
UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering, Science & Mathematics

School of Electronics and Computer Science

Evolving the Structure of Hidden Markov Models for Biological
Sequence Analysis

by

Kyoung-Jae Won

A thesis submitted in partial fulfilment for the

degree of Doctor of Philosophy

December 2005

Supervisor: Dr. Adam Prugel-Bennett

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

.... ~. ').

A thesis submitted in partial fulfilment for the .. '"

degree of Dbctor.$f'Philosophy

Evolving the Structure of Hidden Markov Models for Biological Sequence

Analysis

by Kyoung-Jae Won

Hidden Markov Models (HMMs) are widely used for biological sequence analysis because

of their ability to incorporate biological information in their structure. An automatic

method of optimising the structure of HMMs for biological sequence analysis is highly

desirable. However, this raises two important issues: first, the new HMMs should be able

to grow enough to represent biological phenomenon, and we need to reduce overfitting

of the HMM so that it has good generalization performance on unseen sequences.

In this thesis, we explore the possibility of using a genetic algorithm (GA) for optimising

the HMM structure. The Baum-Welch algorithm is hybridised within its evolutionary

cycle. To prevent overfitting, a separate dataset is used for comparing the performance

of the HMMs to that used for the Baum-Welch training.

The proposed GA for hidden Markov models (GA-HMM) allows HMMs with different

number of states to evolve. The GA-HMM was capable of finding an HMM comparable

to a hand-coded HMM designed for the same task, which has been published previously.

We also propose Block-HMMs where the topology of HMMs was assembled from bio­

logically meaningful building blocks. New genetic operators are designed to evolve the

HMM structure while preserving the blocks.

We applied the evolving HMM structure methods to modelling the promoter and coding

region of a prokaryote and predicting the secondary structure of proteins. The Block­

HMM method could generate HMM structures and find conserved promoter region and

triplet codon model without any prior information on the sequences. When the Block­

HMM is tested for the protein secondary structure prediction problem, it showed superior

performance to other prediction methods using HMMs and was comparable to the best

known techniques for this problem.

Contents

N omenc1ature

Acknowledgements

1 Introduction

2 Computational Approaches to Biological Sequence Analysis
2.1 Background on Molecular Biology

2.1.1 DNA

2.1.2 Protein Structure

2.2 Machine Learning Methods for Biological Sequence Analysis .
2.2.1 Gene Finding

2.2.2 Protein Structure Prediction

2.2.2.1 Definition of Protein Secondary Structure.

2.2.2.2 Secondary Structure Predictors.
2.2.3 Similarity Searches on Sequence Database

3 Genetic Algorithms(GAs)
3.1 Genetic Algorithms .. .

3.2 Genetic Operations .. .

3.2.1 Crossover and Mutation
3.2.2 Selection

3.3 Types of GA

3.4 Parallel Genetic Algorithms

4 Hidden Markov Models(HMMs)
4.1 Hidden Markov Models .. .
4.2 Probability Calculation

4.3 HMM Parameter Estimation .

4.3.1 Baum-Welch Algorithm

4.3.2 Gradient Based Methods

4.4 Decoding Methods
4.4.1 Viterbi Decoding .

4.4.2 Posterior Decoding

4.5 Class HMMs
4.5.1 Conditional Maximum Likelihood (CML) Estimation.

4.5.2 Posterior Label Probability .

III

x

xii

1

5

5

5

7

10
10
11

11
13

14

17
17
18
18

19

20
20

22
22

24

26

26

27
29
29
29
30

32

35

4.6 Parameter Tying .

4.7 Topologies of HMMs

4.8 Machine Learning Methods to Find HMM Topologies

4.8.1 Hybrid of HMMs and GAs

5 Genetic Algorithms for Hidden Markov Models(GA-HMMs)
5.1 Genetic Algorithms for Hidden Markov Models

5.2 Genetic Operations for GA-HMMs

5.3 Selective Baum-Welch

5.4 Fitness Value
5.5 Implementation

5.5.1 Simulation 1: Coding Region Model of C. jejuni .

35

35

36

37

39
39

41

41

43

44
44

5.5.2 Simulation II: Promoter Model of C. jejuni . . . 47

5.5.3 Simulation III: Comparison with Other Methods 51
5.5.3.1 The Effect of the Separation Scheme and the Selective

Baum-Welch 51
5.5.3.2 On the Balance Factor

5.6 Discussion ..
53
54

6 Block-HMMs (Block Hidden Markov Models)
6.1 Biological Block Model

6.2 Genetic Operators for the Block-HMM .

6.3 Training Procedure
6.4 Experiments on Block-HMMs

6.4.1 Experiment with Artificial Data

6.4.2 Coding Region Model of C. jejuni

6.4.3 Promoter Model of C. jejuni

6.4.4 Discussions

56

56
57

61
61

61
63

65
67

7 Block-HMMs for the Prediction of Proteins Secondary Structure 69
7.1 Proteins Secondary Structure Prediction 69
7.2 Methods.................... 70

7.2.1 Dataset 70

7.2.2 Block-HMMs for Labelled Sequences 70
7.2.3 Genetic Operators for Block-HMM

7.2.4 Parallel Genetic Algorithms
7.2.5 Training with Block-HMM

7.2.6 Incorporating Evolutionary Information

7.2.7 The Second (structure-to-structure) Layer

71
72
72

74
76

7.3 Implementation and Results. . 77
7.3.1 Cross-validation Results 77

7.3.2 Benchmarking 79

7.3.3 P.S.HMM: Protein Secondary structure predictor using HMM 81

7.4 Discussion 81

8 Inside Block-HMMs 84
8.1 GA-HMMs versus Block-HMMs . 85

8.2 Genetic Operators
8.3 Number of Blocks.
8.4 Overfitting

8.4.1 Separation versus Non-separation.
8.4.2 Selective Baum-Welch Methods .

8.5 Population Size
8.6 Comparison with Hill Climbing method
8.7 Discussion .

9 Conclusions

Bibliography

87
89
91
91
93
94
95
97

99

104

List of Figures

2.1 A simplified representation of a DNA molecule separating to form two
new molecules. Two strands of DNA are obtained from one. Adopted
from National Health Museum web page [1] " 6

2.2 Gene structure and the steps involved in synthesis of a protein. Through
transcription the DNA information is duplicated in mRN A. A protein
is produced through translation. During translation ribosome reads the
sequence, 3 bases at a time, and synthesises the amino acid. Adopted
from [2] and modified. " 7

2.3 Gene structure of eukaryotic genes. The ORF of eukaryotic genes is com­
posed of exon-intron structure. In general, exons which are known to con­
tain the genetic information are shorter than introns. Adopted from [2]
and modified. .. 8

2.4 Transcription and splicing of eukaryotic genes. The introns in DNA are
removed and the remaining exons compose the mRNA. The produced
mRNA has a cap on the head and the poly(A) on the tail. Adopted
from [2] and modified. " 8

2.5 Genetic Codes. From the possible 64 (43) codons only 20 amino acids are
created. Adapted from [3]. .. 9

2.6 A protein is shown as Cartoons with Structure coloring. The a-helix is a
spiral; the ,B-strands are depicted with arrows; coils are mostly connecting
segments. Generated by using Chime [4]. 10

2.7 A protein sequence with label and its prediction. " 11

2.8 A sliding window with a window size of 11. A secondary structure of a
residue located at the center of a window is predicted. 14

2.9 A result of PSI-BLAST with a query sequence. It contains the homologous
sequences aligned with the query sequence. 16

3.1 A procedure of a classic GA. 18

3.2 Roulette wheel sampling and stochastic universal sampling. " 19

3.3 Distributed model for parallel genetic algorithms. (a) Master-slave model
(b) island model (c) grid model . " 21

4.1 An example of an HMM with 2 states. There are 5 possible path for a
given sequence 'ATGCAT'. The likelihood is calculated by summing pos­
sibilities of all possible paths. In this example log likelihood is calculated.
Log-odds score is calculated by setting lSI = 4. " 24

4.2 Several types of HMM topologies; (a) an ergodic model (b) a self loop
model (c) a left-right model. '. 36

vi

5.1 The GA-HMM algorithm. Baum-Welch training is combined with selec­
tion, mutation and crossover to evolve HMMs. We separate the train­
ing sequences (x) is into the training set (Xtrain) and the evaluation set
(Xeval). Xtrain is used for the Baum-Welch training and Xeval is used for
the fitness calculation. 40

5.2 Four types of mutations (a) Insert state (inserting a state in the second
position), (b) delete state (delete the third state), (c) delete transition,
(d) insert transition. " 42

5.3 Crossover. During crossover outgoing transitions move with transition.. 42

5.4 The graph show the negative log-likelihood for an HMM plotted against
the number of Baum-Welch iterations. The negative log-likelihood for
the given data is monotonically decreased by the Baum-Welch algorithm.
However, the negative log-likelihood measured on independent testing
data will typically decrease, reach a minimum and then increase again.
In this instance the best generalisation performance was found after 5
iterations. The training data used was from C. jejuni and is described in
simulation I below. 43

5.5 HMM architecture for C. jejuni coding region , 45

5.6 Initial HMM architecture " " 45

5.7 Result of simulation for the C. jejuni coding region: (a) has loop (1-2-
3),(b) has a path 1-3-4,(2-3-4) (c) has (1-5-6) and (1-2-3,4-5-6) loops. (d)
has 1-2-3, (9-7-8), 9-10-11 or 1-2-3, 4-5-6,(6-6-6), 6-7-8, (9-7-8),9-10-11.. 46

5.8 After training the C. jejuni sequences, GA-HMM found one structure
model for the periodic signal. " 46

5.9 Model for predicting the promoter region of C. jejuni from L. Petersen et
al., (2003). In simulation II we try to learn the periodic region, starting
from HMMs with two states. 47

5.10 The hand constructed HMM model for the periodic signal of C. jejuni
promoter used in L. Petersen et al., (2003)., 48

5.11 The data separating scheme for a cross-validation experiment. The cross­
validation training set is composed of a training(xtesd set and a evaluation
set(xevaL)· 48

5.12 The simulation result of one of the cross-validation test with the first data
set during GA-HMM training: (a) shows the fitness value of fittest indi­
vidual on each iteration (b) shows average number of states for periodic
signal. The GA started with a population consisting of 2 states. After
150 generations the HMM have a length of 10 states. Although the length
does not significantly change thereafter the fitness continues to improve
indicating that the finer structure is being fine tuned. 49

5.13 After training the C. jejuni sequences, GA-HMM found one structure
model for the periodic signal. .. 50

5.14 The learning curve graphs of each method (a)non-separation (b)separation
(c) separation + selective Baum-Welch 52

6.1 HMM blocks that compose the whole HMM structure: (a) linear block
(b) self-loop block (tying is optional) (c) forward-jump block (tying is
optional) (d) zero block. 56

6.2 An example of HMM composed of blocks. Three blocks are used in this
model and all the blocks are fully connected to each other. 58

6.3 The string representation of a Block-HMM. The information on the lengths
and the types of the blocks are stored. 58

6.4 Crossover in Block-HMMs. The crossover swaps the HMM states without
breaking the property of HMM blocks 59

6.5 Six possible types of mutations from a 5-state jump forward block: (a)
a transition from the first to the fourth state is deleted (b) a transition
from the first to the third state is added (c) the second or the third state
is deleted (d) the fourth state is deleted (e) a state is added between the
fourth and the fifth state (f) a state is added between the first and the
fourth state. .. 60

6.6 Type-mutations: (a) to a tied block (b) to a self loop block (c) to a zero
block (d) to a linear block.. .. 60

6.7 The result of Block-HMM with 2 blocks. (a) (ATG)+ (b) (AAGATGAGGACG)+ 62
6.8 The behaviour of the Block-HMM is shown as a function of the iteration

for 4 runs. 63
6.9 The result of Block-HMM for the (AAGATGAGGACG)+(ATGC)+ (a)

with 2 blocks (b) with 3 blocks (case 1) (c) with 3 blocks (case 2) (d) with
3 blocks (case 3). .. 64

6.10 The result of Block-HMM. It searched the 3 state loops with GAs. . .. 65

6.11 The best structures found by the GA for (a) 9, (b) 8 and (c) 7 blocks. The
'AAGGA' sequence is found on every simulation and 'TAtAAT' sequence
is found in (a) and (b). Each cell represents a state. Emissions of shaded
cells are tied.- .. 66

7.1 An example of an HMM composed of blocks resulting from the Block­
HMM procedure. Three blocks are used in this model and all the blocks
are fully connected to each other. The blocks are divided by dotted lines.
The states in tied blocks are shaded in grey. 71

7.2 Type-mutations: (a) to a tied block (b) to a block with a different label
(c) to a zero block (d) to a self loop block or a linear block. When a type
mutation transforms the type of a block, new transition probabilities are
generated randomly. .. 72

7.3 The flowchart of master-slave model of parallel genetic algorithms. We
used P processors to implement this master-slave model. 73

7.4 An example of an HMM evolved using Block-HMM. It is composed of 19
non-zero blocks and 42 states. Transitions between blocks are not shown
here (including the transition from a block to itself). 74

7.5 The full HMM structure with 42 states. Transitions less then 0.1 are not
shown. This figure is drawn with the drawing tool provided by L.G.T.
Joergensen. .. 75

7.6 Decoding and aligning homologous sequences. Gaps ignored during de-
coding and redundant amino acids are deleted after decoding. 76

7.7 The structure-to-Structure layer. It is composed of simple 3-layer neural
networks. 77

7.8 Schematic overview of predicting secondary structure with three HMMs
evolved with Block-HMMs. 77

7.9 The best HMM topology of Thomsen. It is composed of 8 states excluding
begin state. In the figure A, B, and C represent a-helix, p-sheet, and coil
respectively. Adopted from [5] and redrawn. 79

7.10 The HMM topology of HMMSTR adopted from [6]. 80
7.11 The P.S.HMM server. A protein sequence in FASTA format is used as an

input. 82

7.12 The result of secondary structure prediction. 82

8.1 The initial HMM used for the GA-HMM simulation. The Q3 of this initial
model is 63.8%. .. 85

8.2 The result HMM topoogy after the GA-HMM simulation. 85
8.3 The comparison of the log-likelihood graph of best HMMs (a) GA-HMM

from a initial 6-states HMM (b) GA-HMM from a initial model with 34
states (c) Block-HMM from a initial model with 34 states (d) Block-HMM
from a random population. 86

8.4 Block HMM graphs with each operation (a) mutation only (b) crossover
only (c) type-mutation only (d) all operations. 88

8.5 The Q3 rate on each case of the number of blocks. 89
8.6 The log-likelihood of the best HMM when the number of blocks are 5, 8,

13, 15, 17 and 25. .. 90
8.7 The log-likelihood of best HMMs versus number of iterations with 20

training sequences. .. 92

8.8 The log-likelihood of the best HMMs versus iteration when the ratio of
the separation ratio varies.. .. 93

8.9 The log-likelihood of the best HMMs versus number of iterations when
the selective Baum-Welch method is used. 94

8.10 The average and the maximum Q3 rate when the population size changes.
The maximum Q3 rate does not change much.. 95

8.11 The log-likelihood of the best HMMs versus number of iterations when
the population size are 4, 8, 16, 30, 40, and 50 96

8.12 The log-likelihood of the HMM trained using the hill climbing method. . . 97

List of Tables

5.1 GA-HMM parameters used in the experiment I 45

5.2 GA-HMM parameters used in the experiment II. 48
5.3 Comparison between Baum-Welch and GA-HMM. The results show the

fitness value (-1/ log(P(Xtest 18))) and standard deviation for five differ-
ent partitionings of the data. 50

5.4 The average and the standard deviation of fitness value of the 30 inde-
pendently trained HMMs 51

5.5 The result of 6 t-tests. The probability that the difference can happen by
chance is calculated. 53

5.6 The effect of the change of the balance factor. . . 54

6.1 Block-HMM parameters used in the experiment. 62

6.2 Block-HMM parameters used in the experiment with biological sequences. 64

6.3 The result of the Block-HMM 67

7.1 Block-HMM parameters used in the experiment. 73

7.2 Average of 5 fold cross-validation results without incorporating evolution-
ary information. 78

7.3 Average of 5 fold cross-validation results. 78

7.4 The benchmarking result with 32 sequences from the EVA common subset
no. 6 .. 81

8.1 Default parameters used for the protein secondary structure prediction. 84

8.2 The comparison of Q3 rates and the number(~) of states when using one
of each operator. " 88

8.3 The average Q3 rate and the average number of states on each case of the
number of blocks. " 89

8.4 The comparison of average Q3 rates of five tests for each case (number of
sequence in training set: in evaluation set). 92

8.5 The average and the maximum Q3 rate when the population size changes. 95

x

Nomenclature

e
JID (x[y)

Q

q

x

aij

ei(a)

Ltot

.L

Set of parameters of an HMM

Probability of event x given y

path through states of an HMM

Set of states of an HMM

(ql, q2, ... , qT), state sequence

(Xl, X2, ... , XT), observation sequence

Transition probability from state i to state j

Probability of emitting a symbol a in a state i

likelihood of observed sequence given the HMM variables

log likelihood

xi

Acknowledgements

I would like to thank my supervisor, Adam Priigel-Bennett, for guiding my course over

the years. He has encouraged me to explore new areas of bioinformatics and allowed me

to develop broad range of technical and scientific experiences. Thanks to him I could

raise my academic ability through the years at Southampton. I would like to express

my thanks to Anders Krogh at Bioinformatics Centre in University of Copenhagen for

being my external advisor. The valuable discussions with him enabled me to take steps

forward to profound area of research on bioinformatics.

I would like to thank Moonsang Seo for reviewing my thesis and sharing his knowledge

of biology. I wish to express my gratitude to Lise Petersen and Thomas Hamelryck at

Bioinformatics Centre in University of Copenhagen. They filled part of my thesis by

kindly sharing their knowledge and valuable data with me. Also, I would like to thank

all my friends and colleagues at Southampton and Copenhagen.

I would like to thank professor Hong-Tae Jeon, and myoId colleagues in Korea and

Vietnam for their continuous support. Finally, I would like to thank my parents for

their endless love and support and for giving me the motivation to finish this thesis.

xii

To my parents for letting me pursue my dream and being my
support for so long

Xlll

Chapter 1

Introduction

During the last two decades, owing to the development of sequencing technology, the

amount of biological sequence data has increased explosively. To deal with this enormous

amount of data as well as the complex nature of biological phenomena, computer-based

research has become essential in biological sequence analysis. This computer aided

research on biology or bioinformatics has become a crucial field of science that enables

researchers to speed up their research and discover unknown facts that cannot be revealed

without it. In sequence analysis the computer aided approaches are used in various areas

such as interpreting the function of the biological sequences and tracing evolutionary

information between different organisms.

Machine learning is a field of research where computational algorithms learn from a

set of data. It uses artificial intelligence techniques to learn complex and real-world

data. Because of their ability to learn complex data which cannot be defined well,

machine learning techniques have been replacing the classical statistical approaches in

modelling the biological sequences. Numerous attempts have been made to develop

more accurate analysis tools for biological sequences. Among those attempts neural

networks are most widely used. Neural networks are machine learning algorithms used

for pattern recognition and signal processing. With their ability to train sequences

in the networks, they were applied for the prediction of intron splice sites of human

pre-mRNA [7]. GRAIL [8] and GRAIL II [9] were developed using neural networks

to recognise coding region of the DNA sequence. For the modelling of the promoters

and splice junctions in Human DNA, Time-delay neural network (TDNN) architecture

was suggested [10]. Neural networks for the TATA-box and the initiators are trained

separately and combined to a TDNN. In GeneParser [11] intron-exon and splice site

indicators are weighted by neural networks. Most of the protein secondary structure

prediction methods are built using neural networks. PHD [12], PSIPRED [13]' SSpro

[14], SSpro8 [15] and YASPIN [16] are neural networks based protein secondary structure

predictors.

1

2 Chapter 1 Introduction

Hidden Markov Models (HMMs) have been widely used in biological sequence analysis.

HMMs are stochastic models capable of statistical learning and classification. Although

these models were originally applied to speech recognition [17], they have proved highly

successful for recognizing biological sequences [18]. They have been used efficiently in

a number of tasks ranging from amino acid profile searching [19] to multiple sequence

alignments [20], to transmembrane helix architecture [21]. Their success owes much to

their ability to encode biological information in their structure while allowing many un­

known quantities to be learned through the optimisation of their transition and emission

probabilities. Also, an HMM can be effectively constructed by combining several small

HMM modules that are modelled and trained separately. In this way, an HMM can

grow by concatenating biologically modelled modules.

Even though hand designed HMMs were successful in modelling biological sequences,

the number of applications is limited. One of the reasons lies in the difficulties in

modelling complex nature of biology with an HMM structure. Also, there are some

inherent weaknesses in the HMMs. Firstly, it can suffer from the overfitting problem.

The performance of an HMM becomes worse once it is trained too much for the given

sequences. Secondly, the structure model has to be selected carefully. Because HMMs

have a large number of unstructured parameters, there can exist several architectures

which can represent the same biological sequences. Complex HMM architectures are

apt to suffer overfitting. On the other hand, too simplified model usually deteriorate its

performance. Even though there are elegant parameter learning algorithms in HMMs

such as Baum-Welch algorithm, structure learning methods still remains unexploited.

Automatic optimisation of the structure of HMMs that determines the size of an HMM

would potentially be highly beneficial. One of the candidates that may enable automatic

optimisation is to use Genetic Algorithms (GAs).

In this thesis the use of Genetic Algorithms for optimising the HMM structure is inves­

tigated. A Genetic Algorithm is a robust general purpose optimisation technique which

evolves a population of solutions [22]. GAs have been widely used to optimise archi­

tectures for Neural Networks [23]. One of the advantages of using GAs for the HMM

structure problem is to utilise the flexibility provided by Genetic Algorithms (GAs) to

gain the advantage of automatic structure discovery while retaining some of the benefits

of a hand designed architecture. That is, by choosing the representation and genetic op­

erators, we attempt to bias the search towards biologically plausible HMM architectures.

In addition, we can incorporate the Baum-Welch algorithm which is traditionally used

to optimise the emission and transition probabilities as part of the GA. The optimisation

of HMM architectures is a discrete optimisation problem which is easy to implement in

a GA. We can simultaneously optimise the continuous probabilities by hybridising the

GA with Baum-Welch. Furthermore, GAs allow us to tailor the search operators so as

to bias the search towards biologically plausible structures and enable us to combine

small HMM modules with crossover operators.

Chapter 1 Introduction 3

In the previous literature, GAs have been used to train the structure of an HMM.

Yada et al. [24] used a GA to find a TATA box model. Thomsen [5] designed similar

genetic strategy to evolve an HMM for the secondary structure prediction problem. They

included a term in their fitness function to penalise over-complex models. However, their

results depended critically on the penalisation parameter. To evolve HMM structures

while penalising over complex model, we split the training set into two. One part of

the training set is used for training the HMMs using Baum-Welch, the other part of the

data set is used to evaluate the HMM's fitness. We also propose a selective Baum-Welch

scheme, where only part of the individuals of the population are Baum-Welch trained.

Those two methods are used in GA-HMM to prevent overfitting phenomena.

The Block-HMM was designed to restrict the HMM structure evolution to biologically

meaningful blocks. The topology of Block-HMM was assembled from the blocks moti­

vated by applications of HMMs in biological sequence analysis. New GA operations were

designed not to break the properties of the block. The Block-HMM can be thought of a

genetic model which uses the property of modularity of HMMs by crossing over blocks

instead of states. We used the Block-HMM to find a structural model for the promoter

region and coding region of Campylobacter jejuni. On the discriminative test the HMM

structure found by the Block-HMM showed better sensitivity than the hand-designed

HMM.

To prove the usefulness of the Block-HMM we applied it to the protein secondary struc­

ture problem. The proposed Block-HMM method produced a better HMM structure

than that any other automatic way of HMM structure learning algorithm produced so

far on protein secondary structure prediction problem. It was also superior to elaborately

hand designed HMM architecture.

The work carried out in this thesis is published in four journal papers and presented in

two conferences:

• Won, K-J., Hamelryck, T, Priigel-Bennett, A. and Krogh, A. (2005) HMM Struc­

ture Learning using Genetic Algorithms: Prediction of Protein Secondary Struc­

ture, Bioinformatics, submitted.

• Won, K-J., Hamelryck, T, Priigel-Bennett, A. and Krogh, A. (2005) A Protein

Secondary Structure Prediction using evolved HMM, Young Bioinformaticians)

forum, Selected to present.

• Won, K-J., Priigel-Bennett, A. and Krogh, A. (2004) Evolving the Structure

of Hidden Markov Models. IEEE Transactions on Evolutionary Computation,

Accepted.

• Won, K-J.,Hamelryck, T, Priigel-Bennett, A. and Krogh, A. (2005) Evolving Hid­

den Markov Models for Protein Secondary Structure Prediction. Proceedings oj

4 ClJapter 1 Introduction

the 2005 IEEE Congress on Evolutionary Computation, pp. 33-40 .

• Won, K.-J., Priigel-Bennett, A. and Krogh, A. (2004) The Block Hidden Markov

Model for Biological Sequence Analysis. Lecture Notes in Computer Science, vol.

3213, pp. 64-70 .

• Won, K.-J., Priigel-Bennett, A. and Krogh, A. (2004) Training HMM Structure

with Genetic Algorithm for Biological Sequence Analysis. Bioinjormatics, vol. 20,

no. 18, pp. 3613-3627.

I am responsible for all implementation on GA-HMMs and Block-HMMs. Advice on

biology was supplied by Professor Anders Krogh, Dr. Lise Petersen, and Dr. Thomas

Hamelryck at Bioinformatics Centre in University of Copenhagen. The ideas described

in this thesis arose in discussion with Anders Krogh, my supervisor and myself. The

original contribution to the field is described in chapter 5-8.

This work is expected to be useful for bioinformaticians who would like to design an

HMM for biological sequences analysis. The result found by using Block-HMM can be

used as a preliminary HMM for further improvement. The algorithm using blocks may

be able to give some hints on designing other automatic way of HMM structure learning

for other computer science areas such as pattern or speech recognition.

The remainder of this thesis begins with basic biological backgrounds in chapter 2.

Genetic Algorithms are discussed in chapter 3. Chapter 4 provides overviews on HMMs

and describes the training and decoding methods. Chapter 5 describes how we hybridized

the HMM and the GA to design GA-HMM. In chapter 6 the Block-HMM is introduced.

New genetic operations are devised to deal with blocks. In this chapter the Block-HMM

used to find an HMM structure for the DNA sequences is discussed. In chapter 7 protein

secondary structure prediction method using the Block-HMM is described. In addition,

the results of the Block-HMM are compared with other prediction methods. Chapter 8

investigates how the parameters work inside the Block-HMM.

Chapter 2

Computational Approaches to

Biological Sequence Analysis

2.1 Background on Molecular Biology

2.1.1 DNA

DNA consists of two long strands that wrap around each other to form the double helix.

Each strand is built from a small set of molecules called nucleotides or bases. The four

nucleotides are adenine(A), guanine(G), thymine(T) and cytosine(C). The order of the

nucleotides contains the information that builds an organism. The information is read

in three processes called replication, transcription, and translation.

By a chemical bond adenine always pairs with thymine (an A-T pair) and cytosine

with guanine (a C-G pair). Therefore, each strand in a DNA double helix becomes a

chemical mirror image of the other. When a cell divides to form two new daughter cells

replication process takes place. Each strand of the double helix are untwisted and used

as a template to form a complementary strand (figure 2.1).

DNA also acts as a template for the synthesis of RNA in a process called transcrip­

tion. During this process only specific parts of the genome are transcribed to produce

RN A molecules. The RNA polymerase recognises the start point (Transcription Start

Site:TSS) of a gene on the DNA and transcribes the mRNA until it reaches a termina­

tion signal. A variety of different termination signals are used by the genome. When it

copies the DNA sequence,thymine(T) is replaced with uracil(U).

A ribosome reads the mRN A and performs translation into protein. The ribosome

attaches to the mRNA and recognises the first AUG triplet codon (start codon). It

reads the sequence, 3 bases at a time, and synthesises amino acids. This translation

5

6 Chapter 2 Computational Approaches to Biological Sequence Analysis

FIGURE 2.1: A simplified representation of a DNA molecule separating to form two
new molecules. Two strands of DNA are obtained from one. Adopted from National

Health Museum web page [1].

terminates when the ribosome reaches the stop codon (UGA, UAA, or UAG). Figure 2.2

illustrates the gene structure and the steps involved in synthesis of a protein.

Promoters are located upstream of the TSS. They have a TATAAT sequence, called the

TATA box, as well as one or more promoter elements further upstream. The TATA box

is found in eukaryote about 30 base pairs upstream from the site where transcription

begins and about 10 base pairs upstream in prokaryote. In E. coli, for example, there

are particular conserved sequences of TATAAT located 10 bases upstream (-10 region)

of the TSS and TTGACA located 35 upstream (-35 region) of the TSS. However, the

conserved region does not always contain the identical sequence and a variety of types

of promoters are possible. In some cases the TATA box is not even explicitly shown,

which makes it difficult to find the exact site where the transcription starts.

A long DNA sequence that is not interrupted by a stop codon and encodes part or all of

a protein is called an Open Reading Frame (0 RF). In prokaryotic genes most of the 0 RF

is composed of coding sequences, whereas, in eukaryotic genes the ORF is composed of

exon-intron structures. The exons have information used in producing a protein. In

general, introns are much longer than exons. The functions of introns are still obscure.

To produce mRNA, exons in DNA sequence are cut and spliced. The splicing of mRNA

must be done with great precision. A small missplicing causes a frame shift and produces

new co dons specifying a totally different sequence of amino acids. The splice sites are

largely defined by sequences within the intron. The intron begins with GU and ends

Chapter 2 Computational Approaches to Biological Sequence Analysis

Promoter

Transcription Start Site(TSS)

Region
;;; Transcription

Stop Codon Start Codon

mRNA

;;; Translation

Protein

FIGURE 2.2: Gene structure and the steps involved in synthesis of a protein. Through
transcription the DNA information is duplicated in mRNA. A protein is produced
through translation. During translation ribosome reads the sequence, 3 bases at a

time, and synthesises the amino acid. Adopted from [2J and modified .

7

with AG. Figure 2.3 shows the gene structure of eul<aryotic genes and figure 2.4 shows

the splicing procedure to produce mRNA. Genes of higher eukaryotes may span up to

millions of base pairs. The human dystrophin gene, for example, is 2.2 million base

pairs long. The relationships between a gene DNA sequence, its primary transcript , the

various forms of mRNA, and the final protein sequence is very complex.

2.1.2 Protein Structure

During translation 20 amino acids are created from codons. Because ther e are 64(43)

possible codons, some codons are redundant . Figure 2.5 shows how R NA is translated

into protein.

Each amino acid has a similar, yet unique structure. Amino acids are classified by t he

chemical nature of their side chains. The chemical nature of the side chains plays the

key roles in forming the protein structure . The amino acids are linked by dehydration

synthesis forming peptide bonds in the protein structure. Some amino acids are con­

served through evolution at sp ecific locations in a protein sequence because they are

essential for stability, formation of sp ecific binding sites, or catalys t reaction .

8

Regulatory
Region

Chapter 2 Computational Approaches to Biological Sequence Analysis

exon

AUG Stop Codon

splice site splice site

FIGURE 2.3 : Gene structure of eukaryotic genes. The ORF of eukaryotic genes is
composed of exon-intron structure. In general, exons which are known to contain the

genetic information are shorter than introns. Adopted from [2] and modified .

DNA

Pre-mRNA
V Transcription

Capping

Splicing

V PoJyadenyJation

mRNA

FIGURE 2.4: Transcription and splicing of eukaryotic genes . The int rons in DNA are
removed and the remaining exons compose the mRNA. The produced mRNA has a cap

on the head and the poly(A) on the t ail. Adopted from [2] and modified.

Chapter 2 Computational Approaches to Biological Sequence Analysis

Second letter

FIGURE 2.5: Genetic Codes. From the possible 64 (43) codons only 20 amino acids are
created . Adapted from [3J.

9

Proteins are polymers of amino acids. The primary structure of protein is the sequence

of amino acids , which forms a chain connected by peptide bonds . Nearby amino acids

associate with one another to form regions of secondary structure consisting of a -helices ,

j3-strands and coils.

• a -Helices: T hese are rod shaped. The peptide is coiled around an imaginary

cylinder and stabilised by hydrogen bonds formed between components of the

peptide bonds.

• j3-strands: The amino acids adopt the conformation of a narrow strips which form

sheets like paper and the structure is stabilised by hydrogen bonds between amino

acids in different polypeptide strands. They are usually found in the form of

parallel or antiparallel strands.

• coil : Other parts of the structure that are not highly st able.

The elements of secondary structure pack together in a defined manner to generate a

polypeptide's tertiary structure. Amino acids which are very distant in t he primary

structure might be close in the tertiary structure because of the folding of the chain .

The quaternary structure is the arrangement of p olypeptide subunits within complex

proteins made up of two or more subunits.

10 Chapter 2 Computational Approaches to Biological Sequence Analysis

coil

a.-helix

-sheet

FIGURE 2.6: A protein is shown as Cartoons with Structure coloring. The a-helix is
a spiral; the fJ-strands are depicted with arrows; coils are mostly connecting segments.

Generated by using Chime [4].

2.2 Machine Learning Methods for Biological Sequence

Analysis

Machine learning is a field of research where computational methods learn to answer com­

plicated problems based on sets of provided data. It has been widely used for biological

sequence analysis and supplies us with effective tools for many areas of bioinformatics

such as gene finding and protein structure prediction.

2.2.1 Gene Finding

Gene finding is the area of computational biology that is involved in algorithmically

identifying stretches of sequences that are actually functional (code for proteins or have

regulatory functions) from non-coding or junk sequences. The gene finding strategies

can be categorised as 1)site based methods , 2)contents based method and 3)comparative

methods. 1) Site based methods use the position property of the sequences such as

conserved sequences, donor and acceptor splice sites, transcription factor binding sites ,

poly(A) signals and start or stop codons . PROSITE expression was built on conserved

sequences and allowable variations information [25]. Weight matrix was used in the

place of consensuses [26 , 25 , 27,28]. Later neural networks were applied to DNA signal

recognition problems [7,29,30]. 2) Content based methods use the bulk properties of

Chapter 2 Computational Approaches to Biological Sequence Analysis 11

sequences, such as CpG islands of the gene [31,32] and repetitive DNA sequence [33,34].

3) Comparative methods compare the sequences from related organisms and use the

similarities between them [35]. Currently, integrating all of the three methods together

is popular for higher prediction accuracy. Those integrated gene-finders usually use

dynamic programming. GRAIL II [9], GeneParser [11], FGENEH [36], GeneID [37] and

Gene Wise [38] were developed based on dynamic programming methods.

Today the most accurate gene-finding methods use machine learning techniques such as

neural networks, decision trees and hidden Markov models to evaluate the information

from all of the traditional approaches in order to make a prediction. In particular,

hidden Markov models have been successfully applied in biological sequence analysis as

they can be used to accommodate biological knowledge of their structure and enable

statistical modelling. Genie [39]' GENSCAN [40]' FGENEH [41] and HMMgene [42]

were developed on the basis of hidden Markov models.

2.2.2 Protein Structure Prediction

Predicting protein secondary structure is an important step towards understanding pro­

tein structure and its function. This task has attracted considerable attention and

consequently represents one of the most studied problems in bioinformatics. The pro­

tein secondary structure prediction methods predict secondary region from primary se­

quences.

2.2.2.1 Definition of Protein Secondary Structure

According to the DSSP [43] definition there are 8 types of structure in protein secondary

structure: H (a-helix), G (31O-helix), I ('if-helix), E (extended strand), B (residue in iso­

lated ;3-bridge), S (bend), T (hydrogen bonded turn) and C (others). Most of prediction

methods used a reduction scheme whereby Hand G are converted to H, E and Bare

converted to E, and all the other to C. Figure 2.7 shows a protein sequence and its

secondary structure labels.

> grouplhk9:A
Sequence SLQDPFLNALRRERVPVSIYLVNGIKLQGQ
Observed CCHHHHHHHHHHCCCCEEEEECCCCEEEEE
Predicted CCCCHHHHHHHHCCCCCCCCCCCCCEECCE

FIGURE 2.7: A protein sequence with label and its prediction.

There are several ways to check the performance of the predictors. The widely used

Qindex is the percentage of residues predicted correctly as helix (QH), strand (QE), coil

12 Chapter 2 Computational Approaches to Biological Sequence Analysis

(Qc) or for all three labels(Q3). For a single conformational state Qi is defined as

Q
_ number of residues correctly predicted in state i

i - . .. x 100,
number of residues observed 111 state t

(2.1)

where i is either helix, strand or coil. For all three state

Q
number of residues correctly predicted

3 = x 100.
number of all residues

(2.2)

In this example QH is 80 ((8/10) x 100)% and Q3 is 70 ((21/30) x 100)%.

Segment overlap measure (SOV) considers type and position of the secondary structure

segments rather than a per-residue assignment of conformational state [44]. Let 81 and

82 denote an observed and predicted secondary structure segment. A segment is the set

of adjacent residues with the same label. In figure 2.7 the first two observed segments

are 'ee' and 'HHHHHHHHHH'. When (81,82) is a pair of overlapping segments, we can

define S(i) as the set of all the overlapping pairs of segments (81,82) where 81 and 82

have at least one residue in state i in common, and S' (i) as the set of segments 81 that

do not produce any segment pair. The segment overlap quantity measure for a single

conformation state i is

with the normalisation value N (i) defined as

N(i) = L len(81) + L len(8d (2.4)
SCi) S'(i)

where len(81) is the number of residues in the segments 81. minov(81,82) is the length

of actual overlap of 81 and 82, maXOV(81, 82) is the length of the total extent for which

either of the segments 81 or 82 has a residue in state i, and 6(81,82) is defined as

6(81,82) = min {(maxov(81' 82) - minOV(81 , 82)),

minov(81,82), int(len(81) /2), int(len(82) /2)} .

For the three state case of helix (H), strand (E), and coil (e),

(2.5)

Chapter 2 Computational Approaches to Biological Sequence Analysis 13

with the normalisation value N(i) defined as

N = ~ N(i). (2.7)
iEH,E,C

In the example shown in figure 2.7,

SOV(H) 100 x _1_ x [8 + 2 x 10] = 100%
10 + 0 10

SOV(E) 100x S+~+S x [(2;1 + 1;0) Xs] =26.7%

SOV(C) 100 x x -- x 2 + -- x 2 x 4 = S1.9%. 1 [2+1 4+2]
2 + 4 + 4 4 13

Then, the overall segment over lap is

SOV = 100 x 1 x [10 + 4 + ~ x 2 + 12 x 4] = S4.8%.
10 + IS + 10 4 13

For more detail on SOY see e.g. [44].

2.2.2.2 Secondary Structure Predictors

Early prediction methods were developed based on stereochemical principles [4S] and

statistics [46,47]. Later, a whole family of related sequences was used instead of a single

sequence for analysis [48]. By clustering the sequences in an aligned family the secondary

structure prediction rate for the cAMP-dependent kinases could be boosted.

Since then the prediction rate has steadily risen due to both algorithmic development

and proliferation of the available data. The first machine learning method to predict

protein secondary structure was built using neural networks [49,SO]. Qian and Sejnowski

constructed a cascaded neural networks. A second network was cascaded to improve the

performance. Rost and Sander used a number of machine learning techniques including

early stopping, ensemble averages of different network, and weighting scheme to con­

struct a predictor, called PHD [12]. In particular, they started feeding the multiple

sequence in the form of profile instead of just feeding the base sequence to the neu­

ral networks. These profiles contain information of an amino acid frequency vector.

By using profiles PHD can boost the prediction rate up to 71% in the cross-validation

test. Psipred [13] has a similar structure with PHD. It receives the feeding input from

the profile obtained by running PSI-BLAST [51]. A method to use multiple sequence

information as an output level was also suggested [52]. SSpro [14], SSpro8 [15] was con­

structed using recurrent neural networks. YASPIN [16] cascaded hidden Markov model

with neural networks to filter the output of the neural networks.

14 Chapter 2 Computational Approaches to Biological Sequence Analysis

Support vector machines have also been used and show promising results [53]. Recently,

the prediction accuracy has been improved by cascading a second layer of support vector

machines [54,55]. Currently machine learning methods typically improve their perfor­

mance by combining several predictors and using evolutionary information.

Most of these methods use sliding window technique. The sliding window technique

slides a fixed-sized window along a sequence. Figure 2.8 illustrates a sliding window

with a window size of 1l. When the window is centered on an amino acid, the secondary

structure of the amino acid is predicted using evolutionary information and multiple

sequence alignment. The evolutionary information of a sequence is retrieved by running

programs such as PSI-BLAST [51]. This process continues until the end of the sequence

is reached .

... KVYGRCELAAAMKRLGLDNYRGYSLGNWVCA ...
t-l! I I I I I

1+1 II I
... EEC. ..

(predicted secondary structure)

FIGURE 2.8: A sliding window with a window size of 11. A secondary structure of a
residue located at the center of a window is predicted.

Hidden Markov models (HMMs) were also used to predict protein structures. HMM­

STR [6] was the first successful protein secondary structure predictor based on HMMs. It

was constructed by identifying recurring protein backbone motifs (called invariant/ini­

tiation sites or I-sites) and representing them as a Markov chain. Consequently, the

topology of HMMSTR can be interpreted as a description of the protein backbone in

terms of consecutive I-sites. Thomsen used genetic algorithms to evolve the HMM struc­

ture to find the protein secondary structure [5]. However, the performance was much

worse than the hand-designed HMMSTR.

2.2.3 Similarity Searches on Sequence Database

When proteins or gene sequences are very similar, they are called homologous sequences.

Homologous sequences are often derived from the same ancestral sequence, share the

same structure, and have similar biological function even when they come from very

different organisms. Top ranking secondary structure predictors use the homologous

sequence information by running BLAST or PSI-BLAST to increase the prediction rate.

BLAST (Basic Local Alignment and Search Tool) provides a method for rapid searching

nucleotide and protein databases [56]. The BLAST programs consist of a set of sequence

Chapter 2 Computational Approaches to Biological Sequence Analysis 15

comparison algorithms to search sequence databases for optimal local alignments to a

query. It computes scores by reference to an amino acid substitution matrix. Position

specific iterative BLAST (PSI-BLAST) is an enhancement of the BLAST program [51].

It searches a database for local alignments using gapped BLAST and builds a multiple

alignment and a profile. The profile is then used to search the protein database again.

Figure 2.9 shows the result of PSI-BLAST. We ran PSI-BLAST against the UniProt 90

protein sequence database [57]. The result comprises of two parts. The first part of the

result lists all the names of homologous sequences with score and E-value. The score

is a measure of the similarity of the query to the sequence in the list. It is calculated

using a substitution matrix. In the substitution matrix the rate of possible change to

each other residue is written. We used BLOSUM62 [58] matrix for the substitution

matrix. The E-value is a measure of the reliability of the score. The lower the E value,

the more significant the score. The other part of the PSI-BLAST result is composed of

pairwise alignments of each homologous sequence. BLAST and PSI-BLAST are found

at http://www.ncbi.nlm.nih.gov /BLAST.

The homologous sequences from the PSI-BLAST are aligned by a multiple sequence

alignment method and a weight is assigned to every amino acid in protein sequences. If

an alignment contains a majority of very similar proteins and a small number of slightly

different sequences from the majority, the minority will have almost no influence on

the prediction. Among several weighting schemes PSI-BLAST uses the position-based

sequence weighting method[59]. The weight is given as

W K = r T 1
~"=l ~t=l r(L,t)·S(",t)

",T 1
L...t=l r(K,t)s(K,t)

(2.8)

where r is the number of homologous sequences, r(h, t) is the number of different residues

at position t for homologous sequence hand s(h, t) is the number of times the particular

residue appears at a specific position.

16

List of all
homologous
sequences

A
homologous

sequence
aligned with

the query
sequence

Chapter 2 Computational Approaches to Biological Sequence Analysis

Query= group193/dlgdoa_.ent

(238 letters)

Database: uniref90
1,780,887 sequences; 554,209,203 total letters

Searching done

Results from round 1

Score E
Sequences producing significant alignments: (bits) Value

UniRef90_P17169 Glucosarnine--fructose-6-phosphate arninotransfera .. . 468 e-131
UniRef90_Q8Z9SB Glucosarnine--fructose-6-phosphate aminotransfera .. . 3BO e-l04
UniRef90_Q6CYJ9 Glucosarnine--fructose-6-phosphate aminotransfera." 374 e-103
UniRef90_Q7NA97 Glucosarnine-fructose-6-phosphate aminotransferas .. . 363 le-99
UniRef90_P44708 Glucosamine--fructose-6-phosphate arninotransfera .. . 340 le-92
UniRef90_Q87SR3 Glucosamine--fructose-6-phosphate aminotransfera .. . 338 6e-92
UniRef90_Q6LLH3 Putative glucosarnine-fructose-6-phosphate arninot .. . 336 2e-91
UniRef90_Q9KUMB Glucosamine--fructose-6-phosphate arninotransfera .. . 333 le-90

UniRef90_UPI000027DC07 UPI000027DC07 related cluster 326 2e-88

>UniRef90_P17169 Glucosarnine--fructose-6-phosphate aminotransferase [isomerizing]

related cluster
Length = 60B

Score = 468 bits (1204), Expect = e-131
Identities = 238/23B (100%), Positives = 238/238 (100%)

Query:

Query: 61

Sbjct, 61

Query: 121

Sbjct, 121

CGIVGAIAQRDVAEILLEGLRRLEYRGYDSAGLAVVDAEGHMTRLRRLGKVQMLAQAAEE 60

CGIVGAIAQRDVAEILLEGLRRLEYRGYDSAGLAVVDAEGHMTRLRRLGKVQMLAQAAEE
CGIVGAIAQRDVAEILLEGLRRLEYRGYDSAGLAVVDAEGHMTRLRRLGKVQMLAQAAEE 60

HPLHGGTGIAHTRWATHGEPSEVNAHPHVSEHIVVVHNGIIENHEPLREELKARGYTFVS 120

HPLHGGTGIAHTRWATHGEPSEVNAHPHVSEHIVVVHNGIIENHEPLREELKARGYTFVS
HPLHGGTGIAHTRWATHGEPSEVNAHPHVSEHI~JHNGIIENHEPLREELKARGYTFVS 120

ETDTEVIAHLVNWELKQGGTLREAVLRAIPQLRGAYGTVIMDSRHPDTLLAARSGSPLVI 180
ETDTEVIAHLVNWELKQGGTLREAVLRAIPQLRGAYGTVIMDSRHPDTLLAARSGSPLVI

ETDTEVIAHLVNWELKQGGTLREAVLRAIPQLRGAYGTVIMDSRHPDTLLAARSGSPLVI 180

Query, 181 GLGMGENFIASDQLALLPVTRRFIFLEEGDlAEITRRSVNIFDKTGAEVKRQDIESNL 238
GLGMGENFIASDQLALLPVTRRFIFLEEGDIAEITRRSVNIFDKTGAEVKRQDIESNL

Sbjct, 181 GLGMGENFIASDnT.hT.T.P\I'1'RR.FIFLEEGDIAEITRRSVNIFDKTGAEVKRQDIESNL 238

FIGURE 2.9: A result of PSI-BLAST with a query sequence. It contains the homologous
sequences aligned with the query sequence.

Chapter 3

Genetic Algorithms (G As)

3.1 Genetic Algorithms

Genetic algorithms (GAs) are stochastic algorithms inspired by biological genetic phe­

nomena. They are frequently used to solve optimisation problems and have been applied

to game playing and adaptive control problem. Unlike other stochastic searching algo­

rithms such as hill climbing and simulated annealing [60]' GAs maintain several solutions

in parallel. They exploit searching spaces by combining two existing solutions to create

new solutions or progressively changing a solution. The combining method enable GAs

to make a large jump in the search space. Maintaining a collection of solutions in paral­

lel, GAs are able to exploit the search space in several locations at the same time. This

increases the possibility for GAs to find global solution.

In a GA a problem is expressed using a genetic representation, usually a population of

binary strings. The initial population is usually composed of random strings. Associated

with each string is a fitness value that numerically shows how well the string is suit­

able for the given problem. In each generation a proportion of the population undergo

genetic operations and produce offspring to form the next generation. In the classical

GA (figure 3.1) a genetic cycle comprises the fitness calculation, selection and genetic

operations. The search space of a GA depends on those components.

Because of their stochastic nature, GAs often cause disruption when they explore the

solution domain. However, the non-local movement operator, crossover, is still a fasci­

nating way to expand the scope of the exploration in the solution domain.

17

18 Chapter 3 Genetic Algorithms(GAs)

(__________ S_tarr_t ________ ~)
t

Initialise Population

Calculate fitness

Selection

Genetic Operations
(mutation & crossover)

Yes

End

No

FIGURE 3.1: A procedure of a classic GA.

3.2 Genetic Operations

3.2.1 Crossover and Mutation

Mutation takes place on randomly selected individuals. It changes the value at one or

more sites of the strings. In graphical models it can be designed to increase the number of

nodes. If the mutation rate is too high then mutation will almost always be deleterious.

Nevertheless, mutation is an important GA operator to explore the search space and to

maintain diversity.

Under crossover a pair of individuals are mixed to produce two offspring. It enables

a GA to reduce the problem of local minima. Even though it can cause disruption,

well organized crossover methods can sometimes produce faster and better results than

other learning algorithms. Classically, single-point crossover and multi-point crossover

are used. A section or sections of the string cut by crossover are swapped with the

section of another string. For the effective shuffling of two strings or alleles, uniform

crossover [61] and bit-simulated crossover [62] have been developed. Under uniform

crossover a child is created from two adults by randomly choosing alleles from one or

the other parents. Under bit-simulated crossover a child is created by taking a variable

from any of the members of the population.

GAs have succeeded in providing good solutions in some problems like the Travelling

Salesman Problems [63] and graph-coloring problems [64]. This is partly because the

GAs use the special crossover operator. Crossover can be very disruptive to an extent

Chapter 3 Genetic Algorithms(GAs) 19

that a child is unlikely to have a similar fitness to its parents. In graphical models it can

create a child which has illegal paths for the given problem. Nevertheless , crossovers

have a significant potential to find a solution with great efficiency. It remains a task to

explore how to perform crossover in a useful way.

3.2.2 Selection

Through selection fitter members of the population are chosen. Usually a weight is as­

signed to an individual depending on its fitness . A new population is then created by

sampling from the old population according to the weight. Different sampling strate­

gies are possible. The two most commonly used sampling methods are roulette wheel

sampling and stochastic universal sampling. In roulette wheel sampling, probabilities

are assigned in a roulette wheel in proportion to the fitness values of the members.

Then it draws a population of P (number of population) members like playing P games

of roulette. Roulette wheel selection allows fit members of the population to be lost

through bad luck. The loss of diversity may lead to a degrade of the performance of

a GA. To overcome this drawback stochastic universal sampling [65] was introduced.

In the stochastic universal sampling P equally spaced points are used once instead of

drawing 1 point P times as the roulette wheel sampling methods does. This diminishes

the fluctuations.

Ca) Roulette Wheel Sampling (b) Stochastic Universal Sampling

FIGURE 3.2: Roulette wheel sampling and stochastic universal sampling.

Boltzmann selection has been studied [66] to perform a scaled selection. In Boltzmann

selection each member of the population is chosen with a probability

(3. 1)

20 Chapter 3 Genetic Algorithms(GAs)

with each member of the population is assigned a weight

s(E,,-E))

We> = e C1 (3.2)

Here, s controls the strength of the selection and (J is the standard deviation in the fitness

of the members of population. If s is zero all members of the population have equal

probability to be chosen, and as s increases fitter members receive more chance to be

chosen. One of the advantages of the Boltzmann selection is that the selective pressure is

invariant under addition or multiplication of a constant to the fitness. That is, selection

is unaffected by variations in the range of the distribution of fitness values. Typically,

the range of the distribution decreases during the evolution of a GA. Without scaling

the selection strength would be reduced as the fitness of members of the population

becomes more similar and the population could suffer random genetic drift away from

the best fitness.

3.3 Types of GA

In a generational GA, at each generation the whole population is replaced. Whereas,

in a steady state GA a proportion of the members in the population are replaced.

The selection strength and generic drift are stronger in a steady state GA than in a

generational GA. Therefore the steady state GA can lose more chances to explore the

landscape.

While in the classic GA selection and reproduction take place across the whole popula­

tion, multiple island GAs divide the population into several islands. On each island the

evolution process takes place independently except for occasional migration between the

islands. It gives each island time to explore the search space and increases the chance

to find global solution.

3.4 Parallel Genetic Algorithms

The evolutionary process is usually severely time consuming when they are implemented

on a single processor because the fitness values of every individual is calculated in a

single processor. The solution to this problem can be handled by using the parallel and

distributed model. The parallel computing saves time by distributing the computational

effort to a number of processors. And it also emulates the natural parallel evolution from

the algorithmic point of view.

The parallel genetic algorithm uses a number of processors to run independent tasks.

C11apter 3 Genetic Algorithms(GAs)

genetic
opcr.llions

(a)

o 0

00

(b)

o
o 0

o
o 0 o

(

(

(

(
(

(

(

(

\.

.....,
....., '" '" '" '" '",

~ :x
:}{ X

'-" '-" '-" '-" '-- \"../ 1."..1 '-' \...,/

(c)

FIGURE 3.3: Distributed model for parallel genetic algorit hms. (a) Master-slave model
(b) island model (c) grid model

21

)
')

)
')

')

~
D
iJ

Ideally, P (size of the population) processors can be used to evolve a population of P

members. These strategy can be implemented both in a global model and a population­

based model.

In a global parallel evolutionary algorithm a master process manages the population

and each slave locally trains an individual. The master collects the trained results and

applies genetic operators to generate the next generation. In a population-based model

subpopulations are generated and genetic operations are executed between neighboring

individuals. The two most popular categories of the population-based models are island

models and grid models . The island model [67] has separated subpopulations. Sub­

populations exchange information by allowing migration of some individuals from other

subpopulations. In the grid model [68] individuals are placed on a large one, two or

three-dimensional grid. Reproductions take place locally within a small neighborhood.

Chapter 4

Hidden Markov Models(HMMs)

4.1 Hidden Markov Models

An HMM is a learning machine that assigns a probabilistic relation between an observed

sequence of symbols and a sequence of hidden states q = (ql, q2, ... , qT). A Markov

transition structure links the hidden states. In HMMs, a sequence, x = (Xl, X2, ... , XT),

consist of symbols Xt belonging to some alphabet, S. In biological sequence analysis the

alphabet might be, for example, the set of four possible nucleotides in DNA, 'A', 'e',
'G' and 'T' or the set of 20 amino acids that are the building blocks of proteins.

HMMs are based on two sets of conditional relations. In HMMs, Xt is independent of all

other observations and states given qt depends on the previous n states (the nth order

Markov process)

(4.1)

We denote the set of parameters that define an HMM by 8. Given a sequence x, an

HMM returns a 'probability' lP' (xI8), where

L lP' (xI8) = 1,
xEST

so it is a probability distribution over sequences of length T (we use ST to denote the

set of all sequences of length T). To understand the meaning of this probability, we

can imagine some process of interest, P, (e.g. molecular evolution) that generates a

set of sequences of length T with probability lP' (xIP). Our aim is to find an HMM, 8,

such that lP' (xI8) is as close as possible to lP' (xIP). Of course, we usually do not know

P. Rather we have some training examples consisting of a set of sequences. We can

then use the maximum likelihood principle to estimate the HMM, which corresponds to

22

Chapter 4 Hidden Markov Models (HMMs) 23

maximising lP' (xI8) with respect to 8 (lP' (xI8) is known as the likelihood of the event

x given a model 8). Given an observation sequence x, we can treat this as a function

of 8.

The HMM is a probabilistic finite state machine which can be represented as a directed

graph in which the nodes correspond to states and the edges correspond to possible

transitions between states. A transition probability is associated with each edge with

the constraint that the sum of the transition probabilities for edges exiting a node must

sum to one. In addition, there is an emission probability table associated with each

state which encodes the probability of each symbol a E S being 'emitted' given that the

machine is in that state. We define one state as the start state, which does not emit

a symbol, but has transitions to the other states. To compute probabilities from our

HMM we consider an 'event' to be a path(n) through the graph where we emit a symbol

every time we enter a state. The probability of the event is equal to the probability of

the path times the probability of emitting that sequence of observed symbols given that

we have taken that path through the finite state machine. The probability of a sequence

is then found by summing over all paths that emit that sequence.

To formalise the HMM, we denote the set of states by Q, the transition probabilities

from state i to j by aij, and the probability of emitting a symbol a given that we are in

a state i by ei (a). To calculate the probabilities of all the paths that render a sequence

x are calculated. Let q = (ql, q2, ... , qT) be a sequence of states, then the likelihood of

a sequence x is given by

lP' (xI8) = L lP' (x, q18) . (4.2)
qEQT

The probability of each path that renders a sequence x is then

T

lP' (x, q18) = II aqt_lqt e qt (Xt). (4.3)
t=l

Here qo = 0 denotes the initial state.

Often we are interested in how well a sequence fits the model. To do this we consider

the log-odds of a sequence

log-odds of a sequence = 1 (lP' (x I8))
og ISI-T (4.4)

where lSI denotes the cardinality of the set of symbols S. The log-odds is positive if the

sequence is more likely to occur than average. To use an HMM for classification we can

set a threshold for the log-odds of a new sequence to belong to the same class as the

training data.

Figure 4.1 shows a simple HMM with 2 states. For the given sequence 'ATGCAT' there

24 C1Japter 4 Hidden Markov Models(HMMs)

are 5 state paths. To obtain lP' (xI8) we must add the probabilities for all possible paths.

The log-odds can be calculated by setting lSI = 4.

A: 0.1 A: 0.2
T: 0.1 T: 0.2
G: 0.4 G: 0.3
C:O.4 C: 0.3

Sequence: A T G CAT
State path : H E E E E E

HHEEEE
HHHEEE
HHHHEE
HHHHHE

log likelihood:
log-odd

probability
8.16 x 10-8

1.09 X 10-7

3.87 X 10-7

1.38 X 10-6

3.79 X 10-6

-5.42
-1.81

FIGURE 4.1: An example of an HMM with 2 states. There are 5 possible path for a
given sequence 'ATGCAT'. The likelihood is calculated by summing possibilities of all
possible paths. In this example log likelihood is calculated. Log-odds score is calculated

by setting lSI = 4.

4.2 Probability Calculation

Naively, the computation of the likelihood seems to grow exponentially with the length

of the sequence. However, all the computations we need can be computed efficiently

using dynamic programming techniques. For simplicity we will discuss the first-order

model case. We can compute the likelihood using the forward algorithm. The forward

variable at (i) is defined as

(4.5)

This variable calculates the joint probability of the partial observation sequence Xl, ... , Xt

and state i at time t, given an HMM 8.

Starting from at (i) = aOiei (xJ), we can find at (i) for all states i E Q for successive times

Chapter 4 Hidden Markov Models(HMMs)

1 ::; t ::; T using the recursion

Cl!t(i) = ei(Xt) L aji Cl!t-1 (j).
jEQ

25

(4.6)

This follows from the Markovian nature of the model. When we have found Cl!T(i) we

can compute the likelihood by marginalising out the final state

lP' (xI8) = L Cl!T(i). (4.7)
iEQ

The forward algorithm considers all paths through the model and the probability can

be viewed as a weighted average of probabilities given each path.

lP' (xI8) = L lP' (xlq, 8) lP' (qI8). (4.8)
q

There exists an analogous backward algorithm that can also be used to compute the

likelihood. We define the backward variable f3t(i) to be the probability of matching the

sequence xH1, ... ,XT given that we are in state i at time t

Again this can be obtained recursively using

f3t(i) = L aijej (xHdf3H1 (j)
jEQ

with initial condition f3T (i) = 1 for all i E Q. The likelihood is given by

lP' (xI8) = L aO,i ei(x1) f31 (i).
iEQ

(4.9)

(4.10)

More importantly, the backward variable can be used in combination with the forward

variable to compute important quantities needed for parameter estimation.

In calculating both forward and backward algorithm there are numerical underflow prob­

lems caused by the repeated multiplication of small probabilities. One of the solutions is

to use logarithm and calculate log-likelihood. The log-likelihood is calculated by adding

the small probabilities instead of multiplying them.

26 Cllapter 4 Hidden Markov Models(HMMs)

4.3 HMM Parameter Estimation

4.3.1 Baum-Welch Algorithm

Parameters of an HMM can be estimated so as to maximise the model likelihood P(xI8)

on the given sequences (Maximum Likelihood (ML) criterion). This is achieved using

the Baum-Welch algorithm [69] which is an example of an Expectation Maximisation

(EM) algorithm. Because the state sequences are not directly observable, statistical

information is used to adjust the parameters. The model parameters that maximise the

likelihood value are calculated repeatedly. The update rule of the transition probabilities

are

(4.11)

where nij is the number of transitions from state i to state j summed over the sequence,

that is,
T

nij = ~ nij(t). (4.12)
t=l

The update rule of the emission probabilities can be obtained as

(4.13)

where ni(a) is the number of times the symbol a is emitted in state i. Equations (4.11)

and (4.13) are self-consistent equations which are satisfied when the likelihood for the

training data is locally maximum. We satisfy the equation by iteratively updating aij

and ei (a) according to the observed values for nij and ni (a) which are computed using

the forward and backward algorithm.

In the Baum-Welch algorithm unknown transition and emission frequencies are replaced

by their expected values. The algorithm uses the probabilities of transitions and emis­

sions to approximate the corresponding counters. The parameters are re-estimated using

the forward and the backward variables. The parameters are updated according to

nij(t) JP> (qt-l = i, qt = jlx, 8)
Cl:t-l (i) aijej (Xt)f3t (j)

JP> (xI8)

ni(t) JP> (qt = ilx, 8)
Cl:t(i)f3t (i)

JP> (xI8) .

(4.14)

(4.15)

The Baum-Welch algorithm acts as a local search algorithm and is liable to become

trapped at a local optimum.

Chapter 4 Hidden Markov Mo dels (HMMs) 27

If we train on a limited amount of data this estimation of the emission probabilities is

liable to over fit the data. For example, we may not have seen some symbol a emitted

at time t in our training data. If we build an HMM with a zero probability of emitting

a symbol at this time we would perfectly fit our training data, but we may be reading

more into a finite sample of data than we should be. To avoid excessive overfitting we

can add some 'pseudo-counts', O!.ij to our estimate for nij, and O!.i (a) to our estimate for

ni (a). Our estimated transition and emission probabilities are given by

(4.16)

(4.17)

Although, this appears to be an ad hoc fix, it can be motivated from a Bayesian perspec­

tive. We can consider the training set to be a sample from a multinomial distribution

and assume a Dirichlet distribution for the prior probability, then the pseudo-counts

drop out as the coefficients of the prior [70]. For more details on the training of HMMs

see e.g. [17,18,71].

4.3.2 Gradient Based Methods

In the gradient based method, the parameters of an HMM 8 are updated according to

the standard formula,

8 new = 8 01d _ TJ 8J I
88

where J is a quantity to minimise. We can define

8=8 D1 d

J = EML = -log(JPl (xI8)) = -log(Ltot},

(4.18)

(4.19)

where L tot = jp> (xI8) is the likelihood of the observation given the HMM variables.

From the definition of forward(4.5) and backward variables (4.9),

(4.20)
iEQ iEQ

Differentiating equation 4.19 with regard to 8, we get

8J 1 8Ltot (4.21) 88 L tot 88 .

Since we have transition probabilities aij (i, j E Q), and observation probabilities ei (a) (i E

28 Chapter 4 Hidden Markov Models(HMMs)

Q, a E S) independent from each other, we can find a derivative for each of parameter

sets.

Using the chain rule,

(4.22)

By differentiating equation 4.20 w.r.t atU) and equation 4.6 W.r.t aij, and we get

aLtot
(3tU) (4.23)

aat(j)
aatU)

ej(Xt)at-l (i). (4.24)
aaij

Then we can get

(4.25)

In the same way we can calculate the gradient with regard to observation probabilities.

Using the chain rule again,

(4.26)

Differentiating equation 4.6 W.r.t ej(Xt) we get

(4.27)

Finally, the gradient w.r.t observation is

(4.28)

Using equation 4.25 and equation 4.28 we can update HMM parameters.

Chapter 4 Hidden Markov Models(HMMs) 29

4.4 Decoding Methods

4.4.1 Viterbi Decoding

Decoding is a task to find a sequence of hidden states that best explains the observations.

The most common decoding algorithm is the Viterbi algorithm. The Viterbi algorithm

finds the most probable path through the model given the observation sequence. The

Viterbi algorithm can be computed using essentially the same algorithm as the forward

probability calculation except that the summation is replaced by a maximum operation.

Initially all state except the starting state have the value O. At the first step we define

o
(4.29)

(4.30)

To find the highest probability along a single path, at time t, we define Ot(i) as follows.

For a given model 8, Ot(j) is the maximum likelihood of observing sequence from Xl to

Xt and being in state j at time t. The most probable path q* can be found recursively

usmg

max [ot-l(i)aij] ej(xt)
15,i5,N

arg max [ot-l(i)aij]
15,i5,N

Viterbi algorithm terminates at time T

2 ::; t ::; T, 1 ::; j ::; N

2 ::; t ::; T, 1 ::; j ::; N

arg max [or(i)]
15,i5,N

(4.31)

(4.32)

(4.33)

The most probable path of state at each time t is obtained by backtracking the states

that yield the maximum probability.

t=T-1,T-2, ... ,1 (4.34)

4.4.2 Posterior Decoding

The posterior decoding method is useful when there are more than one path that has

similar probability as the most probable one. In general, several states can produce the

same emission, given a model and a sequence. The posterior decoding method considers

all probabilities that have the same emission at time t. The probability of being in state

i, given a sequence x and an HMM 8,

30 Chapter 4 Hidden Markov Models(HMMs)

JID (qt = ilx, 8)
JID (qt = i, x 18)

JID (xI8)
JID (Xl . .. Xt, qt = i, 18) JID (Xt+l ... xTlxl ... Xt, qt = i, 8)

JID (xI8)
JID (Xl . .. Xt, qt = i, 18) JID (Xt+l ... xTlqt = i, 8)

JID (xI8)
(J:t(i)f3t(i)

JID (xI8) .
(4.35)

This can be evaluated recursively by the forward and backward algorithms. Then we

can get the state sequence

q; = argmaxJID (qt = ilx, 8) (4.36)

The posterior decoding gives the most probable state given a sequence. It is useful

especially if we are interested in a state at a specific position i and not in the whole

sequence of states. However, it does not consider the validity of a path of the states

when the path is calculated. Therefore, it may produce a path forbidden in the HMM

(when a transition probability is zero). To overcome this problem a hybrid method of

posterior and Viterbi algorithm [72] and posterior decoder with homology information

has been developed [73].

4.5 Class HMMs

A class HMM (CHMM) is an HMM where the states emit class labels l (E £), as

well as a symbol from the alphabet, S. That is, we can associate with a sequence x a

corresponding sequence of symbols y = (Yl, Y2, ... , YT). Denoting the set of states by

Q, and letting q = (ql, q2, ... , qT) be a sequence of states again, then the likelihood of

a sequence x with class labels y is given by

JID (x, y18) = L JID (x, y, q18) , (4.37)
qEQT

where the sum is over all possible paths through the states (paths without transition

probabilities have probability zero).

Given a sequence x (or set of sequence) and the corresponding labels y, we find a

maximum-likelihood (ML) set of parameters

8 ML = arg max JID (x, YI8).
8

(4.38)

Chapter 4 Hidden Markov Models (HMMs) 31

This can be calculated efficiently using the modified Baum-Welch algorithm [17]. For

the labelled sequence we only allow valid paths through the model to calculate forward

and backward variables. When a path is valid the state labels and the sequence labels

coincide with each other.

Let mij(t) be the expected number of transitions from state i to state j at time t along

valid paths,

lP' (qt-l = i, qt = jlx, y, 8)
lP' (qt-l = i, qt = j, x, y, 18)

lP' (x, y18)
(4.39)

and mi(t) be the expected number of times the state i is visited at time t along valid

paths

lP' (qt = ilx, y, 8)
lP' (qt = i, x, Y18)

lP' (x, y18)
(4.40)

then the modified Baum-Welch algorithm replace equation 4.14 and equation 4.15 with

equation 4.42 and equation 4.43.

If we define

{
I if Yt = d

6yt ,c} = 0 otherwise

where d is the label of the state j, then

at-l (i)aijej (Xt)6yt ,c)3t (j)

I:i/EQ at (i/){Jt (i/)

at (i){Jt (i)

(4.41)

(4.42)

(4.43)

where a and {J are calculated recursively using the forward and the backward algorithm

along valid paths only.

32 Chapter 4 Hidden Markov Models(HMMs)

4.5.1 Conditional Maximum Likelihood (CML) Estimation

In the case of maximising the probability of correct labelling, conditional maximum

likelihood (CML) can be used [74].

8 CML = argm~lP' (ylx, 8) (4.44)

where
lP' (I 8) = lP' (x, y18)

y x, lP' (xI8) (4.45)

We define the negative log conditional likelihood

£ = -log(lP' (ylx, 8)) = £c(8) - £1(8), (4.46)

where the negative log likelihood £c(8) is in the clamped phase and calculated along

the valid path, and £1(8) is in the free running phase which does not consider labels.

-log(lP'(x,YI8))

-log(lP' (xI8)).

(4.4 7)

(4.48)

The derivative of the log likelihood £1(8) w.r.t. a generic parameter w E 8 can be

written

1 alP' (xI8)
lP' (xI8) ow

_ 1 L alP' (x, 71"18)
lP' (xI8) ow

7r

_ 1 "'lP'(18) ologlP' (x, 71"18)
lP' (xI8) L...t X,71" oW

7r

_ LlP'(71"lx,8) OlOglP'o~'71"18) (4.49)
7r

Because the log likelihood is

T

£1(8) = L II a7rt_l7rte7rt(xt) (4.50)
7r t=l

Chapter 4 Hidden Markov Models(HMMs) 33

the gradient of negative log likelihood L f (8) in the free running phase is

(4.51)

where nij (t) is the expected number of times a transition from state i to state j at time

t and ni(t) is the expected number of times we are in state i at time t in the free running

phase. Both are also defined in equation 4.14 and equation 4.15 respectively. In a similar

way the gradient of the negative log likelihood Lc(8) in the clamped phase is computed.

(4.52)

where mij(t) = JP' (7rt-l = i, 7rt = jlx, y, 8) is the expected number of times a transition

from state i to state j at time t along the allowed paths, and mi(t) = JP'(7rl = ilx,y,8)

is the expected number of times we are in state i at time t along the allowed paths.

When w is a transition probability

mij - nij

aij
(4.53)

and the derivative of ei (a) can be expressed in a similar way by substituting mij and

nij with mi(a) and ni(a).

For the transition probability we define

mi(a) - ni(a)

ei(a)
(4.54)

(4.55)

where Zij are the new unconstrained auxiliary variables. Now Zij are always positive

and normalised.

Now gradient-based optimisation in the auxiliary variables yield a new estimation of Zij,

(4.56)

34

The parameter estimation is then

(HI)
a·· tJ

Cllapter 4 Hidden Markov Models(HMMs)

exp(z(t) + 6.z(t))
tJ tJ

'" (t) (t)) ,
0j' a ij, exp(.6.zijl

(4.57)

The gradient of £ W.r.t Zij can be written entirely in terms of aij and mij - nij. From

equation 4.53 and equation 4.55

(4.58)

We can update parameters by applying equation 4.58 to equation 4.57. In other way we

can set equation 4.58 to zero and solve for aij. However, the solution often becomes

negative. To overcome this we adopt an arbitrary number D. The derivative does not

change if an arbitrary positive number D is added and subtracted, so we might write

(4.59)

Then update rule for ad is

(4.60)

This update rule is known as extended Baum- Welch reestimation [75][76]. For a fast

convergence D is chosen such that D is always larger than or equal to a small positive

constant E [77].

D = max [:a~/ 0] + E. (4.61)

The update rule for observation ei(a) can be derived in the same way. For more details

on training labelled sequences see e.g. [71] and [78].

Chapter 4 Hidden Markov Models (HMMs) 35

4.5.2 Posterior Label Probability

The posterior label probability (PLP) calculates probability of a label at a certain po­

sition. Unlike the Viterbi algorithm PLP sums the probabilities of being in each state

at a specific position of the sequence and assigns the dominant label to that element of

the sequence.

The PLP of a label at position t is the sum of posterior probability of all states that

emit the same label. The PLP for label l at position t is

lP' (Yt = llx, 8) = L lP' (Yt = l, qt = ilx, 8) .
iEQ

(4.62)

We assign each state to a particular class. That is, we take the probability of a label

given a state to be 1 if the state is assigned to that class and 0 otherwise. Thus the sum

in equation (4.62) only gets contributions from states that have been assigned to class l.

4.6 Parameter Tying

A common method to decrease a model complexity is to 'tie' states together so that

they have the same emission and/or transition probabilities [79]. States are tied when

we believe that they model similar parts of a sequence. This reduces the number of

free parameters that need to be learnt and therefore reduces the problem of overfitting.

Biological sequences often have approximately the same biological functionality even

though they are slightly different in their characters. A way to incorporate the correla­

tion in the biological string is to tie parameters. Parameter tying is used in many HMM

applications such as TMHMM [21].

4.7 Topologies of HMMs

The learning problem for HMMs consists of two components: learning the structure of

the model and learning its parameters. The Baum-Welch algorithm and the Extended

Baum-Welch algorithm are elegant and efficient ways of learning parameters of HMMs,

even though there is no standard way to find the global maximum.

On the other hand, structure learning has not been studied much. Structure learning is

more important because the topology of models influences the performance of HMMs.

Traditionally topologies of HMMs were carefully designed based on the know ledge about

the given problem. Well designed HMMs represent statistical phenomena of sequences

in their structure. In general, a too simple model is unlikely to be able to generate the

data set with a high likelihood, while a too complex model will easily learn the data

36 Chapter 4 Hidden Markov Models(HMMs)

set, but is unlikely to generalise well. Figure 4.2 shows several types of HMMs. In these

examples, we only allow one symbol to be emitted from each state (in general, one state

could emit any symbol form the alphabet, 5, with a probability given by the emission

probabilities). The fully connected model, Figure 4.2(a), can generate any sequence.

The self-loop model of figure 4.2(b) can generate sequences such as AAATTTGCCC,

while the left-right model can generate the same sequence as the self-loop, but can also

jump states to produces sequences such as AATTCCC.

(b)

(a)
(c)

FIGURE 4.2: Several types of HMM topologies; (a) an ergodic model (b) a self loop
model (c) a left-right model.

Practically, fully connected models are not used for most of the real problems because

of their bad generalisation performance. It is plausible to find a suitable architecture by

applying GAs to find the parameter set and deleting insignificant transitions. However,

it is hard to achieve good model with a large HMM. Also deleting insignificant transitions

is not always appropriate because it may cause loss of required properties of the HMM.

Even though several methods using genetic algorithms have been developed for biological

sequence analysis to search for the HMM structure, their applications were very limited.

Still, most of successful HMMs are hand-designed. The hand-designed models have been

preferred because HMMs can encode the knowledge of the sequences. Still, the number

of HMM applications for the complex models are limited.

4.8 Machine Learning Methods to Find HMM Topologies

There have been earlier attempts to learn the structure of an HMM. Stolcke [80] trans­

formed an initial large HMM by merging the states. He used the log-likelihood and

posterior probability as criteria for choosing which states to merge. But, he did not

allow states to be split which might have been useful. A method involving both state

splitting as well as deleting negligible states and transitions has also been used to find

good HMM topologies [81]. The transition ambiguity and the expected observation dif­

ferences were used as criteria for splitting a state. These statistical approaches can be

used to find a particular pattern like a motif. In practice, however, successful HMMs are

constructed by carefully deciding which transitions are to be allowed in the model [18].

Chapter 4 Hjdden Markov Models(H1VIMs) 37

Obviously, determining the rule to split and delete HMM states can not be done easily.

As the number of the training sequences increases, setting the merging and splitting rule

becomes increasingly difficult.

4.8.1 Hybrid of HMMs and GAs

One of the nice features of GAs is that it is easy to incorporate new operators into a GA

based on the problem under consideration, and it can be hybridised easily with other

machine learning techniques into the GA procedure.

A GA can be used to evolve HMM topologies as the GA can compare a large number of

different topologies in parallel. The HMM parameters can be trained easily by hybridis­

ing the traditional Baum-Welch training in the GA cycle. Another advantage of HMMs

is modularity. Small HMMs can be combined into a large HMMs. Part of the HMM

can also work as a module that composes a building block of HMMs. It is the crossover

operator in GAs that uses the modularity by swapping those modules.

The use of GAs to find an HMM structure has been tried previously in speech recog­

nition [82]. They considered a 5-state model and evolved a string representing the

transitions and emissions of an HMM. However, their method is rather parameter op­

timisation than evolving the HMM structure. Their approach may be a good way to

escape local maxima. Later, they considered evolving a very simple HMM topology [83].

They introduced crossover that swaps states between two HMMs. However, the change

on topology was limited to the states with a self loop.

In this thesis we suggest several GA methods for the construction of the HMM topology

without prior knowledge of biological sequences. The first model which applied a GA

on HMMs used genetic operators which evolve the architecture by changing states. The

HMM states are crossed over and added and deleted in this model. The second model

used blocks composed of HMM states. We suggest a block model inspired by HMM

applications used for biological sequence analysis. The genetic operators are devised to

crossover blocks instead of states.

There were attempts of using GAs that practically change the structure of HMMs in

bioinformatics area. Yada et. al used GAs to insert and delete states and swap tran­

sitions. They allowed unlimited number of transitions between states and could model

motif pattern. In a similar way, Thomsen [5] developed a genetic scheme to find the

HMM structure for protein secondary structure prediction. The fitness functions they

used was in the form of Bayesian Information Criterion [84] to balance the complexity

and the likelihood.

38

[Yada et. ai's fitness}

[TllOmesen's fitness}

Chapter 4 Hidden Markov Modeis(HMMs)

1

-2 log (IP' (Xk; 8 k)) + 2>"Pk

log(l + 1)
= log (IP' (Xk; 8d) + >.. 2 Pk,

(4.63)

(4.64)

where Pk is the number of free parameters. The log-likelihood function has intrinsic

drawback of local maxima and overfitting. They tried to control overfitting by regulating

the number of free parameters. However, the choice of balancing parameter >.. is very

sensitive and in our preliminary analysis we did not find it useful. Also, it is not

guaranteed that an HMM with less free parameters always has better performance.

In the next chapter we present the fitness evaluation method that does not require

balancing parameter and free parameters of HMMs. Instead, we use statical information

of the data associated with an HMM to reduce overfitting. In chapter 6 we introduce a

genetic method evolving HMMs for whole sequences.

Chapter 5

Genetic Algorithms for Hidden

Markov Models(GA-HMMs)

5.1 Genetic Algorithms for Hidden Markov Models

HMMs have been applied to many biological sequencing problems successfully. The

success of HMMs owes much to their ability to encode biological information in their

structure while allowing many unknown quantities to be learnt through the optimisation

of their transition and emission probabilities. The constraints imposed by their structure

will often limit excessive overfitting of the training data, although some overfitting is

still observed when using Baum-Welch training.

Automatic optimisation of the structure of HMMs would potentially be highly beneficial.

In many applications the biological mechanism is not fully understood. Given sufficient

data it would be possible to learn an HMM architecture that encodes some biological

information that we are unaware of. However, in learning the structure of an HMM we

do not wish to lose the advantages they currently offer. In particular, we wish to control

the complexity of the HMM models and if possible retain their biological interpretability.

In this thesis, we investigate the effectiveness of using Genetic Algorithms (GAs) for op­

timising the HMM structure. A GA is a robust general purpose optimisation technique

which evolves a population of solutions [22]. It is easy to hybridise other algorithms such

as Baum-Welch training within a GA. Furthermore, it is possible to design operators

which favour biologically plausible changes to the structure of an HMM. That is, to en­

sure that modules of the states are kept intact. GAs have been widely used to optimise

architecture for Neural Networks [23]. However, we could find only a couple of applica­

tions of GAs to optimise the structure of an HMM. Yada et al. [24] used a GA to find a

TATA box model. Thomsen [5] developed a genetic scheme to find the HMM structure

for protein secondary structure prediction. They included a term in their fitness func-

39

40 Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs)

tion to penalise over-complex models, however, their results depended critically on this

parameter. In this thesis, we explore the use of GAs for evolving HMMs. Our GA differs

from previous methods in that we split the training data into two sets. One set is used

for training the HMMs using Baum-Welch, the other set is used to evaluate the HMM's

fitness. This reduces overfitting of the training data. In addition, to prevent overfitting

we performed Baum-Welch only on a proportion of randomly selected individuals in

the population at each generation. To discover if GAs are potentially useful for evolv­

ing HMMs we implemented a standard GA where a population of HMMs are evolved

from one generation to the next. At each generation some proportion of the HMMs are

trained with Baum-Welch on a training set. The fitnesses of the HMMs are measured on

a evaluation set and the fitter members are selected. Finally the members are mutated

and crossed-over to form then next generation. This procedure is shown in figure 5.l.

The state labelled genetic operations include selection, mutation and crossover.

(Start ,)

I Initialize Population I
Get training/evaluation Set

(Xtrainl Xeval)

Baum-Welch Training (Xtrain)

Calculate fitness (XevaI)

Genetic Operation

No

Yes

End

FIGURE 5.l: The GA-HMM algorithm. Baum-Welch training is combined with selec­
tion, mutation and crossover to evolve HMMs. We separate the training sequences (x)
is into the training set (Xtrain) and the evaluation set (Xeva.l). Xtrain is used for the

Baum-Welch training and Xeval is used for the fitness calculation.

In the experiments described below, the initial population consists of HMMs with just

two states. The number of states will change due to state insertion and deletion muta­

tions and through crossover. Also as part of the initialisation stage the sequence data

(x) is divided into a set used for training with Baum-Welch (Xtrain) and a set used for

Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs) 41

evaluating the fitness (Xeval). The algorithm terminates when there IS no significant

change in the structural model.

5.2 Genetic Operations for GA-HMMs

The genetic operations consist of selection, mutation and crossover. Selection uses pro­

portional selection with stochastic universal sampling [65] to reduce genetic drift. For a

mutation to be useful it should make changes which cause minimal disruption so that

the new HMM has a high probability of having a fitness close to that of the unmutated

HMM. We considered mutations that only change either the number of states or the

number of transitions by one. This gave us four mutation operators; insert state, delete

state, insert transition and delete transition, which are shown in figure 5.2. Insertion

of a state can happen between any two states or at either end of the chain. When a

state is inserted, the states on its right hand side shift by one as shown in figure 5.2(a).

The emission probabilities of the new state are set to randomly selected values. If a

state is deleted, all its transitions are removed. Insertion of a transition can happen

between any two states and deletion of a transition happens at any state if the state has

more than one outgoing transition. Although, these mutations allow highly intercon­

nected HMMs they provide a certain bias towards chain structures because of the state

insertion operator.

Crossover takes place between two HMMs and exchanges states. A number of successive

states can be crossed over in one operation. Only outgoing transitions from a state are

exchanged during crossover. An example of crossover is shown in figure 5.3.

5.3 Selective Baum-Welch

The Baum-Welch algorithm is commonly used to train HMMs. It estimates model

parameters from training sequences while maximising the log-likelihood of the model.

The log-likelihood of model k is

(5.1)

where fh denotes the parameters of the kth HMM and x is the given sequences.

Although Baum-Welch maximises the log-likelihood for the sequences, it can overfit the

given sequences and produce inferior results compared with HMMs that have experi­

enced fewer training cycles. We tested this by training sequences with Baum-Welch

42 Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs)

V

3~~0
(a)

v
~@

(e)

(b)

(d)

FIGURE 5.2: Four types of mutations (a) Insert state (inserting a state in the sec­
ond position), (b) delete state (delete the third state), (c) delete transition, (d) insert

transition.

FIGURE 5.3: Crossover. During crossover outgoing transitions move with transition .

without applying the GA algorithm. Figure 5.4 shows the negative log-likelihood ver­

sus the number of Baum-Welch iterations in an experiment with one of the models

described later. The negative log-likelihood measured on the sequence data decreases

monotonically, whereas on unseen data it initially decreases, but then increases again

due to overfitting. Initially, we tested a GA where Baum-Welch was performed at each

generation. However, this caused overfitting as the HMMs were trained too frequently.

A selective Baum-Welch scheme was adopted to reduce overfitting. The generalisa­

tion performance was found to improve by changing the algori thm so that Baum-Welch

training only occurred with a fixed probability. In this scheme, 20 percent of population

are randomly selected in each generation for the Baum-Welch training. In addition, we

made sure that the fittest member of the population was never subj ected to Baum-Welch

Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs) 43

training as this could cause a loss of fitness for the best member of the population. The

overfitted HMM structures receive lower fitness value when the HMM is applied to the

test set.

1.15

1.14

1.13

1.12

• testing data
training data

1.11 -+--.----r----r--....---.--.--.---,
o 10 20

iteration
30 40

FIGURE 5.4: The graph show the negative log-likelihood for an HMM plotted against
the number of Baum-Welch iterations. The negative log-likelihood for the given data
is monotonically decreased by the Baum-Welch algorithm. However, the negative log­
likelihood measured on independent testing data will typically decrease, reach a mini­
mum and then increase again. In this instance the best generalisation performance was
found after 5 iterations. The training data used was from C. jejuni and is described in

simulation I below.

5.4 Fitness Value

The performance of the GA was found to depend strongly on the fitness function used.

The fitness function used by Yada et al. [24] incorporated a balance factor between

complexity and likelihood

1
Wk = ----,---~---

-2 (.c(xI8 k)) + 2)..Pk .
(5.2)

Here, .c(xI8k) is the maximum logarithmic likelihood estimate of the kth HMM, Pk is

the number of free parameters in the kth HMM (its complexity) and A is the balance

factor. By adjusting the balance factor, the complexity can be controlled. However, the

complexity was found to be very sensitive to the value of).. and it was difficult to choose

a value for)" a priori.

In this chapter, we avoided the problem of setting the balance factor by separating the

44 Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs)

training data(x) into a set used for Baum-Welch training(Xtrain) and a set used for

evaluation(xeval). The fitness function used in our GA-HMM algorithm is

(5.3)

where li is the length of a sequence Xi and fJ labels the different HMMs (with parameters

8 ,..) of the population. A member of the population is selected with a Boltzmann

probability
ml-'

FI-'= N '
Lv=l mv

(5.4)

where Fk is the fitness value of the kth HMM and (J' is the standard deviation of the

fitness in the population and s is a constant that controls the strength of the selection.

In the work reported here, we used a value of s equal to 1.

This method is intended to reduce overfitting. As the training and testing sets are

separated, overfitted models get lower fitness values in the fitness evaluation stage and

will be discarded through the selection operation.

5.5 Implementation

5.5.1 Simulation I: Coding Region Model of C. jejuni

To see if a GA was capable of finding biologically interpretable patterns we performed the

first experiment using 556 sequences from the coding regions from Campylobacter jejuni

(hereafter C. jejuni). C. jejuni is an important human intestinal pathogen. Despite

intensive study, much is still not known about how to control and intervene in the

disease [85J. A better understanding of gene organization, function and regulation in

C. jejuni is desirable to provide possible control strategies.

The sequence data comprises a start codon (ATG), some number of co dons and a stop

codon (TAA, TAG or TGA). A simple HMM architecture for detecting this region

would consist of a 3 state loop (figure 5.5). A third order state model was used to

model the codon region. That is, instead of a state emitting a symbol from a single base

unconditional distribution, the state emits a symbol, which is dependent on the three

previous bases in the sequence, through a conditional probability distribution. We again

used a 2-state HMM as an initial model for the coding region as shown in figure 5.6.

The transition and emission probability for the start codon and stop codon was not

evolved. Each state is a third order. The GA was run for 600 generations and of the

566 sequences 160 sequences were used for testing. Table 5.1 shows the parameters used

in the experiment.

Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs) 45

TABLE 5.1: GA-HMM parameters used in the experiment I
P arameter value

Population size 30
Offspring size 4

Iteration 600
Crossover rate 0.07

Insert & delete transition rate 0.07
Insert & delete state rate 0.13

FIGURE 5.5: HMM architecture for C. jejuni coding region

Figure 5.7 shows some of the HMM architectures produced by the GA in this experiment .

Even though some results were hard to interpret, almost every simulation showed special

biological patterns in the structure. Figure 5.7(a) shows the same result as the common

model shown in figure 5.5. Figure 5.7(b) has a path 1-3-4,(2-3-4)- here, brackets indicate

a loop. Figure 5.7(c) has (1-5-6) and (1-2-3,4-5-6) loops. Figure 5.7(d) has 1-2-3 , (9-7-

8),9-10-11 or 1-2-3, 4-5-6 , (6-6-6),6-7-8, (9-7-8), 9-10-11 loops . These HMM solutions,

although complicated , predominantly generate triplets. We performed ten experiment

and on every experiment with coding region we could find the clean 3 state loops as shown

Figure 5.7 (a)(b)(c). Figure 5.7(d) shows the worst result we have. This result was due

to insufficient time to evolve. The numbers shown are transition probabilities. Other

transition probabilities are easily calculated, because the sum of outgoing transitions

from a st ate is always 1. Because of the transition probabilities the most probable loop

are 1-2-3, (9-7-8) or 1-2-3, (9-7-8), 9-10-11.

Figure 5.8 shows the maximum fitness value versus iterations that produced the result

of figure 5.7(b). In the graph we show first 40 iterations . The other part of the graph is

just a straight line. In the figure we can find abrupt increase of the learning curve. It is

because the GA-HMM found a new structural model that can replace the old ones.

start codon stop codon

F 1GURE 5.6: Initial HMM architecture

46 Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs)

(a) (b)

(c)

(d) 0.999

FIGURE 5.7: Result of simulation for the C. jejuni coding region: (a) has loop (1-2-
3),(b) has a path 1-3-4,(2-3-4) (c) has (1-5-6) and (1-2-3,4-5-6) loops. (d) has 1-2-3,

(9-7-8), 9-10-11 or 1-2-3, 4-5-6,(6-6-6), 6-7-8, (9-7-8) ,9-10-11.

1.00

0.80

'" ::l 0.60 ca
>
Ul
Ul

'" . .§ 0.40
i:I..

0.20

0.00

0 10 20 30 40
Iteration

FIGURE 5.8: After training the C. jejuni sequences, GA-HMM found one structure
model for the periodic signal.

Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs) 47

5.5.2 Simulation II: Promoter Model of C. j ejuni

Our second experiment was to find an HMM for the promoter region of C. jejuni. In

many bacteria , there is a conserved sequence of TTGACA at around 35 base pairs (bp)

before the transcription start site (position '-35 '1) and TAtAAT (where 't' indicates

either T or A) at around the -10 region, called the TATA box [86]. A ribosome binding

site is located between the transcription st art site and the st art codon of the gene, and

it is typically AAGGA. In the promoter region of C. jejuni, the TTGACA region is

weakly conserved, but a T-rich domain is common upstream of the TATA box [87]. The

C. jejuni genome contains more Ts and As than Gs and Cs. Although the Ribosomal

binding sites can often be spotted, the sequence is not always in the same position in

relation to the coding region. In some cases, the sequence AAGGA is highly mutated.

It is difficult for non-experts to figure out which part of the sequence is the TATA box

because most part of the promoter region is composed of Ts and As .

Petersen et al. suggested an HMM architecture for this promoter region [88]. Their

model includes the TATA box (TAtAAT) and a Ribosomal binding site (AAGGA).

During the testing of various models a periodic pattern was discovered upstream of the

TATA box, and this was included in the model. This model is shown in figm e 5.9.

The forward transitions are used to represent sequences with varying length . The states

in the background region are tied together to represent non-specific sequences with a

small number of states . The promoter consists of approximately repeated blocks with

an observed period of 10.6 nucleotides. A hand crafted model for this region used in [88]

is shown in figure 5.10.

FIGURE 5 .9: Model for predicting the promoter region of C. jejuni from L. Petersen et
al., (2003). In simulation II we try to learn the periodic region, start ing from HMMs

with two states .

In our experiment we evolved a population of HMMs for periodic signal region using

a GA starting from two states models. The paramet ers controlling the GA are shown

in table 5.2. The data set consist s of 175 sequences and 135 sequences were used for

training (x) and 40 for testing (xtesd. Five fold cross validation tests were performed

1'-35' means it is located 35bp before the transcription start site.

48 Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs)

FIGURE 5.10: The hand constructed HMM model for the periodic signal of C. jejuni
promoter used in L. Petersen et al., (2003).

to obtain a more reliable estimate of the generalisation performance. Figure 5.11 il­

lustrates the partition of the data set when conducting a cross-validation test. Of the

135 sequences 95 were used for Baum-Welch training (Xtrain)and 40 were used for mea­

suring the fitness (Xeval). The data used in this experiment can be obtained from

http://www.ecs.soton.ac. ukl '" kjw02r I data.html.

cross-validation test set
(Xtest)

X.val Xtruin

,-

cross­
validation

training set
(X)

X = Xmin + X.val

FIGURE 5.11: The data separating scheme for a cross-validation experiment. The cross­
validation training set is composed of a training(Xtest) set and a evaluation set(Xeval).

TABLE 5.2: GA-HMM parameters used in the experiment II
Parameter value

Population size 30
Offspring size 4

Iteration 400
Crossover rate 0.06

Insert I delete transition 0.07
Insert I delete state 0.13

Figure 5.12(a) shows the fitness of the best member of the population versus the genera­

tion for the first data partition. Only evaluation sequences which are not involved in the

training are used in calculating the fitness value (equation 5.3). Because the GA-HMM

reduces overfitting, the fitness value of the fittest member of the population always in­

creases. The graphs for the other cross validation sets look similar. In figure 5.12(b) the

average number of states in the HMM is shown. We observe that the number of states

grows until it reaches around 10 which appears to support the observed periodicity found

in this region of the promoter. At this stage the number of states remains roughly fixed

Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs) 49

while the fitness value continues to rise indicating that the fine structure of the model is

still evolving. Occasionally, the number of states found by the GA-HMM was less than

10 states. We believe this is because the GA-HMM found a local optimum around 5-6

states.

0.890

0.885

"!rj
::.: 0.880
:=
III

'" '" -< 0.875
e:.
c:::
III 0.870

0.865

0 100 200 300 400

Iteration

(a)

12

10

Z
c::: 8
3
0-
III 6 ..,
0,
'" 4
~
III

'" 2

0

0 100 200 300 400

Iteration

(b)

FIGURE 5.12: The simulation result of one of the cross-validation test with the first
data set during GA-HMM training: (a) shows the fitness value of fittest individual on
each iteration (b) shows average number of states for periodic signal. The G A started
with a population consisting of 2 states. After 150 generations the HMM have a length
of 10 states. Although the length does not significantly change thereafter the fitness

continues to improve indicating that the finer structure is being fine tuned.

An example of one of the HMM structures found by the GA is shown in figure 5.13. The

model is considerably more complex than that proposed by Petersen et aZ. shown in fig­

ure 5.10. Table 5.3 shows a comparison ofthe result for the test set (-1/ log(P(Xtest 18)))

and their variances obtained from the 5 cross-validation experiments for our GA-HMM.

In the same table we show the results for the model proposed in [88] and trained using

50 Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs)

Baum-Welch. The hand crafted model is trained only with the Baum-Welch algorithm.

Of 175 sequences in their model, for each test 140 sequences are used for the Baum-Welch

training and 35 sequences are used to calculate the fitness. Because the Baum-Welch

algorithm finds a locally optimal solution, the final results depend on the initial values

of the transition and emission probabilities.

FIGURE 5.13: After training the C. jejuni sequences, GA-HMM found one structure
model for the periodic signal.

TABLE 5.3: Comparison between Baum-Welch and GA-HMM. The results show the fit­
ness value (-1/ log(P(Xtest 18))) and standard deviation for five different partitionings

of the data.
Test Petersen's model GA-HMM

1 0.8855 (1. 7 e-3) 0.8863(1.2e-3)
2 0.8854(1.0e-3) 0.8861 (1.3e-3)
3 0.8887(2.0e-3) 0.8877(1.6e-3)
4 0.8796(0.7e-3) 0.8797(0.6e-3)
5 0.8713(1.4e-3) 0.8767(2.0e-3)

The performance of the HMM found using the GA and the hand designed HMM are

roughly similar. Even though it does not show better performance in test 3, it produces

slightly better result in the other tests. The paired t-test was conducted to assess the

statistical difference [89J. This analysis compares the means of two groups to see if

those two groups are statistically different. Let XCA(i) and Xp(i) be the results for the

GA-HMM and Petersen et al .. Then, the t-value for the k samples can be defined by

d
t - value = ---===

Ju~/k
(5.5)

where d is the mean of the differences XCA(i) - Xp(i), and Ud is the standard deviation

of this mean.

This statistic has n-1 degrees of freedom. In this experiment, the degrees of freedom is 4.

With this result the significance level at which two distributions differ can be determined.

The t-value obtained is 1.09. By using the t-value and the degrees of freedom the

probability of null hypothesis can be obtained from the table of t-distribution. To

obtain more precise probability we interpolate the values in the table of t-distribution.

Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs) 51

The probability of this result, assuming the null hypothesis, is 0.336. From this test

we had slightly better performance by using GA-HMM, but the improvement was not

significant. However, this result shows the proposed method can replace a part of the

hand-crafted model at least.

5.5.3 Simulation III: Comparison with Other Methods

5.5.3.1 The Effect of the Separation Scheme and the Selective Baum-Welch

In this chapter we introduced two methods to make the HMM suffer less from overfitting

while evolving its structure. To see if how those methods improve the performance, we

compared the results of each algorithm. We tested with C. jejuni promoter sequences.

For this comparison we prepared another set of sequences with 139 training sequences

and 34 testing sequences. We used the same configuration used in the simulation II. The

algorithms we tested are 1) non-separation of training method 2) separation method 3)

separation with selective Baum-Welch, and 4) hand-designed model. For each experi­

ment we ran the test 30 times to get statistical information of the results. When the

non-separation training method is used all the training sequences (139) are used for

evaluation, while for the separation method 104 sequences are used for the Baum-Welch

training and 35 sequences for the evaluation.

Figure 5.14 compares the fitness value graphs of the fittest member on each iteration.

The graph of the non-separation method increases monotonically (figure 5.14(a)). The

learning curve graph of separation scheme does not always increase. When the Baum­

Welch training algorithm overfits the training set it receives penalty from the evaluation

set and makes the learning curve fluctuate (figure 5 .14(b)). The graph of the selective

Baum-Welch method increases monotonically (figure 5 .14(c)). The graph always increase

since the fittest member is not trained and replaced only when other members of the

population have higher fitness values.

Table 5.4 compares the results from each method. We calculated the average and the

standard deviation of the fitness value of 30 HMMs independently trained by the GA­

HMM. The fitness value is calculated against the 35 test sequences.

TABLE 5.4: The average and the standard deviation of fitness value of the 30 indepen­
dently trained HMMs

mean standard deviation

non-separation 0.8837 1.5e-3
separation 0.8841 1.3e-3

selective Baum-Welch 0.8855 1.0e-3
hand-design 0.8772 2.3e-2

52 Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs)

0.890

0.885

'" '" 0.880
" >
'" '" '" £3 0.875

u..

0.870

0.865

0 100 200 300
Iteration

(a)
0.890

0.885

'" ;:;
0.880 -;

>
'" '" '" .B 0.875

u..

0.870

0.865

0 100 200 300

Iteration

(b)
0.890

0.885

'" E 0.880
" >
'" '" '" .~ 0.875

u..

0.870

0.865

0 100 200 300
Iteration

(c)

FIGURE 5.14: The learning curve graphs of each method (a) non-separation
(b)separation (c) separation + selective Baum-Welch

Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs) 53

We conducted the student's t-test [89] with the results. We have 58 (30+30-2) degree of

freedom in this case. The probabilities of each comparison, assuming the null hypothesis,

are in table 5.5. The probability shows the difference can happen by chance. Selective

Baum-Welch is significantly superior to non-separation and separation schemes. We

cannot be so certain about hand-designed because it has a large variance. Therefore

the differences of hand-designing method and the other methods are not significant.

Nevertheless, this test shows that evolving HMMs produces very useful models and can

replace hand-designing method.

TABLE 5.5: The result of 6 t-tests. The probability that the difference can happen by
chance is calculated.

method

non-separation vs. separation
non-separation vs. selective BW

separation vs. selective BW
hand-design vs. non-separation

hand-design vs. separation
hand-design vs. selective BW

5.5.3.2 On the Balance Factor

probability

0.264
3.4e-6
5.5e-5
0.188
0.158
0.088

Yada et. al used a balance factor in the fitness function to control the complexity and

the likelihood. To see how the balance factor works we conducted the simulation with

various balance factor values. We tested the similar fitness function as they used. The

fitness function we used is

(5.6)

where A is a balance parameter and Pk is number of free parameters and in this case

the number of states. Thomsen [5] used a similar fitness function. We checked how

the balance factor works and compared it with our method. We changed the value of

balance parameter to check how it affect the performance. For each configuration we

conducted 10 experiments. Table 5.6 shows the result of the experiments.

There may exist a balance parameter that shows better performance than the result

shown in table 5.6. In the simulation, however, we could not find any usefulness of the

balance factor for this problem. Interestingly, a single state model shows a pretty good

performance for this periodic signal model. Comparing the table 5.6 with table 5.4, we

found the separation methods and the selective Baum-\i\1elch method are superior to

the method using a balance factor. Our separation method, which statistically balances

the complexity and the likelihood, can be a good candidate to reduce the overfitting at

least.

54 Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs)

TABLE 5.6: The effect of the change of the balance factor.
balance parameter (A) mean standard deviation mean of number of states

10e-2 0.8837 5.4e-4 1.2
10e-3 0.8837 1.0e-3 3.6
10e-4 0.8827 1.4e-3 6.7
10e-5 0.8822 5.4e-3 8.1
10e-6 0.8812 3.ge-3 9.0
10e-7 0.8826 3.5e-3 9.4
lOe-8 0.8819 5.ge-3 7.9

0 0.8837 1.3e-3 7.7

5.6 Discussion

The experiments described here suggest that genetic algorithms are quite capable of

finding reasonable HMM architectures for biological sequence analysis. Even with a

rather naive implementation, the GA. was able to achieve comparable or slightly superior

generalisation performance to a hand designed HMMs. Both experiments show that a

major drawback of automating the design of HMM architectures is that the resulting

model may be difficult to interpret biologically. Although we used genetic operators

that favoured the building of chain structures they nevertheless allowed considerable

cross linking within the chain. A drawback of constraining the search is that we may

inhibit the GA from discovering completely novel types of architecture. One of the

merits of GAs is the capability of dealing with substructures of the solution. In the GA­

HMM the crossover operators can swap a series of states in one operation. The emission

probabilities are also crossed over with the states. This enables the GA-HMM to swap

any meaningful part of the HMM structure. In this sense, the proposed crossover scheme

can treat such modularity, even though the strategy does not completely implement the

modular structure.

We tried to prevent the GA from producing overfitted models by measuring the fitness

on a different set of data from that used for training Baum-Welch. The improvement was

not significant but it was a new trial that controls the size of an HMM statistically. We

also selectively trained a proportion of the population. Those methods enable G A-HMM

to evolve a new solution without suffering too much overfitting. From the comparison

with the method using the balance factor, our method shows superiority for the given

problem.

Our experiments were carried out on short sections of an HMM. Our preliminary results

showed that it seems unlikely GA-HMM would be able to find large HMM structures

that are competitive with hand designed architectures. Nevertheless, even in the short

term GAs may be able to 'tune' a hand designed HMM especially in areas where the

biological significance of a region is poorly understood.

Chapter 5 Genetic Algorithms for Hidden Markov Models(GA-HMMs) 55

The evolving scheme presented here is useful to find a simple HMM structure. For

the modelling of more complex sequences the proposed method could not evolve an

HMM to represent larger models. GA-HMMs usually find a smaller model than we may

want to get. In some cases, we may want to get an interpretable model even though it

deteriorates the performance. To evolve a large HMM efficiently we use blocks composed

of HMM states. In the next chapter we will introduce a block method and new genetic

operators.

Chapter 6

Block-HMMs (Block Hidden

Markov Models)

6.1 Biological Block Model

The GA-HMM was used to learn topology of HMMs. It has proven that the separation

of training sequences and the selective Baum-Welch have advantages in training HMM

structures. However, the arbitrarily genetic operations leads easily to make complex

models. To constrain the search of HMM topologies to biologically meaningful structures

we represent the HMM structure as a number of blocks. The blocks we consider are one

of three basic structures that are frequently used in biological sequence analysis. These

are: linear, self-loop and forward blocks. The self-loop and forward block can be either

tied (we follow the convention of shading tied blocks) or untied. That is, all the emission

and transition probabilities are set equal. In the case of linear blocks we did not consider

tying because tying a linear blocks seemed unrealistic for biological sequences and can

be replaced with a single-state self-loop block. Examples of these block structures are

illustrated in figure 6.1.

ca)~

(')~ ,---'" ,---'" ,---'" .--- ..
Cd): ~: ~: :-: :

r ___ ~ 1 ___ 1 1 ___ 1 I ___ ~

FIGURE 6.1: HMM blocks that compose the whole HMM structure: (a) linear block
(b) self-loop block (tying is optional) (c) forward-jump block (tying is optional) (d) zero

block.

Linear blocks consist of N states (labelled from 1 to N) where state n is only connected

to state n + 1 (with 1 :<:; n < N). Self-loop blocks are linear blocks in which each state

.56

Chapter 6 Block-HMMs (Block Hidden Markov Models) 57

has an additional loop to itself. A forward block is a linear block where the first state is

also connected to the last M states (with 1 <= M < N). Zero blocks are empty blocks

with no states: they can replace other block types during the GA procedure and thus

allow the exploration of simpler topologies.

The block models described in this thesis are motivated by applications of HMMs in bi­

ological sequence analysis. Biological sequences (DNA or protein) often contain 'motifs',

which are more or less conserved words, and with more or less homogeneous interven­

ing sequence, which is characterised by the composition of letters (amino acids or nu­

cleotides). The motifs might for instance correspond to binding sites for other molecules.

Such a sequence can be modelled by an HMM containing submodels for the motifs (linear

chains of states) and models for the intervening sequences, each of which can be a single

state or multiple emmission tied states, if a length distribution is modelled. Other types

of sequences are changing between various types of homogeneous sequences. An example

is membrane proteins that contain membrane helices 20-30 amino acids long, which are

dominated by hydrophobic amino acids and intervening sequence that is typically more

hydrophillic [21]. Such sequences can be modelled with a block of tied states, one block

for each type of sequence. Sometimes sequences contain periodic patterns. The region

of a gene that codes for a protein is made up of codons, which are nucleotide triplets,

each of which codes for one amino acids. The first codon is known as a start codon

(often the three bases ATG) and the last codon (which actually does not code for an

amino acid) is a stop codon (TAA, TGA or TAG). This gives rise to a three-periodic

pattern, which can be modelled as previously shown in figure 5.5.

6.2 Genetic Operators for the Block-HMM

Blocks are fully linked together to form the whole HMM architecture. This is illustrated

in figure 6.2. The final state of a block has transitions to the first states of all the blocks.

The resulting HMM can be thought of as a fully connected graph consisting of 'super­

vertices' made up of blocks whose internal states are not fully connected. We call this

structure a Block-HMM. Special patterns like periodic signals can be generated with a

path between blocks.

Each block is represented by a pair. The first element defines the length of the block

while the second element gives the type (a, b or c corresponding to linear, self-loop or

forward-jump block respectively). The type also specifies whether the nodes are tied or

untied (t or u) and in the case of forward blocks the number of forward connections.

The full HMM is represented as a string of pairs as shown in figure 6.3. For example,

the HMM in figure 6.2 would be represented by '((3,a),(2,bu),(3,ctl))'. As the blocks

are equivalent in their connectivity there is no information in the ordering of the blocks.

58 Chapter 6 Block-HMMs (Block Hidden Markov Models)

FIG URE 6. 2: An example of HMM composed of blocks . Three blocks are used in this
model and all the blocks are fully connected to each other.

length of : type of
block 1 . block 1

length of : type of
block 2 . block 2

length of : length of
block n ' block 11

FIGURE 6.3: The string representation of a Block-HMM. The information on the
lengths and the types of the blocks are stored.

To evolve the Block-HMM without losing block property we designed new genetic oper­

ators. In crossover , two parent strings are chosen at random. Some number of randomly

chosen blocks are then swapped to create two children . The children then replace the

parents . When we swap blocks the transition probabilities leaving the block are kept

unchanged. Since the position of the blocks does not carry any meaning, we do not

impose any constraint on which blocks are swapped . The number of blocks is kept fixed ,

however, as the blocks can have variable lengths, the number of stat es is not fixed . We

also allow blocks consisting of no states (zero blocks) , which effectively allows us to

have a variable number of blocks up to some maximum. The evolution of a variable

size structure is similar to the situation common in many applications of Genetic P ro­

gramming. This scheme in a way emulates natural evolution which can cross over DNA

sequences with different lengths . We chose a generational GA as a way to present the

DNA sequences crossed over as a block.

Figure 6.4 shows an example of the crossover scheme. The last block of the first child

crosses over with the first block of the second child. To simplify the diagram , transitions

b etween blocks are not shown here. Under the crossover scheme t he propert ies of the

blocks are not broken. This allows us to exchange meaningful blocks wit hout causing

too much disruption.

Mutations can t ake place in any block of the HMM. T here are a variety of different

mutations that we allow. Mutations can change the length of a block. Forward-jump

block mutations can change the number of transit ions. For example, in the case of a

5-st at e forward-jump block, there are 6 different types of mutations possible. These are

illustrat ed in figure 6.5. The mutation can add (figure 6.5 (a)) or delete (figure 6.5(b))

Chapter 6 Block-HMMs (Block Hidden Markov Models)

00 CD-EHDm ~ ~
~ 0-0 [!J-{i}{D-0 ~

crossover

FIGURE 6.4 : Crossover in Block-HMMs. The crossover swaps the I-IMM states without
breaking the property of HMM blocks

59

a t ransition inside a block. To prevent losing the property of the block, delet ion of a

t ransit ion is not allowed when there is only two transitions (to the second state and the

last stat e) . In t he same way adding transition does not take place when the first state

of the block has t ransition to all the other transit ion . In figure 6.5(c) and figure 6.5(d)

a st ate is delet ed from a block. T he outcome dep ends on which block is delet ed . In
figure 6.5(e) and figure 6.5(f) a state is added to t he block. Again the outcome dep ends

on which block is added. In the cases of linear and self loop blocks, there is only one way

to add and delete a state. These six different types of mutation supply the Block-HMM

with sufficient variat ion wit hout changing the properties of the block.

In addition to ch anging the length of the block and the transit ions, we also allow mu­

t at ions that change t he typ e of t he block. For self-loop and forward jump blocks , we

can mut ate between t ied and unt ied versions . We can also mut ate t he type altoget her.

Mutat ions from and to a zero block are also allowed (figure 6.6).

60 Chapter 6 Block-HMMs (Block Hidden Markov Models)

~
V mutation

~
(a) (b)

~ ~
(c) (d)

~ ~
(e) (f)

FIGURE 6.5: Six possible types of mutations from a 5-state jump forward block: (a) a
transition from the first to the fourth state is deleted (b) a transit ion from the first to
the third state is added (c) t he second or the t hird state is deleted (d) the fourth state
is deleted (e) a state is added between the fourth and the fifth state (f) a state is added

between the first and the fourth state.

~
U type-mutation

(a) (b) 6J-M
(c) []{J{J (d) [D--0--GJ

FIG URE 6.6: Type-mutations : (a) to a t ied block (b) to a self loop block (c) to a zero
block (d) to a linear block.

C1Japter 6 Block-HMMs (Block Hidden Markov Models) 61

6.3 Training Procedure

The number of blocks is chosen at the beginning of the training and kept fixed. The

length and type of blocks was randomly chosen so that there were on average the same

number of linear, self-loop, forward-jump and zero blocks.

To test our HMM we split our data into a training and a test set. The training data

was further split into a Baum-Welch training set and a evaluation set, as describe in

chapter 5. We take as fitness values the reciprocal of the negative log-likelihood of the

evaluation data set.
1

Ef.L = ----;----~--
- Li log (P(xiI8f.L)) Ili

(6.1)

where li is the length of a sequence Xi and fl, labels the different HMMs (with parameters

8f.L) of the population. A member of the population is selected with a Boltzmann

probability
Wf.L

Ff.L= N '
Lv=l Wv

(6.2)

where (]' is the standard deviation in the distribution of fitnesses in the population. The

parameter s controls the selection strength. Stochastic universal sampling is used to

reduce genetic drift in selection [65].

At each generation we applied one iteration of the Baum-Welch training algorithm. We

then evaluated the fitness of the population and performed selection (with selection

strength s = 1), mutation and crossover. Mutation and crossover are applied with a

small probability. We continued until there was no significant change in the structure

of the HMM.

6.4 Experiments on Block-HMMs

6.4.1 Experiment with Artificial Data

To test the performance of the Block-HMM, we conducted three experiments with arti­

ficial data. The first two experiments were to find an HMM to represent data generated

from the languages (ATG)+ and (AAGATGAGGACG)+ where '+' means any number

of repetitions. We used a population composed of HMMs with 2 blocks. Table 6.1 shows

parameters used in these toy experiments. That is, at each generation we choose two

individuals and perform crossover to create two children which replace the two parent

strings, one individual where we mutate either the length or the number of transitions

in a randomly chosen block and one individual where we mutate the type of a randomly

chosen block. For this simple problem we did not allow tying. The solutions to these

two problems found by the GA are illustrated in figure 6.7. The resulting HMMs are

62 Chapter 6 Block-HMMs (Block Hidden Markov Models)

reasonable solutions to the problem although probably not those that a human would

have come up with.

TABLE 6.1: Block-HMM parameters used in the experiment.

A

A

Parameter value

Population size 20
Iteration 300

Crossover rate 0.05
Mutation rate 0.05

Type mutation rate 0.05

T

A:O.5
G:O.5

G

G

(a)

(b)

A

A

T

T:O.5
C:O.5

FIGURE 6.7: The result of Block-HMM with 2 blocks.
(AAGATGAGGACG)+

G

G

(a) (ATG)+ (b)

The third test we carried out was to find an HMM to recognise the language

(AAGATGAGGACG) + (ATGC)+. The first half of the sequence is the same as that

used in the previous experiment, while the second half is a repetition of four symbols.

The number of iteration used in this experiment is 600. Figure 6.8 shows a graph of the

maximum log-likelihood value versus the iteration for four different runs of the GA. In

case 3 of the three block model, the GA has still not found a particularly good HMM

after 600 iterations.

The best solutions found by the GA in the four runs are shown in figure 6.9. Note that

we have not shown transitions which the Baum-Welch algorithm has driven to zero. In

the first run (figure 6.9(a)) we initiated the GA with two blocks, while in the next three

runs (figure 6.9 (b),(c) and (d)) we used a three blocl< model.

These toy examples show that a GA is capable of finding reasonable structures for the

given problem. However, the models are not the simplest that could solve the problem

nor do they always have an optimal structure. Nevertheless, they demonstrate that the

GA can find reasonably parsimonious solutions which give a good approximation of the

Chapter 6 Block-HMMs (Block Hidden Markov Models)

0.00

-0.20

-0.40

-0.60

-0.80

-1.00

-1.20

.

. _______ .r-------~ ,.------' _ _ _ _ _ _ _
r .L'

--,._-------

-e-
Number of blocks: 2

Number of blocks: 3 (case I)

Number of blocks : 3 (case 2)

Number of blocks : 3 (case 3)

-1.40 -+---,----,-------r---,----,------,

o 200 400 600

Iteration

FIGURE 6.8: The behaviour of the Block-HMM is shown as a function of the iteration
for 4 runs.

63

true likelihood. To test the performance of the BIock-HMM on more complex sequences,

we used biological sequences in the following experiment.

6.4.2 Coding Region Model of C. jejuni

To investigate the Block-HMM's ability to find an HMM structure for biological se­

quences, we performed an experiment with 200 sequences from the coding regions of

C. jejuni. Figure 5.5 shows a typical HMM that could be used to represent the coding

region [90]. Of the 200 sequences available, 150 sequences are used for training and 50

sequences for evaluation. From looking at the data alone it is almost impossible for

non-specialists to see that the data consists of codons.

We conducted the experiment twice, once using four blocks and once with three blocks.

The initial lengths of the range between 3 to 7. The G A parameters used in the simu­

lations are shown in table 6.2.

Figure 6.10 shows the resulting structures of the Block-HMM found using the GA. In

figure 6.10(a) the second state ofthe first block is not used. In figure 6.10(b) the emission

probabilities of the state between 7 and 15 are tied. Detailed transition and emission

probabilities are available from the web page mentioned at the end of this chapter.

64 Chapter 6 Block-HMMs (Block Hidden Markov Models)

A A/G G A

A NG G A

A A/G G A TIC G

,
! ,

A T
A:O.45 G:O.9 I A
G:O.55 C:O.!

TIC G A

(a)

TIC G A

(b)

A G G A C G

T:O.7
C:O.3

(c)

(d)

G C

T G C

T G C

A T G C

A T G C

FIGURE 6.9: The result of Block-HMM for the (AAGATGAGGACG)+(ATGC)+ (a)
with 2 blocks (b) with 3 blocks (case 1) (c) with 3 blocks (case 2) (d) with 3 blocks

(case 3).

TABLE 6.2: Block-HMM parameters used in the experiment with biological sequences.
Parameter value

Population size 30
Iteration 600

Crossover rate 0.13
Mutations rate 0.13

Type mutation rate 0.13

Chapter 6 Block-HMMs (Block Hidden Markov Models) 65

Although these are not the most parsimonious solutions they do seem to have identified

the triplet nature of the sequences.

(a)

(b)

FIGURE 6.10: The result of Block-HMM. It searched the 3 state loops with GAs.

6.4.3 Promoter Model of C. jejuni

We conducted experiments to investigate whether the Block-HMM can find the conserved

patterns of C. jejuni promoters. A hand designed HMM structure is shown in figure 5.9.

In this experiment we investigated if BIock-HMM can find a whole HMM structure

instead of finding a part of an HMM structure.

The sequence contains more Ts and As than Gs and Cs. Although the Ribosomal

binding sites can be easily found, the sequence is not always in the same position in

relation to the coding region. In some cases, the sequence AAGGA doesn't appear or is

highly mutated. It is difficult for non-experts to figure out which part of the sequence

is the TATA box because most part of the promoter region is composed of Ts and As.

The GA parameter are the same as those used in the previous experiment. Of 175

sequences available, 132 sequences are used for Baum-Welch training and 43 sequences

are used for the fitness evaluation. We conducted simulations using 9, 8 and 7 blocks.

To obtain the result showing conserved regions in order, we limited the transition during

the crossover. Crossover cuts the parents HMM into two or three large blocks. The large

blocks are relocated in order allowing one transition to the next block.

The best structures found by the GA are shown in figure 6.11. The Block-HMM could

find the 'AAGGA' and 'TAtAAT' regions with 9 blocks (figure 6.11 (a)) and 8 blocks

(figure 6.11 (b)). In addition, it found the presence of semi-conserved TGx upstream of

TATA box which is characteristic of the C. jejuni promoter region [88]. However, when

the number of blocks is 7 (figure 6.11 (c)), the Block-HMM could find only AAGGA

sequence. The TATA box was buried inside other states. Interestingly, the 9 block

model (figure 6.11 (a)) also found the lO-base periodicity just before the TATA box,

which was discovered in [88]. In figure 6.11, the emission probabilities of the states in

66 Chapter 6 Block-HMMs (Block Hidden Markov Models)

(a)

I~HJJlDlll H mffil ~ :[1 n LID kJ

0-i I II I, I,II+I+I+H 11111 H~I
(b)

(c)

F IGURE 6.11: The best structures found by the GA for (a) 9, (b) 8 and (c) 7 blocks.
The 'AAGGA' sequence is found on every simulation and 'TAtAAT' sequence is found

in (a) and (b). Each cell represents a state. Emissions of shaded cells are tied.

the shaded cells are tied.

To perform a quantitative test of the generalisation performance of structures found

in the previous experiment we conducted a discrimination test. In order to collect a

sufficient amount of data we carried out a five-fold cross-validation experiment . This

replicates a test performed by Petersen et al. [88J. As the structures generated in the

previous test (shown in figure 6.11) were found using all the training data, we retrained

all the emission and t ransition probabilities starting from random values. However, to

retain the main structure we removed all transition probabilities less than 0.002 and to

maintain the positions of TATA box and Ribosomal binding site we introduced pseudo­

counts in these conserved regions. For example, if the emission probabilities of one state

is A:0.9 T:0.1 G:0.05 C:0.05 then the pseudo-count becomes 90 , 10,5,5 for the A,T,G ,C

respectively. This ensures that these conserved regions occur in the same place when we

retrain the model in the cross-validation procedure . We used Baum-Welch to retrain the

weights using 140 out of the 175 sequences as training data. The remaining 35 sequences

were used as test data.

To perform a discrimination test we require a background sequence. To obtain this,

we use a 500000bp sequence generated by a third-order Markov chain that had been

Chapter 6 Block-HMMs (Block Hidden Markov Models) 67

trained on the C. jejuni genome. To test the discrimination we set a log-odds threshold

so that there were 10 or less false positives and then measured the number of true

positives. Table 6.3 shows the total number of false positives (FP) and true positives

(TP) summed over all of the five-fold cross-validation tests.

TABLE 6.3: The result of the Block-HMM
Simulation Number of FP Number of TP

Block-HMM (9 blocks) 7 132
Block-HMM (8 blocks) 9 126
Block-HMM (7 blocks) 10 120

Petersen's HMM 10 (best case) 119

TP rate

75%
72%
69%
68%

We repeated this test on ten different HMM structures found by using a GA. In all but

one case, we could get 7 ~9 false positives and a true positives rate ranging from 70%

to 76%. Only on one simulation out of the ten, did the GA fail to find a TATA box.

These results are superior to those published for a hand-crafted HMM [88J, although we

must be slightly cautious in interpreting our results as the structures were found using

the same data that it was tested on. We were forced to do this because the dataset

was small. We did take the precaution of retraining all the weights to reduce the risk

of biasing our results, but the pseudo-counts were influenced by the whole data set.

Although, the results are not conclusive, they are very suggestive.

6.4.4 Discussions

In this chapter, we have described a GA which evolves the structure of HMMs in a

biologically constrained way. We have performed a number of tests to illustrate that

the resulting HMMs are relatively easy to interpret. Furthermore on the problem of the

promoter model of C. jejuni the results are competitive with an expert designed HMM.

This is quite remarkable given that our GA had no prior knowledge of conserved regions

such as the TATA box and Ribosome binding site as well as other structures which have

been acquired by experts over many years. These are promising results from early work.

In order to reduce overfitting we have split our training data into a Baum-Welch training

set and an evaluation set used in selecting members of the population. Although we could

potentially overfit on the evaluation set, this does not seem to be a problem in practice.

One explanation for this is that once a trained HMM overfits the training data when

we run the Baum-Welch algorithm, they then perform badly on the fitness evaluation

set. Since we use Baum-Welch at every generation, overfitted models will always be

disadvantaged.

The blocks introduced in this study were adopted from the frequently used HMM topol­

ogy. Beside those three block other topologies have been constructed in bioinformatics

68 Chapter 6 Block-HMMs (Block Hidden Markov Models)

depending on the applications [18]. And other possible block models can be addressed.

We believe, however, for biological sequence model those 3 block models can be used as

building blocks that organize the whole topology.

The crossover operator proposed is one of the possible methods that use the modularity

property of HMMs. It enriches the search domain by increasing the number of possible

solutions. On the other hand, the unconstrained choice of blocks for the crossover

can lead the whole process to be disruptive. Therefore, as the number of the blocks

increases the Block-HMM requires more iterations to converge. A more strategic method

of crossover might improve the efficiency of the process.

Evolving HMM structures is a time consuming process since training and evaluating the

likelihoods for long sequences takes many operations. At present, this is a restriction on

automatic structure finding. However, as computers get faster and the number of appli­

cations grow we expect that automatic HMM structure search will become increasingly

important. GAs seem ideally placed to play an important part in this development.

Chapter 7

Block-HMMs for the Prediction

of Proteins Secondary Structure

7.1 Proteins Secondary Structure Prediction

The 3D structure of proteins is very important to understand their function. The sec­

ondary structure of proteins determines the conformation of 3D structure. Predicting

the secondary structure of proteins has become one of the most studied problems in

bioinformatics. The problem tackled is to provide a label for each residue in a protein

sequence depending on its secondary structure. That is, whether the protein residue is

part of an alpha-helix, a beta-sheet or some other structure. This is a first step towards

predicting the structure and function of a protein from its sequence.

There are several publicly available predictors. However, direct comparison between

the secondary structure predictors is difficult because there is not a standard test set.

Currently, the EVA server [91] benchmarks those secondary structure predictors devel­

oped so far. It automatically analyses 19 protein secondary structure prediction servers

continuously.

Our approach to the secondary structure prediction problem is to evolve an HMM using

a GA. Even though HMMs have been successfully applied to many problems in biological

sequence modelling, they have not been very successful as protein secondary structure

predictors. This is partly due to the difficulties in modelling the complex nature of

protein structures through the topology of an HMM. The predictors using HMMs show

a bit lower performances than the predictors using NNs. Thomsen studied the same

problem of secondary structure predication as we have [5]. His prediction rate on the

training set using the standards Q3 measure is 49%. HMMSTR [6] is the hand-designed

HMM model and its prediction rate is 74.3% in the cross-validation test.

69

70 Chapter 7 Block-HMMs for the Prediction of Proteins Secondary Structure

In this chapter we use the evolutionary method to optimise the structure of an HMl'vl

for secondary structure prediction. During the evolutionary optimisation, the HMM's

structure is built up using biologically meaningful building blocks. Three independently

trained Block-HMMs were cascaded by a second layer of neural networks. To improve

the prediction rate homologous sequences are used. We tested the trained HMMs with

a common subset of data from the EVA server [91].

7.2 Methods

7.2.1 Dataset

The SABMark Twilight Zone data set (version 1.63) [92] provides a set of representative

structures. This data set consists of 2230 high quality structures partitioned into 236

folds. Although many proteins in the data set share a common fold, no pair of protein

sequences can be aligned with a BLAST E-value below 1 or a sequence similarity above

25%. For the proteins with a common fold in the data set, it is not possible to identify

a traceable evolutionary common origin.

Structures that caused problems with the DSSP program (see below) or that had chain

breaks were removed, which resulted in a final data set of 1662 structures belonging to

234 fold groups (two groups are removed by this process). With these 234 groups we

performed a five fold cross-validation test. In order to create a stringent test set we

made sure that proteins with a common fold do not appear in both the training and

test sets.

The secondary structure was calculated using the program DSSP [43]. DSSP assigns

secondary structure to eight different classes: a-helix (H), isolated ,8-bridge (B), ,8-

strand (E), 31Q-helix (G), II-helix (I), turn (T), bend (S) and other. The DSSP results

were retrieved using the DSSP front end in the Biopython toolkit [93]. Like most other

prediction methods we used a reduction scheme whereby Hand G are converted to H,

E and B are converted to E, and all the other to C.

7.2.2 Block-HMMs for Labelled Sequences

Block-HMMs restrict their search to a subset of topologies made up of blocks of states.

Each block is assigned with a label that corresponds to one of the three secondary struc­

ture classes. The states that make up the blocks emit amino acid symbols. Secondary

structure prediction is done by inferring the values of the hidden states for a given amino

acid sequence, and examining the secondary structure labels of the blocks these states

belongs to. The blocks were chosen to be biologically meaningful structures. Four types

Chapter 7 Biock-HMMs for tile Prediction of Proteins Secondaq Structure 71

of blocks are used : linear , self-loop , forward blocks and zero blocks. Initially, the blocks

are fully linked to form HMM architectures as shown in figure 7.1. To deal with labelled

sequences, every st ate in the same block share the same label.

FIGU RE 7 . 1: An example of an HMM composed of blocks result ing from the Block­
-HMM procedure. Three blocks are used in this model and all the blocks are fu lly
connected to each other. The blocks are divided by dotted lines. The states in tied

blocks are shaded in grey.

The various blocks can model different typ es of sequence fragments. A linear block can

model a particular conserved sequence pattern. The self-loop block can model a sequence

of any length while the forward jump block can b e used to represent subsequences with

varying length up to some fixed length .

7. 2.3 G en etic Operators for Block-HMM

We used three genetic op erat ors in Block-HMM: crossover, mutation and type-mutation.

The number of blocks is kept fixed but t he number of the states of an HMM can be

changed by the genetic operators . Crossover and mutation work in a similar way we

present ed in the previous chapter. When a block increases its size during mutation the

added st at e has the same label wit h t he block it belongs to .

We designed a new typ e-mutation to handle the label on a stat e. The new type-mutation

changes t he type or t he label of a block. Type-mutations from and to a zero block are

also allowed. F igure 7.2 illustrates a type-mutation from a 3-state forward length block.

W hen a type mutation transforms the type of a block , new transit ion probabilities are

generated randomly. Self-loop and forward jump blocks can type-mutate between t ied

and unt ied versions. The labels are also changed under the type-mutation. When type­

mutating from a zero-block , a new block is created and replaces the zero-block. The

size of the block as well as all the parameters of the states in the b lock are assigned

randomly.

72 Chapter 7 Block-HMMs for the Prediction of Proteins Secondary Structure

~

(a)

U type-mutation

~ (b)~

(c) [}{}{] (d)~
[D@--@

FIGURE 7.2: Type-mutations: (a) to a tied block (b) to a block wit h a different label
(c) to a zero block (d) to a self loop block or a linear block. When a type mutation
transforms t he type of a block, new t ransit ion probabilit ies are generated randomly.

7.2.4 Parallel Genetic Algorithms

Evolving HMMs particular for this application is highly CPU-intensive. To overcome this

we used a Parallel Genetic Algorit hms (P GAs) [67] run on a cluster of comput ers . From

the algorithmic point of view the parallel processing is t he computational realisation of

the natural parallel evolut ionary strategy.

We used a master-slave model to implement the Block-HMM on t he clustered comput ers .

The master-slave model using P slaves are illustrated in figure 7.3. In the mast er-slave

model, a population is generat ed on P processors . T he t ime consuming training and

evaluat ion procedures are dealt on slave-processors . Since the computational time for

the training and evaluation is different depending on t he size of HMM, the master waits

until all the processes on the slaves finish . The slaves send the fitness value and the

t rained HMM to the master . Then the mast er applies t he genetic operators on the

individuals and sends the individual information back to each slave-processor. On the

slave side t he processor waits for message from the master , evaluates the fitness, trains

the HMM, and returns the t rained HMM and fi tness value to t he master.

7 .2.5 Training with Block-HMM

We have used a hybrid GA wit h tradit ional GA operators to explore the space of HMM

topologies in combination with Baum-Welch opt imisat ion of t he transit ion and emission

probabilities.

To obtain suit able HMM archit ectures we tested various numbers of blocks b etween 26

and 35. Labels are allocated randomly to each of t he blocks . The size of t he block

(number of states in a block) is randomly assigned between 1 and 4. Table 7.1 shows

parameters used in the simulation .

I

\

I:
I
I '
I

Chapter 7 Block-HMMs for the Prediction of Proteins Secondary Stmcture 73

slave 1 slave P

FIGURE 7.3: The flowchart of master-slave model of parallel genetic algorithms. We
used P processors to implement this master-slave model.

TABLE 7.1: Block-HMM parameters used in the experiment.
Parameter value

Population size
Iteration

N umber of blocks in an HMM
The initial length of a block

Crossover rate
Mutation rate

T ype-mutation rate

30
400

26-35
1- 7
0.07
0.07
0.07

To find an HMM that does not overfit the training data, we divided our training set into

a set used for the Baum-Welch training (5/7 of the data) and a set for fitness evaluation

(2/7 of the data). The fitness value is calculated from the fitness evaluation set only.

Given an HMM (G), we take the reciprocal of the negative log-likelihood as the fitness

value:

(7.1)

where li is the length of a sequence Xi and f.L labels the different HMMs (with parameters

GIL) of the population. A member of the population is selected with a Boltzmann

74 Chapter 7 Block-HMMs for the Prediction of Proteins Secondary Structure

probability
m l-'

FI-' = N '
2.:11=1 m il

(7.2)

where (J is the standard deviation of the fitness in the population and s is a constant

that controls the strength of the selection . In the work reported here, we used a value

of s equal to 0.3.

The best member of a population is always select ed , and a subset of other members are

selected by using stochastic universal sampling [65] . Some of the memb ers are mutat ed

or subjected to crossover. Then , all the members of the genera tion undergo Baum-Welch

optimisation using the training data set . We saved the best HMM at each of the 400

generations, i.e . during the whole run of the GA. At the end of the run , the best HMM

is selected and trained again with the Baum-Welch algorithm, this time using all t he

sequences. This is done because the last HMM is not always the best HMM generated

during the whole GA run. Finally, the HMM is trained further using the discriminative

training method [42].

Figure 7.4 shows one of the results of Block-HMM. The simulation used 26 blocks but

the result shows only 19 blocks: the remaining 7 were zero blocks. The full HMM

structure with 42 states is found on the web site. The full HMM structure with 42

states is illustrated in figure 7.5. Transitions with a probability less then 0.1 are not

shown in this figure .

FIGURE 7.4: An example of an HMM evolved using Block-HMM. It is composed of 19
non-zero blocks and 42 states. Transitions between blocks are not shown here (including

the transition from a block to itself).

7 .2 .6 Incorporating Evolutionary Information

Secondary structure prediction rates can be boost ed by using evolutionary information .

In most systems, the position specific scoring matrix (PSSM) is used as an input of t he

predictor. Instead of using PSSM , we ran our predict or on a set of homologous sequences

and t hen combined the results. To obtain the homologous sequences we ran P SI-BLAST

Chapter 7 Block-HMMs for the Prediction of Proteins Secondary Structure

FIGURE 7.5: The full HMM structure with 42 states. Transitions less then 0.1 are not
shown. This figure is drawn with the drawing tool provided by L.G.T. Joergensen.

75

: '

76 Chapter 7 Block-HMMs for the Prediction of Proteins Secondary Structure

[51] against the UniProt 90 protein sequence database [57] downloaded on 17th of Feb.

2005. We used 3 iterations of PSI-BLAST with an E value threshold of 0.001. The

posterior label probabilities (PLPs) were calculated by decoding each of the homologous

sequences against the trained HMM. The gaps are ignored when the sequences are

decoded. There are redundant amino acids needed for the pairwise alignment when a

query sequence is shorter than the homologous sequences. After decoding the sequences

are aligned again without redundant amino acids. In figure 7.6 the second amino acid

of the second homologous sequence, 'K', is redundant and dropped when the sequences

are aligned again. The PLPs of each sequence are aligned along with the sequence. If

there are gaps in the sequence, the gapped PLP is set to 0 for all labels at all positions

with the gap.

query

V-LKLFKD

}
VLKLFKD

}
VLKLFKD

homologous HMM
Decoder

V-L-LFKD VLLFKD VL-LFKD

VKLKL--D VKLKLD VLKL--D

I I
multiple sequence
alignment

ignoring gaps aligning again without
redundant amino acids

FIGURE 7.6: Decoding and aligning homologous sequences. Gaps ignored during de­
coding and redundant amino acids are deleted after decoding.

After aligning the decoding results, we calculated the weight of each sequence according

to the position-based sequence weight [59]. The weight is given in equation 2.8. We take

the weighted sum of the PLP for each column of the alignment.

An ensemble of several predictors usually improves the prediction rate. We used an

ensemble of three independently trained HMM predictors. Because they are trained

independently by running the Block-HMM, they are different in size and the parameters.

It improves further compare to the predictor using three HMMs with the same structure.

On each HMM, the outputs are summed up and normalised before they are used as an

input of the second layer of the predictor. When the second layer is not used the outputs

of the three HMMs are summed up again and the dominant label is used as our final

prediction of the secondary structure.

7.2.7 The Second (structure-to-structure) Layer

To improve the performance even further we used a 3-layer perceptron consisting of 3

input nodes, 3 hidden nodes and 3 output nodes (figure 7.7). The PLPs of the ensemble

I,
I

Chapter 7 Block-HMMs for the Prediction of Proteins Secondary Structure 77

of three HMMs are used as an input of the neural networks. To train the neural networks

the gradient descent method with a momentum term was used [94]. This network is quite

simple compared to other structure-to-structure layers published in the literature. The

final predictor is illustrated in figure 7.8.

H: 0.3

E: 0.1

C: 0.6

FIGURE 7.7: The structure-to-Structure layer. It is composed of simple 3-layer neural
networks.

submitted
sequence

ATVFKLGLFKSFHDTRLFKNDKTTN

homologous
sequence

ATVFKLGLF-SFHDTRLFKNDKTTN
ATVQKLGLFKSFHDTRLFNHDKTTN
ATVFKLPLFKSQTDTR- - -NPDKTTN L..----'I

'--~-~~~~--~~~----''---c------:-.J LI __ ~----,I <-I -,-__ --'
Alignment with Sequence to Structure to

weights structure HMM structure network
Ex tract homologous sequence from the database

H:0.2
E:0.3
C:0.5

FIGURE 7.8: Schematic overview of predicting secondary structure with three HMMs
evolved with Block-HMMs.

7.3 Implementation and Results

7.3.1 Cross-validation Results

We used posterior label probability to decode the HMM. The most probable label is se­

lected as an output. Table 7.2 shows the result of 5 cross-validation tests without incor­

porating evolutionary information, and table 7.3 shows the result of 5 cross-validation

tests. This result indicates that about 6-7% of performance enhancement has been

achieved on every field except Q E by using evolutionary information. The enhancement

of Q E was only 3%.

i
! '
i

78 Chapter 7 Block-HMMs for the Prediction of Proteins Secondary Structure

About 0.5% of enhancement could been achieved by using the ensemble method. The

decoding result of three independently trained HMMs using Block-HMM were averaged.

The ensemble of more than 3 HMMs did not improve the prediction rate much. Even

though the overall Q3 is comparable to other predictors, the QE is just 59.9%. To

improve QE rate as well as overall prediction rate we added a neural network. Later,

the final average Q3 accuracy of the cross-validation tests using NNs is 75.1% and its

segment overlap (SaV) scores [44] is 71.7%. Using the NNs made very little difference

to the overall performance but substantially improved QE and SaVE at the cost of

small loss in performance of QH and a more decrease in Qe. Interestingly, however, the

decrease in SaVe is just 1 %.

TABLE 7.2: Average of 5 fold cross-validation results without incorporating evolution-
ary information.

Test Q3 QH QE Qe sav savH SaVE SaVe
testl 68.0 64.9 56.0 75.2 63.2 62.8 59.8 65.5
test2 70.1 65.4 59.0 75.5 66.3 63.3 62.1 67.0
test3 67.6 67.1 52.8 74.5 63.9 65.4 59.5 65.1
test4 68.2 67.0 58.5 74.0 63.1 64.9 61.3 65.4
test5 67.5 64.7 55.8 74.7 62.6 62.5 58.5 65.9
total 68.3 65.9 56.4 74.8 63.9 63.8 59.8 65.8

TABLE 7.3: Average of 5 fold cross-validation results.
Test 1 Q3 QH QE Qe sav saVH saVE SaVe

Single HMM (testl) 74.8 71.2 60.0 82.1 69.8 70.9 66.1 69.9
(test2) 76.2 66.2 61.8 82.5 72.9 66.9 67.0 71.9
(test3) 74.5 70.8 56.9 83.2 70.4 71.5 64.4 70.1
(test4) 73.9 71.5 60.6 82.6 68.7 71.4 66.6 69.7
(test5) 73.2 66.6 58.0 80.8 69.4 66.2 62.7 68.9

Single HMM (total) 74.5 69.2 59.4 82.2 70.0 69.4 65.3 70.1
Ensemble of 3 HMMs 75.0 69.4 59.9 82.8 70.6 69.7 65.9 70.6

Ensemble + NN s 75.1 67.8 70.8 77.5 71.7 68.4 73.4 69.6

Thomsen [5] reported 49% for the Q3 rate with his genetic methods. Figure 7.10 shows

the best model he achieved. It is composed of 8 states excluding a begin state. In the

figure, A, B, and C represent a-helix, ,B-sheet, and coil respectively. The HMM topology

he found looked too simple to represent the complex nature of protein sequences. HMM­

STR [6] is the most successful secondary structure predictor that makes use of HMMs. It

is hand designed with more than one hundred states. However, the prediction accuracy

(Q3) of HMMSTR is 74.3%. Even though our evolved HMMs have considerably fewer

states and a simpler structure, they produced better results.

Direct comparison with other predictors is difficult as there is no standard benchmark

test. Most of the other top ranked predictors use test sequences with less than 25%

I
I

! '

Chapter 7 Block-HMMs for tlle Prediction of Proteins Secondary Structure

FIGURE 7.9: The best HMM topology of Thomsen. It is composed of 8 states excluding
begin state. In the figure A, B, and C represent a-helix, ,8-sheet, and coil respectively.

Adopted from [5] and redrawn.

79

identity with any sequence in the training set, while we used the more stringent criteria

of a maximum BLAST E-value of 1 and avoiding proteins with a common fold in test

and training sets. One of the most successful predictors is PSIPRED [13] which has a

reported Q3 value of 76.0%. In this case as well, the test and training sets did not share

proteins with a common fold. However, their test set was considerably smaller than the

one we used. The Q3 accuracy of our method is slightly lower than for PSIPRED and

the other top ranked predictors. However, given the fact that we used a very "hard"

test, it is fair to assume that our results are at least comparable.

7.3.2 Benchmarking

In an attempt to benchmark our method with an existing predictor we used the EVA

common subset no. 6 data set published on January 2004 [91]. We ensured that no

sequence in the EVA set was present in our training set. For the benchmark we compared

our prediction results with those of PSIPRED and YASPIN [16]. The result shows that

the prediction rate of our method is slightly better than that of the other predictors (table

7.4).

This data set consists of only 32 sequences therefore some caution is necessary in inter-

: '

80 Chapter 7 Block-HMMs for tlle Prediction of Proteins Secondary S tructure

Dlv<:igjrJ,g p .• um

(
f." .

T~y~e~~ f:\ ~hairp.i.I 1
. .

I ,' .

.... I ;. j

.... , .~.t"
~, ~ .~

::/ '

FIGURE 7 .10: The HMM topology of HMMSTR adopted from [6] .

Chapter 7 Block-HMMs for the Prediction of Proteins Secondary Structure 81

preting the results. Nevertheless, this test indicates that the evolved HMM method has a

prediction rate that is comparable to the other top ranked predictors. The disappointing

result of YASPIN was due to failure to predicting long helical regions of proteins such

as 1 q90:L, 1 q90:M, and 1 q90:N. This failure is uncharacteristic of an otherwise excellent

predictor.

TABLE 7.4: The benchmarking result with 32 sequences from the EVA common subset
no. 6

Test Q3 QH QE Qe sav savH SaVE saVe
PSIPRED 78.0 84.8 72.0 74.3 73.6 84.9 72.9 67.4
YASPIN 71.5 75.2 76.8 76.5 68.1 76.4 74.5 71.9

BLOCK-HMM 78.3 83.9 75.8 75.9 74.3 82.9 77.3 70.2

7.3.3 P.S.HMM: Protein Secondary structure predictor using HMM

P.S.HMM (Protein Secondary structure predictor using HMM) is a web server that

em ails the predicted structure of query protein sequence to users. The URL of P.S.HMM

is http://www.binf.ku.dk/usersjjason. Figure 7.11 shows the P.S.HMM server. The

input of the predictor uses protein sequences in FASTA format. A sequence in FASTA

format consists of a single-line description, followed by lines of sequence data. The first

character ofthe description line is a '>' symbol in the first column. The P.S.HMM server

is developed using Biopython. Figure 7.12 shows the result of the predicted sequence

sent to the requested e-mail address.

7.4 Discussion

Optimising HMM structures using an evolutionary algorithm has several benefits. Firstly,

the structure of an HMM is automatically evolved without prior knowledge of the protein

sequences. This is remarkable given that other methods for secondary structure predic­

tion require considerable calibration. Instead we had a benefit of using the general

knowledge of biological sequences by using HMM block models. Compared to the hand­

designed HMMSTR [6], the evolvable method produced better results with a smaller

number of states. In the case of neural networks, the selection of the number of units

needs careful attention. Here again, the evolving HMM method is an attractive alter­

native.

Secondly, our method does not require a sliding window as most other secondary struc­

ture prediction methods do. The size of the window is chosen in order to obtain good

performance (for example, PSIPRED has a window size of 15 [13]). The evolving HMM

, ,

82 Chapter 7 Block-HMMs for the Prediction of Proteins Secondary Structure

R.S.I1MM (Protein Second~ry StrJ.1cture PredIctor J.1Slne UMMs)

~ ~
Enter Protein Seq~ence in FASTA fonnat

:>.AA I .
RSPSPS:rQPt.rEIlVNAIQEARRLL!'ILSRDTA~EI1NE1VEvtsEHrDLQEPTCLQTRLELYKQGLRGSLTKLmt .. ·
KGPLTIl!IASHYKQHCPPTPJ:TSCATQIITFESFKE.NLKDFL~VIPFDC1JEI' ~~1

d
... --- ~

(GlSchooi of Electronics and Computer Science, Wnivers~y ofSo.uthBlTlpton & Soin/onnatics Center, Unlversi .y of Copenhagen
. . Technical contaCt :,webmester Scientific cornact:, Kyoung-Jae".Won

FIGURE 7.ll: The P.S.HMM server. A protein sequence in FASTA format is used as
an input.

P.S.HMM prediction result.

>AA

Seq RSPSPSTQPWEHVNAIQEARRLLNLSRDTAAEMNETVEVISEMFDLQEPTCLQTRLELYK

Pre xxxxxxxxxHHHHHHHHHHHHHHxxxxxxHHHHHHHHHHHHHHxxxxxxHHHHHHHHHHH

Seq QGLRGSLTKLKGPLTMMASHYKQHCPPTPETSCATQIITFESFKENLKDFLLVIPFDCWE
Pre HxxxxxHHHHHxHHHHHHHHHHHxxxxxxxxxxxxEEEEHHHHHHHHHHHHxxxxxxxxx

Seq P

Pre x

The prediction resulf of P .S .HMM

FIGURE 7.12: The result of secondary structure predict ion .

Chapter 7 Block-HMMs for the Prediction of Proteins Secondary Structure 83

method uses the whole sequence as input, which avoids the use of a fixed sequence

window that might affect performance in specific cases.

The prediction rate in the cross validation tests is a bit lower than that of the other

predictors. One of the reasons is that we used a relatively hard data set to test our

performance. For the benchmarking, the fully trained model was compared with other

predictors. PSIPRED is known as one of the top ranking predictors and YASPIN is

a recently developed challenger. In the benchmark test the overall Q3 rate of our pre­

dictions is slightly better than the other methods tested. Because we conducted the

benchmark with a small number of sequences, we cannot claim that our method is bet­

ter than others. However, the result provides strong evidence that our method has at

least as good a performance as other published methods.

In our classification, a helical region has at least 3 residues (i. e. a 3-residue 310 helix as

determined by DSSP). At the moment our method can predict a helical region of less

than 3 residues. This can be corrected for example by deleting all helices having 1 or 2

residues. However, this does not greatly affect the prediction rate and consequently we

have kept this issue untouched.

At present the Block-HMM method is relatively slow because it has to train and calculate

fitness for all the HMM members in the population. We could solve it by using parallel

programming. To evolve an HMM using GAs with 30 members in a population, we used

312.4 GHz P4 processors each with 512 Mb RAM run in parallel. One processor controls

communication between other processors. Under these conditions each processor trains

one HMM. Ideally, the CPU time consumed in each processor is the time to train and

evaluate an HMM multiplied by the number of iteration. Approximately 7 hours was

required to produce an HMM with 40 states. Prediction using three trained HMMs

without evolutionary information takes about 30 seconds.

"

Chapter 8

Inside Block-HMMs

Block-HMMs use an evolutionary strategy to search for a solution. Like other GA

applications, they rely on many parameters such as the population size and the genetic

operators. They also have special properties created by the use of blocks. These factors

altogether affect the whole performance of Block-HMMs.

In this chapter we delve into the factors that Block-HMMs use. For this investigation

we perform the protein secondary structure prediction with a new set of 200 training

sequences and 64 test sequences. Firstly, we compare GA-HMMs and Block-HMMs for

this problem. In the following simulations, we investigate the performance of the Block­

HMM as we change the parameters such as the genetic operators and the number of the

HMM blocks. We also investigate the performance changes as we vary the separation

ratio of the training sequences and see if the input separation scheme and the selective

Baum-Welch reduce overfitting for protein secondary structure prediction problem. We

also check how the population size effects the performance. Lastly, we compare the

Block-HMM with a hill climbing method.

During the simulation, when no specific parameter is given, the parameter set in ta­

ble 8.1 is used. After we obtained an HMM by running each algorithm, the evolved

HMM is trained again with the Baum-Welch algorithm and the discriminative training

algorithm [42] using the whole 200 training set as we previously conducted in chapter 7.

TABLE 8.l: Default parameters used for the protein secondary structure prediction.
Parameter value

Population size 30
Iteration 150

Number of blocks in an HMM 12
Crossover rate 0.07
Mutation rate 0.07

Type-mutation rate 0.07

84

Chapter 8 Inside Block-HMMs 85

8.1 GA-HMMs versus Block-HMMs

The GA-HMM allows any number of transitions from a state, while the Block-HMM

allows only transitions that do not break the property of blocks. In the Block-HMM the

crossover operator is also restricted as they allow only swapping of the blocks. We inves­

tigate how the GA-HMM evolves HMM structures and compare it with the Block-HMM.

We started with the initial 6-state model. The initial HMM is illustrated in figure 8.l.

When we trained this model with Baum-Welch algorithm and the discriminative training

algorithm, it had the Q3 rate of 63.8%.

FIGURE 8.1: The initial HMM used for the GA-HMM simulation. The Q3 of this initial
model is 63.8%.

With this initial model we ran the GA-HMM. Figure 8.3 (a) shows the log likelihood

of the best HMM versus iteration when we ran the GA-HMM. The graph shows steep

changes before 50 iterations caused by the structural changes in the HMM, but after 50

iterations it does not show such changes and looks like a normal Baum-Welch training

curve on an HMM. The average Q3 rate of the 6 GA-HMM tests is 64.71%. Figure 8.2

shows one of the results after running the GA-HMM.

FIGURE 8.2: The result HMM topoogy after the GA-HMM simulation.

The result of GA-HMMs shows the increase of the number of the states and some

additional transitions. This result can be comparable with Thomsen's result (figure 7.10)

86 Chapter 8 Inside Block-HMMs

which is independently developed using similar genetic operators [5]. Thomsen evolved

an initial 3-state HMM topology and produced a result with 8 states. Both of the

methods could not evolve the initial model efficiently for this problem. We conducted

the same simulation until the GA-HMM reached 2000 iterations, but we could not find

any significant improvement.

Block-HMMs usually use a larger number of states for the initial population. To get rid

of the initial advantage of Block-HMMs, we tested the GA-HMM with one of the initial

members of the population of the Block-HMM. The initial model has 34 states and its

Q3 rate was 65.48% before it is evolved. Figure 8.3 (b) shows the log-likelihood graph of

the best HMM versus iteration. The log likelihood graph is higher than the GA-HMM

graphs with the initial 6-state HMM (figure 8.3 (a)). The average Q3 rate of the six

independent tests is 66.16%.

-3.20 -3.20

-3.22 -3.22

-c "0
0 0

-3.24 0 ·3.24 0

:5 :§

" " ~ ~
btl -3.26 g," -3.26
0
-l r -l

·3.28 -3.28

-3.30 -3.30

0 50 100 150 0 50 100 150
Iteration Iteration

(a) (b)
-3.20

·3.20

·3.22
·3.22

-c
"0

0
-3.24 0

0 :5 0 ·3.24
::: " o:i ~ ::":

btl -3.26
01) -3.26 0
0 -l
-l

-3.28 ·3.28

·3.30 ·3.30

50 100 150 50 100 150
Iteration Itera tion

(c) (d)

FIGURE 8.3: The comparison of the log-likelihood graph of best HMMs (a) GA-HMM
from a initial6-states HMM (b) GA-HMM from a initial model with 34 states (c) Block­
HMM from a initial model with 34 states (d) Block-HMM from a random population.

Chapter 8 Inside Block-HMMs 87

We conducted the simulation using the Block-HMM with the same initial HMM. Fig­

ure 8.3 (c) shows the log-likelihood of the best HMM versus iteration. The results demon­

strated that the Block-HMM could change the structure more than the GA-HMM could.

The Q3 rates of all the result was better than GA-HMM's result and the average Q3

rate of 10 independent simulations was 66.88%. The Block-HMM continued to change

the log-likelihood until it reached the end of the iteration. The improvement of predic­

tion rate from the initial model is 1.4%, while the GA-HMM could improve only 0.7%.

Figure 8.3 (d) is the log-likelihood of the best HMM versus iteration when we evolved it

from a random population. The structure of each member of the population is randomly

generated. The graphs are more widely spread than the other results. Even though some

of the log-likelihood graphs are lower than the curves in figure 8.3 (c), all the results

have better Q3 performance and we can get the Q3 of 67.15%. From the simulation,

we can conclude that the Block-HMM is superior for this secondary structure problem.

One of the reasons of success of the Block-HMM in the protein secondary structure

prediction problem is that the Block-HMM crosses over without breaking the group of

states that share the same label. When we use labelled sequences, breaking those group

of states easily makes illegal sequence paths through the HMM. The Block-HMM can

avoid those useless operations by using blocks. Also, type-mutation can replace a block

with any other block type, which might give Block-HMMs additional jumps to search

the solution.

GA-HMMs may have better fine tuning capability than Block-HMMs because they al­

low any number of transitions. However, the result with protein secondary structure

shows that Block-HMMs are much more suitable for the secondary structure prediction

problem. This may reveal that Block-HMMs benefit from restricting their topology.

8.2 Genetic Operators

Three genetic operators are used in Block-HMMs: crossover, mutation and type-mutation.

To investigate how each genetic operator effect the performance of Block-HMMs, we ran

simulations using only one of these operators for each test.

The figure 8.4 shows the log-likelihoods of the five best HMMs versus iteration when each

of the operator is used. The crossover operators sometimes bring rather abrupt changes

in the graph (figure 8.4 (b)) and the graphs are widely spread. Mutation operators, on

the other hand, give small changes (figure 8.4 (a)). The Q3 rates of each simulation

are shown in table 8.2. Even though we used a different operator in each case, the Q3

performances were not significantly affected. All of the three operators are important

methods to change HMM structures directly. However, it is difficult to pinpoint which

operator plays the more important roles from this simulation.

88

-3.20

-3.22

"0
0
0

:5
-3.24

"0 Q3 ~

"" -3.26 -t-
0

...J ~
-e-

-3.28 -fr-
-B-

-3.30

0 50 100 150
Iteration

(a) mutation only
-3.20

-3.22

"0
0
0 -3.24

.c

"0 03

2 -t-on -3.26
0 -+-

...l -e-
-fr-

-3.28 -B-

-3.30

50 100 150
Iteration

(c) type-mutation only

-3.20

-3.22

"0
0
0
:5

-3.24

"0
~

67,110
bJl -3.26
0

67.3~ ...J
6S.91

68AI
-3.28

67,lJ

-3.30

0

-3.20

-3.22

"0
0
0 -3.24

:5
0;
~

6&.17 on -3.26
0

66,33 ...l
61.31

67.53 -3.28
66.31

-3.30

Chapter 8 Inside Block-HMMs

50 100
Iteration

(b) crossover only

50 100
Iteration

(d) all operations

150

150

03

---f-- I>I.J I

--e- 61~1

-fr- flUl

-e- 61.111

----&- U7J

OJ

-+- hl01

~61.9~

-e- 6UU

--tr- 67.19

--B- 61,17

FIGURE 8.4: Biock HMM graphs with each operation (a) mutation only (b) crossover
only (c) type-mutation only (d) all operations.

TABLE 8.2: The comparison of Q3 rates and the number(~) of states when using one
of each operator.

mutation only crossover only type-mutation only all operations
Q3 ~ of states Q3 ~ of states Q3 ~ of states Q3 ~ of states

testl 67.16 34 68.41 35 68.17 33 67.02 25
test2 67.34 49 66.75 33 66.35 19 67.94 27
test3 65.97 29 67.42 28 67.31 38 67.50 30
test4 68.41 34 67.8 27 67.53 22 67.19 26
test5 67.24 29 65.73 25 66.37 22 66.12 26

average 67.22 35 67.22 29.6 67.15 27.8 67.15 27.2

Chapter 8 Inside Block-HMMs 89

The result also shows that the high log-likelihood does not necessarily mean high Q3

rate. The highest log-likelihood in the figure 8.4 (d) (0), has the worst Q3 rate (66.12%).

Also, the size of HMMs does not strictly determine the performance in the simulation,

because HMMs with similar sizes still show differences in the individual performance.

8.3 Number of Blocks

The number of blocks is an important factor in the Block-HMM. The number of blocks

is fixed in the Block-HMM, but due to the zero blocks the number of blocks representing

an HMM changes. In this section we investigate the performance change as we vary the

number of blocks in the Block-HMM. For the simulation we varied the number of blocks

from 5 to 25. The size of blocks are assigned randomly from 0 to 7. Figure 8.6 shows

the log-likelihood of the best HMM when the numbers of blocks used are 5, 8, 13, 15,

17 and 25, respectively.

70.00

68.00

66.00

64.00

62.00

60.00 -t----.-r---,---,---,-,--,--,.-----,.--

56 8 10 1213 15 17 25
Number of blocks

FIGURE 8.5: The Q3 rate on each case of the number of blocks.

TABLE 8.3: The average Q3 rate and the average number of states on each case of the
number of blocks

rt of blocks 5 6 8 10 12 13 15 17 25
Q3 65.54 65.79 65.65 66.37 67.15 66.72 67.53 67.14 67.46

rt of states 16.8 19.8 18.2 27.6 27.2 31.0 32.4 37.4 45.6

For each configuration five tests were conducted. The results show the tendency that

the log-likelihood graphs are a little higher as the number of blocks increases. HMMs

with a larger number of states usually have higher log-likelihood. Table 8.3 shows the

average Q3 rate and the average number of states of the HMMs evolved on each case.

90

"0
0
0
:S
"il
:;::

b1)
0
-l

"0
0
0
:S
"il :;::
b1)
0
-l

"0
0
0
:S
"il
:;::
b1)
0
-l

Chapter 8 Inside Block-HMMs

-3.22 -3.22

-3.24 -3.24

"0
0
0
:S

-3.26 "il -3.26 :;::
b1)
0
-l

-3.28 -3.28

-3.30 -i-----,---,----,----.----,---, -3.30 -jL.----,--,----,----,---.------.,

o 50 100 150 50 100 150
Iteration Iteration

(a) number of blocks = 5 (b) number of blocks = 8

-3.22 -3.22

-3.24 -3.24

"0
0
0

:S
-3.26 "il -3.26

~
b1)

0
-l

-3.28 -3.28

-3.30 -i-----,--,----,----,----,.------. -3.30 +----,--,---,----,---.------,

o 50 100 150 o 50 100 150
Iteration Iteration

(c) number of blocks = 13 (d) number of blocks = 15

-3.22 -3.22

-3.24 -3.24

"0
0
0

:S
-3.26 "il -3.26 .,.

-
b1)
0
-l

-3.28 -3.28

-3.30 -i-----,--,----,----,----,.------. -3.30 -i-----,---,----,----,---.------.

50 100 150 o 50 100 150
Iteration Iteration

(e) number of blocks = 17 (f) number of blocks = 25

FIGURE 8.6: The log-likelihood of the best HMM when the number of blocks are 5, 8,
13, 15, 17 and 25.

Chapter 8 Inside Block-HMMs 91

As the number of blocks increases, the number of states of the HMM increases. This

affect the log-likelihood. The Q3 rate increases as the number of blocks increases up to

12. However, the improvement of performances stops once the Block-HMM has enough

number of blocks (figure 8.5).

8.4 Overfitting

Overfitting occurs when an HMM is trained too much with a training sequences. Over­

fitting is hard to avoid and it becomes more serious as the number of states of an HMM

increases. To avoid overfitting we proposed two schemes: the separation of dataset and

the selective Baum-Welch method. The separation scheme divides the training sequences

into two sets. One set (training set) is used for the Baum-Welch training and the other

set (evaluation set) is used for the fitness evaluation. The selective Baum-Welch scheme

randomly judges whether to train the HMM or not. The simulation result with pro­

moter region of C. jejuni demonstrates that the two schemes helped the GA-HMM to

reduce the overfitting of the training sequences. For the DNA sequences we calculated

the log-likelihood of the test set to check the generalisation performance. In this section,

we investigate how those two methods effect the performance of Block-HMMs for the

protein secondary structure prediction problem.

Figure 8.7 shows the log-likelihood of the best HMMs versus number of iterations. For

this test we used 20 protein sequences to see the overfitting phenomena easily. When the

separation scheme is not used (Li) the log-likelihood graph monotonically increases over

iteration. When the separation scheme is used the log-likelihood curve of the training

set (0) is below the graph of the non-separation method. It also fluctuates because

the trained HMM is assessed by using the evaluation set. The log-likelihood graph of

the evaluation set (+) shows that the increase of the log-likelihood of the training set

does not always mean the increase of the evaluation set's log-likelihood. Unlike the log­

likelihood, the average Q3 of the non-separation scheme (57.41±0.41) is less than that

of the separation scheme (58.85±O. 73). The log-likelihood graphs of the two scheme

become similar to each other as the number of sequences increases. The difference in Q3

also decreases as the number of sequences increases.

8.4.1 Separation versus Non-separation

We investigate the effect of the separation method as we change the ratio of the separa­

tion. Figure 8.8 shows the log-likelihood of the best HMMs versus number of iterations

when the separation ratio varies. When the training sequences are not enough (1:6) the

curve fluctuates substantially. The graphs fluctuate less as the ratio of the training set

increases. Table 8.4 shows the average Q3 rates of five tests for each configuration. The

92

-3.00

"0 -3.20
o
o

..<::

bll
o

....:l -3.40

Chapter 8 Inside Block-HMMs

-4-- training group

~ evaluation group

-fr- training set (no separation)

-3.60 -t---r---,-----,r---,----,---,

50 100 150

Iteration

FIGURE 8.7: The log-likelihood of best HMMs versus number of iterations with 20
training sequences.

results show that the best results are obtained when the number of sequences in the

training set is similar or a bit larger than the number of sequences in the evaluation set.

TABLE 8.4: The comparison of average Q3 rates of five tests for each case (number of
sequence in training set: in evaluation set).

test 1:6 2:5 3:4 4:3 5:2 6:1

average Q3 64.18 65.79 67.55 66.94 67.15 66.65

To see if the separation scheme reduces the effect of overfitting we conducted the sim­

ulation on both the separation and the non-separation methods. We conducted the

student's t-test with the results of both methods. For each method we conducted 30

independent tests. When we tested the separation method we used half of the sequences

as the evaluation set and the other half as the training set.

The average Q3 rate of the 30 tests is 67.66% when the separation method is used and

67.36% when the non-separation method is used. The probability of the t-test result,

assuming the null hypothesis, is 0.119. This suggests that the separation method is

likely to be superior, although more testing would be necessary to be sure.

Chapter 8 Inside Block-HMMs

-3.20

"0 -3.30
0
0

..c:
Q)
~

training: ev alua tion

0/) -t- 1:6

0
...:I -3.40 ~ 2:5

-B- 3:4

-e- 4:3

--f'r- 5:2

--*- 5: t

-3.50 -j---,---.--,---,---,-----,

o 50 100 150
Iteration

FIGURE 8.8: The log-likelihood of the best HMMs versus iteration when the ratio of
the separation ratio varies.

8.4.2 Selective Baum-Welch Methods

93

Selective Baum-Welch methods were introduced in chapter 5 to reduce overfitting. The

selective Baum-Welch method increased the generalisation performance when we tested

the log-likelihood of the DNA sequences. However, the log-likelihood does not always

guarantee the Q3 performance in the protein secondary structure prediction problem.

We investigate how the selective Baum-Welch works in the Block-HMM for the protein

secondary structure prediction problem. About 1/4 of the members of a population

are randomly selected to train with the Baum-Welch algorithm. Figure 8.9 shows a

log-likelihood graph when the selective Baum-Welch method was used.

The graph of the selective Baum-Welch method increases monotonically. Because the

best member is not Baum-Welch trained and is replaced only when other members have

more fitness value, the graph of the selective Baum-Welch method always increases.

The average Q3 rate of this method from 10 tests was 66.63%. Under the same condition,

the Block-HMM without the selective Baum-Welch method was 66.87%. The differences

of the two methods are insignificant as the probability associated with the t-test result

is 0.5. On the contrary to DNA sequences, the selective Baum-Welch method did not

have a significant effect on the performance of the Block-HMM for the protein sequences

prediction problem.

94 Chapter 8 Inside Block-HMMs

-3.20

-3.24

"0
0
0 -3.28

..c: -<l.l

..;.:

0.0 -3.32
0

..-.:i

-3.36

-3.40 -t---.------r--.------,---.----,

o 50 100 150
Iteration

FIGURE 8.9: The log-likelihood of the best HMMs versus number of iterations when
the selective Baum-Welch method is used.

8.5 Population Size

The population size is a unique property of GAs. The population size tells how many so­

lutions the GA maintains. To investigate how the population size effect the performance

of Block-HMMs, we checked the performance on each configuration of the population

sIze.

Figure 8.11 shows the log-likelihood graphs when the population size are 4, 8, 16, 30,

40, and 50, respectively. Obviously, the Block-HMM could not evolve efficiently when

the population size is 4 because of the disruption caused by genetic operators. The

log-likelihood usually have higher values as we increased the population size. Table 8.5

and figure 8.10 show the average and the maximum Q3 rates of ten independent tests.

The average Q3 rate has a higher value as the population size becomes larger. However,

the maximum Q3 rates remain similar when the population size is larger than 16.

The result shows that the performance was not improved even though we use the larger

population size. However, it increased the number of results that showed good perfor­

mance, which led to the increase of average Q3 rate.

Chapter 8 Inside Block-HMMs 95

TABLE 8.5: The average and the maximum Q3 rate when the population size changes.
population size 4 8 16 30 40 50

average Q3 64.27 66.63 67.27 67.67 67.50 68.07
maximum Q3 66.45 68.40 68.74 68.57 68.73 68.68

70.00

68.00 C ~ ~
66.00

~

a
Q3

64.00
-A- maximum

--e- average
62.00

60.00 --"---r---,----,------,-----.----,

4 8 16 30 40 50
population size

FIGURE 8.10: The average and the maximum Q3 rate when the population size changes.
The maximum Q3 rate does not change much.

8.6 Comparison with Hill Climbing method

Hill climbing [95] methods are search algorithms where a new solution replaces the old

one whenever the new solution has a better performance. In this section we compare

the Block-HMM with the hill climbing method. For this simulation the hill climbing

method is designed to have HMM blocks and use the same mutation operator and the

type-mutation operator. We also used the separation method of training sequences for

the hill climbing method. Half of the training sequences were used for the training set

and the other half for the evaluation set.

Figure 8.12 shows the log-likelihood graph of the hill climbing method. We can find the

structural changes in the log-likelihood graph. The average Q3 rate of independent 30

tests is 66.62%. On the same configuration the Q3 of the Block-HMM was 67.67% when

the population size is 30. The result of the t-test also shows the significant differences

between the two result (probability is 6.8 x 10-6). The statistical difference is large,

but this result is a bit unfair to the hill climbing method because the result has not

been compared on an equal number of evaluations. The performance of the hill climbing

96 Chapter 8 Inside Block-HMMs

-3.22 -3.22

-3.24 -3.24

-0 -0
0 0

-3.26 0 -3.26 0
:S :S

" " ~ ~
OJ) -3.28 OJ) -3.28
0 0

....ll

-3.30 -3.30

-3.32 -3.32

0 50 100 150 0 50 100 150
Iteration Iteration

(a) population size = 4 (b) population size = 8
-3.22 -3.22

-3.24 -3.24
I

'I -0 -0
0 0
0 -3.26 0 -3.26 i -'" :S
<1.) " -'" ~
OJ) -3.28 OJ) -3.28
0 0

....ll

-3.30 -3.30

-3.3 2 -3.32

50 100 ISO 0 50 100 150

Iteration Iteration

(c) population size = 16 (d) population size = 30
-3.22

-3.22

-3.24
-3.24

-0
0

-0 0 -3.26 0
-3.26 -'" 0

:S .,
" -'"

"" OJ) -3.28
OJ) -3.28 0
0l

....l

-3.30 -3.30

-3.32 -3.32

0 50 100 150 0 50 100 150
Iteration Iteration

(e) population size = 40 (e) population size = 50

FIGURE 8.11: The log-likelihood of the best HMMs versus number of iterations when
the population size are 4, 8, 16, 30, 40, and 50

Chapter 8 Inside Block-HMMs 97

method is better than the Block-HMM with a population size of 4. This comes from

the fact that the Block-HMM is disrupted by its crossover operator. We did not use

elitism for this chapter because selecting the best one each time did not contribute to the

performance much. Especially, for this simulation the population size of 4 would be too

small to use the elitism. Previously, we have shown that the Block-HMM could evolve

well without using crossover operation. The reason for the Block-HMM's superiority

over the hill climbing method may come from that the Block-HMM maintains the pool

of a population and can search many solutions at the same time while selecting the

better members of the population.

-3.20

-3.22

"0
0
0 -3.24

:S -Q)

~
bJ)

0
-3.26

......l

-3.28

-3.3 a -j--__ r----.-----,r----,-----,r-----,

a 50 100 150

Iteration

FIGURE 8.12: The log-likelihood of the HMM trained using the hill climbing method.

8.7 Discussion

In this chapter we investigated what factors contribute to the performance of the Block­

HMM. From the simulation of comparing the GA-HMM and the Block-HMM we found

that the block mechanism enables the Block-HMM to generate the plausible initial pop­

ulation and to evolve the population in an efficient way. When evolving a new structure

in the GA-HMM, it can easily cause illegal paths through an HMM by adding or deleting

a state or swapping them in the HMM irrelevantly. The genetic operators designed for

the Block-HMM could tune the structure without causing too much disruption by sug­

gesting plausible architecture at each time. Also, each block has a very simple structure.

This may help the Block-HMM to suffer overfitting less.

98 Chapter 8 Inside Block-HMMs

The separation of the dataset has been used in evolving the HMM structure. From

the simulation we demonstrated that the separation method has some significant effects

to reduce overfitting. This method uses the statistical property of the dataset itself,

while other hybridising methods uses the property of the applied HMM, the complexity.

However, it may not be appropriate to use the property of an HMM because it is hard

to define how much complexity of the HMM is needed for the given problem. We also

used the selective Baum-Welch method to reduce overfitting. However, in the case of

protein sequences, the selective Baum-Welch method was not beneficial.

The number of blocks determines the size of an HMM. The size of an HMM did not affect

the performance much when it was large enough. However, it may not be a good strategy

to use an extreamely large number of blocks, because it requires a lot of computational

effort. Using a large population size increases the chance to find a good solution. Also,

increasing the population size requires additional computational effort.

Because of the time-consuming process of the Block-HMM and limitation of the com­

putational power, we conducted limited number of tests. It is difficult to draw strong

conclusion about the Block-HMMs from the tests conducted in this chapter. Some more

simulations result may help to understand how the Block-HMM works.

Chapter 9

Conclusions

In spite of the numerous number of HMM applications developed for biological sequences

analysis, the structure training methods have not been studied much. Even though

heuristic methods for structure training have been experimentally applied, they have

not exceeded the human's expertise in designing HMM structure.

In this thesis, we presented a method to train the HMM structure. Evolutionary strate­

gies were designed to search for the HMM structure as well as the HMM parameters.

This automatic way of training HMM structure method considered possible issues raised

in HMMs in its evolutionary cycle. Firstly, it hybridised the Baum-Welch parameter

training algorithm for efficient parameter convergence. Secondly, it developed the self

learning method by strictly separating the evaluation from a different set of training

data. This approach keeps itself from overfitting the training data and leads the HMM

to have better generalisation performance. Block-HMMs use block models which are

highly motivated by the HMM applications for analysing biological sequences.

With all those property, the evolving HMM method could find better models than ex­

perts can come up with. Especially, the Block-HMM was designed to evolve HMM

structures for the whole sequences and the performance of the Block-HMM was superior

to the hand-crafted model. It may be natural that there is no one globally superior so­

lution in finding the structural model that can represent biological phenomena. For the

given biological sequences there would be many possible HMM structures. The Block­

HMM suggests one of the possibilities of an automatic structure searching method.

Besides those block types suggested in this thesis, other types of block also can be used

to produce better results. Nevertheless, the proposed method is a successful example of

evolving HMM structures.

By investigating the Block-HMM, we could conclude that the use of the HMM blocks

combined with the properly designed genetic operators enabled such an improvement.

Even though the performance improvement by the separation of the training set was not

99

100 Chapter 9 Conclusions

significant, it was proved to be a good candidate to evaluate a trained HMM on each

genetic cycle.

The GA-HMM and the Block-HMM methods were used to model the promoter and the

coding region of C. jejuni and protein sequences. Due to the automatic nature of our

methods, drawing a biological meaning from the HMM might be difficult. However,

in some cases it may not be desirable to draw a biological meaning from the trained

HMM. Instead, the whole HMM can be used to interpret and understand the biological

sequences.

There is still need for research in the Block-HMM. Besides new types of blocks, the

fitness function is another area to be developed. Decoding methods may be directly

applied for the fitness evaluation. At this stage, nevertheless, there exist advantages in

using Block-HMMs. One of the main advantages of using Block-HMMs is that they can

be directly applied to other sequence prediction methods easily. Since the Block-HMM

is designed to generate a general model for the given sequences, it can be applied to any

kinds of DNA or protein sequences.

Glossary

3' end The end of a nucleic acid that doesn't have a nucleotide bound to its 3' of the

terminal residue.

5' end The end of a nucleic acid sequence where the 5' position of the terminal residue

isn't bound by a nucleotide.

Amino acid Any of 20 basic building blocks of proteins. It is composed of a free amino

(NH2) end, a free carboxyl (COOH) end and a side group (R).

Base pair (bp) A pair of complementary nitrogenous bases in a DNA molecule (adenine­

thymine and guanine-cytosine). Also, the unit of measurement for DNA sequences.

capped 5'-ends A methylated (has a -CH3 attached) guanosine nucleotide attached

to the 5'-end (the beginning) of an eukaryotic mRNA, thought to give the mRNA

stability.

Codon A group of three nucleotides that specifies addition of one of the 20 amino acids

during translation of an mRNA into a polypeptide. Strings of codons form genes

and strings of genes form chromosomes.

Consensus sequence A sequence of nucleotide bases which are extremely similar among

many different genes of different systems. In eukaryotes, this sequence is known

as the "TATA box" or the "Hogness box," and it has the general sequence of

TATAAAA. In the bacteria Escherichia coli it is known as the "Pribnow box"

and has the general sequence of TATAATG. The sequence is most often found in

promoters and does important things like binding important proteins (including

RNA polymerase) to initiate transcription.

Conserved sequence A base sequence in a DNA molecule (or an amino acid sequence

in a protein) that has remained essentially unchanged throughout evolution.

CpG islands Areas of DNA which consist mostly of the base pair sequence CGCGCGCG·· .

(alternating cytosine and guanine nucleotide bases) that are usually found up­

stream of many genes and are thought to help regulate gene expression. They are

often methylated (have methyl groups attached to the DNA segments).

DNA (Deoxyribonucleic acid) An organic acid and polymer composed of four ni­

trogenous bases-adenine, thymine, cytosine and guanine linked via intervening

units of phosphate and the pentose sugar deoxyribose. DNA is the genetic mate­

rial of most organisms and usually exists as a double-stranded molecule in which

101

two antiparallel strands are held together by hydrogen bonds between adenine­

thymine and cytosine-guanine.

Downstream The region extending in a 3' direction from a gene.

Eukaryote An organism whose cells possess a nucleus and other membrane-bound vesi­

cles, including all members of the protist, fungi, plant and animal kingdoms; and

excluding viruses, bacteria and blue-green algae.

Exon A DNA sequence that is ultimately translated into protein.

Gene A locus on a chromosome that encodes a specific protein or several related pro­

teins. It is considered the functional unit of heredity.

Gene splicing Combining genes from different organisms into one organism.

Human Genome Project A project coordinated by the National Institutes of Health

(NIH) and the Department of Energy (DOE) to determine the entire nucleotide

sequence of the human chromosomes.

Intron A non-coding DNA sequence within a gene that is initially transcribed into

messenger RNA but is later snipped out.

Messenger RNA (mRN A) The class of RNA molecules that copies the genetic in­

formation from DNA, in the nucleus and carries it to ribosomes, in the cytoplasm,

where it is translated into protein.

Open reading frame A long DNA sequence that is uninterrupted by a stop codon

and encodes part or all of a protein.

Poly(A) polymerase Catalyzes the addition of adenine residues to the 3' end of pre­

mRNAs to form the poly(A) tail.

Polymerase (DNA) Synthesizes a double-stranded DNA molecule using a primer and

DNA as a template.

Prokaryote A bacterial cell lacking a true nucleus; its DNA IS usually III one long

strand.

Promoter A region of DNA extending 150-300 bp upstream from the transcription start

site that contains binding sites for RNA polymerase and a number of proteins that

regulate the rate of transcription of the adjacent gene.

Protein A polymer of amino acids linked via peptide bonds and which may be composed

of two or more polypeptide chains.

Reading frame A series of triplet codons beginning from a specific nucleotide. De­

pending on where one begins, each DNA strand contains three different reading

frames.

102

Ribosome Cellular organelle that is the site of protein synthesis during translation.

Ribosome-binding site The region of an mRNA molecule that binds the ribosome to

initiate translation.

RNA (ribonucleic acid) An organic acid composed of repeating nucleotide units of

adenine, guanine, cytosine and uracil, whose ribose components are linked by

phosphodiester bonds.

RNA polymerase Transcribes RNA from a DNA template.

Stop codon Any of three mRNA sequences (UGA, UAG, UAA) that do not code for

an amino acid and thus signal the end of protein synthesis.

TATA box An adenine and thymine rich promoter sequence located 25-30 bp upstream

of a gene, which is the binding site of RNA polymerase.

Template An RNA or single-stranded DNA molecule upon which a complementary

nucleotide strand is synthesized.

Transcription The process of creating a complementary RNA copy of DNA.

Translation The process of converting the genetic information of an mRNA on ribo­

somes into a polypeptide. Transfer RNA molecules carry the appropriate amino

acids to the ribosome, where they are joined by peptide bonds.

Upstream The region extending in a 5' direction from a gene.

UTR Untranslated region.

103

Bibliography

[1] National Health Museum, ''http://www.accessexcellence.org/'' .

[2] Kimball's Biology Pages, ''http://biology-pages.info'' .

[3] W. K. Purves, G. H. Orians, and D. Sadava, Life: The Science of Biology, 4th

Edition. Sinauer Associates and WH Freeman, 1992.

[4] MDL Chime, .. http://www.mdl.com/products/framework/chime/.. .

[5] R. Thomsen, "Evolving the Topology of Hidden Markov Models Using Evolutionary

Algorithms," Lecture Note in Comuter Science, vol. 2439, pp. 861-870, 2002.

[6] C. Bystroff, V. Thorsson, and D. Baker, "HMMSTR: a Hidden Markov Model for

Local Sequence-Structure Correlations in Proteins," Journal of Molecular Biology,

vol. 301, pp. 173-190, 2000.

[7] S. Brunak, J.Engelbrecht, and S. Knudsen, "Prediction of human mRNA donor and

acceptor sites from the DNA sequence," Journal of Molecular Biology, vol. 220, pp.

49-65, 1991.

[8] E. C. Uberbacher and R. J. Mural, "Locating protein-coding regions in human DNA

sequences by a multiple sensor-neural network approach," in Proc. Natl. Acad. Sci.

USA, vol. 99, 1991, pp. 11262-11265.

[9] E. C. Uberbacher, Y. Xu, and R.J.Mural, "Discovering and understanding genes in

human DNA sequence using GRAIL," Meth. Enzymol., vol. 266, pp. 259-281, 1996.

[10] M. G. Reese and F. Eeckman, "Novel Neural Network Prediction Systems for Hu­

man Promoters and Splice Sites," in Proceedings of the Workshop on Gene-Finding

and Gene Structure Prediction, Pennsylvania, 1995.

[11] E. E. Snyder and G. D. Stormo, "Identification of protein coding regions in genomic

DNA," Journal of Molecular Biology, vol. 248, pp. 1-18, 1995.

[12] B. Rost and C. Sander, "Prediction of protein secondary structure at better than

70% accuracy," Journal of Molecular Biology, vol. 232, pp. 584-599, 1993.

104

[13] D. T. Jones, "Protein Secondary Structure Prediction Based on Position-specific

Scoring Matricws," Journal of Molecular Biology, vol. 292, pp. 195-202, 1999.

[14] P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri, "Exploiting the past

and the future in protein secondary structure prediction," Bioinformatics, vol. 15,

no. 11,pp. 937-946,1999.

[15] G. Pollastri, D. Przybylski, B. Rost, and P. Baldi, "Improving the Prediction of

Protein Secondary Structure in Three and Egight Classes Using Recurrent Neural

Networks and Profiles," PROTEINS: Structure, Fuction, and Genetics, vol. 47, pp.

228-235, 2002.

[16] K. Lin, V. A. Simossis, W. R. Taylor, and J. Heringa, "A simple and fast secondary

structure pro diction method using hidden neural networks," Bioinformatics, vol. 21,

no. 2, pp. 152-159, 2005.

[17] L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in

speech recognition," in Proceeding of IEEE, vol. 77, no. 2, 1989, pp. 257-286.

[18] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis.

Cambridge. Cambridge University Press, 1998.

[19] A. Bateman, E. Birney, R. Durbin, S. Eddy, K. Howe, and E. Sonnhammer, "The

Pfam Protein Families Database," Nucleic Acids Res., vol. 28, no. 1, pp. 263-266,

2002.

[20] A. Krogh, M. Brown, 1. Mian, S. Sjolander, and D. Haussler, "Hidden Markov

models in computational biology. Applications to protein modeling," Journal of

Molecular Biology, vol. 235, no. 5, pp. 1501-1531, 1994.

[21] A. Krogh, B. Larsson, G. von Heijne, and E. Sonnhammer, "Predicting trans­

membrane protein topology with a hidden Markov model: Application to complete

genomes," Journal of Molecular Biology, vol. 305, no. 3, pp. 567-580, 2001.

[22] D. E. Goldberg, Genetic Algorithms in Search, Optimization 8 Machine Learning.

Addison-Wesley (Reading, Mass), 1989.

[23] X. Yao, "Evolving Artificial Neural Networks," in Proceedings of the IEEE, vol. 87,

no. 9, 1999, pp. 1423-1447.

[24] T. Yada, M. Ishikawa, H. Tanaka, and K. Asai, "DNA sequence Analysis using

Hidden Markov Model and Genetic Algorithm," Genome Informatics, vol. 5, pp.

178-179,1994.

[25] G. Stormo, "Consensus patterns in DNA," Methods in Enzymology, vol. 180, pp.

211-220, 1990.

105

[26] --, "Computer methods for analyzing sequence recognition of nucleic acids,"

Annu. Rev. Biophys. Biophys. Chem., vol. 17, pp. 241-263, 1988.

[27] O. Berg and P. von Hippel, "Selection of DNA binding sites by regulatory proteins,"

Journal of Molecular Biology, vol. 193, pp. 723-750, 1987.

[28] J. M. Claverie, "Some useful statistical properties of position-weight matrices,"

Computers and Chemistry, vol. 18, no. 3, pp. 287-294, 1994.

[29] S. Matis, Y. Xu, M. B. Shah, D. Buley, X. Guan, J. R. Einstein, R. J. Mural, and

E. C. Uberbacher, "Detection of RNA Polymerase II Promoters and Polyadeny­

lation Sites in Human DNA Sequence," Computers and Chemistry, vol. 20, pp.

135-140, 1996.

[30] C. M. O'Neill, "Training back-propagation neural networks to define and detect

DNA-binding sites," Nucl. Acids Res., vol. 19, no. 313-318, 1991.

[31] A. P. Bird, "CpG islands as gene markers in the vertebrate nucleus," Journal of

Molecular Biology, vol. 193, pp. 723-750, 1987.

[32] F. Larsen, R. Gundersen, R. Lopez, and H. Prydz, "CpG islands as gene markers

in the human genome," Genomics, vol. 13, pp. 1095-1107, 1992.

[33] J. Jurka, J. Walichiewicz, and A. J. Milosavljevic, "Prototypic sequences for human

repetitive DNA," J. Mol. Evol., vol. 35, pp. 286-291, 1992.

[34] A. Milosavljevic and J. Jurka, "Discovering simple DNA sequences by the algorith­

mic similarity method," in CABIOS, vol. 9, no. 4, 1993, pp. 407-411.

[35] S. Batzoglou, L. Pachter, J. Mesirovi, B. Berger, and E. Lander, "Human and mouse

gene structure: comparative analysis and application to exon prediction," Genome

Research, vol. 7, pp. 950-958, 2000.

[36] V. Solovyev, S. A., and C. Lawrence, "Predicting internal exons by oligonucleotide

composition and discriminant analysis of splicable open reading frames," Nucl.

Acids Res., vol. 22, pp. 5156-5163, 1994.

[37] R. Guigo, "Computational Gene Identification: an open problem," Computers and

Chemistry, vol. 21, no. 4, pp. 215-222, 1997.

[38] E. Birney and R. Durbin, "Using GeneWise in the Drosophila annotation experi­

ment," Genome Research, vol. 10, no. 4, pp. 547-548, 2000.

[39] D. Kulp, D. Haussler, M. Reese, and F. Eeckman, "A generalized hidden Markov

model for the recognition of human genes in DNA," in 1SMB, 1996, pp. 134-142.

[40] C. Burge and S. Karlin, "Prediction of complete gene structures in human genomic

DNA," Journal of Molecular Biology, vol. 268, pp. 78-94, 1997.

106

[41] V. Solovyev, A. Salamov, and C. B. Lawrence, "Identification of human gene struc­

ture using linear discriminat functions and dynamic programming," in Proc. of

Third Int. Conf. on Intelligent Systems for Molecular Biology, vol. 3, 1995, pp.

367-375.

[42] A. Krogh, "Two methods for improving performance of a HMM and their appli­

cation for gene finding," in Proceedings of the Fifth International Conference on

Intelligent Systems for Molecular Biology, 1997, pp. 179-186.

[43] W. Kabsch and C. Sander, "Dictionary of protein secondary structure: pattern

recognition of hydrogen-bonded and geometrical features," Biopolymers, vol. 22,

pp. 2577-2637, 1983.

[44] A. Zemla, C. Vencovas, K. Fidelis, and B. Rost, "A Modified Definition of Sov, a

Segment-Based Measure for Protein Secondary Structure Prediction Assessment,"

Proteins, vol. 34, pp. 220-223, 1999.

[45] V. 1. Lim, "Algorithms for prediction of alpha helices and structural regions Il1

globular proteins," Journal of Molecualr Biology, vol. 88, pp. 873-894, 1974.

[46] P. Y. Chow and G. D. Fasman, "Prediction of the secondary structure of proteins

from their amino acid sequence," Advances in Enzymology, vol. 47, pp. 45-148,

1978.

[47] J. Garnier, D. J. Osguthorpe, and B. Robson, "Analysis and implications of simple

methods for predicting the secondary structure of globular proteins," Journal of

Molecular Biology, vol. 120, pp. 97-120, 1978.

[48] S. A. Benner and D. Gerloff, "Patterns of divergence in homologous prot ins as

indicators of secondary and tertiary structure: a prediction of the structure of the

catalytic domain of protein kinases," Advan. Enzyme Reg., vol. 31, pp. 121-181,

1990.

[49] N. Qian and T. J. Sejnowski, "Predicting the secondary structure of globular pro­

teins using neural network models," Journal of Molecular Biology, vol. 202, pp.

865-884, 1988.

[50] H. Bohr, J. Bohr, S. Brunak, R. Cotterill, B. Lautrup, L. N0rskov, O. Olsen, and

S. Petersen, "Predicting the secondary structure of globular proteins using neural

network models," Journal of Molecular Biology, vol. 202, pp. 865-884, 1988.

[51] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lipman,

"Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs," Nucl. Acids Res., vol. 24, pp. 3389-3402, 1997.

107

[52] S. K. Riis and A. Krogh, "Improving Prediction of Protein Secondary Structure

using Structured Neural Networks and Multiple Sequence Alignments," Journal of

Computational Biology, vol. 3, pp. 163-183, 1996.

[53] S. Hua and Z. Sun, "A Novel Method of Protein Secondary Structure Prediction

with High Segment Overlab Measure: Support Vector Machine Approach," Journal

of Molecular Biology, vol. 308, pp. 397-407, 2001.

[54] J. J. Ward, 1. J. McGuffin, B. F. Buxton, and D. T. Jones, "Secondary structure

prediction with support vector machines," Bioinformatics, vol. 19, no. 13, pp. 1650-

1655, 2003.

[55J J. Guo, H. Chen, Z. Sun, and Y. Lin, "A Novel Method for Protein Secondary

Structure Prediction Using Dual-Layer SVM and Profiles," PROTEINS: Structure,

Function, and Bioinformatics, vol. 54, pp. 738-743, 2004.

[56J S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, "Basic local alignment

search tool," Journal of Molecular Biology, vol. 215, pp. 403-410, 1990.

[57J R. Leinonen, F. Diez, W. Fleischmann, R. Lopez, and R. Apweiler, "Uniprot

archive," Bioinformatics, vol. 20, no. 17, pp. 3236-3237, 2004.

[58] S. Henikoff and J. Henikoff, "Amino acid substitution matrices from protein blocks,"

Proc. Natl. Acad. Sci. USA, vol. 89, no. 22, pp. 10915-10919, 1992.

[59J --, "Position-based Sequence Weights," Journal of Molecular Biology, vol. 243,

pp. 574-578, 1994.

[60J S. Kirkpatrick, "Optimization by simulated annealing: quantitative studies," Sta­

tistical Physics, vol. 34, pp. 975-986, 1984.

[61J A. Priigel-Bennett and J. L. Shapiro, "The dynamics of a genetic algorithm for

simple random Ising systems," Physica D, vol. 104, pp. 75-114, 1997.

[62J G. Syswerda, "Simulated crossover in genetic algorithms," in Proceedings of the

Second International Conference on Genetic Algorithms, 1987.

[63] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag, 1999.

[64J P. Galinier and J. K. Hao, "Hybrid evolutionary algorithms for graph coloring,"

Journal of Combinatorial Optimization, vol. 3, no. 4, pp. 379-397, 1999.

[65] J. E. Baker, "Reducing bias and inefficiency in the selection algorithm," in Pro­

ceedings of the Second International Conference on Genetic Algorithms. Lawrence

Erlbaum Associates (Hillsdale), 1987.

108

[66] A. Priigel-Bennett and J. 1. Shapiro, "An analysis of genetic algorithms using

statistical mechanics," Physical Review Letters, vol. 72, no. 9, pp. 1305-1309, 1994.

[67] J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. Richard, "Punctuated equilibria:

A parallel genetic alrotithm," in Proceedings of the Second International Conference

on Genetic Algorithms. Lawrence Erlbaum Associates, 1987, p. 148.

[68] B. Manderick and P. Spiessens, "Fine-grained parallel genetic algorithms," in Pro­

ceedings of the Third International Conference on Genetic Algorithms. Morgan

Kaufmann, 1989, p. 428.

[69] 1. Baum, T. Petrie, G. Soules, and N. Weiss, "A maximization technique occurring

in the statistical analysis of probabilistic functions of Markov chains." The Annals

of Mathematical Statistics, vol. 41, pp. 164-171, 1970.

[70J K. Sjolander, K. Karplus, M. Brown, R. Hughey, A. Krogh, 1. S. Mian, and D. Haus­

sler, "Dirichlet mixture: A method for improved detection of weak but significant

proten sequence homology," in CABIOS, vol. 12, 1996, pp. 327-345.

[71 J A. Krogh and S. K. Riis, "Hidden Neural Networks," Neural Computation, vol. 11,

pp. 541-563, 1999.

[72J P. Fariselli, P. Martelli, and R. Casadio, "The posterior-Viterbi: a new decoding al­

gorithm for hidden Markov models," Quantitative Biology, ''http://arxiv.org/abs/q­

bio.BM/OS01006", 2005.

[73J 1. Kall, A. Krogh, and E. Sonnhammer, "An HMM posterior decoder for sequence

feature prediction that includes homology information," Bioinformatics, vol. 21,

pp. 251-257, 2005.

[74] B. Juang and L. Rabiner, "Hidden Markov models for speech recognition," Tech­

no metrics, vol. 33, no. 3, pp. 251-272, 1991.

[75] P. Gopalakrishnan, D. Kanevsky, A. Nadas, and D. Nahamoo, "An inequality for

rational functions with applications to some statistical estimation problem," IEEE

Transactions on Information Theory, vol. 37, no. 1, pp. 107-113, 1991.

[76] Y. Normandin and S. Morgera, "An improved MMIE training algorithm for speaker

independent, small vocabulary, continuous speech recognition," in Proceedings of

the International Conference on Acoustics, Speech, and Signal Processing, 1991,

pp. 537-540.

[77] Y. Normandin, R. Cardin, and R. Mori, "High-performance connected digit recogni­

tion using maximum mutual information estimation," IEEE Transactions on Speech

and Audio Processing, vol. 2, pp. 229-311, 1994.

109

[78J S. K. Riis, "Hidden Markov Models and Neural Networks for Speech Recognition,"

Ph.D. dissertation, Technical University of Denmark, 1998.

[79J L. R. Bahl, F. Jelinek, and R. L. Mercer, "A maximum likelihood approach to con­

tinuous speech recognition," IEEE Transactions on Pattern Anal. Machine Intell.,

vol. 5, pp. 179-190, 1983.

[80] A. Stolcke, "Bayesian Learning of Probabilistic Language Models," Ph.D. disserta­

tion, University of California at Berkeley, 1994.

[81] Y. Fujiwara, M. Asogawa, and A. Konagaya, "Motif Extraction using an Improved

Iterative Duplication Method for HMM Topology Learning," in In Pacific Sympo­

sium on Biocumputing '96, 1995, pp. 713-714.

[82] C. W. S. K. Chau, C. K. Diu, and W. R. Fahrner, "Optimization of HMM by a

Genetic Algorithm," in International Conference on Aucoustics, Speech and Signal

Processing, 1997, pp. 1727-1730.

[83J S. Kwong, C. Chau, K. Man, and K. Tang, "Optimisation of HMM topology and its

model parameters by genetic algorithms," Pattern recognition, vol. 34, pp. 509-522,

2001.

[84] K. Murphy and S. Mian, "Modelling Gene Expression Data using Dynamic Bayesian

Networks," Computer Science Division, University of California, Berkeley, CA,

Tech. Rep., 1991.

[85] C. R. Friedman, J. Neimann, H. C. Wegener, and R. V. Tauxe, Epidemiology of

Campylobacter jejuni infection in the United States and other industrialized nations.

ASM Press, Washington, DC., 2000, pp. 121-139.

[86] J. M. Berg, J. L. Tymoczko, and 1. Stryer, Biochemstry, 5th ed. Michelle Julet,

2002.

[87] M. M. Wosten, M. Boeve, M. G. Koot, A. C. van Nuene, and B. A. van der Zeijst,

"Identification of Campylobacter jejuni promoter sequence," J. Bacteriaol., vol.

180, pp. 594-599, 1998.

[88] L. Petersen, T. S. Larsen, D. W. Ussery, S. L. W. On, and A. Krogh, "RpoD

promoters in Campylobacter jejuni exhibit a strong periodic signal instead of a -35

box," Journal of Molecular Biology, vol. 326, no. 5, pp. 1361-1372, 2003.

[89] T. M. Mitchell, Machine Learning. McGraw-Hill Companies, Inc., 1997.

[90] A. Krogh, An introduction to hidden Markov models for biological sequences, ser.

Computational Methods in Molecular Biology. Amsterdam: Elsevier, 1998, ch. 4,

pp.45-63.

110

[91] B. Rost and V. Eyrich, "Eva: large-scale analysis of secondary structure prediction,"

Proteins, vol. 5, pp. 192-199,2001.

[92] I. Van Walle, I. Lasters, and L. Wyns, "SABmark-a benchmark for sequence align­

ment that covers the entire known fold space." Bioinformatics, vol. 21, pp. 1267-8,

2005.

[93] T. Hamelryck and B. Manderick, "PDB file parser and structure dass implemented

in Python." Bioinformatics, vol. 19, pp. 2308-10, 2003.

[94] D. Rumelhart, G. Hinton, and R. Williams, "Learining representations by back­

propagating error," Nature, vol. 323, pp. 533-536, 1986.

[95) L. Davis, "Bit-diming, representational bias, and test suite design," in Proceedings

of the Fourth International Conference on Genetic Algorithms, 1991, pp. 18-23.

111

