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DECENTRALISED VELOCITY FEEDBACK CONTROL OF STRUCTURES 

by Wouter Peter Engels 

Structural vibrations can cause fatigue of the structure, high sound levels and 

loss of positioning accuracy. Active control of broadband structural vibrations 

often requires multiple control locations and often uses a centralised controller 

that calculates the appropriate responses from the signals of all the sensors. The 

disadvantages of centralised control are that a lot of wiring is required and that 

instability can occur if one of the components fails. This thesis investigates 

algorithms that allow the tuning of multiple, single loop feedback controllers 

in a decentralised arrangement that reduces the global vibration of the structure. 

Ideally, this controller should be tuned on the basis of the local properties of the 

structure and, when applied at multiple locations to the same structure, achieve 

performance comparable to a centralised controller. 

Constant gain velocity feedback is a decentralised control strategy known to 

be effective at controlling vibrations and requires only the feedback gain to be set 

appropriately. Because there are no analytical solutions for the optimal feedback 

gain, approximations of the gain were considered. For a beam, approximations 

on the basis of a few modes performed almost as well as a centralised, dynamic 

controller but the gains could not be set consistently on the basis of the mobility 

in a multi-channel set-up. On a plate, setting the gain to match the impedance of 

an infinite plate performed well and it is shown that this gain can be calculated 

from the local mobility in both single- and multi-channel set-up. Tuning the gain 

to maximise power absorption performed well, but may be difficult to realise in 

the multi-channel set-up and can be sensitive to the spectrum of the excitation. 

On the basis of a carefully selected model of sound radiation, controllers 

were also designed to minimise sound radiation. Decentralised velocity feedback 

control were found to perform almost as well as LQG control. Strategies that 

minimised the vibration performed less well at controlling radiated noise, but 

still provided useful performance. 
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Chapter 1 

Introduction to active vibration 

control 

1.1 Introduction 

Vibrations in structures can be the cause of several problems, such as fatigue, high 

pressure sound fields in the vicinity of the structure and a loss of positioning accuracy 

of instruments attached to the structure. A reduction of these vibrations can be 

achieved in different ways. One way is to apply passive elements, such as extra mass, 

stiffness or dampers. These passive methods are not always practical or economical. 

Another option is to use active control. An active controller generally consists of 

three elements: a sensor, an actuator and an element that sets the output of the 

actuators on the basis of the measurements obtained with the sensors. It is the 

design of this element, the control algorithm, that this thesis is most concerned 

with. This chapter will first examine briefly the field of active vibration control and 

its different applications. In the course of this examination, the focus of this thesis 

will be explained and narrowed down to a set of objectives, which are formulated in 

section 1.3. Section 1.4 outlines the structure of this thesis and points out its main 

contributions. 

1 
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1.2 A brief history of active control of vibrations 

Active feedback control of structural vibrations ,vas suggested by Olson (1956), 

though practical implementation was not achieved for almost another decade. Rock­

well and Lawther (1964) investigated the damping of a beam on two rubber mounts, 

using an accelerometer and a force actuator attached at the same point on the struc­

ture to apply local velocity feedback. An electrical integrator was used to change 

the signal of the accelerometer into a signal proportional to the velocity. By apply­

ing a force opposite to the velocity, power can be extracted from the structure and 

the damping is increased. This paper was closely followed by two papers, Knya.zev 

and Tartakovskii (1965, 1967), which describe implementations on a beam and on a 

plate, respectively. 

Since these beginnings, ~e active control of vibrations has progressed beyond the 

laboratory and is now found in many different applications, such as cable-stayed 

bridges, tall buildings, space structures, high-accuwcy machining, telescopes, satel­

lites and aircraft. The applications can roughly be divided in three types: active 

vibration isolation, active vibration control and active structural acoustic control. 

Active vibration isolation is concerned with preventing the twnsmission of vibration 

present in one part of the structure, the base, to another, connected part, the target. 

This is illustrated in figure 1.1 (a). Active vibration control is aimed at reducing the 

overall vibrations of a distributed structure (figure 1.1 (b)), while active structural 

acoustic control is aimed specifically at controlling the vibration of the structure in 

such a way that the sound radiated from the structure is reduced (figure 1.1 (c)). A 

large amount of literature is available on each of these topics, some of which will 

be highlighted here. The focus of this thesis is mostly on active vibration control, 

though some research into active structural acoustic control has also been done. For 

further general reading on active control of vibrations, the reader is referred to Fuller 

et al. (1996) or Preumont (2002) and for modern control strategies to Skogestad and 

Postlethwaite (1996). 
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original 
situation 

(a) Active vibration isolation 

(b) Active vibration control 

original ~ 
situation I !j) 1 

-- --
(c) Active structural acoustic control 

desired 
situation 

desired 
situation 

Figure 1.1: Different goals of active control of vibrations. 
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1.2.1 Active vibration isolation 

Active vibration isolation is concerned with preventing one part of the structure 

receiving vibrations present in another, connected part of the structure. Typical 

examples are the isolation of a sensitive piece of equipment in a satellite or aircraft 

and the mounting of an engine on a boat or helicopter. The best way to isolate 

one piece of equipment from vibrations would obviously be to physically sever the 

connection between the two, but that is not ahvays possible. After all, the piece of 

equipment on the satellite must be connected to the rest of the satellite for it to be 

brought into orbit and to follow the pointing of the satellite. Similarly, the engine of 

a boat must follow the general pitch and jaw of a boat if it is to work properly. This 

is the usual trade-off in active vibration isolation, the tracking of the low-frequency 

base-motion versus the isolation of high or specific frequency vibrations. 

Two set-ups are common in vibration isolation. One is an active mount, where 

the control system is part of the mount connecting the piece of equipment to be 

isolated and the vibrating structure. The other is the attachment of an inertial 

actuator to the equipment. The active mount or inertial actuators collocated with 

the mount can reduce, to a certain degree, the disturbing forces that act on the 

target equipment. Thus they can prevent vibration energy entering the equipmellt. 

The mounts are usually a hybrid of a completely passive part on which a control 

system is superimposed (e.g. Sutton et aI. (1997), Kim et aI. (2001), Preumont 

et aI. (2002), Kim et aI. (2004)). This allows for failure of the control system, with 

reduced performance rather than no performance or without damaging the isolated 

structure. The main advantage of inertial actuators is that they can be installed 

directly on the equipment to be isolated, which requires very few structural changes 

(Benassi et aI. (2004)). 

As an alternative to completely active control systems, a semi-passive control system 

can be used (e.g. Singh et aI. (2004)). This can be either a system that converts 

vibration energy into electrical energy and dissipates it using resistors, or a system 

in which forces are generated by a passive structure but the characteristics of this 

passive element can be changed electronically. A good example of such as a system 

is a magneto-rheological damper (Dyke et aI. (1996)). By creating a magnetic field 

at specific points in the flow-canal of damper, the apparent viscosity of the fluid can 

be changed and thus also the resulting force. 
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1.2.2 Active vibration control (AVe) 

Active vibration control focuses on the control of vibrations over the entire structure. 

These structures usually consist of beam-, truss- and plate-like elements. Particu­

larly if the structure is lightly damped and high accuracy is required, vibrations can 

cause a problem. Space structures are a good example of that kind of structure 

(Balas (1982)).The control strategies applied to cancel vibrations are dependent on 

the excitation. Two types of excitation that are usually examined are tonal excit­

ations and broadband excitations. One aspect that will not be examined in great 

detail in this thesis, though it can be important in the actual implementat.ion of 

the controllers, is where to place sensors and actuators on the structure such that. 

maximum control results are obtained (e.g. Hiramoto et a1. (2000)). 

1.2.2.1 Tonal excitation, passive control 

If the excitation is mainly tonal, control strategies can also focus on that part.icular 

tone. The controller is free to set the phase and amplitude of the response at that 

particular frequency. Dayou and Brennan (2001, 2003) showed, both in theory and 

in practice, that a vibration neutraliser can be used as effectively as active st.rategies 

for this purpose, provided that t.he frequency of interest is not t.oo low. The vibration 

neutraliser is a passive device consisting of a spring, mass and damper and can be 

mounted onto the structure. One of the main limitations of neutra1isers is t.hat 

the setting of the stiffness, mass and damping is optimal for a particular frequellcy, 

thus if the frequency of the excitation changes, the control is no longer as effective 

or can even amplify the vibration. The solution to such a problem is t.o use a 

semi-passive strategy in which, for instance, the stiffness of the neutraliser can be 

actively adjusted (Brennan (1997)). This allows the neutraliser to be adaptable to 

some extent. Despite the effectiveness of the vibration neutralisers, active control 

can still be preferable due to its greater adaptability and better performance at low 

frequencies. 

Tuned vibration neutralisers can also be constructed using devices made of piezo­

electric ceramics (e.g. Jalili and Knowles (2004)). Piezoceramic patches can also be 

used for narrow band control in a semi-active solution (dell'Isola et a1. (2003), and 

Niederberger et a1. (2004)). 
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1.2.2.2 Tonal excitation, active control 

The active control of tonal excitations has partly been focused on the tuning of 

the control strategies using power based methods (Redman-\Vhite et a1. (1987), 

Guicking et a1. (1989)). The maximisation of power absorption by the controller is 

particularly interesting as it requires no prior identification of the structure. 

Brennan et al. (1995) compared three control strategies to control single frequency 

bending vibrations on an infinite and finite beam: the minimisation of the kinetic 

energy of the beam, the minimisation of the total power input into the beam by both 

the excitation and the controller and the maximisation of power extraction by the 

controller. It was shnwn that minimising kinetic energy and total energy input into 

the beam is possible, but that maximisation of power absorption by the control force, 

though effective on the infinite structure, was not effective for the finite structure 

and can increase the vibration of the structure considerably for tonal excitations. 

This is because the control force allows the excitation to increase its power input. 

Similar results were obtained in the maximisation of power absorption in the active 

control of sound fields (Elliott et a1. (1991)) and on a plate structure controlled 

with piezo-patches (Bardou et al. (1997)). These results can be seen as a warning 

against using power absorption maximisation in a situation where the control force 

can influence the power input by the excitation. Hirami (1997b) examined the power 

absorption after control but before the reflection of the control signal returns to the 

control point and it was found to be effective when studied on a string. 

The applications mentioned so far are applied for single frequencies. In these cases, 

the tone can serve as a reference signal and the control system can also be seen as 

feedforward control. Broadband excitations for which reference signals are available 

can also be controlled using feed forward algorithms (Vipperman et al. (1993)). If the 

reference signal is not available for the broadband excitation, feedforward control 

can not be used and feedback control must be used instead. This is examined next. 

1.2.2.3 Broadband excitation 

Though control of tonal excitations can be implemented effectively with passive, 

tuned vibration neutralisers, they are not as effective for broadband vibration control 
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over the entire structure, due to the resonances they introduce themselves. They 

can be fairly effective at reducing the vibration at specific locations on a structure 

though (Jacquot (2000, 2001)). 

A recent development that uses both passive and active control is the heterogeneous 

blanket (Fuller et aI. (2004)) which consists of many, randomly placed and more 

or less randomly tuned vibration neutralisers embedded in a foam. In it.s passive 

configuration, it was found to give good broadband reductions, while its act.ive 

configuration provided additional reductions at low frequencies. 

Active controllers of random vibrations in plates and beams almost always use mul­

tiple control locations. The control strategies themselves vary widely in complex­

ity, from completely decentralised, constant gain control loops (e.g. Variyart et al. 

(2002)) to dynamic, multi-input multi-output controllers using aU sensors and ac­

tuators (e.g. Trindade et aI. (2001), Rizet et aI. (2000), Singh et aI. (2003)). Both 

these strategies have their own difficulty. In the case of the constant gain decent­

ralised units the difficulty lies in using local measurements to choose t.he correct 

gain, because it can not 'see' the global response of the structure, see for instance, 

Gardonio and Elliott (2004b). For dynamic centralised controllers, one import.ant 

difficulty is the robustness of the system to structural changes, such as the addition 

of a mass or changing resonance frequencies. Several authors focus on the robustness 

of these controllers using a variety of dynamic control strategies (e.g. Sadri et aI. 

(1999), Wang and Huang (2002), Fraanje et aI. (2004)), including neuralnet.works 

(Smyser and Chandrashekhara (1997)). 

One way of overcoming stability and spillover issues and increase robustness is t.o 

use modal sensors and actuators. These are piezoelectric sensors and actuators t.hat 

are preshaped t.o correspond t.o a particular modeshape of the structure. They ca.n 

typically excite and perceive only that particular mode, which makes it very robust 

in terms of spillover and high control gains could be applied. However, many such 

sensors and actuators are needed if one wishes to control many modes. A solution 

to that problem would be to use a high density of smaller sensors and actuators and 

combine the signals of the sensors and actuators according to the modeshapes using 

a centralised controller (Preumont et aI. (2003)). This results in a fixed matrix to 

estimated the modal velocities from a large amount of sensors. 
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However, recent investigations have started to question the usefulness of completely 

centralised controllers for broadband applications and have shown that if the problem 

is spatially invariant, that is, neither the structure, excitation nor cost function 

change as a function of the position on the structure, a controller using onl:v local 

and information from the nearest neighbours could be as effective as centralised 

control (Bamieh et a1. (2002)). This leads us back to the problem of tuning the 

gain of such a decentralised loop. Hirami (1997a) examined the use of his maximum 

power absorption strategy within a reverberation time, in a broadband application, 

but found that the strategy did not converge. Interestingly, it has been observed 

that if the excitation is white noise, the controller can not influence the pOvW'r 

input since the disturbance will be uncorrelated with the response by the controller 

(Nelson (1996)). As the power input is constant, maximising power absorption by 

the controller must be equal to minimising the total power input by the controller 

and the excitation. Minimising the total power input was the strategy that worked 

very well on the finite structure for single tone excitations, examined by Brennall 

et a1. (1995). The tuning of such a decentralised controller will be the focus of this 

thesis. 

1.2.3 Active structural acoustic control (ASAC) 

Acoustic radiation from structures is one of the main reasons for applying a vibration 

reducing control strategy. Though the direct control of the sound field using speak­

ers and microphones is also possible and is commercially applied, the control of the 

structural vibration to prevent the acoustic radiation in the first place has become 

more and more accepted. Many of the methods are similar to active vibration con­

trol except that the cost criterion to be minimised by the controller is changed from 

'kinetic energy' to 'radiated sound power'. This means that similar problems ob­

served for AVC occur with the implementation of the controller combined, however, 

with the additional problem of modeling the radiated sound power. 

It can be shown that controllers specifically designed for minimising acoustic radi­

ation provide better control, than just controlling kinetic energy (Clark Smith and 

Clark (1998)). Though the spatial invariance is now no longer valid, as the radiation 

modes add a spatial characteristic to the cost function, it has been shown that ap­

propriately tuned decentralised constant gain controllers can still effectively control 
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sound radiation (Elliott et al. (2002)). A direct comparison of the performance of a 

decentralised, constant gain controller and a d:ynamic controller seems to be lacking 

from current literature and is one of the areas studies in this thesis. 

Observing that for low frequencies the sound radiation is dominat.ed by the modes 

with net volume displacement (\iVallace (1972b)), controlling the net volume dis­

placement has been examined as a possible simplified way of controlling the sound 

radiation (Johnson and Elliott (1995)). Equivalent to the shaped modal sensors of 

AVe, preshaped sensors (Rex and Elliott (1992)) and arrays of sensors of sensors 

(Sors and Elliott (2002)) have been used to control sound power. They are effective 

as long as the frequency range to be controlled is below the frequency at which the 

wavelength in the structure and in air become similar. 

1.3 Aims and objectives 

For the effective control of the global vibrations of a distributed structure, it is 

common practice to use multiple sensors and actuators. There are many methods 

available for constructing multichannel control algorithms that reduce the vibrations 

of structures. Most of these methods rely for tuning and/or control a central control 

unit that processes the information gathered at all the sensor locations. This allows 

the controller to use the actuators as effectively as possible. However, there are 

several disadvantages to this approach. One is the amount of wiring that is required 

to connect all the sensors and actuators. It adds weight, expense and a chance of 

physical failure. On the controller side, the centralised controllers may be sensitive 

to failure of one of the sensors or actuators. Thus, if one unit fails, the entire system 

may fail. 

Multiple units consisting of a single loop of one sensor, one actuator and a control 

algorithm, that work independently may be preferable to a centralised system. They 

would not need as much wiring and, because of their independence, should be less 

sensitive to failure of one of the units. However, the control algorithm for each of 

these units still needs to be determined. At each control location only a limited 

amount of information is available. If the control algorithm can be set on the basis 

of information that is available, that would increase the versatility and might allow 
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the tracking of changes in the system. This thesis is concerned with the selection 

and performance of a control algorithm for such modular control systems, and the 

following, specific aim can be formulated: 

To investigate algorithms that allow the design of a single loop feedback 

controller that is capable of reducing the global vibration of the structure. 

Ideally, this controller should be tuned on the basis of the local properh:es of 

the structure and, when applied at multiple locations to the same structure, 

achieve performance comparable to a centralised controller. 

To achieve this aim, the research needs to be broken down into several sma.ller 

objectives. These are: 

- the selection and description of a model structure, cost function and disturb­

ance parameters. 

- the selection and optimisation of a control algorithm. 

- to investigate how the optimal controller or approximations to the optimal 

controller perform in comparison to centralised controllers in terms of AVC 

and ASAC. 

- relating the optimal controller or an approximation to the structure's local 

properties. 

The way in which these objectives are presented in this thesis is described in section 

1.4. 

1.4 Contribution and structure of this thesis 

The main body of this thesis is structured in 5 chapters. Chapter 2 will discuss the 

first objective mentioned in section 1.3: It sets out the model structure and the cost 

function. It is shown that the type of disturbance is important for the minimisation 

of the cost function. 

Chapter 3 will discuss the selection and optimisation of a control algorithm for a 

single-channel system. Theoretically optimal controllers are derived, but it is shown 

that these are non-causal and can only be used as a feedforward contoller if infinite 
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advance time-information is available, or as a tonal control strategy. To keep the 

analysis of the controller as simple as possible, constant velocity feedback control is 

then selected. The feedback gain can be optimised, but doing so does not give a clear 

relationship between the local properties of the beam and the optimal feedback gain. 

Therefore, approximations to the optimal feedback gain are derived on the basis of 

simplified models. The performance of these approximations is compared to that of 

the optimised feedback controller on both a beam and a plate. 

Chapter 4 analyses the performance of the approximated and optimal feedback gains 

in a multi-channel set-up. The difference in performance between optimal centralisecl 

and decentralised feedback gains is analysed for different amounts of control effort 

and for different control locations. 

Chapter 5 examined the sound radiation from the structure. It compares the per­

formance of an LQG controller, a centralised constant gain, velocity feedback con­

troller and a decentralised controller when controlling the sound radiation. The 

performance of a controller minimising kinetic energy is compared with controllers 

that minimise the sound radiation. 

Chapter 6 analyses how the controller can be tuned from the local mobility or power 

absorption in a single- and multi-channel control situation. It also examines whether 

it is possible to tune the controller in a practical set-up, using measurements, rather 

than simulations. 

The main contributions of this thesis are: 

- New methods for the approximating optimal velocity feedback gains minim­

ising the kinetic energy of a modal structure and the comparison of these 

methods in terms of performance in AVC (chapters 3 and 4). 

- A comparison of performance of centralised dynamic control and centralised 

and decentralised, constant gain velocity feedback control, both in terms of 

AVC and ASAC (chapter 4 and 5). 

- A comparison of two different ways of modeling the sound radiation of a plate 

in an infinite baffle for ASAC (chapter 5). 

- A practical method of deriving the impedance of an infinite plate from the 

local dynamic response (chapter 6). 



Chapter 2 

Model formulation and cost 

function 

This chapter introduces the models that are used in this thesis to describe the vibra­

tion of various structures. It discusses the modal formulation of a simply supported 

beam, a simply supported plate and a plate of which two opposite ends are free 

and two are clamped. It is also shown how to calculate the kinetic energy of these 

structures. The kinetic energy of the structure is the cost function that is used in 

most of this thesis. 

The beam model is used in chapters 3 and 4 to study the effects of various control 

strategies. The simply supported plate is then used as a well-defined, but more 

complex system than the beam to examine whether results for the beam still hold 

on a more complex structure. Finally, the clamped-free-clamped-free plate is used as 

a model for the test structure used to verify findings in practice as well as simulations. 

The test structure is the same as used by Serrand (1998) and Benassi (2004). 

A detailed derivation of the dynamic, modal beam model is contained in appendix 

A. 

12 
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Figure 2.1: A simply supported beam. 

2.1 Modeling of vibration response of thin plates 

and beams 

The modal analysis of beam and plates is based on the differential equations gov­

erning the motion of an infinitesimal portion of the plate or beam. The approach 

described here is used, amongst others, in Meirovitch (1986) and Fuller et al. (1996). 

The modeshapes and how they are scaled are particularly important (equations 2.3, 

2.10 and 2.16). The choice of the scaling of the modeshapes also has consequences 

for the calculation of the kinetic energy of the structure (equations 2.7, 2.14 and 

2.24). 

2.1.1 Simply supported beam 

A simply supported beam is a beam that is supported at its ends on hinges, allowing 

free rotation, but no displacement. This is illustrated in figure 2.1. 

The detailed derivation of the beam motion is included in appendix A, in which it 

is shown that the motion of the beam is governed by the Euler-Bernouilli thin beam 

equation: 
02 El02w(x, t) S02W(X, t) _ ( ) 
ox2 ox2 + p ot2 - P x, t (2.1 ) 

Where EI is the bending stiffness of the beam, w(x, t) the transverse deflection, p 

the density and S the cross-sectional area. p(x, t) is an external pressure distribution 

acting on the beam. EI is assumed constant along the beam. 

For a simply supported beam, the boundary conditions are such that there are no 

deflections or bending moments at the beginning (x = 0) and the end of the beam 

(x = L): 
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w(O, t) = 0 

w(L, t) = 0 

14 

The solution to equation 2.1 is a sum of the motions of the modes of the beam: 

00 

w(X, t) = L an(t)'ljJn(x) (2.2) 
n=l 

where 'ljJn(x) are the modeshapes of the simply supported beam, which satisfy the 

boundary conditions. They can be scaled arbitrarily and are chosen to be: 

(2.3) 

where kn = 7, and n is an integer. an(t) in equation 2.2 are the modal displacements 

of the individual modeshapes at any point in time. 

Assuming the external pressure distribution p(x, t) in equation 2.1 is a point force, 

f(t)o(x - xf), at a point xf along the beam, allows the formulation of the transfer 

function from the force to the modal displacement in terms of the Laplace variables 

or frequency. In terms of frequency, the transfer function is: 

(2.4) 

where a small amount of damping is included, through the damping factor ( and Wn 

is the natural frequency of the modeshape: 

(2.5) 

The transfer function can also be written in a state space formulation: 

(2.6) 

Table 2.1 lists the variables used in the simulations of the beam. Figure 2.2(a) shows 

the velocity response at a location O.6L along the beam to a force located at that 

same point. Figure 2.2(b) shows the velocity response at a location O.24L along the 

beam for a force at a location O.6L along the beam. 

The kinetic energy of the beam can be calculated by integrating the kinetic energy 
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EI = 1 

(= 0.01 

[Nm2
] pS = 1 

[-] L = 1 

[kg/m] 

[ml 

Table 2.1: Variables of the plate used in the simulations. 

Bodeplol 
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(a) Response at x = 0.6L (b) Response at x = 0.24L 

Figure 2.2: Velocity response of the beam as a function of frequency, at different 

locations along the beam to a unit force located at 0.6L of the length of the beam. 

of infinitesimal elements along the beam: 

(2.7) 

The fact that the modes are orthogonal has been used here to show that the kinetic 

energy is equal to a sum of the squared velocities of the separate modes. 

2.1.2 Simply supported plate 

The modeling of a simply supported plate follows much the same lines as the mod­

eling of the simply supported beam discussed in section 2.1.1. Like the simply 
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supported beam, the edges of the simply supported plate allow free rotatioll, but 

no displacement. This model can also be found in Fuller et a1. (1996). The plate 

is assumed to be uniform over its surface (isotropic). The differential equation that 

needs to be satisfied for this plate then is: 

( 
84W 84w 84w) 82w 

E1 8
X
4 + 2 8x28y2 + 8y4 + ph 8t2 = p(x, y, t) (2.8) 

where E1 is the bending stiffness of the plate this time. h is the thickness of the 

plate and p(x, y, t) a pressure acting on a point of the plate. Strictly speaking, the 

Poisson ratio, v,should also be included by in equation 2.8. However, it can also 

be included in the term 1 = h3 /12(1 - v2
). As this affects only the value of the i, 

the Poisson ratio was set to 0 for the analysis of the simply supported plate. The 

boundary conditions of the differential equation 2.8 are that the displacements and 

the moments are equal to zero along the edges of the plate: 

w(O, y, t) = 0 

w(lx, y, t) = 0 
82w(O,y,t) - 0 

8x2 -

8 2w(lx,y,t) - 0 
8x2 -

w(x, 0, t) = 0 

w(x, ly, t) = 0 
8 2w(x,O,t) - 0 

8y2 -

82w(x,ly,t) - 0 
8y2 -

The general solution again takes the form of a sum of the modal displacements, but 

now with two modal indices: 
00 00 

w(x, y, t) = L L amn (t)1/Jmn(x, y) (2.9) 
m=l n=l 

where 'l/Jmn(x, y) is a sinusoidal modeshape that satisfies both the boundary condi­

tions and the homogeneous form of differential equation 2.8: 

(2.10) 

where km and kn are the wavenumbers in x and y direction: 

lx and ly being the length of the plate in x and y direction respectively. The modes 

each have a natural resonance frequency, given by: 

(2.11) 
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E = 7· 1010 [Pal p = 2720 [kg/m3
] 

( = 0.01 [-] h = 0.001 [m] 

lx = 0.247 [m] ly = 0.278 [m] 

Table 2.2: Variables of the simply supported plate used in the simulations. 

The transfer function H (jw) from a point force at some point, (x f' Y f), on the plate 

to the modal amplitude amn can now be calculated to be: 

H ( 'w) = _4_ 'l/Jmn(xf,Yf) 
mn J } l l 2 2 .( 2 P t x y wmn + J WWmn - W 

(2.12) 

or in state space form: 

(2.13) 

Note that the factor 2/ pSL from from equations 2.4 and 2.6 has become a factor 

4/ phlxly in equations 2.12 and 2.13. This is because the integral of the squared 

modeshapes over the surface of the plate is 1/4lxly for the plate, in comparison to 

1/2L for the beam. 

The variables used in the simulations for the simply supported plate are listed in 

table 2.2. Figures 2.3(a) and 2.3(b) shows the velocity response observed at, respect­

ively, (0.24lx,0.6ly) and (0.33lx, 0.37ly) due to a force at a location (0.24lx, 0.61y) on 

the plate. It is important to note that the modal density of the plate (the number 

modes per frequency) increases with frequency, whereas it decreased for the beam. 

In a similar way to the beam, the kinetic energy of the simply supported plate can 

be calculated as a sum of the squared modal velocities: 

Eke(t) = Ph~xly f f lamn(tW 
m=l n=l 

(2.14) 

Again, because of the integral of the modeshapes over the surface of the plate, the 

factor p~L has changed to ph~ly. 

2.1.3 Clamped-free-clamped-free plate 

The differential equation describing an infinitesimal element of the clamped-free­

clamped-free (CFCF) plate is the same as for the simply supported plate (equation 
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500,------~~-------_______, 

-100 '--~~~~~-::---~~~~~----' 
10

3 
10

4 

Frequency [rad/s] Frequency (red/s] 

(a) Response at (x, y) = (0.241x, 0.61y) (b) Response at (x, y) = (0.33l O' , 0.37ly) 

Figure 2.3: Velocity response of the simply supported plate as a function of fre­

quency, at different locations on the plate to a unit force located at (x, y) = 
(O.24lx,O.6ly ). 

2.8). The boundary conditions, however, are different. For this particular case, the 

conditions are that the plate is clamped at the edges x = 0 and x = la: and free 

along y = 0 and y = ly. Clamped edges means that rotation and displacement are 

not allowed, while free edges mean that there are no forces or moments acting on 

the edges of the plate: 

w(O, y, t) = 0 

w(lx, y, t) = 0 
8w(O,y,t) = 0 

8:r 
8w(/x,y,t) = 0 

8x 

Unfortunately no analytical solution to equation 2.8 exists for w(x, y, t) for these 

boundary conditions. An approximation is possible though. Sen-and (1998) uses 

an approximate modal solution also used in Leissa (1969). The same solution is 

used here as well. The solution is based on an assumed-modes method, where 

the modeshapes are assumed to have a certain shape and then the modeling of 

the dynamics follows from that assumption. In this case, the displacement at a 

particular point is assumed to be: 

00 00 

w(x, y, t) = L L 1Pmn(x, y)amn(t) (2.15) 
m=l n=l 
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where 'ljJmn (x, y) is the modeshape associated 'with the mnth mode, while a mll (t) is 

the modal amplitude of that particular mode. Following Leissa (1969), the mode­

shapes are written as: 

with 

(
X 1) sin('"n/2) 1 (x 1) cos 11 Z; - 2" + sinh(-YI/2) cos 1 II r;; - 2" 

. (x 1) sinC)'2/2). 1 (x 1) sm 12 Z; - 2" - sinh(-Y2/2) S1111 12 Z; - 2" 

1 
1 _ 2y 

ly 

(
'-1 1) sin('"n/2) h (y 1) cos 11 t;; - 2" - sinh(')'1/2) cos II t;; - 2" 

sin 12 (f; - ~) + s::~~;h:l1) sinh 12 (~ - ~) 

(2.16) 

for m = 2,4,6, .. . 

for m = 3,5,7, .. . 

for n = 0 

for n = 1 

(2.17) 

for n = 2,4,6, .. . 

for n = 3,5,7, .. . 

(2.18) 

where II and 12 are the solutions of 

tan ('1/2) + tanh ('I/2) 

tan ('2/2) - tanh ('2/2) 

o 
o 

(2.19) 

(2.20) 

These solutions are approximations and do not quite satisfy the boundary conditions 

correctly, nor are these modeshapes orthogonal. Orthogonality of the modeshapes 

would mean that J J 1./Jkl(X, y)'ljJmn(x, y)dxdy would be equal to 0 unless TT),n = kl. For 

the chosen modeshapes this integral is also nonzero if kl i= mn. However, the values 

of these integrals are small compared to the value of the integral for rnn = kl and 

will thus be neglected. The integral of 1./Jmn(x, y)2 is dependent on the modeshape, 

and is expressed here as NmrJx1y. The factors Nmn are rather complicated functions 

and have been evaluated numerically rather than analytically. 

Leissa (1969) gives the corresponding natural resonance frequencies as: 

7[4 1 h3 [G4 G
4 

1 ] 
w~n = p 1 _ v2 12E l£ + ,i + 2l;l~ (vHxHy + (1 - v)JxJy) (2.21) 

where Gx, Gy, Hx, Hy, Jx and Jy can be found in table 2.3. On the basis of these 

resonance frequencies, the transfer function from a force at a particular point on the 

plate to a modal amplitude can be formulated: 

H (. ) 1 1./Jmn (x f' Y f) 
mn JW = hl 1 N 2 2r . 2 P x y mn Wmn + "'WmnJW - W 

(2.22) 
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Gx Hx 11' 
for m = 2 1.506 1.248 1.248 

for m = 3,4,5, ... m- 1 
2 m- - 1-( 1)2 f 2:l 2 (m-!)7r m - - 1-( 1) 2 f: 2: l 

'2 (m-!)lI" 

Gy Hy Jy 

for n = 0 0 0 0 

for n = 1 0 0 127[2 

for n = 2 1.506 1.248 5.017 

for n = 3,4,5, ... n- 1 
2 n - - 1-( 1)2[ 2] 2 (n-!)7r (n - D2 [1 + (n_

6
!)7r] 

Table 2.3: Factors for the calculation of the resonance frequencies for the CFCF 

plate. 

E = 2.06 . 1011 [Pal p = 7800 [kg/m3
] 

(= 0.01 [-] h = 0.0019 [m] 

lx = 0.5 [m] ly = 0.7 [m] 

v = 0.3 [-] 

Table 2.4: Variables of the CFCF-plate used in the simulations. 

or in state space form: 

(2.23) 

It is clear from equation 2.21 that the Poisson ratio plays a bigger role than in the 

simply supported plate. It has therefore been included in the modeling of the CFCF­

plate. The variables used in the simulations for the CFCF-plate are listed in table 

2.4. Figures 2.4( a) and 2.4(b) show the velocity response observed at, respectively, 

(0.24lx,0.6ly) and (0.33lx,0.371y) due to a force at a location (0.2413" 0.61y) on the 

plate. The kinetic energy of the CFCF-plate can be calculated as: 

1 00 00 

Jke = 2Phlxly L L Nmn lamn l2 (2.24) 
m=1 n=1 
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Figure 2.4: Velocity response of the CFCF-plate as a function of frequency, at 

different locations on the plate to a unit force located at (x, y) = (O.24lx, O.6ly). 

2.2 Cost function 

As mentioned in the introduction of this chapter, the kinetic energy of the structure 

is the cost function that is minimised in most of the thesis. The previous sections 

showed that the kinetic energy is a weighted sum of the squared modal velocities for 

each model. Another quadratic cost function is the sound radiation. This section 

shows how quadratic cost functions like the kinetic energy can be calculated for 

these models. 

The analysis will assume that only a limited number, N, of modes is t.aken into 

account. This allows equations 2.6, 2.13 and 2.23 to be written in a general matrix 

notation: 

(2.25 ) 

Here as and as are respectively, vectors of the modal amplitudes and modal velocit.ies. 

AI is the total mass of the structure, and N is a diagonal matrix consisting of the 

integral of the squared modeshapes over the structure. For the simply supported 

beam and plate these values are equal for all modes and are 1/2 and 1/4 respectively. 

For the CFCF plate, these terms depend on the particular modeshape. The matrix 

Ks is a matrix with the squared natural frequencies, w~n' on its diagonal and empty 

otherwise. The matrix Ds is also a diagonal matrix, but with the damping terms 
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f B lis 

A 

Figure 2.5: Block diagram of the model. 

2(wmn on its diagonal. Equation 2.25 can also be rewritten as: 

x Ax + Bf(t) 

z 

z 

22 

(2.26) 

(2.27) 

This is depicted as in a block diagram in figure 2.5. The elements of x, consisting 

of the modal amplitudes and velocities are the states of the system. The vector 

z consists of the elements, which, when squared, weighted and summed give the 

appropriate quadratic cost function: 

(2.28) 

where Qz is a diagonal matrix consisting of the appropriate weighting terms for each 

element of z. If C z and Qz are both static matrices, then combining equations 2.28 

and 2.27 results in: 

(2.29) 

This cost function can be evaluated both in the frequency and the time domain, 

which allows the calculated cost values to be verified. The frequency domain calcu­

lation also allows the numerical evaluation of cost functions for which the matrix Q 

varies with frequency, such as sound radiation. 

2.2.1 Time domain approach 

If the forces, f(t) are random, time varying signals that do not diminish in time, then 

the cost function, equation 2.29, should be changed to an expectation. Otherwise 

an integral over all time will result in an infinite cost. Thus: 

J = E [xT(t)Qx(t)] = trace (QE [x(t)xT(t)]) (2.30) 
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Where E denotes expectation. The states x can be calculated as a convolution of 

impulse response of the system and the time varying signal f(t): 

x(t) = <I>(t) * Bf(t) (2.31) 

The matrix <I>(t) is known as the fundamental state transition matrix and is defined 

as: 

{

eAt for t > 0 
<I>(t) = -

o for t < 0 
(2.32) 

Combining equations 2.31 and 2.32 with equation 2.30 results in: 

J trace (QE [x(t)xT(t)]) 

trace (QE [<I>(t) * Bf(t) (<I>(t) * Bf(t)fJ) 

trace ( QE [1: <I>((}l)Bf(t - (}dd(}l 1: rT(t - (}2)BT<I>T((}2)d(}2]) 

trace ( Q 1: 1: <I> ((}dBE [f(t - (}l)fT(t - (}2)] BT <I>T((}2)d(}ld(}2) 

(2.33) 

E [f(t - (}l)fT(t - (}2)] contains the correlations in time between the disturbing 

forces. If these forces are mutually uncorrelated, the matrix is diagonal. If the 

signals are uncorrelated in time, i.e. for white noise excitation, the matrix is only 

non-zero if (}l = (}2, in which case, the expectation is a constant matrix, EffT, mul­

tiplied by a delta function, 8((}1 - (}2) and equation 2.33 simplifies considerably: 

(2.34) 

Or: 

(2.35) 

If the system defined in equation 2.26 is asymptotically stable and the matrix Q is 

positive semi-definite, the cost is equal to (Kalman and Bertram (1960)): 

(2.36) 

with K the positive definite solution of the Lyapunov equation: 

(2.37) 
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It is interesting to note that equation 2.35 is similar to ,,,hat the cost function would 

be, if an initial value problem had been considered: 

J = 100 

X6 q>T(t)Qq>(t)xodt 

trace (100 

q>T(t)Qq>(t)dtXOX6) (2.38) 

2.2.2 Frequency domain approach 

For the frequency domain calculation, equation 2.35 is used as a starting point: 

Where q, (jw) is the Fourier transform of q> (t) and can be calculated as: 

q,(jw) = IF (q>(t)) = 100 

eAte-jwtdt 

100 

e(A-jwI)tdt = (jwI - Ar 1 (2.40) 

That the integral over the time domain of a product of two time signals, is equal to 

the integral over the frequency domain of the product of the Fourier transforms of 

the two time signals, is generally known as Plancherel's theorem. If a squared signal 

is considered, i.e. the product of a time signal with itself, this property is usually 

referred to as Parseval's theorem. 

The argument of the integral in equation 2.39 can also be examined. It is the power 

spectral density of the cost. Figure 2.6 shows the spectral density of the kinetic 

energy of the simply supported plate, for a white noise point force acting at two 

different locations. EffT has been chosen equal to 1. 
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Figure 2.6: Spectrum of kinetic energy of the simply supported plate for white noise 

excitation at two different locations. 

2.3 Effect of disturbance location 

It can be seen from the simulation results in figure 2.6 that the location of the 

excitation influences the value of the cost function. In this analysis, the influence 

of the location of the excitation is an undesirable complication. It is therefore 

appropriate to assume an excitation where each point is excited in a similar fashion. 

A spatially random pressure field would satisfy this criterion and it can be shown that 

this is equivalent to assuming that the modes of the structure are excited equally, 

but in an uncorrelated fashion. This can be proved by analysing the correlation 

between the excitation of the diffferent modes: 

Equations 2.4, 2.12 and 2.22 describe how the modes of the different models are 

excited by point forces. Consider now the excitation of a single mode mn of the 

simply supported plate, by a pressure field, p(x, y). This excitation is denoted as 

fmn(t) and is calculated through: 

t y (Ix 
fmn(t) = Jo Jo 'l/Jmn(x, y)p(x, y, t)dxdy (2.41) 
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The correlation betvveen a mode kl and mode 'm1l then is: 

E Uklfmn] = E [lly liT 'l/Jkl(:r1, ydP(X1' Y1, t)dx1dY1 

l ly l lx 
'l/Jmn(X2' Y2)P(X2, Y2, t) dX2dY2] 

1ly 1lx 1ly 11
.
r 

'ljJkl (2:1, Y1 )'l/Jmn (X2' Y2) 

E [P(X1' Y1, t)P(X2' Y2, t)] dx1dY1 dx2dY2 

26 

(2.42) 

For a spatially random pressure field, there is no correlation between the pres­

sures at two different locations. This means that E [P(X1' Y1, t)P(X2' Y2, t)] is equal to 

8(X1 - x2)8(Y1 - Y2)E [P(X1' Y1, t)2]. It is furthermore assumed that E [p(:r, y, t)2] is 

constant for different (x, y). Equation 2.42 can then be rewritten as: 

E Uklfmn] = 11y 11
,. 'ljJkl(X, Y)'l/Jmn(X, y)E [p(x, y, t)2] dxdy 

1ly 1lx 
'l/Jkl(X, y)'l/Jmn(X, y)dxdyE [p(x, y, t)2] (2.43) 

For the assumed, orthogonal modeshapes, the integral J~y J~x 'l/Jkl(X, Y)'l/Jmn(.T, y)d:rdy 

is non-zero only if kl = mn, when it is equal to SvNrnn, where Su is the surface area 

of the object. The corresponding matrix Bm for the modal forces is equal to: 

B --1 ( 0 ) 
m - NI N-1 (2.44) 

If the pressure field is assumed to have a white spectrum in time, as well as space, 

then equations 2.43 and 2.35 can be combined: 

J = trace (100 

«>T(O") Q<I> (O")dO"Pw ) (2.45) 

with 

P w = A~2 Su [~ NO 1 1 E [p( x, y, t )'1 (2.46) 

For the beam, Su = Land E [P(x, y, t)2] has been chosen equal to 2/ L. For the 

simply supported plate, Su = lxly and the expectation E [P(x, y, t)2)] was chosen to 

be equal to 4/lxly [N2/m4]. For the CFCF plate, Sv = lxly and E [P(x, y, t)2)] has 

been chosen equal to l/lxly instead. 

Figure 2.7 shows the spectrum of the kinetic energy of the simply supported plate, 

excited by a randomly distributed, white noise excitation. 
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Figure 2.7: Spectrum of kinetic energy of the simply supported plate for a randomly 

distributed white noise excitation. 

If the excitation has a non-white spectrum, but is still a random signal, it can be 

approximated by assuming that the excitation is a white signal filtered through a 

frequency shaping filter. The states of this filter should than be included ill the 

model dynamics. However, for 'red' noise (time-integrated white noise) excitation 

on a structure where velocity sensors are used and the cost function is derived from 

the modal velocities, it can be shown that the shaping of the white noise can also be 

done without adding extra states. The way in which this can be achieved is shown 

in figures 2.8(a) to 2.8(c). 

Mathematically, this is equivalent to using the following matrix instead of p,w to 

calculate the cost: 

~ 1 
(2.47) 

where Ks is the part of the matrix in equation 2.25 and should not be confused with 

the solution of Lyapunov equation 2.37. Note that, though the integrated white 

noise signal will tend to infinity at low frequencies, the response of the system in 

terms of modal velocity tends to O. In section 2.2.1 it was shown that the cost 

function can be evaluated using a solution of Lyapunov equation 2.37 as long as the 
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Figure 2.8: Equivalent ways of modeling red noise acting on the system. 

system is asymptotically stable. Using this Lyapunov equation, it is found that the 

cost function remains bounded for a red noise excitation. 

2.4 Effects of number of modes on the model and 

frequency range of interest 

The number of modes taken into account increases the computational load in any 

optimisation process. Thus the number of modes must be limited. However, the 

number of modes included in the model must be sufficient to allow a realistic moclel­

ing of the beam, such that spillover through the controller to the unmodellecl modes 
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is limited. 

The rate of change in time and space for a white, randomly distributed pressure 

field would be infinite. This is not physically realisable. A limit on the maximum 

rate of change limits the frequency range of the model's excitation. 

This section examines how the number of modes in the model and the number of 

modes that are excited influence the calculation of the kinetic energy and the power 

in- and output of the plate. The relations between frequency range, kinetic energy 

and power is also examined. 

2.4.1 Calculation of power input 

The expectation of the power supplied to the modes by a spatially random excitation 

is the product of the modal velocity and the force acting on the mode and can be 

written as: 

E [L amn(t)fmn(t)] 

E [a(t)Tf(t)] (2.48) 

The modal velocities are the convolution of the impulse response of the modes of 

the system, q,(t), and the disturbance forces on the modes, f(t): 

(2.49) 

where the matrix Cm selects the modal velocities from the state vector according 

to: 

(2.50) 

In the frequency domain equation 2.49 is equal to: 

E[Psup] = 22~E [lR (lOO(f(jw)HB;;/f!H(jw))C~f(jw)dw)] 

22~lR (trace (100 

B~cI>H(jw)C~E [f(jw)fH(jW)] dW)) 

(2.51) 

Where lR denotes a function taking the real part of the complex variables of its 

arguments. If the forces are white in their spectrum, it has already been seen that 
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this is equal to: 

E [PSllP ] = 2 2~ trace ( lR (100 

B~ <pH (jw )C~P wdw ) ) (2.52) 

Solving this equation requires an integration over all frequencies. 

One can also see that, in a steady state situation, the power input must be equal to 

the total power lost. If no power is absorbed in a controller, power lost to structural 

damping in the modes must equal the power input into the system. Power loss can 

be calculated by multiplying the modal velocities with the modal damping forces. 

The modal damping force is equal to the modal velocity, multiplied by the modal 

damping forces, f sd' The modal damping forces are related to the the modal velocities 

as: 

(2.53) 

where D is the same matrix as in equation 2.25. For the power absorbed in the 

structure we can then write: 

E [Pabs] E [a~(t)fsd(t)] 

E [a~(t)1I1NDsas] (2.54) 

The modal velocities can be calculated with the convolution of the impulse-response 

of the states and the excitation forces: 

E [Pabs] [a~ (t)1I1ND sas] 

1I1E [100 

fT(O"l)B~q,T(t - O"dC~dO"lNDs 100 

Cm<p(t - 0"2)Brnf(0"2)cl0"2] 

1I1trace [100 100 

q,T(t - O"l)C~NDsCm<p(t - 0"2)6"(0"1 - 0"2)PdO"ld0"2] 

1I1trace [100 

<PT(t)C~NDsCm<P(t)dtP] (2.55) 

This equation is similar to equation 2.35 and is thus equal to: 

E [Pabs] = trace [KP] (2.56) 

with K the positive semi-definite solution of: 

KAc + A~K + Qabs struct = 0 (2.57) 

where Qabs struct is equal to: 

(2.58) 
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fmax N P[t] P[l kHz] P[2 kHz] P[3 kHz] P[4 kHz] P[5 kHz] 

1 kHz 25 25.00 24.65 24·93 24.95 24.96 24.96 

2 kHz 35 35.00 24.73 34·67 34.S7 34.91 34.92 

3 kHz 43 43.00 24.73 34.S9 42.59 42.S2 42.S6 

4 kHz 50 50.00 24.73 34.90 42.S7 49.44 49.76 

5 kHz 56 56.00 24.73 34·91 42.S9 49.67 55.35 

fmax N J[t] J[l kHz] J[2 kHz] J[3 kHz] J[4 kHz] J[5 kHz] 

1 kHz 25 4.067 4.030 4.032 4.032 4.032 4.032 

2 kHz 35 4.095 4.030 4.059 4.060 4.060 4.060 

3 kHz 43 4.10S 4.030 4.059 4.072 4.073 4.073 

4 kHz 50 4.117 4.030 4.059 4.073 4.0S0 4.0S1 

5 kHz 56 4.122 4.030 4.059 4.073 4.0S1 4.0S6 

Table 2.5: Expected total power supplied to the simply supported beam, P[t], and 

the expected total kinetic energy, J[t], together with the power and kinetic energy 

in the bandwidth up to 1 kHz to 5 kHz (P[l kHz], P[2 kHz]' etc. and J[l kHz], J[2 

kHz], etc.) for a varying number of modes N. 

This method of calculation saves the rather numerically intensive process of integ­

rating over all frequencies. 

2.4.2 Results for power input and kinetic energy 

Table 2.5 lists the calculated power supplied to the simply supported beam, cal­

culated with both the time and frequency approach of calculation. The frequency 

integral was approximated by summing the results per frequency over limited fre­

quency ranges. The power supplied to the beam has been calculated for different 

frequencies, fmax, up to which all modes with a resonance frequency below f'-mI1;E 

have been taken into account. All modes are assumed to be excited by the random 

pressure field. In the same table, the appropriate expected kinetic energy has also 

been listed. This too has been calculated in time domain or the frequency domain. 

It can be seen that the total power input, P[t], varies linearly with the number of 

modes, N, included in the model. However, the total kinetic energy, J[t], varies 

much more slowly with the number of modes. An initial amount of energy put 
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into the higher order modes is dissipated more quickl:.,. than in the lower order 

modes, because the damping coefficient (2(wmn ) is higher for the higher order modes. 

The contribution of the higher order modes to the time-averaged kinetic energy is 

therefore smaller. 

The numerical integration over a limited bandwidth results in differences in the 

calculated power input and kinetic ernergy. By reducing the frequency spacing the 

estimates can be improved. Comparing the power calculated over a 2 kHz frequency 

range and 25 modes to the power calculated over the same frequency range but 

with a higher number of modes, say 35 and 56, shows that adding modes to the 

model with a resonance frequency higher than the frequency range of interest does 

not improve the calcution of the power estimate much, whereas adding modes with 

resonance frequencies lower than the frequency range of interest is important to get 

a good estimate. Vice versa, one could say that the calculation of the total power 

input is a good approximation of the power input over a limited frequency range, 

if one excites only the modes in the model with a resonance frequency below the 

frequency range of interest. 

The number of modes per frequency decreases with frequency as approximately 

1/.;w. The number of modes therefore tends to infinity as fma.7.: goes to infinity. For 

white noise inputs, the power thus also goes to infinity. 

Table 2.6 lists the same quantities, but now calculated for the simply supporteel 

plate. It shows that the power input is still linearly related to the number of modes 

taken into account. The kinetic energy varies more than for the simply supported 

beam and a higher proportion of the kinetic energy is located at higher frequencies. 

It can also be seen that, unlike the beam, the number of modes per frequency 

increases with frequency and thus approaches infinity at a much higher rate. 

It seems that either the frequency range of interest, or the number of excit.ed modes 

must be limited, if one is to examine the power flow into the structure. For the 

kinetic energy the number of modes is much less critical. This makes sense, as the 

modes that are added are high order modes that damp out faster than the lower 

order modes. 

If one is only examining excitation over a limited frequency range, one can also 

limit the number of excited modes to that frequency range, because including more 
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fmax N P[t] P[l kHz] P[2 kHz] P[3 kHz] P[4 kHz] P[5 kHz] 

1 kHz 18 192.7 189.0 191.7 192.0 192.1 192.2 

2 kHz 39 417.6 190.9 409.2 415.1 415.8 416.1 

3 kHz 60 642.5 191.0 416.6 632.0 638.1 639.3 

4 kHz 84 899.5 191.0 417.0 644.5 881.2 892.5 

5 kHz 106 1.135· 103 191.0 417.1 645.1 889.0 1.110 . 103 

fmax N J[t] J[l kHz] J[2 kHz] J[3 kHz] J[4 kHz] J[5 kHz] 

1 kHz 18 2.341 2.304 2.318 2.320 2.321 2.321 

2 kHz 39 2.965 2.310 2.925 2.939 2.942 2.943 

3 kHz 60 3.333 2.311 2.939 3.295 3.306 3.308 

4 kHz 84 3.628 2.311 2.939 3.311 3.586 3.599 

5 kHz 106 3.835 2.311 2.939 3.312 3.593 3.791 

Table 2.6: Expected total power supplied to the simply supported plate, P[t], and 

the expected total kinetic energy, J[t], together with the power and kinetic energy 

in the bandwidth up to 1 kHz to 5 kHz (P[l kHz], P[2 kHz]' etc. and J[l kHz]' J[2 

kHz], etc.) for a varying number of modes N. 

modes in the model does not influence the kinetic energy or the power input in that 

frequency range much. The time domain method of calculating the kinetic energy 

can then be used as an approximation of integrating over a limited bandwidth. 

In this analysis no coupling was present between the modes and adding controlll18Y 

result in energy being transferred between the higher or lower order modes, thus 

influencing the expectation of the kinetic energy. Also, when one tries to control the 

model with discrete control locations, one must also make sure that the system has 

many more degrees of freedom than control locations. 

Unless mentioned otherwise, the simulations in this thesis have used the first 50 

modes of the simply supported beam, the first 106 modes (all modes up to 5 kHz) 

of the simply supported plate, and the first 170 modes (all modes up to 3 kHz) of 

the CFCF plate. 
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2.5 Summary 

This chapter showed how modal models of a simply supported beam and plate can 

be derived from the differential equations governing an infinitesimal part of the plate 

or beam and the boundary conditions at the edges of the structure. It was also noted 

that for the clamped-free-clamped-free plate no analytical functions are known that 

match the boundary conditions. An appropriate approximation of the lllodeshapes 

is used from the literature instead. 

It has also been shown that the kinetic energy of the structure can be calculated 

in both the frequency and the time domain and that the location of the excitation 

can influence the spectrum of the kinetic energy. The influence of the excitation 

on the spectrum is considered an unwanted complication and a spatially random 

distributed pressure field acting on the structure is used instead. This spatially 

random pressure distribution is equivalent to independent excitations acting on each 

mode of the structure. 

The power input into the structure and the kinetic energy were analysed for this 

excitation, when different frequency ranges are considered and different numbers of 

modes are taken into account. It was shown that for a driving pressure field that 

is completely white in both time and frequency, the power input into the ::>tructure 

would be infinite. If either the frequency range of the excitation or the number of 

modes is limited, the power input is finite. It was also shown that if one is examining 

only a limited frequency range, excitation of modes with a higher natural frequency 

than the frequency range of interest does not significantly influence the power input 

or the kinetic energy of the structure and can thus be excluded. Furthermore, one 

can then use the time-domain method of calculating the kinetic energy and power, 

rather than the frequency domain. 



Chapter 3 

Single-channel control 

This chapter focuses on the design of a single-channel controller. This is because 

a multi-channel, decentralised controller can also be seen as a combination of a 

number of single-channel controllers applied to the same structure. The design of the 

controller is usually confined to the question: Given the structural and perioTTnancc 

parameters, what should the controller do to give optimal performance? This means 

that to control the structure optimally, complete knowledge of the structure and 

the excitation would be necessary. In this section another question is therefore 

considered: Can optimal control be approximated on thc basis of a small numbcr' of 

parameters? Chapter 6 will then consider how such parameters can be identified on 

the basis of the local mobility. The mobility of a particular point of the structure 

can be defined as the velocity response of a particular point on the structure per 

unit force. 

Section 3.1 considers unconstrained controller design. The controllers examined 

there are not confined to be causal or stable. This may not be directly relevant for 

the design of the controller for a broadband application, but can give interesting 

insights into the fundamental limits of performance. It also should show what phase 

and gain the controller should be tuned to at a single frequency or what the controller 

should do iffeedforward were possible. It is hoped that this will also give some insight 

into the relation of optimal control to the structural variables. It will examine both 

unconstrained feedforward and feedback control to minimise the kinetic energy of a 

structure. 

35 
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Under a steady state excitation. there is a balance between the power that enters 

the system through the disturbance and the dissipation in the system itself through 

internal damping. The control forces may be able to increase or reduce the power 

input and can also absorb power themselves. Therefore, minimising the total pov;er 

input by both disturbance and control forces and maximising the power absorption 

by the control forces only are considered as possible sub-optimal control strategies. 

The ideas of examining power in- and output are not new and have also beell ex­

amined in literature, as discussed in sections 1.2.2.2 and 1.2.2.3. Brennan et aI. 

(1995) compared both strategies for single frequency disturbances in a feedforward 

set-up on a beam. l'vIaximising povver absorption has been examined extensively for 

both structural and noise control, e.g. Guicking et al. (1989), Elliott et a.l. (1991), 

Clark and Cole (1995) and Hirami (1997a,b), though mostly in single frequency 

applications. 

Section 3.2 focuses on stable feedback control strategies and mainly on constant gain, 

absolute velocity feedback control. As it has only a single parameter to set, i.e. the 

gain, it is an obvious choice to examine if it may be possible to relate the optimal, 

or a sub-optimal feedback gain, to locally measurable variables. The performance of 

the approximations is then compared to that of the optimised constant gain velocity 

feedback controller and to the performance of an LQG controller. 

3.1 Unconstrained optimisation 

The unconstrained optimisation of feedforward and feedback controllers are ex­

amined in this section. Though they may not be feasible for active control of a 

broadband disturbance, it sets limits on the absolute performance, and may provide 

some insight on the dependency on the structural characteristics. 

For both feedforward and feedback control, three strategies are examined. The 

first minimises the total kinetic energy of the structure. The second minimises the 

total power input by the disturbance and control force into the structure. The 

third maximises the power absorption by the control force. These latter two control 

strategies are examined as they might be useful as approximations to minimising 

the kinetic energy. 
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Figure 3.1: Feedforward control ofthe beam using a time-advanced reference signal. 

3.1.1 Feedforward control 

This section examines feedforward controllers. The principal of feedforward cont.rol 

is t.hat. the control forces, ie, are calculated using knowledge of t.he disturbance 

forces, id' In the unconstrained case, t.his can also be advanced knowledge of what 

the disturbance forces will be at. some later t.ime. This is illustrated in figure 3.1. 

The cont.roller requires complete knowledge of the disturbance forces acting on the 

st.ructure. For a system where disturbances do not act upon the structure at. dis­

crete points, this condition may be difficult to meet. Nevert.heless the feedforwal'd 

controllers can serve a reference for the design of a controller, because feedforwarcl 

control gives an upper bound to the maximum possible reduction in vibration. The 

feedforward controller thus shows the absolute limitation of performance of the sys­

tem. 

To calculate the optimal control force, an optimality criterion or cost function is 

required. The optimal feedforward control to minimise the kinetic energy of the 

system is examined first. 



Chapter 3. Single-channel control 38 

3.1.1.1 Minimum kinetic energy 

The kinetic energy (Eke) can be calculated as the sum of the kinetic energy in each 

of the modes (equations 2.7, 2.14 and 2.24): 

1 00 00 

Eke = :)1\IL L Nmna;nn 
~ n=17n=1 

(3.1) 

Where Nmn is the integra.! of the squared modeshape over the surface of the structure 

and AI is the total mass of the structure. Since the response can be approximated 

with a limited number of terms, this can be written as a finite sum, or in state space 

notation (equation 2.29): 

(3.2) 

In figure 2.5 and equation 2.26 a genera.! state-space notation was used to describe 

the excitation of the model due to a set of forces f. Assume now that some of these 

forces are disturbance forces, fd, and others are control forces, fe, attempting to 

minimise the kinetic energy, as a function of the control forces: 

or, using frequency domain notation: 

x (jwI - Ar 1 (Bdfd(jW) + Befe(jw)) 

cI>w(jw) (Bdfd(jW) + BJc(jw)) 

(3.3) 

(3.4) 

(3.5) 

Dropping (jw) from the notation for brevity, the kinetic energy of the structure can 

then be calculated as: 

XHQX 

[f:Br + f:rB~] cI>~ Q<I>w [Bdfd + BcfcJ 

(fBr cI>~ QcI>wBdfd + 2f:rB~ <I>~ Q<I>wBdfd + f:rB~ <I>~ Q<I>wBcfe 

(3.6) 

This function is a quadratic function in fe, which means that, provided Q is positive 

definite, there is a global minimum. The control force at this minimum can be 

found by taking the derivative of equation 3.6 with respect to the control forces and 

equating it to zero. This leads to a new set of equations: 

o (3.7) 

(3.8) 
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Figure 3.2: Spectrum of the kinetic energy of the beam with and without optimal 

feedforward control, minimising kinetic energy, excited by a randomly distributed 

excitation and controlled at 0.6 of the length of the beam. 

This feedforward control force minimises the quadratic cost function, for a spe­

cific excitation fd(jW). Note that due to the Hermitian transposes of the impulse 

responses of the modes, <I>w(jw) , the time domain transformation of the control 

function is not causal. It would require the knowledge of what the disturbance force 

is going to do in the future to calculate the control force at any particular point in 

time. Note also that, for the inverse of [B~ <I>~ QcI>wBc] to exist, the matrix must 

have full rank. This implies that both Q and cI>w must have a rank larger than or 

equal to the number of control locations. Even then, the rank of the matrix may 

not be sufficient if some modes can not be controlled. This implies that for the 

optimal solution to the cost function to be unique, both the number of states and 

the number of states taken into account for the cost function must be larger than 

the number of control locations. 

The spectrum of the kinetic energy of the beam for a randomly distributed excitation, 

with and without this feedforward control is depicted in figure 3.2. In this case the 

reference signals are the waveforms of the modal forces described in section 2.3. The 

beam is controlled with a single point force actuator at 0.6 of the length of the beam. 
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Figure 3.3: Modeshape of the beam for which the control force, fe, has no influence 

on the excitation 

The figure shows that optimal control reduces the energy density most at resonances. 

However, there are several resonance frequencies where there is no or very little 

reduction possible in the kinetic energy. These are frequencies where the dominant 

modeshapes have a node at the point where the control force is located. This means 

the control force has no influence on the excitation of those modes. This is illustrated 

in figure 3.3. 

3.1.1.2 Minimum power input 

An alternative to minimising the kinetic energy is minimising the total power fed 

into the system by the disturbance force and the control force. In the steady state 

situation, the power input into the system is equal to the power dissipated through 

internal damping. If the damping is viscous, the power dissipated is equal to the 

modal velocity times the damping force. As the damping force is equal to the dalllp­

ing constant times the modal velocity, the power dissipated in each mode is lillea.rly 

related to the kinetic energy of that mode, but the constant of proportionality is dif­

ferent for each mode. Thus reducing the power input should also reduce the kinetic 

energy of the modes. The total power input depends partly on the local behaviour at 

the control point and therefore might have a strong relation between local behaviour 

and the control force. The power input to the system can be calculated as: 

(3.9) 
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\iVhere W d and We are the velocities of the structure at the disturbance and control 

location respectively. This can also be written in the frequency domain as: 

P(jw) lR (f:Wd(jW) + f~wc(jw)) 
lR (f:w~a(jw) + f~w~a(jw)) 
lR (f:Cd<pw(jw) (Bdfd + Befe) + f~Ce<pw(jw) (Bdfd + Befc)) 

(3.10) 

Where Wd and We are the velocities in the frequency- domain at locations of the 

primary and secondary respectively. In equation 3.10 Cd<pw(jw)Bd is the mobility 

matrix Y dd, which is the response of the velocity of the structure at Xd to the forces 

at that same point. For the control locations, a different mobility matrix, Y cc , can 

be derived. For the cross terms, cross mobility matrices Y cd and Y de are defined. 

Ycd and Y de are each other's transpose. Using the mobility matrices in equation 

3.10 and splitting the functions in their real and imaginary parts results in: 

P(jw) lR (f:Yddfd + f:Yedfe + f~Ydefd + f~YcJc) 

lR (fd)T lR (Y dd) lR (fd) + n (fd)T lR (Y dd) n (fd) 

+2lR (fef lR (Y de) lR (fd) + 2n (fef lR (Y de) n (fd) 

+ lR (fef lR (Y cc) lR (fe) + n (fef lR (Ycc) n (fe) 

(3.11) 

(3.12) 

This is a quadratic equation which can be minimised in the same way as described 

in section 3.1.1.1 if lR (Yce ) > o. For a passive system, the real part of the mobility 

is always larger than zero, otherwise power extraction from the system would be 

possible. That would imply that a power source is present in the system, which 

can not be the case for a passive system. The minimisation leads to the following 

equation for the control force: 

(3.13) 

Note that for this solution to be unique, the mobility matrix may not be rallk­

deficient. By using this control force, the response at each frequency can be cal­

culated. In figure 3.4(a), the spectrum of the kinetic energy of the beam has been 

depicted before control and when the total power input is minimised. The results 

that were obtained by minimising the kinetic energy are also depicted. The excita­

tion was again assumed to be randomly distributed and to have a white spectrum. 

The close-up on a small portion of the frequency-range in figure 3.4(b) shows that 

the kinetic energy is not reduced as much when the kinetic energy is minimised. 

However, the differences are minimal. 
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Figure 3.4: Spectrum of the kinetic energy of the beam with and without control 

minimising the total power input into the beam, excited by a randomly distributed 

excitation and controlled at 0.6 of the length of the beam. 
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3.1.1.3 Maximum power absorbed by controller 

Instead of minimising the power input by both the controller and disturbance forces, 

another possible effective strategy might be to maximise the power absorbed by the 

control force. Instead of minimising equation 3.9, this means the following equation 

is minimised: 

Which, in the frequency domain, results in: 

P(jw) lR (f~we(jw)) 

lR (f~Ce<p(jw) (Bdfd + Befe)) 

lR (f~Ydefd + f:-!Yeefe) 

lR (fef lR (Y de) lR (fd) + TI (fef lR (Y de) TI (fd) 

+lR (fef TI (Y de) TI (fd) - TI (fef TI (Y de) lR (fd) 

+lR (fe)T lR (Yee ) lR (fe) + TI (fef lR (Yee ) TI (fe) 

The optimal feedforward controller then becomes: 

(3.14) 

(3.15) 

(3.16) 

Again for this solution to be unique, the mobility matrix may not be rank-deficient. 

Figure 3.5 shows the spectrum of the kinetic energy of the beam with a randomly 

distributed excitation. It can be seen that this control strategy actually increases 

the kinetic energy density for much of this frequency range, rather than reducing it. 

3.1.2 Unconstrained feedback control 

In the previous section unconstrained feedforward optimisation was considered. It 

was shown that optimal controllers can be defined uniquely if there are sufficiently 

more modes in the model than control locations. However, in the case of a structure 

excited by a randomly distributed excitation, the disturbance forces are unlikely 

to be available as a reference. This section therefore explores the optimisation of 

feedback controllers, as illustrated in figure 3.6. The optimisation can be considered 

as: Given a certain distribution of excitation at a certain jr-equency, what should 

the phase and gain of the controller be to optimise the specified cost function? This 
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Figure 3.5: Kinetic energy of the beam with and without optimal feedforward con­

trol, maximising power absorption, excited by a randomly distributed excitation and 

controlled at 0.6 of the length of the beam. 

Figure 3.6: Feedback control of the beam 

seems very similar to the optimisation of the feedforward controller, but force gen­

erated with the feedback controller is constrained to be proportional to the velocity 

measured at the control point, whereas this was not necessary for the feedforward 

controller. The results are therefor slightly different. The results are not expected 

to be feasible for a broadband excitation, but provide an intermediate step between 

feedforward with complete knowledge of the disturbance and causally constrained 

feedback control. It is hoped that the optimisation of the different feedback control­

lers will show a clear relation to the local dynamics. 
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3.1.2.1 Minimum kinetic energy 

In section 3.1.1.1 the kinetic energy as a function of the disturbance and control 

forces was considered in equations 3.5 and equation 3.6. In a feedback situation the 

control signal is a function of the velocity at the control point: 

G(jw)wAjw) 

G(jw) cex(jw) 

G(jw)CcPw(jw) (Bdfd(jW) + BefcCjw)) 

[I - G(jW)CePw(jW)Ber1 G(jw)CePw(jW)Bdfd(jW) 

[I - G(jW)Yeer1 G(jW)Ydefd(jW) (3.17) 

Combining this with equation 3.6 and dropping (jw)-terms from the notation for 

brevity results in: 

[f:B~ + f~B~] P~ Qpw [Bdfd + Bcfe] 

f: [B~ + YZGH [I - GYcerHBn P~Q<l>w 
. [Be [I - Gyeer 1 GY de + Bd] fd (3.18) 

Differentiating the cost function with respect to the elements of G, and setting the 

derivative equal to zero results in the following equation: 

o = 2 [I - Gyeer
H B~<l>~QPwB~fdf:YZ [GH [I - GYeerHYt~ + I] 

+2 [I - Gyeer
H B~ <l>~ Q<l>wBe [I - Gyeer 1 GY defdfJiy~~ 

. [GH [I - Gyeer
H Y~ + I] (3.19) 

This equation is not a linear equation like equation 3.7. This is because equa.tion 

3.18 is not a quadratic equation in terms of G. The consequence of this is that there 

ma.y be more than one solution G that satisfies equation 3.19. It is found though 

that only one of the solutions corresponds to a minimum in the cost surface. 

For brevity in notation, the following matrices are defined: 

8 1 B~P~Q<l>wBdfdf:YZ 

8 2 B~P~Q<l>wBe 
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provided that the inverses of 8 2 and [83 - Yee8;-181] exist, the solution of equation 

3.19, corresponding to a minimum in the function is given by: 

(3.20) 

Equation 3.20 still contains the actual disturbance forces fd' To obtain a defined gain 

that is independent on the actual force, a randomly distributed pressure excitation 

is assumed. As explained in section 2.3 this results in independent excitation of en,ch 

of the modes. In equation 3.19, [BdfdffBI] is then changed to an expectation, P 

of the excitation of the modes. In a single-channel analysis this results in: 

B~ <I?;'; Q«P wP«p;';Be 
(3.21) 

Figure 3.7 shows the spectrum of the kinetic energy of the beam with a white, 

randomly distributed excitation, with this feedback control. Results are similar to, 

but not quite as good as the feedforward control in equation 3.2. 

3.1.2.2 Minimum power input 

By combining equation 3.10 and 3.17 the power put into the system can be calcu­

lated: 

P(jw) lR (ff Cd«Pw (Bdfd + Befe) + f:; Ce<I?w (Bdfd + Befe)) 

lR (ff Y ddfd + ff Yedfe + f:; Y defd + f:; Y eefe) 

lR (ffYddfd + ffYed [I - Gyeer1 GYdefd 

+ffYZGH [I - GYeerHYdcfd 

+ffYZGH [I - GYeerHYee [I - Gyeer1 GYdefd) (3.22) 

Taking the derivative with respect to the elements of the feedback gain matrix G of 

this cost function results in: 

ap(jw) 
aGH 2 [I - GY ccr

H 
[lR(Y de)fdffY de 

+lR(Yec) [I - GY ccr l GlR (YdefdffY%c)] 

. [GH [I - GYeerHy~ + I] 

+2 [I - GY ccrHIT(Yee ) [I - Gyeer l GIT (YdcfdffY~~) 

. [GH [I - GYeerHy~ + I] (3.23) 
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This is not easily solved, unless 1I (Ydcfdf,fY:C) = 0, in which case the solution is 

given by: 

G = -lR(Ycc)-llR(Ydc)fdf,fYZ [lR (Ydcfdf,fY:C) - YcclR(YcctllR(Ydc)fdf,fy~.]-1 
(3.24) 

This is only true if the required inverses exist, otherwise the solution is not uniquely 

defined. Note that for the randomly distributed excitation, 1I (Y dcfdf,fY:C) is indeed 

equal to 0. In a single-channel case the solution can be simplified to: 

G = _ B~lR( ~w)P<I>~Bc 
lR(Ycc)Br~wp~c:;Bc - YccBrlR( ~w)P~c:;Bc 

(3.25) 

Figure 3.7 shows the spectrum of the kinetic energy of the beam with a randomly 

distributed, white noise excitation, with this type of feedback controL As with 

feedforward control, there is little difference with the optimal minimisation of the 

kinetic energy. 

3.1.2.3 Maximum power absorption 

By combining equation 3.15 and 3.17 a feedback control force, maximising power 

absorption, can be calculated: 

P(jw) lR (f~Ce~w (Bdfd + Befc)) 

lR (f~Ydcfd + f~Yecfc) 
lR (f:YZGH [I - GyeerHYdcfd 

+f:YZGH [I - GYeerHYee [I - Gyeer1 GYdefd) 

Differentiating with respect to the feedback gain matrix gives: 

8P(jw) 
8GH [I - GYeerHYdefdf:Yde [GH [I - GYeerHY~I] 

+2 [I - GyeerH lR(Yee) [I - Gyeer
1 GlR (YdefdfJ{Y~~) 

. [GH [I - GYeerHy~ + I] 

+2 [I - GYeerHlI(Yee) [I - Gyeer
1 

GlI (Ydefdf:YZ) 

(3.26) 

. [GH [I - GyeerH Y~ + I] (3.27) 

Which is again difficult to solve, unless 1I (Y defdf:YZ) - 0. in which case the 

solution is: 

(3.28) 
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Figure 3.7: Kinetic energy of the beam with and without opt imised feedback control, 

respectively minimising total kinetic energy (thin line), the tot al power input (dot­

dashed line) or maximising the power absorbed by the controller (dashed line), when 

the beam excited by a randomly distributed excitation and controlled at 0.6 of t he 

length of the beam. 

which is the well known case of matched conjugate impedance. This control method 

shows a very clear relation to the local characteristics of the structure. In a single­

channel system: 

G = - 1/~~ (3.29) 

Again, figure 3.7 shows the spectrum of the kinetic energy of t he beam with a 

randomly distributed excitation, with this feedback cont rol. As with feedforward 

control, maximising the power absorption leads to an overall increase in t he kinetic 

energy. 

3.1.3 Summary 

It has been shown that , to obtain a unique optimal solution both t he number of 

modes taken into account and the number of independent sources of excitation must 

be equal to or larger than the number of control locations. It was also seen t hat 
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the strategy of minimising the total power input gives results that are wry clm.;e to 

optimum control of kinetic energy. Unfortunately, the feedback strategies of either 

of these controllers did not depend solely on the mobility of the structure at the 

control points. The feedback strategy of optimal power absorption did show a very 

clear, direct relationship with the mobility at the control location, but unfortunately 

increased, rather decreased, the kinetic energy in the structure itself. Finally, it can 

also be seen that the optimum controllers are non-causal, thus they are inapplicable 

in the case of a broadband randomly distributed excitation. 

3.2 Constrained feedback control 

This section examines constrained controllers. Specifically, the controllers have been 

constrained to be causal and use a limited control effort. Because the optimisation 

can not be done on a per frequency basis while ensuring stability, the expectation 

of the cost function will be minimised. Section 2.2.1 described how the expectation 

of a quadratic cost function can be evaluated for a general state space model. Here, 

it will be shown how the same techniques can be used to calculate the cost function 

in a feedback situation. 

Doyle et al. (1989) showed a general structure for calculating an optimal dynamic 

feedback controller to minimise a quadratic cost function. However, Linear Quad­

ratic Gaussian (LQG) control is used as a comparison for the constrained controller, 

due its simple and easy to comprehend structure. For the design of the LQG COll­

troller, the reader is referred to available literature, e.g. Stein and Athans (19S7) 

and Skogestad and Postlethwaite (1996). LQG control uses an internal model of the 

system to estimate the states of the system. The inputs of the estimator consist of 

the measured response and the control signal. Though the strategy can perform well 

in this way in a single-channel system, it is not particulary suitable to use multiple 

S1SO LQG controllers on the same structure, as the other control signals are not 

available to the estimators at anyone point. This would then result in a worse 

estimation of the states of the model. Furthermore, combinations of differences in 

modeling might result in instability. Therefore LQG control is considered as a ref­

erence rather than as a candidate control strategy for the problem set out in this 

thesis. 
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LQG control strategies require control effort weighting as part of the design. As it 

is undesirable to use very high control efforts and it is desirable to compare control 

strategies on an even footing by making sure they use the same control effort, the 

inclusion of control effort weighting in the cost function is considered in section 3.2.1. 

To simplify relating the variables of the controller to structural variables, a constant 

gain, absolute velocity feedback controller is examined in section 3.2.2. 

3.2.1 Limitation of control effort 

The control effort can be limited by including it in the cost function. The control 

effort is defined here as the sum of the squared control signals, u. This changes the 

original cost function for kinetic energy, equation 2.30, to: 

J = E [xT(t)Qx(t) + uT(t)Ru(t)] (3.30) 

where R is a diagonal weighting matrix, introduced to weigh the control effort 

relative to the cost criterion described by Q. The on-diagonal elements are all 

chosen to be equal, to weigh the effort at different control locations equally. Other 

cost functions, such as minimum power input, or maximum power absorption can 

be similarly adapted, by adding the term E [uT(t)Ru(t)] to the relevant function. 

3.2.2 Absolute velocity feedback 

3.2.2.1 Introduction 

Constant gain, absolute velocity feedback has been examined as a control method 

since some of the earliest publications of active vibration control (Olson (1956), 

Rockwell and Lawther (1964), Knyazev and Tartakovskii (1965) and Knyazev and 

Tartakovskii (1967)). This is for its obvious stability advantages, as illustrated by 

Balas (1979), as well as good performance. Here, a constant gain, absolute velocity 

feedback is used in a single local control loop, as illustrated in figure 3.8(a) and a 

the state space diagram in figure 3.8(b). The control signal, u, is the control force 

fe. z are the outputs whose squared, weighted and summed output is equal to the 
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(a) On the structure (b) State space diagram 

Figure 3.8: Constant gain velocity feedback control. 

cost function, as defined in equation 2.28. In state space notation: 

X Ax + Bdfd(t) + Befe(t) 

y Cex 

u fe = -gy; (3.31) 

or: 

(3.32) 

The cost function for kinetic energy, equation 3.30 can then be written as: 

(3.33) 

Where R is the single-channel weighting factor associated with the control effort and 

Q is the modal weighting matrix. Using the analysis in sections 2.2 and 2.3 this can 

also be written as: 

Jke = trace (100 

4">~(o-) [Q + c~ gT RgCc] 4">e((j)d(jP) (3.34) 

If this is compared to equation 2.45, the added term due to the control effort is clearly 

visible. The other difference is that the function 4">(t) is replaced by 4">c(t). 4">c(t;) 

is the fundamental transition matrix for the controlled system which is defined as 

equation 2.32, but the matrix A, which described the uncontrolled system is replaced 

by the Ae, which describes the dynamics of the controlled system. For this constant 

gain, output feedback controller, the matrix Ae is defined as: 

(3.35) 

Thus, 4">e(t) is: 

(3.36) 
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For the calculation of minimum po,,"er input and maximum power absorption. the 

cost functions can be \vritten in a similar form to equation 3.34. The power input 

in a steady state situation is equal to the sum of power dissipated in the structure 

(equation 2.55) and the power absorbed by the controller (equation 3.14): 

P;n = E [XT(t)M [~ N~'] x(t) + fo(tf .,,(t)] 
E [XT(t)Qabs structx(t) + x(tfC~ gCcx(t)] 

Including the control effort weighting results in: 

(3.37) 

For the maximisation of the absorbed power by controller, the cost function to 

maximise would become: 

(3.39) 

The control effort has been included in a negative way, because the optimisation is 

a maximisation rather than a minimisation. 

3.2.2.2 Optimisation 

Figures 3.9(a) and 3.9(b) show the kinetic energy of the beam as a function of 

the feedback gains. For the structural models examined, the minimum can not be 

practically calculated in an analytical way from the cost function, equation 3.34. 

Moreover, when optimising output feedback controllers, it is difficult to prove that 

a local minimum of the cost function is also the global minimum. This is discussed, 

amongst others, by Levine and Athans (1970). They used an algorithm to find a 

minimum of the cost function, but also noted this algorithm is not guaranteed to 

converge. A different algorithm is used here, which is similar to one discussed by 

Anderson and Moore (1971) and is essentially a gradient descent algorithm. This 

section describes how this algorithm is implemented for the single-channel controller. 

Levine and Athans (1970) examined a general state space model: 

x(t) 

y(t) 

Ax(t) + Bcu(t) 

Ccx(t) 

(3.40) 
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Figure 3.9: The change in the spectrum of and the expectation of kinetic energy of 

the beam under white noise excitation as a function of the constant velocity feedback 

gain. The beam is controlled at x = 0.6L. 
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with constant output feedback gain: 

u(t) = -Gy(t) (3.41) 

The cost function that was used in that paper is an initial value problem: 

J = XT(O) 100 

.p~(t) [Q + C~GTRGCc] <I>c(t)dt x(O) 

trace (100 

.p~(t) [Q + C~GTRGCc] <I>c(t)dt x(O)xT(O)) (3.42) 

It can be seen that equation 3.42 is similar to equation 3.34, with X(O)XT(O) replaced 

by P. If the system is asymptotically stable and the matrix [Q + C~GTRGCc] is 

positive semi-definite, the cost is equal to (Kalman and Bertram (1960)): 

Jke = trace (KP) (3.43) 

with K the positive definite solution of the Lyapunov equation: 

(3.44) 

The derivative of the cost function, Jke , with respect to the elements of the feedback 

gain matrix, G, is equal to: 

(3.45) 

where K is the solution of equation 3.44 and L is the solution of: 

(3.46) 

Because the matrices K and L in equation 3.45 also depend on the matrix of feedback 

gains G, the optimal feedback gains can, generally, not be directly established and 

a convergent algorithm must be used. 

Using the derivative of the feedback gain, a simple algorithm can be formulated tha.t 

will converge to a minimum on the cost function, if started at an initial stabilising 

controller Go. The algorithm used here is similar to that in Anderson and Moore 

(1971): 

- For the kth iteration, calculate the cost Jk using equations 3.43 and 3.44. If 

k = 0, use the initial stabilising controller Go. 

- Calculate the derivative of the cost function 8Jk /8Gk, using equation 3.45. 
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- Update the gain matrix G" according to: 

(3.47) 

where E is a small value to regulate the stepsize and IF denotes the Frobenius 

norm. This norm is included to keep the stepsize in G", independent of the 

size ofthe values in oJ",/oG",. 

- Check that the system is stable at these new gains and, if that is the case, 

calculate the cost Jk+l using equations 3.43 and 3.44. The controller is stable 

if all the eigenvalues of the matrix [A - BcGCcl are in the left-half of the 

complex plane. If the system is no longer stable or Jk+1 > J"" reduce the 

stepsize E, because the update has overshot the stability margins or an area 

where the cost is lower. Repeat the previous step and this step, until the 

system is stable and Jk+l < Jk, then repeat from beginning. 

- To stop the optimization, a suitable criterion can be chosen, such as a suffi­

ciently small update in the gains, or a sufficiently small improvement in the 

cost function. 

Though it can not be proved that the algorithm converges to a global minimum, 

it is found in practice that the controller does converge to the same set of gains, 

independent of the choice of initial controller. The only exception found in the 

course of this research is in a multichannel situation, when the control locations (I,re 

located very close together (Engels and Elliott (2005) and in this work, chapter 4). 

Therefore, for ease of formulation, applying the above algorithm will be referred to 

as optimisation. 

For a single-channel case, the feedback matrix G only consists of a single element, 

but the theory and the algorithm described above remain valid for a multichannel 

controller. For the optimisation of the kinetic energy function in figure 3.9(b) with 

no effort weighting, this algorithm calculates an optimal gain of 30.8 Ns/m. 

3.2.2.3 Power minimisation and power absorption maximisation 

Solutions for the minimisation of the power input and maximisation of the power ab­

sorption can also be calculated using the above algorithms, though the cost matrices 

and the derivatives change. 
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For maximum power absorption, the cost function in equation 3.39 can be calculated 

in a similar fashion as in the previous section: 

Jp abs = trace (KP) 

Now, the matrix K should be calculated from: 

instead of equation 3.44. The gradient of equation 3.48 is: 

8Jpabs = C LCT - 2BTKLCT - 2RGC LCT 
8G c c c c c c 

(3.48) 

(3.49) 

(3.50) 

As the cost function is maximised for this case, instead of equation 3.47, the update 

should be: 
E 8Jk 

G k+1 = G k + IF [8Jk /8G k ] 8G k 
(3.51) 

For minimum power input, the matrix K would be calculated from 

(3.52) 

in stead of equation 3.44. However, it was found that the power input by the excit­

ation is independent of the control gain and the power absorption by the controller, 

as was also found by Nelson (1996). This can be seen in figure 3.10, which shows 

the power input by the excitation and the power absorption by the controller as a 

function of the direct velocity feedback gain. 

That the power input by the excitation does not change means that minimising the 

total power input and maximising the power out.put are the same. That the power 

input does not change can also be seen from the similarity bet.ween equatioll 3.42 

and equation 3.34. The expectation of the power input when the structure is excited 

by a random modal forces, is equal to the energy input of the initial value problem, 

with uncorrelated impulse (in the case of white noise) or step (in case of red noise) 

response of the modal amplitude. Similarly, the expectation of the power illPut 

by the excitation is equal to the energy in the system at f; = 0 due to the illitial 

conditions in the time domain analysis. Influencing the matrix P and thus the total 

power input is only possible in a feedback situation if there is direct feedthrough from 

the disturbance to the sensor output and also to the control force. An example of 

this would be constant gain acceleration feedback. Figure 2.8 indicates that velocity 

feedback on a red-noise excited system has no direct feedthrough either. The gain 

that maximises power absorption is higher than the gain that minimises the kinetic 

energy. In this case the algorithm calculates a gain of 179 Ns/m. 
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Power input and absorption as a function of feedback gain 
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Figure 3.10: Power input by the excitation and power absorption by the controller 

as a function of the direct velocity feedback gain. 

3.2.2.4 Approximation by limiting the number of modes 

It would be interesting if one could find the optimum feedback gain for a single 

channel system analytically on the basis of characteristics of the beam and the l1l0d­

eshape amplitude at the control location. This would require the analytical solution 

of equation 3.43. For high numbers of modes this is not practically achievable. 

However, for low numbers of modes and under special assumptions, this may be 

achievable. The value for the feedback gain obtained in this manner will not be the 

optimal value for the complete beam model, but may be a usable approximation of 

the optimal value. 

The simplified model for the first approximation is a beam of which only the first two 

modes are taken into account and with a single control loop. The modes are assumed 

undamped and independently excited by white noise. To simplify the problem even 

further, no cost is put on the control effort. Under these assumptions, equation 

3.43 can be solved analytically. More specifically, the required elements of K can be 
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solved from the L:yapunov equation: 

(3.53) 

The matrices can be written out as: 

kn kI2 kI3 kI4 0 0 1 0 

kI2 k22 k23 k24 0 0 0 1 
K= and A - BcgCc = 

kI3 k23 k33 k34 -w2 0 9 2 'ljJ2 - 9 if '1/)1'1/)2 I -MI 

kl4 k24 k34 k44 0 -w2 -g ;1'l/JI'l/)2 2 2 
2 -g Af '1/)2 

where 'l/JI and 'l/J2 are the amplitudes of the first and second mode at the control 

location and WI and W2 are the resonance frequencies of those modes. The cost 

function is the trace of the multiplication of P w and K in the case of white noise 

excitation, which amounts to: 

(3.54) 

where c is some constant. Equation 3.53 offers enough independent equations to 

solve k33 and k44 as a function of g, WI, WI, 'l/JI and 'l/J2. The solution results in a 

positive and a negative solution for both values, but as they denote energy, it has 

to be the positive solution. Thus the cost function can be written as an analytical 

function dependent on g. The minimum of this function is found by differentiating 

the equation with respect to 9 and equating to O. The optimal gain for the two 

mode beam can then be calculated as: 

AI w~ - wi 
9 = - -r=~=~=::::;:~==;::=::;:= 

2 v('l/Ji + 'I/)~) ('l/Jiw~ + 'l/J~wi) 
(3.55) 

or for a generic, modal structure: 

W~ -wi 
9 = ----;::.================= (3.56) 

where NI and N2 are the integrals of the squared first and second modeshape, 

respectively, divided by length or surface of the beam or plate. 

This formula can will be referred to as the two-mode formula. During the derivation 

it is assumed that both 'l/h and '1/)2 are not equal to O. Logically, if the controller can 

only affect one mode, and not the other, it should clamp that mode. However, if 

the controller can only affect one mode, the cost will be infinite, as the other mode 

is unable dissipate its kinetic energy. Despite this, one can see that if one of the 'I/;'s 
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is zero, equation 3.56 still results in a finite feedback gain. Therefor, the gaill is still 

used in that case. 

The same analysis can be done when three modes are taken into accoullt. The 

formula for the optimal feedback gain then becomes rather more complex: 

(3.57) 

This formula will be referred to as the thTee-mode formula. If damping factors are 

included on the different modes, the equation becomes much more complicated and 

is no longer practical to use. 

Both these equations are similar to results described in Variyart et al. (2002), on 

the basis of an analysis of spillover to other modes. But where in that paper, the 

cross-spillover from modes is ignored, it has been included here. That paper did 

include more modes though. 

Another possible approximation is to use a single gain, independent of the amplitude 

of the modeshapes, '1/Ji(Xc ), at the point of control. On the basis of equation 3.56 a 

gain could be tuned solely on the first and resonance frequency: 

(3.58) 

where c is a constant yet to be determined. This formula will be referred to as the 

simpl~fied two-mode formula. 

3.2.2.5 Approximation by matching impedance to an infinite structure 

For a plate, a constant gain can be matched to the impedance of an infinite plate. 

This would correspond to a maximum power absorption strategy if there is no damp­

ing and there are no reflections of the bending vibrations in the system, along the 



Chapter 3. Single-channel control 60 

boundaries or, in a IvIIl\'lO set-up, from other control locations. The impedance of 

an infinite plate is (Cremer et al. (1988)): 

Z = 8VPhEI (3.59) 

To match this impedance, the feedback gain of the velocity feedback, should be set. 

equal to this value. 

For the beam, the impedance of an infinite structure is given by (Cremer et aI. 

(1988)): 

Z = 2wmk (1 + j) (3.60) 

where k = \I w;r;. This impedance contains a complex component and inC'l'eases 

with frequency. Therefore, matching the (conjugate) impedance of the beam will be 

impossible with a fixed gain method. Considering that t.he energy in the beam is 

located relatively more at lower frequencies, it. is expected that an approximation 

based on the two- or three-mode formula is better suitable for the beam. 

3.2.3 Simulations on a beam and plate 

This section will examine how optimised direct constant. gain feedback compares 

to the approximations defined above. The relation between cont.rol effort. and t.he 

reduction of the kinet.ic energy will also be considered for bot.h constant. velocit.y 

feedback control and LQG control. Last, performance, control effort. and t.he con­

trol strategy dependent feedback gains will be looked at in relat.ion to the cont.rol 

location. The cont.rol st.rat.egies will be applied first. t.o the beam model and t.hen to 

t.he simply supported plat.e model. 

3.2.3.1 Beam results 

Figure 3.11(a) shows the amount. of cont.rol effort required to obtain a specific change 

in kinetic energy, for LQG and absolut.e velocit.y feedback control. For a single 

channel, t.he control effort. for velocity feedback control is only dependent on t.he 

gain. To create the curve, the controller is optimised for varying magnitudes of 

the control effort weighting R. Optimising for varying values of R prevents an 

overshoot. of the optimal control gain. Using a higher than optimal gain can result 
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Figure 3.11: The change in the overall kinetic energy as a function of the control 

effort and the spectrum of the kinetic energy of the beam at a specific effort, for 

LQG and velocity feedback control. The control location is at x = 0.6L. 
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in more effort but less performance. this is indicated with the dotted line ill figure 

3.11(a). The figure shows there is only a small overall performance advantage in 

using LQG control over absolute velocity feedback control when the same control 

effort is applied. For these simulations only the first 30 modes of the beam were 

taken into account. 

Figure 3.11(b) shows the spectrum of the kinetic energy of the beam with an LQG 

controller and a velocity feedback gain tuned to use a fixed control effort of 200 ± 
1 N2 . The small overall performance difference seen in figure 3.11 (a) results in H 

few decibels less kinetic energy at some peaks in spectrum. At other points, the 

performance is similar or sometimes worse than absolut.e velocity feedback control. 

The effort can be fixed by varying the weighting of the control effort, until the desired 

control effort is achieved. The control effort is the expectation of the sum of the 

squared control forces. 

Figure 3.12(a) and 3.12(b) show the velocity feedback gains and control efforts as a 

function of location for the following strategies: 

- a fixed effort weight velocity feedback minimising kinetic energy with the effort 

weighting, R, set to 1 . 10-5 

- a fixed effort weight velocity feedback maximising power absorption by the 

controller, with the effort weighting set to 1 . 10-4 

- the two-mode formula (equation 3.56) 

- the three-mode formula (equation 3.57) 

- the simplified two-mode formula, from equation 3.58, for c = 1/2, 1,2 

LQG control is not included in figure 3.12(a) as it does not have a specific 'gain' as 

it is a frequency dependent function. The gain that maximises power absorption by 

the controller is much higher than the optimal feedback gain and has a ripple in the 

gains along the beam with a spatial frequency equal to that of the 30th mode. That 

indicates that tuning for maximum power absorption is influenced by the higher 

order modes. Indeed, it was found that when more modes are included, the gains 

increase as well. For the simplified two-mode formula, c = 1/2 seems to correspond 

best to the level of the two-mode and three-mode formula, while c = 1 seems to 

correspond better with the actual optimisation. 

Figure 3.12(c) show the change in kinetic energy for the different control strategies. 
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Figure 3.12: Gains, efforts and change in kinetic energy for different control 

strat egies. For the simplified two-mode formula, several possible constants care 

examined. Gains for LQG control are not depict ed as t hat cont roller is complex and 

frequency dependent. 
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Figure 3. 12: Gains, efforts and change in kinetic energyfor different control 

strategies. For the simplified two-mode formula, several possible constants care 

examined. Gains for LQG control are not depicted as that controller is complex and 

frequency dependent . [continued] 
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The results for the different gains of the simplified hyo-mode formula are shmnl 

separately in figure 3.12(d). Figure 3.12(c) shows that a velocity feedback gain 

optimised for power absorption results in higher than necessary gains and ,,'ors0' 

overall performance. This is unexpected given that maximising power absorption 

and minimising the total power input are equal in this case and that minimising the 

total power input gave such good results in the unconstrained optimisation. 

Consider then, that the power input due to the excitation is fixed and does not 

vary with the feedback gain. In a steady state situation, the power input due t.o 

the excitation must be equal to the power absorption in the structure itself and the 

power absorbed in the controller. This means that maximising the power absorption 

minimises the power loss in the structure. This can be achieved in two ways. One 

is to reduce the modal velocities in the structure, which is what minimising the 

kinetic energy aims to achieve. The other way is by transferring kinetic energy from 

modes with high damping to the modes with low damping. This is undesirable as 

it increases the average kinetic energy in the structure. 

Figure 3.12(c) also shows that actuator locations close to nodes of the first three 

mode shapes should be avoided and that at about 10% of the length of the beam 

maximum reductions of about 10dB are achieved. The control effort is also large 

for actuator locations in these regions. For the simplified two-mode formula, c = 1 

seems to be the best value in terms of average reduction and control effort. Finally, 

the two- and three-mode formulas are quite effective at establishing a neal" optimal 

gain. 

The results so far have all been obtained with a white noise excitation. For red noise 

excitation, figure 3.13 shows the reduction-effort curve, for control at x = 0.6L, while 

gigures 3.14(a) and 3.14(b) show the reduction for the different control strategies. 

The first figure shows that there there is hardly any difference in performance 

between LQG control and constant gain velocity feedback control. That the LQG 

controller performs slightly worse at high efforts is due to the selection of the sensor 

noise variance in the design of the controller, which was set to 1 . 10-8 . 

Since the gains set with the appromixation formulas from section 3.2.2.4 are the 

same as in the white noise case, no figure was included here to show the gains in 

the red noise case. It was found that the optimised gains to minimise kinetic energy 
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Figure 3.13: Overall change in kinetic energy vs. control effort at the control location 

x = 0.6L, for red noise excitation of the beam. 

are slightly higher than they were in the white noise case. Gains for the optimal 

absorption of power were found to drop considerably, to about 2/3 of the gains for 

minimising the kinetic energy. Considering the mechanism explained above, this low 

gain is aimed at minimising kinetic energy transfer from the low frequency, lowly 

damped modes to modes that are damped more. 

The approximations of the optimal kinetic energy through the use of two- and three­

mode formulas resulted again in reasonable approximations to the optimal gain, 

though the gap in maximum performance has increased. Figure 3.14(a) seems to 

contradict figure 3.13 in that there does seem to be a difference between LQG and 

the absolute velocity feedback controller. This is due to the fact that both controllers 

were calculated using equal control effort weightings. This allows the LQG controller 

to use a higher control effort than the absolute velocity feedback controller and 

improve its performance. For the gains set with the simplified two-mode formula, 

the constant c = 1 still gives the best overall results. 
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Figure 3.14: Change in kinetic energy of the beam, in the case of red noise excitation. 
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Figure 3.15: The change in the overall kinetic energy as a function of the control 

effort and the spectrum of the kinetic energy of the simply supported plate at a 

specific effort, for LQG and velocity feedback control. The control location is at 

(x, y) = (O.24lx, O.6ly). 
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3.2.3.2 Plate results 

Figure 3.15(a) shows the overall change in kinet.ic energy, on the simply support.ed 

plate as a function of the power required for such a change, for an absolute velo­

city feedback controller and an LQG controller designed to minimise kinetic energy. 

Figure 3.15(b) shows the difference in the spectrum of the kinetic energy bet.vveen a 

constant gain feedback controller and an LQG controller for a fixed effort of 2 . 10~~ 

N2
. For these simulations, all the modes of the plate up to 5 kHz (1041iTadjs) have 

been taken into account, resulting in a total of 53 modes. 

Figures 3.16, 3.17 and 3.18 show the results of simulations of different control 

strategies on the simply supported plate model when the actuator posit.ion was 

varied on the plate. The following strategies have been examined: 

- a fixed effort weight velocity feedback minimising kinetic energy with the effort 

weighting, R, set to 1 . 10-5 

- a fixed effort weight velocity feedback maximising power absorption, with the 

effort weighting set to 1 . 10-4 

- a fixed effort weight LQG controller minimising kinetic energy, with the effort 

weighting set to 1.10-4 and expected measurement noise variance set to 1.10-5 

- the two-mode formula 

- the three-mode formula 

- the matched impedance of an infinite plate, from equation 3.59. For the simply 

supported plate, that gain is 31.87 Nsjm. 

Note that not all of the controllers show are shown in each set of figures. The LQG 

controllers are not shown in figure 3.16, as they have no specific gain. It can be 

seen from figures 3.16(d) and 3.16(e) that the two- and three-mode formula set the 

gain higher than the other control strategies. Note that the colour-range has been 

limited here to a maximum of 75 Nsjm and any value above this range is coloured 

as the maximum. The colour-range has been set equal for all plots in figure 3.16. 

The higher gains of the two- and three-mode formulas also cause in high control 

efforts, as can be seen in figures 3.17(d) and 3.17(e). 

Finally, figure 3.17 shows the changes in kinetic energy achieved by t.he different 
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control strategies. In general one can see that the nodal lines of the lllodeshnpes 

corresponding to lower resonance frequencies should be avoided if good control is 

desired. The higher gains set for optimal power absorption result in a smaller re­

duction of the kinetic energy in some areas compared to gains optimised for kinetic 

energy, but the differences are small. LQG control with a fixed effort weighting ob­

tains the best performance, but uses a higher effort. tvIaximising power absorption 

in this case, gives good results as well. Of the approximations examined, matched 

infinite plate impedance obtains the best performance, while having limited control 

effort as well. 

Appendix B shows the results for a red noise excitation, overall higher reductions 

where obtained and the differences between the different strategies are less notice­

able. 

3.3 Conel usion 

In this chapter different control strategies were examined for a single-channel set­

up. The goal was to examine if optimal tuning of the controller can be achieved 

based on only locally measured variables. Unconstrained feedforward and feedback 

control were examined to see if a relation can be found between the optimal vahw 

and structural values. Minimising the total power input and maximising the total 

power absorption were examined as alternatives to mininising the kinetic energy. 

None of these strategies resulted in a controller applicable for broadband feedback 

control. Minimising the total power input was a good approximation, but is llot 

just dependent on variables that can be measured at the control point, nor is min­

iming the kinetic energy itself. Maximising the total power absorption in a feedback 

situation is achieved by applying a conjugate impedance of the local mobility. This 

is obviously a very strong link to the local variables, but it resulted overall ill a 

significant increase, rather than decrease in the kinetic energy. 

Tuning constant gain velocity feedback control to optimally reduce the kinetic en­

ergy, requireds complete knowlegde of the dynamics of the system. It can not even 

be proven that only a single, global minimum or maximum exists for the optimisa­

tion of the absolute velocity feedback gain, only one minimum was found using a 
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Figure 3.16: Feedback gains as a function of controller location in x and y directions 

on the simply supporte plate, for different control strategies on a plate. 
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Figure 3. 17: Cont rol effort for different control strategies on a plate 
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Figure 3.18: Change in kinetic energy for different control strategies on a plate 
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convergent algorithm. It was found that the energy input into the modt'l caused 

by the random excitation could not be influenced with absolute velocity feedback 

control. That means that, for this case, maximising power absorption is equal to 

minimising the total power input. 

On the basis of the Lyapunov equation, used to calculate the kinetic energy of the 

structure under white noise excitation, approximation formulas were calculated on 

the basis of the analytical solution to a very simplified model containing onl~' a 

few modes and no damping. In these approximations, the gain only depends on 

the amplitude of the first few modeshapes at the control locations, the reSOWHlCt' 

frequencies of the structure and the total mass of the structure. Simplifying the 

formula even further resulted in an approximation that is only dependent on the mass 

and the eigenfrequencies of the structure and independent of the control location. For 

the plate, it was recognised that a constant gain can be set to match the impedance 

of an infinite plate, in which case the controller would maximise power absorption 

from an infinite plate. 

In simulations, it was found that the difference in overall performance at a spe­

cific effort between velocity feedback control and LQG control minimising kinetic 

energy is small. Furthermore, it was found on the beam that the approximations 

for the feedback gain based on a few modes give good performance. The location 

independent approximation (the simplified two-mode formula) also gave good res­

ults. Setting the control force to maximise the power absorption resulted in gain 

that were significantly unlike minimising the kinetic energy. This is clue to the fa.ct 

that maximising power absorption is also equal to minimising the power loss in the 

structure. This means the controller balances reducing the overall vibration with 

preventing kinetic energy entering well damped modes. It did not, however, increase 

the overall kinetic energy, as was the case with unconstrained control optimisation. 

LQG control with a fixed weight obtained best overall performance but with ouly a 

small overall difference. 

On the plate the approximations on the basis of the first few modes did not func­

tion as well, resulting in gains that were very high for large portions of the plate. 

Maximising power absorption and the matched impedance of an infinite plate did 

give results close the optimal feedback gain. LQG control performed best overall, 

but, again, the difference is small. 



Chapter 4 

Multi-channel control 

The previous chapter showed that in the single-channel case, the differences between 

LQG control and constant gain velocity feedback control are relatively small with 

collocated and dual sensor-actuator pairs and using equal effort. Setting' the feedback 

gain to maximise the power absorption results in reasonable performance, but on 

the beam the gains were often higher than the values required to optimally reduce 

the kinetic energy, resulting in a higher control effort. 

This chapter will examine multi-channel control. In particular, we invest.igat.e how 

the performance of the decentralised control strategy compares t.o a cent.ra.lised con­

troller. The analysis in a multi-channel (MIMO) system of the cont.rol strategies 

suggest.ed in chapter 3, is performed in t.wo parts. 

First, in section 4.2 optimised decent.ralised control is compared with centralised 

and LQG control. Second, section 4.3 compares opt.imised decentralisecl velocit.y 

feedback cont.rol and control using t.he gains ca.lculated with the approximat.ions 

suggest.ed in chapter 3. 

To start with, however, section 4.1 will describe how the optimised centralised and 

decentralised constant feedback gains can be calculated. 

The results in this chapter have been presented in several papers; Engels and Elliott 

(2004), Baumann et al. (2004), Engels et al. (2004), Engels and Elliott (2005) and 

Engels et al. (2006). 
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4.1 Optimisation of constant gain control 

Chapter 3 described how a single-channel constant gain feedback controller can 

be tuned to form a minimum in the cost-surface. In a multi-channel set-up, that 

algorithm has to be adapted to impose constraints for the controller to be decent­

ralised or to remain stable when it is centralised. This section shows how this can 

be achieved. 

4.1.1 Centralised control 

In section 3.2.2.2, an algorithm was described to calculated a single-channel con­

troller to find a minimum of the cost function. The algorithm described there can 

also be used for calculating a multi-channel controller. Specifically, it can be used 

to calculate a centralised multi-channel controller since equations 3.45 and 3.50 are 

written as full matrices. The only difference with the calculation of a single-clwunel 

controller is that stability becomes an issue for the centralised controller. 

The off-diagonal terms in a centralised velocity feedback controller cause a force 

at a different location to where the sensor is, as is illustrated in figure 4.1, and 

are essentially non-collocated control loops. As such they can cause instability, as 

illustrated in figure 4.1 (c). The gain of the off-diagonal terms must be limit.ed in 

magnitude if the system is to remain stable (Preumont et al (2002)). The algorithm 

discussed in section 3.2.2.2 prevents the controller becoming unstable by demanding 

at each optimisation step that the controller remains stable. 

It is interesting to note that the additional damping in the system introduced by the 

on-diagonal terms stabilises the effect of off-diagonal values of the controller which 

would otherwise make the system unstable if the on-diagonal terms were absent. 

Thus, a failure of equipment at one control location can destabilise the system if an 

optimised, centralised controller is used. 

4.1.2 Decentralised control 

Geromel and Bernussou (1979) discussed the optimization of a constant gain de-



Chapter 4. Multi-channel control 77 

G 

(a) M1MO control diagram (b) Centralised controller expanded 

(c) Off-diagonal elements of G can cause instability 

Figure 4.1: MIMO centralised feedback control. 

centralised controller, for the same system and cost functions as Levine and Athans 

(1970). The same algorithms can be used as for centralised control, except that 

the initial stabilising control matrix should be diagonal (off-diagonal terms set to 0) 

and that the gains are adjusted using the derivative with respect to the on-diagonal 

elements of the gain matrix: 

(4.1 ) 

where diag denotes a function that sets all off-diagonal terms of the matrix to O. 

For maximising the power absorption with a diagonal controller, the same procedure 

can be used, i.e. the off-diagonal terms of the gradient matrix (equation 3.50) and 

the initial matrix should be zero. 

For decentralised control, stability is guaranteed as long as all the gains remain 

positive. 
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Figure 4.2: Control locations of two channel controller on a beam. 

4.2 Comparison of centralised and decentralised 

control 

This section will investigate whether there is a significant difference in perform­

ance between centralised and decentralised constant gain feedback control and LQG 

control, for collocated force actuators and velocity sensors. Therefore, centralised 

and decentralised control are compared when the control location are varied across 

the structure and when the control effort is varied. If a small difference is found, 

that means that decentralised constant gain velocity feedback control can be a good 

approximation of the centralised, dynamic LQG controller. 

4.2.1 Varying control locations on the beam 

A two channel controller is considered in which the control locations Xcl and X c2 are 

at different points on the simply supported beam, as shown in figure 4.2. 

Figures 4.3(a) and 4.3(b) show, for the optimised centralised and decentralised con­

stant gain feedback controllers, the reduction in kinetic energy in comparison to the 

uncontrolled case as a function of the positions of the two control locations. The 

control effort weighting was fixed for all control locations to 1.0 . 10-5 . Along the 

line Xc1 = Xc2, a 8180 velocity feedback controller is obtained. 

It can be seen that best performance is achieved by avoiding the nodal lines of 
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the first few modes, symmetric placement around the mid-point of the benm and 

placing both controllers at the same end of the beam. Because the figures are very 

similar when the control locations are widely spaced, the difference between these 

two figures has also been plotted in figure 4.4. 

Figure 4.4 shows that the differences in performance between the centralisen ann 

decentralised controllers are small when the control locations are widely spa.cecl. The 

difference in performance if the control locations are closely spaced can be linked to 

the ability of the centralised controller to estimate the angular velocity of the beam 

in between the control locations and apply a corresponding negative moment. This 

is further examined in section 4.2.2. 

4.2.2 Analysis of the difference between centralised and de­

centralised control 

There is only a significant difference between optimal centralised and decentralisecl 

controllers if the control locations are closely spaced. Here, the performance differ- . 

ence is analysed by examining the structure of the controllers. 

4.2.2.1 Centralised controller 

When the control locations are closely spaced, the difference in velocity at the two 

locations may be a good measure of the angular velocity of the beam, around a point 

in between the two control locations, as shown in figure 4.5. 

( 4.2) 

The average of the two velocities would be a measure of the linear velocity at that 

point: 

(4.3) 

Similarly, the difference between the forces applied at the points would be a good 

approximation to a point moment input, whereas the sum of the forces would be an 

approximation to a single point force: 

mx ~ (12-II)b.x 

Ix ~ II + 12 

( 4.4) 

( 4.5) 
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Figure 4.3: Performance, measured as change in kinetic energy relative to the un­

controlled beam, of the centralised and decentralised control for velocity feedback 

control using two force actuators on the beam. Control locations at (XcI , Xc2 ). 
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Figure 4.4: Performance difference between the centralised and decentralised control, 

control locations are at (Xcl , Xc2)' 
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Figure 4.5: If the control locations are closely spaced, t he difference in the measured 

velocity may be due to the angular velocity of the beam. 
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If these approximations hold for small spacings between the controllers. the cent­

ralised controller can calculate the linear and angular velocity and apply an inde­

pendent force and moment in opposition to these motions, thus extracting power 

from the beam. Another favourable property of this system is that the control loop 

controlling the angular velocity approximates a dual system and should be stable, 

even for large gains. 

Thus, if the controller sets gains for velocity and moment feedback independently, 

then the controller looks like: 

Gsplit = [ 11//22 1/(26x) ] [9UJ 0] [ 1/2 1/2] (4.6) 
-1/(26x) 0 gQ 1/(26x) -1/(26x) 

or: 

G,pli' ~ [:;~ _:;~ 1 [g; go/~x21 [:;~ -:;~ 1 (4.7) 

where gw and gQ represent the feedback gains associated with the velocity and angu­

lar velocity feedback, at x. The matrices in equation 4.7 can be rescaled according 

to: 

Gsplit = [~ ~ 1 [9w/2 0 1 [~ ~ ] (4.8) 
V2 - ~ 0 gQ/ (26x 2

) ~ - ~ 
or: 

Gsplit = TGeq T ( 4.9) 

This rescaling has the advantage that T = [Tr1
, such that if G opt equals G 8p1if , G opl 

is a similar matrix to G eq . Hence they must share the same eigenvalues, which would 

be gw/2 and gQ/ (26x 2 ). Additionally, the columns of T should be the corresponding 

eigenvectors. 

Figure 4.6(a) shows the values of the eigenvectors of the optimal cent.ralised C:011-

troller, for control locations that are spaced 0.01 m apart and are placed at equal 

distances from a point x on the beam. It clearly shows that., when the control loc­

ations are closely spaced, the values of the eigenvectors are indeed equal to ±1/ J2 
for most of the length of the beam. The exception being when x is close to the ends 

of the beam, in which case the controller apparently does not approximate equation 

4.9. This is due to the cost placed on t.he cont.rol effort. 

The distance 0.01 m, chosen for figure 4.6( a) is below the shortest wavelength, of 

0.04 m, for the 50 modes included in the model. Hence the values of the eigenvectors 
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Figure 4.6: Values of the elements of the eigenvectors of the optimal centralised 

controller G opt , in the case in which a) D..x is small and constant and the position 

of the controller along the beam is varied, and b) the position is fixed and D..x is 

varied. 

should also be examined for different values of D..x. Figure 4.6(b) shows the values of 

the eigenvectors as the distance of the control locations to a point 0.45 m along the 

beam is decreased. This figure shows that the values of the eigenvectors converge to 

±1/ J2 as D..x tends to zero. It also shows that this effect is noticeable beyond the 

width of the smallest wavelength, as the values diverge at about D..x = 0.05 m. At 

this point the distance between two control locations is 0.10 m, which is significantly 

more than the shortest wavelength. The distance between the control locations for 

which the decompostion seems to hold is apparently not related to the wavelength 

of highest order mode. Indeed, simulations with different numbers of modes taken 

into account also place the transition of the values of the eigenvectors at D..x = 0.05 

m. 

The distance of 0.10 m between the controllers, for which the decomposition holds, 

matches the distance for x = 0.45 m in figure 4.4 at which the difference between 

centralised and decentralised control becomes noticeable. 

As indicated in figure 4.7, the eigenvalues also seem to converge to fixed values 

as D..x is reduced. These values can be compared to optimum gains calculated 

for decentralised angular and transverse velocity feedback control at the specified 
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Figure 4.7: Eigenvalues of the controller if controllers are spaced symmetrically with 

respect to the point x = 0.45L , for different distances 6 x. 

location. However, the gains deviate slightly at very small spacings. This may be 

due to coupling that can occur between the angular and velocity feedback gains. 

Though the controller can control rotation and translation velocities separately, it 

can also implement some coupling. 

If this mechanism is valid on the beam, it should work on the plate too. Simulations 

with 3 randomly placed control locations on the simply supported plate also showed 

hardly any difference between centralised and decentralised control unless the min­

imum distance between control locations was smaller than 0.04 m. This corresponds 

to a l/lOth of the maximum dimension of the examined plate, which is similar to 

what it was on the beam. 

4.2.2.2 Decentralised controller 

The decentralised controller can only give a local velocity feedback gain. Assuming 

that control locations are so closely spaced that equations 4.2 and 4.3 apply, the 
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feedback forces become: 

-gl (Wx + 6:.6.X) 

-g2 (tUx - 6:.6.X) (4.10) 

where hI and h2 are the feedback gains at x - .6.x and x + .6.x respectively. These 

forces can then be translated into a equivalent force and moment at x: 

-gl (wx + 6:.6. x ) - g2 (wx - 6:.6. x ) 

- (gl + g2) Wx - (gl - g2) 6:.6.x ( 4.11) 

- .6.Xgl (wx + 6:.6. x ) + .6.Xg2 (wx - 6:.6. x ) 

- (gl - g2) wx .6.x - (gl + g2) 6:.6.x2 (4.12) 

Equations 4.11 and 4.12 show that the equivalent force and moment can only control 

the linear and angular velocity independently if the decentralised gains gl and g2 

are equal, in which case the feedback gains associated with the linear and angular 

velocity are also equal. The tuning of the gains gl and g2 must then be a balance 

between obtaining control with linear velocity or angular velocity feedback. This is 

in contrast with centralised control. Centralised control can not only control linear 

and angular velocity independently, but can also set the corresponding values of the 

gains independently. 

Figure 4.8 shows the gains of the optimal decentralised controller as a function of 

.6.x. The increase of the gains to 200 Ns/m for small values of .6.x shows that 

the decentralised controller is then controlling the angular velocity, ra.ther than the 

velocity. This results in a controller that effectively pins the structure at .1;, and then 

absorbs power from the rotation of the beam around that point. If.6.x becomes very 

small, this mechanism is no longer optimal because of control effort weighting. 

4.2.2.3 Not a single minimum 

The fact that for the decentralised case, the controller balances two mechanisms of 

power extraction suggest tha.t there may be two local minima in the cost function. 

One of these can then be a global minimum. Figure 4.9 shows the relative kinetic 

energy of the beam for different combinations of feedback gains for Xc =[0.480 0.485] 

m. This figure clearly shows that, in this case, there are two local minima. The 
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Figure 4.8: The opt imised feedback gains of the decentralised controller for varying 

6.x, x = 0.45 m. 
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Figure 4.9: The kinet ic energy as a function of feedback gains with two velocity 

feedback loops at Xc = [0.480 0.485] m has 2 local minima. 
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one at the smaller feedback gains (gl ;::::; 0 Ns/m, g'2 ;::::; 20 Ns/m) gives n reduction 

of about 6 dB and is a controller that mainly relies on velocit~v feedback to rt'ciuce 

the cost, whereas the other at high gains (gl ;::::; g2 ;::::; 105 Ns/m) gives Cl reduction of 

about 9 dB and is a controller that relies on angular velocity feedback. If t.he control 

effort is included, the second minimum occurs at lower gains of about 200 Ns/m. 

The two minima only appear when the controllocatiolls are very closely spaced, for 

larger spacings, the 'saddle' area between the t.wo-minima disappears, as the required 

feedback gains to achieve the same angular velocity feedback become smaller and 

similar to the optimal velocity feedback gains. As the distances become even larger, 

the difference in and the average of the velocities at the two control locations art' no 

longer related to the linear and angular velocity at the point in between t.he control 

locations. In these cases only one minimum is found. 

For the comparison of cent.ralised and decentralised control, the existence of the two 

minima makes little difference, as the difference in performance between the two 

minima is small compared to the difference between the centralised and decentralised 

controller. 

4.2.3 Varying control effort on a plate 

As noted in chapter 3, it is important to compare the performance when equal 

amounts of control effort are used. Here, sixteen equally spaced control locations 

are used on the simply supported plate, as indicated in figure 4.10. At each control 

location, ideal velocity sensors are assumed that are collocated with ideal force 

actuators. For the comparison, centralised constant gain feedback, clec:entralised 

constant gain feedback and centralised LQG control are examined. 

Figures 4.11 ( a) and 4.11 (b) show the resulting expectation of the kinetic energy 

when each of the three controllers are optimised for kinetic energy, when the plate 

is excited by white or red noise, respectively. For the white noise excitation, the 

control effort weighting was adjusted such that the expected controller effort was 

equal to 300 N 2 for each controller. For the red noise, the level of excitation is far 

less and so the control effort was now limited to 3.10-3 N 2 for each controller. Note 

that in section 4.2.1 the control effort weighting was fixed and not the control effort 
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Figure 4.10: Equally spaced sensors and actuators on a simply support.ed plat.e. 

Each dot represents a collocated velocity sensors and point force actuator pair. 

itself. 

It can be seen from the figures that over all frequencies there is little difference 

between decentralised and centralised constant. gain control. LQG control gives a 

slight improvement for control of kinetic energy in the white noise case. For red 

noise, LQG control seems to perform less well than the constant gain controllers. 

This is due to the extent of the reductions that are achieved, which cause the SP11sor 

signals to be in the range of the sensor noise that was assumed in the design of 

the LQG controller. It is interesting to note that each of the gains in the optimised 

constant gain decentralised controller were of similar magnitude, but. that the optim­

ised centralised constant gain controller also had significant off-diagonal gains, even 

though these did not contribute significantly to the reduction in the cost fUllction. 

The overall difference in the cost function is difficult. to see from these plots and it 

is not clear whether this level of effort is most appropriate. Therefore, the overall 

reduction in the expected kinetic energy reduction should be examined as a fUllction 

of control effort. Figure 4.12(a) and 4.12(b) show the change in kinetic: energy as a 

function of the control effort for white and red noise excitation respectively, which 

has been computed by optimizing the three controllers with varying control efi·ort. 

weightings. It can be seen for white noise, that there is some advantage in using 

LQG control rather then constant gain feedback since for a given performance, the 

control effort is slightly lower. This difference is small though. 

For red noise there are nearly no differences between the controllers for low control 

efforts, but the LQG controller performs worse at higher control efForts, which is 

again due to the fact that the LQG controller takes sensor noise into account in 

the design, but that no noise was taken into account in the calculation of the cost 



Chapter 4. Multi-channel control 

Kinetic energy spectrum, white noise excitation 
o~----~----~------~--~~====~ 

- Uncontrolled 

-5 

::=::-10 
N 
I 
2.-15 
co 
:!2. 
z.-20 
'iii 
c: 
~ -25 
>-
e> 
~ -30 
Q) 

u 
'ai -35 
c: 

S2 
-40 

200 400 600 
Frequency [Hz] 

- - Decentralised 
. _. Centralised 
-.--- LOG control 

800 

(a.) KE vs. frequency, white noise 

Kinetic energy spectrum, red noise excitation 

1000 

-60 ,-----,----,------.----,-------, 

-70 

:;:J 
~ -80 
2-
co 
:!2. 
Z. -90 
'iii 
c: 
Q) 

"C 

1;)-100 
li5 
c: 
Q) 

,g -110 
Q) 
c: 

S2 

-120 

\ 
'\. 

- Uncontrolled 
- - Decentralised 
. _. Centralised 
----- LOG control 

.... ,,:::~ ---.. -.. ---.. -----. -.. ---------------------.. -------'-' -.. --J.' \. -.-I 
~-~ ./ 

-- c:;. _-.:.... __ -=--_-_ -=- :;:;: ./ 

_130~----L----L-----L----L----~ 

o 200 400 600 800 1000 
Frequency [Hz] 

(b) KE vs. frequency, red noise 

89 

Figure 4.11: Spectrum of expected kinetic energy (KE), assuming white or red noise 

excitation, before and after control, using different controllers optimised to control 

kinetic energy. The expected average control effort for each controller was limited 

to 300 N2 for white noise excitation and 3 . 10-3 N2 for red noise. 



Chapter 4. Multi-channel control 90 

function. The sensor noise was set to have a variance of 1 . 10-9 for tht' red nuise 

excitation. For white noise, the variance was set to 1 . 10-5 . In the design of the 

LQG controller, red noise .vas taken into account, by using the matrix Pl' defined 

by equation 2.47. The graphs comparing control effort and change in cost function 

could also provide an important design tool in determining the correct trade off 

between performance and control effort for a given application. 

From the figures it can be seen that there is little difference between the effectiveness 

of the different controllers. However, these results \vere obtained with the controller 

at particular points on the plate, \vhere certain modes cannot be controlled, as 

can be seen in figure 4.11 (a). It is not clear how this affects the results obtained 

and whether the same conclusions can be drawn for a different placement of the 

actuators. Therefore, the difference between the controllers for a give control effort 

has also been examined for randomly placed control locations. The number of control 

locations was limited to 5. It was found that the differences between centralised. 

decentralised constant gain and LQG control remain small, though LQG control did 

show slightly better performance in the case of white noise. LQG control elid not 

improve the performance in the case of reel noise excitation, because of the alllount 

of sensor noise considered in the design of the controller. 

4.3 Comparison of optimised and approximated 

decentralised velocity feedback control 

The comparison in section 4.2 found that a difference in performance between de­

centralised and centralised LQG control only occurs when controllers a.re closely 

spaced. As the close spa.cing of controllers was not found to contribute to trw per­

formance and required high control forces to generate the required moment, dose 

spacing is excluded from further comparisons. 

If it can now be shown that the difference in performance between the approxima­

tions, discussed in chapter 3 and optimal decentralised control is also small, then the 

difference between the approximations and the centralised controller must also small. 

This would satisfy the goal discussed in section l.3, that the decentralised control 

strategy should have comparable performance to an optimal centralised controller. 
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Figure 4_12: Change in expected kinetic energy (KE) as a function of effort, assuming 

white or red noise excitation, using different controllers optimised to control kinetic 

energy. 
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The comparison of the performance in the multi-channel set-up of the optimised 

decentralised control and the approximations is carried out separately for the plate 

and the beam structure. 

4.3.1 Comparison on the beam 

In this section optimised decentralised control is compared to the three-mode and 

simplified two-mode approximations and to decentralised maximum power absorp­

tion. Like the analysis in chapter 3, three aspects are examined: the obtained 

feedback gains, the control effort and the actual reductions in kinetic energy. They 

are compared by placing 3 control locations randomly along the beam, but not al­

lowing them to be within 0.1 m of each other or within 0.1 m of the ends of the beam. 

However, because setting the gains with the simplified two-mode and three-mode 

formula is not limited with respect to control effort, the effort weighting has beeu 

chosen small so it does not influence the optimisation of the gains significantly. 

Figure 4.13 shows a histogram of the gains for 3 control locations, pla.ced randomly 

500 times, but constrained to match the criteria mentioned above. The gain set 

with the simplified two-mode formula is not plotted as it is not location depeudent, 

its value for this beam is 35.9 Ns/m. The means of gains set with the differeut 

feedback strategies have been listed in table 4.1. The table shows that the gaills 

set with maximum power absorption were on average 3 times as high as the ideal 

gain for the white noise exicitation. This also has consequences for the control 

effort, as can be seen in figure 4.14. This figure also shows that the simplified two­

mode approximation has a remarkably constant control effort, over the GOO randolll 

locations it did not deviate more than 5% from the mean. 

Figure 4.15 shows the distribution of the performance of the different approxima­

tions. The mean overall reduction achieved with the optimised feedback gains was 

14.3 dB. The figure suggests that the simplified two-mode approximation is the best 

approximation, when using a white noise excitation. Though maximising the power 

absorption led to significantly higher gains and control effort, the differences in terms 

of performance are not as big. This is due to the nature of the cost surface. Figme 

3.9 showed that, for the single-channel case, the range of the gains performing close 

to optimal is quite wide, these results indicate that the same may is true in the 
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multi-channel case. The data from the above figures has been summarised in table 

4.1. The reductions for maximum power absorption and with the simplified two­

mode approximation are close to the optimum reduction obtained by minimising the 

kinetic energy. 



Chapter 4. Multi-channel control 

Histogram of feedback gains 
1200.-------.--------.-------.--------,-------~ 

1000 

800 

600 

400 

200 

C=::J Minimised kinetic energy 
Maximised power absorption 

_ Three-mode formula 

Feedback gains [Ns/m) 

94 

Figure 4. 13: Histogram of the gains of the controllers on the simply supported 

beam, for the random placing of 3 locations. Control gains are set to minimise 

kinetic energy, maximise power absorption or with the three-mode formula. 
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Figure 4.14: Histogram of the control effort on the simply supported beam, for the 

random placing of 3 locations. Control gains are set to minimise kinetic energy, to 

maximise power absorption or with the three-mode or simplified two-mode formulas. 
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Figure 4.15: Histogram of the changes in kinetic energy on the simply supported 

beam. Control gains are set to minimise kinetic energy, maximise power absorption 

or with the three-mode or simplified two-mode formulas. 

Strategy kin. energy power abs. 3 mode simpl. 2 mode 

WHITE NOISE 

Gain [Ns/m] 57.7 174 25.4 35.9 

1430 4770 527 797 

Reduction [dB(J / J)] 14.3 13.4 13.3 13.9 

RED NOISE 

Gain [Ns/m] 108 69.9 25.7 35.9 

1.21 0.77 0.27 0.40 

Reduction [dB(J / J)] 30.9 29.5 25.5 27.2 

Table 4.1: Mean results for different control strategies on the simply supported 

beam, for white and red, randomly distributed excitation. 
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The table also lists the results obtained for the red noise case. It can be seen that 

where the power maximisation used too large gains in the white noise case, in the 

case of red noise the gains are too low although good reductions are achieved with 

a wide range of average gain values. The simplified two-mode formula obtained the 

best results again. 

For the beam, with either white or red noise excitation, the simplified two-mode 

formula and maximising the power absorption by the controller perform well in the 

MIMO case. The two-mode formula does require a much smaller effort in both cases. 

4.3.2 Comparison on the plate 

On the simply supported plate, 5 control locations were used instead of 3 and the 

matched infinite plate impedance is used inst.ead of the simplified two-mode formula. 

Again, the controllers are not allowed to be within a distance of 10% of largest 

dimension to the edges of the plate or each other and have been otherwise placed 

randomly. Figures 4.16 and 4.17 show the dist.ribution of t.he gains and the control 

effort after optimisation. The result.s for the t.hree-mode formula have not been 

shown in these figures as the variance in the gains set. with this formula is quite 

large. Figure 4.18 shows the relative performance of t.he approximations to the 

optimised kinetic energy. 

The results have been listed in table 4.2. The first. result. that is obvious from both 

the figure and the table, is that the gains set to maximise power absorption remain 

much closer to those set to minimise the kinetic energy. Also, the variation in the 

control effort of the matched infinite plate impedance is very small, i.e. it is nearly 

independent on the placement of the controllers itself or the other controllers. For 

the white noise excitation, maximum power absorption and matched infinit.e plat.e 

impedance perform almost as well as the controller that minimises t.he kinetic: energy. 

Table 4.2 also lists the results for red noise. Unlike for the beam, the mean of the 

gains that maximise power absorption hardly changes. However, the difference with 

the optimal performance increases. For a red noise excitation, maximising power 

absorption is still the best approximation, followed by matching the impedance of 

an infinite plate. 



Chapter 4. Multi-channel control 

Histogram of feedback gains 
800~----~----~----~======~====~====~ 

I r==J Minimising kinetic energy I 
700 

I c:::::J Maximising power absorptionl 

600 

500 

400 

300 

200 

100 ~ 

OL-__ ~~, ~~~=m~lim~lm~lfu~~,~m'=~~~~n~~ ____ ~ ____ ~ 
o 20 40 60 80 100 120 

Feedback gains [Ns/m] 

97 

Figure 4.16: Histogram of the gains of the controllers on the simply supported plate, 

for the random placing of 5 control locations. Gains are set to minimise the kinetic 

energy or to maximise the power absorbed. 
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Figure 4.17: Histogram of the control effort on the simply supported plate, for the 

random placing of 5 control locations. Gains are set to minimise kinetic energy, 

maximise power absorption or with the matched infinite plate impedance formula. 
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Figure 4.18: Histogram of changes in kinetic energy on the simply supported plate. 

Gains are set to minimise kinetic energy, maximise power absorption or with the 

three-mode or matched infinite plate impedance formulas. 

Strategy kin. energy power abs. 3 mode matched imp. 

WHITE NOISE 

Gain [Ns/m] 32.8 30.8 75.7 31.9 

9.28.103 8.76· 103 14.5 · 103 9.03.103 

Reduction [dB(J / J)] 7.45 7.44 7.0 7.42 

RED NOISE 

Gain [Ns/m] 89.1 44.4 82.5 31.9 

9.9. 10-3 4.2 . 10- 3 4.6· 10- 3 3.0.10- 3 

Reduction [dB(J / J)] 17.5 17.1 16.1 16.6 

Table 4.2: Mean results for different control strategies on the plate, for white and 

red, randomly distributed excitation. 
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4.4 Conclusions 

This chapter examined the differences between optimal centralised and decelltralised 

constant gain feedback control and LQG control. It also examined the performance 

of decentralised control and the approximations discussed in chapter 3, for multi­

channel systems. 

It was shown that for the model problems considered with collocated force actuat­

ors and velocity sensors, there is little performance gain in using centralised static 

feedback gain control or LQG control over decentralised static feedback gain control, 

when equal control effort is used. It was found that this also holds if the locations 

of the controller are placed randomly and the control effort is fixed. 

This seems to contrast with the work of Clark Smith and Clark (1998) who saw a 

significant improvement as some frequencies, when using LQG control in a single­

channel controller and a large distributed sensoriactuator. Even though significant 

differences were seen over some frequency ranges, the frequency ranges over which 

the improvement occurs is limited and may be offset by other frequency ranges were 

performance is worse. On average, this resulted in only a small difference in the 

actual, overall cost function. Elliott (2004) has noted that if the number of control 

loops is equal to the number of controlled modes, then under idealised circumstances 

the effect of a decentralised constant gain controller would be equal to that of a fully 

coupled modal controller. This may explain why, in the case of red noise excitation, 

when there are only very few modes contributing significantly to the cost function, 

there is hardly any difference between centralised, decentralised and LQG control. 

Further research into the relation between the number of excited modes and the 

number of control locations for which the difference in performance between dyna.mic 

controllers and static controllers becomes small, may prove interesting. 

A comparison of centralised and decentralised constant gain feedback control on 

the beam, as a function of the spacing of the two controllers found that there is 

only a significant difference in performance if the controllers are closely spaced. In 

that case, the centralised controller is able to control both the rotation and the 

displacement of the structure at a point in between the two control locations. The 

decentralised controller can, for close spacings, control either the displacement and 

not the rotation, or pin the structure and only control the rotation. This results in 
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two minima in the cost surface of the decentralised controller. 

The optimised decentralised feedback gain controller was compared to different ap­

proximations to the optimum gain on the beam and the plate. Random pla.cemC:'nt 

of the controllers was considered, but close spacing of the controllers to each other 

or the edges of the structure was not allowed, in light of the results of section 4.2.1 

and the analysis in section 4.2.2. 

On the beam, it was found that the simplified two-mode approximation of the op­

timum gain and the maximimum power absorbing controller tended to get a per­

formance that in most cases was within 1 dB of the optimal controller. Considering 

that the differences between LQG and the decentralised controller were also small, 

these decentralised control strategies are thus seen to give a performance that is 

close to that of a fully coupled, dynamic controller. 

For the plate, maximising the power absorption performed well for both white and 

red noise excitation, as did matching the infinite plate impedance. The choice as 

to which of these two should be preferred for approximating the optimal gain on 

the plate can not be decided on these results. Chapter 6 will compare how such 

control strategies would tune themselves on an actual plate when other controllers 

are present. 

Considering that the power absorption strategy minimises the power loss in the 

structure itself, as was discussed in chapter 3, it seems that the power loss in the 

structure can be influenced in the case of the beam and, especially in the case of red 

noise, this has a detrimental effect on the kinetic energy in the structure. On the 

plate, this does not seem to be the case. 
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Sound radiation from a plate 

Active Structural Acoustic Control (ASAC) is concerned with controlling the sound 

radiation from a structure, by controlling the velocity of the surface of the structure 

itself. For single frequency disturbances, the sound radiation from a plate into 

the farfield can be calculated accurately using either a farfield approximation, as 

described by Wallace (1972a) and Wallace (1972b) or a nearfield approximation, as 

used by Elliott and Johnson (1993). To calculate an optimised controller to control 

broadband noise radiation, a frequency dependent filter is required to estimate the 

radiation from the structure. This section describes the development of state-space 

filters for the purpose of calculating the sound radiation from a simply supported 

plate. Also, it compares the performance of various controllers designed for ASAC 

with each other and with controllers designed to minimise the kinetic energy of the 

structure. 

First, the two methods of calculating the farfield radiation are presented. Secoudly, 

two methods of creating the required filters are examined and compared. These 

methods are the direct spectral factorisation of the modal radiation matrix, as used 

by Baumann et a1. (1991) and Thomas and Nelson (1995) and the radiation mocle 

approach based on work by Borgiotti (1990) and Elliott and Johnson (1993). This 

latter approach is used in various recent papers, e.g. Cox et a1. (1998), Clark ancl 

Bernstein (1998) and Elliott et a1. (2002). The most suitable model is then used 

to create optimised controllers for ASAC. These controllers are comparecl with each 

other to examine the benefits of dynamic and/or centralised control over clecentral-

101 
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ised controllers and 'with controllers designed to minimise kinetic energy to examine 

the benefits of designing for ASAC. 

5.1 Far- and nearfield approximation 

The radiated sound power of a plate can be calculated either by examining; the 

farfield or the nearfield of sound pressure levels. As the sound propagation models 

used here do not include any power loss in air itself, these two models should produce 

the same result as the power going into the system in the nearfield should be equal 

to the power going 'out' of the system in farfield. Both methods are based 011 the 

assumption that the sound pressure levels do not influence the structure itself. 

5.1.1 Farfield approximation 

This approximation follows the work of Wallace (1972a) and Wallace (1972b), which 

describes that the radiated sound power from one side of the structure can be found 

by integrating the farfield acoustic intensity over a half sphere. The acoustic intensity 

is the time average of rate of flow of energy through a unit area perpendicula,r to 

the direction of propagation (Kinsler et a1. (1982)) and is given for harmonic waves 

by: 

I(A, e ') = IPaCo118t(¢, e, r,jw)1
2 

,+" ,r,.Jw 2 
PoCo 

(5.1 ) 

Po and Co are, respectively, the density and the speed of sound in the medium where 

sound is radiated into, in this case air. The acoustic pressure at a point in the 

farfield is calculated as: 

e!kr 1ly i'lx , p(¢, e, r, jw) = -jkpoco-
2 

w(x, y)e-J (ax/l x +(3y/1Y)dxdy 
7fT 0 0 

(5.2) 

with r the distance between the center of the plate and the point in the farfield and 

k is the wavenumber w / Co. a and f3 are given by: 

a klx sin e cos ¢ 

f3 kly sin e sin ¢ (5.3) 

These factors are based on the approximation that the point at which the pressure 

is observed is sufficiently in the farfield (r » Jl; + l~ , r » 21rco/wn). 
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The pressure depends on the transverse surface velocities of the plate. The velocity 

at a point (x, y) on the plate is given by: 

1U(1:, y) = wT(x, y)a (5.4) 

where w(x, y) is a vector of the amplitude of the modeshapes at (x, y) and a is a. 

vector of the modal velocities. This means that the pressure in the farfield is a linear 

combination of the modal velocities. 

The modeshape i for a simply supported plate is sinusoidal: 

~i(X, y) = sin (~:x) sin (n:y) (5.5) 

Because of the sinusoidal shape, the factor for each modeshape can be calculated 

analytically: 

Pi(</J,(},r,jw) 

(5.6) 

The factor Zi has been used here for compact notation. The integral of the farfield 

intensity, given by equation 5.1, over a half sphere can then be written as: 

P(jw) = 

(5.7) 

where M is called the modal radiation matrix. It should be noted that the scaling 

of M depends on the scaling of the modeshapes. Unfortunately, the integral in 

equation 5.7 can not be solved analytically and has to be evaluated over a number 

of points in the farfield to give an accurate approximation. The radiation efficiency 

for the modes is defined as: 

(5.8) 
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The on-diagonal elements of S are self-radiation efficiencies, the off-diagonal elements 

are mutual- or cross-radiation efficiencies. 

The elements of S describing the self- and cross-radiation efficiencies of the first 10 

structural modes of the simply supported plate have been plotted in figure 5.1. The 

self-radiation of volumetric modes (modes for \vhich n and Tn are both uneven) is 

more efficient than that of other modes, as is indicated in figure 5.2. The radiation 

effiency of cross-combinations of modes drops off at higher frequencies, whereas the 

self-radiation of the modes approaches 1. Figure 5.1 also shows that at about 5 kHz 

a sort of spatial aliasing starts to occur due to the numerical integration in the 

farfield. It is interesting to see that it occurs at different frequencies for different 

modes. The radiation efficiency has been calculated on a grid of 40 points for e and 

160 points for <p. 

The farfield approach for calculating the sound power is accurate, but requires know­

ledge of the modeshapes. Furthermore, for the met.hod to work efficiently, the 

modeshapes of the structure must allow the integral in equation 5.2 to be solved 

analytically. This limits the applicability of this approach in terms of structural 

dynamics. 

5.1.2 Nearfield approximation 

This method is based on the acoustic power calculated at the source and is also 

described in Elliott and Johnson (1993). The power radiated is equal to the product 

of the acoustic pressure levels on the plate and the velocity of the plate: 

(y (x 
P(t) = Jo Jo Pacoust(x, y, t)w(x, y, t)dxdy (5.9) 

Or in a complex, frequency domain formulation: 

1 [(y (x ] 
P(jw) = 2"IR Jo Jo Pacoust(x,y,jw)w(x,y,jw)dxdy (5.10) 

The acoustic pressure at any point of the plate is itself a function of the velocity of 

the plate: 

(5.11) 
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Figure 5.1: The self- and cross-radiation efficiencies of the first 10 structural modes 

of the simply supported plate as calculated with the farfi eld approximation. 

Self-radiation efficiency of structural modes 

10
0 

10-2 

:::;:::: 
>, 
u 
c 
Q) 

10-4 .(3 
- (1,1) !E 

Q) - (1,2) c 
0 - (2,1) 
~ 

10-6 
- (2,2) 

'is 
- (1,3) ell a:: - (3,1) 
_. - (2,3) 

10-8 
_ . - (3,2) 
- - (1,4) 
- (3,3) 

10-10 

10
2 

10
3 

10
4 

Frequency [Hz] 

Figure 5.2: The self-radiation efficiencies of the first 10 structural modes of the 

simply supported plate as calculated with the farfield approximation. 
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where r is the distance between (:1:1, Y1) and (,1:2, Y2) and k = w / c is the wnve1l1ulllwl'. 

If equations 5.10 and 5.11 are combined, an equation is obtained for the radiated 

sound power that contains a quadruple integral: 

P(jw) = ~lR [flY tx t y t r 

jWPO e- j k7"1i.J(X2, Y2)d:r2dY21i.J(X, y,jw)d:rdY] 
2 Jo Jo Jo Jo 27rr (5,12) 

This equation does not have an analytical solution, but can be approximated llU-

merically. The approximation is based on dividing the structure in smaller equally 

sized elements and assuming that each element radiates sound as a round piston 

of the same area and that the pressure over the surface of the element is uniform. 

Using this approximation, equation 5.12 can be rewritten in a matrix structure as: 

(5.13) 

where w is a vector of velocities at the center of each the elements. The matrix R is 

a radiation resistance matrix, containing the radiation resistances between elements. 

For a total of Ne elements, R can be calculated as: 

2 s2 
R(jw) = w Po 

47rCO 

1 
sin(k7"2Il 

kr21 

sin(kTNfIl 

kTNel 

sin(kT12) 
kT12 

1 

sin(kT INe ) 

k1' l N e 

1 

(5.14) 

with rij the distance between the centers of elements i and j and S is the surface 

area of a single element. 

The matrix R(jw) is not dependent on the dynamics or the modeshapes of the 

structure. To compare it to the farfield approximation the modeshapes must be 

taken into account. As can be seen from equation 5.4 the velocities of the plate are 

directly related to the velocities of the modeshapes: 

. .T.T . 
W = ':I' pOintsa (5.15) 

where W points are the modal amplitudes at the locations of the center of the elements. 

Combining equations 5.15 and 5.13 results in: 

(5.16) 

and analogous to section 5.1.1 a modal radiation matrix can be obtained: 

(5.17) 
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Figure 5.3: The self- and cross-radiation efficiencies of the first 10 structural modes 

of the simply supported plate as calculated with the nearfi eld approximation. 

The accuracy of this approach depends on the number of elements taken into ac­

count. The frequency at which spatial aliasing starts to occur is roughly the fre­

quency at which half the wavelength in air corresponds to the largest dimension 

of the elements. Increasing the number of elements does increase accuracy, but 

the number of elements in the matrix R(jw) also increases quadratically with the 

number of elements. 

Some elements of the modal radiation efficiency S (see equation 5.8) of the modal 

radiation matrix calculated on the basis of the nearfield approximation have been 

plotted in figure 5.3. The figure shows that spatial aliasing starts to occur from 

10 kHz. Note that the model of the sound radiation in this approach splits the 

dynamics concerning the sound radiation and the dynamics of the structure. That 

means that the model can be used equally well for plates with different boundary 

conditions or shapes and thus modeshapes. 
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5.2 Creating sound radiation filters 

5.2.1 Introduction 

The previous section showed that there are two ways of calculating the sound power 

radiated from a simply supported plate. Both ways allow the calculation of a modal 

radiation matrix. The modal radiation matrix can be used directly to create a set of 

radiation filters, by using curve fitting and spectral factorisation techniques. Filters 

constructed in this manner will be called modal radiation jilters. 

A different way of creating radiation filters is based on the radiation resist.ance 

matrix R, calculated with the nearfield approximation of sound radiation (equation 

5.14). It is shown, based on the work presented by Elliott and Johnson (1993), that 

specific velocity distributions of the plate radiate sound independently at a particular 

frequency. These independently radiating velocity distributions are calleel radiation 

modes. By assuming that the radiation modes remain the same for all frequencies of 

interest, an approximation to the sound radiation can be achieved. Clark and Cox 

(1997), as well as subsequent papers (e.g. Cox et a1. (1998), Gibbs et a1. (2000)), 

referred to this technique as Radiation Modal Expansion. The filt.ers constructed in 

this manner will be called radiation mode jilters. 

Both these techniques are explained here. First, the techniques are explained in more 

detail, starting with radiation mode technique. The actual filters are constructed in 

a separate section. The terminology is prone to confusion, as the terms mdiation 

modes and modal mdiation are much alike. Here, the terms have been applied to 

refer to each technique separately. 

5.2.1.1 Radiation mode filters 

Creating radiation filters can be based on the decomposition of the radiation res­

istance matrix R. This matrix is positive definite at frequencies larger than O. 

Therefore, at frequencies larger than 0, this matrix has an eigenvector-eigenvalue 

decomposition, R = QAQT, where A is a diagonal matrix of the real and positive 

eigenvalues and Q the matrix of eigenvectors. The eigenvectors are columns of Q 
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and define the velocity distributions of w that radiate sound independent l~' at thnt 

particular frequency (Elliott and Johnson (1993)). Hence, these distributions are 

called radiation modes. 

Borgiotti and Jones (1994) stated that such radiation modes are nested: the space 

spanned by the radiation modes at a frequency W < Wmax is a subspace of the spHce 

spanned by the radiation modes at wmax . This means that the modes at ware a 

linear combination of the modes at wmax . In the same paper and in work by Gillb::; 

et aL (2000), it was noted that these radiation modes change shape slowly over large 

frequency ranges and it was assumed that the radiation modes remain con::;tnut for 

all frequencies. Though this is not strictly true, it is a workable approximation 

for frequencies that are 'close' to the frequency at which the radiation modes are 

calculated. For each frequency, the contribution of each radiation mode to the 

sound radiation can be calculated. By curve-fitting the frequency response of these 

contributions, a frequency dependent filter can be associated with each radiation 

mode. The squared output of these filters is an approximation for the acoustic 

power radiated by each radiation mode. The sum of the squared outputs is the 

approximation of the total radiated sound power. 

A slightly more general approach than the one taken by Gibbs et aL (2000) is the 

following: 

- Calculate the radiation modes Q at a frequency Wbase' 

- Select a set of the most significant radiation modes <lIbase at this frequency 

- Calculate an amplitude weighting coefficient Ii for the ith radiation mode at 

a set of frequencies, w, as: 

(5.18) 

where % is the velocity distribution associated with the ith radiation mode, 

Le. a column of CPbase' 

- Fit a Laplace function through Ii for that radiation mode. As Ii is entirely 

real, the function should have mirrored poles and zeros in the s-plane. 

- Split these filters into an entirely stable-causal and anti-stable/causal filter. If 

the original filter is written as a zero-pole-gain function, this is can be done 
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reasonably easily. The conversion of the fitted filters to a state-space filter is 

discussed in greater detail in section 5.2.2.2. 

- The estimated sound radiation can now be calculated as the squared output 

of these filters. The input of the filters is the actual velocity distribution of 

the plate, multiplied by the velocity distributions of the radiation modes. 

In this approach, the choice base frequency Wbase is not fixed and can be iterated 

upon. Gibbs et a1. (2000) fixed the frequency Wbase at the highest frequency of 

interest. This is done because there are several important assumptions and approx­

imations that affect the applicability of these filters. 

First of all, the assumption that the radiation modes do not change shape is only 

a reasonable approximation over a limited frequency range. Figures 5.4 and 5.5 

show the six most significant radiation modes at 100 Hz and 1.5 kHz respectively. 

It can be seen that the radiation modes do change shape gradually as a function 

of frequency. Borgiotti and Jones (1994) observed that the radiation modes at a 

frequency W < W max are a linear combination of the radiation modes at a, frequency 

wmax . This implies that there are possibly significant cross-terms in the radiation 

modes that are ignored in the above approach. Here it is assumed that, as long 

as the radiation modes do not change much at frequencies above or below the basp 

frequency of the chosen set of radiation modes, the calculated sound radiation should 

not change much in comparison to the actual sound radiation and the radiation 

modes can be used effectively to design a controller. This does mean that the choice 

of the base frequency for the radiation modes limits the frequency range for which 

the model is accurate both below and above the base frequency. 

The number of radiation modes taken into account and the accuracy of the fit in­

fluence the accuracy also, as does the number of elements on the plate. Elliott and 

Johnson (1993) shows that number of radiation modes has to increase dramatic­

ally with frequency to calculate the sound radiation accurately. Also, the number 

of structural modes also influences accuracy and should also be sufficient for the 

frequency range of interest. 
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(a) Mode 1 (b) Mode 2 (c) Mode 3 

(d) Mode 4 (e) Mode 5 (£) Mode 6 

Figure 5.4: Six most significant radiation modes at 100 Hz, sorted by signifi ance. 

(a) Mode 1 (b) Mode 2 (c) Mode 3 

(d) Mode 4 (e) Mode 5 (£) Mode 6 

, 
Figure 5.5: Six most significant radiation modes at 1.5 kHz, sorted by significance. 

5.2.1.2 Modal radiation filters 

The method of creating filters on the basis of t he modal radiation matrix is used by 

Baumann et al. (1991) . In that paper, it is described, how the real but frequency 

dependent matrix M can be transformed into a set of N 2 filters, where N is the 

number of structural modes. Each of the elements in M can be approximated by a 

sum of a stable and an antistable rational Laplace transform. Using this formulation, 

the matrix can then be spectrally factorised using the state-space algorithms found 

in Francis (1987). However, this method requires the solution of a Riccati equation, 

which can create numerical difficulties. 
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Kader et a1. (2000) describes a different method, which is used here. In a schelllatic 

form this approach can be written as: 

- Calculate M with a nearfield or a farfield approach. 

- Approximate Alij by gij (jw) * gij (jw), where gij (jw) is minimum phase rational 

Laplace transform and * denotes the complex conjugate. Note that M is 

symmetric and thus this only needs to be done for i ~ j, as for i < j, the 

functions will be the same as for i > j. 

- These filters can be combined into a N x N f matrix G(jw), where N f is 

the number of non-zero elements of M. An additional, frequency invariant, 

symmetric matrix Qh is used to correctly combine the outputs of the filters 

such that: 

(5.19) 

How this can be achieved is explained in greater detail in section 5.2.3. 

This approach results in a set of Nf minimum-phase filters, where Nf is the number 

of non-zero elements of M. N f is proportional to N 2
, N being the number of 

structural modes. A limitation in the accuracy of this technique is that no nega.tive 

values can be obtained for the off-diagonal elements of the sound radiation. 

5.2.2 Radiation mode filter construction 

As mentioned in the section 5.2.1.1, the frequency at which the set of ra.diation 

modes is selected influences the accuracy of the approximation. To see which set 

is better, a number of different base frequencies, fl)(]se have been used to ca.lculate 

the fixed radiation modes. Each set of fixed modes results in different amplitude 

coefficients 'Yi. If the radiation modeshapes are normalised and do not change with 

frequency then the a.mplitude coefficients should be equal to the eigenvalueH of the 

matrix R(jw), calculated with equation 5.14. Figures 5.6-5.8 show the amplitude 

coefficients calculated for the modes (solid lines) in comparison to the most signific­

ant eigenvalues of R(jw) (dotted lines). From the fixed radiation modes at 20 Hz, 

10 radiation modes have been selected, whereas for 1 and 2 kHz 20 modes have been 

selected. This is because there were not 20 significantly efficient radiating modes 

available at 20 Hz. 

The figures show that the eigenvalues and the calculated amplitude coefficients di-
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Figure 5.6: Calculated amplitude coefficients (-) for radiation modes calculat ed at 

20 Hz and the eigenvalues of R(jw) ( .. + .. ) . 
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Figure 5.7: Calculat ed amplitude coefficients (-) for radiation modes calculated at 

1 kHz and the eigenvalues of R(jw) ( .. + .. ). 
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Figure 5.8: Calculated amplitude coefficients (-) for radiation modes calculated at 

2 kHz and the eigenvalues of R(jw) ( .. + .. ). 

verge quite rapidly for frequencies above the base frequency. However, selecting a 

higher base frequency does not necessarily improve the matching of these values, as 

can be seen from figure 5.8. At low frequencies the values diverge significantly. 

5.2.2.1 Comparison of different base frequencies 

The comparison of the amplitude and the eigenvalues of the matrix R does not give 

any clear indication on the quality of the approximation of sound radiation by using 

fixed radiation modes. An error criterion consisting of a single number could prove a 

useful tool for the selection of a base frequency and the number of modes to include 

in the model. Several error criteria are examined here to decide an appropriate base 

frequency. 

Two error criteria are examined, which are based on the comparison of the values 

of R(jw) and R approx(jw) = <I> fase r(jw) <I> base , where r (jw) is the diagonal matrix 

of amplitude coefficients for the different radiation modes. Another criterion ex­

amined here tries to compare how the modes of the structure interact with these 



Chapter 5. Sound radiation from a plate 

0 

\. 
~. 

-10 I 

-20 

10-30 
~ 
.... g 
w -40 

-50 

-60 

-70 
0 

" \ 
\ 
\ I 
I / 

1/ 
1/ 
1/ 

I 

/ 

I 

Normalised nesting error 

\ 

\ 

I 

I 

I 

/ 

I 

I 

I 

- -:;;:,:;::.--
.--

-.r =20 Hz 
J base 

--.r =1kHz 
Jbase 

. _. fbase = 2 kHz 

500 1000 1500 2000 2500 3000 3500 4000 
Frequency [Hz] 

115 

Figure 5.9: Normalised nesting error for different sets of radiation modes 

matrices, by examining the difference of the modal radiation matrices wR(jw) '111' 

and wRapprox(jw)wT, where 'II are the structural modal amplitudes at the midpoint 

of the elements used to calculated R(jw). The final criterion examined here is the 

calculated sound radiation of the structure, taking the structural dynamics and the 

excitation into account. 

Borgiotti and Jones (1994) suggests a normalised nesting error to compare R(jw) 

and Rapprox(jw): 

(5.20) 

where Nrad is the number of radiation modes examined. Figure 5.9 shows the nor­

malised nesting error for the 3 different sets of radiation modes. 

Another criteria to compare the two matrices might be the sum of the squared errors 

in each of the elements of R(jw), compared to the sum of the squared elements of 

R(jw): 

L L (Rij - (Rapprox)ij r vs. (5.21 ) 
J 



Chapter 5. Sound radiation from a plate 116 

Sum of squared elements of R VS. sum of squared differences 
0 

-10 --~~..;:-,-.-

-20 
-.::' -

-30 "' / 

\ I 

Iii' 
-40 

:!2. 

\ I 

\ I 

Ql 
~ 

-50 \I 

~ 
-60 

- LR2 
- /base = 20 Hz 

-70 
- - /base = 1 kHz 
- /base = 2 kHz 

-80 

-90 

-100 
0 500 1000 1500 2000 2500 3000 3500 4000 

Frequency [Hz] 

Figure 5.10: Sum of squared error in the elements of the element.al radiation ma.trix 

vs the sum of the squared elements of R for different sets of radiation modes 

Figure 5.10 shows the comparison of these two values for the different sets of radi­

ation modes. 

The error in the modal radiation matrices has also been calculated in this way Hud 

is shown in figure 5.1l. Finally, the error in the calculated sound radiation from 

an uncontrolled plate, excited by randomly distributed white noise, is shown in 

figures 5.12(a) and 5.12(b). Two figures have been used to empha.sise the difference 

between low-frequency and high-frequency approximations. The figures show that. 

the radiation calculated with the set of radiation modes at 20 Hz starts to diwrge 

at about 750 Hz and significantly underestimates the radiated soulld power ahove 

2500 Hz. The set of radiation modes chosen at 2 kHz gives poor approximations at. 

low frequencies, especially between 400 and 900 Hz. At frequencies between;) anel 

4 kHz, the match, though not good, is at least better than that of the 20 Hz set. 

The set of radiation modes chosen at 1 kHz seems to give a reasonable match up to 

2 kHz and performs similar to the 2 kHz set at frequencies between 3 and 4 kHz. 

Though it would have been useful to compare the sound radiation models without 

including the structural model, calculating the sound radiation is the most clear 
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Figure 5.11: Sum of squared error in the elements of the modal radiation matrix vs 

the sum of the squared elements of M = 'l1R'l1T 

criterion of the ones examined here and will be used to select the model. 

The different sets of radiation modes perform well if the frequency range of interest 

is close to the base frequency. The best model thus depends on the frequency range 

of interest. If the frequency range of interest is chosen to be between 0 and 2 kHz, 

the set of radiation modes at 1 kHz is the best option, based on the modelling of 

the sound radiation and this is what is used below. 

5.2.2.2 Constructing the state-space models 

The amplitude coefficients, Ii, of the 20 selected radiation modes can be fitted using 

a zero-pole gain model. As the amplitude coefficients are positive real numbers for 

different frequencies, a transfer function model must have poles and zeros that are 

mirrored in, or located on the imaginary axis. 

The fitting of the functions has been performed using the Matlab function invfreqs. 

This function fits a zeros-pole-gain model to the response of the model at a finite 
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Figure 5. 12: Calculated sound radiation spectrum with the nearfield calculation and 

radiation mode approximation using different base frequencies. 
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number of frequencies, minimising the difference between the model and the elnt n. 

A number of poles and zeros has been used for the zero-pole-ga.in functions to fit 

the data as accurately as possible, without increasing model complexity more than 

necessary. As the amplitude coefficients of the radiation modes tends to a constant 

for high frequencies, an equal number of poles and zeros has been chosen for the 

modelling of each mode. 

The obtained zero-pale-gain model must be split into two filters, one of which is 

the complex-conjugate of the other. One is chosen to be a causal, stable, minimum­

phase filter and the other a anti-causal/stable, maximum phase filter. This can he 

achieved by combining all the poles and zeros with a negative real part in the stable' 

filter and the poles and zeros with positive real parts into the anti-causnl/stnhlt~ 

filter. 

The fit may also have created poles and zeros t.hat are on the imagina.ry axis and 

thus have no real part.. If these are not at the origin, these poles anel zeros have no 

physical basis. There should be no zeros on the imaginary axis apart from the origin, 

due to the fact that sound radiation is positive in all cases, as can be seen in figure 

5.7. The poles should not be locat.ed on the imaginary axis, because they woule! 

result in an infinite response of the filter in t.he frequency domain. Aga.in, figure 5.7 

shows this is not the case. These poles and zeros have therefore been replaced by 

poles and zeros with a real part. equal to the imaginary part of the original poles anel 

zeros. As they only occur at. frequencies beyond t.he frequency range for which the 

data was fitted or for which the data is particularly small, this has generally little 

or no effect on the accuracy of the fit. This is illustrated in figure 5.13( a). 

The poles and zeros have then been aUocated to the filters depending on whether 

the real value of these poles in negative or positive. Zeros and poles at the origin are 

divided equally between the stable and unstable filter. This is illustrated in figure 

5.13(b). The gain for the filters is equal to the square-root of the gain of the original 

zero-pole-gain fit. The filters can be easily transformed to a state-space system using 

the function S8. These can then be appended to the state-space model describing 

the plate dynamics. 

Suppose the original plate dynamics to calculate the velocities w at the grid points 
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Figure 5_13: Changing the fitted filter to comply with physical demands and dividing 

the poles (x) and zeros (0) into a stable and anti-stable filter. 

can be described with: 

(: ) ~ A ( : ) + Bf 

W ~ [0 wT 1 ( : ) (5 _22) 

and the radiation modes i = 1 . . . Nf have to be added to the model. Each radiation 

mode and its associated filter have a number of states described by a vector Si . Each 

filter is described by a state space model: 

Yfi (5.23) 

where Ui is the input to the filter which can be calculated with: 

(5.24) 

Then the filters and the original state-space model can be combined to one state-
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space model: 

where: 
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An 0 

o AI2 
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a 
B 

a 
0 

81 + f 

0 
8Nf 

(5.25) 

(5.26) 

and B I, C I and D I are constructed along similar lines from B Ii, C Ii and D Ii' The 

sound radiation can then be calculated as the sum of the squared values of Y f: 

J - T 
Q.cO'lLsi - Y I Y I (5.27) 

Figure 5.14 shows the sound radiation calculated using the original radiatioll res­

istance matrix R (solid line), using the radiation modes and amplitude coefficients 

calculated for those modes (dashed line) and the sound radiation calculated using 

the state-space filters (dash-dot line). The figure shows that fitting the sound radi­

ation with a state-space filter results in only a small additional inaccuracy on top of 

fixing the radiation modes. For a large part of the frequency domain, the lines are 

actually on top of each other. 

5.2.3 Modal radiation filter construction 

As stated in section 5.2.1.2, the modelling of modal radiation can be achieved in 

by the spectral factorisation of M. This is done by factorising each element of 
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Figure 5.14: Comparison of uncontrolled sound radiation spectrum, calculated with 

the radiation mode approximation and the nearfield model 

the matrix M and combining the resulting state-space models. Here a step-by-step 

approach is used to show how the required matrices can be constructed. 

- Begin by approximating fl1ij with a function g~(jw )gn(jw) in the same way 

as in section 5.2.2.2, except that now the number of poles and zeros does not 

always need to be equal. Note also that, though the radiation function Mij 

can become negative, g~ (jw )gn (jw) can not. This limits the accuracy of the 

fit. For very small elements of M, the function can be fitted by setting gn = o. 
The functions gn corresponding to element fl1ij can then be written in a state 

space form: 

Af -Sf --+ B f "a-2J 1.] 1J 1 

Yf ij 

Due to the symmetry of M, the filters for element .A1ji are the same. 

The index i (or j) indicates the modal velocity of the mode that appears on 

the ith place in the modal velocity vector. The index does not show which 

particular mode it is. For instance: the velocity of the mode of the plate of 

which the modeshape is described by equation 2.10, with m = 1 and n = 3, 
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might be located at the 4th position in the vector a, 'while the mode defined 

by m = 2 and n = 2 could be located at the 8th position. The element flJij 

with i = 4, j = 8 would then indicate the cross radiation of the 1, 3 and the 

2,2 modes. 

- Combine the state space matrices of each filter. Here, the matrices have been 

ordered such that: 

Af 11 0 0 o 
0 Af12 0 

0 0 Af21 0 

A f = 0 Af13 0 (5.28) 

0 Af 31 

0 

B f should then be: 

Bfll 0 o 
B f 12 0 

0 B f21 0 

B f = B f 13 0 0 (5.29) 

0 0 B f 31 

0 B fNN 

and C f is: 

C fll 0 0 0 

0 C f 12 0 

0 0 C f21 0 

C f = 0 C f 13 0 (5.30) 

0 C f 31 

0 CfNN 
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And the matrix D f: 

Dfll 0 0 

Df12 0 

0 D f 21 0 

Df = D f 13 0 0 (5.31) 

0 0 D f 31 

0 D fNN 

If this is done, one obtains a matrix of the functions gf i{ 

gf 11 0 0 

gf12 0 

0 gf21 0 

Gf = gf13 0 0 (5.32) 

0 0 gf 31 

0 gfNN 

Finally, the matrix Qh must be constructed according to: 

1 0 0 0 0 

0 0 1 0 

0 1 0 0 

Qh= 0 0 0 0 1 (5.33) 

1 0 

0 1 

This way, when calculating G(jw)HQhG(jW), the i,jth element is: 

(5.34) 

but as gj ji = gj ij due to symmetry, this is equal to: 

* gf ijgj ij (5.35) 

which is the desired function. Note that for quadratic optimisation, this state 

space model should be combined with the structural model, in a similar way 

to what was done in section 5.2.2.2 for the radiation modes. 
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Figure 5.15: Comparison of uncontrolled sound radiation spectrum, calculated with 

spectral factorisation of the modal radiation and the nearfield model. 

The main problem with this technique is the large number of functions that have to 

be fitted: for the 18 modes of the simply supported plate up to 1 kHz, there are 86 

non-zero elements in the matrix M, resulting in 52 functions to be fitted. For the 39 

modes up to 2 kHz, 211 functions would have to be fitted. Because of this pract.ical 

issue, filters have only been constructed only for the first 18 modes. The cOlllbined 

state space model for the matrix G contained 755 states. 

Figure 5.15 shows the sound radiation of an uncontrolled model, excited by a ran­

domly distributed, white noise excitation. The model fits the radiation very well, for 

the modes that have been taken into account. This is unsurprising, as only the self 

radiation of the modes is taken into account, because there is no correlation between 

the excitation of the different modes. Furthermore, the self radiation of modes is 

most easily fitted with accurate models. 
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5.3 Comparison of the models 

The previous section showed two different ways of modelling the sound radiation 

into the farfield from a siri1ply supported plate. Here a comparison between t.he t.wo 

models is made. 

On first inspection of the models, the model complexity is quit.e different. The 

radiat.ion mode approach, described in section 5.2.2 results in a model of 20 dy­

namic filters for 20 radiation modes, wit.h a tot.al of 135 st.ates. The modal ra.diation 

approach described in section 5.2.3 modelling only t.he radiation of the first 18 struc­

t.ural modes, resulted in a model with 86 filt.ers and a total of 755 st.ates. It can al~o 

be noted that the radiation mode approach is independent. of the dymunics of thl' 

structure, i.e. the model does not need to change if the modeshapes of the structure 

changes. This is not. t.he case of the modal radiation approach. 

Figure 5.16 shows different elements of the modal radiation matrix M calculated with 

both approximations, compared to the values according the farfield approximation. 

It can be seen that t.he modal radiat.ion spectral factorisat.ion technique result.s in 

more accurate approximations of t.he modal radiation efficiency. The radiation mode 

approach, on the ot.her hand, is capable of creating negat.ive off diagonal elements. 

To see how the differences in the models impacts on the actual calculat.ed sound 

radiation, the models are compared for four characteristics: 

- Sound radiation spectrum of the uncontrolled plate, excited by a randomly 

distributed, white noise pressure field. 

- Sound radiation spectrum of the controlled plate, excited by a randomly dis­

tributed, white noise pressure field. The controller is a decentralisecl, constant 

gain, velocity feedback controller, calculated to minimise the kinetic energy of 

the plate, as described in chapter 4. The controller uses 16 evenly distribut.ed 

control locations and was designed with an effort weighting of 1 . 10-5 . 

- Sound radiation spectrum of the uncontrolled plate, excited by a single point 

source at (x, y) = (0.24lx, 0.6ly). 

- Sound radiation spectrum of the controlled plate, excited by a single point 

source at (x. y) = (0.24lx,0.6ly). The controller is the same as for the white 

noise excitation. 
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Figure 5.16: Comparison of modal radiation efficiency as calculated with radiation 

modes, spectral factorisation of modal radiation and the farfield approach. Depicted 

are the auto radiation of the (1,1) and the (1,2) mode, as well as the cross radiation 

of the (1,1) mode with the (1 ,3) mode. 

Figures 5.17(a) to 5.18(b) show the sound radiati'on spectrum of the models up to 

1.5 kHz. The modal radiation approach does create a model that is more accurate 

up to 1 kHz. However, considering the vastly lower number of states and its inde­

pendence of structural modeshapes, the radiation mode approach is favoured here 

and will be used to create controllers. 

5.4 Control of sound radiation on a plate 

This section expands on the control of the plate for ASAC and compares LQG 

control and centralised and decentralised static velocity feedback control. The LQG 

and static velocity feedback controller are optimised to control a cost function, Jac , 

which is a sum of the sound radiation and a weighted control effort term: 

(5.36) 
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Figure 5.17: Comparison of sound radiation spectrum as calculated with radiation 

modes , spectral factorisation of the modal radiation and the farfield approach, from 

a plate, with and without control, excited by randomly distributed white noise. 
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Figure 5. 18: Comparison of sound radiation spectrum as calculat ed with radiation 

modes, spectral factorisation of the modal radiation and the farfield approach, from 

a plate, with and without control, excited by a single, white noise, point force at 

(x, y) = (O.24lx , O.6ly). 
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In this function, the state-vector x includes both the structural states and the states 

of the filters used to estimate the sound radiation. The matrix Que is chost'n so 

that the term xTQacx is equal to the radiated sound power. Only the results of this 

opimisation are represented here, for further details considering the design of the 

static feedback controllers, readers are referred to chapters 3 and 4 of this thesis, as 

well as literature, e.g. Levine and Athans (1970), Geromel and Benmssou (1979), 

Clark and Bernstein (1998) and Elliott et a1. (2002). 

The controllers are compared for performance, as well as control effort. required. Fig­

ure 5.19 compares the reduction in expected radiat.ed sound power and the required 

control effort, for the different controllers. It can be seen that LQG control has n 

slightly better performance than the static feedback gain controllers using the SHlll(' 

control effort, but the difference is surprisingly small considering that the radiation 

modes show strong frequency and spatial dependence. Figure 5.20 also shmvs reduc­

tion and effort, now for a case where the excitation has a red-noise spectrum and 

the structure is controlled at 5 randomly chosen locations. In accordance with the 

analysis in chapter 4, close spacing amongst the control points and t.he edges of the 

plate were avoided. It can be seen that even in t.he case of red noise excitat.ion the 

overall difference between the control strategies is small. 

Figure 5.21 shows the expected radiated sound power spectrum for different control 

strategies for a fixed control effort of 300 N2
. Compared are LQG and decentralised 

constant gain control designed for ASAC on the basis of the radiation mode model 

and those same controllers, designed for the minimisation of t.he kinet.ic energy. Over 

this frequency range, the constant gain controller optimised for ASAC has better 

performance than the LQG controller. Overall, the LQG controller does outperform 

the constant gain controller, according to the radiation mode model, obtaining 2.0 dB 

average reduction in comparison to 1.7 dB for the constant gain controller. The 

controllers optimised for kinetic energy do not do quite as well as optimising for 

ASAC, but the performance is within about 6 dB of the performance of the controller 

designed for ASAC. A comparison of the values of the decentralised constant gains 

optimised for ASAC, with the ones optimised for kinetic energy revealed slightly 

higher gains for the control points closer to the center of the plate. 
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Figure 5.19: Reduction in radiat ed sound power , calculated wit h the radiation mode 

model vs. required cont rol effort, for different controllers, white noise excitation. 

Control effort vs. change in expected radiated sound power, red noise excitation 
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Figure 5.20: Reduction in radiated sound power, calculated with the radiation mode 

model vs. required cont rol effort , for different cont rollers, red noise excitation. 
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Figure 5.21: Expected radiated sound power spectrum for the different controllers. 

5.5 Conclusion 

This chapter has shown t hat , even though using fixed radiation filters introduces an 

inaccuracy into the model of sound radiation, it can serve as a good basis for creating 

an ASAC controller. The main advantage of using fixed radiation mode filters over 

modal radiation filters is the considerable reduction in the required number of filters, 

and thus in model order. Choosing the base frequency for the fixed radiation filters 

in the middle of the bandwidth of interest was found to give better results than the 

previous approach of choosing the base frequency to be at the highest frequency of 

interest. 

For red and white noise excitation, there is little advantage in using a centralised, 

LQG controller to minimise sound power over centralised or decentralised static feed­

back control. This also confirms results presented by Gardonio and Elliott (2004a), 

who found that decentralised constant velocity feedback works well to reduce sound 

transmission through a panel. 

Controllers designed to minimise sound power radiation do obtain better results than 

controllers designed to minimise kinetic energy in the structure. Although not quite 
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as good as the controllers designed for ASAC, decentralised constant gain controllers 

designed for minimising kinetic energy can still achieve a significant reduction in 

radiated noise. 

It should be noted that these conclusions only hold if all the assumption about the 

sound radiation model hold. In this case, some ofthe main assumptions "vere that the 

plate radiates sound in a freefield situation, is located in an infinite baffle and that 

there is no fluid-structure interaction. The assumptions and thus the conclusions, 

may not hold in a practical situations. 



Chapter 6 

Self-tuning and measurements 

This chapter describes how the approximations studied in chapters 3 and 4 could be 

used to tune a fixed gain feedback controller, based only on information available 

locally at the control locations. 

The tuning of the controller involves two parts. On the one hand, it involves creating 

estimates of the properties of the structure under control and on the other hand it 

involves the tuning of the controller, based on those properties. If t.his C<1n be 

done online, with both the estimation of the variables and t.he controller updated 

continuously or at intervals, this process is known as a.da.ptive cantml. The design 

of an adaptive feedback controller that uses state estimation for feedback control, 

requires a reasonable accurate model identification beforehand. The stability and 

performance robustness of such a system would require an extensive analysis. It 

was already shown in chapter 4 that, for collocated force actuators and velocit.y 

sensors and the assumed excitation, the LQG controller did not improve perfonnHnce 

significantly in comparison to decentralised constant gain feedback control if the 

latter is tuned properly. This chapter will focus on using the locally measured 

transfer functions to identify the variables required for the tuning of the feedba.ck 

gain controllers. Optimal power absorption is also examined, but this does not 

require analysis of the transfer function. 

The identification of the required variables might be more difficult when the struc­

ture is already being controlled at other control locations. This multi-channel control 

situation is examined in section 6.2. This is also how 'self-tuning' should be inter-

134 
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preted; that in a multi-channel set-up, the controller at each controllocatioll i~ huwd 

on the basis of the signals measured at that point, without any knowledge of how, 

if or where controllers at other control locations are set. 

Last, it is examined whether the required variables can also be measured in a labor­

atory set-up and used to experimentally tune a practical feedback controller. 

6.1 SISO tuning 

In this section, the information that could be gathered locally is reviewed. In par­

ticular, it is examined how the information can be used to tune the approximations 

described in chapter 3. 

6.1.1 Data gathering 

The open-loop frequency response from the control force to the measured velocity is 

assumed known for this self-tuning. This is equal to the point mobility of the struc­

ture. It could be measured, for example, from the correlation functions betweeu 

the in- and output (Bendat and Piersol (1986)) when the actuator is driven by a 

random signal with no feedback. These correlation functions can be iufincucecl hy 

additional noise at the input and the output of the model. From the frequeucy 

response, the open-loop impulse response can be calculated. The method of acqnis­

ition of the open-loop frequency or impulse response functions is not com;idered iu 

detail here. Methods of identifying open-loop responses are discussed extensively 

in Ljung (1999), while in Veres and Wall (2000) the effects and possible benefits of 

identification in a closed-loop system are discussed. 

6.1.2 Maximum power-absorption 

The tuning of the controller to maximise power absorption could be done on-line. 

The maximum power absorption can be calculated from the time-averaged product 

of the velocity and output force. This quantity could be maximised, by slowly in- or 
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decreasing the gain (Redman-"\Vhite et al. (1987) and Nelson (1996)). HmY('Yt'L it 

,vas already seen in section 3.2.3 of this thesis, that maximising the power absorption 

can result in gains that are too high in comparison to the optimal feedback gain. 

Furthermore, the result will be influenced if the excitation changes, because the tun­

ing method is based on the actual power measured at the control point, rather thnn 

the local transfer function. However, as long as the feedback gain is constricted to be 

positive real and the excitation has a narrow auto correlation function, mnximising 

the power absorption is unlikely to increase the overall response of structuH\ to the 

degree seen, for instance, in Elliott et al. (1991) for tonal excitation. 

Practical single-channel power maximisation was also investigated in two compan­

ion papers, Hirami (1997b) and Hirami (1997a). In these papers, the power to be 

maximised is measured within a so called sing-around t'ime. This denotes the time 

it takes for the wave caused by a switch in feedback gains to reflect of the boundary 

and get back to the control point. It was argued that, if this method is applied, it is 

similar to absorbing maximum power from an infinite structure. In simulations on a 

string this seems to be an effective method. However, string motion is governed by 

the wave equation (Meirovitch (1986)), with a constant wave-speed for all frequen­

cies. For bending waves, the wave-speed is variable with frequency; as the frequency 

increases, so does the wave-speed. Thus it is difficult to define a, sing-around time for 

a broadband excitation on a structure dominated by bending waves. The lllethod 

considered in section 6.1.4, circumvents this problem for the plate structure. 

6.1.3 Reduced-number-of-modes approximations 

For the two- and three-mode formulas (equations 3.56 and 3.57), the necessary 

variables for tuning are the resonance frequencies (wn ), the modal amplitudes ('I/)n) , 

the mass of the structure (A1) and the integral of the squared modeshape over the 

structure (Nn ). It can be shown that these last three factors can actually be identified 

as a single factor for each on the modes. To do that, the measured amplitude of 

the mobility is compared to the mobility that could be expected on the basis of the 

measured damping ratio and resonance frequency. It is assumed that at resonance, 

the structure behaves like a lightly damped mass-spring system. 

The damping at a particular resonance can be calculated from the shape of the 
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Figure 6.1: Amplitude of displacement response of the beam at x = 0.6L 
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frequency response of the displacement near the resonance frequency (Meirovitch 

(1986)). Figure 6.1 shows the amplitude of the displacement response of the beam 

at 0.6 of its length. For light damping, Meirovitch (1986) gives as an est.imate of t.he 

damping factor: 
(~Whp2-Whpl (G.1) 

2wn 

where Whp 1 and Whp 2 are the haU power points, which are those points where the amp­

litude falls to 1/ J2 of the maximum magnitude of the transfer function (~ -3 dB). 

For the structure near resonance, the frequency response is dominated by a single 

mode, whose motion is described by equation 2.4 for the beam, or equations 2.12 

and 2.22 for the plate structures. The amplitude of the transfer function of the force 

to displacement at a point on the structure is then given by: 

Since Wn and ( are known, Astruct(jwn ) can thus be used to estimate ;1 tJ.;. The 

actual mass and squared modeshapes need not be calculated separately. 

This method does depend on how accurately the half power points and the maximum 

response can be measured. For very lightly damped modes, a fine frequency spacing 
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in the frequency response is required to make an accurate estimate of tIlt' damping 

factor and the required factors. Using such a fine frequency spacing, does nllow 

the accurate calculation of the factor }f fJ:. Other methods based on clll'w-fitting 

might result in better estimates on the basis of a wider frequency spacing. The 

only exception is if the acuator is located at a nodal line of that partic1l1nl' lllode 

and thus be unable to observe the resonance. In that case, the next resonance is 

likely to be observable. The method described here is not meant to be a definitive' 

way of calculating the gains, but more a proof-of-principle that the values cau be 

calculated. 

The simplified two-mode formula described by equation 3.58 requires the kllowlt~clgl' 

of the mass of the structure, as well as the first two resonance frequencies. The 

mass can not be directly derived from the frequency response and would have to 

be assumed known. Thus, this formula can only be used in an adaptive set-up if 

the mass of the structure is not going to change. The identification of the first two 

resonances is not difficult in the single-channel case. 

6.1.4 Matched infinite plate impedance 

On the plate, it has been shown in chapters 3 and 4 that the matched infinite plate 

impedance performed well as a control strategy. The measurement of the infinite 

plate impdeance does not appear straightforward. However, it is shown here to be 

approximately equal to the frequency average of the real part of the impedance of 

the plate. 

Consider the energy input of a unit impulse force, It into an infinite plate: 

(6.3) 

where w( t) is the velocity of the infinite plate, Ycc 00 (jw) is the mobility of the infinite 

plate at the control point and Iw(jw) is the Fourier transform of the impulse force, 
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Figure 6.2: Filtering of an impulse function results in a longer time signal. 

which is equal to 1 for all frequencies. 

The local mobility of an infinite plate is equal to 1/(8J El ph) (Cremer et al. (1988)) 

Thus a mathematically ideal impulse with unlimited high frequency content, would 

result in an infinite energy input into the plate. This is because of the way t.he 

flexural motion of the plate has been modelled. By ignoring the rotational inertia., 

the flexural wave speed approaches infinity as the frequency approaches infinit.y. The 

infinite flexural wave speed at high frequencies would seem to imply t.hat, all a finite 

plate, reflections would immediately interact with the excitation. However, it. can 

be shown that this is not the case if a more complete analysis is performed. 

Suppose that the impulse is filtered to create a limited frequency content. Lilllitillg 

the filter in the frequency domain will cause a lengthening of the signal in the t.ime 

domain, as illustrated in figure 6.2. If the product of the highest wave speed (the 

wave speed of the highest significant frequency in the filtered impulse) and the length 

of the filtered impulse is smaller than twice the distance to the nearest boundary 

or other control point, the reflection of the input signal can not interact with t.he 

signal itself. The wave speed is given by (Cremer et al. (1988)): 

4{EI 
c(w) = V (;hVw (6.4) 

Figure 6.3 shows the pulse length, measured here as the time it takes for the filtered 

impulse to decay indefinitely to below 1% of its maximum value, as well as the 

time required for the highest significant frequency to reflect back. In this case, the 

filter is taken to be a 4th order low pass Butterworth filter. The highest significant 

frequency is assumed to be the cut-off frequency at which the Butterworth filter has 

been set. 
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Figure 6.3: Pulse length and minimum reflection time as a function of the cut-off 

frequency. 

Figure 6.3 shows that if the frequency range is high enough, the pulse will be short 

enough not to interact with its reflections. In addition, higher frequency components 

should have smaller reflections, because of the damping in the structure. Thus, at 

the point of excitation, the finite plate must behave as an infinite plate for the 

duration of the signal. The energy input into the finite plate must therefore also the 

same as the input into the infinite plate: 

1 l wmax 

1 l wmax 

Ein = - lR (Ycc oo(jw)) dw = - lR (Ycc(jw)) dw 
'iT 0 'iT 0 

(6.5) 

Here, Ycc(jw) is the mobility of the finite plate. One can also conclude then, that 

over that frequency range the average of the mobility of the finite plate and the 

infinite plate must be equal. 

mean [lR (Ycc oo(jw))] = mean [lR (Ycc(jw))] (6.6) 
w w 

where mean denotes the average over the frequency range. 
w 

This last equation allows us to estimate the infinite plate impedance for the matched 

infinite plate impedance approximation. The impedance of the infinite plate is equal 
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Frequency range [Hz] 100 200 500 1000 2000 5000 

Impedance [Ns/m] 16.65 14.75 23.99 31.71 29.61 30.35 

Table 6.1: Average real part of the impedance of the simply supported plate at 

(x, y) = (O.24lx, O.6ly), calculated over different frequency ranges. 

to the inverse of the real part of the average mobilitJ· of the finite plate. 

Table 6.1 shows the calculated value of the inverse of the average mobility for differ­

ent frequency ranges on the simply supported plate. The impedance of all illfillite 

plate of the same material and thickness would be 31.87 Ns/m. The table shows 

that these values from 1 kHz match sufficiently for control purposes. For these sim­

ulations all the modes up to 10 kHz have been taken into account. The differellce 

between the theoretical value and calculated value can be due to a number of factors, 

including the limited accuracy of the numerical integration, the limiteel number of 

modes and the cut-off in the frequency domain. 

As mentioned before in section 3.2.2.5, an infinite beam does not have a real, fre­

quency invariant impedance and this method is thus not suitable for the beam. 

6.1.5 Summary SISO control 

In the single-input-single-output situation, the required variables for each of the 

approximation strategies can be identified on the basis of the mobility or the power 

absorption. Each strategy should approach the values calculated in chapter 3 at 

each point of the structure. For matching the impedance of the infinite plate, the 

frequency range over which the mobility needs to be measured is dependent on the 

distance to the nearest point to reflect a wave. Placing the control location close to a 

boundary will require a large frequency range to accurately estimate the impedance 

of the infinite plate. 
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6.2 Tuning in MIMO setup 

In a multi-input-multi-output (J.,lIMO) situation, the transfer function at the point 

of control is influenced by the control at other points. This may influence the setting 

of gains in the multi-channel set-up. This section examines hmv the presence of other 

feedback loops influences the measurements and thus the calculation of the variables 

needed for the calculation of the feedback gains. The tuning of the gains is examined 

on the beam using 2 and 4 evenly distributed control locations and on the simply 

supported plate using 4 and 16 evenly distributed control locations. 

6.2.1 Use of approximations 

In these simulations, it is assumed that the structure is controlled at all locations 

with a decentralised velocity feedback controller tuned to minimise kinetic energy, 

as described in chapter 4. At one of the control locations the gain is then set to 

zero. Using the methods described in section 6.1, the required variables for each 

approximation of the feedback gain are then estimated. If the gains calculated 

with the approximations are similar in the controlled and the uncontrolled case, the 

approximation strategy is considered suitable for multi-channel control. 

Figure 6.4(a) shows the open-loop mobility of the beam at 0.33L. If the beam is 

controlled at 0.67 L (dash-dot line), the resonance frequencies seem to have shifted 

to higher frequencies and are a lot more damped. Figure 6.4(L) shows the open-loop 

mobility at 0.2L, with the beam controlled at 0.4L, 0.6L and 0.8L. Figure 6.G(a) 

shows the open-loop mobility of the simply supported plate at one of the control 

locations of a plate with 4 distributed control locations. Vvhile figure 6.5(b) shows 

the open-loop mobility of the plate with 16 evenly distributed control locations. In 

both cases, the mobility has been examined at one of the corners of the square of 

control points. 

In these cases the number of apparent resonance frequencies drops considerably. In 

figure 6.4(b) the first resonance in the control case occurs at approximately 75 rad/ s 

and the second at 575 rad/s. Where for the uncontrolled case, they were roughly at 

10 and 40 rad/s. Setting the gain on the basis of these results with the simplified 

two-mode formula results in a gain that is an order of magnitude larger than in the 
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Figure 6.4: Mobility of the beam with evenly distributed control locations. In the 

controlled case, control is present at all locations, except the one for which the 

mobility is depicted. 
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case where no control is present at other locations on the structure. The simplified 

two-mode strategy is therefor not suitable as a control strategy. The same seems to 

hold for the two- and three-mode formulas. Hovvever, the calculation of the factor 

~/;J; will change as well. 

Table 6.2 lists the values of the gains calculated using optimisation and approx­

imations. The values for the approximations are calculated on the basis of the 

measurements presented in figures 6.4( a) to 6.5(b). The results for the uncontrolkd 

situation (unc.) are based on the response that is measured when no cont.rol is 

present at the other locations. These are single channel measurements, discussed in 

section 6.1. The results in the controlled situation (con.) are calculat.ed using the 

methods described in section 6.1, but using the response when control is present. at 

the other locations. Thus these gains represent tuning in a multichannel situation. 

The feedback gains that maximise power absorption in the controlled set-up are also 

examined and shown in table 6.2. 

Despite the large changes in the apparent resonance frequencies, the t.able shows 

that the actual calculated feedback gains with the two- and three-mode formula.s do 

not change as much as expected and that in the MIMO controlled case, the gains are 

of the same order of magnitude as the optimal gains. :l\1aximising power absorption 

works well on the plate, but overshoots the optimal value by a large margin 011 the 

beam. 

The infinite plate impedance has also been calculated for the situations shown in 

figure 6.5(a) and 6.5(b) using the method described in section 6.1.4 over various 

bandwiths. The results are depict.ed in table 6.3. The simulations here were done 

using all the modes up t.o 10 kHz. The table shows that. the presence of control 

does not influence the calculat.ion of t.he mean real impedance if a. sufficiently large 

frequency range is examined. The frequency range required t.o evaluate the gain 

correctly is the same (::::::; 500 Hz). According to the t.heory in section 6.1.4, this is 

because the distance to the edge is equal to the distance t.o the nearest control point. 

The frequency range needed to evaluate t.he approximation is then also the same. 

In the 16 channel case, a larger frequency range is required than in the 4 channel 

case (::::::; 2 kHz). This would be because t.he distance between the control point. and 

t.he nearest reflecting point is smaller than in the 4 channel case. 
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Structure Beam Plate 

# control locations 2 4 4 16 

optimal feedback gain, unc. 30.49 33.27 23.67 26.53 

optimal feedback gain, con. 67.55 103.8 26.64 26.24 

2 mode formula, unc. 16.07 24.97 42.74 131.2 

2 mode formula, con. 37.95 71.80 37.84 35.18 

3 mode formula, unc. 18.78 21.45 14.20 31.94 

3 mode formula, con. 42.17 76.65 43.50 36.03 

power max, unc. 185.3 173.0 27.07 27.36 

power max, con. 199.0 213.1 31.82 33.67 

Table 6.2: Calculated feedback gains (Ns/m) for 2 and 3 mode formulas and power 

maximisation on a structure. The set-ups in the column correspond to the set-ups 

shown in figures 6.4( a) to 6.5(b). 'unc.' denotes t.he case where the controller is 

tuned when no control is present at other locations, whereas for 'con.' there is. 

Frequency range [Hz] 100 200 500 1000 2000 5000 

Impedance [Ns/m] 4 channel, unc. 1.90 13.0 32.4 28.2 30.9 30.7 

Impedance [Ns/m] 4 channel, con. 19.4 14.1 34.3 28.7 31.2 30.6 

Impedance [Ns/m] 16 channel, unc. 19.0 13.0 15.2 17.3 30.5 30.2 

Impedance [Ns/m] 16 channel, con. 41.7 28.7 17.6 16.0 30.1 30.6 

Table 6.3: Average real part of the impedance of the simply supported plate ac­

cording to the model, calculated over different frequency ranges. The 4 channel case 

corresponds to the set-up in figure 6.5(a), whereas the 16 channel case corresponds 

to the set-up in figure 6.5(b). 
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6.2.2 Concurrent tuning In a MIMO set-up 

In the simulation in section 6.2.1, the optimisation of a single control gain is ex­

amined, while the other gains are fixed. Ideally, each loop should be able to tllllt' 

itself while other control loops are also being updated. For the two- and three-mode 

formulas, concurrent tuning might be difficult, due to the selection of the reson­

ance frequencies as resonances become more and less-pronounced in the frequency 

response as gains in- and decrease. This possible limit-cycling behaviour is not 

investigated here. 

For matching the impedance of the infinite plate, concurrent tuning should not cause 

any problems because the value calculated at one location is independent from the 

gain at a different location if the frequency range examined is sufficiently large. 

Concurrent tuning of power absorption may not be trivial. If tuning works correctly, 

the indepently tuned controller should converge to the optimal decentralised control 

values. To see if independent tuning of maximised power absorption can converge 

in a MIMO setup, a simple algorithm was constructed and investigated using simu­

lations of the 16 control locations on the simply supported plate. In this algoritllln 

each control location is adjusted in turn and it follows these steps: 

- for a specific control location, examine how much power is absorbed at the 

current gain. 

- increase the current gain by a certain stepsize 

- if the power absorption has increased, examine the next control location. 

- otherwise, decrease the stepsize and examine the power absorption at the ori-

ginal gain plus the smaller stepsize. 

- if the power absorption still has not improved, examine the power absorption 

at the original gain minus the smaller stepsize. 

- if the power still has not improved, keep repeating the previous two steps until 

it does, or the stepsize becomes smaller than a specified minimum. 

Figure 6.6 shows the gains of the control locations as they converge together with 

the the gains that would be optimal to maximise power absorption. As can be seen, 

the gains become larger than their optimal values. This figure shows that the gains 

may, through interaction, overshoot their optimal values. The problem is that in 
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Figure 6.6: Self-tuning of maximum power absorbing controllers , 16 control locations 

on a plate compared to the values of t he opt imal decentralised controller maximising 

power absorption. 

the described algorit hm, one control location will not 'give up ' power absorption in 

favour of more power absorpt ion at a different control location. It is not clear how 

to overcome this problem and further study would be required. 

6.3 Experiments 

The previous sections showed that, t heoretically, approximations for the optimal 

gain can be calculat ed from the local mobility. This section examines whether 

these values can be calculat ed correctly from actual measurements of the open­

loop response of an experimental structure and whether stable feedback control is 

possible using the gains calculated from t he approximations. Power measurements 

were not conducted. The practical measurement of power has been demonstrated 

by Redman-White et al. (1987) and Hirami (1997a). 
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Figure 6.7: Laboratory set-up of structure. 

6.3.1 Measuring open-loop response 

Figure 6.7 shows the experimental set-up in the laboratory, which was develop d 

by Serrand (1998) and Benassi et al. (2004) , though in other configurations. The 

structure was excited using Ling Dynamic Systems electrodynamic shakers. A LDS 

type V403 was used as the primary, excitation shaker, while a LDS type VIOl was 

used as the secondary, control shaker. The specifications of these shakers have b n 

listed in tables C.2 and C.3 in appendix C. Accelerometers were used to pick up th 

signal, which was then amplified and integrated using charge amplifiers. The input 

signal to the secondary actuator was amplified using a custom made current driver , 

which gives a specific current output for a particular input voltage. The signal to 

the primary shaker was amplified using a solid state DC300 amplifier. Appendix C 

lists all the equipment that was used. The steel plate is 58 cm wide and 70 cm long 

and its height is 1.85 mm. The outer 4 cm on both ends are used to clamp the dg 

and have therefor not been taken into account in simulations. The x-axis is tak n 

along the nearest free edge, whereas the y-axis is along the left-hand-side clamped 

edge. 

The open-loop measurement set-up is depicted in figure 6.8. For these measurements 

the primary, excitation shaker was not attached to the structure. 
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Figure 6.8: Diagram of open-loop measurement set-up of structure. 
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Figure 6.9(a) shows the response of the structure at (x, y) = (0.350, .175), simulated 

according to the analysis in section 2.1.3. For the simulation, the 286 modes with 

a resonance frequency less than 5kHz have been taken into account. Therefor the 

response drops off at higher frequencies. Figure 6. 9(b) shows the measured respOllse, 

corrected for the gains occurring in the electrical part of the loop. The shaker was 

assumed to have a flat response and the response was sca1ed using the low-frequellcy 

input-to-force response measured with a force gauge. 

The resonances of the structure occur at slightly lower frequencies than expected 011 

the basis of the simulations, but otherwise the model shows reasonable agreemellt 

with the measurements at low frequencies. At roughly 6 kHz, a peak occurs ill 

the magnitude of the measured response. The cause of this peak is unclear, as 

the resonance frequencies of the accelerometer and of the arma.ture of the actuator 

should occur at higher frequencies. Though this peak limits the range of frequencies 

for which feedback can effectively be used and requires extra measures to maintain 

stability, it will be shown in section 6.3.3 that the response is sufficiently close to 

the model for these experiments. 

6.3.2 Deriving variables from experimental data 

The variables required for the two-mode and three-mode model can be derived from 

the measured transfer function by selecting the appropriate resonant peaks. Figure 

6.10 shows the resonances and half power points selected for the calculation of the 
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Figure 6.9: Mobility of the CFCF plate at (x, y) = (0.350, .175), according to the 

theoretical model and measured on the structure. 
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Figure 6.10: Selection of resonances and half power points for two- and three-mode 

formulas. 

two- and three-mode formula in the manner described in section 6.1. The half power 

points selected are those frequencies where the measured amplitude was below 1/ v'2 
of amplitude at the resonance frequency. The gain calculated on the basis of the 

measured data with the two-mode formula was 108 Ns/m and 225 Ns/m for the 

three-mode formula. On the basis of the modal model of the clampecl-free-c:lamped­

free, they were 127 Ns/m and 327 Ns/m. 

Table 6.4 shows the frequency average of the real part of the plate impedance ac­

cording to the theory and as measured on the structure, calculated over different 

frequency ranges. Again, the mean real impedance comes dose to the impedance of 

the infinite plate, which in this case would theoretically be 327 Ns/m. At 5 kHz, the 

simulated mean impedance drops off. This is due to the fact that only the modes 

up to 5 kHz have been taken into account. For the measured data, the impedance 

also approximates the correct value. From 2 kHz, however, the average impedance 

drops off. This is due to the phase shift associated with the resonance at 6 kHz, 

causing the response to have a phase outside the ±90°. 
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Frequency range [Hz] 200 300 400 500 1000 2000 3000 5000 

Impedance [Ns/m] (simul.) 186 230 314 327 313 328 321 281 

Impedance [Ns/m] (meas.) 213 309 334 302 328 303 246 118 

Table 6.4: Average real part of the impedance of the CFCF plate at (:I:, y) = 

(.350, .175) as calculated using a simulation of the CFCF plate model and as mens-

ured on the experimental structure, calculated over different frequency ranges. 

6.3.3 Closed-loop measurements 

Before closing the loop, the stability of the feedback loop should be examined. Figure 

6.11(a) shows the Nyquist plot of the open-loop response at the desired feedback 

gain. The Nyquist stability criterion demands that the point -1 is not. encircled 

counterclockwise by the open-loop response. The figure, however, shows that it is 

encircled. The loop that encircles the -1 point is associated with the 6 kHz pea.!.;:, 

The 3 kHz low-pass filter on the charge amplifier is used to reduce the size of the loop 

that causes the instability. Figure 6.11 (b) shows the Nyquist plot of the open-loop 

response after applying the filter. Now, the response no longer encircles the -1 point 

and the closed-loop should be stable. 

To set the feedback gain in the closed-loop, the amplification factor of the charge 

amplifier was used. However, this limited the amplification factor to 11 nwxillllllll 

of 600 Ns/m. Additionally, when both feedback and the disturbance force wel'(~ 

presented at the secondary shaker, an additional electronic summing device and a 

splitter were required, which each have a gain of 1/2. In that case, the feedback gaiu 

was limited to a factor 150 Ns/m. It was also found that a low-frequency high-pass 

filter was necessary to stabilise low-frequency behaviour. 

Figure 6.12 shows the set-up of the control when the excitation is present eel at the 

primary location and control is present at the secondary location. The velocity of the 

structure was measured either at the secondary or at the primary location. Figure 

6.13 shows the set-up when the excitation is presented at the secondary location. 

Figures 6.14 to 6.16 show the measured transfer functions from, respectively, the 

primary input to the primary output, the primary input to the secondary out.put 
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Figure 6.11: Nyquist plot of unfiltered open-loop response at the desired feedback 

gain. 
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Figure 6. 12: Diagram of closed-loop measurement set-up of t he structure, wh n 

the excitat ion is presented through the primary shaker (1) and ontrol is achi v d 

t hrough the secondary shaker (2). 
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Figure 6.13: Diagram of closed-loop measurement set-up of the structure, when 

excitation and control are bot h presented through the secondary shaker. 
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Figure 6.14: Closed-loop measurement of plate response at the primary shaker loca­

tion with no control and various feedback gains in the control loop at the secondary 

location. 

and from the secondary input to the secondary output. The response in figures 6.14 

and 6.15 drops off considerably at high frequencies. This is due to the dynamics 

of the primary shaker and its amplifier. However, changes due to control at the 

secondary location can still be seen. Certain modes are damped well due to the 

control. It can also be seen that around 200 Hz, at the maximum gain of 600, a new 

resonance starts to occur. This seems to confirm that the gain of 300 is the best 

from those examined. This is very similar to the estimated infinite plate impedance 

and the three mode approximation. Figures 6.15 and 6.16 both show a decreasing 

mobility at the secondary location as the gains increase. This is the 'pinning' of the 

plate. 

6.4 Conclusion 

This chapter showed how necessary variables for the tuning of the absolute velocity 

feedback gain using approximati'on discussed in chapter 3 can be obtained from 
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Figure 6.15: Closed-loop measurement of from the primary shaker t o t he accelero­

meter at the secondary location with no control and various feedback gains in the 

control loop at the secondary location. 

the mobility at the control point. Section 6.1.3 showed how one can calculate the 

required values for the two- and three-mode formula from the mobility, in a single­

channel control situation. Section 6.1.4 showed that if the mass of the structure 

is known, the simplified two-mode formula can be tuned on t he basis of t he first 

two eigenfrequencies. It also showed that the impedance of the the infinite plate 

can be derived as the average real impedance in the frequency domain of t he finite 

structure. 

Analysis of the tuning of the controllers in a multi-channel situation was done in 

section 6.2.1. It was shown t hat for the simplified two-mode formula, the presence 

of damping in other control loops results in change of an order of magnitude of the 

feedback gain. It seemed that this would also be the case for the two- and three­

mode formulas. However , because of the ident ification of the factor ~ *' t he gains 

remained in the same order of magnitude of the optimal gain. They can therefore 

not be ruled out for the purposes of control, but their suitability is difficult to prove. 

The impedance of the infinite plat e can be derived in the multi-channel set-up, 
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Figure 6.16: Closed-loop measurement of plate response at the secondary shaker loc­

ation with no control and various feedback gains in the control loop at the secondary 

location. 

using the same method as for the single-channel situation. The limiting factor for 

identification is the distance to the nearest object that can reflect structural waves. 

If this distance becomes smaller, a higher frequency range is required to obtain 

a correct approximation. It was shown that if the frequency range is sufficiently 

large, the presence of control does not significantly influence the estimation of the 

impedance. This is therefor a very robust strategy. 

For optimal power absorption it was shown that , although it will converge to the 

optimal value to maximise power absorption for single-channel control, for multi­

channel control, this is not guaranteed and the gains can become higher than ex­

pected. 

Section 6.3 showed that the variables required for the tuning of the approximations 

can also be measured on an actual structure. The calculation of the two-mode 

formula resulted in nearly identical gains on the basis of the model and on the basis 

of the measurements. For the three-mode formula, the values differed by about 50%. 

Matching the infinite plate impedance also resulted in nearly identical gains on the 
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basis of the model and the measurements. The frequency range oyer which the llleml 

impedance could be calculated was limited by a resonance at 6 kHz, which caused. 

an undesirable phase shift. A limit in the frequency domain to which the impedance 

can be measured limits the minimum distance at which control units can be spaced. 



Chapter 7 

Conclusions and suggestions for 

future work 

7.1 Conclusion 

The goal of the research, as set out in section 1.3, was to examine decentralised 

control strategies that could be tuned using local variables, but are aimed at re­

ducing a global cost criterion. These strategies have been examined on beam and 

plate models. The excitation of these structures was assumed to be a randomly dis­

tributed, stochastic excitation. This resulted in equal but independent excitation of 

each mode of the structure. This was done so that the tuning of the controller varied 

only with the location of the controller and not with the location of the excitation. 

Studying the unconstrained optimisation of a single-channel controller, either feed­

back or feedforward, suggested that minimising the sum of the power inputs of the 

excitation and the controller is a good approximation for minimising the kinetic 

energy in the structure. Unconstrained tuning for maximum power absorption res­

ulted in a controller that increased the power input by the excitation and mostly 

increased, rather than reduced, the overall kinetic energy. It can be shown that in 

a causal system with an entirely random excitation, a feedback controller can not 

influence the power input by the excitation. Thus, maximising the power absorption 

by the controller is equal to minimising the total power input and can be used as a 

160 
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viable approximation of minimising the kinetic energy. Other approximations t h(1 t 

were suggested were based on a model with a reduced number of modes or lllatching 

the impedance of the infinite structures. This last approximation is only possible 

on the pla.te, as the impedance of an infinite plat.e is rea.l and constant, whereas the 

impedance of an infinite beam is frequency variable and complex. 

These approximations to the optimal, const.ant absolute velocit.y feedback gains feed­

back gains were simulated using collocated velocit.y sensors and force a.ctuators and 

were compared to an optimised absolut.e velocity feedback gain and a LQG con­

troller. It was found on both the beam and plat.e, for both whit.e and red noise 

excitat.ion, t.hat. provided the velocity feedback gain and the LQG controller use a 

similar control effort, then t.here is hardly any difference in the overall cost function. 

It. was also found that on the beam, for a white noise excitation, t.he maximisation of 

the power absorption resulted in far higher gains than optimal. The approximations 

to the optimal gain based on a small number of modes resulted in good approxima­

tions to t.he optimal performances in t.hese simulations, wit.h a performauce within 1 

dB of the LQG cont.roller, which obtained an average reduction of about 9 dB. This 

probably reflects the fact that in this st.ructure t.he majorty of the kinetic energy 

is contained in the first few modes. For red noise excit.ation on the beam, power 

absorption led to gains that were below optimal. The reductions in red noise case 

were much larger, bet.ween 14 and 25 dB, and depended much more strongly on 

the locat.ion of the colocated sensor and actuator along the beam, with the best 

performance just off the middle of the beam. On the plate, the reductions were 

less, respectively 3 and up to 11 dB for white and red noise excit.ation. The differ­

ences between maximum power absorption and minimising the kinetic energy were 

smaller bot.h in gains and performance. The approximations on t.he basis of a few 

modes performed reasonable, as long as t.he control location is not near the edges of 

the plate, while the approximation by matching the infinit.e plate impedance always 

performed well. 

The multichannel case allows the use of cross coupling terms in the controller. It was 

found that, although the off diagonal terms were significant. in the optimised con­

stant. gain controller, they only added performance when the controllers were closely 

spaced. In that case, they allow t.he controller to separately implement angular 

velocity feedback and transverse velocity feedback. Again, it was found that there 

was hardly any difference between LQG and absolute velocit.y feedback control if the 
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control effort is similar. On the beam with ,,,hite noise excitation, it was again found 

that maximising the power absorption resulted in too high gains and performed less 

well than other approximations studied, the three mode and two resonance formulas. 

In the red noise case it performed better than the other approximations. On the 

plate, maximum power absorption \vas the best approximation in tenns of perform­

ance, closely followed by the matched infintie plate impedance, both in the case of 

red and white noise. 

These controllers examined the control of kinetic energy as the sum of the squared 

modal velocities, which weights the motion of each location of the plate equally. It 

seemed appropriate therefore to study a cost function which is more selective. It 

was chosen to study sound radiation. The modelling of sound radiation for the pur­

pose of ASAC was examined first and found that radiation mode filtering is a more 

effective strategy of modelling sound radiation in terms of calculation time than 

modal radiation filtering, though the latter was found to be more accurate. The 

examination of the performance of different controllers showed that a celltralised 

controller again added no real benefit in terms of performance over a decentralisecl 

controller. The difference between a decentralised, constant gain velocity feedback 

controller and LQG control, though bigger than for AVC, was also very small. Al­

though a controller optimised for ASAC does have better acoustic performance than 

a controller optimised for AVC, in practice an AVC system would do a good job in 

controlling sound radiation. 

Finally, chapter 6 showed that tuning of the feedback gains using the approximations 

to the optimised controller is possible on the basis of the measured local variables 

(power and mobility transfer function) in both a single-channel and a multi-channel 

set-up. Though it is not unexpected for the maximisation of power ahsorption 

and it can be proven to be true for the matched infinite plate impeda.nce, it was 

not expected to be the case for the two- and three-mode formulas. The Illulti­

channel online tuning of the two- and three-mode formulas might be difficult as 

included modes may become critically damped when control is present at other 

locations and have to be discarded. This this could result in limit-cycling behaviour. 

Creating a strategy for self-tuning of units based on maximum power absorption in 

a multichannel controller may a.lso create some difficulty, as it could be difficult to 

set up the independent controllers to 'give up' power so that more power can be 

extracted at other control locations. It was shown that the method of measuring 



Chapter 7. Conclusions and suggestions for future work 163 

the infinite plate impedance only depends on the distance to the nearest reflecting 

object and that this impedance can also be measured in a practical set-up. 

In short, the aim of this thesis is satisfied on the plate: matching the infinite plate im­

pedance can be measured locally, in both a single-channel and multi-channel set-up 

and has AVe performance that is close to that of a centralised, dynamic controller. 

For the beam, the approximations based on a low number of modes seem to ,vork 

better, but the convergence of the tuning can not be guaranteed. Power maxim­

isation can also work well, especially on the plate, but implementation might be 

difficult and tuning could change if the excitation is not white, or not randomly 

distributed. 

7.2 Discussion and suggestions for future work 

This work examined the tuning of decentralised control units on the basis of local 

measurements for a rather idealised control system. First of all, the dynamics of 

both the sensor and actuator were neglected. For the generation of feedback forces 

on plates, a combination of an accelerometer and an active mass driver (see also 

Paulitsch (2005) and Benassi et al. (2004)) seems most logical Stability analysis of 

such units in a multi-channel set-up would be useful to show the relevance for further 

research. Another interesting practical question is whether the use of the mat.ched 

impedance on a more complicated engineering structures than plates is feasible and 

would still produce good results. 

On the plate, it was observed that setting a velocity feedback gain to match the 

impedance of an infinite plate worked well and the performance of a dynamic, cellt­

ralised controller was not much better. This might be explained in terms of physics. 

One can imagine a point on an infinite plate, where waves come in at random in­

tervals and from random directions. To reduce these waves as much as possible, the 

maximum amount of energy would need to be extracted from them, which can be 

done by applying a matched impedance. Logically, if that point was on a .fin'ite plate 

of the same material and thickness and if the waves are still coming in randomly, i.e. 

reflections can be neglected, then the same impedance would still result in a max­

imum reduction of the waves. This may be an explanation for the small difference 
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in performance between optimised, dynamic, centralised kinetic energ~T control Hnd 

decentralised constant gain control; If reflections do not contribute signific<1ntly to 

the velocity signal measured at some point, trying to control them on the basis of 

the velocity signal would not help much. Thinking about the control of the waves in 

the plate in this way, leads to an interesting question: can the controllers be placed 

in such a way that the 'diffuseness' of the waves in the plate is maximised? 

If the suggested explanation is correct, the difference in performance between dy­

namic, centralised control and constant velocity feedback gain set to match the 

infinite plate impedance, should decrease ever further. Also, it would be interesting 

to examine how the performance in that case compares to the performance to regu­

larly placed controllers, or controllers placed to minimise AVe. The sound radiation 

of a structure with such diffuse waves would also be interesting to examine; would 

the sound radiation increase or decrease? How does a controller that is optimised 

at those locations compare to the matched impedance? 

The two- and three-mode approximations seem to work in a multi-channel set-up, 

because it is assumed that the observed resonances are independent modes that are 

excited equally and independently. If it can be established that the modeshapes 

corresponding to those resonances are orthogonal and that the excitation of each 

of those modeshapes is indeed equal, then the basis for using these approximations 

becomes stronger. An algorithm that prevents limit-cycling would then need to be 

developed. 

Finally, it should be noted that matching the impedance of the infinite plate was pos­

sible to implement because it is a constant and real variable. If one was to measure 

a different quantity, such as rotational velocity or bending, and use a corresponding 

dual acutator, this is likely to change. It would be interesting to study other ca.ses 

where the input-output transfer function of a collocated and dual actuator-sensor 

pair is a constant gain when measuring an infinite structure. If the inverse of this 

'infinite mobility' is then applied on the finite structure, does it also occur that dy­

namic, centralised controllers have little performance gain to offer over a constant 

gain, feedback strategy with matched 'infinite impedance'? 



Appendix A 

Modal analysis of a beam 

A simply supported beam is a beam that is supported at its ends on hinges, allowing 

free rotation, but no displacement. This is illustrated in figure A.I. 

To analyse the motion of the beam, an infinitesimal portion of the beam must be 

considered. The forces acting on such an portion of the beam are depicted in figure 

A.2. The moments at the cross-sections are caused by a pressure distribution over 

the entire cross-section of the beam. 

Figure A.l: A simply supported beam. 
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Figure A.2: Forces governing infinitesimal portion of a beam. 
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The transverse forces acting on the beam are related to the bending of the beam 

and as such are related to the transverse displacement of the beam. The differential 

equations that describe the transverse displacement are given by: 

8Q(x, t) ( ) 
- 8 + p x, t 

x 
(A.I) 

Q( ) 
8M(x, t) 

- x, t + 8 
x 

(A.2) 

In this analysis, it is assumed that rotational motion of the element is insignificant 

in comparison to the transverse motion of the element and that shear deformation is 

small compared to bending deformation. These assumptions are valid if the height 

of the beam or plate is small in comparison to its length (and width), and bendillg, 

the second derivative of the transverse deflection, remains limited. Under these 

assumptions, the combination of equation A.2 and A.I results in: 

(A.3) 

The moments acting on the cross sections of the beam are due to the strains related 

to bending of the beam. The relation between the strains and bending are described 

by the following differential equation: 

(A.4) 

Substituting equation A.4 into A.3 leads to what is known as the Euler-Bernouilli 

thin beam equation of motion: 

~EI82w(x, t) S8
2
w(x, t) _ ( ) 

8 2 8 .2 + P 8 2 - P x, t x x t 
(A.5) 

Where EI is the bending stiffness of the beam, w(x, t) the transverse deflection, p 

the density and S the cross-sectional area. p(x, t) is an external pressure acting on 

the beam. EI is assumed constant along the beam. 

To obtain a solution for w(x, t) in the inhomogeneous differential equation A.5, 

the homogeneous solution should first be considered (p(x, t) = 0). In that case, a 

solution can be found that is separable in space and time: 

(A.6) 

Implementing this into equation A.5 results in: 

(A.7) 
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If furthermore the time dependent part is harmonic, then it can be written as: 

Wt(t) = ww(jw)ejwt . Combining this with equation A.7 results in: 

EI
84wx (:r) _ S () 2 - 0 

P WX' x w -
8 4 . 

X 
(A.S) 

or: 

(A.D) 

At this point the boundary conditions of the beam must be considered. For a simply 

supported beam, the boundary conditions are such that there are no deflections or 

bending moments at the beginning (x = 0) and the end of the beam (x = L): 

Wx(O) = 0 

wx(L) = 0 

EI82~~2(O) = 0 

EI82~;JL) = 0 

The solutions to A.S that comply with the boundary conditions, are sinusoidal mod­

eshape functions: 

(A.I0) 

where kn = nz and n is an integer. These modeshapes can be scaled arbitrarily. 

Here they have been chosen to be: 

(A.11) 

These modeshapes have natural frequencies: 

(A.12) 

Now the solution for the homogeneous equation is obtained, the solution to the 

inhomogeneous Euler-Bernouilli equation (equation A.5) can be derived. To do this, 

the expansion theorem is used: 

Theorem 1. Expansion theorem: Any function w(x, t), satisfying the boundary 

conditions of the problem and such that ::2 (EI82~;~'t)) is a continuous function, 

can be represented by the absolutely and uniformly convergent series of the system 

eigenfunctions: 
00 

W(x, t) = L an (t)'ljJn (x) (A.13) 
n=l 
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where an(t) can be interpreted as the modal response of that particular mode to the 

input force. Then, by combining equations A.13 and A.5, this can be written as: 

(A.14) 

Assuming that the pressure is a point force, f(t), at .1:f: 

(A.15) 

This equation is not useful in determining the individual wn(t) for each mode. How­

ever, by using the orthogonality of the modeshapes, equations for each Wn (t:) can 

be obtained. Multiplying both sides of equation by VJm(x) and integrating over the 

length of the beam gives: 

Due to the orthogonality of the modes, JoL VJn (x )'ljJm (x )dx is equal to 0 if n =1= Tn and 

the summation is thus eliminated from the equation. If n = m , JoL VJn (.1:)'VJm (.1:)d:r 

is equal to 1/2L. Thus differential equation A.16 simplifies to: 

(A.17) 

A Laplace transform or Fourier transform of this equation, allows the formulation 

of the transfer function from the force to the modal displacement in terms of the 

Laplace variables or frequency. In terms of frequency, the transfer function is: 

amUw) 
F(jw) 

~ VJm(xJ) 
L (-pSw 2 + EIk~) 

2 'ljJm(xJ) 
pSL (w?-n - w2 ) 

(A. IS) 

So far, no damping has been included in the model. The damping has been assumed 

to be small and to act on each mode individually. The differential equation and the 

transfer function then become: 

(A.19) 

(A.20) 

where ( is a viscous damping factor. 
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Single channel red-noise results on 

a plate 

AVFB, minimising kinetic energy AVFB, maximising power absorption 
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Figure B.1: Constant gains [ Is/ m] for different single channel optimisations on a 

plate, under red noise excit ation. Gains for LQG control, two- and t hree- mode 

formulas and matched infinite plat e impedance have not been depicted, as t hey are 

not-constant (LQG control) or the same as for white-noise excitation . 
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Figure B.2: Control effort [N2
] for different control strat egies on a plat e, under red 

noise excitation. 
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Figure B.3: Change in kinetic energy in decibels for different control strategies on a 

plate. 



Appendix C 

Physical characteristics of the 

experimental equipment 

This appendix contains tables of the physical characteristics of the sensors, actuators 

and amplifiers used in the experimental work described in section 6.3. 

Shakers 

Current driver 

Power amplifier 

Accelerometer 

Fource gauge 

Charge amplifier 

LDS type VIOl and type V403 

ISVR designed 

DC300 

B&K 4375 

B&K 8200 

B&K 2635 

Summing box ISVR designed 

FFT Servo Analyzer/Generator Advantest R9211C 

Table C.l: Equipment used for experiments. 
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Effective moving mass 

Maximum sine force - peak 

Maximum displacement peak - peak (DC) 

Maximum sine velocity - peak 

Maximum sine acceleration 

Suspension axial stiffness 

Electrical requirement - Amplifier 

0.0065 kg 

8.9 N 

2.5 mm 

1.31 m/s 

1373 m/s2 

3.15 N/mm 

0.09 kVA 

Table C.2: Specification of the LDS type VIOl shaker. 

Moving mass 

Maximum sine force - peak 

Maximum displacement peak - peak (DC) 

Maximum sine velocity - peak 

Maximum sine acceleration 

Suspension axial stiffness 

Electrical requirement - Amplifier 

0.200 kg 

98 N 

17.6 mm 

1.52 m/s 

981 m/s2 

12.3 N/mm 

0.27 kVA 

Table C.3: Specification of the LDS type V 403 shaker. 
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