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PROPELLER TIP VORTEX SIMULATION USING 
ADAPTIVE GRID REFINEMENT 

BASED ON FLOW FEATURE IDENTIFICATION 

By Christos Pashias 

In this thesis a novel 2-D vortex identification scheme is refined and 

extended to 3-D. The developed method is applied to a 3-D wing and two marine 

propellers; DTMB P41 19 and INSEAN E779A. In addition a wake identification 

scheme is developed and applied to a 3-D wing. 

The vortex identification method is based on a simple mathematical 

scheme applied on 2-D planes. The vortex is identified by locating the point 

closest to the most variance in the velocity direction. The method is extended to 

3-D by the use of a series of planes. MUltiple vortices can be identified using this 

method. 

The vortex and wake identification schemes have been applied in 

conjunction with adaptive grid refinement on a 3-D wing showing improved 

agreement with experimental results. The vortex dependency on grid size has been 

demonstrated. 

The vortex identification scheme has been extended such that it can 

identify complex vortex core lines, typical of marine propellers. The method has 

been successfully applied to two marine propellers and the results compared to 

experiments. An improved agreement has been demonstrated for the grid adapted 

cases. 
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1 Introduction 

1.1 Aims and objectives 

The work done on a fluid by a marine propeller generates a rotating propeller 

wake where the shed vorticity rapidly coalesces into a tip vortex and a hub vortex 

system for each blade. The accuracy of the computational prediction of propeller 

performance or indeed any lifting surface is influenced strongly by the accuracy with 

which this process of vortex formation is captured. 

Current numerical methods are capable of capturing such flows but require a very 

fine mesh in the appropriate regions of the flowfield. Efficient meshes, where an 

appropriate mesh density is chosen for the local flowfield, cannot be generated a 

priori. Adaptive meshes offer a solution to this problem but identifying the vortex is a 

challenging task, with current methods being either complex with problems of 

robustness or unable to identify the correct regions for refinement. 

The aim of this research was to develop an adaptive refinement method suitable 

for the detailed modeIling of vortical flows capable of being applied for the prediction 

of propeIIer performance. The method must be capable of identifying multiple 

vortices within the flow with minimal computational effort and without any user 

interaction. The specific objectives are: 

• to investigate methods of applying the existing two dimensional VORTFIND 

method [1, 2] for predicting vortex cores to the complex three dimensional 

flows found at the tip of a lifting surface and in particular the predominantly 

helical flow field associated with marine propellers; 

• to investigate adaptive refinement schemes suitable for use with the above 

method; 

• to apply the developed method to a control surface to capture the tip vortex 

flow in order to test, validate and refine the method before applying it to the 

complex flow field of marine propellers; and 

• to apply the method to two standard marine propellers which have been 

extensively tested and used widely for numerical method validation. 

The methods developed in this research will provide an improved computational 

tool that can be applied for the design and optimisation of the next generation of 

marine propellers. 
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1.2 Introduction 

1.2.1 A brief history of the marine propeller 

Screws can be dated back to ancient times. Archytas, a Greek mathematician, 

student of Pythagoras and friend of Plato, is credited for inventing the screw when he 

put an inclined plane on a cylinder about 400 B.C. In 220 B.C. Archimedes famously 

used a screw to lift water. The first to suggest the use of a screw for propulsion was 

Leonardo Da Vinci in 1480-1510 when he sketches a helicopter. In 1752 Bernoulli is 

the first to suggest propelling of boats using "vanes set at an angle of 60° to both the 

arbor and the keel". The first to use a screw to propel a marine vessel was David 

Bushnell to drive his submarine Turtle in 1776. From then on there are many 

noteworthy applications of simple screws. 

However, it was not until the 1800s, with the advent of the steam engine, when 

propellers started to replace sail power for commercial shipping. Since then the 

propeller has dominated the propulsion for marine transportation, and still does so 

today, with almost all commercial ships propelled by screws. 

Their design has changed over the centuries from Archimedes's wooden screw 

to modern high performance composite propellers [3]. They are one of the most 

widely used devices for producing thrust in a fluid medium; still used for aeroplanes, 

helicopters and ships just to name a few. Sizes range in diameter from a few 

centimetres used on models, to the world's largest propeller at 9.1 metres for a large 

container ship. 

However, as the requirements imposed on propellers have changed over the 

years new research is required to meet those needs. The power transfen'ed through 

propellers has increased in recent years and vessels can now achieve higher speeds 

with a resultant risk of cavitation. These more heavily loaded propellers create 

stronger tip vortices, which must be modelled accurately in order to predict the 

performance of and design these modern propellers. The dynamic behaviour of the tip 

vortex can be responsible for vibration and noise which is becoming increasingly 

important in passenger vessels r 4]. The trend of modern propeller design toward high 

blade tips has succeeded in reducing the pressure amplitudes in general, but is often 

considered to cause a rise in pressure pulses of higher order. An explanation can be 

found in the occulTence of less, but fluctuating, strong and bursting tip vortex 
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cavitation [5]. Thus is it very important to improve tip vortex modelling [6J and 

develop the tools necessary to design the next generation of propellers. 

1.2.2 Background theory 

The basic principles of propeller operation are well understood [7, 8]; however 

the detailed flow and physics, necessary to fully comprehend propellers, are still in 

constant development and highly complex. The challenges of accurately modelling 

propellers still fascinate and perplex enough to justify the resources of many 

researchers today. In particular, marine propellers present more of a challenge than 

their aerospace counterparts. Even though they both operate in fluids with similar 

governing physics at low speeds the marine propeller still has many aspects that 

complicate matters. In most cases, airs crews operate in uniform flow ahead of any 

obstructions, whereas marine propellers operate in the wake of hulls requiring 

unsteady simulations to capture their behaviour correctly. In addition to their vicinity 

to the free surface cavitation issues can arise. Modelling cavitation, on its own 

provides a challenge for current methods [4, 6]. Also the restriction in diameter 

combined with cavitation considerations for blade areas leads to much lower aspect 

ratio blades than their aerospace equivalents. The heavy loading combined with the 

low aspect ratio results in significantly increased importance in tip vortex modelling. 

The original theory, as first formulated by Rankine [9] excluded the viscous 

effects, the rotation of the slipstream, and the uneven load distribution, with the scope 

of evaluating the ideal efficiency of such a propulsive system (also called actuator 

disc). The rotor is degenerated into a disc perpendicular to the thrust, and is capable of 

sustaining a pressure difference between its two sides, and imparting linear 

momentum to the fluid that passes through it. The mechanism of thrust generation 

requires the evaluation of the mass flow through a stream tube bounded by the disc. 

In 1878 William Froude developed the theory of a propeller blade's elements, 

which reflects the generated efforts on each section of the blade [10]. However it was 

not until Betz's [I I] work in 1919 and later Goldstein's [12] in 1929 employing 

Prandtl's [13] lifting line theory that showed optimum propeIlers could be designed. 

Prandtl assumed that the 3-D problem could be solved by concentrating the 

circulation around the blades on individual lifting lines and that the flow on each line 

can be regarded as 2-D. Using Goldstein's solution for the optimum propeller in 
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uniform flow with 2-D experimental section data optimum aircraft propellers could be 

designed. This approach is successful for high aspect ratio blades for which the 

underlying assumption that the flow is principally 2-D is more or less valid. 

However for the low aspect ratio blades widely used for marine propellers this 

assumption is not valid. It was not until 1952, when Lerbs [14] published his paper on 

the extension of Goldstein's lifting line theory for propellers with arbitrary radial 

distributions of circulation in both uniform and radially varying inflow, when at last 

marine propellers could be modelled with some degree of accuracy. Although its 

acceptance was slow, it still is, even today, universally accepted as a good procedure 

for establishing the principal characteristics of the propeller at an early design stage. 

The next major improvement in propeller modelling was the use of numerical 

lifting-surface methods. Now the skew and the radial distribution of circulation could 

be modelled. The formulation was published by Sparenberg in 1959 [15]. This led to a 

burst in publications in 1961 and 1962 of computer based propeller lifting surface 

codes. Most notable examples were Pien [16], Kerwin [17], van Manen & Bakker 

[18] and English [19]. However due to the limited computing power of that era these 

methods incorporated simplifying assumptions which since have been found 

unnecessary with the rapid development of high performance computers. The basic 

formulation however is essentially the same, Brockett 1981 [20] and Greeley & 

Kerwin 1982 [21]. 

The above methods, although suitable for design purposes, provided limited 

information on the section flow. Boundary element methods (BEM) or panel codes as 

they are popularly known today, can model more realistic geometries taking into 

account the section shape and thickness. In 1985 Hess & Valarezo [22] developed a 

BEM for propellers based on Hess's [23 J lifting method. Since then the popularity of 

panel codes has been widespread in all aerodynamic and hydrodynamic fields. The 

computational resources available today are such that detailed optimisation studies 

can be carried out within reasonable timescales even on powerful personal 

computers [24]. However there are many underlying simplifications in their 

formulation and as always, with the relentless development in computing power 

things will move on quickly to more complex methods such as Reynolds Averaged 

Navier-Stokes CRANS) codes for design purposes. 

Most work on RANS methods was done in the late 1980's and improved greatly 

in the early 1990's. The initial work was undertaken by Kim & Stern [25] in the late 
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80's and they showed the potential of such methods, although for an unrealistic 

propeller geometry due to the limited computing resources available at the time. In the 

1990' s researchers such as Uto [26] and Stanier [27] developed methods for realistic 

propeller geometries with detailed flow features. Unsteady viscous computations were 

first undertaken by Chen et al. [28] and showed the applicability of such methods for 

unsteady propeller flows albeit obtaining poor results due to the limited mesh size 

feasible at the time. Maksoud et al. [29] performed unsteady calculations for a 

propeller operating in the wake of a ship using a non matching multi-block scheme. 

As indicated by Stanier [30], Bull [31] and Maksoud et al. [32] and as will be 

shown later in this work mesh quality and local density are key factors in obtaining 

good results with RANS codes. In particular, it is essential to have a good mesh 

topology in the vicinity of the tip vortex region as this has a strong influence on the 

developed thrust and required torque. 

1.3 Vortices 

Vortices are present in most fluid flows and their behaviour can be considered 

to be of fundamental importance A vortex is the rotation of multiple particles around a 

common centre. They should not to be confused with vorticity which is used as a 

measure of the rotationality present at a location within the flow. 

Vortices come in all shapes and sizes: large scale vortices are responsible for 

tornadoes and the behaviour of galaxies; medium scale vortices affect the 

characteristics of most engineering structures, such as aircraft, ships and buildings; 

small scale vortices are the building blocks of turbulent flow. 

1.3.1 Vortices and nature 

Vortices in nature have affected the evolution of many animals. Birds have 

fingered feather wing tips to eliminate the effect of the tip vortex. Dolphins and other 

fast fish have scimitar shaped fins as a solution to the same problem. Dolphins go one 

step further by controlling the development of the turbulent boundary layer to reduce 

friction drag. The resilient dolphin shin acts like a damper to absorb oscillatory energy 

from the boundary layer and delay transition [33]. 

If a force is powerful enough to shape nature it will influence engineering 

design as well. As always man tries to copy nature in his inventions. Elliptical 

planform wings were designed to reduce induced drag caused by the tip vortex. The 
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Spitfire was superior to its opponents partly for this reason [34]. Then winglets 

appeared on aircraft wing tips and yacht keels again influencing the strength and 

location of the tip vortex system [33]. In addition, an artificial dolphin skin (Laminflo 

[35]) has been tested on torpedoes giving a large increase in laminar flow with a 

substantial decrease in the friction coefficient from 0.0026 to 0.0011 [33]. Just as 

vortices have shaped nature over millions of years, vortices are today shaping man 

made structures. As the human knowledge and understanding of vortices evolves so 

do the shapes designed by engineers. 

1.3.2 Structure of a plane vortex 

There are two basic types of plane vortices: one where the velocity is slower at 

the centre than the sides and another where it is faster at the centre. This results in two 

basic types of velocity distribution as described below: 

1. Consider a solid disc that rotates steadily around an axis through its centre. 

The velocity of points on the disk increases linearly with distance from the centre 

(Figure 1.1). Imagine the disc is hollow and it is filled with fluid. If the experiment is 

repeated, the fluid will also rotate like a solid body, apart from a transition period at 

the start. This is due viscous effects. Hence the velocity of the fluid particles increases 

linearly with distance from the axis of rotation. This fluid motion is called 'solid-body 

rotation' [36]. 

2. Consider a long circular rod rotating in a fluid. The highest velocity in the 

fluid will occur on the surface of the rod where the fluid has the same velocity as the 

rod due to viscous effects. Away from the surface of the rod the velocity diminishes in 

inverse proportion to the radial distance squared (Figure 1.2). The centrifugal force 

pushing outwards due do the rotation is balanced by the force due to the pressure 

gradient. This is called a 'potential vortex' [36] as it is irrotational and can be 

expressed in terms of a scalar potential. 

An important difference between solid-body rotation and potential vortices is 

that a potential vortex has no vorticity whereas solid-body rotation has constant 

angular velocity and vorticity. In the case of the potential vortex the rod will still 

experience a sold-body rotation. If the rod is replaced by fluid that is also 

experiencing solid-body rotation a Rankine vortex is created (Figure 1.3). A Rankine 

vortex is a good representation of a real vortex. A real vortex has a region where the 

velocity varies linearly with distance from the centre. This is due to viscosity, and the 

7 



region is called the viscous core. Outside the viscous core the velocity varies inversely 

proportional with distance squared. Capturing this regime transition with a RANS 

code is difficult due to the fine mesh resolution required to capture the core region 

which is dominated by viscous effects just like a boundary layer. In addition, enough 

of the vortex decay must be captured correctly in the potential flow region since this 

influences the overall vortex structure. 

Solid-body rotation 

Distance from axis 

Figure 1.1 - Solid-body rotation. Velocity 
varies linearly with distance 

Rankine vortex 

Distance from axis 

Potential vortex 

Distance from axis 

Figure 1.2 - Potential vortex. Velocity varies 
inversely proportional to distance squared 

Vorticity in Rankine vortex 

Distance from axis 

Figure 1.3 - Rankine vortex. Consists of solid-body rotation and potential vortex. Vorticity 
exists only in the solid-body rotation region. 

8 



1.3.3 Tip vortices 

A foil experiencing three-dimensional flow has very different characteristics 

than a foil experiencing two-dimensional flow . The flow will tend to spill over the 

free ends from the positive pressure side to the negative pressure side. Such a flow 

removes the pressure difference at the tips of the foil and decreases it over the entire 

span. 

Figure 1.4 - Tip vortex of 3D wing 

The tip vortex also influences the flow over the entire lifting surface. Near the 

tip the surface pressure is influenced by the reduction in pressure within the tip 

vortex, especially on the suction side of the foil where the vortex is located. In 

addition a downwash is created behind the trailing edge of the foil due to the vortex. 

Aerodynamicists try to eliminate these effects or sometimes even exploit them, as is 

the case with delta wing planforms operating at high angle of attacks. In thi s case the 

leading-edge separation , which induces a non-linear lift increment called vortex­

induced lift, is highly dominant on delta wings [36]. 

In 1897 Lanchester realised that the tip vortex has a detrimental effect on 

wings and secured a patent covering the use of end plates. In hi s book Aerodynamics 
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[37] he describes the structure of the tip vortex. Since then there have been many 

studies of tip vortex flows and its influence on finite foils. Prandtl [38, 39] modelled 

the effect of the tip vortex on the flow of a finite foil published in 1918 using his 

lifting line theory. 

Many methods to reduce the detrimental effect of the tip vortex have been 

devised, from simple elliptical planforms to more complex tip winglets such as on 

aircraft and yacht keels. In order to design and develop these tip vortex control 

devices, numerical models of the flow near the tip of the foil are required 

1.3.4 Vortex capturing using a fixed (structured) mesh 

In order to capture vortical flow a numerical model capable of solving the 

flow characteristics at any point within it is required. Such numerical methods are 

based on solutions to the Euler (with zero viscosity) or the Reynolds Averaged 

Navier-Stokes (RANS) codes based on some form of turbulent closure. Euler and 

RANS have until recent years been limited to small simple cases due to limited 

computing power. Recent advances in computational power have led to several 

studies capturing numerically predicted vortex flows [40]. A large amount of 

development has been done resulting in progressively more sophisticated and robust 

models. 

A sufficiently fine grid spacing is required in the region of the vortex core [41] 

to capture the vortex. Dacles-Mariani and Zilliac [41] used a structured grid to capture 

the tip vortex of a foil. A grid dependency study was calTied out using an analytical 

vortex. The results showed that at least 15-20 grid points in the viscous core region 

are needed to capture the vortex cOlTectly. In addition the vortex is more sensitive to 

cross flow plane grid refinement than streamwise refinement. This means that the 

cells can be stretched in the streamwise direction in an attempt to keep the grid size 

down. An investigation of the influence of turbulence model indicated the difficulties 

in capturing the vortex. Good agreement with measured results was found using 1.5 

million grid points. The velocities were within 3% but the vortex core static pressure 

was under predicted. This under prediction was accounted for by limitations coming 

from the turbulence modelling. This is in agreement with later studies can'ied out by 

Viot et al. [42]. This suggests that the turbulence model is critical to the results and 

that a more suitable model should give better results. 
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Spall used a structured grid to solve the Euler equations for a NACAOOl2 

rectangular wing [43]. A multi-block grid was used in an attempt to cluster the grid 

points near the vortex core. The relative small vortex core diameter of 0.04c, proved a 

challenge to cluster the grid in the correct region. The results showed that a slight 

displacement of the vortex core outside this region results in a considerable 

degradation in the solution. Results are presented for 1.5 million grid points with 10-

18 across the vortex core. The vortex core radius was dependent on grid spacing, 

halving from a grid using 372,016 cells to 1,986,000 cells. 

Berntsen et af. [44] used an Euler code with a structured multi-block grid to 

model tip vortex cavitation. First a crude calculation was performed to derive the 

general shape of the vortex. Following this investigation, the grid was clustered near 

the centre of the vortex. This was repeated three times resulting in a grid in excess of 

0.5 million cells. The resulting grid is good but requires a large amount of effort and 

skill to generate. The process cannot be easily automated even for standard cases. 

Visually the results were in good agreement with respect to cavity length. However 

vortex core pressures were not predicted accurately. 

Hsiao and Chahine r 45] used a 12-block structured mesh to model a 

NACA 16020 finite-span elliptic hydrofoil including a dynamics bubble model for 

cavitation. The mesh used consisted of 2.7 million cells and the mesh was regenerated 

after each solution with modified clustering to ensure that 16 cells were always 

present across the vortex core. An unspecified number of mesh regeneration steps 

were required to cluster the grid in the vortex region. 

From the above studies it is clear that to capture the vortex flow accurately a 

fine grid spacing in the region of the vortex core is required. The reason is that in the 

vortex core the pressure decreases rapidly. The vortex core pressure depends on the 

vortex core's radius [33]. A small change in this radius results in a big change in the 

minimum pressure. To capture the vortex radius corTectly a fine grid spacing is 

required in the vicinity of the vortex core. The computational resources required to 

generate a uniform grid with fine enough grid spacing are impractical. Using a coarser 

grid with clustering of the fine mesh near the vortex improves the results without a 

large increase in cost. The problem with such methods is that the location of the 

vortex must be known to generate the mesh. This either requires solving the problem 

in advance or a very detailed understanding of the flow to predict {/ priory the vortex 

position. With either route, the vortex is not guaranteed to lie in the predicted area and 
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the mesh refinement will change the behaviour of the vortex and thus its position. 

These effects are compounded as the vortex evolves downstream. 

Vorticity confinement is a method to conserve and concentrate vorticity on a 

regular grid [93]. It prevents the dissipation of vortical structures on coarse grids. This 

method has been used by Lohner et al. to track vortices over large distances [94]. The 

results show that the vortex is maintained further downstream using the vorticity 

confinement method on coarse grids. However many researchers have expressed 

concerns over the validity of this method since the vorticity confinement term acts as 

a body force altering the conservation of momentum. 

Although the above methods work, the grid cannot be generated a priori. The 

solution to this problem is to use an adaptive scheme to refine the grid during the 

solution process. Adaptive grids have been used successfully in many different flows, 

to capture flow characteristics such as shockwaves in transonic flight [46, 47]. 

1.3.5 Adaptive Meshes 

For well behaved problems a grid of uniform mesh spacing gives satisfactory 

results. However, there are classes of problems where the solution is more difficult to 

estimate in some regions (perhaps due to discontinuities, steep gradients, shocks, etc.) 

than in others. A uniform grid can be used which has a spacing fine enough such that 

the local errors estimated in these difficult regions are considered to be acceptable. 

But this approach is computationally costly especially in three dimensions. In 

addition, for time dependent problems it is difficult to predict in advance a mesh 

spacing that will give acceptable results. The goal of mesh adaptation is the 

determination of the optimum mesh-point distribution that results in equipartition of 

the error for each individual simulation thus giving an optimum solution for a 

specified grid size. 

In adaptive grids the idea is to have grid points moved/inserted as the physical 

solution develops, concentrating in regions of large variation in the solution as they 

emerge. A base coarse grid is used as the starting point. As the solution proceeds the 

regions requiring more resolution are identified by some parameter characterizing the 

solution. A finer subgrid is superimposed only in these regions. Finer and finer 

subgrids are added recursively until either a given maximum level of refinement is 

reached or the local truncation error has dropped below the desired level. 
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There are many methods of mesh refinement [46,48,49]. One way is to 

regenerate the mesh after every refinement cycle with grid points clustered in the 

areas identified by the mesh criterion. This is time consuming and the solution might 

have to be initialised again. 

The second method is to subdivide the cells in the areas where mesh 

refinement is required into smaller cells, thus decreasing the grid spacing. However 

the grid quality is dependant on the initial mesh, unless a smoothing algorithm is 

applied [50]. The other advantage is that the solution can be linearly interpolated at 

the new grid points for the next iteration, thus speeding up the solution. In addition 

there is no need to regenerate the entire mesh. 

Apart from the methodology used to generate the different refined levels of the 

grid, the other important factor when using adaptive refinement techniques is the 

criterion used to adapt to. The mesh can be refined using any variable or combinations 

of variables. Choosing a criterion suitable for the flow problem and what is trying to 

be achieved is important since it will influence the final solution [51]. One of the most 

frequently used schemes is an en·or based criterion approach. 

Lohner [51] describes the components of such an adaptive refinement scheme. 

Different error indicators/estimators are discussed as well as different mesh 

refinement techniques for unstructured meshes. Results are presented for several test 

cases. Nithiaratsu et al. [48] present the results for a transonic aerofoil and lid driven 

cavity using different error indicators. From the presented results is it concluded that 

for most cases a gradient based error indicator yields better results than a curvature 

based indicator. Pelletier [52] also uses an error based adaptation criterion to obtain a 

grid independent solution. He describes the required qualities of an error estimator. 

Results are presented for a 20 aerofoil and a backward facing step. 

Adaptive refinement can be applied to both structured and unstructured grids. 

Structured grids have implicit connectivity, which for most cases reduces the memory 

requirements since no grid connectivity information needs to be stored, whereas an 

unstructured mesh explicitly defines the connectivity between all mesh elements. 

However this proves to be a major obstacle when adaptive refinement techniques are 

used with structured meshes. It is difficult to preserve the implicit connectivity after 

grid refinement. A solution to this problem is to start with a structured mesh but have 

explicit connectivity. This maintains some of the advantages of structures meshes and 

at the same time simplifies the refinement scheme. However there is another problem 
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that has to be addressed. If each face of a cell volume in the grid must be connected to 

only to one other face then if a hexahedron is refined into smaller hexahedra they 

cannot be adjacent to an unrefined one. This can be solved in two ways: refining the 

hexahedra into tetrahedra, resulting in a hybrid grid or allow a face to be connected to 

multiple faces and perform what is termed as hanging node adaptation. If hanging 

node meshes are not an option then the split through a hexahedral cell due to mesh 

refinement has to propagate throughout the structured mesh to maintain the 

connectivity of the mesh. This results in refined cells in areas other than the ones of 

interest and unnecessarily large mesh sizes. 

Unstructured grids are ideal for mesh refinement techniques since the 

connectivity of the grid is explicit [46,49]. Cells can be subdivided into numerous 

new cells without having to worry about the connectivity structure of the mesh. 

When meshing complex geometries it is easier to use unstructured grids. 

Unstructured grids can be generated automatically from a set of surfaces using various 

schemes [53]. It is possible to generate structured grids for most problems but a 

complicated multi-block structure has to be used for most cases. Even for a seemingly 

simple elliptic foil, 16 blocks had to be used in order to model the tip correctly [44]. 

Apart from the treatment of complex geometries, the second advantage of 

unstructured meshes is the ease with which solution-adaptive meshing may be 

implemented. Since no inherent structure is assumed in the representation of the 

mesh, mesh points may be added, deleted, or displaced, and the mesh connectivity 

may be locally reconfigured in the affected regions. 

One possible way to overcome the limitations and problems imposed by 

structured grids is to use an overset method. Grids of different densities are laid over 

each other with no connectivity restrictions. This enables the used of structured 

meshes for complex geometries such as an aircraft in landing configuration as 

performed by Rogers et al [54 J. A good reference of the capabilities and past 

applications for overset techniques is given by Chan et al [55]. Unstructured overset 

grids are possible but such schemes are still in development [54]. 

For tip vortex capture it is possible to overlay a finer grid about the identified 

vortex core in order to capture the vortex. If such an approach is used structured 0-

grid would be the most suitable topology. However Chan et al [55] state that overset 

methods require substantial user interaction and are laborious for complex geometries. 

14 



1.3.6 Vortex Identification Methods 

For the successful application of an adaptive scheme, a suitable variable or 

variables must be selected for use as the adaptation criterion/criteria. Pressure 

gradients and local error functions have been used successfully. Such techniques are 

suitable for most flows but fail to resolve flow features such as vortices adequately for 

a given grid size [56]. In order to identify vortices several methods have been 

developed and applied to a multitude of problems. The ten methods given below are 

by no means a complete listing of vortex identification algorithms but are considered 

to represent the current state of the art. 

• Helidty Method by Levy [57] 

• Vorticity Maxima Method by Strawn et al. [58] 

• Streamline Method by Sadarjoen et al. [59] 

• Swirl Parameter Method by Berdahl and Thompson [60] 

• ;b Method by Jeong and Hussain [61] 

• Predictor-Corrector Method by Banks and Singer [62] 

• Eigenvector Method by Sujudi and Haimes [63] 

• Parallel Vectors Method by Roth and Peikert [64] 

• Combinatorial Method by Jiang et al. [65] 

• Vortfind Method by Pemberon [1, 2] 

Almost every published work carried out on vortex identification presents a 

classification of the methods developed by its predecessors. Here the methods are 

classified using three taxonomies as presented by Jiang et al. [66] 
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Method Region\Line Galilean Local\Global 

Helicity Line Not invariant Local 

Vorticity Maxima Line Invariant Local 

Streamline Region Not invariant Global 

Swirl Parameter Region Not invariant Local 

A2 Region Invariant Local 

Predictor-Corrector Line Invariant Global 

Eigenvector Line Not Invariant Local 

Parallel Vectors Line Not Invariant Local 

Combinatorial Region Not Invariant Local 

Vortfind Line Not Invariant Global 

Table 1-1 - Taxonomy of Vortex detection algorithms 

The first taxonomy classifies detection methods based on the definition of the 

identified vortex. A vortex can be defined either as a region or as a line. A region­

based vortex definition specifies a group of cells that lie in the vortex region. A line­

based vortex definition, on the other hand, is a set of lines describing the vortex core 

line. In general, region-based algorithms are easier to implement and computationally 

cheaper than their line-based counterparts. Line-based algorithms must precisely 

locate points to describe the vortex core line. However, line-based algorithms provide 

more compact representations of vortices and can easily distinguish between multiple 

vortices. The latter is problematic for region-based approaches [66]. 

The second taxonomy classifies detection methods based on whether or not 

they are Galilean (Lagrangian) invariant. In a time varying flow field, a vortex 

exhibits swirling motion only when viewed from a reference frame that moves with 

the vortex [36]. A detection method is Galilean invariant if it produces the same 

results when a uniform velocity is added to the existing velocity field. 

The third taxonomy classifies detection methods based on whether the 

identification process is of local or global nature. A detection method is considered to 

be local if the identification process requires only operations within the local 

neighborhood of a grid cell. On the other hand, a global method requires examining 

many grid cells in order to identify vortices. 
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Each of the above methods has its advantages and disadvantages. Pressure 

minimum methods find elongated regions of low pressure which usually indicate a 

vortex core [62]. However minimum pressure does not always coincide with the 

vortex core. In addition, regions of low pressure also exist in other features of many 

flows which complicate the process further. Isosurfaces of low pressure are very 

effective when capturing a single vortex in unobstructed flows. However when 

multiple vortices exist the pressure surfaces become indistinct. 

Methods using the eigenvalues of the velocity gradient to identify the vortex are 

successful; however such methods also capture many smaller structures [62]. It is 

common for vortex identification methods to use a combination of two criteria so as 

to reduce the likelihood of misclassification, which is a common problem [62]. 

Sujudi and Haimes [63] present a popular method based on a velocity gradient 

method and carry out computations on a cell by cell basis which facilitates parallel 

processing. Godo et al. [67] and Roth and Peikert [64] say that such methods fail 

when the vortex core line is curved such as that in turbomachinery flows. In addition 

methods based on vorticity magnitudes, helicity, pressure [62] or ""2 [61]; are also 

dismissed by the authors. 

A noteworthy method is presented by Jiang et al. [65] which uses a similar 

approach to the method developed initially by Pemberton [1, 2] and which is further 

developed in this work. Both methods are based on a simple analysis of velocity field 

on 2-D planes. They assign different values for different velocity directions and then 

locate the vortex by stating that a vortex is near a region with varying sector values. 

The difference is that Pemberton et al. use the distance of the different sector values 

to calculate a function indicating the 'distance' from the vortex whereas Jiang et al. 

flag the computational cell if it is surrounded by at least a specified number of sectors. 

Both methods have their advantages and disadvantages. The combinatorial method 

only uses cells adjacent to the reference cell or in close proximity whereas the 

Vortfind method is a global method. This means that the combinatorial can have 

reduced calculation times but also makes it prone to small localised flows which are 

not vortex structures as reported in Jiang et al. [68]. Another major drawback of the 

combinatorial method is that the mesh connectivity must be known. This restricts its 

applicability to numerical simulations since to apply the method to experimental data 

or data points not conforming to the grid the connectivity must be calculated 
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retrospectively which is a computationally intensi ve process. This is a similar issue 

the gradient based methods encounter. Vortfind does not require any connectivity 

information and can easily be applied to experimental data or data points not 

conforming to grid locations. In addition the Vortfind method provides a continuous 

smooth function whereas the combinatorial method does not. 

When the current vortex identification schemes are applied to three-dimensional 

flow problems they do not produce a continuous vortex core line [69, 70, 71]. This 

problem is over come by refining neighbouring cells as well. Assuming that the 

discontinuities are small this produces a more or less uniform mesh after refinement. 

1.3.7 Vortex capturing using structured adaptive grids 

Because of the difficulties of using adaptive schemes with structured grids 

such studies are limited. Hentschel [72] uses a structured C-grid around a delta wing 

to capture the tip vortex with a Baldwin-Lomax turbulence model. The grid 

refinement scheme uses grids with three different levels of refinement. Vorticity 

content is used as the refinement index and in the areas of interest the grid is swapped 

between levels. Data is interpolated between the two levels. This effectively results in 

a hanging node scheme. Since the finer level grids must be generated for parts of the 

domain that might not be required to be refined, an unnecessary memory overhead 

exists. In an attempt to reduce the overhead Hentschel [72] only creates finer grids for 

selected parts of the domain only. Although this method works, it is very difficult to 

apply even for simple problems. 

1.3.8 Vortex capturing using unstructured adaptive grids 

Most studies incorporating an unstructured grid use an adaptive grid 

refinement scheme. Viol et al. [42] used two commercial RANS codes with an 

unstructured grid to solve the tip vortex flow over an elliptic foil. Pressure was used to 

refine the coarse mesh from 280,000 to 350,000 cells. All cells having a pressure drop 

of more than 10% of the maximum pressure drop were refined. This resulted in a 

refinement area approximately twice the viscous core radius. Different turbulence 

models were investigated and their performance compared with experimental data. 

The following conclusions were made by the authors: 

• The agreement between numerical and experimental results is good for all 

RANS codes and turbulence models tried. 
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• The local vortex core radii are over-estimated and thus the pressure on the 

vortex axis under-predicted. 

• Grid refinement has a relative low influence on the vortex and reduces the 

vortex radii slightly. 

• The K-E RNG and non-linear K-E turbulence model decreased the vortex core 

radii compared with the K-E model. 

Murayama et al. [69, 73] used an unstructured hybrid mesh to simulate the vortex 

breakdown over a delta wing at high incidence. The mesh consisted of prisms in the 

viscous regions and tetrahedra on the rest of the domain. Pyramids had to be used at 

the junctions. A vortex identification technique based on critical point analysis was 

used to define a vortex core line. The method identifies where the velocity becomes 

zero [70]. The cells transversed by the vortex line were marked for refinement as well 

as their neighbouring cells. The vortex core line generated by this method is not 

continuous especially for the coarser grids. However, since the neighbouring cells are 

also refined this results in a continuous refined region. The refined grid consisted in 

excess of 0.5 million grid points and showed improvement over the original coarse 

grid. A comparison with calculations using second derivatives of the total pressure as 

the refinement criterion was made. The pressure adaptation required in excess of 0.8 

million grid points to capture the vortex breakdown conectly. This was due to the fact 

that a larger area around the vortex was identified for refinement than using the vortex 

identification scheme. By selecting a different threshold value for the refinement it is 

possible to reduce the refined area using a pressure based approach, but choosing the 

conect threshold value requires trial and enor. Murayama et al. [74, 75] applied the 

same method to a NACA0012 foil with similar conclusions. 

19 



1.3.9 Propeller tip vortex 

Propellers are the most common form of propulsion in a fluid medium. They 

efficiently convert rotational energy from the engine into forward thrust. Most 

propellers have free blade tips. These tips create vortices which affect the thrust and 

torque characteristics of the propeller. The design of the blade tip will be governed by 

its resultant tip vortex structure. Marine propellers are restricted in diameter due to 

draught restrictions compared to their aircraft counterparts. This constrains the aspect 

ratio of the blades, which puts more of an emphasis on the induced drag. This creates 

a strong tip vortex which can have a detrimental effect on the performance of the 

propeller. 

In addition, tip vortex cavitation is of major concern for marine propellers since it 

is an important source of noise. Cavitation can result in erosion of the propeller or 

even rudders placed downstream. Therefore, the track of the vortex is just as 

important as its strength. Recent developments with twisted rudders [76] emphasise 

the importance of correctly predicting the interaction between propeller and rudder. 

The tip vortices generated by each blade of the propeller have a complex structure. 

They form helixes that vary in pitch and contract with the wake downstream of the 

propeller. Recent experimental work using advanced flow visualization and non­

intrusive measurement techniques [77] have revealed detailed features of the vortex 

flow around marine propellers. However, due to the limitations of the experimental 

techniques the pressure field remains unknown which is crucial to the prediction of 

cavitation [78]. 

RANS computations can provide a detailed pressure field, and have been used 

recently to predict tip vortex flow in turbomachinery [78, 79]. Unlike tip-clearance 

flow, the tip vortex generated by a marine propeller is more concentrated and has a 

tighter structure [78], which requires a more refined grid. Only a few studies present 

propeller type tip vortex flow and although the thrust and torque coefficients agree 

well with experiments they fail to predict the vortex strength [80]. The results from 

[80] regardless of the turbulence model used were unlikely to have captured the tip 

vortex since the grid resolution was insufficient at 200,000 grid points. 

A later study [78] using 2.4 million grid points showed better results. A helical 

domain was used with a structured mesh. The domain was helical in an attempt to 

cluster the grid near the estimated tip vortex position. A study with a similar approach 
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applied to the Euler equation for a foil [43], showed that a slight displacement of the 

vortex core outside the cluster region resulted in a considerable degradation of the 

results. An adaptive procedure that can track the vortex has the potential to eliminate 

this problem if successfully implemented. Such a method will offer a significant 

improvement over non adaptive methods [56]. 

Dindar et al. [56] performed calculations for rotors using adaptive mesh 

techniques. They used an unstructured grid to model one blade of the rotor 

arrangement. Firstly an error indicator was used to refine the mesh and secondly a 

vortex identification technique to refine the tip vortex. Two error based refinement 

iterations were performed followed by two vortex identification ones. The vortex was 

only identified after adequate mesh refinement was carried out first with the error 

base scheme. They also indicated a potential problem of mesh refinement combined 

with parallel computations. The mesh refinement might be carried out in a region 

which is assigned to one processor only which will exceed the memory capacity of 

that single processor. In addition the error based refinement although successful, is 

identified as computationally inefficient in resolving localised flow features such as 

tip vortices. 

Bottasso & Shephard [SOl applied a finite element adaptive multigrid euler solver 

to rotary wing aerodynamics. They used an error indicator based on vorticity to adapt 

the mesh in the wake of the rotor. They discuss the issues with adaptive procedures 

with regards to new cell quality and recommend that the refined mesh be projected on 

the underlying geometry. 

Abdel-Maksoud et al. [81 J present experimental and numerical results for a 

propeller hub vortex. Different hub shapes are tested and compared with regards to 

efficiency and cavitation performance. A 1.3 million volume mesh was used with 

cells clustered near the hub vortex. The entire propeller was modelled in order to 

capture the root vortex interaction which would not have been possible with a cyclic 

boundary condition. The shear stress transport (SST) turbulence model is used and is 

stated that this turbulence model performs better especially in the separated regions 

but no evidence to support this is provided. 
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1.4 Summary and Layout 

Tip vortices are important flow features which need to be identified and modelled 

correctly. From existing work it is apparent that a fine mesh is required in the region 

of the tip vortex. Non adaptive methods experience difficulties in having the required 

mesh density in the vortex core. An adaptive mesh refinement scheme can prove 

advantageous for such cases. 

In Chapter 1 the basic details and existing work has been presented and 

discussed. In the Chapter 2 the theory of the numerical model used is presented. The 

Vortfind method is reviewed and refined in Chapter 3. The applicability of the method 

would be discussed and its advantages/capabilities presented. In Chapter 4 the method 

is extended to 3D and applied to a simple 3D wing to prove and validate the scheme. 

An algorithm to capture thin shear wakes is developed in Chapter 5 and applied 

to a 3D wing in isolation and in conjunction with the VFX method. The mesh 

generation and tool development for marine propeIIers is reviewed in Chapter 6. The 

application of VFX to marine propeIIers is in Chapter 7 where the identification of 

complex vortex lines such as the helical propeller tip vortex is dealt with. Finally the 

method is applied to two marine propeIIers and compared with experimental results in 

Chapters 8&9. 
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2 Navier-Stokes Equations 

To study vortical flows we need a numerical tool capable of modeling such 

problems. One such family of tools is based on the Navier Stokes equations. Exact 

analytical solutions to the Navier stokes equations exist only for a very limited 

number of flows. For real flows the equations have to be replaced by algebraic 

approximations, which have to be solved using an appropriate numerical method. 

There are numerous programs to numerically solve the Navier Stokes equations 

with many different schemes and approximations. Each scheme has its advantages 

and disadvantages and the choice depends on what flow is going to be modeled. There 

are many commercial codes available which have been developed over the past years. 

They are robust and reliable with a wide range of mesh generation tools and utilities. 

Rather than reinvent the wheel, it was decided to use a commercial solver and 

concentrating the effort into the vortex identification scheme. 

There were two commercial general purpose RANS solvers available at the 

School of Engineering Sciences at the University of Southampton. CFX by AEA 

Technologies [85] and Fluent by Fluent Inc [84]. Both are widely used in academia 

and commercial applications and have broadly similar capabilities. The codes were 

available on the university's computer facilities. Initial computations for the wings 

were carried out on Solaris, a SunFire VX880 with 6 processors. Later computations 

were performed on Iridis2, a large computational cluster consisting at the time of 300 

Opteron processors. The cluster was expanded to 800 processors during the second 

phase of the installation. 

CFX was chosen for this study for the following reasons. CFX has a strong 

marine following and the experience and knowledge was available in the Ship Science 

department. The second reason is that CFX was considered to be a more integrated 

package. The pre-processor, solver and post-processor are inter-linked allowing some 

useful features and functions. For example when the mesh is refined near a surface the 

new point is placed on the actual surface and not interpolated from the grid points 

resulting in a better representation of the geometry. In addition it was found from 

experience that the CFX coupled solver is more forgiving and robust concerning mesh 

quality. Fluent was found to have trouble solving what many consider reasonable 

quality grids for incompressible flows. 

23 



Incompressible turbulent flows are governed by the conservation laws for mass 

and momentum, the Navier-Stokes equations: 

• The continuity equation simply states that the rate of change of mass in a 

control volume equals the rate of mass flux. 

• The momentum equation states that the rate of change of momentum for the 

control volume is equal to the rate at which momentum is entering or leaving 

through the surface of the control volume, plus the sum of the forces acting on 

the volume. 

• The energy equation states that the rate of change in internal energy in the 

control volume is equal to the rate at which enthalpy is entering, plus work 

done on the control volume by the viscous stresses. 

Continuity equation in conservation form: 

ap + V' • (pV) = 0 
at 

Momentum equations in conservation form: 
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Energy equation in conservation form: 
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The Navier-Stokes equations cannot be solved analytically for all but a few cases. A 

numerical solution is sought for most cases. The computational effort to solve the 

complete Navier-Stokes equations is costly and for most engineering flows the 

equations are time averaged to get the Reynolds Averaged Navier-Stokes equations. 

The principle is that for steady flow the fluctuations in the flow are very small and a 

mean value is still valid. 
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Since the Navier-Stokes equations cannot be closed a turbulence model is 

required to allow the solution of the RANS equations. There are many such 

turbulence models available all of which have different advantages and di sadvantages. 

An alternate more cost effective method to the direct numerical solution of the 

Navier-Stokes equations (DNS) is Large Eddy Simulation (LES) where the small 

scale turbulence is not modelled and only the larger turbulent flow features are 

accounted for. For more information see [82, 83]. 

2.1.1 Discretisation of the Governing Equations 

The following approach is based on that used within CFX for which more 

details can be found in [85]. It is explained in order to explore some of the influences 

of the approach to the eventual solutions used later in this work. The approach 

involves di scretising the spatial domain into finite control volumes to create what is 

called a mesh or grid. The governing equations are integrated over each control 

volume, such that the relevant quantity (mass, momentum, energy etc.) is conserved 

for each control volume. 

The figure below shows a typical two dimensional mesh on which one surface of the 

finite volume is represented by the shaded area. 

Element face centroicl 

Element 

Finite Volume sLl liace 

Figure 2.1 - Finite Volume SUIface 
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It is clear that each node is surrounded by a set of surfaces which comprise the finite 

volume. All the solution variables and fluid properties are stored at the element nodes. 

Consider the mean form of the conservation equations for mass, momentum and 

energy, expressed in Cartesian coordinates: 

(1.4) 

These equations can be integrated over a fixed control volume, using Gauss' 

divergence theorem to convert volume integrals to surface integrals as follows: 

~ fpdv + fpUdn = 0 at I I 
v s 

where v and s denote volume and surface integrals respectively and dn. are the 
} 

(1.5) 

differential Cartesian components of the outward normal surface vector. The surface 

integrals are the integrations of the fluxes, whereas the volume integrals represent 

source or accumulation terms. 

The first step in solving these continuous equations numerically is to 

approximate them using discrete functions. Now consider an isolated mesh element 

such as the one shown in Figure 2.2. 
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Figure 2.2 - Integration points 
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The surface fluxes must be discretely represented at the integration points to complete 

the conversion of the continuous equation into their discrete form. The integration 

points, iPn' are located midway from the element face centroid to the element's sides 

(red dots in Figure 2.2). These integration points sUITound the finite volume if all 

adjacent face elements are considered (Figure 2.2). 

The discrete form of the integral equations are wlitten as : 

where V is the control volume, the subscript ip denotes an integration point, the 

summation is over all the integration points of the finite volume, 6n . is the discrete 
} 

outward surface vector, 6t is the timestep . For simplifi cation a First Order Backward 

Eu ler scheme has been assumed in thi s equation, although a second order scheme was 

used in this work. Superscripts 0 refers to the old time level. The discrete mass flow 

through a surface of the finite volume is given by: 

. ( )" In;,) = pUt:J,.n, . 
J J 'I' 

( 1.7) 
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2.1.2 Pressure-Velocity Coupling 

A single cell, unstaggered, and collocated grid is used to overcome the 

decoupling of pressure and/or velocity. The representation of mass conservation can 

be written as: 

(au) + ill 
3 

A(a4~] = 0 
ax i 4 ax. m , 

where ( 1.8) 

The continuity equation is a second order central difference approximation to 

the first order derivative in velocity, modified by a fourth derivative in pressure which 

acts to redistribute the influence of the pressure. The method is similar to that used by 

Rhie and Chow [86], with a number of extensions which improve the robustness of 

the discretisation when the pressure varies rapidly, or is affected by body forces. 

2.1.3 Diffusion Terms 

Following the standard finite element approach, shape functions are used to 

evaluate the derivatives for all the diffusion terms. For example, for a derivative in the 

x direction at integration point ip, 

a¢1 = L aN" I cp, (1.9) 
ax ip /I ax ip 

The summation is over all the shape functions for the element. The Cartesian 

derivatives of the shape functions can be expressed in terms of their local derivatives 

via the Jacobian transformation matrix: 

aN ax ay az ~I aN 
ax as as as as 
aN ax ay az aN 

(1.10) = - -ay at at at at 
aN ax ay az aN 

-

az au au au au 
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The shape function gradients can be evaluated at the actual location of each 

integration point (true tri-linear interpolation), or at the location where each ip surface 

intersects the element edge (linear-linear interpolation). 

2.1.4 Pressure Gradient Term 

The surface integration of the pressure gradient in the momentum equations 

involves evaluation of the expression: 

(1.11) 

The value of P is evaluated using the shape functions: 
Ip 

(1.12) 

As with the diffusion terms, the shape function used to interpolate P can be 

evaluated at the actual location of each integration point (true trilinear interpolation), 

or at the location where each ip surface intersects the element edge (linear-linear 

interpolation). 

2.1.5 Advection Term 

To complete the discretisation of the advection term, the variable cpo must be 
Ip 

related to the nodal values of cpo The advection schemes implemented in CFX-5 can be 

cast in the form: 
v 

¢i{' = ¢1I{' + IN ¢.f..r (1.13) 

v 

where cp is the value at the upwind node, Vcp is the gradient of cp and r is the vector 
up 

from the upwind node to the ip. Particular choices for ~ give rise to different schemes. 

2.1.6 1st Order Upwind Differencing Scheme 

A value of ~= 0 leads to the first order Upwind Difference Scheme (UDS). 

UDS is very robust (numerically stable) and is guaranteed to not introduce non­

physical overshoots and undershoots. However, it is also susceptible to a phenomenon 

known as Numerical Diffusion or 'gradient smearing' (see 2.1.14 Numerical 

Diffusion). 
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2.1.7 High Resolution Scheme 

The High Resolution Scheme computes P locally to be as close to I as 

possible without violating boundedness principles. The recipe for P is based on that of 

Barth and Jesperson [87]. The high resolution scheme is therefore both accurate 

(reducing to first order near discontinuities and in the free stream where the solution 

has little variation) and bounded. 

2.1.8 The Coupled System of Equations 

The linear set of equations that arise by applying the Finite Volume Method to 

all elements in the domain are discrete conservation equations. The system of 

equations can be written in the form: 

( 1.14) 

where cp is the solution, b the right hand side, a the coefficients of the equation, i is the 

identifying number of the finite volume or node in question, and nb means 

"neighbour", but also includes the central coefficient multiplying the solution at the /h 

location. The node may have any number of such neighbours, so that the method is 

equally applicable to both structured and unstructured meshes. The set of these, for all 

finite volumes constitutes the whole linear equation system. For a scalar equation (e.g. 
IIh 

enthalpy or turbulent kinetic energy), each a. ,cp hand b is a single number. For the 
1 11 1 

coupled, 3D mass-momentum equation set they are a (4 x 4) matrix or a (4 xl) 

vector, which can be expressed as: 
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a uu aUI' a UW a Up 

a
nb = 

a vu a vv avw a vp 

I 
a wu a wv a ww a wp 

a pu a pv a pw app 

and 

u 

v ( 1.15) 
(A = 

w 

P i 

bu 

b.= 
bv 

I 

bit' 

bp 

It is at the equation level that the coupling in question is retained and at no 

point are any of the rows of the matrix treated any differently (e.g. different solution 

algorithms for momentum versus mass). The advantages of such a coupled treatment 

over a non-coupled or segregated approach are several: robustness, efficiency, 

generality and simplicity. These advantages all combine to make the coupled solver 

an extremely powerful feature of any CFD code. The principal drawback is the high 

storage needed for all the coefficients. 

2.1.9 Solution Method - The Coupled Solver 

CFX-5 uses a coupled solver, which solves the hydrodynamic equations (for u, 

v, W, p) as a single system. This solution approach uses a fully implicit discretisation 

of the equations at any gi ven time step. For steady state problems the time-step 

behaves like an 'acceleration parameter', to guide the approximate solutions in a 

physically based manner to a steady-state solution. This reduces the number of 

iterations required for convergence to a steady state, or to calculate the solution for 

each time step in a time dependent analysis. 

2.1.10 General Solution 

The flow chart shown below illustrates the general solution procedure. 
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The solution of each set of equations shown in the flow chart consists of two 

numerically intensive operations. For each timestep: 

1. The non-linear equations are linearised (coefficient iteration) and assembled into 

the solution matrix. 

2. The linear equations are solved (equation solution iteration) using an Algebraic 

Multigrid method. 

The timestep iteration is controlled by the physical timestep (global) or local 

timestep factor (local) setting to advance the solution in time for a steady state 

simulation. In this case, there is only one linearisation (coefficient) iteration per 

timestep. 
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Figure 2.3 - Solution procedure [88] 
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2.1.11 Linear Equation Solution 

A Multigrid (MG) accelerated Incomplete Lower Upper (lLU) factorisation 

technique is used for solving the discrete system of linearised equations. It is an 

iterative solver whereby the exact solution of the equations is approached during the 

course of several iterations. 

The linearised system of discrete equations described above can be written in 

the general matrix form 

[A][¢]=[b] ( 1.16) 

where [A] is the coefficient matrix, [<p] the solution vector and [b] the right hand side. 

The above equation can be solved iteratively by starting with an approximate solution, 
II 11+1 

<p , that is to be improved by a correction, <p', to yield a better solution, <p ,I.e. 

¢n+! = ¢n +¢' 

where ¢' is a solution of 
i&A..' 11 

1Uf' = r (1.17) 

with r n
, the residual, obtained from, 

rn =b-A¢n 

Repeated application of this algorithm will yield a solution of the desired accuracy. 

By themselves, iterative solvers such as ILU tend to rapidly decrease in 

performance as the number of computational mesh elements increases. Performance 

also tends to rapidly decrease if there are large element aspect ratios present. The 

performance of the solver can be greatly improved by employing a technique called 

'multigrid' . 

2.1.12 Algebraic Multigrid 

The convergence behaviour of many matrix inversion techniques can be 

enhanced by the use of a technique called 'multigrid'. The multigrid process involves 

carrying out early iterations on a fine mesh and later iterations on progressively 

coarser virtual ones. The results are then transferred back from the coarsest mesh to 

the original fine mesh. 

From a numerical standpoint, the multigrid approach offers a significant 

advantage. For a given mesh size, iterative solvers are only efficient at reducing errors 
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which have a wavelength of the order of the mesh spacing. So, while shorter 

wavelength errors disappear quite quickly, errors with longer wavelengths, of the 

order of the domain size, can take an extremely long time to disappear. The MuItigrid 

Method bypasses this problem by using a series of coarse meshes such that longer 

wavelength errors appear as shorter wavelength errors relative to the mesh spacing. 

To prevent the need to mesh the geometry using a series of different mesh spacings, 

an Algebraic Multigrid is implemented. 

Algebraic Multigrid [89] forms a system of discrete equations for a coarse 

mesh by summing the fine mesh equations. This results in virtual coarsening of the 

mesh spacing during the course of the iterations, and then re-refining the mesh to 

obtain an accurate solution. This technique significantly improves the convergence 

rates. Algebraic MuItigrid is less expensive than other multigrid methods since 

discretisation of the non-linear equations is only performed once for the finest mesh. 

CFX-5 uses a particular implementation of Algebraic Multigrid called 

Additive Correction [90]. The coarse mesh equations can be created by merging the 

original finite volumes to create larger ones as shown below. The diagram shows the 

merged coarse finite volume meshes to be regular, but in general their shape becomes 

very irregular. The coarse mesh equations thus impose conservation requirements 

over a larger volume and in so doing reduce the error components at longer 

wavelengths. 
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~ i 
First coarse mesh (virtual) 

Next coarse mesh (virtual) 

Figure 2.4 - Algebraic Multigrid 

2.1.13 Discretisation Effects in CFX-S 

All numerical approximation schemes are prone to a degree of error. Some 

errors are a result of truncation of additional terms in series expansions. Others are a 

result of the order of the differencing scheme used for the approximation. 
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Many of these effects can be significantly reduced or eliminated altogether by 

understanding why they occur, and when they are likely to affect the accuracy of the 

solution. 

2.1.14 Numerical Diffusion 

Numerical diffusion is an important issue when modelling vortical structures. 

Due to the re-circulating nature of the vortex it is very hard to avoid numerical 

diffusion. Numerical diffusion is usually exhibited by difference equations where the 

advection term has been approximated using an odd-order scheme, for instance, UDS, 

which is first order accurate. 

Consider a 3-dimensional Cartesian coordinate system. On a mesh of quadrilateral 

elements, the flow direction may be normal to the faces of each element. In this case, 

the flow from one element to the next can be accurately represented to the limit of the 

mesh size. 

In a case where the flow is not normal to the faces of the elements, perhaps in 

a region where the flow is re-circulating, the flow must move from one element into 

more than one element downstream. Consequently, some flow moves into each of the 

adjacent elements as shown below. 

.. - / 
~ 

-'" .. / 
~ 

-"" - / 
~ 

Figure 2.5 - Flow that is not normal to the cell faces causes numerical diffusion 

The effect of this over a whole flow domain is that the features of the flow are 

smeared out. The diagram below illustrates the effect. If a step function is used to 

define the inlet profile but is not aligned with the mesh, the step is progressively 

smeared out as flow moves through the domain. This phenomenon is therefore 

sometimes called 'gradient smearing'. 
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Figure 2.6 - Numerical diffusion 

The effect varies according to the alignment of the mesh with the flow 

direction. It is therefore relatively straightforward to achieve highly accurate solutions 

to simple flow problems, such as flow in a duct where alignment of the mesh with the 

predominant flow is relatively simple. However, for situations in which the flow is 

predominantly not aligned with the mesh, numerical diffusion effects limit the 

accuracy of the solution. 

Consider a similar flow, modelled on a totally unstructured tetrahedral mesh, 

as shown below. With this type of mesh, there is no flow direction which is more or 

less prone to numerical diffusion than any other. Consequently, the inaccuracy for 

simple unidirectional flows is greater than for a mesh of hexahedral elements aligned 

with the flow. However, the numerical diffusion errors for a mesh of tetrahedra are 

consistent, and of the same order, throughout the flow domain. This means that for 

real flows, tetrahedral control volumes will not exhibit additional inaccuracies in areas 

such as recirculation, because there is no single flow direction which may be aligned 

with the mesh. 

It is a fact that using the UDS scheme with tetrahedral element meshes will 

produce solutions that exhibit a larger degree of numerical diffusion than would exist 

from a solution obtained with a similarly refined mesh of hexahedral elements. 

However, this discrepancy diminishes rapidly as the advective discretisation is made 

more second-order accurate, and by working towards a grid independent solution. 
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Figure 2.7 - Flow direction is trivial on unstructured grids 

It is almost impossible to create a structured grid that minimises diffusion within a 

vortex. In order for the grid to accompli sh this an O-grid inside the vortex must be 

created that has its radial faces perpendicular to the vortical flow (Figure 2.8). It is 

practically impossible to achieve this without solving the flow first. A slight offset in 

the vortex core relative to the grid centre will make such a grid pointless. In addition 

not all vortices are perfectly circular in shape which complicates things even further. 

Figure 2.8 - A small shift in the vortex position makes any advantages of an O-grid 
obsolete 
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If the true three dimensional nature of the tip vortex is considered then the 

ideal mesh would also have a helical pattern to it. This is because the tip vortex has a 

stream wise component as well which mean that in order for the cell faces to be 

perpendicular to the flow a helical structure is required. The only advantage of have a 

hexahedral mesh is that the longitudinal mesh size can be bigger thus decreasing the 

mesh size. 

As shown above an unstructured grid will have greater numerical diffusion 

than an aligned structured grid, but for vortical flows this disadvantage disappears 

quickly since the structured grid is no longer aligned. 

2.1.15 Numerical Dispersion 

Numerical dispersion is usuaIIy exhibited by discretised equations whose 

advection term has been approximated using schemes that are even-order accurate. 

When Numerical Advection Correction is fuIIy implemented with a value of ~=1.0 the 

scheme is second-order accurate. This can lead, in some cases, to numerical 

dispersion. 

Dispersion results in oscillations or 'wiggles' in the solution particularly 

where there are steep flow gradients. Again the effects can be illustrated using the 

step function as shown in the diagram below; just before and just after the step, the 

solution exhibits osciIIations which are the direct result of numerical dispersion. 

II 1I 

. 
Figure 2.9 - Numerical dispersion 
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2.2 Turbulence modelling 

Turbulence modelling has a major influence on the accuracy of vortex flows. 

Many of the existing numerical simulations have difficulty capturing the vortex radius 

correctly and this is frequently attributed to limitations associated with the turbulence 

model. There have been many studies comparing the performance of different 

turbulence models. For example, Osama et al. [91] compared the performance of 

Baldwin-Lomax, Spallart-Allmaras and k-wturbulence models. All of the models 

over predicted the radius of the vortex with the kmperforming the best out of the 

models tested in the far-field region but more poorly near the wing surface. 

Dacles-Mariani et al. [41] used a Baldwin-Lomax and a modified Baldwin­

Lomax turbulence model with promising results. Even though the vortex core velocity 

profile was predicted within 3% of the experimental data the vortex decay just outside 

the core was not correct, with the vortex having an influence over the flow twice the 

distance as compared with the experimental results. 

Wallin and Girimaji [92] investigated the effect of turbulence model on axial 

vortex decay rate. They used several turbulence models from Reynolds stress 

transport to eddy-viscosity k-£models. The k-£models over predicted the vortex 

decay rate with Reynolds stress transport models giving better results. 

An increasing amount of research is being carried out on large eddy simulation 

(LES) and detached eddy simulation (DES). These methods address the physics of 

turbulence directly and do not require turbulence closure approximations. They 

require very fine meshes and are thus computationaIly expensive as demonstrated by 

Arakawa et al [95] when modelling a wind turbine blade tip using the Earth 

Simulator. DES only applies this methodology in certain regions of the flow. If an 

adaptive grid based on vortex identification is used then DES can be applied in the 

refined region to model a tip vortex. 

For this research the k-£ model was used for the development of the VFX 

method because of its speed, simplicity and robustness. The 2 equation SST model by 

Menter [96] was used for subsequent simulations for its improved performance in 

regions for separated flow. 
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2.3 In-viscidflow (Euler) 

Far away from solid boundaries the effects of viscosity are usually small. If 

viscous effects are neglected, the Navier-Stokes equations reduce to the Euler 

equations. Euler equations are useful for high Reynolds number problems where the 

effects of viscosity are usually confined to a small region near the body and a narrow 

wake. Since the boundary layer near the solid surfaces does not have to be resolved a 

coarser grid can be used which reduces computational costs and allows for more 

complex geometries. For more information see [82, 83]. 
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3 VORTFIND scheme 

The VORTFIND scheme [1,2] is a method for identifying vortices in a two­

dimensional velocity field. It was developed by Pemberton [1] for his thesis and 

applied to a few test cases such as a backward facing step and a 2-D bilge vortex. 

Later as part of this research the method was applied to a 3-D system of bilge vortices 

[97,98]. In this chapter the VORTFIND method is presented and the key parameters 

investigated by applying it to a test case. The method is refined and extended before it 

is extended to 3-D in the next chapter. 

The definition of a vortex as described by Lugt [36] "A vortex is the rotating 

motion of a multitude of material particles around a common centre" is used in the 

context of this method. The VORTFIND scheme is based on a simple function of 

local angles of velocity with respect to a reference point in the fluid. This function 

exhibits a local minimum at the vortex core. A statistical method can then be applied 

to locate the vortex core. It has been applied in two-dimensional velocity field with 

good results [1,2]. 

3.1 Numerics 

Consider a two-dimensional slice of fluid perpendicular to the axis of rotation 

of the vortex. A cell centre is selected as the datum point. The x-axis is used as a 

reference and the plane is divided into n sectors and each sector is assigned an integer 

value p, (Figure 3.1). 

~=1 

~=2 ~=O 

X-QXI5 

~=n-l 

Figure 3.1 - The plane is split into sectors and each sector is assigned a 
value. 
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The angle a (Figure 3.2), which is the angle the velocity vector makes with the 

reference axis (in thi s case x-axis), is calculated for all data points. Each data point is 

then assigned a value f3 depending on which sector ali es in . The closest point to the 

reference location for each value of fJ is found . These points have di stances labell ed 

ro, r/, .. . , rll and f3= 0, I, ... ,n-I respectively (Figure 3.2). The di stance for the value of 

f3 that is the same as the reference point will always be zero. Once the distances are 

found the l function is computed as follows: 

II-I 

l = " r2 L..... /I 

o 
(1.18) 

Referring back to Lugt 's definition, a vortex core is the point th at is closest to points 

with differing values of fJ. At thi s point the l function exhibits a local minimum. 

P=l 

~~ +4------~. 

:Y ~I 
~ " , , , 

, , 

\, '-C.1 

ro 

1-"*=0 
1-"*=0 

a 

~o 

p=o 

y 

Figure 3.2 - Schematic representation for determining the l function for 3 sectors. The 
reference point is marked with a diamond 
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3.2 Identifying the vortex core 

The I function provides a useful picture of the vortex structures in the flow. It 

can be used for adaptive refinement. However it is sometimes easier to adapt to the 

vortex core line. In addition for visualisation purposes it is better to identify the vortex 

core line [62]. The process of locating multiple vortex cores in the domain is one of 

identifying local minima in the I function. The search method has a number of 

constraints [I]: 

• The I function is calculated without the use of any gradient values and it is 

beneficial to use a search algorithm that refrains from doing so. 

• Multiple local minima may exist which are all significant, especially for 

adaptation. 

• The search algorithm must have minimal computational requirements if is 

going to be included in the solution process. 

Given the above constraints Pemberton [I] found that a K-Means cluster 

algorithm is appropriate for this case. The objective of a cluster algorithm is to 

separate a set of data into clusters so that the members of each cluster differ as little as 

possible with respect to a specified criterion [99]. The algorithm used is an adaptive 

K-Means Algorithm [100]. Data points are assigned to clusters by minimizing J, the 

sum of the distances squared from the cluster centre to the points within it (Eq.(l. I 9)). 

J=Npl,i=N{ 

J = L ( X ji - fiXi) + ( Y ji - fi,J 
j=l,i=1 

(I. 19) 

I N r , 

fiyi =N LYji 
pi )=1 

where fixi and fiyi are co-ordinates of the cluster centre, Npi is the number of points in 

the /h cluster, Nc is the number of clusters and Xii, Yii are the co-ordinates of the /h 

point in the /h cluster. The points are assigned to the different clusters until J is 

minimized. Only two variables need to be preset in the K-Means cluster algorithm, 

the maximum cluster radius and the minimum separation between adjacent clusters. If 

a point is further away than the maximum cluster radius from a cluster then a new 
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cluster is created. If two clusters are closer than the minimum separation then they are 

merged. 

For the case of a single vortex on the computational plane it has been found 

that the node with the lowest I function is within a cell of the vortex core. Thus for 

singfe vortices identifying the vortex core is trivial. 

3.2.1 VORTFIND Test case 

The VORTFINp scheme has not been applied to a tip vortex before. To test 

the applicability of the method to tip vortex flows, it was applied to a wing operating 

at an angle of attack. A 2-D plane that includes the tip vortex was used for the study. 

A NACA0020 wing with a 1.Om span and 0.667m chord was used as the test 

case of the VORTFIND method in 2-D. The grid was unstructured with 250,000 

tetrahedral cells. A k-£ turbulence model was used and the chosen angle of attack was 

10°. A plane 0.13m behind the wing trailing edge was used to calculate the I function. 

The velocities are exported from the volume mesh at the points where a cell edge 

intersects with the plane. 

The effect of increasing the number of sectors used to calculate the I function 

can be seen in Figure 3.3. As the number of sectors increases the I function gets 

smoother. Above 5 sectors there is no longer significant difference in the I function. 
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Figure 3.3 - I function contour plot for a plane 
O.2c downstream of the trailing edge. 

As the number of sectors increases from 3 
to 7, the I function varies in magnitude 
since extra rll are added for each sector. 



ylc zlb 
Wing tip 0.000 1.000 
Sectors = 3 0.069 0.891 
Sectors = 4 0.066 0.899 
Sectors = 5 0.061 0.886 
Sectors = 6 0.030 0.835 
Sectors = 7 0.039 0.848 

Table 3-1 - Position of Vortex centre 

Another thing to note from the I function plots is that as the number of sectors 

increases the l function increases since one more distance is added for each additional 

sector (Eq(l.18)). This can be a problem when using the I function with adaptive 

refinement grids. If the grid is refined using a threshold I function value it is difficult 

to choose the correct one and is more of a trial and error [69]. If the I function changes 

with the number of sectors then the process is complicated further. 

By di viding the l function by the number of sectors that exist in the solution minus 

one, the l function can be normalised with respect to sector number. 

II-I 

I~,2 
1=_-,,-0 __ 

11 n -1 
j3 _ t'xisl 

( 1.20) 

where nlLexis/ is the number of sectors that have at least on velocity vector. 

The reason for not dividing by the number of sectors used is that in some flows 

not every sector has a velocity vector assigned to it, so the distance squared for that 

sector is not added to the I function. Also the sector of the reference grid point always 

has a distance squared of zero so the l function is divided by the number of sectors 

that have at least one vector minus one. The III function is calculated for the same case 

as previously and shown in Figure 3.4. 

The above has no effect on the shape of the contours of the l function or the 

K means cluster algorithm (Table 3-1 &Table 3-2). The only difference is that the 

values remain fairly constant with increasing number of sectors, especially near the 

vortex centre. If the III function contour of 0.5 is observed, its position does not change 

with increasing sectors. The same is not true for the I function. This simplifies the 

adaptation process if a threshold value scheme is used. 
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Figure 3.4 - Normalised in function contour 
plot for a plane O.2c downstream of the trailing 
edge. 

As the number of sectors increases from 3 
to 7, the l function remains fairly constant 
in magnitude. 



y/c 
Wing tip 0.000 
Sectors = 3 0.069 
Sectors = 4 0.066 
Sectors = 5 0.061 
Sectors = 6 0.030 
Sectors = 7 0.039 

Table 3-2 - Position of Vortex centre. 
Normalised I function 

3.2.2 Influence of grid on VORTFIND method 

z/b 
1.000 
0.891 
0.899 
0.886 
0.835 
0.848 

The III function is derived from the velocity vectors of neighbouring data 

points. It is dependant on the direction of the vectors belonging to different sectors. 

However the minimum possible I" function is only dependent on the sampling 

spacing. Consider a reference point with all its neighbouring points belonging to 

different sectors. Obviously this point should exhibit the lowest 111 function. How low 

the data point's In function can be is decided by the grid spacing. If the data points are 

very close then the smaIl distances between them will result in a low III function. If the 

points are far apart then the I" function will be higher even though the neighbouring 

values are all in different sectors. A refined area can have a very low minimum I" 

function whereas a coarse area has a higher minimum I" function. 

Compare the I" function plot for the wing tip vortex with uniform sampling 

spacing Figure 3.5, with the I" function for the same results but with samples taken at 

the cell edges Figure 3.6. We can see that away from the vortex core the I" values are 

very similar. This is because the limiting factor for the I" function is not the sample 

spacing but the actual velocity flow field. As we approach the vortex core the values 

for the uniform sampling spacing are higher. This is due to the smaller sample spacing 

near the vortex core. Since the flow field is more varied in direction the limiting factor 

becomes the sample spacing. Ideally the limiting factor should always be the flow 

field and never the sampling space. 
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Figure 3.5 - Uniform spacing 
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Figure 3.6 - Non-uniform spacing 
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However this is not always practical due to the increased computational 

overhead of such a fine sampling spacing. A uniform sampling spacing can overcome 

some of the problems of having the sampling spacing as a limiting factor. Effectively 
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there is a lower limit on the ill function which is the same for the entire computational 

plane. Using a non-uniform sampling spacing will potentially favour certain regions 

which may cause problems in flows with multiple vortices. 

3.2.3 VORTFIND not conforming to computational nodes 

The in function so far has been calculated at locations corresponding to 

computational nodes (i.e. locations were the velocity is specified). However the 

In function can be calculated at any point along the plane and does not need to 

conform to those points. The test case data was used to calculate the In function over a 

uniform 51 x5l grid superimposed on the data on the nodes resulting from the mesh. 

The In function is smooth and continuous over the computational plane. The 

magnitude and shape is virtually the same as the one calculated on the data nodes. 

This is a significant advantage over the combinatorial method [65] which is 

discontinuous. 

Even though the VORTFIND method is accurate enough to locate the cell the 

vortex core lies in, on large grid spacing it is thus possible to find the point of 

minimum in function within the identified cell using this not conforming procedure. 

Even though the physical meaning of this point is dubious, it is nevertheless a useful 

improved estimate on the position of the vortex core. 
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Figure 3.7 -In function off the data points. 7 sectors (compare to Figure 3.4) 
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3.2.4 VORTFIND on coarse grids 

The minimum possible In function as explained previously depends on the grid 

spacing. However there is another consideration concerning grid size. There is a limit 

to how coarse a grid can be in order to identify the vortex. A series of grids has been 

set up to investigate the lower limit of this coarseness. The initial grid is the same as 

all the other test cases. The nodes are then decreased by a factor of 4, 8 and 16 and the 

VORTFIND method carried out. 

Inspecting the resulting In function contour plots we can see that we get similar 

shapes for all node densities with similar minimum values in the vortex core. 

Assuming the lowest III function as the vortex core there is a variation in the identified 

centre (Table 3-3). This is due to the way the data node grid was coarsened. Alternate 

nodes were deleted from the database which was not given in any particular order. 

This resulted in an uneven coarsening of the data grid nodes which leads to the shift in 

the vortex centre. However the shape of the III function over the sample plane remains 

similar even for the lowest of data node densities. This is a key result as it indicates 

one of the main advantages of the use of Vortfind as it still works well for a very 

coarse mesh. 
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Figure 3.8 -t" function on different grid densities 

Identified vortex centre 
Number of data nodes 

y/c zlb 

3038 0.039 0.848 
760 0.285 0.848 
380 0.069 1.123 
190 0.171 0.848 

Table 3-3 - Variation of vortex core with grid density 

The same procedure was carried out for the same data nodes using the III 

function not conforming to the data nodes. The grid on which the III function was 

calculated was 51 x51. Similar results can be observed. The contour plots have the 

same characteristic shape. Similar variations in the identified vortex core position 

exist (Table 3-4). This is because as explained these are due to the data nodes. Since 

the data nodes are identical for both cases similar results were observed. Comparing 

the two methods we can see very good agreement considering the resolution for the 

51 x5l grid is in the order of 0.05b and 0.12c. A marked improvement over the 

conforming approach is evident from the identified vortex centres. 
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Figure 3.9 -Ill function on different grid densities not conforming to data nodes 

Identified vortex 
Number of data nodes 

y/c z/b 

3038 0.08 0.90 
760 0.08 0.90 
380 0.08 1.14 
190 0.16 0.90 

Table 3-4 - Variation of vortex core with grid density 
(VFX not on data nodes) 
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3.3 Summary 

In this chapter the Vortfind method has been presented and tested. The method 

was applied to a test case and its dependency on different parameters investigated. 

The ability of the Vortfind method to perform well on very coarse grids has been 

demonstrated, which is one of its major advantages. 

In addition the Vortfind method has been reformulated for an arbitrary number 

of sectors and has been normalised with respect to these sectors. This makes the 

Vortfind method easier to implement in conjunction with mesh adaptation based on 

threshold values as explained before. 

The method has also been applied for the first time off the data nodes which has 

proven that the In function is a continuous function over the plane. It performs 

particularly well on coarse grids and has the potential to identify the vortex core at a 

resolution which is better than the data grid. 
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4 VFX: an extension of VORTFIND to 3-D 

The modified VORTFIND scheme can be easily implemented with two­

dimensional grids. However, before this work it has never been applied to three­

dimensional grids. A number of modifications must be made and evaluated before the 

method can be used with any success. The method works in two-dimensional planes 

perpendicular or near to perpendicular to the direction of the vortex core. These 

planes can be extracted from the three-dimensional velocity field (Figure 4. I). 

The planes can be extracted for every cell or for a predetermined spacing. 

Extracting planes for every cell is computationally expensive; however since the 

I function is defined at every cell it can be used as a criterion for adaptive refinement 

without any further manipulation. A threshold value for the I function can be set and 

the cell below that threshold refined. This eliminates the need for a cluster algorithm 

to identify the vortex cores. 

Using spaced planes reduces the computational requirement substantially, but 

means that the vortex cores must be identified and a vortex core line constructed 

through the domain. Then neighbouring cells to the vortex core line can be flagged for 

refinement. The other advantage of this method is that it produces a continuous vortex 

core line. The latter was chosen for its reduced computational requirements and 

adapted for 3-D cases giving the VFX scheme. 
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Plane 1 
Plant? 2. 

Plane 3 
Plane 4 

Plane 5 

Figure 4.1 - Planes where VFX is performed for a wing 

4.1 Wing test case 

To test the VFX method it was decided to validate it with an experimental case. 

A NACA0020 wing operating at 100 angle of attack was chosen. The wing was tested 

in the 11 ' x8 ' George Mitchell [101] low speed wind tunnel at the University of 

Southampton and the recorded data included measurements of wing surface pressures. 

The wing has a 1.0m span and 0.667m chord. 

The numerical model was an approximation of the wind tunnel experiment, 

neglecting the blockage effects of the walls. The inlet boundary was located at x= -

3.0c and the outlet at x= 5.2c. The side walls were located at y= ±3.0c and the roof at 

Z= 4.5c. The wing leading edge root was at the origin. The floor is defined as a 

symmetry plane in order to remove the need to capture the groundplane boundary 

layer. For similar reasons the roof and walls are defined as openings and a velocity 

defined on those boundaries. 

The wing was modelled using an unstructured mesh using only tetrahedrons. The 

base mesh had 3 15,566 cells. The cells were clustered near the wing surface, with a 

maximum edge length of 0.045c. The maximum y+ was 100. A cylinder of finer cells 

also having a maximum edge length of 0.045c extended downstream from the tip 
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aligned with the x axis. The wing was operating in a uniform free stream velocity of 

20m/s at an angle of attack of 10°. A k-E turbulence model with wall functions was 

used for its simplicity speed and robustness. This was used as a test case for the 

development of the VFX method and not initially as an attempt to capture accurately 

the flow field. Although other turbulence models could have been used the aim was to 

ensure that all the steps in the VFX process worked. Planes of velocity were extracted 

at 0.67, 1.17, 1.67,2.17,2.67 and 3.17m. The VFX method was used to compute the 

vortex cores location for each plane. A tube, having O.Im radius and its axis passing 

through the vortex cores was used to define the refinement region. The maximum cell 

edge length was specified within this tube, resulting in a refined region in the mesh. 

The resulting mesh was solved and the vortex core co-ordinates updated. Three 

iterations were carried out; each time the maximum edge length within the tube was 

decreased. The refined meshes had 518,997, 819,289 and 1,797,200 cells respectively. 

Mesh Cells Nodes 
Max. edge length Points across 

in tube vortex core 
Base 315,566 56,461 0.045c 8 
Refine 1 518,977 91,397 O.03Oc 12 
Refine 2 819,289 142,870 0.022c 15 
Refine 3 1,767,200 305,113 0.OI5c 23 

Table 4-1 - Grids for wing test case 

Figure 4.2 - Refined mesh 3. Plane 1.17m 
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From the results it can be seen that as the number of cells in the vicinity of the 

vortex core increases the vortex position changes. For the two finer meshes the 

location of the vortex core line is fairly constant. The vortex shedding off the wing is 

not located at the tip but further in as expected from theory and experimental 

observations. The vortex contracts to 80% of the span as it moves 4 chord lengths 

downstream. This positional dependency of the vortex on grid spacing means that 

methods like Spall [43], which use a grid with points clustered a priori, run into 

difficulties even for such a relatively simple case. 
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Inspecting the vortex velocities at O.7Sc downstream of the trailing edge for the 

different meshes it can be seen that the results are similar to Dacles and Zilliac [41]. 

From Figure 4.4 it can be seen that the vortex velocities change significantly with grid 

spacing. As the grid resolution increases the vortex core radius decreases. The two 

finer grid spacings give similar results, implying that at least 15 points are needed in 

the vortex core to capture the flow accurately. This agrees well with Dacles and 

Zilliac who recommend 18 points through the vortex core. 
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Figure 4.4 - Vortex velocities for the different meshes 
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Comparing the surface pressures calculated using the finest mesh with 

experimental data [10 1] good agreement can be seen (Figure 4.5). However, the 

results do not show the large pressure drop towards the trailing edge. This is because 

the clustering is not extended upstream of the trailing edge, and the influence of the 

vortex on the surface pressures will not be fully captured. 
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4.2 Initial grid dependency 

In order to ensure that the method described previously is independent of the 

initial grid, the same geometry was modelled using a different meshing strategy. A 

different meshing tool was used, ICEM 4 CFD [102], to generate the mesh. The base 

mesh compromised of tetrahedra with a different mesh density and distribution than 

the previous base mesh. The mesh was clustered in the vicinity of a line extending 

downstream from the wing tip at angle 5° from the x axis, even though the angle of 

attack was 10°. This is to prove that the initial clustering position is not crucial to the 

final solution. In fact no clustering is necessary for the initial mesh as long as the 

initial grid density is fine enough to resolve some of the tip vortex. However since a 

very coarse base mesh is used a refined region was included. 

The same iterative strategy as described above was used, updating the position of 

the grid refinement and at the same time reducing the grid spacing. After three 

refinements the position of the vortex was within the convergence criterion of the first 

solution. This proves that the method is independent of the initial grid. 

4.3 Comparison with experimental data 

For better validation of the procedure detailed wake measurements were 

deemed necessary in order to study the evolution of the tip vortex and wake. A 

numerical model of a wing was compared to experimental data from a wind tunnel 

model. The experiments were performed in a 0.9m x 0.6m, open circuit wind tunnel, 

operated at a flow speed of 19.0 mls. The wing had a chord of 0.45m and a geometric 

aspect ratio of 1.0. A NACAOO 1 2 section was used with constant thickness to chord 

ratio along the wing [103]. Particle Image Velocimetry (PIV) and pitot tube data were 

available for the steady case. 

The numerical model consisted of a tetrahedral mesh with prisms layers on the 

wing and tunnel walls to capture the viscous sub layer. The prism layer had a 10mm 

height on the wing (l of 50) and 30mm on the tunnel walls. The VFX procedure was 

implemented, using 5 planes downstream of the wing and the mesh refined on the 

vortex core line. The position of the vortex core was settled after a few cycles as 

discussed previously. 

After the vortex line had settled the number of refined layers grown from the 

vortex core line was varied. The cell edge was increased to keep the mesh size 
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constant. The mesh size can rise quickly with increasing layers grown from the vortex 

core line. This is because the volume of the refined mesh increases with respect to 

distance squared from the vortex core. For example 10 layers will have 4 times the 

cells as 5 layers grown from the vortex core line. 

From the results it can be seen that there is a trade off between cell size and 

the number of layers grown. If the refined mesh does not extent far enough away from 

the vortex core then the vortex is not captured correctly. As the number of layers of 

refined cells grown from the vortex centre increases we can see that the vortex core 

radius decreases and the maximum circumferential velocity increases (Figure 4.6). 

However, since the cell size is increased with increasing number of layers to keep the 

mesh size the same there comes a point where the mesh is not fine enough in the 

vortex core to refine the vortex correctly. 
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From Figure 4.6 we can see that the vortex core radius is over predicted by 1-

2% of chord. The circumferential velocity is under predicted by 20%. However these 

are the mean circumferential velocities around circles with their centres at the vortex 

core. Any error is thus cumulative. In addition the PIV data is an average of multiple 

images over time. Comparing the velocities through the vortex along the x and y 

direction (Figure 4.7) we can clearly see where the discrepancy occurs. 

The velocities for the y direction (perpendicular to the wing) are in very good 

agreement with the PIV data. The core radius is 11 % of chord from the CFD 

simulation and 10% from the PIV data. The maximum velocities are also in good 

agreement. 

For the spanwise direction it is different. The predicted maximum velocities 

are well below the PIV data. The outermost position of maximum velocity is within 

2% of chord, however in the wake the results are worse. This might be due to the 

influence of the wake on the tip vortex. The mesh in the wake region is quite coarse 

and not captured correctly. 
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Figure 4.6 - Average circumferential velocity from vortex core 
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The forces on the lifting surface vary significantly with grid refinement in the 

vortex region. It can be seen that for the very fine mesh, which is only concentrated at 

the vortex core, the lift and drag are out by 9.3% and 2.8% respectively. As the region 

of the refined mesh grows out from the vortex radius the results tend closer to the 

experimental data. The change in lift is very small but the drag improves significantly. 

The lifting surface is operating near its stall angle and small changes in the angle of 

attack result in large changes in the forces. Also the flow is unsteady in real life and 

the lifting surface probably transitions between a partially separated and fully attached 

condition. 

Lift (N) Drag (N) 
CL Co 

Pressure Viscous Pressure Viscous 

Cell 0.5mm 
25.72 -0.036 2.665 0.482 0.59 0.073 

Layers 0 
Cell 0.5mm 

25.703 -0.0356 2.665 0.481 0.59 0.073 
Layers 2 
Cell 1.0mm 

25.892 -0.0359 2.678 0.482 0.6 0.073 
Layers 4 
Ce1l4.0mm 

25.395 -0.0387 2.605 0.484 0.59 0.071 
Layers 10 
Ce1l4.0mm 

25.528 -0.0404 2.610 0.480 0.59 0.071 
Layers 20 

Experiment - - - - 0.48 -

Table 4-2 - Comparison of lift and drag for different vortex refinement. 
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4.4 Summary 

The Vortfind method has been extended successfully to three dimensional 

flows. The resulting VFX method has been tested on a wing and was able to track the 

tip vortex downstream of the foil. The mesh was refined in the region identified using 

the VFX identified vortex core. The vortex core position stabilised with each 

progressive refinement and the vortex propagated further downstream. 

Detailed wake comparisons have been made for a second wing tested in a 

wind tunnel where PIV data was available. Although the results have shown an 

improvement with the refined mesh as far as the tip vortex definition is concerned, 

there were discrepancies in the forces. It is believed that these were due to the 

insufficient resolution of the boundary layer wake which is an important flow feature. 

Resolving the boundary layer shear layer far downstream represents a difficult task, 

especially for marine propellers where the shear layer is of a helicoidal form. Work by 

Stanier [30] shows that resolving the boundary layer wake significantly improves the 

results and Sanchez-Caja et al. [104] demonstrate that the wake structure deteriorates 

very quickly outside the fine mesh region. Thus it would be beneficial to develop a 

wake identification algorithm that can be used in conjunction with VFX. 
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5 Adaptive Wake capture 

Downstream of any body exists a region of slower moving fluid known as a 

wake. For a lifting surface, operating at small angles of attack, this is a thin shear 

layer region formed when the fluid in the boundary layers from the upper and lower 

surfaces merge at the trailing edge and then extend downstream. To capture this thin 

shear layer a refined mesh is required. A method for identifying the position of the 

wake using simple techniques is investigated and described in this chapter. 

5.1 Identifying the wake 

In order to follow the same philosophy with the VFX method the procedure for 

identifying the wake must be based on simple mathematics. Ideally, it must not use 

derivatives or complex functions of the solution. 

The wake consists of a small region behind the aerofoil with a velocity deficit. If 

a threshold velocity deficit is selected the regions in the flow having lower velocity 

can be identified. The velocity deficit regions are identified from the same plane data 

used for the VFX method. For the subsequent calculations the shear layers due to the 

tunnel walls are ignored otherwise they will be erroneously selected as well. A region 

O.05m from any wall was therefore masked out. This leaves the points belonging to 

the wake but also the tip vortex region. The velocity deficit region due to the vortex 

extends outwards of the geometric span of the aerofoil. If all this points are used to 

determine the wake it causes problems. The wake behind an aerofoil only extends to 

the vortex core. The position of the vortex core is already calculated using VFX. Any 

points outwards of the vortex core can also be masked out. 

A curve is fitted to the remaining points using a moving average filter. This is 

performed for all the planes downstream. A refined grid can then be specified in the 

region of the wake. To reduce the number of cells required in the wake a similar 

approach to that used for shear layers near walls can be used. By using high aspect 

prisms aligned to the wake the grid spacing along the wake can be kept large whereas 

the transverse grid spacing can be reduced to capture the shear layer. 
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The wake capture method worked weIl within one chord length of the trailing 

edge (Figure 5.1). Downstream the velocity deficit in the coarse wake was less and 

thus the wake region was not selected. Only the vortex deficit region had a low 

enough value to be selected (Figure 5.2). One possible solution was to select different 

velocity thresholds for each plane, with the threshold velocity increasing away from 

the aerofoiI. This was not deemed a feasible solution since an appropriate threshold 

velocity is not known a priori. Such a method would require a time consuming trial 

and error approach. 

A more generic and robust solution was developed. The spanwise distance 

between the root of the foil and the vortex core is subdivided into a number of strips. 

The areas near the tunnel waIls and floor area masked out, as explained above, and the 

remaining points for each strip are sorted in ascending velocity magnitude. The top 

5% of the points are selected for each strip. From thereon the same approach is used 

as described previously. This method ensures that the entire wake from the root to the 

tip vortex is selected and all the way downstream (Figure 5.3). Also it is more robust 

and less sensitive to user input. 
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Figure 5.2 - Selected points having velocity deficit at a plane one chord length 
downstream of the trailing edge 
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5.2 Wake mesh 

A surface was lofted through the wake lines identified from the wake algorithm 

and the trailing edge of the wing. The resulting wake shape is as expected from classic 

aerodynamic theory. It extends downstream of the wing and wraps up around the tip 

vortex (Figure 5.4). The same mesh was used as for the standard models without the 

wake capture. This consisted of a fine mesh on the wing surface and in the vortex 

region. In addition a ten cell inflation layer on the wing and wall tunnel walls with 

I cm and 3cm overall thickness respectively was used. 

z 

~y 

Figure 5.4 - Wake shape captured by the wake identification algorithm 

For the wake capture ten layers of prisms were extruded normal to the wake 

sUlface captured either side .The prisms matched the inflation layer on the wing. The 

thkkness of the prism layer in the way of the wake was 60mm. The streamwise mesh 

spacing in the region of the wake is large to reduce the overall size of the mesh. 

However, the transverse grid spacing is small to refine the shear layer in the wake 

(Figure 5.5). If the prisms were replaced with tetrahedra having an aspect ratio of one 

then thirty times more cells would be required to have the same transverse grid 

spacing. 

72 



Figure 5.5 - Mesh using wake capture 
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5.3 Results 

Comparing the results for the standard mesh with the pri sm wake mesh we can 

see that there is a significant improvement. The minimum velocity for a plane 

44.4%of chord downstream of the trailing edge is below 1.57m/s for the wake pri sm 

mesh whereas for the standard mesh the velocity is not less than 1.68m/s. In addition 

the wake pri sm mesh influences the tip vortex . The velocity deficit area above the 

vortex is less pronounced with the wake prism mesh. 
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Figure 5.6 - Velocity contours 44.4% of chord downstream of the trailing edge for 
standard mesh (Top) and pri sm wake mesh (Bottom) 
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Similar results are observed for a plane 133.3% of chord downstream of the 

trailing edge. The same is true for the entire wake downstream of the wing. 
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Figure 5.7 - Velocity contours 133.3% of chord downstream of the trailing edge for 
standard mesh (Top) and pri sm wake mesh (Bottom) 
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The change in the forces on the wing is significant. There is a 9.9% reduction in 

drag and a 5% reduction in lift. The lift to drag ratio increases by 5.3%. There is a 

reduction in the pressure forces and an increase in the viscous forces (Table 5-1). 

Pressure force (N) Viscous force (N) 
CL Co LID 

x Y z x Y z 

Standard 2.665 -25.72 2.712 0.48 0.036 0.015 0.59 0.073 8.17 

Prism wake 2.338 -24.40 2.660 0.49 0.045 0.013 0.56 0.065 8.60 

1l% -12.2 -5. I -1.9 2.1 24.4 10.3 -5.0 -9.9 5.3 

Experiment - - - - - - 0.48 - 7.56 

Table 5-1 - Comparison of wake mesh and standard mesh forces 

Comparing the results with experimental data from a wake transverse study [103] 

we can see that the wake is better defined with the prism wake mesh. The results 

agree more closely with the experimental results. The position of the wake is 

predicted very well. The velocity deficit is less than the experimental results by about 

15% of UlUo for the plane immediately downstream of the trailing edge. However for 

the rest of the downstream planes the velocity deficit in the wake is within 5% of 

U/Uo (Figure 5.8). 
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5.4 Results for Wake and VFX mesh 

A mesh having the same cell size as for the VFX case with 10 layers grown 

away from the vortex core (see Table 4-2), and having a wake mesh was generated. 

However no inflation layer was used on the tunnel walls to reduce the mesh size. The 

effect of the inflation layer having been found to be negligible. 

Lift (N) Drag (N) 
CL Co LID 

Pressure Viscous Pressure Viscous 
VFX 25.40 -0.0387 2.605 0.484 0.59 0.071 8.31 
Prism wake 24.40 -0.045 2.338 0.49 0.56 0.065 8.62 
VFX& 

21.63 -0.0246 2.556 0.434 0.48 0.068 7.05 
Prism wake 
Experiment 23.04 3.18 0.48 - 7.61 

Table 5-2 - Comparison of forces 

From the results we can see that the drag is somewhere between the 

two meshes. However the is a large reduction in lift. This gives a better lift to drag 

ratio than the other two meshes which significantly over predict this. Looking at the 

spanwise loading we can see the typical increase in loading due to the tip vortex. 
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Figure 5.9 - Span wise loading for NACA0012 wing 
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5.5 Results/or Wake and VFX mesh 

The importance of resolving the wake has been shown for a 3-D wing. A simple 

algorithm for identifying the wake has been developed which can be used in 

conjunction with the VFX method. The method has been automated and applied to a 

3-D wing and the results compared to experimental data. The forces on the wing 

changed significantly with the wake refinement. In addition, the velocity profiles in 

the wake agree very well with pitot tube measurements from the wind tunnels tests. 

When used in conjunction with the VFX method to resolve the tip vortex as 

well, the lift changed significantly and coincided with the value obtained from the 

experiments. 
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6 Propeller mesh generation 

Experience shows that the choice of the grid for a given propeller can 

influence the convergence of the solution and numerical prediction [30, 105]. The grid 

density is a crucial factor in capturing the flow features in the fluid. Grid quality is 

also of importance and must be addressed as reported by the lITe [106] & Stanier 

[107] and discussed for hulls by Bull [31]. Mesh generation is a function of the 

experience and ingenuity of the person involved, the meshing tools available and 

restrictions imposed by the limitations of the solver. 

6.1 Propeller Geometry 

In order to define the propeller blade geometry the following system is used 

[108, 8]. The blade is formed starting with a midchord line defined by the radial 

distribution of skew angle Bn,{r) and rake xn,(r). By advancing a distance ±Y2 err) 

along a helix of pitch angle (Air), the blade leading edge and trailing edge are 

obtained. The surface formed by the helical lines is use as the reference upon which 

the sections can be built. These sections are defined in standard aerofoil terms by a 

chordwise distribution of camber f( s) and thickness t( s), where s is a curvilinear 

coordinate along the helix. A brief description of the transformations developed and 

used is given below. For a more detailed description of the process see [109]. 

Figure 6.1 - Propeller geometry definition used (Left); Kerwin definition [108] (Right) 
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The method used differs from the method described in Kerwin [108]. The 

skew of the propeller is treated differently. The section is skewed along the generator 

helix for that section whereas in Kerwin's system the section is skewed about the 

propeller axis. The latter method changes the shape of the blade with varying pitch, 

whereas the former preserves the same blade shape for all pitches. This makes 

propeller design easier since the blade shape is not coupled to the pitch. For propellers 

with no skew such as the DTMB P41 19 the two methods are identical. For heavily 

skewed propellers there is significant variation between the two methods. 

Care must be taken that the transformed 2-D sections lie on a cylindrical 

surface instead of being offset perpendicular to the helix generator. Kouh & Liang 

[110] and Kouh & Chen [11 I] neglected to ensure this which can lead to minor 

geometrical difference which can be significant. Later Kouh et ai. [111] identified this 

problem and corrected their methodology. 

6.2 Propgen 

To generate a mesh for a given propeller geometry a quick and simple tool 

was required for a wide range of propellers. Propgen was developed specifically for 

this purpose. It can handle most propeller geometries, including ducts. It can also 

generate an inner duct ring for use with tip driven propellers [109]. The generated 

model is a segment containing one blade only. The model is then assumed to be 

rotationally symmetric for a steady state case and periodic boundary conditions can be 

used to model the complete problem. This effectively reduces the grid size reducing 

memory and computational costs. Complete geometries can also be generated by 

copying the generated model. 

The generation of the propeller requires an input of standard propeller table 

data and section offsets. The propeller geometry is constructed from a set of section 

curves. These sections ca be generated for any given radius by defining the chord, 

thickness, skew, rake, pitch and 2-D section shape. The 2-D section is mapped onto a 

cylindrical surface according to the specified variables using a transformation matrix 

(Eq(1.2I)). For a more details on the section mapping see [109]. 
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For use with panel codes an automatic wake sheet can be generated. The shape 

of the wake sheet depends on the section characteristics and advance ratio. 

Contraction effects can also be included. Any of the automatic variables can be 

manuaIIy specified to provide more control and flexibility. For more information of 

the wake model see [109]. 

Once the section curves have been generated they can be exported to another 

program which can 10ft a surface through the sections to generate the blade. There are 

several supported file outputs supported by Propgen: a fleximesh file for use with 

Adaptflexi [112], or script files for Gridgen, CFX Build and ICEM. An additional 

version of Propgen caIIed Solidprop can work with Solidworks to provide an iges file 

which can be imported into many Computer Aided Design packages. Propgen has 

been used successfuIIy to carry out the hydrodynamic optimisation of an electric tip 

driven thruster using a panel code. In addition it provided the propeIIer geometry of a 

Wageninnen propeIIer for CNC machining. 

For use with the commercial grid generation package Gridgen, Propgen 

generates a script file called glyph. Gridgen supports both structured and unstructured 

meshes and can export grids in most commercial file formats. The script file contains 

the geometry of the sections that define the propeIIer as well as connecting 

information. The mesh parameters and controls are also contained in the script file 

such that the whole process can be automated. 

Gridgen uses transfinite interpolation [113] for faces constructed from their 

outer edges. For complex curvatures this results in the surface being misinterpreted 

[109]. This can be resolved by splitting the surface into smaller surfaces but this 
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restricts the mesh. An alternate method is to define the geometry using an iges file 

containing surfaces instead of curves and project the mesh onto that surface. 

To generate the surfaces the solid modelling package Solidworks was used to 

create the propeller and domain surfaces for use with Gridgen or any other software 

capable of importing iges files. The propeller geometry is automatically generated in 

the solid modelling package using a built in program Solidprop, written for this 

purpose. 

Gridgen is a powerful structured grid generator providing excellent control on 

the mesh. However, the unstructured capabilities of Gridgen were found to be limited 

and the mesh generation process does not exploit many of the benefits of unstructured 

meshes. ICEM was found to be more suited for unstructured meshes and has excellent 

features. In addition ICEM has the capability of automatically creating inflation 

layers which are crucial in obtaining good results when using unstructured meshes as 

demonstrated for the wing. A script file for ICEM can be exported from Propgen to 

automatically generate marine propeller meshes. In addition the propeller surface can 

be created within ICEM from the existing curves producing a surface. The blade was 

created from multiple B-spline surfaces each created from four surrounding curves. 

The four curves were the two half sections and the leading and trailing edge curves 

between those two sections. Wrapping the surface around the blade using only the two 

complete sections was found to be inadequate. The leading and trailing edge curvature 

was not reproduced correctly. The same was found if one surface was lofted though 

all the sections. 

6.3 Mesh considerations 

Generating structured meshes for marine propellers can be very time 

consuming. To build a structured mesh topology can be very complex resulting in 

many blocks. The topology can be simplified by using degenerate blocks where a 

block has 5 faces instead of six, but several solvers do not have this capability. The 

alternative and most popular way is to truncate the blade tip such that there is a finite 

chord at the blade tip [30]. In reality most open water marine propellers have zero 

chord at the blade tip. This gives acceptable predictions as far as KT and KQ are 

concerned. However, the tip vortex is strongly dependent on the tip geometry and thus 

must be modelled as accurately as possible. Unstructured meshes are more versatile 

when modelling complex geometries and do not encounter this problem. In addition 
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they are quicker to generate only requiring the bounding faces of the volume to 

generate the mesh. 

A structured mesh was generated using Propgen and Gridgen. The blade tip 

was truncated to simplify the blocking structure. However it was decided quite early 

on that this approximation was not acceptable for this research and instead of using a 

more complicated blocking structure it was decided to use unstructured meshes 

instead. This decision was also justified by the adaptive mesh friendliness of 

unstructured meshes, which would prove advantageous at a later stage. 
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7 VFX procedure for Propeller modelling 

In this chapter a scheme is presented for the application of the VFX method to a 

marine propeller. The algorithm is described step by step and the effects of different 

parameters discussed. The developed algorithm is later applied to two marine 

propellers in chapters 8 & 9 and the results compared to available experimental data. 

The tip vortex structure for a marine propeller is more complicated than the tip 

vortex of a wing. The vortex core line follows a helical like path downstream of the 

blade tip with varying pitch and contraction. In order to capture this complex vortex 

an automated algorithm was devised for use with VFX. The only external input 

required from the user is the desired plane spacing. 

The blade tip is taken as the first jump point for the algorithm. A circular plane 

having a radius 0.25 of the propeller diameter centred about the first jump point is 

used to extract the stationary frame velocities. The velocities are extracted at the 

points where the cell edges intersect with the plane. The VFX method is used to locate 

the vortex core on the first plane. Using the velocity at the predicted vortex core a 

new jump point is projected a given distance downstream. The rotation of the domain 

must be taken into account when projecting the new jump point. 

Figure 7.1 - YFX procedure for propellers. Red spheres are the jump points and yellow crosses the 
YFX vortex cores. 
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A plane is then used to extract the velocities at the new jump point and the 

procedure is repeated again. Figure 7.1 shows a graphical representation of this 

procedure on the DTMB P4 I 19 propeller. The red spheres represent the jump points 

and the Yellow crosses the VFX vortex cores. 

Using the blade tip as the starting point for the algorithm means that the vortex is 

not captured upstream. However the above procedure can be performed in the 

upstream direction as well to track the vortex upstream of the starting point. A smaller 

plane spacing is recommended for the upstream tracking since the tip vortex is likely 

to be formed next to the leading edge of the blade which usually has a higher 

curvature than the vortex helix. Thus a finer spacing will help to capture the vortex 

more accurately. 

The plane spacing and bounds can be varied. Because of the complex nature of 

the vortex core geometry a small spacing of SOmm was chosen for the planes. If a 

bigger spacing is used with small plane bounds then there is a risk that the jump point 

wiII be too far away from the vortex core and it will not lie in the plane. It is clear that 

a small plane spacing can be used with small planes; whereas a bigger plane spacing 

requires larger planes. The computational effort increases both with number of planes 

and plane size. However the computational effort increases with plane size squared so 

it is better to have more small planes. 

This procedure was tested on the DTMB P4119 using the velocities relative to 

the rotating mesh but proved unsuccessful. The procedure was similar to the one 

described above. The first jump point was the blade tip and the next plane was 

projected in the direction of the relative velocity at the vortex core. The new plane 

was normal to the velocity vector at the previous vortex core point. This procedure 

proved highly sensiti ve to the orientation of the plane and failed after a few iterations. 

The vortex decays very quickly outside the refined mesh and thus does not 

propagate substantially with each mesh refinement, thus a large number of mesh 

iterations are required. In order to increase the distance the vortex propagates with 

each iteration, the characteristics of the identified vortex core line were used to define 

a predicted vortex core downstream of the identified one. The predicted vortex core 

line is a helix with its pitch and contraction the same as the average pitch and 

contraction of the identified vortex core line. The mesh was then refined for both 

identified and predicted vortex core lines. As long as the predicted vortex is near the 
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vortex region the number of refinement iterations is reduced dramatically. It is 

possible that after the use of the predicted vortex that only the VFX method needs to 

be applied once to locate the resulting vortex core line if needed. 

87 



8 DTMB P4119 and numerical model 

The DTMB P4119 is a three bladed open water marine propeller tested at the 

David Taylor Model Basin [77]. It is a propeller frequently used for numerical method 

validation and was used at the Propeller RANS/Panel workshop [114]. Extensive tests 

were performed both in the towing tank and water tunnel and detailed data is 

available. 

The propeller was tested in the 24"circulating water tunnel at the David Taylor 

Model Basin and Laser Doppler Velocimetry CLDV) data for the boundary layer and 

wake were obtained. For the open water tests the propeller was tested in a 

conventional towing tank. 

The geometry of the water tunnel is shown in Figure 8.1. The complex 

geometry of the test section was not modelled in the numerical analysis. The 

numerical model was a 1200 segment containing one blade of the propeller. Rotational 

image boundaries were used to model the whole propeller. This reduces the 

computational size of the domain. The outer boundary was a cylinder at a diameter of 

38" which is equivalent to 3 times the propeller diameter. The outer boundary was set 

as a free slip wall. The geometry of the drive shaft was modelled and extended all the 

way to the outlet boundary. The support struts for the drive shaft were not modelled. 

The base mesh for the DTMB P4119 consisted of 315,114 cells. No clustering 

of cells was performed apart from near the surfaces of the propeller. An inflation layer 

on the propeller blade was also incorporated consisting of 51,000 prisms giving a y+ 

value ranging from 30 to 40. The mesh was then progressively refined in the region of 

the tip vortex according to the solution and the VFX method. The maximum cell edge 

length in the refinement area was progressively decreased for each mesh. 
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Figure 8.1 - Test section of the 24" VPWT at the David Taylor Model Basin 
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8.1 Results 

After each solution the vortex is identified using VFX and the mesh refined in 

the vicinity of the vortex core. The resulting meshes are shown in Table 8-1. The 

mesh is refined around the vortex core line. A maximum cell edge length and number 

of cell layers away from the vortex core line having this property are specified. This 

results in a cylindrical region of refined cells with the vortex core line being its axis. 

This is called the outer refinement region. In addition a smaller cylinder with a finer 

mesh can al so be specified the same way called the inner refinement region . As 

explained previously a predicted vortex core line is also used for refinement. No inner 

refinement region was specified for the predicted core for any of the meshes. 

Figure 8.2 - Refinement regions for propeller mesh 
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As the mesh is refined the vortex propagates further downstream. After 4 

refinements the vortex no longer propagated downstream with further refinements. 

Several mesh densities and strategies were used to propagate the vortex further 

downstream with no success. A finer mesh was generated near the propeller and the 

predicted refinement region was shortened in an attempt to cluster more cells near the 

blade. The predicted region was deemed not to need refinement since the vortex 

dissipated well upstream. Meshes Sb toSd were the resulting meshes (Table 8- I), 

however the vortex did not propagate any further than O.SD. 

Use of a transient solution solved the problem and the vortex propagated to 

I .3D downstream to the end of the refined mesh where it quickly dissipated within a 

short distance. This was for mesh Sd using one timestep of 0.1 s. This is because the 

vortex has a tendency to wander even for steady flow problems. Using a steady state 

scheme smears the wandering vortex over several timesteps where as a transient 

scheme does not have this problem. By solving the flow as a transient problem no 

averaging of the flow is performed and thus no smearing of the tip vortex is present. 

The unsteadiness of the forces is presumed small enough such that there is no need to 

solve for several timesteps and average the forces. 

Mesh 
Inner Outer Predicted 

Max length Layers Max length Layers Max length Layers 
Base - - - - - -

Refined 2 - - 0.004 5 - -

Refined 3 - - 0.003 4 0.005 4 

Refined 4 - - 0.0015 5 0.004 5 

Refined 5 - - 0.001 5 0.003 5 

Refined 5b 0.001 1 0.003 4 0.004 5 

Refined 5c 0.001 5 0.004 5 0.004 5 

Refined 5d - - 0.0015 6 0.004 5 

Refined 6 

Table 8-1 - Mesh properties for refined meshes 
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With progressive refinement in the tip vortex region the predicted thrust and 

torque are in better agreement with the open water experimental results. At the same 

time the tip vortex is able to propagate further downstream. The over prediction of the 

torque coefficient is a common problem of RANS predictions and it is accounted to 

the inability of the k-£ model to predict the stagnation pressure on the blade [115]. 

The k-£ model has been shown by Bulten et al. [115] to produce higher stagnation 

pressures thus over predicting the torque coefficient. 

Mesh Size KT ~% KTexp Ka ~% Ka exp 

Base 315,114 0.155 6.4 0.0286 2.1 

Refined 2 367,247 0.153 4.8 0.0308 9.9 

Refined 3 1,380,466 0.152 3.9 0.0305 9.1 

Refined 4 1,205,930 0.151 3.6 0.0302 7.8 

Refined 5 2,437,495 0.144 -1.2 0.0293 4.6 

Refined 5b 1,461,281 0.155 6.5 0.0310 10.7 

Refined 5c 1,906,560 0.151 3.6 0.0305 9.1 

Refined 5d 2,650,308 0.158 8.2 0.0310 10.7 

Refined 6 7,007,050 0.172 17.5 0.0328 17.2 

Refined 6 unsteady 7,007,050 0.145 -0.9 0.0292 4.2 

Experimental 0.146 0.028 

Table 8-2 - KT and KQ variation for DTMB4ll9 with different meshes 
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8.2 Comparison with LDV data 

8.2.1 Section pressure distribution 

Comparing the Cp distribution for the section at 0.9 rlR similar results can be seen 

as compared to the Grenoble workshop [114]. The Cp is over predicted near the 

leading and trailing edge which was typical of most results. This is because the Cp has 

been calculated from the pressure on the blade surface whereas the experimental Cp 

was calculated using the LDV data by taking the velocity at the edge of the boundary 

layer. A comparison of these two calculation methods in the Grenoble Workshop by 

Stanier and Sanchez-Caja [116, 117] showed better agreement near the leading and 

trailing edge with a significant change in the trailing edge area. The large difference 

between the two calculation methods is associated with viscous effects near the 

trailing edge and measurement difficulties at the leading edge [1l7]. 
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Figure 8.3 - Cp comparison for LDV and CFD at O.9rIR 
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8.2.2 Circumferential averaged data 

Comparing the average circumferential velocities from the experimental LDV 

results with the results from the 5d unsteady simulation, we can see that there is very 

good agreement. The V x-I is in particularly good agreement in the vicinity of the 

blade tip. The point of change in sign of Vx-l is within 0.01 rlR of the experimental 

results which is an improvement over all the methods in the Grenoble Workshop 

[114] which were at 0.025 r/R. This improved agreement is true for V t and Vr in the 

vicinity of the blade tip. V t is over predicted near the hub which was typical of all the 

methods in the Grenoble Workshop. 
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Figure 8.4 - Average circumferential velocity comparison for CFD and LDV 
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8.2.3 Phase averaged data 

The phase averaged data for a plane O.328IxlR downstream of the propeller is 

compared with the LOV results at two radii near the tip vortex. The point where V x-I 

and Vr change sign is located at O.924r/R. Most of the methods at the Grenoble 

workshop failed to capture the detail in the flow well near the tip vortex. One of the 

difficulties is that in order to compare the data at a specific radius the tip vortex 

contraction has to be calculated correctly. If the tip vortex is not at the correct radius 

then the data will be very different. The Grenoble editors recommended that the 

analytical data be corrected depending on the tip vortex contraction for better 

agreement. None of the contributors stated if the results they presented were corrected 

or not. However the results presented in this work have no correction at all. 

From Figure 8.5 & Figure 8.6 we can see an improvement over the results 

presented in the Grenoble workshop. The tip vortex contraction and position is 

captured correctly as can be seen from the point of inflection for Vx, Vr and position 

of the peaks for V t • For both radii the position of the peaks and inflections are 

predicted very well. The peak values are over predicted for Vt and Vr and under 

predicted for V x. However this is still an improvement over the results presented at 

the Grenoble workshop, especially for Yr. All the methods substantially under 

predicted the peak magnitudes for Yr. The best result under predicted the peaks by at 

least OAVr whereas the results presented here over predict Vr by a similar amount. 

The best performing method at Grenoble was by Chen and Stern [118]. They used a 

structured grid with clustering of 20x20 near the estimated tip vortex region. The 

equations were solved as unsteady with time serving as a convergence parameter. As 

discussed and shown previously the unsteady solution performs much better with 

respect to the tip vortex and it is not surprising that this method was the best 

performing at Grenoble with respect to the tip vortex. The clustering of the grid near 

the tip vortex was also fundamental to the success. At short distances downstream of 

the blade it is easy to estimate the tip vortex a priori, however further downstream 

this method would prove impractical and the results would deteriorate if the clustering 

is not in the region of the tip vortex. 
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9 INSEAN E779 A and numerical model 

The INSEAN E799A is a four blade propeller, Wageningen modified type, 

skewed, with a uniform pitch (P/D 1.1), a forward rake angle of 4°3" and a diameter 

of 227.2 mm. The propeller was designed at the end of the 50' s for a twin-screw ferry. 

In the 60's the model propeller was selected as the reference model for the Italian 

Navy Cavitation Tunnel (C.E.I.M.M.) where all the measurements were carried out 

[119] . 

Extensive tests were performed both in the towing tank and water tunnel and 

detailed data is available both from LDV [120,121,122,123,124,125,126,119] and 

PIV [125,126, 127, 128] tests. 
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Figure 9.1 - Geometry of the INSEAN E799A four bladed propeller model 

rT 
~ ~ 

The propeller was tested in the C.E.I.M.M. tunnel. The test section is a square, 

closed jet type with dimensions of 0.6m x 0.6m x 2.6m. The propeller is dri ven by an 

upstream shaft. The geometry of the test section was not modelled in the numerical 

analysis. The test section in the numerical model was circular, like in the DTMB 

P4119 case. The numerical model was a 90° segment containing one blade of the 

propeller. Rotational image boundaries were used to model the whole propeller. The 

outer boundary was a cylinder at a diameter equivalent to 3 times the propeller 

diameter. The outer boundary was set as a free slip wall. The full geometry of the 
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drive shaft was modelled and extended all the way to the inlet boundary. Supports 

struts and other protrusions were neglected. 

The base mesh for the E799A consisted of 110,013 cells. No clustering of 

cells was performed apart from near the surfaces of the propeller. In order to simplify 

the mesh generation due to time restrictions no inflation layer was used near the blade 

surfaces. Instead the near wall functions were relied upon for near wall modelling 

with a y+ value of 100. The mesh was then progressively refined in the region of the 

tip vortex according to the solution and the VFX method. The maximum cell edge 

length in the refinement area was progressively decreased for each mesh. 

9.1 Results 

The refinement procedure was similar to the DTMB P4l19. As the mesh is 

refined the vortex propagates further downstream. The thrust and torque improves 

with mesh refinement. The thrust is predicted well whereas the torque is under­

predicted in the order of 7%. This difference can be attributed to the lack of mesh 

density in the viscous shear layer since no inflation layer was used as previously 

explained. The difference for not resolving the boundary and wake adequately is 

significant as demonstrated for the wing case (5.3). 

Three unsteady iterations were carried out each having three timesteps of 0.1 s. 

The previous simulation was used as the starting point for the subsequent run. The 

results presented are the forces for the final timestep of each simulation. The force 

prediction showed improvement with increasing number of timesteps. In addition the 

vortex propagated further downstream. 

Mesh Size KT ~% KT exp Ka ~% Ka exp 

Base 110,013 0.158 -2.7 0.0293 -7.9 

Refined1 569,076 0.160 -1.5 0.0298 -6.3 

Refined 2 1,067,513 0.159 -1.6 0.0294 -7.4 

Refined 3 1,163,111 0.157 -2.9 0.0297 -6.5 

Refined 4 
1,620,593 

0.157 -3.1 0.0293 -8.0 

Refined 4 uns 0.161 -0.8 0.0299 -5.9 

Refined 5 0.155 -4.2 0.0291 -8.4 

Refined 5a uns3 
3,041,667 

0.156 -3.6 0.0293 -7.9 

Refined 5b uns6 0.159 -1.9 0.0295 -7.2 

Refined 5c uns9 0.159 -1.8 0.0295 -7.2 

Experimental 0.162 0.0318 

Table 9-1 - INSEAN E799A force comparison 
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9.2 Comparison with LDV data 

9.2.1 Circumferential averaged data 

Comparing the average circumferential velocities from the experimental LDV 

results with the results from the 5c unsteady simulation, we can see that there is very 

good agreement. Compared with the DTMB P4119 the flow acceleration is more 

uniform from hub to tip. This is also reflected in the LDV data. The V x-I shows the 

correct trend and again is in particularly good agreement in the vicinity of the blade 

tip with regards to the span position of rapid change in V x-I. Vt and Vr show 

agreement over the whole span with the exception being Vr at the blade tip. There is a 

sudden reduction in LDV data Vr at the blade tip which is not reflected in the CFD 

results. 
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9.2.2 Contour plot comparison 

The contour plots for axial, radial and tangential velocity are compared at 

0.20 xlR and 0.65 xlR with the data from the LDV tests. The contour plots are plotted 

side by side (Figure 9.3 - Figure 9.5). The LDV data is available for all four blades of 

the propeller. Each blade passage shows slightly different results . Only 1800 segments 

are displayed for the LDV data. The data from the numerical simulation are 

periodically symmetric; however for viewing purposes an 1800 segment is also 

displayed. The propeller is rotating clockwise in all the contour plots . 

From Figure 9.3 it can be seen that there is reasonable agreement with the 

LDV data, with the position of the tip vortex being predicted very well. The axial 

velocity deficit for the region of fluid outward of the tip vortex is also captured very 

well. The accelerated region vi sible in the LDV data is present in the simulation 

results; however it is larger than the experimental data. In addition the wake is not 

very well defined. Thi s is because the mesh resolution in the way of the wake is not 

adequate. As indicated before (5.3) to capture the wake correctly a small mesh 

spacing is required, in the order of 20 nodes across the wake. However the position of 

the wake is predicted well as well as the decelerated flow region near the hub. 
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Figure 9.3 - Axial velocitylU contours at 0.20 xIR. CFD left - LDV right 
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The comparison at 0 .65 xlR (Figure 9.4) gives similar observations. There is 

good agreement in the vortex position and general characteristics. The large deficit in 

the hub has disappeared as reflected in the LOY data. 

The wake roll-up is clearly visible in the LOY data where as it is not apparent in 

the numerical results. This again is down to the coarse mesh in the vicinity of the 

wake. As before, the wake velocity deficit is not captured due to this. The wake ro11-

up and velocity deficit was captured in the wing case where the mesh in the way of 

the wake was more refined . 
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Figure 9.4 - Axial velocityfU contours at 0.65 xIR. CFD left - LDV right 

The radial velocity comparison (Figure 9.5Figure 9.6) shows similar 

conclusions to the ax ial results . The vortex is in the correct position, with an 

inadequately resolved wake as explained previously. 

The LOY vortex has a smaller diameter than the CFO results. We can see that 

the vortex cuts across the sampling plane. There is the outward radial velocity region 

which cOITesponds to the right hand side of the counter clockwise rotating vortex , 

followed by the inward radial velocity caused by the opposite side of the vortex 

(marked by alTOWS on the CFO results in Figure 9.6) . 
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Figure 9.5 - Radial velocity contours at 0.20 x1R. CFD left - LDV right 

Figure 9.6 - Radial velocity contours at 0.6SxIR. CFD left - LDV right 
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10 Conclusions 

The aim of this research was to develop a vortex identification algorithm capable 

of being used for tip vortex mesh refinement for marine propellers. Such a method has 

been developed and applied in conjunction with mesh refinement. The scheme 

successfully identified the tip vortex for a wing and two propeller geometries. The 

results show an improvement in KT and KQ prediction with each mesh refinement. In 

addition it has been demonstrated that the steady state RANS equations smooth out 

the tip vortex structure which has difficulty propagating downstream. Using an 

unsteady formulation of the RANS equations allows the vortex to develop at 

significantly larger distances downstream of the propeller as observed in experimental 

tests. 

The Vortfind method was modified and refined to make its use with mesh 

adaptation easier. The method was reformulated such that it can be carried out for an 

arbitrary number of sectors. In addition the I function was normalised to aid its use 

with threshold type adaptation. The method was applied to 2D cases to study the 

effects of the governing parameters, showing good results. 

The method was extended for 3-D cases, by the use of planes. The resulting VFX 

algorithm was initially tested on a wing. The VFX was able to identify the vortex core 

with great accuracy, within a computational cell of the visual location of the vortex. 

The VFX method was then used to refine the mesh in the vortex region of the wing. 

The position of the vortex core was dependant on the mesh density stabilising for the 

finer grids. The vortex velocity profiles also changed significantly with varying mesh 

spacing. 

The effect of the refinement on the forces and the flow has been clearly 

demonstrated. In addition simple wake capture algorithm was developed and used to 

refine the wake using prisms instead of tetrahedral to limit the mesh overhead. Both 

vortex and wake refinement showed improved agreement with the experimental 

results. 
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10.1 Vortex capture 

From the results of the mesh study it has been shown that at least15 

computational nodes across the vortex core are required to capture the flow of a 

vortex. This agrees with DacIes and ZiIIiac [41]. In addition it has been shown that the 

potential region of the vortex must also be captured correctly in order to get the 

correct answer. If the mesh resolution in the outer region is not adequate the vortex 

core wiII not be correct even if the mesh resolution is adequate. 

10.2 Propeller tip vortex 

The process was automated and applied to propeIIers where the method 

succeeded to track the complex helicoidal blade tip vortex. The starting point 

specified as the blade tip and the VFX algorithm automaticaIIy generated the 

subsequent planes depending on the vortex core line identified. The propagation of 

the tip vortex further downstream was found to be very short with each refinement 

step. To accelerate the propagation the mesh was refined on a predicted vortex core 

line which had a helicoidal shape with its pitch dependant on the upstream identified 

tip vortex. This method successfuIIy sped up the vortex propagation downstream 

typicaIIy requiring half the mesh adaptation steps than the normal procedure. 

Once more the forces showed improvement over the unrefined mesh when 

compared to experimental results. Apart from mesh refinement there was a marked 

improvement in capturing the tip vortex by running a few iterations with an unsteady 

scheme. Both the vortex dissipation and force discrepancy showed marked reductions. 

If the grid is refined enough in the tip vortex region then it is possible to use 

multi phase models to capture the tip vortex cavitation. If this is modeIIed successfuIIy 

it will provide better understanding of the tip vortex physics. Before a solution to this 

problem can be obtained a suitable mesh must be generated. This work wiII provide 

the tools to generate such a refined mesh. 

10.3 Structured vs. Unstructured 

Structured meshes inherently have the boundary layer region extend downstream 

in the wake, which give better results. However this does not automaticaIIy guarantee 

better results with structured meshes. For simple cases such as the wings modeIIed 
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here the vortex position and wake are more or less straight downstream of the wing. 

In other cases the blocking has to be modified to ensure that the fine mesh lies in the 

wake and vortex otherwise they will not be captured. This is the case for propellers 

where the vortex and wake have a helicoidal shape. Stanier reports that wake aligned 

structured meshes gi ve better results [107]. Even for structured meshes knowing the 

vortex position can be advantageous in the meshing of future simulations or even with 

the use of moving meshes. 

lOA Vortex identification methods on planes 

Sujudi and Haimes [63] stated that plane methods were laborious. This is not 

entirely true. It has been shown here that plane methods can easily be implemented 

even for a vortex which has a helicoidal path. In addition, the computational effort is 

substantially reduced due to the limited area of over which the method works. 

However as the number of vortices increases plane methods do become more difficult 

to implement. The method developed here can handle multiple vortices as long as 

their axes are within 30-40° of each other since the Vortfind method is relatively 

insensitive to plane alignment with the vortex axis [1]. For multiple vortices that have 

their axis at larger angles the method will have to be extended such that there is 

starting plane for each vortex. Then using the tracking procedure described for the 

propeller on each individual vortex they can be identified without any restrictions on 

the vortex paths. 

10.5 Final Remark 

The vortex identification scheme developed here is not limited to tip vortex flows. 

It is a potentially powerful tool applicable to all swirling flows and the author hopes 

that future researchers will extend, refine and use this tool for future research. 
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Option Explicit 

Type section 
x As Single 
y As Single 
z As Single 
End Type 

Type prop 
radius As Single 
chord As Single 
rake As Single 
skew As Single 
pitch As Single 
thickness As Single 
End Type 

Type section_info 
thickness As Single 
position As Single 
le_id As Integer 
te_id As Integer 
num_points As Integer 
End Type 

Public working_path As String 

'flag for volume mesh 
Public volume_mesh As Integer 

Public va As Single 'advance speed 
Public rps As Single 'rev per second 
Public no_oLwake_points As Integer 
Public final_sectionO As section 
Public sectionO As section 
Public section_dataO As section_info 
Public propdataO As prop 
Public num_sections As Integer 
Public num_ducCarc_points As Integer 
Public blade_true, ring_true As Integer 
Public pi As Double 
Public num_Ieading_Iowecpoints, num_trailing_lowecpoints, num_upper_points As 
Integer 
Public num_edge_section_points As Integer 
Public wakeO As section 
Public D As Single 

'cap variables 
Public cap_section_points As Integer 
Public cap_auto As Integer 
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Public cap_sidenode_id As Integer 
Public cap_left_tempO As section 
Public cap_IeftO As section 
Public cap_rightO As section 
Public cap_backO As section 
Public cap_internal_yO As section 
Public cap_internal_xO As section 
Public cap_internal_zO As section 
Public cap_draw As Integer 
Public num_internaLx_points As Integer 
Public num_internaLpoints As Integer 
Public cap_panels_s As Integer 
Public cap_panels_t As Integer 
Public internal_fraction As Single 
Public side_fraction As Single 

Public wake_draw As Integer 

'Hub variables 
Public hub_offseCle As Integer 
Public hub_ v _leading_factor As Single 
Public hub_ v _trailing_factor As Single 
Public hub_length As Single 
Public hub_draw As Integer 
Public hub_trailing_arc_connectO As section 
Public hub_Ieading3rc_connectO As section 
Public hub_trailing_edgeO As section 
Public hub_leading_edgeO As section 
Public hub_Ieading_endO As section 
Public hub_trailing_endO As section 
Public num_hub_section_points As Integer 
Public hub_section_edgeO As section 
Public no_oLhub_strips As Integer 
Public hub_helix_leO As section 
Public hub_helix_teO As section 
Public hub_helix_bladesO As section 
Public hub_panels_s, hub_panels_t As Integer 
Public testO As section 

'duct variables 
Public ducCQ As Single 
Public ducCP As Single 
Public ducCthickness As Single 
Public ducCimages As Integer 
Public ducClowerO As section 
Public ducctrailing_lowerO As section 
Public ducCleading_lowerO As section 
Public duccupperO As section 
Public ducCleading_arcO As section 
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Public ducctrailing_arcO As section 
Public ducCleading_lowecarcO As section 
Public ducctrailing_lowecarcO As section 
Public ducCdraw As Integer 
Public ducC wakeO As section 
Public duccwake_arcsO As section 
Public ducClength As Single 
Public ducCpanels_t, ducCuppecpanels_s As Integer 
Public ducCfreewake_length As Single 
Public ducCfreewake_panels_s, ducCfixedwake_panels_s As Integer 
Public ducC wake_length As Single 
Public ducCleading_lowecpanels_s As Single 
Public ducctrailing_lower_panels_s As Single 

'blade variables 
Public transition_length As Single 
Public wake_contraction_ value As Single 
Public blade_tip_cluster As Single 
Public blade_P As Single 
Public blade_Q As Single 
Public blade_panels_s, blade_panels_t, blade_fixedwake_panels_s, 
blade_freewake_panels_s As Integer 
Public blade_ wake_length, blade_freewake_length As Single 
Public no_oCblades As Integer 
Public Ieading_splineO As section 
Public trailing_splineO As section 
Public wake_pitch_set As Single 

'ring variables 
'Public second_ring_leading_endO As section 
'Public second_rin~trailing_endO As section 
'Public second_ring_section_edgeO As section 
Public ring_panels_t As Integer 
Public ring_width As Single 
Public ring_split As Integer 
Public rin~trailin~edgeO As section 
Public ring_leadin~edgeO As section 
Public ring_leadin~endO As section 
Public rin~trailing_endO As section 
Public num_ring_section_points As Integer 
Public ring_section_edgeO As section 
Public no_oCring_strips As Integer 
Public ring_helix_leO As section 
Public ring_helix_teO As section 
Public ring_helix_bladesO As section 

Public Sub read_working_pathO 
Open "path.txt" For Input As #1 
Input #1, working_path$ 
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Close #1 
End Sub 
Public Sub hub_Ieadin~section(hub_length) 
Dim num_edge_points, i, j As Integer 
Dim psi, dpsi, r, P As Single 
Dim angle, angle_step As Single 
Dim tempO As section 

num_edge_points = 100 
ReDim hub_leading_end(J 0, num_edge_points) 
ReDim temp(num_edge_points) 

'set point to trailing edge of first section 
hub_leading_end( I, I ).x = final_section( 1, section_data( 1 ).le_id).x 
hub_Ieading_end( I, 1 ).y = finaLsection( 1, section_data(1 ).le_id).y 
hub_Ieading_end( 1, I ).z = final_section( 1, section_data( 1 ).le_id).z 

r = Sqr(hub_Ieading_end(J, I).z /\ 2 + hub_leading_end(1, l).x /\ 2) 

P = propdata(1 ).pitch * D 
If P = 0 Then P = 0.1 
'calculate the start angle and the step angle 

'calculate start psi so it matches with leading edge of section 
psi = (finaLsection(l, section_data(1 ).le_id).y / P) * 2 * pi 
'step dpsi for the set number of steps 
dpsi = ((((-hub_length / 2) - hub_Ieadin~end(1, l).y) / P) * 2 * pi) / 
(num_edge_points - 1) 
psi = psi - dpsi 
'helical edge 
'********************** 
For i = 1 To num_edge_points 
psi = psi + dpsi 
temp(i).x = r * Cos(psi) 
temp(i).y = (P * psi) / (2 * pi) 
temp(i).z = -r * Sin(psi) 
Next 

Dim s As Single 

'distance between points 
s = Sqr((temp(1 ).x - finaLsection(1, section_data(1).le_id).x) /\ 2 + (temp(l ).z -
finaLsection( 1, section_data( I ).le_id).z) /\ 2) 
angle = 2 * asin((s / 2) / r) 
Call rotate(tempO, angle, 100) 

For i = 2 To num_edge_points 
hub_Ieading_end(1, i). x = temp(i).x 
hub_leading_end( 1, i).y = temp(i).y 
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hub_Ieading_end( I, i).z = temp(i).z 
Next 

End Sub 

Public Sub hub_nodes(node_count, hub_node_connect) 
Dim i As Integer 

'hub nodes 
'******************************************************************** 
***** 

'hub leading end 
'nodes at front of hub 

'first section is backwards 
node_count = node_count + 1 
hub_node_connect( 1) = node_count 
Print #1, "node", node_count, hub_leading_end(1, 1 OO).x, hub_Ieadin~end(1, lOO).y, 
hub_leading_end(l, lOO).z 

'rest of sections 
For i = 2 To no_oLhub_strips + 1 
node_count = node_count + 1 
hub_node_connect(i) = node_count 
Print #1, "node", node_count, hub_Ieading_end(i, I).x, hub_Ieadin~end(i, I).y, 
hub_Ieading_end(i, 1 ).z 
Next 

'hub leading v section between blades leading edges 
'first is omitted since node defined with blade 
'first node is 12 
For i = 2 To no_oLhub_strips + 1 
node_count = node_count + I 
hub_node_connect(10 + i) = node_count 
Print #1, "node", node_count, hub_Ieading_end(i, lOO).x, hub_Ieadin~end(i, lOO).y, 
hub_Ieading_end(i, 100).z 
Next 

'hub trailing v section between blades trailing edges 
'last node of section is omitted since node defined with blade 
For i = 1 To no_oLhub_strips 
node_count = node_count + I 
hub_node_connect(20 + 2 + no_oLhub_strips - i) = node_count 
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Print #1, "node", node_count, hub_trailing_end(i, I).x, hub_trailing_end(i, I ).y, 
hub_trailing_end(i, l).z 
Next 

'hub trailing end 
'nodes at end of hub 
For i = 1 To no_oLhub_strips + 1 
node_count = node_count + 1 
hub_node_connect(30 + 2 + no_oLhub_strips - i) = node_count 
Print #1, "node", node_count, hub_trai1ing_end(i, IOO).x, hub_trailing_end(i, 100).y, 
hub_trailin~end(i, 100).z 
Next 

End Sub 
Public Sub ring_nodes(node_count, ring_node_connect) 

Dim i As Integer 

'ring nodes 
'******************************************************************** 
***** 

'ring node on trailing edge of front blade 
node_count = node_count + I 
ring_node_connect( 1) = node_count 
Print #1, "node", node_count, ring_section_edge(l).x, ring_section_edge(l).y, 
ring_section_edge( I ).z 

'ring node on trailing edge of front blade 
node_count = node_count + I 
ring_node_connect(2) = node_count 
Print #1, "node", node_count, ring_section_edge(num_rin~section_points).x, 
ring_section_edge(num_ring_section_points).y, 
ri ng_secti on_ edge( n um_ri ng_secti on_poin ts).z 

End Sub 

Public Sub duccnodes(node_count, duccnode_connect) 
'duct nodes 
'******************************************************************** 
***** 
Dim j As Integer 

For j = 1 To 10 
'leading lower edge of duct 
node_count = node_count + I 
duccnode_connect(j * 4 - 3) = node_count 
Print #1, "node", node_count, ducCleadin~lower(j, I ).x, ducCleading_lower(j, I).y, 
ducCleading_lower(j, I ).z 
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node_count = node_count + 1 
duct_node_connectU * 4 - 2) = node_count 
Print #1, "node", node_count, ducCleading_lowerU, num_Ieading_Iowecpoints).x, 
duct_Ieading_IowerU, num_Ieading_Iowecpoints).y, duccleading_lowerU, 
num_Ieading_Iowecpoints).z 

'trailing lower edge of duct 
node_count = node_count + 1 
duccnode_connectU * 4 - 1) = node_count 
Print #1, "node", node_count, ducCtrailing_IowerU, 1 ).x, ducCtrailing_lowerU, 1 ).y, 
ducCtrailing_IowerU, 1 ).z 
node_count = node_count + 1 
duccnode_connectU * 4) = node_count 
Print #1, "node", node_count, ducCtrailing_IowerU, num_trailing_Iowecpoints).x, 
ducctrailing_IowerU, num_trailing_Iowecpoints).y, ducCtrailin~lowerU, 
num_trailing_lowecpoints).z 
Next 

End Sub 
Public Sub cap_nodes(node_count, cap_node_connect) 
'cap nodes 
'******************************************************************** 
***** 
Dim j As Integer 

'node at nose of cap 
node_count = node_count + 1 
cap_node_connect( 1) = node_count 
Print # 1, "node", node_count, cap_Ieft(l ).x, cap_Ieft(l). y, cap_Ieft(l ).z 

'node at comer near blade 
node_count = node_count + 1 
cap_node_connect(2) = node_count 
Print # 1, "node", node_count, cap_left( cap_section_points).x, 
cap_Ieft( cap_section_points). y, cap_Ieft( cap_section_points).z 

'node at other comer 
node_count = node_count + 1 
cap_node_connect(3) = node_count 
Print #1, "node", node_count, cap_right(cap_section_points).x, 
cap_right( cap_section_points). y, cap _right( cap_section_points).z 

'node at middle of cap surface 
node_count = node_count + 1 
cap_node_connect( 4) = node_count 
Print #1, "node", node_count, cap_intemaLx(l ).x, cap_intemaLx(l).y, 
cap_internal_xC 1 ).z 

'node at mid of cap_left 
node_count = node_count + 1 
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cap_node_connect(5) = node_count 
Print #1, "node", node_count, cap_Ieft(cap_sidenode_id).x, 
cap_Ieft(cap_sidenode_id).y, cap_Ieft(cap_sidenode_id).z 

'node at mid of capJight 
node_count = node_count + 1 
cap_node_connect(6) = node_count 
Print #1, "node", node_count, cap_right(cap_sidenode_id).x, 
capJight(cap_sidenode_id).y, cap_right(cap_sidenode_id).z 

'node at middle of cap back 
node_count = node_count + 1 
cap_node_connect(7) = node_count 
Print #1, "node", node_count, cap_internaLx(num_internal_x_points).x, 
cap_internal_x(num_internal_x_points).y, cap_internaLx(num_internaLx_points).z 

'this is not needed 
'closes the cap to make a bullet 
'******************************************************************** 
******* 
'node at corner near blade 
'node_count = node_count + 1 
'cap_node_connect(8) = node_count 
'Print # I, "node", node_count, cap_Ieft( cap_section_points ).x, "0", 
cap _left( cap _section_points).z 

'node at middle of cap back 
'node_count = node_count + 1 
'cap_node_connect(9) = node_count 
'Print #1, "node", node_count, cap_internaLx(num_internaLx_points).x, "0", 
cap_internaLx(num_internaLx_points).z 

'node at other corner 
'node_count = node_count + 1 
'cap_node_connect( 1 0) = node_count 
'Print #1, "node", node_count, cap_right(cap_section_points).x, "0", 
cap _right( cap_section_points ).z 

End Sub 
Public Sub second_cap_nodes(node_count, second_cap_node_connect) 
'cap nodes 
'******************************************************************** 
***** 
Dim j As Integer 

'node at nose of cap 
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node_count = node_count + 1 
second_cap_node_connect( 1) = node_count 
Print #1, "node", node_count, cap_Ieft(1 ).x, -cap_left(1 ).y, cap_Ieft(1 ).z 

'node at corner near blade 
node_count = node_count + 1 
second_cap_node_connect(2) = node_count 
Print # 1, "node", node_count, cap_Ieft( cap_section_points ).x, -
cap_left( cap_section_points) .y, cap_left( cap_section_points).z 

'node at other corner 
node_count = node_count + 1 
second_cap_node_connect(3) = node_count 
Print #1, "node", node_count, cap_right(cap_section_points).x, -
cap _ri ght( cap _section_points). y, cap_ri ght( cap_secti on_points).z 

'node at middle of cap surface 
node_count = node_count + 1 
second_cap_node_connect( 4) = node_count 
Print #1, "node", node_count, cap_internaLx(1 ).x, -cap_internal_x(1).y, 
cap_internal_xC 1 ).z 

'node at mid of cap_left 
node_count = node_count + 1 
second_cap_node_connect(5) = node_count 
Print #1, "node", node_count, cap_internaLy(1).x, -cap_internaLy(1).y, 
cap_internaLy( 1 ).z 

'node at mid of cap_right 
node_count = node_count + 1 
second_cap_node_connect(6) = node_count 
Print #1, "node", node_count, cap_internaLz(1).x, -cap_internaLz(1).y, 
cap_internaLz( 1 ).z 

'node at middle of cap surface 
node_count = node_count + 1 
second_cap_node_connect(7) = node_count 
Print #1, "node", node_count, cap_internaLx(num_internaLx_points).x,­
cap_internaLx(num_internaLx_points).y, cap_internaLx(num_internaLx_points).z 

End Sub 

Public Sub ducc.4ring_edges(edge_count, ducCnode_connect, duccedge_connect) 
Dim i, j As Integer 

'******************************************************************** 
****** 
'duct edges 
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'******************************************************************** 
****** 
Forj=ITol0 
'lower trailing edge 
edge_count = edge_count + 1 
duccedge_connect(80 + j) = edge_count 
Print #1, "edge", edge_count, "-4", num_leading_lowecpoints, 
ducCleading_lower_panels_s, "1.0", "0.1" 
Print #1, "startnode", duccnode_connect(4 * j - 3) 
For i = 2 To num_leading_1owecpoints - 1 
Print #1, (i - 1), duccleading_lowerU, i).x, ducCleadin~lowerU, i).y, 
duccleading_lowerU, i).z 
Next 
Print #1, "finishnode", duccnode_connect(4 * j - 2) 

'lower leading edge 
edge_count = edge_count + I 
duccedge_connect(70 + j) = edge_count 
Print #1, "edge", edge_count, "-4", num_trailin~lowecpoints, 
ducCtrailin~lowecpanels_s, "1.0", "0.1" 
Print # 1, "startnode", duccnode_connect( 4 * j - 1) 
For i = 2 To num_trailing_1owecpoints - 1 
Print #1, (i - 1), ducCtrailing_lowerU, i).x, ducctrailing_IowerU, i).y, 
ducctrailing_IowerU, i).z 
Next 
Print #1, "finishnode", duccnode_connect(4 * j) 

'upper edge 
edge_count = edge_count + 1 
duccedge_connectU * 2) = edge_count 
Print #1, "edge", edge_count, "-4", num_uppecpoints, ducCuppecpaneIs_s, ''1.0'', 
"0.1 " 
Print #1, "startnode", duccnode_connect(4 * j) 
For i = 2 To num_uppecpoints - 1 
Print #1, (i - 1), ducCupperU, i).x, ducCupperU, i).y, duccupperU, i).z 
Next 
Print #1, "finishnode", duccnode_connect(4 * j - 3) 

Nextj 
For j = 1 To 9 

'duct trailing arc joins to the wakesheet 
edge_count = edge_count + 1 
duccedge_connect(20 + j * 2 - 1) = edge_count 
Print#l, "edge", edge_count, "-3", "36", duccpanels_t, "1.0", "0.1" 
Print #1, "startnode", ducCnode_connect(4 * j - 3) 
For i = 2 To 35 
Print #1, (i - 1), ducCleading_arcU, i).x, ducCleading_arcU, i).y, duccleadin~arcU, 
i).z 
Next 
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Print #1, "finishnode", duct_node_connect(4 * j + I) 

'duct leading arc 
edge_count = edge_count + 1 
duccedge_connect(20 + j * 2) = edge_count 
Print#I, "edge",edge_count, "-1", "36",duct_panels_t, "1.0", "0.1" 
Print#l, "startnode", ducCnode_connect(4 * j) 
For i = 2 To 35 
Print #1, (i - 1), ducCtrailing_arcU, i).x, ducCtrailing_arcU, i).y, ducctrailing_arcU, 
i).z 
Next 
Print#I, "finishnode", duccnode_connect(4 * U + 1)) 

'duct lower trailing arc 
edge_count = edge_count + 1 
duccedge_connect(60 + j) = edge_count 
Print #1, "edge", edge_count, "-2", "36", duccpane1s_t, "1.0", "0.1" 
Print#l, "startnode", ducCnode_connect(4 * j - 2) 
For i = 2 To 35 
Print #1, (i - 1), ducCleading_lowecarcU, i).x, ducCleadin~lowecarcU, i).y, 
duccleading_lowecarcU, i).z 
Next 
Print #1, "finishnode", ducCnode_connect(4 * j + 2) 

'duct lower leading arc 
edge_count = edge_count + 1 
duccedge_connect(50 + j) = edge_count 
Print #1, "edge", edge_count, "-2", "36", duct_panels_t, "1.0", "0.1" 
Print #1, "startnode", duccnode_connect(4 * j - 1) 
For i = 2 To 35 
Print #1, (i - 1), ducctrailing_IowecarcU, i).x, ducctrailing_10wecarcU, i).y, 
ducCtrailin~lowecarcU, i).z 
Next 
Print #1, "finishnode", duccnode_connect(4 * j + 3) 

Nextj 

End Sub 
Public Sub duccno_ring_edges(edge_count, duccnode_connect, duccedge_connect) 
Dim i, j As Integer 

'******************************************************************** 
****** 
'duct edges 
'for no ring duct 
'******************************************************************** 
****** 
Forj=ITol0 
'lower section 
edge_count = edge_count + 1 
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ducCedge_connectU * 2 - 1) = edge_count 
If j = 1 Or j = 10 Then Print #1, "edge", edge_count, "-4", section_data(O).Ie_id, 
ducCuppecpanels_s, 2 - ducCP, duct_Q 
If j <> 1 Andj <> 10 Then Print #1, "edge", edge_count, "-1 ", section_data(O).le_id, 
duct_uppecpanels_s, 2 - ducCP, ducCQ 
Print #1, "startnode", ducCnode_connectU * 4 - 3) 
For i = 2 To section_data(O).le_id - 1 
Print #1, (i - 1), ducClowerU, i).x, ducClowerU, i).y, ducClowerU, i).z 
Next 
Print #1, "finishnode", duccnode_connectU * 4) 

'upper edge 
edge_count = edge_count + 1 
duccedge_connectU * 2) = edge_count 
If j = 1 Or j = 10 Then Print #1, "edge", edge_count, "-4", num_uppecpoints, 
ducCuppecpanels_s, ducCP, ducCQ 
If j <> 1 And j <> 10 Then Print #1, "edge", edge_count, "-1 ", num_uppecpoints, 
ducCuppecpanels_s, ducCP, ducCQ 
Print #1, "startnode", duccnode_connectU * 4) 
For i = 2 To num_upper_points - 1 
Print #1, (i - 1), duccupperU, i).x, duccupperU, i).y, ducCupperU, i).z 
Next 
Print #1, "finishnode", duccnode_connectU * 4 - 3) 
Next 

For j = 1 To 9 
'duct trailing arc joins to the wakesheet 
edge_count = edge_count + 1 
duccedge_connect(20 + j * 2 - 1) = edge_count 
Print #1, "edge", edge_count, "-3", "36", duct_panels_t, "1.0", "0.1" 
Print #1, "startnode", duccnode_connectU * 4 - 3) 
For i = 2 To 35 
Print #1, (i - 1), ducCleading3rcU, i).x, ducCleading3rcU, i).y, ducCleadin~arcU, 
i).z 
Next 
Print #1, "finishnode", duccnode_connectU * 4 + 1) 

'duct leading arc 
edge_count = edge_count + 1 
duccedge_connect(20 + j * 2) = edge_count 
Print #1, "edge", edge_count, "-1", "36", duccpanels_t, "1.0", "0.1" 
Print #1, "startnode", duccnode_connectU * 4) 
For i = 2 To 35 
Print #1, (i - 1), ducctrailing_arcU, i).x, ducctrailing_arcU, i).y, ducctrailing_arcU, 
i).z 
Next 
Print #1, "finishnode", duccnode_connectU * 4 + 4) 
Next 
End Sub 
Public Sub cap_faces(face_count, cap_node_connect, cap_edge_connect) 
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'nose face 
face_count = face_count + 1 
Print #1, "face", face_count, "16", "0" 
Print #1, "linear" 
Print #1, "origin node", cap_node_connect(1) 
Print#I, "side", "0", "1 ", cap_edge_connect(1) 
Print #1, "side", "1", "I",cap_edge_connect(8) 
Print #1, "side", "2", "I ", cap_edge_connect(9) 
Print #1, "side", "3", "1", cap_edge_connect(3) 
Print #1, "sources", "0", "0", "0" 

'face next to cap_right 
face_count = face_count + 1 
Print#I, "face", face_count, "16", "0" 
Print #1, "linear" 
Print #1, "origin node", cap_node_connect(4) 
Print#I, "side", "0", "1", cap_edge_connect(7) 
Print#I, "side", "1", "I",cap_edge_connect(6) 
Print #1, "side", "2", "1 ", cap_edge_connect(4) 
Print #1, "side", "3", "1", cap_edge_connect(9) 
Print #1, "sources", "0", "0", "0" 
'face next to cap_left 
face_count = face_count + 1 
Print #1, "face", face_count, "16", "0" 
Print #1, "linear" 
Print #1, "origin node", cap_node_connect(5) 
Print#l, "side", "0", "I",cap_edge_connect(2) 
Print # 1, "side", "1", "1", cap_edge_connect(5) 
Print #1, "side", "2", "1 ", cap_edge_connect(7) 
Print#I, "side", "3", "I",cap_edge_connect(8) 
Print #1, "sources", "0", "0", "0" 

'not needed 
'creates cylinder for bullet 
'************************************************************** 
'face_count = face_count + 1 
'Print #1, "face", face_count, "16", "0" 
'Print #1, "linear" 
'Print #1, "origin node", cap_node_connect(2) 
'Print #1, "side", "0", "1 ", cap_edge_connect(12) 
'Print #1, "side", "1 ", "1 ", cap_edge_connect(lO) 
'Print #1, "side", "2", "1 ", cap_edge_connect(l3) 
'Print #1, "side", "3", "1", cap_edge_connect(5) 
'Print #1, "sources", "0", "0", "0" 

'face_count = face_count + 1 
'Print #1, "face", face_count, "16", "0" 
'Print #1, "linear" 
'Print #1, "origin node", cap_node_connect(7) 
'Print #1, "side", "0", "1", cap_edge_connect(l3) 
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'Print #1, "side", "I", "I", cap_edge_connect(1I) 
'Print #1, "side", "2", "I", cap_edge_connect(14) 
'Print #1, "side", "3", "I", cap_edge_connect(6) 
'Print #1, "sources", "0", "0", "0" 

End Sub 
Public Sub second_cap_faces(face_count, second_cap_node_connect, 
second_cap_edge_connect) 
'nose face 
face_count = face_count + 1 
Print #1, "face", face_count, "16", "0" 
Print #1, "linear" 
Print #1, "origin node", second_cap_node_connect(1) 
Print #1, "side", "0", "I", second_cap_edge_connect(3) 
Print # 1, "side", "1", "1", second_cap_edge_connect(9) 
Print #1, "side", "2", "I", second_cap_edge_connect(8) 
Print #1, "side", "3", "I", second_cap_edge_connect(1) 
Print #1, "sources", "0", "0", "0" 

'face next to cap_right 
face_count = face_count + 1 
Print #1, "face", face_count, "16", "0" 
Print # 1, "linear" 
Print #1, "origin node", second_cap_node_connect(4) 
Print #1, "side", "0", "I", second_cap_edge_connect(9) 
Print #1, "side", "I", "I", second_cap_edge_connect(4) 
Print #1, "side", "2", "I", second_cap_edge_connect(6) 
Print #1, "side", "3", "I", second_cap_edge_connect(7) 
Print#l, "sources", "0", "0", "0" 
'face next to cap_left 
face_count = face_count + I 
Print#I, "face", face_count, "16", "0" 
Print #1, "linear" 
Print #1, "origin node", second_cap_node_connect(5) 
Print #1, "side", "0", "I", second_cap_edge_connect(8) 
Print #1, "side", "I", "I", second_cap_edge_connect(7) 
Print #1, "side", "2", "I", second_cap_edge_connect(5) 
Print#l, "side", "3", "I", second_cap_edge_connect(2) 
Print #1, "sources", "0", "0", "0" 
End Sub 

Public Sub ducC 4ring_faces(face_count, duccnode_connect, duccedge_connect) 
Dim j As Integer 
'duct for ring 
'has a gap on the lower side 
'duct faces 
'******************************************************************** 
******* 
For j = 1 To 9 
'leading lower face 
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face_count = face_count + 1 
Print#I, "face", face_count, "16", "3" 
Print # 1, "linear" 
Print #1, "origin node", duccnode_connectU * 4 + 4) 
Print #1, "side", "a", "I", duccedge_connect(7I + j) 
Print # 1, "side", "1", "1", duccedge_connect(50 + j) 
Print #1, "side", "2", "I", ducCedge_connect(70 + j) 
Print #1, "side", "3", "I", duccedge_connect(20 + j * 2) 
Print #1, "sources", "a", "a", "a" 

'upper face 
face_count = face_count + 1 
Print#I, "face", face_count, "16", "3" 
Print #1, "linear" 
Print # 1, "origin node", duccnode_connectU * 4 + 1) 
Print #1, "side", "0", "1 ", duccedge_connectU * 2 + 2) 
Print#l, "side", "1 ", "1 ", duccedge_connect(20 + j * 2) 
Print #1, "side", "2", "I", duccedge_connectU * 2) 
Print #1, "side", "3", "1 ", duccedge_connect(20 + j * 2 - 1) 
Print #1, "sources", "0", "0", "0" 

'trailing lower face 
face_count = face_count + 1 
Print #1, "face", face_count, "16", "3" 
Print #1, "linear" 
Print #1, "origin node", duccnode_connectU * 4 + 2) 
Print #1, "side", "0", "1", duccedge_connect(81 + j) 
Print #1, "side", "1", "1 ", duccedge_connect(20 + j * 2 -1) 
Print #1, "side", "2", "1 ", duccedge_connect(80 + j) 
Print #1, "side", "3", "1 ", duccedge_connect(60 + j) 
Print #1, "sources", "0", "0", "0" 

Next 

End Sub 
Public Sub duccno_ring_faces(face_count, duccnode_connect, duccedge_connect) 
Dim j As Integer 

'duct for no ring 

'duct faces 
'******************************************************************** 
******* 
'upper face 
For j = 1 To 9 
face_count = face_count + 1 
Print #1, "face", face_count, "16", "3" 
Print #1, "linear" 
Print #1, "origin node", duccnode_connectU * 4 + 1) 
Print #1, "side", "0", "1 ", duccedge_connectU * 2 + 2) 
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Print#I, "side", "1 ", "1 ", ducCedge_connect(20 + j * 2) 
Print #1, "side", "2", "1", duccedge_connectU * 2) 
Print #1, "side", "3", "1 ", duccedge_connect(20 + j * 2 - 1) 
Print #1, "sources", "0", "0", "0" 

'lower face 
face_count = face_count + 1 
Print #1, "face", face_count, "16", "3" 
Print #1, "linear" 
Print #1, "origin node", duccnode_connectU * 4 + 4) 
Print #1, "side", "0", "1 ", duccedge_connectU * 2 + 1) 
Print #1, "side", "1", "1", duccedge_connect(20 + j * 2 - 1) 
Print #1, "side", "2", "1 ", duccedge_connectU * 2 - 1) 
Print#l, "side", "3", "1 ", duccedge_connect(20 + j * 2) 
Print#l, "sources", "0", "0", "0" 

Next 

End Sub 
Public Sub missing_section_fochub(edge_count, blade_node_connect, 
blade_ends_connect, blade_section_connect, blade_edge_connect, blade_paneIs_t, 
blade_panels_s, hub_node_connect, ring_node_connect) 
Dim q As Integer 
Dim i As Integer 
Dim num_uppecsection_nodes As Integer 

'upper side of section 
edge_count = edge_count + 1 
blade_section_connect(2) = edge_count 
num_uppecsection_nodes = 1 + section_data(1 ).num_points - section_data(l).1e_id 
Print #1, "edge", edge_count, "-1 ", num_uppecsection_nodes, blade_panels_s, 

blade_P, blade_Q 
Print #1, "startnode", blade_node_connect(1) 
q = section_data(1 ).1e_id 

For i = 2 To num_uppecsection_nodes - 1 
q=q+l 
Print #1, (i - 1), finaLsection(1, q).x, finaLsection(1, q).y, finaLsection(1, q).z 

Next 
Print #1, "finishnode", blade_node_connect(2) 

End Sub 

Public Sub hub_edges(edge_count, hub_node_connect, hub_edge_connect, 
blade_node_connect, blade_section_connect, hub_panels_t, hub_panels_s) 
Dim i, j As Integer 
Dim step, old_step, new_step 
'hub edges 
'******************************************************************** 
***** 
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'leading edge arcs on front of hub 
'******************************************************************** 
* 
step = 120/ no_oChub_strips 
old_step = 2 - step 
new_step = 0 

For j = 1 To no_oChub_strips 
old_step = old_step + step 
new_step = new_step + step 
edge_count = edge_count + 1 
hub_edge_connect(j) = edge_count 
Print #1, "edge", edge_count, "-2", step, hub_panels_s, "1.0", "0.1" 
Print #1, "startnode", hub_node_connect(j) 
For i = old_step To new _step - 1 
Print #1, (i + 1 - old_step), hub_Ieading_edge(i).x, hub_Ieading_edge(i).y, 
hub_Ieading_edge(i).z 
Next 
Print #1, "finishnode", hub_node_connect(j + 1) 

Nextj 

'leading end of hub helixes 
For j = 1 To no_oChub_strips + 1 
edge_count = edge_count + 1 
hub_edge_connect(10 + j) = edge_count 

If j <> (no_oChub_strips + 1) And j <> 1 Then Print #1, "edge", edge_count, "-1", 
"100", hub_panels_t, "1.0", "0. I" 
If j = (no_oChub_strips + I) Or j = I Then Print #1, "edge", edge_count, "-4", "100", 
hub_panels_t, "1.0", "0.1" 
If j = I Then Print #1, "startnode", blade_node_connect(1) 
If j <> 1 Then Print # I, "startnode", hub_node_connect(j) 
For i = 2 To 99 
Print #1, (i - I), hub_Ieading_end(j, i).x, hub_Ieading_end(j, i).y, hub_Ieading_end(j, 
i).z 
Next 
If j = I Then Print # I, "finishnode", hub_node_connect(l) 
If j <> I Then Print #1, "finishnode", hub_node_connect(10 + j) 
Next 

'leading V section 
'******************************************************************** 
* 
step = 120/ no_oChub_strips 
old_step = 2 - step 
new_step = 0 
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For j = 1 To no_oChub_strips 
old_step = old_step + step 
new _step = new_step + step 
edge_count = edge_count + I 
hub_edge_connect(20 + j) = edge_count 
Print #1, "edge", edge_count, "- 1 ", step, hub_panels_s, "1.0", "0.1" 
If j = 1 Then Print #1, "startnode", blade_node_connect(1) 
If j <> 1 Then Print #1, "startnode", hub_node_connect(10 + j) 
For i = old_step To new_step - 1 
Print #1, (i + 1 - old_step), hub_helix_le(i).x, hub_helix_le(i).y, hub_helix_le(i).z 
Next 
Print #1, "finishnode", hub_node_connect(lO + j + 1) 
Nextj 

'helixes between blades 
'******************************************************************** 
* 
For j = 2 To no_oChub_strips 
edge_count = edge_count + 1 
hub_edge_connect(30 + j) = edge_count 

Print #1, "edge", edge_count, "-1 ", "100", blade_panels_s, blade_P, blade_Q 
Print #1, "startnode", hub_node_connect(10 + j) 
For i = 2 To 99 
Print #1, (i - I), hub_helix_blades(j, i).x, hub_helix_blades(j, i).y, hub_helix_blades(j, 
i).z 
Next 
Print #1, "finishnode", hub_node_connect(20 + j) 
Next 

'second hub blade 
'not defined with blade 
edge_count = edge_count + 1 
hub_edge_connect(30 + 1 + no_oChub_strips) = edge_count 
Print #1, "edge", edge_count, "-4", section_data(l).le_id, blade_panels_s, 2 - blade_P, 
blade_Q 
Print #1, "startnode", hub_node_connect(20 + 1 + no_oChub_strips) 'trailing edge 
For i = 2 To section_data( 1 ).1e_id - 1 
Print # I, (i - I), hub_section_edge(10, i).x, hub_section_edge(10, i).y, 
hub_section_edge( 1 0, i).z 
Next 
Print #1, "finishnode", hub_node_connect(lO + 1 + no_oChub_strips) 

'leading V section 
'******************************************************************** 
* 
step = 120/ no_oChub_strips 
old_step = 2 - step 
new_step = 0 
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For j = 1 To no_oLhub_strips 
old_step = old_step + step 
new_step = new_step + step 
edge_count = edge_count + I 
hub_edge_connect(40 + no_oLhub_strips + 1 - j) = edge_count 
Print#l, "edge", edge_count, "-1", step, hub_panels_s, "1.0", "0.1" 

Print #1, "startnode", hub_node_connect(20 + no_oLhub_strips + 2 - j) 
For i = old_step To new_step - 1 
Print #1, (i + 1 - old_step), hub_helix_te(i)ox, hub_helix_te(i)oy, hub_helix_te(i)oz 
Next 
If j = no_oLhub_strips Then Print #1, "finishnode", blade_node_connect(2) 
If j <> no_oLhub_strips Then Print #1, "finishnode", hub_node_connect(20 + 
no_oLhub_strips + 1 - j) 
Nextj 

'trailing end of hub helixes 
For j = 1 To no_oLhub_strips + 1 
edge_count = edge_count + 1 
hub_edge_connect(50 + j) = edge_count 

Ifj <> (no_oLhub_strips + I) Andj <> I Then Print#I, "edge", edge_count, "-I ", 
"100", hub_panels_t, "100", "001" 
If j = (no_oLhub_strips + I) Or j = 1 Then Print #1, "edge", edge_count, "-4", "100", 
hub_panels_t, "100", "001" 
If j = 1 Then Print #1, "startnode", blade_node_connect(2) 
If j <> I Then Print #1, "startnode", hub_node_connect(20 + j) 
For i = 2 To 99 
Print #1, (i - 1), hub_trailing_end(no_oLhub_strips + 2 - j, i)ox, 
hub_trailing_end(no_oLhub_strips + 2 - j, i)oY, hub_trailing_end(no_oLhub_strips + 
2-j,i)oz 
Next 
Print #1, "finishnode", hub_node_connect(30 + j) 
Next 

'trailing edge arcs on front of hub 
'******************************************************************** 
* 
step = 120/ no_oLhub_strips 
old_step = 2 - step 
new_step = 0 

For j = I To no_oLhub_strips 
old_step = old_step + step 
new_step = new_step + step 
edge_count = edge_count + I 
hub_edge_connect(60 + j) = edge_count 
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Print #1, "edge", edge_count, "-2", step, hub_panels_s, "1.0", "0.1" 
Print #1, "startnode", hub_node_connect(30 + j) 
For i = old_step To new_step - 1 
Print #1, (i + I - old_step), hub_trailing_edge(i).x, hub_trailing_edge(i).y, 
hub_trailing_edge(i).z 
Next 
Print #1, "finishnode", hub_node_connect(30 + j + I) 

Nextj 

End Sub 
Public Sub ring_edges(edge_count, ring_node_connect, ring_edge_connect, 
blade_node_connect, ring_panels_t) 
Dim i, j As Integer 

'ring edges 
'******************************************************************** 
***** 

'leading edge 
edge_count = edge_count + 1 
ring_edge_connect( 1) = edge_count 
Print#l, "edge",edge_count, "-2", 121,ring_panels_t, "1.0", "0.1" 
Print #1, "startnode", blade_node_connect(num_sections * 2 - 1) 
For i = 2 To 120 
Print #1, (i - I), ring_Ieading_edge(i).x, ring_Ieading_edge(i).y, 
ring_leading_edge(i).z 
Next 
Print #1, "finishnode", ring_node_connect(2) 

'trailing edge 
edge_count = edge_count + I 
ring_edge_connect(2) = edge_count 
Print #1, "edge", edge_count, "-2",121, ring_panels_t, "1.0", "0.1" 
Print #1, "startnode", blade_node_connect(num_sections * 2) 
For i = 2 To 120 
Print #1, (i - 1), ring_trailing_edge(i).x, ring_trailing_edge(i).y, 
ring_trailing_edge(i).z 
Next 
Print # I, "finishnode", ring_node_connect(l) 

'second ring section edge 
edge_count = edge_count + 1 
ring_edge_connect(3) = edge_count 
Print #1, "edge", edge_count, "-1", section_data(l ).le_id, blade_panels_s, "1.0", "0.1" 
Print # I, "startnode", ring_node_connect(1) 'trailing edge 
For i = 2 To num_ring_section_points - 1 
Print #1, (i - 1), ring_section_edge(i).x, rin~section_edge(i).y, ring_section_edge(i).z 
Next 
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Print #1, "finishnode", ring_node_connect(2) 

End Sub 

Public Sub cap_edges(edge_count, cap_node_connect, cap_edge_connect, 
cap_panels_t, cap_panels_s) 
Dim i, j As Integer 
Dim lowecpoints As Integer 
Dim upper_points As Integer 

uppecpoints = cap_section_points - cap_sidenode_id + 1 
lowecpoints = cap_sidenode_id 
'cap edges 
'******************************************************************** 
***** 

'arc on left 
'first part 
edge_count = edge_count + 1 
cap_edge_connect( 1) = edge_count 
Print #1, "edge", edge_count, "-4", lowecpoints, cap_panels_t, ''1.0'', "0.1" 
Print #1, "startnode", cap_node_connect(l) 
For i = 2 To cap_sidenode_id - 1 
Print #1, (i - 1), cap_Ieft(i).x, cap_Ieft(i).y, cap_Ieft(i).z 
Next 
Print#l, "finishnode", cap_node_connect(5) 

'arc on left 
'second part 
edge_count = edge_count + 1 
cap_edge_connect(2) = edge_count 
Print #1, "edge", edge_count, "-4", uppecpoints, cap_panels_s, "1.0", "0.1" 
Print #1, "startnode", cap_node_connect(5) 
For i = cap_sidenode_id + 1 To cap_section_points - 1 
Print #1, (i - cap_sidenode_id), cap_Ieft(i).x, cap_Ieft(i).y, cap_left(i).z 
Next 
Print #1, "finishnode", cap_node_connect(2) 

'arc on right 
'first part 
edge_count = edge_count + I 
cap_edge_connect(3) = edge_count 
Print #1, "edge", edge_count, "-4", Iowecpoints, cap_paneIs_t, "1.0", "0.1" 
Print #1, "startnode", cap_node_connect(l) 
For i = 2 To cap_sidenode_id - 1 
Print #1, (i - 1), cap_right(i).x, cap_right(i).y, cap_right(i).z 
Next 
Print #1, "finishnode", cap_node_connect(6) 
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'arc on right 
'second part 
edge_count = edge_count + 1 
cap_edge_connect( 4) = edge_count 
Print #1, "edge", edge_count, "-4", uppecpoints, cap_panels_s, "1.0", "0.1" 
Print #1, "startnode", cap_node_connect(6) 
For i = cap_sidenode_id + 1 To cap_section_points - 1 
Print #1, (i - cap_sidenode_id), cap_right(i).x, cap_right(i).y, cap_right(i).z 
Next 
Print #1, "finishnode", cap_node_connect(3) 

'arc on back 
'first part 
edge_count = edge_count + I 
cap_edge_connect(5) = edge_count 
Print #1, "edge",edge_count, "-2", "19",cap_panels_t, "1.0", "0.1" 
Print #1, "startnode", cap_node_connect(2) 
For i = 2 To 18 
Print # 1, (i - 1), cap_back(i).x, cap_back(i).y, cap_back(i).z 
Next 
Print #1, "finishnode", cap_node_connect(7) 

'arc on back 
'second part 
edge_count = edge_count + I 
cap_edge_connect(6) = edge_count 
Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1" 
Print #1, "startnode", cap_node_connect(7) 
For i = 19 To 35 
Print #1, (i - 18), cap_back(i).x, cap_back(i).y, cap_back(i).z 
Next 
Print #1, "finishnode", cap_node_connect(3) 

'arc internal_x 
edge_count = edge_count + I 
cap_edge_connect(7) = edge_count 
Print #1, "edge", edge_count, "-1", num_internaLx_points, cap_panels_s, "1.0", "0.1" 
Print #1, "startnode", cap_node_connect(4) 
For i = 2 To num_internaLx_points - I 
Print # I, (i - I), cap_internal_x(i).x, cap_internal_x(i).y, cap_internaLx(i).z 
Next 
Print #1, "finishnode", cap_node_connect(7) 

'arc intern aLy 
edge_count = edge_count + 1 
cap_edge_connect(8) = edge_count 
Print #1, "edge", edge_count, "-I ", num_internal_points + 2, cap_panels_t, "1.0", 
"0.1 " 
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Print #1, "startnode", cap_node_connect(5) 
For i = I To num_internaLpoints 
Print #1, (i), cap_internaLy(i).x, cap_internal_y(i).y, cap_interna1_y(i).z 
Next 
Print #1, "finishnode", cap_node_connect(4) 

'arc interna1_z 
edge_count = edge_count + I 
cap_edge_connect(9) = edge_count 
Print #1, "edge", edge_count, "- I", num_internaLpoints + 2, cap_pane1s_t, ''1.0'', 
"0. I" 
Print #1, "startnode", cap_node_connect(6) 
For i = I To num_interna1_points 
Print #1, (i), cap_interna1_z(i).x, cap_internaLz(i).y, cap_internaLz(i).z 
Next 
Print #1, "finishnode", cap_node_connect(4) 

'not needed 
'creates bullet 
'******************************************************************* 
'arc on back 
'first part 
'edge_count = edge_count + I 
'cap_edge_connect(lO) = edge_count 
'Print #1, "edge", edge_count, "-2", "19", cap_pane1s_t, "1.0", "0.1" 
'Print #1, "startnode", cap_node_connect(8) 
'For i = 2 To 18 
'Print #1, (i - I), cap_back(i).x, "0", cap_back(i).z 
'Next 
'Print #1, "finishnode", cap_node_connect(9) 

'arc on back 
'second part 
'edge_count = edge_count + I 
'cap_edge_connect( II) = edge_count 
'Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1" 
'Print #1, "startnode", cap_node_connect(9) 
'For i = 19 To 35 
'Print #1, Ci - 18), cap_backCi).x, "0", cap_back(i).z 
'Next 
'Print #1, "finishnode", cap_node_connect(lO) 

'edge_count = edge_count + 1 
'cap_edge_connect( 12) = edge_count 
'Print #1, "edge", edge_count, "-4", "2", cap_panels_t, "1.0", "0. I" 
'Print # I, "startnode", cap_node_connect(2) 
'Print #1, "finishnode", cap_node_connect(8)' 

'edge_count = edge_count + I 
'cap_edge_connect( 13) = edge_count 
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'Print #1, "edge", edge_count, "-1 ", "2", cap_panels_t, "1.0", "0.1" 
'Print #1, "startnode", cap_node_connect(7) 
'Print #1, "finishnode", cap_node_connect(9) 

'edge_count = edge_count + 1 
'cap_edge_connect(14) = edge_count 
'Print #1, "edge", edge_count, "-4", "2", cap_panels_t, "1.0", "0.1" 
'Print #1, "startnode", cap_node_connect(3) 
'Print #1, "finishnode", cap_node_connect(10) 

End Sub 
Public Sub second_cap_edges(edge_count, second_cap_node_connect, 
second_cap_edge_connect, cap_panels_t, cap_panels_s) 
Dim i, j As Integer 
Dim lowecpoints As Integer 
Dim uppecpoints As Integer 

uppecpoints = cap_section_points - cap_sidenode_id + 1 
lowecpoints = cap_sidenode_id 
'cap edges 
'******************************************************************** 
***** 

'arc on left 
'first part 
edge_count = edge_count + I 
second_cap_edge_connect( 1) = edge_count 
Print #1, "edge", edge_count, "-4", lowecpoints, cap_panels_t, ''1.0'', "0.1" 
Print # 1, "startnode", second_cap_node_connect( 1) 
For i = 2 To cap_sidenode_id - 1 
Print #1, (i - I), cap_Ieft(i).x, -cap_Ieft(i).y, cap_left(i).z 
Next 
Print #1, "finishnode", second_cap_node_connect(S) 

'arc on left 
'second part 
edge_count = edge_count + I 
second_cap_edge_connect(2) = edge_count 
Print # I, "edge", edge_count, "-4", upper_points, cap_panels_s, "1.0", "0.1" 
Print #1, "startnode", second_cap_node_connect(S) 
For i = cap_sidenode_id + I To cap_section_points - I 
Print #1, (i - cap_sidenode_id), cap_Ieft(i).x, -cap_IeftCi).y, cap_Ieft(i).z 
Next 
Print # I, "finishnode", second_cap_node_connect(2) 

'arc on right 
'first part 
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edge_count = edge_count + 1 
second_cap_edge_connect(3) = edge_count 
Print #1, "edge", edge_count, "-4", 10wecpoints, cap_panels_t, "1.0", "0.1" 
Print # 1, "startnode", second_cap_node_connect( 1) 
For i = 2 To cap_sidenode_id - 1 
Print #1, (i - 1), cap_right(i).x, -cap_right(i).y, cap_right(i).z 
Next 
Print #1, "finishnode", second_cap_node_connect(6) 

'arc on right 
'second part 
edge_count = edge_count + 1 
second_cap_edge_connect(4) = edge_count 
Print #1, "edge", edge_count, "-4", upper_points, cap_panels_s, "1.0", "0.1" 
Print #1, "startnode", second_cap_node_connect(6) 
For i = cap_sidenode_id + 1 To cap_section_points - 1 
Print #1, (i - cap_sidenode_id), cap_right(i).x, -cap_right(i).y, cap_right(i).z 
Next 
Print #1, "finishnode", second_cap_node_connect(3) 

'arc on back 
'first part 
edge_count = edge_count + 1 
second_cap_edge_connect(5) = edge_count 
Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1" 
Print #1, "startnode", second_cap_node_connect(2) 
For i = 2 To 18 
Print #1, (i - 1), cap_back(i).x, -cap_back(i).y, cap_back(i).z 
Next 
Print #1, "finishnode", second_cap_node_connect(7) 

'arc on back 
'second part 
edge_count = edge_count + 1 
second_cap_edge_connect(6) = edge_count 
Print #1, "edge", edge_count, "-2", "19", cap_panels_t, "1.0", "0.1" 
Print #1, "startnode", second_cap_node_connect(7) 
For i = 19 To 35 
Print #1, (i - 18), cap_back(i).x, -cap_back(i).y, cap_back(i).z 
Next 
Print #1, "finishnode", second_cap_node_connect(3) 

'arc internaI_x 
edge_count = edge_count + I 
second_cap_edge_connect(7) = edge_count 
Print #1, "edge", edge_count, "-I ", num_internaLx_points, cap_panels_s, "1.0", "0.1" 
Pri nt # 1, "startnode", second_cap_node_connect( 4) 
For i = 2 To num_internal_x_points - I 
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Print #1, (i - 1), cap_internaLx(i).x, -cap_internaLx(i).y, cap_internaLx(i).z 
Next 
Print #1, "finishnode", second_cap_node_connect(7) 

'arc internaLy 
edge_count = edge_count + 1 
second_cap_edge_connect(8) = edge_count 
Print #1, "edge", edge_count, "-1 ", num_internaLpoints + 2, cap_panels_t, "1.0", 
"0.1 " 
Print #1, "startnode", second_cap_node_connect(5) 
For i = 1 To num_internal_points 
Print #1, (i), cap_internal_y(i).x, -cap_internal_y(i).y, cap_internaLy(i).z 
Next 
Print #1, "finishnode", second_cap_node_connect(4) 

'arc internaLz 
edge_count = edge_count + I 
second_cap_edge_connect(9) = edge_count 
Print #1, "edge", edge_count, "-I ", num_internaLpoints + 2, cap_panels_t, "1.0", 
"0.1 " 
Print #1, "startnode", second_cap_node_connect(6) 
For i = 1 To num_internal_points 
Print #1, (i), cap_internaLz(i).x, -cap_internal_z(i).y, cap_internal_z(i).z 
Next 
Print #1, "finishnode", second_cap_node_connect(4) 

End Sub 

Public Sub outpuCflxO 
Dim node_count, i, face_count As Integer 
Dim edge_count, duccpanels_s, duccpanels_t As Integer 
'Dim ring_panels_s, ring_panels_t As Integer 
'Dim hub_panels_s, hub_panels_t As Integer 
'Dim blade_panels_s, blade_panels_t As Integer 
'Dim duccwake_panels_s, duccwake_panels_t As Integer 
'Dim blade_wake_panels_s, blade_wake_panels_t As Integer 
Dim cnodes, cedges, cfaces As Integer 
Dim num_cap_nodes, num_cap_edges, num_cap_faces As Integer 
Dim num_ring_nodes, num_duccnodes, num_hub_nodes, num_blade_nodes, 
num_ducC wake_nodes, num_blade_ wake_nodes As Integer 
Dim num_duccedges, num_ring_edges, num_hub_edges, num_blade_edges, 
num_duccwake_edges, num_blade_wake_edges As Integer 
Dim num_ducCfaces, num_ring_faces, num_hub_faces, num_blade_faces, 
num_ducCwake_faces, num_blade_wake_faces As Integer 

Dim cap_node_connect(7) As Integer 'should be 7 
Dim cap_edge_connect(9) As Integer 'should be 9 
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Dim second_cap_node_connect(7) As Integer 
Dim second_cap_edge_connect(9) As Integer 

Dim duccnode_connect(60) As Integer 
Dim duccedge_connect(90) As Integer 
Dim ring_node_connect(60) As Integer 
Dim ring_edge_connect(90) As Integer 
Dim hub_node_connect(60) As Integer 
Dim hub_edge_connect(90) As Integer 
Dim blade_ends_connect(6) As Integer 
Dim ducC wake_node_connect(20) As Integer 
Dim ducC wake_edge_connect(38) As Integer 

Dim blade_node_connectO As Integer 
Dim blade_edge_connectO As Integer 
Dim blade_section_connectO As Integer 
Dim blade_ wake_ vertedge_connectO As Integer 
Dim blade_ wake_secondedge_connectO As Integer 

ReDim blade_node_connect(num_sections * 2) 
ReDim blade_edge_connect((num_sections - 1) * 2) 
ReDim blade_section_connect(num_sections * 2) 

ReDim blade_ wake_node_connect(num_sections * 2) 
ReDim blade_wake_edge_connect(num_sections) 
ReDim blade_ wake_secondedge_connect(num_sections) 
ReDim blade_wake_vertedge_connect(2 * (num_sections - 1)) 

node_count = -1 
edge_count = -1 
face_count = -1 

num_cap_nodes = 7 
num_ring_nodes = 2 
num_ducCnodes = 40 
num_hub_nodes = 4 * (no_oChub_strips + 1) - 2 
num_ducCwake_nodes = 20 
num_blade_nodes = num_sections * 2 
num_blade_ wake_nodes = num_sections * 2 

num_ring_edges = no_oCring_strips * 9 + 4 
If ring_true = 1 Then 
num_duccedges = 66 
Else 
num_duccedges = 38 
End If 
num_ring_edges = 3 

144 



num_cap_edges = 9 
num_hub_edges = no_oLhub_strips * 7 + 2 
num_duct_wake_edges = 38 
num_blade_edges = num_sections * 2 + (num_sections - 1) * 2 
num_blade_wake_edges = num_sections * 2 + (num_sections - 1) * 2 

If rin~true = 1 Then 
num_duct_faces = 27 
num_ring_faces = 1 
Else 
num_ring_faces = 0 
num_ducefaces = 18 
End If 
num_cap_faces = 3 
num_hub_faces = no_oLhub_strips * 3 
num_duce wake_faces = 18 
num_blade_faces = (num_sections - 1) * 2 
num_blade_ wake_faces = (num_sections - 1) * 2 

enodes = 0 
eedges = 0 
efaces = 0 

If frmMain.ring_flag.value = 1 Then 
enodes = enodes + num_rin~nodes 
eedges = eedges + num_ring_edges 
efaces = efaces + num_ring_faces 
End If 
If frmMain.hub_flag.value = 1 Then 
enodes = enodes + num_hub_nodes 
eedges = eedges + num_hub_edges 
efaces = efaces + num_hub_faces 

If frmMain.blade_flag.value = 0 Then 
enodes = enodes + 2 
eedges = eedges + 1 
End If 

End If 
If frmMain.cap_flag. value = 1 Then 
enodes = enodes + num_cap_nodes * 2 
eedges = eedges + num_cap_edges * 2 
efaces = efaces + num_cap_faces * 2 
End If 
If frmMain.blade_flag.value = 1 Then 
enodes = enodes + num_blade_nodes + num_blade_ wake_nodes 
eedges = eedges + num_blade_edges + num_blade_wake_edges 
efaces = efaces + num_blade_faces + num_blade_ wake_faces 
End If 

If frmMain.duceflag.value = 1 Then 
en odes = enodes + num_ducenodes + num_duce wake_nodes 
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Cedges = cedges + num_duccedges + num_ducC wake_edges 
cfaces = t_faces + num_ducCfaces + num_ducc wake_faces 
End If 

Open "out.flx" For Output As 1 
Print #1, "Thruster" 
Print #1, "GRID TYPE PANEL" 
Print #1, Cnodes, cedges, cfaces, "0" 

'node definition 
'**************************************************** 
If frmMain.cap_flag. value = 1 Then 
Call cap_nodes(node_count, cap_node_connect) 
Call second_cap_nodes(node_count, second_cap_node_connect) 
End If 

If frmMain.duccflag. value = 1 Then 
Call duccnodes(node_count, duccnode_connect) 
Call ducC wake_nodes(node_count, ducC wake_node_connect) 
End If 
If frmMain.ring_flag.value = 1 Then Call ring_nodes(node_count, 
ring_node_connect) 
If frmMain.hub_flag.value = 1 Then 
If frmMain.blade_flag.value = 0 Then Call missing_hub_nodes(node_count, 
b1ade_node_connect) 
Call hub_nodes(node_count, hub_node_connect) 
End If 
If frmMain. blade_flag. value = 1 Then 
Call blade_nodes(node_count, b1ade_node_connect) 
Call blade_ wake_nodes(node_count, blade_ wake_node_connect) 
End If 

'edge definition 
'******************************************************************** 
********** 
If frmMain.ducCflag.value = 1 Then 
If rin~true = 1 Then 

Call ducC 4ring_edges(edge_count, duccnode_connect, duccedge_connect) 
Else 

Call duccno_ring_edges(edge_count, ducCnode_connect, ducCedge_connect) 
End If 
Call ducC wake_edges( edge_count, ducC wake_node_connect, 
ducC wake_edge_connect, ducCnode_connect) 
End If 
If frmMain.cap_flag. value = 1 Then 
Call cap_edges(edge_count, cap_node_connect, cap_edge_connect, cap_panels_t, 
cap_panels_s) 
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Call second_cap_edges( edge_count, second_cap_node_connect, 
second_cap_edge_connect, cap_panels_t, cap_panels_s) 
End If 
IffrmMain.ring_fIag.value = 1 Then Call ring_edges(edge_count, rin~node_connect, 
ring_edge_connect, blade_node_connect, ring_panels_t) 

If frmMain.hub_fIag.value = I Then 
If frmMain.blade_fIag.value = 0 Then Call missing_section_fochub(edge_count, 
blade_node_connect, blade_ends_connect, blade_section_connect, 
blade_edge_connect, blade_panels_t, blade_panels_s, hub_node_connect, 
ring_node_connect) 
Call hub_edges(edge_count, hub_node_connect, hub_edge_connect, 
blade_node_connect, blade_section_connect, hub_panels_t, hub_panels_s) 
End If 
If frmMain.blade_fIag.value = I Then 
Call blade_edges( edge_count, blade_node_connect, blade_ends_connect, 
blade_section_connect, blade_edge_connect, blade_panels_t, blade_panels_s, 
hub_node_connect, ring_node_connect) 
Call blade_ wake_edges( edge_count, blade_ wake_node_connect, 
blade_node_connect, blade_ wake_edge_connect, hub_node_connect, 
ring_node_connect, blade_ wake_ vertedge_connect, 
blade_wake_secondedge_connect) 
End If 

'face definition 
'******************************************************************** 
********** 
If frmMain.duccfIag. value = I Then 
If ring_true = 1 Then 
Call ducC 4ring_faces(face_count, ducCnode_connect, duccedge_connect) 
Else 
Call duccno_ring_faces(face_count, duccnode_connect, duccedge_connect) 
End If 
Call ducC wake_faces(face_count, ducC wake_node_connect, 
ducC wake_edge_connect, duccedge_connect, ducCnode_connect) 
End If 
If frmMain.ring_fIag. value = I Then Call ring_faces(face_count, ring_node_connect, 
ring_edge_connect, blade_section_connect) 
If frmMain.cap_fIag. value = I Then 
Call cap_faces(face_count, cap_node_connect, cap_edge_connect) 
Call second_cap_faces(face_count, second_cap_node_connect, 
second_cap_edge_connect) 
End If 

If frmMain.hub_fIag.value = I Then Call hub_faces(face_count, hub_node_connect, 
hub_edge_connect, blade_section_connect, blade_edge_connect) 

If frmMain.blade_fIag.value = 1 Then 

147 



Call blade_faces(face_count, blade_node_connect, blade_ends_connect, 
blade_section_connect, blade_edge_connect, hub_edge_connect, ring_edge_connect, 
hub_node_connect) 
Call blade_ wake_faces(face_count, blade_ wake_node_connect, 
blade_ wake_edge_connect, blade_edge_connect, blade_ wake_ vertedge_connect, 
blade_ends_connect, blade_ wake_secondedge_connect, hub_node_connect, 
blade_node_connect) 
End If 

Close #1 
End Sub 
Public Sub blade_ wake_faces(face_count, blade_ wake_node_connect, 
blade_ wake_edge_connect, blade_edge_connect, blade_ wake_ vertedge_connect, 
blade_ends_connect, blade_wake_secondedge_connect, hub_node_connect, 
blade_node_connect) 
Dim i As Integer 

'faces for adapted wake 
'******************************************************************** 
**** 

For i = 1 To num sections - I 
face_count = face_count + I 
Print #1, "face", face_count, "2048", "1" 
Print #1, "linear" 
Print #1, "origin node", blade_node_connect((i) * 2) 
Print #1, "side", "0", "I ", blade_wake_edge_connect(i) 
Print #1, "side", "1", "1", blade_wake_vertedge_connect(i) 
Print#I, "side", "2", "1", blade_wake_edge_connect(i + 1) 
Print #1, "side", "3", "I ", blade_edge_connect((i) * 2) 
Print#I, "sources", "0", "0", "0" 
Next 

'faces for fixed wake 
'************************************************************** 
For i = I To num_sections - I 
face_count = face_count + I 
Print #1, "face", face_count, "4096", "1" 
Print # 1, "linear" 
Print #1, "origin node", blade_wake_node_connect((i - 1) * 2 + 1) 
Print #1, "side", "0", "I ", blade_wake_secondedge_connect(i) 
Print#l, "side", "I", "I", blade_wake_vertedge_connect((num_sections-l)+i) 
Print #1, "side", "2", "I ", blade_ wake_secondedge_connect(i + 1) 
Print#I, "side", "3", "I ", blade_wake_vertedge_connect(i) 
Print #1, "sources", "0", "0", "0" 
Next 

End Sub 
Public Sub blade_wake_edges(edge_count, blade_wake_node_connect, 
blade_node_connect, blade_ wake_edge_connect, hub_node_connect, 

148 



ring_node_connect, blade_ wake_ vertedge_connect, 
blade_ wake_secondedge_connect) 
Dim j, i As Integer 
Dim adapt, non_adapt As Integer 

'free wake to 1/3 length 
adapt = Int(no_oLwake_points * blade_freewake_length) 

For j = 1 To num_sections 
edge_count = edge_count + 1 
blade_ wake_edge_connectU) = edge_count 
If j = I Or j = num_sections Then 
Print#l, "edge", edge_count, "-2", adapt, blade_freewake_panels_s, "0.3", "2.0" 
Print #1, "startnode", blade_node_connect(U - 1) * 2 + 2) 
End If 
If j <> 1 And j <> num_sections Then 
Print #1, "edge", edge_count, "-I ", adapt, blade_freewake_panels_s, "0.3", "2.0" 
Print #1, "startnode", blade_node_connect(U - 1) * 2 + 2) 
End If 

For i = 2 To adapt - I 
Print #1, (i - 1), wakeU, i).x, wakeU, i).y, wakeU, i).z 

Next 
Print #1, "finishnode", blade_wake_node_connect(U - 1) * 2 + 1) 

Next 

'edges perpendicular to the adapted wake sections 
For j = I To num_sections - I 
edge_count = edge_count + I 
bIade_ wake_ vertedge_connectU) = edge_count 
If j = (num_sections - I) Then Print #1, "edge", edge_count, "-1 ", "2", 

Int(blade_panels_t * blade_tip_cluster), "1.0", "0. I" 
If j <> (num_sections - I) Then Print #1, "edge", edge_count, "-1 ", "2", 

blade_panels_t, "1.0", "0. I" 
Print #1, "startnode", blade_wake_node_connectCU - 1) * 2 + 1) 
Print #1, "finishnode", blade_wake_node_connect(U - 1) * 2 + 3) 

Next 

'fixed wake behind adapted wake 
'******************************************************************** 
******* 

For j = I To num_sections 
edge_count = edge_count + I 
blade_ wake_secondedge_connectU) = edge_count 
If j = I Or j = num_sections Then Print #1, "edge", edge_count, "-2", non_adapt, 

blade_fixedwake_panels_s, "1.0", "0. I" 
If j <> I And j <> num_sections Then Print #1, "edge", edge_count, "- I ", non_adapt, 
blade_fixedwake_panels_s, "1.0", "0. I" 
Print#l, "startnode", blade_wake_node_connectCU - I) * 2 + I) 

149 



For i = (adapt + I) To no_oLwake_points - I 
Print #1, (i - adapt), wakeU, i).x, wakeU, i).y, wakeU, i).z 

Next 
Print #1, "finishnode", blade_wake_node_connect(U - I) * 2 + 2) 

Next 

'edges perpendicular to the fixed wake sections (end of wake) 
For j = I To num_sections - I 
edge_count = edge_count + I 
blade_wake_vertedge_connect((num_sections - I) + j) = edge_count 
If j = (num_sections - 1) Then Print #1, "edge", edge_count, "-2", "2", 

Int(blade_panels_t * blade_tip_cluster), "1.0", "0. I" 
Ifj <> (num_sections - I) Then Print #1, "edge", edge_count, "-2", "2", 

blade_panels_t, "1.0", "0. I" 
Print #1, "startnode", blade_wake_node_connect(U - I) * 2 + 2) 
Print #1, "finishnode", blade_wake_node_connect(U - I) * 2 + 4) 

Next 

End Sub 
Public Sub blade_wake_nodes(node_count, blade_wake_node_connect) 
'blade wake nodes 
'************************************************************** 
'only two nodes per section one at the adaption amd one at the end 

Dim i As Integer 
Dim adapt As Integer 

adapt = Int(no_oLwake_points * blade_freewake_length) 
For i = I To num_sections 

'adaption node 
node_count = node count + 1 
blade_wake_node_connect(((i - 1) * 2) + 1) = node_count 
Print #1, "node", node_count, wake(i, adapt).x, wake(i, adapt).y, wake(i, adapt).z 

'end node 
node_count = node_count + I 
blade_ wake_node_connect(((i - I) * 2) + 2) = node_count 
Print #1, "node", node_count, wake(i, no_oLwake_points).x, wake(i, 
no_oLwake_points).y, wakeCi, no_oLwake_points).z 

Next 
End Sub 
Public Sub duccwake_faces(face_count, duccwake_node_connect, 
ducC wake_edge_connect, duccedge_connect, ducCnode_connect) 
Dim j As Integer 

'duct wake sheet face 
'************************************************* 
For j = I To 9 
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'free wake 
face_count = face_count + 1 
Print #1, "face", face_count, "2048", "3" 
Print #1, "linear" 
Print#l, "origin node", duccnode_connectU * 4 + 1) 
Print #1, "side", "0", "l",duct_wake_edge_connectU *2+ 1) 
Print #1, "side", "1", "I",duccwake_edge_connect(20+j *2-1) 
Print #1, "side", "2", "1 ", duccwake_edge_connectU * 2 - 1) 
Print #1, "side", "3", "1 ", duccedge_connect(20 + j * 2 - 1) 
Print #1, "sources", "0", "0", "0" 

'fixed wake 
face_count = face_count + 1 
Print #1, "face", face_count, "4096", "3" 
Print # 1, "linear" 
Print #1, "origin node", duccwake_node_connectU * 2 + 1) 
Print #1, "side", "0", "1 ", duccwake_edge_connectU * 2 + 2) 
Print #1, "side", "1 ", "1 ", duccwake_edge_connect(20 + j * 2) 
Print #1, "side", "2", "1 ", duccwake_edge_connectU * 2) 
Print #1, "side", "3", "1 ", ducCwake_edge_connect(20 + j * 2 - 1) 
Print #1, "sources", "0", "0", "0" 

Next 

End Sub 

Public Sub ducC wake_nodes(node_count, ducC wake_node_connect) 

Dim j As Integer 

'duct wake nodes 
'******************************************** 
For j = 1 To 10 
node_count = node_count + 1 
ducC wake_node_connectU * 2 - 1) = node_count 
Print #1, "node", node_count, duccwakeU, 2).x, duccwakeU, 2).y, duccwakeU, 2).z 

node_count = node_count + 1 
duccwake_node_connectU * 2) = node_count 
Print #1, "node", node_count, duccwakeU, 3).x, duccwakeU, 3).y, duccwakeU, 3).z 

Next 

End Sub 
Public Sub ducC wake_edges( edge_count, ducC wake_node_connect, 
ducC wake_edge_connect, ducCnode_connect) 
'duct wake edges 
'**************************************************************** 
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Dim i, j As Integer 

For j = 1 To 10 
'staight line to 113 of wake for adaption 
edge_count = edge_count + I 
ducC wake_edge_connect(j * 2 - I) = edge_count 
If j = 1 Or j = JO Then Print #1, "edge", edge_count, "-4", "2", 
ducCfreewake_panels_s, "0.3", "2.0" 
Ifj <> I Andj <> JO Then Print#I, "edge", edge_count, "-1", "2", 
ducCfreewake_panels_s, "0.3", "2.0" 
Print #1, "startnode", ducCnode_connect(j * 4 - 3) 
Print #1, "finishnode", duccwake_node_connect(j * 2 -1) 

'staight line from 113 to end of wake 
edge_count = edge_count + 1 
duccwake_edge_connect(j * 2) = edge_count 
If j = I Or j = 10 Then Print #1, "edge", edge_count, "-4", "2", 
ducCfixedwake_panels_s, "1.0", "0.1" 
If j <> 1 And j <> 10 Then Print #1, "edge", edge_count, "-1 ", "2", 
ducCfixedwake_panels_s, "1.0", "0.1 " 
Print #1, "startnode", ducC wake_node_connect(j * 2 - 1) 
Print # I, "finishnode", ducC wake_node_connect(j * 2) 

Nextj 

For j = 1 To 9 

'first arc at 113 of wake for adaption 
edge_count = edge_count + I 
duccwake_edge_connect(20 + j * 2 - 1) = edge_count 
Print#l, "edge",edge_count, "-I", "36",duccpanels_t, "l.0", "0.1" 
Print #1, "startnode", duccwake_node_connect(j * 2 - 1) 
For i = 2 To 35 
Print #1, (i - 1), duccwake_arcs(j, I, i).x, duccwake_arcs(j, 1, i).y, duccwake_arcs(j, 
1, i).z 
Next 
Print # I, "finishnode", ducC wake_node_connect(j * 2 + 1) 

'arc at end of wake 
edge_count = edge_count + 1 
ducC wake_edge_connect(20 + j * 2) = edge_count 
Print #1, "edge", edge_count, "-5", "36", duccpanels_t, "1.0", "0.1" 
Print #1, "startnode", duccwake_node_connect(j * 2) 
For i = 2 To 35 
Print #1, (i - 1), duccwake_arcs(j, 2, i).x, duccwake_arcs(j, 2, i).y, duccwake_arcs(j, 
2, i).z 
Next 
Print #1, "finishnode", duccwake_node_connect(j * 2 + 2) 
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Nextj 

End Sub 
Public Sub ducewakesheet(wake_Iength) 
Dim i, j As Integer 
ReDim duct_wake(lO, 3) 
ReDim duce wake_arcs( I 0, 2, 36) 

'set wake on the end of the duct. use upper section 
For i = I To 10 
ducewake(i, I ).x = duceupper(i, num_uppecpoints).x 
ducewake(i, 1 ).y = duceupper(i, num_uppecpoints).y 
ducewake(i, 1 ).z = duceupper(i, num_uppecpoints).z 

'line to wake adapt 
ducewake(i, 2).x = duceupper(i, num_upper_points).x 
ducewake(i, 2).y = duceupper(i, num_uppecpoints).y + ducefreewake_Iength * 
wake_length 
ducewake(i, 2).z = duceupper(i, num_uppecpoints).z 

'end of the straight lines and wake sheet 
ducewake(i, 3).x = duceupper(i, num_uppecpoints).x 
ducewake(i, 3).y = duceupper(i, num_uppecpoints).y + wake_length 
ducewake(i, 3).z = duceupper(i, num_uppecpoints).z 
Next 

For j = I To 10 
'duct wake arcs 
For i = I To 36 
'adaption arc 
ducewake_arcs(j, 1, i).x = duceleading_arc(j, i).x 
duce wake_arcs(j, I, i).y = duceleading_arc(j, i).y + ducefreewake_Iength * 
wake_length 
duce wake_arcs(j, I, i).z = duceleading_arc(j, i).z 

'arc at the end of wake 
ducewake_arcs(j, 2, i). x = duceleading_arc(j, i).x 
ducewake_arcs(j, 2, i).y = duceleading_arc(j, i).y + wake_length 
duce wake_arcs(j, 2, i).z = duceleading_arc(j, i).z 
Next 

Next 
End Sub 
Public Sub blade_faces(face_count, blade_node_connect, blade_ends_connect, 
blade_section_connect, blade_edge_connect, hub_edge_connect, ring_edge_connect, 
hub_node_connect) 
Dim i As Integer 
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'blade faces 
'************************************* 
For i = 1 To num_sections - 1 

'upper face 
face_count = face_count + 1 
Print #1, "face", face_count, "16", "1" 
Print #1, "linear" 
Print #1, "origin node", blade_node_connect((i - 1) * 2 + 2) 
Print #1, "side", "0", "1 ", blade_section_connect((i - 1) * 2 + 1) 
Print #1, "side", "I", "1", blade_edge_connect((i -1) * 2+ 1) 
Print #1, "side", "2", "1 ", blade_section_connect((i - 1) * 2 + 3) 
Print # 1, "side", "3", "1", blade_edge_connect( (i - 1) * 2 + 2) 
Print #1, "sources", "0", "0", "0" 

'lower face 
face_count = face_count + I 
Print #1, "face", face_count, "16", "1" 
Print #1, "linear" 
Print # I, "origin node", blade_node_connect( (i - I) * 2 + 1) 
Print #1, "side", "0", "1 ", blade_section_connect((i - 1) * 2 + 2) 
Print #1, "side", "I ", "1 ", blade_edge_connect((i - 1) * 2 + 2) 
Print #1, "side", "2", "1", blade_section_connect((i - 1) * 2 + 4) 
Print #1, "side", "3", "I ", blade_edge_connect((i - 1) * 2 + 1) 
Print #1, "sources", "0", "0", "0" 

Next 

End Sub 
Public Sub pick_section_oLspline(curveO As section, secCnum, edge As String, 
tempO As section, num_temp_points) 

Dim i As Integer 
Dim counter As Integer 
Dim lower As Single 
Dim upper As Single 

If edge = "Ie" Then 
If finaLsection(seccnum, section_data(secCnum).1e_id).x > finaLsection(seccnum 

+ 1, section_data(seccnum + 1 ).Ie_id).x Then 
upper = finaLsection(seccnum, section_data(seccnum).le_id).x 
lower = finaLsection(seccnum + 1, section_data(seccnum + 1 ).le_id).x 

End If 
If finaLsection(seccnum, section_data(secCnum).1e_id).x < finaLsection(seccnum 

+ 1, section_data(seccnum + 1 ).Ie_id).x Then 
lower = finaLsection(seccnum, section_data(secCnum).le_id).x 
upper = finaLsection(seccnum + I, section_data(seccnum + 1).lcid).x 

End If 
End If 

If edge = "te" Then 
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If final_section(seccnum, section_data(seccnum).te_id).x > finaLsection(secCnum 
+ 1, section_data(1ower).te_id).x Then 

upper = final_section(seccnum, section_data(seccnum).te_id).x 
lower = final_section(seccnum + 1, section_data(seccnum + I ).te_id).x 

End If 
If finaLsection(secCnum, section_data(secCnum).te_id).x < final_section(seccnum 
+ 1, section_data(1ower).te_id).x Then 

lower = finaLsection(seccnum, section_data(secCnum).te_id).x 
upper = finaLsection(seccnum + 1, section_data(secCnum + 1 ).te_id).x 

End If 
End If 

counter = 0 

For i = I To 10 1 

If curve(i).x > lower And curve(i).x < upper Then 
counter = counter + 1 
temp(counter).x = curve(i).x 
temp(counter).y = curve(i).y 
temp(counter).z = curve(i).z 
End If 
Next 

End Sub 
Public Sub blade_edges(edge_count, blade_node_connect, blade_ends_connect, 
blade_section_connect, blade_edge_connect, blade_panels_t, blade_paneIs_s, 
hub_node_connect, ring_node_connect) 
Dim num_uppecsection_nodes, j, q, i As Integer 

Dim lower, upper As Integer 
Dim num_temp_points As Integer 
Dim temp(lOl) As section 

'******************************************************************** 
****** 
'blade_section_connect definition 
'******************************************************************** 
****** 

For j = I To num_sections 
'lower side of section 
edge_count = edge_count + I 
blade_section_connect(Q - 1) * 2 + 1) = edge_count 
If j = 1 Then Print #1, "edge", edge_count, "-2", section_dataU).le_id, 

blade_panels_s, 2 - blade_P, blade_Q 
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Ifj <> 1 Then Print#l, "edge", edge_count, "-I", section_dataU).le_id, 
blade_panels_s, 2 - blade_P, blade_Q 

Print #1, "startnode", blade_node_connect(U - I) * 2 + 2) 
For i = 2 To section_dataU).le_id - 1 
Print #1, (i - 1), finaLsectionU, i).x, finaLsectionU, i).y, finaLsectionU, i).z 

Next 
Print #1, "finishnode", blade_node_connect(U -I) * 2 + 1) 

'upper side of section 
edge_count = edge_count + I 
blade_section_connect((U - I) * 2) + 2) = edge_count 
num_uppecsection_nodes = I + section_dataU).num_points - section_dataU).le_id 
Print # 1, "edge", edge_count, "-I", num_uppecsection_nodes, blade_panels_s, 

blade_P, blade_Q 
Print#l, "startnode", blade_node_connect(U -I) * 2 + 1) 
q = section_dataU).le_id 

For i = 2 To num_upper_section_nodes - 1 
q=q+1 
Print #1, (i - I), finaLsectionU, q).x, finaLsectionU, q).y, finaLsectionU, q).z 

Next 
Print #1, "finishnode", blade_node_connect(U - 1) * 2 + 2) 

Next 

'******************************************************************** 
****** 
'blade_edge_connect definition 
'******************************************************************** 
****** 
Dim g As Integer 

j=O 
For i = I To num_sections - I 

'leading edge 
Call pick_section_oCspline(1eading_splineO, i, "Ie", tempO, num_temp_points) 
j = j + I 
edge_count = edge_count + I 
blade_edge_connectU) = edge_count 
If i = (num_sections - I) Then Print #1, "edge", edge_count, "-1", (num_temp_points 
+ 2), Int(blade_panels_t * blade_tip_cluster), "1.0", "0.1 " 
If i <> (num_sections - I) Then Print #1, "edge", edge_count, "-1 ", (num_temp_points 
+ 2), blade_panels_t, "1.0", "0.1" 
Print#l, "startnode", blade_node_connect((i - 1) * 2 + 1) 
For g = I To num_temp_points 

Print #1, (g), temp(g).x, temp(g).y, temp(g).z 
Next 
Print#l, "finishnode", blade_node_connect((i - 1) * 2 + 3) 

'trailing edge 
Call pick_section_oCspline(trailing_splineO, i, "te", tempO, num_temp_points) 
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j = j + 1 
edge_count = edge_count + 1 
blade_edge_connectU) = edge_count 
Ifi = (num_sections - 1) Then Print #1, "edge", edge_count, "-3", (num_temp_points 
+ 2), Int(blade_panels_t * blade_tip_cluster), "1.0", "O.l" 
If i <> (num_sections - I) Then Print #1, "edge", edge_count, "-3", (num_temp_points 
+ 2), blade_panels_t, "1.0", "0.1" 
Print #1, "startnode", blade_node_connect((i - 1) * 2 + 2) 
For g = 1 To num_temp_points 

Print #1, (g), temp(g).x, temp(g).y, temp(g).z 
Next 

Print #1, "finishnode", blade_node_connect((i - 1) * 2 + 4) 
Next 

End Sub 
Public Sub blade_nodes(node_count, blade_node_connect) 
Dim i As Integer 

'blade nodes 
'******************************************************************** 
***** 
For i = 1 To num_sections 

'section edges 
node_count = node_count + 1 
blade_node_connect(((i - 1) * 2) + 1) = node_count 
Print #1, "node", node_count, final_section(i, section_data(i).le_id).x, finaLsection(i, 
section_data(i).le_id).y, finaLsection(i, section_data(i).1e_id).z 
node_count = node_count + 1 
blade_node_connect(((i - 1) * 2) + 2) = node_count 
Print #1, "node", node_count, finaLsection(i, section_data(i).te_id).x, finaLsection(i, 
section_data(i).te_id).y, finaLsection(i, section_data(i).te_id).z 

Next 
End Sub 
Public Sub missing_hub_nodes(node_count, blade_node_connect) 
'nodes at the root needed for the hub when the blade is not exported 
'******************************************************************** 
***** 
'section edges 
node_count = node_count + 1 
blade_node_connect( 1) = node_count 
Print #1, "node", node_count, finaLsection(l, section_data(1).le_id).x, 
finaLsection(1, section_data(l ).le_id).y, finaLsection(l, section_data(l ).1e_id).z 
node_count = node_count + I 
blade_node_connect(2) = node_count 
Print #1, "node", node_count, finaLsection(l, section_data(l ).te_id).x, 
finaLsection(1, section_data(l ).te_id).y, final_section(l, section_data(l ).te_id).z 
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End Sub 
Public Sub hub_faces(face_count, hub_node_connect, hub_edge_connect, 
blade_section_connect, blade_edge_connect) 
'******************************************************************** 
**** 

Dim i As Integer 

'hub leading faces 
For i = I To no_oLhub_strips 
face_count = face_count + I 
Print#l, "face", face_count, "16", "I" 
Pri nt # I, "linear" 
Print #1, "origin node", hub_node_connect(i + 1) 
Print #1, "side", "0", "I ", hub_edge_connect(10 + 1 + i) 
Print #1, "side", "I ", "I ", hub_edge_connect(20 + i) 
Print #1, "side", "2", "I", hub_edge_connect(lO + i) 
Print #1, "side", "3", "1 ", hub_edge_connect(i) 
Print #1, "sources", "0", "0", "0" 
Next 

'hub faces between blades 
For i = I To no_oLhub_strips 
face_count = face_count + 1 
Print #1, "face", face_count, "16", "I" 
Print #1, "linear" 
Print #1, "origin node", hub_node_connect(i + I + 10) 
Print #1, "side", "0", "I ", hub_edge_connect(30 + I + i) 
Print #1, "side", "1", "I",hub_edge_connect(40+i) 
If i = I Then Print #1, "side", "2", "I ", blade_section_connect(2) 
If i <> 1 Then Print #1, "side", "2", "I ", hub_edge_connect(30 + i) 
Print#I, "side", "3", "I",hub_edge_connect(20+i) 
Print #1, "sources", "0", "0", "0" 
Next 
'hub trailing faces 
For i = I To no_oLhub_strips 
face_count = face_count + 1 
Print #1, "face", face_count, "16", "I" 
Print # 1, "linear" 
Print #1, "origin node", hub_node_connect(i + 21) 
Print #1, "side", "0", "I ", hub_edge_connect(50 + I + i) 
Print # 1, "side", "1", "1", hub_edge_connect( 60 + i) 
Print #1, "side", "2", "I ", hub_edge_connect(50 + i) 
Print #1, "side", "3", "I ", hub_edge_connect(40 + i) 
Print #1, "sources", "0", "0", "0" 
Next 
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End Sub 

Public Sub ring_faces(face_count, ring_node_connect, ring_edge_connect, 
blade_section_connect) 

'******************************************************************** 
**** 
'ring face 

face_count = face_count + I 
Print #1, "face", face_count, "16", "I" 
Print #1, "linear" 
Print #1, "origin node", ring_node_connect(1) 
Print#I, "side", "0", "I",rin~edge_connect(3) 
Print #1, "side", "1", "I",ring_edge_connect(1) 
Print #1, "side", "2", "1 ", bIade_section_connect(num_sections * 2) 
Print #1, "side", "3", "I ", ring_edge_connect(2) 
Print #1, "sources", "0", "0", "0" 

End Sub 

Public Sub caps(hub_Iength) 
Dim no_oCpoints As Integer 
Dim i As Integer 
Dim radius, offset As Single 
Dim revolution_angle As Single 

Dim cap_internaLy20 As section 

'no of points for back section 
'created automatically 
no_oCpoints = 36 

Dim scale_factor As Single 

'radius of hub 
radius = Sqr(finaLsection(1, section_data(1 ).le_id).x A 2 + finaI_section(1, 
section_data(1).Ie_id).z A 2) 

'positon of cap according to hub length 
offset = hub_length / 2 

'should be the same with the number of stators 
no_oCblades = 4 
revolution3ngle = 2 * pi / (duccimages * 2) 
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If cap_auto = I Then 
cap_section_points = 36 
ReDim cap_Ieft_temp( cap_section_points) 
'automatically create an arc to make a spherical cap 
Call arc(cap_IefCtempO, 0, pi /2, radius, 0, offset, 0, cap_section_points, 2) 
Else 
'match cap radius with hub radius 
scale_factor = radius / cap_IefCtemp(cap_section_points).x 

'otherwise already read 
For i = I To cap_section_points 
cap_Iefctemp(i).x = cap_IefCtemp(i).x * scale_factor 
cap_Iefctemp(i).y = cap_IefCtemp(i).y * scale_factor + offset 
cap_Iefctemp(i).z = cap_IefCtemp(i).z * scale_factor 
Next 
End If 

'calculate total length of arc on hub 
Dim totaLlength As Single 
total_length = ° 
For i = I To cap_section_points - I 
totaLlength = total_length + Sqr((cap_IefCtemp(i).x - cap_Ieft_temp(i + I ).x) /\ 2 + 
(cap_IefCtempO).y - cap_left_tempO + I).y) /\ 2 + (cap_IefCtemp(i).z­
cap_Ieft_temp(i + I ).z) /\ 2) 
Next 

'fit a spline throught cap_left 
'******************************************************************** 
*** 
'calculate no of spline points for 20 points on internal 
Dim distance As Single 
Dim points_pecdistance As Single 
Dim num_oLspline_points As Integer 

distance = (side_fraction - internaLfraction) * totaLlength 
points_pecdistance = cap_section_points / distance 
num_oLspline_points = Abs(Int(total_length * points_pecdistance)) 

'call spline routine 

ReDim cap_Ieft(num_oLspline_points + I) 
ReDim cap_internal_y2(num_oLspline_points + I) 
ReDim cap_right(num_oLspline_points + I) 
ReDim cap_backCno_oLpoints) 
ReDim cap_internal_y(num_oLspline_points + 1) 
ReDim cap_internaLx(num_oLspline_points + 1) 
ReDim cap_internal_z(nul11_oLspline_points + I) 
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Call s_spline( cap_IefCtempO, I, I, cap_IeftO, cap_section_points, 
num_oCspline_points) 
cap_section_points = num_oCspline_points + I 

'arc at the back of cap 
Call arc(cap_backO, pi /2, pi /2 + revolution_angle, radius, 0, offset, 0, 
no_oCpoints, I) 

'other arc of cap depending on no_oCstators 
For i = I To cap_section_points 
cap_right(i).x = cap_Ieft(i).x * Cos(revolution_angle) + cap_Ieft(i).z * 
Sin(revol uti on_angle ) 
cap_right(i).y = cap_Ieft(i).y 
cap_right(i).z = -cap_Ieft(i).x * Sin(revolution_angle) + cap_Ieft(i).z * 
Cos(revol uti on_angle ) 
Next 

'calculate new total length of arc on hub 
'more accurate since spline 
Dim lengthO As Single 
ReDim length(cap_section_points) 
totaLlength = 0 
length(O) = 0 
length( I) = 0 
For i = 2 To cap_section_points 
length(i) = lengthCi - I) + SqrCCcap_IeftCi).x - cap_IeftCi - I).x) A 2 + (cap_IeftCi).y -
cap_IeftCi - I).y) A 2 + (cap_leftCi).Z - cap_IeftCi - I).z) A 2) 
Next 
totaLlength = length( cap_section_points) 

Dim break As Integer 
'find id for point half-way along the line 
break = 0 
For i = I To cap_section_points 

If length(i) > (totaLlength * (1 - side_fraction)) And break = 0 Then 
cap_sidenode_id = i 
break = I 
End If 

Next 

Dim counter As Integer 
Dim length_to_point As Single 
Dim xl, yl, zl As Single 
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Dim x2, y2, z2 As Single 
Dim d_Iength As Single 
Dim length_fraction As Single 

'Internal arc along hub axis 
For i = 1 To cap_section_points 

If length(i) > (totaLlength * (1 - internaLfraction)) Then 
'interpolate first point 
If counter = 0 Then 

counter = counter + 1 

xl = cap_Ieft(i - 1 ).x * Cos (revolution_angle / 2) + cap_Ieft(i - 1 ).z * 
Sin(revolution_angle / 2) 

yl = cap_Ieft(i - l).y 
z 1 = -cap_Ieft(i - 1 ).x * Sin(revolution_angle / 2) + cap_Ieft(i - l).z * 

Cos(revolution_angle / 2) 

x2 = cap_Ieft(i).x * Cos(revolution_angle / 2) + cap_Ieft(i).z * 
Sin(revolution_angle / 2) 

y2 = cap_Ieft(i).y 
z2 = -cap_Ieft(i).x * Sin(revolution_angle / 2) + cap_Ieft(i).z * 

Cos(revolution3ngle / 2) 

length_fraction = 1 - (length(i) - (totaLlength * (1 - internaLfraction))) / (length(i) 
- length(i - 1)) 

cap_internal_x(counter).x = x I + (x2 - xl) * length_fraction 
cap_internal_x(counter).y = yl + (y2 - yl) * length_fraction 
cap_internal_x(counter).z = zl + (z2 - zl) * length_fraction 

End If 

counter = counter + 1 
cap_internal_x(counter).x = cap_Ieft(i).x * Cos(revolution_angle / 2) + cap_Ieft(i).z 

* Sin(revolution_angle /2) 
cap_internal_x(counter).y = cap_Ieft(i).y 
cap_internal_x(counter).z = -cap_Ieft(i).x * Sin(revolution_angle / 2) + cap_Ieft(i).z 

* Cos(revolution_angle / 2) 

End If 
Next 

num_internaLx_points = counter 
counter = 0 

'calculate length of internal x 
Dim internaLlength As Single 
internaUength = 0 
For i = 1 To num_internal_x_points - I 
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internal_length = internal_length + Sqr((cap_internaLx(i).x - cap_internaLx(i + I ).x) 
/\ 2 + (cap_internaLx(i).y - cap_internal_x(i + I ).y) /\ 2 + (cap_internal_x(i).z -
cap_internal_xCi + I ).z) /\ 2) 
Next 

'calculate the other two internal sections on cap 
Dim angle As Single 

For i = I To cap_section_points 

If length(i) > length(cap_sidenode_id) And (length(i) < (totaLlength -
internaLlength)) Then 
angle = (revolution3ngle / 2) * ((1ength(i) - length(cap_sidenode_id)) / (total_length 

- length( cap_sidenode_id) - internaLlength)) 
counter = counter + I 
cap_internal_y(counter).x = cap_left(i).x * Cos(angle) + cap_Ieft(i).z * Sin(angle) 
cap_internal_y(counter).y = cap_Ieft(i).y 
cap_internaLy(counter).z = -cap_left(i).x * Sin(angle) + cap_Ieft(i).z * Cos(angle) 

cap_internal_z(countef).x = cap_left(i).x * Cos(revolution_angle - angle) + 
cap_left(i).z * Sin(revolution_angle - angle) 
cap_internaLz(counter).y = cap_left(i).y 
cap_internaLz(counter).z = -cap_left(i).x * Sin(revolution_angle - angle) + 

cap_left(i).z * Cos(revolution_angle - angle) 
End If 

Next 
num_internaLpoints = counter 

'rotate cap to match hub 
Dim hub_angle As Single 
Dim angle_r As Single 
Dim cap_angle As Single 

hub_angle = gecangle(hub_trailing_edge(1).x, hub_trai1in~edge(l).z) 
cap_angle = gecangle(cap_back(1).x, cap_back(1).z) 

angle_r = hub_angle - cap3ngle 
Call rotate(cap_leftO, angle_r, cap_section_points) 
Call rotate(cap_backO, angle_f, no_oCpoints) 
Call rotate(cap_rightO, angle_r, cap_section_points) 
Call rotate(cap_internaLxO, angle_r, num_internaLx_points) 
Call rotate(cap_internaLyO, angle_f, num_internaLpoints) 
Call rotate(cap_internal_zO, angle_r, num_internaLpoints) 
End Sub 
Public Sub rotate(vO As section, angle, num_points) 
Dim i As Integer 
Dim tempO As section 
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ReDim temp(num_points) 

For i = 1 To num_points 
temp(i).x = v(i).x 
temp(i).z = v(i).z 
Next 

For i = 1 To num_points 
v(i).x = temp(i).x * Cos(angle) + temp(i).z * Sin(angle) 
v(i).z = -temp(i).x * Sin(angle) + temp(i).z * Cos(angle) 

Next 

End Sub 
Public Sub rotate_point(v As section, angle, num_points) 
Dim i As Integer 
Dim temp As section 

temp.x = v.x 
temp.z = V.z 

For i = I To num_points 
V.x = temp.x * Cos(angle) + temp.z * Sin(angle) 
v.z = -temp.x * Sin(angle) + temp.z * Cos(angle) 

Next 

End Sub 

Private Function gecangle(x As Single, z As Single) As Single 
Dim f As Single 
Dim angle As Single 

f= x / z 
Select Case f 

Case Is > 0 
If x> 0 Then angle = Atn(Abs(f)) 
If x < 0 Then angle = pi + Atn(Abs(f)) 
Case Is < 0 
If x> 0 Then angle = pi - Atn(Abs(f)) 
If x < 0 Then angle = 2 * pi - Atn(Abs(f)) 
Case Is = 0 
If z > 0 Then angle = 0 
If z < 0 Then angle = pi 
End Select 
gecangle = angle 
End Function 
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Public Sub ductO 

Dim radius, x_offset, duccrev_angle As Single 
Dim num_duccarc_points As Integer 
Dim i, j As Integer 
Dim starcangle, end_angle, offset As Single 
Dim duccrev _angle_step As Single 

ReDim ducCtrailing_lower( I 0, section_data(O).le_id) 
ReDim ducCleading_lower( I 0, section_data(O).le_id) 
num_uppecpoints = section_data(O).num_points - section_data(O).le_id + 1 
ReDim duccupper( 1 0, num_uppecpoints) 
ReDim ducClower( 1 0, section_data(O).le_id) 

'scale section 
For i = 1 To section_data(O).num_points 
section(O, i).x = section(O, i).x * ducClength * D 
section(O, i).y = section(O, i).y * ducClength * (ducCthickness / 0.1) * D 
Next 

num_Ieading_Iowecpoints = ° 
num_trailing_lower_points = ° 
'track down the lower side of the duct section and remove the ring width 
For i = 1 To section_data(O).le_id 
'lower sections for duct without ring 
ducclower(l, i).x = -section(O, i).y 
ducclower(l, i).y = section(O, i).x 
ducClower(l, i).z = section(O, i).z 

'lower section for duct with ring 
'aft part of lower ducts section minus the ring width 
If section(O, i).x <= (final_section(num_sections, section_data(num_sections).le_id).y 
- ring_width * D / 100) Then 

'interpolate for the point on the ring_width 
If section(O, i-I ).x > (finaLsection(num_sections, 

section_data(num_sections).le_id).y - rin!L width * D / 100) Then 
num_trailing_Iower_points = num_trailing_lowecpoints + 1 
ducCtrailing_lower(l, num_trailing_Iower_points).y = finaLsection(num_sections, 

section_data(num_sections).le_id).y - ring_width * D / 100 
ducctrailing_lower(l, nllm_trailing_lower_points).x = -(((section(O, i-I ).y -

section(O, i).y) / (section(O, i-I ).x - section(O, i).x)) * ((finaLsection(nllm_sections, 
section_data(nllm_sections).le_id).y) - ring_width * D / 100 - section(O, i).x) + 
section(O, i).y) 

dllcCtrailing_lower(l, nllm_trailing_lower_points).z = ° 
End If 

nllm_trailing_lower_points = nllm_trailing_lowecpoints + 1 
dllcCtrailing_lower( I, nllm_trailing_lower_points).y = section(O, i).x 
dllcCtrailing_lower(l, nllm_trailing_lower_points).x = -section(O, i).y 
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ducCtrailing_lower(1, num_trailing_lowecpoints).z = ° 
End If 
'forward part of lower ducts section minus the ring width 
If section(O, i).x >= (final_section(num_sections, section_data(num_sections).te_id).y 
+ ring_width * D / 100) Then 
num_Ieadin~lower_points = num_Ieading_Iowecpoints + 1 
ducCleading_lower(l, num_Ieading_Iowecpoints).y = section(O, i).x 
ducCleading_lower(l, num_Ieading_Iowecpoints).x = -section(O, i).y 
ducCleading_lower(1, num_Ieading_Iower_points).z = ° 
'interpolate for the point on the ring_width 
If section(O, i + 1 ).x < (finaLsection(num_sections, 

section_data(num_sections).te_id).y + ring_width * D / 100) Then 
num_Ieading_Iowecpoints = num_Ieadin~lowecpoints + 1 
ducCleading_lower( 1, num_Ieading_Iowecpoints).y = finaLsection(num_sections, 

section_data(num_sections).te_id).y + ring_width * D / 100 
ducCleading_lower(1, num_Ieading_Iowecpoints).x = -(((section(O, i + l).y­

section(O, i).y) / (section(O, i + 1 ).x - section(O, i).x)) * (finaLsection(num_sections, 
section_data(num_sections).te_id).y + ring_width * D / 100 - section(O, i).x) + 
section(O, i).y) 

ducCleading_lower( 1, num_Ieading_Iowecpoints).z = ° 
End If 

End If 
Next 

'upper part of duct section 

num_uppecpoints = ° 
For i = section_data(O).le_id To section_data(O).num_points 
num_uppecpoints = num_uppecpoints + 1 
ducCupper(1, num_uppecpoints).y = section(O, i).x 
ducCupper(1, num_uppecpoints).x = -section(O, i).y 
duccupper(1, num_uppecpoints).z = ° 
Next 

'move section to correct radius 
radius = D / 2 'Sqr(finaLsection(num_sections, section_data(l).le_id).x 1\ 2 + 
final_section(num_sections, section_data(1).le_id).z 1\ 2) 

x_offset = radius '- ducCtrailin~lower(1, 1 ).x 

For i = 1 To num_Ieading_Iowecpoints 
duccleadin~lower( I, i). x = duccleadin~lower( 1, i).x + x_offset 
Next 

For i = 1 To num_trailing_lower_points 
ducctrailing_lower( I, i).x = ducctrailing_Iower(1, i).x + x_offset 
Next 

For i = 1 To num_uppecpoints 
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duccupper(l, i).x = duccupper(1, i).x + x_offset 
Next 

'lower sections for duct without ring 
For i = 1 To section_data(O).le_id 
ducClower( I, i).x = ducClower(1, i).x + x_offset 
Next 

'''other duct sections that are rotated 
'duccimages = 4 
'9 is the number of strips for duct ie 10 sections 
'cannot use one because the shape is not circular 
duccrev _angle_step = -2 * pi / duccimages / 9 

For j = I To 9 
duccrev _angle = ducCrev _angle + duccrev _angle_step 
For i = 1 To num_Ieading_Iowecpoints 
ducCIeading_Iower(j + 1, i).y = ducCleadin~Iower( 1, i).y 
ducCleading_lower(j + 1, i).x = Cos(duccrev_angIe) * ducCleading_Iower(1, i).x + 
Sin(ducCrev _angle) * ducCleading_Iower(l, i).z 
duccleading_lower(j + I, i).z = -Sin(duccrev _angle) * ducCleading_Iower(l, i).x + 
Cos( duccrev 3ngle) * ducCleading_lower( I, i).z 
Next 

For i = I To num_trailing_lower_points 
ducctrailin~lower(j + I, i).y = ducCtrailing_lower(1, i).y 
ducctrailing_Iower(j + 1, i). x = Cos(duccrev _angle) * ducCtrailing_lower(1, i).x + 
Sin(ducCrev _angle) * ducCtrailing_Iower(1, i).z 
ducctrailing_Iower(j + 1, i).z = -Sin(duccrev _angle) * ducctrailing_Iower(1, i).x + 
Cos(duccrev _angle) * ducctrailing_lower(l, i).z 
Next 

For i = 1 To num_uppecpoints 
duccupper(j + 1, i).y = duccupper(l, i).y 
duccupper(j + 1, i).x = Cos(ducCrev _angle) * duccupper(l, i).x + 
Sine ducCrev _angle) * ducCupper(1, i).z 
duccupper(j + 1, i).z = -Sin(ducCrev_angle) * duccupper(1, i).x + 
Cos(duccrev_angle) * ducCupper(1, i).z 
Next 

'seconf lower section for duct without ring 
For i = 1 To section_data(O).le_id 
ducClower(j + I, i).y = ducUower( I, i).y 
ducClower(j + I, i).x = Cos(duccrev_angle) * ducclower(1, i).x + 
Sin(duccrev _angle) * ducclower(1, i).z 
ducClower(j + I, i).z = -Sin(duccrev_angle) * ducclower(1, i).x + 
Cos( duccrev _angle) * ducclower(l, i).z 
Next 
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Nextj 

'draw arcs of duct 
num_duccarc_points = 36 
ReDim ducCleading_arc(lO, num_duccarc_points) 
ReDim ducCtrailing_arc( I 0, num_duccarc_points) 
ReDim ducCleading_Iower _arc( I 0, num_duccarc_points) 
ReDim ducctrailing_lower_arc( I 0, num_duccarc_points) 

starcangle = pi / 2 - ducCrev _angle_step 
For j = I To 9 

starCangle = starcangle + ducCrev _angle_step 
end_angle = starcangle + ducCrev _angle_step 
'trailing edge arc 
radius = Sqr(ducCupper(l, I).x 1\ 2 + duccupper(l, I).z 1\ 2) 

offset = ducCupper(l, I ).y 
Call arcs(ducCtrailing3rcO, starcangle, end_angle, radius, 0, offset, 0, 
num_duccarc_points, 1, j) 

'leading edge arc 
radius = Sqr(ducCleading_lower(l, I ).x 1\ 2 + ducCleading_lower(l, I ).z 1\ 2) 

offset = ducCleading_lower( I, I ).y 
Call arcs(ducCleading_arcO, starcangle, end_angle, radius, 0, offset, 0, 
num_duccarc_points, 1, j) 

'trailing lower edge arc 
radius = Sqr(ducCtrailing_lower(l, I).x 1\ 2 + ducctrailing_lower(1, l).z 1\ 2) 

offset = ducctrailing_Iower(l, 1 ).y 
Call arcs(ducctrailing_IowecarcO, starcangle, end_angle, radius, 0, offset, 0, 
num_duccarc_points, 1, j) 

'leading lower edge arc 
radius = Sqr(ducCleading_lower(l, num_Ieading_Iowecpoints).x 1\ 2 + 
ducCleadin~lower( I, num_Ieading_Iowecpoints).z 1\ 2) 

offset = ducCleading_lower( 1, num_Ieading_Iowecpoints).y 
Call arcs(ducCleading_lowecarcO, starcangle, end_angle, radius, 0, offset, 0, 
num_duccarc_points, I, j) 
Nextj 
End Sub 

Public Sub ring_Ieading_section(rin~width) 
Dim num_edge_points, i, j As Integer 
Dim psi, dpsi, r, P As Single 
Dim angle, angle_step As Single 
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'set point to trailing edge of first section 
ring_Ieading_end( I, I ).x = finaI_section(num_sections, 
section_data(num_sections).le_id).x 
ring_Ieading_end(1, I ).y = final_section(num_sections, 
section_data(num_sections).Ie_id).y 
ring_Ieading_end( I, I ).z = final_section(num_sections, 
section_data(num_sections).le_id).z 

r = Sqr(ring_Ieading_end( I, I ).z 1\ 2 + ring_Ieading_end( I, I ).x 1\ 2) 

P = propdata(num_sections).pitch * D 
If P = 0 Then P = 0.1 
'calculate the start angle and the step angle 

'calculate start psi so it matches with leading edge of section 
psi = (finaLsection(num_sections, section_data(num_sections).le_id).y / P) * 2 * pi 
'step dpsi for the set number of steps 
dpsi = (((( -ring_width / 2) - ring_Ieading_end(l, I ).y) / P) * 2 * pi) / 
(num_edge_points - I) 
psi = psi ' - dpsi 
'helical edge 
'********************** 
For i = 2 To num_edge_points 
psi = psi + dpsi 
ring_Ieading_end(l, i).x = r * Cos(psi) 
ring_Ieading_end( I, i).y = (P * psi) / (2 * pi) 
ring_Ieading_end(1, i).z = -r * Sin(psi) 
Next 

End Sub 

Public Sub hub_trailing_section(hub_length) 
Dim psi, dpsi, r As Single 
Dim P As Single 
Dim num_edge_points, i, j As Integer 
Dim angle 

num_edge_points = 100 
ReDim hub_trailing_endC 10, num_edge_points) 

'set point to trailing edge of section 
hub_trailing_endC I, I ).x = finaLsection( I, section_data( 1 ).te_id).x 
hub_trailing_end(1, I ).y = final_section(1, section_data(1 ).te_id).y 
hub_trailing_end(1, I ).z = final_section(1, section_data(1 ).te_id).z 

r = SqrChub_trailing_end(l, I ).z 1\ 2 + hub_trailing_end(1, l).x 1\ 2) 
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'set the pitch of the hub to the wake and not the blade so 
'there are no problems with wake influence on hub 
P = find_traiIing_edge_pitch(l) 
IfP = 0 Then P = 0.01 

'calculate dpsi such that the hub length is correct 
dpsi = ((((hub_length / 2) - hub_trailing_end(l, 1).y) / (P * D)) * 2 * pi) / 
(num_edge_points - 1) 

'helical edge 
'********************** 
For i = 2 To num_edge_points 
'use te as starting point to ensure perfect match 
hub_traiIin~end(l, i).x = hub_trailing_end(l, i - I).x * Cos( -dpsi) -
hub_traiIing_end(l, i - 1).z * Sin(-dpsi) 
hub_trailing_end(l, i).z = hub_traiIing_end(l, i - I).x * Sine -dpsi) + 
hub_traiIin~end( I, i-I ).z * Cos( -dpsi) 
hub_trailing_end(l, i).y = hub_traiIing_end(l, i-I ).y + (P * D * dpsi) / (2 * pi) 

Next 

End Sub 
Public Sub ring_trailing_section(ring_width) 
Dim psi, dpsi, r As Single 
Dim P As Single 
Dim num_edge_points, i, j As Integer 
Dim angle 

num_edge_points = 100 
ReDim rin~trailing_end( I 0, num_edge_points) 

'set point to trailing edge of section 
ring_traiIing_end( 1, I ).x = finaLsection(num_sections, 
secti on_data( num_sections). te_id).x 
ring_traiIing_end(l, I). Y = final_section(num_sections, 
section_data( num_sections). te_id). y 
ring_traiIing_end( I, I ).z = finaLsection(num_sections, 
secti on_data(num_sections). te_id).z 

r = Sqr(ring_trailing_end(l, I ).z /\ 2 + ring_traiIing_end(l, I ).x /\ 2) 

P = propdata(num_sections).pitch 
If P = 0 Then P = 0.1 

'calculate the starting psi so it matches the trailing end 
psi = (finaLsection(num_sections, section_data(num_sections).te_id).y / P) * 2 * pi 
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dpsi = ((((ring_width / 2) - ring_trailin~end(1, I).y) / P) * 2 * pi) / (num_edge_points 
- 1) 
psi = psi ' - dpsi 

'helical edge 
'********************** 
For i = 2 To num_edge_points 
psi = psi + dpsi 
ring_trailing_end(1, i).x = r * Cos(psi) 
ring_trailing_end(l, i).y = (P * psi) / (2 * pi) 
ring_trailing_end(l, i).z = -r * Sin(psi) 
Next 

End Sub 

Public Sub ring_arcO 
Dim no_oCpoints As Integer 
Dim xl, y1, x2, y2 As Single 
Dim radius As Single 
Dim ang1e_oCrevolution As Double 
Dim angle, step_angle As Single 
Dim starCangle, end_angle As Single 
Dim f As Single 

no_oCpoints = 121 

ReDim ring_Ieadin~edge(no_oCpoints) 
ReDim ring_trailing_edge(no_oCpoints) 
'Call ca1culate_trailing_end_oCring(no_oCpoints) 
'Call ca1cu1ate_1eading_end_oCring(no_oCpoints) 
'Call ca1culate_second_end_oCring 
radius = Sqr(final_section(num_sections, section_data(num_sections).le_id).x A 2 + 
finaLsection(num_sections, section_data(num_sections).1e_id).z A 2) 

'set beginning of arc for ring 
f = (finaLsection(num_sections, section_data(num_sections).te_id).z / radius) 
'position of end on ring 

Select Case f 
Case Is = -1 
If f > 0 Then starcangle = pi 
If f < 0 Then starcangle = 0 
Case Is = 1 
If f > 0 Then starcangle = 0 
If f < 0 Then starcangle = pi 
Case Is <> 1, -I 
'If f > 0 Then 
starcangle = pi / 2 - asin(f) 
'If f < 0 Then starcangle = pi / 2 + asin(f) 
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End Select 
end_angle = starcangle + 2 * pi / no_oCblades 
'draws arc 
Call arc(rin~trailing_edgeO, starcangle, end_angle, radius, 0, 
finaLsection(num_sections, section_data(num_sections).te_id).y, 0, no_oCpoints, 1) 

'other arc of ring 

f = (finaLsection(num_sections, section_data(num_sections).le_id).z / radius) 
'position of end on ring 
Select Case f 
Case Is =-1 
If f > ° Then starcangle = ° 
If f < ° Then starcangle = pi 
Case Is = 1 
If f > ° Then starcangle = ° 
If f < ° Then starcangle = pi 
Case Is <> 1, -1 
If f > ° Then starcangle = pi / 2 - asin(f) 
If f < ° Then starcangle = 3 * pi /2 + asin(f) 
End Select 
end_angle = starcangle + 2 * pi / no_oCblades 
'draws arc 
Call arc(ring_Ieading_edgeO, starcangle, end_angle, radius, 0, 
final_section(num_sections, section_data(num_sections).le_id).y, 0, no_oCpoints, 1) 
End Sub 
Public Sub arcs(cyc1os0 As section, starcangle, end_angle, radius, x_offset, y_offset, 
z_offset, no_oCpoints, Axis, section_number As Integer) 
'draws arcs given a start and finish angle 
'same as arc procedure but has two dimensional array support 
'axis decides avout which axis 
'0 is x, I is y, 2 is z 
'x_offset etc is the position of the centre 

Dim i As Integer 
Dim angle_oCrevolution, step_angle, angle As Single 

step_angle = (end_angle - starcangle) / (no_oCpoints - 1) 
angle = start~angle - step_angle 
If Axis = ° Then 
For i = 1 To no_oCpoints 
angle = angle + step_angle 
cyc1os(section_number, i).x = x_offset 
cyc1os(section_number, i).y = Sin(angle) * radius + y_offset 
cyc1os(section_number, i).z = Cos (angle) * radius + z_offset 
Next 
End If 

If Axis = I Then 
For i = 1 To no_oCpoints 
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angle = angle + step_angle 
cyclos(section_number, i).x = Sin(angle) * radius + x_offset 
cyclos(section_number, i).y = y_offset 
cyclos(section_number, i).z = Cos(angle) * radius + z_offset 
Next 
End If 

If Axis = 2 Then 
For i = I To no_oCpoints 
angle = angle + step_angle 
cyclos(section_number, i).x = Sin(angle) * radius + x_offset 
cyclos(section_number, i).y = Cos(angle) * radius + y_offset 
cyclos(section_number, i).z = z_offset 

Next 
End If 

End Sub 

Public Sub arc(cyclosO As section, starcangle, end_angle, radius, x_offset, y_offset, 
z_offset, no_oCpoints, Axis) 
'draws arcs given a start and finish angle 
'axis decides about which axis 
'0 is x, I is y, 2 is z 
'x_offset etc is the position of the centre 

Dim i As Integer 
Dim angle_oCrevolution, step_angle, angle As Single 

step_angle = (end_angle - starcangle) / (no_oCpoints - 1) 
angle = starcangle - step_angle 
If Axis = 0 Then 
For i = I To no_oCpoints 
angle = angle + step_angle 
cyclos(i).x = x_offset 
cyclos(i).y = Sin(angle) * radius + y_offset 
cyclos(i).z = Cos(angle) * radius + z_offset 
Next 
End If 

If Axis = I Then 
For i = I To no_oCpoints 
angle = angle + step3ng1e 
cyclos(i).x = Sin(angle) * radius + x_offset 
cyc1os(i).y = y_offset 
cyclos(i).z = Cos(angle) * radius + z_offset 
Next 
End If 
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If Axis = 2 Then 
For i = I To no_oLpoints 
angle = angle + step_angle 
cycIos(i).x = Sin(angle) * radius + x_offset 
cycIos(i).y = Cos(angle) * radius + y_offset 
cycIos(i).z = z_offset 

Next 
End If 

End Sub 
Private Sub caIculate_trailing_end_oLring(num_edge_points) 
Dim psi, phi, dpsi, r As Single 
Dim P As Single 
Dim i As Integer 

ReDim ring_trailing_end(num_edge_points) 

'set point to trailing edge of section 
ring_trailing_end( I ).x = final_section(num_sections, 
section_data(num_sections).te_id).x 
ring_trailing_end( 1). Y = final_section(num_sections, 
section_data(num_sections).te_id).y 
ring_trailing_end( 1 ).z = finaLsection(num_sections, 
section_data( num_sections). te_id).z 

r = Sqr(ring_trailing_end(1).z A 2 + ring_trailing_end(l).x A 2) 

'Calculate phi 
P = propdata(num_sections).pitch 
If P = 0 Then P = 0.1 
phi = Atn(2 * pi * riP) 
psi = section(num_sections, section_data(num_sections).te_id).x I Sqr(r A 2 + (P 1(2 * 
pi)) A 2) 
dpsi = ((((ring_width I 2) - ring_trailin~end(l).y) I P) * 2 * pi) I (num_edge_points -
I) 
psi = psi' - dpsi 
'helical edge 
'********************** 
For i = 2 To num_edge_points 
psi = psi + dpsi 
ring_trailing_end(i).x = r * Cos(psi) 
ring_trailing_end(i).y = (P * psi) I (2 * pi) 
ring_trailing_end(i).z = -r * Sin(psi) 
Next 
End Sub 
Public Sub second_hub_endO 
'routine that claculates the second end of the hub 
'it takes the two helixs from and rotates them by 390/no_oLblades 
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'and half the section of the root blade 
Dim i, j As Integer 
Dim angle As Single 
num_hub_section_points = section_data(l).le_id + I 
ReDim hub_section_edge( I 0, num_hub_section_points) 

angle = 2 * pi / no_oCblades 

For i = 1 To section_data(l ).le_id 
hub_section_edge(lO, i).x = Cos(angle) * final_section(l, i).x + Sin(angle) * 
finaLsection(l, i).z 
hub_section_edge(lO, i).y = finaLsection(l, i).y 
hub_section_edge(lO, i).z = -Sin(angle) * final_section(l, i).x + Cos(angle) * 
finaLsection(l, i).z 
Next 
End Sub 
Public Sub secondJing_endO 
'routine that calculates the section on the other side of the ring 

Dim i, j As Integer 
Dim angle As Single 
num_ring_section_points = Abs(section_data(num_sections).num_points -
section_data(num_sections).le_id) + 1 
ReDim ring_section_edge(num_ring_section_points) 

angle = 2 * pi / no_oCblades 

For i = 1 To section_data(num_sections).le_id 
ring_section_edge(i).x = Cos(angle) * final_section(num_sections, i).x + Sin(angle) * 
final_section(num_sections, i).z 
ring_section_edge(i).y = finaLsection(num_sections, i).y 
ring_section_edge(i).z = -Sin(angle) * finaLsection(num_sections, i).x + Cos(angle) * 
finaLsection(num_sections, i).z 
Next 
End Sub 

Public Sub wakesheet(wake_Iength) 
Dim i, j As Integer 
Dim variabIe_P, average_P, P As Single 
Dim psi, dpsi, r As Single 
Dim contraction_factor As Single 
Dim starcpsi, y_offset As Single 
Dim wake_r As Single 
Dim xsi As Single 
Dim fun As Single 
Dim slip_ratio As Single 
Dim advance_ratio As Single 
Dim n As Single 
Dim pw As Single 
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no_oLwake_points = 300 
ReDim wake(num_sections, no_oLwake_points) 

transition_length = transition_length * D 
'find average_pitch 
For j = I To num_sections 
average_P = average_P + propdataU).pitch 
Next 
average_P = average_P / num_sections 

'advance speed 

advanceJatio = va / (rps * D) 
slip_ratio = 1 - advance_ratio / average_P 

'final wake contraction 
wake_r = (1 - wake_contraction_value) + wake_contraction_value * (0.887 - 0.125 * 
slip_ratio) 
'pitch_contraction = (1 - 0.293 * slip_ratio) 
If wake_r > 1 Then wake_r = 1 

If wake_pitch_set <= 0 Then 
'final wake pitch 
pw = 0.5 * (advance_ratio + average_P) 
Else 
'preset value 
pw = wake_pitch_set 
End If 

'increment angle step for wake 
dpsi = (2 * pi * wake_length / ((average_P / 2 + 4.5 * pw) / 5)) / no_oLwake_points 

For j = I To num_sections 
r = propdataU).radius 

'blade pitch for each section 
'P = propdataU).pitch 
'P = find_traiIing_uppecedge_pitchU) 
P = find_trailing_edge_pitchU) 
If P < 0 Then P = 0.01 

'set intial pitch of the wake to the propeller pitch 
variable_P = P 

'first point of wake on trailing edge 
wakeU, 1 ).y = final_sectionU, section_dataU).te_id).y 
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wakeU, 1 ).x = finaLsectionU, section_dataU).te_id).x 
wakeU, 1).z = finaLsectionU, section_dataU).te_id).z 

wakeU, i).y = wakeU, i-I ).y + (variable_P * D * dpsi) / (2 * pi) 

If wakeU, i).y < transition_length Then 
, 

'transition polynomial for pitch variation 
'same for contraction 
xsi = (wakeU, i).y - wakeU, 1).y) / (transition_length - wakeU, 1).y) 
If xsi < 0 Then xsi = 0 
fun = Sqr(xsi) + 1.0 I3 * xsi - 1.92 * xsi /\ 2 + 1.228 * xsi /\ 3 - 0.321 * xsi /\ 4 

variable_P = P - (P - pw) * fun 
'variable_P = P - (P - pw) * (wakeU, i).y / transition_length) 

Else 
variable_P = pw 
End If 

wakeU, i).x = wakeU, i-I ).x * Cos( -dpsi) - wakeU, i - l).z * Sine -dpsi) 
wakeU, i).z = wakeU, i-I ).x * Sin(-dpsi) + wakeU, i - 1).z * Cos(-dpsi) 

Next 

'contract the wake 
'******************************************************************** 
**** 
If wake_r < 1 Then 
Dim f(7) As Single 
f(2) = 0.27 
f(3) = 0.5 
f(4) = 0.65 
f(5) = 0.7 
f(6) = 0.87 
f(7) = 0.95 

For i = 2 To no_oL wake_points 
If wakeU, i).y < transition_length Then 
, 
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'transition polynomial for contraction shape 
xsi = (wake(j, i).y - wake(j, I ).y) 1 (transition_length - wake(j, I ).y) 
If xsi < 0 Then xsi = 0 
fun = Sqr(xsi) + 1.013 * xsi - 1.92 * xsi 1\ 2 + 1.228 * xsi 1\ 3 - 0.32 I * xsi 1\ 4 

'contarction value = I for full effect and =0 for no contraction 
contraction_factor = I - (I - wake_r) * fun 
Else 
contraction_factor = wake_r 
End If 

'no contraction on first few points for first section to avoid intersection with hub 
'If i = 2 Then contraction_factor = I 
If i > I And i < 8 Then 
contraction_factor = (l - (l - contraction_factor) * f(i)) 
End If 
'smooth transition 

wake(j, i).x = wake(j, i).x * contraction_factor 
wake(j, i).z = wake(j, i).z * contraction_factor 
Next 
End If 
'end of wake contraction 

Next 

End Sub 
Private Function find_trailing_edge_pitch(j) As Single 
Dim average_z As Double 
Dim average_y As Double 
Dim temp As Double 

average_z = (finaLsection(j, 2).z + finaLsection(j, section_data(j).num_points - I ).z) 
12 
average_y = (finaLsection(j, 2).y + finaLsection(j, section_data(j).num_points - l).y) 
12 

temp = (final_section(j, I ).y - average_y) 1 (average_z - finaLsection(j, I ).z) 
find_trailing_edge_pitch = temp * 2 * pi * propdata(j).radius 1 D 

End Function 
Private Function find_trailing_upper_edge_pitch(j) As Single 
Dim average_z As Double 
Dim average_y As Double 
Dim temp As Double 

average_z = final_section(j, section_data(j).num_points - l).z 
average_y = finaLsection(j, section_data(j).num_points - I ).y 
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temp = (final_sectionU, I ).y - average_y) / (average_z - finaLsectionU, I ).z) 
find_trailing_uppecedge_pitch = temp * 2 * pi * propdataU).radius / D 

End Function 

Private Sub calculate_second_end_oLringO 
'routine that calculates the second section of the ring 
Dim i, j, num_edge_points As Integer 
Dim angle As Single 
num_edge_points = 100 
num_edge_section_points = Abs(section_data(num_sections).num_points -
section_data(num_sections).le_id) + I 

angle = 2 * pi / no_oLblades 

For i = I To section_data(num_sections).le_id 
ring_section_edge( 10, i).x = Cos(angle) * final_section(num_sections, i).x + 
Sin(angle) * finaLsection(num_sections, i).z 
ring_section_edge( I 0, i).y = final_section(num_sections, i).y 
ring_section_edge(lO, i).z = -Sin(angle) * finaLsection(num_sections, i).x + 
Cos(angle) * final_section(num_sections, i).z 
Next 

End Sub 
Private Sub calculate_leading_end_oLring(num_edge_points) 
Dim i As Integer 
Dim psi, phi, dpsi, r, P As Single 

'set point to trailing edge of section 
ring_leading_end( I ).x = finaLsection(num_sections, 
section_data(num_sections ).le_id).x 
ring_Ieading_end(l).y = final_section(num_sections, 
section_data(num_sections).le_id).y 
ring_Ieading_end( I ).z = finaLsection(num_sections, 
section_data(num_sections).le_id).z 

r = Sqr(ring_Ieading_end(l ).z 1\ 2 + ring_Ieadin~end(l).x 1\ 2) 

'Calculate phi 
P = propdata(num_sections).pitch 
IfP = 0 Then P = 0.1 
phi = Atn(2 * pi * r / P) 
psi = section(num_sections, section_data(num_sections).le_id).x / Sqr(r 1\ 2 + (P / (2 * 
pi» 1\ 2) 
dpsi = ((((-ring_width / 2) - ring_Ieading_end(l).y) / P) * 2 * pi) / (num_edge_points­
I) 
psi = psi 
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'helical edge 
'********************** 
For i = 2 To num_edge_points 
psi = psi + dpsi 
ring_Ieading_end(i).x = r * Cos(psi) 
ring_Ieading_end(i).y = (P * psi) / (2 * pi) 
ring_Ieading_end(i).z = -r * Sin(psi) 
Next 

End Sub 
Public Sub rans_domainO 
Dim i, j As Integer 
Dim variable_P, average_P, P As Single 
Dim psi, dpsi, r As Single 
Dim contraction_factor As Single 
Dim starcpsi, y _offset As Single 
Dim wake_r As Single 
Dim xsi As Single 
Dim fun As Single 
Dim slip_ratio As Single 
Dim advance_ratio As Single 
Dim n As Single 
Dim pw As Single 
Dim wake_length As Single 

no_oCwake_points = 300 
ReDim wake(num_sections, no_oCwake_points) 

wake_length = blade_ wake_length 
transition_length = transition_length * D 

'find average_pitch 
For j = I To num_sections 
average_P = average_P + propdataU).pitch 
Next 
average_P = average_P / num_sections 

'advance speed 

advance_ratio = va / (rps * D) 
slip_ratio = I - advance_ratio / average_P 

If wake_pitch_set <= 0 Then 
'final wake pitch 
pw = 0.5 * (advance_ratio + average_P) 
Else 
'preset value 
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pw = wake_pitch_set 
End If 

'increment angle step for wake 
dpsi = (2 * pi * wake_length / ((average_P / 2 + 4.5 * pw) / 5)) / no_oLwake_points 

Dim vectocmagnitude As Single 

'first point of wake on trailing edge 
wake( I, I) = finaLsection( I, section_data( I ).te_id) 
Call rotate_point(wake(l, 1),60 * pi / 180, 1) 

'create starting point for outer helix 
'by extending line perpenticular to hub to 2.5 D 
wake(2, I ).y = wake(l, I ).y 
vectocmagnitude = Sqr( wake(l, I ).x 1\ 2 + wake(l, I ).z 1\ 2) 
wake(2, I ).z = 1.25 * D * wake(l, I ).z / vector_magnitude 
wake(2, I ).x = 1.25 * D * wake( I, I ).x / vectocmagnitude 

'create the to helixes 
'******************************************************************** 
* 
For j = I To 2 

'blade pitch for each section 
P = find_trailinR-edge_pitch(l) 

If P = 0 Then P = 0.01 

'set intial pitch of the wake to the propeller pitch 
variable_P = P 

If j = 2 Then r = 1.24 * D 
If j = I Then r = propdata( I ).radius 

wake(j, i).y = wake(j, i-I ).y + (variable_P * D * dpsi) / (2 * pi) 

If wake(j, i).y < transition_length Then 

'transition polynomial for pitch variation 
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'same for contraction 
xsi = (wakeU, i).y - wakeU, I ).y) / (transition_length - wakeU, I ).y) 
fun = Sqr(xsi) + 1.013 * xsi - 1.92 * xsi A 2 + 1.228 * xsi A 3 - 0.321 * xsi A 4 

variable_P = P - (P - pw) * fun 

Else 
variable_P = pw 
End If 

wakeU, i).x = wakeU, i - I).x * Cos(-dpsi) - wakeU, i - I).z * Sin(-dpsi) 
wakeU, i).z = wakeU, i - I).x * Sin(-dpsi) + wakeU, i - l).z * Cos(-dpsi) 

Next 

Next 

'******************************************************************** 
****** 
'Create outer helix in hub area 
'******************************************************************** 
****** 
Dim tempe 1 00) As section 

'point upstream 
wake(3, I) = finaI_section( I, section_data( I) .Ie_id) 
Call rotate_point(wake(3, 1),60 * pi /180, I) 
vectocmagnitude = Sqr(wake(3, I).x A 2 + wake(3, I).z A 2) 
wake(3, 1 ).z = 1.25 * D * wake(3, I ).z / vector_magnitude 
wake(3, 1 ).x = 1.25 * D * wake(3, 1 ).x / vectocmagnitude 

Call helix_from_poincto_point(wake(3, I), wake(2, 1), tempO, 100) 
Forj=ITol00 

wake(3, j).x = tempU).x 
wake(3, j).y = tempU).y 
wake(3, j).z = tempU).z 

Next 

End Sub 

Public Sub calculatcfinaI_sectionsO 
Dim i, j As Integer 
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ReDim final_section(num_sections, section_data(l ).num_points) 
For j = I To num_sections 
For i = I To section_dataU).num_points 
final_sectionU, i).x = section( I, i).x * propdataU).chord 
finaLsectionU, i).y = section(l, i).y * propdataU).chord 

Next 
Next 
End Sub 
Public Sub transform_section(section_number, chord, thickness) 
Dim i As Integer 

'set correct thickness % 
'section fixed to 10% in fix sub 
For i = I To section_data(section_number).num_points 
section(section_number, i).y = section(section_number, i).y * (thickness / 0.1) 
Next 

'scale section to correct chord etc 
For i = 1 To section_data(section_number).num_points 
section(section_number, i).x = section(section_number, i).x * chord 
section(section_number, i).y = section(section_number, i).y * chord 
Next 

End Sub 
Public Sub helicaLsection(section_number, r, P, blade_rake) 
Dim t As Single 
Dim phi, psi, starCpsi As Single 
Dim i As Integer 
Dim y_offset As Single 
Dim Ctotal As Single 

'Calculate phi 
If P = 0 Then P = 0.1 
phi = Atn(P * D / (2 * pi * r)) 
starCpsi = propdata(section_number).skew / Sqr(r 1\ 2 + (P * D / (2 * pi)) 1\ 2) 

'y_offset = -(starCpsi / (2 * pi)) * P * D 

'Map onto helix 
'********************** 
For i = 1 To section_data(section_number).num_points 
psi = starcpsi + section(section_number, i).x / Sqr(r 1\ 2 + (P * D / (2 * pi)) 1\ 2) 
t = section(section_number, i).y 
final_section(section_number, i).x = r * Cos(psi - t / r * Sin(phi)) 
finaLsection(section_number, i).y = y_offset + blade_rake + (P * psi * D) / (2 * pi) + 
t * Cos(phi) 
finaLsection(section_number, i).z = -r * Sin(psi - t / r * Sin(phi)) 
Next 

183 



End Sub 
Public Sub hub_arc(hub_Iength) 
Dim radius, f As Single 
Dim no_oLpoints As Integer 
Dim starcangle, end_angle As Single 

no_oLpoints = 121 

ReDim hub_trailing_edge(no_oLpoints) 
ReDim hub_Ieading_edge(no_oLpoints) 

radius = Sqr(final_section(1, section_data(l ).1e_id).x /\ 2 + finaLsection(1, 
section_data(1 ).le_id).z /\ 2) 

'set beginning of arc for hub 
f = (hub_trailing_end(1, 1 OO).z / radius) 'position of end on hub 

Select Case f 
Case Is =-1 
If hub_Ieading_end( 1, 1 OO).z > 0 Then starcangle = pi 
If hub_leading_end( 1, 1 OO).z < 0 Then starcangle = 0 
Case Is = 1 
If hub_Ieading_end( I, I OO).z > 0 Then starcangle = 0 
If hub_Ieading_end( I, I OO).z < 0 Then starcangle = pi 
Case Is <> 1, -1 
If hub_trailin!Lend( 1, 100).x > 0 Then starcangle = pi / 2 - Atn(f / Sqr( 1 - f * f)) 
If hub_traiIi ng_end(l , 100).x < 0 Then starcangle = 3 * pi /2 + Atn(f / Sqr(1 - f * f)) 
End Select 
end_angle = starcangle + 2 * pi / no_oLblades 
'draws arc 
Call arc(hub_trailing_edgeO, starcangle, end_angle, radius, 0, hub_length / 2, 0, 
no_oLpoints, I) 

'set beginning of arc for hub 
f = (hub_Ieading_end( 1, 1 OO).z / radius) 'position of end on hub 

Select Case f 
Case Is =-1 
If hub_Ieading_end( 1, 1 OO).z > 0 Then starcangle = pi 
If hub_Ieading_end( I, 1 OO).z < 0 Then starcangle = 0 
Case Is = 1 
If hub_Ieading_end( 1, 1 OO).z > 0 Then starcangle = 0 
If hub_Ieading_end( 1, 1 OO).z < 0 Then starcangle = pi 
Case Is <> 1, -1 
If hub_trailing_end( 1, 100).x > 0 Then starcangle = pi / 2 - Atn(f / Sqr( 1 - f * f)) 
If hub_trailing_end(l, 1 OO).x < 0 Then starcangle = 3 * pi /2 + Atn(f / Sqr(l - f * f)) 
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End Select 
end_angle = starCangIe + 2 * pi / no_oLbIades 
'draws arc 
Call arc(hub_Ieading_edgeO, starCangIe, end_angle, radius, 0, -hub_length / 2, 0, 
no_oLpoints, 1) 

End Sub 

Public Sub hub_arc_near_bladeO 
Dim radius, f As Single 
Dim no_oLpoints As Integer 
Dim starcangle, end_angle As Single 

ReDim hub_trailing_arc_connect(no_oLpoints) 
ReDim hub_Ieading_arc_connect(no_oLpoints) 

radius = Sqr(finaLsection(l, section_data(l ).le_id).x A 2 + final_section(1, 
section_data(l ).le_id).z A 2) 

'set beginning of arc for hub 
f = (hub_trailing_end( I ).z / radius) 'position of end on hub 

Select Case f 
Case Is = -I 
If hub_Ieading_end( I ).z > ° Then starCangle = pi 
If hub_Ieading_end( I ).z < ° Then starcangle = ° 
Case Is = I 
If hub_Ieading_end( I ).z > ° Then starcangle = ° 
If hub_Ieadin~end( I ).z < ° Then starcangIe = pi 
Case Is <> I, - I 
If hub_trailing_end(l ).x > ° Then starcangle = pi /2 - Atn(f / Sqr(1 - f * f)) 
If hub_trailin~end(l ).x < ° Then starcangle = 3 * pi /2 + Atn(f / Sqr(1 - f * f)) 
End Select 
end_angle = starcangle + 2 * pi / no_oLblades 
'draws arc 
Call arc(hub_trailing_arc_connectO, starcangle, end_angle, radius, 0, hub_length / 2, 
0, no_oLpoints, I) 

'set beginning of arc for hub 
f = (hub_Ieading_end(lOO).z / radius) 'position of end on hub 

Select Case f 
Case Is =-1 
If hub_leading_end( I ).z > ° Then starcangle = pi 
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If hub_Ieading_end( I ).z < 0 Then starCangle = 0 
Case Is = 1 
If hub_Ieadin~end(l).z > 0 Then starcangle = 0 
If hub_Ieading_end( I ).z < 0 Then starcangle = pi 
Case Is <> I, -1 
If hub_trailing_end(l ).x > 0 Then starcangle = pi / 2 - Atn(f / Sqr(l - f * f)) 
If hub_trailing_end(l).x < 0 Then starcangle = 3 * pi /2 + Atn(f / Sqr(l - f * f)) 
End Select 
end_angle = starcangle + 2 * pi / no_oCblades 
'draws arc 
Call arc(hub_Ieading_arc_connectO, starcangle, end_angle, radius, 0, -hub_length / 
2, 0, no_oCpoints, I) 

End Sub 
Public Sub fix_section(section_number) 
Dim i, j As Integer 
Dim min_x, max_x, factor, x As Single 
Dim min_y, max_y, max_thick, thick As Single 
Dim yup, ydn As Single 
Dim max_yup, max_ydn As Single 

min_x = 9999999 
max_x = -99999999 

'Call rotate_section(section_number) 

'find min and max x 
For i = I To section_data(section_number).num_points 
If section(section_number, i).x > max_x Then 
max_x = section(section_number, i).x 
'save trailing edge id 
section_data(section_number).te_id = i 
End If 
If section(section_number, i).x < min_x Then 
min_x = section(section_number, i).x 
'save leading edge id 
section_data(section_number).le_id = i 
End If 
Next 

'set chord length to unit length 
'set zero x at mid chord 
factor = max_x - min_x 
'y _offset = section(section_number, section_data(section_number).te_id).y 
For i = I To section_data(section_number).num_points 
section(section_number, i).x = (section(section_number, i).x - (max_x + min_x) / 2) / 
factor 
section(section_number, i).y = section(section_number, i).y / factor 
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Next 

'Open "temp" For Output As 1 
'find position of max thickness 
max_yup = 0 
max_ydn = 0 

For x = 0.5 To -0.5 Step -0.001 
i = 0 

Do 
i =i + 1 

Loop Until section(section_number, i).x < x 
j = section_data(section_number).num_points '+ 1 

Do 
j = j - I 

Loop Until section(section_number, j).x < x 

yup = ((section(section_number, i).y - section(section_number, i - 1).y) / 
Abs(section(section_number, i).x - section(section_number, i - 1).x)) * 
(section(section_number, i).x - x) + section(section_number, i).y 

ydn = ((section(section_number, j).y - section(section_number, j + 1 ).y) / 
Abs(section(section_number, j).x - section(section_number, j + 1 ).x)) * 
(section(section_number, j).x - x) + section(section_number, j).y 

If yup > max_yup Then max_yup = yup 
If ydn < max_ydn Then max_ydn = ydn 
'Print #1, x, thick, yup, ydn 

Next 
thick = Abs(max_yup - max_ydn) 
section_data(section_number).thickness = thick 
section_data(section_number).position = x 

'Close #1 

'set section to 10% thickness 
For i = 1 To section_data(section_number).num_points 
section(section_number, i).y = section(section_number, i).y * (0.1 / 
section_data( section_number). thi ckness) 
Next 

End Sub 
Public Sub read_section(section_number As Integer, section_file$) 
Dim i As Integer 

Open section_file$ For Input As 1 
Input #1, section_data(section_number).num_points 
For i = 1 To section_data(section_number).num_points 
Input #1, section(section_number, i).x, section(section_number, i).y 
Next 
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Close #1 

End Sub 
Public Sub read_cap_section(vO As section, section_file$) 
Dim i As Integer 

Open section_file$ For Input As I 
Input #1, cap_section_points 
ReDim v( cap_section_points) 
For i = I To cap_section_points 
Input #1, v(i).y, v(i).x 
v(i).z = 0 
Next 
Close #1 

End Sub 
Public Sub assign_ value(stcdummy$) 
Dim group As String 
Dim sub_group, property As String 

'get first three characters to decide what part it is 
'hub,duct etc 
group = Left(str_dummy$, 3) 

Select Case group 
Case "vol" 
Call gee val ue_from_stri ng( str _dumm y, vol ume_mesh) 
Case "duc" 
'******************************************************************** 
***** 
'duct 
'******************************************************************** 
***** 
sub_group = Mid(str_dummy$, 6, 2) 
'duct images 
If sub~roup = "im" Then Call geevalue_from_string(stcdummy, ducCimages) 
'duct thickness 
If sub_group = "th" Then Call gec value_from_string(stcdummy, ducethickness) 
'panel clustering 
If sub~roup = "P=" Then Call gecvalue_from_string(stcdummy, ducCP) 
If sub_group = "Q=" Then Call gecvalue_from_string(stcdummy, duct_Q) 

If sub_group = "Ie" Then 
property = Mid(stcdummy$, 8, I) 
'length 
If property = "n" Then Call geC value_from_string(stcdummy, ducClength) 
'leading lower duct panels 
If property = "a" Then Call geC value_from_string(str_dummy, 

duceleadi ng_lowecpanels_s) 
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End If 

'duct trailing lower panel s 
If sub_group = "tr" Then Call gee value_from_string(stcdummy, 
ducetrailing_lowecpanels_s) 
'ducepanels_nt 
If sub_group = "nt" Then Call gee value_from_string(stcdummy, ducepanels_t) 
'ducepanels_uppecns 
If sub_group = "up" Then Call geevalue_from_string(stcdummy, 
duceuppecpanels_s) 
'wake properties 
If sub_group = "wa" Then 
property = Mid(stcdummy$, I I, 6) 
'free wake ns 
If property = "free_n" Then Call geevalue_from_string(stcdummy, 
ducefreewake_panels_s) 
'fixed wake ns 
If property = "fixed_" Then Call gee value_from_string(stcdummy, 
ducefixed wake_panel s_s) 
'wake length as multiples of chord 
If property = "length" Then Call gee value_from_string(stcdummy, 
duce wake_length) 
'free wake length as a ratio of fixed wake length 
If property = "free_I" Then Call gee value_from_string(stcdummy, 
ducefreewake_Iength) 
End If 
'******************************************************************** 
*** 
'blade options 
'******************************************************************** 
*** 
Case "bla" 
'blade options 
sub_group = Mid(stcdummy$, 7, 2) 
'num of panels 
If sub_group = "nt" Then Call gee value_from_string(stcdummy, blade_panels_t) 
If sub-poup = "ns" Then Call geevalue_from_string(str_dummy, blade_panels_s) 
If sub_group = "nu" Then Call geevalue_from_string(stcdummy, no_oLblades) 
'increase panel in the radial direction by this factor 
If sub_group = "ti" Then Call gee value_from_string(stcdummy, blade_tip_cluster) 
'advance speed 
If sub_group = "ad" Then Call geevalue_from_string(stcdummy, va) 
'rev per second 
If sub_group = "rp" Then Call geevalue_from_string(str_dummy, rps) 
'panel clustering 
If sub_group = "P=" Then Call geevalue_from_string(str_dummy, blade_P) 
Ifsub_group = "Q=" Then Call geevalue_from_string(stcdummy, blade_Q) 

'wake properties 
If sub_group = "wa" Then 
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property = Mid(stcdummy$, 12, 6) 
'wake length 
If property = "length" Then Call geevalue_from_string(stcdummy, 
blade_ wake_length) 
'free wake length as % of wake length 
If property = "free_I" Then Call get_value_from_string(stcdummy, 
blade_freewake_length) 
'fixed wake panels 
If property = "fixed_" Then Call gee value_from_string(stcdummy, 
blade_fixedwake_panels_s) 
'free wake ns 
If property = "free_n" Then Call gee value_from_string(stcdummy, 
blade_freewake_panels_s) 
'wake contraction amount I for full 0 for none 
If property = "contra" Then Call gee value_from_string(stcdummy, 
wake_contraction_ value) 
'wake transition legth 
If property = "transi" Then Call gee val ue_from_stri ng(stcdummy, transition_length) 
'wake final pitch if negative calculated within the program 
If property = "finaL" Then Call geevalue_from_string(stcdummy, wake_pitch_set) 

End If 
'********************************************************** 
'Ring options 
'********************************************************** 
Case "rin" 
sub_group = Mid(str_dummy$, 6, 2) 

If sub_group = "sp" Then Call geevalue_from_string(stcdummy, ring_split) 
If sub_group = "st" Then Call geevalue_from_string(stcdummy, no_oCring_strips) 
If sub_group = "nt" Then Call gee value_from_string(str_dummy, rin~panels_t) 
If sub_group = "wi" Then Call gee value_from_string(str_dummy, ring_width) 
'********************************************************** 
'Hub options 
'********************************************************** 
Case "hub" 
sub_group = Mid(str_dummy$, 5, 2) 
If sub_group = "st" Then Call geevalue_from_string(stcdummy, no_oChub_strips) 
If sub_group = "nt" Then Call gee value_from_string(stcdummy, hub_panels_t) 
If sub_group = "ns" Then Call geevalue_from_string(stcdummy, hub_panels_s) 
If sub_group = "Ie" Then Call geevalue_from_string(stcdummy, hub_length) 
If sub_group = "vI" Then Call gee value_from_string(stcdummy, 
hub_ v _leading_factor) 
If sub_group = "vt" Then Call gee value_from_string(str_dummy, 
hub_ v _trailing_factor) 
If sub_group = "of" Then Call gee value_from_string(str_dummy, hub_offsee1e) 
'********************************************************** 
'Cap options 
'********************************************************** 
Case "cap" 
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sub_group = Mid(stcdummy$, 5, 2) 
If sub_group = "in" Then Call geevalue_from_string(stcdummy, internaLfraction) 
If sub_group = "si" Then Call geevalue_from_string(stcdummy, side_fraction) 
If sub_group = "nt" Then Call gee value_from_string(str_dummy, cap_panels_t) 
If sub_group = "ns" Then Call geevalue_from_string(stcdummy, cap_panels_s) 
If sub_group = "se" Then Call gee value_from_string(stcdummy, cap_auto) 
End Select 
End Sub 
Public Sub geevalue_from_string(stcdummy, value) 
Dim equal, counter As Integer 

counter = 0 
equal = 0 
Do 
counter = counter + I 
If Mid(stcdummy, counter, 1) = "=" Then equal = 1 
Loop While equal = 0 
value = val(Right(str_dummy, (Len(str_dummy) - counter))) 
End Sub 
Public Sub read_Iine(str_dummy) 
Dim comment As Integer 
Do 
comment = 0 
Do 
Input #7, stcdummy 
Loop While str_dummy = "" 
If Left(stcdummy, 1) = "!" Then comment = 1 
Loop While comment = 1 

End Sub 

Public Sub read_prop_dataO 
Dim header As String 
Dim stcdummy As String 
Dim i As Integer 
Dim strdummy As String 

Open working_pathS + "propelIer.dat" For Input As 1 
Input #1, headerS 
Input #1, stcdummy$ 
Call gee value_from_string(str_dummy$, num_sections) 
Input #1, stcdummy$ 
Call gee value_from_string(stcdummy$, D) 

ReDim propdata( -10 To num_sections) 

Input #1, strdummy$ 
For i = 1 To num_sections 
Input #1, propdata(i).radius, propdata(i).chord, propdata(i).skew, propdata(i).rake, 
propdata(i) .pitch, propdata(i).thickness 
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propdata(i).radius = propdata(i).radius * D / 2 
propdata(i).chord = propdata(i).chord * D 
propdata(i).rake = Tan(propdata(i).rake / 57.3) * propdata(i).radius 
propdata(i).skew = (propdata(i).skew / 57.3) * propdata(i).radius 
Next 
Close #1 

Open working_path$ + "propoptions.txt" For Input As 7 
Do 
Call read_Iine(stcdummy$) 
Call assign_ value(str_dummy$) 
Loop Until EOF(7) = True 
Close #7 

End Sub 
Public Sub spline_through_edgesO 

Dim leading_pointsO As section 
Dim trailing_pointsO As section 
Dim i As Integer 

ReDim leading_points(num_sections) 
ReDim trailing_points(num_sections) 

ReDim leading_spline( I 0 I) 
ReDim trailing_spline( I 0 I) 

For i = I To num sections 
leading_points(i).x = finaLsection(i, section_data(i).le_id).x 
leading_points(i).y = finaLsection(i, section_data(i).le_id).y 
leading_points(i).z = final_section(i, section_data(i).le_id).z 

trailing_points(i).x = finaLsection(i, section_data(i).te_id).x 
trailing_points(i).y = finaLsection(i, section_data(i).te_id).y 
trailing_points(i).z = finaLsection(i, section_data(i).te_id).z 
Next 

Call s_spline(1eading_pointsO, I, I, leading_spline, num_sections, 100) 
Call s_spline(trailing_pointsO, I, 1, trailing_spline, num_sections, 100) 

End Sub 

Public Sub hub_section_stripO 
Dim i As Integer 
Dim angle, angle_step As Single 

angle_step = (360/ no_oCblades / no_oChub_strips) / 57.2957795130823 
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angle = a 
For i = -1 To -no_oLhub_strips Step -1 
angle = angle + angle_step 
propdata(i).thickness = propdata(l ).thickness * eos(2 * angle) 
Next 

End Sub 
Public Sub helix_from_blade_leading_edge20 
Dim angle As Single 
Dim cosangle As Single 
Dim a, b, c, r, P As Single 
Dim psi, dpsi, phi, new_phi As Single 
Dim y_offset As Single 
Dim end_psi As Single 

Dim i, num_oLpoints As Integer 

num_oLpoints = 121 

b = Sqr((hub_Ieading_end(l, 1 ).x - hub_Ieading_end(l, 2).x) A 2 + 
(hub_1eading3nd(l, I).y - hub_Ieading_end(l, 2).y) A 2 + (hub_leading_end(l, I).z­
hub_Ieading_end(l, 2).z) A 2) 
c = Sqr((finaLsection(l, section_data(l).le_id).x - finaLsection(l, 
section_data(l ).le_id + 1 ).x) A 2 + (finaI_section(l, section_data(l ).le_id).y -
finaI_section(l, section_data(l ).Ie_id + l).y) A 2 + (finaLsection(l, 
section_data(l ).Ie_id).z - finaLsection(l, section_data(l ).le_id + 1 ).z) A 2) 
a = Sqr((hub_Ieading_end(l, 2).x - finaI_section(l, section_data(l).le_id + I).x) A 2 + 
(hub_leading_end(l, 2).y - finaI_section(l, section_data(l ).le_id + I ).y) A 2 + 
(hub_leading_end(l, 2).z - finaI_section(l, section_data(l).Ie_id + I).z) A 2) 
cosangle = (b A 2 + C A 2 - a A 2) / (2 * b * c) 
angle = Atn( -cosang1e / Sqr( -cosangle * cosangle + 1)) + 2 * Atn(l) 

'set point to leading edge of first section 
hub_helix_le(l ).x = finaLsection(l, section_data(l ).Ie_id).x 
hub_helix_le(l ).y = final_section(1, section_data(l ).Ie_id).y 
hub_helix_le( 1 ).z = final_section( 1, section_data( I ).le_id).z 

phi = Atn(propdata(I).pitch * D / (2 * pi * r)) 
new_phi = (phi + angle / 2) 

P = Tan(new _phi) * 2 * pi * r + hub_ v _Ieadin~factor 

If P = a Then P = 0.05 
'calculate the start angle and the step angle 
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'calculate start psi so it matches with leading edge of section 
psi = -Atn((final_section( I, section_data( I ).le_id).z / r) / Sqr( -(finaLsection( 1, 
section_data(l).le_id).z / r) A 2 + 1» 
end_psi = -(2 * pi / no_oLblades) * (propdata(l).pitch * D) / (P - (propdata(l).pitch * 
D» 
dpsi = end_psi / (num_oLpoints - 1) 
psi = psi - dpsi 
'helical edge 
'********************** 
For i = I To Int(num_oLpoints / 2) 
psi = psi + dpsi 
hub_helix_le(i).x = r * Cos(psi) 
hub_helix_le(i).y = (P * psi) / (2 * pi) 
hub_helix_le(i).z = -r * Sin(psi) 
Next 

y_offset = finaLsection(l, section_data(l).le_id).y - hub_helix_Ie(1).y 

'move helix so it matches blade Ie 
For i = 1 To num_oLpoints 
hub_helix_le(i).y = hub_helix_le(i).y + y_offset 
Next 

Dim temp(70) As section 

Call helix_from_poincto_point(hub_helix_le(lnt(num_oLpoints /2», 
hub_section_edge( 1 0, section_data( 1 ).le_id), tempO, num_oLpoints -
Int(num_oLpoints /2) 

For i = Int(num_oLpoints / 2) + 1 To num_oLpoints 
hub_helix_le(i).x = temp(i - Int(num_oLpoints /2».x 
hub_helix_Ie(i).y = temp(i - Int(num_oLpoints /2».y 
hub_helix_le(i).z = temp(i - Int(num_oLpoints / 2)).z 
Next 

End Sub 
Public Sub ring_helix_from_blade_leading_edgeO 
Dim angle As Single 
Dim cosangle As Single 
Dim a, b, c, r, P As Single 
Dim psi, dpsi, phi, new_phi As Single 
Dim y_offset As Single 
Dim end_psi As Single 

Dim i, num_oLpoints As Integer 

num_oLpoints = 121 
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b = Sqr((ring_Ieading_end(1, I).x - ring_Ieading_end(1, 2).x) /\ 2 + 
(ring_Ieading_end(1, I ).y - ring_Ieading_end(l , 2).y) /\ 2 + (ring_Ieading_end(1, I ).z 
- ring_Ieading_end(1, 2).z) /\ 2) 
c = Sqr((finaLsection(num_sections, section_data(num_sections).le_id).x -
finaLsection(num_sections, section_data(num_sections).le_id + I ).x) /\ 2 + 
(final_section(num_sections, section_data(num_sections).le_id).y -
finaLsection(num_sections, section_data(num_sections).le_id + I ).y) /\ 2 + 
(finaLsection( I, section_data( I ).le_id).z - finaLsection( I, section_data( I ).Ie_id + 
I).z) /\ 2) 
a = Sqr((ring_Ieading_end( I, 2).x - finaLsection(num_sections, 
section_data(num_sections).le_id + I).x) /\ 2 + (ring_Ieading_end(1, 2).y­
finaLsection(num_sections, section_data(num_sections).le_id + I ).y) /\ 2 + 
(ring_Ieading_end(l, 2).z - finaLsection(num_sections, 
section_data(num_sections).le_id + I ).z) /\ 2) 
cosangle = (b /\ 2 + C /\ 2 - a /\ 2) / (2 * b * c) 
angle = Atn( -cosangle / Sqr( -cosangle * cosangIe + I)) + 2 * Atn(1) 

'set point to leading edge of first section 
ring_helix_le(1 ).x = finaLsection(num_sections, section_data(num_sections).le_id).x 
ring_helix_le(1). y = final_section(num_sections, section_data(num_sections) .1e_id).y 
ring_helix_le( I ).z = finaLsection(num_sections, section_data(num_sections).1e_id).z 

phi = Atn(propdata(num_sections).pitch * D / (2 * pi * r)) 
new_phi = (phi + angle / 2) 

P = Tan(new _phi) * 2 * pi * r '+ ring_ v _Ieadin~factor 

IfP = a Then P = 0.05 
'calculate the start angle and the step angle 

'calculate start psi so it matches with leading edge of section 
psi = -Atn((final_section(num_sections, section_data(num_sections).le_id).z / r) / 
Sqr( -(finaLsection(num_sections, section_data(num_sections).le_id).z / r) /\ 2 + I)) 
end_psi = -(pi / 2) * (propdata(num_sections).pitch * D) / (P -
(propdata(num_sections).pitch * D)) 
dpsi = end_psi / (num_oCpoints - I) 
psi = psi - dpsi 
'helical edge 
'********************** 
For i = I To Int(num_oCpoints / 2) 
psi = psi + dpsi 
ring_helix_le(i).x = r * Cos(psi) 
ring_helix_le(i).y = (P * psi) / (2 * pi) 
ring_helix_le(i).z = -f * Sin(psi) 
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Next 

y_offset = finaLsection(num_sections, section_data(num_sections).Ie_id).y -
ring_helix_le( 1). Y 

'move helix so it matches blade Ie 
For i = 1 To num_oLpoints 
ring_helix_le(i).y = ring_helix_le(i).y + y_offset 
Next 

Dim temp(70) As section 

Cal1 helix_from_poinCto_point(ring_helix_le(Int(num_oLpoints /2)), 
ring_section_edge(lO, section_data(num_sections).le_id), tempO, num_oLpoints -
Int(num_oLpoints / 2)) 

For i = Int(num_oLpoints / 2) + I To num_oLpoints 
ring_helix_le(i).x = temp(i - Int(num_oLpoints / 2)).x 
ring_helix_le(i).y = temp(i - Int(num_oLpoints /2)).y 
ring_helix_le(i).z = temp(i - Int(num_oLpoints / 2)).z 
Next 

End Sub 

Public Sub helix_from_poinCto_point(pointl As section, point2 As section, storeO 
As section, num_oLpoints As Integer) 

Dim r, P As Single 
Dim psi, dpsi, phi, new_phi As Single 
Dim y_offset As Single 
Dim end_psi As Single 
Dim angle 

Dim i As Integer 

'calculate radius from first point, about y axis 
r = Sqr(pointl.z A 2 + pointl.x A 2) 
Ifr = 0 Then r = 0.03 
'calculate start psi 
If point I.x > 0 And point l.z < 0 Then psi = -asin(point I.z / r) 
If pointl.x > 0 And pointl.z > 0 Then psi = 2 * pi - asin(pointl.z / r) 
If point I.x < 0 And point I.z > 0 Then psi = 2 * pi - pi / 2 + asin(pointl.x / r) 
If pointl.x < 0 And pointl.z < 0 Then psi = pi /2- asin(pointl.x / r) 
'calculate end psi so it matches with trailing edge of section 
'If point2.x > 0 Then end_psi = -Atn((point2.z / r) / Sqr( -(point2.z / r) A 2 + I)) 
'If point2.x < 0 Then end_psi = pi /2 - Atn((point2.x / r) / Sqr( -(point2.x / r) A 2 + I)) 
If point2.x > 0 And point2.z < 0 Then end_psi = -asin(point2.z / r) 
If point2.x > 0 And point2.z > 0 Then end_psi = 2 * pi - asin(point2.z / r) 
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If point2.x < 0 And point2.z > 0 Then end_psi = 2 * pi - pi /2+ asin(point2.x / r) 
If point2.x < 0 And point2.z < 0 Then end_psi = pi / 2 - asin(point2.x / r) 

'calculate pitch 
If psi < end_psi Then angle = end_psi - psi 
If psi> end_psi Then angle = (2 * pi - psi) + end_psi 
P = 2 * pi * (point2.y - point1.y) / angle 

dpsi = angle / (num_oCpoints - 1) 
psi = psi - dpsi 

'helical edge 
'********************** 
For i = 1 To num_oCpoints 
psi = psi + dpsi 
store(i).x = r * Cos(psi) 
store(i).y = (P * psi) / (2 * pi) 
store(i).z = -r * Sin(psi) 
Next 

y_offset = pointl.y - store(1).y 

'move helix so it matches blade Ie 
For i = 1 To num_oCpoints 
store(i).y = store(i).y + y_offset 
Next 

End Sub 
Public Sub hub_interrnediate_helixO 
Dim step, index, i, j As Integer 
Dim temp(100) As section 

index = 1 
'helixes for front end of hub 
For i = 1 To no_oChub_strips 

index = index + step 
Call helix_from_poinCto_point(hub_leading_edge(index), hub_helix_le(index), 

tempO, 100) 
For j = 1 To 100 

hub_Ieading_end(i + I, j).x = tempU).x 
hub_Ieading_end(i + I, j).y = temp(j).y 
hub_Ieading_end(i + 1, j).z = temp(j).z 

Next 
Next 

'helixes for the rear face 
index = -step 
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For i = 1 To no_oChub_strips + 1 
index = index + step 
Call he1ix_from_poinCto_point(hub_helix_te(index + 1), hub_trailing_edge( 121 -

index), tempO, 100) 
For j = 1 To 100 

hub_trai1ing_end(i, j).x = tempU).x 
hub_trailin~end(i, j).y = tempU).y 
hub_trailing_end(i, j).z = tempU).z 

Next 
Next 

'helixes between faces 
index = -step 

ReDim hub_helix_blades( 1 0, 100) 

For i = 1 To no_oChub_strips + 1 
index = index + step 
Call helix_from_poinCto_point(hub_helix_le(index + 1), hub_helix_te(121 -

index), tempO, 100) 
For j = 1 To 100 

hub_helix_blades(i, j).x = tempU).x 
hub_helix_blades(i, j).y = tempU).y 
hub_helix_blades(i, j).z = temp(j).z 

Next 
Next 

End Sub 
Public Sub rin~intermediate_helixO 
Dim step, index, i, j As Integer 
Dim tempe 1 00) As section 

'helixes for front end of ring 
For i = 1 To no_oCrin~strips 

index = index + step 
Call helix_from_poinCto_point(ring_leading_edge(index), ring_he1ix_le(index), 

tempO, 100) 
For j = 1 To 100 

ring_leading_end(i + 1, j).x = temp(j).x 
ring_leading_end(i + 1, j).y = temp(j).y 
ring_leading_end(i + I, j).z = temp(j).z 

Next 
Next 
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'helixes for the rear face 
index = -step 

For i = 1 To no_oCring_strips + 1 
index = index + step 
Call helix_from_poinCto_point(ring_helix_te(index + 1), rin~trailing_edge( 121 -

index), tempO, 100) 
For j = 1 To 100 

ring_trailing_end(i, j).x = tempU).x 
ring_trailing_end(i, j).y = temp(j).y 
ring_trailing_end(i, j).z = temp(j).z 

Next 
Next 

'helixes between faces 
index = -step 

ReDim ring_helix_blades( 1 0, 100) 

For i = 1 To no_oCrin~strips + I 
index = index + step 
Call helix_from_poinCto_point(ring_helix_le(index + 1), rin~helix_te(121 -

index), tempO, 100) 
For j = 1 To 100 

ring_helix_blades(i, j).x = temp(j).x 
ring_helix_blades(i, j).y = temp(j).y 
ring_helix_blades(i, j).z = temp(j).z 

Next 
Next 

End Sub 

Public Sub helix_from_blade_trailing_edge20 
Dim angle As Single 
Dim cosangle As Single 
Dim a, b, c, r, P As Single 
Dim psi, dpsi, phi, new_phi As Single 
Dim y_offset As Single 
Dim end_psi As Single 

Dim i, num_oCpoints As Integer 
num_oCpoints = 121 
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b = Sqr((hub_trailing_end(1, 1 ).x - hub_trailing_end(l, 2).x) /\ 2 + 
(hub_trailing_end(1, I ).y - hub_trailing_end(l, 2).y) /\ 2 + (hub_trailing_end(1, 1 ).z -
hub_trailing_end(l, 2).z) /\ 2) 
c = Sqr((finaLsection(l, section_data(1 ).te_id).x - finaLsection(1, 
section_data(l). te_id + I ).x) /\ 2 + (final_section(1, section_data(1). te_id).y + 
finaLsection(1, section_data(1).te_id + l).y) /\ 2 + (final_section(1, 
section_data(1 ).Ie_id).z - final_section(l, section_data(1 ).Ie_id + 1 ).z) /\ 2) 
a = Sqr((hub_trailing_end( I, 2).x - finaLsection(1, section_data(1 ).te_id + 1 ).x) /\ 2 + 
(hub_trailing_end(1, 2).y + finaLsection(1, section_data(1 ).te_id + 1 ).y) /\ 2 + 
(hub_trailing_end(l, 2).z - final_section(l, section_data(l ).te_id + I ).z) /\ 2) 

cosangle = (b /\ 2 + C /\ 2 - a /\ 2) / (2 * b * c) 
If cosangle < 0 Then cosangle = 0 
If cosangle > 1 Then cosangle = 0.95 
angle = Atn( -cosangle / Sqr( -cosangle * cosangle + 1)) + 2 * Atn(l) 

'set point to trailing edge of first section 
hub_helix_te( 1 ).x = hub_section_edge( 1 0, 1 ).x 
hub_helix_te(1 ).y = hub_section_edge( 10, I ).y 
hub_helix_te(l ).z = hub_section_edge(lO, 1 ).z 

phi = Atn(propdata( 1 ).pitch / (2 * pi * r)) 
new_phi = (phi + angle / 2) 

P = Tan(new _phi) * 2 * pi * r + hub_ v _trailin~factor 

If P = 0 Then P = 0.05 
'calculate the start angle and the step angle 

'calculate start psi so it matches with trailing edge of section 
If hub_section_edge(10, I).x > 0 Then psi = -Atn((hub_section_edge(10, I).z / r) / 
Sqr(-(hub_section_edge(lO, l).z / r) /\ 2 + I)) 
If hub_section_edge(lO, I).x < 0 Then psi = pi / 2 - Atn((hub_section_edge(10, I).x / 
r) / Sqr( -(hub_section_edge(l 0, 1 ).x / r) /\ 2 + 1)) 
'step dpsi for the set number of steps 
end_psi = (2 * pi / no_oLblades) * propdata(l).pitch / (P - propdata(1).pitch) 
dpsi = end_psi / (num_oLpoints - I) 
psi = psi - dpsi 

'helical edge 
'********************** 
For i = I To Int(num_oLpoints / 2) 
psi = psi + dpsi 
hub_helix_te(i).x = r * Cos(psi) 
hub_helix_te(i).y = (P * psi) / (2 * pi) 
hub_helix_te(i).z = -r * Sin(psi) 
Next 
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'move helix so it matches blade Ie 
For i = 1 To num_oCpoints 
hub_helix_te(i).y = hub_helix_te(i).y + y_offset 
Next 

Dim temp(70) As section 

Call helix_from_poinCto_point(finaLsection(l, section_data(l ).te_id), 
hub_helix_te(Int(num_oCpoints / 2)), tempO, num_oCpoints - Int(num_oCpoints / 
2)) 

For i = Int(num_oCpoints / 2) + I To num_oCpoints 
hub_helix_te(i).x = temp(num_oCpoints - i + 1 ).x 
hub_helix_te(i).y = temp(num_oCpoints - i + I ).y 
hub_helix_te(i).z = temp(num_oCpoints - i + 1 ).z 
Next 

End Sub 
Public Sub helix_from_blade_leading_edgeO 
Dim angle As Single 
Dim cosangle As Single 
Dim ratio, P As Single 
Dim psi, dpsi, phi, new_phi As Single 
Dim y_offset As Single 
Dim end_psi As Single 

Dim i, num_oCpoints As Integer 
num_oCpoints = 121 

'set point to leading edge of first section 
hub_helix_le( 1 ).x = finaLsection( I, section_data( 1 ).le_id).x 
hub_helix_le(l ).y = finaLsection(l, section_data(l).le_id).y 
hub_helix_le( 1 ).z = finaLsection( I, section_data( 1 ).le_id).z 

ratio = 2 
P = -ratio * no_oCblades * hub_ v _leading_factor * (hub_Ieading_end(l, 1 ).y -
hub_leading_end(l, IOO).y) / D 
If P = 0 Then P = -0.001 

dpsi = (2 * pi / (ratio * no_oCblades)) / (num_oCpoints / ratio - 1) 

'helical edge 
'********************** 
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For i = 2 To Int(num_oCpoints / ratio) 
hub_heIix_Ie(i).x = hub_helix_le(i - 1 ).x * Cos( -dpsi) - hub_helix_leO - l).z * Sin(­
dpsi) 
hub_helix_le(i).y = hub_helix_leO - 1).y + (P * D * dpsi) / (2 * pi) 
hub_heIix_Ie(i).z = hub_heIix_IeO - I ).x * Sine -dpsi) + hub_helix_leO - 1 ).z * Cos(­
dpsi) 
Next 

Dim tempe 121) As section 

Call helix_from_poinCto_point(hub_heIix_le(Int(num_oCpoints / ratio)), 
hub __ section_edge(lO, section_data(l ).Ie_id), tempO, num_oCpoints -
Int(num_oCpoints / ratio)) 

Dim Unit As Integer 

i_init = Int(num_oCpoints / ratio) 
For i = Int(num_oCpoints / ratio) + 1 To num_oCpoints 

hub_helix_le(i).x = tempO - i_init).x 
hub_heIix_Ie(i).y = temp(i - i_init).y 
hub_helix_le(i).z = tempO - i_init).z 
Next 

End Sub 
Public Sub helix_from_blade_trailing_edgeO 
Dim angle As Single 
Dim cosangle As Single 
Dim ratio, P As Single 
Dim psi, dpsi, phi, new_phi As Single 
Dim y_offset As Single 
Dim end_psi As Single 

Dim i, num_oCpoints As Integer 
num_oCpoints = 121 

'set point to trailing edge of first section 
hub_helix_te( I ).x = hub_section_edge( 1 0, 1 ).x 
hub_heIix_te(l).y = hub_section_edge(lO, I).y 
hub_helix_te(l ).z = hub_section_edge(lO, I ).z 

ratio = 2 
P = ratio * no_oCblades * hub_ v _trailing_factor * (hub_trailing_end( I, I ).y -
hub_trailing_end(l, IOO).y) / D 
If P = 0 Then P = 0.00 I 
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dpsi = -(2 * pi / (ratio * no_oLblades)) / (num_oLpoints / ratio - I) 

'helical edge 
'********************** 
For i = 2 To Int(num_oLpoints / ratio) 
hub_helix_te(i).x = hub_helix_teCi - I ).x * Cos( -dpsi) - hub_helix_teCi - I ).z * Sin(­
dpsi) 
hub_helix_te(i).y = hub_helix_teCi - I).y + (P * D * dpsi) / (2 * pi) 
hub_helix_te(i).z = hub_helix_te(i - I ).x * Sine -dpsi) + hub_helix_teCi - I ).z * Cos(­
dpsi) 
Next 

Dim tempe 121) As section 

Call helix_from_poinCto_point(finaLsection(l, section_data(l ).te_id), 
hub_helix_te(Int(num_oLpoints / ratio)), tempO, num_oLpoints - Int(num_oLpoints 
/ ratio)) 

For i = Int(num_oLpoints / ratio) + 1 To num_oLpoints 
hub_helix_te(i).x = temp(num_oLpoints - i + I).x 
hub_helix_te(i).y = temp(num_oLpoints - i + I ).y 
hub_helix_te(i).z = temp(num_oLpoints - i + l).z 
Next 

End Sub 

Public Sub rin&-helix_from_blade_trailin&-edgeO 
Dim angle As Single 
Dim cosangle As Single 
Dim a, b, c, r, P As Single 
Dim psi, dpsi, phi, new_phi As Single 
Dim y_offset As Single 
Dim end_psi As Single 

Dim i, num_oLpoints As Integer 
num_oLpoints = 121 

ReDim rin&-helix_te(num_oLpoints) 

b = Sqr((ring_trailing_end(l, 1 ).x - rin&-trailing_end(l, 2).x) /\ 2 + 
(ring_trailing_end(l, 1 ).y - ring_trailing_end(l, 2).y) /\ 2 + (rin&-trailin&-end(l, I).z -
ring_trailing_end( I, 2).z) /\ 2) 
c = Sqr((final_section(num_sections, section_data(num_sections).te_id).x -
finaLsection(num_sections, section_data(num_sections).te_id + I).x) /\ 2 + 
(finaLsection(num_sections, section_data(num_sections).te_id).y + 
finaLsection(num_sections, section_data(num_sections).te_id + I ).y) /\ 2 + 
(final_section( I, section_data( I ).Ie_id).z - finaLsection( 1, section_data( I ).le_id + 
I ).z) /\ 2) 
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a = Sqr((ring_trailin~end(l, 2).x - finaLsection(num_sections, 
section_data(num_sections).te_id + I ).x) /\ 2 + (ring_trailing_end(1, 2).y + 
final_section(num_sections, section_data(num_sections).te_id + 1 ).y) /\ 2 + 
(ring_trailing_end(l, 2).z - finaLsection(num_sections, 
section_data(num_sections). te_id + 1 ).z) /\ 2) 

cosangle = (b /\ 2 + C /\ 2 - a /\ 2) / (2 * b * c) 
angle = Atn( -cosangle / Sqr( -cosangle * cosangle + I)) + 2 * Atn( 1) 

'set point to trailing edge of first section 
ring_helix_te( I ).x = ring_section_edge( 1 0, I ).x 
ring_helix_te(l).y = ring_section_edge(lO, l).y 
ring_helix_te( 1 ).z = ring_section_edge( 1 0, 1 ).z 

phi = Atn(propdata(num_sections).pitch / (2 * pi * r)) 
new_phi = (phi + angle / 2) 

If P = ° Then P = 0.05 
'calculate the start angle and the step angle 

'calculate start psi so it matches with trailing edge of section 
Ifring_section_edge(lO, 1 ).x > ° Then psi = -Atn((ring_section_edge(lO, l).z / r) / 
Sqr(-(ring_section_edge(lO, I).z / r) /\ 2 + 1)) 
Ifrin~section_edge(lO, I).x < ° Then psi = pi /2 - Atn((rin~section_edge(lO, I).x / 
r) / Sqr( -(ring_section3dge(l 0, 1 ).x / r) /\ 2 + I)) 
'step dpsi for the set number of steps 
'dpsi = ((((-1/2) - ring_leading_end(l, l).y) / P) * 2 * pi) / (100 - I) 
end_psi = (pi /2) * propdata(num_sections).pitch / (P - propdata(num_sections).pitch) 
dpsi = end_psi / (num_oLpoints - 1) 
psi = psi - dpsi 

'helical edge 
'********************** 
For i = 1 To Int(num_oLpoints / 2) 
psi = psi + dpsi 
ring_helix_te(i).x = r * Cos(psi) 
ring_helix_te(i).y = (P * psi) / (2 * pi) 
ring_helix_te(i).z = -r * Sin(psi) 
Next 

'move helix so it matches blade Ie 
For i = 1 To num_oLpoints 
ring_helix_te(i).y = ring_helix_te(i).y + y_offset 
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Next 

Dim temp(70) As section 

Call helix_from_poinCto_point(final_section(num_sections, 
section_data(num_sections).te_id), ring_helix_te(lnt(num_oCpoints / 2)), tempO, 
num_oCpoints - Int(num_oCpoints / 2)) 

For i = Int(num_oCpoints / 2) + I To num_oCpoints 
ring_helix_te(i).x = temp(num_oCpoints - i + l).x 
ring_helix_te(i).y = temp(num_oCpoints - i + I ).y 
ring_helix_te(i).z = temp(num_oCpoints - i + 1 ).z 
Next 

End Sub 
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Design Optimisation of a bi-directional integrated thruster 
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Design optimisation of a bi-directional integrated 
thruster 

Pashias C, Turnock S.R., Abu Sharkh SM. 
University of Southampton, UK 

Integrated thruster model 

ABSTRACT 

The maj ority of thrusters used f or the position control of tethered underwater vehicles have 
asymmetric propulsion characteristics. This paper presents the results of a hydrodynamic 
design optimisation ofa bi-directional integrated thruster. A surface panel method using the 
perturbation potential method of Morino was used for the optimisation. The model was 
validated with experimental data giving good agreement. Two versions of the prototype 
thruster have now been built and tested. In this paper details are given of the design 
optimisation process fo r the next generation of thruster fo r use on a work class Remotely 
Operated Vehicle. A 2-D potential code coupled with integral boundQ/y layer equations has 
been used to derive an optimum blade section shapefor equal performance in both directions. 
Using the derived sections the complete thruster was optimised f or a given operating 
condition. 
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INTRODUCTION 
A hydrodynamic design optimisation of 

a bi-directional thruster is presented. This 
on-going project (Hughes 2000) has been 
developed for position control in Remotely 
Operated Vehicles (ROV), to replace the 
current hydraulic thrusters. Typically each 
ROV has six thrusters: four for lateral and 
two for vertical position control. Most 
current thrusters have asymmetric 
propulsion characteristics, because of either 
off the shelf propellers or motor/shaft 
blockage effects. 

A bi-directional thruster has many 
advantages over the current hydraulic 
thrusters. Bi-directionality simplifies the 
control problem since the same thrust is 
produced for the forward and reverse 
condition with the same rpm. 

In addition an electric thruster has a 
lower number of parts, thus reducing 
maintenance costs. The electric thruster is 
also lighter which translates into more 
weight saving by reducing the syntactic 
foam required for buoyancy. Also no 
hydraulic fluid has to be pumped down the 
umbilical cord that can be more than 3000m 
long, reducing the weight of the cord which 
means lighter handling gear on the mother 
vessel. 

The first phase of this project was to 
integrate the permanent magnet (PM) motor 
with the hydrodynamics of the thruster and 
to test the concept. Two prototype thrusters 
were built and tested. Phase one has been 
completed but did not concentrate on the 
hydrodynamic aspects of the thruster design. 
A standard duct and section shape were 
modified to give bi-directionality, which 
does not give optimum perfonnance. The 
second phase of the project is to optimise the 
hydrodynamic performance of the integrated 
thruster. 

The hydrodynamic analysis of the 
thruster is carried out using a surface panel 
code. A mesh generation tool was developed 
to allow quick definition of arbitrary 
propellers. The code was validated against 
standard propellers and experimental data. 
New section shapes were developed for bi­
directional performance. The complete 
thruster was then modelled and optimised 
for a given operating condition to match the 
motor specifications. 

INTEGRATED THRUSTER DESIGN 
The thruster is powered by a PM motor. 

The PM ring is attached to the propeller tip 
and the stator is integrated into the duct. The 
propeller is driven from the tips and the 
thrust supported by bearings on the shaft. 
The bearings are supported by stators from 
the duct. 

Several bearing arrangements were 
considered (Figure 1), including the thrust 
bearings supporting the ring, which 
eliminates the requirement for a hub. The 
chosen arrangement enables thinner sections 
to be used offering improved performance. 
Since the thrust is supported at the hub and 
the torque at the tip, the twist of the blade 
helps support the forces. 

(a) (b) 

(c) (d) 

C2:SJ Bearing 

Figure 1 Possible bearing arrangements for 
integrated thruster 



THEORY 
Ducted propellers have been widely 

used in applications where propeller 
diameter is limited. It is known that due ted 
propellers are more efficient than open water 
propellers under such operating conditions 
(McMahon 1994). The presence of the duct 
enables the propeller tip to sustain the 
pressure differential between the back and 
the face, thus generating more thrust and that 
is the reason why ducted propeller have 
larger chords near the tip than open water 
propellers. 

There is a strong interaction between 
the duct and the rotor and because of the 
complex nature of the problem a non­
viscous lifting surface panel method was 
used. Such methods can model complex 
problems quickly and have been used 
successfully in the past. The ease and time 
advantage over RANS codes (Tumock 
2000) makes them ideal for optimisation 
studies. 

The in house parallel lifting surface 
panel code, Palisupan (Tumock 1997), was 
originally developed to solve rudder­
propeller interaction and follows the work of 
Morino (Morino 1974), Newman (Newman 
1986) and Lee (Lee 1987). It involves a 
straightforward application of this method to 
model the interaction between a rotating 
propeller and duct. 

Laplace's equation can be written as an 
integral over the bounding surface 5 of a 
source distribution per unit area s and a 
normal dipole distribution per unit area m 
distributed over the S. This can be expressed 
in terms of a surface integral as: 

¢ = f f [ +.u + /J +. J Jll dS 
SB 

(I) 

+ f f ~:( +.JJldS 
Sir 

where 5s is the surface of the body and 5w a 
trailing wake sheet. In the expression r is the 
distance from the point for which the potential 
is being determined to the integration point on 
the surface and a/an is a partial derivative in 
the direction nom1al to the local surface. 
Equation ( I) is discretised to give the 
following formulation for the potential at the 
centre of a given panel: 

M 

+ Li1¢kWik 
k~l 

For solving complex flows with 
multiple bodies the Interaction Velocity 
Field (IVF) method (Tumock 1994) is used, 
where the disturbance velocity field 
generated by a body is superimposed on the 
velocity field existing in the absence of the 
body. 

For a duct/propeller problem an iterative 
process is employed as follows: 

Step I. The propeller is solved in the 
free stream velocity field. 

Step 2. The propeller's disturbance 
velocity is applied to the free 
stream velocity field and the 
duct solved. 

Step 3. The duct's disturbance velocity 
is applied to the free stream 
velocity field of the propeller 
and solved. 

Step 4. Repeat steps 2 and 3 until the 
solution has converged. 

Typically six iterations are required to 
converge within 0.5% of the total forces. 
The method effectively splits up the problem 
to smaller blocks reducing memory 
requirements and processing time. A typical 
run takes less than 15min on a Pentium III 
IGhz. 

For the thruster to be bi-directional a 
1800 rotationally symmetric section shape is 
required. Standard sections are not readily 
available and a new section had to be 
developed. A 2-D potential code coupled 
with integral boundary layer equations as 
implemented in X-Foil (Drela 1989) was 
used because of its speed, ease of use and 
reliability (Milgram 1997). 

GEOMETRY AND MESH 
GENERATION 

In order to facilitate the optimisation 
process a program has been developed to 
generate the propeller, hub, end caps and 
duct geometry from standard propeller 
tables. The geometry is constructed from 
four sided faces (Figure 2) and exported to 
the mesh generation tool. 



Figure 2 Perspective view of face structure 
for geometry definition of hub , blade and 
wake 

Figure 3 Perspective view of panelling for 
DMTB4119 propeller and hub 

The faces can then be discretised into 
the desired number of pane ls (Figure 3) 
using transfinite interpolation (Hall 1973). 
Since it is a steady flow problem only one 
blade of the propeller is generated and the 
image influence coefficients are used. This 
again reduces memory and processing 
requirements enabling more panels to be 
used. The whole process can be automated 
enabling variants to be created easily for 
optimisation studies. 

Wake 
The wake model is crucial for correct 

results . Wake relaxation methods have many 
numerica l difficu lties and are often 
unreliable. Because of the tip vortex the 
wake near the tip of the blade rolls back on 
itself creating problems (Caponnetto 1997). 
In addition highly skewed panels can result 
causing numerical problems. Getting the 
relaxation to converge is another issue, even 
when damping is applied (Hughes 1998). A 
fixed wake model has been chosen because 
it is robust and quick. Fixed wake models 
have been used in the past giving as good 
results without any problems as shown in the 
22nd ITTC Propulsion Committee workshop 
(Gindroz 1998). 
The wake bisects the trailing edge of the 
blade and smoothly varies from that initial 
pitch to the final wake pitch. Since the 
experimental data from the two prototype 
tlu·usters were available, the final wake pitch 
was varied until there was good agreement. 

The wake transitions from the initial to 
the final pitch in one propeller diameter. 
Instead of using a linear transition a 4th order 
polynomial was used which gives a smooth 
wakes shape. The wake pitch depends on the 
wake contraction and the polynomial is the 
same as the one used for the wake 
contraction (Hoshino 1991). A wake 
sensitivity study was carried out and a wake 
length of four diameters was found to be 
more than adequate with extra length only 
changing the thrust and torque by less than 
1%. 
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Figure 4 Contraction shape for wake (Hoshino 1991) 

Wake contraction has been accounted 
for by setting it to a fixed value. A final 
wake contraction is assumed depending on 
the advance ratio. The wake contraction is 
set to this value for distances more than one 
diameter away from the blade. Between the 
blade and one diameter the wake contraction 
is modelled by a polynomial, which is based 
on experimental results (Hoshino 1991). 
Wake contraction increases with increased 
propeller loading and from experimental 
results is about 0.7D to 0.8D for most 
propellers (Hoshi no 1991, Pereira 2002). 

VALIDATION 
To validate the mesh generation and the 

numerical model, a standard propeller was 
selected. The DTMB4119 is standard open 
water three bladed propeller that has been 
used in the past for validation purposes and 
experimental data are readily available 
(Jessup 1998). This propeller has been used 
for the recent 2211d ITTC Propulsion 
Committee workshop (Gindroz 1998). 

For the DTMB4119 a panel sensitivity 
study was carried out and 23 panels were 
used for the blade in the spanwise direction 
and 20 in the chordwisc direction giving a 
total of 460 panels on the blade with an 
additional 288 on the hub and 5920 wakc 
panels. 

Different wake parameters have been 
investigated to find their influence on the 

results. Wake contraction and initial pitch 
have both been studied. 

The initial pitch of the wake has been 
set to three different values: the local section 
pitch, the pitch of the bisector of the trailing 
edge and the pitch of the back face on the 
trailing edge. The influence has been found 
to be small giving a change in KT of I % and 
KQ 0.2% from one extreme to the other. The 
wake geometry used has the initial pitch set 
to bisect the trailing edge. 

The effect of wake contraction was 
found to have less than one per cent 
influence on the KT and Ko. For advance 
ratios close to one the effect was negligible 
whereas for smaller advance ratios there was 
a one per cent increase in KT and Ko rising 
with decreasing advance ratio as expected. 
As the influence was relatively small the 
wake contraction was not modelled in 
subsequent calculations. 

The pressure distribution for an advance 
ratio of 0.833 was compared to the 
experimental data at rlR of 0.3,0.7 and 0.9. 
The results were in good agreement with the 
experimental results and other panel code 
calculations. The pressures for the 0.9 radius 
are slightly over predicted, which was the 
norm for other codes (Hoshino 1998). In 
addition the KT, KQ for a range of J was 
compared, giving good agreement with the 
experimental data. 
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The numerical model of the duct and 
propeller was validated using 
experimental data from the two prototype 
thrusters. The thrusters were tested with 
different propeller/duct combinations and 
had symmetrical ducts and propellers with 
a P/D of 1.4 and 1.0. 

A gap of I % of the overall propeller 
diameter was left between the inner 
surface of the duct and the blade tip to 
eliminate the high Cp caused by the 
proximity of the blade tip to shielded 
panels on the duct. The numerical results 
were in relatively good agreement with 
experimental data. 

The slope of the KT and KQ curves do 
not match exactly with the experimental 
results. This is due to a number of reasons. 

The duct imposes a velocity and hence 
modifying the operating condition of the 
propeller. Since no form of wake 
relaxation was used this was not taken into 
account. Also ensuring the correct wake 
shape for heavily loaded propellers is 
difficult (Takinaci 200 I). Another effect 
not taken into account is that the propeller 
contraction also affects the duct wake, 
which will again alter the thrust of the 
duct. 

In addition in this model no 
viscous interaction effects are included 
and for simplicity the six stators are 
neglected. However, as shown previously 
(Hughes 2000, Hughes 2001) the relative 
performance changes are captured well. 
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Figure 6 Prototype KT Ko 
EFFECT OF THE RING 

The nature of the design of the 
integrated thruster includes a ring to which 
the magnets are attached on the outer 
surface. An investigation was carried out 
as to whether it was necessary to include 
this ring as a rotating surface in the panel 
method. 

The ring was modelled by a 
cylindrical ring of panels aligned with the 
pitch at the blade tip, connecting the 
blades (Figure 7). In previous work 
(Brown 1994), a similar ring attached to a 
wake was used to simulate the effect of 
the duct on the propeller, as a 
simplification for preliminary design. The 
effect of the ring was to seal the blade tips 
and increase the thrust. 

Since the ring in this case was in the 
duct no wake was attached to it. The 
propeller and ring combination were run 
in isolation and the results were similar to 
(Brown 1994). The ringed propeller was 
then solved in combination with a duct 
with a cut out ring (Figure 8). 

Figure 7 Propeller with ring 
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The effect of the ring has so far been 
to make a non-physically large increase in 
thrust and also torque. There is also an 
increase in thrust from the duct. The 
friction on the ring results in an increase in 
torque, which offsets the gain in thrust and 
the increase in efficiency is negligible 
(Figure 9). The torque due to the friction 
of the ring is approximately 7% of the 
overall torque. The ring width was kept to 
a minimum for the final design to keep 
frictional drag as low as possible. 

Other investigations have been carried 
out to study the turbulent Taylor-Couette 
flow in the gap between the ring and the 
motor windings (Batten 2002). This 
contribution to torque is not included in 
the external hydrodynamic optimisation as 
there is little interaction between the two 
regimes. 

For the optimisation studies presented 
the effect of the ring is not included and a 
constant tip gap of 1 % of D is used. This 
is comparable in size to a typical panel 
dimension on the duct and propeller. 

Figure 8 Duct with cut out for ring 

0.4 

0.35 

0.3 

0.25 

0.2 I=' 

0.15 

0.1 

0.05 

0 

0.4 0.5 0.6 0.7 

Advance Ratio J 

Figure 9 Effect of modelling the ring of the thruster 



OPTIMISATION 
The thruster was optimised to give 

maximum bollard pull at zero advance 
speed with the given motor characteristics. 
There is an optimum motor rpm, which 
depends on the viscous losses due to the 
friction in the gap between the rotor ring 
and the stator (Batten 2002). As the rpm 
increase the motor efficiency increases but 
so do the gap losses, so an optimum exists. 

The typical operating depth of the 
thruster will be from 300m to 3000m. At 
those depths cavitation is not an issue 
since the pressure is very high. Small 
blade area ratios (BAR) can be used with 
heavily loaded blades without cavitation 
problems. 

To speed up the optimisation process 
the stators were neglected from the 
numerical model. The stators can be used 
to pre-swirl the flow, but their effect on 
the overall performance is less than 1 % for 
angles up to 5 degrees as shown by the 
prototype experimental results (Hughes 
2001). 

Bi-directiona1 propeller section 
Asymmetrical sections were not to be 

used as previously explained. The new 
section was required to have bi-directional 
characteristics. A new section was 
developed using X-Foil (Drela 1989). 

Over 10,000 sections were 
automatically created and tested (Ellsmore 
2002). A quintic polynomial was used to 
define the camber line. A leading and 
trailing edge circle and two cubic splines 
were used to define the thickness 
distribution. The section shape was the 
created by adding the thickness to the 
camber line (Figure 12). The parameters 
controlling the camber and thickness were 
varied over a specified range and a series 
of bi-directional sections was produced. 
The sections were then analysed and 
refinements made to possible candidates. 

The developed section has almost the 
same efficiency (95%) as the standard 
asymmetrical Kaplan section (Lewis 
1988). This improved the efficiency over 
the old symmetrical section used in the 
first generation prototype by 3%. 

Duct profiles 
Different duct profiles were modelled 

and tested experimentally for the first 
generation thrusters. The best duct shape 

(SF2037) was found to be the one that 
imposed the least increase in velocity at 
the propeller plane: the section with the 
flattest inner shape, which agrees with the 
numerical model. 

The duct must enclose the motor, 
which typically has a length of 100mm 
and thickness of 40mm. A new duct 
section shape (MSN64212) was 
developed with similar inner shape but 
with sharper ends giving a smoother Cp 

distribution. This section performs equally 
well as the SF2037 but will be less prone 
to separation at the trailing edge, although 
this is not modelled in the current 
numerical model. 
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Figure 10 Duct profiles tested 

0.440 .- 0.0650 

o .439 +-,......,,-------F=r---d=i--=~ 

0.438 

J.437 

0.436 

0.435 

0.434 

0.433 

0.0630 

0.0610 
~ 

0.0590 

0.0570 

0.0550 

.KT 
OKQ 

Figure 11 KT, Ko for different ducts at 1=0.1 

n) ( ~ 

b) 

c) 
~--------

Figure 12 Thickness distribution (a) is added 
to the camber (b) to generate a symmetrical 
section (c) 



Duct length 
Six different duct lengths were 

modelled at three different advance 
speeds. As the advance speed increases the 
optimum duct length increases. For the 
J=0.6 the optimum duct length is 2.4 times 
the propeller diameter decreasing to 0.8 
times the diameter for J=O. I. The 
optimum duct length can be selected 
depending on the application of the 
thruster, but for a general-purpose case a 
duct length of 1.8 times the propeller 
diameter would be best. This gives less 
than I % penalty for all the speeds 
analysed whereas a short duct would have 
a 3.8% penalty at J=0.6. Since a ROY 
mostly uses the thruster for position 
control at low speeds and does not move 
at high speeds a shorter duct was chosen. 
Also a compact thruster has practical 
advantages. 

The optimum duct length depends on 
the thruster size since the thrust of the duct 
does not scale the same as the propeller 
thrust (Abdel-Maksoud 2002). The whole 
problem is Reynolds number dependent 
and the duct thrust lI1creases with 
Reynolds number. 

A factor not modelled in the current 
method is the boundary layer effect of the 
duct on the propeller tip. The longer ducts 
have a thicker boundary layer at the 
propeller tip, which increases the loading 
at the propeller tip (Abdel­
Maksoud 2002). However in this case an 
additional complication is the ring with 
blade-tip junction. Suitable fairing aids in 
minimising drag losses in this region. 
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Figure 13 Duct length influence on thrust 

Blade area ratio 
Since cavitation is not an issue small 

blade area ratios with highly loaded 
sections are feasible. Four different BAR 
of 0.5, 0.6, 0.7, 0.8 and 0.9 where 
analysed. The pitch was adjusted for each 
case such that the thrust produced was the 
same. The chord and pitch distribution 
along the blade where kept constant. 

An increase in pitch is required with a 
decrease in BAR to keep the thrust 
constant (Figure 14). In this bollard 
condition the efficiency can be express 
better as follows (Lewis 1988): 

(Ki)~ 
lJD = K (3) 

Q 

It can be seen that as the BAR 
increases there is a reduction of the 
required pitch to maintain constant thrust. 
For higher BARs the variation in pitch is 
very small. The optimum BAR for the 
analysed advance ratio of 0.1 is 0.77. 
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COMPLETE THRUSTER 

0.78 

0.9 

The first generation thruster has been 
refined and revised. Improvements have 
been made lI1 its hydrodynamic 
performance . 

The biggest gain in performance was 
from the new bi-directional section shape 
which accounts for an improvement in 
efficiency at bollard pull (llD) of 5% over 
the old propeller. Other refinements have 
made smaller contributions. Some of the 
improvements are not modelled by the 
numerical model and are not reflected in 
the results because of the potential flow 



assumption. For example, such a gain is 
the smoother duct shape. Although in the 
numerical results it appears to have the 
same performance as the old duct, in 
reality it will perform better because it is 
less prone to separation compared to the 
old shape. 

CONCLUSION 
Numerical analysis is being 

increasingly used for design applications. 
The method outlined in this paper allows 
results for a particular condition to be 
acquired in about 15 minutes. However, as 
demonstrated a significant number of such 
calculations is required to achieve an 
overall optimisation. As a result a step-by­
step approach has been used to first 
optimise the components in isolation and 
then make small changes for the complete 
problem. Not withstanding the number of 

assumptions/approximations made in the 
numerical method, it has been proven as a 
reliable design guide. The result of this 
work has been an overall improvement of 
performance of at least 5%. The final 
design will be by necessity a compromise 
between optimum hydrodynamic design 
and practical/mechanical design issues. As 
greater experience is gained with each 
successive generation of integrated 
electric thruster, it is envisaged that more 
radical designs will be used and as a result 
greater performance gains will be 
possible. 

The next step of this ongoing work is 
to build and test the new thruster. In 
addition the numerical model will be 
improved by adapting the wake, which it 
is believed will improve the numerical 
predictions. 
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