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Hidden Markov Models (HMMs) are widely used for biological sequence analysis because 

of their ability to incorporate biological information in their structure. An automatic 

method of optimising the structure of HMMs for biological sequence analysis is highly 

desirable. However, this raises two important issues: first, the new HMMs should be able 

to grow enough to represent biological phenomenon, and we need to reduce overfitting 

of the HMM so that it has good generalization performance on unseen sequences. 

In this thesis, we explore the possibility of using a genetic algorithm (GA) for optimising 

the HMM structure. The Baum-Welch algorithm is hybridised within its evolutionary 

cycle. To prevent overfitting, a separate dataset is used for comparing the performance 

of the HMMs to that used for the Baum-Welch training. 

The proposed GA for hidden Markov models (GA-HMM) allows HMMs with different 

number of states to evolve. The GA-HMM was capable of finding an HMM comparable 

to a hand-coded HMM designed for the same task, which has been published previously. 

We also propose Block-HMMs where the topology of HMMs was assembled from bio­

logically meaningful building blocks. New genetic operators are designed to evolve the 

HMM structure while preserving the blocks. 

We applied the evolving HMM structure methods to modelling the promoter and coding 

region of a prokaryote and predicting the secondary structure of proteins. The Block­

HMM method could generate HMM structures and find conserved promoter region and 

triplet codon model without any prior information on the sequences. When the Block­

HMM is tested for the protein secondary structure prediction problem, it showed superior 

performance to other prediction methods using HMMs and was comparable to the best 

known techniques for this problem. 
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Chapter 1 

Introduction 

During the last two decades, owing to the development of sequencing technology, the 

amount of biological sequence data has increased explosively. To deal with this enormous 

amount of data as well as the complex nature of biological phenomena, computer-based 

research has become essential in biological sequence analysis. This computer aided 

research on biology or bioinformatics has become a crucial field of science that enables 

researchers to speed up their research and discover unknown facts that cannot be revealed 

without it. In sequence analysis the computer aided approaches are used in various areas 

such as interpreting the function of the biological sequences and tracing evolutionary 

information between different organisms. 

Machine learning is a field of research where computational algorithms learn from a 

set of data. It uses artificial intelligence techniques to learn complex and real-world 

data. Because of their ability to learn complex data which cannot be defined well, 

machine learning techniques have been replacing the classical statistical approaches in 

modelling the biological sequences. Numerous attempts have been made to develop 

more accurate analysis tools for biological sequences. Among those attempts neural 

networks are most widely used. Neural networks are machine learning algorithms used 

for pattern recognition and signal processing. With their ability to train sequences 

in the networks, they were applied for the prediction of intron splice sites of human 

pre-mRNA [7]. GRAIL [8] and GRAIL II [9] were developed using neural networks 

to recognise coding region of the DNA sequence. For the modelling of the promoters 

and splice junctions in Human DNA, Time-delay neural network (TDNN) architecture 

was suggested [10]. Neural networks for the TATA-box and the initiators are trained 

separately and combined to a TDNN. In GeneParser [11] intron-exon and splice site 

indicators are weighted by neural networks. Most of the protein secondary structure 

prediction methods are built using neural networks. PHD [12], PSIPRED [13]' SSpro 

[14], SSpro8 [15] and YASPIN [16] are neural networks based protein secondary structure 

predictors. 

1 



2 Chapter 1 Introduction 

Hidden Markov Models (HMMs) have been widely used in biological sequence analysis. 

HMMs are stochastic models capable of statistical learning and classification. Although 

these models were originally applied to speech recognition [17], they have proved highly 

successful for recognizing biological sequences [18]. They have been used efficiently in 

a number of tasks ranging from amino acid profile searching [19] to multiple sequence 

alignments [20], to transmembrane helix architecture [21]. Their success owes much to 

their ability to encode biological information in their structure while allowing many un­

known quantities to be learned through the optimisation of their transition and emission 

probabilities. Also, an HMM can be effectively constructed by combining several small 

HMM modules that are modelled and trained separately. In this way, an HMM can 

grow by concatenating biologically modelled modules. 

Even though hand designed HMMs were successful in modelling biological sequences, 

the number of applications is limited. One of the reasons lies in the difficulties in 

modelling complex nature of biology with an HMM structure. Also, there are some 

inherent weaknesses in the HMMs. Firstly, it can suffer from the overfitting problem. 

The performance of an HMM becomes worse once it is trained too much for the given 

sequences. Secondly, the structure model has to be selected carefully. Because HMMs 

have a large number of unstructured parameters, there can exist several architectures 

which can represent the same biological sequences. Complex HMM architectures are 

apt to suffer overfitting. On the other hand, too simplified model usually deteriorate its 

performance. Even though there are elegant parameter learning algorithms in HMMs 

such as Baum-Welch algorithm, structure learning methods still remains unexploited. 

Automatic optimisation of the structure of HMMs that determines the size of an HMM 

would potentially be highly beneficial. One of the candidates that may enable automatic 

optimisation is to use Genetic Algorithms (GAs). 

In this thesis the use of Genetic Algorithms for optimising the HMM structure is inves­

tigated. A Genetic Algorithm is a robust general purpose optimisation technique which 

evolves a population of solutions [22]. GAs have been widely used to optimise archi­

tectures for Neural Networks [23]. One of the advantages of using GAs for the HMM 

structure problem is to utilise the flexibility provided by Genetic Algorithms (GAs) to 

gain the advantage of automatic structure discovery while retaining some of the benefits 

of a hand designed architecture. That is, by choosing the representation and genetic op­

erators, we attempt to bias the search towards biologically plausible HMM architectures. 

In addition, we can incorporate the Baum-Welch algorithm which is traditionally used 

to optimise the emission and transition probabilities as part of the GA. The optimisation 

of HMM architectures is a discrete optimisation problem which is easy to implement in 

a GA. We can simultaneously optimise the continuous probabilities by hybridising the 

GA with Baum-Welch. Furthermore, GAs allow us to tailor the search operators so as 

to bias the search towards biologically plausible structures and enable us to combine 

small HMM modules with crossover operators. 



Chapter 1 Introduction 3 

In the previous literature, GAs have been used to train the structure of an HMM. 

Yada et al. [24] used a GA to find a TATA box model. Thomsen [5] designed similar 

genetic strategy to evolve an HMM for the secondary structure prediction problem. They 

included a term in their fitness function to penalise over-complex models. However, their 

results depended critically on the penalisation parameter. To evolve HMM structures 

while penalising over complex model, we split the training set into two. One part of 

the training set is used for training the HMMs using Baum-Welch, the other part of the 

data set is used to evaluate the HMM's fitness. We also propose a selective Baum-Welch 

scheme, where only part of the individuals of the population are Baum-Welch trained. 

Those two methods are used in GA-HMM to prevent overfitting phenomena. 

The Block-HMM was designed to restrict the HMM structure evolution to biologically 

meaningful blocks. The topology of Block-HMM was assembled from the blocks moti­

vated by applications of HMMs in biological sequence analysis. New GA operations were 

designed not to break the properties of the block. The Block-HMM can be thought of a 

genetic model which uses the property of modularity of HMMs by crossing over blocks 

instead of states. We used the Block-HMM to find a structural model for the promoter 

region and coding region of Campylobacter jejuni. On the discriminative test the HMM 

structure found by the Block-HMM showed better sensitivity than the hand-designed 

HMM. 

To prove the usefulness of the Block-HMM we applied it to the protein secondary struc­

ture problem. The proposed Block-HMM method produced a better HMM structure 

than that any other automatic way of HMM structure learning algorithm produced so 

far on protein secondary structure prediction problem. It was also superior to elaborately 

hand designed HMM architecture. 

The work carried out in this thesis is published in four journal papers and presented in 

two conferences: 

• Won, K-J., Hamelryck, T, Priigel-Bennett, A. and Krogh, A. (2005) HMM Struc­

ture Learning using Genetic Algorithms: Prediction of Protein Secondary Struc­

ture, Bioinformatics, submitted. 

• Won, K-J., Hamelryck, T, Priigel-Bennett, A. and Krogh, A. (2005) A Protein 

Secondary Structure Prediction using evolved HMM, Young Bioinformaticians) 

forum, Selected to present. 

• Won, K-J., Priigel-Bennett, A. and Krogh, A. (2004) Evolving the Structure 

of Hidden Markov Models. IEEE Transactions on Evolutionary Computation, 

Accepted. 

• Won, K-J.,Hamelryck, T, Priigel-Bennett, A. and Krogh, A. (2005) Evolving Hid­

den Markov Models for Protein Secondary Structure Prediction. Proceedings oj 
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the 2005 IEEE Congress on Evolutionary Computation, pp. 33-40 . 

• Won, K.-J., Priigel-Bennett, A. and Krogh, A. (2004) The Block Hidden Markov 

Model for Biological Sequence Analysis. Lecture Notes in Computer Science, vol. 

3213, pp. 64-70 . 

• Won, K.-J., Priigel-Bennett, A. and Krogh, A. (2004) Training HMM Structure 

with Genetic Algorithm for Biological Sequence Analysis. Bioinjormatics, vol. 20, 

no. 18, pp. 3613-3627. 

I am responsible for all implementation on GA-HMMs and Block-HMMs. Advice on 

biology was supplied by Professor Anders Krogh, Dr. Lise Petersen, and Dr. Thomas 

Hamelryck at Bioinformatics Centre in University of Copenhagen. The ideas described 

in this thesis arose in discussion with Anders Krogh, my supervisor and myself. The 

original contribution to the field is described in chapter 5-8. 

This work is expected to be useful for bioinformaticians who would like to design an 

HMM for biological sequences analysis. The result found by using Block-HMM can be 

used as a preliminary HMM for further improvement. The algorithm using blocks may 

be able to give some hints on designing other automatic way of HMM structure learning 

for other computer science areas such as pattern or speech recognition. 

The remainder of this thesis begins with basic biological backgrounds in chapter 2. 

Genetic Algorithms are discussed in chapter 3. Chapter 4 provides overviews on HMMs 

and describes the training and decoding methods. Chapter 5 describes how we hybridized 

the HMM and the GA to design GA-HMM. In chapter 6 the Block-HMM is introduced. 

New genetic operations are devised to deal with blocks. In this chapter the Block-HMM 

used to find an HMM structure for the DNA sequences is discussed. In chapter 7 protein 

secondary structure prediction method using the Block-HMM is described. In addition, 

the results of the Block-HMM are compared with other prediction methods. Chapter 8 

investigates how the parameters work inside the Block-HMM. 



Chapter 2 

Computational Approaches to 

Biological Sequence Analysis 

2.1 Background on Molecular Biology 

2.1.1 DNA 

DNA consists of two long strands that wrap around each other to form the double helix. 

Each strand is built from a small set of molecules called nucleotides or bases. The four 

nucleotides are adenine(A), guanine(G), thymine(T) and cytosine(C). The order of the 

nucleotides contains the information that builds an organism. The information is read 

in three processes called replication, transcription, and translation. 

By a chemical bond adenine always pairs with thymine (an A-T pair) and cytosine 

with guanine (a C-G pair). Therefore, each strand in a DNA double helix becomes a 

chemical mirror image of the other. When a cell divides to form two new daughter cells 

replication process takes place. Each strand of the double helix are untwisted and used 

as a template to form a complementary strand (figure 2.1). 

DNA also acts as a template for the synthesis of RNA in a process called transcrip­

tion. During this process only specific parts of the genome are transcribed to produce 

RN A molecules. The RNA polymerase recognises the start point (Transcription Start 

Site:TSS) of a gene on the DNA and transcribes the mRNA until it reaches a termina­

tion signal. A variety of different termination signals are used by the genome. When it 

copies the DNA sequence,thymine(T) is replaced with uracil(U). 

A ribosome reads the mRN A and performs translation into protein. The ribosome 

attaches to the mRNA and recognises the first AUG triplet codon (start codon). It 

reads the sequence, 3 bases at a time, and synthesises amino acids. This translation 

5 
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FIGURE 2.1: A simplified representation of a DNA molecule separating to form two 
new molecules. Two strands of DNA are obtained from one. Adopted from National 

Health Museum web page [1]. 

terminates when the ribosome reaches the stop codon (UGA, UAA, or UAG). Figure 2.2 

illustrates the gene structure and the steps involved in synthesis of a protein. 

Promoters are located upstream of the TSS. They have a TATAAT sequence, called the 

TATA box, as well as one or more promoter elements further upstream. The TATA box 

is found in eukaryote about 30 base pairs upstream from the site where transcription 

begins and about 10 base pairs upstream in prokaryote. In E. coli, for example, there 

are particular conserved sequences of TATAAT located 10 bases upstream (-10 region) 

of the TSS and TTGACA located 35 upstream (-35 region) of the TSS. However, the 

conserved region does not always contain the identical sequence and a variety of types 

of promoters are possible. In some cases the TATA box is not even explicitly shown, 

which makes it difficult to find the exact site where the transcription starts. 

A long DNA sequence that is not interrupted by a stop codon and encodes part or all of 

a protein is called an Open Reading Frame (0 RF). In prokaryotic genes most of the 0 RF 

is composed of coding sequences, whereas, in eukaryotic genes the ORF is composed of 

exon-intron structures. The exons have information used in producing a protein. In 

general, introns are much longer than exons. The functions of introns are still obscure. 

To produce mRNA, exons in DNA sequence are cut and spliced. The splicing of mRNA 

must be done with great precision. A small missplicing causes a frame shift and produces 

new co dons specifying a totally different sequence of amino acids. The splice sites are 

largely defined by sequences within the intron. The intron begins with GU and ends 
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Promoter 

Transcription Start Site(TSS) 

Region 
;;; Transcription 

Stop Codon Start Codon 

mRNA 

;;; Translation 

Protein 

FIGURE 2.2: Gene structure and the steps involved in synthesis of a protein. Through 
transcription the DNA information is duplicated in mRNA. A protein is produced 
through translation. During translation ribosome reads the sequence, 3 bases at a 

time, and synthesises the amino acid. Adopted from [2J and modified . 
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with AG. Figure 2.3 shows the gene structure of eul<aryotic genes and figure 2.4 shows 

the splicing procedure to produce mRNA. Genes of higher eukaryotes may span up to 

millions of base pairs. The human dystrophin gene, for example, is 2.2 million base 

pairs long. The relationships between a gene DNA sequence, its primary transcript , the 

various forms of mRNA, and the final protein sequence is very complex. 

2.1.2 Protein Structure 

During translation 20 amino acids are created from codons. Because ther e are 64(43 ) 

possible codons, some codons are redundant . Figure 2.5 shows how R NA is translated 

into protein. 

Each amino acid has a similar, yet unique structure. Amino acids are classified by t he 

chemical nature of their side chains. The chemical nature of the side chains plays the 

key roles in forming the protein structure . The amino acids are linked by dehydration 

synthesis forming peptide bonds in the protein structure. Some amino acids are con­

served through evolution at sp ecific locations in a protein sequence because they are 

essential for stability, formation of sp ecific binding sites, or catalys t reaction . 
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Regulatory 
Region 

Chapter 2 Computational Approaches to Biological Sequence Analysis 

exon 

AUG Stop Codon 

splice site splice site 

FIGURE 2.3 : Gene structure of eukaryotic genes. The ORF of eukaryotic genes is 
composed of exon-intron structure. In general, exons which are known to contain the 

genetic information are shorter than introns. Adopted from [2] and modified . 

DNA 

Pre-mRNA 
V Transcription 

Capping 

Splicing 

V PoJyadenyJation 

mRNA 

FIGURE 2.4: Transcription and splicing of eukaryotic genes . The int rons in DNA are 
removed and the remaining exons compose the mRNA. The produced mRNA has a cap 

on the head and the poly(A) on the t ail. Adopted from [2] and modified. 
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Second letter 

FIGURE 2.5: Genetic Codes. From the possible 64 (43 ) codons only 20 amino acids are 
created . Adapted from [3J. 
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Proteins are polymers of amino acids. The primary structure of protein is the sequence 

of amino acids , which forms a chain connected by peptide bonds . Nearby amino acids 

associate with one another to form regions of secondary structure consisting of a -helices , 

j3-strands and coils. 

• a -Helices: T hese are rod shaped. The peptide is coiled around an imaginary 

cylinder and stabilised by hydrogen bonds formed between components of the 

peptide bonds. 

• j3-strands: The amino acids adopt the conformation of a narrow strips which form 

sheets like paper and the structure is stabilised by hydrogen bonds between amino 

acids in different polypeptide strands. They are usually found in the form of 

parallel or antiparallel strands. 

• coil : Other parts of the structure that are not highly st able. 

The elements of secondary structure pack together in a defined manner to generate a 

polypeptide's tertiary structure. Amino acids which are very distant in t he primary 

structure might be close in the tertiary structure because of the folding of the chain . 

The quaternary structure is the arrangement of p olypeptide subunits within complex 

proteins made up of two or more subunits. 
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coil 

a.-helix 

-sheet 

FIGURE 2.6: A protein is shown as Cartoons with Structure coloring. The a-helix is 
a spiral; the fJ-strands are depicted with arrows; coils are mostly connecting segments. 

Generated by using Chime [4]. 

2.2 Machine Learning Methods for Biological Sequence 

Analysis 

Machine learning is a field of research where computational methods learn to answer com­

plicated problems based on sets of provided data. It has been widely used for biological 

sequence analysis and supplies us with effective tools for many areas of bioinformatics 

such as gene finding and protein structure prediction. 

2.2.1 Gene Finding 

Gene finding is the area of computational biology that is involved in algorithmically 

identifying stretches of sequences that are actually functional (code for proteins or have 

regulatory functions) from non-coding or junk sequences. The gene finding strategies 

can be categorised as 1 )site based methods , 2)contents based method and 3)comparative 

methods. 1) Site based methods use the position property of the sequences such as 

conserved sequences, donor and acceptor splice sites, transcription factor binding sites , 

poly(A) signals and start or stop codons . PROSITE expression was built on conserved 

sequences and allowable variations information [25]. Weight matrix was used in the 

place of consensuses [26 , 25 , 27,28]. Later neural networks were applied to DNA signal 

recognition problems [7,29,30]. 2) Content based methods use the bulk properties of 
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sequences, such as CpG islands of the gene [31,32] and repetitive DNA sequence [33,34]. 

3) Comparative methods compare the sequences from related organisms and use the 

similarities between them [35]. Currently, integrating all of the three methods together 

is popular for higher prediction accuracy. Those integrated gene-finders usually use 

dynamic programming. GRAIL II [9], GeneParser [11], FGENEH [36], GeneID [37] and 

Gene Wise [38] were developed based on dynamic programming methods. 

Today the most accurate gene-finding methods use machine learning techniques such as 

neural networks, decision trees and hidden Markov models to evaluate the information 

from all of the traditional approaches in order to make a prediction. In particular, 

hidden Markov models have been successfully applied in biological sequence analysis as 

they can be used to accommodate biological knowledge of their structure and enable 

statistical modelling. Genie [39]' GENSCAN [40]' FGENEH [41] and HMMgene [42] 

were developed on the basis of hidden Markov models. 

2.2.2 Protein Structure Prediction 

Predicting protein secondary structure is an important step towards understanding pro­

tein structure and its function. This task has attracted considerable attention and 

consequently represents one of the most studied problems in bioinformatics. The pro­

tein secondary structure prediction methods predict secondary region from primary se­

quences. 

2.2.2.1 Definition of Protein Secondary Structure 

According to the DSSP [43] definition there are 8 types of structure in protein secondary 

structure: H (a-helix), G (31O-helix), I ('if-helix), E (extended strand), B (residue in iso­

lated ;3-bridge), S (bend), T (hydrogen bonded turn) and C (others). Most of prediction 

methods used a reduction scheme whereby Hand G are converted to H, E and Bare 

converted to E, and all the other to C. Figure 2.7 shows a protein sequence and its 

secondary structure labels. 

> grouplhk9:A 
Sequence SLQDPFLNALRRERVPVSIYLVNGIKLQGQ 
Observed CCHHHHHHHHHHCCCCEEEEECCCCEEEEE 
Predicted CCCCHHHHHHHHCCCCCCCCCCCCCEECCE 

FIGURE 2.7: A protein sequence with label and its prediction. 

There are several ways to check the performance of the predictors. The widely used 

Qindex is the percentage of residues predicted correctly as helix (QH), strand (QE), coil 
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(Qc) or for all three labels( Q3). For a single conformational state Qi is defined as 

Q 
_ number of residues correctly predicted in state i 

i - . .. x 100, 
number of residues observed 111 state t 

(2.1) 

where i is either helix, strand or coil. For all three state 

Q 
number of residues correctly predicted 

3 = x 100. 
number of all residues 

(2.2) 

In this example QH is 80 ((8/10) x 100)% and Q3 is 70 ((21/30) x 100)%. 

Segment overlap measure (SOV) considers type and position of the secondary structure 

segments rather than a per-residue assignment of conformational state [44]. Let 81 and 

82 denote an observed and predicted secondary structure segment. A segment is the set 

of adjacent residues with the same label. In figure 2.7 the first two observed segments 

are 'ee' and 'HHHHHHHHHH'. When (81,82) is a pair of overlapping segments, we can 

define S(i) as the set of all the overlapping pairs of segments (81,82) where 81 and 82 

have at least one residue in state i in common, and S' (i) as the set of segments 81 that 

do not produce any segment pair. The segment overlap quantity measure for a single 

conformation state i is 

with the normalisation value N (i) defined as 

N(i) = L len(81) + L len(8d (2.4) 
SCi) S'(i) 

where len( 81) is the number of residues in the segments 81. minov( 81,82) is the length 

of actual overlap of 81 and 82, maXOV(81, 82) is the length of the total extent for which 

either of the segments 81 or 82 has a residue in state i, and 6(81,82) is defined as 

6(81,82) = min {(maxov(81' 82) - minOV(81 , 82)), 

minov( 81,82), int(len( 81) /2), int(len( 82) /2)} . 

For the three state case of helix (H), strand (E), and coil (e), 

(2.5) 
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with the normalisation value N(i) defined as 

N = ~ N(i). (2.7) 
iEH,E,C 

In the example shown in figure 2.7, 

SOV(H) 100 x _1_ x [8 + 2 x 10] = 100% 
10 + 0 10 

SOV(E) 100x S+~+S x [(2;1 + 1;0) Xs] =26.7% 

SOV(C) 100 x x -- x 2 + -- x 2 x 4 = S1.9%. 1 [2+1 4+2 ] 
2 + 4 + 4 4 13 

Then, the overall segment over lap is 

SOV = 100 x 1 x [10 + 4 + ~ x 2 + 12 x 4] = S4.8%. 
10 + IS + 10 4 13 

For more detail on SOY see e.g. [44]. 

2.2.2.2 Secondary Structure Predictors 

Early prediction methods were developed based on stereochemical principles [4S] and 

statistics [46,47]. Later, a whole family of related sequences was used instead of a single 

sequence for analysis [48]. By clustering the sequences in an aligned family the secondary 

structure prediction rate for the cAMP-dependent kinases could be boosted. 

Since then the prediction rate has steadily risen due to both algorithmic development 

and proliferation of the available data. The first machine learning method to predict 

protein secondary structure was built using neural networks [49,SO]. Qian and Sejnowski 

constructed a cascaded neural networks. A second network was cascaded to improve the 

performance. Rost and Sander used a number of machine learning techniques including 

early stopping, ensemble averages of different network, and weighting scheme to con­

struct a predictor, called PHD [12]. In particular, they started feeding the multiple 

sequence in the form of profile instead of just feeding the base sequence to the neu­

ral networks. These profiles contain information of an amino acid frequency vector. 

By using profiles PHD can boost the prediction rate up to 71% in the cross-validation 

test. Psipred [13] has a similar structure with PHD. It receives the feeding input from 

the profile obtained by running PSI-BLAST [51]. A method to use multiple sequence 

information as an output level was also suggested [52]. SSpro [14], SSpro8 [15] was con­

structed using recurrent neural networks. YASPIN [16] cascaded hidden Markov model 

with neural networks to filter the output of the neural networks. 
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Support vector machines have also been used and show promising results [53]. Recently, 

the prediction accuracy has been improved by cascading a second layer of support vector 

machines [54,55]. Currently machine learning methods typically improve their perfor­

mance by combining several predictors and using evolutionary information. 

Most of these methods use sliding window technique. The sliding window technique 

slides a fixed-sized window along a sequence. Figure 2.8 illustrates a sliding window 

with a window size of 1l. When the window is centered on an amino acid, the secondary 

structure of the amino acid is predicted using evolutionary information and multiple 

sequence alignment. The evolutionary information of a sequence is retrieved by running 

programs such as PSI-BLAST [51]. This process continues until the end of the sequence 

is reached . 

... KVYGRCELAAAMKRLGLDNYRGYSLGNWVCA ... 
t-l! I I I I I 

1+1 II I 
... EEC. .. 

(predicted secondary structure) 

FIGURE 2.8: A sliding window with a window size of 11. A secondary structure of a 
residue located at the center of a window is predicted. 

Hidden Markov models (HMMs) were also used to predict protein structures. HMM­

STR [6] was the first successful protein secondary structure predictor based on HMMs. It 

was constructed by identifying recurring protein backbone motifs (called invariant/ini­

tiation sites or I-sites) and representing them as a Markov chain. Consequently, the 

topology of HMMSTR can be interpreted as a description of the protein backbone in 

terms of consecutive I-sites. Thomsen used genetic algorithms to evolve the HMM struc­

ture to find the protein secondary structure [5]. However, the performance was much 

worse than the hand-designed HMMSTR. 

2.2.3 Similarity Searches on Sequence Database 

When proteins or gene sequences are very similar, they are called homologous sequences. 

Homologous sequences are often derived from the same ancestral sequence, share the 

same structure, and have similar biological function even when they come from very 

different organisms. Top ranking secondary structure predictors use the homologous 

sequence information by running BLAST or PSI-BLAST to increase the prediction rate. 

BLAST (Basic Local Alignment and Search Tool) provides a method for rapid searching 

nucleotide and protein databases [56]. The BLAST programs consist of a set of sequence 
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comparison algorithms to search sequence databases for optimal local alignments to a 

query. It computes scores by reference to an amino acid substitution matrix. Position 

specific iterative BLAST (PSI-BLAST) is an enhancement of the BLAST program [51]. 

It searches a database for local alignments using gapped BLAST and builds a multiple 

alignment and a profile. The profile is then used to search the protein database again. 

Figure 2.9 shows the result of PSI-BLAST. We ran PSI-BLAST against the UniProt 90 

protein sequence database [57]. The result comprises of two parts. The first part of the 

result lists all the names of homologous sequences with score and E-value. The score 

is a measure of the similarity of the query to the sequence in the list. It is calculated 

using a substitution matrix. In the substitution matrix the rate of possible change to 

each other residue is written. We used BLOSUM62 [58] matrix for the substitution 

matrix. The E-value is a measure of the reliability of the score. The lower the E value, 

the more significant the score. The other part of the PSI-BLAST result is composed of 

pairwise alignments of each homologous sequence. BLAST and PSI-BLAST are found 

at http://www.ncbi.nlm.nih.gov /BLAST. 

The homologous sequences from the PSI-BLAST are aligned by a multiple sequence 

alignment method and a weight is assigned to every amino acid in protein sequences. If 

an alignment contains a majority of very similar proteins and a small number of slightly 

different sequences from the majority, the minority will have almost no influence on 

the prediction. Among several weighting schemes PSI-BLAST uses the position-based 

sequence weighting method[59]. The weight is given as 

W K = r T 1 
~"=l ~t=l r(L,t)·S(",t) 

",T 1 
L...t=l r(K,t)s(K,t) 

(2.8) 

where r is the number of homologous sequences, r(h, t) is the number of different residues 

at position t for homologous sequence hand s(h, t) is the number of times the particular 

residue appears at a specific position. 
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Query= group193/dlgdoa_.ent 

(238 letters) 

Database: uniref90 
1,780,887 sequences; 554,209,203 total letters 

Searching ....... .......................................... . done 

Results from round 1 

Score E 
Sequences producing significant alignments: (bits) Value 

UniRef90_P17169 Glucosarnine--fructose-6-phosphate arninotransfera .. . 468 e-131 
UniRef90_Q8Z9SB Glucosarnine--fructose-6-phosphate aminotransfera .. . 3BO e-l04 
UniRef90_Q6CYJ9 Glucosarnine--fructose-6-phosphate aminotransfera." 374 e-103 
UniRef90_Q7NA97 Glucosarnine-fructose-6-phosphate aminotransferas .. . 363 le-99 
UniRef90_P44708 Glucosamine--fructose-6-phosphate arninotransfera .. . 340 le-92 
UniRef90_Q87SR3 Glucosamine--fructose-6-phosphate aminotransfera .. . 338 6e-92 
UniRef90_Q6LLH3 Putative glucosarnine-fructose-6-phosphate arninot .. . 336 2e-91 
UniRef90_Q9KUMB Glucosamine--fructose-6-phosphate arninotransfera .. . 333 le-90 

UniRef90_UPI000027DC07 UPI000027DC07 related cluster 326 2e-88 

>UniRef90_P17169 Glucosarnine--fructose-6-phosphate aminotransferase [isomerizing] 

related cluster 
Length = 60B 

Score = 468 bits (1204), Expect = e-131 
Identities = 238/23B (100%), Positives = 238/238 (100%) 

Query: 

Query: 61 

Sbjct, 61 

Query: 121 

Sbjct, 121 

CGIVGAIAQRDVAEILLEGLRRLEYRGYDSAGLAVVDAEGHMTRLRRLGKVQMLAQAAEE 60 

CGIVGAIAQRDVAEILLEGLRRLEYRGYDSAGLAVVDAEGHMTRLRRLGKVQMLAQAAEE 
CGIVGAIAQRDVAEILLEGLRRLEYRGYDSAGLAVVDAEGHMTRLRRLGKVQMLAQAAEE 60 

HPLHGGTGIAHTRWATHGEPSEVNAHPHVSEHIVVVHNGIIENHEPLREELKARGYTFVS 120 

HPLHGGTGIAHTRWATHGEPSEVNAHPHVSEHIVVVHNGIIENHEPLREELKARGYTFVS 
HPLHGGTGIAHTRWATHGEPSEVNAHPHVSEHI~JHNGIIENHEPLREELKARGYTFVS 120 

ETDTEVIAHLVNWELKQGGTLREAVLRAIPQLRGAYGTVIMDSRHPDTLLAARSGSPLVI 180 
ETDTEVIAHLVNWELKQGGTLREAVLRAIPQLRGAYGTVIMDSRHPDTLLAARSGSPLVI 

ETDTEVIAHLVNWELKQGGTLREAVLRAIPQLRGAYGTVIMDSRHPDTLLAARSGSPLVI 180 

Query, 181 GLGMGENFIASDQLALLPVTRRFIFLEEGDlAEITRRSVNIFDKTGAEVKRQDIESNL 238 
GLGMGENFIASDQLALLPVTRRFIFLEEGDIAEITRRSVNIFDKTGAEVKRQDIESNL 

Sbjct, 181 GLGMGENFIASDnT.hT.T.P\I'1'RR.FIFLEEGDIAEITRRSVNIFDKTGAEVKRQDIESNL 238 

FIGURE 2.9: A result of PSI-BLAST with a query sequence. It contains the homologous 
sequences aligned with the query sequence. 



Chapter 3 

Genetic Algorithms (G As ) 

3.1 Genetic Algorithms 

Genetic algorithms (GAs) are stochastic algorithms inspired by biological genetic phe­

nomena. They are frequently used to solve optimisation problems and have been applied 

to game playing and adaptive control problem. Unlike other stochastic searching algo­

rithms such as hill climbing and simulated annealing [60]' GAs maintain several solutions 

in parallel. They exploit searching spaces by combining two existing solutions to create 

new solutions or progressively changing a solution. The combining method enable GAs 

to make a large jump in the search space. Maintaining a collection of solutions in paral­

lel, GAs are able to exploit the search space in several locations at the same time. This 

increases the possibility for GAs to find global solution. 

In a GA a problem is expressed using a genetic representation, usually a population of 

binary strings. The initial population is usually composed of random strings. Associated 

with each string is a fitness value that numerically shows how well the string is suit­

able for the given problem. In each generation a proportion of the population undergo 

genetic operations and produce offspring to form the next generation. In the classical 

GA (figure 3.1) a genetic cycle comprises the fitness calculation, selection and genetic 

operations. The search space of a GA depends on those components. 

Because of their stochastic nature, GAs often cause disruption when they explore the 

solution domain. However, the non-local movement operator, crossover, is still a fasci­

nating way to expand the scope of the exploration in the solution domain. 

17 
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( __________ S_tarr_t ________ ~) 
t 

Initialise Population 

Calculate fitness 

Selection 

Genetic Operations 
(mutation & crossover) 

Yes 

End 

No 

FIGURE 3.1: A procedure of a classic GA. 

3.2 Genetic Operations 

3.2.1 Crossover and Mutation 

Mutation takes place on randomly selected individuals. It changes the value at one or 

more sites of the strings. In graphical models it can be designed to increase the number of 

nodes. If the mutation rate is too high then mutation will almost always be deleterious. 

Nevertheless, mutation is an important GA operator to explore the search space and to 

maintain diversity. 

Under crossover a pair of individuals are mixed to produce two offspring. It enables 

a GA to reduce the problem of local minima. Even though it can cause disruption, 

well organized crossover methods can sometimes produce faster and better results than 

other learning algorithms. Classically, single-point crossover and multi-point crossover 

are used. A section or sections of the string cut by crossover are swapped with the 

section of another string. For the effective shuffling of two strings or alleles, uniform 

crossover [61] and bit-simulated crossover [62] have been developed. Under uniform 

crossover a child is created from two adults by randomly choosing alleles from one or 

the other parents. Under bit-simulated crossover a child is created by taking a variable 

from any of the members of the population. 

GAs have succeeded in providing good solutions in some problems like the Travelling 

Salesman Problems [63] and graph-coloring problems [64]. This is partly because the 

GAs use the special crossover operator. Crossover can be very disruptive to an extent 
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that a child is unlikely to have a similar fitness to its parents. In graphical models it can 

create a child which has illegal paths for the given problem. Nevertheless , crossovers 

have a significant potential to find a solution with great efficiency. It remains a task to 

explore how to perform crossover in a useful way. 

3.2.2 Selection 

Through selection fitter members of the population are chosen. Usually a weight is as­

signed to an individual depending on its fitness . A new population is then created by 

sampling from the old population according to the weight. Different sampling strate­

gies are possible. The two most commonly used sampling methods are roulette wheel 

sampling and stochastic universal sampling. In roulette wheel sampling, probabilities 

are assigned in a roulette wheel in proportion to the fitness values of the members. 

Then it draws a population of P (number of population) members like playing P games 

of roulette. Roulette wheel selection allows fit members of the population to be lost 

through bad luck. The loss of diversity may lead to a degrade of the performance of 

a GA. To overcome this drawback stochastic universal sampling [65] was introduced. 

In the stochastic universal sampling P equally spaced points are used once instead of 

drawing 1 point P times as the roulette wheel sampling methods does. This diminishes 

the fluctuations. 

Ca) Roulette Wheel Sampling (b) Stochastic Universal Sampling 

FIGURE 3.2: Roulette wheel sampling and stochastic universal sampling. 

Boltzmann selection has been studied [66] to perform a scaled selection. In Boltzmann 

selection each member of the population is chosen with a probability 

(3. 1) 
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with each member of the population is assigned a weight 

s(E,,-E)) 

We> = e C1 (3.2) 

Here, s controls the strength of the selection and (J is the standard deviation in the fitness 

of the members of population. If s is zero all members of the population have equal 

probability to be chosen, and as s increases fitter members receive more chance to be 

chosen. One of the advantages of the Boltzmann selection is that the selective pressure is 

invariant under addition or multiplication of a constant to the fitness. That is, selection 

is unaffected by variations in the range of the distribution of fitness values. Typically, 

the range of the distribution decreases during the evolution of a GA. Without scaling 

the selection strength would be reduced as the fitness of members of the population 

becomes more similar and the population could suffer random genetic drift away from 

the best fitness. 

3.3 Types of GA 

In a generational GA, at each generation the whole population is replaced. Whereas, 

in a steady state GA a proportion of the members in the population are replaced. 

The selection strength and generic drift are stronger in a steady state GA than in a 

generational GA. Therefore the steady state GA can lose more chances to explore the 

landscape. 

While in the classic GA selection and reproduction take place across the whole popula­

tion, multiple island GAs divide the population into several islands. On each island the 

evolution process takes place independently except for occasional migration between the 

islands. It gives each island time to explore the search space and increases the chance 

to find global solution. 

3.4 Parallel Genetic Algorithms 

The evolutionary process is usually severely time consuming when they are implemented 

on a single processor because the fitness values of every individual is calculated in a 

single processor. The solution to this problem can be handled by using the parallel and 

distributed model. The parallel computing saves time by distributing the computational 

effort to a number of processors. And it also emulates the natural parallel evolution from 

the algorithmic point of view. 

The parallel genetic algorithm uses a number of processors to run independent tasks. 
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Ideally, P (size of the population) processors can be used to evolve a population of P 

members. These strategy can be implemented both in a global model and a population­

based model. 

In a global parallel evolutionary algorithm a master process manages the population 

and each slave locally trains an individual. The master collects the trained results and 

applies genetic operators to generate the next generation. In a population-based model 

subpopulations are generated and genetic operations are executed between neighboring 

individuals. The two most popular categories of the population-based models are island 

models and grid models . The island model [67] has separated subpopulations. Sub­

populations exchange information by allowing migration of some individuals from other 

subpopulations. In the grid model [68] individuals are placed on a large one, two or 

three-dimensional grid. Reproductions take place locally within a small neighborhood. 
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Hidden Markov Models(HMMs) 

4.1 Hidden Markov Models 

An HMM is a learning machine that assigns a probabilistic relation between an observed 

sequence of symbols and a sequence of hidden states q = (ql, q2, ... , qT). A Markov 

transition structure links the hidden states. In HMMs, a sequence, x = (Xl, X2, ... , XT), 

consist of symbols Xt belonging to some alphabet, S. In biological sequence analysis the 

alphabet might be, for example, the set of four possible nucleotides in DNA, 'A', 'e', 
'G' and 'T' or the set of 20 amino acids that are the building blocks of proteins. 

HMMs are based on two sets of conditional relations. In HMMs, Xt is independent of all 

other observations and states given qt depends on the previous n states (the nth order 

Markov process) 

(4.1) 

We denote the set of parameters that define an HMM by 8. Given a sequence x, an 

HMM returns a 'probability' lP' (xI8), where 

L lP' (xI8) = 1, 
xEST 

so it is a probability distribution over sequences of length T (we use ST to denote the 

set of all sequences of length T). To understand the meaning of this probability, we 

can imagine some process of interest, P, (e.g. molecular evolution) that generates a 

set of sequences of length T with probability lP' (xIP). Our aim is to find an HMM, 8, 

such that lP' (xI8) is as close as possible to lP' (xIP). Of course, we usually do not know 

P. Rather we have some training examples consisting of a set of sequences. We can 

then use the maximum likelihood principle to estimate the HMM, which corresponds to 

22 
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maximising lP' (xI8) with respect to 8 (lP' (xI8) is known as the likelihood of the event 

x given a model 8). Given an observation sequence x, we can treat this as a function 

of 8. 

The HMM is a probabilistic finite state machine which can be represented as a directed 

graph in which the nodes correspond to states and the edges correspond to possible 

transitions between states. A transition probability is associated with each edge with 

the constraint that the sum of the transition probabilities for edges exiting a node must 

sum to one. In addition, there is an emission probability table associated with each 

state which encodes the probability of each symbol a E S being 'emitted' given that the 

machine is in that state. We define one state as the start state, which does not emit 

a symbol, but has transitions to the other states. To compute probabilities from our 

HMM we consider an 'event' to be a path(n) through the graph where we emit a symbol 

every time we enter a state. The probability of the event is equal to the probability of 

the path times the probability of emitting that sequence of observed symbols given that 

we have taken that path through the finite state machine. The probability of a sequence 

is then found by summing over all paths that emit that sequence. 

To formalise the HMM, we denote the set of states by Q, the transition probabilities 

from state i to j by aij, and the probability of emitting a symbol a given that we are in 

a state i by ei (a). To calculate the probabilities of all the paths that render a sequence 

x are calculated. Let q = (ql, q2, ... , qT) be a sequence of states, then the likelihood of 

a sequence x is given by 

lP' (xI8) = L lP' (x, q18) . (4.2) 
qEQT 

The probability of each path that renders a sequence x is then 

T 

lP' (x, q18) = II aqt_lqt e qt (Xt). (4.3) 
t=l 

Here qo = 0 denotes the initial state. 

Often we are interested in how well a sequence fits the model. To do this we consider 

the log-odds of a sequence 

log-odds of a sequence = 1 (lP' (x I8)) 
og ISI-T ( 4.4) 

where lSI denotes the cardinality of the set of symbols S. The log-odds is positive if the 

sequence is more likely to occur than average. To use an HMM for classification we can 

set a threshold for the log-odds of a new sequence to belong to the same class as the 

training data. 

Figure 4.1 shows a simple HMM with 2 states. For the given sequence 'ATGCAT' there 
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are 5 state paths. To obtain lP' (xI8) we must add the probabilities for all possible paths. 

The log-odds can be calculated by setting lSI = 4. 

A: 0.1 A: 0.2 
T: 0.1 T: 0.2 
G: 0.4 G: 0.3 
C:O.4 C: 0.3 

Sequence: A T G CAT 
State path : H E E E E E 

HHEEEE 
HHHEEE 
HHHHEE 
HHHHHE 

log likelihood: 
log-odd 

probability 
8.16 x 10-8 

1.09 X 10-7 

3.87 X 10-7 

1.38 X 10-6 

3.79 X 10-6 

-5.42 
-1.81 

FIGURE 4.1: An example of an HMM with 2 states. There are 5 possible path for a 
given sequence 'ATGCAT'. The likelihood is calculated by summing possibilities of all 
possible paths. In this example log likelihood is calculated. Log-odds score is calculated 

by setting lSI = 4. 

4.2 Probability Calculation 

Naively, the computation of the likelihood seems to grow exponentially with the length 

of the sequence. However, all the computations we need can be computed efficiently 

using dynamic programming techniques. For simplicity we will discuss the first-order 

model case. We can compute the likelihood using the forward algorithm. The forward 

variable at (i) is defined as 

(4.5 ) 

This variable calculates the joint probability of the partial observation sequence Xl, ... , Xt 

and state i at time t, given an HMM 8. 

Starting from at (i) = aOiei (xJ), we can find at (i) for all states i E Q for successive times 
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1 ::; t ::; T using the recursion 

Cl!t(i) = ei(Xt) L aji Cl!t-1 (j). 
jEQ 
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(4.6) 

This follows from the Markovian nature of the model. When we have found Cl!T(i) we 

can compute the likelihood by marginalising out the final state 

lP' (xI8) = L Cl!T(i). (4.7) 
iEQ 

The forward algorithm considers all paths through the model and the probability can 

be viewed as a weighted average of probabilities given each path. 

lP' (xI8) = L lP' (xlq, 8) lP' (qI8). (4.8) 
q 

There exists an analogous backward algorithm that can also be used to compute the 

likelihood. We define the backward variable f3t( i) to be the probability of matching the 

sequence xH1, ... ,XT given that we are in state i at time t 

Again this can be obtained recursively using 

f3t(i) = L aijej (xHdf3H1 (j) 
jEQ 

with initial condition f3T (i) = 1 for all i E Q. The likelihood is given by 

lP' (xI8) = L aO,i ei(x1) f31 (i). 
iEQ 

( 4.9) 

(4.10) 

More importantly, the backward variable can be used in combination with the forward 

variable to compute important quantities needed for parameter estimation. 

In calculating both forward and backward algorithm there are numerical underflow prob­

lems caused by the repeated multiplication of small probabilities. One of the solutions is 

to use logarithm and calculate log-likelihood. The log-likelihood is calculated by adding 

the small probabilities instead of multiplying them. 
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4.3 HMM Parameter Estimation 

4.3.1 Baum-Welch Algorithm 

Parameters of an HMM can be estimated so as to maximise the model likelihood P(xI8) 

on the given sequences (Maximum Likelihood (ML) criterion). This is achieved using 

the Baum-Welch algorithm [69] which is an example of an Expectation Maximisation 

(EM) algorithm. Because the state sequences are not directly observable, statistical 

information is used to adjust the parameters. The model parameters that maximise the 

likelihood value are calculated repeatedly. The update rule of the transition probabilities 

are 

(4.11) 

where nij is the number of transitions from state i to state j summed over the sequence, 

that is, 
T 

nij = ~ nij(t). (4.12) 
t=l 

The update rule of the emission probabilities can be obtained as 

(4.13) 

where ni(a) is the number of times the symbol a is emitted in state i. Equations (4.11) 

and (4.13) are self-consistent equations which are satisfied when the likelihood for the 

training data is locally maximum. We satisfy the equation by iteratively updating aij 

and ei (a) according to the observed values for nij and ni (a) which are computed using 

the forward and backward algorithm. 

In the Baum-Welch algorithm unknown transition and emission frequencies are replaced 

by their expected values. The algorithm uses the probabilities of transitions and emis­

sions to approximate the corresponding counters. The parameters are re-estimated using 

the forward and the backward variables. The parameters are updated according to 

nij(t) JP> (qt-l = i, qt = jlx, 8) 
Cl:t-l (i) aijej (Xt)f3t (j) 

JP> (xI8) 

ni(t) JP> (qt = ilx, 8) 
Cl:t( i)f3t (i) 

JP> (xI8) . 

(4.14) 

(4.15) 

The Baum-Welch algorithm acts as a local search algorithm and is liable to become 

trapped at a local optimum. 
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If we train on a limited amount of data this estimation of the emission probabilities is 

liable to over fit the data. For example, we may not have seen some symbol a emitted 

at time t in our training data. If we build an HMM with a zero probability of emitting 

a symbol at this time we would perfectly fit our training data, but we may be reading 

more into a finite sample of data than we should be. To avoid excessive overfitting we 

can add some 'pseudo-counts', O!.ij to our estimate for nij, and O!.i (a) to our estimate for 

ni (a). Our estimated transition and emission probabilities are given by 

(4.16) 

(4.17) 

Although, this appears to be an ad hoc fix, it can be motivated from a Bayesian perspec­

tive. We can consider the training set to be a sample from a multinomial distribution 

and assume a Dirichlet distribution for the prior probability, then the pseudo-counts 

drop out as the coefficients of the prior [70]. For more details on the training of HMMs 

see e.g. [17,18,71]. 

4.3.2 Gradient Based Methods 

In the gradient based method, the parameters of an HMM 8 are updated according to 

the standard formula, 

8 new = 8 01d _ TJ 8J I 
88 

where J is a quantity to minimise. We can define 

8=8 D1 d 

J = EML = -log(JPl (xI8)) = -log(Ltot}, 

(4.18) 

(4.19) 

where L tot = jp> (xI8) is the likelihood of the observation given the HMM variables. 

From the definition of forward(4.5) and backward variables (4.9), 

(4.20) 
iEQ iEQ 

Differentiating equation 4.19 with regard to 8, we get 

8J 1 8Ltot (4.21 ) 88 L tot 88 . 

Since we have transition probabilities aij (i, j E Q), and observation probabilities ei (a) (i E 
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Q, a E S) independent from each other, we can find a derivative for each of parameter 

sets. 

Using the chain rule, 

( 4.22) 

By differentiating equation 4.20 w.r.t atU) and equation 4.6 W.r.t aij, and we get 

aLtot 
(3tU) (4.23) 

aat(j) 
aatU) 

ej(Xt)at-l (i). (4.24) 
aaij 

Then we can get 

(4.25) 

In the same way we can calculate the gradient with regard to observation probabilities. 

Using the chain rule again, 

( 4.26) 

Differentiating equation 4.6 W.r.t ej(Xt) we get 

( 4.27) 

Finally, the gradient w.r.t observation is 

(4.28) 

Using equation 4.25 and equation 4.28 we can update HMM parameters. 
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4.4 Decoding Methods 

4.4.1 Viterbi Decoding 

Decoding is a task to find a sequence of hidden states that best explains the observations. 

The most common decoding algorithm is the Viterbi algorithm. The Viterbi algorithm 

finds the most probable path through the model given the observation sequence. The 

Viterbi algorithm can be computed using essentially the same algorithm as the forward 

probability calculation except that the summation is replaced by a maximum operation. 

Initially all state except the starting state have the value O. At the first step we define 

o 
(4.29) 

(4.30) 

To find the highest probability along a single path, at time t, we define Ot(i) as follows. 

For a given model 8, Ot(j) is the maximum likelihood of observing sequence from Xl to 

Xt and being in state j at time t. The most probable path q* can be found recursively 

usmg 

max [ot-l(i)aij] ej(xt) 
15,i5,N 

arg max [ot-l(i)aij] 
15,i5,N 

Viterbi algorithm terminates at time T 

2 ::; t ::; T, 1 ::; j ::; N 

2 ::; t ::; T, 1 ::; j ::; N 

arg max [or(i)] 
15,i5,N 

(4.31) 

(4.32) 

(4.33) 

The most probable path of state at each time t is obtained by backtracking the states 

that yield the maximum probability. 

t=T-1,T-2, ... ,1 ( 4.34) 

4.4.2 Posterior Decoding 

The posterior decoding method is useful when there are more than one path that has 

similar probability as the most probable one. In general, several states can produce the 

same emission, given a model and a sequence. The posterior decoding method considers 

all probabilities that have the same emission at time t. The probability of being in state 

i, given a sequence x and an HMM 8, 
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JID (qt = ilx, 8) 
JID (qt = i, x 18 ) 

JID (xI8) 
JID (Xl . .. Xt, qt = i, 18) JID (Xt+l ... xTlxl ... Xt, qt = i, 8) 

JID (xI8) 
JID (Xl . .. Xt, qt = i, 18) JID (Xt+l ... xTlqt = i, 8) 

JID (xI8) 
(J:t(i)f3t(i) 

JID (xI8) . 
(4.35) 

This can be evaluated recursively by the forward and backward algorithms. Then we 

can get the state sequence 

q; = argmaxJID (qt = ilx, 8) ( 4.36) 

The posterior decoding gives the most probable state given a sequence. It is useful 

especially if we are interested in a state at a specific position i and not in the whole 

sequence of states. However, it does not consider the validity of a path of the states 

when the path is calculated. Therefore, it may produce a path forbidden in the HMM 

(when a transition probability is zero). To overcome this problem a hybrid method of 

posterior and Viterbi algorithm [72] and posterior decoder with homology information 

has been developed [73]. 

4.5 Class HMMs 

A class HMM (CHMM) is an HMM where the states emit class labels l ( E £), as 

well as a symbol from the alphabet, S. That is, we can associate with a sequence x a 

corresponding sequence of symbols y = (Yl, Y2, ... , YT). Denoting the set of states by 

Q, and letting q = (ql, q2, ... , qT) be a sequence of states again, then the likelihood of 

a sequence x with class labels y is given by 

JID (x, y18) = L JID (x, y, q18) , (4.37) 
qEQT 

where the sum is over all possible paths through the states (paths without transition 

probabilities have probability zero). 

Given a sequence x (or set of sequence) and the corresponding labels y, we find a 

maximum-likelihood (ML) set of parameters 

8 ML = arg max JID (x, YI8). 
8 

( 4.38) 
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This can be calculated efficiently using the modified Baum-Welch algorithm [17]. For 

the labelled sequence we only allow valid paths through the model to calculate forward 

and backward variables. When a path is valid the state labels and the sequence labels 

coincide with each other. 

Let mij(t) be the expected number of transitions from state i to state j at time t along 

valid paths, 

lP' (qt-l = i, qt = jlx, y, 8) 
lP' (qt-l = i, qt = j, x, y, 18) 

lP' (x, y18) 
(4.39) 

and mi(t) be the expected number of times the state i is visited at time t along valid 

paths 

lP' (qt = ilx, y, 8) 
lP' (qt = i, x, Y18) 

lP' (x, y18) 
( 4.40) 

then the modified Baum-Welch algorithm replace equation 4.14 and equation 4.15 with 

equation 4.42 and equation 4.43. 

If we define 

{
I if Yt = d 

6yt ,c} = 0 otherwise 

where d is the label of the state j, then 

at-l (i)aijej (Xt)6yt ,c)3t (j) 

I:i/EQ at (i/){Jt (i/) 

at (i){Jt (i) 

(4.41 ) 

(4.42) 

(4.43) 

where a and {J are calculated recursively using the forward and the backward algorithm 

along valid paths only. 
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4.5.1 Conditional Maximum Likelihood (CML) Estimation 

In the case of maximising the probability of correct labelling, conditional maximum 

likelihood (CML) can be used [74]. 

8 CML = argm~lP' (ylx, 8) (4.44) 

where 
lP' (I 8) = lP' (x, y18) 

y x, lP' (xI8) ( 4.45) 

We define the negative log conditional likelihood 

£ = -log(lP' (ylx, 8)) = £c(8) - £1(8), ( 4.46) 

where the negative log likelihood £c(8) is in the clamped phase and calculated along 

the valid path, and £1(8) is in the free running phase which does not consider labels. 

-log(lP'(x,YI8)) 

-log(lP' (xI8)). 

(4.4 7) 

( 4.48) 

The derivative of the log likelihood £1(8) w.r.t. a generic parameter w E 8 can be 

written 

1 alP' (xI8) 
lP' (xI8) ow 

_ 1 L alP' (x, 71"18) 
lP' (xI8) ow 

7r 

_ 1 "'lP'( 18) ologlP' (x, 71"18) 
lP' (xI8) L...t X,71" oW 

7r 

_ LlP'(71"lx,8) OlOglP'o~'71"18) ( 4.49) 
7r 

Because the log likelihood is 

T 

£1(8) = L II a7rt_l7rte7rt(xt) ( 4.50) 
7r t=l 
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the gradient of negative log likelihood L f (8) in the free running phase is 

(4.51) 

where nij (t) is the expected number of times a transition from state i to state j at time 

t and ni(t) is the expected number of times we are in state i at time t in the free running 

phase. Both are also defined in equation 4.14 and equation 4.15 respectively. In a similar 

way the gradient of the negative log likelihood Lc(8) in the clamped phase is computed. 

( 4.52) 

where mij(t) = JP' (7rt-l = i, 7rt = jlx, y, 8) is the expected number of times a transition 

from state i to state j at time t along the allowed paths, and mi(t) = JP'(7rl = ilx,y,8) 

is the expected number of times we are in state i at time t along the allowed paths. 

When w is a transition probability 

mij - nij 

aij 
( 4.53) 

and the derivative of ei (a) can be expressed in a similar way by substituting mij and 

nij with mi(a) and ni(a). 

For the transition probability we define 

mi(a) - ni(a) 

ei(a) 
(4.54) 

(4.55) 

where Zij are the new unconstrained auxiliary variables. Now Zij are always positive 

and normalised. 

Now gradient-based optimisation in the auxiliary variables yield a new estimation of Zij, 

( 4.56) 
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The parameter estimation is then 

(HI) 
a·· tJ 
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exp(z(t) + 6.z(t)) 
tJ tJ 

'" (t) (t)) , 
0j' a ij, exp(.6.zijl 

(4.57) 

The gradient of £ W.r.t Zij can be written entirely in terms of aij and mij - nij. From 

equation 4.53 and equation 4.55 

(4.58) 

We can update parameters by applying equation 4.58 to equation 4.57. In other way we 

can set equation 4.58 to zero and solve for aij. However, the solution often becomes 

negative. To overcome this we adopt an arbitrary number D. The derivative does not 

change if an arbitrary positive number D is added and subtracted, so we might write 

( 4.59) 

Then update rule for ad is 

(4.60) 

This update rule is known as extended Baum- Welch reestimation [75][76]. For a fast 

convergence D is chosen such that D is always larger than or equal to a small positive 

constant E [77]. 

D = max [:a~/ 0] + E. (4.61) 

The update rule for observation ei(a) can be derived in the same way. For more details 

on training labelled sequences see e.g. [71] and [78]. 
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4.5.2 Posterior Label Probability 

The posterior label probability (PLP) calculates probability of a label at a certain po­

sition. Unlike the Viterbi algorithm PLP sums the probabilities of being in each state 

at a specific position of the sequence and assigns the dominant label to that element of 

the sequence. 

The PLP of a label at position t is the sum of posterior probability of all states that 

emit the same label. The PLP for label l at position t is 

lP' (Yt = llx, 8) = L lP' (Yt = l, qt = ilx, 8) . 
iEQ 

( 4.62) 

We assign each state to a particular class. That is, we take the probability of a label 

given a state to be 1 if the state is assigned to that class and 0 otherwise. Thus the sum 

in equation (4.62) only gets contributions from states that have been assigned to class l. 

4.6 Parameter Tying 

A common method to decrease a model complexity is to 'tie' states together so that 

they have the same emission and/or transition probabilities [79]. States are tied when 

we believe that they model similar parts of a sequence. This reduces the number of 

free parameters that need to be learnt and therefore reduces the problem of overfitting. 

Biological sequences often have approximately the same biological functionality even 

though they are slightly different in their characters. A way to incorporate the correla­

tion in the biological string is to tie parameters. Parameter tying is used in many HMM 

applications such as TMHMM [21]. 

4.7 Topologies of HMMs 

The learning problem for HMMs consists of two components: learning the structure of 

the model and learning its parameters. The Baum-Welch algorithm and the Extended 

Baum-Welch algorithm are elegant and efficient ways of learning parameters of HMMs, 

even though there is no standard way to find the global maximum. 

On the other hand, structure learning has not been studied much. Structure learning is 

more important because the topology of models influences the performance of HMMs. 

Traditionally topologies of HMMs were carefully designed based on the know ledge about 

the given problem. Well designed HMMs represent statistical phenomena of sequences 

in their structure. In general, a too simple model is unlikely to be able to generate the 

data set with a high likelihood, while a too complex model will easily learn the data 
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set, but is unlikely to generalise well. Figure 4.2 shows several types of HMMs. In these 

examples, we only allow one symbol to be emitted from each state (in general, one state 

could emit any symbol form the alphabet, 5, with a probability given by the emission 

probabilities). The fully connected model, Figure 4.2(a), can generate any sequence. 

The self-loop model of figure 4.2(b) can generate sequences such as AAATTTGCCC, 

while the left-right model can generate the same sequence as the self-loop, but can also 

jump states to produces sequences such as AATTCCC. 

(b) 

(a) 
(c) 

FIGURE 4.2: Several types of HMM topologies; (a) an ergodic model (b) a self loop 
model (c) a left-right model. 

Practically, fully connected models are not used for most of the real problems because 

of their bad generalisation performance. It is plausible to find a suitable architecture by 

applying GAs to find the parameter set and deleting insignificant transitions. However, 

it is hard to achieve good model with a large HMM. Also deleting insignificant transitions 

is not always appropriate because it may cause loss of required properties of the HMM. 

Even though several methods using genetic algorithms have been developed for biological 

sequence analysis to search for the HMM structure, their applications were very limited. 

Still, most of successful HMMs are hand-designed. The hand-designed models have been 

preferred because HMMs can encode the knowledge of the sequences. Still, the number 

of HMM applications for the complex models are limited. 

4.8 Machine Learning Methods to Find HMM Topologies 

There have been earlier attempts to learn the structure of an HMM. Stolcke [80] trans­

formed an initial large HMM by merging the states. He used the log-likelihood and 

posterior probability as criteria for choosing which states to merge. But, he did not 

allow states to be split which might have been useful. A method involving both state 

splitting as well as deleting negligible states and transitions has also been used to find 

good HMM topologies [81]. The transition ambiguity and the expected observation dif­

ferences were used as criteria for splitting a state. These statistical approaches can be 

used to find a particular pattern like a motif. In practice, however, successful HMMs are 

constructed by carefully deciding which transitions are to be allowed in the model [18]. 
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Obviously, determining the rule to split and delete HMM states can not be done easily. 

As the number of the training sequences increases, setting the merging and splitting rule 

becomes increasingly difficult. 

4.8.1 Hybrid of HMMs and GAs 

One of the nice features of GAs is that it is easy to incorporate new operators into a GA 

based on the problem under consideration, and it can be hybridised easily with other 

machine learning techniques into the GA procedure. 

A GA can be used to evolve HMM topologies as the GA can compare a large number of 

different topologies in parallel. The HMM parameters can be trained easily by hybridis­

ing the traditional Baum-Welch training in the GA cycle. Another advantage of HMMs 

is modularity. Small HMMs can be combined into a large HMMs. Part of the HMM 

can also work as a module that composes a building block of HMMs. It is the crossover 

operator in GAs that uses the modularity by swapping those modules. 

The use of GAs to find an HMM structure has been tried previously in speech recog­

nition [82]. They considered a 5-state model and evolved a string representing the 

transitions and emissions of an HMM. However, their method is rather parameter op­

timisation than evolving the HMM structure. Their approach may be a good way to 

escape local maxima. Later, they considered evolving a very simple HMM topology [83]. 

They introduced crossover that swaps states between two HMMs. However, the change 

on topology was limited to the states with a self loop. 

In this thesis we suggest several GA methods for the construction of the HMM topology 

without prior knowledge of biological sequences. The first model which applied a GA 

on HMMs used genetic operators which evolve the architecture by changing states. The 

HMM states are crossed over and added and deleted in this model. The second model 

used blocks composed of HMM states. We suggest a block model inspired by HMM 

applications used for biological sequence analysis. The genetic operators are devised to 

crossover blocks instead of states. 

There were attempts of using GAs that practically change the structure of HMMs in 

bioinformatics area. Yada et. al used GAs to insert and delete states and swap tran­

sitions. They allowed unlimited number of transitions between states and could model 

motif pattern. In a similar way, Thomsen [5] developed a genetic scheme to find the 

HMM structure for protein secondary structure prediction. The fitness functions they 

used was in the form of Bayesian Information Criterion [84] to balance the complexity 

and the likelihood. 
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1 

-2 log (IP' (Xk; 8 k)) + 2>"Pk 

log(l + 1) 
= log (IP' (Xk; 8d) + >.. 2 Pk, 

( 4.63) 

( 4.64) 

where Pk is the number of free parameters. The log-likelihood function has intrinsic 

drawback of local maxima and overfitting. They tried to control overfitting by regulating 

the number of free parameters. However, the choice of balancing parameter >.. is very 

sensitive and in our preliminary analysis we did not find it useful. Also, it is not 

guaranteed that an HMM with less free parameters always has better performance. 

In the next chapter we present the fitness evaluation method that does not require 

balancing parameter and free parameters of HMMs. Instead, we use statical information 

of the data associated with an HMM to reduce overfitting. In chapter 6 we introduce a 

genetic method evolving HMMs for whole sequences. 



Chapter 5 

Genetic Algorithms for Hidden 

Markov Models(GA-HMMs) 

5.1 Genetic Algorithms for Hidden Markov Models 

HMMs have been applied to many biological sequencing problems successfully. The 

success of HMMs owes much to their ability to encode biological information in their 

structure while allowing many unknown quantities to be learnt through the optimisation 

of their transition and emission probabilities. The constraints imposed by their structure 

will often limit excessive overfitting of the training data, although some overfitting is 

still observed when using Baum-Welch training. 

Automatic optimisation of the structure of HMMs would potentially be highly beneficial. 

In many applications the biological mechanism is not fully understood. Given sufficient 

data it would be possible to learn an HMM architecture that encodes some biological 

information that we are unaware of. However, in learning the structure of an HMM we 

do not wish to lose the advantages they currently offer. In particular, we wish to control 

the complexity of the HMM models and if possible retain their biological interpretability. 

In this thesis, we investigate the effectiveness of using Genetic Algorithms (GAs) for op­

timising the HMM structure. A GA is a robust general purpose optimisation technique 

which evolves a population of solutions [22]. It is easy to hybridise other algorithms such 

as Baum-Welch training within a GA. Furthermore, it is possible to design operators 

which favour biologically plausible changes to the structure of an HMM. That is, to en­

sure that modules of the states are kept intact. GAs have been widely used to optimise 

architecture for Neural Networks [23]. However, we could find only a couple of applica­

tions of GAs to optimise the structure of an HMM. Yada et al. [24] used a GA to find a 

TATA box model. Thomsen [5] developed a genetic scheme to find the HMM structure 

for protein secondary structure prediction. They included a term in their fitness func-

39 
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tion to penalise over-complex models, however, their results depended critically on this 

parameter. In this thesis, we explore the use of GAs for evolving HMMs. Our GA differs 

from previous methods in that we split the training data into two sets. One set is used 

for training the HMMs using Baum-Welch, the other set is used to evaluate the HMM's 

fitness. This reduces overfitting of the training data. In addition, to prevent overfitting 

we performed Baum-Welch only on a proportion of randomly selected individuals in 

the population at each generation. To discover if GAs are potentially useful for evolv­

ing HMMs we implemented a standard GA where a population of HMMs are evolved 

from one generation to the next. At each generation some proportion of the HMMs are 

trained with Baum-Welch on a training set. The fitnesses of the HMMs are measured on 

a evaluation set and the fitter members are selected. Finally the members are mutated 

and crossed-over to form then next generation. This procedure is shown in figure 5.l. 

The state labelled genetic operations include selection, mutation and crossover. 

( Start , ) 

I Initialize Population I 
Get training/evaluation Set 

(Xtrainl Xeval) 

Baum-Welch Training (Xtrain) 

Calculate fitness (XevaI) 

Genetic Operation 

No 

Yes 

End 

FIGURE 5.l: The GA-HMM algorithm. Baum-Welch training is combined with selec­
tion, mutation and crossover to evolve HMMs. We separate the training sequences (x) 
is into the training set (Xtrain) and the evaluation set (Xeva.l). Xtrain is used for the 

Baum-Welch training and Xeval is used for the fitness calculation. 

In the experiments described below, the initial population consists of HMMs with just 

two states. The number of states will change due to state insertion and deletion muta­

tions and through crossover. Also as part of the initialisation stage the sequence data 

(x) is divided into a set used for training with Baum-Welch (Xtrain) and a set used for 
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evaluating the fitness (Xeval). The algorithm terminates when there IS no significant 

change in the structural model. 

5.2 Genetic Operations for GA-HMMs 

The genetic operations consist of selection, mutation and crossover. Selection uses pro­

portional selection with stochastic universal sampling [65] to reduce genetic drift. For a 

mutation to be useful it should make changes which cause minimal disruption so that 

the new HMM has a high probability of having a fitness close to that of the unmutated 

HMM. We considered mutations that only change either the number of states or the 

number of transitions by one. This gave us four mutation operators; insert state, delete 

state, insert transition and delete transition, which are shown in figure 5.2. Insertion 

of a state can happen between any two states or at either end of the chain. When a 

state is inserted, the states on its right hand side shift by one as shown in figure 5.2(a). 

The emission probabilities of the new state are set to randomly selected values. If a 

state is deleted, all its transitions are removed. Insertion of a transition can happen 

between any two states and deletion of a transition happens at any state if the state has 

more than one outgoing transition. Although, these mutations allow highly intercon­

nected HMMs they provide a certain bias towards chain structures because of the state 

insertion operator. 

Crossover takes place between two HMMs and exchanges states. A number of successive 

states can be crossed over in one operation. Only outgoing transitions from a state are 

exchanged during crossover. An example of crossover is shown in figure 5.3. 

5.3 Selective Baum-Welch 

The Baum-Welch algorithm is commonly used to train HMMs. It estimates model 

parameters from training sequences while maximising the log-likelihood of the model. 

The log-likelihood of model k is 

(5.1 ) 

where fh denotes the parameters of the kth HMM and x is the given sequences. 

Although Baum-Welch maximises the log-likelihood for the sequences, it can overfit the 

given sequences and produce inferior results compared with HMMs that have experi­

enced fewer training cycles. We tested this by training sequences with Baum-Welch 
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(b) 

(d) 

FIGURE 5.2: Four types of mutations (a) Insert state (inserting a state in the sec­
ond position), (b) delete state (delete the third state), (c) delete transition, (d) insert 

transition. 

FIGURE 5.3: Crossover. During crossover outgoing transitions move with transition . 

without applying the GA algorithm. Figure 5.4 shows the negative log-likelihood ver­

sus the number of Baum-Welch iterations in an experiment with one of the models 

described later. The negative log-likelihood measured on the sequence data decreases 

monotonically, whereas on unseen data it initially decreases, but then increases again 

due to overfitting. Initially, we tested a GA where Baum-Welch was performed at each 

generation. However, this caused overfitting as the HMMs were trained too frequently. 

A selective Baum-Welch scheme was adopted to reduce overfitting. The generalisa­

tion performance was found to improve by changing the algori thm so that Baum-Welch 

training only occurred with a fixed probability. In this scheme, 20 percent of population 

are randomly selected in each generation for the Baum-Welch training. In addition, we 

made sure that the fittest member of the population was never subj ected to Baum-Welch 
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training as this could cause a loss of fitness for the best member of the population. The 

overfitted HMM structures receive lower fitness value when the HMM is applied to the 

test set. 

1.15 

1.14 

1.13 

1.12 

• testing data 
training data 

1.11 -+--.----r----r--....---.--.--.---, 
o 10 20 

iteration 
30 40 

FIGURE 5.4: The graph show the negative log-likelihood for an HMM plotted against 
the number of Baum-Welch iterations. The negative log-likelihood for the given data 
is monotonically decreased by the Baum-Welch algorithm. However, the negative log­
likelihood measured on independent testing data will typically decrease, reach a mini­
mum and then increase again. In this instance the best generalisation performance was 
found after 5 iterations. The training data used was from C. jejuni and is described in 

simulation I below. 

5.4 Fitness Value 

The performance of the GA was found to depend strongly on the fitness function used. 

The fitness function used by Yada et al. [24] incorporated a balance factor between 

complexity and likelihood 

1 
Wk = ----,---~---

-2 (.c(xI8 k )) + 2)..Pk . 
(5.2) 

Here, .c(xI8k ) is the maximum logarithmic likelihood estimate of the kth HMM, Pk is 

the number of free parameters in the kth HMM (its complexity) and A is the balance 

factor. By adjusting the balance factor, the complexity can be controlled. However, the 

complexity was found to be very sensitive to the value of ).. and it was difficult to choose 

a value for)" a priori. 

In this chapter, we avoided the problem of setting the balance factor by separating the 
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training data( x) into a set used for Baum-Welch training( Xtrain) and a set used for 

evaluation(xeval). The fitness function used in our GA-HMM algorithm is 

(5.3) 

where li is the length of a sequence Xi and fJ labels the different HMMs (with parameters 

8 ,..) of the population. A member of the population is selected with a Boltzmann 

probability 
ml-' 

FI-'= N ' 
Lv=l mv 

(5.4) 

where Fk is the fitness value of the kth HMM and (J' is the standard deviation of the 

fitness in the population and s is a constant that controls the strength of the selection. 

In the work reported here, we used a value of s equal to 1. 

This method is intended to reduce overfitting. As the training and testing sets are 

separated, overfitted models get lower fitness values in the fitness evaluation stage and 

will be discarded through the selection operation. 

5.5 Implementation 

5.5.1 Simulation I: Coding Region Model of C. jejuni 

To see if a GA was capable of finding biologically interpretable patterns we performed the 

first experiment using 556 sequences from the coding regions from Campylobacter jejuni 

(hereafter C. jejuni). C. jejuni is an important human intestinal pathogen. Despite 

intensive study, much is still not known about how to control and intervene in the 

disease [85J. A better understanding of gene organization, function and regulation in 

C. jejuni is desirable to provide possible control strategies. 

The sequence data comprises a start codon (ATG), some number of co dons and a stop 

codon (TAA, TAG or TGA). A simple HMM architecture for detecting this region 

would consist of a 3 state loop (figure 5.5). A third order state model was used to 

model the codon region. That is, instead of a state emitting a symbol from a single base 

unconditional distribution, the state emits a symbol, which is dependent on the three 

previous bases in the sequence, through a conditional probability distribution. We again 

used a 2-state HMM as an initial model for the coding region as shown in figure 5.6. 

The transition and emission probability for the start codon and stop codon was not 

evolved. Each state is a third order. The GA was run for 600 generations and of the 

566 sequences 160 sequences were used for testing. Table 5.1 shows the parameters used 

in the experiment. 
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TABLE 5.1: GA-HMM parameters used in the experiment I 
P arameter value 

Population size 30 
Offspring size 4 

Iteration 600 
Crossover rate 0.07 

Insert & delete transition rate 0.07 
Insert & delete state rate 0.13 

FIGURE 5.5: HMM architecture for C. jejuni coding region 

Figure 5.7 shows some of the HMM architectures produced by the GA in this experiment . 

Even though some results were hard to interpret, almost every simulation showed special 

biological patterns in the structure. Figure 5.7(a) shows the same result as the common 

model shown in figure 5.5. Figure 5.7(b) has a path 1-3-4,(2-3-4)- here, brackets indicate 

a loop. Figure 5.7(c) has (1-5-6) and (1-2-3,4-5-6) loops. Figure 5.7(d) has 1-2-3 , (9-7-

8),9-10-11 or 1-2-3, 4-5-6 , (6-6-6),6-7-8, (9-7-8), 9-10-11 loops . These HMM solutions, 

although complicated , predominantly generate triplets. We performed ten experiment 

and on every experiment with coding region we could find the clean 3 state loops as shown 

Figure 5.7 (a)(b)(c). Figure 5.7(d) shows the worst result we have. This result was due 

to insufficient time to evolve. The numbers shown are transition probabilities. Other 

transition probabilities are easily calculated, because the sum of outgoing transitions 

from a st ate is always 1. Because of the transition probabilities the most probable loop 

are 1-2-3, (9-7-8) or 1-2-3, (9-7-8), 9-10-11. 

Figure 5.8 shows the maximum fitness value versus iterations that produced the result 

of figure 5.7(b). In the graph we show first 40 iterations . The other part of the graph is 

just a straight line. In the figure we can find abrupt increase of the learning curve. It is 

because the GA-HMM found a new structural model that can replace the old ones. 

start codon stop codon 

F 1GURE 5.6: Initial HMM architecture 
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(a) (b) 

(c) 

(d) 0.999 

FIGURE 5.7: Result of simulation for the C. jejuni coding region: (a) has loop (1-2-
3),(b) has a path 1-3-4,(2-3-4) (c) has (1-5-6) and (1-2-3,4-5-6) loops. (d) has 1-2-3, 

(9-7-8), 9-10-11 or 1-2-3, 4-5-6,(6-6-6), 6-7-8, (9-7-8) ,9-10-11. 
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FIGURE 5.8: After training the C. jejuni sequences, GA-HMM found one structure 
model for the periodic signal. 
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5.5.2 Simulation II: Promoter Model of C. j ejuni 

Our second experiment was to find an HMM for the promoter region of C. jejuni. In 

many bacteria , there is a conserved sequence of TTGACA at around 35 base pairs (bp) 

before the transcription start site (position '-35 '1) and TAtAAT (where 't' indicates 

either T or A) at around the -10 region, called the TATA box [86]. A ribosome binding 

site is located between the transcription st art site and the st art codon of the gene, and 

it is typically AAGGA. In the promoter region of C. jejuni, the TTGACA region is 

weakly conserved, but a T-rich domain is common upstream of the TATA box [87]. The 

C. jejuni genome contains more Ts and As than Gs and Cs. Although the Ribosomal 

binding sites can often be spotted, the sequence is not always in the same position in 

relation to the coding region. In some cases, the sequence AAGGA is highly mutated. 

It is difficult for non-experts to figure out which part of the sequence is the TATA box 

because most part of the promoter region is composed of Ts and As . 

Petersen et al. suggested an HMM architecture for this promoter region [88]. Their 

model includes the TATA box (TAtAAT) and a Ribosomal binding site (AAGGA). 

During the testing of various models a periodic pattern was discovered upstream of the 

TATA box, and this was included in the model. This model is shown in figm e 5.9. 

The forward transitions are used to represent sequences with varying length . The states 

in the background region are tied together to represent non-specific sequences with a 

small number of states . The promoter consists of approximately repeated blocks with 

an observed period of 10.6 nucleotides. A hand crafted model for this region used in [88] 

is shown in figure 5.10. 

FIGURE 5 .9: Model for predicting the promoter region of C. jejuni from L. Petersen et 
al., (2003). In simulation II we try to learn the periodic region, start ing from HMMs 

with two states . 

In our experiment we evolved a population of HMMs for periodic signal region using 

a GA starting from two states models. The paramet ers controlling the GA are shown 

in table 5.2. The data set consist s of 175 sequences and 135 sequences were used for 

training (x) and 40 for testing (xtesd. Five fold cross validation tests were performed 

1'-35' means it is located 35bp before the transcription start site. 
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FIGURE 5.10: The hand constructed HMM model for the periodic signal of C. jejuni 
promoter used in L. Petersen et al., (2003). 

to obtain a more reliable estimate of the generalisation performance. Figure 5.11 il­

lustrates the partition of the data set when conducting a cross-validation test. Of the 

135 sequences 95 were used for Baum-Welch training (Xtrain)and 40 were used for mea­

suring the fitness (Xeval). The data used in this experiment can be obtained from 

http://www.ecs.soton.ac. ukl '" kjw02r I data.html. 

cross-validation test set 
(Xtest) 

X.val Xtruin 

,-

cross­
validation 

training set 
(X) 

X = Xmin + X.val 

FIGURE 5.11: The data separating scheme for a cross-validation experiment. The cross­
validation training set is composed of a training( Xtest) set and a evaluation set( Xeval). 

TABLE 5.2: GA-HMM parameters used in the experiment II 
Parameter value 

Population size 30 
Offspring size 4 

Iteration 400 
Crossover rate 0.06 

Insert I delete transition 0.07 
Insert I delete state 0.13 

Figure 5.12( a) shows the fitness of the best member of the population versus the genera­

tion for the first data partition. Only evaluation sequences which are not involved in the 

training are used in calculating the fitness value (equation 5.3). Because the GA-HMM 

reduces overfitting, the fitness value of the fittest member of the population always in­

creases. The graphs for the other cross validation sets look similar. In figure 5.12(b) the 

average number of states in the HMM is shown. We observe that the number of states 

grows until it reaches around 10 which appears to support the observed periodicity found 

in this region of the promoter. At this stage the number of states remains roughly fixed 



Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs) 49 

while the fitness value continues to rise indicating that the fine structure of the model is 

still evolving. Occasionally, the number of states found by the GA-HMM was less than 

10 states. We believe this is because the GA-HMM found a local optimum around 5-6 

states. 
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FIGURE 5.12: The simulation result of one of the cross-validation test with the first 
data set during GA-HMM training: (a) shows the fitness value of fittest individual on 
each iteration (b) shows average number of states for periodic signal. The G A started 
with a population consisting of 2 states. After 150 generations the HMM have a length 
of 10 states. Although the length does not significantly change thereafter the fitness 

continues to improve indicating that the finer structure is being fine tuned. 

An example of one of the HMM structures found by the GA is shown in figure 5.13. The 

model is considerably more complex than that proposed by Petersen et aZ. shown in fig­

ure 5.10. Table 5.3 shows a comparison ofthe result for the test set (-1/ log(P( Xtest 18))) 

and their variances obtained from the 5 cross-validation experiments for our GA-HMM. 

In the same table we show the results for the model proposed in [88] and trained using 
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Baum-Welch. The hand crafted model is trained only with the Baum-Welch algorithm. 

Of 175 sequences in their model, for each test 140 sequences are used for the Baum-Welch 

training and 35 sequences are used to calculate the fitness. Because the Baum-Welch 

algorithm finds a locally optimal solution, the final results depend on the initial values 

of the transition and emission probabilities. 

FIGURE 5.13: After training the C. jejuni sequences, GA-HMM found one structure 
model for the periodic signal. 

TABLE 5.3: Comparison between Baum-Welch and GA-HMM. The results show the fit­
ness value (-1/ log(P(Xtest 18))) and standard deviation for five different partitionings 

of the data. 
Test Petersen's model GA-HMM 

1 0.8855 (1. 7 e-3) 0.8863(1.2e-3) 
2 0.8854(1.0e-3) 0.8861 (1.3e-3) 
3 0.8887(2.0e-3) 0.8877(1.6e-3) 
4 0.8796(0.7e-3) 0.8797(0.6e-3) 
5 0.8713(1.4e-3) 0.8767(2.0e-3) 

The performance of the HMM found using the GA and the hand designed HMM are 

roughly similar. Even though it does not show better performance in test 3, it produces 

slightly better result in the other tests. The paired t-test was conducted to assess the 

statistical difference [89J. This analysis compares the means of two groups to see if 

those two groups are statistically different. Let XCA(i) and Xp(i) be the results for the 

GA-HMM and Petersen et al .. Then, the t-value for the k samples can be defined by 

d 
t - value = ---=== 

Ju~/k 
(5.5) 

where d is the mean of the differences XCA(i) - Xp(i), and Ud is the standard deviation 

of this mean. 

This statistic has n-1 degrees of freedom. In this experiment, the degrees of freedom is 4. 

With this result the significance level at which two distributions differ can be determined. 

The t-value obtained is 1.09. By using the t-value and the degrees of freedom the 

probability of null hypothesis can be obtained from the table of t-distribution. To 

obtain more precise probability we interpolate the values in the table of t-distribution. 
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The probability of this result, assuming the null hypothesis, is 0.336. From this test 

we had slightly better performance by using GA-HMM, but the improvement was not 

significant. However, this result shows the proposed method can replace a part of the 

hand-crafted model at least. 

5.5.3 Simulation III: Comparison with Other Methods 

5.5.3.1 The Effect of the Separation Scheme and the Selective Baum-Welch 

In this chapter we introduced two methods to make the HMM suffer less from overfitting 

while evolving its structure. To see if how those methods improve the performance, we 

compared the results of each algorithm. We tested with C. jejuni promoter sequences. 

For this comparison we prepared another set of sequences with 139 training sequences 

and 34 testing sequences. We used the same configuration used in the simulation II. The 

algorithms we tested are 1) non-separation of training method 2) separation method 3) 

separation with selective Baum-Welch, and 4) hand-designed model. For each experi­

ment we ran the test 30 times to get statistical information of the results. When the 

non-separation training method is used all the training sequences (139) are used for 

evaluation, while for the separation method 104 sequences are used for the Baum-Welch 

training and 35 sequences for the evaluation. 

Figure 5.14 compares the fitness value graphs of the fittest member on each iteration. 

The graph of the non-separation method increases monotonically (figure 5.14(a)). The 

learning curve graph of separation scheme does not always increase. When the Baum­

Welch training algorithm overfits the training set it receives penalty from the evaluation 

set and makes the learning curve fluctuate (figure 5 .14(b )). The graph of the selective 

Baum-Welch method increases monotonically (figure 5 .14( c)). The graph always increase 

since the fittest member is not trained and replaced only when other members of the 

population have higher fitness values. 

Table 5.4 compares the results from each method. We calculated the average and the 

standard deviation of the fitness value of 30 HMMs independently trained by the GA­

HMM. The fitness value is calculated against the 35 test sequences. 

TABLE 5.4: The average and the standard deviation of fitness value of the 30 indepen­
dently trained HMMs 

mean standard deviation 

non-separation 0.8837 1.5e-3 
separation 0.8841 1.3e-3 

selective Baum-Welch 0.8855 1.0e-3 
hand-design 0.8772 2.3e-2 
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FIGURE 5.14: The learning curve graphs of each method ( a) non-separation 
(b)separation (c) separation + selective Baum-Welch 
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We conducted the student's t-test [89] with the results. We have 58 (30+30-2) degree of 

freedom in this case. The probabilities of each comparison, assuming the null hypothesis, 

are in table 5.5. The probability shows the difference can happen by chance. Selective 

Baum-Welch is significantly superior to non-separation and separation schemes. We 

cannot be so certain about hand-designed because it has a large variance. Therefore 

the differences of hand-designing method and the other methods are not significant. 

Nevertheless, this test shows that evolving HMMs produces very useful models and can 

replace hand-designing method. 

TABLE 5.5: The result of 6 t-tests. The probability that the difference can happen by 
chance is calculated. 

method 

non-separation vs. separation 
non-separation vs. selective BW 

separation vs. selective BW 
hand-design vs. non-separation 

hand-design vs. separation 
hand-design vs. selective BW 

5.5.3.2 On the Balance Factor 

probability 

0.264 
3.4e-6 
5.5e-5 
0.188 
0.158 
0.088 

Yada et. al used a balance factor in the fitness function to control the complexity and 

the likelihood. To see how the balance factor works we conducted the simulation with 

various balance factor values. We tested the similar fitness function as they used. The 

fitness function we used is 

(5.6) 

where A is a balance parameter and Pk is number of free parameters and in this case 

the number of states. Thomsen [5] used a similar fitness function. We checked how 

the balance factor works and compared it with our method. We changed the value of 

balance parameter to check how it affect the performance. For each configuration we 

conducted 10 experiments. Table 5.6 shows the result of the experiments. 

There may exist a balance parameter that shows better performance than the result 

shown in table 5.6. In the simulation, however, we could not find any usefulness of the 

balance factor for this problem. Interestingly, a single state model shows a pretty good 

performance for this periodic signal model. Comparing the table 5.6 with table 5.4, we 

found the separation methods and the selective Baum-\i\1elch method are superior to 

the method using a balance factor. Our separation method, which statistically balances 

the complexity and the likelihood, can be a good candidate to reduce the overfitting at 

least. 
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TABLE 5.6: The effect of the change of the balance factor. 
balance parameter (A) mean standard deviation mean of number of states 

10e-2 0.8837 5.4e-4 1.2 
10e-3 0.8837 1.0e-3 3.6 
10e-4 0.8827 1.4e-3 6.7 
10e-5 0.8822 5.4e-3 8.1 
10e-6 0.8812 3.ge-3 9.0 
10e-7 0.8826 3.5e-3 9.4 
lOe-8 0.8819 5.ge-3 7.9 

0 0.8837 1.3e-3 7.7 

5.6 Discussion 

The experiments described here suggest that genetic algorithms are quite capable of 

finding reasonable HMM architectures for biological sequence analysis. Even with a 

rather naive implementation, the GA. was able to achieve comparable or slightly superior 

generalisation performance to a hand designed HMMs. Both experiments show that a 

major drawback of automating the design of HMM architectures is that the resulting 

model may be difficult to interpret biologically. Although we used genetic operators 

that favoured the building of chain structures they nevertheless allowed considerable 

cross linking within the chain. A drawback of constraining the search is that we may 

inhibit the GA from discovering completely novel types of architecture. One of the 

merits of GAs is the capability of dealing with substructures of the solution. In the GA­

HMM the crossover operators can swap a series of states in one operation. The emission 

probabilities are also crossed over with the states. This enables the GA-HMM to swap 

any meaningful part of the HMM structure. In this sense, the proposed crossover scheme 

can treat such modularity, even though the strategy does not completely implement the 

modular structure. 

We tried to prevent the GA from producing overfitted models by measuring the fitness 

on a different set of data from that used for training Baum-Welch. The improvement was 

not significant but it was a new trial that controls the size of an HMM statistically. We 

also selectively trained a proportion of the population. Those methods enable G A-HMM 

to evolve a new solution without suffering too much overfitting. From the comparison 

with the method using the balance factor, our method shows superiority for the given 

problem. 

Our experiments were carried out on short sections of an HMM. Our preliminary results 

showed that it seems unlikely GA-HMM would be able to find large HMM structures 

that are competitive with hand designed architectures. Nevertheless, even in the short 

term GAs may be able to 'tune' a hand designed HMM especially in areas where the 

biological significance of a region is poorly understood. 
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The evolving scheme presented here is useful to find a simple HMM structure. For 

the modelling of more complex sequences the proposed method could not evolve an 

HMM to represent larger models. GA-HMMs usually find a smaller model than we may 

want to get. In some cases, we may want to get an interpretable model even though it 

deteriorates the performance. To evolve a large HMM efficiently we use blocks composed 

of HMM states. In the next chapter we will introduce a block method and new genetic 

operators. 



Chapter 6 

Block-HMMs (Block Hidden 

Markov Models) 

6.1 Biological Block Model 

The GA-HMM was used to learn topology of HMMs. It has proven that the separation 

of training sequences and the selective Baum-Welch have advantages in training HMM 

structures. However, the arbitrarily genetic operations leads easily to make complex 

models. To constrain the search of HMM topologies to biologically meaningful structures 

we represent the HMM structure as a number of blocks. The blocks we consider are one 

of three basic structures that are frequently used in biological sequence analysis. These 

are: linear, self-loop and forward blocks. The self-loop and forward block can be either 

tied (we follow the convention of shading tied blocks) or untied. That is, all the emission 

and transition probabilities are set equal. In the case of linear blocks we did not consider 

tying because tying a linear blocks seemed unrealistic for biological sequences and can 

be replaced with a single-state self-loop block. Examples of these block structures are 

illustrated in figure 6.1. 

ca)~ 

(')~ ,---'" ,---'" ,---'" .--- .. 
Cd): ~: ~: :-: : 

r ___ ~ 1 ___ 1 1 ___ 1 I ___ ~ 

FIGURE 6.1: HMM blocks that compose the whole HMM structure: (a) linear block 
(b) self-loop block (tying is optional) (c) forward-jump block (tying is optional) (d) zero 

block. 

Linear blocks consist of N states (labelled from 1 to N) where state n is only connected 

to state n + 1 (with 1 :<:; n < N). Self-loop blocks are linear blocks in which each state 

.56 



Chapter 6 Block-HMMs (Block Hidden Markov Models) 57 

has an additional loop to itself. A forward block is a linear block where the first state is 

also connected to the last M states (with 1 <= M < N). Zero blocks are empty blocks 

with no states: they can replace other block types during the GA procedure and thus 

allow the exploration of simpler topologies. 

The block models described in this thesis are motivated by applications of HMMs in bi­

ological sequence analysis. Biological sequences (DNA or protein) often contain 'motifs', 

which are more or less conserved words, and with more or less homogeneous interven­

ing sequence, which is characterised by the composition of letters (amino acids or nu­

cleotides). The motifs might for instance correspond to binding sites for other molecules. 

Such a sequence can be modelled by an HMM containing submodels for the motifs (linear 

chains of states) and models for the intervening sequences, each of which can be a single 

state or multiple emmission tied states, if a length distribution is modelled. Other types 

of sequences are changing between various types of homogeneous sequences. An example 

is membrane proteins that contain membrane helices 20-30 amino acids long, which are 

dominated by hydrophobic amino acids and intervening sequence that is typically more 

hydrophillic [21]. Such sequences can be modelled with a block of tied states, one block 

for each type of sequence. Sometimes sequences contain periodic patterns. The region 

of a gene that codes for a protein is made up of codons, which are nucleotide triplets, 

each of which codes for one amino acids. The first codon is known as a start codon 

(often the three bases ATG) and the last codon (which actually does not code for an 

amino acid) is a stop codon (TAA, TGA or TAG). This gives rise to a three-periodic 

pattern, which can be modelled as previously shown in figure 5.5. 

6.2 Genetic Operators for the Block-HMM 

Blocks are fully linked together to form the whole HMM architecture. This is illustrated 

in figure 6.2. The final state of a block has transitions to the first states of all the blocks. 

The resulting HMM can be thought of as a fully connected graph consisting of 'super­

vertices' made up of blocks whose internal states are not fully connected. We call this 

structure a Block-HMM. Special patterns like periodic signals can be generated with a 

path between blocks. 

Each block is represented by a pair. The first element defines the length of the block 

while the second element gives the type (a, b or c corresponding to linear, self-loop or 

forward-jump block respectively). The type also specifies whether the nodes are tied or 

untied (t or u) and in the case of forward blocks the number of forward connections. 

The full HMM is represented as a string of pairs as shown in figure 6.3. For example, 

the HMM in figure 6.2 would be represented by '((3,a),(2,bu),(3,ctl))'. As the blocks 

are equivalent in their connectivity there is no information in the ordering of the blocks. 
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FIG URE 6. 2: An example of HMM composed of blocks . Three blocks are used in this 
model and all the blocks are fully connected to each other. 

length of : type of 
block 1 . block 1 

length of : type of 
block 2 . block 2 

length of : length of 
block n ' block 11 

FIGURE 6.3: The string representation of a Block-HMM. The information on the 
lengths and the types of the blocks are stored. 

To evolve the Block-HMM without losing block property we designed new genetic oper­

ators. In crossover , two parent strings are chosen at random. Some number of randomly 

chosen blocks are then swapped to create two children . The children then replace the 

parents . When we swap blocks the transition probabilities leaving the block are kept 

unchanged. Since the position of the blocks does not carry any meaning, we do not 

impose any constraint on which blocks are swapped . The number of blocks is kept fixed , 

however, as the blocks can have variable lengths, the number of stat es is not fixed . We 

also allow blocks consisting of no states (zero blocks) , which effectively allows us to 

have a variable number of blocks up to some maximum. The evolution of a variable 

size structure is similar to the situation common in many applications of Genetic P ro­

gramming. This scheme in a way emulates natural evolution which can cross over DNA 

sequences with different lengths . We chose a generational GA as a way to present the 

DNA sequences crossed over as a block. 

Figure 6.4 shows an example of the crossover scheme. The last block of the first child 

crosses over with the first block of the second child. To simplify the diagram , transitions 

b etween blocks are not shown here. Under the crossover scheme t he propert ies of the 

blocks are not broken. This allows us to exchange meaningful blocks wit hout causing 

too much disruption. 

Mutations can t ake place in any block of the HMM. T here are a variety of different 

mutations that we allow. Mutations can change the length of a block. Forward-jump 

block mutations can change the number of transit ions. For example, in the case of a 

5-st at e forward-jump block, there are 6 different types of mutations possible. These are 

illustrat ed in figure 6.5. The mutation can add (figure 6.5 (a)) or delete (figure 6.5(b)) 



Chapter 6 Block-HMMs (Block Hidden Markov Models) 

00 CD-EHDm ~ ~ 
~ 0-0 [!J-{i}{D-0 ~ 
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FIGURE 6.4 : Crossover in Block-HMMs. The crossover swaps the I-IMM states without 
breaking the property of HMM blocks 
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a t ransition inside a block. To prevent losing the property of the block, delet ion of a 

t ransit ion is not allowed when there is only two transitions (to the second state and the 

last stat e) . In t he same way adding transition does not take place when the first state 

of the block has t ransition to all the other transit ion . In figure 6.5(c) and figure 6.5(d) 

a st ate is delet ed from a block. T he outcome dep ends on which block is delet ed . In 
figure 6.5(e) and figure 6.5(f) a state is added to t he block. Again the outcome dep ends 

on which block is added. In the cases of linear and self loop blocks, there is only one way 

to add and delete a state. These six different types of mutation supply the Block-HMM 

with sufficient variat ion wit hout changing the properties of the block. 

In addition to ch anging the length of the block and the transit ions, we also allow mu­

t at ions that change t he typ e of t he block. For self-loop and forward jump blocks , we 

can mut ate between t ied and unt ied versions . We can also mut ate t he type altoget her. 

Mutat ions from and to a zero block are also allowed (figure 6.6). 
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FIGURE 6.5: Six possible types of mutations from a 5-state jump forward block: (a) a 
transition from the first to the fourth state is deleted (b) a transit ion from the first to 
the third state is added (c) t he second or the t hird state is deleted (d) the fourth state 
is deleted (e) a state is added between the fourth and the fifth state (f) a state is added 

between the first and the fourth state. 

~ 
U type-mutation 

(a) (b) 6J-M 
(c) []{J{J (d) [D--0--GJ 

FIG URE 6.6: Type-mutations : (a) to a t ied block (b) to a self loop block (c) to a zero 
block (d) to a linear block. 



C1Japter 6 Block-HMMs (Block Hidden Markov Models) 61 

6.3 Training Procedure 

The number of blocks is chosen at the beginning of the training and kept fixed. The 

length and type of blocks was randomly chosen so that there were on average the same 

number of linear, self-loop, forward-jump and zero blocks. 

To test our HMM we split our data into a training and a test set. The training data 

was further split into a Baum-Welch training set and a evaluation set, as describe in 

chapter 5. We take as fitness values the reciprocal of the negative log-likelihood of the 

evaluation data set. 
1 

Ef.L = ----;----~--
- Li log (P(xiI8f.L)) Ili 

(6.1 ) 

where li is the length of a sequence Xi and fl, labels the different HMMs (with parameters 

8f.L) of the population. A member of the population is selected with a Boltzmann 

probability 
Wf.L 

Ff.L= N ' 
Lv=l Wv 

(6.2) 

where (]' is the standard deviation in the distribution of fitnesses in the population. The 

parameter s controls the selection strength. Stochastic universal sampling is used to 

reduce genetic drift in selection [65]. 

At each generation we applied one iteration of the Baum-Welch training algorithm. We 

then evaluated the fitness of the population and performed selection (with selection 

strength s = 1), mutation and crossover. Mutation and crossover are applied with a 

small probability. We continued until there was no significant change in the structure 

of the HMM. 

6.4 Experiments on Block-HMMs 

6.4.1 Experiment with Artificial Data 

To test the performance of the Block-HMM, we conducted three experiments with arti­

ficial data. The first two experiments were to find an HMM to represent data generated 

from the languages (ATG)+ and (AAGATGAGGACG)+ where '+' means any number 

of repetitions. We used a population composed of HMMs with 2 blocks. Table 6.1 shows 

parameters used in these toy experiments. That is, at each generation we choose two 

individuals and perform crossover to create two children which replace the two parent 

strings, one individual where we mutate either the length or the number of transitions 

in a randomly chosen block and one individual where we mutate the type of a randomly 

chosen block. For this simple problem we did not allow tying. The solutions to these 

two problems found by the GA are illustrated in figure 6.7. The resulting HMMs are 
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reasonable solutions to the problem although probably not those that a human would 

have come up with. 

TABLE 6.1: Block-HMM parameters used in the experiment. 

A 

A 

Parameter value 

Population size 20 
Iteration 300 

Crossover rate 0.05 
Mutation rate 0.05 

Type mutation rate 0.05 

T 

A:O.5 
G:O.5 

G 

G 

(a) 

(b) 

A 

A 

T 

T:O.5 
C:O.5 

FIGURE 6.7: The result of Block-HMM with 2 blocks. 
(AAGATGAGGACG)+ 

G 

G 

(a) (ATG)+ (b) 

The third test we carried out was to find an HMM to recognise the language 

(AAGATGAGGACG) + (ATGC)+. The first half of the sequence is the same as that 

used in the previous experiment, while the second half is a repetition of four symbols. 

The number of iteration used in this experiment is 600. Figure 6.8 shows a graph of the 

maximum log-likelihood value versus the iteration for four different runs of the GA. In 

case 3 of the three block model, the GA has still not found a particularly good HMM 

after 600 iterations. 

The best solutions found by the GA in the four runs are shown in figure 6.9. Note that 

we have not shown transitions which the Baum-Welch algorithm has driven to zero. In 

the first run (figure 6.9(a)) we initiated the GA with two blocks, while in the next three 

runs (figure 6.9 (b),(c) and (d)) we used a three blocl< model. 

These toy examples show that a GA is capable of finding reasonable structures for the 

given problem. However, the models are not the simplest that could solve the problem 

nor do they always have an optimal structure. Nevertheless, they demonstrate that the 

GA can find reasonably parsimonious solutions which give a good approximation of the 
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FIGURE 6.8: The behaviour of the Block-HMM is shown as a function of the iteration 
for 4 runs. 
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true likelihood. To test the performance of the BIock-HMM on more complex sequences, 

we used biological sequences in the following experiment. 

6.4.2 Coding Region Model of C. jejuni 

To investigate the Block-HMM's ability to find an HMM structure for biological se­

quences, we performed an experiment with 200 sequences from the coding regions of 

C. jejuni. Figure 5.5 shows a typical HMM that could be used to represent the coding 

region [90]. Of the 200 sequences available, 150 sequences are used for training and 50 

sequences for evaluation. From looking at the data alone it is almost impossible for 

non-specialists to see that the data consists of codons. 

We conducted the experiment twice, once using four blocks and once with three blocks. 

The initial lengths of the range between 3 to 7. The G A parameters used in the simu­

lations are shown in table 6.2. 

Figure 6.10 shows the resulting structures of the Block-HMM found using the GA. In 

figure 6.10(a) the second state ofthe first block is not used. In figure 6.10(b) the emission 

probabilities of the state between 7 and 15 are tied. Detailed transition and emission 

probabilities are available from the web page mentioned at the end of this chapter. 



64 Chapter 6 Block-HMMs (Block Hidden Markov Models) 

A A/G G A 

A NG G A 

A A/G G A TIC G 

, 
! , 

A T 
A:O.45 G:O.9 I A 
G:O.55 C:O.! 

TIC G A 

(a) 

TIC G A 

(b) 

A G G A C G 

T:O.7 
C:O.3 

(c) 

(d) 

G C 

T G C 

T G C 

A T G C 

A T G C 

FIGURE 6.9: The result of Block-HMM for the (AAGATGAGGACG)+(ATGC)+ (a) 
with 2 blocks (b) with 3 blocks (case 1) (c) with 3 blocks (case 2) (d) with 3 blocks 

(case 3). 

TABLE 6.2: Block-HMM parameters used in the experiment with biological sequences. 
Parameter value 

Population size 30 
Iteration 600 

Crossover rate 0.13 
Mutations rate 0.13 

Type mutation rate 0.13 
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Although these are not the most parsimonious solutions they do seem to have identified 

the triplet nature of the sequences. 

(a) 

(b) 

FIGURE 6.10: The result of Block-HMM. It searched the 3 state loops with GAs. 

6.4.3 Promoter Model of C. jejuni 

We conducted experiments to investigate whether the Block-HMM can find the conserved 

patterns of C. jejuni promoters. A hand designed HMM structure is shown in figure 5.9. 

In this experiment we investigated if BIock-HMM can find a whole HMM structure 

instead of finding a part of an HMM structure. 

The sequence contains more Ts and As than Gs and Cs. Although the Ribosomal 

binding sites can be easily found, the sequence is not always in the same position in 

relation to the coding region. In some cases, the sequence AAGGA doesn't appear or is 

highly mutated. It is difficult for non-experts to figure out which part of the sequence 

is the TATA box because most part of the promoter region is composed of Ts and As. 

The GA parameter are the same as those used in the previous experiment. Of 175 

sequences available, 132 sequences are used for Baum-Welch training and 43 sequences 

are used for the fitness evaluation. We conducted simulations using 9, 8 and 7 blocks. 

To obtain the result showing conserved regions in order, we limited the transition during 

the crossover. Crossover cuts the parents HMM into two or three large blocks. The large 

blocks are relocated in order allowing one transition to the next block. 

The best structures found by the GA are shown in figure 6.11. The Block-HMM could 

find the 'AAGGA' and 'TAtAAT' regions with 9 blocks (figure 6.11 (a)) and 8 blocks 

(figure 6.11 (b)). In addition, it found the presence of semi-conserved TGx upstream of 

TATA box which is characteristic of the C. jejuni promoter region [88]. However, when 

the number of blocks is 7 (figure 6.11 (c)), the Block-HMM could find only AAGGA 

sequence. The TATA box was buried inside other states. Interestingly, the 9 block 

model (figure 6.11 (a)) also found the lO-base periodicity just before the TATA box, 

which was discovered in [88]. In figure 6.11, the emission probabilities of the states in 
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F IGURE 6.11: The best structures found by the GA for (a) 9, (b) 8 and (c) 7 blocks. 
The 'AAGGA' sequence is found on every simulation and 'TAtAAT' sequence is found 

in (a) and (b). Each cell represents a state. Emissions of shaded cells are tied. 

the shaded cells are tied. 

To perform a quantitative test of the generalisation performance of structures found 

in the previous experiment we conducted a discrimination test. In order to collect a 

sufficient amount of data we carried out a five-fold cross-validation experiment . This 

replicates a test performed by Petersen et al. [88J. As the structures generated in the 

previous test (shown in figure 6.11) were found using all the training data, we retrained 

all the emission and t ransition probabilities starting from random values. However, to 

retain the main structure we removed all transition probabilities less than 0.002 and to 

maintain the positions of TATA box and Ribosomal binding site we introduced pseudo­

counts in these conserved regions. For example, if the emission probabilities of one state 

is A:0.9 T:0.1 G:0.05 C:0.05 then the pseudo-count becomes 90 , 10,5,5 for the A,T,G ,C 

respectively. This ensures that these conserved regions occur in the same place when we 

retrain the model in the cross-validation procedure . We used Baum-Welch to retrain the 

weights using 140 out of the 175 sequences as training data. The remaining 35 sequences 

were used as test data. 

To perform a discrimination test we require a background sequence. To obtain this, 

we use a 500000bp sequence generated by a third-order Markov chain that had been 
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trained on the C. jejuni genome. To test the discrimination we set a log-odds threshold 

so that there were 10 or less false positives and then measured the number of true 

positives. Table 6.3 shows the total number of false positives (FP) and true positives 

(TP) summed over all of the five-fold cross-validation tests. 

TABLE 6.3: The result of the Block-HMM 
Simulation Number of FP Number of TP 

Block-HMM (9 blocks) 7 132 
Block-HMM (8 blocks) 9 126 
Block-HMM (7 blocks) 10 120 

Petersen's HMM 10 (best case) 119 

TP rate 

75% 
72% 
69% 
68% 

We repeated this test on ten different HMM structures found by using a GA. In all but 

one case, we could get 7 ~9 false positives and a true positives rate ranging from 70% 

to 76%. Only on one simulation out of the ten, did the GA fail to find a TATA box. 

These results are superior to those published for a hand-crafted HMM [88J, although we 

must be slightly cautious in interpreting our results as the structures were found using 

the same data that it was tested on. We were forced to do this because the dataset 

was small. We did take the precaution of retraining all the weights to reduce the risk 

of biasing our results, but the pseudo-counts were influenced by the whole data set. 

Although, the results are not conclusive, they are very suggestive. 

6.4.4 Discussions 

In this chapter, we have described a GA which evolves the structure of HMMs in a 

biologically constrained way. We have performed a number of tests to illustrate that 

the resulting HMMs are relatively easy to interpret. Furthermore on the problem of the 

promoter model of C. jejuni the results are competitive with an expert designed HMM. 

This is quite remarkable given that our GA had no prior knowledge of conserved regions 

such as the TATA box and Ribosome binding site as well as other structures which have 

been acquired by experts over many years. These are promising results from early work. 

In order to reduce overfitting we have split our training data into a Baum-Welch training 

set and an evaluation set used in selecting members of the population. Although we could 

potentially overfit on the evaluation set, this does not seem to be a problem in practice. 

One explanation for this is that once a trained HMM overfits the training data when 

we run the Baum-Welch algorithm, they then perform badly on the fitness evaluation 

set. Since we use Baum-Welch at every generation, overfitted models will always be 

disadvantaged. 

The blocks introduced in this study were adopted from the frequently used HMM topol­

ogy. Beside those three block other topologies have been constructed in bioinformatics 
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depending on the applications [18]. And other possible block models can be addressed. 

We believe, however, for biological sequence model those 3 block models can be used as 

building blocks that organize the whole topology. 

The crossover operator proposed is one of the possible methods that use the modularity 

property of HMMs. It enriches the search domain by increasing the number of possible 

solutions. On the other hand, the unconstrained choice of blocks for the crossover 

can lead the whole process to be disruptive. Therefore, as the number of the blocks 

increases the Block-HMM requires more iterations to converge. A more strategic method 

of crossover might improve the efficiency of the process. 

Evolving HMM structures is a time consuming process since training and evaluating the 

likelihoods for long sequences takes many operations. At present, this is a restriction on 

automatic structure finding. However, as computers get faster and the number of appli­

cations grow we expect that automatic HMM structure search will become increasingly 

important. GAs seem ideally placed to play an important part in this development. 



Chapter 7 

Block-HMMs for the Prediction 

of Proteins Secondary Structure 

7.1 Proteins Secondary Structure Prediction 

The 3D structure of proteins is very important to understand their function. The sec­

ondary structure of proteins determines the conformation of 3D structure. Predicting 

the secondary structure of proteins has become one of the most studied problems in 

bioinformatics. The problem tackled is to provide a label for each residue in a protein 

sequence depending on its secondary structure. That is, whether the protein residue is 

part of an alpha-helix, a beta-sheet or some other structure. This is a first step towards 

predicting the structure and function of a protein from its sequence. 

There are several publicly available predictors. However, direct comparison between 

the secondary structure predictors is difficult because there is not a standard test set. 

Currently, the EVA server [91] benchmarks those secondary structure predictors devel­

oped so far. It automatically analyses 19 protein secondary structure prediction servers 

continuously. 

Our approach to the secondary structure prediction problem is to evolve an HMM using 

a GA. Even though HMMs have been successfully applied to many problems in biological 

sequence modelling, they have not been very successful as protein secondary structure 

predictors. This is partly due to the difficulties in modelling the complex nature of 

protein structures through the topology of an HMM. The predictors using HMMs show 

a bit lower performances than the predictors using NNs. Thomsen studied the same 

problem of secondary structure predication as we have [5]. His prediction rate on the 

training set using the standards Q3 measure is 49%. HMMSTR [6] is the hand-designed 

HMM model and its prediction rate is 74.3% in the cross-validation test. 
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In this chapter we use the evolutionary method to optimise the structure of an HMl'vl 

for secondary structure prediction. During the evolutionary optimisation, the HMM's 

structure is built up using biologically meaningful building blocks. Three independently 

trained Block-HMMs were cascaded by a second layer of neural networks. To improve 

the prediction rate homologous sequences are used. We tested the trained HMMs with 

a common subset of data from the EVA server [91]. 

7.2 Methods 

7.2.1 Dataset 

The SABMark Twilight Zone data set (version 1.63) [92] provides a set of representative 

structures. This data set consists of 2230 high quality structures partitioned into 236 

folds. Although many proteins in the data set share a common fold, no pair of protein 

sequences can be aligned with a BLAST E-value below 1 or a sequence similarity above 

25%. For the proteins with a common fold in the data set, it is not possible to identify 

a traceable evolutionary common origin. 

Structures that caused problems with the DSSP program (see below) or that had chain 

breaks were removed, which resulted in a final data set of 1662 structures belonging to 

234 fold groups (two groups are removed by this process). With these 234 groups we 

performed a five fold cross-validation test. In order to create a stringent test set we 

made sure that proteins with a common fold do not appear in both the training and 

test sets. 

The secondary structure was calculated using the program DSSP [43]. DSSP assigns 

secondary structure to eight different classes: a-helix (H), isolated ,8-bridge (B), ,8-

strand (E), 31Q-helix (G), II-helix (I), turn (T), bend (S) and other. The DSSP results 

were retrieved using the DSSP front end in the Biopython toolkit [93]. Like most other 

prediction methods we used a reduction scheme whereby Hand G are converted to H, 

E and B are converted to E, and all the other to C. 

7.2.2 Block-HMMs for Labelled Sequences 

Block-HMMs restrict their search to a subset of topologies made up of blocks of states. 

Each block is assigned with a label that corresponds to one of the three secondary struc­

ture classes. The states that make up the blocks emit amino acid symbols. Secondary 

structure prediction is done by inferring the values of the hidden states for a given amino 

acid sequence, and examining the secondary structure labels of the blocks these states 

belongs to. The blocks were chosen to be biologically meaningful structures. Four types 
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of blocks are used : linear , self-loop , forward blocks and zero blocks. Initially, the blocks 

are fully linked to form HMM architectures as shown in figure 7.1. To deal with labelled 

sequences, every st ate in the same block share the same label. 

FIGU RE 7 . 1: An example of an HMM composed of blocks result ing from the Block­
-HMM procedure. Three blocks are used in this model and all the blocks are fu lly 
connected to each other. The blocks are divided by dotted lines. The states in tied 

blocks are shaded in grey. 

The various blocks can model different typ es of sequence fragments. A linear block can 

model a particular conserved sequence pattern. The self-loop block can model a sequence 

of any length while the forward jump block can b e used to represent subsequences with 

varying length up to some fixed length . 

7. 2.3 G en etic Operators for Block-HMM 

We used three genetic op erat ors in Block-HMM: crossover, mutation and type-mutation. 

The number of blocks is kept fixed but t he number of the states of an HMM can be 

changed by the genetic operators . Crossover and mutation work in a similar way we 

present ed in the previous chapter. When a block increases its size during mutation the 

added st at e has the same label wit h t he block it belongs to . 

We designed a new typ e-mutation to handle the label on a stat e. The new type-mutation 

changes t he type or t he label of a block. Type-mutations from and to a zero block are 

also allowed. F igure 7.2 illustrates a type-mutation from a 3-state forward length block. 

W hen a type mutation transforms the type of a block , new transit ion probabilities are 

generated randomly. Self-loop and forward jump blocks can type-mutate between t ied 

and unt ied versions. The labels are also changed under the type-mutation. When type­

mutating from a zero-block , a new block is created and replaces the zero-block. The 

size of the block as well as all the parameters of the states in the b lock are assigned 

randomly. 
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FIGURE 7.2: Type-mutations: (a) to a tied block (b) to a block wit h a different label 
(c) to a zero block (d) to a self loop block or a linear block. When a type mutation 
transforms t he type of a block, new t ransit ion probabilit ies are generated randomly. 

7.2.4 Parallel Genetic Algorithms 

Evolving HMMs particular for this application is highly CPU-intensive. To overcome this 

we used a Parallel Genetic Algorit hms (P GAs) [67] run on a cluster of comput ers . From 

the algorithmic point of view the parallel processing is t he computational realisation of 

the natural parallel evolut ionary strategy. 

We used a master-slave model to implement the Block-HMM on t he clustered comput ers . 

The master-slave model using P slaves are illustrated in figure 7.3. In the mast er-slave 

model, a population is generat ed on P processors . T he t ime consuming training and 

evaluat ion procedures are dealt on slave-processors . Since the computational time for 

the training and evaluation is different depending on t he size of HMM, the master waits 

until all the processes on the slaves finish . The slaves send the fitness value and the 

t rained HMM to the master . Then the mast er applies t he genetic operators on the 

individuals and sends the individual information back to each slave-processor. On the 

slave side t he processor waits for message from the master , evaluates the fitness, trains 

the HMM, and returns the t rained HMM and fi tness value to t he master. 

7 .2.5 Training with Block-HMM 

We have used a hybrid GA wit h tradit ional GA operators to explore the space of HMM 

topologies in combination with Baum-Welch opt imisat ion of t he transit ion and emission 

probabilities. 

To obtain suit able HMM archit ectures we tested various numbers of blocks b etween 26 

and 35. Labels are allocated randomly to each of t he blocks . The size of t he block 

(number of states in a block) is randomly assigned between 1 and 4. Table 7.1 shows 

parameters used in the simulation . 

I 
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slave 1 slave P 

FIGURE 7.3: The flowchart of master-slave model of parallel genetic algorithms. We 
used P processors to implement this master-slave model. 

TABLE 7.1: Block-HMM parameters used in the experiment. 
Parameter value 

Population size 
Iteration 

N umber of blocks in an HMM 
The initial length of a block 

Crossover rate 
Mutation rate 

T ype-mutation rate 

30 
400 

26-35 
1- 7 
0.07 
0.07 
0.07 

To find an HMM that does not overfit the training data, we divided our training set into 

a set used for the Baum-Welch training (5/7 of the data) and a set for fitness evaluation 

(2/7 of the data). The fitness value is calculated from the fitness evaluation set only. 

Given an HMM (G), we take the reciprocal of the negative log-likelihood as the fitness 

value: 

(7.1) 

where li is the length of a sequence Xi and f.L labels the different HMMs (with parameters 

GIL) of the population. A member of the population is selected with a Boltzmann 
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probability 
m l-' 

FI-' = N ' 
2.:11=1 m il 

(7.2) 

where (J is the standard deviation of the fitness in the population and s is a constant 

that controls the strength of the selection . In the work reported here, we used a value 

of s equal to 0.3. 

The best member of a population is always select ed , and a subset of other members are 

selected by using stochastic universal sampling [65] . Some of the memb ers are mutat ed 

or subjected to crossover. Then , all the members of the genera tion undergo Baum-Welch 

optimisation using the training data set . We saved the best HMM at each of the 400 

generations, i.e . during the whole run of the GA. At the end of the run , the best HMM 

is selected and trained again with the Baum-Welch algorithm, this time using all t he 

sequences. This is done because the last HMM is not always the best HMM generated 

during the whole GA run. Finally, the HMM is trained further using the discriminative 

training method [42]. 

Figure 7.4 shows one of the results of Block-HMM. The simulation used 26 blocks but 

the result shows only 19 blocks: the remaining 7 were zero blocks. The full HMM 

structure with 42 states is found on the web site. The full HMM structure with 42 

states is illustrated in figure 7.5. Transitions with a probability less then 0.1 are not 

shown in this figure . 

FIGURE 7.4: An example of an HMM evolved using Block-HMM. It is composed of 19 
non-zero blocks and 42 states. Transitions between blocks are not shown here (including 

the transition from a block to itself). 

7 .2 .6 Incorporating Evolutionary Information 

Secondary structure prediction rates can be boost ed by using evolutionary information . 

In most systems, the position specific scoring matrix (PSSM) is used as an input of t he 

predictor. Instead of using PSSM , we ran our predict or on a set of homologous sequences 

and t hen combined the results. To obtain the homologous sequences we ran P SI-BLAST 
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FIGURE 7.5: The full HMM structure with 42 states. Transitions less then 0.1 are not 
shown. This figure is drawn with the drawing tool provided by L.G.T. Joergensen. 
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[51] against the UniProt 90 protein sequence database [57] downloaded on 17th of Feb. 

2005. We used 3 iterations of PSI-BLAST with an E value threshold of 0.001. The 

posterior label probabilities (PLPs) were calculated by decoding each of the homologous 

sequences against the trained HMM. The gaps are ignored when the sequences are 

decoded. There are redundant amino acids needed for the pairwise alignment when a 

query sequence is shorter than the homologous sequences. After decoding the sequences 

are aligned again without redundant amino acids. In figure 7.6 the second amino acid 

of the second homologous sequence, 'K', is redundant and dropped when the sequences 

are aligned again. The PLPs of each sequence are aligned along with the sequence. If 

there are gaps in the sequence, the gapped PLP is set to 0 for all labels at all positions 

with the gap. 

query 

V-LKLFKD 

} 
VLKLFKD 

} 
VLKLFKD 

homologous HMM 
Decoder 

V-L-LFKD VLLFKD VL-LFKD 

VKLKL--D VKLKLD VLKL--D 

I I 
multiple sequence 
alignment 

ignoring gaps aligning again without 
redundant amino acids 

FIGURE 7.6: Decoding and aligning homologous sequences. Gaps ignored during de­
coding and redundant amino acids are deleted after decoding. 

After aligning the decoding results, we calculated the weight of each sequence according 

to the position-based sequence weight [59]. The weight is given in equation 2.8. We take 

the weighted sum of the PLP for each column of the alignment. 

An ensemble of several predictors usually improves the prediction rate. We used an 

ensemble of three independently trained HMM predictors. Because they are trained 

independently by running the Block-HMM, they are different in size and the parameters. 

It improves further compare to the predictor using three HMMs with the same structure. 

On each HMM, the outputs are summed up and normalised before they are used as an 

input of the second layer of the predictor. When the second layer is not used the outputs 

of the three HMMs are summed up again and the dominant label is used as our final 

prediction of the secondary structure. 

7.2.7 The Second (structure-to-structure) Layer 

To improve the performance even further we used a 3-layer perceptron consisting of 3 

input nodes, 3 hidden nodes and 3 output nodes (figure 7.7). The PLPs of the ensemble 

I, 
I 
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of three HMMs are used as an input of the neural networks. To train the neural networks 

the gradient descent method with a momentum term was used [94]. This network is quite 

simple compared to other structure-to-structure layers published in the literature. The 

final predictor is illustrated in figure 7.8. 

H: 0.3 

E: 0.1 

C: 0.6 

FIGURE 7.7: The structure-to-Structure layer. It is composed of simple 3-layer neural 
networks. 

submitted 
sequence 

ATVFKLGLFKSFHDTRLFKNDKTTN 

homologous 
sequence 

ATVFKLGLF-SFHDTRLFKNDKTTN 
ATVQKLGLFKSFHDTRLFNHDKTTN 
ATVFKLPLFKSQTDTR- - -NPDKTTN L..----'I 

'--~-~~~~--~~~----''---c------:-.J LI __ ~----,I <-I -,-__ --' 
Alignment with Sequence to Structure to 

weights structure HMM structure network 
Ex tract homologous sequence from the database 

H:0.2 
E:0.3 
C:0.5 

FIGURE 7.8: Schematic overview of predicting secondary structure with three HMMs 
evolved with Block-HMMs. 

7.3 Implementation and Results 

7.3.1 Cross-validation Results 

We used posterior label probability to decode the HMM. The most probable label is se­

lected as an output. Table 7.2 shows the result of 5 cross-validation tests without incor­

porating evolutionary information, and table 7.3 shows the result of 5 cross-validation 

tests. This result indicates that about 6-7% of performance enhancement has been 

achieved on every field except Q E by using evolutionary information. The enhancement 

of Q E was only 3%. 

i 
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About 0.5% of enhancement could been achieved by using the ensemble method. The 

decoding result of three independently trained HMMs using Block-HMM were averaged. 

The ensemble of more than 3 HMMs did not improve the prediction rate much. Even 

though the overall Q3 is comparable to other predictors, the QE is just 59.9%. To 

improve QE rate as well as overall prediction rate we added a neural network. Later, 

the final average Q3 accuracy of the cross-validation tests using NNs is 75.1% and its 

segment overlap (SaV) scores [44] is 71.7%. Using the NNs made very little difference 

to the overall performance but substantially improved QE and SaVE at the cost of 

small loss in performance of QH and a more decrease in Qe. Interestingly, however, the 

decrease in SaVe is just 1 %. 

TABLE 7.2: Average of 5 fold cross-validation results without incorporating evolution-
ary information. 

Test Q3 QH QE Qe sav savH SaVE SaVe 
testl 68.0 64.9 56.0 75.2 63.2 62.8 59.8 65.5 
test2 70.1 65.4 59.0 75.5 66.3 63.3 62.1 67.0 
test3 67.6 67.1 52.8 74.5 63.9 65.4 59.5 65.1 
test4 68.2 67.0 58.5 74.0 63.1 64.9 61.3 65.4 
test5 67.5 64.7 55.8 74.7 62.6 62.5 58.5 65.9 
total 68.3 65.9 56.4 74.8 63.9 63.8 59.8 65.8 

TABLE 7.3: Average of 5 fold cross-validation results. 
Test 1 Q3 QH QE Qe sav saVH saVE SaVe 

Single HMM (testl) 74.8 71.2 60.0 82.1 69.8 70.9 66.1 69.9 
( test2) 76.2 66.2 61.8 82.5 72.9 66.9 67.0 71.9 
( test3) 74.5 70.8 56.9 83.2 70.4 71.5 64.4 70.1 
(test4) 73.9 71.5 60.6 82.6 68.7 71.4 66.6 69.7 
( test5) 73.2 66.6 58.0 80.8 69.4 66.2 62.7 68.9 

Single HMM (total) 74.5 69.2 59.4 82.2 70.0 69.4 65.3 70.1 
Ensemble of 3 HMMs 75.0 69.4 59.9 82.8 70.6 69.7 65.9 70.6 

Ensemble + NN s 75.1 67.8 70.8 77.5 71.7 68.4 73.4 69.6 

Thomsen [5] reported 49% for the Q3 rate with his genetic methods. Figure 7.10 shows 

the best model he achieved. It is composed of 8 states excluding a begin state. In the 

figure, A, B, and C represent a-helix, ,B-sheet, and coil respectively. The HMM topology 

he found looked too simple to represent the complex nature of protein sequences. HMM­

STR [6] is the most successful secondary structure predictor that makes use of HMMs. It 

is hand designed with more than one hundred states. However, the prediction accuracy 

(Q3) of HMMSTR is 74.3%. Even though our evolved HMMs have considerably fewer 

states and a simpler structure, they produced better results. 

Direct comparison with other predictors is difficult as there is no standard benchmark 

test. Most of the other top ranked predictors use test sequences with less than 25% 

I 
I 

! ' 



Chapter 7 Block-HMMs for tlle Prediction of Proteins Secondary Structure 

FIGURE 7.9: The best HMM topology of Thomsen. It is composed of 8 states excluding 
begin state. In the figure A, B, and C represent a-helix, ,8-sheet, and coil respectively. 

Adopted from [5] and redrawn. 

79 

identity with any sequence in the training set, while we used the more stringent criteria 

of a maximum BLAST E-value of 1 and avoiding proteins with a common fold in test 

and training sets. One of the most successful predictors is PSIPRED [13] which has a 

reported Q3 value of 76.0%. In this case as well, the test and training sets did not share 

proteins with a common fold. However, their test set was considerably smaller than the 

one we used. The Q3 accuracy of our method is slightly lower than for PSIPRED and 

the other top ranked predictors. However, given the fact that we used a very "hard" 

test, it is fair to assume that our results are at least comparable. 

7.3.2 Benchmarking 

In an attempt to benchmark our method with an existing predictor we used the EVA 

common subset no. 6 data set published on January 2004 [91]. We ensured that no 

sequence in the EVA set was present in our training set. For the benchmark we compared 

our prediction results with those of PSIPRED and YASPIN [16]. The result shows that 

the prediction rate of our method is slightly better than that of the other predictors (table 

7.4). 

This data set consists of only 32 sequences therefore some caution is necessary in inter-

: ' 
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FIGURE 7 .10: The HMM topology of HMMSTR adopted from [6] . 
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preting the results. Nevertheless, this test indicates that the evolved HMM method has a 

prediction rate that is comparable to the other top ranked predictors. The disappointing 

result of YASPIN was due to failure to predicting long helical regions of proteins such 

as 1 q90:L, 1 q90:M, and 1 q90:N. This failure is uncharacteristic of an otherwise excellent 

predictor. 

TABLE 7.4: The benchmarking result with 32 sequences from the EVA common subset 
no. 6 

Test Q3 QH QE Qe sav savH SaVE saVe 
PSIPRED 78.0 84.8 72.0 74.3 73.6 84.9 72.9 67.4 
YASPIN 71.5 75.2 76.8 76.5 68.1 76.4 74.5 71.9 

BLOCK-HMM 78.3 83.9 75.8 75.9 74.3 82.9 77.3 70.2 

7.3.3 P.S.HMM: Protein Secondary structure predictor using HMM 

P.S.HMM (Protein Secondary structure predictor using HMM) is a web server that 

em ails the predicted structure of query protein sequence to users. The URL of P.S.HMM 

is http://www.binf.ku.dk/usersjjason. Figure 7.11 shows the P.S.HMM server. The 

input of the predictor uses protein sequences in FASTA format. A sequence in FASTA 

format consists of a single-line description, followed by lines of sequence data. The first 

character ofthe description line is a '>' symbol in the first column. The P.S.HMM server 

is developed using Biopython. Figure 7.12 shows the result of the predicted sequence 

sent to the requested e-mail address. 

7.4 Discussion 

Optimising HMM structures using an evolutionary algorithm has several benefits. Firstly, 

the structure of an HMM is automatically evolved without prior knowledge of the protein 

sequences. This is remarkable given that other methods for secondary structure predic­

tion require considerable calibration. Instead we had a benefit of using the general 

knowledge of biological sequences by using HMM block models. Compared to the hand­

designed HMMSTR [6], the evolvable method produced better results with a smaller 

number of states. In the case of neural networks, the selection of the number of units 

needs careful attention. Here again, the evolving HMM method is an attractive alter­

native. 

Secondly, our method does not require a sliding window as most other secondary struc­

ture prediction methods do. The size of the window is chosen in order to obtain good 

performance (for example, PSIPRED has a window size of 15 [13]). The evolving HMM 

, , 
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R.S.I1MM (Protein Second~ry StrJ.1cture PredIctor J.1Slne UMMs) 
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FIGURE 7.ll: The P.S.HMM server. A protein sequence in FASTA format is used as 
an input. 

P.S.HMM prediction result. 
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Seq RSPSPSTQPWEHVNAIQEARRLLNLSRDTAAEMNETVEVISEMFDLQEPTCLQTRLELYK 

Pre xxxxxxxxxHHHHHHHHHHHHHHxxxxxxHHHHHHHHHHHHHHxxxxxxHHHHHHHHHHH 

Seq QGLRGSLTKLKGPLTMMASHYKQHCPPTPETSCATQIITFESFKENLKDFLLVIPFDCWE 
Pre HxxxxxHHHHHxHHHHHHHHHHHxxxxxxxxxxxxEEEEHHHHHHHHHHHHxxxxxxxxx 

Seq P 

Pre x 

The prediction resulf of P .S .HMM 

FIGURE 7.12: The result of secondary structure predict ion . 
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method uses the whole sequence as input, which avoids the use of a fixed sequence 

window that might affect performance in specific cases. 

The prediction rate in the cross validation tests is a bit lower than that of the other 

predictors. One of the reasons is that we used a relatively hard data set to test our 

performance. For the benchmarking, the fully trained model was compared with other 

predictors. PSIPRED is known as one of the top ranking predictors and YASPIN is 

a recently developed challenger. In the benchmark test the overall Q3 rate of our pre­

dictions is slightly better than the other methods tested. Because we conducted the 

benchmark with a small number of sequences, we cannot claim that our method is bet­

ter than others. However, the result provides strong evidence that our method has at 

least as good a performance as other published methods. 

In our classification, a helical region has at least 3 residues (i. e. a 3-residue 310 helix as 

determined by DSSP). At the moment our method can predict a helical region of less 

than 3 residues. This can be corrected for example by deleting all helices having 1 or 2 

residues. However, this does not greatly affect the prediction rate and consequently we 

have kept this issue untouched. 

At present the Block-HMM method is relatively slow because it has to train and calculate 

fitness for all the HMM members in the population. We could solve it by using parallel 

programming. To evolve an HMM using GAs with 30 members in a population, we used 

312.4 GHz P4 processors each with 512 Mb RAM run in parallel. One processor controls 

communication between other processors. Under these conditions each processor trains 

one HMM. Ideally, the CPU time consumed in each processor is the time to train and 

evaluate an HMM multiplied by the number of iteration. Approximately 7 hours was 

required to produce an HMM with 40 states. Prediction using three trained HMMs 

without evolutionary information takes about 30 seconds. 
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Chapter 8 

Inside Block-HMMs 

Block-HMMs use an evolutionary strategy to search for a solution. Like other GA 

applications, they rely on many parameters such as the population size and the genetic 

operators. They also have special properties created by the use of blocks. These factors 

altogether affect the whole performance of Block-HMMs. 

In this chapter we delve into the factors that Block-HMMs use. For this investigation 

we perform the protein secondary structure prediction with a new set of 200 training 

sequences and 64 test sequences. Firstly, we compare GA-HMMs and Block-HMMs for 

this problem. In the following simulations, we investigate the performance of the Block­

HMM as we change the parameters such as the genetic operators and the number of the 

HMM blocks. We also investigate the performance changes as we vary the separation 

ratio of the training sequences and see if the input separation scheme and the selective 

Baum-Welch reduce overfitting for protein secondary structure prediction problem. We 

also check how the population size effects the performance. Lastly, we compare the 

Block-HMM with a hill climbing method. 

During the simulation, when no specific parameter is given, the parameter set in ta­

ble 8.1 is used. After we obtained an HMM by running each algorithm, the evolved 

HMM is trained again with the Baum-Welch algorithm and the discriminative training 

algorithm [42] using the whole 200 training set as we previously conducted in chapter 7. 

TABLE 8.l: Default parameters used for the protein secondary structure prediction. 
Parameter value 

Population size 30 
Iteration 150 

Number of blocks in an HMM 12 
Crossover rate 0.07 
Mutation rate 0.07 

Type-mutation rate 0.07 
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8.1 GA-HMMs versus Block-HMMs 

The GA-HMM allows any number of transitions from a state, while the Block-HMM 

allows only transitions that do not break the property of blocks. In the Block-HMM the 

crossover operator is also restricted as they allow only swapping of the blocks. We inves­

tigate how the GA-HMM evolves HMM structures and compare it with the Block-HMM. 

We started with the initial 6-state model. The initial HMM is illustrated in figure 8.l. 

When we trained this model with Baum-Welch algorithm and the discriminative training 

algorithm, it had the Q3 rate of 63.8%. 

FIGURE 8.1: The initial HMM used for the GA-HMM simulation. The Q3 of this initial 
model is 63.8%. 

With this initial model we ran the GA-HMM. Figure 8.3 (a) shows the log likelihood 

of the best HMM versus iteration when we ran the GA-HMM. The graph shows steep 

changes before 50 iterations caused by the structural changes in the HMM, but after 50 

iterations it does not show such changes and looks like a normal Baum-Welch training 

curve on an HMM. The average Q3 rate of the 6 GA-HMM tests is 64.71%. Figure 8.2 

shows one of the results after running the GA-HMM. 

FIGURE 8.2: The result HMM topoogy after the GA-HMM simulation. 

The result of GA-HMMs shows the increase of the number of the states and some 

additional transitions. This result can be comparable with Thomsen's result (figure 7.10) 
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which is independently developed using similar genetic operators [5]. Thomsen evolved 

an initial 3-state HMM topology and produced a result with 8 states. Both of the 

methods could not evolve the initial model efficiently for this problem. We conducted 

the same simulation until the GA-HMM reached 2000 iterations, but we could not find 

any significant improvement. 

Block-HMMs usually use a larger number of states for the initial population. To get rid 

of the initial advantage of Block-HMMs, we tested the GA-HMM with one of the initial 

members of the population of the Block-HMM. The initial model has 34 states and its 

Q3 rate was 65.48% before it is evolved. Figure 8.3 (b) shows the log-likelihood graph of 

the best HMM versus iteration. The log likelihood graph is higher than the GA-HMM 

graphs with the initial 6-state HMM (figure 8.3 (a)). The average Q3 rate of the six 

independent tests is 66.16%. 
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We conducted the simulation using the Block-HMM with the same initial HMM. Fig­

ure 8.3 (c) shows the log-likelihood of the best HMM versus iteration. The results demon­

strated that the Block-HMM could change the structure more than the GA-HMM could. 

The Q3 rates of all the result was better than GA-HMM's result and the average Q3 

rate of 10 independent simulations was 66.88%. The Block-HMM continued to change 

the log-likelihood until it reached the end of the iteration. The improvement of predic­

tion rate from the initial model is 1.4%, while the GA-HMM could improve only 0.7%. 

Figure 8.3 (d) is the log-likelihood of the best HMM versus iteration when we evolved it 

from a random population. The structure of each member of the population is randomly 

generated. The graphs are more widely spread than the other results. Even though some 

of the log-likelihood graphs are lower than the curves in figure 8.3 (c), all the results 

have better Q3 performance and we can get the Q3 of 67.15%. From the simulation, 

we can conclude that the Block-HMM is superior for this secondary structure problem. 

One of the reasons of success of the Block-HMM in the protein secondary structure 

prediction problem is that the Block-HMM crosses over without breaking the group of 

states that share the same label. When we use labelled sequences, breaking those group 

of states easily makes illegal sequence paths through the HMM. The Block-HMM can 

avoid those useless operations by using blocks. Also, type-mutation can replace a block 

with any other block type, which might give Block-HMMs additional jumps to search 

the solution. 

GA-HMMs may have better fine tuning capability than Block-HMMs because they al­

low any number of transitions. However, the result with protein secondary structure 

shows that Block-HMMs are much more suitable for the secondary structure prediction 

problem. This may reveal that Block-HMMs benefit from restricting their topology. 

8.2 Genetic Operators 

Three genetic operators are used in Block-HMMs: crossover, mutation and type-mutation. 

To investigate how each genetic operator effect the performance of Block-HMMs, we ran 

simulations using only one of these operators for each test. 

The figure 8.4 shows the log-likelihoods of the five best HMMs versus iteration when each 

of the operator is used. The crossover operators sometimes bring rather abrupt changes 

in the graph (figure 8.4 (b)) and the graphs are widely spread. Mutation operators, on 

the other hand, give small changes (figure 8.4 (a)). The Q3 rates of each simulation 

are shown in table 8.2. Even though we used a different operator in each case, the Q3 

performances were not significantly affected. All of the three operators are important 

methods to change HMM structures directly. However, it is difficult to pinpoint which 

operator plays the more important roles from this simulation. 
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TABLE 8.2: The comparison of Q3 rates and the number(~) of states when using one 
of each operator. 

mutation only crossover only type-mutation only all operations 
Q3 ~ of states Q3 ~ of states Q3 ~ of states Q3 ~ of states 

testl 67.16 34 68.41 35 68.17 33 67.02 25 
test2 67.34 49 66.75 33 66.35 19 67.94 27 
test3 65.97 29 67.42 28 67.31 38 67.50 30 
test4 68.41 34 67.8 27 67.53 22 67.19 26 
test5 67.24 29 65.73 25 66.37 22 66.12 26 

average 67.22 35 67.22 29.6 67.15 27.8 67.15 27.2 
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The result also shows that the high log-likelihood does not necessarily mean high Q3 

rate. The highest log-likelihood in the figure 8.4 (d) (0), has the worst Q3 rate (66.12%). 

Also, the size of HMMs does not strictly determine the performance in the simulation, 

because HMMs with similar sizes still show differences in the individual performance. 

8.3 Number of Blocks 

The number of blocks is an important factor in the Block-HMM. The number of blocks 

is fixed in the Block-HMM, but due to the zero blocks the number of blocks representing 

an HMM changes. In this section we investigate the performance change as we vary the 

number of blocks in the Block-HMM. For the simulation we varied the number of blocks 

from 5 to 25. The size of blocks are assigned randomly from 0 to 7. Figure 8.6 shows 

the log-likelihood of the best HMM when the numbers of blocks used are 5, 8, 13, 15, 

17 and 25, respectively. 

70.00 

68.00 

66.00 

64.00 

62.00 

60.00 -t----.-r---,---,---,-,--,--,.-----,.--

56 8 10 1213 15 17 25 
Number of blocks 

FIGURE 8.5: The Q3 rate on each case of the number of blocks. 

TABLE 8.3: The average Q3 rate and the average number of states on each case of the 
number of blocks 

rt of blocks 5 6 8 10 12 13 15 17 25 
Q3 65.54 65.79 65.65 66.37 67.15 66.72 67.53 67.14 67.46 

rt of states 16.8 19.8 18.2 27.6 27.2 31.0 32.4 37.4 45.6 

For each configuration five tests were conducted. The results show the tendency that 

the log-likelihood graphs are a little higher as the number of blocks increases. HMMs 

with a larger number of states usually have higher log-likelihood. Table 8.3 shows the 

average Q3 rate and the average number of states of the HMMs evolved on each case. 
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As the number of blocks increases, the number of states of the HMM increases. This 

affect the log-likelihood. The Q3 rate increases as the number of blocks increases up to 

12. However, the improvement of performances stops once the Block-HMM has enough 

number of blocks (figure 8.5). 

8.4 Overfitting 

Overfitting occurs when an HMM is trained too much with a training sequences. Over­

fitting is hard to avoid and it becomes more serious as the number of states of an HMM 

increases. To avoid overfitting we proposed two schemes: the separation of dataset and 

the selective Baum-Welch method. The separation scheme divides the training sequences 

into two sets. One set (training set) is used for the Baum-Welch training and the other 

set (evaluation set) is used for the fitness evaluation. The selective Baum-Welch scheme 

randomly judges whether to train the HMM or not. The simulation result with pro­

moter region of C. jejuni demonstrates that the two schemes helped the GA-HMM to 

reduce the overfitting of the training sequences. For the DNA sequences we calculated 

the log-likelihood of the test set to check the generalisation performance. In this section, 

we investigate how those two methods effect the performance of Block-HMMs for the 

protein secondary structure prediction problem. 

Figure 8.7 shows the log-likelihood of the best HMMs versus number of iterations. For 

this test we used 20 protein sequences to see the overfitting phenomena easily. When the 

separation scheme is not used (Li) the log-likelihood graph monotonically increases over 

iteration. When the separation scheme is used the log-likelihood curve of the training 

set (0) is below the graph of the non-separation method. It also fluctuates because 

the trained HMM is assessed by using the evaluation set. The log-likelihood graph of 

the evaluation set (+) shows that the increase of the log-likelihood of the training set 

does not always mean the increase of the evaluation set's log-likelihood. Unlike the log­

likelihood, the average Q3 of the non-separation scheme (57.41±0.41) is less than that 

of the separation scheme (58.85±O. 73). The log-likelihood graphs of the two scheme 

become similar to each other as the number of sequences increases. The difference in Q3 

also decreases as the number of sequences increases. 

8.4.1 Separation versus Non-separation 

We investigate the effect of the separation method as we change the ratio of the separa­

tion. Figure 8.8 shows the log-likelihood of the best HMMs versus number of iterations 

when the separation ratio varies. When the training sequences are not enough (1:6) the 

curve fluctuates substantially. The graphs fluctuate less as the ratio of the training set 

increases. Table 8.4 shows the average Q3 rates of five tests for each configuration. The 
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FIGURE 8.7: The log-likelihood of best HMMs versus number of iterations with 20 
training sequences. 

results show that the best results are obtained when the number of sequences in the 

training set is similar or a bit larger than the number of sequences in the evaluation set. 

TABLE 8.4: The comparison of average Q3 rates of five tests for each case (number of 
sequence in training set: in evaluation set). 

test 1:6 2:5 3:4 4:3 5:2 6:1 

average Q3 64.18 65.79 67.55 66.94 67.15 66.65 

To see if the separation scheme reduces the effect of overfitting we conducted the sim­

ulation on both the separation and the non-separation methods. We conducted the 

student's t-test with the results of both methods. For each method we conducted 30 

independent tests. When we tested the separation method we used half of the sequences 

as the evaluation set and the other half as the training set. 

The average Q3 rate of the 30 tests is 67.66% when the separation method is used and 

67.36% when the non-separation method is used. The probability of the t-test result, 

assuming the null hypothesis, is 0.119. This suggests that the separation method is 

likely to be superior, although more testing would be necessary to be sure. 
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Selective Baum-Welch methods were introduced in chapter 5 to reduce overfitting. The 

selective Baum-Welch method increased the generalisation performance when we tested 

the log-likelihood of the DNA sequences. However, the log-likelihood does not always 

guarantee the Q3 performance in the protein secondary structure prediction problem. 

We investigate how the selective Baum-Welch works in the Block-HMM for the protein 

secondary structure prediction problem. About 1/4 of the members of a population 

are randomly selected to train with the Baum-Welch algorithm. Figure 8.9 shows a 

log-likelihood graph when the selective Baum-Welch method was used. 

The graph of the selective Baum-Welch method increases monotonically. Because the 

best member is not Baum-Welch trained and is replaced only when other members have 

more fitness value, the graph of the selective Baum-Welch method always increases. 

The average Q3 rate of this method from 10 tests was 66.63%. Under the same condition, 

the Block-HMM without the selective Baum-Welch method was 66.87%. The differences 

of the two methods are insignificant as the probability associated with the t-test result 

is 0.5. On the contrary to DNA sequences, the selective Baum-Welch method did not 

have a significant effect on the performance of the Block-HMM for the protein sequences 

prediction problem. 
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FIGURE 8.9: The log-likelihood of the best HMMs versus number of iterations when 
the selective Baum-Welch method is used. 

8.5 Population Size 

The population size is a unique property of GAs. The population size tells how many so­

lutions the GA maintains. To investigate how the population size effect the performance 

of Block-HMMs, we checked the performance on each configuration of the population 

sIze. 

Figure 8.11 shows the log-likelihood graphs when the population size are 4, 8, 16, 30, 

40, and 50, respectively. Obviously, the Block-HMM could not evolve efficiently when 

the population size is 4 because of the disruption caused by genetic operators. The 

log-likelihood usually have higher values as we increased the population size. Table 8.5 

and figure 8.10 show the average and the maximum Q3 rates of ten independent tests. 

The average Q3 rate has a higher value as the population size becomes larger. However, 

the maximum Q3 rates remain similar when the population size is larger than 16. 

The result shows that the performance was not improved even though we use the larger 

population size. However, it increased the number of results that showed good perfor­

mance, which led to the increase of average Q3 rate. 
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TABLE 8.5: The average and the maximum Q3 rate when the population size changes. 
population size 4 8 16 30 40 50 

average Q3 64.27 66.63 67.27 67.67 67.50 68.07 
maximum Q3 66.45 68.40 68.74 68.57 68.73 68.68 
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FIGURE 8.10: The average and the maximum Q3 rate when the population size changes. 
The maximum Q3 rate does not change much. 

8.6 Comparison with Hill Climbing method 

Hill climbing [95] methods are search algorithms where a new solution replaces the old 

one whenever the new solution has a better performance. In this section we compare 

the Block-HMM with the hill climbing method. For this simulation the hill climbing 

method is designed to have HMM blocks and use the same mutation operator and the 

type-mutation operator. We also used the separation method of training sequences for 

the hill climbing method. Half of the training sequences were used for the training set 

and the other half for the evaluation set. 

Figure 8.12 shows the log-likelihood graph of the hill climbing method. We can find the 

structural changes in the log-likelihood graph. The average Q3 rate of independent 30 

tests is 66.62%. On the same configuration the Q3 of the Block-HMM was 67.67% when 

the population size is 30. The result of the t-test also shows the significant differences 

between the two result (probability is 6.8 x 10-6 ). The statistical difference is large, 

but this result is a bit unfair to the hill climbing method because the result has not 

been compared on an equal number of evaluations. The performance of the hill climbing 
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the population size are 4, 8, 16, 30, 40, and 50 
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method is better than the Block-HMM with a population size of 4. This comes from 

the fact that the Block-HMM is disrupted by its crossover operator. We did not use 

elitism for this chapter because selecting the best one each time did not contribute to the 

performance much. Especially, for this simulation the population size of 4 would be too 

small to use the elitism. Previously, we have shown that the Block-HMM could evolve 

well without using crossover operation. The reason for the Block-HMM's superiority 

over the hill climbing method may come from that the Block-HMM maintains the pool 

of a population and can search many solutions at the same time while selecting the 

better members of the population. 

-3.20 

-3.22 

"0 
0 
0 -3.24 

:S -Q) 

~ 
bJ) 

0 
-3.26 

......l 

-3.28 

-3.3 a -j--__ r----.-----,r----,-----,r-----, 

a 50 100 150 

Iteration 

FIGURE 8.12: The log-likelihood of the HMM trained using the hill climbing method. 

8.7 Discussion 

In this chapter we investigated what factors contribute to the performance of the Block­

HMM. From the simulation of comparing the GA-HMM and the Block-HMM we found 

that the block mechanism enables the Block-HMM to generate the plausible initial pop­

ulation and to evolve the population in an efficient way. When evolving a new structure 

in the GA-HMM, it can easily cause illegal paths through an HMM by adding or deleting 

a state or swapping them in the HMM irrelevantly. The genetic operators designed for 

the Block-HMM could tune the structure without causing too much disruption by sug­

gesting plausible architecture at each time. Also, each block has a very simple structure. 

This may help the Block-HMM to suffer overfitting less. 
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The separation of the dataset has been used in evolving the HMM structure. From 

the simulation we demonstrated that the separation method has some significant effects 

to reduce overfitting. This method uses the statistical property of the dataset itself, 

while other hybridising methods uses the property of the applied HMM, the complexity. 

However, it may not be appropriate to use the property of an HMM because it is hard 

to define how much complexity of the HMM is needed for the given problem. We also 

used the selective Baum-Welch method to reduce overfitting. However, in the case of 

protein sequences, the selective Baum-Welch method was not beneficial. 

The number of blocks determines the size of an HMM. The size of an HMM did not affect 

the performance much when it was large enough. However, it may not be a good strategy 

to use an extreamely large number of blocks, because it requires a lot of computational 

effort. Using a large population size increases the chance to find a good solution. Also, 

increasing the population size requires additional computational effort. 

Because of the time-consuming process of the Block-HMM and limitation of the com­

putational power, we conducted limited number of tests. It is difficult to draw strong 

conclusion about the Block-HMMs from the tests conducted in this chapter. Some more 

simulations result may help to understand how the Block-HMM works. 
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Conclusions 

In spite of the numerous number of HMM applications developed for biological sequences 

analysis, the structure training methods have not been studied much. Even though 

heuristic methods for structure training have been experimentally applied, they have 

not exceeded the human's expertise in designing HMM structure. 

In this thesis, we presented a method to train the HMM structure. Evolutionary strate­

gies were designed to search for the HMM structure as well as the HMM parameters. 

This automatic way of training HMM structure method considered possible issues raised 

in HMMs in its evolutionary cycle. Firstly, it hybridised the Baum-Welch parameter 

training algorithm for efficient parameter convergence. Secondly, it developed the self 

learning method by strictly separating the evaluation from a different set of training 

data. This approach keeps itself from overfitting the training data and leads the HMM 

to have better generalisation performance. Block-HMMs use block models which are 

highly motivated by the HMM applications for analysing biological sequences. 

With all those property, the evolving HMM method could find better models than ex­

perts can come up with. Especially, the Block-HMM was designed to evolve HMM 

structures for the whole sequences and the performance of the Block-HMM was superior 

to the hand-crafted model. It may be natural that there is no one globally superior so­

lution in finding the structural model that can represent biological phenomena. For the 

given biological sequences there would be many possible HMM structures. The Block­

HMM suggests one of the possibilities of an automatic structure searching method. 

Besides those block types suggested in this thesis, other types of block also can be used 

to produce better results. Nevertheless, the proposed method is a successful example of 

evolving HMM structures. 

By investigating the Block-HMM, we could conclude that the use of the HMM blocks 

combined with the properly designed genetic operators enabled such an improvement. 

Even though the performance improvement by the separation of the training set was not 
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significant, it was proved to be a good candidate to evaluate a trained HMM on each 

genetic cycle. 

The GA-HMM and the Block-HMM methods were used to model the promoter and the 

coding region of C. jejuni and protein sequences. Due to the automatic nature of our 

methods, drawing a biological meaning from the HMM might be difficult. However, 

in some cases it may not be desirable to draw a biological meaning from the trained 

HMM. Instead, the whole HMM can be used to interpret and understand the biological 

sequences. 

There is still need for research in the Block-HMM. Besides new types of blocks, the 

fitness function is another area to be developed. Decoding methods may be directly 

applied for the fitness evaluation. At this stage, nevertheless, there exist advantages in 

using Block-HMMs. One of the main advantages of using Block-HMMs is that they can 

be directly applied to other sequence prediction methods easily. Since the Block-HMM 

is designed to generate a general model for the given sequences, it can be applied to any 

kinds of DNA or protein sequences. 



Glossary 

3' end The end of a nucleic acid that doesn't have a nucleotide bound to its 3' of the 

terminal residue. 

5' end The end of a nucleic acid sequence where the 5' position of the terminal residue 

isn't bound by a nucleotide. 

Amino acid Any of 20 basic building blocks of proteins. It is composed of a free amino 

(NH2) end, a free carboxyl (COOH) end and a side group (R). 

Base pair (bp) A pair of complementary nitrogenous bases in a DNA molecule (adenine­

thymine and guanine-cytosine). Also, the unit of measurement for DNA sequences. 

capped 5'-ends A methylated (has a -CH3 attached) guanosine nucleotide attached 

to the 5'-end (the beginning) of an eukaryotic mRNA, thought to give the mRNA 

stability. 

Codon A group of three nucleotides that specifies addition of one of the 20 amino acids 

during translation of an mRNA into a polypeptide. Strings of codons form genes 

and strings of genes form chromosomes. 

Consensus sequence A sequence of nucleotide bases which are extremely similar among 

many different genes of different systems. In eukaryotes, this sequence is known 

as the "TATA box" or the "Hogness box," and it has the general sequence of 

TATAAAA. In the bacteria Escherichia coli it is known as the "Pribnow box" 

and has the general sequence of TATAATG. The sequence is most often found in 

promoters and does important things like binding important proteins (including 

RNA polymerase) to initiate transcription. 

Conserved sequence A base sequence in a DNA molecule (or an amino acid sequence 

in a protein) that has remained essentially unchanged throughout evolution. 

CpG islands Areas of DNA which consist mostly of the base pair sequence CGCGCGCG·· . 

(alternating cytosine and guanine nucleotide bases) that are usually found up­

stream of many genes and are thought to help regulate gene expression. They are 

often methylated (have methyl groups attached to the DNA segments). 

DNA (Deoxyribonucleic acid) An organic acid and polymer composed of four ni­

trogenous bases-adenine, thymine, cytosine and guanine linked via intervening 

units of phosphate and the pentose sugar deoxyribose. DNA is the genetic mate­

rial of most organisms and usually exists as a double-stranded molecule in which 
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two antiparallel strands are held together by hydrogen bonds between adenine­

thymine and cytosine-guanine. 

Downstream The region extending in a 3' direction from a gene. 

Eukaryote An organism whose cells possess a nucleus and other membrane-bound vesi­

cles, including all members of the protist, fungi, plant and animal kingdoms; and 

excluding viruses, bacteria and blue-green algae. 

Exon A DNA sequence that is ultimately translated into protein. 

Gene A locus on a chromosome that encodes a specific protein or several related pro­

teins. It is considered the functional unit of heredity. 

Gene splicing Combining genes from different organisms into one organism. 

Human Genome Project A project coordinated by the National Institutes of Health 

(NIH) and the Department of Energy (DOE) to determine the entire nucleotide 

sequence of the human chromosomes. 

Intron A non-coding DNA sequence within a gene that is initially transcribed into 

messenger RNA but is later snipped out. 

Messenger RNA (mRN A) The class of RNA molecules that copies the genetic in­

formation from DNA, in the nucleus and carries it to ribosomes, in the cytoplasm, 

where it is translated into protein. 

Open reading frame A long DNA sequence that is uninterrupted by a stop codon 

and encodes part or all of a protein. 

Poly(A) polymerase Catalyzes the addition of adenine residues to the 3' end of pre­

mRNAs to form the poly(A) tail. 

Polymerase (DNA) Synthesizes a double-stranded DNA molecule using a primer and 

DNA as a template. 

Prokaryote A bacterial cell lacking a true nucleus; its DNA IS usually III one long 

strand. 

Promoter A region of DNA extending 150-300 bp upstream from the transcription start 

site that contains binding sites for RNA polymerase and a number of proteins that 

regulate the rate of transcription of the adjacent gene. 

Protein A polymer of amino acids linked via peptide bonds and which may be composed 

of two or more polypeptide chains. 

Reading frame A series of triplet codons beginning from a specific nucleotide. De­

pending on where one begins, each DNA strand contains three different reading 

frames. 
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Ribosome Cellular organelle that is the site of protein synthesis during translation. 

Ribosome-binding site The region of an mRNA molecule that binds the ribosome to 

initiate translation. 

RNA (ribonucleic acid) An organic acid composed of repeating nucleotide units of 

adenine, guanine, cytosine and uracil, whose ribose components are linked by 

phosphodiester bonds. 

RNA polymerase Transcribes RNA from a DNA template. 

Stop codon Any of three mRNA sequences (UGA, UAG, UAA) that do not code for 

an amino acid and thus signal the end of protein synthesis. 

TATA box An adenine and thymine rich promoter sequence located 25-30 bp upstream 

of a gene, which is the binding site of RNA polymerase. 

Template An RNA or single-stranded DNA molecule upon which a complementary 

nucleotide strand is synthesized. 

Transcription The process of creating a complementary RNA copy of DNA. 

Translation The process of converting the genetic information of an mRNA on ribo­

somes into a polypeptide. Transfer RNA molecules carry the appropriate amino 

acids to the ribosome, where they are joined by peptide bonds. 

Upstream The region extending in a 5' direction from a gene. 

UTR Untranslated region. 
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