
UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

School of Electronics and Computer Science

Document Flow Model- A Formal Notation for Modelling Asynchronous Web

Services

By

Jingtao Yang

Thesis for the degree of Doctor of Philosophy

May 2006

· ~.

UNIVERS1.TY~O~ ,SOUTHAMPTON
",

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

School of Electronics and Computer Science

Doctor of Philosophy

Document Flow Model- A Formal Notation for Modelling Asynchronous Web

Services

by Jingtao Yang

Web service architecture offers advantages over traditional architectures in business­

level interoperability across organisations. It has been commonly believed to be the

one technology to implement future enterprise systems. Thus the effort to develop and

standardise web services is overwhelming. More than 100 web service (WS-*)

specifications have been introduced in the past few years. The aim of this work is to

bridge the industrial specifications and real implementations using fonnal models. A

fonnal model is important here to provide a high level abstraction of the system

behaviours that could be applied to various web service specifications. It also helps to

understand a system and further analyse it by converting the model into code used by

traditional model checking tools.

We introduce a new fonnal notation, Document Flow Model (DFM), to model

asynchronous web service composition. Unlike other web service composition

languages, our DFM not only captures the common service-oriented system

behaviours, such as asynchronous communication, but also addresses the design

issues of dynamic configurations, and long running business interactions in particular.

In addition, we develop a fonnal operational semantics for the DFM specification

describing the possible behaviours of a system composed of inter-related web services

which helps to further analyse and simulate a system that is composed of

asynchronous web services.

TABLE OF CONTENTS

ABSTRACT ... i

TABLE OF CONTENTS .. ii

LIST OF FIGURES .. vi

LIST OF TABLES .. viii

DECLARATION AUTHORSHIP ... ix

ACKNOWLEDGEMENT .. x

Chapter 1

1.1

1.2

1.3

1.4

1.5

Chapter 2

2.1.1

2.1.2

2.1.3

2.2

2.2.1

2.2.2

2.2.3

2.2.4

Introduction ... 1

Research Motivation .. 2

Research Contributions ... 4

Research Methodology .. 5

Research Evaluation .. 7

Thesis Structure ... 8

Backgro un d .. 1 0

Client-Server Architecture .. 11

P2P Architecture ... 12

Messaging System ... 12

Service-Oriented Architecture ... 13

What is a Web Service? .. 13

What is a SOA? ... 13

Supporting Standards and Technologies ... 14

WSDL ... 16

2.2.5 Web Service Composition ... 17

2.3 Workflow Technologies .. 21

2.3.1 Activity-Based Business Process Modelling ... 23

2.3.2 Message-Based Business Process Modelling .. 25

11

204

2.4.1

204.2

204.3

20404

204.5

Formal Models and Related Works ... 26

UML Models ... 26

Process Algebra Approach .. 27

Petri Net Model ... 28

SPIN .. 29

Summary ... 29

2.5 Web Service Dynamism .. 30

2.5.1 Web Service Dynamic Behaviours ... 30

2.5.2 Related Dynamic Web Service Works .. 31

2.6 Our Services Composition Approach .. 32

2.6.1 Web Service Composition Requirement ... 32

2.6.2 Our Service Composition Approach ... 36

Chapter 3 Document Flow Model .. 39

3.1 What is DFM? ... 39

3.1.1 Supporting XML Data Structure ... 39

3 .1.2 Using Context Coordination Mechanism ... 040

3.1.3 Modelling Asynchronous Communication 041

3.2 Formal Syntax ... 44

3.2.1 The Basic Structure ... 45

3.2.2 The Message Definition Body 045

3.2.3 Actions .. 46

3.2.4 Conditions ... 47

3.2.5 Control Flow ... 47

3.2.6 XML Data Structure .. 48

3.2.7 ContextStore .. 50

3.2.8 Keywords .. 50

3.3 An Example ... 51

3.3.1 A Travel Agent System ... 52

3.3.2 Summary ... 56

Chapter 4 Illustration ... 58

4.1 An Example of Dynamic Replacing a Service .. 58

4.1.1 Service Coordination ... 58

4.1.2 A Job Submission System ... 59

111

4.1.3 A Re-Configured Job Submission System .. 63

4.1.4 Demonstration ... 66

4.2 Discussion ... 69

4.2.1 DFM Message Flow Patterns .. 70

4.2.2 Modelling Workflow Patterns ... 72

Chapter 5 Comparison .. 77

5.1 A BPEL Example .. 77

5.2 The BPEL4WS Model ... 79

5.3 The DFM Model .. 82

5.3.1 A Purchase Process Specification ... 83

5.3.2 A Shipping Service Specification ... 85

5.3.3 An Invoicing Service Specification .. 85

5.3.4 A Scheduling Process Specification .. 86

5.4 BPEL4WS andDFM ... 87

5.4.1 Formal Model vs. Industrial Standard ... 87

5.4.2 Distributed Workflow vs. Centralised Workflow ... 88

5.4.3 Support for Long-running Interactions ... 90

5.4.4 Summary ... 90

5.5 WSCI and DFM ... 91

5.5.1 A Travel Agent Example in WSCI ... 92

Chapter 6 Formal Semantics .. 93

6.1 Operational Semantics ... 93

6.1.1 Specification Functions ... 94

6.1.2

6.1.3

6.1.4

6.2

6.2.1

6.2.2

Chapter 7

7.1

7.2

7.3

Semantic Functions ... 97

System Configurations .. l 0 1

A Transition .. 101

Discussion ... 1 03

Dynamic Configuration Scenario .. 1 03

Summary ... 108

Conclusion and Future Work .. 109

Research Contribution ... 109

Research Evaluation .. 114

Future Work .. 117

iv

7.3.1 Potential Improvement on the Operational Semantics 117

7.3.2 A Simulation Too1. .. 118

7.3.3 BPEL4WS Formal Verification .. 118

Appendices ... 120

Appendix A An Investigation of Asynchronous Invocations Using Servlet and JSP 120

Appendix B A Travel Agent Implementation Using XSLT and SOAP 120

Appendix C A JavaScript DFM Model .. 121

Appendix D Formal Verification ofDFM using ARC .. .121

Appendix E A BPEL4WS Implementation using IBM BPWS4J 122

Appendix A An Investigation of Asynchronous Invocations Using Servlet and JSP 123

Servlet and JSP ... 123

A Synchronous Solution ... 124

An Asynchronous Solution ... 125

Conclusion .. 127

Appendix B A Travel Agent Implementation Using XSLT and SOAP 129

Functional Programming Language and XSLT .. 129

Java SOAP APIs ... 138

Appendix C A JavaScript DFM Model ... 140

Why JavaScript? ... 140

A JavaScript DFM Tool ... 141

DFM in JavaScript .. 143

Appendix D Formal Verification ofDFM using ARC .. 151

What is ARC? .. 151

DFM ARC Model ... 152

DFM ARC Model Verification ... 157

Appendix E A BEPL4WS Implementation using IBM BPWS4J 159

BPWS4J .. 159

A Job Submission Business Process ... 161

Bibliography .. 168

v

LIST OF FIGURES

Figure 2-1 Web Service Architecture I ... 13

Figure 2-2 Web Service Architecture II .. 14

Figure 2-3 Web Service Standard Stack ... 15

Figure 2-4 A Orchestrated BPEL Service Composition ... 18

Figure 2-5 A WSCI Choreography Service Composition20

Figure 2-6 An Abstract Workflow Management Model... .. 22

Figure 2-7 Activity - based Workflow .. .24

Figure 2-8 Interaction State in Messages .. 34

Figure 2-9 Interaction State in Database ... 36

Figure 3-1 A Synchronous Communication .. .42

Figure 3-2 An Asynchronous Communication .. .43

Figure 3-3 A DFM Control Flow Example .. .48

Figure 3-4 A Simple Travel Agent Sequence Diagram .. 52

Figure 3-5 A Travel Agent Specification - I .. 53

Figure 3-6 A Shop Specification ... 54

Figure 3-7 A Travel Agent Specification - II ... 55

Figure 3-8 A Document Flow Chart ... 55

Figure 4-1 A Simple Job Submission Sequence Diagram .. 60

Figure 4-2 A Job Submission Example .. 60

Figure 4-3 A FlowService Specification ... 61

Figure 4-4 A JobService Specification ... 62

Figure 4-5 A Coordination Service Specification ... 62

Figure 4-6 A Re-configured Job Submission Example .. 64

Figure 4-7 Updated FlowService Specification .. 65

Figure 4-8 The In Programming Pattern ... 70

Figure 4-9 The In-Outs Programming Pattern .. 71

Figure 4-10 The Ins-Outs Programming Pattern ... 72

Figure 4-11 Sequence Workflow Pattern .. 73

Figure 4-12 Parallel Split Workflow Pattern .. 73

Figure 4-13 Synchronisation Workflow Pattern ... 74

VI

Figure 4-14 Exclusive Choice Workflow Pattern ... 74

Figure 4-15 Exclusive Choice DFM ModeL .. 75

Figure 4-16 Simple Marge Workflow Pattern .. 75

Figure 4-17 Simple Merge DFM ModeL ... 75

Figure 5-1 A BPEL4WS Example .. 77

Figure 5-2 A Purchase Process in BEPL4WS ... 80

Figure 5-3 The Sequence Diagram of BPEL4WS Example ... 82

Figure 5-4 A Purchase Process Specification ... 84

Figure 5-5 A Shipping Service Specification ... 85

Figure 5-6 An Invoicing Service Specification .. 86

Figure 5-7 A Schedule Service Specification ... 86

Figure 5-8 A TravelAgent Example in WSCI .. 91

Figure 6-1 A Message Pool .. 97

Figure 6-2 A Transition Rule .. 101

Figure 6-3 A Travel Agent Transition Diagrams .. 102

Figure 6-4 A Service Flow Example .. 105

Figure 6-5 A System Flow Example ... 105

Figure 6-6 Replace a Service Locally ... 106

Figure 6-7 Replace a Service Global .. 1 07

Figure A-I Synchronous Travel Agent Communication .. 124

Figure A-2 Asynchronous Travel Agent Communication .. 126

Figure A-3 Travel Agent System Configuration and Trace .. 127

Figure C-1 A JavaScript DFM Checker.. .. 142

Figure D-1 ARC GUI ... 151

Figure D-2 ARC Verification Result .. 158

Figure E-1 A BPWS4J GUI .. 159

Figure E-2 Deployed Business Processes ... 160

Figure E-3 Our Job Submission Process ... 161

vii

LIST OF TABLES

Table 3-1 DFM Meta-Symbols ... 44

Table 3-2 DFM Keywords .. 51

Table 4-1 Message Examples of a Re-configured Job Submission .. 68

Table 4-2 Re-configured Job Submission Interaction State .. 69

Table 5-1 BPEL Example - Supporting Services ... 78

Table 5-2 A Centralised Workflow Model ... 88

Table 5-3 A Distributed Workflow Model ... 89

Table 6-1 A Configuration Table of a Service, Si .. 98

viii

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisors, Prof. Peter Henderson and Dr.

Corina Cirstea, for their invaluable guidance, encouragement and patience through the

completion of the work presented in this thesis. I am very thankful to them for teaching me

how to conduct good research and for sharing me their knowledge and research ideas

generously.

I would also like to acknowledge the help, support and friendship which I have received from

the people in the Declarative System and Software Engineering research group, University of

Southampton.

At last, I would like to thank my parents who give their whole life for the family. No words

would be enough to express my guilty for could not be there with you in the critical time. I

cannot reach any of the achievements without your love and supports. This thesis is dedicated

to you, my beloved parents.

x

Chapter 1

Introduction

Enterprise systems are the outcome of the fast developed Internet technology. Such

technology enables computer systems go across the boundary of an organisation freely. An

enterprise as a business unit may perform in different business roles and offer diverse services

on the demand of their business partners and customers. Various new enterprise business

patterns have been introduced by computer scientists in the past few years. As the enterprise

systems continue to become larger and more complex, issues have to be solved to compliant

the rapid business requirement change.

First, an enterprise system is about business to business interactions. Modem Internet

environments are heterogeneous [1]. Computer systems are developed by different

programming languages and running on various platforms. The business level interoperability

is essential to design and implement enterprise systems.

Web service technology is developed to achieve universal interoperability between

applications by using web standards [2]. In a service-oriented architecture, a web service is a

specific piece of functionality that can be accessed by other services or clients through a

contractually specified interface [3]. Unlike object-oriented architecture, in which components

of a system are accessed via object-model-specific protocols such as the Distributed

Component Object Model (DCOM), Remote Method Invocation (RMI), or Internet Inter-ORB

Protocol (lIOP) , web services are accessed via ubiquitous web protocols and data formats,

such as Hypertext Transfer Protocol (HTTP), Extensible Markup Language (XML), and

Simple Object Access Protocol (SOAP) [4]. Using platform independent and standard XML

documents, a service consumer can invoke a service following the shared understanding but

does not care how the service is implemented which fits into the modem heterogeneous web

environment.

1

Chapter 1 Introduction 2

One of the challenges in current enterprise systems is how to build business-to-business

interaction, adapting to the dynamic changed business environment. The distributed web

services in an enterprise system are required to be changed or updated without recompiling

and replacing the whole system. Meanwhile, those web services should be able to plug-in and

plug-out to the living systems without affecting any normal system behaviour and operations

[5].

Correctness and integrity are of course vital for the enterprise systems. Service-oriented

architecture offers great advantages in business level interoperability, but it also adds

difficulties to the system implementation and validation. Business-to-business interactions are

executed on top of advanced middlewares. The completion and correctness of a business

interaction rely on both implementations of individual services and low level networking

services.

Modelling is a formal method that is used to design software or systems before coding.

"Using a model, those responsible for a software development project's success can assure

themselves that business functionality is complete and correct, end-user needs are met, and

program design supports requirements for scalability, robustness, security, extendibility, and

other characteristics, before implementation in code renders changes difficult and expensive to

make" [6].

Enterprise systems are complicated [Section 2.1]. Extending current modelling capabilities to

specify business interactions in a service-oriented enterprise system is not only an applicable

way to validate systems at design level but also a potential way to build up tools so that non­

developer can specify systems in script and generate systems automatically.

1.1 Research Motivation

The motivation of this work is to investigate modem service-oriented enterprise system

environments, and use formal modelling to capture a service-oriented business interaction as a

workflow specification, in order to facilitate service-oriented system automation, and

validation.

Service-oriented systems enable independent distributed web serVIces to interact through

asynchronous messages. These services " ... whether on the same host, the same network, or

Chapter 1 Introduction 3

loosely connected through the Internet, use messaging to pass data and to coordinate their

respective functions" [7]. This kind of loosely-coupled architecture brings complexity to the

implementation and verification.

While traditional activity-based modelling approaches have been successfully used in research

and commercial systems for decades, it is not expressive enough to model modem service­

oriented system in some aspects. An activity-based modelling approach relies on the

organisation structures, roles and relationships. Whereas, a modem enterprise application

manages business processes cross organisations; and structures of an organisation are

dynamically changed. Moreover activity-based modelling approaches assume components in a

system are tightly-integrated, in contrast web services are loosely-coupled by the

asynchronous messages in a service-oriented system.

The Business Process Execution Language for Web Services (BPEL4WS) specification has

been positioned to be the key standard to specify modem service-oriented business processes.

It conjoins web service messaging features with the activity-based modelling approach.

Currently, most workflow works [8, 9] leverage the concepts from BPEL4WS, and focus on

workflow patterns. However the BPEL4WS separates a workflow from web services involved

in its execution, by using a pre-defined workflow instance with full interaction states

communicating with stateless web services [10]. The life cycle management concerning long­

running interactions and dynamic service configurations has not yet been considered. In

respect that modem enterprise applications are much more complex: interactions run for long

periods (days, weeks); a component is required to be dynamically replaced by another

component or created into the system while some interactions are still active [11].

Experiments [5, 30, Appendix E] show that business process states are necessarily to be

maintained consistently, persistently and separately in certain circumstance if dynamic

business interactions run over long periods of time. Thus a coordination framework is required

to manage the interactions between stateless business components and state components in

order to model and specify such dynamic long-running business interactions.

Context is a mechanism used in collaborative distributed applications. A context allows a

component to share information such as message correlation and security token and so on.

Extension to the basic context operations, a context could be used as a contract shared by

Chapter 1 Introduction 4

stateless distributed components (web services) and state maintaining components participated

in the same business interactions.

Our modelling approach extends traditional activity-based approach with the capability to

model the behaviour of asynchronous web service interactions. A context coordination

framework is introduced to provide a mean to support long-running business interactions and

dynamic behaviours.

1.2 Research Contributions

The work presented in this thesis contributes the state of the art in the followings:

1. Designing and implementing web service oriented system is challenging. We review

the common service-oriented system behaviours and address the design issues of

dynamic behaviours, and long running business interactions in particular. We

introduce a design notation Document Flow Model to reason those behaviours and

business interactions.

2. The Document Flow Model uses a novel message-based approach to model service­

oriented business interactions. It exhibits the following properties:

a. An XML-convertible notation. The document record data structure is

invented which describes a tree data structure in a concise notation. It could

be converted into XML data structure which could be further fitted into other

web service standards.

b. Modelling asynchronous communications. Two kinds of communication

patterns are supported, one-way, which amounts to a service receiving a

message, and notification which amounts to a service sending a message. Any

complex and structured asynchronous communication could be decomposed

to simple communication using the two patterns.

c. Supporting long-running interactions and dynamic configurations. A

coordination framework is used in DFM including: a context to identifY a

business interaction state; a decentralised context propagation mechanism to

Chapter 1 Introduction 5

structure interaction related data; a persistent component, a ContextStore, to

maintain the interaction state.

3. A novel formalisation (a formal operational semantics) is also developed for the DFM

specification: It describes the possible behaviours of a system of inter-related web

services, in terms of the messages that can be exchanged during the execution of one

or more business interactions, and the effect each message execution has on the

business interaction states.

The work presented in this thesis has resulted in the following publications:

• "Reusable Web Services", Peter Henderson and Jingtao Yang, in proceeding of 8th

International Conference on Software Reuse, ICSR 2004, LNCS 3107, Madrid, Spain,

2004. This paper supports the above contribution points (1 and 2).

• "Document Flow Model: A Formal Notation for Modelling Asynchronous Web

Services Composition", Jingtao Yang, Corina Cirstea and Peter Henderson, in

proceeding of the OnTheMove Workshops 2005, LNCS 3762, Agia Napa, Cyprus,

2005. This paper supports the above contribution point (2).

• "An operational semantics for DFM: a formal notation for modelling asynchronous

web service coordinations", Jingtao Yang, Carina Cirstea and Peter Henderson, in

proceeding of the 5th International Conference on Quality Software, QSIC2005,

Melbourne, Australia, 2005. This paper supports the above contribution point (2 and

3).

1.3 Research Methodology

Developing large scale distributed systems is expensive. To reduce design cost, it is necessary

to make sure that system design is consistent with the system requirements before the

implementation. One way to do this is to build an abstract model of the system. Reasoning

about the abstract model helps designers understand the consequence of the system and check

whether the design satisfies the requirements. Moreover, the variations of the abstract model

shall be used in experiments to verify that it really achieve all system objectives. We create a

new abstract model to design service-oriented enterprise systems. The model is expressive

enough to capture service-oriented system behaviours and also simple enough for non-IT

Chapter 1 Introduction 6

experts to design enterprise systems. Meanwhile, it provides the capabilities of formal

reasoning and validation.

A language is needed to define the abstract model, either an existing language or a new

language specifically created for the abstract model. Creating a new language is more

challenging than using an existing one. However, a new language can be more suitable for the

abstract model and the targeting applications, by incorporating capabilities to describe specific

system behaviours.

In this work, we aim to specify the behaviours in the new service-oriented architecture. We

examine other related formal models and indicate why they are not expressive enough to

model the new service-oriented architecture [Section 2.4] [Section 2.5] [Section 2.3.1].

Therefore, we invent a new language to capture the service-oriented system behaviours, such

as loosely-coupled connectivity, stateless web service nature, long-running business

interactions, dynamic configurations and so on [Chapter 3]. Moreover, the language is simple

but descriptive to model the content of the messages.

To facilitate the use of the abstract model, it is desirable to give a meaning to the language and

demonstrate its utility. The popular way to give the language meaning is by defining

mathematical semantics, but it is difficult for a system designer to understand the highly

abstract mathematic formulas. It is also not straightforward to implement tools or systems

using those abstract formulas.

In the abstract of this thesis, it has been emphasised that this work aims to bridge the industry

specifications and mathematic models. Hence a traditional descriptive semantics is developed

for our language [Chapter 6]. On one hand, it captures the system characteristics that can not

be captured by the mathematic semantics, for example our operational semantics captures the

loosely-coupled system behaviours by separating the concerns of message deliveries and

message executions; on the other hand, it is closer to the real system implementations and well

serves the motivation of this work.

There are two ways to demonstrate the utility of a language. One way is to apply the language

to a number of distinct, non-trivial applications. A good language should be applicable to a

variety of applications.

Chapter 1 Introduction 7

In this thesis, we demonstrate that our language can specifY typical service-oriented systems

[Chapter 3], hierarchical grid applications [Chapter 4] and comprehensive BPEL4WS

[Chapter 5] applications. Specifically, the travel agent example in Chapter 3 shows that our

language can specifY a long-running distributed system that is composed of autonomous web

services. The re-configurable job submission application in Chapter 4 provides a complete

novel solution to solve the plug-and-play design issue in grid applications. It allows a system

to be easily expanded and reduced depending on the availabilities of network resources. In the

warehouse purchasing example in Chapter 5, a single business interaction includes ten

message exchanges, and is carried out by five independent web services (or business

processes).

Another way to demonstrate the utility of a language is by comparison. It is difficult to say

that one language is better than the other without considering applications.

In this work, we address new design issues [Chapter 2] in web service oriented applications.

In Chapter 5, we compare our DFM language with the BPEL4WS specification using the

warehouse purchasing example. We examine the two models from different aspects, for

example the support for long-running business interactions, the support for dynamic

behaviours, and advantages of two different architectures. We also compare our language with

the Web Service Choreography Interface (WSCI) specification using the travel agent example.

By comparing our language with related works, the benefits of our work in the design issues

we have raised are much clearer [Chapter 5].

1.4 Research Evaluation

This section summarises the evaluation methods we have used in this work.

In this work, we developed a new modelling language to design dynamic web servIce

compositions in loosely-coupled web environments. The modelling language has been

validated in different aspects.

Firstly, we demonstrated the utility of our language by applying it to a number of non-trivial

applications [Chapter 3] [Chapter 4] [Chapter 5]. The diversity of applications validates the

usage of the language. Similar evaluation approach which is "through example compositions

published by IBM" has been done in other research work [43].

Chapter 1 Introduction 8

Secondly, we demonstrated our modelling language by comparing it to a number of previous

works. The comparison [Chapter 5] clearly shows the advantages of our work against the

previous ones.

Thirdly, we validated our modelling language by providing its operational meanings [Chapter

6]. The operational semantics [40] proves that our language solves the architecture issues

declared when designing our language, for example, asynchronous communication, loosely­

coupled environment, and dynamic behaviours.

Finally, we validated our work by implementations. By compiling our model into ARC model

[Appendix D], we demonstrated that our language could be used by existing formal model

checking tools. A partial JavaScript message tool simulation [Appendix C] shows that our

operational semantics could be developed to validate loosely-coupled applications.

This work aims to solve new architecture issues that have not been covered by traditional

languages. We have validated language through comparison, utility, formalisation, and partial

implementation. The extension and improvement have been presented in the future work

[Chapter 7].

1.5 Thesis Structure

The remainder of the thesis is structured in the following manner:

Chapter 2 presents a literature review of workflow and web service technologies. This chapter

gives the motivation of our research by analysing the limitation of traditional process

modelling approach and reviewing the different approach of current industrial web services

standards.

Chapter 3 presents the formal syntax and informal semantics of our Document Flow Model

(DFM) notation. It describes the concept and features of the notation and uses a simple

example to explain the use of the notation.

Chapter 4 continues to illustrate the use of the notation. This chapter first uses a typical grid

example to demonstrate the DFM capability to support long-running interactions and dynamic

configurations, and then summarises the DFM programming patterns and explains how to use

those patterns to model typical workflow patterns.

Chapter 1 Introduction 9

Chapter 5 compares our DFM with current industrial web service composition standards,

BPEL4WS, using an example borrowing from the BPEL4WS specification, and briefly

discusses the difference between WSCI and DFM.

Chapter 6 presents a formal operational semantics of the Document Flow Model. This chapter

describes the abstract machine composed by asynchronous web services, and gives the rule

governing the execution of the system. It also discusses the operational rules of dynamic

configuration behaviours.

Chapter 7 draws some conclusions from our research and discusses the future work.

Chapter 2

Background

This work contributed in fonnal models of web service oriented enterprise system. Thus in this Chapter,

we introduce the background regarding enterprise system architecture and provide an overview of the

previous research reported in the literature. Firstly we review the architecture support for modem

enterprise systems and introduce the new web service-oriented architecture. Then we study the

traditional workflow technology, fonnal models and analyse why they are not suitable for the new

service-oriented architecture. Finally, we review other web service composition works, summarise the

dynamic service composition requirements, and give the basis of our service composition approach. We

will not discuss software process modelling technology in this work because we have reviewed the

related conferences and workshops like ICSP, ISPW, EWSPT and believe they lack support of formal

models and web service technologies.

Enterprise System Review

IT Technology not only assists real world business but also creates new business patterns.

Using SQL and client-server platform, a distributed system helps an organisation integrate its

separate data sources and business logics together. What is next? Can we create a new

business pattern by using the functionalities provided by different organisations? Enterprise

system is used to describe this kind of business pattern.

An enterprise system is distributed, large-scale and cross-organisational. Efforts are needed

from both industry and academia to build such systems, which include creating new

architectures to design the system, constructing platforms to run the system, using new formal

models to facilitate the system engineering and so on.

An enterprise system IS a composition of components from various organisations. These

components are used to serve their own organisational systems. We can not always

compromise a legacy system to create a new system. Therefore, the new architecture has to

maintain the legacy system so that the components could be used by both the legacy system

and the new cross-organisational system.

10

Chapter 2 Background 11

An enterprise system has to be open and independent of any platforms [44]. Applications are

built on heterogeneous web environment. Organisations develop their traditional systems

using different software and programming languages. The new platform will support the

components interoperability by providing interaction protocols, and common components

interfaces.

An enterprise system has to be easily integrated. A tightly integrated system normally

tremendously reduces the reusability and dynamism of the system and its components. This is

exactly what enterprise systems try to avoid. Furthermore, the dynamism is mandatory in an

enterprise system which allows the components to be recomposable and reconfigurable.

Complex mechanism in the new architecture has to be avoided so that the system could be

easily re-integrated to adapt the constantly changing business environment.

To build a comprehensive and robust enterprise system, software industry and academia have

to facilitate each together and provide support on architecture, platform and system

engineering. Reviewing the works that have been done all the levels to achieve this goal, we

can see that there is no suitable notation for the business analyst to design the system [45].

The problem happened because, on one side, industry provides comprehensive programming

and specification languages to implement enterprise system; while on the other side, academia

uses highly abstract mathematic models to reason and verify the system. We can not expect a

business analyst to design a system using specification languages which is normally done by

the IT specialist. Some academic researchers also found it is not straightforward to verify

most of the industry specifications [46]. Intermediation is urgently required to fill this gap.

2.1.1 Client-Server Architecture

The client-server architecture is used to describe a system that user interfaces (clients) and

business logics (servers) are located at different network places. The development of the SQL

technology allows an application to separate its business data from business logics, so that

client-server architecture can be presented as 3 tiers: a presentation tier (user interfaces), a

logic tier (functional logics) and a data tier (a database or a file system).

The client-server architecture has been widely used in large-scale organisational applications,

for example large-scale e-commerce system. The contributions of this architecture are

distribution and modular design. The disadvantage is that client-server applications largely

Chapter 2 Background 12

reply on the business logics on the server side. A centralised system architecture sometimes

encounters server problems such as scalability, availability and security [47].

2.1.2 P2P Architecture

P2P, Peer-to-Peer, architecture refers to a system composed of a number of equivalent

distributed components. This differs from client-server architecture where a component

behaves as a server and a client simultaneously. P2P architecture has been used in network

resource sharing. Napster is a famous P2P online music sharing system. A user accesses music

resources stored in file systems of distributed computers. Grid computing is another example

of P2P. Instead of sharing file systems, grid computing shares CPUs. A computer within a

grid can join a computation process when its CPU is free. It is extremely useful in scientific

project, where the computation tasks are huge.

P2P architecture distributes system responsibility to a group of peer computers, significantly

releases the heavy workload on a single computer. The disadvantage of this structure is that

collaboration is needed among all peer computers.

2.1.3 Messaging System

A messaging system IS basically a P2P system where components interact with peer

components by messages. It introduces the loosely-coupled design pattern into modem

distributed systems.

Traditional distributed systems are tightly-integrated, a component of a system control other

components; the operation of one component may rely on the results of operations taking

place in other components. In contrast, components in a loosely-coupled system are much

more independent. Components basically process on their own demand. The system is more

reliable than traditional tightly-integrated systems, because the failure of one component will

not result in the failure of the whole system.

With message-oriented middleware supports, a distributed system can largely increase the

system scalabilities, and allow thousands of components interacting with each other

simultaneously. Messaging systems separate the concerns of the components functionality

from message delivery, thus such systems are more flexible to change their components.

Chapter 2 Background 13

2.2 Service-Oriented Architecture

Service-Oriented architecture is a new architecture for modem enterprise systems. It uses

standardised interfaces and ubiquitous web protocols, so that applications running on

heterogeneous web environment can interact with each other. In this section, we introduce the

service-oriented architecture, fundamental standards and review some related industrial

specifications.

2.2.1 What is a Web Service?

A web service is an autonomous entity that provides an interface to describe a collection of

operations that are network-accessible through standardised XML messaging. In the W3C

Web Services Architecture specification, web service connections are stateless, that is all the

data for a given request must be in the request. Therefore, a web service is essentially a well­

defined, self-contained function, and does not depend on the context or state of other services

[16].

2.2.2 What is a SOA?

A basic service-oriented architecture comprises a service consumer and a service provider.

The service consumer sends a service request message to the service provider. The service

provider returns a response message to the service consumer. The request and subsequent

response connections are defined in some way that is understandable to both the service

consumer and service provider.

Service
Consumer

Service Request

Service Response

Figure 2-1 Web Service AI·chitecture I

Service
Provider

Chapter 2 Background 14

A complex service-oriented architecture consists of a collection of consumers and providers.

A service provider can sometimes behave like a service consumer, and a service consumer

also could also be a service provider. Each service stands somewhere in the Internet. To

assemble services, a registry service is required in the SOA.

A serVIce provider publishes its servIce descriptions with a servIce registry; a servIce

consumer then queries and finds published services at registry; subsequently the servIce

consumer can directly bind to the service and send a service request.

Service
Provider

Service
Directory

Service Request

Servloo Response

Service
Consumer

Figure 2-2 W eb Service Architecture II

2.2.3 Supporting Standards and Technologies

We have seen the abstract concept of a web service and service oriented architecture. Now we

give a brief introduction about supporting standards and technologies from the

implementation point of view.

All the required web services must be network accessible. The network is the foundation layer

for the web services. The network is normally based on an HTTP protocol, but other kinds of

network protocols, such as the Simple Mail Transfer Protocol (SMTP), Internet Inter-Orb

Protocol (lIOP), are also used [4].

Chapter 2 Background

Service Composition
(Workflow) :

WSFL, XLANG,BPEL4WS,
BPML, etc

Service Quality of
Publication & Service:
Discovery : wss, ws-

UDDI RelioiJility, etc

Service Description : WSDL

XML- Based Messaging: SOAP

Network: HTTP,SMTP, etc

Figure 2-3 Web Service Standard Stack

15

On top of the networking layer is an XML-based messaging layer that facilitates

communications between web services and their c1ients_ Simple Object Access Protocol

(SOAP) is based on XML and running on top ofHTTP,

WSDL (Web Service Description Language) is a specification that describes web services.

Again this is an XML-based service description of how to communicate using the web service;

namely the protocol bindings and message formats required to interact with the web services

listed in its directory, The supported operations and messages are described abstractly, and

then bound to a concrete network protocol and message format [42J-

These three layers are the fundamental of SOA. Additional technologies can be placed on top

of these layers in order to meet different business requirement.

UDDI, (Universal Description, Discovery, and Integration) is a platform-independent, XML­

based registry for web services [17J- It supports web service publication and discovery, A

service provider sends the WSDL to registry, so that a service consumer can query the registry

and using WSDL.

To provide Quality of Service, various specifications are proposed to satisfy security, Web

Service Security (WSS), and reliability (WS-Reliability) requirements,

Chapter 2 Background 16

A high-level web service is a composition of web services. This composition is captured as a

workflow specification. Key standards on this level are XLANG, WSFL, and BPEL4WS and

so on. We will review them a little later.

2.2.4 WSDL

As the basis of all web service specifications, a WSDL definition is an XML document used

to describe a Web Services interface. It also defines how web services are bound to specific

network addresses. In WSDL, a web service is a network endpoint, a port. There are five parts

in a WSDL definition.

• Types:

<type> defines data types used in the message declarations. Data types are machine- ,

language-independent and are based upon some agreed upon XML vocabulary.

• Messages:

<message> defines the data elements of operations. Each message consists of one or

more parts. The parts can be compared to the parameters of a function call in a

traditional programming language.

• PortTypes:

<portType> is the most important WSDL element. A port type describes service

supported operations that are internal actions when a service operation is invoked. An

operation can be compared to a function in a traditional programming language where

the input and output messages correspond to function input and output parameters.

There are four types of operations [3]:

1. One-way: The operation receives a message but will not return a response

2. Request-response: The operation receives a message and will return a response

message

3. Solicit-response: The operation sends a request message and will wait for a

response message

Chapter 2 Background 17

4. Notification: The operation sends a message but will not wait for a response

message.

• Binding:

<binding> defines how message are transmitted, and the location of the service. A

service binding connects port types to a port. A port is defined by associating a

network address with a port type. A collection of ports defines a service. This binding

is commonly created using SOAP, but other forms may be used.

• Service:

<service> is used to group related endpoint services together.

2.2.5 Web Service Composition

In early sections we reviewed the workflow technology, described why traditional activity­

based business process modelling is no longer expressive enough for the new web services

oriented environment, and gave a list of requirements for modem loosely coupled applications

using messages. In this section, we review current established service-oriented business

process modelling approaches.

Web service technology aims to achieve universal interoperability between applications by

using web standards [2]. We have reviewed web service architectures and supporting

standards. The network standards, XML-based messaging standards and service description

languages provide the underlying platform for service to service interactions. However, a

service-oriented application is composed by various independent web services which are

provided by multiple organisations. The composition protocols (standards) are required to

enable the integration of these services.

Currently, there are basically two approaches to achieve web service composition:

Orchestration and Choreography. Orchestration describes web service interactions at the

message level: the business logic and the execution of an interaction are controlled by one of

the business parties, the process [18]. The well-known standard using orchestration approach

is BPEL4WS [2]. In contrast, choreography describes the messages exchanged between web

services. There is no central control of any interaction. Each party involved in the interaction

Chapter 2 Background 18

has to specify its only part of the control. WSCI [20] is an example of choreography web

service composition.

WSAH (Web Services Acronym Hell) is a new web service acronym widely spread recently.

Here we only review the BPEL4WS and WSCI which are the most commonly acknowledged

standards and most related to our work.

2.2.5.1 Business Process Execution Language for Web Services

(BPEL4WS)

BPEL4WS is a converging standard of XLANG from Microsoft and WSFL from IBM.

XLANG is a XML-based specification language used to describe internal executable business

processes to support service public collaborative processes. It focuses on the creation of

business processes and the message exchange behaviours among web services. While WSFL,

Web Service Flow Language, describes a public (global model) flow that defines data

exchange and execution sequence of functions, and a private (flow model) flow that defines

how composed web services interact with each other.

\
\ -_.\
\
\
\
\
\
\
\

\
\ , ,

'I,

BPS. Process

...
·ce

3

Figure 2-4 A Orchestrated BPEL Service Composition

Lately, two companies combined them and released BPEL4WS (Business Process Execution

Language for Web Services) specification together with Siebel Systems, BEA and SAP.

Chapter 2 Background 19

BPEL4WS supports both private and public flows. The private flow models the behaviour of

business partners in a specific business interaction. The public flow is a business protocol

describing message exchanges between parties.

BPEL4WS introduces the concept of process-oriented form of service composition, whereby

each BPEL4WS composition is a business process that interacts with a set of web services to

achieve a certain goal [19]. Essentially, a process is a web service that supports WSDL

interfaces, interacts with partners by invoking operations they support and exchanges

messages through public interfaces. We can see that a BPEL service composition uses a

stateful interaction model that allows web services to exchange sequences of messages

between different business partners.

BPEL4WS defines two kinds of activities, basic activities and structured activities [2].

Basic activities are actions when a process interacts with external servIces or processes,

including:

• invoke: invoking an operation of a web service.

• receive: waiting for messages from a web service.

• reply: sending a response to a request previously accepted through a receive

activity.

• assign: assigning a value to a variable.

Structured activities indicate the order in which a collection of basic activities take place.

These activities support control patterns, data flow, handling of faults and external events and

so on. All structured activities can be recursively combined. Several structured activities are

defined including:

• sequence: defines the sequential of execution of activities.

• flow: defines the parallel execution of activities.

• pick: selects an execution path based on a set of conditions.

• switch: supports multi-choice patterns.

Chapter 2 Background 20

• while: defines an iterative activity.

2.2.5.2 Web Service Choreography Interface (WSCI)

The WSCI is a specification from Sun, SAP, BEA, and Intalio that defines an XML-based

language for web services collaboration. WSCI describes the observable behaviour of a web

service. It does not address the definition and the implementation of the internal process that

actually drive the message exchange [20]. The specification defines a service composition by

describing each party's involvement in each interaction. And a WSCI interface describes a

party's participation in a message exchange.

The WSCI builds on top of SOAP and WSDL standards. It extends the WSDL in a way that

correlating the operations of a web service. It describes the flow of messages exchanged by a

web service participating in choreographed interactions with other services [21].

... '
;' "

I
I

I
I

I

-"" \ ,
\ "
\ \
\ \
\ \
'\ \ , \

" \ " \

-------- ... -
".-"-

~, ~,

'- ~~

.... -........ ---------~",.

Figure 2-5 A WSCI Choreography Service Composition

WSCI also supports both basic and structured activities. An <action> is used to define a basic

request or response activity. Each activity specifies the WSDL operation involved and the role

being played by this participant. Structured activities like sequential and parallel processing

are also given in WSCI. In addition, an <all> structured activity is used to indicate the specific

actions have to be performed, but not in any particular order, and <foreach> structured

Chapter 2 Background 21

activity is used to specify repeatedly execution of inside activities based on the evaluation of a

condition or an expression.

2.3 Workflow Technologies

In the Oxford English Dictionary, Work Flow is defined as "in an office or industrial

organisation, the sequence of processes through which a piece of work passes from initiation

to completion". In computer science, people develop the workflow technology to improve the

wayan organisation works by making it better, faster and cheaper [12].

About 20 years ago, computer scientists started to develop software tools to not only do the

work, but also assign, deliver work, and even track the progress of the work. A workflow is

described in computer terms as "The automation of a business process, in whole or part,

during which documents, information or tasks are passed from one participant* to another for

action, according to a set of procedural rules. *participant = resource (human or machine)"

[13].

With the fast development of the Internet technology, the requirement for automation is not

limited inside an organisation. A modem enterprise application normally involves several

organisations. Participants are situated at distributed network places. The environments are

heterogeneous and dynamic.

A workflow system allows users to define and manage a sequence of work activities; invoke

human and IT resources; and execute the activities following specified logic and steps.

An abstract workflow management model is summarised by three levels [13].

Chapter 2 Background

Conceptual Leval

Control Level

Resource Level

Business Process Analysis, Modeling,
Definition Tools

Figure 2-6 An Abstract Workflow Management Model

22

The conceptual level of the abstract model concerns notations. A real world business IS

captured by a business process which is translated into formulas using analysis, modelling and

definition tools. A business process may contain several sub-processes. A traditional business

process comprises activities, components, operation rules and progressive steps. Formal

notations have been widely used not just by researchers but also by industry to achieve

various goals.

• System Analysis and Design

A system normally includes hundreds, thousands or more lines of code. Before we

start coding, we have to make sure our design is correct. A formal notation, a

specification language, can help us. A system could be described by a model using a

formal notation in less than a hundred lines. Reasoning in the model is much easier

than implementing the actual system. It helps us understand the consequences of the

system and examine whether our design captures all the requirements. Moreover,

some unexpected inconsistencies could be uncovered early, for example conflicting or

infeasible requirements, confusion over scope or domains.

• Verification

Software development and maintenance are expensive. Getting rid of bugs at design

phase instead of testing phase will tremendously reduce the cost. Model checking is a

Chapter 2 Background 23

technique used to algorithmically check whether a program satisfies its requirement.

A model checking tool normally takes a model (of the program) and a formal

specification (of a correctness property) and returns a positive result if the model

satisfies the specification, or a negative result together with a counter example, if the

model does not satisfy the specification.

• Code Generation

Code generation is to produce programs in some automatic manner, reducing need for

human programmers to write code manually. Model-Driven Architecture introduces

the idea that "the system functionality is first defined as a platform-independent

model using an appropriate specification language and then translated to one or more

platform-specific models for the actual implementation." [14].

The control level of the abstract model is the centre of the workflow system. The enactment

service (see Figure 2-6) is responsible for process creation and execution. It also handles the

interactions with client applications and resources. Real enactment services may also provide

interface for the process management or monitoring applications.

The resource level of the abstract model concerns client applications and human operations.

Applications are invoked by the workflow enactment service to perform automated activities.

Client applications are unconnected. Controls are transferred between applications by the

enactment service.

2.3.1 Activity-Based Business Process Modelling

Business Process Modelling is an essential part of the workflow technology. By capturing the

business process in a workflow specification, then we can later use the specification to analyse,

verify and even generate the system.

Traditional process modelling places emphasis on the organisation structure [15]. A business

process is structured around roles and relationships. Most business processes are described as

collections of structural activities that have been related to roles.

An activity-based business process consists of many activities which are logically related in

terms of their contribution to the overall realisation of the business process [15].

Chapter 2 Background 24

An activity is a piece of work that forms one logical step within a process. It is defined by the

following components [13].

Role

Workflow
Type Definition

lllay
refer to

may

consists
of

Activity
uses

have Invoked

Transition
Conditions

Application

Workflow
Relevant Data

Figure 2-7 Activity - based Workflow

Basic Process Definition Meta-model

• Workflow Type defines the identity of the process; process start and termination

conditions;

• Activity defines activity type; pre- and post activity conditions; other constraints;

• Transition Conditions define flow or execution conditions;

• Workflow relevant data defines data name, path and types;

• Role defines name and organisational entity;

• Invoked Application defines generic type or name; Execution parameters; location or

access path;

Chapter 2 Background 25

2.3.2 Message-Based Business Process Modelling

Activity-based business process modelling has already been commonly accepted, however, a

new appeal for a message-based process modelling is receiving increasingly more attention

for the following reasons.

Message-based systems require new modelling approach

Message-based systems enable independent distributed applications or application

components to interact through messages. These components " ... whether on the same host,

the same network, or loosely connected through the Internet, use messaging to pass data and

to coordinate their respective functions" [7].

In a message-based system, components are loosely connected. Components deliver

asynchronously. A message sent by a component should not depend upon the readiness of the

receiving components. And the message will eventually be received by the components when

it is ready. Moreover, components are able to exchange messages simultaneously. An

asynchronous messaging pattern adds great flexibility to the interplay of components. It adds

robustness because of the failure of one component does not translate into the failure of the

whole system [7]. But it also gives up some of the system control. One of the most significant

message-based systems is intending to use the web service technology. We will review the

details of the web service architecture in the next section.

Given this, structured activities can hardly capture the behaviour of asynchronous

communications.

Organisations and roles become less important in a business process

Enterprise applications are loosely coupled. Organisations implement functional components

using incompatible technologies. Interactions between functional components rely on network

protocols.

Unlike a traditional production line application, a business process is defined by examining

the formal structures, goals, and activities of an organisation; a modem enterprise application

manages business processes cross organisations. Organisations are multi-functional and

provide a large amount of functionalities in order to serve different business requirements. As

Chapter 2 Background 26

business goals changed dynamically, the organisation structure becomes obscure. Roles of

activities are overlapped, sometimes chaotic.

A containing model is required

A business process consists of set of tasks and assembly of supporting content. Activity-based

business process has been focused on the flow of work and not on the definition and content

ofthe work item itself [12].

When the work item is fairly simple and the order of tasks is fixed, a work item could be

carried from one activity to another by simply giving definition of pre- and post- conditions of

the activity. When the order of the tasks is not fixed, and especially when the order relies on

the content of the work item, defining the pre- and post- conditions of an activity is clearly not

enough to specify a process. In this case, a containing model is required to represent the

content of the work item and maintain content consistency.

Thus we propose a new message-based business process modelling approach which extends

the traditional process modelling with the following features:

• The capability to capture the message-based system feature, asynchronous

messagmg.

• A means to support dynamic changes in business processes.

• A way to present rich content model and maintain data consistency.

2.4 Formal Models and Related Works

In this section, we review some traditional and established formal models, and examine recent

web service related works using these models.

2.4.1 UML Models

The Unified Modelling Language uses visualised diagrams to represent a system, including

system structure and system design. Three types of diagrams are used in UML system models:

Chapter 2 Background 27

case diagrams exploring the system functionalities, class diagrams defining the system object

structure, sequence and activity diagrams describing system internal behaviours.

UML has been widely accepted by both industry and academia. The advantage of UML

models over other formal models is that they could be easily used by non IT experts to design

systems. With the support of a large number of available tools, a system can be generated

from case, class, sequence and activity diagrams. However, UML models do not provide the

capability for formal analysis. Designers can not reason about a system design directly using

those diagrams.

A number of works using UML models to design web services composition [48] [49] have

been reported. Specifically, [48] describes a UML profile which uses existing UML tools to

model BPEL4WS business processes. The work creates a mapping from Object-Oriented

UML models to BPEL4WS processes and web services. It maps an object in a class diagram

to a business process or a web service, and maps object attributes to business process states

which are also known as variables. A message is represented as an arrow which is also known

as a control link from a sending activity of a service to a receiving activity of another service.

The work illustrates its technique with a one-way implementation which generates an

executable system from UML diagrams. However, UML models are based on object oriented

concepts, therefore the activity models cannot clearly distinguish the synchronous and

asynchronous communication patterns in a BPEL4WS process. Therefore, some service

oriented behaviours will be lost during the system reasoning based on those UML models.

2.4.2 Process Algebra Approach

Process algebra uses a mathematical approach to represent concurrent systems of interacting

processes [50]. It provides algebraic languages to specify processes, and calculi to verify the

processes. There are some popular process algebra languages, including CCS (Calculus of

Communicating System), CSP (Communicating Sequential Processes), and LOTOS

(Language of Temporal Ordering Specifications). A process algebra model could be model

checked by temporal logics, and analysed by bisimulation.

The process algebra approach is used in a number of previous works to model web service

oriented compositions. [51] introduces a formalisation of WSCI specification using CCS. It

describes a web service interaction in an algebra term composed by channel (WSDL

Chapter 2 Background 28

messages), input/output actions (send/receive activities), and operators (parallel composition,

choice constructs). The work complements the WSCI specification with reasoning

mechanisms to check the compatibility between two web services. Two web services are

regarded as compatible if the messages exchanged between them are interpreted properly.

CCS basically uses a synchronous and symmetric communication model, in which two

partners perform complementary actions together. To reason about interactions over a large

amount of web services, an extension to the model is required.

LOTOS is another process algebra specification language for concurrent distributed systems.

It is a combination of two specification models: a static algebraic model, ACT ONE, and a

dynamic process model (similar to CSP and CCS). [52] describes a two way mapping between

LOTOS and BPEL4WS specifications, so that a BPEL4WS model could be formally verified

and model checked. However, the work only introduces a static services composition model

where web service interactions are established before the conversation starts. It does not

include the correlation set which is an important feature in BPEL4WS.

2.4.3 Petri Net Model

The Petri Net model uses bipartite graph to represent discrete distributed systems. A Petri Net

is composed of places, transitions and arcs that connect places with transitions. An execution

of a transition is simulated by removing a token from an input place and adding a token to the

corresponding output place. Because a Petri Net allows a place to hold more than one token, it

can model concurrent systems quite well.

Many works have been done using Petri Net based algebra to model control flows in web

service compositions. [53] models a service composition by assigning web service operations

to Petri Net transitions, and web services state (Not Instantiated, Ready, Running, Suspended,

or Completed), to places. A web service represented in a Petri-Net has one input place and one

output place. Algebra operators are used to model the web service composition, such as

sequence or parallel execution. Applying a web service composition in a Petri Net, one can

reason about system behaviours such as absence of deadlock and livelock. [54] uses a similar

approach as [53], but introduces a ServicelResource Net (SRN) in order to model complex

service compositions. The model extends the Petri Net model with three new elements, i.e.,

resource, taxonomy, time and conditions. Different from [53] and [54], [55] uses a

combination of Petri Net and 0-0 concepts, G-Nets. G-Nets enrich Petri Nets with the

Chapter 2 Background 29

capability of modelling different communication patterns including synchronous and

asynchronous, with well-defined interfaces.

Petri Net based modelling approach has advantages in modelling and reasoning about control

flow in a service composition. However all the above works do not support automatic service

compositions and the composition scalability using Petri Net is low [56]. Moreover, Petri Net

based models do not model the content of the messages.

2.4.4 SPIN

SPIN is an automata-based formal model checking tool. The input language of SPIN is

Promela. Promela is a process meta language. It models asynchronous distributed systems as

non-deterministic automata. SPIN has been widely used for more than 15 years. Efforts have

been made recently using SPIN formally to verify web service compositions, for example,

WSFL [57] and BPEL4WS [46] [58] [59].

[57] formulates a set of translation templates that translate WSFL primitives into Promela. It

uses a simple example to demonstrate that faulty behaviours can be detected with the SPIN

model checker. A more comprehensive work [46] [58] [59] introduces a framework that

translates the BPEL4WS specification into an intermediate language, followed by the

translation of the intermediate language to Promela.

The SPIN based approach models web service conversation behaviours by mapping messages

to actions, and web service internal states (variables) to the states that messages transit

between. However, SPIN is a finite state verification tool, it can only partially verify the

system by fixing the size of the input queues in the translation.

2.4.5 Summary

This section gave an overVIew of web serVIce composition related works. Models like

BPEL4WS, WSCI and UML provide rich descriptions to specify the service composition

behaviours, but fail to provide the capabilities of formal reasoning and model checking. On

the other hand, formal models using Process Algebra, Petri Net and Spin complement the

industry specifications with formal reasoning and model checking, but are not expressive

Chapter 2 Background 30

enough to describe all the service composition behaviours, such as contents of messages or

asynchronous communications.

In this thesis work, we create a new formal model which is concise and, at the same time,

expressive enough to describe the service composition behaviours. A novel operational

semantics will also be presented to enrich the model with the capability of formal reasoning.

2.5 Web Service Dynamism

To reduce software development cost, computer scientists decompose a large software or

system into small components because they are easier to maintain. Meanwhile, these

components can be reused to deliver new software functions. Component-based design makes

software extensible and easily contracted [60]. It enables a system to be dynamically created

from components based on the constantly changing requirements and system environment.

A web service is a more sophisticated form of component which provides a standardised

declarative function description and a universally discovery directory, and is accessed by a

ubiquitous protocol and data format. These features make a service-oriented system more

likely to be dynamic. A web service is a component but autonomous [16]. Although a web

service publishes its operations as universally accessible, it will only process an operation

request, a service invocation, on its own demand. These loosely-coupled web service features

have not been fully considered in traditional component based dynamic systems.

2.5.1 Web Service Dynamic Behaviours

A service-oriented system is composed of independent web services using either orchestrated

or choreographic mechanisms [33]. Before we discuss the dynamic requirements and review

related works on dynamic web services, we need to understand the dynamic behaviours in a

service-oriented system.

In a dynamic service composition, a service user can select service providers from a number

of service providers based on functional, non-functional rules, or high level business goals

[61]. This describes the behaviour of service assembling, which is characterised as automatic

service composition [62].

Chapter 2 Background 31

In contrast, [39] gives a dynamic example where a service is dynamically replaced by another

service to improve the system performance during the execution of a user query. This is

described as re-configuration [62].

Although the above two dynamic servIce composition descriptions are given based on

different system perspective, they all happen at the system runtime. To specify these dynamic

behaviours in formal model, both dynamic description and dynamic execution have to be

considered.

2.5.2 Related Dynamic Web Service Works

A web service is essentially a component. The basic design requirements for a dynamic

component-based system [63] are still applicable. New requirements are also needed to

accommodate the autonomous and loosely-coupled web service features. A web service

processes on its own, it does not have to be aware of the system change. Web services must

have a common understanding of interaction context, so that an interaction could be continued

after a system change.

A number of works have been reported to formalise the web service dynamism. In [64] [61],

formal models and fuzzy algorithms are introduced to dynamically compose web services

from a Quality-of-Service point of view. By giving QoS parameters, for example performance

parameters, the dynamic selection of services from a large number of candidate services can

be performed by the fuzzy algorithms. Similarly in [65], web services are dynamically

composed in response to a user query. A dynamic reconfigurable architecture is presented in

[62], which indicates that four aspects of a formal model, i.e., syntax, semantic, QoS and

contextual, need to be considered to achieve the service composition automation.

In this thesis, we will propose a method to support web service dynamism from the business

interaction point of view. There is a problem not addressed by most previous works: how the

user's query is executed consistently when those web services are dynamically re-configured

or re-composed at runtime. An architecture is introduced in Chapter 3 to coordinate business

interaction over dynamically re-configurable web services. An operational semantics is also

given in Chapter 6 to enable the runtime re-configuration.

Chapter 2 Background 32

2.6 Our Services Composition Approach

Web serVIces have been posited as the key technology to implement future enterprise

applications. In this section, we analyse the requirements to model service-oriented

applications. These requirements address both the language for describing the composition

and the supporting infrastructure to run it.

2.6.1 Web Service Composition Requirement

2.6.1.1 XML-based Interfaces

The goal of web service technology is to achieve universal interoperability between

applications by using standards. A web service defines and publishes the interfaces in XML

format document, WSDL, and is invoked through a XML-based messaging protocol, SOAP.

XML is a platform- and language-independent language. The advantage of using XML-based

interface and communication is obvious. A service consumer can invoke a service following

the shared understanding but does not care how the service is implemented. This character fits

into the current heterogeneous web environments.

Capturing the XML tree data structure is the basic requirement for modelling servIce

composition. A XML convertible design notation can be easily compiled into a real

implementation. Moreover, an application can be comprehensively verified using an XML

convertible model checking tool.

2.6.1.2 Asynchronous Communication Pattern

In WSDL, a web service supports four types of operations, one-way, request-response, solicit­

response and notification. These four types of operations allow a service to communicate with

other services asynchronously. Asynchronous communication provides greater flexibility and

loose coupling between web services. A service is not blocked waiting for a return of the

message and can continue doing work immediately after the call. If a return result is required

the caller component can be called back later.

A system that uses asynchronous communication can be more easily distributed over a

network than if synchronous communication were used. The asynchronous communication

Chapter 2 Background 33

pattern is believed to be the vital to today's enterprise applications environment. To support

an asynchronous web service communication pattern, a mechanism is required to correlate

and coordinate exchanged messages between services.

2.6.1.3 Dynamic Configuration

Dynamic configuration is a very important factor to evaluate a system composed by various

components. Dynamic configuration refers to the capability of plug-and-play and hot­

swapping. When a new component is added to the system or a current component is required

to be updated, a system should not have to be stopped or restarted. Components therefore need

to be hot-swapped, without disrupting the interactions in which the retiring component is

involved and allowing the new component to continue with that sequence while, presumably,

providing some improved behaviour [5]. Web service composition must be dynamic and

flexible to meet the dynamically changed business needs.

2.6.1.4 Interaction Integrity

In a service oriented architecture, an application is a servIce composition that combines

services following a certain composition pattern to achieve a business goal [22]. This

architecture provides great re-usability in the sense that a web service could be used by

multiple applications. At the same time, it adds the considerable complexity to the definition

and maintenance of an interaction.

To maintain the interaction integrity, the architecture is required to ensure the reliability of the

messages and to check the availability of the resources (web services). But we are more

interested in the abstract level interaction integrity and assume that all the messages are

reliable and secure.

We have stated that web services are essentially stateless in section 2.2.1. Therefore, a

mechanism to maintain and coordinate the interaction state over stateless web services is

required to design and implement service-oriented systems. We have reviewed that there are

different approaches to model the service composition. Various mechanisms are applied to

maintain interaction state in those approaches. Different mechanisms fit into different business

requirements.

Chapter 2 Background 34

We are going to give three basic mechanisms to handle interaction state over service-oriented

applications, analyse the advantages and disadvantages of each solution, and explain the

motivation of our approach.

Interaction State in Messages

The first solution is to put the state into the interactions, messages. The idea of this

mechanism is putting all the information in the messages, including the required services, the

workflow, and the state of the interaction. When a service receives a message, it abstracts the

request and processes it. After the process is finished, the service puts the result into the

original message, and sends it to other services based on the workflow specified in the

message.

Services: 51, 52. S3

-----. Variables: van, var2

Message

Figure 2-8 Interaction State in Messages

This solution is simple and easy to implement: no additional work is required to handle the

interaction state. Using sessions and cookies, a rich data structure could be passed around by

messages. It is sufficient enough to implement applications composed by sequences of

activities. But because all the interaction state is stored in the message, services are unaware

of any state, and therefore it is very difficult to execute parallel activities, for example

synchronising two parallel threads of execution. Moreover, carrying interaction state and

Chapter 2 Background 35

workflow may raise some security issues. A security protocol is required for some

applications to protect data and control authorisation.

Interaction State in an Object

The second solution is to use a stateful component, a business process, handling the workflow

and the interaction state. A business process is essentially a web service but with state. A

business process is deployed in a web container. For each business process request, the web

container will create a new object. And any message related to the request, the container will

pass it to the object to process. This architecture is similar to Figure 2-4

This is a popular solution to implement service oriented applications. Lots of specifications,

such as BPEL4WS, use the same idea. Because a business process is a live object at the web

container, it ideally could handle sequential, parallel and more complicated composition

patterns. To achieve all these, a powerful web container handling concurrent business process,

correlating service requests, supporting different composition patterns, is required and

expected.

Modem enterprise applications are more complex: interactions run for long periods (weeks,

months); a business process is required to be dynamically configured while some interactions

are still active. One crucial problem of this idea is that the lifetime of a thread is limited,

depending on the web container. Although some middlewares provide much stronger

technique such as session beans that survive longer than a thread, they still cannot recover

from a server crash. Therefore this solution hardly supports long-running persistent

interactions and barely supports dynamic behaviours.

Interaction State in a Persistent Component

The third solution is to separate the state into an independent component, such as a database,

and use stateless web services to handle the composition pattern. Interaction states are stored

in the persistent component, a database. A context is given to the messages, so that when a

web service receives a request, it can access the database and update the interaction state

accordingly.

By storing interaction state into independent persistent components, a long-running interaction

can be executed consistently. Because all the services are stateless, a component could be

Chapter 2 Background 36

replaced even while an interaction is still active. This solution is flexible and stable enough to

support long-running and complex interactions. It releases the strong dependency on the web

container. However it requires an elegant framework to coordinate the interaction state,

propagate the context, and control database accesses.

Figure 2-9 Interaction State in Database

As we have discussed, different solutions fit into different business requirements. Sometimes,

a combination of two or three is used to provide stronger support for service compositions.

2.6.2 Our Service Composition Approach

A service-oriented system is a composition of independent web services to achieve certain

business goals. The goals are fulfilled by service-to-service interactions. We aim to capture

the behaviour of service-to-service interactions and provide a specification language to

describe the service composition. Our language is general and can be applied to various

business environments, in order that we can use it to support workflow automation and

validation.

First of all, a business-to-business interaction is not just a transaction. Web serVIce

transactions are a subset of web service interactions [23]. A transaction is composed of a

group of logical operations that must all succeed or fail as a group. Currently most of service

composition standards and specifications such as BEPL4WS and WSCI only provide

Chapter 2 Background 37

mechanisms to support long-running transactions by providing two-phase commit protocols

and compensation activities [25]. However, an interaction may include multiple transactions

and takes much longer than a transaction. For example, in an online banking application,

customers pay an estimated amount of money for their mobile in advance each month. When

the bills arrive a month later (maybe longer), the difference has to be paid to the customer's

account or mobile company's bank account. This interaction is completed by two payment

transactions. As long-running interactions are the basis of modem enterprise applications, they

should also be considered as part of the service composition.

We believe that web service compositions should be more dynamic. Storing interaction states

in a pre-defined instance at the web containers decided that as part of an interaction the web

service cannot be replaced in the middle of the interaction. Real businesses are challenging.

The application is required to be recomposable in order to meet the dynamically changed

business goals.

Context management is a more fundamental requirement than transactions in some business

environments [26]. A context allows web services to share information such as message

correlation and security token and so on. We use the context mechanism to model service-to­

service interactions by giving each interaction a context. Our model allows the interactions

and contexts to be structured hierarchically. Thus an interaction could be managed not only by

a certain coordination service, but also by distributed services.

We model the service composition by describing the message exchanged between web

services. Each service specifies its contributions to the interaction by updating the interaction

state or coordinating the context. The model is executable as it specifies the complete state of

an interaction and the sequence of execution based on the flow of the state.

Our solution of using context and coordination to model the service composition is flexible

and extensible. It could be used not only to capture the service-to-service interactions, but also

to model business transactions in specific domains, or to reason the security sensitive

applications. The framework we are going to introduce can be easily either implemented as a

new service composition platform or integrated into available service composition platforms

as an additional feature.

Chapter 2 Background 38

In the next chapter, we will introduce our formal notation to specify service composition using

context propagation and coordination mechanisms, in order to support long-running

interactions and dynamic service configurations.

Chapter 3

Document Flow Model

In the previous chapter, we investigated service-oriented system environments, and analysed

the asynchronous communications and dynamic configuration requirements in service­

oriented systems. In this chapter we introduce a formal design notation to model such

behaviours in order to facilitate system automation, and validation. This chapter is structured

as follows: Section 3.1 introduces the concept of our Document Flow Model. Section 3.2

gives the formal syntax and informal semantics of the DFM notation. Section 3.3 uses a travel

agent as an initial example to illustrate the use of the DFM.

3.1 What is DFM?

Our Document Flow Model describes a system as a set of messages that can be sent from a

service, and the consequences for other services of receiving them. Because messages are

basically XML documents, we call the modelling notation Document Flow Model (DFM).

Our DFM has the following features.

3.1.1 Supporting XML Data Structure

A service-oriented system is composed of independent web services interacting with each

other using XML-based web standards and protocols. DFM is a XML convertible notation.

The document record data structure in DFM is created based on our experience with XML and

its associated technologies [27, 28]. A document record describes a hierarchical (tree) data

structure in a concise notation. Therefore we use it to model systems which are eventually

realised using XML encoded documents.

Here is a document record with 3 elements.

[to: airline, query: [from:user,query:itinerary,context: userld], function: bookAFlight]

39

Chapter 3 Document Flow Model 40

This document record describes a message sent from a Service Consumer, user, to a Service

Provider, airline, to request a flight booking. The service consumer puts the infonnation of its

identity, user, the travel itinerary, itinerary, and a request number, userld into a nested document

record, a query. We can see that, this document record structure could be modelled as a

<document!> XML node in the following:

<document>

<to> airline <Ito>

<query>

<from> user </from>

<query> itinerary </query>

<context> userld </context>

</query>

<function> bookAFlight </function>

</document>

3.1.2 Using Context Coordination Mechanism

DFM also provides support for long-running interactions and dynamic configuration

behaviours. One aspect of our ability to simply unplug something in the middle of an

interaction and plug in a substitute is whether or not the component has state. Replacing a

stateful component with another is always going to be more difficult than replacing a stateless

component with another [5]. This is one of the reasons that one of the principal design criteria

for web services is that they should be stateless [29]. Our notation models a business

interaction via stateful messages passed around stateless web services. A coordination

framework, including a persistent component, a decentralised context generation and

propagation mechanism, is given to maintain the integrity of the business interactions.

As a business interaction nonnally runs for a long period, an airline service necessarily gives a

"booking id" so that a customer can process the payment or cancel booking consistently in the

future. In DFM, a generate id action is provided to create a global unique symbol to identify a

business interaction.

generate new bookingld

Chapter 3 Document Flow Model 41

A persistent component, a ContextStore, is used to maintain the execution state. An

application may have more than one ContextStores, meanwhile a ContextStore could be

shared and accessed by one or more than one web services, depending on the business

requirement. In a travel example, an airline service updates a flight booking process by storing

certain data entry into the ContextStore:

store bookingld .> entry in ContextStore

The airline service arranges the user and flight information by the new generated identity

bookingld, at the ContextStore, so that for example a ContextStore [bookingld] may contain the

following entries.

[from:user,query:itinerary,context: userld],

[from:user, query: itinerary, result:flight]

Moreover, a context is given to each message to identify the business interaction. The airline

service puts the new generated bookingld into flight confirmation, for instance.

send [to:user, query: [from:airline, query:itinerary,result:f1ights, context:bookingld],

function :f1ightConfirmation]

The user gets the flight booking information together with the original query and a booking

number issued by the airline service which may be used to query or cancel the booking in the

future.

Using this mechanism, a stateless web service simply reacts on the incoming messages and

updates the state within an independent ContextStore when necessary. By coordinating all

state updates with the persistent component, a business interaction can carry on even if the

system configuration has changed.

3.1.3 Modelling Asynchronous Communication

A web service invokes another web service by messages. A synchronous service invocation

can be illustrated as a telephone conversation which is the service caller is waiting for the

reply after the request is sent off. An asynchronous service invocation can be illustrated as an

Chapter 3 Document Flow Model 42

email conversation which is after a request message is sent off, the reply may not be available

immediately, and the service requester could pick up the reply later.

The DFM notation intends to model systems composed by sets of independent web services

and orchestrated by asynchronous messages. Since we are not interested in the detailed

functionality and performance for each service, we model a web service invocation as a

collection of outgoing messages sent in response to an incoming message. A reply message to

a service requester whether synchronous or asynchronous is modelled as a service callback, a

new service invocation, which is a sending message action.

The behaviour of a web service in response to a request is defined after an OnMessage

followed by the request message pattern. When certain incoming message matches a pattern in

an On Message of a service, corresponding actions are taken. For example,

OnMessage[to:airline, query:[from:user,query:itinerary,context:userld], function:bookAFlight]

send [to:user,query:[from:airline, query:flights, context:bookingld], function:flightConfirmation]

when an airline service receives a request that matches the pattern of a bookAFlight message, it

processes the request and then packs the flight booking confirmation into a message and sends

it to the service requester.

I Travel Agent I I Airline I

Figure 3-1 A Synchronous Communication

DFM defines two basic kinds of communication patterns in supporting asynchronous

messaging, one-way communication, which amounts to a service receiving a message, and

notification, which amounts to a service sending a message. The request-response and solicit-

Chapter 3 Document Flow Model 43

response [3] synchronous conversations are modelled as a one-way communication plus a

notification communication.

A travel agent service helps a user booking flights from various airlines. A synchronous

communication is showed in Figure 3-1. The travel agent sends a flight booking request to an

airline and waits for the response message, a solicit-response service call. The airline service

on the other side receives a flight booking request from a travel agent and returns the message

later to the travel agent, which is the same thread of the original travel agent that starts the

request, a request-response service call.

In DFM, the synchronous communication is modelled as two asynchronous service calls, as

the Travel Agent in Figure 3-2.

I Travel, Agent I IAir~inel
, I
I I

~~I
I ,

~~-----------------------

Figure 3-2 An Asynchronous Communication

The travel agent sends a flight booking request message, a notification service call, to an

airline service after gets a request from a user, a one-way service call. The travel agent (thread)

may close this thread or carry on other businesses without waiting for the reply message from

the airline.

OnMessage[to:agent, query: [from:user,query:itinerary,context: userld], function: bookAFlight]

send [to:airline,query:[from:agent, query:itinerary,context:agentld], function: bookAFlight]

The airline service replies a flightConfirmation message to the travel agent by creating a new

service call on the travel agent, a new notification service call when bookAFlight request has

been processed.

Chapter 3 Document Flow Model

OnMessage[to:airline,query:[from:agent, query: itinerary,context:agentld], function: bookAFlight]

send [to:agent, query:[from:airline, query:itinerary, result:flights, context:airlineld],
function :flightConfirmation]

44

When the travel agent service receives the flightConfirmation message, a new one-way service

call, from an airline service, it arranges a new thread to handle the request as in Figure 3-2.

OnMessage [to:agent, query: [from: airline, query:itinerary, result:flights, context:airlineld],
function :flightConfirmation]

send [to:user,query:[from:agent, query:itinerary, result:flights" context:agentld],
function :flightConfirmation]

Each On Message definition describes actions a service takes after receiving a message. No

nested incoming message is allowed inside the On Message body. Thus in DFM, a business

interaction is modelled by several OnMessage definitions.

3.2 Formal Syntax

Before we introduce the notation, let's first give all meta-symbols a definition.

f - - ---- - - -

J ~ym~ols ;! lri,.. Description Ii
11_.- ,,_ II'! . _,J ~\ ... ~,::. ' ,,~. .?~ ~.

I _':: = b t the element a is defined as b

II b c ~ II element b is followed by element c

II. ~ ~ - _ j empty element

I a I b I c I elemen: a or element b or element c

I a,b I a list of elements separated by ','

,I [] II a .document record ~
'I x:y I a pair element comprised of element x and element y

I {} I a block ofactions

Table 3-1 DFM Meta-Symbols

Chapter 3 Document Flow Model 45

3.2.1 The Basic Structure

A DFM specification is built from message definitions, or messagedefs. A web service is

described by a collection of messagedefs specifying the messages which the web service

receives and operates on.

messagedefs ::= messagedef

I messagedef messagedefs

In DFM, each messagedef defines the web service response to an incoming message: when the

incoming message matches the message pattern in messagedef, the corresponding actions in

msgdefbody are triggered.

messagedef ::= On Message message

msgdefbody

3.2.2 The Message Definition Body

A message definition body, msgdefbody, defines the set of actions to be carried out when an

incoming message matches a certain pattern. Possible actions to be specified in a message

definition body include creating a series of identities, storing a document into a document

store, and sending a message.

msgdefbody ::= idaction storebody send body

Thus, a msgdefbody may contain three pieces of information, idaction, storebody and send body,

in this particular order; any of these pieces of information could be absent. The idaction

describes some new identities used to identify interactions started as a result of a message

being acted upon.

storebody ::= _ I storeaction storebody

send body ::= _ I sendaction send body

I csendaction send body

Chapter 3 Document Flow Model 46

The storebody describes the set of store actions to be carried out (in parallel), before the

(possibly conditional) message sending actions described in send body are carried out (also in

parallel).

3.2.3 Actions

A message definition may contain essentially four kinds of actions: idaction, storeaction,

sendaction and csendaction, as mentioned earlier.

Id Action:

idaction ::= _I generate new ids

ids ::= id 1 id, ids

id ::= string

When a service starts a new business interaction or a sub-interaction, it usually creates a new

identity to identify that interaction. An idaction specifies the identities generated in this way.

The newly generated identities are universally unique, that is, identities generated by the same

/ different services are different; this can, for instance, be ensured by embedding information

such as service identity, message date, time and message content in each newly generated

identity.

Store Action:

As we stated earlier, the ContextStore is a component used to maintain the state of a business

interaction. The DFM only allows insert operations on the ContextStore. Other operations,

such as update or delete, are captured into data entries which will be inserted into the

ContextS tore by the storeaction.

storeaction ::= store id .> entry in ContextStore

A storeaction describes the action of storing a piece of information, an entry, into the

ContextStore, under a particular identity id.

Chapter 3 Document Flow Model 47

Send Actions:

The DFM models a service invocation and a service call-back, a reply to a service invocation,

using send actions.

sendaction ::= send message

A sendaction describes the action to simply send out a message.

csendaction ::= if condition then { sendactions }

sendactions ::= sendaction I sendaction sendactions

A csendaction specifies one or more send actions to be performed only when a certain condition

(involving the current state of the ContextStore) holds. When the condition evaluates to true,

the corresponding sendactions, a list of sendaction, are taken.

3.2.4 Conditions

A condition is a ContextStore evaluation expression, possibly containing logical operators.

condition ::= ContextStore [id] contains entries

I condition and condition

I condition or condition

I not condition

A Condition allows a web service response to a message request by the current state of a

business interaction as stored in the ContextStore. A simple condition is evaluated to true when

the specified entries are found in the ContextStore under the identity, id, otherwise the

condition is evaluated to false. Conditions containing logical operators are evaluated in the

standard way.

3.2.5 Control Flow

A simple control flow, a collection of non nested if .. then ... statements, is available in the

DFM notation. A condition is a Boolean expression and could be evaluated to true or false. A

complex control flow, such as a nested if .. then else ... can be translated into this simple

Chapter 3 Document Flow Model 48

format, as in Figure 3-3, where we assume that c1 and c2 are conditions while aI, a2 and a3

are actions.

if cI

then ifc2 ifc1 and c2 then {aI}

then al

~ if c I and note c2) then {a2}

else a2 ifnot(c1) then {a3}

else a3

Figure 3-3 A DFM Control Flow Example

3.2.6 XML Data Structure

Web Services interact with each other by messages. The messages are essentially XML

documents. To model the XML tree data structure, we introduce a new data structure, a

document record.

A document record data structure allows us to specify an object with properties. A document

record literal consists of a comma-separated list of colon-separated property name / value

pairs, all enclosed within square brackets. In the document record, a property name is simply a

string identifier, while a property value is an atom or a document record. A simpler form of

the document record contains no property names, only property values, a comma-separated

list of values.

In relation to XML, a document record is a XML element. We ignore XML attributes,

important though they are in practise, because at the modelling level it is unnecessary to

distinguish between nested attributes and nested elements. In a document record, a XML

attribute is modelled by a property of that element.

A Message:

Document records with particular property names as to:, query:, and function:, are used to

model the messages being passed between web services, as described in the following. The

Chapter 3 Document Flow Model 49

property values to and function are simple strings which describe the message receiver and the

requested operation.

message::= [to:to, query:query, function:function]

to, function ::= string

Queries:

The property value query is a document record that refers to the message data, or message

parameters.

query ::= element

I [from:from,query:query,context:uid]

I [from:from,query:query,result:query,context:uid]

element ::= string I [elements]

elements ::= element I element, elements

Similarly the property values from and uid are strings. A from: indicates who starts the request

which is used when a reply is required to be sent back the initiator. A context: points out

which interaction this query belongs to.

uid, from ::= string

Three types of queries are defined in DFM. The first one, element, is either a simple string or a

simple document record with no property names, and the property value given by either a

string or a list of elements. These strings are normally used to denote simple tasks or task

executing results.

The second is a document record with from:, query: and context: properties. It includes the

query initiator, query content and query identity. It is used, for example, when a web service

wants to start a business interaction by passing a query to other web services.

The third type of query is a document record with from:, query:, result: and context: properties.

For example, when a query has been completed, the results are put into a message together

with the original query. Similar to a message definition, the query: property value is a further

Chapter 3 Document Flow Model 50

document record, and so is the result: property value. When a business interaction is

composed by several sub-interactions, this query is required to identify which sub-query has

been completed.

3.2.7 ContextStore

The ContextStore is a critical component of the system. Different from a web service, a

ContextStore is a persistent component storing the interaction state. The systems modelled

using the DFM notation are concurrent: multiple process sessions are carried on at the same

time. To maintain the system state, a unique identity is created and assigned to each business

interaction. The interaction state is structured into document records, entrys, and stored under

the interaction identity in the ContextStore.

entries ::= entry I entry, entries

entry ::= [from:from, query:query]

I [from:from, query:query, result:result]

A business interaction is represented at the ContextStore by a collection of entrys. A business

interaction may have sub interactions. The entrys are stored into when an interaction or a sub

interaction has been started, and when the interaction or sub interaction has been submitted or

completed.

3.2.8 Keywords

Here is a summary of all keywords in DFM.

Chapter 3 Document Flow Model 51

[Keyw~rd~ ~'l[:i
-

~;~'., j~'
, . /l. ..~. "~, i "

Description
:" l ,...1 J". " '.

An event which matches an incoming message to the message pattern
On Message

specified in the messagedef.

I to
- -

I The receiver of a message
- - .. .- - .- --- - - ~ -- - - -

I fr~m

_I[The sender ~f a mes~age
. -- -

I query A property name indicates the content of a query
I - - - -- -

I result A property name indicates the result of a corresponding query
- - - -

I cont~xt A property name indicates the unique identity of an l;msiness interaction
- -- -- -

I function A property name indicates what function the message are calling
.. - -

I generate new An action to create a new unique identities

ContextStore[..] Data entries in ContextStore under index specified in []
-

store .. -> ...

in ContextStore
An action to store an entry into the ContextS tore

- - - -

I send I An action to send out a message

I contains A condition to verify whether the ContextStore includes particular entries.
-

I if .. then .. I A simple control flow

Table 3-2 DFM Keywords

3.3 An Example

We provide here a simple example to illustrate the basic structures and some fundamental

concepts of DFM. Web services are essentially stateless [16]. In the previous chapter, we

analysed the three principal mechanisms for making web services stateless, namely putting the

state into the interaction, using a stateful service to handling state and separating the state into

Chapter 3 Document Flow Model 52

an independent persistent component. We use the last mechanism which is more powerful and

flexible than the other two.

3.3.1 A Travel Agent System

The travel agent system offers trip reservation services to its customers via the Internet. A

business interaction is very simple as showed in Figure 3-4: a user gives its travel plan to the

travel agent and asks for a reservation for a flight and a hotel. The travel agent then books a

flight ticket from an airline, and reserves a hotel room from a hotel service or a hotel agent

based on the user ' s travel plan. It then sends a draft itinerary to the user. The travel agent

system is concurrent that multiple user queries are handled simultaneously. The following

diagram only illustrates the interaction workflow using a single user interaction.

UserAgent T ravelAgent FlightShop I HotelShop I

.....
bookTravel (f,h)

.....
bookShop(D r I

I

bookSf1 P (h)

I
I ...
I I
I I
I V -I
I shopReply (0

I

: bookRep/y (f.h) I I
I I

I V - I
I
I shopRe~y (f) I I

Figure 3-4 A Simple Travel Agent Sequence Diagram

We create 4 types of services in this application:

• A UserAgent, u, handles user forms and initiates the booking request. The UserAgent

works through a TravelAgent to get the travel reservations.

Chapter 3 Document Flow Model 53

• A TravelAgent a, passes the booking request to the individual shop services. It

extracts the initial request into two new requests and send them to two shops, a

FlightShop and a HotelShop, simultaneously.

• Two shop services, a FlightShop, 51, and a HotelShop, 52, process their booking

request and send the results back to the TravelAgent.

The UserAgent, u, initiates a message as following, and sends it the TravelAgent, a,

[to:a, query:[from:u, query:[f,h], context:e],function:bookTravel]

Three parts compose the query in this message. A TravelAgent offers the booking service for

various services, so if the service expects a reply, it has to let the Trave1Agent know where he

sends the reply to. For this example, the UserAgent wants to get back the reply himself, so it

packs the address into the from:. It also creates a new unique context:, c, to identify the

different user requests. The flight booking, f, the hotel booking, h, information are put into a

simply query nested inside the user query, query:[f,h].

The following specification describes how the TravelAgent handles this message.

OnMessage[to:a, query:[from:u, query:[f,h], context:e],function:bookTravel]

generate new uid

store uid .> [from:u, query:[f,h], context:e] in ContextStore

send [to:51, query:[from:a, query:f, context:uid], function: bookShop]

send [to:52, query:[from:a, query:h, context:uid], function: bookShop]

Figure 3-5 A Travel Agent Specification - I

The TravelAgent creates a unique identity, uid, after receives the user request. It will pack this

identity into the messages as a context of the future queries. Then it stores the user's query

into a persistent component, ContextStore. It did not use the original context, e, as the identity

of this query, because the TravelAgent splits the query into two parts and starts a new flow of

interactions. Therefore, it gives the new flow of interactions a new identity, and tells the

Chapter 3 Document Flow Model 54

message receivers that the query in the message is part of the interaction[uid] instead of

interaction [c) .

We assume here, the TravelAgent does not want the shops and users know each, for business

sake. It extracts the user query, and creates two new queries with the new identity for

FlightShop, s1, and HotelShop, s2. The two messages in this messagedef are parallel messages,

could be sent out in any order.

Since the FlightShop and HotelShop have similar behaviours, we only give one specification

in Figure 3-6. When a shop service receives a booking message, it computes the request, and

puts the result into the reply messages. We see that there are 4 elements in the query of the

reply message this time.

On Message [to:s, query:[from:a, query:f, context:uid], function:bookShop]

send [to:a, query:[from:s, query:f, resultr, context:uid]], function:shopReply]

Figure 3-6 A Shop Specification

The shop tells the Travel Agent that it is part of this interaction by putting its address in. And

it forwards the original nested query and context, together with computation result to it.

To simplify the example, the shop services use the original context as their interaction identity

in this example. In some business environments, the shop services may create new contexts, a

booking confirmation number for example, and pack it into the result, it may also store entries

in their own ContextStores. We will see it later in other examples.

In the Figure 3 4, the TravelAgent receives 3 messages for each interaction. In the Figure 3 7,

we give the specification for the agent receiving a shopReply from the HotelShop or the

FlightShop.

When the TravelAgent receives a shopReply or a bookTravel message, it reads the context of

the query and saves the other parts of the query into the ContextStore under that context.

Because the system we specified is asynchronous, the 2 reply messages could arrive in any

order. In the sequence diagram Figure 3-4, the 2 messages are handled by 2 different threads.

Chapter 3 Document Flow Model 55

Each thread will check the logic of the interaction state flow, if the interaction has been

fulfilled a reply message will be sent, otherwise no action will be taken.

On Message [to:a, query:[from:s, query:f, result:r, context:uid], function:shopReply]

store uid .> [from:s, query:f, result:r] in ContextStore

if ContextStore[uid] contains

[from:a, query:[from:u,query:[f,h], context:e]],

[from:s1, query:f, result:r1],

[from:s2, query:h, result:r2]

then {send [to:u,

query: [from: a, query: [from: u,query: [f,h],context:e], result: [r1 ,r2],context: uid],

function:bookReply] }

FigUl·e 3-7 A Travel Agent Specification - II

Thus the 3 incoming messages to the TravelAgent correspondingly associated to one travel

booking interaction.

__ ----t>i [from:a, query:[from:u,query:[f,h], context:cll.
'---------_./\ ~

~
~
~

[from:a, query:[from:u,query:[f,hJ, context:e)]
[from:s1, query:[!], result:[r1))

~
[from:a, query:[from:u,query:[f,hJ, context:cJJ

[from:s2, query:[hJ. result:Ir211

Figure 3-8 A Document Flow Chart

The service interaction state is represented by the entries at the ContextStore. A state flow of a

particular interaction starts from an empty record. The travel agent updates the interaction

state upon the message contents by storing in certain entries into the store and checks the state

of the interaction each time a message arrives.

Chapter 3 Document Flow Model 56

3.3.2 Summary

The simple travel agent example demonstrates how to use the DFM notation to specify a

service-oriented system. The basic method could be summarised as follows:

Using context

Context is an essential mechanism in the DFM. The purpose of using contexts is collaboration.

A context is a data shared by web services participating in the same business interaction. A

context identifies a web service as part of a composite application and allows each web

service to update or observe the execution of the overall business interactions. Extensions to

basic context operations provide the ability to support long-running units of work such as

business process automations and workflows [23].

In DFM, a web service gives a context to each query in the message as a symbol of

participation in a business interaction. A new unique context is required when a new business

interaction is started. Some business interactions are maintained by one or more distributed

web services. In such circumstances, the web service stores the interaction state into the

persistent component, ContextS tore, and indexes them by the context so that concurrent

business interactions can be maintained.

Defining interaction flow (document flow)

The execution flow of a business interaction is decided based on the interaction state. The

system that DFM specified is composed by stateless web services. Having captured the

interaction state at the ContextStore, the conditions over the interaction state (entries) are

required to define the execution flow. The simple controls and logic operators over interaction

entries allow specifying complex workflows as will be illustrated in the next two chapters.

Structuring query

Structuring the query correctly is essential in the DFM specification. A query composed by

four parts.

A from: in a query indicates the request initiator. By storing this information in a persistent

component or keeping it in a message, a service does not have to maintain an active

Chapter 3 Document Flow Model 57

connection or a session between the service requester and itself. The connection can be re­

established after a long period of time. Thus the services are much freer to be replaced without

losing any interactions and much more capable to perform long-running interactions.

A context: as we explained earlier is put in the query to identify which business interaction the

current query belongs to.

A result: is an answer from a service regarding a query inside the query request.

Carrying the original query request in a reply is necessary when an interaction is composed by

several sub-interactions (sub-queries). The request query is required to identify which sub

query has been completed.

A nested query structure allows not only to take query contents, but also to carry parent

queries. It is used to coordinate the current and its parent interactions.

We will give more examples in the next two chapters to illustrate the using ofDFM to model

nested business interactions and to specify services coordination.

Chapter 4

Illustration

In Chapter 3, we gave the fonnal syntax and infonnal semantics of our DFM notation, and

provided some simple examples to demonstrate how to use the notation. In this chapter, we

use a typical grid application, a job submission system, to illustrate the dynamic configuration

capabilities, and to discuss the use of notation to model hierarchical service interactions.

4.1 An Example of Dynamic Replacing a Service

When an application involves a large number of tasks, instead of buying a supercomputer, a

more effective way is to deliver the subtasks to different computers, subsequently combine

their results. Web service is one of the technologies to implement such systems.

4.1.1 Service Coordination

We have described earlier that our notation allows an interaction to be coordinated by one

service or by distributed services. In the following example, we introduce a Coordination

Service to maintain the state of an interaction over stateless web services.

We have also discussed that any web service may access the state-maintaining component,

ContextStores. In a previous example, we specified that all services have access to the

ContextStore. In the following example, we only let the Coordination Service access the

ContextStore for the following reasons.

• Restricting the access to the ContextStore, largely releases the concurrent control

of workloads on the persistent components, especially in the applications that

involving huge computing tasks.

58

Chapter 4 Illustration 59

• By maintaining the state solely through the Coordination Service, the service can

monitor the overall interaction state, so that any system failure can be captured

and recovered timely.

• Replacing a component with access to the state component is much more

complicated than replacing a component with no access to the state. Thus the use

of the Coordination Service makes our system more amenable to dynamic

reconfiguration.

4.1.2 A Job Submission System

A simple job submission system is similar to the simple travel agent. We create 4 types of

services in this application:

• A User initiates the job submission. The User works through a FlowService to get the

job executed.

• A FlowService, an orchestrating web service, makes use of JobServices, specifying

the workflow and distributing jobs. A FlowService passes the job tasks to the

Coordination Service, and extracts the initial job tasks into two new requests and send

them to two JobServices simultaneously.

• Two JobServices, JS1 and JS2, executes jobs and sends the results to the Coordination

Service.

• A Coordination Service updates job execution progress with the ContextStore and

coordinates with all other services. If the whole job has been completed, the

Coordination Service will send the job execution result to the User.

Here is the sequence diagram:

Chapter 4 Illustration

I u~er I
I
I
I
I
I

I FlowS,ervice I

start jobs I (01 ,02,j3]])

I JobService1I I JObservice21

ilobssubmitedl (01 ,U2,j3]]) I
I

I I

Coordination
Service

jobexecute 01) I I
I I I

; .. J jobconjplete (r1)

I

I 02,j3]) I
I Jobcomplete([r2,r3]) I I
I I
I I I
I I I

Jobsre~y ([r1 ,[r2,r3D)

Figure 4-1 A Simple Job Submission Sequence Diagram

60

Unlike the previous example, that FlightShop and HotelShop process different types of

queries, hotel query and flight query, the JobServices are peers that process any job queries.

This decides that the system should be more dynamic.

User
(u)

Coordination
Service (cs)

-------- -- --

JobService
(51)

Figure 4-2 A Job Submission Example

In our example (Figure 4-2), when a FlowService, fs1, receives a message (ml) with a

composed job, it passes them to JobServices (m2). The FlowService also sends the job

submission state to the Coordination Service along with the job identity and the original

Chapter 4 Illustration 61

initiator (m3). The JobServices execute the jobs and send the result to the Coordination

Service (m4). Once the composed job has been completed at the Coordination Service, the

final reply will be returned to the user (m5). The different line formats in the Figure are used

to distinguish messages with different identities, contexts.

The following is the job submission system specification.

On Message [to:FS, query: [from:u, query: Uob1,Uob2, job3]], context:e], function:startjobs]

generate new uid

send [to:CS,

query: [from:FS, query:[from:u,query: Uob1,Uob2, job3]], context:e], context:uid],

function:jobssubmitted]

send [to:JS1, query: [from:FS, query:job1, context:uid], function:jobexeeute]

send [to:JS2, query: [from:FS, query:Uob2,job3] context:uid], function:jobexeeute]

Figure 4-3 A FlowService Specification

The FlowService (referred to by FS in the DFM specification) requires a number of other

services, identified by JS1, JS2 and CS, to define its workflow. In the semantics of DFM, such

service identifiers are mapped to the actual services (e.g. js1, js2 and cs from Figure 4-2), thus

allowing a system to be dynamically-configured. In particular, the services corresponding to

JS1 and JS2 could be not only the JobServices, but also the FlowServices with the extended

capabilities of a J obService. We will explain the detail in the Chapter 6.

The user's query is composed by three parts: a simple query contains set of jobs; from:

indicates the user initiates it; and a context: to distinguish different job queries.

When, the FlowService, fs1, gets the user's query, it creates a unique identity, uid, to identify a

new interaction. In this case, the job results are handed out by the Coordination Service. Thus

fs1 tells the cs, that a new interaction is started by forwarding the user's query. The fs1 only

extracts the user's jobs and attaches them to two JobServices, js1 and js2, as fs1 believes that

the JobServices will not interact with users. The FlowService sends out the messages

concurrently and gets on with its business of servicing other interleaved queries and replies.

Chapter 4 Illustration 62

OnMessage [to:JS, query: [from:fs, query:job, context:uid], function:jobexecute]

send [to:CS, query:[from:JS, query:job, result:result, context:uid], function:jobcomplete]

Figure 4-4 A JobService Specification

The JobServices execute jobs and forwards the results with the original query and context to

the cs. The original query is required for the Coordination Service to indicate which part of the

interaction is completed. The js2 gets a job query with 2 jobs as Uob2, job3], it executes them

and forwards the result, [result2, result3], to es.

OnMessage[to:CS,query:[from:fs,query:[from:u,query:[U1 ,j2], context:e], context:uid],

function:jobssubmitted]

store uid·>[from:fs, query:[from:u, query:U1,j2], context:e]] in ContextStore

if ContextStore[uid] contains [from:fs, query:[from:u, query:U1,j2], context:e]]

[from:js1, query:j1,result:r1]

[from:js2, query:j2,result:r2]

then {send [to:u,

query:[from:CS, query:[from:u, query:U1,j2], context:e],result:[r1 ,r2],context:uid],

function:jobsreply] }

OnMessage[to:CS, query:[from:js, query:job, result:result, context:uid], function:jobeomplete]

store uid .> [from:js, query:job, query:result, context:uid] in ContextStore

if ContextStore[uid] contains [from:fs, query:[from:u, query:U1,j2], context:e]]

[from:js1, query:j1 ,result:r1]

[from:js2, query:j2,result:r2]

then { send[to:u,

query:[from:CS, query:[from:u, query:U1 ,j2], context:c],result:[r1 ,r2],context:uid],

function:jobsreply] }

Figure 4-5 A Coordination Service Specification

Chapter 4 Illustration 63

Similar to the travel agent example, each time the Coordination Service receives a message,

whether a jobssubmitted query or a jobeomplete query, it stores certain entries into ContextStore

and then checks whether it has sufficient information to complete the job.

When the following information has been gathered at ContextStore[uid],

[from:fs, query:[from:u, query:Uob1 ,Uob2,job3]], context:e]]

[from:js1, query:job1, result:result1]

[from:js2, query:Uob2,job3], result:[result2,result3]]

the Coordination Service replies to the user a message with the query of the following

[from:es,

query:[from:u, query:Uob1 ,Uob2,job3]], context:e],

result: [result1 ,[result2,result3]]

context:uid]

The message tells the user that the message is sent from the Coordination Service, es; the

original jobs sent from user with the context e; the nested job execution result; and this job

execution record at the Coordination Service is uid.

4.1.3 A Re-Configured Job Submission System

The above example shows how asynchronous interactions are described in DFM. Our notation

also intends to support long-running interactions and dynamic configurations.

A huge computing job may run for long periods (days, weeks). Storing the job execution state

in a short-lived instance as BPEL4WS does is clearly not feasible. Moreover, components

need to be hot-swapped, without disrupting the interactions in which the retiring component is

involved and allowing the new component to continue with that sequence while, presumably,

providing some improved behaviours [30].

Dynamic configuration is a very complicated issue [section 2.5], especially in a system

composed of distributed web services. In our work, we are concerned about high level

business interactions. We assume that all messages will be delivered reliably, correctly and

completely. And we will discuss the operational semantic rules to explain how the system

Chapter 4 Illustration 64

handles the dynamic behaviours. In the following specifications we focus on the business

interactions, analysing the integrity of the interaction and the workflows.

/
!n5

/'

I 'm9

\
<If

D
User

Coordination
Service (os}

- ~ .. ~. -.~ ." .. - . . -.~~ ...
.. . . , . . , , , m4':2"

.,. \ ·· ·· • ···· · · ·· · . . ~8 "0',
\ :: ~~,\ . . . ,

t \ 1"10 . O' ,.... JobService
~3 , /' . , Os2)

/, 4 1 fb, . . """ :2-- ''::. ~ §" FlowService ""'>" " 0 :'
m1 1 ~: ", (f02) " . .-

. ~ '0.? JobService
FlowServlce h 083)

(fs1) U
JobService

Os1)

Figure 4-6 A Re-configured Job Submission Example

In our job submission example, to improve the performance, the system introduces some new

services. Figure 4-6, a JobService, js2, is replaced by a FlowService, fs2 that has the access to

the JobService js2 and js3. The FlowService, fs1, behaves the same as the previous example,

except that it will now send a job execute request (m6) to fs2 instead of a JobService. (The

actual specification of the FlowService remains unchanged as far as receiving messages from

users is concerned. The only change is in how the service identifier JS2 known to fs1 is

mapped to an actual service which will be described in Chapter 6 Formal Semantics.) Upon

receiving a request from fs1, the fs2 passes two jobs to JobServices, js2 and js3. This way, the

jobs received by fs1 can be executed simultaneously by three JobServices.

To dynamically replace a service, the system has to meet the following requirements:

• All interactions started before and after the re-configuration can be executed

consistently and without interruption. For example, a JobService is replaced by a

FlowService. All requests sent to the original JobService before the replacement can

Chapter 4 Illustration 65

continue and eventually sent back to the original user. All requests sent to the

FlowService after could be executed automatically.

• The service requester does not have to be aware of the change of the services. Thus

the service requester, fs1, will send the same request to the FlowService as the one it

sent to the JobService, after a JobService has been replaced by a FlowService.

Therefore, after the re-configuration, the fs2 needs to behave as a JobService when it receives

jobs from fs1 by providing a jobexeeute messagedef, and behaves as a FlowService when it

coordinates the jobs by sending messages (m7), to js2, js3 and passing the job state to the

Coordination Service (m8).

Because fs1 is the user of fs2 submitted jobs, the Coordination Service will send the results of

those jobs to fs1 (m9) this time. The fs1 then forwards those results to the Coordination

Service (mlO) indicating those jobs have been completed. If the job that was previously

submitted to js1 is also completed, the Coordination Service finally sends the results the User.

We can see that the original composed job is completed by two job execution interactions, two

different dot lines in the Figure 4-6.

On Message [to:FS, query: [from:u, query: Uob1,job2], context:e], function:jobexeeute]

generate new uid

send [to:CS,

query: [from:FS, query:[from:u,query: Uob1,job2], context:e], context:uid],

function:jobssubmitted]

send [to:JS1, query: [from:FS, query:job1, context:uid], function:jobexeeute]

send [to:JS2, query: [from:FS, query:job2 I context:uid], function:jobexeeute]

OnMessage[to:FS, query:[from:es, query:[from:u, query:job,context:e],result:result,context:uid],

function:jobsreply]

send [to:CS, query:[from:FS, query:job, result:result, context:e], function:jobeomplete]

Figure 4-7 Updated FlowSenrke Specification

Chapter 4 Illustration 66

We add two messagedefs to the FlowService: one is how a FlowService handles a jobexecute

request, and another is how it handles a jobsreply message.

The first messagedef is similar to the start jobs messagedef in Figure 4-3, but a different function

name. And this time, the user, U, of fs2 is a FlowService, fs1. When fs2 receives a jobexecute

message, it will start a new business interaction by providing a new unique identity. As a

result, the Coordination Service will create two process records in the ContextStore for fs1-

submitted jobs and fs2-submitted jobs. From the Coordination Service point of view, fs1 is the

user of fs2 submitted jobs; thus, the Coordination Service will send replies to fs1

corresponding to those jobs.

The second messagedef says if the FlowService, fs 1, gets a jobsreply from the Coordination

Service, it extracts the query and informs the Coordination Service that those jobs that were

previously submitted to fs2 have been completed. The Coordination Service processes a

message when the incoming message function matches the one in the On Message m, and

updates the state based on the query and context. Therefore, a jobcomplete message from a

FlowService produces the same result as the one from a JobService.

Although in Figure 4-6, we only give one coordination service, the nested job submission

could be actually coordinated by more than one coordination services and the specifications

are similar and straightforward.

4.1.4 Demonstration

Having given the system specification, we will consider a specific job to see how it works. In

chapter 6, we will give the operational semantic rules to explain how the system maps the

specification parameters to the real values. Here we assume that we have already had those

values. We use the value to give the whole job submission interaction flows.

We assume the system has the following services:

• FlowService 1: fs 1

• FlowService2: fs2

• JobServicel: js1

• JobService2: js2

• JobService3: js3

Chapter 4 Illustration 67

• User: U

• Coordination Service: es

We assume the user job is U1, U2, j3]] and the result will be [r1, [r2, r3]]. Also the

FlowServicel will generate uid1 as the interaction identity, the FlowService2 will generate

uid2 as the interaction identity, and the user will give e as the initial context.

Here are the real messages as marked in Figure 4-6:

> '.

U No
To

Query (query) Type (function)
Interaction

(to) ID

from:u,
ml fs1 query:U1 ,U2,j3]], start jobs e

context:e

from:fs1,
query: [from:u,

m3 es query:U1 ,U2,j3], jobssubmitted uid1
context:e],

context:uid1

from:fs1,
m2 js1 query:j1, jobexeeute uid1

context:uid1

from:fs1,
m6 fs2 query:U2,j3], jobexeeute uid1

context:uid1

from:js1,

m4-l es
query:j1,

jobcomplete uid1
result:r1,
context:uid1

from:fs2,
query:[from:fs1,

m8 cs query:U2,j3], jobssubmitted uid2
context:uid1],

context:uid2

from:fs2,
m7-l js2 query:j2, jobexecute uid2

context:uid2

Chapter 4 Illustration 68

from:fs3,
m7-2 js3 query:j3, jobexeeute uid2

context:uid2

from: js2,

m4-2 es
query:j2,

jobeomplete uid2
result:r2,
context:uid2

from: js3,

m4-3 es
query:j3,

jobeomplete uid2 result:r3,
context:uid2

from:es,
query: [from :fs 1,

m9 fs1 query:U2,j3], jobsreply uid2 context: u id 1],
result:[r2,r3],
context:uid2

from:fs1,

mlO es query:U2,j3], jobeomplete uid1 result: [r2,r3] ,
context: uid 1

from:es,
query:[from:u,

mS u query:U1,U2,j3]], jobsreply uid1 context:e],
result:[r1,[r2,r3]],
context: uid 1

Table 4-1 Message Examples of a Re-configured Job Submission

Interaction e submits a nested job. The nested job task is completed by 2 parallel interactions,

which have been indexed at the ContextStore as uid1 and uid2.

Chapter 4 Illustration 69

ContextStore[uid11 ContextStore[uid2]
'" " . 't ,

[from: fs1, query: [from: u, [from: fs2, query: [from: fs1,

query: [j1, U2, j3]], query: U2, j3],

context: c]], context: uid1]],

[from: js1, query: j1, result: r1], [from: js2, query: j2, result: r2],

[from: fs1, query: U2, j3], result: [rt2,r3]] [from: fs3, query: j3, result: r3]

Table 4-2 Re-configured Job Submission Interaction State

This example demonstrates the capability of using DFM to support long-running interactions

and dynamic configurations. By sharing interfaces a service behaves multi-functionally.

Assuming that the FlowService fs1 is able to handle a jobsreply message, this service does not

have to be stopped and rewritten in order to allow a JobService, js2, to be replaced by a

FlowService, fs2 (that is able to handle a jobexecute message). A job is distributed and

structured using nested context mechanism. The state of the job is captured in the

ContextStore and monitored by the Coordination Service. Therefore, a long-running job is

executed consistently and a job can be carried on in any state even if a service has been

replaced.

4.2 Discussion

We summarised the use of DFM features to model business interactions in the previous

chapter. We also saw how using the context mechanism and the query data structure, the DFM

can specify a business interaction using a special coordination service in this chapter.

Moreover, the way that DFM captures the business interaction state enables that a web service

not only to be replaced by a peer web service but also to be replaced by a web service with

more workflows.

In this section we summarise the basic DFM message flow patterns (communication patterns)

and give the examples of how to use the condition and these basic patterns to specify complex

workflows.

Chapter 4 Illustration 70

4.2.1 DFM Message Flow Patterns

A workflow describes the sequence of information and tasks being executed or passed around.

In a service-oriented system, the information and tasks are passed by asynchronous messages.

We believe that web services should be stateless which means that each service invocation

will be handled by an independent thread. Therefore in DFM, each incoming message will be

specified by one and only one messagedef. A messagedef includes only one incoming message

but could have several outgoing messages. Because a control decision may require by several

incoming messages, a message flow pattern sometimes is specified by more than one

messagedefs.

DFM defines two kinds of communication patterns in supporting asynchronous messaging,

one-way communication, which amounts to a service receiving a message, and notification,

which amounts to a service sending a message. In this section, we use In to represent the one­

way and Out to represent the notification.

A DFM message flow pattern is a combination of the two communication patterns. Three

basic message flow patterns are described as follows.

In

In refers to a web service receives a message, but will not send out any messages. This is

specified as the following messagedef. Any idactions or store actions could be given if required.

m1 ..
On Message m1

II idactions

II storeactions

Service

Figure 4-8 The In Programming Pattern

Chapter 4 Illustration 71

In-Outs

In-Outs refers to the situation that a web service may send out a message (or several messages)

after receiving an incoming message.

m2 _ ...
m3

m4

Service

.. ,.

...

On Message m2

II idactions

II storeactions

II any conditions

if conditions

then { send m3

send m4}

II no condition

send m3

send m4

Figure 4-9 The In-Outs Programming Pattern

In this pattern, the outgoing messages will not rely on any other incoming messages. As in the

above messagedef, the service sends out the messages if conditions are evaluated to true or

there is no condition, or does not send out the messages if conditions are evaluated to false.

The conditions check entries which are only taken from this incoming message (m2 as in the

above example); or entries which are internal business data.

Ins-Outs

Ins-Outs refers to the situation that a web service may send out a message (or several

messages) after receiving more than one certain incoming messages.

In the Figure 4-10, two messagedefs are given to the two incoming messages, m5 and m6. In

each messagedef, certain entries from the incoming message will be stored into the

ContextStore, and then a conditional send action checks whether other required messages

have been received. Thus, the messages are sent out only if all required messages have been

received and any other conditions are true.

Chapter 4 Illustration

mS

m6 ,. m7

rna

Service

On Message m5

II idactions

II store m5 entries

if m6 entries are in ContextStore

and any other conditions

then {send m7

send m8}

On Message m6

1/ idactions

II store m6 entries

if m5 entries are in ContextStore

and any other conditions

then {send m7

send m8}

Figure 4-10 The Ins-Outs Programming Pattern

72

~

In the Ins-Outs pattern, the outgoing messages rely on more than one incoming messages. The

rely relationship includes logical conjunction, and, logical disjunction, or, negation, not, and

exclusive disjunction, xor, and so on. The conjunction of the logic conditions and the above

basic patterns allow us to specify more flow patterns.

4.2.2 Modelling Workflow Patterns

In this section we discuss how to use the DFM message flow patterns to specify the basic

workflow patterns. We will refer the concepts and definitions of workflow patterns from [31]

which have been widely cited in other workflow works and publications.

Sequence: "An activity in a workflow process is enabled after the completion of another

activity in the same process." As the travel booking example in Section 3.3, the BookAFlight

activity is executed after the BookA Travel activity of at the travel agent.

Chapter 4 Illustration 73

FigUl'e 4-11 Sequeuce Workflow Pattern

The Sequence workflow pattern could be easily modelled by the DFM In-Outs message flow

which is similar with Figure 4-9, but only one out message,

Parallel Split: "A point in the workflow process where a single thread of control splits into

multiple threads of control which can be executed in parallel, thus allowing activities to be

executed simultaneously or in any order." As the example in Section 3,3, the BookAFlight

activity and BookAHotel activity are executed in parallel.

AND

Figure 4-12 Parallel Split Workflow Pattern

The Parallel Split workflow pattern could also be easily modelled by the DFM In-Outs

message flow which is similar with Figure 4-9. As we have stated early, in DFM, each service

invocation will be handled by one and only one thread, the two out messages could be carried

out in parallel or in any order whether they are sent to the same or different services.

Synchronisation: "A point in the workflow process where multiple parallel subprocesses /

activities converge into one single thread of control, thus synchronising multiple threads." As

the example in Section 3.3, the FlightBookingReply and the HotelBookingReply are synchronised

at the travel agent.

Chapter 4 Illustration 74

AND

Figure 4-13 Synchronisation Workflow Pattern

The Synchronisation workflow pattern is modelled by the DFM Ins-Outs message flow which

is similar with Figure 4-10, but no other flow related conditions.

Exclusive Choice:"A point in the workflow process where, based on a decision or workflow

control data, one of several branches is chosen." As an alternative travel agent scenario in

Section 3.3, a user can only book a flight or a hotel instead of book a travel package. The

travel agent will choose to execute the BookAFlight activity or the BookAHotel activity based on

the user order.

XOR

Figure 4-14 Exclusive Choice Workflow Pattern

The Exclusive Choice workflow pattern is modelled by the DFM In-Outs message flow which

is similar with Figure 4-9, but an exclusive condition.

Chapter 4 Illustration

On Message m2

1/ idactions

1/ storeactions

if conditions then { send m3 }

if not conditions then { send m4 }

Figure 4-15 Exclusive Choice DFM Model

75

Simple Merge: "A point in the workflow process where two or more alternative branches

come together without synchronisation." As an updated travel agent scenario in Section 3.3,

the travel agent will reply the user the FlightBooking and HotelBook separately, instead of pack

them together.

XOR

Figure 4-16 Simple Marge Workflow Pattern

The Simple Merge workflow pattern is modelled by two DFM In-Outs message flows which

are similar with Figure 4-9.

OnMessage m5

II store m5 entries

send m7

On Message m6

Ilstores m6 entries

send m7

Figure 4-17 Simple Met'ge DFM Model

Chapter 4 Illustration 76

In DFM, a messagedef is an atomic activity which may only contain simple workflows. A

structured workflow will be decomposed into several messagedefs. We are not going to model

all the structured and advanced workflow patterns introduced in [31]. We believe that most of

them could be modelled using the above simple patterns. In the next chapter, we will use those

patterns to specify a BEPL4WS application which has complex workflow patterns.

Chapter 5

Comparison

In Chapter 3 and Chapter 4, we gave the formal syntax of our DFM notation, and used some

examples to illustrate its use. Also in Chapter 2, we reviewed currently the commonly

acknowledged business process modelling languages, BPEL4WS and WSCI. In this chapter,

we model a warehouse purchasing example taken from the BPEL4WS specification and

compare our DFM with BEPL4WS and WSCI.

5.1 A BPEL Example

In the BPEL4WS specification v1.I, a purchase business process is used through the whole

document to exemplify the language. We will model the same example but using our DFM

notation.

Initiate
Price

Calculation

Receive
Purchase

Order

Decide
On

Shipper

Arrange
Logistics

Invoice
Processing

Initiate
Production
Scheduling

Complete
Production
Scheduling

Figure 5-1 A BPEL4WS Example

77

Chapter 5 Comparison 78

The purchase business process has been described in section 6.1 of the BPEL4WS

specification vl .l as follows: "The operation of the process is very simple, and is represented

in the Figure 5-1. Dotted lines represent sequencing. Free grouping of sequences represents

concurrent sequences. Solid arrows represent control links used for synchronisation across

concurrent activities."

"On receIvmg the purchase order from a customer, the process initiates three tasks

concurrently: calculating the final price for the order, selecting a shipper, and scheduling the

production and shipment for the order. While some of the processing can proceed

concurrently, there are control and data dependencies between the three tasks. In particular,

the shipping price is required to finalise the price calculation, and the shipping date is required

for the complete fulfilment schedule. When the three tasks are completed, invoice processing

can proceed and the invoice is sent to the customer."

Purchase Order Process

PortType Operation

purchaseOrderPT sendPurchaseOrder
invoiceCallbackPT sendInvoice
shippingCallbackPT sendSchedule

Invoice Service

PortType Operation

computePricePT
initiatePriceCalculation
sendShippingPrice

Shipping Service: -
PortType Operation

shippingPT requestShipping

Schedule Process

PortType Operation

schedulingPT
requestProductionScheduling
sendShippingSchedule

Table 5-1 BPEL Example - Supporting Services

Chapter 5 Comparison 79

5.2 The BPEL4WS Model

In order to understand the BPEL4WS, we implemented a simple job submission business

process using IBM BPWS4J (see detail in Appendix E A BEPL4WS Implementation using

IBM BPWS4J).

We have learned that a BPEL business process is essentially a web service. To deploy a

process, a process WSDL is required to provide information like message definitions,

supporting operations and partners. We extract the business process description (WSDL) to

Table 5-1.

And the workflow of the services (processes) interactions is described in Figure 5-2.

There are four parties involved in this composition, a Purchase Order Process and a Schedule

Process, an Invoice Service and a Shipping Service. The Purchase Order Process interacts

with user and 3 partners to complete a user purchase.

From the experiment we also know that a BPEL business process is essentially a web service.

It publishes its WSDL to the client and is invoked through SOAP RPC calls. As we can see in

the BPEL4WS specification, a business process always starts by receiving incoming messages

(service invocations). (The BPEL4WS workflow pattern also allows a business process to

start from a conjunction of multiple messages.)

In the example, a Purchase Order process is started from a purchase order sent from a client (a

user). The <flow> element inside the <sequence> indicates that the activities inside the

<flow> are carried out in parallel as in Figure 5-2. Therefore, when a Purchase Order Process

receives a sendPurchaseOrder from a user, it starts three parallel sub-processes (or threads)

correspondingly to interact with the Shipping Service, the Invoicing Service and the

Scheduling Process.

Chapter 5 Comparison 80

<process name= "purchaseOrderProcess" .. _ .. >

<sequence>

<receive>//purchaseOrderPT(sendPurchaseOrder) </receive >

<flow>

</flow>

<sequence>

<invoke>//shippingPT(requestShipping)

//link source "ship-to-invoice"

</invoke>

<receive>//shippingCallbackPT(sendSchedule)

//link source "ship-to-scheduling"

</receive>

</sequence>

<sequence>

<invoke>//computePricePT(initiatePriceCalculation)

</invoke>

<invoke>//computePricePT(sendShippingPrice)

//link target "ship-to-invoice"

</invoke>

<receive>//invoiceCallbackPT(sendlnvoice)

</receive>

</sequence>

<sequence>

<invoke>

//schedulingPT(requestProductionScheduling)

</invoke>

<invoke>//schedulingPT(sendShippingSchedule)

//target link "ship-to-scheduling"

</invoke>

</sequence>

<reply>//purchaseOrderPT(sendPurchaseOrder) </reply>

</sequence>

</process>

Figure 5-2 A Purchase Process in BEPL4WS

Chapter 5 Comparison 81

However, each of the 3 parallel sub-processes may rely on another sub-process. For example,

a sendShippingPrice message to the Invoicing Service has to be sent out after the Purchase

Process gets the requestShipping reply from the Shipping Service. And a

sendShippingScheduling message to the Scheduling Process relies on the sendScheduling

message from the Shipping Service. A BEPL4WS specification uses a <link> element to

describe this kind of cross boundary relationship, which involves two activities that are not in

the same syntactic construct.

BPEL4WS is a very complex language, which provides mechanisms include type definition,

transaction support, data handling, and workflow patterns. We are not going to explore all of

them. We only use the example to review the basic workflow and message patterns so that we

can compare them with our DFM notation.

Chapter 5 Comparison 82

5.3 The DFM Model

We use a customised sequence diagram Figure 5-3 to illustrate the business interactions

(messages) between individual parties of the warehouse purchasing example.

I User I
I

sendPurchaseOrder

II
IL
I '
-f

I

I

sendPurchaseOrder

I I I
. rttquesiProductionSchedulin£;

I I
requestShipping (S·I) I .,

InitiatePrice Icul~ion

rice !S-I)

-,

sendShippin :J I I
I I serdScheduling (8-8) 5 dShipping8cheduling (8-)

I
I

I I
I I

-
sendlnvfice

~_I I I
I I

Figure 5-3 The Sequence Diagram of BPEL4WS Example

I
I

A one-side arrow line (-..) indicates a message sent from one service to another. A two­

side arrow line (~) is a request-reply message, where a service will wait for a reply to the

request it send out. A dot arrow line (- -.) indicates a message correlation, where an

outgoing message (arrow end) depends on an incoming message (line begin). We use different

colours to distinguish different message correlations.

As we stated earlier, DFM models the servIce composition by describing the messages

exchanged between web services. Each service in the composition specifies its contributions

to the business interaction. Therefore, to complete the business interaction, we will give DFM

specifications for 4 services (process).

Chapter 5 Comparison 83

5.3.1 A Purchase Process Specification

In the following example, we assume that business interaction is executed by a User, u, and

four services or processes: Purchase Order Process, pp; Shipping Service, ss; Invoicing

Service, is, and Scheduling Process, sp. And a user order is composed by three parts: shipping

information, sso; invoicing information, iso; and scheduling information, spo.

The Purchase Process specification is composed by four message definitions.

OnMessage[to:pp, query:[from:u, query:[sso,iso,spo],context:c], function:sendPurchaseOrder]

generate uid

store uid .> [from:u, query:[sso,iso,spo],contextc]

send [to:ss, query:[from:pp, query:sso, contextuid], function:requestShipping]

send [to:is, query:[from:pp, query:iso, context:uid], function:initiatePriceCalculation]

send [to:sp, query:[from:pp, query:spo, context:uid], function:requestProductScheduling]

OnMessage[to:pp,query:[from:ss,query:sso,resultrequestreply, context:uid],function:requestReply]

store uid .> [from:ss, query:sso, result:requestreply]

send [to:is, query:[from:pp,query:requestreply,context:uid],function:sendShippingPrice]

OnMessage[to:pp,query:[from:ss,query:sso,resultschedules,context:uid],function:sendScheduling]

store uid .> [from:ss, query:sso, resultschedules]

send [to:sp, query:[from:pp, query:ss, context:uid], function:sendShippingSchedule]

if ContextStore[uid] contains [from:u, query:[sso,iso,spo],context:c]

[from:ss, query:sso, result:schedules]

[from:is,query:invoice]

then{send [to:u, query:[from:pp,

query[from:u,query:[sso,iso,spo],context:c],

result:[schedules, invoice],

context:uid],

function:purchaseReply]}

Chapter 5 Comparison

OnMessage [to:pp,query:[from:is,query:invoice,context:uid],function:sendlnvoice]

store uid .> [from:is,query:invoice]

if ContextStore[uid] contains [from:u, query:[sso,iso,spo],context:c]

[from:ss, query:sso, result:schedules]

[from:is,query:invoice]

then {send [to:u, query:[from:pp,

query[from:u,query:[sso,iso,spo],context:c],

result:[schedules, invoice],

context: uid],

function:purchaseReply]}

Figure 5-4 A Purchase Process Specification

84

First, when pp gets a sendPurchaseOrder request, it creates a new unique id as the new

interaction identity. After the user query has been stored into the ContextStore, the pp extracts

the user query and creates three messages with attached new interaction id. The three

messages: a requestShipping message to Shipping Service; an initiatePriceCa1culation

message to Invoicing Service; a requestProductScheduling message to Scheduling Process,

are as usual sent out in no particular order.

The requestShipping is a request-reply operation in BPEL. The Shipping Service will reply to

the Purchase Process the shipping price when it gets the request. Thus, the second messagedef

gives the behaviour of receiving the shipping price reply. The pp stores the reply into the

ContextStore and then sends the shipping price to the Invoicing Service (the green correlation

in Figure 5-3).

As we have stated each incoming message (including reply messages) will have a messagedef

in the service specification. The Purchase Process receives four types of messages in total. We

have described 2 of them, sendPurchaseOrder and requestReply. The other two, sendInvoice

and sendScheduling, are specified in the last two messagedefs. Because the user reply has to

include both the information from the last two messages, the two messages are correlated to

the purchaseReply (the red correlation in Figure 5-3). Since these two messages are received

by the Purchase Process in no particular order, the specifications specify a conditional send

Chapter 5 Comparison 85

action where the condition is checking whether both two messages of the same interaction

have been processed.

5.3.2 A Shipping Service Specification

The Shipping Service basically has two tasks in each business interaction, calculating the

shipping price and providing the shipping schedule. Both tasks are triggered by a

requestShipping message. In the specification, the Shipping Service packs the shipping price

and the schedule into the query and sends them to the Purchase Process.

On Message [to:ss, query:[from:pp, query:sso, context:uid], function:requestShipping]

store uid .> [from:pp, query:sso]

send [to:pp, query:[from:ss, query:sso, result:requestreply, context:uid],

function:requestReply]

send [to:pp, query:[from:ss, query:sso, result:schedules, context:uid],

function:sendScheduling]

Figure 5-5 A Shipping Service Specification

We can see that, the requestShipping is a request-reply service invocation in BPEL4WS. In

DFM, we model it as an On Message plus a send action. The outgoing message is similar to all

other messages, passing around web services in an asynchronous manner. Therefore, the

requesting web service does not have to wait for reply.

5.3.3 An Invoicing Service Specification

The Invoicing Service has two kinds of incoming messages. The first message is received

from a Purchase Process asking to calculate product price. The second message is received

from the Purchase Process with the shipping price information.

Chapter 5 Comparison

OnMessage[to:is, query:[from:pp, query:iso, context:uid], function:initiatePriceCalculation]

store uid .> [from:pp, query:iso]

if ContextStore[uid] contains [from:pp, query:iso] [from:pp, query:sprice]

then{ send [to:pp,query:[from:is,query:invoice,context:uid],function:sendlnvoice]}

OnMessage[to:is, query:[from:pp,query:sprice,context:uid],function:sendShippingPrice]

store uid .> [from:pp, query:sprice]

if ContextStore[uid] contains [from:pp, query:iso] [from:pp, query:sprice]

then {send [to: pp,query: [from: is,query: invoice, context: uid], function :send Invoice]}

Figure 5-6 An Invoicing Service Specification

86

The Invoicing Service will combine the product price and shipping price and create the final

invoice (the brown correlation in Figure 5-3). Since the two messages are received in no

particular order, the service will check with the ContextStore to see whether all the price

information of an order has been collected.

5.3.4 A Scheduling Process Specification

The production and shipping are handled by a Scheduling Process in this example.

On Message [to:sp, query:[from:pp, query:spo, context:uid], function:requestProductScheduling]

store uid .> [from:pp, query:spo]

On Message [to:sp, query:[from:pp, query:ss, context:uid], function:sendShippingSchedule]

store uid .> [from:pp,query:ss]

Figure 5-7 A Schedule Service Specification

Chapter 5 Comparison 87

In this particular business interaction, the Scheduling Process will not interact with all other

services. Two messages of each business interaction will be sent to the Scheduling Process,

one for production and one for shipping schedule. The process stores the interaction into the

ContextStore and continues carrying on its business.

5.4 BPEL4WS and DFM

BPEL4WS and DFM are formal notations to specify service-oriented business processes and

interactions, aiming to facilitate system automation, especially in business-to-business

domains. Given the formal models of a warehouse purchasing application using both

BPEL4WS and DFM, we review the differences between them as follows.

5.4.1 Formal Model vs. Industrial Standard

As developed by the two IT giants, IBM and Microsoft, the BPEL4WS specification is

becoming an industrial standard. To turn the BPEL4WS into real implementations, especially

in commercial systems, the specification must be reliable, secure and comprehensive to

provide all sorts of capabilities in order to meet business requirements such as transaction

support, compatibilities with other web service standards and so on. The specification itself

becomes more and more complex, which makes the system much harder to implement and

verify.

The DFM is a research outcome. The purpose of the DFM is to use it in between formal

mathematical models and real implementations. Unlike BPEL4WS, the DFM focuses on

business interactions over distributed web services, and does not provide strong support on the

transactions. The DFM is a concise notation in comparison with BPEL4WS, but has the

capability to be converted into XML data structure which could be further fitted into other

web service standards. The advantage of DFM over BPEL4WS is that the concise abstract

model could be easily verified (see Appendix C and D) or compiled into other formal model

checking tools.

Chapter 5 Comparison 88

5.4.2 Distributed Workflow vs. Centralised Workflow

Although the BPEL4WS and the DFM work on the same business domain, they use different

approaches to facilitate the workflow automation. BPEL4WS provides a centralised workflow

model, which uses a stateful business process orchestrated with stateless web services or other

business processes.

Process State

Interaction

and Partnership

Behaviour

and W orkflows

<variables>
<variable name="PO"

messageType="lns:POMessage"/>
</variables>

<partnerLinks>
<partnerLink name="purchasing"

partnerLinkType="lns:purchasingL T"
myRole="purchaseService"/>

</partnerLinks>

<sequence>
<assign>

<copy>
<from variable="PO"

part=" customerInfo" I>
<to variable="shippingRequest"

part=" customerInfo "I>
</copy>

</assign>
</sequence>

Table 5-2 A Centralised Workflow Model

A business process is defined by an abstract business protocol and an executable model. A

business protocol gives the interaction by describing the partner relationships between a

process and web services. An executable model describes the logic and state nature and

sequence of web service interactions. The business process states are stored as variables at the

BEPL4WS container.

A centralised workflow releases the state maintenance requirement for the web services, but it

adds huge complexities to the implementation of the BPEL4WS container. Successfully

Chapter 5 Comparison 89

developing and deploying a BPEL4WS process using any available engines is really an

achievement for anyone.

In contrast, DFM does not have a centralised workflow, but a distributed model. The

workflow is specified by all the services involved in a business interaction.

update state

enquire state and

initiate suitable actions

(send messages)

OnMessage [to:a,

query:[from:s, query:f, result:r, context:uid],

function:shopReply]

store uid .> [from:s, query:f, result:r] in ContextStore

if ContextStore[uid] contains

[from:a, query:[from:u,query:[f,h], context:e]],

[from:s1, query:f, result:r1],

[from:s2, query:h, result:r2]

then { send [to:u,

query:[from:a,

query:[from:u,query:[f,h],context:e],

result:[r1,r2],

context:uid],

function: bookReply] }

Table 5-3 A Distributed Workflow Model

The interaction state in DFM is stored in an independent persistent component, ContextStore.

A web service accesses its own or shared ContextStore to enquire or update the state of an

interaction.

DFM provides a very simple business protocol between web services and business component,

like the ContextStore. It could be easily extended and implemented into different web service

environments. It is very flexible, could be used to model various applications. We have

demonstrated in the last chapter that DFM is particularly suited to applications which are

required to be coordinated.

Chapter 5 Comparison 90

A centralised workflow design pattern limits the dynamic system behaviours. Storing the

process state in temporary variables at the web container as BPEL4WS does, makes it

infeasible to dynamically replace a web service or a business process in the middle of a

business interaction.

The DFM separates the interaction state from the web services to enable the dynamic

behaviours. In the last chapter, we have given an example of using DFM to capture the

business interaction when a web service is replaced by another web service with more work

flow behaviours.

5.4.3 Support for Long-running Interactions

As we have stated earlier, the DFM is intended to model long-running business level

interactions. A business-to-business interaction is not just a transaction. Web service

transactions are a subset of web service interactions [23]. The BPEL4WS specification only

provides mechanisms to support long-running transactions by providing two-phase commit

protocols and compensation activities [25]. However, a business level interaction may include

multiple transactions and takes much longer than a transaction.

As long-running business interactions are the basis of modern enterprise application, we

believe it should also be considered as part of the service composition. DFM uses a persistent

component to store the business interaction state and a context mechanism to coordinate

concurrent business interactions. Therefore, business interactions running for days or weeks

could be executed consistently.

5.4.4 Summary

BPEL4WS is a comprehensive industrial standard which provides formal specifications for

service-oriented applications. In contrast, we developed a concise formal modelling notation,

DFM, to specify and verify such applications. DFM and BPEL4WS focus on different scope

of the service oriented applications where DFM is intended to support long-running business

interactions and BEPL4WS is aimed at long-running business transactions. The approaches

and mechanisms to specify the service composition in DFM and BPEL4WS are also different.

A BPEL4WS specification is a composition of a fat stateful process and thin stateless web

services, whereas a DFM specification is a composition of peer stateless web services.

Chapter 5 Comparison 91

However, the two specification languages do work together. The DFM can be used as a

complement of the BPEL4WS, for example to model context aware applications.

5.5 WSCI and DFM

WSCI (Web Service Choreography Interface) is another web service composition language. It

describes the flow of messages exchanged by a web service participating in choreographed

interactions with other services. Similar to the idea of DFM, WSCI specifies behaviours of

individual services which are part of the business interaction.

II WSCI interface agent

<process name="agentbooking" instantiation="message" >

<sequence>

<action name=''bookTravel'' role=" Agent" operation=''bookTravel'' I>

<action name=''bookReply'' role=" Agent" operation=''bookReply'' >

<correlate correlation=''bookCorrelation'' I>

<call process="agentbooking" I>

</action>

</sequence>

</process>

II wsdl port type definitions

I I Correlations and selector definition

<selector property=''bookingNo'' type="itineraryID" xpath="./textO" I>

<correlation name=''bookCorrelation'' property=''bookingNo'' >

<documentation> correlation based on a booking number. <ldocumentation>

</correlation>

Figure 5-8 A TravelAgent Example in WSCI

Chapter 5 Comparison 92

5.5.1 A Travel Agent Example in WSCI

We specify our previous travel agent example in WSCI in Figure 5-8. We can see that WSCI

is actually an extension of the WSDL. The extension gives the control flow to operations

supported by an individual service. However it does not give an executable model of how

distributed services coordinate with each other to achieve the business interaction.

DFM also uses the choreography approach to model service composition where each service

has to specify their contribution to the interaction. And the relationships among operations

supported by a service is not just based on the control flow but also based on the business

interaction state. Thus DFM gives an executable service composition model. In the next

chapter, we will give the detail operational semantics ofDFM describing the system execution

rules.

Chapter 6

Formal Semantics

Web service technologies enable modem enterprise applications to be implemented over a

heterogeneous web environment. A web service publishes its interfaces in an XML-based

document, WSDL, and is invoked through a XML-based messaging protocol, SOAP [29, 32].

Using platform independent and standard XML documents, a service consumer can invoke a

web service following the shared understanding but does not care how the service is

implemented.

A service-oriented application is composed of dynamic web servIces orchestrated using

asynchronous messages. The web services are owned and managed by many business partners.

This architecture provides benefits over traditional applications on interoperability, flexibility,

dynamic configurations. However, it also adds considerable complexity to the implementation

and verification [33].

To adapt to the web service architecture, a transition rule is given to describe the possible

behaviours of a system of inter-related web services, in terms of the messages that can be

exchanged during the execution of one or more business interactions, and the effect each

message execution has on the business interaction state. The operational semantics of a DFM

specification is defined using such rules.

6.1 Operational Semantics

Our DFM notation is a message based workflow notation. The systems which can be specified

in DFM are composed of a set of independent web services, coordinated using asynchronous

messages. The execution of a message is handled by the web service which the message was

sent to. Since communication is asynchronous, the sequence of the message execution is

undetermined. The operational semantics describes all the possible behaviours of a message

execution.

93

Chapter 6 Formal Semantics 94

The operational environment within which the web service communications are taking place

is modelled using a virtual daemon. The daemon uses a message pool to manage the sending

and receiving of messages by the services, and at the same time maintains service

configurations. When a message is added to the pool, it is organised in a message-set of a web

service which the message was sent to. When the message is executed, it will be removed

from the message-set and the pool.

The execution of a message is carried out in the following key steps: the message is matched

to a message pattern in the specification; the actions which need to be carried out are

determined, based on information generated from the system specification and on the current

interaction; and finally, the resulting message patterns are evaluated, the results are added to

the message pool, and the original message is removed from the pool.

The DFM notation intends to deal with the dynamic configuration: a web service does not

have to be stopped and rewritten when the service composition is changed. To support this,

we allow the service names used in system specifications to be mapped to actual services at

runtime. This is achieved using the configuration tables dynamically provided by the

environment.

Formally, the operational semantics associates, to each DFM specification, a labelled

transition system whose states correspond to possible states of the system (defined by the

messages awaiting execution and by the current state of the ContextStore), and whose labels

correspond to message executions. The transition rule is based on the system specification that

has been defined using DFM notation and all the variables and constant values that have been

provided by the system daemon. Defining this transition system requires several auxiliary

functions, which we now describe.

6.1.1 Specification Functions

Specification functions provide the information extracted from a given DFM specification.

For example, ids generated by the idactions of a system is used when storing information into

the ContextS tore or when sending out messages; service names defined in the message

patterns are used when matching a message pattern to a real message.

Chapter 6 Formal Semantics 95

ServiceId

A system is specified using a collection of messagedefs. These can be organised based on the

type of the service which handles each message. The set Serviceld contains all service

identifiers present in the specification:

Serviceld = {s I to:s appears inside an onMessage m }

Message

A messagedef describes the actions taken by a web service in response to an incoming

message. It contains all message patterns present in the specification:

Message = {m I onMessage m appears inside a messagedef}

ids function

The DFM uses a context to identify a business interaction. A unique identity, id, created by an

idaction of a messagedef, is used to associate an interaction to each message or entry in the

ContextStore. As part of executing a message, new interaction identities can be created in

order to identify a specific sub-interaction. The ids function gives, for each message m, the

interaction identities generated upon the execution of m:

ids: Message -+ IP (String)

ids(m) = { id I id appears in the idaction of on Message m}

context and vars function

Similarly, the context and vars function give, for each message m, the interaction identities

passed as parameters to m using the context: property, and the names of all the other variables

used as parameters in definition of m, respectively:

context, vars : Message -+ IP (String)

context(m) = { c I context:c appears inside m}

vars(m) = {var I var appears as an element inside m}

Chapter 6 Formal Semantics 96

Store action function

The function storeactions maps each message m to the set of storeactions which need to be

carried out as a result of executing m. The effect of these actions is that certain interaction

states are updated, by storing related data into the persistent component, ContextStore.

StoreAction = {storeA I storeA is generated by storeaction}

storeactions: Message ~ IP (StoreAction)

storeactions(m) = {storeAEStoreAction I storeA appears inside on Message m }

Send action functions

The sendactions function gives, for each message, m, the set of sendactions which will be

carried out unconditionally upon the execution of a message matching m.

SendAction = {sendA I sendA is generated by send action }

sendactions: Message ~ IP (SendAction)

sendactions(m)={sendAESendAction I sendA appears inside on Message m }

For each message m, the set conds(m) gives the conditions which must be evaluated as part of

the execution of m:

Condition = {c I c is generated by condition}

conds(m) = {cECondition I c appears inside on Message m}

while the function csendactions(m) gives the actions associated to each such condition:

csendactions(m) : conds(m) ~ IP (SendAction)

csendations(m)(c) = {sendAESendAction I sendA appears

inside if c then { ... } of on Message m }

Chapter 6 Formal Semantics 97

6.1.2 Semantic Functions

A number of semantic functions will be used to describe the effect of message executions,

both on the message pool (where new messages will typically be added), and on the state of

the ContexStore (where some interaction states will be updated).

Context Store

A system in DFM is represented by messages in the message pool and the ContextStore that

stores all business interaction state. A special data structure, entry, that represents a business

interaction, has been introduced previously.

Entry = {e I string generated by entry}

ContextStore = string ~ IP (Entry)

Service

The actual system is composed by a set of services as showed in Figure 6-1 .

• t ".

: :M2

.'f • •• • ••

:~t. ·
(,
,quolY: "
tfunc;lioll: .' ;, ... '

. ~ . Message Pool '.

. ·:r.,a

.

Figure 6-1 A Message Pool

. /
.}I'

/
/

/

Chapter 6 Formal Semantics 98

The set Service contains the names of all services relevant to a particular specification. In the

following, we assume:

Service = {Sl , S2, . . . ,Sn}.

For each service, Si, a message-set, MSi, gives the pending messages of Si, as found in the

message pool (see also in Figure 6-1).

Table 6-1 A Configuration Table of a Sel'"Vice, Si

In addition, for each service Si, a configuration table is given that links the service identifiers

used in the definition of Si to actual services (elements of Service). This is captured by the

function:

Configi : ServiceId -+ Service

To give a system configuration, the Service set and the configuration table for each service are
I

required and fixed.

MessageVal

The message pool is the container for messages awaiting execution. The set MessageVal

contains all possible such messages.

MessageVal = {[to:t, query:q, function:fun] I tEstring, qEstring, funEstring}

Matching function

For each service Si, the matchesi function gives the message pattern m that corresponds to a

message M in the message pool.

Chapter 6 Formal Semantics 99

Matchesi : Message Val ~ Message

Matchesi ([to:t, query:q, function:t])

= [to:t', query:q', function:f] E Message if configi (t') = t

Evaluation of a document

The evaluation function evalM,i defines how to evaluate document expressions appearing

inside a message definition m, based on the values provided by a corresponding actual

message M waiting to be executed by Si, and on the values generated from the environment

upon the execution of M. The function evalM,i is defined inductively on the structure of

document expressions. The base cases correspond to service names, message

parameters/contexts and interaction identities:

evaIM,i(t) = COnfigi (t) ifm = matchesi(M) and to:t or from:t inside m

evaIM,i(var) = value obtained from m=matchesi(M), ifvar E vars(m) u context(m)

evaIM,i(id) = new value generated from the environment,

if m=matchesi(M) and id E ids(m)

while the induction cases correspond to messages, queries and entries:

evalM,i ([to:t, query:q, function:f]) = [to:evaIM,i(t), query:evaIM,i(q), function:f]

evaIM,i([vafI, .. ,varnJ) = [evaIM,i(vafI), .. ,evalM,i(var2)]

evalM,i([from:f, query:q, context:c])

= [from:evaIM,i(f), query:evaIM,i(q), context:evaIM,i(c)]

evaIM,i([from:f, query:q, result: r, context:c])

= [from:evaIM,i(f), query:evaIM,i(q), result: evaIM,i(r), context:evaIM,i(c)]

evaIM,;([from:f, query:q]) = [from:evaIM,i(f), query:evaIM,i(q)]

evaIM,i([from:f, query:q, result: r]) = [from:evaIM,i(f), query:evaIM,i(q), result: evaIM,i(r)]

Chapter 6 Formal Semantics 100

Evaluation of a condition

An additional function needs to be defined for evaluating the conditions appearing inside

message definitions, given an actual message M to be executed by service Si, and a particular

state of the ContextStore, CS:

evalM,i : conds(m) x ContextStore ~ {true, false}

evaIM,i(ContextStore[id] contains el, ... ,en, CS)

= true if each evalM,i (ej) E CS[evaIM,i(id)]

= false otherwise

The boolean operators are evaluated in the usual way.

evalM,cs,i (Cl and C2, CS) = evaIM,cS,i(Cl,CS) /\ evaIM,cs,i(c2,CS)

evalM,cs,i (Cl or C2, CS) = evaIM,cs,i(Cl,CS) v evak,cs,i(C2,CS)

evalM,cs,i (not Cl,CS) = -, evaIM,cs,i(cl,CS)

Send function

For each message M waiting to be executed by some service Si, and each state CS of the

ContextS tore, the function send _ fUllM,cs,i gives, for each service, Sj, the messages that are

going to be sent to Sj as a result of executing M.

sendjullM,cs,i: Service ~ IP (MessageVal)

sendjullM,cs,i (Sj) = {M' EMessageVal1 m = matchesi (M)

and send m' E sendactions(m) u (csendactions(m)(c)

and to:to in m' and eval M,i(tO) = Sj

and M'=evaIM,i(m')}

where evak,cs,i(c,CS)=true)

Chapter 6 Formal Semantics 101

6.1.3 System Configurations

The operational semantics of a DFM specification is defined in terms of transitions between

system configurations, where a configuration describes the messages waiting to be executed

by each service, together with the current state of the ContextStore. Formally, a configuration

is tuple:

(MS!, ... , MSn, CS) E IP(MessageVal)x ... x lP(MessageVal) x ContextStore

and transitions between configurations have the form:

execute(M)

(MS!, ... , MSn, CS)----~) (MS!', ... , Msn', CS')

where the later configuration is completely determined by executing M In the initial

configuration.

6.1.4 A Transition

execute (M)

(MSl, •.. ,MSn, CS) -------7) (MSl', ... ,MSn', CS')

if (M E MSi)

where: matchesi(M) = m

for every id E ids(m) u context(m),

CS'[evak,i(id)] = CS[evalM,i(id)]

u {evalM,i(e) I store id ---+ e E storeactions(m)}

for every j *- i, MSj' = MSju sendjunM,cs',i(Nj)

MSi' = MSi \ {M} u sendjul1M,cs',i(Ni)

Figure 6-2 A Transition Rule

Chapter 6 Fonnal Semantics 102

A single operational rule, given in Figure 6-2 describes when the transition is possible, and

what the outcome of the transition is. Specifically, the message M being executed must belong

to some message-set MSi, and its execution (by service Si) results in M being taken out from

the message-set, in some interaction states being updated, and in new messages being added to

some of the message-sets. The matchesi function (of service Si) is used to determine the

message pattern m that matches the message M, and subsequently the evalM,i and send _ fullM,CS,i

functions are used to compute the required state updates (as specified in the storeactions of m),

and the new messages to be added to the message-sets (as specified in the sendactions ofm).

This operational rule can be used to generate a transition system, whose states are

configurations, and whose transitions are all possible instances of the given rule. Any

configuration containing at least one message in the message-sets can, in principle, be chosen

as an initial state. Unfolding the transition system starting from this state yields all the

behaviours which can be exhibited by the services SI, ... ,Sn, while they cooperate towards the

execution of the messages in the initial configuration.

For the TravelAgent specification in Section 3, an abstraction of the resulting transition

system is given in Figure 6-3 (where the system states are represented using only the

messages waiting to be executed).

bookShop(fs)
shopReply(hs)

bookShop(hs}
shopRe~y(fs)

Figure 6-3 A Travel Agent Transition Diagrams

Chapter 6 Formal Semantics 103

6.2 Discussion

Web services are independent entities in a service-oriented system. As a result, the sending of

a message should not rely on the availability of other web services. A service should be able

to pick up a message after it has recovered from a failure, or immediately after its addition to a

service-oriented system. The operational semantics presented here conforms to this

asynchronous communication behaviour which also supports dynamic behaviours such as

adding and replacing a web service.

We have stated that DFM intends to deal with the dynamic system configurations. An

example of updating a system configuration by replacing a simple service by a work flow

service has been presented in chapter 4. We also described earlier how to map a system

prototype to an actual configuration using configuration tables. Transition rules for replacing a

service by another service could be based on the functions we described in last section and

some new functions on the configuration tables.

6.2.1 Dynamic Configuration Scenario

The system we have just discussed is composed of a set of independent web services.

Dynamically configuring a system refers to the behaviours like adding a web service,

removing a web service, or replacing a web service by another service.

Dynamic configuration is a complex problem. The dynamic behaviours are vanous in

different systems. As our work is not mainly about dynamic systems, in this section, we use

some sample dynamic behaviours and discuss the possible solutions of how the system could

handle the dynamic behaviours. The discussion aims to demonstrate that our operational

semantics has the capability to handle dynamic configuration behaviours. To give the full

operational semantic rules we will have to enrich our current DFM notation, [see detail in 7.3

future works].

The dynamic configuration concept here is different from the one we used in Chapter 4 where

we demonstrated that the context mechanisms and document record data structure of DFM

syntax allows a simple job service being replaced by another web service with more complex

workflow patterns. In this section, we are concerned with the operational rules. The

operational rules assume that a system specification has been given and fixed.

Chapter 6 Formal Semantics 104

Dynamic behaviours are various in different systems. Some system configurations are

specified and controlled by a human being, a system administrator for instance; some system

configurations are updated by the system itself automatically. We are not going to distinguish

them because our discussion is concerned with how the business interactions are executed

during a system reconfiguration. Thus, we let the daemon to handle the re-configuration

which could be initiated by either a human being or by the individual service supported by the

system engine.

Adding a Web Service

The message pool and the configuration tables allow that the independent services do not have

to be aware of the system change. However, from the operational point of view, when a new

service is added into the system, as the job submission example in Chapter 4, a new job

service, job service 3, is added to the system to enhance the performance, the system has to

provide the capabilities to introduce it to other services, to give a message container for the

service and so on. In our current operational environment, when a web service, Sn+l, is

introduced into the system, the system daemon needs to create a new message-set, MSn+l, and

a new configuration table for it.

Adding a web service into the system will not affect any existing business interactions. Since

the transition rule describes the behaviour of a message execution, the newly added service

will only join a business interaction execution when a message is added into the message-set

at the message pool. This happens either when the daemon initialises a message to it, or the

service takes the place of another service which we will discuss shortly in replacing a web

service scenario.

Removing a Web Service

We have described that the message pool and web services are independent components in our

system. Messages are pending at the message pool waiting to be processed. A web service can

pick up a message at any point. When a service is going to be removed, the system has to

ensure that all the unfinished business interactions that the service took part in will be

executed consistently. This could be done either by only removing the service after all the

unfinished interactions are completed or by picking up another service that takes the place of

the removed service. When a service is removed the daemon has to update the Serviceld,

Service and Configi to make sure that data is consistent with the system configuration.

Chapter 6 Formal Semantics 105

Replacing a Web Service

Before discussing the behaviour of replacing a web service, let's refine the workflow concepts

in our model.

f1 I----Itro<

f2t------~

Figure 6-4 A Service Flow Example

A web service provides pieces of functions which could be invoked by various services. A

Service Flow is given by a specification using DFM, describing the outputs in relation to an

input as the opaque arrow in Figure 6-4 and Figure 6-5. The service itself does not have to be

aware of the real destination of any outgoing messages.

Name Service
t1
1:2 Service 3

System Daemon

Figure 6-5 A System Flow Example

Chapter 6 Formal Semantics 106

The System Flow describes a service composition that delivers a business function as the

transparent arrow in Figure 6-5. A system daemon gives each service a configuration table

which maps a Service Flow into a System Flow. Our operational semantics is based on a given

specification. Thus replacing a service here is about updating the System Flow.

In a service-oriented system, a web service may provide multiple functionalities and is used

by various services or clients. Replacing a service could happen when a service is broken

down which is described in replacing a service globally section, or when a client requires a

change which is described in replacing a service locally section. Again, in the discussion we

will let the daemon handle it whether it is initiated by a system administrator or by an

individual service.

Replacing a Web Service locally

Name S9rvi'ce
t1 Service 2

Servic.3

Name
11

Hama Service
11
t2 Service 3

Figure 6-6 Replace a Service Locally

Local replacement refers to the situation that the system daemon tells a service, Service 1, to

send a certain type of messages (in red) to a new service, Service i, as in Figure 6-6 instead of

previously the Service 3 in Figure 6-5. As in early example in Chapter 4, a FlowService, fs1,

is asked to send jobs to a new FlowService, fs2, instead of the JobService 2, js2. We assume

that the replaced service is still alive. As in Figure 6-5, the Service 3 executes its messages as

before.

Chapter 6 Formal Semantics 107

From the transition point of view, the messages sent before the update will be processed by

the old service, those after the update need to be put into the message-set of the new service.

Thus the daemon needs to update the configuration table of Service 1, updating from t3 ->

Service 3 to t3-> Service i.

Replacing a Web Service globally

Global replacement refers to the situation that a service is going to take the whole position and

functionality of another service as in Figure 6-7. For example, the Service 3 has no longer

been available, for example a service is out of service. The system then decides to let Service i

represent Service 3.

Name 5ervIte
t1
t2 Service I

Name Sel"YicCl
t1

Figure 6-7 Replace a Service Global

To support this kind of replacement, the system has to consider two conditions. First, the

system is required to ensure all the services will be notified of the change so that all future

messages will be sent to the new service. To do this, the daemon may look through all service

configuration tables and update the related rows.

Second, since a service is no longer in function, the system has to make sure that all pending

messages of the service will be processed. To do this, the system daemon needs to move all

the messages pending at the message-set of the original service to the message-set of the new

Chapter 6 Formal Semantics 108

service. For those interactions that the original service took part in and haven't been finished,

the daemon may need extra engine to ensure the future replies will be sent to the new service.

6.2.2 Summary

In this chapter, we described an abstract machine to coordinate asynchronous web service

interactions. We defined the operational semantics of a system specified using our Document

Flow Model notation. A transition rule to execute an asynchronous message was given based

on the specification functions, generating data from the system definition, and the semantic

functions, evaluating data generated from the specification. We also discussed the possible

operational solutions for the dynamic behaviours, including adding a service, removing a

service and replacing a service.

The formal operational semantics given in this chapter helps us to understand the behaviours

of a service-oriented system. It could be used to develop tools to simulate applications

composed by asynchronous web services, and also could be extended into real service

oriented system implementations.

Chapter 7

Conclusion and Future Work

In the early part of this thesis, we declared our research motivation and introduced a new

formal notation: Document Flow Model to model the asynchronous web service composition.

We illustrated the use of the notation and compared it with current established industrial

specifications. We also gave a formal operational semantics for the DFM notation. In this

chapter, we review the contribution of this research. We also evaluate our work and

summarise the advantages of our work over other related works. The potential improvements

and future plans are also briefly discussed in the end.

7.1 Research Contribution

This work addressed the issue of architecture for modem service-oriented enterprise systems.

Previously reported architecture specifications have their limitations. Some specifications,

such as BPEL4WS [2], use a centralised orchestration framework to compose distributed web

services. But a centralised system architecture sometimes encounters server problems such as

scalability, availability [47], and dynamism. Some specifications, such as WSCI [20] and

WSCAF [23], employ a peer-to-peer distributed service coordination framework. But they fail

to provide an executable model.

In this thesis, we introduced a peer-to-peer distributed service composition framework: an

enterprise system is composed of distributed peer web services; these web services are

stateless and are unaware of the business interaction states; business interaction states are

maintained at separate persistent components; web services communicate with each other by

asynchronous messages; a context mechanism coordinates the business interaction execution.

The peer-to-peer architecture in our framework largely improves the system availability

because it has no centralised components controlling the execution of business interactions. In

comparison with the stateful BPEL4WS business process, the stateless feature in our model

makes web services much easier to be dynamically replaced. The context coordination

109

Chapter 7 Conclusion and Future Work 110

mechanism also complements the WSCI and WSCAF with an executable business interaction

model.

This work investigated the challenging task of service-oriented enterprise system design. To

achieve this objective, relevant works at all levels were reviewed and examined, which

showed a clear gap between the required and available design tools. On one side, the industry

developed comprehensive programming and specification languages for the implementation

of service-oriented enterprise systems; on the other side, the academics used highly abstract

mathematic models to reason and verify the system design. However, there is no suitable

language for the business analyst to design a service-oriented enterprise system [45]. It is very

difficult for a business analyst to design a system using specification languages or

mathematical models which can only be accomplished by IT specialists. To fill this gap, we

introduced a Document Flow Model (Chapter 3), which is powerful enough to capture service

oriented system behaviour, whilst straightforward for business analyst to understand and

design complex systems.

This work also addressed the issue of formal models. A formal model could be used to design,

implement and reason about a service-oriented enterprise system. To define such a system in a

formal model, different aspects of specific web service behaviours need to be considered.

Firstly, message contents are important in a service-oriented formal model. The messages are

not only responsible for passing parameters and results but also responsible for workflows.

For example, a message correlation describes the execution sequence of two or more

messages. Secondly, the loosely-coupled asynchronous communication pattern is essential to

design a service-oriented system. Thirdly, long-running business interactions are basic and

common scenario in real business environments, and have to be captured in formal models.

Moreover, an enterprise system is subject to constant change in order to meet the dynamic

changing business requirements and network environments. A formal model needs to support

this kind of dynamic behaviour and allow reconfiguration.

We examined related service-oriented formal models in Section 2.4 and Section 2.5. Some

models, such as BPEL4WS, WSCI and UML [48] [49], provide rich descriptions to specify

the service composition behaviours, but fail to provide the capabilities of formal reasoning

and model checking. The formal model using CCS [51] introduces a handshaking approach to

reason the compatibility of interacting web services, but it only gives a synchronous

communication model. Formal models using Petri Net [53] [54] [55] reason asynchronous

Chapter 7 Conclusion and Future Work 111

messages among composite web servIces, but can not describe all service composition

behaviour such as contents of the messages. Some formal models [57] [46] [58] [59] [52] [43]

aim to use tools to check and validate a service composition, but they are all based on a static

service composition. Dynamic web service models of [61] [62] [64] [65] use QoS view to

select web services at composition time, but do not provide a means to maintain the business

interaction after a system reconfiguration.

In this thesis we proposed a novel formal model which is concise, and at the same time,

expressive enough to describe the various service composition behaviours, such as message

contents, asynchronous and long-running business interactions, dynamic configurations and so

on. We also developed a simple operational semantics to enrich the proposed model with the

capability of formal reasoning of the loosely-coupled asynchronous communications. Our

formal model improved the above formal models with mechanisms to describe a broad range

of service-oriented system behaviours and the capability of formal validation. It is evaluated

in detail at Section 7.2.

As we have stated in the abstract, our work aims to bridge industrial specifications and

abstract mathematic models. Industrial specifications like BPEL4WS and WSCI are

comprehensive to specify service-oriented enterprise systems, but they do not provide the

capability of formal reasoning. Mathematic models such as Petri Nets and model checkers

such as SPIN provide strong capabilities of formal reasoning and model checking, but they are

not expressive enough to describe common service composition behaviours. Moreover, both

current industrial specifications and abstract mathematical models are too difficult for non IT

experts to design an enterprise system.

In this thesis, we introduced a concise formal notation (DFM). It is descriptive enough to

capture various service composition behaviours. Meanwhile it could be easily understood and

used by non IT experts to design large scale enterprise systems. The formal operational

semantics described in Chapter 6 completed the DFM model with the power of formal

validation.

Designing and implementing a service-oriented system is challenging. The motivation of this

work is to capture the behaviours of service-oriented system in formal models in order to

facilitate service-oriented system implementation and verification.

Chapter 7 Conclusion and Future Work 112

In early part of this work we did various experiments to investigate the requirements for

formally modelling service-oriented systems.

First of all, we developed an asynchronous travel agent system usmg Servlet and JSP

[Appendix A] in order to investigate the asynchronous behaviours. We understood that a

mechanism is required to maintain the interaction state consistently if components are loosely

connected by the asynchronous interactions. Thus we implemented a service-oriented travel

agent using SOAP messaging, simulated asynchronous communications over concurrent

interactions [Appendix B].

To further understand the requirements for web service composition, a distributed BPEL4WS

job submission system was developed using IBM BPWS4J [Appendix E]. We compared the

BPEL4WS implementation with the previous two implementations, and examined the

dynamic behaviours and interaction state handling capabilities in all three implementations in

particular.

We have drawn the following conclusions based on these experiments and background studies

summarised in Chapter 2.

• Web service interaction is a very important part of the web service composition.

A service-to-service interaction is not just a transaction. Web service transactions

are a subset of web service interactions [23]. Currently most service composition

standards and specifications such as BEPL4WS only provide mechanisms to

support long-running transactions by providing two-phase commit protocols and

compensation activities [25]. However, an interaction may include multiple

transactions, and can last much longer than a transaction. As long-running

interactions are the basis of modem enterprise applications, they should also be

considered when specifying service composition.

• We also believe that web service composition should be more dynamic. Storing

the interaction state in a short-lived instance at the web container, as BPEL4WS

does, means that web services can not be replaced in the middle of an interaction.

However, in order to meet dynamically-changing business goals, web service

applications are often required to be recomposable.

Chapter 7 Conclusion and Future Work 113

After the requirement analysis, we studied the formal programming languages XSL T

[Appendix B], JavaScript [Appendix C], Haskell and so on. We extracted some features from

these languages and developed our Document Flow Model with the following features.

• An XML-convertible notation which can be easily compiled to other XML-based

standards and specifications. The document record data structure is created based

on our experience with XML and its associated technologies, XSLT and

JavaScript. A document record describes a tree data structure in a concise notation.

• Modelling asynchronous communications. Two kinds of communication patterns

are supported, one-way communication, which amounts to a service receiving a

message, and notification which amounts to a service sending a message.

Request-response and solicit-response conversations are modelled as a one-way

plus a notification communication. Any complex and structured asynchronous

communication could be decomposed to simple communications using the two

patterns [Section 4.2].

• Supporting long-running interactions and dynamic configurations. A coordination

framework is used in DFM including: a context to identify an interaction state; a

decentralised context propagation mechanism to structure interaction related data;

a persistent component, a ContextStore, to maintain the interaction state.

In this thesis, we introduced a concise formal notation Document Flow Model (DFM)

modelling the asynchronous web service composition. In Chapter 3 and Chapter 4, we

presented the formal syntax and informal semantics of DFM in detail. A travel agent example,

a nested job submission application and a warehouse purchase system illustrated the use of the

notation. The formal models given by the DFM capture the general behaviours of web

service-oriented system with the extensions on the dynamic configurations and the long­

running business interactions.

A formal operational semantics has also been developed which describes the possible

behaviours of a system of inter-related web services, in terms of the messages that can be

exchanged during the execution of one or more business interactions, and the effect each

message execution has on the business interaction states [Chapter 6].

Chapter 7 Conclusion and Future Work 114

Moreover, a formal verification of the DFM models using a formal model checking tool ARC

[Appendix D] demonstrates the use of the DFM in formal method. A comparison of DFM

with BPEL4WS [Chapter 5] shows the potential to apply DFM to industrial specifications.

Thus the DFM successfully plays a role in connecting industrial specifications and real

implementations.

7.2 Research Evaluation

This work aims to propose a new architecture and use this architecture to design new service­

oriented enterprise systems. For this purpose, we developed a new notation, Document Flow

Model, which was validated through comparison, utility, formalisation, and partial

implementations. Some possible extension and improvement of this work are presented in the

future work [Section 7.3].

To evaluate the proposed DFM model in terms of describing service composition behaviours,

we applied the DFM model to a number of non-trivial applications [Chapter 3] [Chapter 4]

[Chapter 5]. The examples demonstrated the following observations.

• A business interaction is not just a business transaction. It normally includes

multiple transactions and runs for days or weeks. The travel agent example in

Chapter 3 defines a travel booking interaction which is composed of three

transactions, a user query transaction, a flight shop reply transaction and a hotel

shop reply transaction. The coordination framework allows this business

interaction to be executed consistently over a long period.

• Web service communications are asynchronous. Basic workflow patterns [31] and

different composition of synchronous and asynchronous communication patterns

described in the examples have been successfully modelled with our simple yet

effective one-way communication pattern and notification communication pattern

in Section 4.2.

• The document record data structure that we invented in our DFM notation models

the XML based messages in a concise way. The notation complies with the XML

based web service standards, but is much easier to learn and use it to design a

service-oriented distributed system. For example, a warehouse purchasing system

Chapter 7 Conclusion and Future Work 115

specification is given within two pages using the document record data structure

[Chapter 5], but takes more than ten pages using BPEL4WS [2].

• A recomposable job submission example showed that our DFM model allows

web services to be dynamically replaced while some business interactions are still

running. It effectively solved plug-and-play design issue in the grid applications.

Thus the size a system could be modified flexibly based on the availabilities of

network resources.

We compared our DFM models with other works [Chapter 5] and examined other formal

models [Section 2.4] [Section 2.5]. The comparison and examination showed the advantages

of our work against the others [Section 7.1].

• BPEL4WS and WSCI are rich service composition specifications. They require

complex middlewares and platforms to run the system. Our DFM provides a

lightweight framework to coordinate distributed business interactions. It could be

easily integrated into various distributed systems. Meanwhile, the peer-to-peer

composition architecture largely releases the dependency on the availability and

performance of the control component (a business process), hence improves the

system scalability and concurrency.

• BPEL4WS engine [10] stores a business process state as an instance at the web

containers. The web containers keep live connections between web services and

the business process state. Thus a web service can not be replaced when the

business process is still running. In our DFM framework, business interactions are

maintained at separate persistent components - ContextStores. A web service can

recover the business interaction state from the persistent components and continue

to execute the interaction that has not been finished by the replaced web service.

Thus a system can replace a web service without worrying about the completion

of all business interactions. Our DFM model is more dynamic than a BPEL4WS

model.

• Formal models that have been discussed in Chapter 2 provide means of formal

reasoning and model checking. But due to some limitations of different languages,

they can not describe some common service composition behaviours that have

been captured in our model.

Chapter 7 Conclusion and Future Work 116

o Specifically, Petri Net models [53] [54] [55] ignore the contents in all the

messages and assume a message is a constant signature moving from one

node (web service) to another. These models may be good in reasoning

the workflow patterns, but they can not reason about the completion and

state of business interactions. In our DFM model, we introduced a nested

document record date structure to include the message contents, and a

context coordination mechanism to facilitate business interaction

execution over asynchronous communication patterns.

o The formal models of [61] [62] [64] [65] intend to model dynamic web

service compositions. These models introduce QoS parameters and use

them to select web services at the composition time. They do not consider

the fact that service-oriented system is subject to constant change, a

service could be changed in the middle of a business interaction (or a

business process). Our model coordinates business interactions and

allows a new service to continue executing the business interactions that

are owned by retired web services.

We also validated our modelling language by providing its operational meanings [Chapter 6].

The novel operational semantics [40] described a service-oriented system environment where

web services are loosely connected by asynchronous messages. It also supports dynamic

service configuration behaviour.

• The formal operational semantics provides a run time environment for service­

oriented enterprise systems. It captures the loosely coupled connectivity by

separating the concerns of message executions and message deliveries. Our novel

operational semantics improves other service composition models mentioned in

this thesis by providing a way to reason about the loosely coupled web service

compositions.

Finally, we validated our work by implementations. All implementations [Appendices] proved

that our DFM model can play an important role in connecting formal models with industrial

specifications.

Chapter 7 Conclusion and Future Work 117

• By compiling our DFM model into the formal model checking tool, ARC

[Appendix D], a service-oriented enterprise system could be formally validated by

complete (finite) state searches.

• The JavaScript message pool [Appendix C] is a partial implementation of our

formal operational semantics. It is used to validate distributed systems composed

of loosely-coupled asynchronous messages. The tool simulates the message flows

as well as message contents and interaction states. The experiment demonstrated

that our DFM is capable of not only specifying a service-oriented enterprise

system, but also providing the capability of formal validation.

7.3 Future Work

As we just indicated in the last section, in order to reach the above research results we did

quite a lot of implementations, most of which have been documented in the appendix.

Although the experiments successfully served the purpose of the research, there are a number

of ways they could be improved and expanded further. Moreover, during the course of the

work, several relevant challenging research ideas have been raised, and many supporting

implementations and tools have been developed. Given these, we outline the main directions

of the future works.

7.3.1 Potential Improvement on the Operational Semantics

The operational semantics of DFM describes the possible behaviours of a system of inter­

related web services, in terms of the messages executions. The operational semantics has the

potential to improve on the following aspects.

1. The current operational semantics 1S express1ve enough to describe the

asynchronous web service invocations. To help understand the message

execution rule, we have described a virtual message pool as a message

daemon; configuration tables for each web service to map the service

configuration to the system configuration; and the relationships between the

interactive web services. The formal representations of those descriptions

could be developed to enrich the current operational semantics.

Chapter 7 Conclusion and Future Work 118

2. We have briefly discussed the dynamic configuration scenario in the Section

6.2 of Chapter 6. With the potential improvement on 1, we should be able to

develop new operational semantic rules to specify the dynamic behaviours

such as add a service, remove a service, replace a service and so on.

7.3.2 A Simulation Tool

A service oriented system is composed by independent services loosely connected by the

Internet. This architecture decided that the system behaviour sometimes depends on the

Internet and the supporting platforms of each web service. Those may bring unpredictable

behaviours to the systems that are difficult to identify using formal model checking tools.

Our operational semantics is based on the idea that web services interact with each other using

a virtual message pool, which messages can be exchanged during the execution of one or

more service interactions. The system state transit is represented by messages instead of

activities which well conforms to the Internet environment.

A simulation tool based on our operational semantics would help to understand the real-world

practical scenario. It could be used to identify the unpredictable system behaviours among

loosely connected web services. The improvement on 7.3.1 could also be integrated into the

simulation tool to reason the dynamic behaviours in a service-oriented system.

7.3.3 BPEL4WS Formal Verification

BPEL4WS has been commonly accepted as a super complicated specification. Implementing

a BPEL4WS application requires tremendous efforts and patience, so does formally verifying

the implementation. The BPEL4WS is still in its development. But we can imagine that when

the BPEL4WS is widely used to implement commercial systems, there is no doubt there will

be huge requirements for formal verification.

We have compared our DFM and BPEL4WS in Chapter 5. The DFM is able to specify a

complete business process which has been given by the BPEL4WS specification. As the DFM

is a very concise notation, it would be much easier to develop a verification tool. We have

also demonstrated that DFM could be compiled into other already existing formal modelling

checking tool [Appendix D]. However, the DFM is a short period research outcome and only

Chapter 7 Conclusion and Future Work 119

captures parts of the BPEL4WS features. To be fully compatible with BPEL4WS, several

features need to be enriched, such as transaction support, exception handling, and message

definition and so on.

Appendices

The appendices in this thesis are evidence of experiments and implementations that we did in

contribution to this work. They are also the resources for future researchers. The summary of

each appendix is as follows.

Appendix A An Investigation of Asynchronous

Invocations Using Servlet and JSP

Service-oriented enterprise systems must be asynchronous. We started the work by

investigating the asynchronous behaviours in web applications. Then we developed a travel

agent system using Servlet/JSP and simulated the asynchronous interactions [Appendix A].

This experiment helps us understand the underlying mechanism of Java web component

interfaces, Java web application servers. It also helps us examine the feasibilities of using

them to implement asynchronous application protocols. The evidence [Appendix A] shows

that our asynchronous interactions using Servlet/JSP APIs are synchronised by Java web

containers. Therefore, a mechanism is required to maintain the interaction state consistently if

components are loosely connected by the asynchronous interactions.

Appendix B A Travel Agent Implementation Using

XSLT and SOAP

We improved our Servlet/JSP travel agent implementation using SOAP and XSLT [Appendix

B]. SOAP is a standard protocol to exchange XML messages over distributed web services.

XSLT is mainly used to separate information content (XML) from presentation on the Web

(HTML). But it is also recognised as a high-level declarative programming language. In this

experiment, we transformed an XML message and an XML DB into an XML output and a

new XML DB using a simple XML T function. Studies also showed that although functional

programming languages provide a simple and mathematically tractable computational model,

they do not provide a good engine to handle concurrent operations.

120

Appendices 121

This experiment contributes to our work in two aspects. Firstly, it helps us summarise the

requirements in modelling service-oriented enterprise systems [Section 2.6.1] by

experimenting with the standard web service interaction protocol, SOAP. Secondly, it

incorporates the functional programming language into web applications.

Appendix C A JavaScript DFM Model

JavaScript is a lightweight programming language initially used as a script embedded in web

browsers. Syntactically, the core JavaScript language resembles C, C++, and Java, with

programming constructs. Although JavaScript gives an object definition, it is not an object­

oriented programming language. It accepts un-typed parameters and variables which is an

important feature in modelling language.

In this experiment, we are interested in the object literal, functions syntax and event model in

the JavaScript. The experiment investigated the capability of modelling XML data structure

using JavaScript object model, and created our Document Record data structure [Section

3.2.6]. The tool that we built using JavaScript simulated the loosely-coupled operational

environment described in Chapter 6.

Appendix D Formal Verification ofDFM using ARC

ARC is a formal modelling tool. It provides means to model service-oriented distributed

architectures and autonomous web service behaviours. It also facilitates the function to search

complete (finite) state space in order to validate a distributed system.

Our DFM travel agent model has been formally validated using ARC [Appendix D]. The

experiment demonstrated that our DFM model could be further compiled into formal model

checking tools. Thus, it successfully served a role in connecting real implementations and

formal models.

Appendices 122

Appendix E A BPEL4WS Implementation using IBM

BPWS4J

To further understand the requirements of web service composition, a distributed BPEL4WS

job submission system was developed using IBM BPWS4J [Appendix E]. We compared the

BPEL4WS implementation with the previous two implementations [Appendix A] [Appendix

B], and examined the dynamic behaviours and interaction state handling capabilities in all

three implementations in particular.

This implementation demonstrated our understanding on competitive specifications. It also

helped us summarise the web service composition requirement [Section 2.6.1] and leaded to

our service composition approach [Section 2.6.2].

Appendix A

An Investigation of Asynchronous

Invocations Using Servlet and JSP

Having stated the motivations of our research at the beginning of the thesis, we started the

work by investigating the asynchronous behaviours in web applications. We built a real

application intending to understand underlying mechanism of Java web component interfaces,

Java web application servers and to study the feasibilities of using them to implement

asynchronous application protocols.

We implemented two Travel Agent solutions, a synchronous solution and an asynchronous

solution, using pure JSP and http transport. The two solutions produced the same result, but

after we debugged (traced) the communication in the asynchronous solution, we found that the

Java web application server synchronised our asynchronous method invocations. The detail of

this experiment can be found in my 3-month research report. Here we only attached part of

report, including: APIs we used, two different solutions and analysis results.

Servlet and JSP

Servlet and JSP are technologies defined by Sun Microsystems to create dynamic web content.

They provide a component-based, platform-independent method for building web-based

applications and have access to entire Java APIs families that include a library of HTTP­

specific calls. JSPs are html documents interleaving with Java. They are extensions of Servlet,

when a request is mapped to a JSP page, the JSP engine translates the JSP page into a Servlet.

There are different ways to invoke a remote object or a web service, Socket / RMI and http. In

this experiment, we use URLConnection object to setup http transport [34, 35].

• URLConnection con = RequestURL.openConnectionO
• BufferedReader in = new BufferedReader(new inputStreamReader(con.getlnputStream()))

123

Appendix A An Investigation of Asynchronous Invocation Using Servlet and JSP 124

The abstract class URLConnection is the superclass of all classes that represent a

communications link between the application and a VRL. Instances of this class can be used

both to read from and to write to the resource referenced by the VRL. Request parameters are

defined in RequestURL object. Response is read from buffer reader. Contents of response are

got by parsing input stream.

A Synchronous Solution

The synchronous version of shop and agent uses the normal way of JSP design pattern that

service method gets parameters from a request object and sends data back to client through

PrintWriter by the corresponding response object. The service requester initialises an

URLConnection of the service provider and read response back by get InputStream of that

URLConnction . The synchronous Travel Agent system sequence diagram is as below.

Diagram shows that JSP instances complete their life cycle after they send responses back to

service requesters.

UserAgent TravelAgent Shopl Shop2

Figure A-I Synchronous Travel Agent Communication

Appendix A An Investigation of Asynchronous Invocation Using Servlet and JSP 125

An Asynchronous Solution

Instead of sending reply back by the response object, out components create a new

URLConnection with the reply infonnation to the service requester. A random time delay can

be set for each component to emulate asynchronous behaviours. In this way, system setup

asynchronous communications between components by URLConnections.

Experiments are done by sending two orders to two JSPs at different web servers

simultaneously and tracing the communication sequence on the web server monitor window.

Outputs show that orders were processed in the right sequence that we defined in the

prototype and replies were delivered back to correct web server without any confusion. Two

processes are handled overlapped by the web server. The second order could start to be

processed before the first order complete.

This asynchronous behaviour is supported by the JSP engine that provided by web servers.

When a web server receives a request for a Servlet, it forwards it to an instance of that Servlet.

This forwarding will create a request object and a response object and pass them as

parameters to the service method of that instance. We described in previous part that each

Servlet instance has a unique request and response objects pair. The response object has the

access to the output stream of the client. The HTML that comprises replies is written to the

output stream associated with the response object. After the service method has finished

running, the Servlet container sends the contents of the response object back to the web server,

which in tum sends the response back to the web browser who submitted the request in the

first place. The service methods of each Servlet are called by the servlet container on a per­

request basis.

In our asynchronous solution, a service provider sends reply back to the service requester by

initialising a new Servlet request. This means that Servlet container creates a new service

method call to that Servlet instance. For example, when web server gets a Travel Agent

Servlet request from User Agent, it creates a new service method call of the Travel Agent,

call-I. This method then invokes shopI. Shop1 creates a reply to Travel Agent by sending a

Travel Agent Servlet request. Now web server create another service method call of Travel

Agent, call-2, to handle request from shopI. And so forth, there will be three service method

calls of the Travel Agent and two of the User Agent in a whole business process. A business

process starts from the User Agent call-1 whose response object has the access to the web

Appendix A An Investigation of Asynchronous Invocation Using Servlet and JSP 126

browser, and ends with User Agent call-2. How can the second User Agent call access the

web browser which is kept by the first User Agent call becomes the key to evaluate our

asynchronous design pattern.

Debug shows the following system sequence diagram.

UserAgent TravelAgent Shop! Shop2

Figure A-2 Asynchronous Travel Agent Communication

Different with the synchronous solution, when each component sends reply by initialising a

new Servlet request the service method call does not complete until it gets the response back

of that request and passes it back to the request component who previously start this process.

Here are some traces of our Travel Agent system.

Appendix A An Investigation of Asynchronous Invocation Using Servlet and JSP 127

Configuration

Shop s1, s2;

Travel Agent a1;

UserAgent cO, c1;

a1.shop1=s1;

a1.shop2=s2;

cO.agent=a1;

c1.agent=a1 ;

Log

User Agent (instance 1) -- Welcome

Travel Agent (instance 1) - Welcome

Shop1 (instance 1) -Welcome

Travel Agent (instance 2) - Welcome

Shop2 (instance 1) - Welcome

Travel Agent (instance 3) -Welcome

User Agent (instance 2) - Welcome

User Agent (instance 2) - Bye

Travel Agent (instance 3) - Bye

Shop2 (instance 1) - Bye

Travel Agent (instance 2) -- Bye

Shop1 (instance 1) - Bye

Travel Agent (instance 1) - Bye

User Agent (instance 1) - Bye

Figure A-3 Travel Agent System Configuration and Trace

Most web server support multi-threads. When a new Servlet request comes, web server starts

a new thread to handle it. Multiple simultaneous orders are handled by separate threads.

Therefore the second order may start to process before first order complete. However, how

many orders can be processed concurrently will depend on the capabilities of different web

servers.

The asynchronous business process is synchronised by the web server in some ways, because

the response to JSP has to be on the same thread of the request. Therefore integrating business

logic inside JSP may not be the best way to model asynchronous business process.

Conclusion

From the experiment, we learned that Servlet and JSP are the technologies designed for HTTP

access. HTTP is basically a kind of synchronous transport protocol. The Java web server

synchronised the method invocation on the Servlets. Therefore, to implement the

asynchronous method invocation, the application has to separate the business logic from the

web component, Servlet or JSP.

Appendix A An Investigation of Asynchronous Invocation Using Servlet and JSP 128

Although the method invocations are synchronised by the web server in some way, the

business logic interactions are still in an asynchronous way (because of the random delay we

implemented at the business logics). It helped us understand the asynchronous business

interaction behaviours.

AppendixB

A Travel Agent Implementation Using

XSLT and SOAP

We implemented a travel agent application using XSLT and SOAP messaging. In the early

phase of this research, we have attempted to use functional programming language in web

application to ensure the correctness and eliminate the side effect. We document some of our

research result in this section.

Functional Programming Language and XSL T

Functional programming is based on the idea that program and data are unified by represent

both as functions. This unification provides for a simple and mathematically tractable

computational model.

XSLT, which stands for eXtensible Stylesheet Language: Transformations, is a language

defined by the World Wide Web Consortium (W3C). XSLT has its origins in the aspiration to

separate information content from presentation on the Web. Now it is being recognised as a

high-level declarative programming language. In practises, more and more XSLT examples

demonstrate the capabilities of using XSL T as a functional programming language. XSL T is

used to manipulate the data structure in XML that is in the same way of the declarative

language SQL does in a relational database. Currently most e-commerce systems use XSL T

transmitting data between applications. The transmission extracts and combines data from one

set of XML document to generate another set of XML document that application used to

compute [27].

Functional programming languages contribute greatly on data structure operation. However

they do not provide a good engine to handle concurrent operations. Lots of works are working

on concurrency handling in functional programming. Most of them are still limited on

synchronous communication or single thread systems.

129

Appendix B A Travel Agent Implementation Using XSLT and SOAP 130

In our experiment, each service has a XSL T file which we called as a function. The function

takes a combination of the whole XML database and the query as input and produces a whole

new database and the reply message. The following shows the travel agent database and agent

function.

AgentDBXML

<?xml version=" 1.0" encoding="UTF-8" ?>

: <agentdb>

: <transaction>
<num> 1 <Inurn>

</transaction>

: <transaction>
<num>2</num>

<order>

</order>
<order>

<num/>
<shop> FlightService<lshop>
<item>

<name>BA038</name>
<quantity> 1 <lquantity>

<litem>
<item>

<name> BA039</name>
<quantity>1 <lquantity>

<litem>

<num!>
<shop>HoteIService<lshop>
<item>

<litem>
<item>

<name>double</name>
<quantity> 1 <I quantity>

<name>standard</name>
<quantity> 1 <I quantity>

<litem>
</order>

<orderreply>
<num I>
<shop> HoteIService</shop>
<item>

<litem>
<item>

<name>double<lname>
<status>ok</status>

<name>standard<!name>
<status>ok</status>

Appendix B A Travel Agent Implementation Using XSLT and SOAP

</item>
<Iorderreply>
<orderreply>

<num I>
<shop> FlightService<1 shop>
<item>

<litem>
<item>

<name>BA03S</name>
<status>ok</status>

<name>BA039</name>
<status>ok</status>

<litem>
</orderreply>

</transaction>

: <agentdeployment>

<service>
<name> HotelService<lname>
<url>http://localhost:SOSO/soap/servlet/rpcrouter<lurl>

<shop>HoteIService</shop>
</service>
<service>

<name> Agency! </name>
<url>http://localhost:SOSO/soap/servlet/rpcrouter</url>
<shop>FlightService</shop>
<shop>CarService<!shop>

</service>

<!agentdeployment>

<iagentdb>

Agent Function XSLT

<xsl:transform version=" 1.1 " xmlns:xsl=''http://www.w3.org/1999IXSLlTransform''>

<xsl:key name="shopname" match="userorder/order" use="shop" />

<xsl:template match="/" >

<xsl:variable name="allchildren"><xsl:apply-templates mode="childnodes" /></xsl:variable>

<xsl:iftest="contains($allchildren,'userorder')" >
<xsl:apply-templates mode="orderdb" />

</xsl:if>

<xsl:iftest="contains($allchildren,'shopreply')" >
<xsl:apply-templates mode="replydb" />

</xsl:if>

131

Appendix B A Travel Agent Implementation Using XSLT and SOAP

<xsl:if test=" contains($allchildren, 'messages') ">
<xsl:apply-templates mode="agentreplydb" I>

</xsl:if>

</xsl:template>

<xsl:template match="root" mode="replydb" >

<xsl:variable name="repnum" se1ect="shopreply/num" I>
<xsl:variable name="repshop" select="shopreply/shop" I>

132

<xsl:variable name="repitems"> <xsl:copy-of se1ect="shopreply/item" I> <lxsl:variable>

<root>

<xsl:variable name="prenum">

<xsl: for-each select=" agentdb/transaction">
<xsl:variable name="trann" se1ect="num" I>

<xsl:iftest="$repnum=$trann" >
<xsl:value-of select="order/num" I>

</xsl:if>
</xsl:for-each>

<lxsl:variable>

<xsl:variable name="replys">

<xsl:for-each select="agentdb/transaction">
<xsl:variable name="trann" select="num" I>
<xsl:iftest="($repnum=$trann)" >

<xsl:value-of select="count(orderreply)" I>
</xsl:if>

</xsl:for-each>

</xsl:variable>

<xsl:variable name="orders">

<xsl:for-each select="agentdb/transaction">
<xsl:variable name="trann" select="num" I>
<xsl:iftest="($repnum=$trann)" >

<xsl:value-of select="count(order)" I>
</xsl:if>

</xsl: for-each>

<lxsl:variable>

<agentdb>

<xsl:for-each se1ect="agentdb/transaction">

<xsl:variable name="tranno" select="num" I>

<xsl:if test="($repnum=$tranno)" >

<transaction><num><xsl:value-of select="num" 1></num>

Appendix B A Travel Agent Implementation Using XSLT and SOAP

<xsl:copy-of se1ect="order" I>
<xsl:copy-of se1ect="orderreply" I>

<orderreply>
<num><xsl:value-of se1ect="$prenum" 1></num>
<shop><xsl:value-of select="$repshop" 1></shop>
<xsl:copy-of select="$repitems" I>

</orderreply>

</transaction>

</xsl:if>

<xsl:if test="not($repnum=$tranno)" >

<transaction>
<num><xsl:value-of select="num" l><Inum>
<xsl:copy-of select="order" I>
<xsl:copy-of select="orderreply" I>

</transaction>
<lxsl:if>

</xsl:for-each>

<xsl:copy-of se1ect="agentdb/agentdeployment" I>

<lagentdb>

<messages>

<xsl:iftest="(($orders)-($replys)=l)" >

<xsl: for-each select=" agentdb/transaction ">
<xsl:variable name="trannum" select="num" I>
<xsl:if test=" ($repnum=$trannum)" >

<agentreply>
<num><xsl:value-of select="$prenum" l><Inum>
<xsl:copy-of select="orderreply" I>

</agentreply>

<orderreply>
<num><xsl:copy-of select="$prenum" l><Inum>

<shop><xsl:value-of se1ect="$repshop" l><Ishop>
<xsl:copy-of select="$repitems" I>
<lorderreply>

<lxsl:if>
</xsl:for-each>

<lxsl:if>

</messages>

</root>

</xsl:template>

133

Appendix B A Travel Agent Implementation Using XSLT and SOAP

<xsl:template match="root" mode="agentreplydb" >

<xsl:variable name="repnum" select="messages/agentreply/num" />

<xsl:variable name="prenum">

<xsl:for-each se1ect="agentdb/transaction">
<xsl:variable name="trann" select="num" />

<xsl:iftest="$repnum=$trann" >
<xsl:value-of select="order/num" />

</xsl:if>
</xsl:for-each>

<lxsl:variable>

<xsl:variable name="replys">

<xsl: for-each se1ect=" agentdb/transaction">

<xsl:variable name="trann" se1ect="num" />
<xsl:iftest="($repnum=$trann)" >

<xsl:value-of select="count(orderreply)" />
</xsl:if>

</xsl:for-each>

<lxsl:variable>

<xsl:variable name="orders">

<xsl: for-each select=" agentdb/transaction">

<xsl:variable name="trann" select="num" />
<xsl:iftest="($repnum=$trann)" >

<xsl:value-of select="count(order)" />
</xsl:if>

</xsl:for-each>

</xsl:variable>

<xsl:variable name="agentreplys">
<xsl:value-of select="count(messages/agentreply/orderreply)" />

</xsl:variable>

<xsl:variable name="replysinagent">

<xsl:for-each select="messages/agentreply/orderreply" >

<orderreply>
<num><xsl:value-of select="$prenum" /><lnum>
<xsl:copy-of select="shop" />
<xsl:copy-of select="item" />

</ orderrep ly>

</xsl:for-each>

134

Appendix B A Travel Agent Implementation Using XSLT and SOAP

</xsl:variable>

<root>

<agentdb>

<xsl:for -each select=" agentdb/transaction">

<xsl:variable name="tranno" select="num" I>
<xsl:if test="($repnum=$tranno)" >

<transaction>
<num><xsl:value-of select="num" l><Inum>
<xsl:copy-of se1ect="order" I><xsl:copy-of se1ect="orderreply" I>
<xsl:copy-of select="$replysinagent" I>

</transaction>

</xsl:if>

<xsl:iftest="not($repnum=$tranno)" >

<transaction>
<num><xsl:value-of select="num" l><Inum>
<xsl:copy-of se1ect="order" I> <xsl:copy-of select="orderreply" I>

</transaction>

<lxsl:if>

</xsl: for-each>
<xsl:copy-of select="agentdb/agentdeployment" I>

<lagentdb>

<messages>

<xsl:iftest="«$orders)-($replys)=($agentreplys))" >

<xsl: for-each select=" agentdb/transaction">

<xsl:variable name="trannum" se1ect="num" I>
<xsl:if test="($repnum=$trannum)" >
<agentreply>

<num><xsl:value-of select="$prenum" l><Inum>
<xsl:copy-of select="orderreply" I>
<xsl:copy-of select="$replysinagent" I>

</agentreply>
<xsl:if>

</xsl:for-each>

</xsl:if>

<lmessages>

</root>

</xsl:template>

135

Appendix B A Travel Agent Implementation Using XSLT and SOAP

<xsl:template match="root" mode="orderdb" >

<xsl:variable name="maxno">

<xsl:for-each select="agentdb/transactioninum">
<xsl:sort data-type="number" order="descending"l>
<xsl:if test=" (positionO= 1) ">

<xsl:value-of select=". "I>
</xsl:if>

</xsl:for-each>

<lxsl:variable>

<xsl:variable name="orderno" ><xsl:value-of select="$maxno+ 1" I> <lxsl:variable>

<root>

<agentdb>

<xsl:copy-of se1ect="agentdb/transaction" I>
<transaction>

<num><xsl:value-of select="$orderno" l><Inum>
<xsl:copy-of select="userorder/order" I>

</transaction>
<xsl:copy-of select="agentdb/agentdeployment" I>

</agentdb>

<messages>

<xsl:for-each select="agentdb/agentdeployment/service">

<orders>

<xsl:variable name="agentname" select="name" I>
<shop><xsl:value-of select="$agentname" 1></shop>
<url><xsl:value-of select="url" l><Iurl>
<xsl:variable name="pname" select="shop" I>

<payload>

<xsl:if test="not ($agentname=$pname)">
<userorder>

<xsl:for-each select="shop" >

136

<xsl:variable name="spname"><xsl:value-of se1ect=". "1></xsl:variable>
<xsl:for-each select="key('shopname', $spname)" >
<order>
<num><xsl:value-of select="$orderno" l><Inum>
<xsl:copy-of se1ect="shop" I><xsl:copy-of select="item" I>
<lorder>

</xsl: for-each>
</xsl:for-each>

<Iuserorder>
</xsl:if>

Appendix B A Travel Agent Implementation Using XSLT and SOAP 137

<xsl:if test="$agentname=$pname">

<xsl:for-each select="shop" >
<xsl:variable name="spname"><xsl:value-of select="."I></xsl:variable>

<xsl:for-each select="key('shopname', $spname)" >
<order>

<num><xsl:value-of select="$ordemo" l><Inum>
<xsl:copy-of select="shop" I><xsl:copy-of se1ect="item" I>

</order>
</xsl:for-each>

</xsl:for-each>

</xsl:it>

</payload>

<lorders>
<lxsl:for-each>

</messages>

<lroot>

</xsl:template>

<xsl:template match="root" mode="childnodes" >

<xsl:for-each se1ect="child::nodeO" >
<xsl:if test=" contains(name(self: :nodeO), 'userorder')" >

<xsl:value-of select="'userorder'" I>
</xsl:it>

<xsl:if test=" contains(name(self: :nodeO),'shopreply')" >
<xsl:value-of se1ect='"shopreply''' I>

<lxsl:it>

<xsl:if test=" contains(name(self: :nodeO),'messages')" >
<xsl:value-of select="'messages'" I>

<lxsl:it>

</xsl:for-each>

</xsl:template>

</xsl:transform>

Appendix B A Travel Agent Implementation Using XSLT and SOAP 138

Java SOAP APIs

We implemented a travel agent system using Apache SOAP v2.3 over Resin web server [36,

37]. The travel agent and shops are SOAP services which is the early version of Web Services.

Services talked to services by SOAP RPC in the manner of Web Service Architecture.

SOAP APIs CUserAgent.jsp)

<%@ page import="java.util. *, java.net. *, org.apache.soap. *,
org.apache.soap.encoding. *, org.apache.soap.encoding.soapenc. *,
org.apache.soap.rpc.* javax.xml.transform. sax. SAXSource,
org.xml.sax.InputSource,javax.xml.transform.stream.StreamResult,

org.w3c.dom. *, javax.xml.transform.stream.StreamSource, java.io. *,
org.w3c.dom.Document, javax.xml. transform. *, javax.xml.transform.Source" %>

<%
II Build the call
URL url=new URL(request.getParameter("rpcurl"»;

Call call=new CallO;
call.setSOAPMappingRegistry(new SOAPMappingRegistryO);
call.setEncodingStyleURI(Constants.NS _ URC SOAP _ ENC);
call.setTargetObjectURI(request.getParameter("service"»;
call.setMethodN ame(request. getParameter("method"»;

Vector pararns=new VectorO;
pararns.addElement(new Parameter("parameter", String.class,request.getParameter(" orders "),null»;
call.setPararns(pararns) ;

Response resp=call.invoke(url,"");

boolean status=resp.generatedFaultO;
Parameter ret=resp.getRetum ValueO;
Object value=ret.getValueO;

Iitransform reply to htrnl
File xsltFile = new File(request.getParameter("display"»;
InputSource is = new InputSource(new StringReader(value.toStringO»;
Source xmlSource = new SAXSource(is);
Source xsltSource = new StreamSource(xsltFile);

try {

TransformerFactory transFact = TransformerFactory.newInstanceO;

Appendix B A Travel Agent Implementation Using XSLT and SOAP

Transfonner trans = transFact.newTransfonner(xsltSource);
trans. transfonn(xmlSource, new StreamResult(out));

} catch(TransfonnerException e){

e.printStackTraceO;

}

%>

139

Appendix C

A JavaScript DFM Model

Why JavaScript?

JavaScript is a lightweight, interpreted programming language with object-oriented

capabilities. The general-purpose of the language has been embedded in web browsers [28].

However, we are interested in the object literal, functions syntax and event model in the

JavaScript. Syntactically, the core JavaScript language resembles C, C++, and Java, with

programming constructs. Although JavaScript gives an object definition, it is not an object­

oriented programming language.

Our experiments on JavaScript have two aims.

• Investigating the capability of modelling XML data structure using JavaScript object

model.

• Build a tool to simulate or check our DFM model.

JavaScript Object Syntax

In JavaScript, an object is a collection of named values. These named values are usually

referred to as properties of the object. An object literal syntax allows you to create an object

and specify its properties. It consists of a comma-separated property/ value pairs, all enclosed

within curly braces.

For example: {x:2, y:8}.

And Object literals can also be nested.

For example: {x:2, y:{xx:2, yy:7}}.

140

Appendix C A JavaScript DFM Model 141

JavaScript Functions

"Function definition and invocation are syntactic features of JavaScript and of most other

programming languages. However, in JavaScript, functions are not only syntax but also data,

which means that they can be assigned to variables, stored in the properties of objects or the

elements of arrays, passed as arguments to functions, and so on." The function syntax allows

our XSLT function model to cooperate with the JavaScript object syntax.

Event-Driven Programming Model

JavaScript provides support to event-driven programming models. Event handlers have been

written as strings of JavaScript code that are used as the values of certain HTML attributes,

such as onClick.

<input type=''button'' value="click here" onClick="alert('thanks'); ">

A JavaScript DFM Tool

In service-oriented applications, the actions (operations) are triggered by an incoming

message. Therefore, we experimented to implement a JavaScript tool that simulates an

incoming message event by an onClick event handler and model the XML data by JavaScript

Object Syntax.

The tool is showed as the following figure. It successfully modelled the XML data structure

and the event model. But it is week in simulating concurrent interactions. And the most

important, it could not offer functions, like space searching and automatic executions.

Therefore, we did not do further experiment on that.

The experiment is successful because we learned a lot on the JavaScript object syntax and

create our document record data based on that.

The following figure is the GUI our JavaScript DFM model.

Appendix C A JavaScript DFM Model 142

O&;j:' C' 0 @
Mress- : IIDz:\IIr)'dB:l:Il'.hlm

Y1'~ ' 1 l~chWeb H~ TOOM~ • t~Mail • ~lhfYa'm! BGa~ • Wl'a'stna~ • f;M.st • _~Fi1ru • [S91m]

" i

I InililliSyotem I

I shop(flighlorder.flighldb) I
FigbtDB FigbJOrdtr FightReply

i [(name : BA03B, quantity: 12)(name: B!039, ~I i(name:BA038, quantity:3} ~ I InUll ~I iquanti ty: l)(name: C!926, quantity: IS} I
- ,

vi .J

I sllllp~otelo rdel.holeldb) I
HotelDB HotelOrder HotelReply

: [(name : double, quantity: 12)(name:beds, ~I [Iname :double, quantity :!} d inUll

~ !quantity: 13)(name: standard, quantity : IS}]

·1 :vi I

I shop(carorder.can!b) I
CarDB carOrdtr CarReply

! [I name: sport, quantity: 12)(name :van, ~I i(name:sport , quantity:!} d !nUll

~I [quant it y: 13)(name:coBcb, quantity: IS} I
vi !vl I

~ ~enlorde~userorder.agenldbl ~ (agenlrepMHightrep¥.agenldb) I I agentrep~otelrep¥.agenldb) I I agentrepMcarreP¥.agenldb) I
AgentDB

i [{no: 1, order: [(name :BA038, quantity:3)(name :double, quantity: l)(name :sport, quant ity: 1}], reply: null} I ~I

·1

UserOrdtr UserReply

inull ~I [nUll

~ i
vi ,

,,,
x _ 4 C Z:: 4 , X

Figure C-l A JavaScript DFM Checker

Appendix C A JavaScript DFM Model

DFM in JavaScript

<htm1>
<body>

<script language=" J avaScript">

1IIIIIIIIIshopdb initialization

var flightdbv=[{name: "BA038", quantity: 12 },
{name: "BA039", quantity: 1 },
{name: "CA926", quantity: 15 }]

var hoteldbv=[{name: "double", quantity: 12 },
{name: "beds", quantity: 13 },
{name: "standard", quantity: 15 }]

var cardbv= [{name: "sport", quantity: 12 },
{name: "van", quantity: 13 },
{name: "coach", quantity: 15}]

I I I I I I I II luserorder initialization

var userorderv=[{name: "BA038",quantity: 3},
{name: "double" ,quantity: I},
{name: "sport", quantity: I}]

1IIIIIIIIshop order & reply variable initialization

var flightorderv=null
var hotelorderv=null
var carorderv=null

var flightreplyv=null
var hotelreplyv=null
var carreplyv=null

IIIIIIIIII agent initialization

var agentdbv=[null]
var agentreplyv=[null]

I I I I I I I I I I I I initialization

function initial(t) {

f.flightdbfvalue = display(flightdbv)
f. flightorderf. value=null
f.flightreplyf. value=null

f.hoteldbfvalue = display(hoteldbv)
fhotelorderf. value=null
f.hotelreplyf value=null

fcardbf.value = display(cardbv)

143

Appendix C A JavaScript DFM Model 144

}

f.carorderf. value=null
f.carreplyf.value=null

f.userorderf.value = display(userorderv)
f.userreplyf.value = null

f.agentdbf. value=displayagent(agentdbv)

function display(0) {

}

if(o null){

}else{

}

var returnstring=null

if(o.1ength>= 1){

} }else{

}

if(0[0] nUll){

}e1se{
var returnstring="null"

var returnstring="["
fore var i=O; i< o.1ength; i++)

returnstring=returnstring+"{name:"+o[i].name+",
quantity: "+0 [i).quantity+"} "

returnstring=returnstring+"] "

var returnstring=" {name: "+o.name+", quantity: "+o.quantity+"}"

return returnstring

function displayreply(o){

if(0 llull){

} else {

}

var returnstring=null

if(o.1ength>=l){

} }e1se{

}

if(0[0] null){

}else{
var returnstring="null"

var returnstring=" ["
fore var i=O; i< o.1ength; i++)

returnstring=returnstring+" {name: "+0 [i] .name+",
result"+o[i).result+"} "

returnstring=returnstring+"] "

var returnstring=" {name: "+o.name+", result: "+o.result+"} "

return returnstring

Appendix C A JavaScript DFM Model

}

function displayagent(0) {

if(o.1ength>= l){

if(0[0] null) {

}else{
var returnstring="[null]"

var returnstring="["
fore var i=O; i< o.1ength; i++){

returnstring=returnstring+" {no: "+o[i] .no+",

145

order: "+display(o[i] .order)+" ,reply: "+displayreply(o[i] .reply)+"} II

}
returnstring=returnstring+"] II

} }else{

returnstring=null
}
return returnstring

}

function fagentorder(f) {

}

flightorderv=userorderv[O]
f.flightorderf.value=display(flightorderv)

hotelorderv=userorderv[l]
f.hotelorderf. value=display(userorderv[1])

carorderv=userorderv[2]
f.carorderf. value=display(userorderv[2])

f. userorderf. value=null

agentdbv=[{no: 1, order:userorderv, reply:null}]
f.agentdbf.value=displayagent(agentdbv)
userorderv=null

function shop(db,order){

var newdb = db
var reply = null

fore var i=O; i< db.1ength; i++){

if(db[i] .name=order.name) {

if(db[i] . quantity>=order. quantity) {

Appendix C A JavaScript DFM Model

reply= {name:order.name, result: "OK"}
newdb[i]= {name: db [i].name, quantity: (db [i].quantity-order.quantity) }

} else{

reply= {name:order.name, result: "NOTOK"}

}
} else {

newdb[i]=db[i]

}

}

return {db:newdb, reply:reply}
}

function shopf(t){

}

var temp=shop(flightdbv,flightorderv)
flightdbv=temp.db
flightreplyv=temp.reply
flightorderv=null
f. flightreplyf. value=displayreply(flightreplyv)
f.flightdbf. value=display(flightdbv)
f.flightorderf.value=nu1l

function shoph(t) {

}

var temp=shop(hoteldbv ,hotelorderv)
hoteldbv=temp.db
hotelreplyv=temp.reply
hotelorderv=null
f.hotelreplyf. value=displayreply(hotelreplyv)
f.hoteldbf. value=display(hote1dbv)
f.hotelorderf.value=null

function shopc(t){

var temp=shop(cardbv,carorderv)
cardbv=temp.db
carreplyv=temp.reply
carorderv=null
f.carreplyf.value=displayreply(carreplyv)
f.cardbf.value=display(cardbv)
f. carorderf. value=null

function agentreply(shopreply){

146

Appendix C A JavaScript DFM Model

if (agentdbv[O].reply llull){

agentdbv[O] .reply=[shopreply]

} else {

agentdbv[O] .reply[agentdbv[O].reply.1ength]=shopreply

}

if (agentdbv[O] .reply .1ength=agentdbv[O] .order.1ength) {

return "DONE"
}e1se{

return "NOTYET"
}

}

function agentreplyf(f) {

if(f.flightreplyf.value!="null"){

}
}

if(agentreply(flightreplyv)="DONE"){
agentreplyv=agentdbv[O] .reply
f. userreply£ value=displayreply(agentreplyv)

}

f.flightreplyf.value=null
f.agentdbf. value=displayagent(agentdbv)

function agentreplyh(f) {

}}

if(f.hotelreplyf. value! ="null ") {

if(agentreply(hotelreplyv)="DONE") {
agentreplyv=agentdbv[O] .reply
f.userreplyf.value=displayreply(agentreplyv)

}

f.hotelreplyf. value=null
f.agentdbf. value=displayagent(agentdbv)

function agentreplyc(f) {

if(f.carreplyf.value != "null"){

if(agentreply(carreplyv)="DONE ") {
agentreplyv=agentdbv[O] .reply

147

Appendix C A JavaScript DFM Model

f.userreplyf.value=displayreply(agentreplyv)
}

f.carreplyf. value=null
f.agentdbf. value=displayagent(agentdbv)

}
}

</script>

<form name="agentform" >

<input type="button" value="Initial System" onclick="initial(this.form)"/>
<hr>
<table border="O" cellpadding="O" width=" 1 00%" id="AutoNumberl">

<tr>
<td width=" 1 00%">

<input type="button" value=" shop(flightorder,flightdb)" onclick=" shopf(this.form) "/><Itd>
</tr>

<tr>

</tr>

<tr>

<td width="33%">FlightDB</td>
<td width="33%">FlightOrder</td>
<td width="34%">FlightReply</td>

<td width="33%"><textarea name="flightdbf' rows=3 cols=44></textarea> <ltd>
<td width="33%"><textarea name="flightorderf' rows=3 cols=44><ltextarea><ltd>
<td width="34%"><textarea name="flightreplyf' rows=3 cols=44><1textarea><ltd>

</tr>
<ltable>

<hr>
<table border="O" bordercolor="#llllll" width="lOO%" id="AutoNumberl ">

<tr>
<td width=" 1 00%" colspan="3 ">
<input type="button" value="shop(hotelorder,hoteldb)" onclick="shoph(this.form)"/></td>

<ltr>

<tr>
<td width="33%">HotelDB</td>
<td width="33%">HoteIOrder</td>
<td width="34%">HotelReply<ltd>

<ltr>

<tr>
<td width="33%"><textarea name="hoteldbf' rows=3 cols=44></textarea> <ltd>
<td width="33%"><textarea name="hotelorderf' rows=3 cols=44><1textarea> <ltd>
<td width="34%"><textarea name="hotelreplyf' rows=3 cols=44><1textarea> <ltd>

</tr>
</table>

148

Appendix C A JavaScript DFM Model

<p style="margin-top: 0; margin-bottom: O"> </p>

<p style="margin-top: 0; margin-bottom: O"> </p>
<table border="O" bordercolor="#llllll" width="100%" id="AutoNumberl ">

<tr>
<td width=" 100%" colspan="3">
<input type="button" value="shop(carorder,cardb)" onclick="shopc(this.form)"I><Itd>

</tr>

<tr>
<td width="33%">CarDB</td>
<td width="33%">CarOrder</td>
<td width="34%">CarReply</td>

<ltr>

<tr>
<td width="33%"><textarea name="cardbf' rows=3 cols=44></textarea> <ltd>
<td width:="33%"><textarea name="carorderf' rows=3 cols=44></textarea> <ltd>
<td width="34%"><textarea name="carreplyf' rows=3 cols=44><1textarea> <ltd>

</tr>
<ltable>

<p style="margin-top: 0; margin-bottom: O"> </p>

<table border="O" bordercolor="#llllll" width="lOO%" id="AutoNumber2">

<tr>
<td width="25%">

<ltd>

<input type="button" value="agentorder(userorder,agentdb)"
onclick="fagentorder(this. form)" I>

<td width="25%">

<ltd>

<input type="button" value="agentreply(flightreply,agentdb)"
onclick="agentreplyf(this.form)"I>

<td width="25%">

<ltd>

<input type="button" value="agentreply(hotelreply,agentdb)"
onclick="agentreplyh(this.form)"I>

<td width="25% "> <input type="button" value=" agentreply(carreply ,agentdb)"
onclick="agentreplyc(this.form)"I>

<ltd>
</tr>

<tr>
<td width="25%">AgentDB</td>
<td width="25%"> <ltd>
<td width="25%"> </td>
<td width="25%"> </td>

</tr>

<tr>

149

Appendix C A JavaScript DFM Model

<td><textarea name="agentdbf' rows=3 cols=120></textarea></td>
</tr>

</table>

<p style="margin-top: 0; margin-bottom: 0"> </p>

<hI>
<table border="O" bordercolor="#llllll" width="100%" id="AutoNumber3">

<tr>
<td width="50%">UserOrder <ltd>
<td width="50%">UserReply <ltd>

<ltr>

<tr>
<td width="50%"><textarea name="userorderf' rows=3 cols=50><ltextarea><ltd>
<td width="50%"><textarea name="userreplyf' rows=3 cols=50><ltextarea><ltd>

<ltr>

</table>

<hI>
</form>

<p style="margin-top: 0; margin-bottom: O"> <lp>

</body><lhtml>

150

AppendixD

Formal Verification of DFM using ARC

To establish our DFM, we formally verify our model by including complete (finite) state

space search, using the formal model checking tool, ARC [38].

What is ARC?

"ARC is a software architecture modelling tool which provides the means to model systems of

objects and processes. It is intended for modelling and validating distributed systems, service­

based architectures and autonomous behaviour. Models, which follow a familiar state­

transition paradigm, are coded in Java for the purposes of animation and model checking. A

translator from ARC to Spin is under development" [38].

ARC models are coded in Java, as a collection of condition/action rules. The ARC

implementation then allows the models to be animated using a simple interactive interface.

Figure D-1 ARC CUI

151

Appendix D Formal Verification ofDFM using ARC

DFM ARC Model

DFN.java

import arc. *;

public class DFN extends Model {

/ / document class
class FlowDocument extends Entity {

/ / properties definitions
Property inState(String state){

return new Property(this,"inState",state);
}

Property agent(String s){
return new Property(this,"to",s);

}

Property from(String s){
return new Property(this,"from",s);

}

Property query2(String s){
return new Property(this,"query2",s);

}

Property queryl(String s){
return new Property(this ,"query 1 ",s);

}

Property reply2(String s){
return new Property(this, "reply2" ,s);

}

Property reply 1 (String s){
return new Property(this,"replyl ",s);

}

/ / action definition
Action newDoc(String to string, String fromstring, String querystringl ,String

querystring2) {

return new Action(this,"newDoc",tostring, fromstring, querystringl, querystring2)
.add(agent(to string))
.add(query 1 (querystring 1»
.add(query2(querystring2»
.add(inState("ready"»;

/ / methods defmition
Method addReplyl(String reply){

152

Appendix D Formal Verification ofDFM using ARC

}

}

return new MethodO
. add(reply 1 (rep1y));

Method addReply2(String rep1y){

}

return new MethodO
.add(rep1y2(reply));

/ / shop class
class Shop extends Entity {

Property inState(String state) {
return new Property(this,linState",state);

}

Property named(String s){
return new Property(this,"named",s);

}

Property value(Integer v) {
return new Property(this,"value",v);

}

Method onMessage(String s){
return new MethodO;

}

Action newShop(String s){

}

return new Action(this,lnewShop",s)
.add(named(s))
.add(value(new Integer(O)));

Action shopping 1 (FlowDocument fd){

}

return new Action(this,"shoppingl",fd)
.with(fd.inState(lwithsl l)).with(named(ls l"))
.rem(fd.inState("withs I"))
.with(value(new Integer(O))).rem(value(new Integer(O))).add(value(new

Integer(1)))
.add(fd.replyl (liS 1 reply 1 "));

Action shoppingll(FlowDocument fd){

return new Action(this,"shoppingll",fd)
.with(fd.inState("withsl ")).with(named("sl "))
.rem(fd.inState("withs 1"))

153

.with(value(new Integer(l))).rem(value(new Integer(l))).add(value(new
Integer(2)))

.add(fd.replyl(lslreply2"));

Appendix D Formal Verification ofDFM using ARC 154

}

Action shopping2(FlowDocument fd){

}

return new Action(this,"shopping2",fd)
.with(fd.inState("withs2"».with(named("s2"»
.rem(fd.inState("withs2 "»
.with(value(new Integer(O»).rem(va1ue(new Integer(O»).add(va1ue(new

Integer(1»)
.add(fd.reply2("s2replyl "»;

Action shopping21 (FlowDocument fd){

}

return new Action(this, II shopping21 II ,fd)
. with(fd.inState("withs2 "». with(named(" s2 "»
.rem(fd.inState("withs2 "»
.with(value(new Integer(1»).rem(value(new Integer(1»).add(va1ue(new

Integer(2»)
.add(fd.rep1y2("s2rep1y2"»;

/ / agent class
class Agent extends Entity {

Property inState(String state) {
return new Property(this, "inState" ,state);

}

Property named(String s) {
return new Property(this,"named",s);

}

Property wait(FlowDocument fd) {
return new Property(this,"wait",fd);

}

Property Shop 1 (Shop shop){
return new Property(this, II Shop 1 II ,shop);

}

Property Shop2(Shop shop){
return new Property(this,"Shop2",shop);

}

Method onMessage(String s){
return new MethodO;

Action newAgent(Shop sl,Shop s2,String ss){

Appendix D Formal Verification ofDFM using ARC

}

}

return new Action(this,"newAgent")
.add(Shopl(sl»
.add(Shop2(s2»
.add(named(ss»;

Action sendToS(FlowDocument fd) {

}

return new Action(this, II sendToS II ,fd)
· withe fd.inState("withA"»
.with(fd.agent("al "».with(named("al "»
.rem(fd.inState("withA"».add(fd.inState("withsl"».add(fd.inState("withs2"»
.add(wait(fd»;

Action sendToSl(FlowDocument fd){

}

return new Action(this,"sendToSl ",fd)
· withe fd.inState("withA"»
.with(fd.agent("a2"».with(named("a2"»
.rem(fd.inState("withA")).add(fd.inState("withs 1 ")).add(fd.inState("withs2 "»
.add(wait(fd»;

Action sendReply(FlowDocument fd) {

}

return new Action(this,"sendReply",fd)
.with(wait(fd»
· without(fd.inState("withs 1 "». without(fd.inState("withs2 "»
.rem(wait(fd»
.add(fd.inState("AgentDone"»;

II user class
class User extends Entity{

Property inState(String state) {
return new Property(this, "inState" ,state);

}

Property named(String s){
return new Property(this, "named II ,s);

}

Property wait(FlowDocument fd){
return new Property(this,"wait",fd);

}

Property with(FlowDocument fd){
return new Property(this,"with",fd);

}

155

Appendix D Formal Verification ofDFM using ARC

}

}

DFNO{

Action newUser(FlowDocument fd){

}

return new Action(this, "newUser")
.add(with(fd»;

Action sendToA(FlowDocument fd) {

}

return new Action(this,"sendToA",fd)
.with(fd.inState("ready"»
.rem(fd.inState("ready"» .add(fd.inState("withA"»
.rem(with(fd».add(wait(fd»;

Action checkReply(FlowDocument fd){

return new Action(this,"checkReply",fd)
. withe fd.inState(" AgentDone"». withe waite fd»
.rem(wait(fd».rem(fd.inState("AgentDone"»
.add(fd.inState("Done "»;

Shop sl=new ShopO; sl.setName("sl ");

Shop s2=new ShopO; s2.setName("s2");

Agent al =new AgentO; al.setName("al ");

Agent a2=new AgentO; a2.setName("a2");

User ul=new UserO; ul.setName("ul");

FlowDocument dl =new FlowDocumentO; dl.setName("dl ");

FlowDocument d2=new FlowDocumentO; d2.setName("d2");

doAction(sl.newShop("s l "»;
doAction(s2.newShop("s2"»;

doAction(a l.new Agent(s 1 ,s2, II al"»;
doAction(a2.new Agent(s 1 ,s2, II a2 "»;

doAction(u l.newU sere d 1»;
doAction(u l.newU sere d2»;
doAction(dl.newDoc("a l ","ul ","ql ","q2"»;
//doAction(d2.newDoc("a2","ul ","qq 1 ","qq2"»;
doAction(d2.newDoc(" a 1 ", "U 1 ", II qq 1 ", II qq2 "»;

putAction(u 1. sendToA(d 1 »;
putAction(u 1. checkReply(d 1»;
putAction(u l.sendToA(d2»;
putAction(u 1. checkReply(d2»;

156

Appendix D Formal Verification ofDFM using ARC

}

}

putAction(al.sendToS(dl));
putAction(al.sendToSl(dl));
putAction(al.sendReply(dl));

putAction(al.sendToS(d2));
putAction(a l.sendToS 1 (d2));
putAction(al.sendReply(d2));

putAction(a2.sendToS(dl));
putAction(a2.sendToSl(dl));
putAction(a2.sendReply(dl));
putAction(a2.sendToS(d2));
putAction(a2.sendToS 1 (d2));
putAction(a2.sendReply(d2));

putAction(sl.shoppingl(dl));
putAction(s l.shopping2(dl));
putAction(sl.shoppingl(d2));
putAction(s 1.shopping2(d2));
putAction(sl.shoppingll(dl));
putAction(sl.shopping21(dl));
putAction(sl.shoppingll(d2));
putAction(s l.shopping21 (d2));

putAction(s2. shopping 1 (dl));
putAction(s2.shopping2(dl));
putAction(s2.shopping 1 (d2));
putAction(s2.shopping2(d2));
putAction(s2.shopping 11 (dl));
putAction(s2.shopping21(dl));
putAction(s2.shoppingll(d2));
putAction(s2.shopping21 (d2));

public static void main(String args[]) {

new ArcGUI("Document Flow Mode1",new DFNO);

}

DFM ARC Model Verification

157

The following figure shows the verification result of our DFM model by random path
searching (doSome).

Appendix D Formal Verification ofDFM using ARC 158

Figure D-2 ARC Verification Result

Appendix E

A BEPL4WS Implementation using

IBM BPWS4J

BPWS4J

IBM Business Process Execution Language for Web Services Java Runtime provides a

platform upon which business processes written using BPEL4WS may executeo This version

supports the BPEL4WS v1.1 (May 2003) specification [10].

Here are the deployed processes:

• Process ID (QName): {W''ll:echo:echoCoU\}Jlf>xSe-nic:e)e-('".hoColnplexSeniceBP
External WSDL: I click here)
PartnerLink mappings:

o NOlle

Channels:
o Apache- A .. \.is

SOAP Address: bttp:!Jlocalhosr; SOlb}m's4j/a..usengine
SOAP Action URI:
Method Namespace URIs:

• lUll:e-cho: E'choComplexSenice#edloCOmpiexSE'lvicE"BNcalleliFuHl: echo :echoColnplexSel"vit

• Process ID (QName): {http ://lo~n. ... orgk''S(U;10all-apln·oval}lo.mu'l1)Pl·OvalSE'1'ViceBP
External WSDL: [dirk h • .-.r
PartnerLink mappings:

o app."ove.": (http://tempuri.org/services/loanapprover)LoanApprover 19480b8-fd04 55d62d--8000
o asst"ssor: (httpJltempuri.orgfservicesJIoanassessor) LoanAssessorl9480b8-fd04 5Sd62d--8000

Channels:
o Apaclu." A ... "is

SOAP Address: bttp : !Jlo('a1bost:SOJbpw~4iJaxi"iel\gil\~

SOAP Action URI:
Method Namespace URIs:

• bttp :lJ1 oans. orgA~·s(Utloal1-

approval#loannpprovaISenicE''BP#cm.tomel'#http ://tpmpllri. or2fsel"'\oiceslloanapprover#lo:UL~J

FigUloe E-l A BPWS4J GUI

159

Appendix E A BPEL4WS Implementation using IBM BPWS4J 160

For each process, the engine takes in a BPEL4WS document which describes the process, a

WSDL document (without binding information) which describes the interface that the process

will present to clients, and WSDL documents (with binding information) which describe the

services that the process may/will invoke during its execution. After deployment the process

will be made available to outside consumers through a SOAP interface.

We installed the engine on Apache Tomcat under Windows XP. We deployed the following

process.

~ IBM Busines!, !'roc~ss Executio_n Lallguilge f~! Web.Servic~s Jaya.Rl.!ntime A~min Too •.• t;]1Q] 'x
File Edit View Favorites Tools
--- ------------- ~~-·,·-'"'-----·-·--'-,--~~-~'-7-__;c'_'-'-=.

Un-Deploy a Business Process
Select the process to be \Uldeployed:

• (urn'ecbo:ed1vCv:nple;.;:Serv:.ce} echoCc.!!lt:le"'';{Sen.-iceBP
• (http://loans.orglwsdl!loan-approval)loan3npro\,·alSen.':iceBP
• {um.echo:echoSen.;ce} echoBPLast
• Currrsimple:stockOuoteService) stockOuoteServiceBP
• (um:sample:;:marketp!ac eServic e) m3fketpiaceSen.-iceEP
• {unl.sarflples:ATJ.AService} ATMServ1.ceBP
• (ur.recbo:edl-.)Ser;.1cel echoServiceBP
• (mvechcService) echoSen .. iceBP
• (IJrn.ecllo 'echoSen.ice) extendedEcho lBP
• funrnewsN ewsService) NewsTranslationProcess
• fum:jtflowservice} itflowBP

Figure E-2 Deployed Business Processes

To study the BPEL4WS specification and compare our model with it, we developed a simple

job submission process. The process takes a job request and forwards them to two jobServices

(it partners). After jobs completed, the process passes the result to the printservice, and then

reply the job requester.

Appendix E A BPEL4WS Implementation using IBM BPWS4J

File Edit View Favorl1Bs Tools Hap

.6MessI@ ht1p :/Jb::atos~4j/admn/ -- ------------g~ Go ~ Urb » : Wcha-,sist;n(~~

External WSDL= (dirk here(
Channels:

• Apache Axis
SOAP Address: http://localhost:SOlbpws4j1arisengine
SOAP Action URI:
Method Namespace URIs:

o wn:jtflowsenice#jtflowBP#jobInit.tor#om:jtflowseIVice#:mbmit2PI

Figure E-3 Our Job Submission Process

A Job Submission Business Process

Job Flow WSDL

<definitions targetNamespace="um:jtflowservice"
xmlns:tns="um:jtflowservice"
xmlns:plnk=''http://schemas.xmlsoap.orglws/2003/05/partner-link!''
xmlns:xsd=''http://www.w3 .orgl2001IXMLSchema''

xmlns=''http://schemas.xmlsoap . orglwsdll"
xmlns: soap=''http://schemas .xmlsoap. orglwsdll soap/"
xmlns:job Ins="um:jobService 1 "
xmlns:job2ns="um:jobService2"
xmlns:job3ns="um:jobService3 ">

<message name="jobMessage">
<part name="dir" type="xsd:string"/>
<part name="job" type="xsd:string"/>

</message>

<message name=ljobMessagel">
<part name="dirl" type="xsd:string"/>
<part name="jobl" type="xsd:string"/>
<part name=ldir2" type="xsd:string"/>

8

81

161

Appendix E A BPEL4WS Implementation using IBM BPWS4J

<part name="job2" type="xsd:string"l>
</message>

<message name="printMessage">
<part name="dir" type="xsd:string"l>
<part name="file" type="xsd:string"l>

</message>

<message name="replyMessage">
<part name="status" type="xsd:string"l>

</message>

<portType name="submit2PT">
<operation name="submittingJob2" >

<input message="tns:jobMessagel "1>
<output message="tns:replyMessage"l>

</operation>
</portType>

<plnk:partnerLinkType name="flowPLT">
<plnk:role name="jobInitator">

<plnk:portType name="tns:submit2PT"I>
</plnk:role>

<plnk:role name="jobPrinter">
<plnk:portType name="tns:printPT"I>

</plnk:role>
</plnk:partnerLinkType>

<service name="jtflowBP"I>

</ definitions>

Job Flow BPEL

<process name="jtflow"

>

targetNamespace="urn:flowProcess"
xmlns:tns="urn:flowProcess"
xmlns:lns="urn:jtflowservice"
xmlns=''http://schemas.xmlsoap.orglws/2003/03lbusiness-process/"
xmlns:job Ins="urn:jobServicel"
xmlns:job2ns="urn:jobService2 "
xmlns:job3ns="urn:jobService3 "

<variables>
<variable name="jobs" messageType="lns:jobMessagel "I>
<variable name="jobl" messageType="lns:jobMessage"l>
<variable name="job2" messageType="lns:jobMessage"l>
<variable name="printvar" messageType="lns:printMessage"l>
<variable name="reply" messageType="lns:replyMessage"/>
<variable name="replyl" messageType="lns:replyMessage"l>
<variable name="reply2" messageType="lns:replyMessage"l>

162

Appendix E A BPEL4WS Implementation using IBM BPWS4J

</variables>

<partnerLinks>

</partnerLinks>

<sequence>

<partnerLink name="joblnitator" partnerLinkType="lns:flowPLT" I>
<partnerLink name="jobExecutorl" partnerLinkType="lns:flowPLT" I>
<partnerLink name="jobExecutor2" partnerLinkType="lns:flowPLT" I>
<partnerLink name="jobPrinter" partnerLinkType="lns:flowPLT" I>

<receive partnerLink="jobInitator" portType="lns:submit2PT"
operation="submittingJob2" variable="jobs"
createlnstance="yes" name="jobReceive"l>

<assign>
<copy>

<from variable="jobs" part="dirl" I><to variable="jobl" part="dir" I>
</copy>
<copy>

<from variable="jobs" part="jobl" I><to variable="jobl" part="job" I>
</copy>

</assign>

<assign>
<copy>

<from variable="jobs" part="dir2" I><to variable="job2" part="dir" I>
</copy>
<copy>

<from variable="jobs" part="job2" I><to variable="job2" part="job" I>
</copy>

</assign>

<flow>
<invoke name="executejobl"

partnerLink="jobExecutorl "
portType="job2ns:jobPT"
operation="submittingJob"
inputVariable="jobl"
outputVariable="replyl ">

</invoke>

<invoke name="executejob2"
partnerLink="jobExecutor2 "
portType="job3ns:jobPT"
operation=" submittingJ ob"
inputV ariable="job2"
outputV ariable="reply2 ">

<linvoke>
</flow>

<assign>
<copy>

<from variable="jobs" part="dirl" I>

163

Appendix E A BPEL4WS Implementation using IBM BPWS4J

<to variab1e="printvar" part="dir" I>
</copy>
<copy>

<from variable="jobs" part="jobl" I>
<to variable="printvar" part="file" I>

</copy>
<las sign>

<invoke name="printjob"
partnerLink="jobPrinter"
portType="job 1 ns:jobPT"
operation="printing"
inputVariable="printvar" >

</invoke>

<assign>
<copy><from expression="'OK'" I><to variable="reply" part="statu" 1></copy>

<las sign>

<reply partnerLink="jobInitator"
portType="lns:submit2PT"
operation="submittingJob2 "
variable="reply"
name="jobReply"l>

</sequence>

</process>

A Job Service WSDL

<definitions targetNamespace="urn:jobServicel" xmlns:tns="urn:jobServicel"
xmlns:pluk=''http://schemas.xmlsoap.org/ws/2003/05/partner-linkl''
xmlns:xsd=''http://www. w3.org/200 llXMLSchema"

xmlns=''http://schemas.xmlsoap.org/wsdll''
xmlns:soap=''http://schemas.xmlsoap.org/wsdllsoap/''
xmlns:java=''http://schemas.xmlsoap.org/wsdlljava/''
xmlns:ejb=''http://schemas.xmlsoap.org/wsdll''
xmlns:format=''http://schemas.xmlsoap.org/wsdllformatbinding/''>

<message name="jobMessage">
<part name="dir" type="xsd:string"l>
<part name="job" type="xsd:string"l>

</message>

<message name="jobMessagel ">
<part name="dirl" type="xsd:string"l>
<part name="job 1" type="xsd:string"l>
<part name="dir2" type="xsd:string"l>
<part name="job2" type="xsd:string"l>

</message>

164

Appendix E A BPEL4WS Implementation using IBM BPWS4J

<message name="printMessage">
<part name="dir" type="xsd:string"l>
<part name="file" type="xsd:string"l>

<Imessage>

<message name="replyMessage">
<part name="status" type="xsd:string"l>

<Imessage>

<portType name="jobPT">
<operation name="submittingJob" >

<input message="tns:jobMessage"l>
<output message="tns:replyMessage"l>

</operation>

<operation name="submittingJob2" >
<input message="tns:jobMessagel "I>

<output message="tns:replyMessage"l>
</operation>

<operation name="printing" >
<input message="tns:printMessage"l>

</operation>
</portType>

<binding name="JavaBinding" type="tns:jobPT">
<java:binding I>

<format:typeMapping encoding="Java" style="Java">
<format:typeMap typeName="xsd:string" formatType="java.lang.String"l>

<format:typeMap typeName="xsd:string" formatType="java.lang.String"l>
</format:typeMapping>

<operation name="submittingJob2">

165

<java:operation methodName="submit2Jobs" parameterOrder="dirl jobl dir2 job2" I>
</operation>

<operation name="submittingJob">
<java:operation methodName="submitJob" parameterOrder="dir job" I>

</operation>

<operation name="printing">
<java:operation methodName="printJobs" parameterOrder="dir file" I>

</operation>
</binding>

<!-- The service name and the TNS represent my service ID QName -->
<service name=" JobService">

<port name="JavaPort" binding="tns:JavaBinding">
<java:address className="j1jobservicel.JobService"l>

</port>
</service>

</definitions>

Appendix E A BPEL4WS Implementation using IBM BPWS4J

A BPEL Client

import java.io. *, java.net. *, java. utii. *;
import org.apache.soap. *, org.apache.soap.rpc. *;

public class JobOwner {

}

private static void printUsageAndTerminateO {

System.err.println("Usage: java II + JobOwner.class.getNameO +
II SOAP-router-URL dirl jobl dir2 job2");

System.exit(l);

public static void main(String[] args) throws Exception {

if(args.length!= 5) {
printU sageAndTerminateO;

}

II Process the arguments.
URL urI = new URL(args[O]);
String dirl = args[l];
Stringjobl = args[2];
String dir2 = args[3];
Stringjob2 = args[4];

II Build the call.
Call call = new CallO;
Vector params = new VectorO;

166

call.setTargetObjectURI("urn:jtflowservice#jtflowBP#jobInitator#urn:jtflowservice#submit2PT");

params.addElement(new Parameter("dirl II ,String.class,dirl ,null));
params.addElement(new Parameter("job 1 II ,String.classjob 1 ,null));
params.addElement(new Parameter(" dir2 II ,String.class,dir2,null));
params.addElement(new Parameter("j 0 b2 II ,String.classj ob2,null));

call.setMethodN ame(" submittingJ ob2 ");
call.setEncodingStyleURI(Constants.NS _URI_SOAP _ ENC);
call.setParams(params) ;

II make the call: note that the action URI is empty because the
II XML-SOAP rpc router does not need this. This may change in the
II future.
Response resp = caII.invoke(/* router URL *1 urI, 1* actionURI *1 1111);

II Check the response.
if (resp.generatedFault())

Fault fault = resp.getFaultO;
System.out.println("Ouch, the call failed: ");
System.out.println(" Fault Code = II + fault.getFaultCode());

Appendix E A BPEL4WS Implementation using IBM BPWS4J

System.out.println(" Fault String = II + fault.getFaultString());
System.out.println(" Fault = II + fault);

} else {

Parameter result = resp.getReturnValueO;
if (result != null)

System.out.println(result.getValueO);
else

167

System.out.printlnC'No response was returned. Perhaps there was an error with the flow. ");
}

}
}

Bibliography

[1] Martin Bichler, Aire Segev, J. Leon Zhao, Component-based E-Commerce:

Assessment of Current Practices and Future Directions, SIGMOD Record (ACM

Special Interest Group on Management of Data), vol. 27 No4, pp. 7-14, 1998.

[2] Tony Andrews, Francisco Curbera, et aI., Business Process Execution Language for

Web Services Version 1.1,

http://www-J28.ibm.com/developerworks/library/specijication/ws-bpel/. 05 May 2003.

[3] Erik Christensen, Francisco Curbera, et aI., Web Services Description Language

(WSDL) 1.1, http://www.w3.orgITRlwsdl, 15 March 2001.

[4] Steve Graham, Doug Davis, Simeon Simeonov, aI., Building Web Services with Java

- Making sense of XML, SOAP, WSDL, and UDD Second Edition, Developer's

Library, 2005.

[5] Peter Henderson, Laws for Dynamic Systems, presented at International Conference

on Software Re-Use (ICSR 98), Victoria, Canada, June 1998, IEEE Computer Society

Press June 1998, IEEE Computer Society Press, pp. 330-336, 1998.

[6] Object Management GroupTM (OMGTM),

http://www.um!. org.

[7] Sun Microsystems, Sun Java System Message Queue 3 2005QI Technical Overview,

http://docs.sun.comlappldocsldoc/8J9-0069, 2005.

[8] D.Cybok, Grid Workflow Infrastructure, presented at GGF 10, Berlin, March 2004.

[9] T.Fahringer, J.Qin and S.Hainzer, Specification of Grid Workflow Applications with

AGWL: An Abstract Grid Workflow Language, presented at IEEE International

Symposium on Cluster Computing and the Grid 2005, Cardiff, UK, 2005.

168

Bibliography 169

[10] IBM. alphaWorks, BPWS4J - A platform for creating and executing BPEL4WS

processes, http://www.alphaworks.ibm.com/. 2004.

[11] Peter Henderson, Modelling Architectures for Dynamic Systems: Eds Annabelle

McIver and Carroll Morgan, Springer-Verlag New York Inc., pp. 732-737,2003.

[12] Mordechai Beizer, Chair, AIIM Accreditation Workflow Subcommittee, Interesting

Times For Workflow Technology,

http://www.e-workflow.org/White_Papers/index.htm.

[13] David Hollingsworth, The Workflow Reference Model Workflow Management

Coalition, http://www.wfmc.org/standards/docs/tc003vll.pdf. 19 Jan 1995.

[14] WIKIPEDIA, the free encyclopedia

http://en. wikipedia. orglwikilModel_ Driven_Architecture

[15] Workflow Management Coalition, Terminology & Glossary Workflow Management

Coalition, Feb 1999.

[16] Barry & Associates, Inc., Service-oriented architecture (SOA) definition,

http://www.service-architecture.com/index. html.

[17] UDDLorg, Advancing Web Services Discovery Standard.

http://www.uddi.org/.

[18] Christ Pelts, Web Services Orchestration, a review of emerging technologies, tools,

and standards, Jan 2003.

http://devresource.hp.com/drcltechnical_whiteyapers/WSOrchIWSOrchestration.pdf

[19] Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, Sanjiva Weerawarana,

The next step ill Web Services, Communications of the ACM, vol. 46, pp. 29-34,

2003.

[20] Assaf Arkin, et aI., Web Service Choreography Interface (WSCI) 1.0,

Bibliography 170

http://www.w3.org/TRlwsci/, August 2002.

[21] Antonio Bucchiarone, Pattern-based Analysis of WSCI, BPML and BPEL4WS.

[22] Aissi, Selim, Malu, Pallavi, Srinivasan, Krishnamurthy, E-business process

modeling: The next big step, Computer, vol. 35, pp. 55-62,2002.

[23] Doug Bunting, Martin Chapman, et aI., Web Services Composition Application

Framework (WS-CAF) Vl.O, oasis.org, 2003.

[24] Peter Henderson. Reasoning about Asynchronous Behaviour in Distributed Systems,

The Eighth IEEE International Conference on Engineering of Complex Computer

Systems (ICECCS'02), pp. 17-24,2002

[25] William Cox, Felipe Cabrera, George Copeland, Tom Freund, Johannes Klein, Tony

Storey, Satish Thatte, Web Services Transaction (WS-Transaction).

http://xml.coverpages.org/WS-Transaction2002.pdJ

[26] Doug Bunting, Martin Chapman, Oisin Hurley, Mark Little, Jeff Mischkinsky, Eric

Newcomer, Jim Webber, Keith Swenson, Web Services Context (WS-Context) V1.0,

oasis.org, 2003.

[27] Michael Kay, XSLT Programmer's Reference 2nd Edition - Programmer's

Reference, Wrox Press Ltd, 2001.

[28] David Flanagan, JavaScript The Definitive Guide - Fourth Edition: O'Reilly &

Associates, Inc., 2002.

[29] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Ferris, David

Orchard, Web Services Architecture- W3C Working Group Note 11 February 2004,

W3C, 2004.

[30] Peter Henderson, Jingtao Yang, Reusable Web Services, presented at 8th

International Conference, ICSR 2004, Madrid, Spain, pp. 185-194, July 2004.

Bibliography 171

[31] http://is.tm.tue.nl/research/patternslpatterns.htm.

[32] IBM Web Services Architecture Team, Web Services architecture overview, 01 Sep

2000. http://www-I28.ibm.comldeveloperworkslwebservicesllibrarylw-

ovrl? dwzone=webservices.

[33] Christ Peltz, Web services orchestration and choreography, Computer, vol. 36, pp.

46-52,2003.

[34] Sun Microsystem, Java 2 Platform Standard Edition 5.0 API Specification.

http://java.sun.com/j2seII.5.0Idocslapil.

[35] Sun Microsystem, Java 2 Platform, Enterprise Edition, v 1.3 API Specification.

http://java.sun. com/j2 eelsdk _1. 3ltechdocslapilindex. html.

[36] Apache.org, WebServices - SOAP project, http://ws.apache.org/soapi.

[37] caucho technology, Resin open source application server project,

http://www.caucho.com/.

[38] Peter Henderson, ARC, http://www.ecs.soton.ac.uk/~phlsoftware.htm.

[39] Jingtao Yang, Corina Cirstea and Peter Henderson, Document Flow Model: A

Formal Notation for Modelling Asynchronous Web Services Composition, in

proceedings of OnTheMove workshops OTM2005, Agia Napa, Cyprus, pp 39-48,

2005.

[40] Jingtao Yang, Corina Cirstea and Peter Henderson, An operational semantics for

DFM: a formal notation for modelling asynchronous web services, in proceedings

of 5th International Conference on Quality Software, QSIC2005, Melbourne,

Australia, pp 446-451,2005.

Bibliography 172

[41] Sanjiva Weerawarana, et aI., Web Services Platform Architecture - SOAP, WSDL,

WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More,

Prentice Hall 2005.

[42] WIKlPEDIA, the free encyclopedia http://en/wilipedia.org/wiki/wsdl

[43] Howard Foster: A Rigorous Approach to Engineering Web Service Compositon.

PhD Thesis. http://www.doc.ic.ac. uk/~hfl /Phd/ downloads/hf-thesis-ds-2006.pdf

[44] M. Mecella, and B. Pernici: Designing wrapper components for e-services in

integrating heterogeneous systems. VLDB Journal, Volume 10, pp. 2-15,2001

[45] Jana Koehler, Giuliano Tirenni, and Santhosh Kumaran: From Business Process

Model to Consistent Implementation: A case for Formal Verification Methods. In

proceedings of 6th IEEE international Enterprise distributed object computing

conference (EDOC). pp. 96-106, 2002

[46] Xiang Fu, Tevfik Bultan, and Jianwen Su: Analysis of Interacting BPEL Web

Services. In Proceedings of the Thirteenth International World Wide Web Conference

(WWW 2004), pp. 621-630, New York, NY, May 17-22,2004.

[47] Qiming Chen and Meichun Hsu: Inter-Enterprise Collaborative Business Process

Management. In proceedings of 17th International Conference on Data Engineering

(ICDE), pp. 253-260, Heidelberg, Germany, 2001.

[48] Tracy Gardner: UML Modelling of Automated Business Process with a Mapping to

BPEL4WS, presented at 1st European Workshop on Web Services and Object

Oriented ECOOP 2003, Darmstadt, Germany, July 2003.

[49] David Skogan, Roy Gronmo, and Ida Solheim: Web Service Composition in UML, In

proceedings of Enterprise Distributed Object Computing Conference, Eighth IEEE

International (EDOC'04), pp. 47-57, 2004.

Bibliography

[50] Robin Milner: A Calculus of Communication Systems, LNCS. Springer-Verlag,

Berlin, 1980.

173

[51] Antonio Brogi, Carlos Canal, Ernesto Pimentel and Antonio Vallecillo: Formalizing

Web Service Choreographies. In proceedings of First International Workshop on

Web Services and Formal Methods, Pisa, Italy, pp. 73-94, February 2004. Published

also in ENTCS, 105:73-94,2004.

[52] Andrea Ferrara: Web services: a process algebra approach. In proceedings of the

2nd international conference on Service oriented computing, New York, USA, pp

242-251,2004

[53] Rachid Hamadi, and Boua1em Benatallah: A Petri Net-based Modelfor web service

Composition. In proceedings of the Fourteenth Australasian database conference on

Database technologies 2003, Adelaide, Australia, pp. 191 - 200,2003.

[54] Yu Tand, Lou Chen, Kai-Tao He, and Ning Jing: SRN: An extended Petri-Net-Based

Workflow Modelfor Web Service Composition. In proceedings ofIEEE International

Conference on Web Services (ICWS'04), San Diego, California, pp. 591-599, 2004.

[55] Aneesh Khetarpa1, Sol M. Shatz, and Shengru Tu: Applying an Object-Based Petri

Net to the Modelling of Communication Primitives for Distributed Software. In

proceedings of the High Performance Computing Conference (HPC98), Boston,

Mass., pp 404-409, 1998.

[56] Niko1a Mi1anovic and Miros1aw Malek: Current Solutions for Web Service

Composition. IEEE Internet Computing, pp 51-59, NovemberlDecember 2004.

[57] Shin Nakajima: Verification of web service flows with model-checking techniques.

In Proceedings of Cyber World 2002, pp.378-385, IEEE, Nov. 2002.

[58] Aysu Betin-Can, Tevfik Bultan and Xiang Fu: Design for Verification for

Asynchronously Communicating Web Services.' In Proceedings of the Fourteenth

Bibliography 174

International World Wide Web Conference (WWW 2005), pp. 750-759, Chiba, Japan,

May 10-14,2005.

[59] Xiang Fu, Tevfik Bultan, and Jianwen Su: WSAT: A Tool for Formal Analysis of

Web Services. In Proceedings of the 16th International Conference on Computer

Aided Verification (CA V 2004), LNCS 3114, pp. 510-514, Boston, Massachusetts,

July 13-17,2004.

[60] David L. Parnas: Designing software for ease of extension and contraction. IEEE

Transaction on Software Enginering SE-5(2)12839. pp 128-137, 1979.

[61] Daniel A. Menasce: Composing Web Services: A QoS View. Internet Computing,

IEEE Volume 8, Issue 6, Nov.-Dec. 2004, pp. 88 - 90,2004.

[62] Ali Arsanjani, Francisco Curbera, and Nirmal Mukhi: Manners externalize semantics

for on-demand composition of context-aware services. In proceedings of the IEEE

International Conference on Web Services, (ICWS'04), 2004, San Diego, California,

USA, pp. 583-590,2004.

[63] Peter Henderson: Modelling Architectures for Dynamic Systems. In Programming

Methodology, Eds Annabelle McIver and Carroll Morgan, Springer-Verlag New York

Inc.; ISBN: 0387953493 ,pp 161-174,2003.

[64] Manshan Lin, Jianshan Xie, Heqing Guo, and Hao Wang: Solving QoS-driven Web

service dynamic composition as fuzzy constraint satisfaction. In proceedings of

IEEE International Conference on e-Technology, e-Commerce and e-Service, San

Diego, California, USA, pp 9-14, 2005.

[65] Snehal Thakkar, Craig A. Knoblock, and Jose Luis Ambite: A View Integration

Approach to Dynamic Composition of web services. In proceedings ofICAPS'03

workshop on Planning for web services, Trento, Italy, June 2003.

http://icaps03 .itc.it/ satellite _ events/ documents/WS/WS5/06/thakkar -icaps2003-

p4ws.pdf

Bibliography

Other Related Web Site

[66] http://standards.ieee.org/

[67] http://www.e-work(low.org/

[68] http://www-106.ibm.comldeveloperworks/

[69] http://java.sun.com/

[70] http://www.bpmi.org/

[71] http://www.ecs.soton.ac.ztk/~ph

[72] http://www.w3.org/

[73] http://·www.oasis-open.com

Other Related Standards and Specification

[74] Web Services Conversation Language (WSCL) 1.0

http://www.w3.orgITRlwscl10/

[75] Simple Object Access Protocol (SOAP) 1.1- W3C Note 08 May 2000

http://www. w 3. orglTRISOAPI

[76] Web Services Architecture - W3C Working Group Note 11 February 2004

http://www.w3.orgITRl2004INOTE-ws-arch-20040211/

[77] Web Service Flow Language (WSFL 1.0)

http://www-3.ibm.comlsoftware/solutions/webservices/pdflWSFL. pdf

[78] XLANG - Web Services for Business Process Design

http://www.gotdotnel.com/team/xmlwsspecs/xlang-c/default.htm

175

