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Structural vibrations can cause fatigue of the structure, high sound levels and
loss of positioning accuracy. Active control of broadband structural vibrations
often requires multiple control locations and often uses a centralised controller
that calculates the appropriate responses from the signals of all the sensors. The
disadvantages of centralised control are that a lot of wiring is required and that
instability can occur if one of the components fails. This thesis investigates
algorithms that allow the tuning of multiple, single loop feedback controllers
in a decentralised arrangement that reduces the global vibration of the structure.
Ideally, this controller should be tuned on the basis of the local properties of the
structure and, when applied at multiple locations to the same structure, achieve
performance comparable to a centralised controller.

Constant gain velocity feedback is a decentralised control strategy known to
be effective at controlling vibrations and requires only the feedback gain to be set
appropriately. Because there are no analytical solutions for the optimal feedback
gain, approximations of the gain were considered. For a beam, approximations
on the basis of a few modes performed almost as well as a centralised, dynamic
controller but the gains could not be set consistently on the basis of the mobility
in a multi-channel set-up. On a plate, setting the gain to match the impedance of
an infinite plate performed well and it is shown that this gain can be calculated
from the local mobility in both single- and multi-channel set-up. Tuning the gain
to maximise power absorption performed well, but may be difficult to realise in
the multi-channel set-up and can be sensitive to the spectrum of the excitation.

On the basis of a carefully selected model of sound radiation, controllers
were also designed to minimise sound radiation. Decentralised velocity feedback
control were found to perform almost as well as LQG control. Strategies that
minimised the vibration performed less well at controlling radiated noise, but

still provided useful performance.
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Chapter 1

Introduction to active vibration

control

1.1 Introduction

Vibrations in structures can be the cause of several problems, such as fatigue, high
pressure sound fields in the vicinity of the structure and a loss of positioning accuracy
of instruments attached to the structure. A reduction of these vibrations can be
achieved in different ways. One way is to apply passive elements, such as extra mass,
stiffness or dampers. These passive methods are not always practical or economical.
Another option is to use active control. An active controller generally consists of
three elements: a sensor, an actuator and an element that sets the output of the
actuators on the basis of the measurements obtained with the sensors. It is the
design of this element, the control algorithm, that this thesis is most concerned
with. This chapter will first examine briefly the field of active vibration control and
its different applications. In the course of this examination, the focus of this thesis
will be explained and narrowed down to a set of objectives, which are formulated in
section 1.3. Section 1.4 outlines the structure of this thesis and points out its main

contributions.
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1.2 A brief history of active control of vibrations

Active feedback control of structural vibrations was suggested by Olson (1956),
though practical implementation was not achieved for almost another decade. Rock-
well and Lawther (1964) investigated the damping of a beam on two rubber inounts,
using an accelerometer and a force actuator attached at the same poiut on the struc-
ture to apply local velocity feedback. An electrical integrator was used to change
the signal of the accelerometer into a signal proportional to the velocity. By apply-
ing a force opposite to the velocity, power can be extracted from the structure and
the damping is increased. This paper was closely followed by two papers, Knyazev
and Tartakovskii (1965, 1967), which describe implementations on a beam and on a

plate, respectively.

Since these beginnings, the active control of vibrations has progressed beyond the
laboratory and is now found in many different applications, such as cable-stayed
bridges, tall buildings, space structures, high-accuracy machining, telescopes, satel-
lites and aircraft. The applications can roughly be divided in three types: active

vibration isolation, active vibration control and active structural acoustic control.

Active vibration isolation is concerned with preventing the transmission of vibration
present in one part of the structure, the base, to another, connected part, the target.
This is illustrated in figure 1.1(a). Active vibration control is aimed at reducing the
overall vibrations of a distributed structure (figure 1.1(b)), while active structural
acoustic control is aimed specifically at controlling the vibration of the structure in
such a way that the sound radiated from the structure is reduced (figure 1.1(c)). A
large amount of literature is available on each of these topics, some of which will
be highlighted here. The focus of this thesis is mostly on active vibration control,
though some research into active structural acoustic control has also been done. For
further general reading on active control of vibrations, the reader is referred to Fuller
et al. (1996) or Preumont (2002) and for modern control strategies to Skogestad and
Postlethwaite (1996).
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1.2.1 Active vibration isolation

Active vibration isolation is concerned with preventing one part of the structure
receiving vibrations present in another, connected part of the structure. Typical
examples are the isolation of a sensitive piece of equipment in a satellite or aircraft
and the mounting of an engine on a boat or helicopter. The best way to isolate
one piece of equipment from vibrations would obviously be to physically sever the
connection between the two, but that is not always possible. After all, the piece of
equipment on the satellite must be connected to the rest of the satellite for it to be
brought into orbit and to follow the pointing of the satellite. Similarly, the engine of
a boat must follow the general pitch and jaw of a boat if it is to work properly. This
is the usual trade-off in active vibration isolation, the tracking of the low-frequency

base-motion versus the isolation of high or specific frequency vibrations.

Two set-ups are common in vibration isolation. One is an active mount, where
the control system is part of the mount connecting the piece of equipment to be
isolated and the vibrating structure. The other is the attachment of an inertial
actuator to the equipment. The active mount or inertial actuators collocated with
the mount can reduce, to a certain degree, the disturbing forces that act on the
target equipment. Thus they can prevent vibration energy entering the equipment.
The mounts are usually a hybrid of a completely passive part on whicli a control
system is superimposed (e.g. Sutton et al. (1997), Kim et al. (2001), Preumont
et al. (2002), Kim et al. (2004)). This allows for failure of the control system, with
reduced performance rather than no performance or without damaging the isolated
structure. The main advantage of inertial actuators is that they can be installed
directly on the equipment to be isolated, which requires very few structural changes
(Benassi et al. (2004)).

As an alternative to completely active control systems, a semi-passive control system
can be used (e.g. Singh et al. (2004)). This can be either a system that converts
vibration energy into electrical energy and dissipates it using resistors, or a system
in which forces are generated by a passive structure but the characteristics of this
passive element can be changed electronically. A good example of such as a system
is a magneto-rheological damper (Dyke et al. (1996)). By creating a magnetic field
at specific points in the flow-canal of damper, the apparent viscosity of the fluid can

be changed and thus also the resulting force.
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1.2.2 Active vibration control (AVC)

Active vibration control focuses on the control of vibrations over the entire structure.
These structures usually consist of beam-, truss- and plate-like elements. Particu-
larly if the structure is lightly damped and high accuracy is required, vibrations can
cause a problem. Space structures are a good example of that kind of structure
(Balas (1982)).The control strategies applied to cancel vibrations are dependent on
the excitation. Two types of excitation that are usually examined are tonal excit-
ations and broadband excitations. One aspect that will not be exaniined in great
detail in this thesis, though it can be important in the actual implementation of
the controllers, is where to ple;,ce sensors and actuators on the structure such that

maximum control results are obtained (e.g. Hiramoto et al. (2000)).

1.2.2.1 Tonal excitation, passive control

If the excitation is mainly tonal, control strategies can also focus on that particular
tone. The controller is free to set the phase and amplitude of the response at that
particular frequency. Dayou and Brennan (2001, 2003) showed, both in theory and
in practice, that a vibration neutraliser can be used as effectively as active strategies
for this purpose, provided that the frequency of interest is not too low. The vibration
neutraliser is a passive device consisting of a spring, mass and damper and can be
mounted onto the structure. One of the main limitations of neutralisers is that
the setting of the stiffness, mass and damping is optimal for a particular frequency,
thus if the frequency of the excitation changes, the control is no longer as effective
or can even amplify the vibration. The solution to such a problen: is to use a
semi-passive strategy in which, for instance, the stiffness of the neutraliser can be
actively adjusted (Brennan (1997)). This allows the neutraliser to be adaptable to
some extent. Despite the effectiveness of the vibration neutralisers, active control
can still be preferable due to its greater adaptability and better performance at low

frequencies.

Tuned vibration neutralisers can also be constructed using devices made of piezo-
electric ceramics (e.g. Jalili and Knowles (2004)). Piezoceramic patches can also be
used for narrow band control in a semi-active solution (dell’Isola et al. (2003), and
Niederberger et al. (2004)).
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1.2.2.2 Tonal excitation, active control

The active control of tonal excitations has partly been focused on the tuning of
the control strategies using power based methods (Redman-White et al. (1987),
Guicking et al. (1989)). The maximisation of power absorption by the controller is

particularly interesting as it requires no prior identification of the structure.

Brennan et al. (1995) compared three control strategies to control single frequency
bending vibrations on an infinite and finite beam: the minimisation of the kinetic
energy of the beam, the minimisation of the total power input into the beam by both
the excitation and the controller and the maximisation of power extraction by the
controller. It was shown that minimising kinetic energy and total energy input iuto
the beam is possible, but that maximisation of power absorption by the control force,
though effective on the infinite structure, was not effective for the finite structure
and can increase the vibration of the structure considerably for tonal excitations.
This is because the control force allows the excitation to increase its power input.
Similar results were obtained in the maximisation of power absorption in the active
control of sound fields (Elliott et al. (1991)) and on a plate structure controlled
with piezo-patches (Bardou et al. (1997)). These results can be seen as a warning
against using power absorption maximisation in a situation where the coutrol force
can influence the power input by the excitation. Hirami (1997b) examined the power
absorption after control but before the reflection of the control signal returns to the

control point and it was found to be effective when studied on a string.

The applications mentioned so far are applied for single frequencies. In these cases,
the tone can serve as a reference signal and the control system can also be seen as
feedforward control. Broadband excitations for which reference signals are available
can also be controlled using feedforward algorithms (Vipperman et al. (1993)). If the
reference signal is not available for the broadband excitation, feedforward control

can not be used and feedback control must be used instead. This is examined next.

1.2.2.3 Broadband excitation

Though control of tonal excitations can be implemented effectively with passive,

tuned vibration neutralisers, they are not as effective for broadband vibration control
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over the entire structure, due to the resonances they introduce thewmselves. Theyv
can be fairly effective at reducing the vibration at specific locations on a structure
though (Jacquot (2000, 2001)).

A recent development that uses both passive and active control is the heterogeneous
blanket (Fuller et al. (2004)) which consists of many, randomly placed and uore
or less randomly tuned vibration neutralisers embedded in a foam. In its passive
configuration, it was found to give good broadband reductions, while its active

configuration provided additional reductions at low frequencies.

Active controllers of random vibrations in plates and beains almost always use mul-
tiple control locations. The control strategies themselves vary widely i complex-
ity, from completely decentralised, constant gain control loops (e.g. Variyart et al.
(2002)) to dynamic, multi-input multi-output controllers using all sensors aud ac-
tuators (e.g. Trindade et al. (2001), Rizet et al. (2000), Singh et al. (2003)). Both
these strategies have their own difficulty. In the case of the constant gain decent-
ralised units the difficulty lies in using local measurements to choose the correct
gain, because it can not ’see’ the global response of the structure, see for instance,
Gardonio and Elliott (2004b). For dynamic centralised controllers, one importait
difficulty is the robustness of the system to structural changes, such as the addition
of a mass or changing resonance frequencies. Several authors focus on the robustuness
of these controllers using a variety of dynamic control strategies (e.g. Sadii et al.
(1999), Wang and Huang (2002), Fraanje et al. (2004)), including newral networks
(Smyser and Chandrashekhara (1997)).

One way of overcoming stability and spillover issues and increase robustness is to
use modal sensors and actuators. These are piezoelectric sensors and actuators that
are preshaped to correspond to a particular modeshape of the structure. They can
typically excite and perceive only that particular mode, which makes it very robust
in terms of spillover and high control gains could be applied. However, many such
sensors and actuators are needed if one wishes to control many modes. A solution
to that problem would be to use a high density of smaller sensors and actuators and
combine the signals of the sensors and actuators according to the modeshapes using
a centralised controller (Preumont et al. (2003)). This results in a fixed matrix to

estimated the modal velocities from a large amount of sensors.
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However, recent investigations have started to question the usefuluess of completely
centralised controllers for broadband applications and have shown that if the problem
is spatially invariant, that is, neither the structure, excitation nor cost function
change as a function of the position on the structure, a coutroller using ouly local
and information from the nearest neighbours could be as effective as centralised
control (Bamieh et al. (2002)). This leads us back to the problem of tuning the
gain of such a decentralised loop. Hirami (1997a) examined the use of his maximumn
power absorption strategy within a reverberation time, in a broadband application,
but found that the strategy did not converge. Interestingly, it has been observed
that if the excitation is white noise, the controller can not influence the power
input since the disturbance will be uncorrelated with the response by the conutroller
(Nelson (1996)). As the power input is constant, maximising power absorption by
the controller must be equal to minimising the total power input by the controller
and the excitation. Minimising the total power input was the strategy that worked
very well on the finite structure for single tone excitations, examined by Breunnan
et al. (1995). The tuning of such a decentralised controller will be the focus of this

thesis.

1.2.3 Active structural acoustic control (ASAC)

Acoustic radiation from structures is one of the main reasons for applying a vibration
reducing control strategy. Though the direct control of the sound field using speak-
ers and microphones is also possible and is commercially applied, the control of the
structural vibration to prevent the acoustic radiation in the first place has hecome
more and more accepted. Many of the methods are similar to active vibration con-
trol except that the cost criterion to be minimised by the controller is changed from
’kinetic energy’ to 'radiated sound power’. This means that similar problems obh-
served for AVC occur with the implementation of the controller combined, however,

with the additional problem of modeling the radiated sound power.

It can be shown that controllers specifically designed for minimising acoustic radi-
ation provide better control, than just controlling kinetic energy (Clark Smith and
Clark (1998)). Though the spatial invariance is now no longer valid, as the radiation
modes add a spatial characteristic to the cost function, it has been shown that ap-

propriately tuned decentralised constant gain controllers can still effectively control
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sound radiation (Elliott et al. (2002)). A direct comparison of the performaice of a
decentralised, constant gain controller and a dynamic controller seems to be lacking

from current literature and is one of the areas studies in this thesis.

Observing that for low frequencies the sound radiation is dominated by the niodes
with net volume displacement (Wallace (1972b)), controlling the net volume dis-
placement has been examined as a possible simplified way of controlling the sound
radiation (Johnson and Elliott (1995)). Equivalent to the shaped modal sensors of
AVC, preshaped sensors (Rex and Elliott (1992)) and arrays of sensors of seusors
(Sors and Elliott (2002)) have been used to control sound power. They are effective
as long as the frequency range to be controlled is below the frequency at which the

wavelength in the structure and in air become similar.

1.3 Aims and objectives

For the effective control of the global vibrations of a distributed structure, it is
common practice to use multiple sensors and actuators. There are many methods
available for constructing multichannel control algorithms that reduce the vibrations
of structures. Most of these methods rely for tuning and/or control a central control
unit that processes the information gathered at all the sensor locations. This allows
the controller to use the actuators as effectively as possible. However, there are
several disadvantages to this approach. One is the amount of wiring that is required
to connect all the sensors and actuators. It adds weight, expense and a chance of
physical failure. On the controller side, the centralised controllers may be sensitive
to failure of one of the sensors or actuators. Thus, if one unit fails, the entire system

may fail.

Multiple units consisting of a single loop of one sensor, one actuator and a control
algorithm, that work independently may be preferable to a centralised system. They
would not need as much wiring and, because of their independence, should be less
sensitive to failure of one of the units. However, the control algorithm for each of
these units still needs to be determined. At each control location only a limited
amount of information is available. If the control algorithm can be set on the basis

of information that is available, that would increase the versatility and might allow
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the tracking of changes in the system. This thesis is concerned witli the selection

and

performance of a control algorithm for such modular control systems, and the

following, specific aim can be formulated:

To investigate algorithms that allow the design of a single loop feedback

controller that is capable of reducing the global vibration of the structure.

Ideally, this controller should be tuned on the basis of the local properties of

the structure and, when applied at multiple locations to the same structure,

achieve performance comparable to a centralised controller.

To achieve this aim, the research needs to be broken down into several smaller

objectives. These are:

The
1.4.

the selection and description of a model structure, cost function and disturb-

ance parameters.
the selection and optimisation of a control algorithm.

to investigate how the optimal controller or approximations to the optimal

controller perform in comparison to centralised controllers in terms of AVC

and ASAC.

relating the optimal controller or an approximation to the structure’s local

properties.

way in which these objectives are presented in this thesis is described in section

1.4 Contribution and structure of this thesis

The
first

main body of this thesis is structured in 5 chapters. Chapter 2 will discuss the

objective mentioned in section 1.3: It sets out the model structure and the cost

function. It is shown that the type of disturbance is important for the minimisation

of the cost function.

Chapter 3 will discuss the selection and optimisation of a control algorithm for a

single-channel system. Theoretically optimal controllers are derived, but it is shown

that

these are non-causal and can only be used as a feedforward contoller if infinite
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advance time-information is available, or as a tonal control strategy. To keep the
analysis of the controller as simple as possible, constant velocity feedback control is
then selected. The feedback gain can be optimised, but doing so does not give a clear
relationship between the local properties of the beam and the optiial feedback gaiu.
Therefore, approximations to the optimal feedback gain are derived on the basis of
simplified models. The performance of these approximations is compared to that of

the optimised feedback controller on both a beam and a plate.

Chapter 4 analyses the performance of the approximated and optimal feedback gains
in a multi-channel set-up. The difference in perforniance between optimal centralised
and decentralised feedback gains is analysed for different ainounts of control effort

and for different control locations.

Chapter 5 examined the sound radiation from the structure. It compares the per-
formance of an LQG controller, a centralised constant gain, velocity feedback con-
troller and a decentralised controller when controlling the sound radiation. The
performance of a controller minimising kinetic energy is compared with controllers

that minimise the sound radiation.

Chapter 6 analyses how the controller can be tuned from the local mobility or power
absorption in a single- and multi-channel control situation. It also examines whether
it is possible to tune the controller in a practical set-up, using measurements, rather

than simulations.

The main contributions of this thesis are:

- New methods for the approximating optimal velocity feedback gains minim-
ising the kinetic energy of a modal structure and the comparison of these

methods in terms of performance in AVC (chapters 3 and 4).

- A comparison of performance of centralised dynamic control and centralised

and decentralised, constant gain velocity feedback control, both in terms of

AVC and ASAC (chapter 4 and 5).

- A comparison of two different ways of modeling the sound radiation of a plate
in an infinite baffle for ASAC (chapter 5).

- A practical method of deriving the impedance of an infinite plate from the

local dynamic response (chapter 6).



Chapter 2

Model formulation and cost

function

This chapter introduces the models that are used in this thesis to describe the vibra-
tion of various structures. It discusses the modal formulation of a simply supported
beam, a simply supported plate and a plate of which two opposite ends are free
and two are clamped. It is also shown how to calculate the kinetic energy of tliese
structures. The kinetic energy of the structure is the cost function that is used in

most of this thesis.

The beam model is used in chapters 3 and 4 to study the effects of various control
strategies. The simply supported plate is then used as a well-defined, but more
complex system than the beam to examine whether results for the beam still hold
on a more complex structure. Finally, the clamped-free-clamped-free plate is used as
a model for the test structure used to verify findings in practice as well as simulations.
The test structure is the same as used by Serrand (1998) and Benassi (2004).

A detailed derivation of the dynamic, modal beam model is contained in appendix
A.

12



Chapter 2. Model formulation and cost function 13

Figure 2.1: A simply supported beam.

2.1 Modeling of vibration response of thin plates

and beams

The modal analysis of beam and plates is based on the differential equations gov-
erning the motion of an infinitesimal portion of the plate or beam. The approach
described here is used, amongst others, in Meirovitch (1986) and Fuller et al. (1996).
The modeshapes and how they are scaled are particularly important (equations 2.3,
2.10 and 2.16). The choice of the scaling of the modeshapes also has consequences
for the calculation of the kinetic energy of the structure (equations 2.7, 2.14 and
2.24).

2.1.1 Simply supported beam

A simply supported beam is a beam that is supported at its ends on hinges, allowing

free rotation, but no displacement. This is illustrated in figure 2.1.

The detailed derivation of the beam motion is included in appendix A, in which it
is shown that the motion of the beam is governed by the Euler-Bernouilli thin beamn
equation:
0? Ej_azw(x,t) 0*w(z,t)
0x? Ox? ot?

Where ET is the bending stiffness of the beam, w(x,t) the transverse deflection, p

+pS = p(z,1) (2.1)

the density and S the cross-sectional area. p(z,t) is an external pressure distribution

acting on the beam. ET is assumed constant along the beam.

For a simply supported heam, the boundary conditions are such that there are no
deflections or bending moments at the beginning (z = 0) and the end of the beam
(zx = L):
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w(0,t)=0  EIZw00 _g
w(L,t)=0  EIZuL — g

The solution to equation 2.1 is a sum of the motions of the modes of the beam:

w(z,t) =Y an(t)hn(2) (2.2)

n=1

where 9,,(z) are the modeshapes of the simply supported beam, which satisfy the

boundary conditions. They can be scaled arbitrarily and are chosen to be:

Yn(z) = sin (k,) (2.3)

nim

L
of the individual modeshapes at any point in time.

where k, = 2 and n is an integer. a,(t) in equation 2.2 are the modal displacements

Assuming the external pressure distribution p(z,t) in equation 2.1 is a point force,
f(t)é(z — z4), at a point z; along the beam, allows the formulation of the transfer
function from the force to the modal displacement in terms of the Laplace variables
or frequency. In terms of frequency, the transfer function is:

anv(jw) _ 2 wn(zf)
flw)  pSL (w2 + 2jwlwn, — w?)

H,(jw) = (2.4)

where a small amount of damping is included, through the damping factor ¢ and w,,

is the natural frequency of the modeshape:

wn(z) = (”%)2 % (2.5)

The transfer function can also be written in a state space formulation:

Qn _ 0 1 ap, i 0 |
(dn> - [_Wﬁ —2CwJ (an> t 5L Lbn(l‘f)] 1) (2.6)

Table 2.1 lists the variables used in the simulations of the beam. Figure 2.2(a) shows
the velocity response at a location 0.6L along the beam to a force located at that
same point. Figure 2.2(b) shows the velocity response at a location 0.24L along the

beam for a force at a location 0.6L along the beam.

The kinetic energy of the beam can be calculated by integrating the kinetic energy
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ElI=1 [Nm? pS=1 [kg/m]
¢=0.01 [ L=1 [m]

Table 2.1: Variables of the plate used in the simulations.
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Figure 2.2: Velocity response of the beam as a function of frequency, at different

locations along the beam to a unit force located at 0.6L of the length of the beam.

of infinitesimal elements along the beam:

L
Ee(t) = / %pSu’;(m,t)u’;*(m,t)dm

= s [ (Z an<t>wn<x>) (Z am<t>wm<m>) o
1 L on o e L
oD 99 SENCTAY / _ Unlanla)da
_ "fTLZmn(t);? (2.7)

The fact that the modes are orthogonal has been used here to show that the kinetic

energy is equal to a sum of the squared velocities of the separate modes.

2.1.2 Simply supported plate

The modeling of a simply supported plate follows much the same lines as the mod-

eling of the simply supported beam discussed in section 2.1.1. Like the simply
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supported beam, the edges of the simply supported plate allow free rotation, but
no displacement. This model can also be found in Fuller et al. (1996). The plate
is assumed to be uniform over its surface (isotropic). The differential equation that

needs to be satisfied for this plate then is:

d*w A*w Aw 8w
= = p(a,yt 2.8

where ET is the bending stiffness of the plate this time. & is the thickness of the
plate and p(x,y,t) a pressure acting on a point of the plate. Strictly speaking, the
Poisson ratio, v,should also be included by in equation 2.8. However, it can also
be included in the term I = h3/12(1 — v?). As this affects only the value of the 7,
the Poisson ratio was set to 0 for the analysis of the simply supported plate. The
boundary conditions of the differential equation 2.8 are that the displacements and

the moments are equal to zero along the edges of the plate:

w(0,y,t)=0  w(z,0,t)=0
w(lz,y,t) =0 w(z,l,,t) =0
Pw(Oyt) _ PPuw(z08) _
— =0 —5p =0
*wllzyt) O*wlwlyt)
e =0 Ty =0

The general solution again takes the form of a sum of the modal displacements, but

now with two modal indices:

UJ(iL',y,t) = Z Zamn(t)d}mn(x,y) (29)

m=1 n=1
where ¥mn(z,y) is a sinusoidal modeshape that satisfies both the boundary condi-

tions and the homogeneous form of differential equation 2.8:
Ymn(T,y) = sin(kyx) sin(k,y) (2.10)
where k,,, and k,, are the wavenumbers in 2 and y direction:

kn = mn/l;

k, = nmu/l,

l; and [, being the length of the plate in = and y direction respectively. The modes

each have a natural resonance frequency, given by:

o=y (58) ((2) + ()
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E=7-101% [Pa] p=2720 [kg/m’|
¢=0.01 []  h=0.001 [m]
l,=0247 [m] [,=0278 [m]

Table 2.2: Variables of the simply supported plate used in the simulations.

The transfer function H(jw) from a point force at some point, (zy,ys), on the plate
‘to the modal amplitude a,,, can now he calculated to be:

4 '@Dmn (113_;»‘, yf)
phlly w2, + 2w, — w2

or in state space form:

Armn 0 1 Qmn 4 0
B ; 2.13
(am"> [_wTan _QCWmn] ((177171) " ,Ohlxly (f‘#mn(ivf, yf)) f(f) ( )

Note that the factor 2/pSL from from equations 2.4 and 2.6 has become a factor

4/phlgl, in equations 2.12 and 2.13. This is because the integral of tlie squared
modeshapes over the surface of the plate is 1/4(,l, for the plate, in comparison to
1/2L for the beam.

The variables used in the simulations for the simply supported plate are listed in
table 2.2. Figures 2.3(a) and 2.3(b) shows the velocity response observed at, respect-
ively, (0.241,,0.6l,) and (0.33[,,0.37l,) due to a force at a location (0.241,,0.6l,) on
the plate. It is important to note that the modal density of the plate (the number

modes per frequency) increases with frequency, whereas it decreased for the beam.

In a similar way to the beam, the kinetic energy of the simply supported plate can

be calculated as a sum of the squared modal velocities:

Epelt phl b Z Z |t (£) (2.14)

m=1 n=1

Again, because of the integral of the modeshapes over the surface of the plate, the

factor 25L& has changed to 2 hl’”ly

2.1.3 Clamped-free-clamped-free plate

The differential equation describing an infinitesimal element of the clamped-free-

clamped-free (CFCF) plate is the same as for the simply supported plate (equation
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Figure 2.3: Velocity response of the simply supported plate as a function of fre-
quency, at different locations on the plate to a unit force located at (z,y) =
(0.241,,0.6,).

2.8). The boundary conditions, however, are different. For this particular case, the
conditions are that the plate is clamped at the edges * = 0 and x = [, and free
along y = 0 and y = [,. Clamped edges means that rotation and displacement are
not allowed, while free edges mean that there are no forces or moments acting on

the edges of the plate:

w(0,y,t) =0  Lwdd _gq

, Ox0y
. % w(xlyt)
ow(0,y,t) __ 83w(x,0,t) _ 0
ox - ] oy3 =
Ow(le,y,t) _ Bwlz,lyt) _
oz =0 55 0

Unfortunately no analytical solution to equation 2.8 exists for w(z,y,t) for these
boundary conditions. An approximation is possible though. Serrand (1998) uses
an approximate modal solution also used in Leissa (1969). The same solution is
used here as well. The solution is based on an assumed-modes method, where
the modeshapes are assumed to have a certain shape and then the modeling of
the dynamics follows from that assumption. In this case, the displacement at a

particular point is assumed to be:

w(z,¥,0) = > > Ymn(T,Y)amn(l) (2.15)

m=1 n=1
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where Yy, (z,y) is the modeshape associated with the mnth mode, while a,,,(t) is
the modal amplitude of that particular mode. Following Leissa (1969), the mode-

shapes are written as:

Yinn(T,Y) = Ym(T)¥n(y) (2.16)
with
() cos Y1 (13 — %) + Ssiii’h((",;l//zz)) cosh 1 (13 — %) form=2,4,6,...
m $ — ] ) ' x
sin v, (l“: — %) — :i:f}f(ﬁ’yzz//?g) sinh 7, (ﬁ — -é—) form=3,5,7,...
(2.17)
(1 forn=0
- %2 forn=1
n = 9 ' sin(y
¥n(y) cos Y1 (% — %) - Smh((”,yll//é)) cosh (% — %) for n = 2,4,6,...
sin vy, (% - %) + Sfiﬁl(('fz/fg) sinh v, (% - %) forn=3,5,7,...
(2.18)
where v; and v, are the solutions of
tan (11/2) + tanh (11/2) = 0 (2.19)
tan (12/2) — tanh (72/2) = 0 (2.20)

These solutions are approximations and do not quite satisfy the boundary conditions
correctly, nor are these modeshapes orthogonal. Orthogonality of the modeshapes
would mean that f f Ui{z, Y)Umn(z, y)dzdy would be equal to 0 unless mn = kl. For
the chosen modeshapes this integral is also nonzero if kl # mn. However, tlie values
of these integrals are small compared to the value of the integral for mn = kl and
will thus be neglected. The integral of ¥,,,(z,y)? is dependent on the modeshape,
and is expressed here as N,,,,l,l,. The factors N,,, are rather complicated functions

and have been evaluated numerically rather than analytically.

Leissa (1969) gives the corresponding natural resonance frequencies as:

™ 1 Rr_[GY G 1
on = STl | 2 VR (L= (22

where G, Gy, H,, Hy, J, and J, can be found in table 2.3. On the basis of these
resonarnce frequencies, the transfer function from a force at a particular point on the

plate to a modal amplitude can be formulated:

1 wmn(mf; yf)
phlyly N w2, 4+ 2Qwmnjw — w?

Hypn(jw) = (2.22)
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G, H, Jq
for m =2 1.506 1.248 1.248
form=3,4,5,... | m— % (m - %)2 {1 - (mf%)rl (m — %)2 [1 - (’”"—25)"}
Gy Hy Jy
forn=20 0 0 0
forn=1 0 0 1272
forn=2 1.506 1.248 5.017
forn=345.. |n-1|(n-2)’ {1_(;)] (n— 1) {Hﬁ}

Table 2.3: Factors for the calculation of the resonance frequencies for the CFCF

plate.

E=206-10" [Pa] p=7800 [kg/m?]

¢ =0.01 ] h =0.0019 [m]
[, =0.5 m|] [,=07 [m]
v=203 ]

Table 2.4: Variables of the CFCF-plate used in the simulations.

or in state space form:

- 0 1 . = ’
_ F(t 2.23
(dmn> !_U)}?nn “zcwmn] (amn) i phlzly (@bmn(xf’ yf)/Nm"> (t) ( |

It is clear from equation 2.21 that the Poisson ratio plays a bigger role than in the

simply supported plate. It has therefore been included in the modeling of the CFCF-
plate. The variables used in the simulations for the CFCF-plate are listed in table
2.4. Figures 2.4(a) and 2.4(b) show the velocity response observed at, respectively,
(0.24l,,0.61,) and (0.33[;,0.371,) due to a force at a location (0.24[,,0.6,) on the
plate. The kinetic energy of the CFCF-plate can be calculated as:

1 oo oo . )
Jee = 5phlsly > Non lmn] (2.24)

m=1 n=1
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Figure 2.4: Velocity response of the CFCF-plate as a function of frequency, at
different locations on the plate to a unit force located at (z,y) = (0.24,,0.61,).

2.2 Cost function

As mentioned in the introduction of this chapter, the kinetic energy of the structure
is the cost function that is minimised in most of the thesis. The previous sectious
showed that the kinetic energy is a weighted sum of the squared modal velocities for
each model. Another quadratic cost function is the sound radiation. This section
shows how quadratic cost functions like tlie kinetic energy can be calculated for

these models.

The analysis will assume that only a limited number, N, of modes is takeu into

account. This allows equations 2.6, 2.13 and 2.23 to be written in a general matrix

as . 0 I a, i 0 5
<5s> B !—Ks —DS] <é3> + M (N_I\I’> £(1) (2.25)

Here a,; and a; are respectively, vectors of the modal amplitudes and modal velocities.

notation:

M is the total mass of the structure, and N is a diagonal matrix consisting of the
integral of the squared modeshapes over the structure. For the simply supported
beam and plate these values are equal for all modes and are 1/2 and 1/4 respectively.

For the CFCF plate, these terms depend on the particular modeshape. The matrix
2

mn)

K is a matrix with the squared natural frequencies, w7, , on its diagonal and empty

otherwise. The matrix D; is also a diagonal matrix, but with the damping terms
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A

Figure 2.5: Block diagram of the model.

2¢wmy, on its diagonal. Equation 2.25 can also be rewritten as:

x = Ax+Bf(t) (2.26)
z = C.xx (2.27)

This is depicted as in a block diagram in figure 2.5. The elements of x, consisting
of the modal amplitudes and velocities are the states of the system. The vector
z consists of the elements, which, when squared, weighted and summed give the

appropriate quadratic cost function:
J=2"Q.z (2.28)

where Q. is a diagonal matrix consisting of the appropriate weighting terms for each
element of z. If C, and Q, are both static matrices, then combining equations 2.28
and 2.27 results in:

J=xACHQ,C.x = x"Qx (2.29)

This cost function can be evaluated both in the frequency and the time domain,
which allows the calculated cost values to be verified. The frequency domain calcu-
lation also allows the numerical evaluation of cost functions for which the matrix Q

varies with frequency, such as sound radiation.

2.2.1 Time domain approach

If the forces, f(t) are random, time varying signals that do not diminish in time, then
the cost function, equation 2.29, should be changed to an expectation. Otherwise

an integral over all time will result in an infinite cost. Thus:

J=E [xT(t)Qx(t)] = trace (QE [x(t)xT(t)]) (2.30)
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Where E denotes expectation. The states x can be calculated as a convolution of

impulse response of the system and the time varying signal f(t):
x(t) = ®(t) » Bf(t) (2.31)

The matrix ®(t) is known as the fundamental state transition matriz and is defined

as:

B(t) =

eAt for t>0
(2.32)

0 for t<O

Combining equations 2.31 and 2.32 with equation 2.30 results in:

[x()x7(t)])
|®(t) < B(2) (2(t) » Bf(t))TD

(p(O'l)Bf(t - O'l)d0'1/

—0oC

J = trace (QE
= trace (QE

= trace (QE [ -
(Q /_: /_oo ®(0,)BE [f(t — 01)f7 (¢ — 09)] BT(DT(O'Q)dO'ldO'2>
(2.33)

oC o0

£7(t — az)BchT(ag)d@D

= trace

8

E [f(t —al)fT(t—ag)] contains the correlations in time between the disturbing
forces. If these forces are mutually uncorrelated, the matrix is diagonal. If the
signals are uncorrelated in time, i.e. for white noise excitation, the matrix is only
non-zero if o, = o9, in which case, the expectation is a constant matrix, Egr, mul-

tiplied by a delta function, d(o; — 02) and equation 2.33 simplifies cousiderably:

J = trace <Q /Ooo@(a)BEﬁTBT@T(a)da) (2.34)

J = trace (/00 @T(U)QQ(U)daBEﬂeTBT) (2.35)
0

If the system defined in equation 2.26 is asymptotically stable and the matrix Q is

positive semi-definite, the cost is equal to (Kalman and Bertram (1960)):
J = trace (KBEgrB”) (2.36)
with K the positive definite solution of the Lyapunov equation:

KA+ATK+Q=0 (2.37)
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It is interesting to note that equation 2.35 is similar to what the cost function would

be, if an initial value problem had been considered:
= [ xeTQROxed
0
= trace (/ Tt)Qe(t )dtxoxo> (2.38)
0

2.2.2 Frequency domain approach

For the frequency domain calculation, equation 2.35 is used as a starting point:

J = trace ( / ” T (0)Q®(0 )dUBEﬂTBT>

= —trace (/ / jw e 1% dw Q/ (Jwa e?“”"dwgdaBEﬂTB )

= —trace (/ / 5w Q@ (jwy)d(wy — U)l)d&)gd&)lBEﬂTBT)
= Zitrace (/ @H(jw)Q'i'(jw)deEﬂTBT) (2.39)
™ —00
Where ®(jw) is the Fourier transform of ®(¢) and can be calculated as:

P(jw) = F(@(t)):/oooeme—j‘”tdt

= / eA=IDtqt = (juwl — A)7! (2.40)
0

That the integral over the time domain of a product of two time signals, is equal to
the integral over the frequency domain of the product of the Fourier transforms of
the two time signals, is generally known as Plancherel’s theorem. If a squared signal
is considered, i.e. the product of a time signal with itself, this property is usually

referred to as Parseval’s theorem.

The argument of the integral in equation 2.39 can also be examined. It is the power
spectral density of the cost. Figure 2.6 shows the spectral density of the kinetic
energy of the simply supported plate, for a white noise point force acting at two

different locations. Egr has been chosen equal to 1.
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Figure 2.6: Spectrum of kinetic energy of the simply supported plate for white noise

excitation at two different locations.
2.3 Effect of disturbance location

It can be seen from the simulation results in figure 2.6 that the location of the
excitation influences the value of the cost function. In this analysis, the influence
of the location of the excitation is an undesirable complication. It is therefore
appropriate to assume an excitation where each point is excited in a similar fashion.
A spatially random pressure field would satisfy this criterion and it can be shown that
this is equivalent to assuming that the modes of the structure are excited equally,
but in an uncorrelated fashion. This can be proved by analysing the correlation

between the excitation of the diffferent modes:

Equations 2.4, 2.12 and 2.22 describe how the modes of the different models are
excited by point forces. Consider now the excitation of a single mode mn of the
simply supported plate, by a pressure field, p(z,y). This excitation is denoted as
fma(t) and is calculated through:

ly pla
Fon(t) = / [ (2, 91001,y (2.41)
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The correlation between a mode kl and mode mn then is:

ly ple
E[feifmn] = E[/ Yr(z1, y1)p(e1, v1, t)derdy
0 0

ly pla
/ l/)mn(vz @/2)17(7?2 Y2, )d$2dy°

ly lm ly plz
— / / / L/)u Ty, yl)d)mn('LQayZ)

E [p(z1, 11, f)p(xa, Y2, t)] dz1dy1dzadys (2.42)

For a spatially random pressure field, there is no correlation between the pres-
sures at two different locations. This means that E [p(z1, y1, t)p(22, y2, )] is equal to
§(z1 — 12)6(y1 — 12)E [p(z1,v1,t)%]. Tt is furthermore assumed that E [p(z,y,t)?] is

constant for different (z,y). Equation 2.42 can then be rewritten as:
ly pla
Elfimnl = [ [ (). 0 [p(e.v.67] dody
o Jo
ly pla
= [ [ e pm(o )0 [l 7] (249
o Jo

For the assumed, orthogonal modeshapes, the integral foly fé" Y (T, Y)W (z, y)dady
is non-zero only if kl = mn, when it is equal to S, Ny, where S, is the surface area

of the object. The corresponding matrix B,, for the modal forces is equal to:

1 0
m=— 2.44
B = - (N) (244)

If the pressure field is assumed to have a white spectrum in time, as well as space,

then equations 2.43 and 2.35 can be combined:

J = trace (/00 (I)T(O’)Q(I)(O’)dO’Pw) (2.45)
with
P, = ?\'%Su [ g No_l ] E [p(z,y,1)°] (2.46)

For the beam, S, = L and E[p(z,y,t)?] has been chosen equal to 2/L. For the
simply supported plate, S, = I, and the expectation E [p(z,y,t)*)] was chosen to
be equal to 4/l,l, [N?/m*]. For the CFCF plate, S, = l,, and E[p(z,y,t)?)] has
been chosen equal to 1/1,l, instead.

Figure 2.7 shows the spectrum of the kinetic energy of the simply supported plate,

excited by a randomly distributed, white noise excitation.
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Figure 2.7: Spectrum of kinetic energy of the simply supported plate for a randomly

distributed white noise excitation.

If the excitation has a non-white spectrum, but is still a random signal, it can be
approximated by assuming that the excitation is a white signal filtered through a
frequency shaping filter. The states of this filter should than be included in the
model dynamics. However, for ‘red’ noise (time-integrated white noise) excitation
on a structure where velocity sensors are used and the cost function is derived from
the modal velocities, it can be shown that the shaping of the white noise can also be
done without adding extra states. The way in which this can be achieved is shown
in figures 2.8(a) to 2.8(c).

Mathematically, this is equivalent to using the following matrix instead of P,, to

calculate the cost:

1 [ KITNTKPE[RA] 0

P, =—
M2 0 0

(2.47)
where K is the part of the matrix in equation 2.25 and should not be confused with
the solution of Lyapunov equation 2.37. Note that, though the integrated white
noise signal will tend to infinity at low frequencies, the response of the system in
terms of modal velocity tends to 0. In section 2.2.1 it was shown that the cost

function can be evaluated using a solution of Lyapunov equation 2.37 as long as the
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Figure 2.8: Equivalent ways of modeling red noise acting on the system.

system is asymptotically stable. Using this Lyapunov equation, it is found that the

cost function remains bounded for a red noise excitation.

2.4 Effects of number of modes on the model and

frequency range of interest

The number of modes taken into account increases the computational load in any
optimisation process. Thus the number of modes must be limited. However, the
number of modes included in the model must be sufficient to allow a realistic model-

ing of the beam, such that spillover through the controller to the unmodelled mocdes
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is limited.

The rate of change in time and space for a white, randomly distributed pressure
field would be infinite. This is not physically realisable. A limit on the maximuimn

rate of change limits the frequency range of the model’s excitation.

This section examines how the number of modes in the model and the nuuber of
modes that are excited influence the calculation of the kinetic energy and the power
in- and output of the plate. The relations between frequency range, kinetic energy

and power is also examined.

2.4.1 Calculation of power input

The expectation of the power supplied to the modes by a spatially random excitation
is the product of the modal velocity and the force acting on the mode and can be

written as:

E [Psup] = E ':Z d’mﬂ(t)fmn(t)]
= E[a(t)Tf(t)] (2.48)

The modal velocities are the convolution of the impulse response of the modes of

the system, ®(t), and the disturbance forces on the modes, f{t):
E[Pny] = E[(£7()*BL2"(1)CF) £(1)] (2.49)

where the matrix C,, selects the modal velocities from the state vector according
to:
a=C,x (2.50)

In the frequency domain equation 2.49 is equal to:

1

BlP] = 258 R ([ (000)*BL8 () Cht(is)a )|

~ 2_R (trace ( / " BT84 (ju)CLE [£(jw)E7 (jw)] dw))

2 0
(2.51)

Where R denotes a function taking the real part of the complex variables of its

arguments. If the forces are white in their spectrum, it has already been seen that
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this is equal to:

BlPu] = 22%“’“e (R ( / Bﬁ,‘I’H(jw)CﬁPwdw)) (2.52)

0

Solving this equation requires an integration over all frequencies.

One can also see that, in a steady state situation, the power input must be equal to
the total power lost. If no power is absorbed in a controller, power lost to structural
damping in the modes must equal the power input into the system. Power loss can
be calculated by multiplying the modal velocities with the modal damping forces.
The modal damping force is equal to the modal velocity, multiplied by the modal
damping forces, f,4. The modal damping forces are related to the the modal velocities
as:

f.q = MND,a, (2.53)

where D is the same matrix as in equation 2.25. For the power absorbed in tle

structure we can then write:

E[Pus] = E[a](t)fu(t)]
= E[al(t)MND,a,] (2.54)

The modal velocities can be calculated with the convolution of the impulse-response

of the states and the excitation forces:
E[Pws] = [al(t)MND,a,]
= ME { / f7(0,) BT ®T(t — 0,)CT doy ND, / Cn®(t — ag)Bmf(ag)dag}
0

0
= Mtrace { /0 ” /0 ” &7 (t — 01)CIND,C,,, ®(t — 09)6(0; — ag)Pdaldag}
= Mtrace { /0 ” @T(t)cf;lNDscmé(t)dtP} (2.55)
This equation is similar to equation 2.35 and is thus equal to:
E [P,s] = trace [KP] (2.56)
with K the positive semi-definite solution of:
KA:+ ACK + Qs struct = 0 (2.57)

where Qups struet 1S €qual to:

0 0
Qabs struct — M ! 0 ND :| (258)
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fmaz | N | P[t] | P[1 kHz] P[2kHz] P[3kHz] P[4 kHz] P[5 kHz]
1 kHz | 25 | 25.00 | 24.65 24.98 24.95 24.96 24.96
2kHz | 35 | 35.00 | 24.73 34.67 34.87 34.91 34.92
3 kHz | 43 | 43.00 | 24.73 34.89 42.59 42.82 42.86
4 kHz | 50 | 50.00 | 24.73 34.90 42.87 49.44 49.76
5 kHz | 56 | 56.00 | 24.73 34.91 42.89 49.67 55.35
foae | N |JJ] | JLkHZ J2kHZ J[3kHz] J[4kHz] J[5 kHZ
1 kHz | 25 | 4.067 | 4.030 4.032 4.032 4.032 4.032
2 kHz | 35 | 4.095 | 4.030 4.059 4.060 4.060 4.060
3 kHz | 43 | 4.108 | 4.030 4.059 4.072 4.073 4.073
4 kHz | 50 | 4.117 | 4.030 4.059 4.073 4.080 4.081
5 kHz | 56 | 4.122 | 4.030 4.059 4.073 4.081 4.086

Table 2.5: Expected total power supplied to the simply supported beam, P[t], and
the expected total kinetic energy, J[t], together with the power and kinetic energy
in the bandwidth up to 1 kHz to 5 kHz (P[1 kHz|, P[2 kHz], etc. and J[1 kHz], J[2

kHz|, etc.) for a varying number of modes N.

This method of calculation saves the rather numerically intensive process of integ-

rating over all frequencies.

2.4.2 Results for power input and kinetic energy

Table 2.5 lists the calculated power supplied to the simply supported heam, cal-
culated with both the time and frequency approach of calculation. The frequency
integral was approximated by summing the results per frequency over limited fre-
quency ranges. The power supplied to the heam has heen calculated for different
frequencies, fae, up to which all modes with a resonance frequency below fp,..
have been taken into account. All modes are assumed to be excited by the random
pressure field. In the same table, the appropriate expected kinetic energy has also

been listed. This too has been calculated in time domain or the frequency domain.

It can be seen that the total power input, P[t], varies linearly with the number of
modes, N, included in the model. However, the total kinetic energy, J[t], varies

much more slowly with the number of modes. An initial amount of energy put
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into the higher order modes is dissipated more quickly than in the lower order
modes, because the damping coeflicient (2{wyn,) is higher for the higher order modes.
The contribution of the higher order modes to the time-averaged kinetic energy is

therefore smaller.

The numerical integration over a limited bandwidth results in differences in the
calculated power input and kinetic ernergy. By reducing the frequency spacing the
estimates can be improved. Comparing the power calculated over a 2 kHz frequency
range and 25 modes to the power calculated over the same frequency range but
with a higher number of modes, say 35 and 56, shows that adding modes to the
model with a resonance frequency higher than the frequency range of interest does
not improve the calcution of the power estimate mucli, whereas adding mmodes with
resonance frequencies lower than the frequency range of interest is important to get
a good estimate. Vice versa, one could say that the calculation of the total power
input is a good approximation of the power input over a limited frequency range,
if one excites only the modes in the model with a resonance frequency below the

frequency range of interest.

The number of modes per frequency decreases with frequency as approximately
1/+/w. The number of modes therefore tends to infinity as f,.., goes to infinity. For

white noise inputs, the power thus also goes to infinity.

Table 2.6 lists the same quantities, but now calculated for the simply supported
plate. It shows that the power input is still linearly related to the number of modes
taken into account. The kinetic energy varies more than for the simply supported
beam and a higher proportion of the kinetic energy is located at higher frequencies.
It can also be seen that, unlike the beam, the number of modes per frequency

increases with frequency and thus approaches infinity at a much higher rate.

It seems that either the frequency range of interest, or the number of excited modes
must be limited, if one is to examine the power flow into the structure. For the
kinetic energy the number of modes is much less critical. This makes sense, as the
modes that are added are high order modes that damp out faster than the lower

order modes.

If one is only examining excitation over a limited frequency range, one can also

limit the number of excited modes to that frequency range, because including more
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frmae | N | P[t] P[1 kHz] P[2kHz] P[3kHz] P[4LkHz] P[5 kHz]
1kHz | 18 | 192.7 189.0 191.7 192.0 192.1 192.2
2kHz | 39 | 417.6 190.9 409.2 415.1 415.8 416.1
3kHz | 60 | 642.5 191.0 416.6 632.0 638.1 639.3
4 kHz | 84 | 899.5 191.0 417.0 644.5 881.2 892.5
5kHz | 106 | 1.135- 10% | 191.0 4171 645.1 889.0 1.110 - 10°
fmaz | N | J[H] J[1 kHz] J[2kHz] J[3kHz] J[4kHz] J[5 kHz]
1kHz | 18 | 2.341 2.304 2.318 2.320 2.321 2.321
2kHz | 39 | 2.965 2.310 2.925 2.939 2.942 2.943
3kHz | 60 |3.333 2.311 2.939 3.295 3.306 3.308
4kHz | 84 | 3.628 2.311 2.939 3.311 3.586 3.599
5 kHz | 106 | 3.835 2.311 2.939 3.312 3.593 3.791

Table 2.6: Expected total power supplied to the simply supported plate, P[t], and
the expected total kinetic energy, J[t], together with the power and kinetic energy
in the bandwidth up to 1 kHz to 5 kHz (P[1 kHz], P[2 kHz|, etc. and J[1 kHz], J[2

kHz], etc.) for a varying number of modes N.

modes in the model does not influence the kinetic energy or the power input in that
frequency range much. The time domain method of calculating the kinetic energy

can then be used as an approximation of integrating over a limited bandwidth.

In this analysis no coupling was present between the modes and adding control may
result in energy being transferred between the higher or lower order modes, thus
influencing the expectation of the kinetic energy. Also, when one tries to control the
model with discrete control locations, one must also make sure that the system has

many more degrees of freedom than control locations.

Unless mentioned otherwise, the simulations in this thesis have used the first 50
modes of the simply supported beam, the first 106 modes (all modes up to 5 kHz)
of the simply suppofted plate, and the first 170 modes (all modes up to 3 kHz) of
the CFCF plate.
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2.5 Summary

This chapter showed how modal models of a simply supported beam and plate can
be derived from the differential equations governing an infinitesimal part of the plate
or beam and the boundary conditions at the edges of the structure. It was also noted
that for the clamped-free-clamped-free plate no analytical functions are known that
match the boundary conditions. An appropriate approximation of the modeshapes

is used from the literature instead.

It has also been shown that the kinetic energy of the structure can be calculated
in both the frequency and the time domain and that the location of the excitation
can influence the spectrum of the kinetic energy. The influence of the excitation
on the spectrum is considered an unwanted complication and a spatially random
distributed pressure field acting on the structure is used instead. This spatially
random pressure distribution is equivalent to independent excitations acting on each

mode of the structure.

The power input into the structure and the kinetic energy were analysed for this
excitation, when different frequency ranges are considered and different numbers of
modes are taken into account. It was shown that for a driving pressure field that
is completely white in both time and frequency, the power input into the structure
would be infinite. If either the frequency range of the excitation or the nuniber of
modes is limited, the power input is finite. It was also shown that if one is examining
only a limited frequency range, excitation of modes with a higher natural frequency
than the frequency range of interest does not significantly influence the power input
or the kinetic energy of the structure and can thus be excluded. Furthermore, one
can then use the time-domain method of calculating the kinetic energy and power,

rather than the frequency domain.



Chapter 3

Single-channel control

This chapter focuses on the design of a single-channel controller. This is because
a multi-channel, decentralised controller can also be seen as a combination of a
number of single-channel controllers applied to the same structure. The design of the
controller is usually confined to the question: Given the structural and performance
parameters, what should the controller do to give optimal performance? This means
that to ’control the structure optimally, complete knowledge of the structure and
the excitation would be necessary. In this section another question is therefore
considered: Can optimal control be approximated on the basis of a small number of
parameters? Chapter 6 will then consider how such parameters can be identified on
the basis of the local mobility. The mobility of a particular point of the structure
can be defined as the velocity response of a particular point on the structure per

unit force.

Section 3.1 considers unconstrained controller design. The controllers exaimnined
there are not confined to be causal or stable. This may not be directly relevant for
the design of the controller for a broadband application, but can give interesting
insights into the fundamental limits of performance. It also should show what phase
and gain the controller should be tuned to at a single frequency or what the controller
should do if feedforward were possible. It is hoped that this will also give some insight
into the relation of optimal control to the structural variables. It will examine both
unconstrained feedforward and feedback control to minimise the kinetic energy of a

structure.

35
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Under a steady state excitation. there is a balance between the power that enters
the system through the disturbance and the dissipation in the systemn itself through
internal damping. The control forces may be able to increase or reduce the power
input and can also absorb power themselves. Therefore, minimising tle total power
input by both disturbance and control forces and maximising the power absorption
by the control forces only are considered as possible sub-optimal control strategies.
The ideas of examining power in- and output are not new and have also been ex-
amined in literature, as discussed in sections 1.2.2.2 and 1.2.2.3. Brennan et al.
(1995) compared both strategies for single frequency disturbances in a feedforward
set-up on a beam. Maximising power absorption has been examined extensively for
both structural and noise control, e.g. Guicking et al. (1989), Elliott et al. (1991),
Clark and Cole (1995) and Hirami (1997a,b), though mostly in single frequency

applications.

Section 3.2 focuses on stable feedback control strategies and mainly on constant gain,
absolute velocity feedback control. As it has only a single parameter to set, i.e. the
gain, it is an obvious choice to examine if it may be possible to relate the optimal,
or a sub-optimal feedback gain, to locally measurable variables. The performance of
the approximations is then compared to that of the optimised constant gain velocity

feedback controller and to the performance of an LQG controller.

3.1 Unconstrained optimisation

The unconstrained optimisation of feedforward and feedback controllers are ex-
amined in this section. Though they may not be feasible for active control of a
broadband disturbance, it sets limits on the absolute performance, and may provide

some insight on the dependency on the structural characteristics.

For both feedforward and feedback control, three strategies are examined. The
first minimises the total kinetic energy of the structure. The second minimises the
total power input by the disturbance and control force into the structure. The
third maximises the power absorption by the control force. These latter two control
strategies are examined as they might be useful as approximations to minimising

the kinetic energy.
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Figure 3.1: Feedforward control of the beam using a time-advanced reference signal.

3.1.1 Feedforward control

This section examines feedforward controllers. The principal of feedforward control
is that the control forces, f., are calculated using knowledge of the disturbance
forces, fy. In the unconstrained case, this can also be advanced knowledge of what

the disturbance forces will be at some later time. This is illustrated in figure 3.1.

The controller requires complete knowledge of the disturbance forces acting on the
structure. For a system where disturbances do not act upon the structure at dis-
crete points, this condition may be difficult to meet. Nevertheless the feedforward
controllers can serve a reference for the design of a controller, because feedforward
control gives an upper bound to the maximum possible reduction in vibration. The
feedforward controller thus shows the absolute limitation of performance of the sys-

tem.

To calculate the optimal control force, an optimality criterion or cost function is
required. The optimal feedforward control to minimise the kinetic energy of the

system is examined first.
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3.1.1.1 Minimum kinetic energy

The kinetic energy (E}.) can be calculated as the sum of the kinetic energy in each

of the modes (equations 2.7, 2.14 and 2.24):

Ee = %M i i J\US. (3.1)

n=1 m=1

Where N,,, is the integral of the squared modeshape over the surface of the structure

and M is the total mass of the structure. Since the response can be approxiniated

with a limited number of terms, this can be written as a finite sum, or in state space
notation (equation 2.29):

Ere = x7Qx (3.2)

In figure 2.5 and equation 2.26 a general state-space notation was used to describe

the excitation of the model due to a set of forces f. Assume now that some of these

forces are disturbance forces, f;, and others are control forces, f., attempting to

minimise the kinetic energy, as a function of the control forces:
X = Ax+ Byfy(t) + B f.(t) (3.3)
or, using frequency domain notation:
x = (jwl — A)7 (Bafa(jw) + Bofo(jw)) (3.4)
= ®,(jw) (Bafs(jw) + Bcfe(jw)) (3.5)

Dropping (jw) from the notation for brevity, the kinetic energy of the structure can

then be calculated as:
Ere(jw) = x"Qx
[£7BI + £7Bl] @7 Q®., [Buf; + B.L]
= fBI®JQ® B, + 2f"BI @/ Qd, B, + {7BT®7Q®,B.1.
(3.6)
This function is a quadratic function in £, which means that, provided Q is positive
definite, there is a global minimum. The control force at this minimum can be

found by taking the derivative of equation 3.6 with respect to the control forces and

equating it to zero. This leads to a new set of equations:

0 = 2[Bl®JQ® B, f,+2[Bl®JQ®, B|L. (3.7)

f.(jw) = - [BT®7Q®,B,] " [BT87Q®, B, f;(jw) (3.8)
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Figure 3.2: Spectrum of the kinetic energy of the beam with and without optimal
feedforward control, minimising kinetic energy, excited by a randomly distributed

excitation and controlled at 0.6 of the length of the beam.

This feedforward control force minimises the quadratic cost function, for a spe-
cific excitation f3(jw). Note that due to the Hermitian transposes of the impulse
responses of the modes, ®,(jw), the time domain transformation of the control
function is not causal. It would require the knowledge of what the disturbance force
is going to do in the future to calculate the control force at any particular point in
time. Note also that, for the inverse of [BCT.‘I%" Q‘wac] to exist, the matrix must
have full rank. This implies that both Q and ®, must have a rank larger than or
equal to the number of control locations. Even then, the rank of the matrix may
not be sufficient if some modes can not be controlled. This implies that for the
optimal solution to the cost function to be unique, both the number of states and
the number of states taken into account for the cost function must be larger than

the number of control locations.

The spectrum of the kinetic energy of the beam for a randomly distributed excitation,
with and without this feedforward control is depicted in figure 3.2. In this case the
reference signals are the waveforms of the modal forces described in section 2.3. The

beam is controlled with a single point force actuator at 0.6 of the length of the beam.
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Figure 3.3: Modeshape of the beam for which the control force, f., has no influence

on the excitation

The figure shows that optimal control reduces the energy density most at resonances.
However, there are several resonance frequencies where there is no or very little
reduction possible in the kinetic energy. These are frequencies where the dominant
modeshapes have a node at the point where the control force is located. This means
the control force has no influence on the excitation of those modes. This is illustrated

in figure 3.3.

3.1.1.2 Minimum power input

An alternative to minimising the kinetic energy is minimising the total power fed
into the system by the disturbance force and the control force. In the steady state
situation, the power input into the system is equal to the power dissipated through
internal damping. If the damping is viscous, the power dissipated is equal to the
modal velocity times the damping force. As the damping force is equal to the damp-
ing constant times the modal velocity, the power dissipated in each mode is linearly
related to the kinetic energy of that mode, but the constant of proportionality is dif-
ferent for each mode. Thus reducing the power input should also reduce the kinetic
energy of the modes. The total power input depends partly on the local behaviour at
the control point and therefore might have a strong relation hetween local hehaviour

and the control force. The power input to the system can be calculated as:

P(t) = £7 (t)Wa(t) + £7 () We(t) (3.9)
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Where wy and w, are the velocities of the structure at the disturbance and control

location respectively. This can also be written in the frequency domain as:
P(jw) = R(ffwa(jw) + £ we(jw))
= R(£f¥Ta(jw) + £7¥Ta(jw))
= R(£fCy®,(jw) (Bifs + BL.) + £7C. @, (jw) (Bufy + B.L.))
(3.10)

Where w,; and w, are the velocities in the frequency- domain at locations of the
primary and secondary respectively. In equation 3.10 Cy®,(jw)Bg4 is the mobility
matrix Y44, which is the response of the velocity of the structure at x4 to the forces
at that same point. For the control locations, a different mobility matrix, Y., can
be derived. For the cross terms, cross mobility matrices Y 4 and Y. are defined.
Y. .; and Yy, are each other’s transpose. Using the mobility matrices in equation

3.10 and splitting the functions in their real and imaginary parts results in:

P(jw) = R(£Yaafs + £ Yool + £V ocfy + £7Y . ) (3.11)
= R(f) " R(Ya)R(£) + 1 (£)" R(Yaa) I (£2)
+2R (£)" R (Yao) R (Fy) + 21 (£.)" R (Ya) 1 (£2)
+R (£) " R(Y ) R(F) + 1 (£)" R(Yee) I(£.) (3.12)

This is a quadratic equation which can be minimised in the same way as described
in section 3.1.1.1 if R(Y,.) > 0. For a passive system, the real part of the mobility
is always larger than zero, otherwise power extraction from the systein would be
possible. That would imply that a power source is present in the system, which
can not be the case for a passive system. The minimisation leads to the following

equation for the control force:
foopt (W) = =R (Yeo) "R (Vo) £y (3.13)

Note that for this solution to be unique, the mobility matrix may not be rank-
deficient. By using this control force, the response at each frequency can be cal-
culated. In figure 3.4(a), the spectrum of the kinetic energy of the beam has been
depicted before control and when the total power input is minimised. The results
that were obtained by minimising the kinetic energy are also depicted. The excita-
tion was again assumed to be randomly distributed and to have a white spectrum.
The close-up on a small portion of the frequency-range in figure 3.4(b) shows that
the kinetic energy is not reduced as much when the kinetic energy is minimised.

However, the differences are minimal.
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Figure 3.4: Spectrum of the kinetic energy of the beam with and without control
minimising the total power input into the beam, excited by a randomly distributed

excitation and controlled at 0.6 of the length of the beam.
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3.1.1.3 Maximum power absorbed by controller

Instead of minimising the power input by both the controller and disturbance forces,
another possible effective strategy might be to maximise the power absorbed by the
control force. Instead of minimising equation 3.9, this means the following equation
is minimised:

P(t) = f7(t)w,(t) (3.14)

Which, in the frequency domain, results in:

P(jw) = ( W, jw)

(F2C.®(jw) (Bufy + B.f.))

(EFY aofy + £7Y . f,)

(£) R (Yao) R (£2) + T(£)" R (Yae) I (£a)
(£ T(Yae) T(f) = T(£)" T(Yae) R (£a)

R
R(£) R(Ye)R(£) +I(£)TR(Y)I(£) (3.15)

R
R
= R
R

+

+

The optimal feedforward controller then becomes:
£oop(Jw) = —1/2R (Yeo) " Yo fs (3.16)

Again for this solution to be unique, the mobility matrix may not be rauk-deficient.
Figure 3.5 shows the spectrum of the kinetic energy of the beam with a randomly
distributed excitation. It can be seen that this control strategy actually increases

the kinetic energy density for much of this frequency range, rather than reducing it.

3.1.2 Unconstrained feedback control

In the previous section unconstrained feedforward optimisation was considered. It
was shown that optimal controllers can be defined uniquely if there are sufficiently
more modes in the model than control locations. However, in the case of a structure
excited by a randomly distributed excitation, the disturbance forces are unlikely
to be available as a reference. This section therefore explores the optimisation of
feedback controllers, as illustrated in figure 3.6. The optimisation can be considered
as: Given a certain distribution of excitation at a certain frequency, what should

the phase and gain of the controller be to optimise the specified cost function? This
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Figure 3.5: Kinetic energy of the beam with and without optimal feedforward con-
trol, maximising power absorption, excited by a randomly distributed excitation and
controlled at 0.6 of the length of the beam.

12

c

/S

PRRVAN

g(jo)

Figure 3.6: Feedback control of the beam

seems very similar to the optimisation of the feedforward controller, but force gen-
erated with the feedback controller is constrained to be proportional to the velocity
measured at the control point, whereas this was not necessary for the feedforward
controller. The results are therefor slightly different. The results are not expected
to be feasible for a broadband excitation, but provide an intermediate step between
feedforward with complete knowledge of the disturbance and causally constrained
feedback control. It is hoped that the optimisation of the different feedback control-

lers will show a clear relation to the local dynamics.
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3.1.2.1 Minimum kinetic energy

In section 3.1.1.1 the kinetic energy as a function of the disturbance and control
forces was considered in equations 3.5 and equation 3.6. In a feedback situation the

control signal is a function of the velocity at the control point:

f(jw) = GQw)w(jw)
= G{jw)Cx{jw)
= G(jw)Ce®,(jw) (Bafa(jw) + Befe(jw))
= [ - G(jw)Ce®,(jw)B ™ G(jw)Ce®., (jw)Bafs(jw)
= - G(jw)Ye] " G(jw)Yafu(jw) (3.17)

Combining this with equation 3.6 and dropping (jw)-terms from the notation for

brevity results in:

Ere(jw) = [fi'Bg +£'B] 27Q®, [Buf, + B.f]
= £ [BY + YiG" 1 - GY.| " BI| ®Qa,
[Be[I- GY.] ' GYqy + Byl £ (3.18)

Differentiating the cost function with respect to the elements of G, and setting the

derivative equal to zero results in the following equation:

0 = 2[I- GY. " BI®Qa.BILf Y} |G 1 - GY.| * Y +1]
+2[1 - GY. ] " BI®#Q® . B.[I - GY.| ' GYq Lt yH

de

. [GH I-GY.] 7Y+ I] (3.19)

This equation is not a linear equation like equation 3.7. This is because equation
3.18 is not a quadratic equation in terms of G. The consequence of this is that there
may be more than one solution G that satisfies equation 3.19. It is found though

that only one of the solutions corresponds to a minimum in the cost surface.

For brevity in notation, the following matrices are defined:

{1

—

BI®7Q® B f,ff Y%
= B, %/Q®.B.
Y £ £ Y

o
|

o
|
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provided that the inverses of 5 and [Eg = 151] exist, the solution of equation

3.19, corresponding to a minimum in the function is given by:

——] — — ] = -1 ¢
G=-5;'5 [.:3 - Y .= 1:.1] (3.20)

Equation 3.20 still contains the actual disturbance forces f;. To obtain a defined gain
that is independent on the actual force, a randomly distributed pressure excitation
is assumed. As explained in section 2.3 this results in independent excitation of each
of the modes. In equation 3.19, [Bdfdff Bg] is then changed to an expectation, P
of the excitation of the modes. In a single-channel analysis this results in:
3 BI®ZQ® P®IB,

BT ,P®EB BT®7Q® B, - Y. .BT®IQd PPIB,

g= (3.21)

Figure 3.7 shows the spectrum of the kinetic energy of the beam with a white,
randomly distributed excitation, with this feedback control. Results are similar to,

but not quite as good as the feedforward control in equation 3.2.

3.1.2.2 Minimum power input

By combining equation 3.10 and 3.17 the power put into the system can be calcu-
lated:

P(jw) = R(£]fCy®, (Bsfy+ B.f.) + £7C.®, (Byfs + B.L.))
= R(EYaufs+ £ Yoof. + £ Yoo ks + £7Y . f.)
= R(EFYuufu+ Y [I- GY,| ™ GY ok,
+HAYIGH I — GY o 7 Yaef,
HIYEGT [- GYo] Y [I- GY,]™ Gchfd> (3.22)

Taking the derivative with respect to the elements of the feedback gain matrix G of
this cost function results in:
OP(jw)
o0GH

2[1 = GYeo] ™ [R(Yae) fuf i Ve
+R(Y) I - GYo | GR (Yo fufF YE)]
: [GH I-GY. | "YH+ I}
+2[1 = GY oo " I(Yeo) [T~ GY o] ' GI (Yuofuf] Y2
: [GH I-GY.]"YE+ I] (3.23)
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This is not easily solved, unless 1 (chfdffYﬁ) = 0, in which case the solution is
given by:

G = —R(Yeo) "R(Yu) L YL [R (Yaelaf YY) — YoR(Yeo) "R(Y o) faf ] Y !

(3.24)
This is only true if the required inverses exist, otherwise the solution is not uniquely
defined. Note that for the randomly distributed excitation, I (chfdff Yﬁ) is indeed
equal to 0. In a single-channel case the solution can be simplified to:
BIR($.)P3/ B,

G=-
R(Y,..)BT® PPIB. — Y..BTR(®,,)P®B,

(3.25)

Figure 3.7 shows the spectrum of the kinetic energy of the beam with a randomly
distributed, white noise excitation, with this type of feedback control. As with
feedforward control, there is little difference with the optimal minimisation of the

kinetic energy.

3.1.2.3 Maximum power absorption

By combining equation 3.15 and 3.17 a feedback control force, maximising power

absorption, can be calculated:
P(jw) = R (fCHCc@w (Bafy + Bcfc))
= R (chchfd + chchfc)
= R(EYEGTI- GY.] ™ Y,
HEEYEGH I - GY o ™ Yo [l - GYo]™ Gchfd> (3.26)

Differentiating with respect to the feedback gain matrix gives:

0P (jw)
0GH

- GY.] " Yol Yy [GH I-GY,]™” Ygl]
+2[1— GY o] T R(Yeo) [I ~ GY,oo] ! GR (Yo fuf V)
: [GH I-GY. ™" YZ+ 1]
2= GY o T I(Y) [[ - GY o GI (Yafuf FYH)
: [GH I-GY. | ™"YE+ I] (3.27)
Which is again difficult to solve, unless ]I(chfdffY(ﬁ) = 0. in which case the

solution is:
G=-[yy]" (3.28)
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Kinetic energy spectrum of the beam
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Figure 3.7: Kinetic energy of the beam with and without optimised feedback control,
respectively minimising total kinetic energy (thin line), the total power input (dot-
dashed line) or maximising the power absorbed by the controller (dashed line), when
the beam excited by a randomly distributed excitation and controlled at 0.6 of the

length of the beam.

which is the well known case of matched conjugate impedance. This control method
shows a very clear relation to the local characteristics of the structure. In a single-

channel system:
G=-1/Y2 (3.29)

Again, figure 3.7 shows the spectrum of the kinetic energy of the beam with a
randomly distributed excitation, with this feedback control. As with feedforward
control, maximising the power absorption leads to an overall increase in the kinetic

energy.

3.1.3 Summary

It has been shown that, to obtain a unique optimal solution both the number of
modes taken into account and the number of independent sources of excitation must

be equal to or larger than the number of control locations. It was also seen that
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the strategy of miniimising the total power input gives results that are very close to
optimum control of kinetic energy. Unfortunately, the feedback strategies of either
of these controllers did not depend solely on the mobility of the structure at the
control points. The feedback strategy of optimal power absorption did show a very
clear, direct relationship with the mobility at the control location, but unfortunately
increased, rather decreased, the kinetic energy in the structure itself. Finally, it can
also be seen that the optimum controllers are non-causal, thus they are inapplicable

in the case of a broadband randomly distributed excitation.

3.2 Constrained feedback control

This section examines constrained controllers. Specifically, the controllers have been
constrained to be causal and use a limited control effort. Because the optimisation
can not be done on a per frequency basis while ensuring stability, the expectation
of the cost function will be minimised. Section 2.2.1 described how the expectation
of a quadratic cost function can be evaluated for a general state space model. Here,
it will be shown how the same techniques can be used to calculate the cost function

in a feedback situation.

Doyle et al. (1989) showed a general structure for calculating an optimal dynamic
feedback controller to minimise a quadratic cost function. However, Linear Quad-
ratic Gaussian (LQG) control is used as a comparison for the constrained controller,
due its simple and easy to comprehend structure. For the design of the LQG con-
troller, the reader is referred to available literature, e.g. Stein and Athans (1987)
and Skogestad and Postlethwaite (1996). LQG control uses an internal model of the
system to estimate the states of the system. The inputs of the estimator consist of
the measured response and the control signal. Though the strategy can perform well
in this way in a single-channel system, it is not particulary suitable to use multiple
SISO LQG controllers on the same structure, as the other control signals are not
available to the estimators at any one point. This would then result in a worse
estimation of the states of the model. Furthermore, combinations of differences in
modeling might result in instability. Therefore LQG control is considered as a ref-
erence rather than as a candidate control strategy for the problem set out in this

thesis.
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LQG control strategies require control effort weighting as part of the design. As it
is undesirable to use very high control efforts and it is desirable to compare coutrol
strategies on an even footing by making sure they use the same control effort, tle

inclusion of control effort weighting in the cost function is considered in section 3.2.1.

To simplify relating the variables of the controller to structural variables, a constaut

gain, absolute velocity feedback controller is examined in section 3.2.2.

3.2.1 Limitation of control effort

The control effort can be limited by including it in the cost function. The control
effort is defined here as the sum of the squared control signals, u. This changes the

original cost function for kinetic energy, equation 2.30, to:
J =E [x"(t)Qx(t) + u” (t)Ru(t)] (3.30)

where R is a diagonal weighting matrix, introduced to weigh the control effort
relative to the cost criterion described by Q. The on-diagonal elements are all
chosen to be equal, to weigh the effort at different control locations equally. Other
cost functions, such as minimum power input, or maximum power absorption can

be similarly adapted, by adding the term E [uT(t)Ru(t)] to the relevant function.

3.2.2 Absolute velocity feedback
3.2.2.1 Introduction

Constant gain, absolute velocity feedback has been examined as a control method
since some of the earliest publications of active vibration control (Olson (1956),
Rockwell and Lawther (1964), Knyazev and Tartakovskii (1965) and Knyazev and
Tartakovskii (1967)). This is for its obvious stability advantages, as illustrated by
Balas (1979), as well as good performance. Here, a constant gain, absolute velocity
feedback is used in a single local control loop, as illustrated in figure 3.8(a) and a
the state space diagram in figure 3.8(b). The control signal, u, is the control force

fe- z are the outputs whose squared, weighted and summed output is equal to the
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response of the structure

WC

g

{(a) On the structure (b) State space diagram

Figure 3.8: Constant gain velocity feedback control.

cost function, as defined in equation 2.28. In state space notation:

)'( = AX + Bdfd<t) + Bcfc<t)

y = Cx

u = fo=—gy; (3.31)
or:

X = [A - BchC] X+ Bdfd<t) (332)

The cost function for kinetic energy, equation 3.30 can then be written as:
Jee = E [x7(t) [Q + CI 9" RgC.] x(¢)] (3.33)

Where R is the single-channel weighting factor associated with the control effort aid
Q is the modal weighting matrix. Using the analysis in sections 2.2 and 2.3 this can
also be written as:

Jre = trace ( / N ®7(0) [Q+ CLg"RgC.] ‘Dc(a)daP> (3.34)

0
If this is compared to equation 2.45, the added term due to the control effort is clearly
visible. The other difference is that the function ®(t) is replaced by ®.(t). ®.(¢)
is the fundamental transition matrix for the controlled system which is defined as
equation 2.32, but the matrix A, which described the uncontrolled system is replaced
by the A, which describes the dynamics of the controlled system. For this constant

gain, output feedback controller, the matrix A, is defined as:
A.=A-B.gC, (3.35)

Thus, ®.(t) is:
D, (t) = elABegCelt — ghet (3.36)
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For the calculation of minimum power input and maximum power absorption, the
cost functions can be written in a similar form to equation 3.34. The power iuput
in a steady state situation is equal to the sum of power dissipated in the structure

(equation 2.55) and the power absorbed by the controller (equation 3.14):

xT(t)M [ g ND ] x(t) + fc(t)Twc(t)]

= B [x"(t)Quabs strueex(t) + x(t)TCL gCex(t)] (3.37)

Including the control effort weighting results in:
Jp in = trace (/ QZ(O-) [Qabs struct T ngcc + CZQTRQCC} QC(U)dUP) (338)
0

For the maximisation of the absorbed power by controller, the cost function to

maximise would become:
Jp aps = trace (/ ®7 (o) [CIgC. — CLg"RgC,] @c(a)daP> (3.39)
0

The control effort has been included in a negative way, because the optimisation is

a maximisation rather than a minimisation.

3.2.2.2 Optimisation

Figures 3.9(a) and 3.9(b) show the kinetic energy of the beam as a function of
the feedback gains. For the structural models examined, the minimum can not be
practically calculated in an analytical way from the cost function, equation 3.34.
Moreover, when optimising output feedback controllers, it is difficult to prove that
a local minimum of the cost function is also the global minimum. This is discussed,
amongst others, by Levine and Athans (1970). They used an algorithm to find a
minimum of the cost function, but also noted this algorithm is not guaranteed to
converge. A different algorithm is used here, which is similar to one discussed hy
Anderson and Moore (1971) and is essentially a gradient descent algorithm. This

section describes how this algorithm is implemented for the single-channel controller.

Levine and Athans (1970) examined a general state space model:

x(t) = Ax(t)+Boau(t) (3.40)
Y(t) = ch(t)
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Kinetic energy spectrum of the beam
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Figure 3.9: The change in the spectrum of and the expectation of kinetic energy of
the beam under white noise excitation as a function of the constant velocity feedback

gain. The beam is controlled at z = 0.6L.



Chapter 3. Single-channel control 54

with constant output feedback gain:
u(t) = —Gyl(t) (3.41)
The cost function that was used in that paper is an initial value problem:
J = x7(0) / h ®I(t) [Q + CIGTRGC.] ®.(t)dt x(0)
0

= trace ( / ®7(t) [Q + CIGTRGC,] &.(t)dt x(0)x (o)) (3.42)

0

It can be seen that equation 3.42 is similar to equation 3.34, with x(0)x7(0) replaced
by P. If the system is asymptotically stable and the matrix [Q + CZGTRGCC] is

positive semi-definite, the cost is equal to (Kalman and Bertram (1960)):
Jre = trace (KP) (3.43)
with K the positive definite solution of the Lyapunov equation:
K[A -B.,GC/]+[A-B.GCJ"K + [Q+ CIGTRGC,] =0 (3.44)

The derivative of the cost function, Ji., with respect to the elements of the feedback
gain matrix, G, is equal to:

8']196

3G = 2RGC.LCT - 2BTKLC? (3.45)

where K is the solution of equation 3.44 and L is the solution of:
[A-B.GCJL+L[A-BGC] +P=0 (3.46)

Because the matrices K and L in equation 3.45 also depend on the matrix of feedback
gains G, the optimal feedback gains can, generally, not be directly established and

a convergent algorithm must be used.

Using the derivative of the feedback gain, a simple algorithm can be formulated that
will converge to a minimum on the cost function, if started at an initial stabilising
controller Gy. The algorithm used here is similar to that in Anderson and Moore
(1971):

- For the kth iteration, calculate the cost J; using equations 3.43 and 3.44. If

k = 0, use the initial stabilising controller Gy.

- Calculate the derivative of the cost function 8J;/9Gy, using equation 3.45.
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- Update the gain matrix Gy according to:

€ 6JL
[0J:/0G] 0G

G =Gy — T (3.47)

where ¢ is a small value to regulate the stepsize and F denotes the Frobenius
norm. This norm is included to keep the stepsize in Gy independent of the
size of the values in 0J;/0Gy.

- Check that the system is stable at these new gains and, if that is the case,
calculate the cost Ji4; using equations 3.43 and 3.44. The controller is stable
if all the eigenvalues of the matrix [A — B.GC,] are in the left-half of the
complex plane. If the system is no longer stable or Jiy; > Ji, reduce the
stepsize €, because the update has overshot the stability margins or an area
where the cost is lower. Repeat the previous step and this step, until the

system is stable and Jy41 < Ji, then repeat from beginning.

- To stop the optimization, a suitable criterion can be chosen, such as a suffi-
ciently small update in the gains, or a sufficiently small improvement in the

cost function.

Though it can not be proved that the algorithm converges to a global minimun,
it is found in practice that the controller does converge to tlie same set of gains,
independent of the choice of initial controller. The only exception found in the
course of this research is in a multichannel situation, when the control locations are
located very close together (Engels and Elliott (2005) and in this work, chapter 4).
Therefore, for ease of formulation, applying the above algorithm will be referred to

as optimisation.

For a single-channel case, the feedback matrix G only consists of a single element,
but the theory and the algorithm described above remain valid for a multichannel
controller. For the optimisation of the kinetic energy function in figure 3.9(b) with

no effort weighting, this algorithm calculates an optimal gain of 30.8 Ns/m.

3.2.2.3 Power minimisation and power absorption maximisation

Solutions for the minimisation of the power input and maximisation of the power ab-
sorption can also be calculated using the above algorithms, though the cost matrices

and the derivatives change.
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For maximum power absorption, the cost function in equation 3.39 can be calculated

in a similar fashion as in the previous section:
Jp aps = trace (KP) (3.48)

Now, the matrix K should be calculated from:

KA, +ATK + [CTGTC, - CIGTRGC,] =0 (3.49)
instead of equation 3.44. The gradient of equation 3.48 is:
OJPp abs
‘g’a"’ = C.LCT — 2BTKLCT - 2RGC,LCT (3.50)

As the cost function is maximised for this case, instead of equation 3.47, the update

should be:
€ 8‘]1\

[07:/0Gy] 3Gy,

For minimum power input, the matrix K would be calculated from

Gri1 =G + m (3.51)

KA, + ATK + [Qabs strue — CTGTC. + CIGTRGC,| =0 (3.52)

in stead of equation 3.44. However, it was found that the power input by the excit-
ation is independent of the control gain and the power absorption by the controller,
as was also found by Nelson (1996). This can be seen in figure 3.10, which shows
the power input by the excitation and the power absorption by the controller as a

function of the direct velocity feedback gain.

That the power input by the excitation does not cliange means that minimising the
total power input and maximising the power output are the same. That the power
input does not change can also be seen from the similarity between equation 3.42
and equation 3.34. The expectation of the power input when the structure is excited
by a random modal forces, is equal to the energy input of the initial value problein,
with uncorrelated impulse (in the case of white noise) or step (in case of red noise)
response of the modal amplitude. Similarly, the expectation of the power input
by the excitation is equal to the energy in the system at { = 0 due to the initial
conditions in the time domain analysis. Influencing the matrix P and thus the total
power input is only possible in a feedback situation if there is direct feedthrough from
the disturbance to the sensor output and also to the control force. An example of
this would be constant gain acceleration feedback. Figure 2.8 indicates that velocity
feedback on a red-noise excited system has no direct feedthrough either. The gain
that maximises power absorption is higher than the gain that minimises the kinetic

energy. In this case the algorithm calculates a gain of 179 Ns/m.
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Power input and absorption as a function of feedback gain
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Figure 3.10: Power input by the excitation and power absorption by the controller

as a function of the direct velocity feedback gain.

3.2.2.4 Approximation by limiting the number of modes

It would be interesting if one could find the optimum feedback gain for a single
channel system analytically on the basis of characteristics of the beam and the mod-
eshape amplitude at the control location. This would require the analytical solution
of equation 3.43. For high numbers of modes this is not practically achievable.
However, for low numbers of modes and under special assumptions, this may be
achievable. The value for the feedback gain obtained in this manner will not be the
optimal value for the complete beam model, but may be a usable approximation of

the optimal value.

The simplified model for the first approximation is a beam of which only the first two
modes are taken into account and with a single control loop. The modes are assumed
undamped and independently excited by white noise. To simplify the problem even
further, no cost is put on the control effort. Under these assumptions, equation

3.43 can be solved analytically. More specifically, the required elements of K can be
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solved from the Lyapunov equation:
K[A -BgCJ+[A-BygCJ)J ' K+Q=0 (3.53)

The matrices can be written out as:

kin ki kiz kg 0 0 1 0

kio koo kos k 0 0 0 1
e T N N S O 2 . 2

kis ko ks ks —w? 0 —gHY —gEnn

ko kos kg kag 0 —wl —gHhpe —g&Y3

where 1; and 1 are the amplitudes of the first and second mode at the control
location and w; and w, are the resonance frequencies of those modes. The cost
function is the trace of the multiplication of P,, and K in the case of white noise

excitation, which amounts to:
J = C(k,33 + ]{,'44) (354)

where ¢ is some constant. Equation 3.53 offers enough independent equations to
solve k33 and k44 as a function of g, wy, wy, ¥ and 9. The solution results in a
positive and a negative solution for both values, but as they denote energy, it has
to be the positive solution. Thus the cost function can be written as an analytical
function dependent on g. The minimum of this function is found by differentiating
the equation with respect to g and equating to 0. The optimal gain for the two

mode beam can then be calculated as:

=2 W — Wy (3.55)
2 V(W + 93) (Y3ws + iwi)
or for a generic, modal structure:
2 _ .2
g= “ (3.56)

\/(%¢% + %1/)3) ( Piws + “2‘1/’2“)1)

where N; and N, are the integrals of the squared first and second modeshape,

respectively, divided by length or surface of the beam or plate.

This formula can will be referred to as the two-mode formula. During the derivation
it is assumed that both 4, and 1, are not equal to 0. Logically, if the controller can
only affect one mode, and not the other, it should clamp that mode. However, if
the controller can only affect one mode, the cost will be infinite, as the other mode

is unable dissipate its kinetic energy. Despite this, one can see that if one of the ¢'s



Chapter 3. Single-channel control 59

is zero, equation 3.56 still results in a finite feedback gain. Therefor, the gain is still

used in that case.

The same analysis can be done when three modes are taken into account. The

formula for the optimal feedback gain then becomes rather more complex:

% (w3 — wi) (w3 = wi) (Wi — wi) \/ (V193 + i3 + ¢3e3)

9= 2 2 2 (3.57)
V3 (V5 +97)" (3w + iwd) (Wi — wi)” (Wi — wi)™ +
U3 (93 + 93 )2 ($3wi + Yiwi) (wi — W%)Q (wh — W%)Q +
Y2 (Y2 +92)” (Y3wd + vdwd) (B — wd)” (W2 — w})’ +
W} (w3 = wi) (W] — wi) (w] — wp)’ -
il (wf — wd) (wh — wi) (] — W)’ +
\ 2pipsws (Wi — wi) (Wi — wi) (Wi — w%)Q

This formula will be referred to as the three-mode formula. If damping factors are
included on the different modes, the equation becomes much more complicated and

is no longer practical to use.

Both these equations are similar to results described in Variyart et al. (2002), on
the basis of an analysis of spillover to other modes. But where in that paper, the
cross-spillover from modes is ignored, it has been included here. That paper did

include more modes though.

Another possible approximation is to use a single gain, independent of the amplitude
of the modeshapes, ¥;(x.), at the point of control. On the basis of equation 3.56 a

gain could be tuned solely on the first and resonance frequency:

2 2
g=cM2_1 (3.58)
w2 + w?

where ¢ is a constant yet to be determined. This formula will be referred to as the

simplified two-mode formula.

3.2.2.5 Approximation by matching impedance to an infinite structure

For a plate, a constant gain can be matched to the impedance of an infinite plate.
This would correspond to a maximum power absorption strategy if there is no damp-

ing and there are no reflections of the bending vibrations in the system, along the
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boundaries or, in a MIMO set-up, from other control locations. The inipedauce of

an infinite plate is (Cremer et al. (1988)):

7 = 8+/phEI (3.59)

To match this impedance, the feedback gain of the velocity feedback, should be set

equal to this value.

For the beam, the impedance of an infinite structure is given by (Cremer et al.
(1988)):
Z = 2wmk (1 +j) (3.60)

4/ w?m
EI °

with frequency. Therefore, matching the (conjugate) impedance of the beam will be

where k = This impedance contains a complex component and increases
impossible with a fixed gain method. Considering that the energy in the beam is
located relatively more at lower frequencies, it is expected that an approximation

based on the two- or three-mode formula is better suitable for the beam.

3.2.3 Simulations on a beam and plate

This section will examine how optimised direct constant gain feedback comipares
to the approximations defined above. The relation between control effort and the
reduction of the kinetic energy will also be considered for both constant velocity
feedback control and LQG control. Last, performance, control effort and the con-
trol strategy dependent feedback gains will be looked at in relation to the control
location. The control strategies will be applied first to the beam model and tlen to

the simply supported plate model.

3.2.3.1 Beam results

Figure 3.11(a) shows the amount of control effort required to obtain a specific change
in kinetic energy, for LQG and absolute velocity feedback control. For a single
channel, the control effort for velocity feedback control is only dependent on the
gain. To create the curve, the controller is optimised for varying magnitudes of
the control effort weighting R. Optimising for varying values of R prevents an

overshoot of the optimal control gain. Using a higher than optimal gain can result
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Figure 3.11: The change in the overall kinetic energy as a function of the control
effort and the spectrum of the kinetic energy of the beam at a specific effort, for

LQG and velocity feedback control. The control location is at z = 0.6L.
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in more effort but less performance, this is indicated with the dotted line in figure
3.11(a). The figure shows there is only a small overall perforinance advantage in
using LQG control over absolute velocity feedback control when the samne coutrol
effort is applied. For these simulations only the first 30 modes of the beamn were

taken into account.

Figure 3.11(b) shows the spectrum of the kinetic energy of thie beamn with au LQG
controller and a velocity feedback gain tuned to use a fixed control effort of 200 4
1 N2, The small overall performance difference seen in figure 3.11(a) results in a
few decibels less kinetic energy at some peaks in spectrum. At other points, the
performance is similar or sometimes worse than absolute velocity feedback coutrol.
The effort can be fixed by varying the weighting of the control effort, until tlie desired
control effort is achieved. The control effort is the expectation of the sun of the

squared control forces.

Figure 3.12(a) and 3.12(b) show the velocity feedback gains and control efforts as a

function of location for the following strategies:

- a fixed effort weight velocity feedback minimising kinetic energy with the effort
weighting, R, set to 1-107°

a fixed effort weight velocity feedback maximising power absorption by the

controller, with the effort weighting set to 1. 107*

the two-mode formula (equation 3.56)

the three-mode formula (equation 3.57)

the simplified two-mode formula, from equation 3.58, for ¢ = 1/2,1,2

LQG control is not included in figure 3.12(a) as it does not have a specific 'gain’ as
it is a frequency dependent function. The gain that maxinises power absorption by
the controller is much higher than the optimal feedback gain and has a ripple in the
gains along the beam with a spatial frequency equal to that of the 30'" mode. That
indicates that tuning for maximum power absorption is influenced by the higher
order modes. Indeed, it was found that when more modes are included, the gains
increase as well. For the simplified two-mode formula, ¢ = 1/2 seems to correspond
best to the level of the two-mode and three-mode formula, while ¢ = 1 seems to

correspond better with the actual optimisation.

Figure 3.12(c) show the change in kinetic energy for the different control strategies.
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frequency dependent. [continued]
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The results for the different gains of the simplified two-mode formula are shown
separately in figure 3.12(d). Figure 3.12(c) shows that a velocity feedback gain
optimised for power absorption results in higher than necessary gains and worse
overall performance. This is unexpected given that maximising power absorption
and minimising the total power input are equal in this case and that minimising the

total power input gave such good results in the unconstrained optimisation.

Consider then, that the power input due to the excitation is fixed and does not
vary with the feedback gain. In a steady state situation, the power input due to
the excitation must be equal to the power absorption in the structure itself and the
power absorbed in the controller. This means that maximising the power absorption
minimises the power loss in the structure. This can be achieved in two ways. One
is to reduce the modal velocities in the structure, which is what minimising the
kinetic energy aims to achieve. The other way is by transferring kinetic energy from
modes with high damping to the modes with low damping. This is undesirable as

it increases the average kinetic energy in the structure.

Figure 3.12(c) also shows that actuator locations close to nodes of the first three
mode shapes should be avoided and that at about 10% of the length of the beam
maximum reductions of about 10dB are achieved. The control effort is also large
for actuator locations in these regions. For the simplified two-mode formula, ¢ = 1
seems to be the best value in terms of average reduction and control effort. Finally,
the two- and three-mode formulas are quite effective at establishing a near optimal

gain.

The results so far have all been obtained with a white noise excitation. For red noise
excitation, figure 3.13 shows the reduction-effort curve, for control at x = 0.GL, while
gigures 3.14(a) and 3.14(b) show the reduction for the different control strategies.
The first figure shows that there there is hardly any difference in performance
between LQG control and constant gain velocity feedback control. That the LQG
controller performs slightly worse at high efforts is due to the selection of the sensor

noise variance in the design of the controller, which was set to 1 - 1078.

Since the gains set with the appromixation formulas from section 3.2.2.4 are the
same as in the white noise case, no figure was included here to show the gains in

the red noise case. It was found that the optimised gains to minimise kinetic energy
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Figure 3.13: Overall change in kinetic energy vs. control effort at the control location

z = 0.6L, for red noise excitation of the beam.

are slightly higher than they were in the white noise case. Gains for the optimal
absorption of power were found to drop considerably, to about 2/3 of the gains for
minimising the kinetic energy. Considering the mechanism explained above, this low
gain is aimed at minimising kinetic energy transfer from the low frequency, lowly

damped modes to modes that are damped more.

The approximations of the optimal kinetic energy through the use of two- and three-
mode formulas resulted again in reasonable approximations to the optimal gain,
though the gap in maximum performance has increased. Figure 3.14(a) seems to
contradict figure 3.13 in that there does seem to be a difference between LQG and
the absolute velocity feedback controller. This is due to the fact that both controllers
were calculated using equal control effort weightings. This allows the LQG controller
to use a higher control effort than the absolute velocity feedback controller and
improve its performance. For the gains set with the simplified two-mode formula,

the constant ¢ = 1 still gives the best overall results.
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Chapter 3. Single-channel control 69

3.2.3.2 Plate results

Figure 3.15(a) shows the overall change in kinetic energy, on the simply supported
plate as a function of the power required for such a change, for an absolute velo-
city feedback controller and an LQG controller designed to minimise kinetic energy.
Figure 3.15(b) shows the difference in the spectruin of the kinetic energy between a
constant gain feedback controller and an LQG controller for a fixed effort of 2 - 10*
N2. For these simulations, all the modes of the plate up to 5 kHz (10%7rrad/s) have

been taken into account, resulting in a total of 53 modes.

Figures 3.16, 3.17 and 3.18 show the results of simulations of different control
strategies on the simply supported plate model when the actuator position was

varied on the plate. The following strategies have been examined:

- a fixed effort weight velocity feedback minimising kinetic energy with the effort
weighting, R, set to 1-1075°

- a fixed effort weight velocity feedback maximising power absorption, with the
effort weighting set to 1- 1074

- a fixed effort weight LQG controller minimising kinetic energy, with the effort
weighting set to 1-107* and expected measurement noise variance set to 1-10~°

- the two-mode formula

- the three-mode formula

- the matched impedance of an infinite plate, from equation 3.59. For the simply

supported plate, that gain is 31.87 Ns/m.

Note that not all of the controllers show are shown in each set of figures. The LQG
controllers are not shown in figure 3.16, as they have no specific gain. It can be
seen from figures 3.16(d) and 3.16(e) that the two- and three-mode formula set the
gain higher than the other control strategies. Note that the colour-range has been
limited here to a maximum of 75 Ns/m and any value above this range is coloured

as the maximum. The colour-range has been set equal for all plots in figure 3.16.

The higher gains of the two- and three-mode formulas also cause in high control
efforts, as can be seen in figures 3.17(d) and 3.17(e).

Finally, figure 3.17 shows the changes in kinetic energy achieved by the different
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control strategies. In general one can see that the nodal lines of the modeshapes
corresponding to lower resonance frequencies should be avoided if good control is
desired. The higher gains set for optimal power absorption result in a smaller re-
duction of the kinetic energy in some areas compared to gains optimised for kinetic
energy, but the differences are small. LQG control with a fixed effort weighting ob-
tains the best performance, but uses a higher effort. Maximising power absorption
in this case, gives good results as well. Of the approximations examined, matched
infinite plate impedance obtains the best performance, while having limited control

effort as well.

Appendix B shows the results for a red noise excitation, overall higher reductions
where obtained and the differences between the different strategies are less notice-
able.

3.3 Conclusion

In this chapter different control strategies were examined for a single-channel set-
up. The goal was to examine if optimal tuning of the controller can be achieved
based on only locally measured variables. Unconstrained feedforward and feedback
control were examined to see if a relation can be found between the optimmal value
and structural values. Minimising the total power input and maximising the total
power absorption were examined as alternatives to mininising the kinetic energy.
None of these strategies resulted in a controller applicable for broadband feedback
control. Minimising the total power input was a good approximation, but is unot
just dependent on variables that can be measured at the control point, nor is min-
iming the kinetic energy itself. Maximising the total power absorption in a feedback
situation is achieved by applying a conjugate impedance of the local mobility. This
is obviously a very strong link to the local variables, but it resulted overall in a

significant increase, rather than decrease in the kinetic energy.

Tuning constant gain velocity feedback control to optimally reduce the kinetic en-
ergy, requireds complete knowlegde of the dynamics of the system. It can not even
be proven that only a single, global minimum or maximum exists for the optimisa-

tion of the absolute velocity feedback gain, only one minimum was found using a
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Figure 3.16: Feedback gains as a function of controller location in z and y directions
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Figure 3.17: Control effort for different control strategies on a plate
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convergent algorithm. It was found that the energy input into the model caused
by the random excitation could not be influenced with absolute velocity feedback
control. That means that, for this case, maximising power absorption is equal to

minimising the total power input.

On the basis of the Lyapunov equation, used to calculate the kinetic energy of the
structure under white noise excitation, approximation formulas were calculated on
the basis of the analytical solution to a very simplified model containing ouly a
few modes and no damping. In these approximations, the gain only depends on
the amplitude of the first few modeshapes at the control locatious, the resonauce
frequencies of the structure and the total mass of the structure. Simplifying the
formula even further resulted in an approximation tliat is only dependent ou tlie mass
and the eigenfrequencies of the structure and independent of the control location. For
the plate, it was recognised that a constant gain can be set to matclh the impedance
of an infinite plate, in which case the controller would maximise power absorptiou

from an infinite plate.

In simulations, it was found that the difference in overall performance at a spe-
cific effort between velocity feedback control and LQG control minimising kinetic
energy is small. Furthermore, it was found on the beam that the approximations
for the feedback gain based on a few modes give good performance. The location
independent approximation (the simplified two-mode formula) also gave good res-
ults. Setting the control force to maximise the power absorption resulted in gain
that were significantly unlike minimising the kinetic energy. This is due to the fact
that maximising power absorption is also equal to minimising the power loss in the
structure. This means the controller balances reducing the overall vibration with
preventing kinetic energy entering well damped modes. It did not, however, increase
the overall kinetic energy, as was the case with unconstrained control optimisation.
LQG control with a fixed weight obtained best overall performance but with only a

small overall difference.

On the plate the approximations on the basis of the first few modes did not func-
tion as well, resulting in gains that were very high for large portions of the plate.
Maximising power absorption and the matched impedance of an infinite plate did
give results close the optimal feedback gain. LQG control performed best overall,

but, again, the difference is small.



Chapter 4

Multi-channel control

The previous chapter showed that in the single-channel case, the differences between
LQG control and constant gain velocity feedback control are relatively small with
collocated and dual sensor-actuator pairs and using equal effort. Setting the feedback
gain to maximise the power absorption results in reasonable performance, but on
the beam the gains were often higher than the values required to optimally reduce

the kinetic energy, resulting in a higher control effort.

This chapter will examine multi-channel control. In particular, we investigate how
the performance of the decentralised control strategy compares to a centralised con-
troller. The analysis in a multi-channel (MIMO) system of the control strategies

suggested in chapter 3, is performed in two parts.

First, in section 4.2 optimised decentralised control is compared with centralised
and LQG control. Second, section 4.3 compares optimised decentralised velocity
feedback control and control using the gains calculated witli the approximations

suggested in chapter 3.

To start with, however, section 4.1 will describe how the optimised centralised and

decentralised constant feedback gains can be calculated.

The results in this chapter have been presented in several papers; Engels and Elliott
(2004), Baumann et al. (2004), Engels et al. (2004), Engels and Elliott (2005) and
Engels et al. (2006).

75
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4.1 Optimisation of constant gain control

Chapter 3 described how a single-channel constant gain feedback controller can
be tuned to form a minimum in the cost-surface. In a multi-channel set-up, that
algorithm has to be adapted to impose constraints for the controller to be decent-
ralised or to remain stable when it is centralised. This section shows how this can

be achieved.

4.1.1 Centralised control

In section 3.2.2.2, an algorithm was described to calculated a single-channel con-
troller to find a minimum of the cost function. The algorithm described there can
also be used for calculating a multi-channel controller. Specifically, it can be used
to calculate a centralised multi-channel controller since equations 3.45 and 3.50 are
written as full matrices. The only difference with the calculation of a single-chainnel

controller is that stability becomes an issue for the centralised controller.

The off-diagonal terms in a centralised velocity feedback controller cause a force
at a different location to where the sensor is, as is illustrated in figure 4.1, and
are essentially non-collocated control loops. As such they can cause iustability, as
illustrated in figure 4.1(c). The gain of the off-diagonal terms must be limited in
magnitude if the system is to remain stable (Preumont et al. (2002)). The algorithm
discussed in section 3.2.2.2 prevents the controller becoming unstable by demanding

at each optimisation step that the controller remains stable.

It is interesting to note that the additional damping in the system introduced by the
on-diagonal terms stabilises the effect of off-diagonal values of the controller which
would otherwise make the system unstable if the on-diagonal terms were absent.
Thus, a failure of equipment at one control location can destabilise the system if an

optimised, centralised controller is used.

4.1.2 Decentralised control

Geromel and Bernussou (1979) discussed the optimization of a constant gain de-
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Figure 4.1: MIMO centralised feedback control.

centralised controller, for the same system and cost functions as Levine and Athans
(1970). The same algorithms can be used as for centralised control, except that
the initial stabilising control matrix should be diagonal (off-diagonal terms set to 0)
and that the gains are adjusted using the derivative with respect to the on-diagonal
elements of the gain matrix:

g—é = diag [2RGC,LC! — 2BTKLC!] (4.1)

where diag denotes a function that sets all off-diagonal terms of the matrix to 0.
For maximising the power absorption with a diagonal controller, the same procedure
can be used, i.e. the off-diagonal terms of the gradient matrix (equation 3.50) and

the initial matrix should be zero.

For decentralised control, stability is guaranteed as long as all the gains remain

positive.
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Figure 4.2: Control locations of two channel controller on a beam.

4.2 Comparison of centralised and decentralised

control

This section will investigate whether there is a significant difference in perform-
ance between centralised and decentralised constant gain feedback control and LQG
control, for collocated force actuators and velocity sensors. Therefore, centralised
and decentralised control are compared when the control location are varied across
the structure and when the control effort is varied. If a small difference is found,
that means that decentralised constant gain velocity feedback control can be a good

approximation of the centralised, dynamic LQG controller.

4.2.1 Varying control locations on the beam

A two channel controller is considered in which the control locations z., and z. are

at different points on the simply supported beam, as shown in figure 4.2.

Figures 4.3(a) and 4.3(b) show, for the optimised centralised and decentralised con-
stant gain feedback controllers, the reduction in kinetic energy in comparison to the
uncontrolled case as a function of the positions of the two control locations. The
control effort weighting was fixed for all control locations to 1.0 - 107°. Along the

line . = z, a SISO velocity feedback controller is obtained.

It can be seen that best performance is achieved by avoiding the nodal lines of



Chapter 4. Multi-channel control 79

the first few modes, symmetric placement around the mid-point of thie beam and
placing both controllers at the same end of tlie beam. Because the figures are very
similar when the control locations are widely spaced, the difference between these

two figures has also been plotted in figure 4.4.

Figure 4.4 shows that the differences in performance between the centralised and
decentralised controllers are small when the control locations are widely spaced. The
difference in performance if the control locations are closely spaced can be linked to
the ability of the centralised controller to estimate the angular velocity of the heam
in between the control locations and apply a corresponding negative moment. This

is further examined in section 4.2.2.

4.2.2 Analysis of the difference between centralised and de-

centralised control

There is only a significant difference between optimal centralised and decentralised
controllers if the control locations are closely spaced. Here, the performance differ-.

ence is analysed by examining the structure of the controllers.

4.2.2.1 Centralised controller

When the control locations are closely spaced, the difference in velocity at the two
locations may be a good measure of the angular velocity of the beam, around a point

in between the two control locations, as shown in figure 4.5.

o e Tt (4.2)
The average of the two velocities would be a measure of the linear velocity at that
point: ' '

iy w (4.3)

Similarly, the difference between the forces applied at the points would be a good

approximation to a point moment input, whereas the sum of the forces would be an
approximation to a single point force:

me = (f2—f)Az (4.4)

fo = it fe (4.5)
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Figure 4.3: Performance, measured as change in kinetic energy relative to the un-
controlled beam, of the centralised and decentralised control for velocity feedback

control using two force actuators on the beam. Control locations at (z., Te).
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If these approximations hold for small spacings between the controllers, the cent-
ralised controller can calculate the linear and angular velocity and apply au inde-
pendent force and moment in opposition to these motions, thus extracting power
from the beam. Another favourable property of this system is that tlie control loop
controlling the angular velocity approximates a dual system and should be stable,

even for large gains.

Thus, if the controller sets gains for velocity and moment feedback independently,

then the controller looks like:

G = [ 1/2  1/2Az) | [ ga 0 1 1/2 1/2 (£6)
1/2 —1/(2Az) | | 0 gs || 1/(202) —1/(2A%)
G = [ 1/2 1/2} [gw 0 12 1/2 ] )
1/2 =1/2 || 0 ga/AZ2 || 1/2 —1/2

where g,;, and g, represent the feedback gains associated with the velocity and angu-

lar velocity feedback, at . The matrices in equation 4.7 can be rescaled according

1 1 1
ﬁ] [gw/2 0 [ 7 Tz] (48)
1 2 1 1

7 0 9/(2A%) | | 5 —%

Gsplit = TGeqT (4.9)

to:

Gsplit = [

Sk

or:

This rescaling has the advantage that T = [T]—l, such that if G, equals G, Gopr
is a similar matrix to G.,. Hence they must share the same eigenvalues, which would
be gi/2 and g4/ (2Az?%). Additionally, the columns of T should be the corresponding

eigenvectors.

Figure 4.6(a) shows the values of the eigenvectors of the optimal centralised con-
troller, for control locations that are spaced 0.01 m apart and are placed at equal
distances from a point z on the beam. It clearly shows that, when the control loc-
ations are closely spaced, the values of the eigenvectors are indeed equal to +1/ V2
for most of the length of the beam. The exception being when z is close to the ends
of the beam, in which case the controller apparently does not approximate equation

4.9. This is due to the cost placed on the control effort.

The distance 0.01 m, chosen for figure 4.6(a) is below the shortest wavelength, of

0.04 m, for the 50 modes included in the model. Hence the values of the eigenvectors
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should also be examined for different values of Az. Figure 4.6(b) shows the values of
the eigenvectors as the distance of the control locations to a point 0.45 m along the
beam is decreased. This figure shows that the values of the eigenvectors converge to
:tl/ﬁ as Az tends to zero. It also shows that this effect is noticeable beyond the
width of the smallest wavelength, as the values diverge at about Az = 0.05 m. At
this point the distance between two control locations is 0.10 m, which is significantly
more than the shortest wavelength. The distance between the control locations for
which the decompostion seems to hold is apparently not related to the wavelength
of highest order mode. Indeed, simulations with different numbers of modes taken
into account also place the transition of the values of the eigenvectors at Az = 0.05

m.

The distance of 0.10 m between the controllers, for which the decomposition holds,
matches the distance for z = 0.45 m in figure 4.4 at which the difference between

centralised and decentralised control becomes noticeable.

As indicated in figure 4.7, the eigenvalues also seem to converge to fixed values
as Az is reduced. These values can be compared to optimum gains calculated

for decentralised angular and transverse velocity feedback control at the specified
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Figure 4.7: Eigenvalues of the controller if controllers are spaced symmetrically with

respect to the point z = 0.45L, for different distances Az.

location. However, the gains deviate slightly at very small spacings. This may be
due to coupling that can occur between the angular and velocity feedback gains.
Though the controller can control rotation and translation velocities separately, it

can also implement some coupling.

If this mechanism is valid on the beam, it should work on the plate too. Simulations
with 3 randomly placed control locations on the simply supported plate also showed
hardly any difference between centralised and decentralised control unless the min-
imum distance between control locations was smaller than 0.04 m. This corresponds
to a 1/10th of the maximum dimension of the examined plate, which is similar to

what it was on the beam.

4.2.2.2 Decentralised controller

The decentralised controller can only give a local velocity feedback gain. Assuming

that control locations are so closely spaced that equations 4.2 and 4.3 apply, the
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feedback forces become:

flz) = —g1 (W +aAz)
f(za) = —go (W — &Ax) (4.10)

where h; and hy are the feedback gains at x — Ax and x + Ax respectively. These

forces can then be translated into a equivalent force and moment at x:

feg®) = —g1 (g + aAZ) — gy (W — &AT)
= — (g1 +92) Wz — (g1 — g2) dAT (4.11)

Meg(T) = —Azgy (We + AT} + Azgs (W, — AAT)
= — (91— ¢2) WAz — (g1 + ga) GAT? (4.12)

Equations 4.11 and 4.12 show that the equivalent force and moment can only control
the linear and angular velocity independently if the decentralised gains g; and g,
are equal, in which case the feedback gains associated with the linear and angular
velocity are also equal. The tuning of the gains g; and g2 must theu be a balauce
between obtaining control with linear velocity or angular velocity feedback. This is
in contrast with centralised control. Centralised control can not only control linear
and angular velocity independently, but can also set the corresponding values of the

gains independently.

Figure 4.8 shows the gains of the optimal decentralised controller as a function of
Az. The increase of the gains to 200 Ns/m for small values of Az shows that
the decentralised controller is then controlling the angular velocity, rather thau the
velocity. This results in a controller that effectively pins the structure at z, and then
absorbs power from the rotation of the beam around that point. If Az becomes very

small, this mechanism is no longer optimal because of control effort weighting.

4.2.2.3 Not a single minimum

The fact that for the decentralised case, the controller balances two mechanisms of
power extraction suggest that there may be two local minima in the cost function.
One of these can then be a global minimum. Figure 4.9 shows the relative kinetic
energy of the beam for different combinations of feedback gains for z. =[0.480 0.485]

m. This figure clearly shows that, in this case, there are two local minima. The
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Feedback gains of the optimal decentralised controller
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one at the smaller feedback gains (g1 = 0 Ns/m, g» = 20 Ns/m) gives a reduction
of about 6 dB and is a controller that mainly relies on velocity feedback to reduce
the cost, whereas the other at high gains (g, &~ g» & 10° Ns/m) gives a reduction of
about 9 dB and is a controller that relies on angular velocity feedback. If the control

effort is included, the second minimum occurs at lower gains of about 200 Ns/m.

The two minima only appear when the control locations are very closely spaced, for
larger spacings, the 'saddle’ area between the two-minima disappears, as the required
feedback gains to achieve the same angular velocity feedback become smaller and
similar to the optimal velocity feedback gains. As tlie distances become even larger,
the difference in and the average of the velocities at the two control locations are no
longer related to the linear and angular velocity at the point in between the control

locations. In these cases only one minimum is found.

For the comparison of centralised and decentralised control, the existence of the two
minima makes little difference, as the difference in performance between the two
minima is small compared to the difference between the centralised and decentralised

controller.

4.2.3 Varying control effort on a plate

As noted in chapter 3, it is important to compare the performance when equal
amounts of control effort are used. Here, sixteen equally spaced control locations
are used on the simply supported plate, as indicated in figure 4.10. At each control
location, ideal velocity sensors are assumed that are collocated with ideal force
actuators. For the comparison, centralised constant gain feedback, decentralised

constant gain feedback and centralised LQG control are examined.

Figures 4.11(a) and 4.11(b) show the resulting expectation of the kinetic energy
when each of the three controllers are optimised for kinetic energy, when the plate
is excited by white or red noise, respectively. For the white noise excitation, the
control effort weighting was adjusted such that the expected controller effort was
equal to 300 N? for each controller. For the red noise, the level of excitation is far
less and so the control effort was now limited to 3-1072 N? for each controller. Note

that in section 4.2.1 the control effort weighting was fixed and not the control effort
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Figure 4.10: Equally spaced sensors and actuators on a simply supported plate.

Each dot represents a collocated velocity sensors and point force actuator pair.

itself.

[t can be seen from the figures that over all frequencies there is little difference
between decentralised and centralised constant gain control. LQG control gives a
slight improvement for control of kinetic energy in the white noise case. For red
noise, LQG control seems to perform less well than the constant gain controllers.
This is due to the extent of the reductions that are achieved, which cause the sensor
signals to be in the range of the sensor noise that was assumed in the design of
the LQG controller. It is interesting to note that each of the gains in the optimised
constant gain decentralised controller were of similar magnitude, but that the optim-
ised centralised constant gain controller also had significant off-diagonal gains, even

though these did not contribute significantly to the reduction in the cost function.

The overall difference in the cost function is difficult to see froin these plots and it
is not clear whether this level of effort is most appropriate. Therefore, the overall
reduction in the expected kinetic energy reduction should be examined as a function
of control effort. Figure 4.12(a) and 4.12(b) show the change in kinetic energy as a
function of the control effort for white and red noise excitation respectively, which
has been computed by optimizing the three controllers with varying control effort
weightings. It can be seen for white noise, that there is some advantage in using
LQG control rather then constant gain feedback since for a given performance, the

control effort is slightly lower. This difference is small though.

For red noise there are nearly no differences between the controllers for low control
efforts, but the LQG controller performs worse at higher control efforts, which is
again due to the fact that the LQG controller takes sensor noise into account in

the design, but that no noise was taken into account in the calculation of the cost
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Kinetic energy spectrum, white noise excitation
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Figure 4.11: Spectrum of expected kinetic energy (KE), assuming white or red noise
excitation, before and after control, using different controllers optimised to control
kinetic energy. The expected average control effort for each controller was limited

to 300 N? for white noise excitation and 3 - 1073 N2 for red noise.
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function. The sensor noise was set to have a variance of 1 - 107" for the red noise
excitation. For white noise, the variance was set to 1-107>. In the design of the
LQG controller, red noise was taken into account, by using the matrix P, defined
by equation 2.47. The graphs comparing control effort and change in cost function
could also provide an important design tool in determining the correct trade off

between performance and control effort for a given application.

From the figures it can be seen that there is little difference between the eftectiveness
of the different controllers. However, these results were obtained with the controller
at particular points on the plate, where certain modes cannot be controlled, as
can be seen in figure 4.11(a). It is not clear how this affects the results obtained
and whether the same conclusions can be drawn for a different placement of the
actuators. Therefore, the difference between the controllers for a give control effort
has also been examined for randomly placed control locations. The nunber of control
locations was limited to 5. It was found that the differences between centralised,
decentralised constant gain and LQG control remain small, though LQG control did
show slightly better performance in the case of white noise. LQG control did not
improve the performance in the case of red noise excitation, because of the amount

of sensor noise considered in the design of the controller.

4.3 Comparison of optimised and approximated

decentralised velocity feedback control

The comparison in section 4.2 found that a difference in performance between de-
centralised and centralised LQG control only occurs when controllers are closely
spaced. As the close spacing of controllers was not found to contribute to the per-
formance and required high control forces to generate the required moment, close

spacing is excluded from further comparisons.

If it can now be shown that the difference in performance between the approxima-
tions, discussed in chapter 3 and optimal decentralised control is also small, then the
difference between the approximations and the centralised controller must also small.
This would satisfy the goal discussed in section 1.3, that the decentralised control

strategy should have comparable performance to an optimal centralised controller.



Chapter 4. Multi-channel control

91

-
(=]

-

Control effort [N2]
o

o

-
[=]

10"

Control effort vs. change in expected kinetic energy, white noise excitation

T T T T

—— Centralised
—+— Decentralised
L -~ LQG o

-6 -5 -4 -3 -2 -1 0
Change in kinetic energy [dB]

(a) KE vs. effort, white noise

Control effort vs. change in expected kinetic energy, red noise excitation

Control effort [Nz]
=

T T T T T

—— Centralised
\ —+— Decentralised
. —~- LQG

-25 -20 -16 -10 -5 0
Change in kinetic energy [dB]

(b) KE vs. effort, red noise
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energy.
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The comparison of the performance in the multi-channel set-up of the optimised
decentralised control and the approximations is carried out separately for the plate

and the beam structure.

4.3.1 Comparison on the beam

In this section optimised decentralised control is compared to the three-mode and
simplified two-mode approximations and to decentralised maximuim power absorp-
tion. Like the analysis in chapter 3, three aspects are examined: the obtained
feedback gains, the control effort and the actual reductions in kinetic energy. They
are compared by placing 3 control locations randomly along the beam, but not al-
lowing them to be within 0.1 m of each other or within 0.1 m of the ends of the heawm.
However, because setting the gains with the simplified two-mode and three-mode
formula is not limited with respect to control effort, the effort weighting lhas been

chosen small so it does not influence the optimisation of the gains significantly.

Figure 4.13 shows a histogram of the gains for 3 control locations, placed randomly
500 times, but constrained to match the criteria mentioned above. The gain sct
with the simplified two-mode formula is not plotted as it is not location dependent,
its value for this beam is 35.9 Ns/m. The means of gains set with the different
feedback strategies have been listed in table 4.1. The table shows that the gains
set with maximum power absorption were on average 3 times as high as the ideal
gain for the white noise exicitation. This also has consequences for the coutrol
effort, as can be seen in figure 4.14. This figure also shows that the simplified two-
mode approximation has a remarkably constant control effort, over the 500 random

locations it did not deviate more than 5% from tlie mean.

Figure 4.15 shows the distribution of the perforinance of the different approxima-
tions. The mean overall reduction achieved with the optimised feedback gains was
14.3 dB. The figure suggests that the simplified two-mode approximation is the best
approximation, when using a white noise excitation. Though maximising the power
absorption led to significantly higher gains and control effort, the differences in terms
of performance are not as big. This is due to the nature of the cost surface. Figure
3.9 showed that, for the single-channel case, the range of the gains performing close

to optimal is quite wide, these results indicate that the same may is true in the
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multi-channel case. The data from the above figures has been summarised in table
4.1. The reductions for maximum power absorption and with the simplified two-
mode approximation are close to the optimum reduction obtained by minimising the

kinetic energy.
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Histogram of feedback gains
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Figure 4.13: Histogram of the gains of the controllers on the simply supported
beam, for the random placing of 3 locations. Control gains are set to minimise

kinetic energy, maximise power absorption or with the three-mode formula.
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Figure 4.14: Histogram of the control effort on the simply supported beam, for the
random placing of 3 locations. Control gains are set to minimise kinetic energy, to

maximise power absorption or with the three-mode or simplified two-mode formulas.
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Histogram of change in kinetic energy
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Figure 4.15: Histogram of the changes in kinetic energy on the simply supported
beam. Control gains are set to minimise kinetic energy, maximise power absorption

or with the three-mode or simplified two-mode formulas.

Strategy kin. energy power abs. 3 mode simpl. 2 mode
WHITE NOISE

Gain [Ns/m)] 57.7 174 25.4 35.9
Effort [N?] 1430 4770 827 797
Reduction [dB(J/J)] 14.3 134 Ty 13.9
RED NOISE

Gain [Ns/m] 108 69.9 MEn 35.9
Effort [N?] |l AL 320 0.40
Reduction [dB(J/J)] 30.9 29.5 LB 22

Table 4.1: Mean results for different control strategies on the simply supported

beam, for white and red, randomly distributed excitation.
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The table also lists the results obtained for the red noise case. It can be seen that
where the power maximisation used too large gains in the white noise case, in tle
case of red noise the gains are too low although good reductions are aclieved with
a wide range of average gain values. The simplified two-mode formula obtained tle

best results again.

For the beam, with either white or red noise excitation, the simplified two-mode
formula and maximising the power absorption by the controller perform well in the

MIMO case. The two-mode formula does require a much smaller effort in botl cases.

4.3.2 Comparison on the plate

On the simply supported plate, 5 control locations were used instead of 3 and the
matched infinite plate impedance is used instead of the simplified two-mode formula.
Again, the controllers are not allowed to be within a distance of 10% of largest
dimension to the edges of the plate or each other and have been otherwise placed
randomly. Figures 4.16 and 4.17 show the distribution of the gains and tlie control
effort after optimisation. The results for the three-mode formula have not been
shown in these figures as the variance in the gains set with this formula is quite
large. Figure 4.18 shows the relative performance of the approximations to the

optimised kinetic energy.

The results have been listed in table 4.2. The first result that is obvious from both
the figure and the table, is that the gains set to maximise power absorption remain
much closer to those set to minimise the kinetic energy. Also, the variation in the
control effort of the matched infinite plate iinpedance is very small, i.e. it is nearly
independent on the placement of the controllers itself or the other controllers. For
the white noise excitation, maximum power absorption and matched infinite plate

impedance perform almost as well as the controller that minimises the kinetic energy.

Table 4.2 also lists the results for red noise. Unlike for the beam, the mean of the
gains that maximise power absorption hardly changes. However, the difference with
the optimal performance increases. For a red noise excitation, maximising power
absorption is still the best approximation, followed by matching the impedance of

an infinite plate.
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Figure 4.16: ' Histogram of the gains of the controllers on the simply supported plate,
for the random placing of 5 control locations. Gains are set to minimise the kinetic

energy or to maximise the power absorbed.
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Figure 4.17: Histogram of the control effort on the simply supported plate, for the
random placing of 5 control locations. Gains are set to minimise kinetic energy,

maximise power absorption or with the matched infinite plate impedance formula.
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Histogram of change in kinetic energy
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Figure 4.18: Histogram of changes in kinetic energy on the simply supported plate.

Gains are set to minimise kinetic energy, maximise power absorption or with the

three-mode or matched infinite plate impedance formulas.

Strategy kin. energy power abs. 3 mode matched imp.
WHITE NOISE

Gain [Ns/m] 32.8 30.8 b1 31.9
Effort [N?] g2 Sl SR 6 RS A= ai ] () 9.03 - 103
Reduction [dB(J/J)] 745 7.44 7.0 7.42
RED NOISE

Gain [Ns/m] 89.1 44 4 82.5 31.9
Effort [N?] ORI (o W DA (eSS 3.0-1073
Reduction [dB(J/J)] I il 16.1 16.6

Table 4.2: Mean results for different control strategies on the plate, for white and

red, randomly distributed excitation.
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4.4 Conclusions

This chapter examined the differences between optimal centralised and decentralised
constant gain feedback control and LQG control. It also examined the performaice
of decentralised control and the approximations discussed in chapter 3, for multi-

channel systems.

It was shown that for the model problems considered with collocated force actuat-
ors and velocity sensors, there is little performance gain in using centralised static
feedback gain control or LQG control over decentralised static feedback gain control,
when equal control effort is used. It was found that this also holds if the locations

of the controller are placed randomly and the control effort is fixed.

This seems to contrast with the work of Clark Smith and Clark (1998) who saw a
significant improvement as some frequencies, when using LQG control in a single-
channel controller and a large distributed sensoriactuator. Even though significant
differences were seen over some frequency ranges, the frequency ranges over which
the improvement occurs is limited and may be offset by other frequency ranges were
performance is worse. On average, this resulted in only a small difference in the
actual, overall cost function. Elliott (2004) has noted that if the number of control
loops is equal to the number of controlled modes, then under idealised circumstances
the effect of a decentralised constant gain controller would be equal to that of a fully
coupled modal controller. This may explain why, in the case of red noise excitation,
when there are only very few modes contributing significantly to the cost function,
there is hardly any difference between centralised, decentralised and LQG control.
Further research into the relation between the number of excited modes and the
number of control locations for which the difference in performance between dynamic

controllers and static controllers becomes small, may prove interesting.

A comparison of centralised and decentralised constant gain feedback control on
the beam, as a function of the spacing of the two controllers found that there is
only a significant difference in performance if the controllers are closely spaced. In
that case, the centralised controller is able to control both the rotation and the
displacement of the structure at a point in between the two control locations. The
decentralised controller can, for close spacings, control either the displacement and

not the rotation, or pin the structure and only control the rotation. This results in
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two minima in the cost surface of the decentralised controller.

The optimised decentralised feedback gain controller was compared to different ap-
proximations to the optimum gain on the beam and the plate. Random placement
of the controllers was considered, but close spacing of the controllers to each other
or the edges of the structure was not allowed, in light of the results of section 4.2.1

and the analysis in section 4.2.2.

On the beam, it was found that the simplified two-mode approximation of the op-
timum gain and the maximimum power absorbing controller tended to get a per-
formance that in most cases was within 1 dB of the optimal controller. Considering
that the differences between LQG and the decentralised controller were also small,
these decentralised control strategies are thus seen to give a performance that is

close to that of a fully coupled, dynamic controller.

For the plate, maximising the power absorption performed well for both white and
red noise excitation, as did matching the infinite plate impedance. The choice as
to which of these two should be preferred for approximating the optimal gain on
the plate can not be decided on these results. Chapter 6 will compare how such
control strategies would tune themselves on an actual plate when other controllers

are present.

Considering that the power absorption strategy minimises the power loss in the
structure itself, as was discussed in chapter 3, it seems that the power loss in the
structure can be influenced in the case of the beam and, especially in the case of red
noise, this has a detrimental effect on the kinetic energy in the structure. On the

plate, this does not seem to be the case.



Chapter 5

Sound radiation from a plate

Active Structural Acoustic Control (ASAC) is concerned with controlling the sound
radiation from a structure, by controlling the velocity of the surface of the structure
itself. For single frequency disturbances, the sound radiation from a plate into
the farfield can be calculated accurately using either a farfield approximation, as
described by Wallace (1972a) and Wallace (1972b) or a nearfleld approximation, as
used by Elliott and Johnson (1993). To calculate an optimised controller to coutrol
broadband noise radiation, a frequency dependent filter is required to estinate the
radiation from the structure. This section describes the developiment of state-space
filters for the purpose of calculating the sound radiation from a simply supported
plate. Also, it compares the performance of various controllers designed for ASAC
with each other and with controllers designed to minimise the kinetic energy of the

structure.

First, the two methods of calculating the farfield radiation are presented. Secondly,
two methods of creating the required filters are examined and compared. These
methods are the direct spectral factorisation of the modal radiation matrix, as used
by Baumann et al. (1991) and Thomas and Nelson (1995) and the radiation mode
approach based on work by Borgiotti (1990) and Elliott and Johnson (1993). This
latter approach is used in various recent papers, e.g. Cox et al. (1998), Clark and
Bernstein (1998) and Elliott et al. (2002). The most suitable model is then used
to create optimised controllers for ASAC. These controllers are compared with each

other to examine the benefits of dynamic and/or centralised control over decentral-

101
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ised controllers and with controllers designed to minimise kinetic energy to examine
the benefits of designing for ASAC.

5.1 Far- and nearfield approximation

The radiated sound power of a plate can be calculated either by examining the
farfield or the nearfield of sound pressure levels. As the sound propagation models
used here do not include any power loss in air itself, these two models should produce
the same result as the power going into the system in the nearfield should be equal
to the power going ’out’ of the system in farfield. Both methods are based ou the

assumption that the sound pressure levels do not influence the structure itself.

5.1.1 Farfield approximation

This approximation follows the work of Wallace (1972a) and Wallace (1972b), which
describes that the radiated sound power from one side of the structure can be found
by integrating the farfield acoustic intensity over a half sphere. The acoustic intensity
is the time average of rate of flow of energy through a unit area perpendicular to
the direction of propagation (Kinsler et al. (1982)) and is given for harmonic waves
by:

 |Pacoust (9,0, 7, jw)|”

I(¢,9,7‘, 7(“)) - 2p0C0 (51)

po and c¢q are, respectively, the density and the speed of sound in the medium where

sound is radiated into, in this case air. The acoustic pressure at a point in the

farfield is calculated as:

e;'kr ly g X
p(,6,1, jw) = —jkpoco / | teetesstigady (5.2
™ Jo 0

2
with 7 the distance between the center of the plate and the point in the farfield and
k is the wavenumber w/cy. a and f are given by:

a = kl,sinfcos¢

g = kl,sinfsing¢ (5.3)
These factors are based on the approximation that the point at which the pressure
is observed is sufficiently in the farfield (r >> (/2 +12 , r >> 2mcy/wy).
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The pressure depends on the transverse surface velocities of the plate. The velocity

at a point (z,y) on the plate is given by:
w(z,y) =T (z,y)a (5.4)

where ¥(z,y) is a vector of the amplitude of the modeshapes at (z,y) and a is a
vector of the modal velocities. This means that the pressure in the farfield is a linear

combination of the modal velocities.

The modeshape @ for a simply supported plate is sinusoidal:

Yi(z,y) = sin (m;m:) sin <nl77y>
T y

Because of the sinusoidal shape, the factor for each modeshape can be calculated

(5.5)

analytically:

lz

ai(z, y)e e/ =Byl g dy,

l:
sin (mmc) sin (n[ y) e~ en/letBY/W) gy,

by

pi(¢7 07 T, _]U)) =

lu

_ o [(=1)Me =17 [(-1)"e P - 17 .
= —jApOCOQ l lymnm { 2o 32— 2 a;
eykr .
= Z; .i .6
! (5.6

The factor z; has been used here for compact notation. The integral of the farfield

intensity, given by equation 5.1, over a half sphere can then be written as:

2r  pw/2 0 . 2
P(]U)) — / / |pacou9t 2¢ T, 7"‘))' T2 Sil’l 0d0d¢
PoCo

27
= / / a2z asin 0dhde
o Jo
2 pw/2
= aff / / 2z sin 8dfdg | a
o Jo

= a"Ma (5.7)

where M is called the modal radiation matrix. It should be noted that the scaling
of M depends on the scaling of the modeshapes. Unfortunately, the integral in
equation 5.7 can not be solved analytically and has to be evaluated over a number
of points in the farfield to give an accurate approximation. The radiation efficiency
for the modes is defined as:

S = 8M/pocolaly (5.8)
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The on-diagonal elements of S are self-radiation efficiencies, the off-diagonal elenients

are mutual- or cross-radiation efficiencies.

The elements of S describing the self- and cross-radiation efficiencies of the first 10
structural modes of the simply supported plate have been plotted in figure 5.1. The
self-radiation of volumetric modes (modes for which n and m are both uneven) is
more efficient than that of other modes, as is indicated in figure 5.2. The radiation
effiency of cross-combinations of modes drops off at higher frequencies, whereas the
self-radiation of the modes approaches 1. Figure 5.1 also shows that at about 5 kHz
a sort of spatial aliasing starts to occur due to the numerical integration in the
farfield. It is interesting to see that it occurs at different frequencies for different
modes. The radiation efficiency has been calculated on a grid of 40 points for 6 and
160 points for ¢.

The farfield approach for calculating the sound power is accurate, but requires know-
ledge of the modeshapes. Furthermore, for the method to work efficiently, the
modeshapes of the structure must allow the integral in equation 5.2 to be solved
analytically. This limits the applicability of this approach in terms of structural

dynamics.

5.1.2 Nearfield approximation

This method is based on the acoustic power calculated at the source and is also
described in Elliott and Johnson (1993). The power radiated is equal to the product

of the acoustic pressure levels on the plate and the velocity of the plate:

ly lr
_ / / Pacoust (., )t (x, y, 1)dzdy (5.9)
0 0

Or in a complex, frequency domain formulation:

. 1 Y L .
P(jw) = '2—R |:/ / pacoust(may;]w)w(m7y7]w)dl'dy (510)
0 0

The acoustic pressure at any point of the plate is itself a function of the velocity of
the plate:

ly ple
JWPO ity
Pacoust (%1, Y1, Jw) / / 27”? 7" W(Z2, y2)dz2dys (5.11)
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Modal radiation efficiency, calculated with farfield approximation
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Figure 5.1: The self- and cross-radiation efficiencies of the first 10 structural modes

of the simply supported plate as calculated with the farfield approximation.
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Figure 5.2: The self-radiation efficiencies of the first 10 structural modes of the

simply supported plate as calculated with the farfield approximation.
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where 7 is the distance between (x1,y1) and (2. y2) and k& = w/c is the wavemuuber.
If equations 5.10 and 5.11 are combined, an equation is obtained for the radiated
sound power that contains a quadruple integral:

) 1 ly l:r ly l:r pro —jk'r . . ) - .
P(jw) = §R T —e M (@g, Yo )dadysw (. y, jw)dady|  (5.12)
o Jo Jo Jo

2rr

This equation does not have an analytical solution, but can be approximated nu-
merically. The approximation is based on dividing the structure in smaller equally
sized elements and assuming that each element radiates sound as a round piston
of the same area and that the pressure over the surface of the element is uniform.

Using this approximation, equation 5.12 can be rewritten in a matrix structure as:
P(jw) = WTR(jw)w (5.13)

where W is a vector of velocities at the center of each the elements. The matrix R is
a radiation resistance matrix, containing the radiation resistances between elements.

For a total of N, elements, R. can be calculated as:

1 sin{kri2) sin(krin,)
krio o kT Ne
2 9 sin(kro1)
. wpgS — 1 e .
Rjw) = =2 - bra ) (5.14)
sin(kry,1) 1
| —_e—kTNel .. C. |

with r;; the distance between the centers of elements ¢ and j and S is the surface

area of a single element.

The matrix R(jw) is not dependent on the dynamics or the modeshapes of the
structure. To compare it to the farfield approximation the modeshapes must be
taken into account. As can be seen from equation 5.4 the velocities of the plate are

directly related to the velocities of the modeshapes:

w =T

poimﬁsa (5 15)

where W ,,;,,:s are the modal amplitudes at the locations of the center of the elements.

Combining equations 5.15 and 5.13 results in:

P(jw) = a7 W pointsR(jw) W] i (5.16)

points

and analogous to section 5.1.1 a modal radiation matrix can be obtained:

M= ‘IlpointsR(jw) ‘IIT

points

(5.17)
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Modal radiation efficiency, calculated with nearfield approximation
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Figure 5.3: The self- and cross-radiation efficiencies of the first 10 structural modes

of the simply supported plate as calculated with the nearfield approximation.

The accuracy of this approach depends on the number of elements taken into ac-
count. The frequency at which spatial aliasing starts to occur is roughly the fre-
quency at which half the wavelength in air corresponds to the largest dimension
of the elements. Increasing the number of elements does increase accuracy, but
the number of elements in the matrix R(jw) also increases quadratically with the

number of elements.

Some elements of the modal radiation efficiency S (see equation 5.8) of the modal
radiation matrix calculated on the basis of the nearfield approximation have been
plotted in figure 5.3. The figure shows that spatial aliasing starts to occur from
10 kHz. Note that the model of the sound radiation in this approach splits the
dynamics concerning the sound radiation and the dynamics of the structure. That
means that the model can be used equally well for plates with different boundary

conditions or shapes and thus modeshapes.
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5.2 Creating sound radiation filters

5.2.1 Introduction

The previous section showed that there are two ways of calculating the sound power
radiated from a simply supported plate. Both ways allow the calculation of a modal
radiation matrix. The modal radiation matrix can be used directly to create a set of
radiation filters, by using curve fitting and spectral factorisation techniques. Filters

constructed in this manner will be called modal radiation filters.

A different way of creating radiation filters is based on the radiation resistance
matrix R, calculated with the nearfield approximation of sound radiation (equation
5.14). It is shown, based on the work presented by Elliott and Johnson (1993), that
specific velocity distributions of the plate radiate sound independently at a particular
frequency. These independently radiating velocity distributions are called radiation
modes. By assuming that the radiation modes remain the same for all frequencies of
interest, an approximation to the sound radiation can be achieved. Clark and Cox
(1997), as well as subsequent papers (e.g. Cox et al. (1998), Gibbs et al. (2000)),
referred to this technique as Radiation Modal Expansion. The filters constructed in

this manner will be called radiation mode filters.

Both these techniques are explained here. First, the techniques are explained in more
detail, starting with radiation mode technique. The actual filters are constructed in
a separate section. The terminology is prone to confusion, as the terms radiation
modes and modal radiation are much alike. Here, the terms have been applied to

refer to each technique separately.

5.2.1.1 Radiation mode filters

Creating radiation filters can be based on the decomposition of the radiation res-
istance matrix R. This matrix is positive definite at frequencies larger than 0.
Therefore, at frequencies larger than 0, this matrix has an eigenvector-eigenvalue
decomposition, R = QAQT, where A is a diagonal matrix of the real and positive

eigenvalues and Q the matrix of eigenvectors. The eigenvectors are columns of Q
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and define the velocity distributions of W that radiate sound independently at that
particular frequency (Elliott and Johnson (1993)). Hence, these distributions are

called radiation modes.

Borgiotti and Jones (1994) stated that such radiation modes are nested: the space
spanned by the radiation modes at a frequency w < wyq. is a subspace of the space
spanned by the radiation modes at wpq,. This means that the modes at w are a
linear combination of the modes at wpq,. In the same paper and in work by Gibbs
et al. (2000), it was noted that these radiation modes change shape slowly over large
frequency ranges and it was assumed that the radiation modes remain constant for
all frequencies. Though this is not strictly true, it is a workable approximation
for frequencies that are 'close’ to the frequency at which the radiation modes are
calculated. For each frequency, the contribution of each radiation mode to the
sound radiation can be calculated. By curve-fitting the frequency response of these
contributions, a frequency dependent filter can be associated with each radiation
mode. The squared output of these filters is an approximation for the acoustic
power radiated by each radiation mode. The sum of the squared outputs is the

approximation of the total radiated sound power.

A slightly more general approach than the one taken by Gibbs et al. (2000) is the

following:
- Calculate the radiation modes Q at a frequency wyqse-

- Select a set of the most significant radiation modes ®p.5 at this frequency

Whase

- Calculate an amplitude weighting coefficient ~; for the ith radiation mode at

a set of frequencies, w, as:

%(w) = of R(jw)a; (5.18)
where q; is the velocity distribution associated with the ith radiation mode,
i.e. a column of ®py,e..

- Fit a Laplace function through ~; for that radiation mode. As ~; is entirely

real, the function should have mirrored poles and zeros in the s-plane.

- Split these filters into an entirely stable-causal and anti-stable/causal filter. If

the original filter is written as a zero-pole-gain function, this is can be done
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reasonably easily. The conversion of the fitted filters to a state-space filter is

discussed in greater detail in section 5.2.2.2.

- The estimated sound radiation can now be calculated as the squared output
of these filters. The input of the filters is the actual velocity distribution of

the plate, multiplied by the velocity distributions of the radiation modes.

In this approach, the choice base frequency wpese is not fixed and can be iterated
upon. Gibbs et al. (2000) fixed the frequency wpese at the highest frequency of
interest. This is done because there are several important assumptions and approx-

imations that affect the applicability of these filters.

First of all, the assumption that the radiation modes do not change shape is ouly
a reasonable approximation over a limited frequency range. Figures 5.4 and 5.5
show the six most significant radiation modes at 100 Hz and 1.5 kHz respectively.
It can be seen that the radiation modes do change shape gradually as a functiou
of frequency. Borgiotti and Jones (1994) observed that the radiation modes at a
frequency w < Wpqz are a linear combination of the radiation modes at a frequency
Wmaz- This implies that there are possibly significant cross-terms in the radiation
modes that are ignored in the above approach. Here it is assumed that, as long
as the radiation modes do not change much at frequencies above or below the hase
frequency of the chosen set of radiation modes, the calculated sound radiation should
not change much in comparison to the actual sound radiation and the radiation
modes can be used effectively to design a controller. This does mean that the choice
of the base frequency for the radiation modes limits the frequency range for which

the model is accurate both below and above the base frequency.

The number of radiation modes taken into account and the accuracy of the fit in-
fluence the accuracy also, as does the number of elements on the plate. Elliott and
Johnson (1993) shows that number of radiation modes has to increase dramatic-
ally with frequency to calculate the sound radiation accurately. Also, the number
of structural modes also influences accuracy and should also be sufficient for the

frequency range of interest.
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(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 5.4: Six most significant radiation modes at 100 Hz, sorted by significance.
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(d) Mode 4 (e) Mode 5

Figuré 5.5: Six most significant radiation modes at 1.5 kHz, sorted by significance.

5.2.1.2 Modal radiation filters

The method of creating filters on the basis of the modal radiation matrix is used by
Baumann et al. (1991). In that paper, it is described, how the real but frequency
dependent matrix M can be transformed into a set of N? filters, where N is the
number of structural modes. Each of the elements in M can be approximated by a
sum of a stable and an antistable rational Laplace transform. Using this formulation,
the matrix can then be spectrally factorised using the state-space algorithms found
in Francis (1987). However, this method requires the solution of a Riccati equation,

which can create numerical difficulties.
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Kader et al. (2000) describes a different method, which is used here. In a schematic

form this approach can be written as:
- Calculate M with a nearfield or a farfield approach.

- Approximate M;; by g;;(jw)*gi;(jw), where g;;(jw) is minimum phase rational
Laplace transform and * denotes the complex conjugate. Note that M is
symmetric and thus this only needs to be done for ¢« > j, as for ¢ < j, the

functions will be the same as for i > j.

- These filters can be combined into a N x Ny matrix G(jw), where Ny is
the number of non-zero elements of M. An additional, frequency invariant,
symmetric matrix Qj is used to correctly combine the outputs of the filters
such that:

M = G(jw) QuG(jw) (5.19)

¥

How this can be achieved is explained in greater detail in section 5.2.3

This approach results in a set of Ny minimum-phase filters, where Ny is the number
of non-zero elements of M. Ny is proportional to N2, N being the number of
structural modes. A limitation in the accuracy of this technique is that no negative

values can be obtained for the off-diagonal elements of the sound radiation.

5.2.2 Radiation mode filter construction

As mentioned in the section 5.2.1.1, the frequency at which the set of radiation
modes is selected influences the accuracy of the approximation. To see which set
is better, a number of different base frequencies, f.. have been used to calculate
the fixed radiation modes. Each set of fixed modes results in different amplitude
coefficients ~;. If the radiation modeshapes are normalised and do not change with
frequency then the amplitude coefficients should be equal to the eigenvalues of the
matrix R{jw), calculated with equation 5.14. Figures 5.6-5.8 show the amplitude
coefficients calculated for the modes (solid lines) in comparison to the most signific-
ant eigenvalues of R(jw) (dotted lines). From the fixed radiation modes at 20 Hz,
10 radiation modes have been selected, whereas for 1 and 2 kHz 20 modes have heen
selected. This is because there were not 20 significantly efficient radiating modes
available at 20 Hz.

The figures show that the eigenvalues and the calculated amplitude coefficients di-
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Figure 5.6: Calculated amplitude coefficients (-) for radiation modes calculated at

20 Hz and the eigenvalues of R(jw) (..4..).
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Figure 5.7: Calculated amplitude coefficients (-) for radiation modes calculated at

1 kHz and the eigenvalues of R(jw) (..4+..).
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Figure 5.8: Calculated amplitude coefficients (-) for radiation modes calculated at

2 kHz and the eigenvalues of R(jw) (..+..).

verge quite rapidly for frequencies above the base frequency. However, selecting a
higher base frequency does not necessarily improve the matching of these values, as

can be seen from figure 5.8. At low frequencies the values diverge significantly.

5.2.2.1 Comparison of different base frequencies

The comparison of the amplitude and the eigenvalues of the matrix R does not give
any clear indication on the quality of the approximation of sound radiation by using
fixed radiation modes. An error criterion consisting of a single number could prove a
useful tool for the selection of a base frequency and the number of modes to include
in the model. Several error criteria are examined here to decide an appropriate base

frequency.

Two error criteria are examined, which are based on the comparison of the values
of R(jw) and Repproz(jw) = BL T (Jw)Ppase, where T'(jw) is the diagonal matrix

of amplitude coefficients for the different radiation modes. Another criterion ex-

amined here tries to compare how the modes of the structure interact with these
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Figure 5.9: Normalised nesting error for different sets of radiation modes

matrices, by examining the difference of the modal radiation matrices YR (jw)¥T
and YR pproz jw)®T, where ¥ are the structural modal amplitudes at the midpoint
of the elements used to calculated R(jw). The final criterion examined here is the
calculated sound radiation of the structure, taking the structural dynamics and the

excitation into account.

Borgiotti and Jones (1994) suggests a normalised nesting error to compare R(jw)

and Rapproz (jw):

G(Ld) = 1010g (1 - ZZ }‘I’i(jw)T ((I’base)j : /Nrad> (520)

where N,qq is the number of radiation modes examined. Figure 5.9 shows the nor-

malised nesting error for the 3 different sets of radiation modes.

Another criteria to compare the two matrices might be the sum of the squared errors
in each of the elements of R(jw), compared to the sum of the squared elements of
R{jw):

Z Z (Rij - (Rapproz)ij>2 Vvs. Z Z (Rij)Q (5.21)



Chapter 5. Sound radiation from a plate 116

Sum of squared elements of R vs. sum of squared differences
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Figure 5.10: Sum of squared error in the elements of the elemental radiation matrix

vs the sum of the squared elements of R for different sets of radiation modes

Figure 5.10 shows the comparison of these two values for the different sets of radi-

ation modes.

The error in the modal radiation matrices has also been calculated in this way and
is shown in figure 5.11. Finally, the error in the calculated sound radiation from
an uncontrolled plate, excited by randomly distributed white noise, is shown in
figures 5.12(a) and 5.12(b). Two figures have been used to emphasise the difference
between low-frequency and high-frequency approximations. The figures show that
the radiation calculated with the set of radiation mnodes at 20 Hz starts to diverge
at about 750 Hz and significantly underestimates the radiated sound power ahove
2500 Hz. The set of radiation modes chosen at 2 kHz gives poor approximations at
low frequencies, especially between 400 and 900 Hz. At frequencies between 3 and
4 kHz, the match, though not good, is at least better than that of the 20 Hz set.
The set of radiation modes chosen at 1 kHz seems to give a reasonable match up to

2 kHz and performs similar to the 2 kHz set at frequencies between 3 and 4 kHz.

Though it would have been useful to compare the sound radiation models without

including the structural model, calculating the sound radiation is the most clear
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Figure 5.11: Sum of squared error in the elements of the modal radiation matrix vs
the sum of the squared elements of M = WR¥”

criterion of the ones examined here and will be used to select the model.

The different sets of radiation modes perform well if the frequency range of interest
is close to the base frequency. The best model thus depends on the frequency range
of interest. If the frequency range of interest is chosen to be between 0 and 2 kHz,
the set of radiation modes at 1 kHz is the best option, based on the modelling of

the sound radiation and this is what is used helow.

5.2.2.2 Constructing the state-space models

The amplitude coefficients, ;, of the 20 selected radiation modes can be fitted using
a zero-pole gain model. As the amplitude coefficients are positive real numbers for
different frequencies, a transfer function model must have poles and zeros that are

mirrored in, or located on the imaginary axis.

The fitting of the functions has been performed using the Matlab function invfregs.

This function fits a zeros-pole-gain model to the response of the model at a finite
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Figure 5.12: Calculated sound radiation spectrum with the nearfield calculation and

radiation mode approximation using different base frequencies.
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number of frequencies, minimising the difference between the model and the data.
A number of poles and zeros has been used for tlie zero-pole-gain functions to fit
the data as accurately as possible, without increasing model complexity nmore thau
necessary. As the amplitude coeflicients of the radiation modes tends to a coustaut
for high frequencies, an equal number of poles and zeros has been chosen for the

modelling of each mode.

The obtained zero-pole-gain model must be split into two filters, one of which is
the complex-conjugate of the other. One is chosen to be a causal, stable, mininnnn-
phase filter and the other a anti-causal/stable, maximum phase filter. This can he
achieved by combining all the poles and zeros with a negative real part in the stable
filter and the poles and zeros with positive real parts into the anti-causal/stable
filter.

The fit may also have created poles and zeros that are on the imaginary axis and
thus have no real part. If these are not at the origin, these poles and zeros Liave 10
physical basis. There should be no zeros on the imaginary axis apart from the origin,
due to the fact that sound radiation is positive in all cases, as can be seeu in figure
5.7. The poles should not be located on the imaginary axis, because they would
result in an infinite response of the filter in the frequency domain. Again, figure 5.7
shows this is not the case. These poles and zeros have therefore been replaced by
poles and zeros with a real part equal to the imaginary part of the original poles and
zeros. As they only occur at frequencies beyond the frequency range for which the
data was fitted or for which the data is particularly small, this has generally little

or no effect on the accuracy of the fit. This is illustrated in figure 5.13(a).

The poles and zeros have thien been allocated to the filters depending on whether
the real value of these poles in negative or positive. Zeros and poles at the origin are
divided equally between the stable and unstable filter. This is illustrated in figure
5.13(b). The gain for the filters is equal to the square-root of the gain of the original
zero-pole-gain fit. The filters can be easily transformed to a state-space system using
the function ss. These can then be appended to the state-space model describing

the plate dynamics.

Suppose the original plate dynamics to calculate the velocities w at the grid points
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Figure 5.13: Changing the fitted filter to comply with physical demands and dividing

the poles (x) and zeros (0) into a stable and anti-stable filter.

)i}
w=0 \I/T]<Z> (5.22)

and the radiation modes 7 = 1... Ny have to be added to the model. Each radiation

can be described with:

mode and its associated filter have a number of states described by a vector s;. Each

filter is described by a state space model:

$; = Aps;+ Bpuy;
Yri = Cris+ Dyu (5.23)

where u; is the input to the filter which can be calculated with:
Ui = [(I)base]iv.v (524)

Then the filters and the original state-space model can be combined to one state-
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space model:

a a -
. ) ) B
a a
, A 0 10
S = S
' 0 B;®u. 0T A ! :
_ 0
Sn; / SNy ST
a
a
vi = [0 D@ C; || s (5.25)
SNf
where: _ .
An 0 0
0 Ap ... ...
As= = (5.26)
0 Ay,

and By, Cy and Dy are constructed along similar lines from By;, Cs; and Dy;. The

sound radiation can then be calculated as the sum of the squared values of y;:

Jacoust = yr}I;Yf (527)

Figure 5.14 shows the sound radiation calculated using the original radiation res-
istance matrix R (solid line), using the radiation modes and amplitude coefficients
calculated for those modes (dashed line) and the sound radiation calculated using
the state-space filters (dash-dot line). The figure shows that fitting the sound radi-
ation with a state-space filter results in only a small additional inaccuracy on top of
fixing the radiation modes. For a large part of the frequency domain, the lines are

actually on top of each other.

5.2.3 Modal radiation filter construction

As stated in section 5.2.1.2, the modelling of modal radiation can be achieved in

by the spectral factorisation of M. This is done by factorising each element of
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Figure 5.14: Comparison of uncontrolled sound radiation spectruin, calculated with

the radiation mode approximation and the nearfield model

the matrix M and combining the resulting state-space models. Here a step-by-step

approach is used to show how the required matrices can be constructed.

- Begin by approximating M;; with a function g(jw)g,(jw) in the same way
as in section 5.2.2.2, except that now the number of poles and zeros does not
always need to be equal. Note also that, though the radiation function A7
can become negative, g*(jw)g,(jw) can not. This limits the accuracy of the
fit. For very small elements of M, the function can be fitted by setting g, = 0.
The functions g, corresponding to element Af;; can then be written in a state

space form:

Srij = AjiSpi+ Byija
Yrii = CriySyiy+ Drijas

Due to the symmetry of M, the filters for element Mj; are the same.

The index 7 (or j) indicates the modal velocity of the mode that appears on
the ith place in the modal velocity vector. The index does not show which
particular mode it is. For instance: the velocity of the mode of the plate of

which the modeshape is described by equation 2.10, with m = 1 and n = 3,
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might be located at the 4th position in the vector a, while the mode defined

by m = 2 and n = 2 could be located at the 8th position. The element Afj;

with ¢ = 4,7 = 8 would then indicate the cross radiation of the 1,3 and the

2,2 modes.

- Combine the state space matrices of each filter. Here, the matrices have been

ordered such that:

[ Asn
0
0

0

By should then be:

B =
and Cy is:
[ C; i
0
0
Cs=
| 0

0 0
Aj, O
0 Ajm 0 ..
0 Af3 O
0 Afzy
[ B, 0
Bsp O
0 Bjn O
Bfis 0 0
0 0 Bsa
| O
0 0
Criz O .
0 Cim 0 ..
0 Csu O
0 Cia

Afnn |

Bfny |

Cinn |

—~
(&
[\}
(03]

p

(5.30)
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And the matrix Dy:

"Din 0 ... .. 0]
Dijg 0 .
0 Djay O
D;= | Df13 O 0 ... .. (5.31)

0 0 Dy

| 0 ... ... .. Dinn|

If this is done, one obtains a matrix of the functions gy ;;:

[ gjn O ... ... 0
gfi2 0
0 gra 0
Gy=|gs1s O 0o ... ... (5.32)
0 0 gra
| O cev .. ... gfNN |

Finally, the matrix Qj must be constructed according to:

[ 1 0 0 0 0 ]
0O 0 1 o0
0 1 0 0
Q= 0 0 0 0 (5.33)
1 0
| 0 ]
This way, when calculating G(jw)# QG (jw), the i, jth element is:
95 795 i (5.34)
but as gy ;i = gy ; due to symmetry, this is equal to:
9% 1797 ij (5.35)

which is the desired function. Note that for quadratic optimisation, this state
space model should be combined with the structural model, in a similar way

to what was done in section 5.2.2.2 for the radiation modes.
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Comparison of accurate and approximated sound radiation spectrum
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Figure 5.15: Comparison of uncontrolled sound radiation spectrum, calculated with

spectral factorisation of the modal radiation and the nearfield model.

The main problem with this technique is the large number of functions that have to
be fitted: for the 18 modes of the simply supported plate up to 1 kHz, there are 86
non-zero elements in the matrix M, resulting in 52 functions to be fitted. For the 39
modes up to 2 kHz, 211 functions would have to be fitted. Because of this practical
issue, filters have only been constructed only for the first 18 modes. The combinel

state space model for the matrix G contained 755 states.

Figure 5.15 shows the sound radiation of an uncontrolled model, excited by a ran-
domly distributed, white noise excitation. The model fits the radiation very well, for
the modes that have been taken into account. This is unsurprising, as only the self
radiation of the modes is taken into account, because there is no correlation between
the excitation of the different modes. Furthermore, the self radiation of modes is

most easily fitted with accurate models.
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5.3 Comparison of the models

The previous section showed two different ways of modelling the sound radiation
into the farfield from a simply supported plate. Here a comparison between tlie two

models is made.

On first inspection of the models, the model complexity is quite different. The
radiation mode approach, described in section 5.2.2 results in a model of 20 dy-
namic filters for 20 radiation modes, with a total of 135 states. The modal radiation
approach described in section 5.2.3 modelling only the radiation of the first 18 struc-
tural modes, resulted in a model with 86 filters and a total of 755 states. It can also
be noted that the radiation mode approach is independent of the dynamics of the
structure, i.e. the model does not need to change if the modeshapes of the structure

changes. This is not the case of the modal radiation approach.

Figure 5.16 shows different elements of the modal radiation matrix M calculated with
both approximations, compared to the values according the farfield approxiniation.
It can be seen that the modal radiation spectral factorisation teclinique results in
more accurate approximations of the modal radiation efficiency. The radiation mode

approach, on the other hand, is capable of creating negative off diagonal elements.

To see how the differences in the models impacts on the actual calculated sound

radiation, the models are compared for four characteristics:

- Sound radiation spectrum of the uncontrolled plate, excited by a randouly

distributed, white noise pressure field.

- Sound radiation spectrum of the controlled plate, excited by a randomly dis-
tributed, white noise pressure field. The controller is a decentralised, constant
gain, velocity feedback controller, calculated to miniinise the kinetic energy of
the plate, as described in chapter 4. The controller uses 16 evenly distributed

control locations and was designed with an effort weighting of 11075,

- Sound radiation spectrum of the uncontrolled plate, excited by a single point
source at (z,y) = (0.24l,, 0.61,).

- Sound radiation spectrum of the controlled plate, excited by a single point
source at (z.y) = (0.241,,0.6(,). The controller is the same as for the white

noise excitation.
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Figure 5.16: Comparison of modal radiation efficiency as calculated with radiation
modes, spectral factorisation of modal radiation and the farfield approach. Depicted
are the auto radiation of the (1,1) and the (1,2) mode, as well as the cross radiation
of the (1,1) mode with the (1,3) mode.

Figures 5.17(a) to 5.18(b) show the sound radiation spectrum of the models up to
1.5 kHz. The modal radiation approach does create a model that is more accurate
up to 1 kHz. However, considering the vastly lower number of states and its inde-
pendence of structural modeshapes, the radiation mode approach is favoured here

and will be used to create controllers.

5.4 Control of sound radiation on a plate

This section expands on the control of the plate for ASAC and compares LQG
control and centralised and decentralised static velocity feedback control. The LQG
and static velocity feedback controller are optimised to control a cost function, J,.,

which is a sum of the sound radiation and a weighted control effort term:

Joe =E [XTQacX = UTRU] (536)
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Comparison of sound radiation spectrum, calculated with different models
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Comparison of sound radiation spectrum, calculated with different models
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Figure 5.17: Comparison of sound radiation spectrum as calculated with radiation
modes, spectral factorisation of the modal radiation and the farfield approach, from

a plate, with and without control, excited by randomly distributed white noise.
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Figure 5.18: Comparison of sound radiation spectrum as calculated with radiation

modes, spectral factorisation of the modal radiation and the farfield approach, from

a plate, with and without control, excited by a single, white noise, point force at
(Z,y) =(0.24L,,0.6L,).
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In this function, the state-vector x includes both the structural states and the states
of the filters used to estimate the sound radiation. The matrix Qg is chosen so
that the term x? Q,.X is equal to the radiated sound power. Only the results of this
opimisation are represented here, for further details considering the design of the
static feedback controllers, readers are referred to chapters 3 and 4 of this thesis, as
well as literature, e.g. Levine and Athans (1970), Geromel and Bernussou (1979),
Clark and Bernstein (1998) and Elliott et al. (2002).

The controllers are compared for performance, as well as control effort required. Fig-
ure 5.19 compares the reduction in expected radiated sound power and the required
control effort, for the different controllers. It can be seen that LQG control has
slightly better performance than the static feedback gain controllers using the same
control effort, but the difference is surprisingly small considering that the radiation
modes show strong frequency and spatial dependence. Figure 5.20 also shows reduc-
tion and effort, now for a case where the excitation has a red-noise spectrum and
the structure is controlled at 5 randomly chosen locations. In accordance with the
analysis in chapter 4, close spacing amongst the control points and the edges of the
plate were avoided. It can be seen that even in the case of red noise excitation the

overall difference between the control strategies is small.

Figure 5.21 shows the expected radiated sound power spectrum for different control
strategies for a fixed control effort of 300 N2. Compared are LQG and decentralised
constant gain control designed for ASAC on the basis of the radiation mode model
and those same controllers, designed for the minimisation of the kinetic energy. Over
this frequency range, the constant gain controller optimised for ASAC has better
performance than the LQG controller. Overall, the LQG controller does outperforin
the constant gain controller, according to the radiation mode model, obtaining 2.0 dB
average reduction in comparison to 1.7 dB for the constant gain controller. The
controllers optimised for kinetic energy do not do quite as well as optimising for
ASAC, but the performance is within about 6 dB of the performance of the controller
designed for ASAC. A comparison of the values of the decentralised constant gains
optimised for ASAC, with the ones optimised for kinetic energy revealed slightly

higher gains for the control points closer to the center of the plate.
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Control effort vs. change in expected radiated sound power, white noise excitation
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Figure 5.19: Reduction in radiated sound power, calculated with the radiation mode

model vs. required control effort, for different controllers, white noise excitation.

Sontrol effort vs. change in expected radiated sound power, red noise excitation
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Figure 5.20: Reduction in radiated sound power, calculated with the radiation mode

model vs. required control effort, for different controllers, red noise excitation.
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Expected radiated sound power spectrum

0 T T T T
Uncontrolled
-5 r — ASAC Decentralised C.G.| 4
= — ASAC LQG
Z -10 + — — — KE Decentralised C.G. g
=3 =i KEEE G
815+ 1
=
2 .20
[0
T
g-zs -
(o]
o
© -30
5
2
5 -35
@O
=
5 -40
©
o
45 + 1
_50 1 1 | 1
0 200 400 600 800 1000

Frequency [Hz]

Figure 5.21: Expected radiated sound power spectrum for the different controllers.

5.5 Conclusion

This chapter has shown that, even though using fixed radiation filters introduces an
inaccuracy into the model of sound radiation, it can serve as a good basis for creating
an ASAC controller. The main advantage of using fixed radiation mode filters over
modal radiation filters is the considerable reduction in the required number of filters,
and thus in model order. Choosing the base frequency for the fixed radiation filters
in the middle of the bandwidth of interest was found to give better results than the
previous approach of choosing the base frequency to be at the highest frequency of

interest.

For red and white noise excitation, there is little advantage in using a centralised,
LQG controller to minimise sound power over centralised or decentralised static feed-
back control. This also confirms results presented by Gardonio and Elliott (2004a),
who found that decentralised constant velocity feedback works well to reduce sound

transmission through a panel.

Controllers designed to minimise sound power radiation do obtain better results than

controllers designed to minimise kinetic energy in the structure. Although not quite
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as good as the controllers desigiied for ASAC, decentralised constant gain controllers
designed for minimising kinetic energy can still achieve a significant reduction in

radiated noise.

It should be noted that these conclusions only hold if all the assumption about the
sound radiation model hold. In this case, some of the main assumptions were that the
plate radiates sound in a freefield situation, is located in an infinite baffle and that
there is no fluid-structure interaction. The assumptions and thus the conclusions,

may not hold in a practical situations.



Chapter 6

Self-tuning and measurements

This chapter describes how the approximations studied in chapters 3 and 4 could be
used to tune a fixed gain feedback controller, based only on information available

locally at the control locations.

The tuning of the controller involves two parts. On the one hand, it involves creating
estimates of the properties of the structure under control and on the other hand it
involves the tuning of the controller, based on those properties. If this can be
done online, with both the estimation of the variables and the controller updated
continuously or at intervals, this process is known as adaptive control. The design
of an adaptive feedback controller that uses state estimation for feedback control,
requires a reasonable accurate model identification beforehand. The stability aud
performance robustness of such a system would require an extensive analysis. It
was already shown in chapter 4 that, for collocated force actuators and velocity
sensors and the assumed excitation, the LQG controller did not improve perforinance
significantly in comparison to decentralised constant gain feedback control if the
latter is tuned properly. This chapter will focus on using the locally measured
transfer functions to identify the variables required for the tuning of the feedback
gain controllers. Optimal power absorption is also examined, but this does not

require analysis of the transfer function.

The identification of the required variables might be more difficult when the struc-
ture is already being controlled at other control locations. This multi-channel control

situation is examined in section 6.2. This is also how ’self-tuning’ should be inter-

134
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preted; that in a multi-channel set-up, the controller at each coutrol location is tuned
on the basis of the signals measured at that point, without any knowledge of low,

if or where controllers at. other control locations are set.

Last, it is examined whether the required variables can also be measured in a labor-

atory set-up and used to experimentally tune a practical feedback controller.

6.1 SISO tuning

In this section, the information that could be gathered locally is reviewed. In par-
ticular, it is examined how the information can be used to tune the approximations

described in chapter 3.

6.1.1 Data gathering

The open-loop frequency response from the control force to the measured velocity is
assumed known for this self-tuning. This is equal to the point mobility of the struc-
ture. It could be measured, for example, from the correlation functions between
the in- and output (Bendat and Piersol (1986)) when the actuator is driven hy a
random signal with no feedback. These correlation functions can be influenced by
additional noise at the input and the output of the model. From the frequency
response, the open-loop impulse response can be calculated. The method of acquis-
ition of the open-loop frequency or impulse response functions is not considered in
detail here. Methods of identifying open-loop responses are discussed extensively
in Ljung (1999), while in Veres and Wall (2000) the effects and possible benefits of

identification in a closed-loop system are discussed.

6.1.2 Maximum power-absorption

The tuning of the controller to maximise power absorption could be done on-line.
The maximum power absorption can be calculated from the time-averaged product

of the velocity and output force. This quantity could be maximised, by slowly in- or
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decreasing the gain (Redman-White et al. (1987) and Nelson (1996)). However. it
was already seen in section 3.2.3 of this thesis, that inaximising the power absorption
can result in gains that are too high in comparison to the optimal feedback gain.
Furthermore, the result will be influenced if the excitation changes, because the tuu-
ing method is based on the actual power measured at the control point, rather than
the local transfer function. However, as long as the feedback gain is constricted to be
positive real and the excitation has a narrow auto correlation function, maximising
the power absorption is unlikely to increase the overall response of structure, to the

degree seen, for instance, in Elliott et al. (1991) for tonal excitatiow.

Practical single-channel power maximisation was also investigated in two compan-
ion papers, Hirami (1997b) and Hirami (1997a). In these papers, the power to be
maximised is measured within a so called sing-around time. This denotes the time
it takes for the wave caused by a switch in feedback gains to reflect of the boundary
and get back to the control point. It was argued that, if this method is applied, it is
similar to absorbing maximum power from an infinite structure. In simulations on a
string this seems to be an effective method. However, string motion is governed by
the wave equation (Meirovitch (1986)), with a constant wave-speed for all frequen-
cies. For bending waves, the wave-speed is variable with frequency; as the frequency
increases, so does the wave-speed. Thus it is difficult to define a sing-around time for
a broadband excitation on a structure dominated by bending waves. The method

considered in section 6.1.4, circumvents this problem for the plate structure.

6.1.3 Reduced-number-of-modes approximations

For the two- and three-mode formulas (equations 3.56 and 3.57), the necessary
variables for tuning are the resonance frequencies (w,), the modal amplitudes (v,),
the mass of the structure (A7) and the integral of the squared modeshape over the
structure (N,). It can be shown that these last three factors can actually be identified
as a single factor for each on the modes. To do that, the measured amplitude of
the mobility is compared to the mobility that could be expected on the basis of the
measured damping ratio and resonance frequency. It is assumed that at resonance,

the structure behaves like a lightly damped mass-spring system.

The damping at a particular resonance can be calculated from the shape of the
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Figure 6.1: Amplitude of displacement response of the beam at x = 0.6L

frequency response of the displacement near the resonaunce frequency (Meirovitch
(1986)). Figure 6.1 shows the amplitude of the displacement response of the beam
at 0.6 of its length. For light damping, Meirovitch (1986) gives as an estimate of the
damping factor:

Whpa — Whp 1

(=

where wyy 1 and wpy, o are the half power points, which are those points wlere the amp-

6.1
2o (6.1)

litude falls to 1/4/2 of the maximum magnitude of the transfer function (~ -3 dB).
For the structure near resonance, the frequency response is dominated by a single
mode, whose motion is described by equation 2.4 for the beam, or equations 2.12
and 2.22 for the plate structures. The amplitude of the transfer function of the force

to displacement at a point on the structure is then given by:
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Since wy, and ¢ are known, Aguet(jw,) can thus be used to estimate ﬁ?—vl- The

actual mass and squared modeshapes need not be calculated separately.

This method does depend on how accurately the half power points and the maximum

response can be measured. For very lightly damped modes, a fine frequency spacing
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in the frequency response is required to make an accurate estimate of the damping
factor and the required factors. Using such a fine frequency spacing, does allow
the accurate calculation of the factor A—lj%,'j- Other methods based oun curve-fitting
might result in better estimates on the basis of a wider frequency spacing. The
only exception is if the acuator is located at a nodal line of that particular mode
and thus be unable to observe the resonance. In that case, the next resonance is
likely to be observable. The method described here is not nieant to be a definitive
way of calculating the gains, but more a proof-of-principle that the values can be

calculated.

The simplified two-mode formula described by equation 3.58 requires the knowledge
of the mass of the structure, as well as the first two resonance frequencies. The
mass can not be directly derived from the frequency response and would have to
be assumed known. Thus, this formula can only be used in an adaptive set-up if
the mass of the structure is not going to change. The identification of the first two

resonances is not difficult in the single-channel case.

6.1.4 Matched infinite plate impedance

On the plate, it has been shown in chapters 3 and 4 that the matched infinite plate
impedance performed well as a control strategy. The measurement of tlie infinite
plate impdeance does not appear straightforward. However, it is shown here to be
approximately equal to the frequency average of the real part of the impedance of
the plate.

Consider the energy input of a unit impulse force, f; into an infinite plate:
Eiyn = / fe(®)w(t)de
= / ft(t)/ w;(7) fi(t — 7)drdt

o0

_ / R () Yar oo () fu ) doo

= L [TRVeaalje)) d (6.3)

2 ) o

where w(t) is the velocity of the infinite plate, Y. »(jw) is the mobility of the infinite

plate at the control point and f,(jw) is the Fourier transform of the impulse force,
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filter
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Figure 6.2: Filtering of an impulse function results in a longer time signal.

which is equal to 1 for all frequencies.

The local mobility of an infinite plate is equal to 1/(8v/ETph) (Cremer et al. (1988))
Thus a mathematically ideal impulse with unlimited high frequency coutent, would
result in an infinite energy input into the plate. This is because of the way the
flexural motion of the plate has been modelled. By ignoring the rotational inertia,
the flexural wave speed approaches infinity as the frequency approaches infinity. The
infinite flexural wave speed at high frequencies would seem to imply that, ou a finite
plate, reflections would immediately interact with the excitation. However, it can

be shown that this is not the case if a more complete analysis is perforied.

Suppose that the impulse is filtered to create a limited frequency countent. Limiting
the filter in the frequency domain will cause a lengthening of the signal in the time
domain, as illustrated in figure 6.2. If the product of the highest wave speed (the
wave speed of the highest significant frequency in the filtered impulse) and the length
of the filtered impulse is smaller than twice the distance to the nearest boundary
or other control point, the reflection of the input signal can not interact with the

signal itself. The wave speed is given by (Cremer et al. (1988)):

-

Figure 6.3 shows the pulse length, measured here as the time it takes for the filtered
impulse to decay indefinitely to below 1% of its maximum value, as well as the
time required for the highest significant frequency to reflect back. In this case, the
filter is taken to be a 4th order low pass Butterworth filter. The highest significant
frequency is assumed to be the cut-off frequency at which the Butterworth filter has

been set.
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Figure 6.3: Pulse length and minimum reflection time as a function of the cut-off

frequency.

Figure 6.3 shows that if the frequency range is high enough, the pulse will be short
enough not to interact with its reflections. In addition, higher frequency components
should have smaller reflections, because of the damping in the structure. Thus, at
the point of excitation, the finite plate must behave as an infinite plate for the
duration of the signal. The energy input into the finite plate must therefore also the

same as the input into the infinite plate:

1 Winax 1 Wmax
Bo=r [ RUent)do =1 [TREG) (65)
0 0

T T

Here, Y,.(jw) is the mobility of the finite plate. One can also conclude theun, that
over that frequency range the average of the mobility of the finite plate and the

infinite plate must be equal.
nean [R (Ve x (ju))) = mean [R (Vee(jw))] (6.6)

where mean denotes the average over the frequency range.
w

This last equation allows us to estimate the infinite plate impedance for the matched

infinite plate impedance approximation. The impedance of the infinite plate is equal
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Frequency range [HZ]‘ 100 200 500 1000 2000 5000
Impedance [Ns/m] ‘16.65 14.75 23.99 31.71 29.61 30.35

Table 6.1: Average real part of the impedance of the simply supported plate at

(z,y) = (0.241;,0.6l,), calculated over different frequency ranges.

to the inverse of the real part of the average mobility of the finite plate.

Table 6.1 shows the calculated value of the inverse of the average mobility for differ-
ent frequency ranges on the simply supported plate. Tlie imipedance of an infinite
plate of the same material and thickness would be 31.87 Ns/m. The table shows
that these values from 1 kHz match sufficiently for coutrol purposes. For these siu-
ulations all the modes up to 10 kHz have been taken into account. The difference
between the theoretical value and calculated value can be due to a number of factors,
including the limited accuracy of the numerical integration, the limited numnber of

modes and the cut-off in the frequency domain.

As mentioned before in section 3.2.2.5, an infinite beam does not have a real, fre-

quency invariant impedance and this method is thus not suitable for the beam.

6.1.5 Summary SISO control

In the single-input-single-output situation, the required variables for each of the
approximation strategies can be identified on the basis of the mobility or the power
absorption. Each strategy should approach the values calculated in chapter 3 at
each point of the structure. For matching the impedance of the infinite plate, the
frequency range over which the mobility needs to be measured is dependent on the
distance to the nearest point to reflect a wave. Placing the control location close to a
boundary will require a large frequency range to accurately estimate the impedance

of the infinite plate.
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6.2 Tuning in MIMO setup

In a multi-input-multi-output (MIMO) situation, the transfer function at the point
of control is influenced by the control at other points. This may influence the setting
of gains in the multi-channel set-up. This section examines how the presence of otlier
feedback loops influences the measurements and thus the calculation of the variables
needed for the calculation of the feedback gains. The tuning of the gains is examined
on the beam using 2 and 4 evenly distributed control locations and on the simply

supported plate using 4 and 16 evenly distributed control locations.

6.2.1 Use of approximations

In these simulations, it is assumed that the structure is controlled at all locations
with a decentralised velocity feedback controller tuned to minimise kinetic energy,
as described in chapter 4. At one of the control locations the gain is then set to
zero. Using the methods described in section 6.1, the required variables for each
approximation of the feedback gain are then estimated. If the gains calculated
with the approximations are similar in the controlled and the uncontrolled case, the

approximation strategy is considered suitable for multi-channel control.

Figure 6.4(a) shows the open-loop mobility of the beam at 0.33L. If the beam is
controlled at 0.67L (dash-dot line}, the resonance frequencies seem to have shifted
to higher frequencies and are a lot more damped. Figure 6.4(b) shows the open-loop
mobility at 0.2L, with the beam controlled at 0.4L, 0.6L and 0.8L. Figure 6.5(a)
shows the open-loop mobility of the simply supported plate at one of the control
locations of a plate with 4 distributed control locations. While figure 6.5(h) shows
the open-loop mobility of the plate with 16 evenly distributed control locations. In
both cases, the mobility has been examined at one of the corners of the square of

control points.

In these cases the number of apparent resonance frequencies drops considerably. In
figure 6.4(b) the first resonance in the control case occurs at approximately 75 rad/s
and the second at 575 rad/s. Where for the uncontrolled case, they were roughly at
10 and 40 rad/s. Setting the gain on the basis of these results with the simplified

two-mode formula results in a gain that is an order of magnitude larger than in the
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Figure 6.4: Mobility of the beam with evenly distributed control locations. In the

controlled case, control is present at all locations, except the one for which the

mobility is depicted.
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case where no control is present at otlier locations ou the structure. The shmplified
two-mode strategy is therefor not suitable as a control strategy. The saie seews to
hold for the two- and three-mode formulas. However, the calculation of the factor

1% ;
AN will change as well.

Table 6.2 lists the values of the gains calculated using optimisation and approx-
imations. The values for the approximations are calculated on tlie basis of the
measurements presented in figures 6.4(a) to 6.5(b). The results for the uncontrolled
situation (unc.) are based on the response that is measured when no control is
present at the other locations. These are single channel measureinents, discussed in
section 6.1. The results in the controlled situation (con.) are calculated using the
methods described in section 6.1, but using the response when control is preseut at
the other locations. Thus these gains represent tuning in a multichaimel situation.
The feedback gains that maximise power absorption in the controlled set-up are also

examined and shown in table 6.2.

Despite the large changes in the apparent resonance frequencies, the table shows
that the actual calculated feedback gains with the two- and three-mode formulas do
not change as much as expected and that in the MIMO controlled case, the gains are
of the same order of magnitude as the optimal gains. Maximising power ahsorption
works well on the plate, but overshoots the optimal value by a large margin on the

beam.

The infinite plate impedance has also been calculated for the situations shown in
figure 6.5(a) and 6.5(b) using the method described in section 6.1.4 over various
bandwiths. The results are depicted in table 6.3. The simulations here were done
using all the modes up to 10 kHz. The table shows that the presence of control
does not influence the calculation of the mean real impedance if a sufficiently large
frequency range is examined. The frequency range required to evaluate the gain
correctly is the same (= 500 Hz). According to the theory in section 6.1.4, this is
because the distance to the edge is equal to the distance to the nearest control point.
The frequency range needed to evaluate the approximation is then also the same.
In the 16 channel case, a larger frequency range is required than in the 4 channel
case (= 2 kHz). This would be because the distance between the control point and

the nearest reflecting point is smaller than in the 4 channel case.
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Structure Beam Plate

# control locations 2 4 4 16
optimal feedback gain, unc. | 30.49 | 33.27 | 23.67 | 26.53
optimal feedback gain, con. | 67.55 | 103.8 | 26.64 | 26.24
2 mode formula, unc. 16.07 | 24.97 | 42.74 | 131.2
2 mode formula, con. 37.95 | 71.80 | 37.84 | 35.18
3 mode formula, unc. 18.78 | 21.45 | 14.20 | 31.94
3 mode formula, con. 42.17 | 76.65 | 43.50 | 36.03
power max, unc. 185.3 | 173.0 | 27.07 | 27.36
power max, COlL. 199.0 | 213.1 | 31.82 | 33.67

Table 6.2: Calculated feedback gains (Ns/m) for 2 and 3 mode formulas and power
maximisation on a structure. The set-ups in the column correspond to the set-ups
shown in figures 6.4(a) to 6.5(b). ’unc.” denotes the case where the controller is

tuned when no control is present at other locations, whereas for 'con.’ there is.

Frequency range [Hz | 100 200 500 1000 2000 5000
Impedance [Ns/m] 4 channel, unc. | 1.90 13.0 324 28.2 309 30.7
Impedance [Ns/m] 4 channel, con. | 194 14.1 343 28.7 31.2 30.6
Impedance [Ns/m] 16 channel, unc. | 19.0 13.0 152 17.3 30.5 30.2
Impedance [Ns/m] 16 channel, con. | 41.7 28.7 17.6 16.0 30.1 30.6

Table 6.3: Average real part of the impedance of the simply supported plate ac-
cording to the model, calculated over different frequency ranges. The 4 channel case
corresponds to the set-up in figure 6.5(a), whereas the 16 channel case corresponds
to the set-up in figure 6.5(b).
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6.2.2 Concurrent tuning in a MIMO set-up

In the simulation in section 6.2.1, the optimiisation of a single control gain is ex-
amined, while the other gains are fixed. Ideally, each loop should be able to tune
itself while other control loops are also being updated. For the two- and three-mode
formulas, concurrent tuning might be difficult, due to the selection of the reson-
ance frequencies as resonances become more and less-pronounced in the frequency
response as gains in- and decrease. This possible limit-cycling behaviour is not

investigated here.

For matching the impedance of the infinite plate, concurrent tuning should not cause
any problems because the value calculated at one location is independent from the

gain at a different location if the frequency range examined is sufficiently large.

Concurrent tuning of power absorption may not be trivial. If tuning works correctly,
the indepently tuned controller should converge to the optimal deceutralised coutrol
values. To see if independent tuning of maximised power absorption can couverge
in a MIMO setup, a simple algorithm was constructed and investigated using siinu-
lations of the 16 control locations on the simply supported plate. In this algoritlun

each control location is adjusted in turn and it follows these steps:

- for a specific control location, examine how much power is absorbed at the

current gain.
- increase the current gain by a certain stepsize
- if the power absorption has increased, examine the next control location.

- otherwise, decrease the stepsize and examine the power absorption at the ori-

ginal gain plus the smaller stepsize.

- if the power absorption still has not improved, examine the power absorption

at the original gain minus the smaller stepsize.

- if the power still has not improved, keep repeating the previous two steps until

it does, or the stepsize becomes smaller than a specified minimum.

Figure 6.6 shows the gains of the control locations as they converge together with
the the gains that would be optimal to maximise power absorption. As can be seen,
the gains become larger than their optimal values. This figure shows that the gains

may, through interaction, overshoot their optimal values. The problem is that in



Chapter 6. Self-tuning and measurements 148

e Self tuning of maximum power absorbers in MIMO set-up
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Figure 6.6: Self-tuning of maximum power absorbing controllers, 16 control locations
on a plate compared to the values of the optimal decentralised controller maximising

power absorption.

the described algorithm, one control location will not 'give up' power absorption in
favour of more power absorption at a different control location. It is not clear how

to overcome this problem and further study would be required.

6.3 Experiments

The previous sections showed that, theoretically, approximations for the optimal
gain can be calculated from the local mobility. This section examines whether
these values can be calculated correctly from actual measurements of the open-
loop response of an experimental structure and whether stable feedback control is
possible using the gains calculated from the approximations. Power measurements
were not conducted. The practical measurement of power has been demonstrated
by Redman-White et al. (1987) and Hirami (1997a).
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Figure 6.7: Laboratory set-up of structure.

6.3.1 Measuring open-loop response

Figure 6.7 shows the experimental set-up in the laboratory, which was developed
by Serrand (1998) and Benassi et al. (2004), though in other configurations. The
structure was excited using Ling Dynamic Systems electrodynamic shakers. A LDS
type V403 was used as the primary, excitation shaker, while a LDS type V101 was
used as the secondary, control shaker. The specifications of these shakers have been
listed in tables C.2 and C.3 in appendix C. Accelerometers were used to pick up the
signal, which was then amplified and integrated using charge amplifiers. The input
signal to the secondary actuator was amplified using a custom made current driver,
which gives a specific current output for a particular input voltage. The signal to
the primary shaker was amplified using a solid state DC300 amplifier. Appendix C
lists all the equipment that was used. The steel plate is 58 cm wide and 70 cm long
and its height is 1.85 mm. The outer 4 cm on both ends are used to clamp the edge
and have therefor not been taken into account in simulations. The z-axis is taken
along the nearest free edge, whereas the y-axis is along the left-hand-side clamped

edge.

The open-loop measurement set-up is depicted in figure 6.8. For these measurements

the primary, excitation shaker was not attached to the structure.
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Figure 6.8: Diagram of open-loop measurement set-up of structure.

Figure 6.9(a) shows the response of the structure at (z,y) = (0.350,.175), sinwulated
according to the analysis in section 2.1.3. For the simulation, the 286 modes with
a resonance frequency less than 5kHz have been taken into account. Therefor the
response drops off at higher frequencies. Figure 6.9(h) shows the measured respouse,
corrected for the gains occurring in the electrical part of the loop. The shaker was
assumed to have a flat response and the response was scaled using the low-frequency

input-to-force response measured with a force gauge.

The resonances of the structure occur at slightly lower frequencies than expected on
the basis of the simulations, but otherwise the model shows reasonable agreement
with the measurements at low frequencies. At roughly 6 kHz, a peak occurs in
the magnitude of the measured response. The cause of this peak is unclear, as
the resonance frequencies of the accelerometer and of the armature of the actuator
should occur at higher frequencies. Though this peak limits the range of frequencies
for which feedback can effectively be used and requires extra measures to maintain
stability, it will be shown in section 6.3.3 that the response is sufficiently close to

the model for these experiments.

6.3.2 Deriving variables from experimental data

The variables required for the two-mode and three-mode model can be derived from
the measured transfer function by selecting the appropriate resonant peaks. Figure

6.10 shows the resonances and half power points selected for the calculation of the
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Figure 6.9: Mobility of the CFCF plate at (z,y) = (0.350,.175), according to the

theoretical model and measured on the structure.
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Figure 6.10: Selection of resonances and half power points for two- and three-mode

formulas.

two- and three-mode formula in the manner described in section 6.1. The half power
points selected are those frequencies where the measured amplitude was below 1/ V2
of amplitude at the resonance frequency. The gain calculated on the basis of the
measured data with the two-mode formula was 108 Ns/m and 225 Ns/m for the
three-mode formula. On the basis of the modal model of the clamped-free-clamped-
free, they were 127 Ns/m and 327 Ns/m.

Table 6.4 shows the frequency average of the real part of the plate impedance ac-
cording to the theory and as measured on the structure, calculated over different
frequency ranges. Again, the mean real immpedance comes close to the impedance of
the infinite plate, which in this case would theoretically be 327 Ns/m. At 5 kHz, the
simulated mean impedance drops off. This is due to the fact that only the modes
up to 5 kHz have been taken into account. For the measured data, the impedance
also approximates the correct value. From 2 kHz, however, the average impedance
drops off. This is due to the phase shift associated with the resonance at 6 kHz,

causing the response to have a phase outside the £90°.
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Frequency range [Hz | 200 300 400 500 1000 2000 3000 5000
Impedance [Ns/m] (simul.) | 186 230 314 327 313 328 321 281
Impedance [Ns/m] (meas.) | 213 309 334 302 328 303 246 118

Table 6.4: Average real part of the impedance of the CFCF plate at (x,y) =
(.350,.175) as calculated using a simulation of the CFCF plate model and as meas-

ured on the experimental structure, calculated over different frequency ranges.

6.3.3 Closed-loop measurements

Before closing the loop, the stability of the feedback loop should be examined. Figure
6.11(a) shows the Nyquist plot of the open-loop response at the desired feedback
gain. The Nyquist stability criterion demands that the point -1 is not encircled
counterclockwise by the open—loop response. The figure, however, shows that it is

encircled. The loop that encircles the -1 point is associated with the 6 kHz peak.

The 3 kHz low-pass filter on the charge amplifier is used to reduce tlie size of the loop
that causes the instability. Figure 6.11(b) shows the Nyquist plot of the open-loop
response after applying the filter. Now, the response no longer encircles the -1 poiut

and the closed-loop should be stable.

To set the feedback gain in the closed-loop, the amplification factor of the charge
amplifier was used. However, this limited the amplification factor to a maximmum
of 600 Ns/m. Additionally, when both feedback and the disturbance force were
presented at the secondary shaker, an additional electronic summing device and a
splitter were required, which each have a gain of 1/2. In that case, the feedback gain
was limited to a factor 150 Ns/m. It was also found that a low-frequency high-pass

filter was necessary to stabilise low-frequency hehaviour.

Figure 6.12 shows the set-up of the control when the excitation is presented at the
primary location and control is present at the secondary location. The velocity of the
structure was measured either at the secondary or at the primary location. Figure

6.13 shows the set-up when the excitation is presented at the secondary location.

Figures 6.14 to 6.16 show the measured transfer functions from, respectively, the

primary input to the primary output, the primary input to the secondary output



Chapter 6. Self-tuning and measurements 154

25

201
15

10}

Imaginary axis
(@]
T

o
(3
.

_25 1 1 1 1 1
-10 0 10 20 30 40 50

Real axis

(a) Unfiltered

25 T T T T T

20

15

10

Imaginary axis
o
T

_25 1 x 1 L 1
-10 0 10 20 30 40 50

Real axis

(b) Filtered with 3 kHz low-pass filter
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gain.
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Figure 6.12: Diagram of closed-loop measurement set-up of the structure, when
the excitation is presented through the primary shaker (1) and control is achieved

through the secondary shaker (2).
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Figure 6.13: Diagram of closed-loop measurement set-up of the structure, when

excitation and control are both presented through the secondary shaker.
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Figure 6.14: Closed-loop measurement of plate response at the primary shaker loca-
tion with no control and various feedback gains in the control loop at the secondary

location.

and from the secondary input to the secondary output. The response in figures 6.14
and 6.15 drops off considerably at high frequencies. This is due to the dynamics
of the primary shaker and its amplifier. However, changes due to control at the
secondary location can still be seen. Certain modes are damped well due to the
control. It can also be seen that around 200 Hz, at the maximum gain of 600, a new
resonance starts to occur. This seems to confirm that the gain of 300 is the best
from those examined. This is very similar to the estimated infinite plate impedance
and the three mode approximation. Figures 6.15 and 6.16 both show a decreasing
mobility at the secondary location as the gains increase. This is the ‘pinning’ of the

plate.

6.4 Conclusion

This chapter showed how necessary variables for the tuning of the absolute velocity

feedback gain using approximation discussed in chapter 3 can be obtained from
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Figure 6.15: Closed-loop measurement of from the primary shaker to the accelero-
meter at the secondary location with no control and various feedback gains in the

control loop at the secondary location.

the mobility at the control point. Section 6.1.3 showed how one can calculate the
required values for the two- and three-mode formula from the mobility, in a single-
channel control situation. Section 6.1.4 showed that if the mass of the structure
is known, the simplified two-mode formula can be tuned on the basis of the first
two eigenfrequencies. It also showed that the impedance of the the infinite plate
can be derived as the average real impedance in the frequency domain of the finite

structure.

Analysis of the tuning of the controllers in a multi-channel situation was done in
section 6.2.1. It was shown that for the simplified two-mode formula, the presence
of damping in other control loops results in change of an order of magnitude of the

feedback gain. It seemed that this would also be the case for the two- and three-

e
M N;?

remained in the same order of magnitude of the optimal gain. They can therefore

mode formulas. However, because of the identification of the factor the gains

not be ruled out for the purposes of control, but their suitability is difficult to prove.

The impedance of the infinite plate can be derived in the multi-channel set-up,
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Figure 6.16: Closed-loop measurement of plate response at the secondary shaker loc-
ation with no control and various feedback gains in the control loop at the secondary

location.

using the same method as for the single-channel situation. The limiting factor for
identification is the distance to the nearest object that can reflect structural waves.
If this distance becomes smaller, a higher frequency range is required to obtain
a correct approximation. It was shown that if the frequency range is sufficiently
large, the presence of control does not significantly influence the estimation of the

impedance. This is therefor a very robust strategy.

For optimal power absorption it was shown that, although it will converge to the
optimal value to maximise power absorption for single-channel control, for multi-
channel control, this is not guaranteed and the gains can become higher than ex-

pected.

Section 6.3 showed that the variables required for the tuning of the approximations
can also be measured on an actual structure. The calculation of the two-mode
formula resulted in nearly identical gains on the basis of the model and on the basis
of the measurements. For the three-mode formula, the values differed by about 50%.

Matching the infinite plate impedance also resulted in nearly identical gains on the
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basis of the model and the measurements. The frequency range over which tlie mean
impedance could be calculated was limited by a resonance at 6 kHz, which caused
an undesirable phase shift. A limit in the frequency domain to which the impedance

can be measured limits the minimum distance at which control units can be spaced.



Chapter 7

Conclusions and suggestions for

future work

7.1 Conclusion

The goal of the research, as set out in section 1.3, was to examine decentralised
control strategies that could be tuned using local variables, but are aimed at re-
ducing a global cost criterion. These strategies have been examined on beam and
plate models. The excitation of these structures was assumed to be a randomly dis-
tributed, stochastic excitation. This resulted in equal but independent excitation of
each mode of the structure. This was done so that the tuning of the controller varied

only with the location of the controller and not with the location of the excitation.

Studying the unconstrained optimisation of a single-channel controller, either feed-
back or feedforward, suggested that minimising the sum of the power inputs of the
excitation and the controller is a good approximation for minimising the kinetic
energy in the structure. Unconstrained tuning for maximum power absorption res-
ulted in a controller that increased the power input by the excitation and mostly
increased, rather than reduced, the overall kinetic energy. It can be shown that in
a causal system with an entirely random excitation, a feedback controller can not
influence the power input by the excitation. Thus, maximising the power absorption

by the controller is equal to minimising the total power input and can be used as a

160
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viable approximation of miniinising the kinetic energy. Other approximations that
were suggested were based on a model with a reduced number of modes or matching
the impedance of the infinite structures. This last approximation is ouly possible
on the plate, as the impedance of an infinite plate is real and constant, whereas the

impedance of an infinite beam is frequency variable and complex.

These approximations to the optimal, constant absolute velocity feedback gains feed-
back gains were simulated using collocated velocity sensors and force actuators and
were compared to an optimised ahsolute velocity feedback gain and a LQG con-
troller. It was found on both the beam and plate, for both white and red noise
excitation, that provided the velocity feedback gain and the LQG controller use a
similar control effort, then there is hardly any difference in the overall cost functiomn.
It was also found that on the beam, for a white noise excitation, the maximisation of
the power absorption resulted in far higher gains than optimal. The approximations
to the optimal gain based on a small number of modes resulted in good approxima-
tions to the optimal performances in these simnulations, with a performance within 1
dB of the LQG controller, which obtained an average reduction of about 9 dB. This
probably reflects the fact that in this structure the majorty of the kinetic energy
is contained in the first few modes. For red noise excitation on the beani, power
absorption led to gains that were below optimal. The reductions in red noise case
were much larger, between 14 and 25 dB, and depended much more strongly on
the location of the colocated sensor and actuator along the beamn, with the best
performance just off the middle of the beam. On the plate, the reductions were
less, respectively 3 and up to 11 dB for white and red noise excitation. The differ-
ences between maximum power absorption and minimising the kinetic energy were
smaller both in gains and performance. The approximations on the basis of a few
modes performed reasonable, as long as the control location is not near the edges of
the plate, while the approximation by matching the infinite plate impedance always

performed well.

The multichannel case allows the use of cross coupling terms in the controller. It was
found that, although the off diagonal terms were significant in the optimised con-
stant gain controller, they only added performance when the controllers were closely
spaced. In that case, they allow the controller to separately implement angular
velocity feedback and transverse velocity feedback. Again, it was found that there

was hardly any difference between LQG and absolute velocity feedback control if the



Chapter 7. Conclusions and suggestions for future work 162

control effort is similar. On the beain with white noise excitation, it was again found
that maximising the power absorption resulted in too high gains and performed less
well than other approximations studied, the three mode and two resonance formulas.
In the red noise case it performed better than the other approximations. On the
plate, maximum power absorption was the best approximation in terns of perform-
ance, closely followed by the matched infintie plate impedance, both in the case of

red and white noise.

These controllers examined the control of kinetic energy as the sum of the squared
modal velocities, which weights the motion of each location of the plate equally. It
seemed appropriate therefore to study a cost function which is more selective. It
was chosen to study sound radiation. The modelling of sound radiation for the pur-
pose of ASAC was examined first and found that radiation mode filtering is a more
effective strategy of modelling sound radiation in terms of calculation time than
modal radiation filtering, though the latter was found to be more accurate. The
examination of the performance of different controllers showed that a centralised
controller again added no real benefit in terms of performance over a decentralised
controller. The difference between a decentralised, constant gain velocity feedback
controller and LQG control, though bigger than for AVC, was also very small. Al-
though a controller optimised for ASAC does have better acoustic performance than
a controller optimised for AVC, in practice an AVC system would do a good job in

controlling sound radiation.

Finally, chapter 6 showed that tuning of the feedback gains using the approximations
to the optimised controller is possible on the basis of the measured local variables
(power and mobility transfer function) in both a single-channel and a multi-chanmnel
set-up. Though it is not unexpected for the maximisation of power absorption
and it can be proven to be true for the matched infinite plate impedance, it was
not expected to be the case for the two- and three-mode formulas. The multi-
channel online tuning of the two- and three-mode formulas might be difficult as
included modes may become critically damped when control is present at other
locations and have to be discarded. This this could result in limit-cycling behaviour.
Creating a strategy for self-tuning of units based on maximum power absorption in
a multichannel controller may also create some difficulty, as it could be difficult to
set up the independent controllers to 'give up’ power so that more power can be

extracted at other control locations. It was shown that the method of measuring
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the infinite plate impedance only depends on the distance to the nearest reflecting

object and that this impedance can also be measured in a practical set-up.

In short, the aim of this thesis is satisfied on the plate: matching the infinite plate im-
pedance can be measured locally, in both a single-channel and multi-channel set-up
and has AVC performance that is close to that of a centralised, dynamic controller.
For the beam, the approximations based on a low number of modes seem to work
better, but the convergence of the tuning can not be guaranteed. Power maxini-
isation can also work well, especially on the plate, but implementation miglht be
difficult and tuning could change if the excitation is not white, or not randomly
distributed.

7.2 Discussion and suggestions for future work

This work examined the tuning of decentralised control units on the basis of local
measurements for a rather idealised control system. First of all, the dynamics of
both the sensor and actuator were neglected. For the generation of feedback forces
on plates, a combination of an accelerometer and an active mass driver (see also
Paulitsch (2005) and Benassi et al. (2004)) seems most logical. Stability analysis of
such units in a multi-channel set-up would be useful to show the relevance for further
research. Another interesting practical question is whetlier the use of the matched
impedance on a more complicated engineering structures than plates is feasible and

would still produce good results.

On the plate, it was observed that setting a velocity feedback gain to match the
impedance of an infinite plate worked well and the performance of a dynamic, cent-
ralised controller was not much better. This might be explained in terms of physics.
One can imagine a point on an nfinite plate, where waves come in at random in-
tervals and from random directions. To reduce these waves as much as possible, the
maximum amount of energy would need to be extracted from them, whicli can be
done by applying a matched impedance. Logically, if that point was on a finite plate
of the same material and thickness and if the waves are still coming in randomly, i.e.
reflections can be neglected, then the same impedance would still result in a max-

imum reduction of the waves. This may be an explanation for the small difference
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in performance between optimised, dynamic, centralised kinetic energy control and
decentralised constant gain control; If reflections do not contribute significautly to
the velocity signal measured at some point, trying to control them ou the basis of
the velocity signal would not help much. Thinking about the coutrol of the waves in
the plate in this way, leads to an interesting question: can the controllers be placed

in such a way that the 'diffuseness’ of tlie waves in the plate is imaximised?

If the suggested explanation is correct, the difference in performance between dy-
namic, centralised control and constant velocity feedback gain set to miatch the
infinite plate impedance, should decrease ever further. Also, it would be iunteresting
to examine how the performance in that case compares to the performance to regu-
larly placed controllers, or controllers placed to minimise AVC. The sound radiation
of a structure with such diffuse waves would also be interesting to examine; would
the sound radiation increase or decrease? How does a controller that is optimised

at those locations compare to the matched impedance?

The two- and three-mode approximations seem to work in a multi-channel set-up,
because it is assumed that the observed resonances are independent modes that are
excited equally and independently. If it can be established that the modeshapes
corresponding to those resonances are orthogonal and that the excitation of each
of those modeshapes is indeed equal, then the basis for using these approximations
becomes stronger. An algorithm that prevents limit-cycling would thien uneed to be

developed.

Finally, it should be noted that matching the impedance of the infinite plate was pos-
sible to implement because it is a constant and real variable. If one was to measure
a different quantity, such as rotational velocity or bending, and use a corresponding
dual acutator, this is likely to change. It would be interesting to study other cases
where the input-output transfer function of a collocated and dual actuator-sensor
pair is a constant gain when measuring an infinite structure. If the inverse of this
'infinite mobility’ is then applied on the finite structure, does it also occur that dy-
namic, centralised controllers have little performance gain to offer over a constant

gain, feedback strategy with matched ’infinite impedance’?



Appendix A
Modal analysis of a beam

A simply supported beam is a beam that is supported at its ends on hinges, allowing

free rotation, but no displacement. This is illustrated in figure A.1.

To analyse the motion of the beam, an infinitesimal portion of the beam must be
considered. The forces acting on such an portion of the beam are depicted in figure

A.2. The moments at the cross-sections are caused by a pressure distribution over

A

Figure A.1: A simply supported beam.

the entire cross-section of the beam.

p(x,Hdx

®) 0+ 22 dx

OM(x)
M(X)C e ‘>M(X)Jr & ax )
Q

Figure A.2: Forces governing infinitesimal portion of a beam.
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The transverse forces acting on the beam are related to the bending of the beam
and as such are related to the transverse displacement of the beamn. The differential

equations that describe the transverse displacement are given by:

0Q(z. t) _ _ 0?w(x,t)
Sl +p(z,t) = p5—8t2 (A1)
/ > 2 3
—Q(z, 1) + %ﬁ:ﬂ = ]% (A.2)

In this analysis, it is assumed that rotational motion of the element is insignificant
in comparison to the transverse motion of the element and that shear deforination is
small compared to bending deformation. These assumptions are valid if the height
of the beam or plate is small in comparison to its length (and width), and bending,
the second derivative of the transverse deflection, remains limited. Under these
assumptions, the combination of equation A.2 and A.1 results in:
_82]\f‘f(;z:,t) 0%w(z, t)
ox? ot?

The moments acting on the cross sections of the beam are due to the strains related

+p(z,t) = pS (A.3)

to bending of the beam. The relation between the strains and bending are described

by the following differential equation:

O*w(z,t)
Oz?

Substituting equation A.4 into A.3 leads to what is known as the Euler-Bernouilli

M(z,t) = EI (A.4)

thin beam equation of motion:

0? _ 0*w(z,t)
Oz? 02

Where E1I is the bending stiffness of the beam, w(z,t) the transverse deflection, p

O*w(z,t)
ot?

+ pS = p(z,1) (A.5)

the density and S the cross-sectional area. p(z,t) is an external pressure acting on

the beam. FE1 is assumed constant along the beam.

To obtain a solution for w(z,t) in the inhomogeneous differential equation A.5,
the homogeneous solution should first be considered (p(z,t) = 0). In that case, a

solution can be found that is separable in space and time:
w(z,t) = we(z)w(t) (A.6)

Implementing this into equation A.5 results in:

=0 (A.7)l
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If furthermore the time dependent part is harmonic, then it can be written as:

wi(t) = w,(jw)e?t. Combining this with equation A.7 results in:

Ow,(z)

—_— N 2 frd .
EI e pSw,(z)w” =0 (A.8)
or: o (2)
W T 4 _
ot Efwy(z) =0 (A.9)

At this point the boundary conditions of the beam must be considered. For a siniply
supported beam, the boundary conditions are such that there are no deflections or

bending moments at the beginning (z = 0) and the end of the beam (z = L):

w(0) =0  Brusl _
we(L) =0  Er&ell _g

The solutions to A.8 that comply with the boundary conditions, are sinusoidal mod-
eshape functions:

wy(x) = ¢, sin (kyx) (A.10)

where k, = %% and n is an integer. These modeshapes can be scaled arbitrarily.

Here they have been chosen to be:
wy(z) = Pp(z) = sin (k,z) (A.11)

These modeshapes have natural frequencies:

"”)2 El (A.12)

wnl@) = () 178

Now the solution for the homogeneous equation is obtained, the solution to the
inhomogeneous Euler-Bernouilli equation (equation A.5) can be derived. To do this,

the expansion theorem is used:

Theorem 1. Expansion theorem: Any function w(z,t), satisfying the boundary
conditions of the problem and such that 8‘9—; (EI%Z) 18 a continuous function,
can be represented by the absolutely and uniformly convergent series of the system

eigenfunctions:

w(z,6) = 3 an(tWn() (A.13)
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where a,(t) can be interpreted as the modal response of that particular mode to the

input force. Then, by combining equations A.13 and A.5, this can be written as:

> sl Z 0 (B8 —pen) (aa

Assuming that the pressure is a point force, f(t), at x;:

o0

S oSty +2a )(Br5?) = st0ste -2 (a9

n=1
This equation is not useful in determining the individual w,(t) for each mode. How-
ever, by using the orthogonality of the modeshapes, equations for each w, () can
be obtained. Multiplying both sides of equation by v¥,,(z) and integrating over the

length of the beam gives:
0 L L
Z (pSin(t) + Elkyan(t)) /0 o (T)hm(z)de = /0 Ym(x)f(t)d(z — x5)dz (A.10)
n=1

Due to the orthogonality of the modes, fo e (2)0m(x)dz is equal to 0 if n # m and
the summation is thus eliminated from the equation. If n = m fo Un () (T)dx

is equal to 1/2L. Thus differential equation A.16 simplifies to:

1/2L (pStim(t) + Elky,am(t)) = vm(xs) f(2) (A.17)

A Laplace transform or Fourier transform of this equation, allows the formulation
of the transfer function from the force to the modal displacement in termns of the

Laplace variables or frequency. In terms of frequency, the transfer function is:

A (jw)

F( w)

E T/)m(mf)

L (—pSw? + EIk})
2 ¢m(l‘f)

~ pSL(WE —w?) (A-18)

So far, no damping has been included in the model. The damping has been assumed

Hn(jw) =

to be small and to act on each mode individually. The differential equation and the

transfer function then become:

1/2L (pStim(t) + pSCrmam(t) + Elkyam(t)) = m(zs) f(t) (A.19)

2 Ym(2y)
pSL (w2, + 2jwlw, — w?)
where ( is a viscous damping factor.

Hpp(jw) =

(A.20)



Appendix B

Single channel red-noise results on

a plate

AVFB, minimising kinetic energy AVFB, maximising power absqrptlon

0.25 0.25

0.2 0.2

0.15

y [m]

0.1 0.1

0.05 0.05

0 0.05 0.1 015 0.2 0 0.05 0.1 0.15 02
x [m] X [m]

(a) AVFB, minimising kinetic energy (b) AVFB, maximising power absorption
Figure B.1: Constant gains [Ns/m]| for different single channel optimisations on a
plate, under red noise excitation. Gains for LQG control, two- and three- mode

formulas and matched infinite plate impedance have not been depicted, as they are

not-constant (LQG control) or the same as for white-noise excitation.
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AVFB, minimising kinetic energy
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(a) AVFB, minimising kinetic energ

LQG, minimising Kinetic energy
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(c¢) LQG, minimising kinetic energy

Three-mode formula

0 0.05 0.1 0.15 0.2
X [m]

(e) Three-mode formula

Figure B.2: Control effort [N?] for different control strategies on a plate, under red

noise excitation.

AVFB, maximising power absorption
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AVFB, minimising kinetic energy

AVFB, maximising power absorption
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(a) AVFB, minimising kinetic energy  (b) AVFB, maximising power absorption
LQG, minimising kinetic energy Two-mode formula
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(c) LQG, minimising kinetic energy
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(e) Three-mode formula (f) Matched infinite plate impedance

Figure B.3: Change in kinetic energy in decibels for different control strategies on a
plate.



Appendix C

Physical characteristics of the

experimental equipment

This appendix contains tables of the physical characteristics of the sensors, actuators

and amplifiers used in the experimental work described in section 6.3.

Shakers LDS type V101 and type V403
Current driver ISVR designed

Power amplifier DC300

Accelerometer B&K 4375

Fource gauge B&K 8200

Charge amplifier B&K 2635

Summing box ISVR designed

FFT Servo Analyzer/Generator Advantest R9211C

Table C.1: Equipment used for experiments.
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Effective moving mass 0.0065 kg
Maximum sine force - peak 89N

Maximum displacement peak - peak (DC) 2.5 mm

Maximum sine velocity - peak 1.31 m/s
Maximum sine acceleration 1373 m/s?
Suspension axial stiffness 3.15 N/mm
Electrical requirement - Amplifier 0.09 kVA

Table C.2: Specification of the LDS type V101 shaker.

Moving mass 0.200 kg
Maximum sine force - peak 98 N

Maximum displacement peak - peak (DC) 17.6 mm

Maximum sine velocity - peak 1.52 m/s
Maximum sine acceleration 981 m/s?
Suspension axial stiffness 12.3 N/mm
Electrical requirement - Amplifier 0.27 kVA

Table C.3: Specification of the LDS type V403 shaker.
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