance and must be addressed as reported by the I'TTC [106] & Stanier
[107] and discussed for hulls by Bull [31]. Mesh generation is a function of the
experience and ingenuity of the person involved, the meshing tools available and

restrictions imposed by the limitations of the solver.

6.1 Propeller Geometry

In order to define the propeller blade geometry the following system is used
[108, 8]. The blade is formed starting with a midchord line defined by the radial
distribution of skew angle 6,,(r) and rake x,(r). By advancing a distance £V2 ¢(r)
along a helix of pitch angle ¢,(r), the blade leading edge and trailing edge are
obtained. The surface formed by the helical lines is use as the reference upon which
the sections can be built. These sections are defined in standard aerofoil terms by a
chordwise distribution of camber f{s) and thickness f(s), where s is a curvilinear

coordinate along the helix. A brief description of the transformations developed and

used is given below. For a more detailed description of the process see [109].

Figure 6.1 - Propeller geometry definition used (Left); Kerwin definition [108] (Right)

80

The method used differs from the method described in Kerwin [108]. The
skew of the propeller is treated differently. The section is skewed along the generator
helix for that section whereas in Kerwin’s system the section is skewed about the
propeller axis. The latter method changes the shape of the blade with varying pitch,
whereas the former preserves the same blade shape for all pitches. This makes
propeller design easier since the blade shape is not coupled to the pitch. For propellers
with no skew such as the DTMB P4119 the two methods are identical. For heavily
skewed propellers there is significant variation between the two methods.

Care must be taken that the transformed 2-D sections lie on a cylindrical
surface instead of being offset perpendicular to the helix generator. Kouh & Liang
[110] and Kouh & Chen [111] neglected to ensure this which can lead to minor
geometrical difference which can be significant. Later Kouh er al. [111] identified this

problem and corrected their methodology.

6.2 Propgen

To generate a mesh for a given propeller geometry a quick and simple tool
was required for a wide range of propellers. Propgen was developed specifically for
this purpose. It can handle most propeller geometries, including ducts. It can also
generate an inner duct ring for use with tip driven propellers [109]. The generated
model is a segment containing one blade only. The model is then assumed to be
rotationally symmetric for a steady state case and periodic boundary conditions can be
used to model the complete problem. This effectively reduces the grid size reducing
memory and computational costs. Complete geometries can also be generated by
copying the generated model.

The generation of the propeller requires an input of standard propeller table
data and section offsets. The propeller geometry is constructed from a set of section
curves. These sections ca be generated for any given radius by defining the chord,
thickness, skew, rake, pitch and 2-D section shape. The 2-D section is mapped onto a
cylindrical surface according to the specified variables using a transformation matrix

(Eq(1.21)). For a more details on the section mapping see [109].

81

X,
= =

\/r2+(P/27l')

. (1.21)
rcos[;{/——sm(ﬁ]
X
y = —W+y‘,cos¢
27)

Z

—rsin (l//——)—]isin ¢]
r

For use with panel codes an automatic wake sheet can be generated. The shape
of the wake sheet depends on the section characteristics and advance ratio.
Contraction effects can also be included. Any of the automatic variables can be
manually specified to provide more control and flexibility. For more information of
the wake model see [109].

Once the section curves have been generated they can be exported to another
program which can loft a surface through the sections to generate the blade. There are
several supported file outputs supported by Propgen: a fleximesh file for use with
Adaptflexi [112], or script files for Gridgen, CFX Build and ICEM. An additional
version of Propgen called Solidprop can work with Solidworks to provide an iges file
which can be imported into many Computer Aided Design packages. Propgen has
been used successfully to carry out the hydrodynamic optimisation of an electric tip
driven thruster using a panel code. In addition it provided the propeller geometry of a
Wageninnen propeller for CNC machining.

For use with the commercial grid generation package Gridgen, Propgen
generates a script file called glyph. Gridgen supports both structured and unstructured
meshes and can export grids in most commercial file formats. The script file contains
the geometry of the sections that define the propeller as well as connecting
information. The mesh parameters and controls are also contained in the script file
such that the whole process can be automated.

Gridgen uses transfinite interpolation [113] for faces constructed from their
outer edges. For complex curvatures this results in the surface being misinterpreted

[109]. This can be resolved by splitting the surface into smaller surfaces but this

restricts the mesh. An alternate method is to define the geometry using an iges file
containing surfaces instead of curves and project the mesh onto that surface.

To generate the surfaces the solid modelling package Solidworks was used to
create the propeller and domain surfaces for use with Gridgen or any other software
capable of importing iges files. The propeller geometry is automatically generated in
the solid modelling package using a built in program Solidprop, written for this
purpose.

Gridgen is a powerful structured grid generator providing excellent control on
the mesh. However, the unstructured capabilities of Gridgen were found to be limited
and the mesh generation process does not exploit many of the benefits of unstructured
meshes. ICEM was found to be more suited for unstructured meshes and has excellent
features. In addition ICEM has the capability of automatically creating inflation
layers which are crucial in obtaining good results when using unstructured meshes as
demonstrated for the wing. A script file for ICEM can be exported from Propgen to
automatically generate marine propeller meshes. In addition the propeller surface can
be created within ICEM from the existing curves producing a surface. The blade was
created from multiple B-spline surfaces each created from four surrounding curves.
The four curves were the two half sections and the leading and trailing edge curves
between those two sections. Wrapping the surface around the blade using only the two
complete sections was found to be inadequate. The leading and trailing edge curvature
was not reproduced correctly. The same was found if one surface was lofted though

all the sections.

6.3 Mesh considerations

Generating structured meshes for marine propellers can be very time
consuming. To build a structured mesh topology can be very complex resulting in
many blocks. The topology can be simplified by using degenerate blocks where a
block has 5 faces instead of six, but several solvers do not have this capability. The
alternative and most popular way is to truncate the blade tip such that there is a finite
chord at the blade tip [30]. In reality most open water marine propellers have zero
chord at the blade tip. This gives acceptable predictions as far as Kt and Kq are
concerned. However, the tip vortex is strongly dependent on the tip geometry and thus
must be modelled as accurately as possible. Unstructured meshes are more versatile

when modelling complex geometries and do not encounter this problem. In addition

83

they are quicker to generate only requiring the bounding faces of the volume to
generate the mesh.

A structured mesh was generated using Propgen and Gridgen. The blade tip
was truncated to simplify the blocking structure. However it was decided quite early
on that this approximation was not acceptable for this research and instead of using a
more complicated blocking structure it was decided to use unstructured meshes
instead. This decision was also justified by the adaptive mesh friendliness of

unstructured meshes, which would prove advantageous at a later stage.

84

7 VEX procedure for Propeller modelling

In this chapter a scheme is presented for the application of the VFX method to a
marine propeller. The algorithm is described step by step and the effects of different
parameters discussed. The developed algorithm is later applied to two marine
propellers in chapters 8 & 9 and the results compared to available experimental data.

The tip vortex structure for a marine propeller is more complicated than the tip
vortex of a wing. The vortex core line follows a helical like path downstream of the
blade tip with varying pitch and contraction. In order to capture this complex vortex
an automated algorithm was devised for use with VFX. The only external input
required from the user is the desired plane spacing.

The blade tip is taken as the first jump point for the algorithm. A circular plane
having a radius 0.25 of the propeller diameter centred about the first jump point is
used to extract the stationary frame velocities. The velocities are extracted at the
points where the cell edges intersect with the plane. The VEX method is used to locate
the vortex core on the first plane. Using the velocity at the predicted vortex core a
new jump point is projected a given distance downstream. The rotation of the domain

must be taken into account when projecting the new jump point.

Figure 7.1 — VEX procedure for propellers. Red spheres are the jump points and yellow crosses the
VEX vorlex cores.

A plane is then used to extract the velocities at the new jump point and the
procedure is repeated again. Figure 7.1 shows a graphical representation of this
procedure on the DTMB P4119 propeller. The red spheres represent the jump points
and the Yellow crosses the VFX vortex cores.

Using the blade tip as the starting point for the algorithm means that the vortex is
not captured upstream. However the above procedure can be performed in the
upstream direction as well to track the vortex upstream of the starting point. A smaller
plane spacing is recommended for the upstream tracking since the tip vortex is likely
to be formed next to the leading edge of the blade which usually has a higher
curvature than the vortex helix. Thus a finer spacing will help to capture the vortex
more accurately.

The plane spacing and bounds can be varied. Because of the complex nature of
the vortex core geometry a small spacing of SOmm was chosen for the planes. If a
bigger spacing is used with small plane bounds then there is a risk that the jump point
will be too far away from the vortex core and it will not lie in the plane. It is clear that
a small plane spacing can be used with small planes; whereas a bigger plane spacing
requires larger planes. The computational effort increases both with number of planes
and plane size. However the computational effort increases with plane size squared so
it is better to have more small planes.

This procedure was tested on the DTMB P4119 using the velocities relative to
the rotating mesh but proved unsuccessful. The procedure was similar to the one
described above. The first jump point was the blade tip and the next plane was
projected in the direction of the relative velocity at the vortex core. The new plane
was normal to the velocity vector at the previous vortex core point. This procedure
proved highly sensitive to the orientation of the plane and failed after a few iterations.

The vortex decays very quickly outside the refined mesh and thus does not
propagate substantially with each mesh refinement, thus a large number of mesh
iterations are required. In order to increase the distance the vortex propagates with
each iteration, the characteristics of the identified vortex core line were used to define
a predicted vortex core downstream of the identified one. The predicted vortex core
line is a helix with its pitch and contraction the same as the average pitch and
contraction of the identified vortex core line. The mesh was then refined for both

identified and predicted vortex core lines. As long as the predicted vortex is near the

86

vortex region the number of refinement iterations is reduced dramatically. It is
possible that after the use of the predicted vortex that only the VFX method needs to

be applied once to locate the resulting vortex core line if needed.

87

8 DTMB P4119 and numerical model

The DTMB P4119 is a three bladed open water marine propeller tested at the
David Taylor Model Basin [77]. It is a propeller frequently used for numerical method
validation and was used at the Propeller RANS/Panel workshop [114]. Extensive tests
were performed both in the towing tank and water tunnel and detailed data is
available.

The propeller was tested in the 24 circulating water tunnel at the David Taylor
Model Basin and Laser Doppler Velocimetry (LDV) data for the boundary layer and
wake were obtained. For the open water tests the propeller was tested in a
conventional towing tank.

The geometry of the water tunnel is shown in Figure 8.1. The complex
geometry of the test section was not modelled in the numerical analysis. The
numerical model was a 120° segment containing one blade of the propeller. Rotational
image boundaries were used to model the whole propeller. This reduces the
computational size of the domain. The outer boundary was a cylinder at a diameter of
38 which is equivalent to 3 times the propeller diameter. The outer boundary was set
as a free slip wall. The geometry of the drive shaft was modelled and extended all the
way to the outlet boundary. The support struts for the drive shaft were not modelled.

The base mesh for the DTMB P4119 consisted of 315,114 cells. No clustering
of cells was performed apart from near the surfaces of the propeller. An inflation layer
on the propeller blade was also incorporated consisting of 51,000 prisms giving a y*
value ranging from 30 to 40. The mesh was then progressively refined in the region of
the tip vortex according to the solution and the VFX method. The maximum cell edge

length in the refinement area was progressively decreased for each mesh.

88

A

L 26" J
[] Hatch Cover

29"

Y T7TT 7T

Propeller Shaft

Exit Nozzle

27" D—~]
287"

N
N

N
K
N

N
N
N
N

_._ALArl////II £ Z

5I 3II
I

16" / Hatch Cover

AR ARY A

-

29"

43"

__/ Observation

Window

241%6u 23%;"

Figure 8.1 — Test section of the 24” VPWT at the David Taylor Model Basin

89

8.1 Results

After each solution the vortex is identified using VFX and the mesh refined in
the vicinity of the vortex core. The resulting meshes are shown in Table 8-1. The
mesh is refined around the vortex core line. A maximum cell edge length and number
of cell layers away from the vortex core line having this property are specified. This
results in a cylindrical region of refined cells with the vortex core line being its axis.
This is called the outer refinement region. In addition a smaller cylinder with a finer
mesh can also be specified the same way called the inner refinement region. As
explained previously a predicted vortex core line is also used for refinement. No inner

refinement region was specified for the predicted core for any of the meshes.

;/ Outer

Figure 8.2 — Refinement regions for propeller mesh

90

As the mesh is refined the vortex propagates further downstream. After 4
refinements the vortex no longer propagated downstream with further refinements.
Several mesh densities and strategies were used to propagate the vortex further
downstream with no success. A finer mesh was generated near the propeller and the
predicted refinement region was shortened in an attempt to cluster more cells near the
blade. The predicted region was deemed not to need refinement since the vortex
dissipated well upstream. Meshes 5b to5d were the resulting meshes (Table 8-1),
however the vortex did not propagate any further than 0.5D.

Use of a transient solution solved the problem and the vortex propagated to
1.3D downstream to the end of the refined mesh where it quickly dissipated within a
short distance. This was for mesh 5d using one timestep of 0.1s. This is because the
vortex has a tendency to wander even for steady flow problems. Using a steady state
scheme smears the wandering vortex over several timesteps where as a transient
scheme does not have this problem. By solving the flow as a transient problem no
averaging of the flow is performed and thus no smearing of the tip vortex is present.
The unsteadiness of the forces is presumed small enough such that there is no need to

solve for several timesteps and average the forces.

Mesh Inner Outer Predicted

Max length | Layers | Max length | Layers | Max length | Layers
Base - - - - - -
Refined 2 - - 0.004 5 - -
Refined 3 - - 0.003 4 0.005 4
Refined 4 - - 0.0015 5 0.004 5
Refined 5 - - 0.001 5 0.003 5
Refined 5b 0.001 1 0.003 4 0.004 5
Refined 5¢ 0.001 5 0.004 5 0.004 5
Refined 5d - - 0.0015 6 0.004 5
Refined 6

Table 8-1 - Mesh properties for refined meshes

With progressive refinement in the tip vortex region the predicted thrust and
torque are in better agreement with the open water experimental results. At the same
time the tip vortex is able to propagate further downstream. The over prediction of the
torque coefficient is a common problem of RANS predictions and it is accounted to
the inability of the k-€ model to predict the stagnation pressure on the blade [115].
The k-€ model has been shown by Bulten et al. [115] to produce higher stagnation

pressures thus over predicting the torque coefficient.

Mesh Size Ki |[A%Krexp| Ka |A% Kgexp

Base 315,114 0.155 6.4 0.0286 2.1
Refined 2 367,247 0.153 4.8 0.0308 9.9
Refined 3 1,380,466 | 0.152 3.9 0.0305 9.1
Refined 4 1,205,930 | 0.151 3.6 0.0302 7.8
Refined 5 2,437,495|0.144 -1.2 0.0293 4.6
Refined 5b 1,461,281 |0.155 6.5 0.0310 10.7
Refined 5¢ 1,906,560 0.151 3.6 0.0305 9.1
Refined 5d 2,650,308 0.158 8.2 0.0310 10.7
Refined 6 7,007,050 0.172 17.5 0.0328 17.2
Refined 6 unsteady 7,007,050 0.145 -0.9 0.0292 4.2
Experimental 0.146 0.028

Table 8-2 - Kt and K, variation for DTMB4119 with different meshes

92

8.2 Comparison with LDV data

8.2.1 Section pressure distribution

Comparing the Cp distribution for the section at 0.9 1/R similar results can be seen
as compared to the Grenoble workshop [114]. The Cp is over predicted near the
leading and trailing edge which was typical of most results. This is because the Cp has
been calculated from the pressure on the blade surface whereas the experimental Cp
was calculated using the LDV data by taking the velocity at the edge of the boundary
layer. A comparison of these two calculation methods in the Grenoble Workshop by
Stanier and Sanchez-Caja [116, 117] showed better agreement near the leading and
trailing edge with a significant change in the trailing edge area. The large difference
between the two calculation methods is associated with viscous effects near the

trailing edge and measurement difficulties at the leading edge [117].

0.20 1 n n A : n I A 1 : 1 i n L } n I S R _I R
0.15 + I
vv v v
010 +

> 005+t

0.00 &

-0.05 _-_

—e— LDV data |
v CFD

'010 4 T T I[T T T T : T T T : T T T ¥ } T T T T
0.0 0.2 0.4 0.6 0.8 1.0

x/c

Figure 8.3 — Cp comparison for LDV and CFD at 0.9r/R

93

8.2.2 Circumferential averaged data

Comparing the average circumferential velocities from the experimental LDV
results with the results from the 5d unsteady simulation, we can see that there is very
good agreement. The V,-1 is in particularly good agreement in the vicinity of the
blade tip. The point of change in sign of V-1 is within 0.01 r/R of the experimental
results which is an improvement over all the methods in the Grenoble Workshop
[114] which were at 0.025 r/R. This improved agreement is true for V; and V. in the
vicinity of the blade tip. V| is over predicted near the hub which was typical of all the
methods in the Grenoble Workshop.

o.4| I L 1 1 ; L 1 I !_i I 1 L 1 : 1 1 L 1 : 1 i 1 1
[S
——— VNV
b el
k —_—— X~ Xp
.-“""'\"\m.i

x'1’ Vr’ Vt

r/'R

Figure 8.4 — Average circumferential velocity comparison for CFD and LDV

94

8.2.3 Phase averaged data

The phase averaged data for a plane 0.3281x/R downstream of the propeller is
compared with the LDV results at two radii near the tip vortex. The point where V-1
and V, change sign is located at 0.924r/R. Most of the methods at the Grenoble
workshop failed to capture the detail in the flow well near the tip vortex. One of the
difficulties is that in order to compare the data at a specific radius the tip vortex
contraction has to be calculated correctly. If the tip vortex is not at the correct radius
then the data will be very different. The Grenoble editors recommended that the
analytical data be corrected depending on the tip vortex contraction for better
agreement. None of the contributors stated if the results they presented were corrected
or not. However the results presented in this work have no correction at all.

From Figure 8.5 & Figure 8.6 we can see an improvement over the results
presented in the Grenoble workshop. The tip vortex contraction and position is
captured correctly as can be seen from the point of inflection for V,, V, and position
of the peaks for V,. For both radii the position of the peaks and inflections are
predicted very well. The peak values are over predicted for V, and V, and under
predicted for V. However this is still an improvement over the results presented at
the Grenoble workshop, especially for V,. All the methods substantially under
predicted the peak magnitudes for V,. The best result under predicted the peaks by at
least 0.4Vr whereas the results presented here over predict Vr by a similar amount.
The best performing method at Grenoble was by Chen and Stern [118]. They used a
structured grid with clustering of 20x20 near the estimated tip vortex region. The
equations were solved as unsteady with time serving as a convergence parameter. As
discussed and shown previously the unsteady solution performs much better with
respect to the tip vortex and it is not surprising that this method was the best
performing at Grenoble with respect to the tip vortex. The clustering of the grid near
the tip vortex was also fundamental to the success. At short distances downstream of
the blade it is easy to estimate the tip vortex a priori, however further downstream
this method would prove impractical and the results would deteriorate if the clustering

is not in the region of the tip vortex.

95

x 1 Vi Vi

v —_—— VX'1 LDV _,._
] v, ——— V; LDV |
08} . v ———— V, LDV I
] . v . Vy-1 CFD :
1401 ° Vy CFD |
] ' v V, CFD [
1.2 Tttt
0 20 40 60 80 100 120

0 [degrees]

Figure 8.5 — Phase averaged comparison at 0.9r/R and 0.3821x/R

1.0 e T T

> |
> P
. }
!
\',’ e Vy1LDV
K é{ — —— V; LDV I
ol 3 . ——e—— V, LDV JF
oo . Vy-1CFD |
v
Wy o Vi CFD |
w
. V, CFD
15—ttt —
0 20 40 60 80 100 120

6 [degrees]

Figure 8.6 - Phase averaged comparison at 0.924r/R and 0.3821x/R

96

9 INSEAN E779A and numerical model

The INSEAN E799A is a four blade propeller, Wageningen modified type,
skewed, with a uniform pitch (P/D 1.1), a forward rake angle of 4°3” and a diameter
of 227.2 mm. The propeller was designed at the end of the 50’s for a twin-screw ferry.
In the 60’s the model propeller was selected as the reference model for the Italian
Navy Cavitation Tunnel (C.E.I.M.M.) where all the measurements were carried out
[119].

Extensive tests were performed both in the towing tank and water tunnel and
detailed data is available both from LDV [120, 121, 122, 123, 124, 125, 126, 119] and
PIV [125, 126, 127, 128] tests.

\
/ : LINE OF MUM THCKNESS LONGITYDINAL PROUECTED OUTLINE
\ |K\] MAXINUM THICKNESS LINE

~
P4
:11:1#‘>

/I \. °
I \ J[— 3.9 |[' 364 t
-) 683 1l

3 /
b}
EXPANDEC BLADE SIDE ELEVATIDN

Figure 9.1 - Geometry of the INSEAN E799A four bladed propeller model

The propeller was tested in the C.E.LM.M. tunnel. The test section is a square,
closed jet type with dimensions of 0.6m x 0.6m x 2.6m. The propeller is driven by an
upstream shaft. The geometry of the test section was not modelled in the numerical
analysis. The test section in the numerical model was circular, like in the DTMB
P4119 case. The numerical model was a 90° segment containing one blade of the
propeller. Rotational image boundaries were used to model the whole propeller. The
outer boundary was a cylinder at a diameter equivalent to 3 times the propeller

diameter. The outer boundary was set as a free slip wall. The full geometry of the

97

drive shaft was modelled and extended all the way to the inlet boundary. Supports
struts and other protrusions were neglected.

The base mesh for the E799A consisted of 110,013 cells. No clustering of
cells was performed apart from near the surfaces of the propeller. In order to simplify
the mesh generation due to time restrictions no inflation layer was used near the blade
surfaces. Instead the near wall functions were relied upon for near wall modelling
with a y* value of 100. The mesh was then progressively refined in the region of the
tip vortex according to the solution and the VFX method. The maximum cell edge

length in the refinement area was progressively decreased for each mesh.

9.1 Results

The refinement procedure was similar to the DTMB P4119. As the mesh is
refined the vortex propagates further downstream. The thrust and torque improves
with mesh refinement. The thrust is predicted well whereas the torque is under-
predicted in the order of 7%. This difference can be attributed to the lack of mesh
density in the viscous shear layer since no inflation layer was used as previously
explained. The difference for not resolving the boundary and wake adequately is
significant as demonstrated for the wing case (5.3).

Three unsteady iterations were carried out each having three timesteps of 0.1s.
The previous simulation was used as the starting point for the subsequent run. The
results presented are the forces for the final timestep of each simulation. The force
prediction showed improvement with increasing number of timesteps. In addition the

vortex propagated further downstream.

Mesh Size K: |A% K1 exp Ka A% Kg exp

Base 110,013 | 0.158 -2.7 0.0293 -7.9
Refined1 569,076 | 0.160 -1.5 0.0298 -6.3
Refined 2 1,067,513] 0.159 -1.6 0.0294 -7.4
Refined 3 1,163,111 0.157 -2.9 0.0297 -6.5
Refined 4 1,620,593 0.157 -3.1 0.0293 -8.0
Refined 4 uns 0.161 -0.8 0.0299 -5.9
Refined 5 0.155 -4.2 0.0291 -8.4
Refined 5a uns3 3,041,667 0.156 -3.6 0.0293 -7.9
Refined 5b uns6 0.159 -1.9 0.0295 -7.2
Refined 5¢ uns9 0.159 -1.8 0.0295 -7.2
Experimental 0.162 0.0318

Table 9-1 - INSEAN E799A force comparison

98

9.2 Comparison with LDV data

9.2.1 Circumferential averaged data

Comparing the average circumferential velocities from the experimental LDV
results with the results from the 5c unsteady simulation, we can see that there is very
good agreement. Compared with the DTMB P4119 the flow acceleration is more
uniform from hub to tip. This is also reflected in the LDV data. The V-1 shows the
correct trend and again is in particularly good agreement in the vicinity of the blade
tip with regards to the span position of rapid change in V-1. Vyand V, show
agreement over the whole span with the exception being V, at the blade tip. There is a

sudden reduction in LDV data V; at the blade tip which is not reflected in the CFD

results.
i f — —
0.4 + +
0.2 + +
-
= 00+ +
0.2 + +
. . Ao ——a—— WV r
T :/A ——-—— V- 1Expr
0.4 _-_ PO VI/V Exp_:
] ——0—— V/VExp [
-ttt f —
0.2 0.4 0.6 0.8 1.0 1.2
r/R

Figure 9.2 - Circumferential averaged data at 0.20 x/R

99

9.2.2 Contour plot comparison

The contour plots for axial, radial and tangential velocity are compared at
0.20 x/R and 0.65 x/R with the data from the LDV tests. The contour plots are plotted
side by side (Figure 9.3 - Figure 9.5). The LDV data is available for all four blades of
the propeller. Each blade passage shows slightly different results. Only 180° segments
are displayed for the LDV data. The data from the numerical simulation are
periodically symmetric; however for viewing purposes an 180° segment is also
displayed. The propeller is rotating clockwise in all the contour plots.

From Figure 9.3 it can be seen that there is reasonable agreement with the

LDV data, with the position of the tip vortex being predicted very well. The axial
velocity deficit for the region of fluid outward of the tip vortex is also captured very
well. The accelerated region visible in the LDV data is present in the simulation
results; however it ts larger than the experimental data. In addition the wake is not
very well defined. This is because the mesh resolution in the way of the wake is not
adequate. As indicated before (5.3) to capture the wake correctly a small mesh
spacing is required, in the order of 20 nodes across the wake. However the position of

the wake is predicted well as well as the decelerated flow region near the hub.

Axial Solution
{Contour 3)

1.283e+000 Y
1.243e+000
1.205e+000 / |

—1.168e+000 |
—1.131e+000 |
— 1.096e+000
— 1.062e+000
1.030e+000
.977e-001 /
.668e-001
.369e-001
.079e-001 |
.798e-001
.526e-001
.262e-001
.006e-001
.758e-001
.518e-001
.285e-001
.060e-001

9
9
9
9
8
8
8
8
7
7
7
7

[m sA-1]
7 T
| -

XY

Figure 9.3 — Axial velocity/U contours at 0.20 x/R. CFD left - LDV right

100

The comparison at 0.65 x/R (Figure 9.4) gives similar observations. There is
good agreement in the vortex position and general characteristics. The large deficit in
the hub has disappeared as reflected in the LDV data.

The wake roll-up is clearly visible in the LDV data where as it is not apparent in
the numerical results. This again is down to the coarse mesh in the vicinity of the
wake. As before, the wake velocity deficit is not captured due to this. The wake roll-
up and velocity deficit was captured in the wing case where the mesh in the way of

the wake was more refined.

Axial Solution
(Contour 3)

1.283e+000
1.243e+000
1.205e+000

—1.168e+000
—1.131e+000
—1.096e+000
—1.062e+000

1.030e+000
.977e-001
.668e-001
.369e-001
.079%e-001
.798e-001
.526e-001
.262e-001
.006e-001
.758e-001
.518e-001
.285e-001
.060e-001

NN N N0 0000 W W WD

[m sA-1)

|Z
XY

Figure 9.4 — Axial velocity/U contours at 0.65 x/R. CFD left - LDV right

The radial velocity comparison (Figure 9.5Figure 9.6) shows similar
conclusions to the axial results. The vortex is in the correct position, with an
inadequately resolved wake as explained previously.

The LDV vortex has a smaller diameter than the CFD results. We can see that
the vortex cuts across the sampling plane. There is the outward radial velocity region
which corresponds to the right hand side of the counter clockwise rotating vortex,
followed by the inward radial velocity caused by the opposite side of the vortex

(marked by arrows on the CFD results in Figure 9.6).

101

Vr
(Contour 4)

.000e-001
.579e-001
.158e-001
.737e-001
.316e-001 J
.947e-002 /
.737e-002 |
.263e-003
3.684e-002 |) I ’
7.895e-002 '\ e 2 2 >
-1.211e-001 ; <

-1.632e-001
2
2

|
U R0 NN W

.053e-001
.474e-001
-2.895e-001 |
-3.316e-001
-3.737e-001
-4.158e-001
-4.579e-001
-5.000e-001

Xy
Figure 9.5 — Radial velocity contours at 0.20 x/R. CFD left — LDV right

Vr ‘ e
(Contour 4)

.000e-001
.632e-001
.263e-001
.895e-001
.526e-001
.158e-001 | /|| :
.895e-002 ||\ -
.211e-002 \ o -
.263e-003
-3.158e-002-
-6.842e-002
-1.053e-001
-1.421e-001
-1.789e-001
-2.158e-001
-2.526e-001
-2.895e-001
-3.263e-001
-3.632e-001
-4.000e-001

w

|
LU= = a NN

Figure 9.6 — Radial velocity contours at 0.65x/R. CFD left - LDV right

102

10 Conclusions

The aim of this research was to develop a vortex identification algorithm capable
of being used for tip vortex mesh refinement for marine propellers. Such a method has
been developed and applied in conjunction with mesh refinement. The scheme
successfully identified the tip vortex for a wing and two propeller geometries. The
results show an improvement in Kt and Kq prediction with each mesh refinement. In
addition it has been demonstrated that the steady state RANS equations smooth out
the tip vortex structure which has difficulty propagating downstream. Using an
unsteady formulation of the RANS equations allows the vortex to develop at
significantly larger distances downstream of the propeller as observed in experimental
tests.

The Vortfind method was modified and refined to make its use with mesh
adaptation easier. The method was reformulated such that it can be carried out for an
arbitrary number of sectors. In addition the / function was normalised to aid its use
with threshold type adaptation. The method was applied to 2D cases to study the
effects of the governing parameters, showing good results.

The method was extended for 3-D cases, by the use of planes. The resulting VFX
algorithm was initially tested on a wing. The VFX was able to identify the vortex core
with great accuracy, within a computational cell of the visual location of the vortex.
The VFX method was then used to refine the mesh in the vortex region of the wing.
The position of the vortex core was dependant on the mesh density stabilising for the
finer grids. The vortex velocity profiles also changed significantly with varying mesh
spacing.

The effect of the refinement on the forces and the flow has been clearly
demonstrated. In addition simple wake capture algorithm was developed and used to
refine the wake using prisms instead of tetrahedral to limit the mesh overhead. Both
vortex and wake refinement showed improved agreement with the experimental

results.

103

10.1 Vortex capture

From the results of the mesh study it has been shown that at least15
computational nodes across the vortex core are required to capture the flow of a
vortex. This agrees with Dacles and Zilliac [41]. In addition it has been shown that the
potential region of the vortex must also be captured correctly in order to get the
correct answer. If the mesh resolution in the outer region is not adequate the vortex

core will not be correct even if the mesh resolution is adequate.

10.2 Propeller tip vortex

The process was automated and applied to propellers where the method
succeeded to track the complex helicoidal blade tip vortex. The starting point
specified as the blade tip and the VFX algorithm automatically generated the
subsequent planes depending on the vortex core line identified. The propagation of
the tip vortex further downstream was found to be very short with each refinement
step. To accelerate the propagation the mesh was refined on a predicted vortex core
line which had a helicoidal shape with its pitch dependant on the upstream identified
tip vortex. This method successfully sped up the vortex propagation downstream
typically requiring half the mesh adaptation steps than the normal procedure.

Once more the forces showed improvement over the unrefined mesh when
compared to experimental results. Apart from mesh refinement there was a marked
improvement in capturing the tip vortex by running a few iterations with an unsteady
scheme. Both the vortex dissipation and force discrepancy showed marked reductions.

If the grid is refined enough in the tip vortex region then it is possible to use
multiphase models to capture the tip vortex cavitation. If this is modelled successfully
it will provide better understanding of the tip vortex physics. Before a solution to this
problem can be obtained a suitable mesh must be generated. This work will provide

the tools to generate such a refined mesh.

10.3 Structured vs. Unstructured

Structured meshes inherently have the boundary layer region extend downstream
in the wake, which give better results. However this does not automatically guarantee

better results with structured meshes. For simple cases such as the wings modelled

104

here the vortex position and wake are more or less straight downstream of the wing.
In other cases the blocking has to be modified to ensure that the fine mesh lies in the
wake and vortex otherwise they will not be captured. This is the case for propellers
where the vortex and wake have a helicoidal shape. Stanier reports that wake aligned
structured meshes give better results [107]. Even for structured meshes knowing the
vortex position can be advantageous in the meshing of future simulations or even with

the use of moving meshes.

10.4 Vortex identification methods on planes

Sujudi and Haimes [63] stated that plane methods were laborious. This is not
entirely true. It has been shown here that plane methods can easily be implemented
even for a vortex which has a helicoidal path. In addition, the computational effort is
substantially reduced due to the limited area of over which the method works.
However as the number of vortices increases plane methods do become more difficult
to implement. The method developed here can handle multiple vortices as long as
their axes are within 30-40° of each other since the Vortfind method is relatively
insensitive to plane alignment with the vortex axis [1]. For multiple vortices that have
their axis at larger angles the method will have to be extended such that there is
starting plane for each vortex. Then using the tracking procedure described for the
propeller on each individual vortex they can be identified without any restrictions on

the vortex paths.

10.5 Final Remark

The vortex identification scheme developed here is not limited to tip vortex flows.
It is a potentially powerful tool applicable to all swirling flows and the author hopes

that future researchers will extend, refine and use this tool for future research.

105

References

1 PEMBERTON RJ, “A vortex identification technique for grid adaptation”, PhD

thesis, School of Engineering Sciences, Ship Science, 2003

2 PEMBERTON RJ, TURNOCK SR, DoDD TJ, ROGERS E, “A novel method for
identifying vortical structures”, Journal of Fluids and Structures, 16(8), pp. 1051-
1057, 2002

3 RINA, “World’s largest composite propeller successfully completes ship trials”,
The Naval Architect July/August, 2003

4 ARNDTREA, “Cavitation in vortical flows”, Annu. Rev. Fluid Mech, 34:pp143-
175, 2002

5 ITTC, “The specialist committee on cavitation induced pressures: Final report

and recommendations to the 23 ITTC”, Proceedings 23" ITTC, Vol.II, 2002

6 KUIPER G, “New developments around sheet and tip vortex cavitation on ships’

propellers”, CAV2001: 4™ International Symp. On Cavitation, Pasadena, 2001

7 ANDERSEN P, BRESLIN JP, “Hydrodynamics of ship propellers”, Cambridge Univ.
Press., 1995

8 LEeEwis EV, “Resistance, Propulsion and Vibration”, Principles of Naval
Architecture, Volume II, SNAME, pp.165, 1988

9 RANKINE WIM, “A manual of civil engineering” Charles Grifin and Co, 4h
edition, 1865

10 TAYLOR DW, “Some aspects of the comparison of model and full-scale tests”,

NACA, Report 219

11 BETZ A, “Schraubenpropeller mit geringstem Energieverlust’, K. Ges. Wiss,
Gottingen Nachr. Math.-Phys. pp193-217, 1919

12 GOLDSTEIN S, “On the vortex theory of screw propellers”, Proc. R. Soc. London
Ser. A 123:440-465, 1929

13 PRANDTL L, “Application of modern hydrodynamics to aeronautics”, NACA
Annual Report, 7", pp 157-215, 1921

106

14 LERBS HW, “Moderately loaded propellers with a finite number of blades and an
arbitrary distribution of circulation”, SNAME Trans. 60:73-117, 1952

15 SPARENBERG JA, “Application of lifting surface theory to ship screws”, Proc. K.
Ned. Akad. Wet.-Asterdam, Ser. B62(5), pp286-298, 1959

16 PIEN PC, “The calculation of marine propellers based on lifting surface theory”, J.
Ship Research, 5(2), pp1-14, 1961

17 KERWIN JE, “The solution of propeller lifting surface problems by vortex lattice

methods”, Report Department Ocean Engineering MIT, 1979

18 VAN MANEN JD, BAKKER AR, “Numerical results of Sparenberg’s lifting surface
theory of ship screws”, Proc. 4" Symposium on Naval Hydrodynamics, pp63-77
Washington, 1962

19 ENGLISH JW, “The application of a simplified lifting surface technique to the
design of marine propellers”, Ship Div. Natl. Phys. Lab., Fetlham, England, 1962

20 BROCKETT TE, “Lifting surface hydrodynamics for design of rotating blades”,
Proc. SNAME Propellers ‘81 Symp., Virginia, 1981

21 GREELEY DS, KERWINJE, “Numerical methods for propeller design and analysis
in steady flow”, SNAME Trans. 90:415-453, 1982

22 HESS JL, VALAREZO WO, “Calculation of steady flow about propellers by means
of a surface panel method”, AIAA Paper No. 85-0283, 1985

23 HEss JL, “Review of integral-equation techniques for solving potential-flow
problems with emphasis on the surface-source method’, Comput. Methods Appl.

Mech. Eng., 5, pp.145-196, 1975

24 PASHIAS C, TURNOCK SR, ABU-SHARKH S, “Design optimisation of a bi-
directional integrated thruster”, SNAME Propeller/Shafting Symposium 03, Virginia
Beach USA, Sept 2003

25 KiM HT, STERN F, “Viscous flow around a propeller-shaft configuration with
infinite pitch rectangular blades”, Journal of Propulsion and Power, Vol.6, No.4,

pp.434-444, 1990

26 UTO S, “Computation of incompressible viscous flow around a marine propeller”,

Journal of SNAJ, Vol 172, pp.213-224, 1992

107

27 STANIER MIJ, “Design and evaluation of new propeller blade sections”, 2"

International STG Symp. On Propulsors and Cavitation, Hamburg, Germany, 1992

28 CHEN B, STERN F, KiM W1J, “Computation of unsteady marine propulsor blade and
wake flow”, Proc 20" ONR Symposium on Naval Hydrodynamics, Santa Barbara,
1994

29 ABDEL-MAKSOUD M, MENTER FR, WUTTKE H, “Numerical computation of the
viscous flow around series 60 Cy=0.6 ship with rotating propeller”, Proc. 3" Osaka
Colloquium Advanced CFD Applications to Ship Flow and Hull Form Design, pp.25-
50, Osaka, 1998

30 STANIER MJ, “Numerical prediction of propeller scale effect”, PhD. Thesis,
University of Southampton, 2001

31 BULL P, “The validation of CFD predictions of nominal wake for the SUBOFF
fully appended geometry”, 21* ONR Symposium on Naval Hydrodynamics, pp1061-
1076, 1996

32 ITTC, “The propulsion committee: Final report and recommendations to the 22™

ITTC”, Proceedings 2ond ITTC, Seoul and Shanghai, 1999

33 MARCHAI CA, “Aero-hydrodynamics of sailing”, 2™ Edition, Adlard Cole
Nautical, 1979

34 THEODORE TA, “Introduction to the aerodynamics of flight”, SP-367, Scientific
and Technical Information Office, National Aeronautics and Space Administration,

Washington, D.C. 1975

35 KRAMER M, “Boundary layer stabilization by distributed damping”, Journal of

Aerospace Science 24, 1957

36 LucTt HI, “Vortex flow in nature and technology”, New York, John Wiley & Sons,
1983

37 LANCHESTER F, “Aerial flight, Vol. I: Aerodynamics”, London: Constable, 1907.
38 PRANDTL L., “Essentials of fluid dynamics”, Blackie & Son, 1952

39 PRANDTL L, TIETJENS OG, HARTIOG J, “Applied hydro and aeromechanics.”
London, England: McGraw-Hill Book Company, Inc., 1934.

108

40 SPALART PR, “Airplaine trailing vortices”, Annu. Rev. Fluid Mech. 30:107-138,
1998

41 DACLES-MARIANI J, ZILLIAC GG, “Numerical/Experimental study of a wingtip
vortex in the near field”, AIAA Journal, Vol.33, No.9 pp.1561-1568, 1995

42 VI0T X, FRUMAN D, DENISET F, BILLARD J, “Numerical simulation of tip vortices

roll-up”, 20M Symposium on Naval Hydrodynamics, 2000

43 SpALL RE, “Numerical study of a wing-tip vortex using the Euler equations”,
Journal of Aircraft, Vol.38, No.1, 2001

44 BERNTSEN GS, KJIELDSEN M, ARNDT REA, “Numerical modelling of sheet and tip
vortex cavitation with Fluent 5, CAV2001: session B5.006, 2001

45 HS1A0 CT, CHANINE GL, “Scaling of tip vortex cavitation inception noise with a
bubble dynamics model accounting for nucleus size distribution”, International Symp.

On Cavitation Inception, Honolulu, 2003

46 MAVRIPLIS DI, “Unstructured grid techniques”, Annu. Rev. Fluid. Mech.,
29:473-514, 1997

47 MULLER JD, GILES MB, “Solution adaptive mesh refinement using adjoint error
analysis”, AIAA Paper 2001-2550, 2001

48 NITHIARASU P, ZIENKIEWICZ OC, “Adaptive mesh generation for fluid mechanics
problems”, Int. J. Numer. Meth. Engng. 47:629-662, 2000

49 MAVRIPLIS DI, “Adaptive meshing techniques for viscous flow calculations on

mixed element unstructured meshes”, Int. J. Numer. Meth. Fluids, 34: 93-111, 2000

50 BOTTASSO CL, SHEPHARD MS, “Finite element adaptive multigrid euler solver for
rotary wing aerodynamics”, AIAA Journal, Vol.38, No.I, pp 50-56, 2000

51 LOHNER R, “Mesh adaptation in fluid mechanics”, Engineering Fracture
Mechanics, Vol.50, No.5/6, pp.8§19-847, 1995

52 PELLETIER D, “Adaptive finite element computations of complex flows”, Int. J.
Numer. Meth. Fluids 31: 189-202, 1999

53 BARTH TJ, “Aspects of unstructured grids”, VKI Lecture Series, 1994-05, revised
February 1995

109

54 ROGERS SE, ROTH K, NASH SM, BAKER MD, SLOTNICK JP, WHITLOCK M, CAO
HV, “Advances in overset CFD processes applied to subsonic high-lift aircrafr’, 18"
ATAA Applied Aerodynamics Conference, AIAA 2000-4216, Colorado, August 2000

55 CHAN WM, GoMEZ III RJ, ROGERS SE, BUNING PG, “Best practises in overset grid
generation”, 32" AIAA Fluid Dynamics Conference, AIAA 2002-3191, Missouri,
June 2002

56 DINDAR M, SHEPHARD MS, FLAHERTY JE, JANSEN K, “Adaptive CFD analysis for
rotorcraft aerodynamics”, Comput. Methods Appl. Mech. Engrg. 189: 1055-1076,
2000

57 LEVY Y, DEGANI D, SEGINER A, “Graphical visualization of vortical flows by
means of helicity”, AIAA Journal, Vol.28, No.8, pp. 1347-1352 , August 1990

58 STRAWN RC, KENWRIGHT DN, AHMAD J, “Computer visualisation of vortex wake
systems”, AIAA Journal, Vol.37, No.4, pp. 511-512, April 1999

59 SADARIOEN TA, PosT FH, MA B, BANKS DC, PAGENDARM H-G, “Selective
visualization of vortices in hydrodynamic flows”, IEEE Visualization *98, pp.419-422,
October 1998

60 BERDAHL CH, THOMPSON DS, “Eduction of swirling structure using the velocity
gradient tensor”, AIAA Journal, Vol.31, No.I, pp. 97-103, August 1990

61 JEONG J, HUSSAIN F, “On the identification of a vortex”, Journal of Fluid
Mechanics, 285:69-94, 1995

62 BANKS D, SINGER B, “A predictor-corrector technique for visualizing unsteady
flow”, IEEE Transactions Visualization and Computer Graphics 1:151-163,1995

63 Susubl D, HAIMES R, “Identification of swirling flow in 3-D vetor fields”, AIAA
12th Computational Fluid Dynamics Conference, Paper 95-1715, June 1995

64 ROTH M, PEIKERT R, “A higher-order method for finding vortex core lines”,

Proceedings of the conference on Visualization '98, North Carolina, 1998

65 JIANG M, MACHIRAJU R, THOMPSON D, “A novel approach to vortex core region
detection”, Joint Eurographics — IEEE TCVG Symposium on Visualization, pp.217-
225, May 2002

110

66 JIANG M, MACHIRAJU R, THOMPSON D, “Detection and visualization of vortices”,

Department of Computer and Information Science, Ohio State University, 2002

67 GODO M, SCHECTERMAN M, LEGENSKY S, HAIMES R, “Applicability of vortex
cores to CFD simulations with realistic geometry models”, 39™ AIAA Aerospace

Sciences Meeting and Exhibit, AIAA-2001-0914, Reno, January 2001

68 JIANG M, MACHIRAJU R, THOMPSON D, “Geometric verification of swirling
features in flow fields”, IEEE Visualization 02, pp.307-314, October 2002

69 MURAYAMA M, NKAHASHI K, SAWADA K, “Simulation of vortex breakdown using
adaptive grid refinement with vortex-centre identification”, AIAA Journal, Vol.39,

No.7, 2001

70 KENWRIGHT D, HAIMES R, “Vortex identification - applications in aerodynamics:
A case study”, Proc. of the 8th conference on Visualization '97, Phoenix, Arizona,

United States, 1997

71 CEBRAL JR, LOHNER R, “Flow visualization on unstructured grids using
geometrical cuts, vortex detection and shock surfaces”, 39" AIAA Aerospace

Sciences Meeting and Exhibit, AIAA-2001-0915, Reno, January 2001

72 HENTSCHEL R, “The creation of lift by sharp-edged delta wings. An analysis of a
self-adaptive numerical simulation using the concept of vorticity content”, Aerospace

Science and Technology, No0.2:79-90, 1998

73 MURAYAMA M, NAKAHASHI K, SAWADA K, “Adaptive grid refinement coupled
with vortex core identification for vortex flow simulation about a delta wing”,
Proceedings of International Symposium on Computational Fluid Dynamics, Bremen,

Germany, September 1999

74 MURAYAMA M, NAKAHASHI K, OBAYASHI S, "Numerical simulation of vortical
flows using vorticity confinement coupled with unstructured grid" AIAA-2001-0606,
39th Aerospace Sciences Meeting and Exhibit, Reno, U.S.A., January 2001

75 MURAYAMA M, NAKAHASHI K, OBAYASHI S, "Simulation of wing tip vortices
using vorticity confinement on unstructured grid" Proc. JSASS 14th International

Sessions in 38th Aircraft Symposium, Sendai, Japan, October 2000.

76 SHEN YT, “USS Bulkeley (DDG 84) Twisted rudder coordinated trial results”,
Report No. NSWCCD-50-TR-2000/056

11

77 JEssup S, “Experimental data for RANS calculations and comparisons
(DTMB4119)” 22™ ITTC Propulsion Committee, Propeller RANS/Panel Method
Workshop, Grenoble, France, April 1998

78 HSIAO C-T, PAULEY LL, “Numerical computation of tip vortex flow generated by
a marine propeller”, Transactions of the ASME, Vol.121: 638-645, 1999

79 LEE Y-T, HAH C, LOELLBACH J, “Investigation of tip clearance vortex structures
through numerical flow visualization”, ASME Fluids Engineering Division

Conference, FED Vo0l1.229: 157-165, 1996

80 OH K-J, KANG S-H, “Numerical calculation of the viscous flow around a propeller
shaft configuration”, International Journal of Numerical Methods in Fluids, Vol 21:1-

13, 1995

81 ABDEL-MAKSOUD M, HELLWIG KATRIN, BLAUROCK J, “Numerical and
experimental investigation of the hub vortex flow of a marine propeller”, 25"

Symposium on Naval Hydrodynamics, St. Johns, 2004

82 FERZIGER JH, PERIC MP, “Computational methods for fluid dynamics”, 2™ edition,

Springer, 1999

83 ANDERSON, “Computational methods for fluid dynamics: Basics with

applications”, McGraw-Hill Inc., 1995
84 Fluent v6.1, FLUENT INC, 10 Cavendish Court, NH 03766, USA
85 CFX-5.1, ANSYS INC., 275 Technology Drive, PA15317, USA

86 RHIE CM, CHOW WL, “A numerical study of the turbulent flow past an isolated
aerofoil with trailing edge separation”, AIAA Paper §2-0998, 1982

87 BARTH TJ, JESPERSON DC, “The design and application of upwind schemes on
unstructured meshes”, AIAA Paper 89-0366, 1989.

88 ANSYS INc., “Solver theory”, CFX-5 Users Manual, 2000

89 RAwW M, “Robustness of coupled algebraic multigrid for the Navier-Stokes
equations”, AIAA 96-0297, 34th Aerospace and Sciences Meeting & Exhibit, January
15-18, Reno, NV, 1996

90 HUTCHINSON BR, RAITHBY GD, *“A multigrid method based on the additive

correction strategy”, Numerical Heat Transfer, Vol. 9, pp. 511-537, 1986.

112

91 OsaMA AK, TIN-CHEE W, IHAB A, Liu CH, “Prediction of near- and far-field
vortex-wake turbulent flows”, AIAA Atmosperic Flight Mechanics Conference,

Balitimore August, AIAA 95-3470-CP, 1995

92 WALLIN S, GIRIMAJISS, “Evolution of an isolated turbulent trailing vortex”,
AIAA Journal, Vol.38, No.4, April, 2000

93 DIETZ W, FAN M, STEINHOFF J, WENREN Y, “Application of vorticity confinement
to the prediction of the flow over complex bodies”, AIAA CFD conference, Anaheim,
CA, ATIAA-2001-2642, June, 2001

94 LOHNER R, YANG C, ROGER R, “Tracking vortices over large distances”, 24"

Symposium on Naval Hydrodynamics, Fukuoka, Japan, July, 2002

95 ARAKAWA C, FLEIG O, IIDA M, SHIMOOKA M, “Numerical approach for noise
reduction of wind turbine blade tip with Earth Simulator”, Journal of the Earth

Simulator, Vol.2, 11-33, March 2005

96 MENTER FR, “Two-equation eddy-viscosity turbulence models for engineering
applications”, AIAA Journal, 32(8), 1994

97 PATTENDEN RJ, TURNOCK SR, PASHIAS C, “Oblique ship flow predictions using
identification of vortex centres to control mesh adaptation”, Proc. of CFD Workshop,

pp 454-459 , Tokyo, 2005

98 PATTENDEN RJ, TURNOCK SR, BISSUEL M, PASHIAS C, “Experiments and
numerical modelling of the flow around the kvilcc2 hullform at an angle of yaw”, Proc
of 5th Osaka Colloquium on advanced research on ship viscous flow and hull form

design, pp163-170, 2005

99 SPATH, “Cluster algorithm analysis for data reduction and classification of

objects”, Ellis Horwood Ltd, Chichester, 1980

100 YIN X, GERMAY N, “A fast genetic algorithm with sharing scheme using cluster
methods in multimodal function optimisation”, Proc. of the Int. Conf. on Artificial

Neural Nets and Genetic Algorithms, pp450-457, 1993

101 TUurRNOCK SR, “Prediction of ship-rudder interaction using parallel
computations and wind tunnel measurements”, University of Southampton, Ph.D

Thesis, 1993

102 ICEM 4 CFD v5.0, ICEM CFD ENGINEERING, 2855 Telegraph Avenue,
CA94705, USA

103 TURNOCK SR, QUERARD ABG, “Measurements of the evolution of the wake and
tip vortex of a control surface undergoing periodic motion”, 27" American Towing

Tank Conference, St. John’s, Canada, August 2004

104 SANCHEzZ-CAJA A, RAUTAHEIMO P, SUKONEN T, “Simulation of incompressible
viscous flow around a ducted propeller using a RANS equation solver”, 23"

Symposium on Naval Hydrodynamics, 2001

105 WS ATKINS CONSULTANTS AND MEMBERS OF THE NSC, “Best practice guidelines
for marine applications of computational fluid dynamics,” URL:

http://pronet.wsatkins.co.uk/marnet/guidelines/guide.html/ [15 Dec 2002].

106 ITTC, “Report of resistance and flow committee”, 20" ITTC San Francisco,
1993

107 STANIER M, “Numerical prediction of propeller scale effect”, University of
Southampton, Ph.D Thesis, 2001

108 KERWINJE, “Marine propellers”, Ann. Rev. Fluid Mech., 18:367-403, 1986

109 PASHIAS C, TURNOCK SR, “Hydrodynamic design of a bi-directional rim-driven

thruster”, Ship Science report 128, University of Southampton, 2003

110 KouH JS, LIANG WY, “Development of a computer aided propeller design
system’, Journal SNAME, Vol.14(2), pp.1-17, 1995

111 KouH JS, HAN CH, CHEN Y1, “A new geometric modelling method for marine
propellers”, 9™ Symp. on Practical Design of Ships and other Floating Structures,
Luebeck, 2004

112 RYCROFT NC, TURNOCK SR,"Three dimensional multiblock grid generation:

Fleximesh", Ship Science Report 101, University of Southampton, November 1997

114

113 HALL CA, “Construction of curvilinear co-ordinate systems and applications to
mesh generation” International Journal for Numerical Methods in Engineering, 7:461-

4717, 1973.

114 GINDROZ B, HOSHINO T, PYLKKANEN JV, editors, “Propeller RANS/Panel
method workshop proceedings” 22" 1TTC Propulsion Committee, Grenoble, 1998

115 BULTEN NWH, OPREA [A, “Consideration on deviations in torque prediction for
propellers and waterjets with RANS codes”, Marine CFD 2005, pp.79-87,
Southampton, 2005

116 STANIER MJ, “The application of a RANS code to model propeller DTRC4119”,
22" ITTC Propulsion Committee Propeller RANS/PANEL Method Workshop,
Grenoble, April, 1998

117 SANCHEZ-CAJA A, “P4119 RANS calculations at VIT", 22™ ITTC Propulsion
Committee Propeller RANS/PANEL Method Workshop, Grenoble, April, 1998

118 CHEN B, STERN F, “RANS simulation of marine-propulsor P4119 at design
condition”, 22 ITTC Propulsion Committee Propeller RANS/PANEL Method
Workshop, Grenoble, April, 1998

119 CALCAGNO G, DI FELICE F, FELLI M, FRANCHI S, PEREIRA F, SALVATORE F,
“The INSEAN E779a propeller test case: a database for CFD validation”, INSEAN
(Italian Ship Model Basin), Rome, Italy

120 CENEDESSE A, ACCARDO L, MILONE R, “Phase sampling technique in the
analysis of a propeller wake”, First Intern. Conf. on Laser Anemometry: Advances
and applications, BHRA Fluid Engineering, Manchester, 1985

121 CENEDESSE A, ACCARDO L, MILONE R, “Phase sampling in the analysis of a
propeller wake”, Experiments in Fluids 6, pp.55-60, 1988

122 STELLA A, GuJ G, D1 FELICE F, ELEFANTE M, “Propeller wake evolution
analysis by LDV, 20 Symp. On Naval Hydrodynamics, 2000

123 STELLA A, GuJ G, DI FELICE F, ELEFANTE M, “Propeller wake flow field
analysis by means of LDV phase sampling techniques”, Experiments in Fluids

124 STELLA A, GuJ G, DI FELICE F, ELEFANTE M, “Experimental investigation of
propeller wake evolution by means of LDV and flow visualization”, Journal of Ship

Research, 2000

115

125 FELLI M, DI FLORIO D, FELICE F, CALACGNO G, “Propeller wake visualization
by laser anemometry”, 6™ Asian Symposium on Visualization, Pusan, South Korea,
2001

126 FeLLl M, D1 FLoriO D, FELICE F, “Comparison between PIV and LDV
techniquesin the analysis of a propeller wake”, Journal of Visualization, Vol.5, n.3,
2002

127 D1 FELICE F, ROMANO G, ELEFANTE M, “Propeller wake analysis by means of
PIV", 23" Symposium on Naval Hydrodynamics, 2000

128 GIORDANO G, ROMANO GP, CosTANZO M, D1 FELICE F, SOAVE M, "Propeller
wake velocity and pressure fields", HSMV, Napoli, 2002

116

11 Appendix A

Propgen Source code

117

Option Explicit

Type section
x As Single
y As Single
z As Single
End Type

Type prop

radius As Single
chord As Single
rake As Single
skew As Single
pitch As Single
thickness As Single
End Type

Type section_info
thickness As Single
position As Single
le_id As Integer

te_id As Integer
num_points As Integer
End Type

Public working_path As String

‘flag for volume mesh
Public volume_mesh As Integer

Public va As Single 'advance speed

Public rps As Single 'rev per second

Public no_of_wake_points As Integer
Public final_section() As section

Public section() As section

Public section_data() As section_info
Public propdata() As prop

Public num_sections As Integer

Public num_duct_arc_points As Integer
Public blade_true, ring_true As Integer
Public pi As Double

Public num_leading_lower_points, num_trailing_lower_points, num_upper_points As
Integer

Public num_edge_section_points As Integer
Public wake() As section

Public D As Single

‘cap variables
Public cap_section_points As Integer
Public cap_auto As Integer

Public cap_sidenode_id As Integer
Public cap_left_temp() As section
Public cap_left() As section

Public cap_right() As section

Public cap_back() As section

Public cap_internal _y() As section
Public cap_internal_x() As section
Public cap_internal_z() As section
Public cap_draw As Integer

Public num_internal_x_points As Integer
Public num_internal_points As Integer
Public cap_panels_s As Integer

Public cap_panels_t As Integer

Public internal_fraction As Single
Public side_fraction As Single

Public wake_draw As Integer

'Hub variables

Public hub_offset_le As Integer

Public hub_v_leading_factor As Single
Public hub_v_trailing_factor As Single
Public hub_length As Single

Public hub_draw As Integer

Public hub_trailing_arc_connect() As section
Public hub_leading_arc_connect() As section
Public hub_trailing_edge() As section

Public hub_leading_edge() As section

Public hub_leading_end() As section

Public hub_trailing_end() As section

Public num_hub_section_points As Integer
Public hub_section_edge() As section

Public no_of_hub_strips As Integer

Public hub_helix_le() As section

Public hub_helix_te() As section

Public hub_helix_blades() As section

Public hub_panels_s, hub_panels_t As Integer
Public test() As section

'duct variables

Public duct_Q As Single

Public duct_P As Single

Public duct_thickness As Single

Public duct_images As Integer

Public duct_lower() As section

Public duct_trailing_lower() As section
Public duct_leading_lower() As section
Public duct_upper() As section

Public duct_leading_arc() As section

119

Public duct_trailing_arc() As section

Public duct_leading_lower_arc() As section

Public duct_trailing_lower_arc() As section

Public duct_draw As Integer

Public duct_wake() As section

Public duct_wake_arcs() As section

Public duct_length As Single

Public duct_panels_t, duct_upper_panels_s As Integer
Public duct_freewake_length As Single

Public duct_freewake_panels_s, duct_fixedwake_panels_s As Integer
Public duct_wake_length As Single

Public duct_leading_lower_panels_s As Single

Public duct_trailing_lower_panels_s As Single

'blade variables

Public transition_length As Single

Public wake_contraction_value As Single

Public blade_tip_cluster As Single

Public blade_P As Single

Public blade_Q As Single

Public blade_panels_s, blade_panels_t, blade_fixedwake_panels_s,
blade_freewake_panels_s As Integer

Public blade_wake_length, blade_freewake_length As Single
Public no_of_blades As Integer

Public leading_spline() As section

Public trailing_spline() As section

Public wake_pitch_set As Single

Ting variables

'Public second_ring_leading_end() As section
'Public second_ring_trailing_end() As section
'Public second_ring_section_edge() As section
Public ring_panels_t As Integer

Public ring_width As Single

Public ring_split As Integer

Public ring_trailing_edge() As section

Public ring_leading_edge() As section

Public ring_leading_end() As section

Public ring_trailing_end() As section

Public num_ring_section_points As Integer
Public ring_section_edge() As section

Public no_of_ring_strips As Integer

Public ring_helix_le() As section

Public ring_helix_te() As section

Public ring_helix_blades() As section

Public Sub read_working_path()
Open "path.txt" For Input As #1
Input #1, working_path$

Close #1

End Sub

Public Sub hub_leading_section(hub_length)
Dim num_edge_points, 1,] As Integer

Dim psi, dpsi, r, P As Single

Dim angle, angle_step As Single

Dim temp() As section

num_edge_points = 100
ReDim hub_leading_end(10, num_edge_points)
ReDim temp(num_edge_points)

'set point to trailing edge of first section

hub_leading_end(1, 1).x = final_section(1, section_data(1).le_id).x
hub_leading_end(1, 1).y = final_section(1, section_data(1).le_id).y
hub_leading_end(1, 1).z = final_section(1, section_data(1).le_id).z

r = Sqr(hub_leading_end(1, 1).z * 2 + hub_leading_end(1, 1).x * 2)

P = propdata(1).pitch * D
If P=0ThenP=0.1
‘calculate the start angle and the step angle

'calculate start psi so it matches with leading edge of section
psi = (final_section(1, section_data(1).le_id).y / P) * 2 * pi
'step dpsi for the set number of steps

dpsi = ((((-hub_length / 2) - hub_leading_end(1, 1).y)/P) * 2 * pi) /
(num_edge_points - 1)

psi = psi - dpsi

helical edge

ok sfe sk sk sk st sk sk sk st sk sk skosk skosk sk skokockosk

For 1 =1 To num_edge_points

psi = psi + dpsi

temp(i).x =1 * Cos(psi)

temp(i).y = (P * psi) / (2 * pi)

temp(1).z = -r * Sin(psi)

Next

Dim s As Single

'distance between points

s = Sqr((temp(1).x - final_section(1, section_data(1).le_id).x) * 2 + (temp(1).z -
final_section(1, section_data(l).le_id).z) * 2)

angle =2 * asin((s/2) /1)

Call rotate(temp(), angle, 100)

For 1 =2 To num_edge_points
hub_leading_end(1, 1).x = temp(i).x
hub_leading_end(1, 1).y = temp(i).y

121

hub_leading_end(1, i).z = temp(i).z
Next

End Sub

Public Sub hub_nodes(node_count, hub_node_connect)
Dim i As Integer

'hub nodes
Tk sk sfe ok sk sk sk sk ok ok sk sk sk ok ok sk sk skosk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ke sk sk sk sk ok sk sk sk sk sk sk ok sk sk sk sk sk ok sk ok ok ok sk sk skok skskskosk

sk ok ockok

'hub leading end
'nodes at front of hub

first section is backwards

node_count = node_count + 1

hub_node_connect(1) = node_count

Print #1, "node", node_count, hub_leading_end(1, 100).x, hub_leading_end(1, 100).y,
hub_leading_end(1, 100).z

rest of sections

For i =2 To no_of_hub_strips + 1

node_count = node_count + 1

hub_node_connect(i) = node_count

Print #1, "node", node_count, hub_leading_end(i, 1).x, hub_leading_end(, 1).y,
hub_leading_end(i, 1).z

Next

'hub leading v section between blades leading edges

first is omitted since node defined with blade

'first node is 12

For i = 2 To no_of_hub_strips + 1

node_count = node_count + |

hub_node_connect(10 + 1) = node_count

Print #1, "node", node_count, hub_leading_end(i, 100).x, hub_leading_end(i, 100).y,
hub_leading_end(i, 100).z

Next

'hub trailing v section between blades trailing edges

'last node of section is omitted since node defined with blade
For i =1 To no_of_hub_strips

node_count = node_count + |

hub_node_connect(20 + 2 + no_of_hub_strips - i) = node_count

122

Print #1, "node", node_count, hub_trailing_end(i, 1).x, hub_trailing_end(, 1).y,
hub_trailing_end(i, 1).z
Next

'hub trailing end

'nodes at end of hub

Fori=1 To no_of_hub_strips + 1

node_count = node_count + 1

hub_node_connect(30 + 2 + no_of_hub_strips - i) = node_count

Print #1, "node", node_count, hub_trailing_end(i, 100).x, hub_trailing_end(i, 100).y,
hub_trailing_end(i, 100).z

Next

End Sub
Public Sub ring_nodes(node_count, ring_node_connect)

Dim i As Integer

ring nodes
Ve ok sk ok sk sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok sk sk Sk ok sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk s ok sk sk sk sk ok sk kR skoskokok

& skok ko

ring node on trailing edge of front blade

node_count = node_count + 1

ring_node_connect(1) = node_count

Print #1, "node", node_count, ring_section_edge(1).x, ring_section_edge(1).y,
ring_section_edge(1).z

ring node on trailing edge of front blade

node_count = node_count + 1

ring_node_connect(2) = node_count

Print #1, "node", node_count, ring_section_edge(num_ring_section_points).x,
ring_section_edge(num_ring_section_points).y,
ring_section_edge(num_ring_section_points).z

End Sub

Public Sub duct_nodes(node_count, duct_node_connect)

'duct nodes
ok ok ok skeosk sk sk Sk sk ok sk sk sk skosk ok sk e sk s sk sk sk sk sk sl sk sk sk sk sk ok ot sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk ok sk sk ok sk sk sk skosk sk sk sk sfe sk sk skook

skoofokoskok

Dim j As Integer

Forj=1To 10

leading lower edge of duct

node_count = node_count + |

duct_node_connect(j * 4 - 3) = node_count

Print #1, "node", node_count, duct_leading_lower(j, 1).x, duct_leading_lower(j, 1).y,
duct_leading_lower(j, 1).z

node_count = node_count + 1

duct_node_connect(j * 4 - 2) = node_count

Print #1, "node", node_count, duct_leading_lower(j, num_leading_lower_points).x,
duct_leading_lower(j, num_leading_lower_points).y, duct_leading_lower(],
num_leading_lower_points).z

'trailing lower edge of duct

node_count = node_count + 1

duct_node_connect(j * 4 - 1) = node_count

Print #1, "node", node_count, duct_trailing_lower(j, 1).x, duct_trailing_lower(j, 1).y,
duct_trailing_lower(j, 1).z

node_count = node_count + |

duct_node_connect(j * 4) = node_count

Print #1, "node", node_count, duct_trailing_lower(j, num_trailing_lower_points).x,
duct_trailing_lower(j, num_trailing_lower_points).y, duct_trailing_lower(j,
num_trailing_lower_points).z

Next

End Sub
Public Sub cap_nodes(node_count, cap_node_connect)

‘cap nodes
¥ 3k sk s sk sk sk ok 3k sk sk sk sk sk sk sk skoske sk sk sk Skok sk ok sk sk sk Sk sk sk sk sk st sk ok sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk skosk sk sk ok sk ok sk sk ok skok sksk skosk

skosk ok ook ok

Dim j As Integer

‘node at nose of cap

node_count = node_count + 1

cap_node_connect(1) = node_count

Print #1, "node", node_count, cap_left(1).x, cap_left(1).y, cap_left(1).z

‘node at corner near blade

node_count = node_count + 1

cap_node_connect(2) = node_count

Print #1, "node", node_count, cap_left(cap_section_points).x,
cap_left(cap_section_points).y, cap_left(cap_section_points).z

'node at other corner

node_count = node_count + 1

cap_node_connect(3) = node_count

Print #1, "node", node_count, cap_right(cap_section_points).x,
cap_right(cap_section_points).y, cap_right(cap_section_points).z

'node at middle of cap surface

node_count = node_count + 1

cap_node_connect(4) = node_count

Print #1, "node", node_count, cap_internal_x(1).x, cap_internal_x(1).y,
cap_internal_x(1).z

‘node at mid of cap_left
node_count = node_count + |

124

cap_node_connect(5) = node_count
Print #1, "node", node_count, cap_left(cap_sidenode_id).x,
cap_left(cap_sidenode_id).y, cap_left(cap_sidenode_id).z

'node at mid of cap_right

node_count = node_count + 1

cap_node_connect(6) = node_count

Print #1, "node", node_count, cap_right(cap_sidenode_id).x,
cap_right(cap_sidenode_id).y, cap_right(cap_sidenode_id).z

'node at middle of cap back

node_count = node_count + 1

cap_node_connect(7) = node_count

Print #1, "node", node_count, cap_internal_x(num_internal_x_points).x,
cap_internal_x(num_internal_x_points).y, cap_internal_x(num_internal_x_points).z

'this is not needed

'closes the cap to make a bullet
ok ok o sk sk sk sk sk sk sk sk sk sk skt sk sk ke sk stk sk sk sk sk st sk oKk s sk sk sk sk sk sk sk sk ofe sk skeook sk sk sk sk sk sk sk ok Sk sk sk sk sk sk sk sk sk sk skosk sk skoskosk skok

Kokokocksk sk ok

'node at corner near blade

'node_count = node_count + 1

‘cap_node_connect(8) = node_count

Print #1, "node", node_count, cap_left(cap_section_points).x, "0",
cap_left(cap_section_points).z

'node at middle of cap back

‘node_count = node_count + 1

'cap_node_connect(9) = node_count

'Print #1, "node", node_count, cap_internal_x(num_internal_x_points).x, "0",
cap_internal_x(num_internal_x_points).z

'node at other corner

'node_count = node_count + 1

‘cap_node_connect(10) = node_count

'Print #1, "node", node_count, cap_right(cap_section_points).x, "0",
cap_right(cap_section_points).z

End Sub
Public Sub second_cap_nodes(node_count, second_cap_node_connect)

'cap nodes
34 sk sk sk sk sk sk sk sk skosk ook sk sk ok sk sk sk sk sk sk sk sk sk sk e sk ok sk sk e sk sk 3 sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk ok ke sk ok stk skoskokok

sk ok ko

Dim j As Integer

'node at nose of cap

125

node_count = node_count + 1
second_cap_node_connect(1) = node_count
Print #1, "node", node_count, cap_left(1).x, -cap_left(1).y, cap_left(1).z

'node at corner near blade

node_count = node_count +]

second_cap_node_connect(2) = node_count

Print #1, "node", node_count, cap_left(cap_section_points).x, -
cap_left(cap_section_points).y, cap_left(cap_section_points).z

'node at other corner

node_count = node_count +]

second_cap_node_connect(3) = node_count

Print #1, "node", node_count, cap_right(cap_section_points).X, -
cap_right(cap_section_points).y, cap_right(cap_section_points).z

'node at middle of cap surface

node_count = node_count + 1

second_cap_node_connect(4) = node_count

Print #1, "node", node_count, cap_internal_x(1).x, -cap_internal_x(1).y,
cap_internal_x(1).z

'node at mid of cap_left

node_count = node_count + |

second_cap_node_connect(5) = node_count

Print #1, "node", node_count, cap_internal_y(1).x, -cap_internal_y(1).y,
cap_internal_y(1).z

'node at mid of cap_right

node_count = node_count + 1

second_cap_node_connect(6) = node_count

Print #1, "node", node_count, cap_internal_z(1).x, -cap_internal_z(1).y,
cap_internal_z(1).z

'node at middle of cap surface

node_count = node_count + 1

second_cap_node_connect(7) = node_count

Print #1, "node", node_count, cap_internal_x(num_internal_x_points).x, -
cap_internal_x(num_internal_x_points).y, cap_internal_x(num_internal_x_points).z

End Sub

Public Sub duct_4ring_edges(edge_count, duct_node_connect, duct_edge connect)
Dim 1, j As Integer

ok sk sk sk ot sk sk sk ok sk sk st sfe sk sk ok ok st sk sk sk s sk sk sk sk sk sk sk sk sk ok e sk sk sk ok sk sk st sk sk stk ste st st sk sk sk sk s sk sk sk skook ke sk skoskokokokok
Heskofok ok ok

'duct edges

V3 3 sk sk sk ok sk sk s sfe e ke sfe sk sl sk ok s skt sk sk o sk st ke sk sk ok ok s e sk 3 sk sk sk e ok sk sk sk Sk sk sk sk ke sk e ok s sk koo sk sk sk sk s sk sk sk ok skosk skok
koK skosk skok

Forj=1To 10

lower trailing edge

edge_count = edge_count + |

duct_edge_connect(80 + j) = edge_count

Print #1, "edge", edge_count, "-4", num_leading_lower_points,
duct_leading_lower_panels_s, "1.0", "0.1"

Print #1, "startnode", duct_node_connect(4 * j - 3)

For i = 2 To num_leading_lower_points - 1

Print #1, (i - 1), duct_leading_lower(j, 1).x, duct_leading_lower(j, 1).y,
duct_leading_lower(j, 1).z

Next

Print #1, "finishnode", duct_node_connect(4 * j - 2)

Tower leading edge

edge_count = edge_count + |

duct_edge_connect(70 + j) = edge_count

Print #1, "edge", edge_count, "-4", num_trailing_lower_points,
duct_trailing_lower_panels_s, "1.0", "0.1"

Print #1, "startnode", duct_node_connect(4 * j - 1)

For 1 =2 To num_trailing_lower_points - 1

Print #1, (i - 1), duct_trailing_lower(j, 1).x, duct_trailing_lower(j, 1).y,
duct_trailing_lower(j, 1).z

Next

Print #1, "finishnode", duct_node_connect(4 * j)

'upper edge

edge_count = edge_count + 1

duct_edge_connect(j * 2) = edge_count

Print #1, "edge", edge_count, "-4", num_upper_points, duct_upper_panels_s, "1.0",
"0.1"

Print #1, "startnode", duct_node_connect(4 * j)

For 1 = 2 To num_upper_points - 1

Print #1, (i - 1), duct_upper(j, 1).x, duct_upper(j, 1).y, duct_upper(j, i).z

Next

Print #1, "finishnode", duct_node_connect(4 * j - 3)

Next j
Forj=1To9

'duct trailing arc joins to the wakesheet

edge_count = edge_count + 1

duct_edge_connect(20 +j * 2 - 1) = edge_count

Print #1, "edge", edge_count, "-3", "36", duct_panels_t, "1.0", "0.1"
Print #1, "startnode", duct_node_connect(4 * j - 3)

Fori=2 To 35

Print #1, (1 - 1), duct_leading_arc(j, 1).x, duct_leading_arc(j, 1).y, duct_leading_arc(j,
).z

Next

127

Print #1, "finishnode", duct_node_connect(4 * j + 1)

‘duct leading arc

edge_count = edge_count + 1

duct_edge_connect(20 + j * 2) = edge_count

Print #1, "edge", edge_count, "-1", "36", duct_panels_t, "1.0", "0.1"
Print #1, "startnode", duct_node_connect(4 * j)

Fori=2 To 35

Print #1, (i - 1), duct_trailing_arc(j, 1).x, duct_trailing_arc(j, 1).y, duct_trailing_arc(j,
1).z

Next

Print #1, "finishnode", duct_node_connect(4 * (j + 1))

'duct lower trailing arc

edge_count = edge_count + 1

duct_edge_connect(60 + j) = edge_count

Print #1, "edge", edge_count, "-2", "36", duct_panels_t, "1.0", "0.1"

Print #1, "startnode"”, duct_node_connect(4 * j - 2)

Fori=2 To 35

Print #1, (i - 1), duct_leading_lower_arc(j, 1).x, duct_leading_lower_arc(j, i).y,
duct_leading_lower_arc(j, 1).z

Next

Print #1, "finishnode", duct_node_connect(4 * j + 2)

‘duct lower leading arc

edge_count = edge_count + 1

duct_edge_connect(50 + j) = edge_count

Print #1, "edge", edge_count, "-2", "36", duct_panels_t, "1.0", "0.1"

Print #1, "startnode", duct_node_connect(4 * j - 1)

Fori=2 To 35

Print #1, (i - 1), duct_trailing_lower_arc(j, 1).x, duct_trailing_lower_arc(j, i).y,
duct_trailing_lower_arc(j, 1).z

Next

Print #1, "finishnode"”, duct_node_connect(4 * j + 3)

Next j

End Sub
Public Sub duct_no_ring_edges(edge_count, duct_node_connect, duct_edge_connect)
Dim i, j As Integer

Yok sk ok sk sk sk ok sk sk sk sk sk sk ok ok skook sk sk ok sk sl sk sk st sk sk sk ok sk sk ok sk sk ok ok ke sk ok sk sk ok sk sk sk sk sk sk sk ok sk sk sk sk sk sk ok ok sk sk sk ok sk skosk koskok
Ak ok Kok ok
'duct edges

‘for no ring duct
Vafe sk sk sfe sk sk sk sk sk sk s sk st sk sk sk sk sk sfe sk sk sk ook sk sk e sk sk sk sk sk sk sk sk sk s sk st s s sk sk sk sk sk sk sk sk sk sk sk sk sk koo sk sk sk sk skskook

B

Forj=1To 10

lower section

edge_count = edge_count + |

128

duct_edge_connect(j * 2 - 1) = edge_count

If j=10Orj =10 Then Print #1, "edge", edge_count, "-4", section_data(0).le_id,
duct_upper_panels_s, 2 - duct_P, duct_Q

If j<>1 And j <> 10 Then Print #1, "edge", edge_count, "-1", section_data(0).le_id,
duct_upper_panels_s, 2 - duct_P, duct_Q

Print #1, "startnode", duct_node_connect(j * 4 - 3)

For i = 2 To section_data(0).le_id - 1

Print #1, (i - 1), duct_lower(j, i).x, duct_lower(j, i).y, duct_lower(j, 1).z

Next

Print #1, "finishnode", duct_node_connect(j * 4)

'upper edge

edge_count = edge_count + 1

duct_edge_connect(j * 2) = edge_count

If j=10Orj =10 Then Print #1, "edge", edge_count, "-4", num_upper_points,
duct_upper_panels_s, duct_P, duct_Q

If j<>1 And j <> 10 Then Print #1, "edge", edge_count, "-1", num_upper_points,
duct_upper_panels_s, duct_P, duct_Q

Print #1, "startnode", duct_node_connect(j * 4)

For 1 =2 To num_upper_points - 1

Print #1, (i - 1), duct_upper(j, i).x, duct_upper(j, i).y, duct_upper(j, i).z

Next

Print #1, "finishnode", duct_node_connect(j * 4 - 3)

Next

Forj=1To9

‘duct trailing arc joins to the wakesheet

edge_count = edge_count + 1

duct_edge_connect(20 + j * 2 - 1) = edge_count

Print #1, "edge", edge_count, "-3", "36", duct_panels_t, "1.0", "0.1"
Print #1, "startnode", duct_node_connect(j * 4 - 3)

Fori=2To 35

Print #1, (i - 1), duct_leading_arc(j, 1).x, duct_leading_arc(j, 1).y, duct_leading_arc(j,
1).2

Next

Print #1, "finishnode", duct_node_connect(j * 4 + 1)

'duct leading arc
edge_count = edge_count + 1
duct_edge_connect(20 + j * 2) = edge_count

Print #1, "edge", edge_count, "-1", "36", duct_panels_t, "1.0", "0.1"

Print #1, "startnode", duct_node_connect(j * 4)

Fori=2To 35

Print #1, (i - 1), duct_trailing_arc(j, i).x, duct_trailing_arc(j, 1).y, duct_trailing_arc(j,
).z

Next

Print #1, "finishnode", duct_node_connect(j * 4 + 4)

Next

End Sub

Public Sub cap_faces(face_count, cap_node_connect, cap_edge_connect)

'nose face

face_count = face_count + 1

Print #1, "face", face count, "16", "0"

Print #1, "linear"

Print #1, "origin node", cap_node_connect(1)
Print #1, "side", "0", "1", cap_edge_connect(1)
Print #1, "side", "1", "1", cap_edge_connect(8)
Print #1, "side", "2", "1", cap_edge_connect(9)
Print #1, "side", "3", "1", cap_edge_connect(3)
Print #1, "sources”, "0", "0", "0"

‘face next to cap_right

face_count = face_count + 1

Print #1, "face", face_count, "16", "0"

Print #1, "linear"

Print #1, "origin node", cap_node_connect(4)
Print #1, "side", "0", "1", cap_edge_connect(7)
Print #1, "side", "1", "1", cap_edge_connect(6)
Print #1, "side", "2", "1", cap_edge_connect(4)
Print #1, "side", "3", "1", cap_edge_connect(9)
Print #1, "sources”, "0", "0", "0"

‘face next to cap_left

face_count = face_count + 1

Print #1, "face", face_count, "16", "0"

Print #1, "linear”

Print #1, "origin node", cap_node_connect(5)
Print #1, "side", "0", "1", cap_edge_connect(2)
Print #1, "side", "1", "1", cap_edge_connect(5)
Print #1, "side", "2", "1", cap_edge_connect(7)
Print #1, "side", "3", "1", cap_edge_connect(8)
Print #1, "sources", "0", "0", "0"

‘not needed

'creates cylinder for bullet

oo sfe st sde sk ofe sk st sfe sfe sk ok sk sk sk ke sk sk sk sk st sk sk o sk sk skeosk skt sk sk sk sk sk ok sk sk sk sk sk sk sk st sk skosk sk sk ok sk skosk sk sk ko skosk skok
‘face_count = face_count + 1

'Print #1, "face", face_count, "16", "0"

‘Print #1, "linear"

'Print #1, "origin node", cap_node_connect(2)
‘Print #1, "side", "0", "1", cap_edge_connect(12)
Print #1, "side", "1", "1", cap_edge_connect(10)
'Print #1, "side", "2", "1", cap_edge_connect(13)
Print #1, "side”, "3", "1", cap_edge_connect(5)
'Print #1, "sources”, "0", "0", "0"

‘face_count = face_count + |

Print #1, "face", face_count, "16", "0"

‘Print #1, "linear"

'Print #1, "origin node", cap_node_connect(7)
Print #1, "side", "0", "1", cap_edge_connect(13)

130

'Print #1, "side", "1", "1", cap_edge_connect(11)
"Print #1, "side", "2", "1", cap_edge_connect(14)
'Print #1, "side", "3", "1", cap_edge_connect(6)
'Print #1, "sources”, "0", "0", "0"

End Sub

Public Sub second_cap_faces(face_count, second_cap_node_connect,
second_cap_edge_connect)

'nose face

face_count = face_count + 1

Print #1, "face", face_count, "16", "0"

Print #1, "linear"

Print #1, "origin node", second_cap_node_connect(1)
Print #1, "side", "0", "1", second_cap_edge_connect(3)
Print #1, "side", "1", "1", second_cap_edge_connect(9)
Print #1, "side", "2", "1", second_cap_edge_connect(8)
Print #1, "side", "3", "1", second_cap_edge_connect(1)
Print #1, "sources”, "0", "0", "0"

'face next to cap_right

face_count = face_count + 1

Print #1, "face", face_count, "16", "0"

Print #1, "linear"

Print #1, "origin node", second_cap_node_connect(4)
Print #1, "side", "0", "1", second_cap_edge_connect(9)
Print #1, "side", "1", "1", second_cap_edge_connect(4)
Print #1, "side", "2", "1", second_cap_edge_connect(6)
Print #1, "side", "3", "1", second_cap_edge_connect(7)
Print #1, "sources", "0", "0", "0"

'face next to cap_left

face_count = face_count + 1

Print #1, "face", face_count, "16", "0"

Print #1, "linear"

Print #1, "origin node", second_cap_node_connect(5)
Print #1, "side", "0", "1", second_cap_edge_connect(8)
Print #1, "side", "1", "1", second_cap_edge_connect(7)
Print #1, "side", "2", "1", second_cap_edge_connect(5)
Print #1, "side", "3", "1", second_cap_edge_connect(2)
Print #1, "sources”, "0", "0", "0"

End Sub

Public Sub duct_4ring_faces(face_count, duct_node_connect, duct_edge_connect)
Dim j As Integer

'duct for ring

'has a gap on the lower side

‘duct faces
toe sk sk sk sk sk sk sk ot e s ke st sk sk sk sk sk sk ok sk sk ok sk sk st sk st sk st ok ol sk s sk sk s skosk sk sk sk sk sk sk skosk sk st st sk sk sk sk sk st sk sk ke kst sk ok skosk ok

sk sk s ok ok
Forj=1To9
'leading lower face

131

face_count = face_count + 1

Print #1, "face", face_count, "16", "3"

Print #1, "linear"

Print #1, "origin node", duct_node_connect(j * 4 + 4)
Print #1, "side", "0", "1", duct_edge_connect(71 + j)
Print #1, "side", "1", "1", duct_edge_connect(50 + j)
Print #1, "side", "2", "1", duct_edge_connect(70 + j)
Print #1, "side", "3", "1", duct_edge_connect(20 + j * 2)
Print #1, "sources”, "0", "0", "0"

‘upper face

face_count = face_count + |

Print #1, "face", face_count, "16", "3"

Print #1, "linear"

Print #1, "origin node", duct_node_connect(j * 4 + 1)

Print #1, "side", "0", "1", duct_edge_connect(j * 2 + 2)
Print #1, "side", "1", "1", duct_edge_connect(20 + j * 2)
Print #1, "side", "2", "1", duct_edge_connect(j * 2)

Print #1, "side", "3", "1", duct_edge_connect(20 +j * 2 - 1)
Print #1, "sources", "0", "0", "0"

'trailing lower face

face _count = face_count + |

Print #1, "face", face_count, "16", "3"

Print #1, "linear”

Print #1, "origin node", duct_node_connect(j * 4 + 2)

Print #1, "side", "0", "1", duct_edge_connect(81 + j)

Print #1, "side", "1", "1", duct_edge_connect(20 +j * 2 - 1)
Print #1, "side", "2", "1", duct_edge_connect(80 +)

Print #1, "side", "3", "1", duct_edge_connect(60 + j)

Print #1, "sources", "0", "0", "0"

Next

End Sub
Public Sub duct_no_ring_faces(face_count, duct_node_connect, duct_edge_connect)
Dim j As Integer

‘duct for no ring

'duct faces
ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk st sk skosk skook

ok st ok o ok sk >k

‘upper face

Forj=1To9

face_count = face_count + |

Print #1, "face", face_count, "16", "3"

Print #1, "linear"

Print #1, "origin node", duct_node_connect(j * 4 + 1)
Print #1, "side", "0", "1", duct_edge_connect(j * 2 + 2)

132

Print #1, "side", "1", "1", duct_edge_connect(20 + j * 2)
Print #1, "side", "2", "1", duct_edge_connect(j * 2)

Print #1, "side", "3", "1", duct_edge_connect(20 +j * 2 - 1)
Print #1, "sources", "0", "0", "0"

'Tower face

face_count = face_count + |

Print #1, "face", face_count, "16", "3"

Print #1, "linear"

Print #1, "origin node", duct_node_connect(j * 4 + 4)

Print #1, "side", "0", "1", duct_edge_connect(j * 2 + 1)
Print #1, "side", "1", "1", duct_edge_connect(20 +j* 2 - 1)
Print #1, "side", "2", "1", duct_edge_connect(j * 2 - 1)
Print #1, "side", "3", "1", duct_edge_connect(20 + j * 2)
Print #1, "sources", "0", "0", "0"

Next

End Sub
Public Sub missing_section_for_hub(edge_count, blade_node_connect,
blade_ends_connect, blade_section_connect, blade_edge_connect, blade_panels_t,
blade_panels_s, hub_node_connect, ring_node_connect)

Dim q As Integer

Dim i As Integer

Dim num_upper_section_nodes As Integer

'upper side of section
edge_count = edge_count + 1
blade_section_connect(2) = edge_count
num_upper_section_nodes = 1 + section_data(1).num_points - section_data(1).le_id
Print #1, "edge", edge_count, "-1", num_upper_section_nodes, blade_panels_s,
blade_P, blade_Q
Print #1, "startnode", blade_node_connect(1)
q = section_data(l).le_id
For i =2 To num_upper_section_nodes - 1
q=q+1
Print #1, (i - 1), final_section(1, q).x, final_section(l, q).y, final_section(1, q).z
Next
Print #1, "finishnode", blade_node_connect(2)

End Sub

Public Sub hub_edges(edge_count, hub_node_connect, hub_edge_connect,
blade_node_connect, blade_section_connect, hub_panels_t, hub_panels_s)
Dim i, j As Integer

Dim step, old_step, new_step

'hub edges

leading edge arcs on front of hub
13t sk sk sfe ok sk sk sk st sk sk sk st sk sk sk ok s sk sf Sk oske sk st sk she sk sk sk ke sk sk sk sk sk sk sk sk sk sk Sk Sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk ok Kok koo

*

step = 120 / no_of_hub_strips
old_step = 2 - step
new_step =0

For j=1 To no_of_hub_strips

old_step = old_step + step

new_step = new_step + step

edge_count = edge_count + 1

hub_edge_connect(j) = edge_count

Print #1, "edge", edge_count, "-2", step, hub_panels_s, "1.0", "0.1"
Print #1, "startnode", hub_node_connect(j)

For 1 = old_step To new_step - 1

Print #1, (i + 1 - old_step), hub_leading_edge(i).x, hub_leading_edge(i).y,
hub_leading_edge(i).z

Next

Print #1, "finishnode", hub_node_connect(j + 1)

Next j

'leading end of hub helixes

For j =1 To no_of_hub_strips + 1
edge_count = edge_count + 1
hub_edge_connect(10 + j) = edge_count

If j <> (no_of_hub_strips + 1) And j <> 1 Then Print #1, "edge", edge_count, "-1",
"100", hub_panels_t, "1.0", "0.1"

If j = (no_of_hub_strips + 1) Or j =1 Then Print #1, "edge", edge_count, "-4", "100",
hub_panels_t, "1.0", "0.1"

If j = 1 Then Print #1, "startnode", blade_node_connect(1)

If j <> 1 Then Print #1, "startnode", hub_node_connect(j)

Fori=2To 99

Print#1, (1 - 1), hub_leading_end(j, 1).x, hub_leading_end(j, 1).y, hub_leading_end(j,
).z

Next

If j =1 Then Print #1, "finishnode", hub_node_connect(1)
If j <> 1 Then Print #1, "finishnode", hub_node_connect(10 + j)
Next

leading V section
3k sk she st sk st ok sfe sk sk sk ok sk sk st sk sk skeoske e sk sk sk ok sk sk sk sk sk ok sk sk sk sk ok ok sk sk sk sk ok sk sk sk sk sk sk st ok ok ok sk sk sk sk sk ok ok sk sk sk sk ok sk kg skosk

k

step = 120 / no_of_hub_strips
old_step =2 - step

new_step =0

For j =1 To no_of_hub_strips

old_step = old_step + step

new_step = new_step + step

edge_count = edge_count + 1

hub_edge_connect(20 + j) = edge_count

Print #1, "edge", edge_count, "-1", step, hub_panels_s, "1.0", "0.1"
If j =1 Then Print #1, "startnode", blade_node_connect(1)

If j <> 1 Then Print #1, "startnode", hub_node_connect(10 + j)
For 1 = old_step To new_step - 1

Print #1, (1 + 1 - old_step), hub_helix_le(i).x, hub_helix_le(i).y, hub_helix_le(i).z
Next

Print #1, "finishnode", hub_node_connect(10 + j + 1)

Next j

'helixes between blades
Poe sk sk s sk sk sk sk sk sk e ok ok sk sk sk sk sk sk sk sk st sk s sk sksfe sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok s sk sk sk sk skeook sk ok ok sk ok sk sk sk sksk skoskoskok

*
For j =2 To no_of_hub_strips
edge_count = edge_count + 1
hub_edge_connect(30 + j) = edge_count

Print #1, "edge", edge_count, "-1", "100", blade_panels_s, blade_P, blade_Q
Print #1, "startnode", hub_node_connect(10 + j)

Fori=2 To 99

Print #1, (i - 1), hub_helix_blades(j, 1).x, hub_helix_blades(j, 1).y, hub_helix_blades(j,
).z

Next

Print #1, "finishnode", hub_node_connect(20 + j)

Next

'second hub blade

'not defined with blade

edge_count = edge_count + 1

hub_edge_connect(30 + 1 + no_of_hub_strips) = edge_count

Print #1, "edge", edge_count, "-4", section_data(1).le_id, blade_panels_s, 2 - blade_P,
blade_Q

Print #1, "startnode", hub_node_connect(20 + 1 + no_of_hub_strips) 'trailing edge
For i =2 To section_data(l).le_id - 1

Print #1, (i - 1), hub_section_edge(10, i).x, hub_section_edge(10, i).y,
hub_section_edge(10, 1).z

Next

Print #1, "finishnode", hub_node_connect(10 + 1 + no_of_hub_strips)

leading V section
e sk sk sk sk sk s sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk st st ske sk sk sk sk sk sk sk sk sk sk st sk sk sk sk sk sk sk sk sk sk ok sk sk ke sk sk sk sk sk sk sk sk sk sk sk ok sk sk skook

ES

step = 120 / no_of_hub_strips
old_step =2 - step

new_step =0

For j=1 To no_of_hub_strips

old_step = old_step + step

new_step = new_step + step

edge_count = edge_count + 1

hub_edge_connect(40 + no_of_hub_strips + 1 - j) = edge_count
Print #1, "edge", edge_count, "-1", step, hub_panels_s, "1.0", "0.1"

Print #1, "startnode", hub_node_connect(20 + no_of_hub_strips + 2 - j)

For i = old_step To new_step - |

Print #1, (i + 1 - old_step), hub_helix_te(i).x, hub_helix_te(i).y, hub_helix_te(i).z
Next

If j = no_of_hub_strips Then Print #1, "finishnode", blade_node_connect(2)

If j <> no_of_hub_strips Then Print #1, "finishnode", hub_node_connect(20 +
no_of_hub_strips + 1 - J)

Next j

‘trailing end of hub helixes

For j =1 To no_of_hub_strips + 1
edge_count = edge_count + |
hub_edge_connect(50 + j) = edge_count

If j <> (no_of_hub_strips + 1) And j <> | Then Print #1, "edge", edge_count, "-1",
"100", hub_panels_t, "1.0", "0.1"

If j = (no_of_hub_strips + 1) Or j = | Then Print #1, "edge", edge_count, "-4", "100",
hub_panels_t, "1.0", "0.1"

If j =1 Then Print #1, "startnode", blade_node_connect(2)

If j <> 1 Then Print #1, "startnode", hub_node_connect(20 + j)

Fori=2To 99

Print #1, (i - 1), hub_trailing_end(no_of_hub_strips + 2 - j, 1).X,
hub_trailing_end(no_of_hub_strips + 2 - j, 1).y, hub_trailing_end(no_of_hub_strips +
2-j,1).z

Next

Print #1, "finishnode", hub_node_connect(30 + j)

Next

'trailing edge arcs on front of hub

*

step = 120/ no_of_hub_strips
old_step =2 - step
new_step =0

For j =1 To no_of_hub_strips

old_step = old_step + step

new_step = new_step + step

edge_count = edge_count + |
hub_edge_connect(60 + j) = edge_count

Print #1, "edge", edge_count, "-2", step, hub_panels_s, "1.0", "0.1"

Print #1, "startnode", hub_node_connect(30 + j)

For 1 = old_step To new_step - 1

Print #1, (1 + 1 - old_step), hub_trailing_edge(i).x, hub_trailing_edge(i).y,
hub_trailing_edge(i).z

Next

Print #1, "finishnode", hub_node_connect(30 +j + 1)

Next j

End Sub

Public Sub ring_edges(edge_count, ring_node_connect, ring_edge_connect,
blade_node_connect, ring_panels_t)

Dim i, j As Integer

ring edges

leading edge

edge_count = edge_count + 1

ring_edge_connect(l) = edge_count

Print #1, "edge", edge_count, "-2", 121, ring_panels_t, "1.0", "0.1"
Print #1, “startnode", blade_node_connect(num_sections * 2 - 1)
For1=2To 120

Print #1, (i - 1), ring_leading_edge(i).x, ring_leading_edge(i).y,
ring_leading_edge(i).z

Next

Print #1, "finishnode", ring_node_connect(2)

'trailing edge

edge_count = edge_count + 1

ring_edge_connect(2) = edge_count

Print #1, "edge", edge_count, "-2", 121, ring_panels_t, "1.0", "0.1"
Print #1, "startnode", blade_node_connect(num_sections * 2)
Fori=2To 120

Print #1, (i - 1), ring_trailing_edge(i).x, ring_trailing_edge(i).y,
ring_trailing_edge(i).z

Next

Print #1, "finishnode", ring_node_connect(1)

'second ring section edge

edge_count = edge_count + 1

ring_edge_connect(3) = edge_count

Print #1, "edge", edge_count, "-1", section_data(1).le_id, blade_panels_s, "1.0", "0.1"
Print #1, "startnode", ring_node_connect(1) 'trailing edge

For 1 =2 To num_ring_section_points - 1

Print #1, (i - 1), ring_section_edge(i).x, ring_section_edge(i).y, ring_section_edge(i).z
Next

137

Print #1, "finishnode", ring_node_connect(2)
End Sub

Public Sub cap_edges(edge_count, cap_node_connect, cap_edge_connect,
cap_panels_t, cap_panels_s)

Dim i, j As Integer

Dim lower_points As Integer

Dim upper_points As Integer

upper_points = cap_section_points - cap_sidenode_id + 1
lower_points = cap_sidenode_id

‘cap edges
3fe s sk sk s sk stk ks sk sk stk ok sk sk sk sk sk sk sk sk sk sk ke sk sk st st sk sk ok sk sk s sk sk sk sk sk sk sk sk sk st sk sk ok sk sk sk st sfe sk sk sk sk sk ok ok sk sk sk skok sk ok

stk sk o

‘arc on left

first part

edge_count = edge_count + 1

cap_edge_connect(1) = edge_count

Print #1, "edge", edge_count, "-4", lower_points, cap_panels_t, "1.0", "0.1"
Print #1, "startnode", cap_node_connect(1)

For1=2 To cap_sidenode_id - |

Print #1, (i - 1), cap_left(i).x, cap_left(i).y, cap_left(i).z

Next

Print #1, "finishnode", cap_node_connect(5)

‘arc on left

'second part

edge_count = edge_count + 1

cap_edge_connect(2) = edge_count

Print #1, "edge", edge_count, "-4", upper_points, cap_panels_s, "1.0", "0.1"
Print #1, "startnode", cap_node_connect(5)

For i = cap_sidenode_id + 1 To cap_section_points - 1

Print #1, (i - cap_sidenode_id), cap_left(i).x, cap_left(i).y, cap_left(i).z
Next

Print #1, "finishnode", cap_node_connect(2)

‘arc on right

‘first part

edge_count = edge_count + 1

cap_edge_connect(3) = edge_count

Print #1, "edge", edge_count, "-4", lower_points, cap_panels_t, "1.0", "0.1"
Print #1, "startnode"”, cap_node_connect(1)

For 1 =2 To cap_sidenode_id - 1

Print #1, (i - 1), cap_right(1).x, cap_right(i).y, cap_right(i).z

Next

Print #1, "finishnode", cap_node_connect(6)

‘arc on right

'second part

edge_count = edge_count + |

cap_edge_connect(4) = edge_count

Print #1, "edge", edge_count, "-4", upper_points, cap_panels_s, "1.0", "0.1"
Print #1, "startnode", cap_node_connect(6)

For 1 = cap_sidenode_id + 1 To cap_section_points - 1

Print #1, (i - cap_sidenode_id), cap_right(i).x, cap_right(i).y, cap_right(i).z
Next

Print #1, "finishnode", cap_node_connect(3)

'arc on back

first part

edge_count = edge_count + 1

cap_edge_connect(5) = edge_count

Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1"
Print #1, "startnode", cap_node_connect(2)

Fori=2To 18
Print #1, (i - 1), cap_back(i).x, cap_back(i).y, cap_back(i).z
Next

Print #1, "finishnode", cap_node_connect(7)

‘arc on back

'second part

edge_count = edge_count + 1

cap_edge_connect(6) = edge_count

Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1"
Print #1, "startnode", cap_node_connect(7)

Fori=19 To 35

Print #1, (i - 18), cap_back(i).x, cap_back(1).y, cap_back(i).z

Next

Print #1, "finishnode"”, cap_node_connect(3)

‘arc internal_x

edge_count = edge_count + 1

cap_edge_connect(7) = edge_count

Print #1, "edge", edge_count, "-1", num_internal_x_points, cap_panels_s, "1.0", "0.1"
Print #1, "startnode", cap_node_connect(4)

For i =2 To num_internal_x_points - 1

Print #1, (i - 1), cap_internal_x(i).x, cap_internal_x(1).y, cap_internal_x(i).z

Next

Print #1, "finishnode"”, cap_node_connect(7)

‘arc internal_y

edge_count = edge_count + |

cap_edge_connect(8) = edge_count

Print #1, "edge", edge_count, "-1", num_internal_points + 2, cap_panels_t, "1.0",
"0.1"

139

Print #1, "startnode", cap_node_connect(5)

For i = 1 To num_internal_points

Print #1, (i), cap_internal _y(i).x, cap_internal_y(i).y, cap_internal_y(i).z
Next

Print #1, "finishnode", cap_node_connect(4)

'arc internal_z

edge_count = edge_count + 1

cap_edge_connect(9) = edge_count

Print #1, "edge", edge_count, "-1", num_internal_points + 2, cap_panels_t, "1.0",
"0.1"

Print #1, "startnode", cap_node_connect(6)

For 1 =1 To num_internal_points

Print #1, (i), cap_internal_z(i).x, cap_internal_z(1).y, cap_internal_z(i).z

Next

Print #1, "finishnode"”, cap_node_connect(4)

'not needed

'creates bullet

ok sk ok sk sk sk sk ok sk ksl ook sk sk s sk st sk sk sk st sk sk sk st skeosk sk sk sk sk sk sk sk s sk sk sk sk ke sk sk sk sk sk sk sk ok sk sk ok sk skesk skook ok skosk sk skok sk
'arc on back

'first part

'edge_count = edge_count + 1

'cap_edge_connect(10) = edge_count

'Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1"

'Print #1, "startnode", cap_node_connect(8)

'Fori=2To 18
Print #1, (i - 1), cap_back(i).x, "0", cap_back(i).z
‘Next

'Print #1, "finishnode", cap_node_connect(9)

'arc on back

'second part

'edge_count = edge_count + 1

‘cap_edge_connect(11) = edge_count

'Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1"
'Print #1, "startnode", cap_node_connect(9)

'For1=19 To 35
Print #1, (i - 18), cap_back(i).x, "0", cap_back(i).z
‘Next

'Print #1, "finishnode", cap_node_connect(10)

'edge_count = edge_count + 1

‘cap_edge_connect(12) = edge_count

'Print #1, "edge", edge_count, "-4", "2", cap_panels_t, "1.0", "0.1"
"Print #1, "startnode", cap_node_connect(2)

'Print #1, "finishnode", cap_node_connect(8)'

‘'edge_count = edge_count + 1
‘cap_edge_connect(13) = edge_count

140

'Print #1, "edge", edge_count, "-1", "2", cap_panels_t, "1.0", "0.1"
'Print #1, "startnode", cap_node_connect(7)
Print #1, "finishnode", cap_node_connect(9)

'edge_count = edge_count + |

‘cap_edge_connect(14) = edge_count

'Print #1, "edge"”, edge_count, "-4", "2", cap_panels_t, "1.0", "0.1"
Print #1, "startnode”, cap_node_connect(3)

'Print #1, "finishnode", cap_node_connect(10)

End Sub

Public Sub second_cap_edges(edge_count, second_cap_node_connect,
second_cap_edge_connect, cap_panels_t, cap_panels_s)

Dim 1, j As Integer

Dim lower_points As Integer

Dim upper_points As Integer

upper_points = cap_section_points - cap_sidenode_id + 1
lower_points = cap_sidenode_id
‘cap edges

3k >k sk s ok sk sk sk sk sk st sk sk sk sk sk sk sk ok sk sk sk st sk s sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk ok ok sk sk skosk sk kol skok ok kR skek

'arc on left

‘first part

edge_count = edge_count + 1

second_cap_edge_connect(1) = edge_count

Print #1, "edge", edge_count, "-4", lower_points, cap_panels_t, "1.0", "0.1"
Print #1, "startnode", second_cap_node_connect(1)

For i =2 To cap_sidenode_id - 1

Print #1, (i - 1), cap_left(i).x, -cap_left(i).y, cap_left(i).z

Next

Print #1, "finishnode", second_cap_node_connect(5)

‘arc on left

'second part

edge_count = edge_count + |

second_cap_edge_connect(2) = edge_count

Print #1, "edge", edge_count, "-4", upper_points, cap_panels_s, "1.0", "0.1"
Print #1, "startnode”, second_cap_node_connect(5)

For i = cap_sidenode_id + 1 To cap_section_points - 1

Print #1, (i - cap_sidenode_id), cap_left(i).x, -cap_left(i).y, cap_left(i).z
Next

Print #1, "finishnode"”, second_cap_node_connect(2)

‘arc on right
'first part

141

edge_count = edge_count + 1

second_cap_edge_connect(3) = edge_count

Print #1, "edge", edge_count, "-4", lower_points, cap_panels_t, "1.0", "0.1"
Print #1, "startnode", second_cap_node_connect(1)

For 1 =2 To cap_sidenode_id - 1

Print #1, (i - 1), cap_right(i).x, -cap_right(i).y, cap_right(i).z

Next

Print #1, "finishnode", second_cap_node_connect(6)

‘arc on right

'second part

edge_count = edge_count + 1

second_cap_edge_connect(4) = edge_count

Print #1, "edge", edge_count, "-4", upper_points, cap_panels_s, "1.0", "0.1"
Print #1, "startnode", second_cap_node_connect(6)

For 1 = cap_sidenode_id + 1 To cap_section_points - 1

Print #1, (i - cap_sidenode_id), cap_right(i).x, -cap_right(i).y, cap_right(i).z
Next

Print #1, "finishnode", second_cap_node_connect(3)

‘arc on back

first part

edge_count = edge_count + |

second_cap_edge_connect(5) = edge_count

Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1"
Print #1, "startnode", second_cap_node_connect(2)

Fori=2To 18
Print #1, (i - 1), cap_back(i).x, -cap_back(i).y, cap_back(i).z
Next

Print #1, "finishnode", second_cap_node_connect(7)

‘arc on back

'second part

edge_count = edge_count + 1

second_cap_edge_connect(6) = edge_count

Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1"
Print #1, "startnode", second_cap_node_connect(7)

Fori=19 To 35

Print #1, (i - 18), cap_back(i).x, -cap_back(i).y, cap_back(i).z
Next

Print #1, "finishnode", second_cap_node_connect(3)

'arc internal_x

edge_count = edge_count + |

second_cap_edge_connect(7) = edge_count

Print #1, "edge", edge_count, "-1", num_internal_x_points, cap_panels_s, "1.0", "0.1"
Print #1, "startnode", second_cap_node_connect(4)

For 1 =2 To num_internal_x_points - 1

142

Print #1, (i - 1), cap_internal_x(i).x, -cap_internal_x(i).y, cap_internal_x(i).z
Next
Print #1, "finishnode", second_cap_node_connect(7)

‘arc internal _y

edge_count = edge_count + 1

second_cap_edge_connect(8) = edge_count

Print #1, "edge", edge_count, "-1", num_internal_points + 2, cap_panels_t, "1.0",
"0.1"

Print #1, "startnode", second_cap_node_connect(5)

For 1 =1 To num_internal_points

Print #1, (1), cap_internal_y(i).x, -cap_internal_y(i).y, cap_internal_y(i).z

Next

Print #1, "finishnode", second_cap_node_connect(4)

‘arc internal_z

edge_count = edge_count + 1

second_cap_edge_connect(9) = edge_count

Print #1, "edge", edge_count, "-1", num_internal_points + 2, cap_panels_t, "1.0",
"0.1"

Print #1, "startnode", second_cap_node_connect(6)

For i = 1 To num_internal_points

Print #1, (i), cap_internal_z(i).x, -cap_internal_z(i).y, cap_internal_z(i).z

Next

Print #1, "finishnode", second_cap_node_connect(4)

End Sub

Public Sub output_f1x()

Dim node_count, i, face_count As Integer

Dim edge_count, duct_panels_s, duct_panels_t As Integer

'Dim ring_panels_s, ring_panels_t As Integer

'Dim hub_panels_s, hub_panels_t As Integer

‘Dim blade_panels_s, blade_panels_t As Integer

'Dim duct_wake_panels_s, duct_wake_panels_t As Integer

'Dim blade_wake_panels_s, blade_wake_panels_t As Integer

Dim t_nodes, t_edges, t_faces As Integer

Dim num_cap_nodes, num_cap_edges, num_cap_faces As Integer

Dim num_ring_nodes, num_duct_nodes, num_hub_nodes, num_blade_nodes,
num_duct_wake_nodes, num_blade_wake_nodes As Integer

Dim num_duct_edges, num_ring_edges, num_hub_edges, num_blade_edges,
num_duct_wake_edges, num_blade_wake_edges As Integer

Dim num_duct_faces, num_ring_faces, num_hub_faces, num_blade_faces,
num_duct_wake_faces, num_blade_wake_faces As Integer

Dim cap_node_connect(7) As Integer 'should be 7
Dim cap_edge_connect(9) As Integer 'should be 9

Dim second_cap_node_connect(7) As Integer
Dim second_cap_edge_connect(9) As Integer

Dim duct_node_connect(60) As Integer
Dim duct_edge_connect(90) As Integer
Dim ring_node_connect(60) As Integer
Dim ring_edge_connect(90) As Integer
Dim hub_node_connect(60) As Integer
Dim hub_edge_connect(90) As Integer
Dim blade_ends_connect(6) As Integer
Dim duct_wake_node_connect(20) As Integer
Dim duct_wake_edge_connect(38) As Integer

Dim blade_node_connect() As Integer

Dim blade_edge_connect() As Integer

Dim blade_section_connect() As Integer

Dim blade_wake_vertedge_connect() As Integer
Dim blade_wake_secondedge_connect() As Integer

ReDim blade_node_connect(num_sections * 2)
ReDim blade_edge_connect((num_sections - 1) * 2)
ReDim blade_section_connect(num_sections * 2)

ReDim blade_wake_node_connect(num_sections * 2)

ReDim blade_wake_edge_connect(num_sections)

ReDim blade_wake_secondedge_connect(num_sections)
ReDim blade_wake_vertedge _connect(2 * (num_sections - 1))

node_count = -1
edge_count = -1
face_count = -1

num_cap_nodes =7

num_ring_nodes = 2

num_duct_nodes = 40

num_hub_nodes = 4 * (no_of_hub_strips + 1) - 2
num_duct_wake_nodes =20

num_blade nodes = num_sections * 2
num_blade_wake_nodes = num_sections * 2

num_ring_edges = no_of_ring_strips * 9 + 4
If ring_true = 1 Then

num_duct_edges = 66

Else

num_duct_edges = 38

End If

num_ring_edges = 3

144

num_cap_edges =9

num_hub_edges = no_of_hub_strips * 7 + 2

num_duct_wake_edges = 38

num_blade_edges = num_sections * 2 + (num_sections - 1) * 2
num_blade_wake_edges = num_sections * 2 + (num_sections - 1) * 2

If ring_true = 1 Then

num_duct_faces = 27

num_ring_faces =1

Else

num_ring_faces =0

num_duct_faces = 18

End If

num_cap_faces = 3

num_hub_faces = no_of _hub_strips * 3
num_duct_wake_faces = 18
num_blade_faces = (num_sections - 1) * 2
num_blade_wake_faces = (num_sections - 1) * 2

t_nodes =0
t_ edges=0
t_faces=0

If frmMain.ring_flag.value = 1 Then
t_nodes = t_nodes + num_ring_nodes
t_edges = t_edges + num_ring_edges
t_faces = t_faces + num_ring_faces
End If
If frmMain.hub_flag.value = 1 Then
t_nodes = t_nodes + num_hub_nodes
t_edges = t_edges + num_hub_edges
t_faces = t_faces + num_hub_faces
If frmMain.blade_flag.value = O Then
t_nodes = t_nodes + 2
t_edges =t_edges + 1
End If
End If
If frmMain.cap_flag.value = 1 Then
t_nodes = t_nodes + num_cap_nodes * 2
t_edges = t_edges + num_cap_edges * 2
t_faces =t_faces + num_cap_faces * 2
End If
If frmMain.blade_flag.value = 1 Then
t_nodes = t_nodes + num_blade_nodes + num_blade_wake_nodes
t_edges = t_edges + num_blade_edges + num_blade_wake_edges
t_faces = t_faces + num_blade_faces + num_blade_wake_faces
End If

If frmMain.duct_flag.value = | Then
t_nodes = t_nodes + num_duct_nodes + num_duct_wake_nodes

145

t_edges = t_edges + num_duct_edges + num_duct_wake_edges
t_faces =t_faces + num_duct_faces + num_duct_wake_faces
End If

Open "out.flx" For Output As 1

Print #1, "Thruster"

Print #1, "GRID TYPE PANEL"

Print #1, t_nodes, t_edges, t_faces, "0"

'node definition

sk s sk s sk s ok o ok s st sk sk sk ke ook sk sk sk skl ke sl s sk sk o ke ok sk s sk sk ok sk ok ok ok sk stk skok o ok ok skok ok
If frmMain.cap_flag.value = 1 Then

Call cap_nodes(node_count, cap_node_connect)

Call second_cap_nodes(node_count, second_cap_node_connect)
End If

If frmMain.duct_flag.value = 1 Then

Call duct_nodes(node_count, duct_node_connect)

Call duct_wake_nodes(node_count, duct_wake_node_connect)
End If

If frmMain.ring_flag.value = 1 Then Call ring_nodes(node_count,
ring_node_connect)

If frmMain.hub_flag.value = I Then

If frmMain.blade_flag.value = 0 Then Call missing_hub_nodes(node_count,
blade_node_connect)

Call hub_nodes(node_count, hub_node_connect)

End If

If frmMain.blade_flag.value = 1 Then

Call blade_nodes(node_count, blade_node_connect)

Call blade_wake_nodes(node_count, blade_wake_node_connect)
End If

'edge definition
Vafe sk sk ok sk ok o sk sk ok sk sk sk sk ok s sk s sk sk ok sk sk sk sk sk ok st sk sk sk ok sk sk s sk sk ok sk sk sk sk o ok sk sk ok sk ok ok sk ok sk sk sk sk stk sk ok sk ok ook sk ok sk ok

sk sk koK ok koskokookok

If frmMain.duct_flag.value = 1 Then
If ring_true = 1 Then

Call duct_4ring_edges(edge_count, duct_node_connect, duct_edge_connect)
Else

Call duct_no_ring_edges(edge_count, duct_node_connect, duct_edge_connect)
End If
Call duct_wake_edges(edge_count, duct_wake_node_connect,
duct_wake_edge_connect, duct_node_connect)
End If
If frmMain.cap_flag.value = 1 Then
Call cap_edges(edge_count, cap_node_connect, cap_edge_connect, cap_panels_t,
cap_panels_s)

146

Call second_cap_edges(edge_count, second_cap_node_connect,
second_cap_edge_connect, cap_panels_t, cap_panels_s)

End If

If frmMain.ring_flag.value = 1 Then Call ring_edges(edge_count, ring_node_connect,
ring_edge_connect, blade_node_connect, ring_panels_t)

If frmMain.hub_flag.value = 1 Then

If frmMain.blade_flag.value = 0 Then Call missing_section_for_hub(edge_count,
blade_node_connect, blade_ends_connect, blade_section_connect,
blade_edge_connect, blade_panels_t, blade_panels_s, hub_node_connect,
ring_node_connect)

Call hub_edges(edge_count, hub_node_connect, hub_edge_connect,
blade_node_connect, blade_section_connect, hub_panels_t, hub_panels_s)
End If

If frmMain.blade_flag.value = 1 Then

Call blade_edges(edge_count, blade_node_connect, blade_ends_connect,
blade_section_connect, blade_edge_connect, blade_panels_t, blade_panels_s,
hub_node_connect, ring_node_connect)

Call blade_wake_edges(edge_count, blade_wake_node_connect,
blade_node_connect, blade_wake_edge_connect, hub_node_connect,
ring_node_connect, blade_wake_vertedge_connect,
blade_wake_secondedge_connect)

End If

‘face definition
Vo st ok sk sk sk sk sk sk sk sk sk sk sfe sk sk e sfe sk s ke sk skeoste s sk sk skt skok e ook sk sk e ook sk sk sk ook sk ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk skosk sk sk sk

o sk sk stk ok ok sk ok

If frmMain.duct_flag.value = 1 Then

If ring_true = 1 Then

Call duct_4ring_faces(face_count, duct_node_connect, duct_edge_connect)
Else

Call duct_no_ring_faces(face_count, duct_node_connect, duct_edge_connect)
End If

Call duct_wake_faces(face_count, duct_wake_node_connect,
duct_wake_edge_connect, duct_edge_connect, duct_node_connect)

End If

If frmMain.ring_flag.value = 1 Then Call ring_faces(face_count, ring_node_connect,
ring_edge_connect, blade_section_connect)

If frmMain.cap_flag.value = | Then

Call cap_faces(face_count, cap_node_connect, cap_edge_connect)

Call second_cap_faces(face_count, second_cap_node_connect,
second_cap_edge_connect)

End If

If frmMain.hub_flag.value = 1 Then Call hub_faces(face_count, hub_node_connect,
hub_edge_connect, blade_section_connect, blade_edge_connect)

If frmMain.blade_flag.value = 1 Then

147

Call blade_faces(face_count, blade_node_connect, blade_ends_connect,
blade_section_connect, blade_edge_connect, hub_edge_connect, ring_edge_connect,
hub_node_connect)

Call blade_wake_faces(face_count, blade_wake_node_connect,
blade_wake_edge_connect, blade_edge_connect, blade_wake_vertedge_connect,
blade_ends_connect, blade_wake_secondedge_connect, hub_node_connect,
blade_node_connect)

End If

Close #1

End Sub

Public Sub blade_wake_faces(face_count, blade_wake_node_connect,
blade_wake_edge_connect, blade_edge_connect, blade_wake_vertedge_connect,
blade_ends_connect, blade_wake_secondedge_connect, hub_node_connect,
blade_node_connect)

Dim i As Integer

'faces for adapted wake

ok sk sk

For1=1 To num_sections - 1

face_count = face_count + 1

Print #1, "face", face_count, "2048", "1"

Print #1, "linear"

Print #1, "origin node", blade_node_connect((i) * 2)

Print #1, "side", "0", "1", blade_wake_edge_connect(i)
Print #1, "side", "1", "1", blade_wake_vertedge_connect(i)
Print #1, "side", "2", "1", blade_wake_edge_connect(i + 1)
Print #1, "side", "3", "1", blade_edge_connect((i) * 2)
Print #1, "sources”, "0", "0", "0"

Next

'faces for fixed wake

ok ofe s sk sk ok sl sk sk sie sk sk sk sk sk st sk sk sk sk sk sk sk sl oo sk skosk ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk koo skook sk skook sk skook sk sk sk sk
Fori=1 To num_sections - |

face_count = face_count + 1

Print #1, "face", face_count, "4096", "1"

Print #1, "linear”

Print #1, "origin node", blade_wake_node_connect((i- 1) *2 + 1)

Print #1, "side", "0", "1", blade_wake_secondedge_connect(i)

Print #1, "side", "1", "1", blade_wake_vertedge_connect((num_sections - 1) + 1)
Print #1, "side", "2", "1", blade_wake_secondedge_connect(i + 1)

Print #1, "side", "3", "1", blade_wake_vertedge_connect(i)

Print #1, "sources”, "0", "0", "0"

Next

End Sub
Public Sub blade_wake_edges(edge_count, blade_wake_node_connect,
blade_node_connect, blade_wake_edge_connect, hub_node_connect,

148

ring_node_connect, blade_wake_vertedge_connect,
blade_wake_secondedge_connect)

Dim j, 1 As Integer

Dim adapt, non_adapt As Integer

'free wake to 1/3 length
adapt = Int(no_of_wake_points * blade_freewake_length)

For j = 1 To num_sections

edge_count = edge_count + 1

blade_wake_edge_connect(j) = edge_count

If j =1 Or j = num_sections Then

Print #1, "edge", edge_count, "-2", adapt, blade_freewake_panels_s, "0.3", "2.0"
Print #1, "startnode", blade_node_connect((j - 1) * 2 + 2)

End If

If j <> 1 And j <> num_sections Then

Print #1, "edge", edge_count, "-1", adapt, blade_freewake_panels_s, "0.3", "2.0"
Print #1, "startnode", blade_node_connect((j - 1) * 2 + 2)

End If

Fori1=2 To adapt - 1

Print #1, (i - 1), wake(j, 1).x, wake(j, 1).y, wake(j, 1).z

Next

Print #1, "finishnode", blade_wake_node_connect((j-1) *2 + 1)

Next

'edges perpendicular to the adapted wake sections

For j = 1 To num_sections - 1

edge_count = edge_count + |

blade_wake_vertedge_connect(j) = edge_count

If j = (num_sections - 1) Then Print #1, "edge", edge_count, "-1", "2",
Int(blade_panels_t * blade_tip_cluster), "1.0", "0.1"

If j <> (num_sections - 1) Then Print #1, "edge", edge_count, "-1", "2",
blade_panels_t, "1.0", "0.1"

Print #1, "startnode", blade_wake_node_connect((j- 1) *2 + 1)

Print #1, "finishnode", blade_wake_node_connect((j - 1) * 2 + 3)
Next

‘fixed wake behind adapted wake
ok sk e sk ok sfook sk sk ok sk sk sk ok sk sfeost sk sk sk sk e sk s sk sk ke sk sk st sk sk sk sk sk sk sk skoske sk sk sk sk sk sk sk sk sk sk skt sk sk sk sk sk sk sk sk sk sk ok skt skosk

ook sk sk ok sk ok

non_adapt = | + no_of_wake_points - adapt

For j = 1 To num_sections

edge_count = edge_count + 1

blade_wake_secondedge_connect(j) = edge_count

If j =1 Orj = num_sections Then Print #1, "edge", edge_count, "-2", non_adapt,
blade_fixedwake_panels_s, "1.0", "0.1"

If j <> 1 And j <> num_sections Then Print #1, "edge", edge_count, "-1", non_adapt,
blade_fixedwake_panels_s, "1.0", "0.1"

Print #1, "startnode", blade_wake_node_connect((j- 1) *2 + 1)

149

For 1 = (adapt + 1) To no_of_wake_points - 1

Print #1, (i - adapt), wake(j, 1).x, wake(j, 1).y, wake(j, 1).z

Next

Print #1, "finishnode", blade_wake_node_connect((j - 1) * 2 + 2)
Next

'edges perpendicular to the fixed wake sections (end of wake)

For j = 1 To num_sections - 1

edge_count = edge_count + 1
blade_wake_vertedge_connect((num_sections - 1) + j) = edge_count
If j = (num_sections - 1) Then Print #1, "edge", edge_count, "-2", "2",
Int(blade_panels_t * blade_tip_cluster), "1.0", "0.1"

If j <> (num_sections - 1) Then Print #1, "edge", edge_count, "-2", "2",
blade_panels_t, "1.0", "0.1"

Print #1, "startnode", blade_wake_node_connect((j- 1) * 2 + 2)

Print #1, "finishnode", blade_wake_node_connect((j - 1) * 2 + 4)
Next

End Sub
Public Sub blade_wake_nodes(node_count, blade_wake_node_connect)
‘blade wake nodes

'only two nodes per section one at the adaption amd one at the end

Dim 1 As Integer
Dim adapt As Integer

adapt = Int(no_of_wake_points * blade_freewake_length)
For 1 =1 To num_sections

‘adaption node

node_count = node_count + |

blade_wake_node_connect(((i - 1) * 2) + 1) = node_count

Print #1, "node", node_count, wake(i, adapt).x, wake(i, adapt).y, wake(i, adapt).z

'end node

node_count = node_count + |

blade_wake_node_connect(((i - 1) * 2) + 2) = node_count

Print #1, "node", node_count, wake(i, no_of_wake_points).x, wake(i,
no_of_wake_points).y, wake(i, no_of_wake_points).z

Next

End Sub

Public Sub duct_wake_faces(face_count, duct_wake_node_connect,
duct_wake_edge_connect, duct_edge_connect, duct_node_connect)
Dim j As Integer

'duct wake sheet face
Vs st sk s s s sk sk sk sk sk sk sk st sk sk sk sk sk sk sk st s st st st s s st sk sk sk st st s st st sfesfe sk sfe sk sfesfe sk sl s sk ok

Forj=1To9

150

‘free wake

face_count = face_count + 1

Print #1, "face", face_count, "2048", "3"

Print #1, "linear"

Print #1, "origin node", duct_node_connect(j * 4 + 1)

Print #1, "side", "0", "1", duct_wake_edge_connect(j * 2 + 1)
Print #1, "side", "1", "1", duct_wake_edge_connect(20 +j * 2 - 1)
Print #1, "side", "2", "1", duct_wake_edge_connect(j * 2 - 1)
Print #1, "side", "3", "1", duct_edge_connect(20 +j * 2 - 1)

Print #1, "sources"”, "0", "0", "0"

fixed wake

face_count = face_count + 1

Print #1, "face", face_count, "4096", "3"

Print #1, "linear"

Print #1, "origin node", duct_wake_node_connect(j * 2 + 1)

Print #1, "side", "0", "1", duct_wake_edge_connect(j * 2 + 2)
Print #1, "side", "1", "1", duct_wake_edge_connect(20 + j * 2)
Print #1, "side", "2", "1", duct_wake_edge_connect(j * 2)

Print #1, "side", "3", "1", duct_wake_edge_connect(20 +j * 2 - 1)
Print #1, "sources"”, "0", "0", "0"

Next

End Sub

Public Sub duct_wake_nodes(node_count, duct_wake_node_connect)
Dim j As Integer

'duct wake nodes

*ofe sk sk sk sk s sk sk sk s sk sk sk st sk sk e s sk R sl sk sk ok sk sk sfe sk ok sk sk sk sk skook sk sk ok skoskosk skok ok

Forj=1To 10

node_count = node_count + 1

duct_wake_node_connect(j * 2 - 1) = node_count

Print #1, "node", node_count, duct_wake(j, 2).x, duct_wake(j, 2).y, duct_wake(j, 2).z

node_count = node_count + 1
duct_wake_node_connect(j * 2) = node_count
Print #1, "node", node_count, duct_wake(j, 3).x, duct_wake(j, 3).y, duct_wake(j, 3).z

Next

End Sub
Public Sub duct_wake_edges(edge_count, duct_wake_node_connect,
duct_wake_edge_connect, duct_node_connect)

‘duct wake edges
Vo sk sk sk sk sk sk e sk sk sk sk ok sk sk sk st st sk sk sk sk st s st st s sfe st sk st sfe st st ot s st sfe st s e st sfe st s s st st st st st sk sk sk sk sk sk ok sk sk sk sk stk

Dim i, j As Integer

Forj=1To 10

'staight line to 1/3 of wake for adaption

edge_count = edge_count + 1

duct_wake_edge_connect(j * 2 - 1) = edge_count

If j=10Orj =10 Then Print #1, "edge", edge_count, "-4", "2",
duct_freewake_panels_s, "0.3", "2.0"

If j<>1 And j <> 10 Then Print #1, "edge", edge_count, "-1", "2",
duct_freewake_panels_s, "0.3", "2.0"

Print #1, "startnode", duct_node_connect(j * 4 - 3)

Print #1, "finishnode", duct_wake_node_connect(j * 2 - 1)

'staight line from 1/3 to end of wake

edge_count = edge_count + 1

duct_wake_edge_connect(j * 2) = edge_count

If j=10rj=10 Then Print #1, "edge", edge_count, "-4", "2",
duct_fixedwake_panels_s, "1.0", "0.1"

If j<>1 And j <> 10 Then Print #1, "edge", edge_count, "-1", "2",
duct_fixedwake_panels_s, "1.0", "0.1"

Print #1, "startnode", duct_wake_node_connect(j * 2 - 1)

Print #1, "finishnode", duct_wake_node_connect(j * 2)

Next j
Forj=1To9

first arc at 1/3 of wake for adaption

edge_count = edge_count + 1

duct_wake_edge_connect(20 +j * 2 - 1) = edge_count

Print #1, "edge", edge_count, "-1", "36", duct_panels_t, "1.0", "0.1"

Print #1, "startnode", duct_wake_node_connect(j * 2 - 1)

Fori=2To 35

Print #1, (i - 1), duct_wake_arcs(j, 1, 1).x, duct_wake_arcs(j, 1, 1).y, duct_wake_arcs(j,
1,1).z

Next

Print #1, "finishnode", duct_wake_node_connect(j * 2 + 1)

‘arc at end of wake

edge_count = edge_count + 1

duct_wake_edge_connect(20 + j * 2) = edge_count

Print #1, "edge", edge_count, "-5", "36", duct_panels_t, "1.0", "0.1"
Print #1, "startnode", duct_wake_node_connect(j * 2)

Fori1=2 To 35

Print #1, (i - 1), duct_wake_arcs(j, 2, 1).x, duct_wake_arcs(j, 2,).y, duct_wake_arcs(j,
2,1).2

Next

Print #1, "finishnode", duct_wake_node_connect(j * 2 + 2)

Next j

End Sub

Public Sub duct_wakesheet(wake_length)
Dim i, j As Integer

ReDim duct_wake(10, 3)

ReDim duct_wake_arcs(10, 2, 36)

'set wake on the end of the duct. use upper section
Fori=1To 10

duct_wake(i, 1).x = duct_upper(i, num_upper_points).x
duct_wake(i, 1).y = duct_upper(i, num_upper_points).y
duct_wake(i, 1).z = duct_upper(i, num_upper_points).z

line to wake adapt

duct_wake(i, 2).x = duct_upper(i, num_upper_points).x

duct_wake(i, 2).y = duct_upper(i, num_upper_points).y + duct_freewake_length *
wake_length

duct_wake(i, 2).z = duct_upper(i, num_upper_points).z

'end of the straight lines and wake sheet

duct_wake(i, 3).x = duct_upper(i, num_upper_points).x

duct_wake(i, 3).y = duct_upper(i, num_upper_points).y + wake_length
duct_wake(i, 3).z = duct_upper(i, num_upper_points).z

Next

Forj=1To 10
'duct wake arcs
Fori=1To 36

'adaption arc

duct_wake_arcs(j, 1, 1).x = duct_leading_arc(j, 1).x

duct_wake_arcs(j, 1, 1).y = duct_leading_arc(j, 1).y + duct_freewake_length *
wake_length

duct_wake_arcs(j, 1, 1).z = duct_leading_arc(j, 1).z

‘arc at the end of wake

duct_wake_arcs(j, 2, 1).x = duct_leading_arc(j, 1).x
duct_wake_arcs(j, 2, 1).y = duct_leading_arc(j, 1).y + wake_length
duct_wake_arcs(j, 2, 1).z = duct_leading_arc(j, 1).z

Next

Next

End Sub

Public Sub blade_faces(face_count, blade_node_connect, blade_ends_connect,
blade_section_connect, blade_edge_connect, hub_edge_connect, ring_edge_connect,
hub_node_connect)

Dim 1 As Integer

153

'blade faces

For i=1 To num_sections - 1
‘upper face
face_count = face_count + 1
Print #1, "face", face_count, "16", "1"
Print #1, "linear”
Print #1, "origin node", blade_node_connect((i - 1) * 2 + 2)
Print #1, "side", "0", "1", blade_section_connect((i- 1) * 2 + 1)
Print #1, "side", "1", "1", blade_edge_connect((i- 1) *2 + 1)
Print #1, "side", "2", "1", blade_section_connect((i - 1) * 2 + 3)
Print #1, "side", "3", "1", blade_edge_connect((i - 1) * 2 + 2)
Print #1, "sources”, "0", "0", "0"

lower face

face_count = face_count + 1

Print #1, "face", face_count, "16", "1"

Print #1, "linear"

Print #1, "origin node", blade_node_connect((i- 1) * 2 + 1)
Print #1, "side", "0", "1", blade_section_connect((i - 1) * 2 + 2)
Print #1, "side", "1", "1", blade_edge_connect((i- 1) * 2 + 2)
Print #1, "side", "2", "1", blade_section_connect((i - 1) * 2 + 4)
Print #1, "side", "3", "1", blade_edge_connect((1-1) *2 + 1)
Print #1, "sources”, "0", "0", "O"

Next

End Sub
Public Sub pick_section_of_spline(curve() As section, sect_num, edge As String,
temp() As section, num_temp_points)

Dim 1 As Integer

Dim counter As Integer
Dim lower As Single
Dim upper As Single

If edge = "le" Then
If final_section(sect_num, section_data(sect_num).le_id).x > final_section(sect_num
+ 1, section_data(sect_num + 1).le_id).x Then
upper = final_section(sect_num, section_data(sect_num).le_id).x
lower = final_section(sect_num + 1, section_data(sect_num + 1).le_id).x
End If
If final_section(sect_num, section_data(sect_num).le_id).x < final_section(sect_num
+ 1, section_data(sect_num + 1).le_id).x Then
lower = final_section(sect_num, section_data{sect_num).le_id).x
upper = final_section(sect_num + I, section_data(sect_num + 1).le_id).x
End If
End If

If edge = "te" Then

If final_section(sect_num, section_data(sect_num).te_id).x > final_section(sect_num
+ 1, section_data(lower).te_id).x Then

upper = final_section(sect_num, section_data(sect_num).te_id).x

lower = final_section(sect_num + 1, section_data(sect_num + 1).te_id).x

End If

If final_section(sect_num, section_data(sect_num).te_id).x < final_section(sect_num
+ 1, section_data(lower).te_id).x Then

lower = final_section(sect_num, section_data(sect_num).te_id).x

upper = final_section(sect_num + 1, section_data(sect_num + 1).te_id).x

End If

End If
counter =0
Fori=1To 101

If curve(i).x > lower And curve(i).x < upper Then
counter = counter + |

temp(counter).x = curve(i).x

temp(counter).y = curve(i).y

temp(counter).z = curve(i).z

End If

Next

num_temp_points = counter

End Sub

Public Sub blade_edges(edge_count, blade_node_connect, blade_ends_connect,
blade_section_connect, blade_edge_connect, blade_panels_t, blade_panels_s,
hub_node_connect, ring_node_connect)

Dim num_upper_section_nodes, j, q, i As Integer

Dim lower, upper As Integer
Dim num_temp_points As Integer
Dim temp(101) As section

ok sk ok ok ok
'‘blade_section_connect definition
skokoskok skook

For j =1 To num_sections

'lower side of section

edge_count = edge_count + 1

blade_section_connect((j - 1) * 2 + 1) = edge_count

If j = 1 Then Print #1, "edge", edge_count, "-2", section_data(j).le_id,
blade_panels_s, 2 - blade_P, blade_Q

If j <> 1 Then Print #1, "edge", edge_count, "-1", section_data(j).le_id,
blade_panels_s, 2 - blade_P, blade_Q

Print #1, "startnode", blade_node_connect((j - 1) * 2 + 2)

For 1 =2 To section_data(j).le_id - 1

Print #1, (i - 1), final_section(j, 1).x, final_section(j, 1).y, final_section(j, 1).z
Next

Print #1, "finishnode", blade_node_connect((j - 1) * 2 + 1)

‘upper side of section
edge_count = edge_count + |
blade_section_connect(((j - 1) * 2) + 2) = edge_count
num_upper_section_nodes = | + section_data(j).num_points - section_data(j).le_id
Print #1, "edge", edge_count, "-1", num_upper_section_nodes, blade_panels_s,
blade_P, blade_Q
Print #1, "startnode"”, blade_node_connect((j- 1) *2 + 1)
q = section_data(j).le_id
For i =2 To num_upper_section_nodes - 1
g=q+1
Print #1, (i - 1), final_section(j, q).x, final_section(j, q).y, final_section(j, q).z
Next
Print #1, "finishnode", blade_node_connect((j - 1) * 2 + 2)
Next

ok ok sk sk sk ok sk ok ok s ok sk sk sk sk sk sk st sk ke sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk Sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk sk skosk sk sk sk sk sk ok
'blade_edge_connect definition

Dim g As Integer

j=0
Fori1=1 To num_sections - 1

leading edge
Call pick_section_of_spline(leading_spline(), i, "le", temp(), num_temp_points)
j=j+1
edge_count = edge_count + 1
blade_edge_connect(j) = edge_count
If i = (num_sections - 1) Then Print #1, "edge", edge_count, "-1", (num_temp_points
+ 2), Int(blade_panels_t * blade_tip_cluster), "1.0", "0.1"
If i <> (num_sections - 1) Then Print #1, "edge", edge_count, "-1", (num_temp_points
+ 2), blade_panels_t, "1.0", "0.1"
Print #1, "startnode", blade_node_connect((i- 1) * 2 + 1)
For g =1 To num_temp_points
Print #1, (g), temp(g).Xx, temp(g).y, temp(g).z
Next
Print #1, "finishnode", blade_node_connect((i - 1) * 2 + 3)

'‘trailing edge
Call pick_section_of_spline(trailing_spline(), 1, "te", temp(), num_temp_points)

156

j=j+1
edge_count = edge_count + 1
blade_edge_connect(j) = edge_count
If i = (num_sections - 1) Then Print #1, "edge", edge_count, "-3", (num_temp_points
+ 2), Int(blade_panels_t * blade_tip_cluster), "1.0", "0.1"
If i <> (num_sections - 1) Then Print #1, "edge", edge_count, "-3", (num_temp_points
+ 2), blade_panels_t, "1.0", "0.1"
Print #1, "startnode", blade_node_connect((i - 1) * 2 + 2)
For g =1 To num_temp_points
Print #1, (g), temp(g).x, temp(g).y, temp(g).z
Next

Print #1, "finishnode", blade_node_connect((i - 1) * 2 + 4)
Next

End Sub
Public Sub blade_nodes(node_count, blade_node_connect)
Dim i As Integer

'blade nodes
o sk sk sfe sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk skoske sk sk sk sk sk ke sk sk sk sk sk sk skok sksk

Kk sk ook ook

For1=1 To num_sections

'section edges

node_count = node_count + 1

blade_node_connect(((i - 1) * 2) + 1) = node_count

Print #1, "node", node_count, final_section(i, section_data(i).le_id).x, final_section(i,
section_data(i).le_id).y, final_section(i, section_data(i).le_id).z

node_count = node_count + 1

blade_node_connect(((i - 1) * 2) + 2) = node_count

Print #1, "node", node_count, final_section(i, section_data(i).te_id).x, final_section(i,
section_data(i).te_id).y, final_section(i, section_data(i).te_id).z

Next
End Sub
Public Sub missing_hub_nodes(node_count, blade_node_connect)

'nodes at the root needed for the hub when the blade is not exported
ot sfe sk sk ok sk s sk sk sk sk sk sk sk sk ofe sk sk st sk sk st sk sk st sk sk sk st st st ste sk sk sk sk sk ste Sk sk s sk sk ok sk sk sk sk sk sk ok ok sk K sk sk ok ok ek sk sk okesk ko

K oofe gk koK

'section edges

node_count = node_count + 1

blade_node_connect(1) = node_count

Print #1, "node", node_count, final_section(1, section_data(1).le_id).x,
final_section(1, section_data(1).le_id).y, final_section(1, section_data(1).le_id).z
node_count = node_count + 1

blade_node_connect(2) = node_count

Print #1, "node", node_count, final_section(1, section_data(1).te_id).x,
final_section(1, section_data(1).te_id).y, final_section(1, section_data(1).te_id).z

157

End Sub
Public Sub hub_faces(face_count, hub_node_connect, hub_edge_connect,

blade_section_connect, blade_edge_connect)
ok sk ok ok ok sk sk sk ok ok st sk sk ok ok ofe sk sk s sk s ke s sk sk st sk sk s sk sk sk sk sk ok ok sk st sk sk sk ke sk st sk sk sk sk ok sk sk sk sk ok ok sk sk sk sk sk ok ok sk sk ok sk ok

ok skosk

Dim i As Integer

'hub leading faces

For i =1 To no_of_hub_strips

face_count = face_count + |

Print #1, "face", face_count, "16", "1"

Print #1, "linear"

Print #1, "origin node", hub_node_connect(i + 1)
Print #1, "side", "0", "1", hub_edge_connect(10 + 1 + 1)
Print #1, "side", "1", "1", hub_edge_connect(20 + 1)
Print #1, "side", "2", "1", hub_edge_connect(10 + 1)
Print #1, "side", "3", "1", hub_edge_connect(i)
Print #1, "sources", "0", "0", "0"

Next

'hub faces between blades

For i =1 To no_of_hub_strips

face_count = face_count + 1

Print #1, "face", face_count, "16", "1"

Print #1, "linear"

Print #1, "origin node", hub_node_connect(i + 1 + 10)
Print #1, "side", "0", "1", hub_edge_connect(30 + 1 + 1)
Print #1, "side", "1", "1", hub_edge_connect(40 + 1)

If i =1 Then Print #1, "side", "2", "1", blade_section_connect(2)
If i <> 1 Then Print #1, "side", "2", "1", hub_edge_connect(30 + i)
Print #1, "side", "3", "1", hub_edge_connect(20 + i)
Print #1, "sources”, "0", "0", "0"

Next

'hub trailing faces

Fori=1 To no_of_hub_strips

face_count = face_count + 1

Print #1, "face", face_count, "16", "1"

Print #1, "linear"

Print #1, "origin node", hub_node_connect(i + 21)
Print #1, "side", "0", "1", hub_edge_connect(50 + 1 + 1)
Print #1, "side", "1", "1", hub_edge_connect(60 + 1)
Print #1, "side", "2", "1", hub_edge_connect(50 + i)
Print #1, "side", "3", "1", hub_edge_connect(40 + 1)
Print #1, "sources”, "0", "0", "0"

Next

158

End Sub

Public Sub ring_faces(face_count, ring_node_connect, ring_edge_connect,
blade_section_connect)

ok sk sk ok sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk sk Sk Sk sk sk sk sk sk sk sk sk sk sk sk sk skook sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk ok ok ok sk sk sk sk ok okok sk sk ckok
ks ockok

ring face

face_count = face_count + 1

Print #1, "face"”, face_count, "16", "1"

Print #1, "linear”

Print #1, "origin node", ring_node_connect(1)

Print #1, "side", "0", "1", ring_edge_connect(3)

Print #1, "side", "1", "1", ring_edge_connect(1)

Print #1, "side", "2", "1", blade_section_connect(num_sections * 2)
Print #1, "side", "3", "1", ring_edge_connect(2)

Print #1, "sources”, "0", "0", "0"

End Sub

Public Sub caps(hub_length)
Dim no_of_points As Integer
Dim i As Integer

Dim radius, offset As Single
Dim revolution_angle As Single

Dim cap_internal_y2() As section

'no of points for back section
‘created automatically
no_of_points = 36

Dim scale_factor As Single

radius of hub
radius = Sqr(final_section(1, section_data(1).le_id).x ~ 2 + final_section(1,
section_data(1).le_id).z * 2)

'positon of cap according to hub length
offset = hub_length /2

'should be the same with the number of stators
no_of blades =4
revolution_angle = 2 * pi / (duct_images * 2)

159

If cap_auto = 1 Then

cap_section_points = 36

ReDim cap_left_temp(cap_section_points)

‘automatically create an arc to make a spherical cap

Call arc(cap_left_temp(), O, pi / 2, radius, 0, offset, O, cap_section_points, 2)
Else

'match cap radius with hub radius

scale_factor = radius / cap_left_temp(cap_section_points).x

'otherwise already read

For 1 =1 To cap_section_points

cap_left_temp(i).x = cap_left_temp(i).x * scale_factor
cap_left_temp(i).y = cap_left_temp(i).y * scale_factor + offset
cap_left_temp(i).z = cap_left_temp(i).z * scale_factor

Next

End If

'calculate total length of arc on hub

Dim total_length As Single

total_length =0

For 1= 1 To cap_section_points - |

total_length = total_length + Sqr((cap_left_temp(i).x - cap_left_temp(i + 1).x) * 2 +
(cap_left_temp(i).y - cap_left_temp(i + 1).y) * 2 + (cap_left_temp(i).z -
cap_left_temp(i + 1).z) * 2)

Next

'fit a spline throught cap_left
3k sk e sk sk sk sk sk e sk e sfe sk s sk sk sie sk e sk sk sk sk skoske sk ok e sk Sk sk sk sk ok K ok sk sk ok skskok sk ok ok ok

skokok

‘calculate no of spline points for 20 points on internal
Dim distance As Single

Dim points_per_distance As Single

Dim num_of_spline_points As Integer

distance = (side_fraction - internal_fraction) * total_length
points_per_distance = cap_section_points / distance
num_of_spline_points = Abs(Int(total_length * points_per_distance))

‘call spline routine

ReDim cap_left(num_of_spline_points + 1)

ReDim cap_internal_y2(num_of_spline_points + 1)
ReDim cap_right(num_of_spline_points + 1)
ReDim cap_back(no_of_points)

ReDim cap_internal_y(num_of_spline_points + 1)
ReDim cap_internal_x(num_of_spline_points + 1)
ReDim cap_internal_z(num_of_spline_points + 1)

160

Call s_spline(cap_left_temp(), 1, 1, cap_left(), cap_section_points,
num_of_spline_points)
cap_section_points = num_of_spline_points + 1

'arc at the back of cap
Call arc(cap_back(), pi / 2, pi / 2 + revolution_angle, radius, 0, offset, 0,
no_of_points, 1)

‘other arc of cap depending on no_of_stators

For i =1 To cap_section_points

cap_right(i).x = cap_left(i).x * Cos(revolution_angle) + cap_left(i).z *
Sin(revolution_angle)

cap_right(i).y = cap_left(i).y

cap_right(i).z = -cap_left(i).x * Sin(revolution_angle) + cap_left(i).z *
Cos(revolution_angle)

Next

'calculate new total length of arc on hub

'more accurate since spline

Dim length() As Single

ReDim length(cap_section_points)

total_length =0

length(0) =0

length(1) =0

For 1 =2 To cap_section_points

length(i) = length(i - 1) + Sqr((cap_left(i).x - cap_left(i - 1).x) * 2 + (cap_left(i).y -
cap_left(i - 1).y) ~ 2 + (cap_left(i).z - cap_left(i - 1).z) * 2)
Next

total_length = length(cap_section_points)

Dim break As Integer

'find id for point half-way along the line
break =0

For 1 = 1 To cap_section_points

If length(i) > (total_length * (1 - side_fraction)) And break = 0 Then
cap_sidenode_id =i

break = |

End If

Next

Dim counter As Integer
Dim length_to_point As Single
Dim x1, yI, z1 As Single

161

Dim x2, y2, z2 As Single
Dim d_length As Single
Dim length_fraction As Single

'Internal arc along hub axis
For i =1 To cap_section_points

If length(i) > (total_length * (1 - internal_fraction)) Then
'interpolate first point
If counter =0 Then

counter = counter + 1

x1 = cap_left(i - 1).x * Cos(revolution_angle / 2) + cap_left(i - 1).z *
Sin(revolution_angle / 2)

yl =cap_left(i- 1).y

z1 = -cap_left(i - 1).x * Sin(revolution_angle / 2) + cap_left(i- 1).z *
Cos(revolution_angle / 2)

x2 = cap_left(i).x * Cos(revolution_angle / 2) + cap_left(i).z *
Sin(revolution_angle / 2)

y2 = cap_left(i).y

22 = -cap_left(i).x * Sin(revolution_angle / 2) + cap_left(i).z *
Cos(revolution_angle / 2)

length_fraction = 1 - (length(i) - (total_length * (1 - internal_fraction))) / (Iength(i)
- length(i - 1))

cap_internal_x(counter).x = x1 + (x2 - x1) * length_fraction

cap_internal_x(counter).y = yl + (y2 - yl) * length_fraction

cap_internal_x(counter).z = z1 + (22 - z1) * length_fraction
End If

counter = counter + 1

cap_internal_x(counter).x = cap_left(i).x * Cos(revolution_angle / 2) + cap_left(1).z
* Sin(revolution_angle / 2)

cap_internal_x(counter).y = cap_left(i).y

cap_internal_x(counter).z = -cap_left(i).x * Sin(revolution_angle / 2) + cap_left(i).z
* Cos(revolution_angle / 2)

End If
Next

num_internal_x_points = counter
counter =0

‘calculate length of internal x

Dim internal_length As Single
internal_length =0

For i = 1 To num_internal_x_points - 1

162

internal_length = internal_length + Sqr((cap_internal_x(1).x - cap_internal_x(i + 1).x)
A2 + (cap_internal_x(i).y - cap_internal_x(i + 1).y) * 2 + (cap_internal_x(i).z -
cap_internal_x(1 + 1).z) * 2)

Next

'calculate the other two internal sections on cap
Dim angle As Single

For i = 1 To cap_section_points

If length(i) > length(cap_sidenode_id) And (length(i) < (total_length -
internal_length)) Then

angle = (revolution_angle / 2) * ((length(i) - length(cap_sidenode_id)) / (total_length
- length(cap_sidenode_id) - internal_length))

counter = counter + 1

cap_internal_y(counter).x = cap_left(i).x * Cos(angle) + cap_left(i).z * Sin(angle)
cap_internal_y(counter).y = cap_left(i).y

cap_internal_y(counter).z = -cap_left(i).x * Sin(angle) + cap_left(i).z * Cos(angle)

cap_internal_z(counter).x = cap_left(i).x * Cos(revolution_angle - angle) +
cap_left(i).z * Sin(revolution_angle - angle)

cap_internal_z(counter).y = cap_left(i).y

cap_internal_z(counter).z = -cap_left(i).x * Sin(revolution_angle - angle) +
cap_left(i).z * Cos(revolution_angle - angle)

End If

Next
num_internal_points = counter

rotate cap to match hub
Dim hub_angle As Single
Dim angle_r As Single
Dim cap_angle As Single

hub_angle = get_angle(hub_trailing_edge(1).x, hub_trailing_edge(1).z)
cap_angle = get_angle(cap_back(1).x, cap_back(1).z)

angle_r = hub_angle - cap_angle

Call rotate(cap_left(), angle_r, cap_section_points)

Call rotate(cap_back(), angle_r, no_of_points)

Call rotate(cap_right(), angle_r, cap_section_points)

Call rotate(cap_internal_x(), angle_r, num_internal_x_points)
Call rotate(cap_internal_y(), angle_r, num_internal_points)
Call rotate(cap_internal_z(), angle_r, num_internal_points)
End Sub

Public Sub rotate(v() As section, angle, num_points)

Dim i As Integer

Dim temp() As section

163

ReDim temp(num_points)

For 1 =1 To num_points
temp(i).x = v(1).x
temp(i).z = v(i).z

Next

For i =1 To num_points

v(1).x = temp(i).x * Cos(angle) + temp(i).z * Sin(angle)
v(i).z = -temp(i).x * Sin(angle) + temp(i).z * Cos(angle)
Next

End Sub

Public Sub rotate_point(v As section, angle, num_points)
Dim i As Integer

Dim temp As section

temp.Xx = v.X
temp.z=v.z

For i =1 To num_points

v.x = temp.x * Cos(angle) + temp.z * Sin(angle)
v.Zz = -temp.x * Sin(angle) + temp.z * Cos(angle)
Next

End Sub

Private Function get_angle(x As Single, z As Single) As Single
Dim f As Single
Dim angle As Single

f=x/z
Select Case f

Casels>0

If x > 0 Then angle = Atn(Abs(f))

If x <0 Then angle = pi + Atn(Abs(f))
Case Is<0

If x > 0 Then angle = pi - Atn(Abs(f))
If x <0 Then angle = 2 * pi - Atn(Abs(f))
Casels=0

If z>0 Then angle =0

If z < 0 Then angle = pi

End Select

get_angle = angle

End Function

164

Public Sub duct()

Dim radius, x_offset, duct_rev_angle As Single
Dim num_duct_arc_points As Integer

Dim 1, j As Integer

Dim start_angle, end_angle, offset As Single
Dim duct_rev_angle_step As Single

ReDim duct_trailing_lower(10, section_data(0).le_id)

ReDim duct_leading_lower(10, section_data(0).le_id)

num_upper_points = section_data(0).num_points - section_data(0).le_id + 1
ReDim duct_upper(10, num_upper_points)

ReDim duct_lower(10, section_data(0).le_id)

'scale section

For 1 = 1 To section_data(0).num_points

section(0, 1).x = section(0, 1).x * duct_length * D

section(0, 1).y = section(0, 1).y * duct_length * (duct_thickness / 0.1) * D
Next

num_leading_lower_points = 0

num_trailing_lower_points =0

'track down the lower side of the duct section and remove the ring width
For i =1 To section_data(0).le_id

'lower sections for duct without ring

duct_lower(1, i).x = -section(0, 1).y

duct_lower(1, 1).y = section(0, 1).x

duct_lower(1, 1).z = section(0, 1).z

lower section for duct with ring
‘aft part of lower ducts section minus the ring width
If section(0, 1).x <= (final_section(num_sections, section_data(num_sections).le_id).y
- ring_width * D/ 100) Then
'interpolate for the point on the ring_width
If section(0, 1 - 1).x > (final_section(num_sections,
section_data(num_sections).le_id).y - ring_width * D / 100) Then
num_trailing_lower_points = num_trailing_lower_points + 1
duct_trailing_lower(1, num_trailing_lower_points).y = final_section(num_sections,
section_data(num_sections).le_id).y - ring_width * D/ 100
duct_trailing_lower(1, num_trailing_lower_points).x = -(((section(0, i - 1).y -
section(0, 1).y) / (section(0, i - 1).x - section(0, 1).x)) * ((final_section(num_sections,
section_data(num_sections).le_id).y) - ring_width * D/ 100 - section(0, 1).x) +
section(0, 1).y)
duct_trailing_lower(1, num_trailing_lower_points).z =0
End If
num_trailing_lower_points = num_trailing_lower_points + 1
duct_trailing_lower(!, num_trailing_lower_points).y = section(0, 1).x
duct_trailing_lower(1, num_trailing_lower_points).x = -section(0, 1).y

165

duct_trailing_lower(1, num_trailing_lower_points).z =0
End If
'forward part of lower ducts section minus the ring width
If section(0, 1).x >= (final_section(num_sections, section_data(num_sections).te_id).y
+ ring_width * D / 100) Then

num_leading_lower_points = num_leading_lower_points + 1

duct_leading_lower(1, num_leading_lower_points).y = section(0, i).x
duct_leading_lower(1, num_leading_lower_points).x = -section(0, 1).y
duct_leading_lower(1, num_leading_lower_points).z =0

'interpolate for the point on the ring_width
If section(0, 1 + 1).x < (final_section(num_sections,
section_data(num_sections).te_id).y + ring_width * D / 100) Then
num_leading_lower_points = num_leading_lower_points + 1
duct_leading_lower(1, num_leading_lower_points).y = final_section(num_sections,
section_data(num_sections).te_id).y + ring_width * D / 100
duct_leading_lower(1, num_leading_lower_points).x = -(((section(0,1 + 1).y -
section(0, 1).y) / (section(0, i + 1).x - section(0, 1).x)) * (final_section(num_sections,
section_data(num_sections).te_id).y + ring_width * D / 100 - section(0, 1).x) +
section(0, 1).y)
duct_leading_lower(1, num_leading_lower_points).z =0
End If
End If
Next

'upper part of duct section

num_upper_points = 0

For 1 = section_data(0).le_id To section_data(0).num_points
num_upper_points = num_upper_points + |

duct_upper(1, num_upper_points).y = section(0, 1).x
duct_upper(1, num_upper_points).x = -section(0, 1).y
duct_upper(1, num_upper_points).z =0

Next

'move section to correct radius

radius = D / 2 'Sqr(final_section(num_sections, section_data(1).le_id).x ~ 2 +
final_section(num_sections, section_data(1).le_id).z » 2)

x_offset = radius - duct_trailing_lower(1, 1).x

For i =1 To num_leading_lower_points
duct_leading_lower(1, i).x = duct_leading_lower(1, i).x + x_offset
Next

For i =1 To num_trailing_lower_points
duct_trailing_lower(1, 1).x = duct_trailing_lower(1, 1).x + x_offset

Next

For i = 1 To num_upper_points

166

duct_upper(1, i).x = duct_upper(1, 1).x + x_offset
Next

lower sections for duct without ring

Fori =1 To section_data(0).le_id

duct_lower(1, 1).x = duct_lower(1, 1).x + x_offset
Next

"

other duct sections that are rotated
'duct_images = 4

'9 is the number of strips for duct ie 10 sections
‘cannot use one because the shape is not circular
duct_rev_angle_step = -2 * pi / duct_images /9

Forj=1To9

duct_rev_angle = duct_rev_angle + duct_rev_angle_step

For i = 1 To num_leading_lower_points

duct_leading_lower(j + 1, 1).y = duct_leading_lower(1, 1).y
duct_leading_lower(j + 1, 1).x = Cos(duct_rev_angle) * duct_leading_lower(1, 1).x +

Sin(duct_rev_angle) * duct_leading_lower(1, 1).z

duct_leading_lower(j + 1, 1).z = -Sin(duct_rev_angle) * duct_leading_lower(1, 1).x +

Cos(duct_rev_angle) * duct_Jeading_lower(1,1).z
Next

For i =1 To num_trailing_lower_points

duct_trailing_lower(j + 1, 1).y = duct_trailing_lower(1, 1).y
duct_trailing_lower(j + 1, 1).x = Cos(duct_rev_angle) * duct_trailing_lower(1, 1).x +

Sin(duct_rev_angle) * duct_trailing_lower(l, i).z

duct_trailing_lower(j + 1, 1).z = -Sin(duct_rev_angle) * duct_trailing_lower(1, 1).x +

Cos(duct_rev_angle) * duct_trailing_lower(l, 1).z
Next

For i =1 To num_upper_points
duct_upper(j + 1, 1).y = duct_upper(1, 1).y

duct_upper(j + 1, 1).x = Cos(duct_rev_angle) * duct_upper(l, i).x +

Sin(duct_rev_angle) * duct_upper(l, 1).z

duct_upper(j + 1, 1).z = -Sin(duct_rev_angle) * duct_upper(1, 1).x +

Cos(duct_rev_angle) * duct_upper(1, 1).z
Next

'seconf lower section for duct without ring
Fori =1 To section_data(0).le_id
duct_lower(j + 1, 1).y = duct_lower(1, 1).y

duct_lower(j + 1, 1).x = Cos(duct_rev_angle) * duct_lower(l, 1).x +

Sin(duct_rev_angle) * duct_lower(1, 1).z

duct_lower(j + 1, 1).z = -Sin(duct_rev_angle) * duct_lower(1, 1).x +

Cos(duct_rev_angle) * duct_lower(1, 1).z
Next

167

Next j

'draw arcs of duct

num_duct_arc_points = 36

ReDim duct_leading_arc(10, num_duct_arc_points)
ReDim duct_trailing_arc(10, num_duct_arc_points)
ReDim duct_leading_lower_arc(10, num_duct_arc_points)
ReDim duct_trailing_lower_arc(10, num_duct_arc_points)

start_angle = pi/ 2 - duct_rev_angle_step
Forj=1To9

start_angle = start_angle + duct_rev_angle_step

end_angle = start_angle + duct_rev_angle_step

'trailing edge arc

radius = Sqr(duct_upper(1, 1).x » 2 + duct_upper(1, 1).z * 2)

offset = duct_upper(1, 1).y

Call arcs(duct_trailing_arc(), start_angle, end_angle, radius, 0, offset, O,
num_duct_arc_points, 1, j)

leading edge arc

radius = Sqr(duct_leading_lower(1, 1).x * 2 + duct_leading_lower(1, 1).z " 2)
offset = duct_leading_lower(1, 1).y

Call arcs(duct_leading_arc(), start_angle, end_angle, radius, 0, offset, O,
num_duct_arc_points, 1, j)

'trailing lower edge arc

radius = Sqr(duct_trailing_lower(1, 1).x * 2 + duct_trailing_lower(1, 1).z * 2)
offset = duct_trailing_lower(l, 1).y

Call arcs(duct_trailing_lower_arc(), start_angle, end_angle, radius, 0, offset, 0,
num_duct_arc_points, 1, j)

leading lower edge arc

radius = Sqr(duct_leading_lower(1, num_leading_lower_points).x * 2 +
duct_leading_lower(1, num_leading_lower_points).z * 2)

offset = duct_leading_lower(l, num_leading_lower_points).y

Call arcs(duct_leading_lower_arc(), start_angle, end_angle, radius, O, offset, O,
num_duct_arc_points, 1, j)

Next j

End Sub

Public Sub ring_leading_section(ring_width)
Dim num_edge_points, i, j As Integer

Dim psi, dpsi, r, P As Single

Dim angle, angle_step As Single

num_edge_points = 100

168

ReDim ring_leading_end(10, num_edge_points)

'set point to trailing edge of first section
ring_leading_end(1, 1).x = final_section(num_sections,
section_data(num_sections).le_id).x
ring_leading_end(1, 1).y = final_section(num_sections,
section_data(num_sections).le_id).y
ring_leading_end(l, 1).z = final_section(num_sections,
section_data(num_sections).le_id).z

r = Sqr(ring_leading_end(1, 1).z * 2 + ring_leading_end(1, 1).x * 2)

P = propdata(num_sections).pitch * D
If P=0ThenP=0.1
‘calculate the start angle and the step angle

‘calculate start psi so it matches with leading edge of section

psi = (final_section(num_sections, section_data(num_sections).le_id).y / P) * 2 * pi
'step dpsi for the set number of steps

dpsi = ((((-ring_width / 2) - ring_leading_end(1, 1).y) /P) * 2 * p1) /
(num_edge_points - 1)

psi = psi ' - dpsi

'helical edge

*ofe ofe sk sk st sk ok sk sk sk sk sk sk Sk sk skook R sk sk sk ok

For i =2 To num_edge_points

psi = psi + dpsi

ring_leading_end(1, 1).x = * Cos(pst)

ring_leading_end(1, i).y = (P * psi) / (2 * p1)

ring_leading_end(1, 1).z = -r * Sin(psi)

Next

End Sub

Public Sub hub_trailing_section(hub_length)
Dim psi, dpsi, r As Single

Dim P As Single

Dim num_edge_points, 1,] As Integer

Dim angle

num_edge_points = 100
ReDim hub_trailing_end(10, num_edge_points)

'set point to trailing edge of section

hub_trailing_end(1, 1).x = final_section(1, section_data(1).te_id).x
hub_trailing_end(1, 1).y = final_section(1, section_data(1).te_id).y
hub_trailing_end(1, 1).z = final_section(1, section_data(1).te_id).z

r = Sqr(hub_trailing_end(1, 1).z » 2 + hub_trailing_end(1, 1).x * 2)

169

'set the pitch of the hub to the wake and not the biade so
'there are no problems with wake influence on hub

P = find_trailing_edge_pitch(1)

If P=0Then P =0.01

‘calculate dpsi such that the hub length is correct
dpsi = ((((hub_length / 2) - hub_trailing_end(1, 1).y)/ (P * D)) * 2 * pi) /
(num_edge_points - 1)

‘helical edge

Vot sk sk sfe sk sk ke sk sk sk sk koo sk sk sk koo sk skl sk

For i =2 To num_edge_points

'use te as starting point to ensure perfect match

hub_trailing_end(1, i).x = hub_trailing_end(1, i - 1).x * Cos(-dpsi) -
hub_trailing_end(1,1 - 1).z * Sin(-dpsi)

hub_trailing_end(1, 1).z = hub_trailing_end(1, i - 1).x * Sin(-dpsi) +
hub_trailing_end(1,1 - 1).z * Cos(-dpsi)

hub_trailing_end(1, i).y = hub_trailing_end(1l,1- 1).y + (P * D * dpsi) / (2 * pi)

Next

End Sub

Public Sub ring_trailing_section(ring_width)
Dim psi, dpsi, r As Single

Dim P As Single

Dim num_edge_points, i, j As Integer

Dim angle

num_edge_points = 100
ReDim ring_trailing_end(10, num_edge_points)

'set point to trailing edge of section
ring_trailing_end(1, 1).x = final_section(num_sections,
section_data(num_sections).te_id).x
ring_trailing_end(1, 1).y = final_section(num_sections,
section_data(num_sections).te_id).y
ring_trailing_end(1, 1).z = final_section(num_sections,
section_data(num_sections).te_id).z

r = Sqr(ring_trailing_end(1, 1).z * 2 + ring_trailing_end(1, 1).x * 2)

P = propdata(num_sections).pitch
If P=0Then P=0.1

‘calculate the starting psi so it matches the trailing end
psi = (final_section(num_sections, section_data(num_sections).te_id).y / P) * 2 * pi

170

dpsi = ((((ring_width / 2) - ring_trailing_end(1, 1).y) / P) * 2 * pi) / (num_edge_points

-1)
psi = psi ' - dpsi

'helical edge

135 3k sk ok sk skosk skosk ok sk sfe sk sk ok skt sk sk ksk ok

For i =2 To num_edge_points

psi = psi + dpsi

ring_trailing_end(1, 1).x =1 * Cos(psi)
ring_trailing_end(1, i).y = (P * psi) / (2 * pi)
ring_trailing_end(1, 1).z = -r * Sin(psi)

Next

End Sub

Public Sub ring_arc()

Dim no_of_points As Integer

Dim x1, y1, x2, y2 As Single

Dim radius As Single

Dim angle_of_revolution As Double
Dim angle, step_angle As Single
Dim start_angle, end_angle As Single
Dim f As Single

no_of_points = 121

ReDim ring_leading_edge(no_of_points)

ReDim ring_trailing_edge(no_of_points)

'Call calculate_trailing_end_of_ring(no_of_points)

'Call calculate_leading_end_of_ring(no_of_points)

'Call calculate_second_end_of_ring

radius = Sqr(final_section(num_sections, section_data(num_sections).le_id).x * 2 +
final_section(num_sections, section_data(num_sections).le_id).z * 2)

'set beginning of arc for ring
f = (final_section(num_sections, section_data(num_sections).te_id).z / radius)
'position of end on ring

Select Case f

Case Is = -1

If f > 0 Then start_angle = pi
If f <0 Then start_angle =0
Case Is=1

If f >0 Then start_angle =0
If f < 0 Then start_angle = pi
Case [s<> 1, -1

Tf £ >0 Then

start_angle = pi/ 2 - asin(f)
'If f < 0 Then start_angle = pi / 2 + asin(f)

171

End Select

end_angle = start_angle + 2 * pi / no_of_blades

‘draws arc

Call arc(ring_trailing_edge(), start_angle, end_angle, radius, 0,
final_section(num_sections, section_data(num_sections).te_id).y, 0, no_of_points, 1)

'other arc of ring

f = (final_section(num_sections, section_data(num_sections).le_id).z / radius)
‘position of end on ring

Select Case

Case Is = -1

If £ > 0 Then start_angle =0

If f < 0 Then start_angle = pi

CaseIs=1

If f > 0 Then start_angle =0

If f < 0 Then start_angle = pi

CaseIs<>1, -1

If f > 0 Then start_angle = pi/ 2 - asin(f)

If f <O Then start_angle = 3 * pi / 2 + asin(f)

End Select

end_angle = start_angle + 2 * pi / no_of_blades

‘draws arc

Call arc(ring_leading_edge(), start_angle, end_angle, radius, O,
final_section(num_sections, section_data(num_sections).le_id).y, 0, no_of_points, 1)
End Sub

Public Sub arcs(cyclos() As section, start_angle, end_angle, radius, x_offset, y_offset,
z_offset, no_of_points, Axis, section_number As Integer)

'draws arcs given a start and finish angle

'same as arc procedure but has two dimensional array support

‘axis decides avout which axis

Oisx, lisy,21sz

'x_offset etc is the position of the centre

Dim i As Integer
Dim angle_of_revolution, step_angle, angle As Single

step_angle = (end_angle - start_angle) / (no_of_points - 1)
angle = start_angle - step_angle

If Axis =0 Then

For i = 1 To no_of_points

angle = angle + step_angle

cyclos(section_number, 1).x = x_offset
cyclos(section_number, i).y = Sin(angle) * radius + y_offset
cyclos(section_number, i).z = Cos(angle) * radius + z_offset
Next

End If

If Axis =1 Then
Fori=1To no_of_points

172

angle = angle + step_angle

cyclos(section_number, i).x = Sin(angle) * radius + x_offset
cyclos(section_number, 1).y = y_offset
cyclos(section_number, i).z = Cos(angle) * radius + z_offset
Next

End If

If Axis =2 Then

For 1 =1 To no_of_points

angle = angle + step_angle

cyclos(section_number, 1).x = Sin(angle) * radius + x_offset
cyclos(section_number, i).y = Cos(angle) * radius + y_offset
cyclos(section_number, 1).z = z_offset

Next
End If

End Sub

Public Sub arc(cyclos() As section, start_angle, end_angle, radius, x_offset, y_offset,
z_offset, no_of_points, Axis)

‘draws arcs given a start and finish angle

‘axis decides about which axis

Oisx, lisy,21sz

'x_offset etc is the position of the centre

Dim 1 As Integer
Dim angle_of_revolution, step_angle, angle As Single

step_angle = (end_angle - start_angle) / (no_of_points - 1)
angle = start_angle - step_angle

If Axis =0 Then

For 1= 1 To no_of_points

angle = angle + step_angle

cyclos(i).x = x_offset

cyclos(i).y = Sin(angle) * radius + y_offset

cyclos(i).z = Cos(angle) * radius + z_offset

Next

End If

If Axis =1 Then

For 1 =1 To no_of_points

angle = angle + step_angle

cyclos(i).x = Sin(angle) * radius + x_offset
cyclos(i).y = y_offset

cyclos(i).z = Cos(angle) * radius + z_offset
Next

End If

173

If Axis =2 Then

For 1 =1 To no_of_points

angle = angle + step_angle

cyclos(i).x = Sin(angle) * radius + x_offset
cyclos(i).y = Cos(angle) * radius + y_offset
cyclos(i).z = z_offset

Next
End If

End Sub

Private Sub calculate_trailing_end_of_ring(num_edge_points)
Dim psi, phi, dpsi, r As Single

Dim P As Single

Dim i As Integer

ReDim ring_trailing_end(num_edge_points)

'set point to trailing edge of section
ring_trailing_end(1).x = final_section(num_sections,
section_data(num_sections).te_id).x
ring_trailing_end(1).y = final_section(num_sections,
section_data(num_sections).te_id).y
ring_trailing_end(1).z = final_section(num_sections,
section_data(num_sections).te_id).z

r = Sqr(ring_trailing_end(1).z * 2 + ring_trailing_end(1).x " 2)

'Calculate phi

P = propdata(num_sections).pitch

If P=0Then P=0.1

phi = Atn(2 * pi *r/P)

psi = section(num_sections, section_data(num_sections).te_id).x / Sqr(r *2 + (P / (2 *
pi)) * 2)

dpsi = ((((ring_width / 2) - ring_trailing_end(1).y) / P) * 2 * pi) / (num_edge_points -
1)

psi =psi ' - dpsi

'helical edge

Vofe ok sk sk sk sk sk ok skeoske ske sk sk skeosk sk ks sk skokosk

For 1 = 2 To num_edge_points

psi = psi + dpsi

ring_trailing_end(i).x =r * Cos(psi)

ring_trailing_end(i).y = (P * psi) / (2 * pi)

ring_trailing_end(i).z = -r * Sin(psi)

Next

End Sub

Public Sub second_hub_end()

routine that claculates the second end of the hub

1t takes the two helixs from and rotates them by 390/no_of _blades

174

'and half the section of the root blade

Dim 1, j As Integer

Dim angle As Single

num_hub_section_points = section_data(1).le_id + 1
ReDim hub_section_edge(10, num_hub_section_points)

angle =2 * pi / no_of_blades

For 1 =1 To section_data(1).le_id

hub_section_edge(10, 1).x = Cos(angle) * final_section(l, 1).x + Sin(angle) *
final_section(1, 1).z

hub_section_edge(10, i).y = final_section(l, i).y

hub_section_edge(10, 1).z = -Sin(angle) * final_section(1, i).x + Cos(angle) *
final_section(1, 1).z

Next

End Sub

Public Sub second_ring_end()

routine that calculates the section on the other side of the ring

Dim 1, j As Integer

Dim angle As Single

num_ring_section_points = Abs(section_data(num_sections).num_points -
section_data(num_sections).le_id) + 1

ReDim ring_section_edge(num_ring_section_points)

angle =2 * pi/ no_of_blades

For i1 =1 To section_data(num_sections).le_id

ring_section_edge(i).x = Cos(angle) * final_section(num_sections, i).x + Sin(angle) *
final_section(num_sections, i).z

ring_section_edge(i).y = final_section(num_sections, i).y

ring_section_edge(i).z = -Sin(angle) * final_section(num_sections, 1).x + Cos(angle) *
final_section(num_sections, i).z

Next

End Sub

Public Sub wakesheet(wake_length)
Dim i, j As Integer

Dim variable_P, average_P, P As Single
Dim psi, dpsi, r As Single

Dim contraction_factor As Single
Dim start_psi, y_offset As Single
Dim wake_r As Single

Dim xsi As Single

Dim fun As Single

Dim slip_ratio As Single

Dim advance_ratio As Single

Dim n As Single

Dim pw As Single

175

no_of_wake_points = 300
ReDim wake(num_sections, no_of_wake_points)

transition_length = transition_length * D
'find average_pitch

For j =1 To num_sections

average_P = average_P + propdata(j).pitch
Next

average_ P = average_P / num_sections

‘advance speed

advance_ratio = va/ (rps * D)
slip_ratio = 1 - advance_ratio / average_P

'final wake contraction

wake_r = (1 - wake_contraction_value) + wake_contraction_value * (0.887 - 0.125 *
slip_ratio)

'pitch_contraction = (1 - 0.293 * slip_ratio)

If wake_r> 1 Then wake r=1

If wake_pitch_set <= 0 Then

‘final wake pitch

pw = 0.5 * (advance_ratio + average_P)
Else

‘preset value

pw = wake_pitch_set

End If

'increment angle step for wake
dpsi = (2 * pi * wake_length / ((average_P /2 + 4.5 * pw) / 5)) / no_of_wake_points

For j =1 To num_sections
r = propdata(j).radius

'blade pitch for each section

'P = propdata(j).pitch

'P = find_trailing_upper_edge_pitch(j)
P = find_trailing_edge_pitch(})

If P <0 Then P =0.01

'set intial pitch of the wake to the propeller pitch
variable_P =P

first point of wake on trailing edge
wake(j, 1).y = final_section(j, section_data(j).te_id).y

176

wake(j, 1).x = final_section(j, section_data(j).te_id).x
wake(j, 1).z = final_section(j, section_data(j).te_id).z

For1=2 To no_of_wake_points
wake(], i).y = wake(j, i - 1).y + (variable_P * D * dpsi) / (2 * pi1)

If wake(j, 1).y < transition_length Then

'transition polynomial for pitch variation

'same for contraction

xsi = (wake(j, 1).y - wake(j, 1).y) / (transition_length - wake(j, 1).y)

If xsi <0 Then xs1 =0

fun = Sqr(xsi) + 1.013 * xsi - 1.92 * xsi *2 + 1.228 * xs1 * 3 - 0.32] * xsi* 4

variable_P =P - (P - pw) * fun
‘'variable_P =P - (P - pw) * (wake(j, 1).y / transition_length)

Else
variable_P = pw
End If

wake(j, 1).x = wake(j, i - 1).x * Cos(-dpsi) - wake(j, 1 - 1).z * Sin(-dpsi)
wake(j, 1).z = wake(j, i - 1).x * Sin(-dpsi) + wake(j, 1 - 1).z * Cos(-dpsi)

Next

‘contract the wake
sk sk sk s sk sk sk sk sk sk sk sk sk sk sk 3 o S sk st sk sfe sk ok ok sk sk ek ok sk ok skt ok sk ok ok ok sk stk sk sk skokokskok sk sk skoskok sk stk ook skokokok sk ok

ok ko
If wake r <1 Then
Dim f(7) As Single

f(2) = 0.27
f(3)=0.5
f(4) = 0.65
f(5)=0.7
f(6) = 0.87
f(7)=0.95

For i =2 To no_of_wake_points
If wake(j, 1).y < transition_length Then

177

‘transition polynomial for contraction shape

xsi = (wake(j, 1).y - wake(j, 1).y) / (transition_length - wake(j, 1).y)

If xsi <0 Then xsi =0

fun = Sqr(xsi) + 1.013 * xsi - 1.92 * xsi *2 + 1.228 * xsi * 3 - 0.321 * xsi" 4

'contarction value = 1 for full effect and =0 for no contraction
contraction_factor = 1 - (1 - wake_r) * fun

Else

contraction_factor = wake_r

End If

'no contraction on first few points for first section to avoid intersection with hub
'If i = 2 Then contraction_factor = 1

Ifi>1Andi<8 Then

contraction_factor = (1 - (1 - contraction_factor) * f(i))

End If

'smooth transition

wake(], 1).x = wake(j, 1).x * contraction_factor
wake(j, 1).z = wake(j, 1).z * contraction_factor
Next

End If

'end of wake contraction

Next

End Sub

Private Function find_trailing_edge_pitch(j) As Single
Dim average_z As Double

Dim average_y As Double

Dim temp As Double

average_z = (final_section(j, 2).z + final_section(j, section_data(j).num_points - 1).z)
/2
average_y = (final_section(j, 2).y + final_section(j, section_data(j).num_points - 1).y)
/2

temp = (final_section(j, 1).y - average_y) / (average_z - final_section(j, 1).z)
find_trailing_edge_pitch = temp * 2 * pi * propdata(j).radius / D

End Function

Private Function find_trailing_upper_edge_pitch(j) As Single
Dim average_z As Double

Dim average_y As Double

Dim temp As Double

average_z = final_section(j, section_data(j).num_points - 1).z
average_y = final_section(j, section_data(j).num_points - 1).y

178

temp = (final_section(j, 1).y - average_y) / (average_z - final_section(j, 1).z)
find_trailing_upper_edge_pitch = temp * 2 * pi * propdata(j).radius / D

End Function

Private Sub calculate_second_end_of_ring()

routine that calculates the second section of the ring

Dim i, j, num_edge_points As Integer

Dim angle As Single

num_edge_points = 100

num_edge_section_points = Abs(section_data(num_sections).num_points -
section_data(num_sections).le_id) + 1

angle = 2 * pi / no_of_blades

For i =1 To section_data(num_sections).le_id

ring_section_edge(10, 1).x = Cos(angle) * final_section(num_sections, i).X +
Sin(angle) * final_section(num_sections, 1).z

ring_section_edge(10, 1).y = final_section(num_sections, 1).y
ring_section_edge(10, 1).z = -Sin(angle) * final_section(num_sections, 1).x +
Cos(angle) * final _section(num_sections, 1).z

Next

End Sub

Private Sub calculate_leading_end_of_ring(num_edge_points)
Dim i As Integer

Dim psi, phi, dpsi, r, P As Single

ReDim ring_leading_end(num_edge_points)

'set point to trailing edge of section
ring_leading_end(1).x = final_section(num_sections,
section_data(num_sections).le_id).x
ring_leading_end(1).y = final_section(num_sections,
section_data(num_sections).le_id).y
ring_leading_end(1).z = final_section(num_sections,
section_data(num_sections).le_id).z

r = Sqr(ring_leading_end(1).z * 2 + ring_leading_end(1).x " 2)

‘Calculate phi

P = propdata(num_sections).pitch

If P=0Then P=0.1

phi = Atn(2 * pi *r/P)

psi = section(num_sections, section_data(num_sections).le_id).x / Sqr(r* 2 + (P/ (2 *
p1) " 2)

dpsi = ((((-ring_width / 2) - ring_leading_end(1).y) / P) * 2 * p1) / (num_edge_points -
1)

psi = psi

179

'helical edge

¥ 3k she e sk sk sk sk st sk ok s sk ok sk sk sk sk ok sk ok ok

For 1 =2 To num_edge_points

psi = psi + dpsi

ring_leading_end(i).x =r * Cos(psi)
ring_leading_end(i).y = (P * pst) / (2 * p1)
ring_leading_end(i).z = -r * Sin(psi)

Next

End Sub

Public Sub rans_domain()

Dim i, j As Integer

Dim variable_P, average_P, P As Single
Dim psi, dpsi, r As Single

Dim contraction_factor As Single
Dim start_psi, y_offset As Single
Dim wake_r As Single

Dim xsi As Single

Dim fun As Single

Dim slip_ratio As Single

Dim advance_ratio As Single
Dim n As Single

Dim pw As Single

Dim wake_length As Single

no_of_wake_points = 300
ReDim wake(num_sections, no_of_wake_points)

wake_length = blade_wake_length
transition_length = transition_length * D

'find average_pitch

For j = 1 To num_sections

average_P = average_P + propdata(j).pitch
Next

average_P = average_P / num_sections

'advance speed

advance_ratio = va/ (rps * D)
slip_ratio = 1 - advance_ratio / average_P

If wake_pitch_set <=0 Then

'final wake pitch

pw = 0.5 * (advance_ratio + average_P)
Else

'preset value

180

pw = wake_pitch_set
End If

'increment angle step for wake
dpsi = (2 * pi * wake_length / ((average_P /2 + 4.5 * pw)/5)) / no_of_wake_points

Dim vector_magnitude As Single

first point of wake on trailing edge
wake(1, 1) = final_section(1, section_data(1).te_id)
Call rotate_point(wake(1, 1), 60 * p1/ 180, 1)

‘create starting point for outer helix

'by extending line perpenticular to hub to 2.5 D

wake(2, 1).y = wake(1, I).y

vector_magnitude = Sqr(wake(1, 1).x * 2 + wake(1, 1).z " 2)
wake(2, 1).z =1.25 * D * wake(l, 1).z / vector_magnitude
wake(2, 1).x = 1.25 * D * wake(1, 1).x / vector_magnitude

‘create the to helixes
13k sk sk She ok sk oK sk sk ok ok sk sk sk sk e sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk ok ok sk sk sk ok sk sk sk Sk sk sk sk sk sk okook sk sk skosk SRk skosk sk ke

*

Forj=1To?2

'blade pitch for each section
P = find_trailing_edge_pitch(1)
If P=0 Then P =0.01

'set intial pitch of the wake to the propeller pitch
variable_P =P

Ifj=2Thenr=1.24*D
If j = 1 Then r = propdata(1).radius

For i =2 To no_of_wake_points

wake(], 1).y = wake(j, 1 - 1).y + (variable_P * D * dpsi) / (2 * pi)

If wake(j, 1).y < transition_length Then

'transition polynomial for pitch variation

181

'same for contraction
xsi = (wake(j, i).y - wake(j, 1).y) / (transition_length - wake(j, 1).y)
fun = Sqr(xsi) + 1.013 * xsi - 1.92 * xsi 2 + 1.228 * xs1 2 3 -0.321 * xs1* 4

variable_P =P - (P - pw) * fun

Else
variable_P = pw
End If

wake(j, 1).x = wake(j, 1 - 1).x * Cos(-dpsi) - wake(j, i - 1).z * Sin(-dpsi)
wake(j, 1).z = wake(j, 1 - 1).x * Sin(-dpsi) + wake(j, i - 1).z * Cos(-dpsi)

Next

Next

Sk koK sk
'Create outer helix in hub area
s sk sk ok koK

Dim temp(100) As section

'point upstream

wake(3, 1) = final_section(]1, section_data(1).le_id)

Call rotate_point(wake(3, 1), 60 * pi / 180, 1)
vector_magnitude = Sqr(wake(3, 1).x * 2 + wake(3, 1).z * 2)
wake(3, 1).z =1.25 * D * wake(3, 1).z / vector_magnitude
wake(3, 1).x = 1.25 * D * wake(3, 1).x / vector_magnitude

Call helix_from_point_to_point(wake(3, 1), wake(2, 1), temp(), 100)
For j=1To 100

wake(3, j).x = temp(j).x

wake(3, j).y = temp(j).y

wake(3, j).z = temp(j).z
Next

End Sub

Public Sub calculate_final_sections()
Dim i, j As Integer

182

ReDim final_section(num_sections, section_data(l).num_points)
For j = 1 To num_sections
For i =1 To section_data(j).num_points
final_section(j, 1).x = section(l, i).x * propdata(j).chord
final_section(j, i).y = section(l, i).y * propdata(j).chord
Next
Next
End Sub
Public Sub transform_section(section_number, chord, thickness)
Dim i As Integer

'set correct thickness %

'section fixed to 10% in fix sub

For i =1 To section_data(section_number).num_points
section(section_number, i).y = section(section_number, i).y * (thickness / 0.1)
Next

'scale section to correct chord etc

For 1 =1 To section_data(section_number).num_points
section(section_number, i).x = section(section_number, i).x * chord
section(section_number, i).y = section(section_number, i).y * chord
Next

End Sub

Public Sub helical_section(section_number, r, P, blade_rake)
Dim t As Single

Dim phi, psi, start_psi As Single

Dim i As Integer

Dim y_offset As Single

Dim t_total As Single

'Calculate phi

If P=0Then P =0.1

phi=Atn(P *D /(2 * pi *1))

start_psi = propdata(section_number).skew / Sqr(r * 2 + (P * D /(2 * p1)) A 2)
'y_offset = -(start_psi/ (2 * pi)) * P * D

'Map onto helix

¥oke ofe sk sk sk 3k ke sk ok st ske sk st sk sk sk sk stk skodeok

For 1 =1 To section_data(section_number).num_points

psi = start_psi + section(section_number, 1).x / Sqr(r *2 + (P * D / (2 * pi)) 2)

t = section(section_number, 1).y

final_section(section_number, i).x =r * Cos(psi - t / r * Sin(phi))
final_section(section_number, 1).y = y_offset + blade_rake + (P * psi * D) / (2 * pi) +
t * Cos(phi)

final_section(section_number, i).z = -r * Sin(psi - t / r * Sin(phi))

Next

End Sub

Public Sub hub_arc(hub_length)

Dim radius, f As Single

Dim no_of_points As Integer

Dim start_angle, end_angle As Single

no_of_points = 121

ReDim hub_trailing_edge(no_of_points)
ReDim hub_leading_edge(no_of_points)

radius = Sqr(final_section(1, section_data(1).le_id).x * 2 + final_section(l,
section_data(1).le_id).z * 2)

'set beginning of arc for hub
f = (hub_trailing_end(1, 100).z / radius) 'position of end on hub

Select Case

Case Is = -1

If hub_leading_end(1, 100).z > O Then start_angle = pi

If hub_leading_end(1, 100).z < O Then start_angle =0

CaseIs=1

If hub_leading_end(1, 100).z > 0 Then start_angle =0

[f hub_leading_end(1, 100).z < O Then start_angle = pi

CaseIs<> 1, -1

If hub_trailing_end(1, 100).x > O Then start_angle = pi/ 2 - Atn(f / Sqr(1 - f * f))
If hub_trailing_end(1, 100).x < O Then start_angle =3 * pi /2 + Atn(f / Sqr(1 - f * f))
End Select

end_angle = start_angle + 2 * pi / no_of_blades

'draws arc

Call arc(hub_trailing_edge(), start_angle, end_angle, radius, O, hub_length / 2, 0,
no_of_points, 1)

'set beginning of arc for hub
f = (hub_leading_end(1, 100).z / radius) 'position of end on hub

Select Case f

Case Is = -1

If hub_leading_end(1, 100).z > O Then start_angle = pi

If hub_leading_end(1, 100).z < O Then start_angle =0

Casels=1

If hub_leading_end(1, 100).z > O Then start_angle =0

If hub_leading_end(1, 100).z < O Then start_angle = pi

Casels <> 1, -1

If hub_trailing_end(1, 100).x > 0 Then start_angle = pi/ 2 - Atn(f / Sqr(! - f * 1))

If hub_trailing_end(1, 100).x < O Then start_angle = 3 * pi /2 + Atn(f / Sqr(1 - f * f))

184

End Select

end_angle = start_angle + 2 * pi / no_of_blades

'draws arc

Call arc(hub_leading_edge(), start_angle, end_angle, radius, O, -hub_length / 2, O,
no_of_points, 1)

End Sub

Public Sub hub_arc_near_blade()
Dim radius, f As Single

Dim no_of_points As Integer

Dim start_angle, end_angle As Single

no_of_points = 36

ReDim hub_trailing_arc_connect(no_of_points)
ReDim hub_leading_arc_connect(no_of_points)

radius = Sqr(final_section(1, section_data(1).le_id).x » 2 + final_section(l,
section_data(1).le_id).z * 2)

'set beginning of arc for hub
f = (hub_trailing_end(1).z / radius) 'position of end on hub

Select Case f

Case Is = -1

[f hub_leading_end(1).z > 0 Then start_angle = pi

If hub_leading_end(1).z < O Then start_angle = 0

CaseIs=1

If hub_leading_end(1).z > O Then start_angle =0

If hub_leading_end(1).z < O Then start_angle = pi

CaseIs<>1, -1

If hub_trailing_end(1).x > O Then start_angle = pi/ 2 - Atn(f / Sgr(1 - f * f))

If hub_trailing_end(1).x < O Then start_angle =3 * pi /2 + Atn(f / Sqr(1 - f * f))
End Select

end_angle = start_angle + 2 * pi / no_of_blades

'draws arc

Call arc(hub_trailing_arc_connect(), start_angle, end_angle, radius, O, hub_Ilength / 2,
0, no_of_points, 1)

'set beginning of arc for hub
f = (hub_leading_end(100).z / radius) 'position of end on hub

Select Case f
Case Is =-1
If hub_leading_end(1).z > 0 Then start_angle = pi

185

If hub_leading_end(1).z < 0 Then start_angle =0

CaselIs=1

If hub_leading_end(1).z > O Then start_angle =0

If hub_leading_end(1).z < 0 Then start_angle = pi

CaseIs<>1, -1

If hub_trailing_end(1).x > 0 Then start_angle = pi / 2 - Atn(f / Sqr(1 - f * f))

If hub_trailing_end(1).x <0 Then start_angle =3 * pi /2 + Atn(f/ Sqr(1 - f * f))
End Select

end_angle = start_angle + 2 * pi/ no_of_blades

'draws arc

Call arc(hub_leading_arc_connect(), start_angle, end_angle, radius, O, -hub_length /
2,0, no_of_points, 1)

End Sub

Public Sub fix_section(section_number)

Dim 1, j As Integer

Dim min_x, max_x, factor, x As Single

Dim min_y, max_y, max_thick, thick As Single
Dim yup, ydn As Single

Dim max_yup, max_ydn As Single

min_x = 9999999
max_x = -99999999

‘Call rotate_section(section_number)

'find min and max x

For 1 =1 To section_data(section_number).num_points
If section(section_number, 1).x > max_x Then
max_x = section(section_number, 1).X

'save trailing edge id
section_data(section_number).te_id =i

End If

If section(section_number, i).x < min_x Then
min_x = section(section_number, 1).X

'save leading edge id
section_data(section_number).le_id =1

End If

Next

'set chord length to unit length

'set zero x at mid chord

factor = max_x - min_x

'y_offset = section(section_number, section_data(section_number).te_id).y

For 1= 1 To section_data(section_number).num_points

section(section_number, 1).x = (section(section_number, i).X - (max_x + min_x) /2)/
factor

section({section_number, 1).y = section(section_number, 1).y / factor

186

Next

'Open "temp" For Output As 1
'find position of max thickness
max_yup =0
max_ydn =0

For x = 0.5 To -0.5 Step -0.001
i=0
Do
1=i+1
Loop Until section(section_number, 1).X < X
J = section_data(section_number).num_points '+ 1
Do
j=i-1
Loop Until section(section_number, j).x < x

yup = ((section(section_number, 1).y - section(section_number, i - 1).y) /
Abs(section(section_number, 1).X - section(section_number, 1 - 1).x)) *
(section(section_number, 1).X - X) + section(section_number, 1).y

ydn = ((section(section_number, j).y - section(section_number, j + 1).y) /
Abs(section(section_number, j).x - section(section_number, j + 1).x)) *
(section(section_number, j).x - X) + section(section_number, j).y

If yup > max_yup Then max_yup = yup
If ydn < max_ydn Then max_ydn = ydn
Print #1, x, thick, yup, ydn

Next
thick = Abs(max_yup - max_ydn)
section_data(section_number).thickness = thick
section_data(section_number).position = x

'‘Close #1

'set section to 10% thickness

For i =1 To section_data(section_number).num_points
section(section_number, 1).y = section(section_number, i).y * (0.1 /
section_data(section_number).thickness)

Next

End Sub
Public Sub read_section(section_number As Integer, section_file$)
Dim i As Integer

Open section_file$ For Input As |

Input #1, section_data(section_number).num_points

For 1 =1 To section_data(section_number).num_points

Input #1, section(section_number, 1).x, section(section_number, 1).y
Next

187

Close #1

End Sub
Public Sub read_cap_section(v() As section, section_file$)
Dim i As Integer

Open section_file$ For Input As 1
Input #1, cap_section_points
ReDim v(cap_section_points)
For i =1 To cap_section_points
Input #1, v(i).y, v(i).x

v(1).z=0

Next

Close #1

End Sub

Public Sub assign_value(str_dummy$)
Dim group As String

Dim sub_group, property As String

'get first three characters to decide what part it is
'hub,duct etc
group = Left(str_dummys$, 3)

Select Case group
Case "vol"
Call get_value_from_string(str_dummy, volume_mesh)

Case "duc”

sk skook ok
'duct
Kook ok k ok

sub_group = Mid(str_dummy$, 6, 2)

'duct images

If sub_group = "im" Then Call get_value_from_string(str_dummy, duct_images)
‘duct thickness

If sub_group = "th" Then Call get_value_from_string(str_dummy, duct_thickness)
'panel clustering

If sub_group = "P="Then Call get_value_from_string(str_dummy, duct_P)

If sub_group = "Q=" Then Call get_value_from_string(str_dummy, duct_Q)

If sub_group = "le" Then

property = Mid(str_dummys$, 8, 1)

Tength

If property = "n" Then Call get_value_from_string(str_dummy, duct_length)
leading lower duct panels

If property = "a" Then Call get_value_from_string(str_dummy,
duct_leading_lower_panels_s)

188

End If

'duct trailing lower panel s

If sub_group = "tr" Then Call get_value_from_string(str_dummy,
duct_trailing_lower_panels_s)

'duct_panels_nt

If sub_group = "nt" Then Call get_value_from_string(str_dummy, duct_panels_t)
'duct_panels_upper_ns

If sub_group = "up" Then Call get_value_from_string(str_dummy,
duct_upper_panels_s)

'wake properties

If sub_group = "wa" Then

property = Mid(str_dummy$, 11, 6)

'free wake ns

If property = "free_n" Then Call get_value_from_string(str_dummy,
duct_freewake_panels_s)

'fixed wake ns

If property = "fixed_" Then Call get_value_from_string(str_dummy,
duct_fixedwake_panels_s)

‘wake length as multiples of chord

If property = "length" Then Call get_value_from_string(str_dummy,
duct_wake_length)

'free wake length as a ratio of fixed wake length

[f property = "free_I" Then Call get_value_from_string(str_dummy,
duct_freewake_length)

End If

Hoksk

'blade options

3k sk s sk ok sk sk ok sk sk sk s sk sk sk st sk st sk sl sfe sk sk s sk sk s sk sk sk sk sk sk sk sk sk sk sk ok e sk st sk sk sk sk sk sk sk sk sk sk sk sl skook sk sk sk skosk sk stk skt kosk
%ok ok

Case "bla"

'blade options

sub_group = Mid(str_dummy$, 7, 2)

'num of panels

If sub_group = "nt" Then Call get_value_from_string(str_dummy, blade_panels_t)
If sub_group = "ns" Then Call get_value_from_string(str_dummy, blade_panels_s)
If sub_group = "nu" Then Call get_value_from_string(str_dummy, no_of_blades)
'increase panel in the radial direction by this factor

If sub_group = "ti" Then Call get_value_from_string(str_dummy, blade_tip_cluster)
'advance speed

If sub_group = "ad" Then Call get_value_from_string(str_dummy, va)

rev per second

If sub_group = "rp" Then Call get_value_from_string(str_dummy, rps)

'panel clustering

If sub_group = "P="Then Call get_value_from_string(str_dummy, blade_P)

If sub_group = "Q="Then Call get_value_from_string(str_dummy, blade_Q)

‘'wake properties
[f sub_group = "wa" Then

189

property = Mid(str_dummy$, 12, 6)

'wake length

If property = "length" Then Call get_value_from_string(str_dummy,
blade_wake_length)

'free wake length as % of wake length

If property = "free_1" Then Call get_value_from_string(str_dummy,
blade_freewake_length)

'fixed wake panels

If property = "fixed_" Then Call get_value_from_string(str_dummy,
blade_fixedwake_panels_s)

'free wake ns

If property = "free_n" Then Call get_value_from_string(str_dummy,
blade_freewake_panels_s)

‘wake contraction amount 1 for full O for none

If property = "contra" Then Call get_value_from_string(str_dummy,
wake_contraction_value)

‘wake transition legth

If property = "transi" Then Call get_value_from_string(str_dummy, transition_length)
'wake final pitch if negative calculated within the program

If property = "final_" Then Call get_value_from_string(str_dummy, wake_pitch_set)

End If

3k sk sk ok sk sk sk sk ok sk st sk sk sk sk sk sfe sk sk sk sk sk sk sk sk sk ste sk ok sk sk sk st sk ok ko sk sk ok sk sk sk sk koo sk ok sk ok sk ok sk ko ok
'Ring options

13k sk sk sk s sk sk sk ok 3k ok ok sk sk st sk st sk s st sk sk s sk sk sk sl sk sk sk st sk ook skok sk ke sk sk e sk sk sk sk ok sk ook ok skokok skok
Case "rin"

sub_group = Mid(str_dummy$, 6, 2)

If sub_group = "sp" Then Call get_value_from_string(str_dummy, ring_split)

If sub_group = "st" Then Call get_value_from_string(str_dummy, no_of_ring_strips)
If sub_group = "nt" Then Call get_value_from_string(str_dummy, ring_panels_t)

If sub_group = "wi" Then Call get_value_from_string(str_dummy, ring_width)

sfe s ke sk sk sfe sk sk o sk sk sk sk sk sk sk s sk skl sk sk sfe sk sk sk st sfe sk ok sk s sk st skesfe sk sk sk sk ok sk sk sk ok sk sk sk skl ok sk sk sk

‘Hub options

Pofe sk s 3 e sk s sk sk sk sk sk st sk st e sk sk sk sk st skske sk st sk sk sk sk sk sk skeosfe sk st skosk skt sk e st sk ok sfe sk sk sk siook sk sk stk ko sk

Case "hub"

sub_group = Mid(str_dummys$, 5, 2)

If sub_group = "st" Then Call get_value_from_string(str_dummy, no_of_hub_strips)
If sub_group = "nt" Then Call get_value_from_string(str_dummy, hub_panels_t)
If sub_group = "ns" Then Call get_value_from_string(str_dummy, hub_panels_s)
If sub_group = "le" Then Call get_value_from_string(str_dummy, hub_length)

If sub_group = "vI" Then Call get_value_from_string(str_dummy,
hub_v_leading_factor)

If sub_group = "vt" Then Call get_value_from_string(str_dummy,

hub_v_trailing _factor)

If sub_group = "of" Then Call get_value_from_string(str_dummy, hub_offset_le)
e s s s s s st sk s sk sk sk sk sk sk sk sk sk sk sk sk sk s sfe sk sfe sl st s sfe s sfe sl sfe s sfe sk s st st sfe s sfe s sfe s sfe sl sk sfe s ok sfesfe sk ke ek

'Cap options

1o sk sk st o st o o kst ook ok sl kKRR KRR EHR IR R R s R ek s sk sk sk sk sk s gtk

Case "cap"

190

sub_group = Mid(str_dummy$, 5, 2)

If sub_group = "in" Then Call get_value_from_string(str_dummy, internal_fraction)
If sub_group = "si" Then Call get_value_from_string(str_dummy, side_fraction)

If sub_group = "nt" Then Call get_value_from_string(str_dummy, cap_panels_t)

If sub_group = "ns" Then Call get_value_from_string(str_dummy, cap_panels_s)

If sub_group = "se" Then Call get_value_from_string(str_dummy, cap_auto)

End Select

End Sub

Public Sub get_value_from_string(str_dummy, value)

Dim equal, counter As Integer

counter =0

equal =0

Do

counter = counter + 1

If Mid(str_dummy, counter, 1) = "=" Then equal = 1

Loop While equal =0

value = val(Right(str_dummy, (Len(str_dummy) - counter)))
End Sub

Public Sub read_line(str_dummy)

Dim comment As Integer
Do

comment =0

Do

Input #7, str_dummy
Loop While str_dummy =
If Left(str_dummy, 1) ="!" Then comment = 1
Loop While comment = 1

ne

End Sub

Public Sub read_prop_data()
Dim header As String

Dim str_dummy As String
Dim 1 As Integer

Dim strdummy As String

Open working_path$ + "propeller.dat" For Input As 1
Input #1, header$

Input #1, str_dummy$

Call get_value_from_string(str_dummy$, num_sections)
Input #1, str_dummy$

Call get_value_from_string(str_dummy$, D)

ReDim propdata(-10 To num_sections)

Input #1, strdummy$

For i =1 To num_sections

Input #1, propdata(i).radius, propdata(i).chord, propdata(i).skew, propdata(i).rake,
propdata(i).pitch, propdata(i).thickness

191

propdata(i).radius = propdata(i).radius * D /2

propdata(i).chord = propdata(i).chord * D

propdata(i).rake = Tan(propdata(i).rake / 57.3) * propdata(i).radius
propdata(i).skew = (propdata(i).skew / 57.3) * propdata(i).radius
Next

Close #1

Open working_path$ + "propoptions.txt" For Input As 7
Do

Call read_line(str_dummy$)

Call assign_value(str_dummy$)

Loop Until EOF(7) = True

Close #7

End Sub
Public Sub spline_through_edges()

Dim leading_points() As section
Dim trailing_points() As section
Dim i As Integer

ReDim leading_points(num_sections)
ReDim trailing_points(num_sections)

ReDim leading_spline(101)
ReDim trailing_spline(101)

For1 =1 To num_sections

leading_points(i).x = final_section(i, section_data(i).le_id).x
leading_points(i).y = final_section(i, section_data(i).le_id).y
leading_points(i).z = final_section(i, section_data(i).le_id).z

trailing_points(i).x = final_section(i, section_data(i).te_id).x
trailing_points(i).y = final_section(i, section_data(i).te_id).y
trailing_points(i).z = final_section(i, section_data(i).te_id).z
Next

Call s_spline(leading_points(), 1, 1, leading_spline, num_sections, 100)
Call s_spline(trailing_points(), 1, 1, trailing_spline, num_sections, 100)

End Sub
Public Sub hub_section_strip()
Dim 1 As Integer

Dim angle, angle_step As Single

angle_step = (360 / no_of_blades / no_of_hub_strips) / 57.2957795130823

192

angle =0

For i = -1 To -no_of_hub_strips Step -1

angle = angle + angle_step

propdata(i).thickness = propdata(1).thickness * Cos(2 * angle)
Next

End Sub

Public Sub helix_from_blade_leading_edge2()
Dim angle As Single

Dim cosangle As Single

Dim a, b, ¢, r, P As Single

Dim psi, dpsi, phi, new_phi As Single

Dim y_offset As Single

Dim end_psi As Single

Dim i, num_of_points As Integer
num_of_points = 121
ReDim hub_helix_le(num_of_points)

b = Sqr((hub_leading_end(1, 1).x - hub_leading_end(1, 2).x) " 2 +
(hub_leading_end(1, 1).y - hub_leading_end(1, 2).y) * 2 + (hub_leading_end(1, 1).z -
hub_leading_end(1, 2).z) * 2)

¢ = Sqr((final_section(1, section_data(!).le_id).x - final_section(1,
section_data(1).le_id + 1).x) A 2 + (final_section(1, section_data(1).le_id).y -
final_section(1, section_data(1).le_id + 1).y) ~ 2 + (final_section(1,
section_data(1).le_id).z - final_section(1, section_data(1).le_id + 1).z) * 2)

a = Sqr((hub_leading_end(1, 2).x - final_section(1, section_data(l).le_id + 1).x) * 2 +
(hub_leading_end(l, 2).y - final_section(1, section_data(l).le_id + 1).y) * 2 +
(hub_leading_end(1, 2).z - final_section(1, section_data(1).le_id + 1).z) * 2)
cosangle=(b"2+c”2-a”2)/(2*b*c)

angle = Atn(-cosangle / Sqr(-cosangle * cosangle + 1)) + 2 * Atn(1)

'set point to leading edge of first section
hub_helix_le(1).x = final_section(1, section_data(1).le_id).x

hub_helix_le(1).y = final_section(1, section_data(1).le_id).y
hub_helix_le(1).z = final_section(1, section_data(1).le_id).z

r = Sqr(hub_helix_le(1).z * 2 + hub_helix_le(1).x " 2)
phi = Atn(propdata(1).pitch * D/ (2 * pi * r))
new_phi = (phi + angle / 2)

P = Tan(new_phi) * 2 * pi * r + hub_v_leading_factor

If P=0Then P=0.05
'calculate the start angle and the step angle

193

'calculate start psi so it matches with leading edge of section

psi = -Atn((final_section(1, section_data(1).le_id).z / r) / Sqr(-(final_section(1,
section_data(1).le_id).z/r) * 2 + 1))

end_psi =-(2 * pi / no_of_blades) * (propdata(1).pitch * D) / (P - (propdata(1).pitch *
D))

dpsi = end_psi / (num_of_points - 1)

psi = psi - dpsi

'helical edge

ke sk ok ok ok o sk sk ok sfe sk sk sk sk sk sk st kol ok ok

For i =1 To Int(num_of_points / 2)

psi = psi + dpsi

hub_helix_le(1).x = r * Cos(psi)

hub_helix_le(i).y = (P * psi) / (2 * pi)

hub_helix_le(i).z = -r * Sin(pst)

Next

y_offset = final_section(1, section_data(1).le_id).y - hub_helix_le(1).y

'move helix so it matches blade le

For 1 =1 To num_of_points

hub_helix_le(i).y = hub_helix_le(i).y + y_offset
Next

Dim temp(70) As section

Call helix_from_point_to_point(hub_helix_le(Int(num_of_points / 2)),
hub_section_edge(10, section_data(1).le_id), temp(), num_of_points -
Int(num_of_points / 2))

For 1 = Int(num_of_points / 2) + 1 To num_of _points
hub_helix_le(i).x = temp(i - Int(num_of_points / 2)).x
hub_helix_le(i).y = temp(i - Int(num_of_points / 2)).y
hub_helix_le(i).z = temp(i - Int(num_of_points / 2)).z
Next

End Sub

Public Sub ring_helix_from_blade_leading edge()
Dim angle As Single

Dim cosangle As Single

Dim a, b, ¢, 1, P As Single

Dim psi, dpsi, phi, new_phi As Single

Dim y_offset As Single

Dim end_psi As Single

Dim i, num_of_points As Integer

num_of_points = 121

194

ReDim ring_helix_le(num_of_points)

b = Sqr((ring_leading_end(1, 1).x - ring_leading_end(1, 2).x) * 2 +
(ring_leading_end(1, 1).y - ring_leading_end(1, 2).y) * 2 + (ring_leading_end(1, 1).z
- ring_leading_end(1, 2).z) * 2)

¢ = Sqr((final_section(num_sections, section_data(num_sections).le_id).x -
final_section(num_sections, section_data(num_sections).le_id + 1).x) * 2 +
(final_section(num_sections, section_data(num_sections).le_id).y -
final_section(num_sections, section_data(num_sections).le_id + 1).y) * 2 +
(final_section(1, section_data(1).le_id).z - final_section(1, section_data(1).le_id +
1).z) " 2)

a = Sqr((ring_leading_end(1, 2).x - final_section(num_sections,
section_data(num_sections).le_id + 1).x) A 2 + (ring_leading_end(1, 2).y -
final_section(num_sections, section_data(num_sections).le_id + 1).y) A 2 +
(ring_leading_end(1, 2).z - final_section(num_sections,
section_data(num_sections).le_id + 1).z) * 2)
cosangle=(b"2+c*2-a”2)/(2*b*c)

angle = Atn(-cosangle / Sgr(-cosangle * cosangle + 1)) + 2 * Atn(1)

'set point to leading edge of first section

ring_helix_le(1).x = final_section(num_sections, section_data(num_sections).le_id).x
ring_helix_le(1).y = final_section(num_sections, section_data(num_sections).le_id).y
ring_helix_le(1).z = final_section(num_sections, section_data(num_sections).le_id).z

r = Sqr(ring_helix_le(1).z * 2 + ring_helix_le(1).x * 2)

phi = Atn(propdata(num_sections).pitch * D /(2 * p1 * r))
new_phi = (phi + angle / 2)

P = Tan(new_phi) * 2 * pi * r '+ ring_v_leading_factor

If P=0 Then P =0.05
‘calculate the start angle and the step angle

'calculate start psi so it matches with leading edge of section

psi = -Atn((final_section(num_sections, section_data(num_sections).le_id).z /1) /
Sqr(-(final_section(num_sections, section_data(num_sections).le_id).z /1) * 2 + 1))
end_psi = -(pi / 2) * (propdata(num_sections).pitch * D) / (P -
(propdata(num_sections).pitch * D))

dpsi = end_psi / (num_of_points - 1)

pst = psi - dpsi

‘helical edge

¥ok s sk sk sk sk sfe sk s sk sk sk sk sk ke skt sk ok sk sk ok

Fori=1 To Int(num_of_points / 2)

psi = psi + dpsi

ring_helix_le(i).x =r * Cos(psi)

ring_helix_le(i).y = (P * psi) / (2 * pi)

ring_helix_le(i).z = -r * Sin(psi)

195

Next

y_offset = final_section(num_sections, section_data(num_sections).le_id).y -
ring_helix_le(1).y

‘move helix so it matches blade le

For 1 =1 To num_of_points

ring_helix_le(i).y = ring_helix_le(i).y + y_offset
Next

Dim temp(70) As section

Call helix_from_point_to_point(ring_helix_le(Int(num_of_points / 2)),
ring_section_edge(10, section_data(num_sections).le_id), temp(), num_of_points -
Int(num_of_points / 2))

For i = Int(num_of_points / 2) + 1 To num_of_points

ring_helix_le(i).x = temp(i - Int(num_of_points / 2)).x
ring_helix_le(i).y = temp(i - Int(num_of_points / 2)).y
ring_helix_le(i).z = temp(i - Int(num_of_points / 2)).z
Next

End Sub

Public Sub helix_from_point_to_point(pointl As section, point2 As section, store()
As section, num_of_points As Integer)

Dim r, P As Single

Dim psi, dpst, phi, new_phi As Single
Dim y_offset As Single

Dim end_psi As Single

Dim angle

Dim 1 As Integer

‘calculate radius from first point, about y axis

r = Sqr(pointl.z * 2 + pointl.x * 2)

Ifr=0Thenr=0.03

‘calculate start psi

If pointl.x > 0 And pointl.z < 0 Then psi = -asin(pointl.z / r)

If pointl.x > 0 And pointl.z > 0 Then psi =2 * p1 - asin(pointl.z / r)

If pointl.x < 0 And pointl.z > 0 Then psi =2 * pi - pi / 2 + asin(pointl.x /)
If pointl.x < 0 And pointl.z < 0 Then psi = pi/ 2 - asin(pointl.x /1)

‘calculate end psi so it matches with trailing edge of section

'If point2.x > 0 Then end_psi = -Atn((point2.z / r) / Sqr(-(point2.z /1) * 2 + 1))
'If point2.x <0 Then end_psi = pi /2 - Atn((point2.x /1) / Sqr(-(point2.x /1) * 2 + 1))
If point2.x > 0 And point2.z < 0 Then end_psi = -asin(point2.z / r)

If point2.x > 0 And point2.z > 0 Then end_psi =2 * pi - asin(point2.z / 1)

196

If point2.x < 0 And point2.z > 0 Then end_psi =2 * pi - pi / 2 + asin(point2.x / r)
If point2.x < 0 And point2.z < 0 Then end_psi = pi/ 2 - asin(point2.x / r)

‘calculate pitch

If pst < end_psi Then angle = end_psi - psi

If psi > end_psi Then angle = (2 * pi - psi) + end_psi
P =2 * p1 * (point2.y - pointl.y) / angle

dpsi = angle / (num_of_points - 1)
psi = psi - dpsi

‘helical edge

For i =1 To num_of_points
psi = psi + dpsi

store(i).x =1 * Cos(psi)
store(1).y = (P * psi) / (2 * pi)
store(i).z = -r * Sin(psi)

Next

y_offset = pointl.y - store(1).y

'move helix so it matches blade le
For 1 =1 To num_of_points
store(i).y = store(i).y + y_offset
Next

End Sub

Public Sub hub_intermediate_helix()
Dim step, index, i,] As Integer

Dim temp(100) As section

step = 120 / no_of _hub_strips

index = 1
'helixes for front end of hub
For i=1 To no_of_hub_strips
index = index + step
Call helix_from_point_to_point(hub_leading_edge(index), hub_helix_le(index),
temp(), 100)
For j=1To 100
hub_leading_end(i + 1, j).x = temp(j).x
hub_leading_end(i + 1, j).y = temp(j).y
hub_leading_end(i + 1, j).z = temp(j).z
Next
Next

'helixes for the rear face
index = -step

For i =1 To no_of_hub_strips + 1
index = index + step
Call helix_from_point_to_point(hub_helix_te(index + 1), hub_trailing_edge(121 -
index), temp(), 100)
Forj=1To 100
hub_trailing_end(i, j).x = temp(j).x
hub_trailing_end(i, j).y = temp(j).y
hub_trailing_end(i, j).z = temp(j).z
Next
Next

'helixes between faces
index = -step

ReDim hub_helix_blades(10, 100)

For i =1 To no_of_hub_strips + 1
index = index + step
Call helix_from_point_to_point(hub_helix_le(index + 1), hub_helix_te(121 -
index), temp(), 100)
For j =1 To 100
hub_helix_blades(i, j).x = temp(j).x
hub_helix_blades(i, j).y = temp(j).y
hub_helix_blades(i, j).z = temp(j).z
Next
Next

End Sub

Public Sub ring_intermediate_helix()
Dim step, index, 1,] As Integer

Dim temp(100) As section

step = 120 / no_of_ring_strips

'helixes for front end of ring
Fori=1 To no_of_ring_strips
index = index + step
Call helix_from_point_to_point(ring_leading_edge(index), ring_helix_le(index),
temp(), 100)
Forj=1To 100
ring_leading_end(i + 1, j).x = temp(j).x
ring_leading_end(i + 1, j).y = temp(j).y
ring_leading_end(i + 1, j).z = temp(j).z
Next
Next

198

'helixes for the rear face
index = -step

For 1 =1 To no_of_ring_strips + 1
index = index + step
Call helix_from_point_to_point(ring_helix_te(index + 1), ring_trailing_edge(121 -
index), temp(), 100)
Forj=1To 100
ring_trailing_end(i, j).x = temp(j).x
ring_trailing_end(i, j).y = temp(j).y
ring_trailing_end(i, j).z = temp(j).z
Next
Next

'helixes between faces
index = -step

ReDim ring_helix_blades(10, 100)

Fori =1 To no_of_ring_strips + 1
index = index + step
Call helix_from_point_to_point(ring_helix_le(index + 1), ring_helix_te(121 -
index), temp(), 100)
For j =1 To 100
ring_helix_blades(i, j).x = temp(j).x
ring_helix_blades(i, j).y = temp(j).y
ring_helix_blades(i, j).z = temp(j).z
Next
Next

End Sub

Public Sub helix_from_blade_trailing_edge2()
Dim angle As Single

Dim cosangle As Single

Dim a, b, ¢, 1, P As Single

Dim psi, dpsi, phi, new_phi As Single

Dim y_offset As Single

Dim end_psi As Single

Dim i, num_of_points As Integer
num_of_points = 121

ReDim hub_helix_te(num_of_points)

199

b = Sqr((hub_trailing_end(1, 1).x - hub_trailing_end(1, 2).x) * 2 +
(hub_trailing_end(1, 1).y - hub_trailing_end(1, 2).y) * 2 + (hub_trailing_end(l, 1).z -
hub_trailing_end(1, 2).z) * 2)

¢ = Sqr((final_section(1, section_data(1).te_id).x - final_section(l1,
section_data(1).te_id + 1).x) * 2 + (final_section(1, section_data(1).te_id).y +
final_section(1, section_data(1).te_id + 1).y) * 2 + (final_section(1,
section_data(1).le_id).z - final_section(1, section_data(1).le_id + 1).z) * 2)

a = Sqr((hub_trailing_end(1, 2).x - final_section(l, section_data(l).te_id + 1).x) * 2 +
(hub_trailing_end(1, 2).y + final_section(1, section_data(1).te_id + 1).y) * 2 +
(hub_trailing_end(1, 2).z - final_section(1, section_data(1).te_id + 1).z) * 2)

cosangle=(b"2+c*2-a”2)/(2*b*c)

If cosangle < 0 Then cosangle = 0

If cosangle > 1 Then cosangle = 0.95

angle = Atn(-cosangle / Sqr(-cosangle * cosangle + 1)) + 2 * Atn(1)

'set point to trailing edge of first section

hub_helix_te(1).x = hub_section_edge(10, 1).x
hub_helix_te(1).y = hub_section_edge(10, 1).y
hub_helix_te(1).z = hub_section_edge(10, 1).z

r = Sqr(hub_helix_te(1).z * 2 + hub_helix_te(1).x * 2)

phi = Atn(propdata(1).pitch / (2 * pi *r))
new_phi = (phi + angle / 2)

P = Tan(new_phi) * 2 * pi * r + hub_v_trailing_factor

If P=0 Then P =0.05
‘calculate the start angle and the step angle

‘calculate start psi so it matches with trailing edge of section

If hub_section_edge(10, 1).x > 0 Then psi = -Atn((hub_section_edge(10, 1).z /1) /
Sqgr(-(hub_section_edge(10, 1).z/ 1)~ 2 + 1))

If hub_section_edge(10, 1).x < 0 Then psi = pi/ 2 - Atn((hub_section_edge(10, 1).x /
r) / Sqr(-(hub_section_edge(10, 1).x /1)~ 2 + 1))

'step dpsi for the set number of steps

end_psi = (2 * pi / no_of_blades) * propdata(1).pitch / (P - propdata(1).pitch)

dpsi = end_psi / (num_of_points - 1)

psi = psi - dpsi

‘helical edge

Yok she sk sk sk st st sk sk ke sk sk sk sk sk sk ok sk ok sk ok

Fori =1 To Int(num_of_points / 2)
psi = psi + dpsi

hub_helix_te(i).x = r * Cos(psi)
hub_helix_te(i).y = (P * psi) / (2 * pi)
hub_helix_te(i).z = -r * Sin(pst)

Next

200

y_offset = hub_section_edge(10, 1).y - hub_helix_te(1).y

'move helix so it matches blade le

For i =1 To num_of_points

hub_helix_te(i).y = hub_helix_te(i).y + y_offset
Next

Dim temp(70) As section

Call helix_from_point_to_point(final_section(1, section_data(1).te_id),
hub_helix_te(Int(num_of_points / 2)), temp(), num_of_points - Int(num_of_points /

2))

For 1 = Int(num_of_points / 2) + 1 To num_of_points
hub_helix_te(i).x = temp(num_of_points - 1 + 1).x
hub_helix_te(i).y = temp(num_of _points -1+ 1).y
hub_helix_te(i).z = temp(num_of_points - i + 1).z
Next

End Sub

Public Sub helix_from_blade_leading_edge()
Dim angle As Single

Dim cosangle As Single

Dim ratio, P As Single

Dim psi, dpsi, phi, new_phi As Single

Dim y_offset As Single

Dim end_psi As Single

Dim i, num_of_points As Integer
num_of_points = 121

ReDim hub_helix_le(num_of_points)

'set point to leading edge of first section

hub_helix_le(1).x = final_section(1, section_data(1).le_id).x
hub_helix_le(1).y = final_section(1, section_data(1).le_id).y
hub_helix_le(1).z = final_section(1, section_data(1).le_id).z

ratio = 2

P = -ratio * no_of_blades * hub_v_leading_factor * (hub_leading_end(1, 1).y -
hub_leading_end(1, 100).y) /D

If P=0 Then P =-0.001

dpsi = (2 * pi / (ratio * no_of_blades)) / (num_of_points / ratio - 1)

‘helical edge

Ve st sk sfe she otk s st sfe sk ok st st sk sk sk sk ok ks sk

201

For i =2 To Int(num_of_points / ratio)

hub_helix_le(i).x = hub_helix_le(i - 1).x * Cos(-dpsi) - hub_helix_le(i - 1).z * Sin(-
dpsi)

hub_helix_le(i).y = hub_helix_le(i - 1).y + (P * D * dpsi) / (2 * pi)
hub_helix_le(i).z = hub_helix_le(i - 1).x * Sin(-dpsi) + hub_helix_le(i - 1).z * Cos(-
dpsi)

Next

Dim temp(121) As section

Call helix_from_point_to_point(hub_helix_le(Int(num_of_points / ratio)),
hub_section_edge(10, section_data(1).le_id), temp(), num_of_points -
Int(num_of_points / ratio))

Dim i_init As Integer

i_init = Int(num_of_points / ratio)
For i = Int(num_of_points / ratio) + 1 To num_of_points

hub_helix_le(i).x = temp(i - i_init).x
hub_helix_le(i).y = temp(i - i_init).y
hub_helix_le(i).z = temp(i - i_init).z
Next

End Sub

Public Sub helix_from_blade_trailing_edge()
Dim angle As Single

Dim cosangle As Single

Dim ratio, P As Single

Dim psi, dpsi, phi, new_phi As Single

Dim y_offset As Single

Dim end_psi As Single

Dim i, num_of_points As Integer
num_of_points = 121

ReDim hub_helix_te(num_of_points)

'set point to trailing edge of first section

hub_helix_te(1).x = hub_section_edge(10, 1).x
hub_helix_te(1).y = hub_section_edge(10, 1).y
hub_helix_te(1).z = hub_section_edge(10, 1).z

ratio =2

P =ratio * no_of_blades * hub_v_trailing_factor * (hub_trailing_end(1, 1).y -
hub_trailing_end(1, 100).y)/ D

If P=0 Then P =0.001

202

dpsi = -(2 * pi/ (ratio * no_of_blades)) / (num_of_points / ratio - 1)

helical edge

For 1 =2 To Int(num_of_points / ratio)

hub_helix_te(i).x = hub_helix_te(i - 1).x * Cos(-dpsi) - hub_helix_te(i - 1).z * Sin(-
dpsi)

hub_helix_te(i).y = hub_helix_te(i - 1).y + (P * D * dpsi) / (2 * pi1)
hub_helix_te(i).z = hub_helix_te(i - 1).x * Sin(-dpst) + hub_helix_te(i - 1).z * Cos(-
dpsi)

Next

Dim temp(121) As section

Call helix_from_point_to_point(final_section(1, section_data(1).te_id),
hub_helix_te(Int(num_of_points / ratio)), temp(), num_of_points - Int(num_of_points
/ ratio))

For i = Int(num_of _points / ratio) + 1 To num_of_points
hub_helix_te(i).x = temp(num_of_points - 1 + 1).x
hub_helix_te(i).y = temp(num_of_points -1+ 1).y
hub_helix_te(i).z = temp(num_of_points - i + 1).z

Next

End Sub

Public Sub ring_helix_from_blade_trailing_edge()
Dim angle As Single

Dim cosangle As Single

Dim a, b, c, r, P As Single

Dim psi, dpsi, phi, new_phi As Single

Dim y_offset As Single

Dim end_psi As Single

Dim i, num_of_points As Integer
num_of_points = 121

ReDim ring_helix_te(num_of_points)

b = Sqr((ring_trailing_end(l1, 1).x - ring_trailing_end(1, 2).x) * 2 +
(ring_trailing_end(1, 1).y - ring_trailing_end(1, 2).y) * 2 + (ring_trailing_end(1, 1).z -
ring_trailing_end(1, 2).z) * 2)

¢ = Sqr((final_section(num_sections, section_data(num_sections).te_id).x -
final_section(num_sections, section_data(num_sections).te_id + 1).x) * 2 +
(final_section(num_sections, section_data(num_sections).te_id).y +
final_section(num_sections, section_data(num_sections).te_id + 1).y) * 2 +
(final_section(1, section_data(l).le_id).z - final_section(1, section_data(1).le_id +
1).z) *2)

203

a = Sqr((ring_trailing_end(1, 2).x - final_section(num_sections,
section_data(num_sections).te_id + 1).x) * 2 + (ring_trailing_end(1, 2).y +
final_section(num_sections, section_data(num_sections).te_id + 1).y) * 2 +
(ring_trailing_end(1, 2).z - final_section(num_sections,
section_data(num_sections).te_id + 1).z) * 2)

cosangle=(b"2+c”2-a”2)/(2*b*c)
angle = Atn(-cosangle / Sqr(-cosangle * cosangle + 1)) + 2 * Atn(1)

'set point to trailing edge of first section

ring_helix_te(1).x = ring_section_edge(10, 1).x
ring_helix_te(1).y = ring_section_edge(10, 1).y
ring_helix_te(1).z = ring_section_edge(10, 1).z

r = Sqr(ring_helix_te(1).z * 2 + ring_helix_te(1).x " 2)

phi = Atn(propdata(num_sections).pitch / (2 * pi * r))
new_phi = (phi + angle / 2)

P = Tan(new_phi) * 2 * pi * r '+ ring_v_trailing_factor

If P=0 Then P =0.05
‘calculate the start angle and the step angle

'calculate start psi so it matches with trailing edge of section

If ring_section_edge(10, 1).x > 0 Then psi = -Atn((ring_section_edge(10, 1).z /1) /
Sqr(-(ring_section_edge(10, 1).z/r) "2 + 1))

If ring_section_edge(10, 1).x <0 Then psi = pi / 2 - Atn((ring_section_edge(10, 1).x /
r) / Sqr(-(ring_section_edge(10, 1).x /1) "2 + 1))

'step dpsi for the set number of steps

'dpsi = ((((-1/2) -ring_leading_end(1, 1).y) /P) * 2 * p1) / (100 - 1)

end_psi = (pt / 2) * propdata(num_sections).pitch / (P - propdata(num_sections).pitch)
dpsi = end_psi / (num_of_points - 1)

psi = psi - dpsi

‘helical edge

For i =1 To Int(num_of_points / 2)
psi = psi + dpsi

ring_helix_te(i).x =r * Cos(psi)
ring_helix_te(i).y = (P * psi) / (2 * p1)
ring_helix_te(i).z = -r * Sin(psi)

Next

y_offset =ring_section_edge(10, 1).y - ring_helix_te(1).y
‘'move helix so it matches blade le

Fori1=1 To num_of_points
ring_helix_te(i).y = ring_helix_te(i).y + y_offset

204

Next
Dim temp(70) As section

Call helix_from_point_to_point(final_section(num_sections,
section_data(num_sections).te_id), ring_helix_te(Int(num_of_points / 2)), temp(),
num_of_points - Int(num_of_points / 2))

For 1 = Int(num_of_points / 2) + 1 To num_of_points
ring_helix_te(i).x = temp(num_of_points -1 + 1).x
ring_helix_te(i).y = temp(num_of_points -1 + 1).y
ring_helix_te(i).z = temp(num_of_points -1+ 1).z
Next

End Sub

205

12 Appendix B

Design Optimisation of a bi-directional integrated thruster

206

Design optimisation of a bi-directional integrated
thruster

Pashias C, Turnock S.R., Abu Sharkh SM.
University of Southampton, UK

[ntegrated thruster model

ABSTRACT

The majority of thrusters used for the position control of tethered underwater vehicles have
asymmetric propulsion characteristics. This paper presents the results of a hydrodynamic
design optimisation of a bi-directional integrated thruster. 4 surface panel method using the
perturbation potential method of Morino was used for the optimisation. The model was
validated with experimental data giving good agreement. Two versions of the prototype
thruster have now been built and tested. In this paper details are given of the design
optimisation process for the next generation of thruster for use on a work class Remotely
Operated Vehicle. A 2-D potential code coupled with integral boundary layver equations has
been used to derive an optimum blade section shape for equal performance in both directions.
Using the derived sections the complete thruster was optimised for a given operating
condition.

NOMENCLATURE P Section pitch
2 Q Torque
Cp Pressurc coefficient=1—| —- T Thrust _
Ve \Y Advance vcelocity
D Diameler Ve =1 +(27Z‘)’1R)2
4 .
J Advance ratio = —— vV, Total cdge velocity
nD — J K,
icency = ————
K; Thrust cocfficient = Py~ n 2r K,
pn” :
K, Torque coefficient = Ls
pn D

n Rotation speed rps

INTRODUCTION

A hydrodynamic design optimisation of
a bi-directional thruster is presented. This
on-going project (Hughes 2000) has been
developed for position control in Remotely
Operated Vehicles (ROV), to replace the
current hydraulic thrusters. Typically each
ROV has six thrusters: four for lateral and
two for vertical position control. Most
current thrusters have asymmetric
propulsion characteristics, because of either
off the shelf propellers or motor/shaft
blockage effects.

A bi-directional thruster has many
advantages over the current hydraulic
thrusters. Bi-directionality simplifies the
control problem since the same thrust is
produced for the forward and reverse
condition with the same rpm.

In addition an electric thruster has a
lower number of parts, thus reducing
maintenance costs. The electric thruster is
also lighter which translates into more
weight saving by reducing the syntactic
foam required for buoyancy. Also no
hydraulic fluid has to be pumped down the
umbilical cord that can be more than 3000m
long, reducing the weight of the cord which
means lighter handling gear on the mother
vessel.

The first phase of this project was to
integrate the permanent magnet (PM) motor
with the hydrodynamics of the thruster and
to test the concept. Two prototype thrusters
were built and tested. Phase one has been
completed but did not concentrate on the
hydrodynamic aspects of the thruster design.
A standard duct and section shape were
modified to give bi-directionality, which
does not give optimum performance. The
second phase of the project is to optimise the
hydrodynamic performance of the integrated
thruster.

The hydrodynamic analysis of the
thruster is carried out using a surface panel
code. A mesh generation tool was developed
to allow quick definition of arbitrary
propellers. The code was validated against
standard propellers and experimental data.
New section shapes were developed for bi-
directional performance. The complete
thruster was then modelled and optimised
for a given operating condition to match the
motor specifications.

INTEGRATED THRUSTER DESIGN

The thruster is powered by a PM motor.
The PM ring is attached to the propeller tip
and the stator is integrated into the duct. The
propeller is driven from the tips and the
thrust supported by bearings on the shaft.
The bearings are supported by stators from
the duct.

Several bearing arrangements were
considered (Figure 1), including the thrust
bearings supporting the ring, which
eliminates the requirement for a hub. The
chosen arrangement enables thinner sections
to be used offering improved performance.
Since the thrust is supported at the hub and
the torque at the tip, the twist of the blade
helps support the forces.

N N
/\:Fij/ r
/L

H
Rjﬁw

< [!

/

/

L~

\1

(c) (d)

X

Beating

Figure 1 Possible bearing arrangements for
integrated thruster

THEORY

Ducted propellers have been widely
used in applications where propeller
diameter is limited. It is known that ducted
propellers are more efficient than open water
propellers under such operating conditions
(McMahon 1994). The presence of the duct
enables the propeller tip to sustain the
pressure differential between the back and
the face, thus generating more thrust and that
is the reason why ducted propeller have
larger chords near the tip than open water
propellers.

There is a strong interaction between
the duct and the rotor and because of the
complex nature of the problem a non-
viscous lifting surface panel method was
used. Such methods can model complex
problems quickly and have been used
successfully in the past. The ease and time
advantage over RANS codes (Turnock
2000) makes them ideal for optimisation
studies.

The in house parallel lifting surface
panel code, Palisupan (Turmnock 1997), was
originally developed to solve rudder-
propeller interaction and follows the work of
Morino (Morino 1974), Newman (Newman
1986) and Lee (Lee 1987). It involves a
straightforward application of this method to
model the interaction between a rotating
propeller and duct.

Laplace's equation can be written as an
integral over the bounding surface S of a
source distribution per unit area s and a
normal dipole distribution per unit area m
distributed over the S. This can be expressed
in terms of a surface integral as:

o= | [[Lo+£(Lugds
S5 (1)
+ [[&(L)uds

Sw

where S is the surface of the body and Sy a
trailing wake sheet. In the expression r is the
distance from the point for which the potential
is being determined to the integration point on
the surface and &/6n 1s a partial derivative in
the direction normal to the local surface.
Equation (1) is discretised to give the
following formulation for the potential at the
centre of a given panel:

] N
¢i:2_Z((U00'nj)Sij_¢jDij)
E @

M
+ D AW
k=1

For solving complex flows with
multiple bodies the Interaction Velocity
Field (IVF) method (Turnock 1994) is used,
where the disturbance velocity field
generated by a body is superimposed on the
velocity field existing in the absence of the
body.

For a duct/propeller problem an iterative
process is employed as follows:

Step 1. The propeller is solved in the
free stream velocity field.

Step 2. The propeller’s disturbance
velocity is applied to the free
stream velocity field and the
duct solved.

The duct’s disturbance velocity
is applied to the free stream
velocity field of the propeller
and solved.

Repeat steps 2 and 3 until the
solution has converged.

Step 3.

Step 4.

Typically six iterations are required to
converge within 0.5% of the total forces.
The method effectively splits up the problem
to smaller blocks reducing memory
requirements and processing time. A typical
run takes less than 15min on a Pentium III
1Ghz.

For the thruster to be bi-directional a
180° rotationally symmetric section shape is
required. Standard sections are not readily
available and a new section had to be
developed. A 2-D potential code coupled
with integral boundary layer equations as
implemented in X-Foil (Drela 1989) was
used because of its speed, ease of use and
reliability (Milgram 1997).

GEOMETRY AND MESH
GENERATION

In order to facilitate the optimisation
process a program has been developed to
generate the propeller, hub, end caps and
duct geometry from standard propeller
tables. The geometry is constructed from
four sided faces (Figure 2) and exported to
the mesh generation tool.

Figure 2 Perspective view of face structure
for geometry definition of hub, blade and
wake

Figure 3 Perspective view of panelling for
DMTB4119 propeller and hub

The faces can then be discretised into
the desired number of panels (Figure 3)
using transfinite interpolation (Hall 1973).
Since it is a steady flow problem only one
blade of the propeller is generated and the
image influence coefficients are used. This
again reduces memory and processing
requirements enabling more panels to be
used. The whole process can be automated
enabling variants to be created easily for
optimisation studies.

Wake

The wake model is crucial for correct
results. Wake relaxation methods have many
numerical difficulties and are often
unreliable. Because of the tip vortex the
wake near the tip of the blade rolls back on
itself creating problems (Caponnetto 1997).
In addition highly skewed panels can result
causing numerical problems. Getting the
relaxation to converge is another issue, even
when damping is applied (Hughes 1998). A
fixed wake model has been chosen because
it is robust and quick. Fixed wake models
have been used in the past giving as good
results without any problems as shown in the
22" ITTC Propulsion Committee workshop
(Gindroz 1998).
The wake bisects the trailing edge of the
blade and smoothly varies from that initial
pitch to the final wake pitch. Since the
experimental data from the two prototype
thrusters were available, the final wake pitch
was varied until there was good agreement.

The wake transitions from the initial to
the final pitch in one propeller diameter.
Instead of using a linear transition a 4" order
polynomial was used which gives a smooth
wakes shape. The wake pitch depends on the
wake contraction and the polynomial is the
same as the one used for the wake
contraction (Hoshino 1991). A wake
sensitivity study was carried out and a wake
length of four diameters was found to be
more than adequate with extra length only
changing the thrust and torque by less than

1%.

0.9
0.8
0.7

Wake /R

0.4 4 \
0.3 |

o y

0.2 4

0.1

O T
0 5 10

15 20 25

Distance along wake (cm)

Figure 4 Contraction shape for wake (Hoshino 1991)

Wake contraction has been accounted
for by setting it to a fixed value. A final
wake contraction is assumed depending on
the advance ratio. The wake contraction is
set to this value for distances more than one
diameter away from the blade. Between the
blade and one diameter the wake contraction
is modelled by a polynomial, which is based
on experimental results (Hoshino 1991).
Wake contraction increases with increased
propeller loading and from experimental
results is about 0.7D to 0.8D for most
propellers (Hoshino1991, Pereira 2002).

VALIDATION

To validate the mesh generation and the
numerical model, a standard propeller was
selected. The DTMB4119 is standard open
water three bladed propeller that has been
used in the past for validation purposes and
experimental data are readily available
(Jessup 1998). This propeller has been used
for the recent 22" ITTC Propulsion
Committee workshop (Gindroz 1998).

For the DTMB4119 a panel sensitivity
study was carried out and 23 panels were
used for the blade in the spanwise direction
and 20 in the chordwisc direction giving a
total of 460 panels on the blade with an
additional 288 on the hub and 5920 wake
panels.

Different wake parameters have been
investigated to find their influence on the

results. Wake contraction and initial pitch
have both been studied.

The initial pitch of the wake has been
set to three different values: the local section
pitch, the pitch of the bisector of the trailing
edge and the pitch of the back face on the
trailing edge. The influence has been found
to be small giving a change in K1 of 1% and
Kq 0.2% from one extreme to the other. The
wake geometry used has the initial pitch set
to bisect the trailing edge.

The effect of wake contraction was
found to have less than one per cent
influence on the K7 and Kq. For advance
ratios close to one the effect was negligible
whereas for smaller advance ratios there was
a one per cent increase in Ky and K, rising
with decreasing advance ratio as expected.
As the influence was relatively small the
wake contraction was not modelled in
subsequent calculations.

The pressure distribution for an advance
ratio of 0.833 was compared to the
experimental data at r/R of 0.3, 0.7 and 0.9.
The results were in good agreement with the
experimental results and other panel code
calculations. The pressures for the 0.9 radius
are slightly over predicted, which was the
norm for other codes (Hoshino 1998). In
addition the Ky, Ko for a range of] was
compared, giving good agreement with the
experimental data.

DTMB 4119 K; Kq

0.6 ——— - S i s e e e o 0,080
m] o F 0.070
0.5 - no :
I 0.060
0.4 -
0.050
<
203 0.040 =
-
X
% 0.030
0.2 |+ — —- - -
+ 0.020
O Experimental
0.1
——Panel 0.010
O ! T I : o 1 n 0.000
04 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
Advance ratio J
CP distribution on DTMB4119 at 0.7R
0.3
O Panel
—3— Experimental
& Hoshino
02 |BBpgg 4 -
&
0.1
S o
1
¢
-0.1
0.2 -
M
-0.3

Figure 5 Validation data for the DTMB4119

The numerical model of the duct and
propeller was validated using
experimental data from the two prototype
thrusters. The thrusters were tested with
different propeller/duct combinations and
had symmetrical ducts and propellers with
aP/Dofl.4and1.0.

A gap of 1% of the overall propeller
diameter was left between the inner
surface of the duct and the blade tip to
eliminate the high Cp caused by the
proximity of the blade tip to shielded
panels on the duct. The numerical results
were in relatively good agreement with
experimental data.

The slope of the Kt and Kq curves do
not match exactly with the experimental
results. This is due to a number of reasons.

The duct imposes a velocity and hence
modifying the operating condition of the
propeller. Since no form of wake
relaxation was used this was not taken into
account. Also ensuring the correct wake
shape for heavily loaded propellers is
difficult (Takinaci 2001). Another effect
not taken into account is that the propeller
contraction also affects the duct wake,
which will again alter the thrust of the
duct.

In addition in this model no
viscous interaction effects are included
and for simplicity the six stators are
neglected. However, as shown previously
(Hughes 2000, Hughes 2001) the relative
performance changes are captured well.

0.8 - e = e
O Experimental
—>— Panel
0.6 1
0.4
a
O
o}
3
S 0.2
i
X
0.0 T —
0 0.1 0.2 0.4 0.5 0o0.6 0.7
a
(m]
O n
-0.2
a
-0.4

Advance Ratio J

Figure 6 Prototype Kt K
EFFECT OF THE RING

The nature of the design of the
integrated thruster includes a ring to which
the magnets are attached on the outer
surface. An investigation was carried out
as to whether it was necessary to include
this ring as a rotating surface in the panel
method.

The ring was modelled by a
cylindrical ring of panels aligned with the
pitch at the blade tip, connecting the
blades (Figure 7). In previous work
(Brown 1994), a similar ring attached to a
wake was used to simulate the effect of
the duct on the propeller, as a
simplification for preliminary design. The
effect of the ring was to seal the blade tips
and increase the thrust.

Since the ring in this case was in the
duct no wake was attached to it. The
propeller and ring combination were run
in isolation and the results were similar to
(Brown 1994). The ringed propeller was
then solved in combination with a duct
with a cut out ring (Figure 8).

Figure 7 Propeller with ring
1.6

K
14 - OE\\,\
—¥—No ring e
1.2 - —\—wih ring
g ke
2 08 - Ka
¥ 0.6
04-
0.2 -

0 0.1 02 0.3

The effect of the ring has so far been
to make a non-physically large increase in
thrust and also torque. There is also an
increase in thrust from the duct. The
friction on the ring results in an increase in
torque, which offsets the gain in thrust and
the increase in efficiency is negligible
(Figure 9). The torque due to the friction
of the ring is approximately 7% of the
overall torque. The ring width was kept to
a minimum for the final design to keep
frictional drag as low as possible.

Other investigations have been carried
out to study the turbulent Taylor-Couette
flow in the gap between the ring and the
motor windings (Batten 2002). This
contribution to torque is not included in
the external hydrodynamic optimisation as
there is little interaction between the two
regimes.

For the optimisation studies presented
the effect of the ring is not included and a
constant tip gap of 1% of D is used. This
iIs comparable in size to a typical panel
dimension on the duct and propeller.

0.4

0.5 0.6 0.7

Advance Ratio J

Figure 9 Effect of modelling the ring of the thruster

OPTIMISATION

The thruster was optimised to give
maximum bollard pull at zero advance
speed with the given motor characteristics.
There is an optimum motor rpm, which
depends on the viscous losses due to the
friction in the gap between the rotor ring
and the stator (Batten 2002). As the rpm
increase the motor efficiency increases but
so do the gap losses, so an optimum exists.

The typical operating depth of the
thruster will be from 300m to 3000m. At
those depths cavitation is not an issue
since the pressure is very high. Small
blade area ratios (BAR) can be used with
heavily loaded blades without cavitation
problems.

To speed up the optimisation process
the stators were neglected from the
numerical model. The stators can be used
to pre-swirl the flow, but their effect on
the overall performance is less than 1% for
angles up to 5 degrees as shown by the
prototype experimental results (Hughes
2001).

Bi-directional propeller section

Asymmetrical sections were not to be
used as previously explained. The new
section was required to have bi-directional
characteristics. A new section was
developed using X-Foil (Drela 1989).

Over 10,000 sections were
automatically created and tested (Ellsmore
2002). A quintic polynomial was used to
define the camber line. A leading and
trailing edge circle and two cubic splines
were used to define the thickness
distribution. The section shape was the
created by adding the thickness to the
camber line (Figure 12). The parameters
controlling the camber and thickness were
varied over a specified range and a series
of bi-directional sections was produced.
The sections were then analysed and
refinements made to possible candidates.

The developed section has almost the
same efficiency (95%) as the standard
asymmetrical Kaplan section (Lewis
1988). This improved the efficiency over
the old symmetrical section used in the
first generation prototype by 3%.

Duct profiles

Different duct profiles were modelled
and tested experimentally for the first
generation thrusters. The best duct shape

(SF2037) was found to be the one that
imposed the least increase in velocity at
the propeller plane: the section with the
flattest inner shape, which agrees with the
numerical model.

The duct must enclose the motor,
which typically has a length of 100mm
and thickness of 40mm. A new duct
section shape (MSN64212) was
developed with similar inner shape but
with sharper ends giving a smoother Cp
distribution. This section performs equally
well as the SF2037 but will be less prone
to separation at the trailing edge, although
this is not modelled in the current
numerical model.

0.1 4
0 »
0.5 0.75 1
——SN64212
—8— MSN64212
——S37
—»—SF2037

Figure 10 Duct profiles tested

0440 ——— — e - e 0.0650
0.439 -
0.0630
0.438 -
’9.437 + 0.0610
X
0.436 + 0.0590
0.435 - u
0.057
0.434 - 570
0.433 . 0.0550
A ¥ oA
& "obg:\ &Y Q,Ld” mKT
& \&e\‘\‘ 2 oKa

Figure 11 K1, Kg for different ducts at J=0.1

a)// \

S —

Figure 12 Thickness distribution (a) is added
to the camber (b) to generate a symmetrical
section (c)

Duct length

Six different duct lengths were
modelled at three different advance
speeds. As the advance speed increases the
optimum duct length increases. For the
J=0.6 the optimum duct length is 2.4 times
the propeller diameter decreasing to 0.8
times the diameter for J=0.1. The
optimum duct length can be selected
depending on the application of the
thruster, but for a general-purpose case a
duct length of 1.8 times the propeller
diameter would be best. This gives less
than 1% penalty for all the speeds
analysed whereas a short duct would have
a 3.8% penalty at J=0.6. Since a ROV
mostly uses the thruster for position
control at low speeds and does not move
at high speeds a shorter duct was chosen.
Also a compact thruster has practical
advantages.

The optimum duct length depends on
the thruster size since the thrust of the duct
does not scale the same as the propeller
thrust (Abdel-Maksoud 2002). The whole
problem is Reynolds number dependent
and the duct thrust increases with
Reynolds number.

A factor not modelled in the current
method is the boundary layer effect of the
duct on the propeller tip. The longer ducts
have a thicker boundary layer at the
propeller tip, which increases the loading
at the propeller tip (Abdel-
Maksoud 2002). However in this case an
additional complication is the ring with
blade-tip junction. Suitable fairing aids in
minimising drag losses in this region.

2 —&— Efficiency 800
. J=01 —A— Thrust

15 A— g N A ‘

+ 600

F—8—8—8—4§8 Z

© 1 —

sl J=0.3 | 2

ey

| £

—a—B—8—u400
05 - !
J=0. i

0 - , ! 200

20 30 40 50 60
Duct length (cm)

Figure 13 Duct length influence on thrust

Blade area ratio

Since cavitation is not an issue small
blade area ratios with highly loaded
sections are feasible. Four different BAR
of 0.5, 0.6, 0.7, 0.8 and 0.9 where
analysed. The pitch was adjusted for each
case such that the thrust produced was the
same. The chord and pitch distribution
along the blade where kept constant.

An increase in pitch is required with a
decrease in BAR to keep the thrust
constant (Figure 14). In this bollard
condition the efficiency can be express
better as follows (Lewis 1988):

3
(%)

= i 3)
Mo =—7—

KQ

It can be seen that as the BAR
increases there 1s a reduction of the
required pitch to maintain constant thrust.
For higher BARs the variation in pitch is
very small. The optimum BAR for the
analysed advance ratio of 0.1 is 0.77.

r 0.84

Nd

0.82
0.80
0.95 0.78
0.5 0.6 0.7 0.8 0.9
BAR

Figure 14 Optimum BAR for J=0.1

COMPLETE THRUSTER

The first generation thruster has been
refined and revised. Improvements have
been made in its hydrodynamic
performance.

The biggest gain in performance was
from the new bi-directional section shape
which accounts for an improvement in
efficiency at bollard pull (np) of 5% over
the old propeller. Other refinements have
made smaller contributions. Some of the
improvements are not modelled by the
numerical model and are not reflected in
the results because of the potential flow

assumption. For example, such a gain is
the smoother duct shape. Although in the
numerical results it appears to have the
same performance as the old duct, in
reality it will perform better because it is
less prone to separation compared to the
old shape.

CONCLUSION

Numerical analysis is being
increasingly used for design applications.
The method outlined in this paper allows
results for a particular condition to be
acquired in about 15 minutes. However, as
demonstrated a significant number of such
calculations is required to achieve an
overall optimisation. As a result a step-by-
step approach has been used to first
optimise the components in isolation and
then make small changes for the complete
problem. Not withstanding the number of

assumptions/approximations made in the
numerical method, it has been proven as a
reliable design guide. The result of this
work has been an overall improvement of
performance of at least 5%. The final
design will be by necessity a compromise
between optimum hydrodynamic design
and practical/mechanical design issues. As
greater experience is gained with each
successive generation of integrated
electric thruster, it is envisaged that more
radical designs will be used and as a result
greater performance gains will be
possible.

The next step of this ongoing work is
to build and test the new thruster. In
addition the numerical model will be
improved by adapting the wake, which it
is believed will improve the numerical
predictions.

0.8 0.6
071 Los
0.6
o 0.5 04
<
S 04 - + 03¢
¥ 03
T 0.2
02 —B— Old propeller o1
01 - —>— New propeller .
0 | I | 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Advance ratio J
Figure 15 Performance of first and second generation propellers
0.7 0.5
0.6 E“\\\ﬂ
— L 0.4
0.5 T
o o —
T~ + 0.3
g 04 \E\\\ \E
=4 7 =
- T
v 03 0.2
0.2
0.1
0.1
(ON:-: r 0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Advance Ratio J

Figure 16 Optimised integrated thruster performance

ABDEL-MAKSOUD M and HEINKE HJ,
“Scale effects on ducted propellers.” 24"
Symposium on Naval Hydrodynamics,
Fukuoka, Japan, July 2002

BATTEN W, BRESSLOFF NW and
TURNOCK SR, “Transition from vortex
to wall driven turbulence production in the
Taylor-Couette system with a rotating
inner cylinder.” International Journal for
Numerical Methods in Fluids, Vol. 38 (3),
pp. 207-226, 2002

BROWN JB, “Computational
approximations for ducted propellers.”
SNAME Propeller/Shafting Symposium
94, Paper 8.1-18, Virginia Beach USA,
Sept 1994

CAPONNETTO M, “The aerodynamic
interference between two boats sailing
close-hauled.” Int. Shipbuild. Progr., 44,
no 439: 241-256, 1997

DRELA M, “XFOIL: An Analysis and
Design System for Low Reynolds Number
Airfoils.” Conference on Low Reynolds
Number Airfoil Aerodynamics, University
of Notre Dame, June 1989

ELLSMORE P, “Optimisation of a bi-
directional section.” Part III individual
project, University of Southampton, 2002
GINDROZ B, HOSHINO T and
PYLKKANEN JV editors, “Propeller
RANS/Panel Method Workshop
Proceedings.” 22" ITTC Propulsion
Committee, Grenoble, 1998

HALL CA, “Construction of curvilinear
co-ordinate systems and applications to
mesh generation.” International Journal
for Numerical Methods in Engineering,
7:461-477, 1973.

HOSHINO T, “Numerical and
experimental analysis of propeller wake
by using a surface panel method and a 3-
component LDV.” 18" Symposium on
Naval Hydrodynamics, 1991

HOSHINO T, “Comparative calculations
of propeller performance in steady and
unsteady flow using a surface panel

method.” 22" [TTC Propulsion
Committee, Propelier RANS/Panel
Method Workshop, Grenoble, France,
April 1998

HUGHES AW, TURNOCK SR and ABU-
SHARKH SM, “CFD modelling of a
novel electromagnetic tip driven thruster
for underwater vehicles”, ISOPE 2000,
Seattle, June 2000.

HUGHES MJ and MASKEW B,
“Calculations for the DTMB4119 and

DTMB4679 propellers and a highly
skewed propeller for the Sein-Maru using
the VSAERO/PROFAN and USAERO
codes.” 22" ITTC Propulsion Committee,
Propeller RANS/Panel Method Workshop,
Grenoble, France, April 1998.

HUGHES AW, ABU-SHARKH S and
TURNOCK SR, “Design and testing of a
novel electromagnetic tip-driven thruster.”
The Proceedings of the 10" International
Offshore and Polar Engineering
Conference, Seattle, USA, pp.299-303,
June 2000

HUGHES AW, “Investigation of Tip-
Driven Thruster and Waterjet Propulsion
Systems.” PhD thesis, University of
Southampton, 2001

JESSUP S, “Experimental data for RANS

calculations and comparisons
(DTMB4119).” 22" ITTC Propulsion
Committee, Propeller RANS/Panel
Method Workshop, Grenoble, France,
April 1998

KERWIN JE, “Marine Propellers”, Ann.
Rev. Fluid Mech., 18:367-403, 1986

LEE TJ, “A potential based method for the
analysis of marine propellers in steady
flow.” PhD thesis, M.L.T. Dept. of Ocean
Engineering, Aug 1987

LEWIS EV, “Principles of naval
architecture- Volume II: Resistance and
propulsion.” SNAME, 1988

MCMAHON J, “Characteristics of ducted
propellers.” SNAME Propeller/
Shafting Symposium 94, Paper
18.1-14, Virginia Beach USA, Sept
1994

MILGRAM J, “Hydrodynamics in
advanced sailing design.” 21* Symposium
on Naval Hydrodynamics, 1997

MORINO L and KUO CC, “Subsonic
Potential aerodynamics for complex
configurations: A general theory.” AIAA
Journal, Vol.12, No.2, pp 191-197, Feb
1974

NEWMAN JN, “Distribution of sources
and normal dipoles over a quadrilateral
panel.” Journal of Engineering
Mathematics, Vol.20, pp113-126, 1986
PEREIRA F, SALVATORE F,
DIFELICE F and ELEFANTE M,
“Experimental and numerical investigation
of the cavitation pattem on a marine
propeller.” 24" Symposium on Naval
Hydrodynamics, Fukuoka, Japan, July
2002

STRECKWALL H, “Hydrodynamic
analysis of three propellers using a surface
panel method for steady and unsteady
inflow conditions.” 22" ITTC Propulsion

Committee, Propeller RANS/Panel
Method Workshop, Grenoble, France,
April 1998

TAKINACI AC and ATLAR M, “ On the
importance of boundary layer calculations
instead of viscous correction in heavily
loaded marine propellers while using a
surface panel method.” Ocean
Engineering, 28:519-536, 2001

TURNOCK SR, MOLLAND AF and
WELLICOME JF, “Interaction velocity
field method for predicting ship rudder-

propeller interaction.” SNAME
Propeller/Shafting Symposium 94, Paper
18.1-14, Virginia Beach USA, Sept 1994
TURNOCK SR, “Prediction of ship
rudder-propeller interaction using parallel
computations and wind tunnel
measurements.” University of
Southampton, PhD Thesis, 1993
TURNOCK SR and WRIGHT AM,
“Directly coupled fluid structural model of
a ship rudder behind a propeller.” Marine
Structures 13:53-72, Elsevier 2000
TURNOCK SR, “Technical manual and
user guide for the surface panel code:
Palisupan.” University of Southampton,
Ship Science Report No.100, Oct 1997

