UNIVERSITY OF SOUTHAMPTON
FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS
SCHOOL OF MATHEMATICS

= Wy

Y

av
L &

7,

R

The Construction of Boundary Conditions for
Electromagnetic Analogues of Formulations used

in Numerical Relativity

By
Christopher Richard Thomas Nunn

A thesis submitted for the degree of Master of Philosophy

December 2005



UNIVERSITY OF SOUTHAMPTON

ABSTRACT
FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS
SCHOOL OF MATHEMATICS

Master of Philosophy

THE CONSTRUCTION OF BOUNDARY CONDITIONS FOR
ELECTROMAGNETIC ANALOGUES OF FORMULATIONS
USED IN NUMERTCAL RELATIVITY
by Christopher. Richard Thomas Nunn

This thesis investigates the construction of maximally dissipative and constraint
preserving boundary conditions for electromagnetic analogues of two formulations
presently ﬁsed in numerical relativity. Accurate simulations of astrophysical sit-
uations either require correct boundaries to be applied or for these boundaries
to be pushed out far enough that they are not causally connected to the region
of interest. This work looks to tackle the first problem, considering electromag-
netism in an attempt to construct general concepts that would transfer directly

to formulations of the Einstein equations used in numerical relativity.

The early sections of the thesis introduce in a general way the requirements
for continuum problems and their discretisations and the properties of maximally
dissipative and constraint preserving boundary conditions. Consideration is then
made of the advantages and limitations of using formulations of the Maxwell
equations as analogues to formulations used in numerical relativity, before the
introduction of the two formulations: KWB and Z1, that will be considered in
this thesis.

The basic examples of the first order in space and second order in space wave
equation, with and without shift, are used to help construct the boundary condi-
tions for KWB and Z1. Where possible the energy method is used to analytically

prove stability for the resulting schemes, which are then tested numerically.
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Definitions & Abbreviations

ODE Ordinary differential equation

PDE Partial differential equation

KWB Knapp, Walker, Baumgarte formulation of
electromagnetism

MDBC Maximally dissipative boundary conditions

CPBC Constraint preserving boundary conditions

ADM Arnowitt, Deser, Misner formulation of general relativity

BSSN Baumgarte, Shapiro, Shibata, Nakamura formulation

of general relativity
NOR Nagy, Ortiz, Reula formulation of general relativity
= Equal to on the boundary

(ui,v5) = Y, u;fvi Scalar product of u; and v;

l|u||? = (u,u) lonorm of u unless otherwise stated
1,7,k Latin indices indicate 1,2, 3

LV Greek indices indicate 0,1, 2, 3

uy = O The derivative of u with respect to ¢
Uo . U at the gridpoint 0

U Time derivative of U

E? EEi



Chapter 1

Introduction

1.1 Motivation

One of the well-known and important scientific and technological aims at the
present time is the detection of gravitational waves from astrophysical events such
as the inspiral and coalescence of binary black holes. Traditional techniques can
be used to describe the orbiting black holes before coalescence and the perturbed
black hole that results after coalescence but the period in between these phases
can, at present, only be tackled with numerical relativity, i.e. computer simula-
tions of these astrophysical scenarios. With an accurate and stable simulation,
a gravitational waveform could be extracted from the numerical solution at late
times, providing a template that could be used in matched filtering techniques
to obtain a gravitational signal from observational data received by gravitational
wave detectors. Templates will also help in the interpretation of such a signal,
providing information about the event from which the gravitational signal origi-

nated.

Numerical relativists try to simulate astrophysical situations by evolving given
initial and/or boundary data. For this purpose, the 3+1 split of the Einstein
equations can be used, which provides a number of evolution equations, meaning
that we can provide physical initial data and evolve forward in time, applying
boundary data if necessary. The problems that hinder these simulations include
those associated with stability, in particular with reference to boundary condi-
tions. A stable scheme is vital for long-term simulations as instabilities can end

the simulation with small numerical errors growing to swamp the solution. Con-



sistent boundary conditions are equally important to the simulation, as errors can

equally well enter the domain from the boundary.

1.2 Numerical relativity

When the 341 split mentioned above is made, spacelike hypersurfaces and a time
coordinate are introduced on the space-time and the Einstein equations decom-
pose into evolution equations, which involve time derivatives of the evolution
variables, and constraint equations on the spacelike hypersurfaces. Considering
the ‘hyperbolicity’ of the evolution equations allows statements to be made about
the well-posedness of the problem in question, which is related to the continuity
of the solution with respect to the initial data. For a formulation to be useful, it
must be well-posed and a lot of effort in numerical relativity has gone into rework-
ing the Einstein equations into formulations that are well-posed at the continuum

and hence allow the possibility of a stable numerical discretisation.

One of the original formulations used in numerical relativity was the ADM sys-
tem. Now it has been shown, for example in [1], that the first order reduction
of ADM is not well-posed with a densitised lapse gauge condition, i.e. with the
lapse gauge variable as a certain function of coordinates. Most of the instability
problems experienced in evolutions when this formulation was used can generally
be attributed to this property. Once this was understood, modifications were
made to the ADM formulation in an attempt to determine some formulations
that would be well-posed. Two formulations that came about from these modi-
fications were the BSSN and NOR systerﬁs. The BSSN system was constructed
by both Shibata and Nakamura [2] and Baumgarte and Shapiro [3] by introduc-
ing three connection functions into the ADM system and adding multiples of the
constraint equations to the evolution equations. The NOR system, introduced by
Nagy, Ortiz and Reula,[1] also has new variables, related to those introduced into
the BSSN system, and a multiple of a constraint added to an evolution equation.
A third formulation that was constructed in a different way is the Z4 system,
introduced by Bona, Ledvinka, Palenzuela and Z’acek.[4] In this system, a new
variable is introduced into the field equations before making a 3+1 split. These
formulations give improved stability in numerical simulations and alongside other
reformulations, they have allowed people to concentration on other problems such

as boundary conditions.
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Although the problems of well-posedness and stability have not been completely
resolved in the absence of boundaries, one of the major problems faced today
is to keep these properties when artificial boundary conditions are introduced.
We need to be able to prescribe boundary conditions and a discretisation of the
derivatives on the boundary so that we retain well-posedness and stability. A
lot of work in the fleld is done by pushing the boundary out far enough that
it is causally disconnected to the region of interest. However, even with the
assistance of multi-grids and the resulting higher resolution, it is still a waste of

computational resource that could be utilised in the region of interest.

1.3 Aim of research

The main aim of this research is to obtain some general methods for applying
boundaries to an evolution scheme such that the continuum problem is well-posed
and the solution of the discrete scheme converges to the continuum solution. Two
representative formulations used in numerical relativity are the NOR and Z4 sys-
tems and both of these systems have analogues in electromagnetism, i.e. the 3+1
split of the Maxwell equations can be written in a similar structure to these for-
mulations of the Einstein equations with an explicit term-by-term comparison. It
is useful to analyse these analogues - the KWB and Z1 systems - due to their

relative simplicity and the presence of an exact solution for electromagnetism.

Boundary conditions prescribed for these electromagnetic schemes may give in-
sight into how the generalised boundaries may work for numerical relativity. The
electromagnetic formulations will be broken down into systems of equations that
can be compared to the first order in time, first order in space wave equation
and the first order in time, second order in space wave equation so that simple
techniques can be consistently combined to give a full prescription for the bound-
aries. Both maximally dissipative boundary conditions and constraint preserving
boundary conditions will be considered. The former puts a limit on the charac-
teristic variables (combinations of the evolution variables that travel at known
speeds) that are coming into the grid. With this boundary condition, a bounded,
positive ‘definite energy, which includes the beundary, can often be found, which
ensures stability of the scheme and hence convergence through the use of the Lax
theorem. In addition to the main system energy, a constraint energy can also

be constructed from the constraint variables and constraint preserving boundary
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conditions work by ensuring that this constraint energy is non-increasing. Care
must be taken to appreciate the limitations of these electromagnetic analogues
but it is likely that the convergence of these boundary conditions in this situation
is a necessary condition for them to work in full general relativity. It is also impor-
tant that the continuum and discrete situations are kept distinct. The boundary
conditions will be described at the continuum level first before a discretisation is

made.

In chapter 2, we review initial value problems and initial boundary value prob-
lems, describing the general construction and giving some general properties of
maximally dissipative boundary conditions and constraint preserving boundary
conditions at the continuum. In chapter 3 we go on to describe the basic transla-
tion of continuum evolution equations and boundary conditions into semidiscrete
ODE’s. Chapter 4 follows the 3+1 split of the Einstein equations, giving the
derivation of the ADM and subsequent construction of the BSSN, NOR and Z4
systems. In chapter 5, we begin to look at the formulations of electromagnetism
that we will use to test our boundary prescription, introducing the KWB and
Z1 system, before studyving them both in depth in chapters 6 and 7, where we
attempt to construct energies at the continuum and the discrete level and apply
the boundary conditions mentioned above. We perform numerical tests on these
formulations, with a zero shift and a non-zero shift, explaining the decomposition
into the first order in space and second order in space wave equation that moti-
vates our construction of boundary conditions. Finally we conclude with a review

of the success of the various boundary conditions tested.



Chapter 2

The Continuum Initial Boundary
Value Problem

2.1 Initial value problem

Stability and convergence are vital when discretising a set of equations into a nu-
merical scheme. However, before a discretisation is made, the continuum problem
must be well-posed. A problem is said to be well-posed if:

e 3 solution exists

e the solution is unique

e the solution depends continuously upon the initial data i.e. a small change

in the initial data corresponds to a small change in the solution.

Considering a non-linear system, we can make a linearisation of the system and
then the third point above is equivalent to saying that the norms of the pertur-

bations of the solution and initial data must satisfy
leu(, )l < F@)[1dul-, 0], (2.1)

where F'(t) does not depend upon the initial data. To justify the consideration of
linear systems, the well-posedness of a linearised system is a necessary condition

for well-posedness of the corresponding non-linear system.
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When considering a linear system we can give a restriction on the norms of the
solution and the initial data rather than the norms of the perturbations. With

constant coefficients, we can write a definition of well-posedness
[lu(, )| < Ke*[lu(-, 0)]], (2.2)

where K and o« are independent of the initial data and || - || is an appropriate
norm. Considering a simple first order differential equation with a lower order

term and a constant coeflicient «
U = Ug + ou, (2.3)

we can introduce the new variable

v = ey, (2.4)
so that
Vt = Uy (25)
and hence we have
[v(-, )] = [|v (-, 0)]| (2.6)
and therefore the solution
lu(-, )] = e*|lu(-, 0)]]. (2.7)

The K in equation (2.2) comes about when considering a system of equations.

We also need to relate the well-posedness of the variable coefficient case to the
well-posedness of the constant coefficient case. We can make use of the frozen
coefficients approximation to neglect variable coefficients; for example consider

the Cauchy problem with variable coefficients

0
u(z,t) =P |z,t, — | u(z,t 2.8
() =P (8,5 Jutort) 29
for a first order system. Then we can look at all the systems where the coefficients
are frozen to a constant value at an arbitrary point (zo,ty). The frozen coeflicients
approximation states that if all of these constant coefficient problems are well-

posed, then the variable coefficient problem is also well-posed.[5]

It is important to note that the choice of norm is important as a system can be

well-posed with one norm and ill-posed with another and the standard L, norm is

14



not necessarily the right choice, as shown by the following example.[6] The wave

equation written in second order in space form,
¢ = m, (2.9)
7 = 0'0;0, (2.10)

permits a family of initial data for which it is impossible to find K and « such

that (2.2) is satisfied when using the Ly norm:

||| = \// lu|2dz = W(wz + $?)da. (2.11)

Considering the solution

¢ = sin(wz)cos(wt), (2.12)

m = —wsin(wz)sin(wt), (2.13)

w can be increased arbitrarily and therefore the norm of the solution at time ¢

cannot be bounded by the norm at ¢t = 0.

Another way to look at the norm is to consider it as an energy. Later we will
construct energies that are quadratic in the evolution variables of the systems we
are considering and use the conservation of these energies to imply well-posedness.
For this example of the second order-in space wave equation, the ‘physical’ energy
density is

¢ ="+ 0'$p0;¢ (2.14)
and we have well-posedness for the wave equation in this norm. However, because

we also want the norm we are using to be positive definite, we introduce a lower

order term for ¢

ol = \f/ (12 + g2 + 3g08)ds (2.15)

and again the wave equation is well-posed in this norm due to the presence of the

first derivative of ¢.

2.2 Initial boundary value problem

The definition of well-posedness for the initial value problem can be extended to
an initial-boundary value problem by replacing ‘initial data’ with ‘initial data and
boundary data’. So in addition to the conditions above, a small change in the

boundary data must also give rise to only a small change in the solution.

15



We first look at the case of a system that is first order in time and first order in
space

Oyu = P'O;u + Qu, (2.16)

where v is a vector of N variables and P* and Q are N x N matrices.

Note that we will be considering hyperbolic systems, i.e. those systems where
the eigenvalues of the principal part P are real. When this is the case, we can
calculate the eigenvectors of the principal part and this allows us to construct
the characteristic variables of the system, which are combinations of the evolution
variables that describe the incoming and outgoing data. We aim to introduce
a boundary to a domain without losing the well-posedness of the system and
this can be done using the characteristic variables.‘ We need to be careful not
to over-specify the problem by applying boundary conditions to the outgoing or
zero-speed characteristic variables. It is important for hyperbolic problems that
the number of boundary conditions imposed at a boundary should be equal to the

number of incoming characteristics at that boundary.|7]

For simplicity, we begin with a linear system with constant coefficients (2.16)
and introduce a direction n', which will later be taken to be the normal to the
boundary. We define the projector qij into the space that is normal to n;

¢; =06 —n'n; . (2.17)
in order to decompose the derivatives into those in the direction of n; and those

transverse to n;. We will use the notation A, B for indices that have been projected
by ¢*;.
Hence

O = P"0,u + PBogu + Qu, (2.18)

where P™ = n;P?.

2.3 Well-posedness and strong hyperbolicity

2.3.1 Strong hyperbolicity and characteristic variables

Consider P™ in equation (2.18). The definition of weak hyperbolicity states that
P™ has real eigenvalues whilst strong hyperbolicity requires that P™ has real eigen-
values and a full set of eigenvectors. We will now show that strong hyperbolicity is

a necessary and sufficient condition for well-posedness of an initial value problem.

16



As we are only interested in P", we consider the 1D case
Owu = PO,u + Qu. (2.19)
For well-posedness, we require that a unique solution u(t) exists and
3K, a:Vu0)  Jlu)]] < Ke*|[u(0)]] (2.20)
for ¢ > 0. We first analyse the case of (2.19) where @ =0
Swu = Pogu. (2.21)

The definition for strong hyperbolicity in this case is that the matrix P has real
eigenvalues and a full set of eigenvectors. The second condition is equivalent to
the matrix being diagonalisable as the matrix of eigenvectors 7' can be used to

diagonalise P
T7'PT = A, (2.22)

where A is a diagonal matrix whose diagonal is constructed of the eigenvalues of
P.

Theorem 2.3.1: Strong Hyperbolicity of a first order 1D system of Partial Dif-
ferential Equations is a necessary and sufficient condition for the well-posedness

of the associated initial value problem

2.3.2 Strong hyperbolicity sufficient & necessary for well-
posedness
From above T7!PT = A, and characteristic variables can be introduced
U=T"u. (2.23)
Hence, substituting (2.23) into (2.21) gives

8,(TU) = Po,(TU)
To,U = PT8,U
8,U = T 'PT3,U
U = A8,U, (2.24)

which decouples the system into
8, U7 = X\;0,U7, (2.25)

17



where 7 runs from 0 to IN. Using a Fourier transform

) 1 oo o
U (z, 1) = —/ 95079 (w, t)dz 2.26
@)= = [Ty (2.20
and substituting this into (2.25) gives
807 = iw); U7, (2.27)
of which the solution is
U7 = e“Xit{d (w, 0). (2.28)

Taking the Ly norm of this solution and using Parseval’s Relation

[lull* = llall?, (2.29)
the following is true
107 (@ )| = 107w, t)| "
= |7 (w0, 0)1
= e |07 (=, 0)|. (2.30)
As the eigenvalues of P are real,
|e™Xit| = 1, | (2.31)
SO
107 (z, )| * = ||T7 (2, 0) |2 (2.32)
and therefore
1U(=z, )11 = 1T (z, 0)]I*. (2.33)

Now, translating back into evolution variables

lu(z, Ol = [|TU(z,0)]*
< Tz, )
= |T/|U(=,0)I1”
< TTH [l O)[*. (2.34)

Therefore, we have the inequality for the definition of well-posedness with K =
IT||T~!| and o = 0. When we consider a system that is not 1D, the diagonal ma-
trix A and the matrix of eigenvectors T" will be dependent upon the direction n; and
will be subscripted, A, and T,,. This means that we can take K = sup, (|T,.||T5 )

and we will need the supremum to be finite.

18



We now show that strong hyperbolicity is a necessary condition for well-posedness.
Firstly, we show that well-posedness requires the eigenvalues to be real. Let ¢ be

the eigenvector corresponding to the eigenvalue A. A solution can be constructed,

u = el g (2.35)
with initial data
u(z,0) = e“*¢ (2.36)
so the L, norm of (2.35) gives
lu(z, )] = ¥ |u(z, 0)]]. (2.37)

Hence, writing A = a + b, well-posedness requires
Rel(a +1b)(iw)] < a = —bw < a. (2.38)
As w is arbitrary, b must therefore equal zero and we are left with A real.

Finally, assume there is not a full set of eigenvectors. Hence the Jordan canonical
form will have at least one Jordan block of size greater than 1 x 1. Consider the

system of equations where P is the 2 x 2 Jordan block

A0
O = ( ) Oz U
1 A

where u = (u!,u?)T. Therefore, performing a Fourier transform gives
Oput A0 iwut
(Btzﬂ):(l/\) (iwuz)’
from which the system can be written as
w = dwiu! (2.39)
W = iwlu? 4 wul. (2.40)
Hence, the solution to (2.39) is as above
ut(t) = e} (0), (2.41)

whilst the solution to (2.40) can be given by

W —iwu® = dwul
%(e—iw,\tuz) — wylemiM
= iwu*(0)
e My? = quwul(0)t+ C
W) = Ce™ +iwul(0)te™™
uwr(t) = e“Mu?(0) + iwteMul(0). (2.42)

19



Therefore the solution u? can be made arbitrarily large by increasing the size of
w. For a larger Jordan block, continuing in the same way would give the solution
for u®,

ud(t) = e“Mu3(0) + e u?(0) (iwt — w?t?) (2.43)

and so on. This can be shown explicitly by considering a Jordan block A of size
NXxN
Oy = Al u. (2.44)

Taking the Fourier transform as above gives

00 = wATG. (2.45)
Therefore the solution is
a(t) = e“*44(0) (2.46)
as
1 . ...
ot = 0(0)0; ZTiJthJAJ
j=0J"
st 1 . . . .
= wA(0) |3 G 1)!i(J_l)w(J‘l)t(J‘l)A(J“l)
7=1
= wAidg. (2.47)

We write the norm of the solution

lu@I* = [la@)]?
= e ]]la o)
= e [[u(0)]]” (2.48)

and therefore, if we let J = A — A,

|eith| |eiwAItHeint|

|eint|
N=1 ;5,3 Jigi

: (2.49)

1l

which grows like |w|V~!. Note that the Nth power of an N X N matrix of the form
J is zero. As an arbitrary matrix A can be put into Jordan canonical form, we
know that if A does not have an N-dimensional eigenspace, its Jordan canonical

form will have a Jordan block of size greater than one and the calculation above

20



shows that the problem will not be well-posed. Hence a full set of eigenvectors is

needed for well-posedness.

Note that although we set () = 0 at the start of this calculation, Theorem 4.3.2 in
[7] states that perturbing this system with lower order terms does not affect the

well-posedness.

2.4 Characteristic variables of the wave equa-

tion

As a simple example of calculating characteristic variables, we will find the char-
acteristic variables of the wave equation in second order in space form. As we are
going to be looking at first order in time, second order in space formulations, the

wave equation in this form is an obvious starting point.

The wave equation

¢ = (2.50)

can be written in first order in time, second order in space form by introducing
the variable m = 0;¢:

¢ = 7 (2.51)
T o= (2.52)

and using the projection g; to the space that is normal to n; as above, this can

be written as

¢ = (2.53)
T = ¢,nn+¢,BB- (254)

Now, we separate the evolution variables up into blocks

o 7 and ¢,
® d),B'

For the first block



SO

0 1
Py = .
10)

Now, from (2.23), we need the inverse of the matrix of eigenvectors so that we

can transform the evolution variables to characteristic variables. However
PYTHt = (T7HIA (2.55)

means that instead of calculating the eigenvectors of P™ and inverting this matrix,

we can just calculate the transpose of the matrix of eigenvectors of P to give us
Tt

The eigenvalues of P! are A = 41, corresponding to the two eigenvectors:

) ()

Hence, we can write down the characteristic variables:?

Up=m+ ¢, (2.56)

For the second block
Bt (¢,B) = aB’N

and hence the other characteristic variables are zero speed
Up = ¢,5. (2.57)

We should be careful to note here that any multiple of the transverse derivative
¢ p can be added to the characteristic variables due to commutation of partial

derivatives. For example, if we alter U,

Ui =n+ 60+ 6, (2.58)
B

!Note that in general the characteristic variables U+ are defined in terms of a normal pointing
outward from a boundary, which prescribes Uy to be an incoming characteristic variable at the
boundary. For the work here, we will often be considering a 1D Cartesian grid and therefore we
have adopted a slightly awkward convention for coding purposes of Uy incoming at the right
boundary and U- incoming at the left boundary, keeping U+ travelling in their respective direc-
tions. In analytic calculations we will always talk about U, being the incoming characteristic

but this may differ when coding issues arise.
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the time derivative is

Uy = Pan + PR+ Tn+ ZW,B
B
= (r+@n+Y ¢p5)s-+ transverse derivatives
B

= 0,U, + transverse derivatives. (2.59)
so the evolution equation of the characteristic variable holds because ¢ g, = ¢ .5
as we are considering ¢ p as a derivative and not as an auxiliary variable, in

contrast to a fully first order reduction, where an auxiliary variable is introduced

to replace the derivative.

2.5 Maximally dissipative boundary conditions

We can control the energy of the system by controlling the flux coming in and
out of the domain at the boundary and we use maximally dissipative boundary

conditions to do this.

Maximally dissipative boundary conditions involve specifying incoming character-

istic variables in the following way:
Uy = U+ f, - (260)

where k is a constant and f is free incoming data.

Consider the first order system of partial differential equations with constant

coefficients
Oyu = P'Ou. (2.61)

Strong hyperbolicity permits the construction of a symmetriser of P, in the fol-
lowing way.
H, = (T-HB, T, (2.62)

where B, is hermitian, positive definite and commutes with A,,. By construction
H,, is hermitian and positive definite. If the symmetriser H, is independent of

the direction n;, then we will call the system symmetric hyperbolic.

A positive definite energy density can be given

e =u'Hu (2.63)
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and taking the time derivative gives

8t€ = (8tuT)Hu + ’U,THat’U,
= §;(u' PN Hu + ul Ho,(Piu)
= Gu'HPw+ulHP'Ou
= 9;(u'HP™), (2.64)
where, because we have a total divergence, we can specify the flux
Fi = u'HPl. (2.65)

The energy is the integral over the domain of the energy density

E = / edV (2.66)

Q

and its differential is
dF )

— = O;F*dV, 2.67
= = ) (267
= Fids;, (2.68)

a0

where ds; is the surface element on the boundary 9. The first equality comes
from (2.64) and the second from Gauss’ Law. This can be rewritten

dE

— = / uTHP uds
dt a0

= U'TYH P™"TUds, (2.69)
o

where n; is normal and outward-pointing with respect to 0Q2. Recall the definition
of B,

By 0 0
B=| 0 B. 0 [,
0 0 B

where the B, , B_ and By correspond to the positive, negative and zero eigenvalues

respectively. Therefore

% =/, U'BAU
- /a _F'ds,  F"=U'BAU. (2.70)
Writing
A, 0 0
A=| 0o A 0 |,
0 0 A



we have
AvBe 0 0\ [ Uy
r=(ul, UL, Uf)| o ABo 0 || U
0 0 0\ U

and hence
F*=ULA,B.U, +UA_B_U_. (2.71)

To give a bounded energy, maximally dissipative boundary conditions can be used,
where L 1s now the coupling matrix between the ingoing and the outgoing vectors
of characteristic variables. First consider the case where f = 0. Substituting the

maximally dissipative boundary condition into (2.71) gives
Fr=U'L'B,ALLU_+U'B_A_U_. (2.72)

Therefore a way of ensuring a decreasing energy in (2.70) is to force F™ to be

negative. To enforce this, we need
M=L'B,A,L+B_A_ (2.73)

to be negative definite. Now consider the case where f # 0. Again, the maximally

dissipative boundary condition can be substituted into (2.71) giving

F* = UL'BA LU +U'B_A_U.
+UT LB AL f + fIBLALLU_ + fIBLALS. (2.74)
Now the function g is introduced, defined as
g=MTLIB.A,f. (2.75)
The expression
U + YMU_ +g) (2.76)
is negative as M is negative definite. This expression can be expanded
UL+ ghMU_+g) = UIMU_+ULL'ByA,f + fIALBLLU-
+f A B, LM ' MM N (L'BLALL+B_A_)L7'f
—fIA,B.LM*B_A_L7*f

+f1BLALF— fIA B, LM *B_A_L7*f
= F"— fIA,B,LM*B_A_L'f. (2.77)

25



Hence
Fr= WU + gYMU_+ g)+ fIALB, LM *B_A_L7§, (2.78)

of which the first term is negative definite and the second term is given in terms
of f, which is prescribed and can therefore be controlled. Note that homogeneous
MDBC give a non-increasing energy while inhomogeneous MDBC give an energy
bounded by the free data.

Considering a specific example - continuing with the example of the wave equation

- we have the energy density
e =72 + (0;0)? (2.79)

and the flux
F, = 218;¢ ' (2.80)

and the flux in the normal direction in terms of the characteristic variables
1
F, = Z(Ui - U?), (2.81)

where the characteristic variables are no longer vectors. With homogeneous

boundary conditions, i.e. with f set to zero, (2.81) becomes
F" = (k% = 1)U?, (2.82)

showing that F™ is non-positive for |«;| < 1. This implies that the time derivative

of the energy is non-positive for |x;| < 1 and hence the energy cannot grow.

For the case where f # 0, we don’t get a conserved energy but we do get a bound
on the energy dependent only upon x and f. We have to make the condition that

|k| # 1 so we are excluding Dirichlet and Neumann boundary conditions.

2
Fmo= %(RZ—l) <U~+ i ) _!L f (2.83)

k2 —1 2k2—1’

where the first term is negative and the second is positive but is dependent only
upon f and x and will therefore give a bound on the growth of the energy due to
(2.68).

2.6 Constraint preserving boundary conditions

Constraint preserving boundary conditions work in the same way as homoge-

neous maximally dissipative boundary conditions but instead of controlling the

26



main energy, they ensure that the constraint energy is non-increasing. To cal-
culate a constraint energy, the constraint system is written in closed form and
the constraint characteristic variables are calculated for this system, allowing the
constraint energy to be constructed from characteristic constraint variables in the
same way as the main energy is constructed from the characteristic variables of

the main system.
For the formulations we are considering in this work
Ci=0,Us+ ..., (2.84)

where the dots stand for transverse derivatives of characteristic variables and
where Cy are a pair of constraint characteristic variables corresponding to the

characteristic variables with evolution equations
Uy = +0,Us + ... (2.85)
For example, with KWB (see Section 6.2)
Cy = 0pUs +0PUsp. (2.86)

To obtain a constraint energy that is non-growing, homogeneous maximally dis-
sipative boundary conditions can be applied to pairs of characteristic constraint

variables.
C, =rC_, (2.87)
where |k| < A1. Now substituting (2.84) into this boundary condition gives
8,.U, — kU = . .. (2.88)
This can be translated into an evolution equation using (2.85)
Uy + ko, U- = ... (2.89)
A new variable X on the boundary can be defined as
X =U, +&U_ (2.90)
and therefore (2.89) can be written as
8:X = ... (2.91)
This can be viewed as an evolution equation for X on the boundary. X will

therefore be known on the boundary and can be used as a source function for a

maximally dissipative boundary condition

U_|_ = —K'/U_ + X. (292)
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Considering a single pair of characteristic variables, the time derivative of the

energy can therefore be bounded by X, as with maximally dissipative boundary

conditions, i.e. (2.78) with M =x> -1, L=k, AyBy =1and A_B_= -1
. 1 )
E < / X2ds
an 1l — k2
= K|l X1[50, (2.93)

where K3 = 1/(1 — x?) provided |s| # 1. Hence the energy is bounded if X is
bounded, giving a bound on the solution u. However, bounding X is not easy
to do. This can be done if X decouples from the solution in the bulk, i.e. the
time derivative can be written in terms of the free boundary data and X itself.
However, this is not the case for our work and so we will not be able to prove

stability in this way.
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Chapter 3

Finite Differencing

3.1 Discrete stability and convergence

Once the continuum problem has been shown to be well-posed, we discretise the
equations using difference operators to approximate derivatives. To translate to a
full discrete system involves writing complicated discretisations in space and time
of the continuum derivatives. However, we use the ‘method of lines’ technique
to simplify the problem. This involves considering the semidiscrete problem, i.e.
discretising the spatial derivatives but keeping the time derivative continuous, to

give a system of ODE’s. For example, the wave equation at the continuum is
T = (3.1)
W = (3.2)

for which we can write the standard second order accurate centred approximation

for a first derivative:
Ui—1

Uit1 —
Dyu; = ———, 3.3
ou ok (3.3)
where u; is the value of u at grid point 7 and h is the grid spacing, to give
: Vi1 — Y
= = 7l 3.4
i o (3.4)
; Tit1 — Ti—1
= — 3.5
) - ()

These can then be integrated by a standard time-integrator (we will be using 4th

order Runga Kutta) as we now have two ODE’s.

We need the discretized solution to converge to the exact solution, i.e. the norm

of the error between the numerical and exact solutions must tend to zero as
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the time and spatial steps tend to zero, as we need to be able to get closer to
the continuum solution by increasing resolution. As a simpler way of showing
convergence of a numerical scheme, we can use the Lax theorem, which states
that if a numerical scheme is consistent with a well-posed initial value problem
in a certain norm and stable with respect to the same norm then it is convergent
to the same order and with respect to that norm.[8] Consistency means that a
numerical scheme is a good approximation to a problem, i.e. if you substitute the
solution of the partial differential equation into the finite difference scheme, you
should get an error At7™ where ||7"|| — 0 as the time and spatial steps tend to
zero. Generally we will be specifying operators that are of the correct accuracy
so this condition will automatically be satisfied. The problem we will consider
more will be that of stability, which means we can bound the solution at time ¢,
i.e. we can put the estimate ||u™|| < Ke®||u°|| on the norm of the solution, ||u™],
where ||u”|| is the norm of the initial data. Note that the exponential term in this
definition of stability allows the solutions of differing initial data to grow apart at
a large rate, however it is sufficient for convergence. There is a distinction between
this unwanted growth of the solution and a technical numerical instability. The
former means that you can always get nearer to the continuum solution simply

by increasing the resolution of your scheme while the latter does not allow this.

3.2 Semi-discrete boundaries

Above we gave the maximally dissipative boundary conditions at the continuum
level. However, when forming the discrete numerical scheme, specifying the semi-
discrete system for the points on the boundary will usually require spatial dif-
ferences. In the bulk a centered difference operator is often used but on the
boundary, some prescription using one-sided difference operators is needed. For
example, considering a one-dimensional grid, where the first grid point is 7 = 0
and the last grid point is 7 = N we may need operators like the first order ap-
proximations of the first spatial derivatives:

Uy — Ug

D+U0 = h (36)
and
D_uy = %’ (3.7)

as we cannot use points from outside the grid. That is, unless we make use of

ghost-points, which are points outside the physical grid that can be used in the
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same centered derivative operators at the boundary as in the bulk of the grid. So
in general, the continuum boundary conditions need to be translated into one-
sided derivative operators (making use of the semidiscrete evolution equations in
the calculation) or they need to be used to populate these ghost-points. These
techniques are equivalent, however it turns out that the second method is easier

for coding purposes whilst the first is more suited to analysis.

Considering the maximally dissipative boundary conditions described above, we

can use the wave equation as an example of forming a semi-discrete prescription.

3.2.1 The second order in space wave equation

Here we will consider the wave equation in second order in space form in only one

dimension for simplicity.

¢ = m, (3.8
T = ¢, (3.9)

which we discretise with
i = DyD_¢;, - (3.11)

where the subscript denotes the grid location. As calculated above, the charac-
teristic variables are

Up=m+x¢, (3.12)
with evolution equations

Uy = +U,. (3.13)

Again, we consider a 1D grid from j = 0 to j = N (parameters subscripted with

L and R represent the values on the left and right boundaries respectively).
At the boundary of the grid, 7 = N
Up=cU_+ f k] < 1, (3.14)

where || is set to be strictly less than one so we avoid any problem with equation
(2.83).
Substituting the evolution variables back into (3.14) gives

7TN("€R - 1) ~Ir
kr+1 '

Pl — (3.15)
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We discretise the first derivative with a second order accurate difference operator

UN+1 — UN-1

= 1
D()UN oh (3 6)
and make use of the fact that
2 2
D+D_ - E(DO - D_) = E(D-i- it DO) (317)

to give the second order accurate spatial discretisation. The semi-discrete evolu-

tion of the system on the boundary is therefore

¢y = 7N (3.18)
: .2 kp—1 fr

= —(—-D_ — . 3.19
™ h( D-¢n WNnR—I—l—i—nR—l—l) ( )



Chapter 4

3+1 Formulations of General

Relativity

4.1 The 3+1 split

There are various approaches for breaking down the Einstein equations; the two
most common are the 3+1 split and the characteristic 242 split. We will concen-
trate on the former as it allows us to give data on an initial spatial hypersurface
and make a discrete evolution of data onto subsequent hypersurfaces, using a time

vector. In the following calculation we follow closely the work of York.[9]

The first task is to foliate the spacetime with 3-surfaces. We can prescribe a unit

normal, n;, to the 3-surfaces that can be used to form the spatial metric on the

slices:
Yab = Gab ~+ NaTlp, (4.1)
where g,p is the 4D metric. Contracting with n* and making use of n®n, = —1
gives
Yo" = 0, (4.2)

showing that the 3D metric is perpendicular to the normal. It should be noted
that the mixed form of the 3-metric L} = ¢ = ¢7 + n®n, is a projector onto the
slices,

1215 = (82 +nn.) (65 + nny) = 6 + nnp = L3, (4.3)

The projection operator can be used to project the 4D covariant derivative V onto
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the slices to give the 3D covariant derivative D.
Do’ =1 Vo’ =115 Vol (4.4)

Now
Vagbc =0. (4.5)

In analogy to (4.5) the 3D covariant derivative of the spatial metric, Dy, van-

ishes:

Da’)/bc = J—ZJ-ZJ-E’; vd’)/ef
= L3161 Vager+ne LELELS Vyng+np LELELS Uyn,
= 0, (4.6)

where we have expanded the projector, used the linearity and Leibniz rules and

eliminated any terms of the form V,gs = 0 and L% n, = 0.

We have a metric and a covariant derivative for the 3-surfaces; all that remains to
give a full description of the spacetime is to define how the surfaces are embedded
in the manifold. This description is contained within the term known as the
extrinsic curvature K, which can be considered to be the time derivative of the
3-metric. It incorporates the information difference between the 4D Riemann
tensor and the 3D Riemann tensor. We have the four main definitions of K, (the

proof that they are equivalent can be found in Appendix A).

1
Kab = _5 L [:ngab (47)
= 1 V(anb) (4.8)
1
= —Eﬁn’)/ab (49)
= =V, — ngay, (ay = n°V ), (4.10)

where L. Ty = 1T op + Tep0,n + ToeOpn® and L projects each of the indices.

We can define a time vector ¢t* as threading the 3-surfaces, in the same direction
as n®, mapping points on one spatial hypersurface, say >, to points on the next
hypersurface, say Y:,a; (see figure 4.1). This time vector can be constructed
from a multiple of the normal n®, where this multiple is called the lapse a, and
the shift 5, which describes the movement of the points in space between the two

hypersurfaces. Hence, we can write the time vector explicitly as
t* = an® + B (4.11)
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Figure 4.1: Spatial hypersurfaces threaded by the unit normal and the time vector

(one dimension suppressed).

We can now define the 3D Riemann tensor in an analogous way to its 4D coun-
terpart by writing:

1
Dy Dyw, = 5Rd Wq (4.12)

cba
and

R g =0, (4.13)

cba

the latter coming from the fact that the 3D Riemann tensor must be spatial.
The Gauss equation below expresses the 4D Riemann tensor in terms of the 3D
Riemann tensor and the extrinsic curvature. It involves a projection of all four

indices of the 4D Riemann tensor.
®) Ropea =L® Rapea + KaaKye — KacKba. (4.14)

The derivations of this and the following equations can be found in Appendix A.
The Codazzi equation involves a projection of three indices onto the spatial slices

and a contraction with the unit normal.
Db[{ac e DOIX'(,C :_L Rabcn> (415)

where Rapen = 1% Raped.



The one remaining decomposition requires two projections and two contractions
with the normal, which will give the evolution equations, i.e. the time derivatives
of the extrinsic curvature and the spatial metric. This is in contrast to the Gauss
and Codazzi equations, which are called the constraint equations because they
involve no time derivatives of the spatial metric and the extrinsic curvature. The
constraint equations contain information on fourteen of the twenty components of
the 4D Riemann tensor (due to symmetry properties, the 4D Riemann tensor has
twenty degrees of freedom, fourteen of which are incorporated in these equations).
Hence, the other six components are incorporated in the evolution equations. The
Gauss and Codazzi equations must hold for every spatial slice and so give rise to
constraint equations on these surfaces (again derivations are in Appendix A). Of
the ten Einstein equations

Gap = 87Ty, (4.16)

one becomes the scalar or Hamiltonian constraint
2Gmm = R+ K? — K, K® = 167p, (4.17)
where p = T;, and three become the momentum constraint
G = Dy(v*K — K*) = kj°, (4.18)

where we make a slight change of notation to [9] with L G** =1 G2 and
j* = 1L T%. The momentum constraint is so named because it involves the
momentum density as determined by an observer moving with the slices. The p
in the Hamiltonian constraint can be viewed as the energy density in a similar

way.

In summary, we have the Hamiltonian constraint, which embodies one of the
Einstein equations, and the momentum constraint, which incorporates another
three. Whereas these four constraints hold on the slices, the remaining six Einstein
equations are related to the embedding of the slices in spacetime. Here is where
the Lie derivative with respect to N* = an® enters into the calculation. Whilst the
constraint equations do not contain any time derivatives of the extrinsic curvature
or spatial metric and hence are not involved in the evolution of the solution, the
remaining equations give expression for Ly Ky and Ly7v. and hence describe

evolution between the spatial hypersurfaces.

'CNKa.b =—o 1l Ranbn + DanOJ + OjKach. (419)
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This can be translated into the Lie derivative of the curvature in the direction of
time by using £; = Ly + Lg and expanding the projections of the Ricci tensor

and the contracted Riemann tensor.

LiKyp = —Dy,Dya+ a[Ry — 2K, Kf + KK
1 1
—KJ(Sab — —é%bS) - iﬂpyab] + LﬁKab, (4.20)

where we have introduced the projection of the stress-energy tensor onto the
slices, S,5- Note that because we are in a coordinate system that is adapted
to the vector field ¢¢, £, = 4;, illustrating why we consider these equations as
evolution equations.[10] The evolution equation for the extrinsic curvature (4.20)

in addition to the evolution equation for the spatial metric
Livap = —20Kap + L5Yap, (4.21)

and the momentum and Hamiltonian constraints give the full ten Einstein equa-
tions. (4.20) and (4.21) detail how the extrinsic curvature and the metric change
with time but they say nothing about the lapse and shift, as these are a gauge

choice.

Initial data of the form (v;;, Kij, p, 7;) can be specified on a 3D spatial surface.

Due to the contracted Bianchi identities,
VeGga =0, (4.22)

if the initial data satisfies the constraints then the solution will always satisfy the

constraints throughout the evolution.[10]

4.2 Adapting the Einstein equations

4.2.1 Evolution of the Einstein equations

As was shown in the previous section, the deconstruction of the Einstein equations
into the 3+1 split provides six evolution equations, which involve time deriva-
tives of the 3-metric and the extrinsic curvature, and four constraint equations,
which do not involve time derivatives. There are two methods of implementing
these equations; ‘constrained’ evolution involves using a mixture of the evolution

equations and the constraint equations to solve the field equations whilst ‘free’
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evolution solves the constraints on the initial hypersurface and then uses only the
evolution equations, leaving the constraint equations to be used as a test on the
solution to check how closely it satisfies the constraints. The reason that con-
strained evolution is largely avoided is the requirement of more processing power,
due to the need to solve the elliptic constraint equations, whilst free evolution
is more economical on processing time. If the constraints are satisfied initially,
then at the continuum they will be satisfied throughout the evolution, so in this
case, at the continuum, constrained and free evolution are equivalent. However,
free evolution allows constraint violation from numerical error and so the con-
straints will not remain satisfied at the discrete level. One of the advantages of
the presence of constraints in free evolution is that they provide an additional tool
for reformulating the evolution equations in addition to the standard change of
variables, whether it be by adding multiples of the constraints (in essence adding
zero to the continuum equations) or introducing auxiliary variables (which adds
new constraints for these new variables.) When the constraints are obeyed, the
same equations are being solved at the continuum, however these adjustments can
aid stability at the discrete level. It should be noted that this method of using
the constraints to obtain well-posedness is distinct from constrained evolution be-
cause it involves adding the constraints to the evolution equations, rather than
replacing a number of evolution equations with constraint equations, and hence

retains the bifurcation into six evolution equations and four constraint equations.

4.2.2 The ADM system

The scheme derived in the previous section was the original formulation used in
numerical relativity, called the ADM formulation after Arnowitt, Deser and Misner
and introduced to the numerical community by Smarr and York [11] and York.[9]
Although this was the standard formulation used in numerical relativity up until
the mid 1990’s, numerical codes were plagued with unexplained blow-ups, which
were thought to be caused by insufficient resolution, a bad choice of gauge or just
an unstable finite differencing scheme. However, it was later discovered that the
formulation itself was ill-posed at the continuum with certain gauge choices, and

numerical error was triggering instabilities.
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4.2.3 The BSSN system

Various modifications to the ADM formulation have been suggested and tested
over the years. The first to be mentioned here is the BSSN system, introduced by
Nakamura and Shibata in 1995 [2] and reintroduced by Baumgarte and Shapiro in
1999 [3], which involves introducing new ‘connection’ variables and factoring out
the conformal factor. This means that instead of evolving the extrinsic curvature
and the metric, the variables evolved are the conformal factor and the trace of the
extrinsic curvature. The new variables are the conformal metric ¥;;, the conformal

tracefree part of the extrinsic curvature A;; and the conformal connection variables
P '

Vi = e "y (4.23)
r 1

Ay = 6_4¢(Kij - g’)’in) =e %4, (4.24)
" = I (4.25)

where ¢ = 5 log(det ;) is chosen so that the additional constraint ¥ = det ;; = 1
is satisfied. The most essential modification for numerical stability was stated in

[3] to be the use of the momentum constraint to eliminate the divergence of Aij.

There are many forms of the BSSN equations that are used by different groups
and it is important to note that the hyperbolicity depends very much on how the
equations are written. The BSSN system with densitised lapse and fixed shift in
[13] is shown to be strongly hyperbolic. Also, in [12] a general form of BSSN is
shown with conditions on the parametrisation of the addition of constraints that

give strong hyperbolicity.

4.2.4 The NOR system

An alternative is the NOR formulation, introduced by Nagy, Ortiz and Reula
[1] and derived from the densitised ADM system in a similar way to BSSN (but
without a conformal traceless decomposition) by introducing three connection
variables, similar to the I'* variables in BSSN, and adding a multiple of the mo-

mentum constraint to the evolution equation of f;. The evolution equations are

Li-pyri; = 2NKi; (4.26)
, N .
Li-pKiy = 5‘7“[—%]‘,“ — bkt + Nfa) + B (4.27)
,C(t_ﬁ)fi = JV[(C - Q)ijKij,k + (1 - C)’)’ijkj,i] +C; (428)
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and the constraints are

CR+K? - KuK? = 2xkp (4.29)
DyK? — DK = &p (4.30)
=7, = 0 (4.31)

Note we have used -;; here instead of h;; to keep notation consistent.

If the f* are introduced as in [12] with arbitrary p = r + 2 (instead of p = 1
in [1]), then the equations with zero shift and densitised lapse linearised about

Minkowski space can be written as in [6] with b = 1, ¢ = 2 in the notation of [1]

8t71-j = —2Ki' (432)
1

0 Ki; = —5akak'7ij+gaiajt+a(ifj) (4.33)

8,f = roK, (4.34)

where ¢ = 6%, This form is how we will compare to the electromagnetic formu-

lations we consider later.

It was shown in [1] that the pseudo-differential reduction of NOR is strongly
hyperbolic for (i) 6 > 0,5 # 1 and ¢ > 0 and (ii) b = 1 and ¢ = 2, and hence for

the case in [6].

4.2.5 The Z4 system

Another technique is to introduce extra variables into the field equations before
the 3+1 split is made. An example of this is the Z4 system where the auxiliary

variable Z,, is introduced into the Einstein equations in the following way
1
Ry +VuZ,+V,2, =8n(Ty — 5Tgu,,), (4.35)

where setting Z, = 0 regains the Einstein equations. By splitting up the auxiliary
variable into the spatial component Z; and the normal component © = —n,Z# =
aZ® (where n, is the unit normal to the slices), the 3+1 decomposition in vacuum

can be made:[4]

(at — Lﬁ)’Yij = —20.’Kij (436)
(8t — Eﬂ)Kij = —DiDjCY + O.’[Rij + DiZj + DjZi
—2Ky K" + (K — 20)K 3] (4.37)
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(6 — Lp) = %[R + (K - 20)K — KYK;; + 2D 2% — 2(Dra/a) Z%)

(8 — L3)Z; = o|[Di(KF —6FK) + D;© — (Dia/a)© - 2KFZ,],  (4.39)
with the usual constraints

H
M;

Il

R- KK+ K* (4.40)
D'K;; — D;K. (4.41)

i

Note that the constraint equations that existed before the introduction of the aux-
iliary variable have been translated into evolution equations for that variable. For
a solution of the Einstein equations, the Hamiltonian and momentum constraints
must be satisfied for the initial data as well as setting Z, = 0. It is important
to notice that the constraint system only closes if equations (4.38) and (4.39)
are included and hence the variable Z, is a part of the constraint system and
the evolution system, a fact that is useful when trying to damp constraints; by
controlling Z, in the evolution equations, we can damp the constraints without
having to project back onto the constraint surface. The variable Z,, can be used
in a breaking of the time symmetry, which allows damping of the constraint and
hence produces an attracting constraint hypersurface. A damping parameter « is
added into the field equations [14]:

Ry +DyZ, +D,Z, — k[t Z, +t,Z, — gut*Z)] = 0, (4.42)

where ## is a time-like vector. This introduces extra terms involving « into (4.37),

(4.38) and (4.39) and the damping of constraints described above.

We also note from [14] that the transformation

1 . .
© =0, Zi — 3 (fi — Yk + g“ij“ij,z‘) (4.43)

takes the Z4 system to NOR.
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Chapter 5

Electromagnetism

5.1 Electromagnetic analogues of formulations

of general relativity

Some formulations of the Einstein equations have an electromagnetic analogue,
including the Z4 and NOR systems mentioned above. The advantage of working
with these analogues is that electromagnetism is linear rather than quasi-linear
(linear in the highest derivatives) and exact solutions can be given to compare to

the results of a numerical scheme, allowing simple convergence tests.

5.2 The Maxwell equations

To make a 3-+1 split of the Maxwell equations we can start from the field equations
(the derivation from the differential form of the Maxwell equations can be found

in Appendix B):
F = —Arj” (5.1)
Fo, = A, —A,,, (5.2)
with the conservation of charge
*, =0. (5.3)

We define A% = 9, j° = p and the electric field E; = Fyy = —Ai + 1, from
equation (5.2). Setting v = 0 in 5.1 gives E;; = 4mp whilst setting v = 1 gives



E; = —(A;;; — Aj,1j) — 47j;, and we can therefore write out the full system:

i, = —Ei—v, (5.4)

E; is the electric field, A; is the magnetic potential, 9 is the electric potential and
j; and p are source terms that satisfy ]11 + p = 0. For simplicity, the vacuum case
(p = j; = 0) will be considered with the electric potential ¢ also set to zero. In a
comparison to the ADM equations, A; can be considered analogous to the spatial
metric v;;, E; to the extrinsic curvature K;; and the constraint C' to the ADM

momentum constraint.

Next, we make a differential reduction to first order by introducing new variables
for the first derivatives of the magnetic potential. The new variable d,; is defined

as
dij = 0; A; (5.7)

and the fact that 8;0; A, can be written as 0;d; or 0;d; gives rise to an additional

constraint.
0= Cijk = aidjk - ajdik. (58)

The original system of equations is rewritten as

B, = cBidy+ (1 —c)B;di; — 8;d5i (5.10)

and differentiating (5.9) gives
8;A; = —0;E;. (5.11)
The evolution equations are therefore

Ei = Caidjj -+ (1 — C)ajdij — ajdji ' (512)
di; = —06,E, (5.13)

which with the constraints

0= Cijk = aidjk — ajdik (514)
0=C 8, E; (5.15)
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provide the full system in first order form, where the evolution equations can be
written in the standard way
dyu = P'O;u. (5.16)

For arbitrary direction n;, a strongly hyperbolic system is one where the matrix
P, = n; P" has only real eigenvalues and a complete set of eigenvectors. A projector

onto the space normal to n; can be given as usual
q'; = &5 — n'ng, (5.17)
where a projected index is denoted by A,B,C. So
dyu = P,0,u + P49,u. (5.18)
Considering the example n = (1,0, 0),
g7 = §9 — §6Y (5.19)

and the variable d;; can be broken down into a scalar block

dnn — dll (520)
dyy = dijq¥ = (dyy + doy + da3) — ds
= doy + dss, (5.21)

the transverse vector block

dnA = (d12,d13) (522)
dan = (do1,ds1) (5.23)

and the transverse traceless tensor block

3(da2 — ds3) dos
dip = 1 .
d3a 5(dss — da2)

Therefore, returning to n, A notation, the evolution equations of the components

of d;; are
Oidnn = —01E1 (5.24)
Otdna = —01E4 (5.25)
Oidan = —04F1 (5.26)
Oidap = —04Ep (5.27)
Oidgg = —0aFE4. (5.28)
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The remaining evolution equations are

O E, = —0pdnn — 0adan + Opdnn + cOpdyq + (1 — ¢)Ondnn + (1 — ¢)Oudna
= —0adan + cOndgg+ (1 — ¢)8adna (5.29)
O Es = —0Opdna— Opdpa+ cOadnn + cOadpp + (1 — ¢)Ondan + (1 — ¢)Opdap.
(5.30)

Ignoring transverse derivatives we can write down F,. However, the variables split
into scalar, vector and tensor blocks and can be considered separately. For the
scalar block: (dpn, 'y, dgq),

0 -1 0
Pt=10 0 c¢ |,
0 0 O

for which the only eigenvalue is A = 0 with only one eigenvector (1, 0,0). There is
not a full set of eigenvectors and the system is therefore only weakly hyperbolic. To
be strongly hyperbolic, for any n, P, has to have real eigenvalues and a complete

set of eigenvectors. For the transverse vector block, (dna, Fa,dan),

has eigenvalues A = 0,41 and eigenvectors (1 — ¢,0,1) and (—1,£1,0). The

transverse traceless tensor block dsg has P, = 0.

5.3 The KWB system

The KWB system can be obtained from equations (5.4 - 5.6) by introducing the

variable

which gives rise to an additional constraint
0=Cr=TI-0;4;. (5.32)
The constraints can then be used to give the time derivative for I'
I'=0;A; = —8;FE; =0 (5.33)
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from the constraint
0=C=0,E;. (5.34)

This alters the system of equations to

A, = —E; (5.35)
B = —070;A;+ 6T  (5.36)
I = o, (5.37)
with constraints
0=C = 9,E, (5.38)
0=Cr=T - 0;4;. (5.39)

This is the simplest form of the general set of equations

i - ;. (5.40)
I = (1-0)8,5, (5.42)

with a and b set to 1.[15]

The analogy between NOR and KWB can be made clear by comparing the 3-
metric «y;; with A;, the extrinsic curvature K;; with F; and the auxiliary connection
variables f; with I'. Note, the construction of KWB parallels that of NOR in that
the new variable ' is introduced in the same way as f; and the constraint is
added to an evolution equation to make the formulation strongly hyperbolic. The
analogy cannot be taken too far however because the I' variable decouples from
the evolution equations in KWB, a property that does not hold for the f; terms
in NOR; considering equation (4.28), ;; and K;; both appear in the evolution

equation for f;.

The characteristic variables of the KWB system can be calculated by first making

a first order reduction,

diy = —O8.E; (5.43)
E; = —8;dj;+aT (5.44)
I = o0, | (5.45)
with constraint equations
=C = ¥E; (5.46)
0=Cr = T —084;. (5.47)
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The principal matrix for the scalar block: (dnn, En,dgq, ') is

0 -1 0 O

-1 0 0 1
Pn: )

0 0 00

0 0 00

for which the eigenvalues are A = 0,1 and the corresponding eigenvectors are
(1,0,0,1), (0,0,1,0) and (—1,+1,0,1). The vector block: (d.g,Ep,dpn) has

principal matrix

0 -1 0
P,=]1 -1 0 0
0 0 0

and hence has eigenvalues A = 0,41 and eigenvectors (0,0,1) and (-1, +£1,0).
We can take the inverse of the matrix of eigenvectors or use the transpose of the

principal matrix - recall equation (2.55) - to give the non-zero speed characteristic

variables:
Uy = —dpytE,+ 7T (5.48)
Uip = —dup* Ep, (5.49)
(5.50)

which in second order form are
Us = —ApntE,+T (5.51)

U:I:B == -—AB,nZtEB. (552)

The calculation is exactly the same in second order form if A4, , and Ap, are

consldered as evolution variables.

Considering a domain periodic in z,y and 2, the general conserved energy density
is
2¢ = [CO (EZQ + A?)j — 2Ai,i1”) + C1F2 + CQ(A?’i - Ai)]’A]',i)] . (553)

For simplicity, ¢y is set to 1, ¢; is set to 0 and ¢; = o is large enough to ensure

that the energy is positive definite. This gives the energy density
2e = E] + A, — 2A;,;T + o2 (5.54)
This energy can be shown to be conserved by taking the time derivative
¢ = (—EA;;+ET,;, - E;;A;+ E;;I' (5.55)
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and then the integral over space, where () is the domain of the solution,
B = [ ~Bifiszi+ BT~ Bijhi+ EyTdv
Q
- /Q (~Eidi; + E;T) ,dV, (5.56)

which, as we are taking an integral of a total divergence with periodic boundaries,

gives a conserved energy by Gauss’ Theorem.

To show that the energy is positive definite, A;; is split into trace and traceless
parts: Ai,j = %(Sijskk + gij so that

) 1 - 1 .. ..
e = E,E"+ (g(sijskk + Sij)(gé”su + S”) — 25 + ol?
) 1 - o~
= E,F*+ g(skk)Q + SijS” — 285, + ol?
1 o
= E,E'+ E[Skk —3T)% + (0 — 3% + S5;;5Y, (5.57)

from which it is clear that with ¢ > 3, the energy is positive definite in F;, [’
and the first derivative of A;. The situation when including A; is a little more
complicated, as the energy is no longer conserved, but is instead bounded by

exponential growth (see section 6.1.3).

Now, considering a boundary 0X2 to the domain €2, there will be a non-vanishing

term
E = / (—EA;, + E,D) ds
a9
= [ (Bu(—Anp+1)+ Ba(=Ag,)) ds (5.58)
_ 1 2 2
= Z/m (U2~ U2)) ds. (5.59)
The maximally dissipative boundary conditions are '
U+i = RU_i+fi. (560)
With homogeneous MDBC
1 2 2
E= Z/an (& — 1)U2,) ds, (5.61)
which is non-increasing for |x| < 1. Here, |x| = 1 would give a conserved energy.

By adding in the inhomogeneous terms the energy will no longer be non-increasing

but it will instead be possible to bound it in terms of the inhomogeneous free data.

K2—1) 2x2—1

Note, we have given x no subscript here but in general each MDBC will have a

E:%(RQ—U (U_+ i >2 i (5.62)

distinct «;.

48



5.4 The Z1 system

An electromagnetic analogue to the Z4 formulation is the Z1 system. The variable
Z can be introduced into the Maxwell field equations in the same way as Z, was
introduced into the field equations for the Z4 system and again it can be set up
to damp the constraints.

FM 7% _ gt 7 = —4r5”, (5.63)

y

where t¥ = (1,0,0,0) and x > 0 is a damping parameter. The evolution equations

can be constructed as above but with the extra terms incorporated.

A = —Ei+08, (5.64)
Ei = _ajain + ajaiAj + azZ - 47‘_ji> (565)
7 = —kZ+8'E; - Anp. (5.66)

Also notice that setting I' = Z + A;; transforms the KWB system into the un-
damped Z1 system. [t is important to note that the linearised NOR system given
above, equations (4.32 - 4.34), can be compared to KWB directly only if the
parameter 7 is set to zero. By a different choice of parameter, the system is

equivalent to linearised Z4.

Again, the source terms p and j; are set to zero to study the homogeneous problem
and the electric potential 1 is set to zero as a gauge choice. It should be noted
that the solution to these equations is a solution of the Maxwell equations only
if the constraints C' = E;,; and Z are equal to zero. The constraint C' has now
become an evolution equation for Z in exactly the same way as the constraints

become evolution equations for Z, in the 74 system.

For the first order reduction, the auxiliary variable d;; is introduced once again

with the constraint
0= Cijk = aidjk — ajdik. (568)
The evolution system is therefore
Oidi; = —0:E; (5.69)
5‘tEi = —ajdji + Caidjj + (1 - C)ajdij + (912 (570)
0,2 = O'E;, (5.71)
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so that the only difference in P, is in the scalar block, (dpn, Py, dgq, Z):

0 -1 0 0
00 c1
P = o
00 00
001 00

giving a eigenvalue of A = 0, which corresponds to the eigenvectors (1,0,0,0)
and (1,0,1, —c) and eigenvalues A = =+1 corresponding to (1,F1,0,—1). The
eigenvalues are real and there are a full set of eigenvectors so the system is strongly

hyperbolic.

The constraint evolution system can also be constructed in the same way. So far,

the constraints are

0 = C=0F; (5.72)

0 = 2 ‘ (5.73)

0 = Cijk = 8idjk — Bjdik. (574)
(5.75)

The time derivative of C is
C = JF |
= —0'0'd; + 0'9;d;; + 0°0,Z
= Zi, (5.76)

from (5.74). Another variable is introduced to reduce the constraint system to
first order. W, is defined as

W; = 6,7, (5.77)
with constraint
0= Cij = BjWi - Bin, (578)
giving
C = o'W;. (5.79)
Also

C.’ijk = aidjk - ajdik
= —OiBjEk + BjBiEk
= 0 (5.80)
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and
W, = 0'0;E;
= g,C (5.81)
and
Ci; = W — 0.,
= 81-8]-0—8]-81'0
= 0. (5.82)

So, in summary, the constraint system is

C = o'W, (5.83)
W, = 8C (5.84)
Ciyi = 0 (5.85)
Cijp = 0, (5.86)

which has real eigenvalues and a full set of eigenvectors and so is strongly hyper-
bolic.

Without reducing to first order, the same process can be used but the first deriva-
tives of the magnetic potential that would be rewritten as new variables are instead
used directly as evolution variables. This means that there will be no constraint
Cijk- The blocks are (A, n, En, Z), (Apn, Eg) and (4; ). For the scalar block

0 -1 0
Py = 0 1
0 1 0

The eigenvector for A = 0 is (1,0,0) and those for A = +1 are (—1,+,1). For

transverse vector block:
" -1 0

and the eigenvectors for A = +1 are (—1,£1). The transverse traceless tensor
block A; p will be zero. There is a full set of eigenvectors for F,. Note that the
process in second order form deals with a matrix of size one smaller than when
performing a first order reduction, however the row ignored will always be a row

of zeros, which will always give the extra eigenvector required.
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By taking the inverse of the matrix of eigenvectors, the characteristic variables
are

Uy = ApntZ2 (5.87)
U = Z+E, (5.88)
Usp = —Apn* L, (5.89)

with speeds zero, F1 and F1 respectively (note speed = —A.) Again, it should
be stressed that multiples of the transverse derivatives can be added to the char-
acteristic variables as the partial derivatives commute, meaning that the time
derivative of a transverse derivative will always give a transverse derivative. Fi-

nally, the third block A; p has been neglected here as it is automatically zero

speed.



Chapter 6

KWB

6.1 Discrete energy

6.1.1 Discrete energy without boundaries

Initially considering no boundaries to the domain, the system can be discretised

in the standard second order accurate way to give

E; = —D,;D_jA;+ Dy’ (6.2)
r = 0. (6.3)

The energy density can be discretised as
2€D = CO(Ei?—f— (D—l—in)? — 2D0¢Air) +01F2 —i—CQ(DOiAiD()jAj — DOinDOiAj)- (64)

There is always a choice of whether to use D, or Dg for the first derivatives in
the energy density but considering summation by parts with no boundaries in
Appendix C, the choices made here will allow cancellation when a sum of the

energy density is made over the grid.
Making the parameter choices ¢g =1, ¢; = ¢ and ¢y = 0 the energy density is
2¢p = EZ + (D1 ;4;)? — 2D A;T + o2 (6.5)
If we now sum over the grid points, the time derivative of the energy is
Ep = (B, E) + (Dy;Ai, DA — (Do, T) — (Dos Ay, T) + (0, 1)
= —(B;,Dy;D_;A;) + (BEi, DoI') — (D4 Aj, D4iEj) + (DoiEi, T). (6.6)
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Now making use of summation by parts with no boundaries from Appendix C,

this becomes
Ep = (D;E;, Dy;A) — (DoE;, T) — (Dy;Aj, DiiE;) + (Do B;, T) = 0. (6.7)

Hence this energy is conserved.

6.1.2 Positive definite discrete energy without boundaries

Now we show that this energy is positive definite
2Ep = (B, B;) + (Dy;Ai, DijA;) — 2(Doi;, T) + o T2 (6.8)

We introduce X,
X = _Q(DOiAh F) (69)

Using the Cauchy-Schwarz inequality, we get
X > =2[|Dos Al []|T| (6.10)

and (D.17) gives
‘ X > —¢|| Do Ai| |2 — e H|T||2 (6.11)
Now, using Dof = 2(D4f + D_f),

1 1
||Dof||2 = ||§D+f+§D—f||2

1 1 '
< 5||D+fll2+5llD-f||2
= ||DsfIP, . (6.12)

using the triangle inequality and the fact that ||D,ul|| is equivalent to ||D_ul|

with no boundaries. Therefore
X > —€| Dy AP — T2 (6.13)

The derivative D ;A; is split into trace and tracefree parts

1 -
Sij = ||D+iAj|| = §5ij5kk + Sy (6.14)
Therefore ,
Si;SY = g(Skk)2 + §;;5% (6.15)
and
|DyiAsl| = Sk, (6.16)
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so that the full energy

Ep = (E;, Ei) + (DyiAj, Dy, As) — 2(Doi 4;, T) + o||IT|)* >
1 .
(B, Bi) + g(Skk)E + 5589 — e(Sp)? — e TP + o[ =
1 .
(Bi, Bi) + (5 - €)(sex)? + 55557 + (o — e HIT| P, (6.17)

which is positive definite for e < % and therefore o > 3. So, in summary, if we de-
fine the vector u = (E;, Dy;A;, ') then we have a conserved energy E constructed
of quadratic forms of (E;, D;;A;, Do;A;,T') with

E =0, (6.18)
such that .
E > K?||ul[® (6.19)
and therefore
E: > K|[E|| E*>K|DuA)ll B> K|D)| (6.20)

The solution ||u(t)|] is bounded by Ez /K, which is constant and so it can always

be bounded by the initial data, giving the stability estimate required

@I < Kxllw(O)]- (6.21)

6.1.3 Lower order terms

Now consider the lower order term A; that is missing from energy E. This must
be included to give a positive definite energy in all the evolution variables. By
simply adding an A? term to the energy with an arbitrary coefficient, the energy
will no longer be conserved but will be positive definite in all evolution variables.
That is

€l = EI2 + (D+iAj)2 — 2Dy AT + ol? + OzQA?. (6.22)
Let u = (E;, A;, D1;A;,T'). Therefore we have
Esn > Kol|ul)? (6.23)

but Eg, is not now conserved. However,

E full

VAN

—20&2 (Ai, EI)
(|| 4l + 11 *)

IN

IN

o|Jull*

o?K;'E. (6.24)

IN
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So, the increase in energy is bounded by the energy itself and hence
E(t) < e B(0), (6.25)

which is the stability estimate required.

@) < B < eY%2E(0)
< Ke” S ju(0)]], (6.26)
where K||u(0)|| = E(0). The efficiency of the estimate can be improved by

reducing the value of a.

6.1.4 Discrete energy with a boundary

Introducing a boundary requires using the MDBC; we consider the boundary at

j = N. The characteristic variables are

Uy = -0,A,.+tE,+T (6.27)
Usp = —-0,Ap £+ Ep, (6.28)
so recalling the technique used for the second order wave equation in Section 3.2.1,

we substitute the characteristic variables into the MDBC and make a second order

difference approximation for the first derivative

_ 1 ‘ .
DonAy = anAniﬂEn +T— f (6.29)
1 — K 1 — ks
1+ Ky
DonAp = 0, Ageit g, _IB (6.30)
1— &, 1— Ky
and hence write D, D_ as
2 2
D+D_ = E(Do - D_) == —]—‘L_(D—i— - Do) (631)
to obtain the semi-discrete ODE’s on the boundary
4, = —F; (6.32)
. . 2 2 1+ Ks fn
- T —nAn T |75 Ln— PR
E, hD +h[ 1_NSE P—|—1_KJ
—D,gD_gA,+D_,T (6.33)
- . 2 2 14 Ky fB
=~ 2D Ap+Z|—
Es h B+h[ 1—/£UEB+1—/£D]
—D,icD_cAg + Dyl (634)
I =0, (6.35)
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where we have taken a one-sided derivative for I' in the evolution equation for
E,. This is synonymous with second order extrapolation, i.e. setting the second

spatial derivative at the boundary to zero
'y —2Ig+T) =0. (6.36)

The boundary at j = 0 is calculated in a similar way

.9 2 1+ k, £,
E, = D, A, -2 E,—T+ -3
R h[l—/{s +1—ms]
—DysD_pAn+D_,T (6.37)
. . 2 2 11+ Ky fB
F = = R
B plende =y [1—mvEB+ 1—@}
~DicD_cAp + Dopl’ (6.38)

We now consider the energy including the boundary terms. For simplicity we
restrict ourselves to the half plane problem with a boundary at 5 = 0 so that

x > 0. The calculation works in the same way for a boundary at j = N.

The summation by parts rules will be used again but with boundary terms in-
cluded (see Appendix C). The bulk energy will be the same as above but the
scalar product will now be the sum over j = 1,2,.... Boundary terms at j = 0

can then be added in a consistent way. Hence the bulk energy density is
2B = (Ei, B) + (Dyj4;, Dy AY) — 2(Doi A, T) + o T2 (6.39)

We use summation by parts on the derivatives in the periodic directions (i.e. Dg)

in the same way as above so these terms will still vanish.

Ebulk = —(By, Dy ;D_;A)° + (EiDy,T') — (DyiA;Dyy, Ej) + (Do B, T)
= —(Dy;E;, D;A) + (BEiDy,I') — (D4 AjDyy, Ej) + (Do E;, T)
1 1
= hE!D, ,A? - 5E}lr° — 5E2P1, (6.40)

noting that the superscripts indicate the grid position.

The boundary terms that we will add onto the bulk energy will be those that have
the correct summation property when adding two touching boundaries together
from separate domains. The first term we add is 2E? as there will be a contri-
bution from each of the domain boundaries giving a total of hE?. The second

2(DipA;)* + h(DinA;)? because the transverse derivative will

term we add is
have a contribution from both boundaries whilst the normal derivative will only

have one contribution from the domain in which it lies. The last term we add is
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—~hDgAgl' — hD,,A,T". There will be a contribution to the transverse derivative
from both boundaries giving the correct coefficient of —2h but there will also be a
contribution to the normal derivative from the other boundary, where the bound-
ary term will be —hD_, A,T", which when added to —hD,, A, gives —2h Do, A T’
as D, +D_ = 2Dx.

h h

2Ebndi§Ef + 5(1)+BAJ-)2 4+ h(DinA;)? — hDogApl — hDn AT (6.41)

and therefore substituting in the boundary equations (6.37) and (6.38)

2 1 s n
(— tre En + I — f—) - D+BD—BAn +D+nF:\

1— Ky Ks

2
DA+

. . h
Ebnd — EEnlz A 77:

h 2 2 14+ Ky
+—EB _—D+nAB+‘— - tr EB - fB —D+BD_BAB+D+BF
2 h h 1 — &, 1 — Ky

h h h
—ED_*_BAJ'D_*_BEJ‘ - hD+nAJD+nEJ + EDOBEBFO + ‘2‘D+nE2FO

E™"(1+ ks) — fn) EB(1+k,) — fn

= —F, — Ep — B D A+ E, T
1 — ks 1— k&,
h h h h
~§EiD+BD_BAi + EEnDJrnI‘ + EEBDOBI‘ — —2—D+BAJ-D+BEJ-
h h
—hD, A;D B + ;)—DOBEBI‘ + §D+nEnI‘. (6.42)

Hence adding together equations (6.40) and (6.42) gives
B fn}

Ebulk + Ebnd = 1_ .

_ [1+/£(E?)2
1—x

1 AR YA
— _(1_’{9 {(1+m5)E2+7] +Z<1—m2>’ (6.43)

L)

which is non-increasing for f; = 0 as expected.

6.1.5 Positive definite discrete energy with a boundary

We now show that this energy is still positive definite. We recall that the energy
is
2Ep = (Ei, E;)+ (DyjA;, DijAi) — 2(DoiAs, T) + o [T

—hD AT + go(I‘O)Q. (6.44)

DypASD, gAY + hDnA)DnAS — hDop AT
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For simplicity, the energy is split into a component only involving normal deriva-
tives of A;

2By = (DinAi, Sinds) — 2(DonAn, T) + ay||T))?
+hD AD A — D AT + gal(FO)Z (6.45)
and a component involving the transverse derivatives of A; and the E; terms
2Er = (EyE;)+ (DypAj, DypA;) —2(DopAp,T) + ao| 1|
+gE?E? + gD+BAgD+BAg — hDop AGT? + gaz (T%)2%.  (6.46)
From equation (6.13)

~2(DopAg,T) > —er||DipAp|]> — |72 (6.47)

because there are still no boundaries in the transverse direction. Once again the

derivative D, pAc is split into trace and tracefree parts

Sne = ||DspAc|| = %6BCSDD + Sso, (6.48)
to give
(DipAc, DipAc) = SpeSPC = —;—S%D + SpcSBC (6.49)
and
1D+ 5 As|[* = S, (6.50)
so that

. 1 _
(DypAc,DipAc) — 2(DopAp,T) > SpcSae +(§ ~ er)SppSPP — |72

1
(= — er)(DipAc, DipAc) — e7'||T||%.

2
(6.51)

v

Also considering the boundary terms, the same technique can be used for the

associated terms giving

gD+BA°CD+BA°C — hDyp AR > (% - eT)gD+BA%D+BA% — exrh(I)2. (6.52)
Therefore
9Er > (B, E)+ (DipAn, DypAy)
+(5 — en)(DysAo, DisAc) + (o2 — e IITIP
+g E}E} + DypAyDipAy + (% —er)DypAeDypAG + (02 — e2')(I°)°
(6.53)
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and Er is positive definite for er < ; and therefore o, > 2.
2EN - (D+nAi, D+nA1) — 2(D0nAn, F) -+ O'1||FH2
h
+hDynAiDynA) — D, ASTO + 01 (192 (6.54)
Once again, the same process can be used, however this time the relation

IDofl| < 1D £, (6.55)

is invalid as there is no summation to infinity. However the relation

Do f1%° < [|D+fIIE, (6.56)
1s true as
ID_flI7° = || D+ F115° (6.57)

Therefore, by adding one of the boundary terms to a bulk term the same argument
holds

S (1D s Al + B(D 12 A2)?) = 2(Don A, T) + a1 [T
> (5~ ) (IDsn Al + A(D1n A2P) + (01 = TP (659
and
A (D42 — 2D 1) + 1 (T
> 50— ) (D) + (01 - )T (6:59
and therefore the normal part gives
2y 2 (5~ en)(IDsndal P+ (D12 A2) + (01 = T
20— ) (DinD)? + (o1 = ) (1%

1
+§||D+nAnH2 + (D-HIABa D+nAB) + hD+nA?BD+nA9B: (6-60)
which is positive definite for
1
5> ev=o1> 2 (6.61)

and

1>eg =0, > 1. (6.62)
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Finally putting all these sections together provides the inequality on the whole

energy

1
2E > (B, E)+ (DyA;,DyA)) — §(D+BACaD+BAC) —er(DypAc, DisAc)

1 1
—enl|Dindnll® + (01 + 02 — — — =) |IT|?
EN €r

h
+5 [EYEY + D ASD A + DinAND 4 AS
1
“‘(5 + 6T)D+BAOCD+BA% - (ZEN + EB)(D—I—TLA?L)Z
+(o2 + 01 — ez' — 5")(1°)?], (6.63)

which is positive definite for the conditions given above.

6.2 Constraint preserving boundary conditions

for the KWB system

Constraint preserving boundary conditions can be applied as described above.

The constraint system for KWB can be written in closed form as

C = (Crp)n+(Crp)e (6.64)
Crn = Chp, (6.65)

which (neglecting transverse derivatives) is just the first order in space wave equa-

tion and hence the characteristic variables are

Cy = Crn+C=03,(~38A;)+5E; (6.66)
C_. = Crnp—C =038, -84 - E; (6.67)

and therefore, writing in terms of characteristic variables

C, = 8iUpu (6.68)
C. = U (6.69)

and the constraint energy can be controlled by applying ‘homogeneous maximally

dissipative boundary conditions’ to Cy
Cy — kC_ =0, (6.70)
Substituting (6.68) and (6.69) into (6.70) gives
OnUy + 02U, 4 — ke(O,U_ + 0*U_4) = 0. (6.71)
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The evolution equations for the characteristic variables

atU+ - En,n - An,jj -+ F,n = (U—}-),n — An,BB (672)
atU+ = En,n + An,jj - F,n = —(U_>7n -+ An,BB (673)

can be used to give the form
AUy + kU_) = 02U, 4 + 604U 4 — (1 — k)04 04 An. (6.74)

A new variable X = U, + k.U_, which is defined only on the boundary, can be
used as the free data in the first of the three maximally dissipative boundary
conditions

Uy — kU_ = f, (6.75)

with ks = —k, and f = X. We use k, and «, as the coupling constants corre-
sponding to the first MDBC and the remaining two MDBC respectively. These
two remaining MDBC are used to give the evolution equation for X in terms
of transverse derivatives of the evolution variables (equation 6.76). X can be

specified in the initial data as X = U, — x;U_ and evolved using

X = _aB(_AB,n + EB) + l"{,caB(—AB’n — EB) _ (1 o K(:)aBaBAn
- /l-g__..&{ (anB - (1 -+ Kv>aBEB> — (1 + /ﬁc)aBEB — (1 - /ﬁc)aBaBAn
= 1+K)sanB~2MaBEB“(1+/$5>6B63An. - (676)
Ky — 1 Ky — 1

The standard second order accurate discretisation of X is

1 K
+K:SDOBfB_2 i’
Ky — 1 Ky — 1

X =

DOBEB - (1 + /$5>D+BD_BAH. (677)

6.3 The KWB system with shift

Taking the KWB evolution equations (5.35 - 5.37), we now make a Galilean trans-

formation to incorporate a shift into these evolution equations. We set

t =t (6.78)
= 7-p% (6.79)
and hence
0 G, 9
Y _ 9 _ g9 6.80
i~ & Por (6.80)
9 9
- = 81
ozt oz (6.61)



Therefore, the evolution equations become

A = P'OA — E; (6.82)
E; = [0,E;—&9;A; + T (6.83)
I' = g, (6.84)

where the dot now stands for the derivative with respect to t. We can let 8, =
0; — 5'0; to give,

oA = —E; (6.85)
&E; = —070;A;+ 6T (6.86)
&L = 0, (6.87)

where the constraints and the characteristic variables remain the same but where

the latter have different characteristic speeds. That is

0=Cg = Ei (6.88)
0= C]_" = ['— Aj,]', (689)
Us = —ApntE,+T (6.90)
Usp = —Apn+ Bg, (6.91)

with eigenvalues A = f”+1. The evolution equations of the characteristic variables

are

Us = (8" £ )Usp+ BAUs s F Anps. (6.92)

We restrict to || < 1. With ™ = 0, we have already seen that I" is a zero-
speed variable. I' will be incoming for f” > 0 and outgoing for " < 0, with
A = [. For completeness, the case where f§ = 1 will cause the usual incoming
characteristics to become zero speed and the case where |§| > 1 will ensure that
the seven characteristics have the same direction, however, we will not consider

these alternative situations.

6.3.1 Exact solution for the KWB system with shift

We now consider an exact solution for this system of equations. As we only have
a boundary in the z-direction, the wave vector in that direction £, will be bro-

ken down into components associated with ingoing, outgoing and ‘parallel to the
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boundary’ waves, kin, k_n and ko, respectively. Normally, we calculate w = |k;|?
from the specified wave vectors k;. However, in this case, we want to consider the
solutions with respect to the boundary and hence we fix the transverse wave vector,
ka4, and w, and calculate incoming, outgoing and parallel to the boundary wave
vectors, k4 and kg respectively. We introduce the shorthand v = expli(k Y4 —wt)]
and the solutions 9g = 1 expli(ko,X)] and 1 = 9 exp[i(ki,X)], which are the
parallel, ingoing and outgoing solutions, which we desire to satisfy the shifted

transport and wave equations respectively. Now

Botps = —i(w + B kan + Bk a)hs (6.93)

and hence we introduce the notation wy = w + B k4, + 62k, so that

801/):1: = —7:&):}:1/):}: and 831/):§: = —wiz/)i (694)

and
070,0ps = —(kak® + k3, )9+ (6.95)

So, to ensure that 1); satisfies the shifted wave equation

Ophs = 0;07s, (6.96)

we need

(W + Bkan + B4k 4)? = kak™ + k%, (6.97)

Rewriting this expression to give k4, in terms of w and /3%, we have

BMw+ BAka) _ [(w+ BAka)? — kakA(1 — B72)]3
1—pm ™ 1— g :

hiy = (6.98)

Note that because kin are complex, we ensure that the values of k4 and w that

we choose will give a real result. The parallel wave vector

Botho = 0, (6.99)
implies that
w+ Bk + ks =0 (6.100)
or
kon = ——Bl—n (w+B%a) - (6.101)

As ™ — 0, ko, would become undesirably large. If g™ = 0, kg, decouples from w

and k4, allowing any value to be taken.
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Considering the fact that 0pI" = 0, we set I' = ma)y and

A = gy + g-ip- + hitho, (6.102)

where g4;, h; are complex coefficients. Now
—00Ai = B = +g1iiwiby + g-itw_v_ — Goh; (6.103)

and hence, using o F; = —878; 4; + 6T,

ikai

hy = — 0
ko; K%

(6.104)

where ko; = (kon, k4) and similarly ky; = (k4n,k4), giving the full exact solution

in complex form

A = gty + 9o — ik kaimabo (6.105)
Ei = gy +iw-_g-ih- (6.106)
I' = m,. (6.107)

Now we let Re(g) = a, :Im(g9) = b, Re(m) = ¢, ilm(m) = d and take the real
part of the solution, using the notation cos axo = cos(ks o X + kaY? + wt) and
sin Ot 0= sin(kipo + kAYA + wt)

A; = ag;cosay +bysinay +a_jcosa_ +b_;sina_
— kg2 koid cos ayg + kg;2kigsc sin oy (6.108)
E;, = —wybcosay +wiaisino, —w_b_;cosa_ +w_a_;sina(6.109)
I' = ccosag+ dsin ag. (6.110)

If we now consider the constraint preserving boundary condition C, = 0, we can

see that the parameters ¢ and d are not specified by this boundary condition.

Cy

B Es + 0,(T — 6 Ay)

= Wi grikyihy +wog_ik_Y_ + imkoa o

= kinkyiguivy +k_nk_ig_iv_ — imkoatbo

= griksi(wr + kin)¥y + gk i(w- + k_p)y- = 0. (6.111)

The coefficients of ¢ and d cancel, meaning that the variable I" is independent of
this CPBC. Also note that the full CPBC

C. =xC_, (6.112)
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results in

1 — . .
“OE; + 0,0 — 0,0 4; = 0 (6.113)
1+k

and as ¢ and d only appear in the 2nd and 3rd terms they will still cancel. At the
boundary z = 0, ¥, = 1_ = 1)y and the CPBC holds for arbitrary ¥Y* and ¢, so

the 10’s can be cancelled to give

g+ik+i(w+ + k+n> + g_ik_i(w_ + k_n> = 0. (6114)

It is straightforward to translate this equation into conditions for the real and

imaginary parts of the coefficients g.;

(aynkin + aypkp)(wWy +kin) + (ank—p +a_pkp)(w_+k_n) = 0
_ (6.115)

(bynkin +0ypkp)(wy +kin) + (b_nk—n + b_pkp)(w_+k_,) = 0.
(6.116)

The simplest way to satisfy the constraints is therefore to set a ;k; = 0, a_;k; = 0,
b_H':ICi = 0 and b_ik)i =0.

The cancellation of ¢ and d also occurs for the non-standard boundary condition
Cp = I'— 6‘1Az
= mtpy — thyig4ithy — th_;g-b- — mihg =0 (6.117)

and again at the boundary, this reduces to

kiigei + k_ig_; =0 (6.118)

and hence
Qinkyn +aygks+a_nk_, +a_gkg = 0 (6.119)
b+nk+n + b+BkB +b_p,k_, +b_gkg = 0. (6120)

These conditions provide a simple way of showing that we cannot impose both
Cr = 0 and C, = 0. Consider substituting (6.118) into (6.114) to obtain

g_ik_i(w_ — Wy + k__n - k+n> = O, (6121)

which means that given two outgoing modes the remaining one can be calculated.
This gives an over-specification of the solution, as from two coefficients, all six
coefficients can be calculated, where there should be three degrees of freedom for

the three incoming modes.
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6.3.2 MDBC for the KWB system with shift

The natural discretisation of the evolution equations for the bulk is

A; = ['Dy;A; — E; (6.122)
E = B7Do;E; — D1;D_jA; + Doil (6.123)
I' = pBIDyT. (6.124)

The first step in discretising the boundaries is to apply maximally dissipative
boundary conditions to all the incoming modes. Assuming (™ is positive, these
will be Uy, Uyp and I' (if ™ was negative I' would be an outgoing variable).
MDBC work in exactly the same way as with zero shift; 4,, and Ap, can be
calculated analytically from the MDBC

Uy = kU_+ fa (6.125)
U_|_B = k,U_p+ f5, (6126)
giving
. 1+ Ks fn
' Ky — 1 + Kg — 1 + ( )
. 1+ Ky fB
Agn = E , 6.12
B, Ky — 1 5+ Ky — 1 (6.128)

which can be used as a second order approximation for Dy, A;. These will give
three boundary conditions, whereas there are four incoming modes. Hence we
need one more boundary condition and as the remaining incoming mode is I, it
makes sense to provide a boundary condition on this variable, which can be of the
same maximally dissipative form (there is no coupling constant because there is

no corresponding outgoing characteristic variable).
['=g. (6.129)

where g is the free incoming data. We calculate the first derivatives of E; by ex-
trapolation. The simplest method for coding purposes is to use the time derivative
of g, setting I'=¢. This leaves a spatial derivative of I" to be calculated as part of
the right-hand side for E,, however this can either be found through extrapolation
or an algebraic manipulation of I'=g=4'6,[". This then gives all the derivatives
required for the evolution equations. The discretisation of the evolution equations

at the boundaries is

b= e (TE D

ks — 1 Kg —

-+ r) + BCDoc A, — E,  (6.130)
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—(1+ Ky
Ap = ﬂ"( Sl )EB L )+50DOCAB—EB (6.131)
Ky — 1 Ky — 1
2 S 3
By = F'DpBn—2|-DyA,— 2 tp o I
h ks — 1 ke — 1
1
—DypD_pAn + ﬁ(g — 404T) (6.132)
- 2 v+ 1
By = B"D_nEp— [—D_nAB et lp L I8 }
Ky — 1 Ky — 1
—D+CD_CAB + Dggll’ (6133)
r = g (6.134)

We should also note that in the KWB formulation, I' decouples from the evolution
equations, satisfying a transport equation. Elsewhere, it only appears in the
evolution equation for F, and there it can simply be thought of as a forcing term
because F, does not couple back to the evolution of I'. Hence, whatever data is
given to the incoming I' will enter the grid, be transported along the grid and

then leave the grid, influencing the solution only through the evolution equation
for E,.

6.3.3 CPBC for the KWB system with shift

For the implementation of constraint preserving boundary conditions, we require
the evolution of the auxiliary variable X on the boundary. The calculation runs
through in a similar way as for the zero shift case; taking the standard homoge-

neous maximally dissipative condition on the characteristic constraint variables
Cy—kC_=0 (6.135)
and substituting in the definitions
Cy = 0,Us + 04Uy, (6.136)

gives
O,Uy + 08U, g — k. (0,U_ +0PU_p) = 0. (6.137)

The evolution equations for the characteristic variables

Us = (B £ )Usn+ BAUs 4 F An55, (6.138)
give, with x; = mcg:“j,
at (U+ - FJSU_) = _An,BB (1 + K,s) - (,Bn + 1)(U+B,B - K’CU—B,B)
+84U4 4 — ks BAU_ 4. (6.139)
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We let

X=U; —ksU_ (6.140)
and therefore
’ 1 v~ N c 1
X':ﬁAX)A-—An’BB 1+K3cﬁ; —(ﬁ—{-l)aB 2K: F EB+ F fB ,
g—1 Ky — 1 y — 1
(6.141)
where
U+B = KLUU_B + fB. (6142)

This means X can be used as the free data for the remaining MDBC

Uy = x,U- + f, (6.143)
with
f=X (6.144)
Note that the relation
1
o, = nc% (6.145)

means that there is a tighter restriction on k3.

6.3.4 The second order in space wave equation with shift

We want to be able to show well-posedness with MDBC and CPBC included and
we can try to use the same approach to find an energy estimate for KWB. First
we consider the shifted wave equation as a precursor to looking at an adapted
energy and characteristic variables for KWB. First we outline the problem with

non-zero shift for the wave equation.

Consider the standard characteristic variables for the wave equation

Uy = m+0,9¢ (6.146)

Usg = 040 (6.147)
and the standard energy

€ =1+ 0,40"9, (6.148)

which can be written in terms of characteristic variables as

€ =

(U2 + U%) + U U, (6.149)

(NN
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with the flux
F* = 270'¢ (6.150)

which in the direction n; and written in terms of characteristic variables is
1
Fr = i(Ui - U?), (6.151)

so the usual method can be used to write the integral of the energy density as
a divergence of the flux which can be made non-positive or bounded by using
the homogeneous or inhomogeneous MDBC respectively. Now by considering a
non-zero shift, each term will obtain an extra divergence because the energy is

quadratic in the variables, so for each term Y,
Y = f'8;Y + original terms, (6.152)

meaning that the characteristic variables will be the same but with different speeds

and the flux will become
1
Fm = 5(0;% —U?) + B . (6.153)

Now, using the MDBC as above, the first term will be controlled but there is no
guarantee that the second term will be controlled unless " is negative. If this
is the case, as the energy € is positive definite, the whole expression will still be
bounded. However, with §" > 0, the second term cannot be bounded using the
same MDBC and a change has to be made to these boundary conditions. It is
important to note that Uy is no longer implicitly a zero-speed variable, meaning
that it may need a boundary condition imposed upon it. However, if we consider

the evolution equation of this characteristic variable

Uy = 04
= 04(670;¢ + 1)
= ["040n¢ + 704056 + 047
- %aﬁ"@A(QL C U )+ (1= a)B"0uUn + BP040nd + %8A(U+ LU,

(6.154)

where a parameterizes the two different ways of writing the mixed derivative of
¢, then setting ¢ = 1 retains the zero-speed status and therefore Uy needs no

additional boundary condition.

It remains to consider the problem of the uncontrolled flux
1
Fr = i(Ui — U?) + " (6.155)
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This can be dealt with by introducing an extra term and arbitrary vector field &

into the energy itself, i.e.
€ =72 + 0'¢0;¢ + 2mb ;. (6.156)

Here we have simply added a term that is conserved when considering an infinite
domain. Interestingly however, this term can be derived by making a first order
reduction of the system, where the vector field 5* would be a field parametrising
the addition of the constraint d;; —d;; to the evolution equation of A;. This would
therefore become incorporated into the general conserved energy. When trans-
lating back to second order in space form, b* would disappear from the evolution

equation but would remain in the energy, matching the term in expression (6.156).

With the usual characteristic variables, we cannot construct this adapted energy

in a simple way. Notice that

%(Ui +U?) = 1% + (0,6)* (6.157)
and
—;—bn(Ui —~U?) = 27b, 0,9,  (6.158)
so we are left needing
(049)* + 2707040, (6.159)

which would require terms combining Uy and Uy, terms that would be very dif-
ficult to bound. The obvious solution is to adapt the characteristic variables by
adding multiples of the transverse derivatives so that the energy can be written

in a simpler form. Therefore let

Uy = ﬂi@nqﬂ—miUA. (6160)

Note that it was shown above that U, was a zero-speed characteristic variable
and it can therefore be added to U without changing the character of Us. So

now

%[(1 + B)U2 4+ (1 = Bo)U2] = 72+ (0,9)° + 27by0ndb + %(aAcé)Q(mi(l + by)
+m2 (1 — b)) + 7048[my(1+by) + m_(1 — by)]
+an¢aA¢[m+(1 + bn) - m—(l - bn)]u (6161)

which means that we need my to satisfy

S(ma(14+8) —m_(1-8,) = 0 (616
%(m+(1+bn)+m_(1—bn)) = (6.163)
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for which the solution is

bA
Mi =T (6.164)
and hence
- pA
Uy =m+0,¢+ T3 Ug. (6.165)
Now
1 ~ - ) pA 2
Sl +B)UL + (1= Bo)UZ] = 7"+ (009)" + 27'0i + ( - szg .
(6.166)
Therefore
1 2 =9 py  b40°
¢ = SIA+8)UL + (1 - B)UZ] + ('y“ -7 b%) UaUp.  (6.167)

The adapted characteristic variables change the time derivative of Uy to

- ~ = 1, = = bP
UA = ,BnaA(U—f- - U—) + ,BBaBUA + 58A(U+ + U_) - maAUB (6168)

and the derivatives of the characteristic variables themselves are

bA . bAU, \ 2
1jEbna,fquE— <1ibn> . (6.169)

Now, we calculate the flux in terms of characteristic variables. The energy is

U, = B6.0. + 0.0 +0%U5 +

e = w4090+ 2mb 0,0, , (6.170)
so the time derivative is

¢ = Blei+2mp;+ 27 + 26 5000, + 2mbin
= Be;i+2(mdy)+260(8,;6,); — V()% + 0 (n7)
= [Fe+2mg;+ 20,0, - Vo' + ], (6.171)

which is a total divergence and hence we give the normal flux, where we now set
b* = 0. Note that with b* =0, Uy = U so we will drop the tilde.

F* = fle+2m™ + b 1° + 20°¢ "9, — b ¢ 9"
= B+ %(Ui ~U?) + %b”(Ui +U?) =" U U4
1
= S+~ U2 — (1 — M (1 = bMU2 + (8™ — ™) U U
(6.172)
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Now if we set ™ = 7, then

F" = %(1 + MU — %(1 — MU, (6.173)
So, applying the standard MDBC
Uy, =rU_+ f, (6.174)
we obtain
F" = %(1 + f™)? {(,8 - (1 :r g:)z)UE +2kU_f + f2] . (6.175)
So F™ is bounded if
k| < (;g:) . (6.176)

Also note that with ¥* = 0 and 6" = " it is clear that the energy is positive
definite

¢ = %[(1 L AU 4 (1— U2, (6.177)

6.3.5 Constructing an energy for the KWB system with
shift

When " < 0 we consider the energy
e=E} + Al — 2A;;,T + ol?, (6.178)
which we know can be controlled with MDBC without a shift. The flux will be
F" =B+ U2, — U, | (6.179)

Uf_i — U2, is bounded due to MDBC and S"¢ is negative by assumption, so the

energy is bounded as required.

With ™ > 0, " becomes an incoming characteristic variable with the evolution
equation
I'= 4T (6.180)

Unfortunately, the same technique that worked for the shifted wave equation does

not work for KWB. We introduce an additional term into the energy as before

€ = _Ez2 + Aij — 2A1-1J‘ + O’Fz - 2biEjAj’1‘ -+ 2b1E11"‘, (6181)
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so that with b* = 0 we have a positive definite energy

1

and we take the time derivative to give

¢ = Pe;+2B(—Aiy +T) — 24;,E;; +2E;;T
+2b" [E;E;s — 24A;(—Ajpx + T ) + 20 (= A; 5 + T)]
= |Ble—2EA;;+2E,T + VB2 + WT? + 2b' Ay Av; — 1 AL,
—2b° Ay T + 26 Ay T — 26°A; ;T — 267 A; T + 26°A; ;T 5, (6.183)

i
so we have
¢ =0;F? + s, (6.184)
where, with % =0,

8§ = —2biAj’jP’i + 2biAi’jP,j (6185)

and

F" = fB'¢—2E;A;, +2E, T +b"[EZ +T? + Af L — Ab g — 24,7 + 245 5T,
(6.186)

So, again setting ™ = b", we would have

o= 5 (510 B0+ (L= MU+ ALy — 245,57 + (0 — 1T?)

2
1 1
+§(U—2H - UZ)+p" (i(Uiz +UZ) — Alp + 2AB,BF)
1
= 5 (+FPU% =~ (1= F)°U2) + f (0 — )T, (6.187)

which would be bounded by MDBC (including setting I' = g where g is free data).
However, we cannot avoid the fact that we have the source terms
s = —2bnAB,BP,n -+ 2bnAn,BP,B~ (6188)

Hence it does not seem that we will be able to analytically bound the energy in

this way.

We will instead look at how KWB performs empirically with MDBC.



6.4 KWB numerical results

w

6.4.1 KWB experimental setup

We are using the Cactus architecture for experimentation on KWB and Z1.
Cactus is an “open source problem solving environment designed for scientists
and engineers”,[16] which provides standard code such as grid construction, in-
put/output routines and time-integrators for which we have written independent
KWB and Z1 routines. We perform 1D and 2D tests, where the grid is 3D but
the number of gridpoints in the transverse directions is reduced to a minimum.
That is, for 1D tests the y and z directions are suppressed whilst for 2D tests just
the z direction is suppressed. The number of points in the x direction is 20, 40,
80, 160 for the four resolutions used in these tests, doubling each time to allow
simple calculation of convergence. We always use periodic boundary conditions

in the y and z directions and —0.5 < z < 0.5 for all resolutions.

6.4.2 Stability tests

We need to test stability of the evolution code and the boundary code. The
tests of the evolution code were made using periodic boundary conditions in all
directions. We consider the relative.energy, which is the energy at time ¢ divided
by the energy of the initial data. Figure 6.1 shows the relative energy with periodic
boundary conditions and varying Courant factor A, which is equal to the timestep

divided by the spatial step, A = dt/h. The discrete energy used
2Ep = ||Bi|* + [| Dy AP — 2(Do;A;, T) + 012, (6.189)

should be conserved. Some dissipation of the numerical solution can be seen in
the figure, caused by the time integrator. However, the dissipation rate is less as
the Courant factor is decreased whilst keeping the spatial resolution fixed. The
limit of this behaviour as the Courant factor tends to zero is the semidiscrete
result, i.e. a conserved energy. The effect of the spatial differencing can be seen
in figure 6.2. }Again, there is less dissipation as the spatial resolution increases.
tending toward a constant relative energy. In comparison, consider the altered
lonorm ||u|| where ||u||> = E? + A2 +T?+ (D,jA;)% Figure 6.3 shows that ||u/|

is not conserved but can be bounded as
u(t)]] < K||u(0)]| (6.190)
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Figure 6.1: Relative energy with periodic boundary conditions and periodic initial

data with various Courant factors.
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Figure 6.2: Relative energy with periodic boundary conditions and periodic initial

data at various spatial resolutions.
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Figure 6.3: ||u(t)||/||u(0)|| with periodic boundary conditions and periodic initial
data.
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Figure 6.4: ||u(t)||/||u(0)|| with maximally dissipative boundary conditions and

noise initial data at various spatial resolutions.
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Figure 6.5: Relative conserved energy with maximally dissipative boundary con-

ditions and noise initial data at various spatial resolutions.

with K ~ 1.006. The same tests can be done with maximally dissipative boundary
conditions imposed. In addition, arbitrary free data can be used at the boundaries.
We test the stability of the code with artificial boundaries by (i) setting the free
data at the boundaries to zero and using random noise initial data and (ii) by
using zero initial data and non-zero free boundary data; in this case the free
boundary data will be set to one and then turned off at a certain time, which we

will call ‘top hat’ boundary data.

The same tests were done with the MDBC coupling constants set to 0 and to —1.

The two figures 6.4 and 6.5 show that ||u|| and the energy are non-increasing when
random noise is used as initial data. This is to be expected as the analytical time
derivative of the energy is non-positive.  Here there is a qualitative difference

between ||u|| and the energy. For strong stability, the following estimate must

~J
=~
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Figure 6.6: ||u|| with maximally dissipative boundary conditions and zero initial
data at various spatial resolutions with ‘top hat’ free boundary data. f, = 1 until

t = 3.5. MDBC coupling constants set to -1.
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Figure 6.7: Energy with maximally dissipative boundary conditions and zero ini-
tial data at various spatial resolutions with ‘top hat’ free boundary data. f, =1

until £ = 3.5. MDBC coupling constants set to -1.
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Figure 6.8: ||u|| with maximally dissipative boundary conditions and zero initial
data at various spatial resolutions with ‘top hat’ free boundary data. f, = 1 until
= 3.5. MDBC coupling constants set to 0.

hold:[7]

@I < K@) (Il + max (AP + o). (6.191)
With the initial data zero, this implies that the solution must satisfy

lo(®)1]; < K (2) ([fo()* + £ (T)*) (6.192)

max
to<7T<t
and as the maximum value of the free boundary data is in this case 1, this means

the solution must be bounded by the function K(¢), which must be a bounded

function in any finite time interval.

The energy in figure 6.7 increases while the free data is equal to one. It then in-
creases faster when the information has been able to cross to the opposite bound-
ary and back. At ¢ = 3.5 the free data is turned off and hence the energy again
becomes conserved. With ||u||, figure 6.6, the amplitude keeps increasing even
when the free data has been turned off. This is due to a gradual increase in A;, a

term that is present in ||u|| but not present in E.

Considering the case with MDBC coupling constants set to zero, the situation
is clearer. Figures 6.8 and 6.9 show that the respective norms increase as free
data is added at one boundary. After ¢ = 1 the free data input has propagated
to the opposite boundary where it will flow out of the system. At that point the
norm levels out because the injection of energy equals the loss at the opposite
boundary. At t = 3.5, the injection of data ceases and at ¢ = 4.5, the data has
left the domain.
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Figure 6.9: Energy with maximally dissipative boundary conditions and zero ini-
tial data at various spatial resolutions with ‘top hat’ free boundary data. f, =1
until ¢ = 3.5. MDBC coupling constants set to 0.

It is noteworthy that when using the periodic exact solution given above, if the
only non-zero wavenumber is k,, then k, = w and to satisfy the constraints, ag
must be zero. Therefore, with the coupling constant x; set to zero, the free data
satisfies
f:U+ = —An7n+En+F
: ; k2 .,
= —azk;(sinwt + coswt) cos(k*z;) + w—z sin(k"z;)
+azw(sin wt — cos wt) sin(k'z;) — sin(k'z;)

= 0. (6.193)

Therefore, with this exact solution it will be necessary to work in 2D to give a

non-zero value of f.

6.4.3 Convergence testing

The convergence plots (6.10 - 6.15) show convergence in 1D and 2D for periodic
boundary conditions, MDBC and CPBC. All the errors are scaled by the expected
second order convergence factor so that perfect convergence would have all curves
coincident. The only subtlety here is in figure 6.15, where the errors do not
decrease quite enough as the resolution increases. However, this problem also
disappears as the resolution increases and is a consequence of constraint violations

being expelled from the grid.

Considering the case with non-zero shift, figure 6.16 shows that we still retain

convergence, even using CPBC. Note that we can still compare to the exact so-
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Figure 6.12: lonorm of the errors with constraint preserving boundary conditions
in 1D.
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Figure 6.14: l;norm of the errors with maximally dissipative boundary conditions
in 2D.

Cornvergence

L2 norm of Errors.

05

Figure 6.15: lonorm of the errors with constraint preserving boundary conditions
in 2D.
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Figure 6.16: [ynorm of the errors with constraint preserving boundary conditions

in 2D with non-zero shift and exact data for incoming I".
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Figure 6.17: Relative Energy with constraint preserving boundary conditions in

2D with non-zero shift and exact data for incoming I".

lution because there was no initial constraint violation. The shift in the normal
and transverse directions have been set to positive non-zero values, so that there
are still the same number of incoming and outgoing characteristics except for the
additional I (which was previously a zero-speed characteristic) for which exact
data is given at the incoming boundary. The scaled errors again do not quite
match up but as resolution increases this misalignment improves. In figure 6.17

the relative energy clearly tends toward unity as the resolution increases.

We return to 1D to consider the introduction of an initial constraint violation in
the initial data. Figure 6.18 shows second order self-convergence in the situation
without any constraint violation. With the presence of initial constraint violation,
figure 6.19 shows that there is a drop of convergence as a reaction between the
initial constraint violation and the left boundary as the violation propagates out

of the grid. As soon as this initial feature has left the grid we regain second order
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Chapter 7

The Z1 System

7.1 Energy without boundaries

By using general quadratic forms of the evolution variables and the relationship
¢ =0'F; + s, (7.1)
we can give a general form for the energy density, flux and source terms [14]

€ = CO[E? + A?,j — 2Aj)j(Z + Az,z)]

+c1(Z + Aiy)?
+ea( A7 — AiiAa), (7.2)
F, = 2¢|—A;;E; + E(Z + Aj;)]
+20y(Ai By — A B, (7.3)
s = 2xZ[(co —2¢1)Ai; — 21 2], (7.4)

where c¢g, ¢; and ¢y are arbitrary constants. If we define ¢ = ¢o/cq, the energy is
positive definite for

C1 3
— > .
Co 1+ 2¢

1
co >0, —5<c< 1, (7.5)

This means that with no boundaries (periodic boundary conditions) and the

damping parameter x equal to zero, we have a conserved energy at the continuum.
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Figure 7.1: Relative energy E(t)/E(0) for increasing resolution using the solution
Ay = (=1)* and E; = (—~1)"*! and no dissipation.

7.2 Discretisation of the Z1 system

Above we showed that, at the continuum level, there is a conserved energy up
to boundary flux. Restricting our consideration to the case of no boundaries,
we can attempt to find the corresponding discrete conserved energy. Considering
the standard discretisation of the evolution equations, we have the exact solution
An = (1), E, = (—1)"*! with all other variables zero. The continuum energy
density

e=E + A}, — 24;,I' + oT?, (7.6)

has two basic choices for the discretisation of the continuum term A (1) DyjAi
and (ii) DgjA;. For case (i) and the exact solution given above, the ratio of energy

density at time ¢ and initial time is

2

% =144 (7.7)
and so the relative energy density can be made arbitrarily large by increasing the
resolution. The scheme is therefore unstable with respect to this energy. Test-
ing this exact solution with periodic boundaries clearly shows the greater energy
growth as the resolution is increased (figure 7.1). To preverit this instability, we
can introduce some artificial dissipation into the evolution equations for all vari-
ables, i.e. terms of the form —oyh®(D,D_)% At the limit of resolution this term
will disappear due to the h®, however it will damp out the highest frequency modes

therefore preventing the exact solution above from causing an instability.

Figures 7.2 - 7.4 show that as the value of the dissipation parameter increases, the

energy of the solution is more quickly damped. This is to be expected because
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Figure 7.2: Relative energy E(t)/E(0) for increasing resolution using the solution
A; = (-1)% and B), = (—1)"*! and dissipation oy = 0.0001.
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Figure 7.3: Relative energy E(t)/E(0) for increasing resolution using the solution
A; = (1) and B, = (—1)**! and dissipation oy = 0.001.

artificial dissipation damps high frequency modes and our initial data in this case
is constructed of the highest frequency mode. After a particular time in each
figure (a shorter time as oy increases), the relative energy is lower as resolution
increases, showing that the scheme is no longer unstable. Since a larger value of
oqg means that the high frequency modes will be damped more quickly, we want
og4 as large as possible; however, there is an upper limit on the value of o4 that
is useful because too much dissipation can make the scheme unstable (see figure
7.5 with o4 = 0.35). In conclusion, a reasonable value of dissipation to use is
oq = 0.025 as this value is high enough to quickly dissipate any high frequency
modes that have been excited whilst still being well below the value that makes

the scheme unstable. This value will be used for the further work on 7Z1.

Note that the artificial dissipation introduced is equivalent to treating the two

derivatives of 879;A; and 8?8;A; with different discretisations when ¢ = j, whereas
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Figure 7.4: Relative energy E(t)/E(0) for increasing resolution using the solution
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Figure 7.5: Relative energy E(t)/E(0) for increasing resolution using the solution
A, = (=1)t and By = (—1)*! and dissipation o4 = 0.35.
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at the continuum these derivatives would always cancel.

For case (ii) and the exact solution A; = (—1)¢ with all other variables zero, the
energy density is not positive definite and does not ‘see’ this highest frequency

solution.

To use summation by parts to get a conserved energy, the approximation for the
second spatial derivative of A; in the evolution equations of E; must match that

of the approximation of 8;4; in the energy. For example

€ = Ezz + (D()Jx4z)2 — 2D01AZP + O’Pz E‘z = _ngAz + DO]DOzA] + DOiZ7 v
(7.8)

where D D_ in the evolution equations matches to Dy or D_ in the energy, and

¢ = E} + (D1;A:)? — 2D AT + oT? E;=—D,;D_;jA; + Do;Do; A; + Do Z,
(7.9)

where D2 matches to Dy in the energy. This can be seen by using the summation
by parts equations found in Appendix C. Hence we are very limited in the choice

of discretisations if we wish to use this property.

7.3 Discrete boundaries for the Z1 system

We want to prescribe consistent, stable discrete boundary conditions to the 71
system in a methodical way that can then be generalised to other systems. For
the continuum, an energy was introduced in terms of characteristic variables.
The energy was shown to be conserved for periodic boundary conditions bounded
for maximally dissipative boundary conditions. We now want to discretise the
boundary conditions and find a way to evolve all the evolution variables on the
boundary. In an attempt to make our techniques methodical we will break the
evolution equations into parts so we can use standard techniques and then combine

these techniques to give a full prescription for the system.

7.3.1 Decomposition of the Z1 system into wave equations

Recalling the derivation of the characteristic variables for the Z1 system, we again

consider only the derivatives in the direction n; but here we take this direction
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to be normal to the boundary, in the z direction. An energy can be bounded by
applying maximally dissipative boundary conditions to the incoming characteristic
variables. These MDBC will be used to inject information into the grid through
normal derivatives. Because we know how to deal with transverse derivatives at
the boundary, we will neglect these, which allows us to decompose the Z1 system
of equations into groups of equations that behave as a first order wave equation
(7.10 - 7.11) and a second order wave equation (7.12 - 7.13):

E, = Z, (7.10)
Z = Enn (7.11)
Eg = —Apnn (7.12)
~Ap = Ejz. (7.13)

So, first we consider maximally dissipative boundary conditions with the first
order wave equation. The second order wave equation has been covered above in
Section 3.2.1.

7.3.2 The first order in space wave equation

The first order wave equation in one dimension can be written

$ == (7.14)

= 9 (7.15)

p = 7, (7.16)

however like A; = —F;, ¢ can be evolved directly on the boundary so we can

ignore (7.14). We discretise in the natural way with the D, difference operator.

;. = Doy (7.17)

Y; = Dom. (7.18)
The characteristic variables are

Up =m 1, (7.19)
with evolution equations

Uy = +U.,. (7.20)
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We split the problem into the outgoing and incoming characteristics. Considering

the incoming characteristic using simplified MDBC with k = 0,
U,=f. (7.21)

Let E be the Ly, norm of U, on the boundary

N

E = ||Uy|? :/ UZdz. (7.22)
Now the time derivative:

. N .

E = 2 / U, U, dz (7.23)
N

— 2/ U, (U,)dz (7.24)
= (UM =f2 (7.25)

substituting for U, using (7.21).

Now we look at the discretisation of the continuum energy, taking the scalar
product asasumover j =N -1, N—2, N -3, ..

h

W = AUl + S (U, (7.26)

where the factor of a half comes from the fact that the energy must be consistent

when joining two domains together.

The time derivative of the energy is

W = 2h(Uy, DoUy) + hUNUY (7.27)
= UNUNt Ul oy (7.28)
= fUY M +hRfUY, (7.29)

using summation by parts again and substituting U f = f.

We want the time derivative of the discrete energy (7.29) to be equal to the time

derivative of the continuum energy (7.25) and so we set
FUNL L hfUY = f2, (7.30)
which can be rearranged to give

. 1
U = +(f = UF™). (7.31)
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This is a nice expression as it can be written as a one-sided derivative plus a

penalty term:
. 1 1
Uf = =(f = UL+ UL = UF) = DU + +(f = UT). (7.32)

Penalty terms act like constraints and can be added to evolution equations with

the correct sign to force the solution toward the ‘constraint surface’.
Now considering the outgoing characteristic variable, we let E = ||U_||> and hence
E=—(UMN72 (7.33)

To attain consistency we need the discrete energy, to be equivalent to the contin-

uum, which means

—(UM? = —uNUNt UM UN (7.34)
and hence

. 1

UN = E(Uiv"l - UMy=-D_U". (7.35)

Rewriting 7V and ¥” in terms of the ingoing and outgoing characteristic variables
and substituting in equations (7.32) and (7.35) then gives the full system in terms

of evolution variables:
m; = Dot

) 1> 0
v = Dy
WY = (OO (7.36)
= (DO + +(f ~ (W)") - D)) (7.37)
= D+ o (f - - ) (7.39)
P = S0 -T) (7.39)
= (DU + +(f — W) + D)) (7.40)
= D_7V+ ;—h(f—er—d;N). (7.41)

This derivation is done as an example of a prescription for the boundaries that we
will use. The more general cases for the boundary prescriptions we will implement
will be of two forms. For type-1, we will set the penalty term for outgoing variables

to zero and add a parameter 7 to the penalty term for incoming variables

UN =D_UY - %P (7.42)
U¥N =—-D_U¥, (7.43)
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where

P=UN-xUY-§) (7.44)
and
UN =+D_UY —7Q (7.45)
UY¥ = -p_U", (7.46)
where
Q= (D_UYN +xkD_UY - f). (7.47)

The prescription derived above matches to (7.42) with 7 = 1 and k = 0. These two
general prescriptions (7.42) and (7.45) will be called P-class and Q-class respec-
tively. Written in this form, it can be seen that they are constructed of one-sided
derivatives and penalty terms at the boundary, where the penalty terms are pro-
portional to the maximally dissipative boundary condition for the P-class and the

time derivative of this condition for the Q-class.

Type-2 boundaries will be constructed to put a bound on the energy. This is done

by considering the standard discrete energy
B = iU + U1 + 5 () + U2)?), (7.48)
which we differentiate to give
E= UM~ (U"? - hUF¥DLUY —UYD, UM + R(UNUY + UNUY). (7.49)
Substituting in (7.42) gives
E=UM? - (UM?+[nUY + nUN|P, (7.50)
whilst substituting in (7.45) gives
E = UM? - (UM? + h[nUY + nUY]Q. (7.51)

We can bound the energy by ensuring that the term in square brackets multiplied

by the penalty term is a non-positive square. Therefore, we set

T

= — 7.52
n 1+ x? (7.52)
and
KT
= — 7.53
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where 7 is a positive constant. This gives evolution equations for the characteristic

variables
N N T
Ul = DU — 2 (7.54)
vY = —p.u¥N4+ - p 7.
A U+ 0 (7.55)
and the time derivative of the energy
. __ (T7N\2 Ny2 T N N
e=(Uy)" = (UD)" - H—KQ(UJF — &UZ)P, (7.56)

which is non-positive for f = 0. With f # 0, the energy will be bounded by a
function of f.

For Q-class, the process is very similar. With the same definitions of 7, and 7,

we obtain evolution equations for the characteristic variables

. ht
N _ N
Uy = D_U - T an (7.57)
. hxT
u¥ = -p_UY 7.
A Ul + =59 (7.58)
and the time derivative of the energy
(U N T g 7.59
e= (UF) - UV - ST Y - e, (7.59

which is again non-positive for f = 0.

7.3.3 Numerical results for the first order wave equation

First considering the P1 prescription, a negative value of 7 gives the wrong sign
for the penalty term. For example, an increase in U, would result in an increase
of U+ rather than the required decrease. The numerical results verify this by
showing a blow-up of the norm. For 0 < 7 < 1, second order convergence is lost
at late times, shown in figure 7.6.* This situation improves when 7 > 1, shown in
figure 7.7. As the value of 7 becomes larger, the Courant factor has to be reduced

to retain stability.

For P2, 7 must be positive. For x = 0 this reduces down to the P1 form but
for all k the same kind of instability occurs as for P1 as 7 increases; the Courant
factor has to be decreased as 7 grows to much greater than 1. Until this point is

reached, the solution is second order convergent, for example figure 7.8. For Q1,

INote the parameter a on some figures satisfies a = —1

ZT
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Figure 7.6: lynorm for coarse resolution and fine resolution, with fine norm scaled

by four to show loss of second order convergence: P1 7 = 0.2.
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Figure 7.7: lynorm for coarse resolution and fine resolution, with fine norm scaled

by four to show second order convergence: P1 7 = 1.4.
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Figure 7.8: lonorm for coarse resolution and fine resolution, with fine norm scaled

by four to show second order convergence: P2 7 = 0.5.



Second Order Wave Equation with Maximally Dissipative Boundary Condition
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Figure 7.9: lonorm of the error in m and D, ¢ at coarse and fine resolution for
the second order wave equation using maximally dissipative boundary conditions.

Norm of fine resolution is scaled to show second order convergence.

T must again be positive, but the only value that gives second order convergence

is 7 = 1. Q2 is also second order convergent for 7 = 1.

There seems little difference between the different prescriptions here, however it is
important to note that Q-type only allows 7 = 1. P2 and Q2 seem to be preferable

conceptually because the inherent bound on the energy may prove to be useful.

7.3.4 The second order in space wave equation

We implemented the second order wave equation with maximally dissipative
boundary conditions using the prescription given in Section 3.2.1 and obtained
second order convergence. In figure 7.9 we show the norm of the error in 7 and
D, ¢ with the norm scaled by a factor of 4 to show second order convergence. We
have automatic second order convergence for all cases except when the coupling
constant x of the maximally dissipative boundary conditions is positive, in which
case we have to decrease the time step as the magnitude of « increases; for exam-
ple, with a Courant factor of 0.25, x = 0.5 gives an instability. We believe this
instability is related to the integration over the time step, however we will initially

be concentrating on the case where x = 0, so this will not cause a problem.
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7.4 Semi-discrete boundary conditions for the

Z1 system

The next step is to put together the methods for finding boundary conditions
for the first order wave equation and the second order wave equation to form a
consistent, stable boundary prescription for the Z1 system. It would seem that
there are enough conditions to evolve all the variables on the boundaries - four
using the second order technique and two using the first order technique plus
the additional evolution equations for A; that requires no derivatives. When
the shift is non-zero, exact data will be given to A; at one boundary and the
remaining ghost points will be populated using extrapolation. Here we use the

coding notation of subscript 1 representing n.

We showed in Section 7.2 that the Z1 evolution code could be made stable with
the use of a small amount of artificial dissipation. Now we show the results with

boundaries added.

We are using the second-order wave equation prescription for the variables A, and
Asz. By setting A;, F7 and Z to zero in the initial data, the solution was shown
to be second order convergent in these variables. With no shift, we use extrap-
olation for A;. However, with shift, we can specify Ay, by using the incoming
characteristic variable Uy = Z + A;; and hence we can populate the ghost point
for A;. We use the first order wave equation method for F; and Z. All remaining
ghost points are populated with extrapolation. Recall the boundary conditions

used for the first order wave equation, here given at the boundary 7 = NV:

U. = DU, —71Y (7.60)
U. = -D_U_, (7.61)
for P1 and Q1 and
U, = DU, — — (7.62)
A S '
. TK
_ = —-D_U_ Y, 7.63
U D_U At (7.63)

for P2 and Q2, where Y is the penalty term P or AQ from Section 7.3.2.

Considering P1 with ™ # 0 but the transverse shifts set to zero for simplicity,
the penalty term is still
P = U+ —rkU_ — f (764)
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and the evolution equations of the characteristic variables

Uy=Z+E,, (7.65)
are
Uy = (8" +1)D_Us +DopEs — D-pDssAn + DosAnp — 1P (766)
U. = (8" ~1)D_,U_+ DopEs + D_pDypAn — DopApn (7.67)

and hence for the evolution variables

Z = B*D_pZ -+ D_nEn+ DopEp — ;—hP (7.68)
B, = B"D_nBn+D_nZ —DipD_pAn+ Dop(Ap,) — ip (7.69)

This will be exactly the same for the Q1 boundary condition, with

Q = (ﬁn + 1)D_nU+ - fi(ﬁn - 1)D_TLU_ - f + (1 - "Q)DOBEB
+(1 + fi) (DOBAB,n - -D—B-D+BATL)' (770)
For the P2 and Q2 specifications, the equations can be considered in much the

same way as above, the only difference being a change of the coefficients so that

they incorporate k terms, i.e. for P2, we have

. ‘ P
U = (B"+1)D_Uy +DogEpg — D_pgDigAn+ DopApn — T -
1+k%h
(7.71)
o n kr P
U_ == (ﬁ _1)D—nU—+DOBEB+D—BD+BATL_DOBAB,TL_*_i_
1+k%2h
(7.72)
and
7 = B"D_,Z + D En+ DopEp+ 2 (7.73)
- —-n —ntin 0BLB oh 1 n 2 .
: n T k+1
E., = B"E_,E,+D_nZ—D,pD_gA,+ Dop(Apn) — T P.(7.74)

7.5 Numerical results for the Z1 system with
boundaries

Beginning with P1, we populate the ghost point for E, and Z by assuming that a

second order accurate centred derivative approximation for the derivative is equal
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to the one-sided derivative and penalty term from the evolution equation.

T

B"DyZ + DoynE, = B"D_,Z+ D_,E, — %P (7.75)
B"DonEn + DonZ = B"D_pEn+D_.7 — ;—hP (7.76)
and hence by rearranging these expressions, the result is
TP
E, = 2Eun) — En(v_1) — 7.77
(N+1) (™) (V-1 T gy (7.77)
TP
Ln = 22Ny — Dp(N—-1) — i 7.78
(V+1) (V) = Zn(-1) T iy (7.78)

Q1 will be similar, however there will be no division by A in the evolution equations

S0
ht@
EBynyy = 2Epvy — Env-1) — Bt 1 (7.79)
ht
ZnN+1) = 2Zn(N)y — Ln(N-1) — Bn fl' (7.80)

When considering the P2 case, there will be some additional terms in the coeffi-

cient of the penalty term. i.e.

l-x TP

Eonyy = 2B, — Epv-) — 1T 211 (7.81)
1+x TP
Zn(N+1) = 2Zn(N) — Zn(N—l) - Tmﬁn 1 (782)

and similar for Q2. The calculation for the boundary at 7 = 0 works the same

giving, for example

1—-x TP
By = 2E,0— Epgy— —————— 7.83
(-1 Ol O P (7.83)
l1+x TP
Zn(—1) = 2Zn0) — Zna) + (7.84)

1+k28—-1°
for P2 and so on for the other prescriptions.

Stability of the boundary conditions can be shown by using the ‘top hat’ boundary
data that was used for the KWB system whilst prescribing zero initial data. In
these tests the boundary data is set to 1 until ¢ = 0.5. Here we show the results
for P2 and Q2 in figures 7.10 and 7.11, very similar to the results from KWB in
figure 6.7. Again, we cannot consider the relative energy E(t)/E(0) because the

energy at ¢t = 0 is zero.

Moving on to looking at convergence, we begin by considering the case with §" =0

in 1D. Here we have second order convergence for all four boundary types and
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Figure 7.10: Stability of P2 boundary conditions.

test.

Figure 7.11: Stability of Q2 boundary conditions

test.

Figure 7.12: Convergence of P1 boundary conditions in 1D with no shift.
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Figure 7.13: Convergence of Q1 boundary conditions in 1D with no shift.
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Figure 7.14: Self-convergence of P1 boundary conditions in 1D with no shift and

exponentially decaying free boundary data.

non-zero values of the coupling constants. P1 and Q1 are shown here as examples
in figures 7.12 and 7.13. To check that the boundary conditions are still second
order convergent for arbitrary free boundary data, a sensible choice is to set the
free data to zero. However, this would not then be consistent with the initial data
at t = 0, so the exact free data was multiplied by an exponentially decaying factor
to force the free data to zero

fo = e fult). (7.85)

This gave second order self-convergence, shown in figures 7.14 and 7.15. Despite
the features, as long as the convergence is closer to 2 at the higher solution, we

are satisfied with the convergence.

The next stage is to introduce a shift and again we get second order convergence
for 1D and the extension to 2D. The errors are larger in 2D than in 1D but the

important thing is that they are still convergent. Note that the lowest resolution
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Figure 7.15: Self-convergence of Q1 boundary conditions in 1D with no shift and

exponentially decaying free boundary data.
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Figure 7.16: P1 boundary conditions with exact free boundary data and no shift.
Rescaled lonorms of the errors at four different resolutions to show second order

convergence.

is not coincident with the other curves. However, the higher resolution all do
match and so we have convergence. With exponentially decaying free boundary
data we again get second order self-convergence (figure 7.18). The same tests were
performed with Q1/P2/Q2 boundary conditions and these prescriptions were also
found to be second order convergent with arbitrary shift terms (figures 7.19 -
7.21).

Constraint satisfying free data X was then introduced as described above. We
therefore need evolution of the auxiliary variable X on the boundary. Note that
for the P-type boundary conditions X is used as the free data whereas for Q-type
conditions the evolution equation of X is used as the free data. We have also
made the adjustment to the specification of the free data to ensure consistency

with the initial data, in a similar form to the exponentially decaying free data
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1.2 norm of Errors - scaled 1o show second order convergence

Figure 7.17: Convergence of P1 boundary conditions in 2D case with shift.
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Figure 7.19: Convergence of P2 boundary conditions in 2D case with shift. All

MDBC coupling constants set to -0.5.
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Figure 7.20: Convergence of Q1 boundary conditions in 2D case with shift. All
MDBC coupling constants set to -0.5.
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Figure 7.21: Convergence of Q2 boundary conditions in 2D case with shift. All
MDBC coupling constants set to -0.5.
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Figure 7.22: Self-convergence of constraint preserving P1 boundary conditions in
1D with no shift.

that was used to test convergence with zero free data. The form of the free data

was set to be
e tu(t) + (1 —e )X, (7.86)

where u(t) is equal to the exact data at the boundary (but need only be anything
consistent with the initial data) and X is the constraint satisfying free data. The
evolution of X is calculated in the same way as for KWB, however note the
difference in the definition of C+

Cy=Z2,xE;=U,,*Epsp, (7.87)
which gives the resulting evolution for X

X =B%Xa+(—f"Epp — Anpp + Apnp) (1 + k). (7.88)

Again, we begin in 1D with no shift. We show self-convergence for the P1 and Q2
prescriptions in figures 7.22 and 7.23. There are features at about one and two
crossing times showing that there are still problems with the errors introduced at
t = 0 hitting the boundaries, however these features decrease in amplitude with
increased resolution. Adding in the shift in 1D, we show in figures 7.24 and 7.25
second order convergence, however note the initial feature in figure 7.25. Conver-
gence drops due to high frequency noise introduced from the boundary. When
this noise has left the grid, second order convergence is regained. Dissipation does
not fix this situation, however the problem seems to be caused at the boundary at
initial time so equation (7.86) may not have solved the consistency issue at this
location. Observing the time evolution pointwise self-convergence seems to show

second order convergence of the solution overlaid with noise.
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Figure 7.23: Self-convergence of constraint preserving Q2 boundary conditions in
1D with no shift.
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Figure 7.25: Self-convergence of constraint preserving Q1 boundary conditions in
1D case with shift.
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Figure 7.26: Self-convergence of constraint preserving P1 boundary conditions in
2D with shift.

Self-convergence of constraint preserving P1 and Q1 boundary conditions in 2D
are shown in figures 7.26 and 7.28. With P1, second order convergence is not clear
(figure 7.26) as there is a drop in convergence at early times, but this seems to
be due to noise from initial time that takes two crossing times to leave the grid.
Considering the evolution of the pointwise convergence, we do seem to have second
order convergence, but it is clear we get unwanted noise early on. This may mean
that the P-type boundary condition works less well with shift. Although it seems
to work in 1D, this is not a rigorous test as the evolution of X is constructed by
transverse derivatives, which are all zero in the 1D case. The constraint energy
decreases at a faster rate with increase of resolution in figure 7.27 but it is still
undesirably large, so it seems that the prescription is not controlling the constraint
energy well. The Q-type boundary in figure 7.28 performs much better; there is
clear second order self-convergence, with good control of the constraint energy
in figure 7.29, tending to the limit of conserved constraint energy as resolution
increases. Notice that the convergence here is clearer than in the 1D cases because

we have much smaller constraint violations in the initial data in this case.

In conclusion it seems clear that the constraint preserving Q-type boundary is
preferable to the P-type boundafy. When carrying out 2D tests, constraint pre-
serving P-type boundaries do not perform particularly well, both in terms of con-
vergence and in terms of the control of the constraint energy. Q-type boundaries

perform much better in both these respects.

107



Constraint Energies
7000 T — T

T
es=1 ———

(=0}

Figure 7.27: Self-convergence of constraint preserving P1 boundary conditions in
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Figure 7.28: Constraint energies for constraint preserving Q1 boundary conditions
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Chapter 8

Conclusions

We have prescribed second order accurate maximally dissipative boundary con-
ditions and constraint preserving boundary conditions for the Z1 system and the
KWB system, the electromagnetic analogues to the Z4 and NOR systems used
in numerical relativity. To construct these boundary conditions, we have broken
down the formulations into systems of equation that look like the first order and
second order in space wave equations, so that boundary conditions for the wave
equations can be combined to give general prescriptions for Z1 and KWB. We
have also used the energy method for KWB with the boundaries prescribed; by
finding a bounded, positive definite system energy, we prove stability and hence
convergence. An attempt was made to carry out a similar calculation when a shift
is included, however this was impossible using a technique that was valid for the
wave equation. It is important to note that Z1 requires artificial dissipation to
avoid an instability even in the case with periodic boundaries. It has been shown
in [6] that the same instability occurs in the Z4 system, so this is not a peculiarity

of the electromagnetic analogue.

The boundaries for the first order wave equation involve using a combination of
first order accurate terms and penalty terms, which incorporate MDBC to drive
the solution back to the surface of bounded energy. We have four separate forms of
this boundary condition - P1/P2/Q1/Q2. The P-type boundary conditions make
use of MDBC in the penalty term whilst Q-type conditions use the time deriva-
tive of MDBC. 1-type conditions only apply the penalty term to the information
coming into the domain, whilst 2-type apply penalty terms to the information
going out and that coming in to enforce that the energy of the system is explicity

bounded. All four prescriptions worked well for specific values of the parame-
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ter multiplying the penalty terms, however the 2-type boundary conditions are
conceptionally preferable as the inherent bounding of the energy is an attractive

property.

The boundaries for the second order wave equation use the MDBC directly to

give a second order accurate approximation of a derivative on the boundary.

Combining these two prescriptions gives the required number of boundary con-
ditions for both the Z1 and the KWB systems. KWB only requires the second
order wave equation method and the resulting solution is second order convergent
for all values of the maximally dissipative coupling constants, which couple the
incoming and outgoing modes, however the Courant factor needs to be reduced
as the coupling constants are increased. We also have second order convergence
when the shift is introduced, with the specification of data at the boundary to the
variable I' when this variable is incoming and the use of third order extrapolation,
(setting the third derivative of the variable in question to zero at the boundary)

for the remaining variables.

For Z1, all four prescriptions P1/P2/Q1/Q2 seem to perform equally well, giving
second order convergence when there is no shift. Incorporating the shift requires
rewriting the first order wave equation boundary condition, with the penalty term
requiring additional factors involving the shift. Not all variables can be treated
by these boundary conditions so for variables that aren’t controlled, third order
extrapolation was used. Once again, all of the schemes tested were second order
covergent with the exact free boundary data and second order self-convergent with

arbitrary free boundary data.

Considering constraint preserving boundary conditions, we introduced an aux-
iliary variable at the boundary that controls the energy of the constraints and
evolved this auxiliary variable, using it as ‘free’ boundary data in the MDBC de-
scribed above. Unfortunately, the energy method cannot be used rigorously in this
case because the evolution of the ‘free’ data is now coupled to the solution in the
domain. Constraint preserving boundary conditions are second order convergent
for KWB, however the situation with Z1 is not so clear. There is a clear distinction
when performing 2D tests between the P-type and Q-type boundary conditions.
Q-type conditions perform well in this situation in terms of self-convergence and
the control of the constraint energy and are clearly preferable to P-type condi-
tions, which are not clearly second order self-convergent and do not damp the

constraint energy as strongly.
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The one aspect that was not studied here was the introduction of the constraint
damping parameter in the Z1 system. The introduction of this term would be in-
teresting in that it would work in combination with CPBC to ensure no constraint
violation in the grid. We can see that the CPBC for Z1 work much better when
constraint violations are small, i.e. they prevent constraint violations from being
injected into the grid but react less well to large constraint violations already
present in the grid. Hence the damping parameter would assist by preventing
constraint violations already present or appearing in the interior whilst CPBC

would stop injection of violations at the boundary.

In summary, the prescription of MDBC and CPBC for the KWB system and
MDBC and the Q-type CPBC for the Z1 system give second order convergence
and so have been proved to be effective boundary conditions in these simple cases.
These methods should be useful in NOR and 74, however the limitation of these
results should be stressed. The fact that these boundary conditions work in these
simple linear cases is not a guarantee that they will work in the full non-linear GR
codes but well-posedness of a linearised system is a necessary condition for well-

posedness of the corresponding non-linear system so it was important to confirm

results in this linear situation.
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Appendix A

Derivations

A.1 Definitions of the extrinsic curvature

Here again are the four definition of Kgy:

1
Kab = _"2‘ L »Cngab (A1>
Ka,b = | V(anb) (A2>
1
Kab - _§£n7ab (A3>
Ko = —Vany — ngas, where ap = nVeny (A.4)

and here are the proofs. (A.1) & (A.2)
1 1 4 4 c
_5 L »Cngab = _5 L (’I’L vcgab + gcbvan + gacvbn )
1
= ) L (vanb + Vbﬂa)
= — L Vi, (A.5)

where the first equality is the expansion of the Lie derivative and the second comes
from V, g, = 0, allowing the metric to be taken in and out of the derivative using

the Leibniz rule. It is useful to note that

0= Vanbnb = ’I’vaa’l’bb + ’I’vaa’l’bb
= 2n°Vm, (A.6)
giving
n’V,n, = 0. (A7)



(A3) & (A1)

1 1
——LoYap = ——= L L,
9 Yab 5 n"Yab

1
= 3 1 L,(gap + nanp)

1
= ‘5 L (['ngab + na['nnb + nb['nna)

1
= _5 L ['ngab> (A8)

as L,n, =0 and L, 1:=0.

It is also useful to note that although most references define K, in a symmetric
way, this is by no means necessary as it is naturally symmetric. This can be seen
by taking (A.2) without the symmetrizing condition and using the definition of

Ng = AV, t:

— LV, = LV, (aV)
= L VtV,ea+ L aV, Vit
= LaVtVyIna+a L V, Vit
= L mVyna+al V,Vyt
= al V,V, (A.9)

which is symmetric in a and b. The first term of the fourth equality disappears

because it involves the projection of n, which is zero. (A.2) & (A.4)

— LV = —1 Vanp
= =V —nngVeng

= —Vanp — Nals, (A.10)

using the definition of a; from (A.4).

A.2 The Gauss equation

Before beginning the derivation it will be useful to show the following result:

Lbidv, 18 = L1212V, (68 + ngn®)
= n® 121 Vyny
= —n®Kg, (A.11)
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where we have simply taken the definition of the projector and then used the
Leibniz rule, remembering that V,62 = 0 and n, L?= 0. The definition for K
(A.2) is then used to give the result.

Now, taking the commutator of the 3-D covariant derivative, we can derive the
Gauss equation, which shows how the projection of the 4-D Riemann tensor splits
into the 3-D Riemann tensor and extrinsic curvature terms. We begin by expand-

ing D, Dy we:
DyDyw. = D (118 V)
= LIL§1E V(L1915 Vaw,)
= LJ1d1ev;Vyw,
+ L1 Vaw Yy L + LI181 Vaw Vg LY
= 118V iViwe— L Vywen®Koe— 1€ VawentKy, (A.12)

where we have used (A.11) twice. When antisymmetrised the last term will dis-

appear as K, is symmetric. It should also be noted that

1¢nVaw, = LIVy(ntwe)— L¥ w,Vyn®

= w.K}. (A.13)

So, using the definitions
WRE, wqg = VViwe — VyVaw, (A.14)
G RE, wy = DyDyw, — DyDgww, (A.15)

we can see that:

() pd wg = DgDpwe— DpDgw,
= 111818V Vawe— L 118V, Vw,
— _LZ Vawen® K o+ _LZ V qwen® Kpe
= L1818 (ViVawe = VoV jwe) — Kaewe KE + Koot K

= 1J1§1¢ RY, ywy — Koewe K§ + Kpew K¢ (A.16)

cha

As this is true for all w, we can write
®) Raped =LY Ropea + KoaKoe — KacKpa, (A.17)

where we have lowered indices and used Riemann symmetries. This is the Gauss

equation.
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A.3 The Codazzi equation

DyK,, = L{1¢19VK,,
= — L{Le19 Vi (LPLE Viny)
= — _Lbf_LZ_LICC Vthnk
— L] L VeV LB — L1218 ViV, L
= L{1P* Y Vine — 0Ky, LX Ving
— L] 1P 18 Vin V(85 + nFny).
(A.18)

The second term disappears when we antisymmetrize on a and b. The last term
can be eliminated because the covariant derivative of § is zero as are V,n*n; and

Ly n, leaving

DyKye = DKoo = — L{LELEV Vit LIL31E Vi Viny
= — L{1" 15 RY, g
= — L Ryeayn®
= L Rupen. | (A.19)

This is the Codazzi equation.

A.4 The Hamiltonian constraint

Taking the Gauss equation
® Rapea =L Raoped + KoaKye — KacKa, (A.20)
we can contract with the spatial metric twice to give:
R = 4" L8 L] 1910 Repon + Kaa K™ — K°
Y9IV Resn = R+ K*— KgpK®, (A.21)

where we have used the definition K = y® K, and the fact that K, is symmetric.

Now

?

VIV Reon = 7 Reg + 71/ n" Regon

= R4 nnIRe, + nfnhth + nenfngnhRefgh
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= —ngn°R+ 2n%n’Ry,

1
= 2(n*n’Rg, — §n“nbgabR)
= 2°n’Gy

= 2Gm, (A.22)

where the first two equalities use the identity v** = g% + n®nfand the third is a

rearrangement of dummy indices. Hence
2Gn = R+ K? — K, K% = 2xp, (A.23)

where p = T,,. This is the scalar or Hamiltonian constraint.

A.5 The momentum constraint

We now contract the Codazzi equation once with the spatial metric.

,),ac 1 Rapen = ’Yac(DbKac - DaKbc)
Y 18119 Rojen = DyK®— DK}

v 1 Rejon = DoK — DKE. (A.24)
Now
,yeg —]—1]: Refgn = —Ll]: (geg +neng)Refgn
= _L{: an— —Ll]: TlengRefgn
= 1{ R, (A.25)
as the second term disappears like before because ngnhRefgh = —nhngRefhg =

—nIn" Reron. We have
f / 1 s
1y G = 13 Rpp— 5 1y g R

1
= L{ Rpn— 5 L] neR
= 1 Ry, (A.26)

Hence, (A.24) can be written as

1{ G4y = DyK - DK} (A.27)
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And finally, raising indices with v%°, we obtain,

V'L G = 7*(DeK — DK
G = ¥*DyK — D.K*
J_?: G£ = ’)/abDbK — DbKab

LG™ = Dy(K® — 1K) = j°, (A.28)

where we have used the definitions | G** = — L G2 and j* =1 T

A.6 The evolution equation of the extrinsic cur-

vature

Before calculating the Lie derivative of the curvature with respect to %, we need
a couple more useful results. Remembering that the acceleration of the observers

moving with the slices can be defined as
ap = n°V ny, (A.29)
we can derive a, = Dylna

Dylna = 1L Vylna
= Vilna+n*nV.lna
= a 'Vya+a n*nV.a
= —a " 'nn,Vea+an’n,Veo
= n*(VptVea — V,tVa)
= n%(Vu(aVt) — aV, Vit — Vy(aV,t) + aVV,t)
= n*(Vany — Ving)

= n®*V,np
= 0Oy, (A30)
where we have used n®n, = —1, the Leibniz rule and (A.6). The final and im-

portant relation is the equation of motion of the spatial metric. Here, we use

t* = an® + %

[’t")/ab = tcvc’)/ab + ’chvatc + ’Yacvbtc

= (an®+ B)VeYar + Yo Valan® + %) + Yo Vo(an® + 5°)
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= an®Veya + Ve + @Y Van® + nvu Vo
+Yeb VaB + Y Von® + nYac Vo + Yo Vi B
= aLlpYab + Ls%as + 1YVl + 170 Vi
= 20K + LgYa, (A.31)

using relations (A.3) and (4.2).

So now, without using the constraints, we can derive the formula for the Lie

derivative of the extrinsic curvature. First, as Lp4q = £, + L4, we know that
Ly =Ly + Ly, (A.32)

so using (A.31) and (A.32) gives

LN’Ya,b = —QO!Kab. (A33)

Now, we have

'CN(%b) = EN(%i%b)
= Y LnYeb + Y LN, (A.34)

so that

—2aKy = Y,LNYeb + Yo Ln,
= —2&’)’2ch + 7chN7§> (A35)

which straight away gives
Ly, =0. (A.36)

This result is used in the following derivation of £y Kq.

LvKe = Ln(L Vany)
= Ly(Ll:1¢V.ny)
= 1°1% Ln(Veng)
= 1¢1¢ (an®V.Veng + VengVe(an®) + VenoVy(an))
= J_fLJ_f (aneVchnd — an®V.V.ny
+ V(an®V n?) + Vcnevd(ane))
= an® 1518 Reegrn! + Dy(aag)+ L Ven, LY Vy(an®)
= a1 Rugn + Do(aDylna)+ L Venea 1§ Vyn®
= —al Rgwn+ DoDya+ oK, K. (A.37)

118



The only subtleties are the use of equation (A.36) in the third equality and the
following result in the seventh.
161 Veny = 186/Vens+ L8 nenfVong

= 12 V.n.. (A.38)
Some work is involved in translation into the standard form for the Lie derivative
of the curvature. This begins with the 4D Ricci tensor

1

Rap — EgabR = Kl

R—%R — kg™Ty,

2 cd
R = K9 Teq, (A.39)

where n is the dimension, in this case 4. So,

1
Rep = K(Tab+2—_—ngabQCchd)

1
= w(Tap ~ igabngTcd>- (A.40)

If we define
Sab =1 Tab, (A41)

then

Sy = L°18T,
= Tab + ncnach + ndanad + Nanbncnchd
= Top + 6¢n6Tna + naen®Tna + 65 Ter, + nanenTen, — nanTon

= T+ L n(aTnb) — NaNpdnn (A42)

and
Top = Sab + 25(aTb) + PNaTe. (A.43)

Now we can write

LiKe = LyKop+ LgKay
= ol Rann — aKach - Dana + ['ﬂKab
= —DanCY + CY(J_ Ranbn — Kach) + LﬁKab. (A44)

So we take
L Ranpn = LELL Regpunfn®
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= L¢a Ll Y Regpn— Li1] g% Regpn

= LeL] 181G Regpn— L Rey

= 7L Raepa)— L Ref

= YO Rewpy + KapKeq — KaaKep)— L Res

= O Ry + KpK — KoK~ L Reg (A.45)

and
1 cd
— L Ry = —kL (Top— 5 9ab9 Tea)
1
= —k(Sa — e gar(—p +5))

1
= —k(Sap = 5 LiL§ gea(—p +5))

2
1 1
= —k(Sep — EfyabS) — SR Ya: (A.46)
These can be put together to give
['tKab = —DanO.' + O.’[Rab - 2Kachc + KabK
1 1
—k(Sgp — E%bg) - iﬂp%b] + LK, (A.47)

the evolution equation of the extrinsic curvature.
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Appendix B

Electromagnetic 3+1 Split

Here, we derive the 3+1 split of the Maxwell equations from their differential form

vV-B =0 (B.1)
B = -VxE (B.2)
V-E = dnp (B.3)
E = V x B —d4rj. (B.4)
To satisfy (B.1), a vector potential for B can be introduced b
B=VxA=V-B=0. (B.5)
Therefore from (B.2) and (B.5)
VxA=-VxE (B.6)
and
A =-E — Vy, (B.7)

with 1 introduced as the electic potential. Hence, rewriting in index notation,

A; = —E; — 8. (B-8)
Finally from (B.4),
E=V xV xA —47j (B.9)
and hence
E-L' = Aj,ji Ai,jj 47'{'_]1 (BlO)
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The only equation that has not been incorporated is (B.3), which is translated

into a constraint C = Ej; — 4wp. The system can be written out as

Ei = A]"]'.L' - Ai,jj - 47Tji (B12)

E; 1s the electric field, A; is the magnetic potential, ¢ is the electric potential and

j; and p are source terms that satisfy 74 + p = 0.
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Appendix C
Summation by Parts

With no boundary, we can take the scalar product of u; and Dyv; to give

oo 1 x> oo
> wDoy; = o7 ( > v — Y, Uivi—1)

1=—00 I=—00 1=—00

1 x> x>
Y ( PORIEUEEDY Uj+1vj>

j=—00 j=—o0
= — Z U,;Do’u,i. (Cl)
For D4 we have
Z ’LL,;D:g:’Ui = — Z U,;D;’U,i. (02)

When we introduce a boundary at j = 0 there are some terms remaining at the

boundary. Some useful identities are

h Z U,;D_’Ll,i + upgvy = —h Z ’LLZ'D+’1),; (03)
1 1
Y vD_u; +ugvy = —h > w Dy (C.4)
1 0
2h Z v;Dou; + uovy +u1vg = —2h Z u; Dov; (C.5)
1 1
N-1 N-1
2h Z v; Dou; = —2h Z u; Dov; + unvy_1 + UN_1UN. (06)
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Appendix D

Scalar Product and Norm

D.1 The Cauchy-Schwarz inequality

(w,u)(v,v) > [(w,v)[%,

where (u,v) = @v is a scalar product with properties

(u,v) = (v,u)
(u+w,v) = (u,v)+ (w,v)

(w,0) < ul-[v].

Proof:
(u+ Av,u+ Av) > 0,

where ) is a complex constant. So expanding gives
(u, u) + Av,w) + Mu, v) + A\(v,v) > 0.

Now, let

and so

(D.9)



and hence cancellation and rearragement gives
(U,U)('U,'U) - ('U,U)(U,'U) > 0
(w,u)(v,0) > [(u,0)* (D.10)

and equivalently
[lull - [[ol] > [(u, )] (D.11)

D.2 The triangle inequality

[lw =+ vl| < [ul] +[|v]]. (D.12)
Proof:
lu+o|* = (u4v,u+v)

= (u,u) + (v,v) + (v,u) + (u,v)
= (u,u)+ (v,v) + (u,v) + (u,v)
= (u,u)+ (v,v) + 2Re|(u, v)]
< (u,u) + (v,v) + 2|(u, v)|
< (u,u) + (v,v) + 2(u, u) (v, v)

= (|lull + [0 (D.13)

where the Cauchy-Schwarz inequality from above has been used. These two results

work in exactly the same way for other scalar products and norms.

D.3 The complex square

Consider
1 1 = 1 =
IVeZ, + $ZQ|2 = (VeZ, + ﬁzg(\/gzl + ﬁZQ)
= €|+ 2P+ 212, £ 2,7,
= €| Z:|? + €Y Z5)* £ 2Re[ 2, Z,), (D.14)
(D.15)
so that
€| 21> + €71 Za|* £ 2Re[2:25] > 0 (D.16)
and therefore
€| 21| + €7 Za|* > 2Re[ 21 Z,). (D.17)
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