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In this thesis we are concerned with activity-dependent neuronal plasticity in 

the nervous system, in particular the phenomenon of spike-timing-dependent­

plasticity or STDP. We find that the experimental evidence for STDP may be 

interpreted in a variety of ways. Inspired by this observation, we propose a 

new model of spike-timing plasticity in the form of a synaptic switch rule. The 

switch rule governs changes at individual synapses, and only when the rule is 

averaged over multiple synapses and multiple spike-pairs does an STDP-like rule 

emerge. The STDP-like rule is therefore an ensemble property of our model, one 

that is nowhere instantiated at any individual synapse. We find that our switch 

rule explains a variety of spike- and rate-based plasticity results as a result of 

its intrinsic structure. We also find that stable, competitive dynamics emerge 

naturally due to multi-spike interactions. At no stage are we required to intro­

duce additional modifications to accommodate particular experimental results or 

avoid otherwise undesirable learning behaviours. Indeed, ensuring consistency 

with various experimental results serves to neatly constrain the parameters of 

our model in a concise manner. This is in contrast to many other models of 

STDP, which are often required to introduce additional modifications and non­

linearities to explain experimental results on a case-by-case basis. Furthermore, 

our synaptic switch rule is considerably simpler than many competing models of 

STDP and places a much lower computational burden on individual synapses. 

We are therefore freed from the need to postulate precise coincidence detections 

mechanisms and, as a result, out synaptic switch rule is broadly consistent with 

a range of possible biological implementations. 
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Chapter 1 

Development and Plasticity of 

the Nervous System 

1.1 Neuronal Plasticity 

The structured connectivity of neurons in the brain underlies its distributed ap­

proach to information storage and processing. The pattern and weighting of 

these connections are not static, but may change dynamically, both in devel­

opment and over the lifetime of an animal. The set of processes by which the 

pattern and weights of these connections change are collectively referred to as 

neuronal plasticity. Neuronal plasticity is an apparently ubiquitous feature of 

the nervous system, and has been observed across a variety of species, brain 

regions, and at different stages of development. 

Neuronal plasticity plays an important role in both the initial development of 

the nervous system and in its ongoing function. Examples of developmental 

plasticity are often dramatic. For example, the organisation of the vertebrate vi­

sual cortex into columns of alternating ocular dominance may not be completely 

preprogrammed, but may arise, in part, from the effect of postnatal activity pat­

terns (Hubel and Wiesel, 1962, 1965, 1969, 1977). An impoverished environment 

during a critical period in early life can exert a profound influence on the develop­

ment of normal patterns of connectivity (Wiesel and Hubel, 1963a,b, 1965; Shatz 

and Stryker, 1978). Plasticity in the adult, while perhaps not as dramatic as that 

during earlier stages of development, continues to play an important role. On­

going plasticity allows limited recovery from damage arising from insults to the 

nervous system, and anatomical and physiological changes in neuronal connec­

tivity are also often cited as the possible mechanisms for learning and memory 

(Martin et al., 2000). Both learning and memory are important in even the 

simplest of multi-celled organisms; associative learning in the Aplysia can lead 

1 
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to short-term sensitisation to a stimulus, which is a basic survival mechanism 

(Castellucci et al., 1970; Pinsker et al., 1970; Castellucci and Kandel, 1976). 

In higher-level organisms, the increasing complexity of the nervous system fur­

ther elevates the role of learning and memory, which, it may be argued, underlie 

almost all higher-level cognitive functions. A full understanding of synaptic plas­

ticity will therefore be one of the key elements in a complete description of how 

the nervous system develops and operates. 

1.2 Activity-Dependent Neuronal Plasticity 

A variety of forms of neuronal plasticity are expressed throughout the nervous 

system. A common distinction is made between activity-dependent and activity­

independent plasticity. 

Activity-dependent plasticity is broadly defined to be that which depends in 

some way upon the electrical activity of the participating neurons. Activity­

dependent changes in the connectivity of neuronal circuits apparently underlie 

several important developmental processes, such as the development of orienta­

tion selectivity and ocular dominance columns in the visual system. A great deal 

of experimental work has been directed towards exploring exactly how different 

patterns of activity affect neuronal connectivity. Patterns of activity may either 

be instructive or permissive. Instructive refers to the case where the precise pat­

tern of activity playa direct role in shaping the changes in neuronal architecture. 

Permissive refers to the case where the presence of activity is all that is required, 

with another process actually directing the changes. 

Consider, for example, the refinement of orientation selectivity in the primary 

visual cortex. Under normal developmental conditions an initially broad tuning 

of orientation selectivity is refined postnatally. This refinement is driven by 

the presence of activity along the visual pathway and does not occur if the 

subject is dark-reared. If both eyes are covered with diffusive patches, however, 

so that there is a loss of structure in the visual input without a significant 

reduction in the overall level of activity, refinement of orientation selectivity 

does not occur. There is therefore a requirement for patterned activity, with the 

presence of activity alone being insufficient to drive refinement, and this process 

is an example instructive activity. 

Activity-dependent plasticity can persist for varying amounts of time, and a 

distinction is often made between short- and long-term plasticity. Short-term 

plasticity is generally considered to be that which decays over the course of a 

few minutes. Long-term plasticity is generally considered to be that which is 

stable over the course of perhaps thirty minutes or more. Although convenient, 
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in the absence of a complete understanding of the mechanisms of induction and 

expression these distinctions remain somewhat arbitrary. A well studied form of 

long-term plasticity is long-term potentiation and depression (LTP jLTD) (Bliss 

and Lpmo, 1973; Bliss and Gardner-Medwin, 1973; Malenka and Nicoll, 1999). 

This form of plasticity apparently operates in a broad range of brain areas and 

species, notably the hippocampus, neocortex and cerebellum. In theoretical 

work, a variety of modelling studies have attempted to extract learning rules from 

these results and explore the implications for a wide range of tasks. Recently, 

experimental work has offered the possibility of uncovering the molecular basis 

of LTP and LTD. A growing body of work suggests is that it is the time-course 

and amplitude of intracellular calcium levels that drive LTP and LTD. This has 

formed the basis of some recent attempts to derive a biophysical model of LTP 

according to the "calcium-control hypothesis" (Senn et al., 2000; Shouval et al., 

2002). 

The various forms of activity-dependent neuronal plasticity observed in the ner­

vous system may be influenced by a variety of factors. It has been suggested that 

dynamic adjustments to an existing plasticity rule may strongly influence the 

outcome of an activity-dependent process. This phenomenon, known as meta­

plasticity, may subserve a variety of functions. For example, changes in the 

long-term average activity levels can modify the intrinsic excitability of neurons, 

altering their firing characteristics. Such a process may contribute to homeosta­

sis, maintaining postsynaptic firing rates in some dynamic range despite large 

changes in input strengths. 

Activity-independent plasticity is not dependent on the activity of the neurons 

involved. An example would be the chemical guidance of axonal growth cones 

towards appropriate targets in the initial stages of neuro-muscular innervation. 

While important for the development of the nervous system, this kind of plastic­

ity does not display the kind of dramatic dependence on the environment that 

activity-dependent processes do. 

1.3 Plasticity and Development of the Nervous Sys­

tem 

Anatomical and physiological changes in neuronal connectivity play important 

roles during early development of the nervous system. After neuronal cells have 

differentiated, a period of migration is followed by the outgrowth ofaxons. These 

axons are guided towards appropriate targets by various chemical cues, eventu­

ally forming functional synapses there. In several systems, for example at the 
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neuromuscular junction (Sanes and Lichtman, 1999) and along the retinogenicu­

locortical pathway (LeVay et al., 1978, 1980), the precise architecture of con­

nectivity then undergoes refinement based on a less refined initial innervation 

(Purves and Lichtman, 1985). Such processes have been shown to occur both 

pre- and postnatally, and to depend on neuronal activity. It is often the case 

that the role of activity-dependence is still unclear. In particular the question 

of whether activity is instructive, where the activity patterns govern directly 

the expression of plasticity, or permissive, where only the presence of activity is 

needed, is often difficult to resolve. 

1.3.1 The Neuromuscular Junction 

The vertebrate neuromuscular junction (NMJ) is one of the more commonly cited 

example of activity-dependent developmental plasticity (for review, see Sanes and 

Lichtman (1999)). The term NMJ refers to the point of synaptic contact between 

motor-neurons and muscle fibres. The NMJ forms when initially distant motor­

neurons extend axonal processes to the muscle fibres. Both the motor-neurons 

and muscle fibres are predifferentiated before contact, and possess characteristic 

pre- and postsynaptic elements such as vesicles and neurotransmitter receptors. 

Establishment of an initial synaptic connection, albeit of low efficacy, is therefore 

rapidly achieved on arrival of the motor-neuron growth-cone at the muscle fibre 

surface. At birth, each muscle fibre is innervated by several different motor 

neurons. This stage of polyneuronal innervation does not persist long, typically 

only up to postnatal week one in mice, and a process of refinement known as 

synapse elimination soon begins. During synapse elimination, inputs compete 

for control of the target muscle fibre and, gradually, one input gains complete 

control. The other inputs atrophy, and eventually withdrawing from the fibre 

completely. 

Synapse elimination is activity-dependent, in the sense that the more active 

motor neuron is more likely to win the competition. Lowering the overall level of 

activity has also been shown to slow the rate of synapse elimination. The precise 

mechanisms that govern this competition remain unknown, but it is probable 

that a range of factors influence the outcome of the competition. By postnatal 

week two in mice each muscle fibre is left innervated by a single motor-neuron, 

although some exceptions invariably exist and there is a great deal of variation 

between species. For example, in amphibians up to one third of muscles fibres 

remain polyinnervated into adulthood. There is little cell death during synapse 

elimination, with the total number of motor units (defined to be a motor neuron 

and the muscle fibres it controls) remaining unchanged. 
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The refinement of the NMJ appears to be a flexible process for regulating the 

precise pattern of muscle innervation. The refinement also apparently ensures 

that the overall level of innervation is appropriate. In the developing chick em­

bryo, for example, the number of neurons innervating a particular limb decreases 

by about half before hatching. 

1.3.2 The Primary Visual Cortex 

Another well studied example of activity-dependent developmental plasticity is 

the formation of topographic maps in the immature vertebrate visual system. 

Topographic maps are a characteristic feature of the vertebrate brain, where pro­

jections from one area of the brain maintain an ordered innervation in a target 

region. This preserves the spatial relationships between them, with neighbouring 

projecting cells innervating neighbouring targets. The retino-geniculo-cortical 

pathway, for example, shows striking organisation on several levels. Photore­

ceptors trigger, via intermediate bipolar cells, spiking of retinal ganglion cells, 

whose axons form the optic nerve. In higher vertebrates, such as carnivores 

and primates, axons from the two eyes converge onto the lateral geniculate nu­

cleus (LGN), but occupy distinct regions. Information is therefore carried to 

the lateral geniculate nucleus in a topographically ordered manner, preserving a 

point-to-point correspondence between the retina and LGN. Stimulating a small 

area of the retina will therefore give a localised response in a small area of the 

LGN. The axonal arbors of LGN neurons are themselves segregated within layer 

IV of the primary visual cortex into a pattern of alternating ocular dominance 

patches (Hubel and Wiesel, 1962, 1965, 1969, 1977). This precise arrangement 

arises through activity-dependent refinement of an initially much coarser map 

established by chemical cues (Purves and Lichtman, 1985). In primates, cats, 

and ferrets, the axonal terminals of ganglion cells of the two eyes initially share 

common territories within the LGN, but through a process that eliminates in­

appropriately placed branches, projections from the two eyes become restricted 

to their appropriate layer. Likewise, ocular dominance columns emerge from an 

initial pattern of overlapping arbors representing the two eyes. The experiments 

of Hubel and Wiesel first gave insight into how visual experience affects the 

formation and patterning of ocular dominance columns. Monocular deprivation 

(closure of one eye by lid-suture) lead to a shift in responsiveness toward the 

open eye (Wiesel and Hubel, 1963a,b, 1965; Shatz and Stryker, 1978), demon­

strating that such changes are indeed driven by neuronal activity. The tendency 

for segregation of projections from the two eyes is apparent even in lower ver­

tebrates; when a third eye is implanted in frogs, eye-specific stripes, normally 

absent, appear in the optic tectum (Constantine-Paton and Law, 1978). 
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Thus, both activity-dependent and independent neuronal plasticity potentially 

subserve a range of functions in the brain, both in developing and mature ani­

mals. Although a great deal remains to be uncovered about their precise oper­

ation, including the actual extent to which activity takes an instructive role in 

many apparently activity-dependent processes, activity-dependent mechanisms 

make attractive candidates for underpinning a range of phenomena due to their 

intrinsic flexibility. 

1.4 Outline of the Thesis 

We now give an overview of the content of this thesis. 

Chapter 2 presents the main experimental results on neuronal plasticity. We 

first establish some useful nomenclature, and then go on to briefly discuss the 

distinctions between short- and long-term plasticity, and between anatomical and 

physiological plasticity. Some general experimental issues are then covered, such 

as recording methods and stimulation protocols. We also outline the three main 

methods used for plasticity experiments (neuronal cultures, slices and in vivo 

recordings) and discuss the influence of subject age on the observed plasticity. 

Finally, we briefly discuss some of the pharmacological manipulations commonly 

used in plasticity experiments, such as the introduction of calcium buffers or 

neurotransmitter receptor antagonists. 

We then go on to discuss the experimental basis of neuronal plasticity in some 

depth. The literature is extensive, and we select papers based either on their 

importance or for the illustrative nature of the experiments performed. We di­

vide results into four groups which roughly follow on from each other. Within 

each group experiments are discussed chronologically. Early LTP /LTD exper­

iments refers to those which relied upon a tetanic stimulation protocol. Later 

LTP /LTD experiments refer to those using bursts of pre- and postsynaptic ac­

tion potentials, and it is here that we first see evidence for timing-dependence 

in neuronal plasticity. Timing experiments are those which probe this timing­

dependence in more detail, and typically use single pre- and postsynaptic spikes 

rather than trains or bursts. Finally we present a section on heterogeneity in 

neuronal plasticity. This section covers a variety of results, from metaplasticity 

to the recently observed all-or-none potentiation of putative single connections 

in the hippocampus. We also discuss the issue of whether different neuronal 

plasticity rules possibly reflect functional differences in the brain areas under 

examination. 

Chapter 3 discusses the various theoretical attempts to model neuronal plas­

ticity from a rate-based perspective. After establishing some notation, we first 
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discuss Hebbian rules where changes are made based on the correlation between 

pre- and postsynaptic firing. We formulate a general Hebbian rule in the form 

of an expansion in the pre- and postsynaptic firing rates, then extract partic­

ular examples from it. We discuss the basic Hebb rule and the issues arising 

from it, such as runaway learning, then discuss various modifications, such as 

hard bounds on synaptic strengths. We then extend our discussion to pre- and 

postsynaptically gated rules. Following on from this, we examine the covariance 

rule, and the Bienenstock-Cooper-Munro (BCM) rules. We discuss the success 

of the BCM rule in explaining developmental phenomena in the visual system, 

such as development of orientation selectivity and ocular dominance. We then 

discuss competition and stability in rate based rules, and examine subtractive 

and multiplicative normalisation schemes. 

In Chapter 4 we consider spike-based models of neuronal plasticity. These mod­

els are built around a description of individual spikes rather than describing pre­

and postsynaptic activity in purely rate-based terms. We examine two classes of 

spike-based model: phenomenological and biophysical. Phenomenological mod­

els are those which take the experimentally observed spike-timing results over 

directly to form a plasticity rule. We examine both additive and multiplicative 

phenomenological models, and discuss the learning dynamics that two particu­

lar implementations exhibit. We also examine the competitive nature of these 

models and their equilibrium distributions of afferent weights. We then discuss 

biophysical models, outlining a commonly cited biophysical mechanism in the 

form of the calcium control hypothesis. We examine some particular implemen­

tations of this hypothesis, and the success these models have had in explaining 

a variety of experimental results. 

In Chapter 5 we present a fuller analysis of an existing spike-based model of 

STDP in the form of the Song model (Song et al., 2000). We give a more detailed 

derivation of the model, drawing out the various issues that are involved in its 

formulation. Using our own simulations, we reproduce the main findings of the 

original work. We then extend these simulations to explore the learning dynamics 

of the Song model more fully. In particular, we discuss the issue of stability which 

was only partially addressed in the original work. We then compare our findings 

to those of the original work. Finally, we discuss the various issues surrounding 

this particular formulation of STDP in more detail. 

In Chapter 6 we present a new model of synaptic plasticity. This model, origi­

nally presented in the paper "A Synaptic and Temporal Ensemble Interpretation 

of Neuronal Plasticity" (Appleby and Elliott, 2005), is in the form a three-state 

synaptic switch. We first discuss the motivation of the rule, drawing upon ob­

servations made in Chapter 2, and then formulate the switch rule in its simplest 
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possible form. After establishing notation which we use throughout the dis­

cussion of the model, we proceed with a limited analysis based on the possible 

interactions of two spikes. We show that an STDP-like modification curve is 

a robust prediction of our model, arising from the ensemble averaging of our 

synaptic switch rule across multiple synapses and multiple spike-pairings. We 

also show that a natural explanation of spike-triplets emerges from our model 

as a consequence of its intrinsic structure, with no need to introduce additional 

modifications. Furthermore, we show that the average, long-term behaviour of 

the switch rule is consistent with experimental results on rate-based plasticity. 

We derive constraints under which this long-term behaviours is qualitatively 

BCM-like. We then present numerical simulations, and show that the analyti­

cally observed behaviours are robust even under variable pre- and postsynaptic 

spike timings. We show that permitting multi-spike interactions does not de­

stroy these results, which were derived for 2-spike interactions only. Finally, we 

discuss various issues surrounding this initial exploration of the switch rule, such 

as stability and convergence of the 2- and multi-spike rules to the infinite-spike 

limit (where interactions are not limited in any way). 

Chapter 7 extends the analysis of the switch rule to multiple spike interactions. 

That is, we now consider three, four and higher spike trains instead of limiting 

interactions to two spikes only. This analysis is rather lengthy, and was orig­

inally presented in the paper "Multi-Spike Interactions in a Stochastic Model 

of Spike Timing Dependent Plasticity: Derivation of Learning Rules" (Appleby 

and Elliott, 2005) (submitted). We proceed by first establishing a number of 

preliminary results which are of use throughout the derivation. We then extend 

the model slightly by allowing, in certain circumstances, the stochastic process 

underlying the synaptic switch to be reset. We make use of the resetting form 

of the model to derive the expectation value for the change in synaptic strength 

for any multi-spike train. We consider the effect of adding additional spikes in 

front of a multi-spike train, and examine how the resulting expected change in 

synaptic strength induced by that train changes. In this manner, we may pro­

duce a set of recurrence relations, solving these relations produces the required 

expressions. We refer to these expressions as multi-spike learning rules, as they 

consider the interaction of more than two spikes. 

We then show that the expressions obtained by solving the recurrence relations 

may be obtained in a much simpler manner by considering the underlying Marko­

vian nature of our switch model. We go on to derive a generating function for 

the expected change for any multi-spike train. Finally, we present a comparison 

of our analytical results and the corresponding numerical simulations. We also 

investigate how rapidly the multi-spike rules converge to the result where spike 

interactions are not limited in any way. We also show that the 2-spike learning 
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rule is of a qualitatively different character compared to all other, multi-spike 

rules. 

In Chapter 8, which is based on the paper "Stable Competitive Dynamics Emerge 

from Multi-Spike Interactions in a Stochastic Model of Spike Timing Dependent 

Plasticity" Appleby and Elliott, (2005) (submitted), we return to this issue of the 

difference between the 2-spike and multi-spike interaction functions, and explore 

the learning dynamics of our switch rule in much greater detail. In particular, we 

look for the presence or otherwise of stable, competitive dynamics. Examining 

the 2-spike rule, we see that, without further modification, it always leads to 

pathological learning behaviours. The irredeemably pathological nature of the 

2-spike rule is illustrated by considering synaptic strengths in various limiting 

cases. 

Examining the 3-spike rule, we see that the pathological behaviour is absent, and 

the rule displays stable, competitive dynamics under a wide range of parameters. 

We observe that this is also true for any multi-spike learning rule. We also 

show that the 2-spike rule may be rescued from its pathological behaviour by 

modifying it in such as a way as to introduce a BCM-like sliding of the threshold 

between potentiation and depression. We propose that the difference between 

the 2-spike and the multi-spike and modified 2-spike rules is that the latter two 

couple potentiation and depression together, whilst the former does not. This 

coupling takes place in the sense that prior pre- and postsynaptic spikes, and 

the resulting potentiation and depression, influences later plasticity. We support 

this claim by re-deriving the multi-spike rules for an uncoupled switch, as we see 

that something akin to the 2-spike rule is returned in all cases. We then perform 

a fixed-point analysis of a multi-spike learning rule, and show that the dynamics 

are governed in a well defined manner by the presence or absence of stable, 

segregated fixed-points. The existence of these stable, segregated fixed-points 

broadly constrains the parameters of the model to a certain regime, outside of 

which competition breaks down. 

We then perform a numerical verification that the averaged, rate-based rules we 

consider can be respected by the real, spike-based system. We numerically obtain 

a condition on the magnitude of plasticity required for the rate-based mode of 

computation to dominate spike-to-spike interactions. We find that this threshold 

is in agreement with experimental data from spike-pair experiments. Finally, we 

perform a large-scale numerical simulation of ocular dominance column develop­

ment. The stable, competitive dynamics present in our switch model are able to 

explain the formation of ODCs in a satisfactory manner. The observed learning 

behaviours therefore scale up successfully to larger scale systems. 
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In Chapter 9 we discuss the implications of our switch model of synaptic plasticity 

and the various issues surrounding it. We first discuss the interpretation of 

experimental data, and highlight some of the assumptions that are commonly 

made in theoretical studies. We then discuss emergent computation and the 

role of multi-spike interactions in our and other models of synaptic plasticity. 

We then discuss the issue of coincidence detection, and outline some possible 

molecular implementations of our synaptic switch rule. We then highlight some 

experimental tests that could distinguish the various forms of our synaptic switch 

rule as well as differentiate our model from competing models of STDP. We then 

place our model in context by comparing it to existing theories of STDP, and 

highlight the differences in our approach. Finally, we discuss various outstanding 

issues, and indicate the possible direction of future work. 



Chapter 2 

Experimental Basis of 

Neuronal Plasticity 

2.1 Introduction 

Experimental work has explored the induction and expression of activity-dependent 

neuronal plasticity in a range of species, brain areas, and at several stages of de­

velopment. Different stimulation protocols can often give rise to changes that 

persist for different amounts of time. A distinction is therefore made between 

changes which rapidly decay (short-term plasticity) and those which appear to 

be relatively stable (long-term plasticity). Short-term plasticity is generally con­

sidered to be that which decays over the course of a few minutes. Long-term 

plasticity is generally considered to be that which is stable over the course of 

perhaps 30 minutes or more. 

A distinction is also often made between early- and late-phase LTP. Early-phase 

LTP is generally considered to be protein synthesis-independent, and typically 

occurs on timescales of a few hours after the induction protocol. Late-phase LTP, 

on the other hand, requires protein synthesis, and can take place over several 

days following the induction of plasticity. 

Although convenient, in the absence of a complete understanding of the mecha­

nisms of induction and expression these distinctions remain somewhat arbitrary. 

Often, short and long term plasticity may be observed simultaneously in the 

same preparation. For example, sustained presynaptic stimulation giving rise to 

long-term depression is often preceded by an initial transient potentiation (an 

effect known as post-tetanic-potentiation, or PTP). In the plasticity experiments 

we describe, the focus is on long-term changes which typically appear on a time 

scale of a few seconds to a few minutes. 

11 
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Due to its activity-dependence, stability, and wide-spread occurrence, long-term 

potentiation and depression (LTP and LTD) have often been linked to certain 

higher brain functions, such as learning and memory (for review, see Tsien 

(2000)). A variety of experimental evidence suggests such a link, such as the 

observation that infusion of the NMDA-receptor antagonist APV into the brain 

ventricles of mice (Morris et al., 1986), or the enhancement of LTP (and a con­

current decrease in LTD) by gene manipulation (Migaud et al., 1998), impairs 

performance in the Morris water maze test. However, given that the Morris 

water maze involves a variety of cognitive factors and that the experimental ma­

nipulation may have a wider influence throughout the brain, it is often difficult 

to interpret these results. 

Recently, a great deal of experimental work has been directed towards uncov­

ering the molecular and cellular basis of activity-dependent neuronal plasticity. 

The morphological and physiological complexity of a typical neuron provide an 

abundance of possible sites for the expression of plasticity. For example, short­

term changes in postsynaptic responsiveness may be supported by a variety of 

physiological mechanisms, such as the depletion of readily-releasable neurotrans­

mitter vesicles docked at the presynaptic membrane. Longer-term changes may 

involve up- or downregulation of postsynaptic receptor numbers or function. 

A distinction is typically made between physiological and anatomical changes. 

Physiological plasticity refers to a change in postsynaptic responsiveness due 

to the adaptation of an existing population of synapses, for example an up­

or downregulation in the number of postsynaptic neurotransmitter receptors. 

Anatomical plasticity refers to processes where new synapses may be added or, 

alternatively, withdrawn. This may involve an increase or decrease the number 

of synaptic contacts made by a neuron onto an existing target, or the formation 

of new connections where none previously existed. Anatomical changes allow the 

actual connectivity between neurons, rather than just the ability of one neuron 

to influence the firing of another, to change. 

2.2 Experimental Methods 

A typical experimental protocol involves recording from an identified target cell 

using an intra- or extracellular electrode. Intracellular recording is more difficult, 

but allows much more detailed information about postsynaptic responses to be 

gathered by measuring actual postsynaptic currents rather than external field 

potentials. With an intracellular recording electrode the postsynaptic cell may 

also, if desired, be depolarised above its resting membrane potential by applying 

direct current injection. Sustained postsynaptic depolarisation is useful when 
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stimulation of presynaptic inputs alone is insufficient to cause postsynaptic spik­

ing. An intracellular electrode can also be used in a feedback system to clamp 

the postsynaptic cell at a desired voltage. Voltage-clamping is most often used 

in experiments where the same stimulation protocol is shown to have different 

effects depending on the voltage at which the postsynaptic cell is clamped. A 

depolarising current injection can also be used to deliberately drive the neuron 

past threshold and trigger postsynaptic spiking on demand. 

Presynaptic stimulation is typically achieved through simple extracellular cur­

rent injection. This usually activates a population of afferents, which individually 

mayor may not form functional connections with the target cell. Stimulating 

a population of afferents increases the probability of recording a postsynaptic 

response. However, by the same token it also means that the measured post­

synaptic response is due to the population of stimulated afferents rather than 

a single afferent. Even more importantly, the plasticity observed in response to 

a particular stimulation protocol will be in the form of a population-averaged 

change, not of individual afferents. The alternative is to stimulate single presy­

naptic neurons in turn, attempting to find one that is synaptically coupled to the 

target cell. Identifying an individual presynaptic neuron, and impaling it in the 

same way as the postsynaptic cell, is more difficult but allows a more detailed 

examination of plasticity across a single connection. As individual neurons may 

innervate the target cell with a relatively low probability, finding a synaptically 

coupled pair of neurons by this method is often laborious. 

The connection strength of inputs may be assessed by stimulating presynaptic 

neurons at a low frequency and examining the initial slope of the evoked postsy­

naptic field potential (PSP). The initial slope, rather than the peak amplitude, 

of the PSP is often used as it is the component most likely to stem from direct 

connections to the target cell. This is especially important in preparations where 

there are a large number of secondary pathways from the inputs to the target, 

via intermediate interneurons. In the literature, direct connections are termed 

"monosynaptic", in the sense that there is only one set of synapses between the 

pre- and postsynaptic cell. Here, we prefer the term "direct" to avoid confusion 

later when we explicitly consider the number of functional synapses comprising 

a connection as part of our own modelling studies. 

A commonly used technique for studying synaptically coupled cells is to harvest 

neurons from an animal which are then cultured on an appropriate support­

ing substrate. Neurons cultured in this way can often survive for periods of 4 

weeks or more. Culturing is a popular technique due to the easy access to the 

neurons that it affords. This facilitates recording and stimulation of neurons. 

However, neuronal cultures suffer from certain drawbacks. Neurons often swell 

up, and form fewer, higher strength connections than would be the case in vivo. 
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FIGURE 2.1: A A schematic diagram of a hippocampal slice. The CA3, CAl 
(boxed), and dentate gyrus (DC) regions are shown, along with the character­
istic layered structure of the hippocampus (alveus (alv), stratum oriens (or), 
stratum pyramidale (pyr), stratum radiatum (rad) , stratum moleculare (mol)). 
B Diagram showing the arrangement of stimulating (STIM1 and STIM2), in­
tracellular recording (I.C. REC) and extracellular (E.C. REC) electrodes. Such 
a set-up is typical of slice experiments, the extracellular stimulation of a pop­
ulation of presynaptic afferents increases the chances of finding one that is 

connected to the postsynaptic cell (from Custafsson et al. (1987)). 

Moreover, the connectivity that arises is random. Cultured networks of neurons 

are also prone to unnatural spontaneous activity patterns, such as epileptiform 

activity. 

An alternative to culturing neurons is to prepare acute slices from the brain. 

These slices are typically a few hundred micro metres thick, and are stored in a 

specially prepared oxygenated salt solution with glucose before being transferred 

to a recording chamber. The recording chamber is constantly perfused with fresh 

maintenance solution. Acute slices allow the gross anatomical structure of the 

area under study to be quickly identified. Electrode placement and recording is 

then a relatively straight-forward process, and stable recordings may be made 

for several hours. A schematic diagram of a hippocampal slice, and a typical 

experimental set up, is shown in Fig. 2.1. The disadvantages of slice recordings 

are that the preparation is silent, with no background activity, and has under­

gone a massive loss of connectivity compared to its normal state in vivo. The 

absence of sustained, low-level activity can alter conductance levels and have 

important consequences for synaptic integration. The loss of connectivity means 

that each cell receives a fraction of the inputs it once did, and many of these 

inputs may have played modulatory roles. The extracellular environment is also 

very different to that in vivo, with the maintenance solution containing only the 

absolute minimum number of constituents. Finally, the slicing process itself may 

also traumatise the neurons under study. 

A third alternative is to record directly from neurons in vivo. This is a much 

more difficult task than in culture or slice experiments. In deep recordings, indi­

vidual neurons cannot be identified with certainty until after the experiment has 
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been concluded, the brain area stained, and the animal sacrificed and examined. 

Maintaining stable recordings can also be difficult, especially in an awake animal, 

with the electrodes having to be carefully mounted on the animal's skull. The 

natural expansion and contraction of the brain due to the circulation of blood 

can also cause recording electrodes to be unstable. This effect cannot be pre­

vented without stopping the heart, killing the animal in the process. The main 

advantages of recording in vivo are that the neurons under study are relatively 

intact, with at least some level of background activity, and are supported by their 

normal extracellular environment. This is advantageous when performing plas­

ticity experiments, as the neuronal circuits exist in a more natural environment. 

It is important, however, to remember that an applied stimulation protocols 

will be superimposed on the natural background activity and that there will be 

some interaction between the two. Indeed, the appearance of apparently non­

input-specific LTD in adult rat hippocampal neurons may be attributable to the 

presence of natural activity patterns not present in slice or culture preparations 

(Doyere et aI., 1997). 

In the three methods described above, there are distinct advantages and disad­

vantages. The expression of plasticity may be influenced to some degree by the 

choice of experimental preparation. Results must therefore be carefully inter­

preted and placed within their experimental context. 

2.3 Experimental Basis of Neuronal Plasticity 

A great body of published work has documented the various forms of plasticity 

that may be expressed in a variety of experimental preparations. We briefly 

discuss some general experimental issues before moving on to consider individual 

experiments. 

As briefly discussed in Chapter 1, there are periods during development when 

neuronal plasticity can be rather dramatic, such as during the refinement of 

ODCs (Rubel and Wiesel, 1962, 1965, 1969, 1977). The age of the animal, and 

its stage of development, may therefore have important consequences for the 

kinds of plasticity observed. Table 2.1 sets out approximate conventions for de­

scribing the age of a rat used in an experiment. Naturally, these definitions 

are slightly arbitrary but they remain useful for establishing the context within 

which a particular experimental result should be considered. Experiments are 

often performed on the hippocampus. This is partly due to the relative ease 

with which the hippocampus may be accessed, and partly due to the observa­

tion that plasticity may be readily induced across hippocampal synapses. The 

hippocampal formation is shown in Fig. 2.2. 
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Stage I Typical age range I 
Neonatal 6-20 days 
Juvenile 11-35 days 

Adult 5-10 weeks 
Aged 20-24 months 

TABLE 2.1: The typical conventions for describing the developmental stages 
of rats, and the approximate age ranges. Such conventions are, by necessity, 

slightly arbitrary in nature. 

FIGURE 2.2: The hippocampal network. Information flow is principally uni­
directional, with input from the entorhinal cortex (EC) via the medial- and 
lateral perforant paths (MPP and LPP, respectively), forming synapses with 
the CA3 and dentate gyrus (DG) regions. Mossy fibres (MF) connects the DG 
to CA3, and the CA3 in turn is connected to the CAl pyramidal cells via the 
Schaffer collateral pathway (SC). Additional connectivity between CA3 and the 
contralateral CAl region is via the associational commissural pathway (AC). 
The CAl neurons also receive input directly from the perforant path , and make 
connections with the subiculum (Sb). These neurons in turn send axons back 

into the EC. 

Early investigations into long-term plasticity invariably relied upon extracellular 

stimulation of groups of presynaptic afferents at various frequencies to evoke 

changes in the level of postsynaptic response. Initiating an extended train of 

pre- or postsynaptic action potentials is referred to as tetanic stimulation. High 

frequency tetanic stimulation (HFS) typically refers to stimulation at rates in 

the region of tens of Hertz, while low frequency tetanic stimulation (LFS) refers 

to rates of only a few Hertz. A number of experiments also use what is known 

as a "theta burst" stimulation pattern to induce neuronal plasticity. Such a 

protocol typically consists of several (10-15) bursts of stimulation, delivered at 

a low frequency (perhaps 5Hz). A burst will consists of a few (4-5) spikes at a 

high frequency (say, 100Hz). 
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In many cases, a variety of pharmacological manipulations are made once the in­

duction of plasticity is reliably demonstrated. Typical treatments include the 

blocking of ionotropic N-methyl-D-aspartate-receptors (NMDA-receptors) us­

ing the NMDA-receptor antagonist AP-5 (or the more active form, D-AP-5). 

Another, less common manipulation, is the blocking of metabotropic NMDA­

receptors (mGluRs) with alpha-methyl-4-carboxyphenylglycine (MCPG). Other 

treatments include the application of nimodipine to block L-type channels, or 

the injection of BAPTA or EGTA (fast and slow calcium buffers, respectively). 

The aim of these pharmacological treatments is to attempt to identify some 

of the subprocesses required for the induction and expression of the plasticity, 

perhaps shedding light on its underlying mechanism. For example, both NMDA­

receptor-dependent and independent forms of LTD apparently coexist in the rat 

hippocampus (Oliet et al., 1997), and to observe one but not the other requires 

the use of an NMDA-receptor antagonist. 

Although, in the majority of cases, plasticity is confined to the stimulated inputs, 

some experimental results suggest that plasticity may spread to other, unstim­

ulated inputs synapsing onto the same target cell (Doyere et al., 1997). This 

spreading of plasticity to unstimulated inputs is commonly referred to as "het­

erosynaptic plasticity" in the literature. Here we prefer the terms input-specific 

(IS) and non-input-specific (NIS). This terminology explicitly acknowledges the 

fact that the plasticity observed in these experiments is due to changes in col­

lections of input, rather than changes at individual synapses. 

\Ve now review a range of experimental results, and summarise their main find­

ings. 

2.3.1 Early LTP /LTD Experiments - High and Low Frequency 
Tetanic Stimulation 

Early investigations into long-term plasticity tended to rely upon extracellu­

lar stimulation of groups of presynaptic afferents at various frequencies to evoke 

changes in the level of postsynaptic response. At the time, it was widely believed 

that information transfer in biological networks took place in a manner based 

purely on the firing rates on the participating neurons. The presynaptic afferents 

were therefore always stimulated at some determined frequency, without consid­

ering the timing of individual action potentials. Recently, it has been shown that 

the precise pattern of pre- and postsynaptic spiking, rather than the average rate 

of spiking, may govern the expression of plasticity, raising the possibility that 

many early results on LTP and LTD may need careful reinterpretation. 
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FIGURE 2.3: Input specific LTP and LTD of Schaffer collateral inputs to CAl 
rat hippocampus in response to sustained presynaptic stimulation (900 pulses) 
at various frequencies. As the frequency of stimulation increases, the magnitude 
of the NMDA-receptor-dependent LTD is reduced, eventually reversing and 
becoming LTP as a threshold is passed. The data points were recorded 30 
minutes after conditioning, with the number of samples, n :::: 5, for each point 

(from Dudek and Bear (1992)). 

In the rat hippocampus, groups of Schaffer collateral inputs to CAl reliably 

display NMDA-receptor-dependent LTD in an input specific manner, after an 

initial transient potentiation, by sustained low frequency presynaptic stimulation 

(Dudek and Bear, 1992). The frequency dependence of this form of plasticity is 

shown in Fig. 2.3. Increasing the frequency of stimulation saw the magnitude of 

LTD decrease, eventually reversing and becoming a LTP as a threshold frequency 

was passed. The crossover point, where depression changed into potentiation, 

fell at a presynaptic stimulation rate of around 10 Hz. A theta-burst stimulation 

pattern was shown to trigger LTP in the same connections (Dudek and Bear, 

1993). Fig. 2.4 shows the time course of the recorded postsynaptic response to a 

series of alternating theta-burst and LFS stimulation protocols. The potentiation 

was reversible, and could be saturated by repeated application of the stimulation 

protocol. 

The developmental dependency of HFS-LTP and LFS-LTD has also been exam­

ined. In rats, the magnitude of LTD declines with age (Dudek and Bear, 1992) 

and, in adult rats, LTD is apparently absent (Wagner and Alger, 1995) but may 

be uncovered by applying GABAA anatagonists (a treatment which had no effect 

on young LTD, possibly indicating a developmental change in the mechanism of 

plasticity). In aged rats, input specific NMDA-receptor-dependent LTD is once 

again expressed (Norris et al., 1996). LTP triggered by HFS is apparently uni­

form across all ages (Norris et al., 1996). 

Other, apparently non NMDA-receptor-dependent forms of neuronal plasticity 
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FIGURE 2.4: Time course of the recorded excitatory postsynaptic potential 
(EPSP) taken from a single experiment using Schaffer collateral inputs to 
CAl in the rat hippocampus. Presynaptic stimulation was in the form of 
low-frequency tetani (LFS) or theta-burst stimulation (TBS). The theta-burst 
stimulation reliably triggers LTP, which may be reversed by subsequent LFS. 
Subsequent TBS will repotentiate the same connections, demonstrating that 
the plasticity was, in this case, reversible. The TBS-LTP could also be sat­
urated by repeated application of the stimulation protocol (from Dudek and 

Bear (1993)). 
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have been observed, and appear to coexist alongside NMDA-receptor-dependent 

types in CAl hippocampal pyramidal cells (Oliet et al., 1997). In neonatal 

and juvenile rats, blocking NMDA-receptors (via application of the antagonist 

D-AP5) gave rise to a long-lasting depression. This depression was, however, 

dependent on the activation of metabotropic glutamate receptors (mGluRs). 

This mGluR-LTD was input specific, most easily produced in small inputs, and 

required at least some postsynaptic depolarisation. 

Experiments on hippocampal neurons have also been performed on adult rats 

in vivo (Doyere et al., 1997). Stimulation of the medial and lateral perforant 

pathways (MPP and LPP) in an awake animal showed that not all activity 

dependent changes occurred in an input-specific manner. As Fig. 2.5 shows, 

weak HFS of the LPP caused those connections to potentiate, a potentiation 

accompanied by a depression of the unstimulated MPP pathway. The MPP 

depression could be reversed by subsequent HFS, and there was no correlation 

between the magnitude of the LPP-LTP and the MPP-LTD. Unlike experiments 

performed using slices or cultured neurons, the patterns of activity used to induce 

plasticity were superimposed onto a natural level of background firing. The 

presence of background firing in experimentally unstimulated inputs may go some 

way towards explaining the non-input-specific nature of some of these results, 

as they are not truly "silent". As discussed above, neurons in vivo also have 

slightly altered conductance levels due to sustained background activity. This 

may result in small, but significant, differences in synaptic integration. 



20 

80 
60 
40 

20 
o 

-20 
-40 

-60 

Chapter 2 Experimental Basis of Neuronal Plasticity 

LPP 

30 min 
, 
_
'i) _' I. • 1 :' [J 1 
: 1/-1- q If ~~#1~ ~) ~~ 

~~-------------------~-----~--~ 
~~~~~+ 

I , 
1 2 Days 3 6 8 

FIGURE 2.5: An in vivo plasticity experiment using adult rat hippocampal 
neurons. Sustained stimulation of the lateral perforant pathway (LPP, dashed 
line) results in a robust LTP of the recorded EPSP (open circles) accompanied 
by LTD of the unstimulated medial perforant pathway (MPP) EPSP (filled 
circles). Note the decay in amplitude of the remaining plasticity over the 

course of several days (from Doyere et al. (1997)). 

2.3.2 Later LTP /LTD Experiments - Bursts of Pre- and Postsy­

naptic Action Potentials 

Later experiments on LTP /LTD began to show that sustained presynaptic stim­

ulation, in the form of a tetanus, was not always required to trigger afferent plas­

ticity. Using shorter stimulation protocols, the first indications of a time window 

for interaction of pre- and postsynaptic events began seen in the hippocampus 

(Debanne et al., 1994), goldfish Mauthner cells (Yang and Faber, 1991), neocor­

tex (Markram et al., 1997), and somatosensory cortex (Egger et al., 1999; Feld­

man, 2000). Long-term depression has also been shown to operate at inhibitory, 

GABA-ergic connections in the hippocampus using bursts of presynaptic action 

potentials (Fitzsimmonds et al., 1997). 

In guinea pig hippocampal slices, pairing a presynaptic burst of action poten­

tials with a short period of postsynaptic depolarisation can reliably trigger LTP 

of CAl inputs (Gustafsson et al., 1987). The LTP was input specific, NMDA­

receptor dependent, had a magnitude dependent on the number of postsynaptic 

action potentials triggered during the presynaptic burst, and could be occluded 

by prior tetanisation. Occlusion is often taken as evidence that two protocols 

evoke the same underlying mechanism, and, by extension, evoke the same type 

of LTP. The first indication of a time window for interaction of pre- and post­

synaptic firing was also shown, with the burst of presynaptic action potentials 

having to precede the postsynaptic depolarisation by less than 400ms. Decreas­

ing the separation time increased the magnitude of LTP, and the exponential-like 

dependence on the time difference of pre- and postsynaptic stimulation is shown 
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FIGURE 2.6: Timing-dependence of the LTP expressed by inputs to guinea pig 
CAl hippocampal neurons. Pairing a presynaptic burst of action potentials 
with a short period of postsynaptic depolarisation can reliably trigger LTP of 
CAl inputs, provided the burst of presynaptic action potentials precedes the 
postsynaptic depolarisation by less than 400ms. The horizontal axis represents 
the time delay between pre- and postsynaptic stimulation, with negative val­
ues representing the case where presynaptic stimulation precedes postsynaptic 
stimulation. The vertical axis is the percentage change in recorded EPSP (from 

Gustafsson et al. (1987)). 
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in Fig. 2.6. A second protocol, where the order of pairing was reversed, using a 

lOOms time difference was ineffective in inducing any plasticity. 

The timing dependence of LTD initiation was later investigated in hippocampal 

slice cultures, where Schaffer collateral inputs to CAl were shown to exhibit 

associative LTD from repeated LFS when coming 800ms after a 240ms postsy­

naptic depolarisation (Debanne et al., 1994). This depression was input specific, 

NMDA-receptor-dependent and could be reversed by subsequent induction of 

LTP. It could also be induced at previously potentiated connections. At time 

a difference of 2400ms there was no measurable change. When LTD did occur, 

the magnitude of depression depended On time between pairing and on duration 

of depolarising pulse. Reversing the order of pairing, and triggering LFS before 

the postsynaptic depolarisation, led to LTP. Thus, the same stimulation protocol 

could lead to potentiation or depression depending on the order of events. Simi­

lar protocols have also been shown to trigger LTD in inputs to goldfish Mautlmer 

cells (Yang and Faber, 1991). 

In neonatal rats, pyramidal cells in layer five (LV) of the neocortex showed an 

NMDA-receptor-dependent LTP in response to pairing bursts of four presynaptic 

action potentials with postsynaptic depolarisation and spiking (Markram et al., 

1997). The magnitude of LTP showed a strong frequency dependence, shown in 

Fig. 2.7, with a sharp onset at 10Hz reaching saturation at 30Hz. LTP could 
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FIGURE 2.7: The effect of pairing bursts of four presynaptic action potentials 
with postsynaptic de polarisation and spiking in reciprocally coupled pyramidal 
cells from layer five (LV) of the neocortex of neonatal rats. The LTP induced 
by this protocol displays a noticeable frequency dependence, with a sharp onset 
of LTP at 10Hz and reaching saturation at 30Hz (from Markram et al. (1997)). 

also be obtained by pairing single action potentials with postsynaptic depolari­

sation. It was the interplay of pre- and postsynaptic spiking that triggered these 

changes, as presynaptic bursts or postsynaptic depolarisation alone, or postsy­

naptic voltage clamping (-30 to -10mV), had no effect. An extension of this 

experiment using two bidirectionally connected cells showed that it was the tim­

ing of the pre- and postsynaptic action potentials that determined the direction 

of plasticity, and that spiking had to occur in a relatively narrow time window 

of around lOOms. 

LTP and LTD have also been observed in thalamocortical slices from the so­

matosensory cortex of neonatal rats (Egger et al., 1999). The somatosensory 

cortex deals with tactile stimuli, with a characteristic barrel structure in L4 

processing input from whisker sensory neurons. Simultaneous dual whole-cell 

recordings were made from spiny L4 neurons, and pre- and postsynaptic spike 

bursts were paired at different time delays. At delays of less than around 25ms, 

LTD was elicited in the L4 connections. Reversing the order of stimuli, with the 

postsynaptic burst occurring before the presynaptic burst, gave exactly the same 

result. The critical window for interaction of these spike bursts was therefore 

symmetric, consisting of a single LTD window spanning the origin. No LTP was 

observed for any timing difference, which is very different to the anti-symmetric 

curve observed in many other preparations (such as L4-L2/3 connections in Sl 

(Feldman, 2000), or connections between hippocampal neurons (Bi and Poo, 

1998)). As the frequency of spiking within a burst changed, the magnitude of 

the LTD was altered, at 1Hz a much smaller LTD was observed compared to 
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10Hz or 20Hz. Pairing using 50Hz-bursts was ineffective in inducing plastic­

ity. The LTD was NMDA-receptor independent, but did depend upon group II 

mGluRs. As in other experiments, neither pre- nor postsynaptic trains of action 

potentials were individually effective in triggering plasticity. 

The induction of LTD at both glutamatergic and GABA-ergic synapses has 

been characterised using whole-cell recordings from cultures of embryonic rat 

hippocampal neurons (Fitzsimmonds et al., 1997). Presynaptic stimulation con­

sisted of 1 second trains of action potentials at 5 Hz. When paired with sustained 

postsynaptic depolarisation to -50 m V the glutamatergic connections reduced in 

strength, as evidenced by a reduced EPSC. GABA-ergic connections responded 

to this protocol in a similar manner, with a persistent reduction in the inhibitory 

postsynaptic potential (IPSP). The LTD of glutamatergic inputs was abolished 

by the presence of AP-5, but the GABA-ergic LTD was unaffected. These re­

sults suggest that GABA-ergic LTD at hippocampal synapses is NMDA-receptor 

independent. 

2.3.3 Timing-dependence in Neuronal Plasticity 

Some of the first indications of timing-dependence of plasticity came from ex­

periments using presynaptic bursts of action potentials (Gustafsson et al., 1987; 

Debanne et al., 1994), where the presynaptic burst had to arrive within around 

400ms of postsynaptic depolarisation to evoke any change. A more detailed ex­

amination of this timing-dependence, using single pre- and postsynaptic spikes, 

soon followed. A critical window for the interaction of pre- and postsynaptic 

spikes has been observed in a variety of species, including the Mormyrid fish 

electro-sensory lobe (Bell et al., 1997), at xenopus laevis tadpole retino-tectal 

synapses (Zhang et al., 1998), between rat hippocampal pyramidal cells (Bi and 

Poo, 1998), and in the rat somatosensory cortex (Feldman, 2000). These tim­

ing experiments generally use pre- and postsynaptic current injections to trigger 

spiking, removing the need for sustained postsynaptic depolarisation. 

One of the first timing experiments used medium ganglion cells from Mormyrid 

fish electrosensory lobe slices (Bell et al., 1997). These cells are Purkinje-like, 

receiving many inputs, and display a broad spike in response to depolarisation 

beyond a threshold. Presynaptic stimulation at fixed times (250ms or 500ms) 

was paired with a postsynaptic spike evoked at various timings. A window for the 

interaction of the pre- and postsynaptic spikes was seen, approximately 200ms 

in width. That is, if the pre- and postsynaptic spikes were separated by more 

±100ms no changes occurred. The most striking feature of this time window, 

shown in Fig. 2.8, was that negative spike timings, where the presynaptic spike 

followed the postsynaptic spike, gave rise to LTP while positive spike timings let 
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FIGURE 2.8: Percentage change in measured EPSP amplitude plotted against 
the delay between pre- and postsynaptic stimulation after repeated pairing 
of pre- and postsynaptic spikes in Purkinje-like medium ganglion cells from 
Mormyrid fish electrosensory lobe slices. A window for the interaction of the 
pre- and postsynaptic spikes is clearly seen, of approximately 200ms width. 
The window is of opposite polarity to similar spike timing windows seen in the 

hippocampus (Bi and Poo, 1998) and cerebellum (from Bell et al. (1997)). 

to LTD. Interestingly this is of opposite polarity to similar spike timing windows 

seen elsewhere in the hippocampus (Bi and Poo, 1998). There is a sharp transi­

tion between the two phases near spike timings of Oms, approximately lOms in 

width. As observed in the majority of plasticity experiments, pre- or postsynap­

tic synaptic action potentials alone evoked no significant change, showing that 

it is the interaction of the two that drives changes in connection strength. 

Very similar results have been produced using xenopus laevis tadpoles (stage 

40-41), where whole cell perforated patch recordings were made from tectal cells 

in vivo (Zhang et al., 1998). Stimulation of the retina at two distinct sites 50-150 

micro metres apart saw additive, convergent input to tectal cells, as is expected 

at this stage of development. Repeated stimulation of retina followed closely by 

tectal spiking led to input-specific, NMDA-receptor-dependent LTP. Again, pre­

or postsynaptic spiking alone caused no change, and clamping the postsynaptic 

cell at -70m V blocked all changes. The level of LTP increased with the num­

ber of pairings, eventually reaching a saturation level, and was independent of 

the frequency of pairings or manner of stimulation (such as a theta-burst stim­

ulation). The critical window for interaction of pre- and postsynaptic events is 

shown in Fig. 2.9. Here, the critical window was 200ms wide, with maximum 

LTP magnitude (occurring at small spike-time time differences) approximately 

twice that of the maximum LTD magnitude. 

A similar critical window for interaction of pre- and postsynaptic events was 
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FIGURE 2.9: Plasticity induced by repeated pairing of pre- and postsynap­
tic spikes across xenopus laevis tadpole retino-tectal connections in vivo. The 
percentage change in EPSP amplitude, measured 10-30 minutes after condi­
tioning, is shown against the delay between pre- and postsynaptic stimulation. 
The observed critical window for interaction is very similar to that observed 
in the hippocampus. Note that the definition of f)"t used by the authors is the 
opposite of the usual convention. This reflects the curve in the y-axis compared 

to Fig.2.8 and Fig. 2.10 (from Zhang et al. (1998)). 
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also observed in the experiments of (Bi and Poo, 1998) on embryonic rat hip­

pocampal cell cultures. Whole cell perforated patch recordings were made both 

the pre- and postsynaptic cells, and both were held in a current clamp to al­

low spiking to be initiated on demand. A reasonably precise investigation of 

the timing-dependence of plasticity across a single connection could therefore be 

made. Positively correlated spiking, where presynaptic spiking precedes post­

synaptic spiking, led to LTP. Negatively correlated spiking, where the order is 

reversed, led to LTD. Both LTP and LTD were NMDA-receptor-dependent. Both 

positively and negatively correlated spiking were insufficient to elicit plasticity 

at glutamatergic presynaptic neurons synapsing onto GABA-ergic target cells, 

suggesting that this form of LTP /LTD is target specific. The potentiating proto­

col failed for strong inputs, while depression was independent of initial strength. 

The critical window for interaction is shown in Fig. 2.10. In this experiment, 

the window was ±40ms in width with a narrow 5ms transition zone. Using ni­

modipine to block L-type channels, it was shown that this form of LTD required 

activation of dendritic L-type calcium channels, while LTP is only facilitated by, 

not dependent on, their activation. 

Synapses from L4 to L2/3 neurons from the somatosensory cortex of juvenile 

rats also display a critical window for the interaction of pre- and postsynaptic 

spiking (Feldman, 2000). In this study, L4 afferents received extracellular stim­

ulation and whole cell recordings form their target pyramidal cells were made. 

The connections were thus contained inside a particular column of a barrel. An 
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FIGURE 2.10: The critical window for induction of LTP and LTD using re­
peated pre- and postsynaptic spiking, for embryonic rat hippocampal cell cul­
tures. The percentage change in measured EPSP is plotted against the spike-

timing difference (from Bi and Poo (1998)). 

asymmetric critical window, of the same polarity as seen in Bi and Poo, was 

observed but with a dramatically extended LTD phase (more than three times 

the size of the corresponding LTP phase). This suggests an overall dominance 

of LTD over LTP, a hypothesis confirmed when uncorrelated pre- and post­

synaptic spiking was seen to evoke an overall depression of connections. The 

NMDA-receptor antagonist AP-5 blocked the original LTP /LTD, but in addi­

tion unmasked an NMDA-receptor-independent LTD window at positive spike 

timings. Throughout this study, inhibition was blocked using GABAA antago­

nists. Allowing inhibition did not affect the shape of the LTP /LTD window, but 

lowered the magnitude of both the potentiating and depressive phases. 

2.4 Heterogeneity in Neuronal Plasticity 

The complexity of activity-dependent changes is apparent from the variety of 

experimental results discussed above. Several further issues surround the in­

terpretation of this data. For example, it has been suggested that the history 

of afferent activity can influence subsequent plasticity expression (Holland and 

Wagner, 1998), an effect known as meta-plasticity. Several studies have also 

examined the possibility that individual connections do not all follow the same 

plasticity rule, but rather form a heterogeneous population (Debanne et al., 1998, 

1999). An experiment in which groups of afferents are stimulated will therefore 

probe only the "average" plasticity rule of that population of inputs. Such an av­

erage plasticity is not necessarily respected by individual inputs, but may emerge 

as a ensemble property of the system. It may also be the case that not every 

input may actually be capable of undergoing plasticity. More recently, studies of 
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plasticity across individual inputs have raised the possibility that inputs change 

their strength in an all-or-none manner (Petersen et al., 1998; O'Connor et al., 

2005). 

2.4.1 Metaplasticity 

A particular stimulation protocol can sometimes have an effect on the plasticity 

produced by subsequent stimulation. This activity-driven change in the under­

lying plasticity rule is termed metaplasticity. The effect of prior stimulation 

on subsequent LTP /LTD induction has been explored in Schaffer collaterals in 

adult rat hippocapal slices (Holland and Wagner, 1998). The effect of priming 

was explored by stimulating afferents with a HFS in the presence of D-AP5. The 

D-AP5 ensured that the NMDA-receptor-dependent LTP that would typically 

follow such a HFS is suppressed. Priming had a clear effect on subsequent LTD 

induction, with an the primed input showing a greater degree of LTD compared 

to an un primed input. This facilitation could also operate in a non-input-specific 

manner, where priming of input A caused a greater LFS-LTD in unprimed input, 

B. This suggests that the presence or absence of priming in other experiments 

may affect their results, and that meta-plasticity can operate in both input­

specific and non-input-specific ways. 

2.4.2 Heterogeneity of Individual Inputs 

Single connections, rather than groups of afferents, have been studied in neonatal 

rat hippocampal slice cultures, where recordings were taken from CA3 pyramidal 

cells (Debanne et al., 1998). Pairing single presynaptic burst with a 240ms post 

depolarising current pulse, which allowed postsynaptic spiking, led to LTP as 

previously shown. This LTP is due to a mixture of mossy fibre and CA3 inputs. 

NMDA-receptor-dependent LTP of CA3-CA3 connections was shown using the 

same protocol by using sharp micro electrodes to impale two CA3 neurons. Input­

specific, NMDA-receptor-dependent LTD of these CA3 pairs could be evoked 

using LFS. LTP and LTD could be evoked with single pre- and postsynaptic 

spike pairs, time differences of Oms led to LTD and time differences of 15ms 

led to LTP. Pairing short postsynaptic bursts with single presynaptic action 

potentials 800ms later led to a large LTD, as did pairing a single postsynaptic 

spike with a single presynaptic spike at 15ms and 70ms, but not 200ms. The 

magnitude of change was similar in both cases, so the burst of postsynaptic spikes 

seems to have extended the critical window. In all cases, the changes appeared 

to be bidirectional with an LTP protocol able to reverse a previously applied 

LTD protocol. 
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In the same preparation, pairing single presynaptic action potentials with bursts 

of postsynaptic action potentials caused LTP, and tetanisation by LFS of presy­

naptic afferents caused LTD (Debanne et al., 1999). Not every connection dis­

played plasticity, but this was not due to a lack of postsynaptic NMDA-receptors. 

There was also some variety in the time course of plasticity, over half of unitary 

connections showed an initial transient LTP phase which then stabilised at a 

lower more persistent level. The remainder had no transient phase, and had a 

sustained LTP level of the same magnitude. A mixture of transient and non­

transient connections were found to innervate the same target neuron, so such 

differences are apparently properties of the inputs themselves. The magnitude 

of LTP was very variable at unitary connections, ranging from 100% to 650%. 

The same protocol using groups of afferents triggered LTP ranging from 100% 

to 250%, reflecting the averaging taking place across plastic and non-plastic af­

ferents. There was a significant inverse correlation between the initial size of the 

connection and the magnitude of change, with smaller strength connections being 

strengthened by a greater relative amount. The relationship between initial size 

and amplitude of plasticity was approximately exponential. LTP induction failed 

altogether at about a quarter of unitary connections in both CA3-CA1 and CA3-

CA3, but in some cases this may have been due to previous saturation of LTP 

rather than those connections being truly nonplastic. There was no correlation 

between this failure and initial EPSP size, and some inputs which failed to show 

LTP still displayed transient potentiation. Both LTP and non-LTP capable con­

nections were made onto same postsynaptic neuron, with the ability to express 

LTP apparently a property of the presynaptic cell. With double-monosynaptic 

connections (where single input forms two separate groups of contacts with tar­

get) it was possible to get LTP of the long latency response, but no change in 

the short latency response. This suggests, further, that not all synapses from a 

single input can display LTP. 

2.4.3 All-or-None Potentiation 

Physiological neuronal plasticity is generally considered to occur in a graded 

fashion, with more potentiation being evoked the longer the stimulation proto­

col continues. Recently, this view has been challenged by the observation that 

changes in input strength can occur in an all-or-none manner. 

All-or-none potentiation has been investigated in hippocampal slices from neona­

tal rats (Petersen et al., 1998). Recordings were taken from patch clamped CAl 

neurons, and Schaffer collaterals from CA3 were stimulated with an extracellular 

electrode placed in the stratum radiatum. The stimulation protocol consisted 
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of tetanic stimulation at 1Hz. Pairing this stimulation with postsynaptic de­

polarisation to Om V saw a persistent increase in input strength. Repeating this 

protocol caused a further increase in input strength, as observed in other studies. 

To investigate the plasticity of single inputs, the magnitude of this stimulation 

was then reduced until the postsynaptic response disappeared. The magnitude 

of stimulation was then increased until a postsynaptic EPSC was recorded. This 

EPSC appeared in an abrupt fashion, and was therefore likely due to the acti­

vation of a single presynaptic input rather than a group of inputs. Using this 

minimal stimulation protocol, the result of pairing with sustained postsynap­

tic depolarisation to Om V was explored. The pairing took place in two phases. 

In the first phase, the putative single input was stimulated 10 times then the 

change in EPSC assayed. In the second phase, the input received a further 100 

pairings. 25 single inputs were explored in turn. The single inputs were either 

potentiated by the first 10 stimuli, the second 100 stimuli, or not at all. No 

single input was potentiated by both the 10 and 100 stimuli, and the level of 

potentiation for inputs potentiated by 10 stimuli was commensurate with the 

level experienced by inputs potentiated by 100 stimuli. A closer examination 

of the time course of the potentiation showed it to be step-like, occurring in as 

little as 10 seconds. Overall, recordings were maintained for 400 seconds. There 

was considerable variation in the number of stimuli that had to be delivered to a 

single input before this rapid potentiation occurred, with inputs taking from 3 to 

15 stimuli before potentiation occurred. Thus, in contrast to the result of stim­

ulating multiple inputs, the potentiation of this putative single input occurred 

in an all-or-none fashion. It would appear that such binary changes are not ob­

served when a population of inputs are stimulated, as the individual variations 

are averaged to produce some total change which is apparently graded. 

The ability of depression as well as potentiation to occur in a step-like man­

ner has also been explored in neonatal rat hippocampal slices (O'Connor et al., 

2005). Again, recordings were made from CAL pyramidal cells, and presynaptic 

stimulation was achieved by placing an extracellular electrode in the stratum 

radiatum. A similar minimal stimulation protocol to that described above was 

used to stimulate putative single inputs. In this experiment, the response to 

changes in stimulation strength and the latency throughout the experiment were 

also used as indicators that a single input was being stimulated rather than a 

group of inputs. The LTP protocol consisted of presynaptic stimulation at 10Hz, 

with every 10th spike was paired with postsynaptic depolarisation to Om V for 

700ms, repeated 40 times. The LTD protocol consisted of the same 1Hz stimu­

lation, but this time every 3rd spike was paired with postsynaptic depolarisation 

to -55m V, and the pairing was repeated 130 times. Naive inputs either po­

tentiated or depressed depending on the protocol, or did not change. The time 
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FIGURE 2.11: All- or-none plasticity at putative single inputs in the hippocam­
pus. (Top) EPSC time series during A LTP and B LTD stimulation protocols. 
The vertical line shows the estimated onset time. (Bottom) same data as top, 
but binned into 10 data points per point. The fitted line is a best-fit ramp 
function, with an onset of approximately 12 seconds (from O'Connor et aJ. 

(2005)). 

course for the induction of plasticity is shown in Fig. 2.11. Under both poten­

tiation and depression protocols, once plasticity had been initiated a step-like 

change in input strength was observed, with changes appearing over the course 

of a few seconds. Initiation of plasticity was quite variable, sometimes taking 

many pairings to appear. On average, potentiation took 8 pairings to appear (a 

result consistent with Petersen et al. (1998)), and depression took on average 61 

pairings. Recordings were maintained for an average of 10 minutes. 

A comparison of inputs which could be potentiated and those which could be 

depressed showed that inputs existed in apparently two distinct states, of "low" 

or "high" strength. Inputs of high strength could not potentiate further, but 

could sometimes depress. Conversely, inputs of low strength could not depress 

but could sometimes be potentiated. According to this definition, in a naive slice 

approximately 71 % inputs were of low strength, and 21 % were of high strength. 

The value of low and high strengths was different for different inputs, but in 

all cases only two possible states were available. A further characterisation of 

the occupancy of these two states in naive slices was performed by comparing 

the extracellular baseline recordings of naive , saturated potentiated (via theta­

burst stimulation) and saturated depressed (via LFS) inputs. The same ratio 

of approximately 2:1 in favour of low strength inputs was observed. Thus it 

appears that depression as well as potentiation can occur in a step-like, all-on­

none manner. In addition, inputs may operate as binary switches, being in a 

either a state low strength or a state of high, but not in between. Under such a 
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paradigm, "potentiation" may be interpreted as the transition of inputs from the 

low-strength to high-strength state. Likewise, "depression" may be interpreted 

as the transition from high- to low-strength states. 

These results are interesting, but, as always, must be carefully interpreted. In the 

case of Petersen et al., (1997) the pairing protocol involves clamping the postsy­

naptic cell to Om V for a sustained period of time. Clamping at such pathological 

voltages may strongly influence on the operation of the target neuron and the 

plasticity it expressed. Although in O'Connor et al., (2005) sustained depolar­

isation on the scale of 10 or more seconds is avoided, the stimulation protocol 

still involves a window of depolarisation many times longer than a typical action 

potential rising phase. In addition, recordings in both experiments were only 

maintained for around 10 minutes, raising the possibility that the potentiation 

was transient and not, in fact, LTP. It should be noted, however, that the kinds 

of protocols used have been shown elsewhere to reliably give rise to long-term 

changes in input strengths. 

2.4.4 Functional differences 

Apparently similar forms of neuronal plasticity may, in fact, conceal important 

differences between plasticity in different brain areas. In neocortical L2/3 neu­

rons, a robust increase in EPSP amplitudes is seen following an LTP protocol 

(Buonomano, 1999). However, the first 2-3 postsynaptic responses to a presynap­

tic train were potentiated more than later responses (an effect known as synaptic 

redistribution). That is, a pair of presynaptic pulses 100 ms apart evoke a simi­

larly enhanced EPSPs, but at shorter intervals the first pulse was preferentially 

enhanced. Thus, LTP in the neocortex seems to preferentially strengthen early 

EPSP components. In contrast, this does not appear to be the case in the hip­

pocampus (Buonomano, 1999; Selig et al., 1999). In neonatal rat hippocampal 

slices, the effect of LTP on the postsynaptic responses to a train of presynaptic 

action potentials at Schaffer collaterals was examined (Selig et al., 1999). After 

LTP, all postsynaptic responses were increased by an equal amount, and a similar 

result was obtained for the induction of LTD with all responses decreasing by an 

equal amount. Synaptically coupled CA3-CA3 neurons also displayed this uni­

form increase in postsynaptic response. These differences may reflect important 

functional differences between different brain areas. 
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2.5 Summary 

Experimental work has explored several types of activity-dependent synaptic 

plasticity in a range of species, brain areas, and at several stages of develop­

ment. These experiments are technically very impressive, and have provided a 

rich library of data upon which theoretical studies can draw. However, many 

results are often open to at least some degree of interpretation. This is partly 

due to experimental limitations, and partly due to the complexity of the system 

under study. For example, it is often the case that the neurons under study are 

capable of more than one form of plasticity, so that the protocol chosen to elicit 

measurable changes itself influences the observed result. Experimental results 

are also often subject to a high level of noise, some of which may be unavoidable 

(such as that arising from the unreliability of synaptic transmission). Appar­

ently uncontroversial technical details, such as the choice of perfusion medium 

in slice experiments, can also influence the results. Caution must therefore be 

taken when attempting to generalise data drawn from different experimental 

preparations. 

A theoretically relevant issue is that the kind of neuronal plasticity observed in 

experiment may be unrepresentative of that operating in a more natural set­

ting. For example, given the apparent sensitivity of the system under study, 

and the heterogeneity of the results discussed above, it would be unsurprising 

if the choice of stimulating protocol, and the environment within which it is 

administered, had important consequences on the form of plasticity observed. 

That a plasticity experiment is being performed at all means that the neuronal 

circuit under study has been disrupted in some manner. Indeed, it is possible 

that a large proportion of experimental scenarios are rarely experienced under 

"normal" circumstances, raising the possibility that experimenters are exploring 

a drastically restricted range of neuronal behaviour. A similar, and equally com­

pelling, argument applies to the various pharmacological manipulations that are 

routinely undertaken. Experimental results on neuronal plasticity must therefore 

be taken within their experimental context, being put forth as examples of the 

kinds of behaviour that a coupled pair of neurons may engage in, rather than an 

accurate portrayal of their normal operation. 

In the context of spike-timing results, although there exists compelling evidence 

for the importance of individual spikes in driving neuronal plasticity, it is im­

portant to acknowledge the inherent limitations of the experimental data and 

carefully interpret those findings. That initiating an isolated pre- and postsy­

naptic spike pair leads to the modification of input weights is now an accepted 

experimental fact. However, from a theoretical point of view, this does not 

necessarily mean that a spike-based description is the correct level at which to 
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model the phenomenon. For example, although spike-to-spike interactions may 

be the basic currency of certain plasticity interactions, some averaging of these 

interactions will necessarily occur over longer periods of time. The essential phe­

nomenology of the plasticity, in the form of the learning rule that the interactions 

encode, may therefore be more correctly described at a rate-based level. Thus, 

although spike-timing plasticity results may "real", in the sense that they are 

robust and reproducible, a spike-based description is not necessarily required, 

and in some cases may even be undesirable. We will return to these issues in 

Chapter 6. 





Chapter 3 

Rate-based Models of 

Neuronal Plasticity 

In reviewing models of neuronal plasticity, we find it useful to make a distinction 

between rate-based plasticity rules, where the activity of pre- and postsynaptic 

neurons is described by the recent time-averaged firing rate, and spike-based 

plasticity rules, which involve consideration of individual pre- and postsynaptic 

spiking events. In this Chapter we will discuss rate-based models. In Chapter 4 

we extend our discussion to spike-based models. 

3.1 Rate-based Learning Rules 

Rate-based learning rules take the form of a differential equation describing the 

rate of change of the input weight vector, w(t), as a function of the pre- and 

postsynaptic firing rates. The activity of each neuron is described by a continuous 

variable. The input vector is often denoted u(t), and the postsynaptic rate v(t). 

To simplify the analysis of such models, the firing rates are sometimes defined 

relative to some background level, and may therefore take negative values. Firing 

rates are also sometimes expressed as the ratio of this relative firing rate to the 

average firing rate, in which case they are also dimensionless quantities. 

A simple description of the postsynaptic firing rate, v, as a function of the 

postsynaptic membrane potential, V m , is 

(3.1) 

where g(vm ) is some monotonically increasing function. The monotonic character 

of g( vm ) encodes our expectation that higher levels of postsynaptic depolarisation 
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leads to higher levels of postsynaptic firing. In the simplest case, g( vm ) = Vm . 

The membrane potential, Vm , may in turn be calculated from the input weights 

and input activity levels. In most cases, the simple linear sum 

(3.2) 

is an adequate approximation. Thus, we have that 

v = w(t).u(t), (3.3) 

and the postsynaptic neuron therefore acts as a simple, linear integrator of its 

input where the postsynaptic response is approximated as the simple sum of the 

input weights multiplied by their instantaneous firing rate. The vector nature of 

u(t) and w(t) reflects the fact that multiple presynaptic inputs typically converge 

onto a single postsynaptic target. Although more complicated descriptions may 

be constructed, this minimalist approach adequately captures the basic features 

of postsynaptic firing in an analytically tractable manner. 

3.2 Hebbian Learning 

An early theme in the study of activity-dependent changes in neuronal connec­

tivity was the idea that changes in input weights must be driven by correla­

tions between pre- and postsynaptic firing. The basis of much research into 

correlation-based plasticity rules has been the Hebb rule (Hebb, 1949). The rule 

can be paraphrased by stating "If input neuron A regularly contributes to the 

firing of target neuron B, the connection between the two should be strength­

ened". Such a learning rule was suggested by Hebb in 1949 to be able to drive 

the formation of "neuronal assemblies", collections of inter-connected neurons 

having similar function. At the time, it was a purely theoretical construct, but 

experimental work has since shown that biological mechanisms exist that are 

capable of supporting such processes. Hebbian learning is correlation-based in 

the sense that input A must contribute in some way to the firing of target B. 

We make may make a general formulation of a Hebbian learning rule, then extract 

specific examples from this formulation. We consider local learning rules, so that 

we restrict the dependence of dw;(t)/dt to the local variables w;(t), Ui(t) and v(t). 

We therefore have that 

dw· 
dt" = G(w;,u;,v) (3.4) 
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where G is some unknown function, and we have suppressed the time depen­

dences of Wi, lli and v for clarity (a convention we follow throughout this discus­

sion). Note that it is possible to incorporate a dependence on the history of the 

weights in Eqn.3.4 but we do not consider such cases here. 

Expanding G around lli = V = 0, we have that 

where O(v3 ) represent terms of order 3 or higher. We view this expansion not as 

some approximation of dw;/ dt but rather as a way of neatly encoding a variety 

of rate-based learning rules. Thus, our choice to discard higher order terms is is 

not a statement that these higher order terms are small, but simply that terms 

of order 3 or higher do not interest us in the class of learning rules we consider. 

We therefore concentrate on the lower order terms A to F, and simply note that 

other, more complicated learning rules may be constructed by continuing this 

expansion. 

The coefficients A to F depend on the input weight, Wi, as only Ui and v have 

been expanded. A( Wi) is a constant term, and does not depend on either pre­

or postsynaptic firing. Such a term might be a decay term, proportional to Wi, 

perhaps included to prevent uncontrolled growth of input weights. B(Wi) and 

C(Wi) are multiplied by v and lli, respectively. That is, they represent changes 

induced by pre- or postsynaptic firing alone. Such changes are usually considered 

to be non-Hebbian, as they do not require correlations between pre- and postsy­

naptic firing. E( Wi) and F( Wi) are similarly non-Hebbian, but are multiplied by 

the square of pre- or postsynaptic firing. D( Wi) is the cross term, which picks 

up factors of both lli and v. This term is therefore the most interesting as it 

describes changes that depend on both pre- and postsynaptic firing. 

3.2.1 Basic Hebb-rule 

The basic Hebb-rule can be extracted from Eqn. 3.5 by setting D(Wi) > 0 and 

all other coefficients to zero. This produces the rule 

dWi 
dt = D(Wi)Vlli, (3.6) 

Setting D(Wi) = l/TwVi for simplicity, the rule may be written in vector form as 

dw 
TWill = vu, (3.7) 
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where Tw is the learning time constant. The corresponding anti-Hebbian rule 

may be produced by setting D(Wi) -l/TwVi. It can be seen intuitively that, 

under the basic rate-based Hebb-rule, inputs will strengthen when the product of 

the pre- and postsynaptic firing rates is high. However, as the rule only describes 

potentiation, it always leads to uncontrolled growth of synaptic weights. This 

can readily be seen by examining the derivative of the square of the weight vector, 

Iwl2 = W.w, which gives 

vw.u (3.8) 

In the simple case where we set v = w.u, this becomes dlwl 2/dt ex v 2 , which is 

always non-negative. Thus, inputs will continue to strengthen under the basic 

Hebb-rule without bound, a situation commonly referred to as runaway learning. 

3.2.2 Bounding 

To avoid uncontrolled increase in synaptic strength, upper and lower bounds on 

input weights may be introduced to the simple Hebb-rule. A "soft" bound may 

be implemented in the form of a saturating weight dependence in the coefficients 

of Eqn. 3.5. For example, setting D(Wi) = D(wmax - Wi) reduces the level of 

potentiation and an input weight approaches the upper bound w max . Inputs will 

therefore not potentiated past wmax . A "hard" bound may be implemented by 

replacing (Wmax Wi) with the Heaviside step function H(wmax - Wi). Under 

this formulation, inputs are potentiated normally until they reach the hard upper 

bound then stop evolving. Numerically, such a bound is usually implemented by 

forcing any input weight that crosses the bound to become equal to the limiting 

value. 

Lower bounds may be implemented by modifying any negative coefficients in 

Eqn. 3.5 in a similar manner. Typically, it is common to limit the elements 

of w to be greater than zero to reflect the fact that inhibitory and excitatory 

connections are biologically distinct and one cannot somehow turn into the other. 

Although limiting connection strengths by imposing a hard or soft bounds at 

some upper limit, W max , prevents runaway learning, the dynamics of the under­

lying rule are unchanged. For example, under the simple Hebb-rule we still have 

that dlwl 2 / dt ex v2 ~ O. The input weights will therefore eventually become 

saturated, with every input weights being driven to the upper bound, w max . 
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3.2.3 Pre- and Postsynaptically Gated Rules 

The tendency of the simple Hebb-rule to produce uncontrolled potentiation stems 

from the fact that the rule does not contain any mechanism by which inputs may 

weaken. It is desirable, therefore, to introduce some form of depression into the 

Hebb-rule. This depression must not, however, destroy the potentiation when 

both pre- and postsynaptic firing rates are high. This may be achieved in a 

number of ways. A simple weight decay term may be introduced by setting 

A(Wi) = -AWi' where A is some constant, in Eqn. 3.5. This prevents uncon­

trolled potentiation by pulling back down those inputs which grow too large. 

Alternatively, we may impose thresholds on pre- or postsynaptic firing rates be­

low which depression is induced rather than potentiation. These rules are known 

as pre- or postsynaptically gated rules, depending on which variable acts as the 

controller. The postsynaptic form may be formulated setting D(Wi) = l/Tw and 

C(Wi) = -BvTw in Eqn. 3.5 to give, in vector form, 

(3.9) 

where Bv is the level of postsynaptic firing above which depression switches to 

potentiation. A presynaptically gated rule may be produced by setting D(Wi) = 
l/Tw and B(Wi) = -BuTw in a similar manner, giving 

(3.10) 

where Bu is the presynaptic threshold that determines when an input begins to 

be strengthened instead of weakened. 

Imposing the threshold on postsynaptic firing means that inputs will be modified 

only if they have non zero activity (an input-specific change), with the direction 

of the modification is dependent on the level of postsynaptic activity. With a 

presynaptic threshold, a non-zero postsynaptic activity will weaken even inactive 

inputs, and the changes are therefore termed non-in put-specific. Imposing both 

thresholds simultaneously leads to the undesirable situation where low pre- and 

postsynaptic firing rates leads to potentiation, so in most cases a single threshold 

is used. 

3.3 The Covariance Rule 

Setting the threshold in either the presynaptically gated or postsynaptically 

gated rules to the long-time mean firing rate, so that Bv = (v) or Bu = (u), 
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respectively, and averaging over all training inputs gives a plasticity rule of the 

form 

dw 
TWdj" = Cw (3.11) 

where C = (u(uT - (uT ))) = (uuT ) - (u)(uT ). Thus, C is the input covariance 

matrix, Ci,j (UiUj) (Ui) (Uj) = Cov( Ui, Uj). The rule is therefore known as 

the covariance rule (Sejnowski, 1977). In the case of a postsynaptic threshold, 

this requires that Bv change over time, as v is a function of the input strengths 

and firing rates. 

Despite having the same learning rule on average, the choice of threshold has 

important consequences. Imposing the threshold on postsynaptic firing means 

that inputs will be modified only if they have non zero activity (an input-specific 

change), with the direction of the modification is dependent on the level of 

postsynaptic activity. With a presynaptic threshold, a non-zero postsynaptic 

activity will weaken even inactive inputs, and the changes are therefore termed 

non-input-specific. 

Covariance rules suffer from the same instabilities as a simple Hebb-rule, despite 

allowing depression as well as potentiation, due to positive feedback. This can 

be seen by again examining the rate of change of the square of the input weight 

vector, dJwJ2/dt = 2v( v - (v)), which is proportional, on average, to the variance 

of the output (v2) - (v)2. This quantity is always positive, and the weights always 

grow on average, except in the trivial case when v is constant. In addition, neither 

of the covariance rules are competitive (see section 3.5). 

3.4 The Bienenstock-Cooper-Munro Rule 

The postsynaptic covariance rule does not require postsynaptic activity to drive 

changes in input strengths, only that it is less than the threshold value. Ex­

perimentally, pre- or postsynaptic spiking alone is almost always insufficient to 

induce long-term plasticity (but see Reiter and Stryker (1988)). This observa­

tion is incorporated in an alternative learning rule proposed by Bienenstock, 

Cooper and Munro (Bienenstock et al., 1982). The Bienenstock-Cooper-Munro 

(BCM) rule, which explicitly requires non-zero pre- and postsynaptic activity 

levels, takes the form 

(3.12) 
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where Bv is the threshold on the postsynaptic firing rate above which potentiation 

occurs instead of depression. The rule is Hebbian, in the respect that it is the 

rates of pre- and postsynaptic firing determine if an input is potentiated or 

depressed. At low presynaptic firing rates inputs tend to be weakened, while at 

high presynaptic rates inputs tend to be strengthened. A threshold determines 

the crossover point above which depression turns into potentiation. 

In an earlier work (Cooper et al., 1979), a rule was proposed in which the thresh­

old Bv was fixed. Analysis of this learning rule shows that the dynamics are 

governed by a fixed-plane where dw/dt = 0 (Castellani et al., 1999). This fixed­

plane is unstable, so that perturbations about this plane grow with time. In 

terms of afferent strengths, the phase space is divided into two regions. Above 

the fixed plane afferents are strengthened continually, and runaway learning is 

observed. Below the fixed-plane, afferents are continually weakened and fall to 

zero. Thus, this form of the rule leads to uncontrolled learning in the same way 

as the simple Hebb-rule. 

The BCM-rule introduced the novel idea of allowing the threshold between po­

tentiation and depression to change over time. In the BCM formulation, this 

threshold is a function of the recent time average of the postsynaptic firing rate. 

This stabilises the inputs and prevents unbounded growth by allowing the lo­

cation of the fixed-point to change (Bienenstock et al., 1982; Castellani et al., 

1999). It can intuitively be seen that the critical condition is that the threshold 

grows faster than v as the postsynaptic firing rate becomes large. In one imple­

mentation, this is achieved by allowing Bv to act as a low-pass filtered version of 

v2 , so that 

(3.13) 

where Te sets the time scale for modification of the threshold. The time constant 

Te must be less Tw so that Bv changes faster than v. Fig. 3.1 shows how the 

learning function of the BCM-rule changes as a function of the recent-time­

average of the postsynaptic firing rate. The threshold between potentiation and 

depression slides to adjust the curve in a dynamic manner. 

A sliding threshold also makes the BCM-rule competitive, because a strength­

ening of some inputs raises the output firing rate which adjusts the potentia­

tion/ depression threshold so that other inputs are more likely to weaken. As the 

postsynaptic firing rate is a function of the input weights, the BCM-rule with its 

sliding threshold may be considered to be a form of input normalisation. 

The BCM-rule has been shown, in simulation, to account for the normal and 

deprived development of orientation selection and ocular dominance in the cat 
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FIGURE 3.1: The learning function, rp(c, c), of the Bienenstock-Cooper-Munro 
rule as a function of postsynaptic firing rate, c, and its recent time average, 
C. The threshold between potentiation and depression, Om, slides according 
to difference between the postsynaptic firing rate and some positive constant, 
Co. In the top diagram, c » Co, so that postsynaptic firing is much higher 
than the target level. The learning function is mainly negative, which serves to 
pull input weights back down and lower the average postsynaptic firing rate. 
The solid part of the curve is the region around c, which, from a dynamical 
point of view, is most relevant. In the central diagram, c « Co, so that 
postsynaptic firing has fallen to a low level. The learning function is mainly 
positive, particularly the region around c. Thus, inputs tend to be potentiated 
and the postsynaptic firing rate will increase. In the lower diagram, c ~ Co, 
and the learning function achieves a rough balance between potentiation and 
depression. The critical factor in the formulation of the learning function, rp, is 
the nonlinearity that allows the threshold between potentiation and depression 
to increase or decrease faster than the recent time average of the postsynaptic 

firing rate, c (from Bienenstock et al. (1982)). 
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ORIENTATION 

FIGURE 3.2: Evolution of orientation selectivity under the BCM-rule. (A) 
shows the buildup of selectivity in a system presented with circularly symmet­
rical stimuli. This environment corresponds to orientated bars of light, similar 
to that used in experimental work. The system starts of in a state of low selec­
tivity, then progressively becomes more selective as time goes on. (B) shows 
the final "tuning curve" for the system. The high level of selectivity indicated 
in the system is reflected in the large response of the target cell to one particu­
lar orientation of stimuli to the exclusion of all others (from Bienenstock et al. 

(1982)). 
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primary visual cortex (Bienenstock et al., 1982). Fig. 3.2 shows the development 

of orientation selectivity under the BCM-rule. Cells become tuned to one partic­

ular orientation at the expense of all others (in experimental work, this stimulus 

is typically an orientated bar of light). The model also reproduces experimental 

results with restricted monocular input, where only stimuli with a certain orien­

tation are presented. In this case, all visually responsive cells become tuned to 

the experienced stimulus, or one very close to it. 

If input from two eyes is simulated, the BCM-rule can also reproduce various 

findings on the development and plasticity of ocular dominance. In a simulated 

normal environment, cells become orientation selective and binocularly driven, 

with the same orientation selectivity for each eye (Fig. 3.3A). If the input from 

both eyes is suppressed (binocular deprivation BD, or dark rearing), the cells 

lose all orientation selectivity, but remain driven by both eyes (Fig. 3.3B). If 

the input from one eye is suppressed but not the other (monocular deprivation, 

MD), cells will become orientation selective and monocularly driven, regardless 

of their initial state (Fig. 3.3C). 

3.5 Competition 

The situation where all input weights are driven to some upper bound is unde­

sirable for theoretical reasons, as it limits the amount of information that can 
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FIGURE 3.3: Simulations of various rearing conditions and their effect on ocular 
dominance development under the BCM-rule. Upper and lower panels show 
the response of the simulated target cell to stimuli from the two eyes. (A) 
normal rearing conditions lead to response that is binocular and orientation 
tuned. (B) dark rearing leads to a randomly fluctuating response curve, so 
that there is no orientation tuning. The cell is, on average, driven binocularly. 
(C) monocular deprivation leads to a monocular, orientation tuned response 

that completely favours the open eye. (from Bienenstock et al. (1982)). 

be stored in the network. To prevent the saturation of input weights, it is useful 

to introduce an element of competition into the dynamics of a Hebbian learning 

rule. A learning-rule is said to be competitive if the strengthening of one input 

leads to the weakening of others. 

Competition may be introduced into a Hebbian learning rule in a number of 

ways. The BCM-rule introduces competition by means of a sliding threshold, 

which makes it harder for inputs to potentiate if other inputs are already strong. 

A more direct way of introducing competition is to explicitly add non-Hebbian 

global terms that depend on the input weights. This typically leads to some form 

of input-normalisation. Normalisation may be interpreted as the statement that 

a neuron can support only a fixed total input weight. There are two common 

choices for the global constraint on total input weights, either a constraint on 

their sum or a constraint on the sum of their squares. A normalisation constraint 

may be imposed rigidly at all times, or just once at the end of a period of 

plasticity. 

Input normalisation can drastically alter the outcome of a learning procedure, 

and different normalisation methods may lead to different outcomes. For ex­

ample, subtractive normalisation tends to produce afferent distributions where 

a subset of maximally correlated inputs are saturated to the maximum allowed 

strength, with all other weights falling to zero (Miller and Mackay, 1994). In con­

trast to this "sharpening" effect, multiplicative normalisation has been shown to 
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generate competitive dynamics that lead to "graded" receptive fields, where most 

mutually correlated inputs are represented (Miller and Mackay, 1994). In both 

cases, competitive dynamics can be produced capable of segregating afferents, 

even when those afferents are positively correlated (Elliott, 2003). 

In some cases, the mechanism used to introduce competition also serves to sta­

bilise the growth of input weights, but under other plasticity rules, further sat­

uration constraints must be implemented. Stability is generally a desirable fea­

ture for a learning rule. With unstable dynamics, any useful information that is 

learned will only be stored transiently. 

3.5.1 Subtractive Normalisation 

In this scenario the simple sum of input weights, I:i Wi n.w where n is an N 

dimensional unit vector, is constrained by adding an extra term to the simple 

Hebb rule 

dw v(n.u)n 
TWdt =vu- N (3.14) 

where N is the dimensionality of the input. This is called subtractive normalisa­

tion as the same amount is subtracted from each input, regardless of its weight. 

This rigid normalisation keeps the quantity n.w fixed. This can be seen by 

taking the dot product of Eqn. 3.14 with n to give 

dn.w 
Tw~ = vn.u(l - n.n/N) 0 (3.15) 

as n.n N. This result can be seen intuitively as the second term in Eqn. 3.14 

subtracts the average change in the inputs from each individual input, so that 

the total change is zero. 

Such a rule requires non-local information, in the form of the vector of all in­

put activities, to be available at every input. It is unclear how such non-local 

information could be acquired in a biological setting, and as such subtractive 

normalisation is generally considered to be less biologically plausible than other 

methods of normalisation. A hard lower bound is often imposed in conjunction 

with subtractive normalisation to prevent weights from becoming negative. A 

hard upper bound is also often used, to avoid the otherwise common situation 

where all weights except one are driven to zero. This maximum weight could 

simply reflect the maximum connection strength sustainable by an individual 

input. Competition in very strong under a simple Hebb-rule with subtractive 

normalisation, as weak inputs are depressed by a larger proportion of their size 

than stronger ones. 



46 Chapter 3 Rate-based Models of Neuronal Plasticity 

3.5.2 Multiplicative Normalisation 

Another way of constraining a simple Hebb rule is through multiplicative nor­

malisation. Under multiplicative normalisation, input weights are scaled in a 

manner proportional to their current strength. Applying this normalisation to 

the sum of the squares of input weights gives the Oja rule (Oja, 1982), which 

may be written as 

dw 
TWill = vu (3.16) 

where 0: is a positive constant. This rule involves pre- and postsynaptic firing 

rates and the current input weight, all information that is available locally at 

each input. The stability of the Oja rule can be examined by taking the dot 

product of this equation with the weight vector w to give 

(3.17) 

which indicates that Iwl2 ---) 1/0:, preventing runaway growth. The normalisation 

is thus dynamic, with Iwl2 relaxing to 1/0: over time, rather than than being 

rigidly enforced at every step. Again, competition is present as the sum of squares 

is held fixed. Strengthening of one input will therefore lead to the weakening of 

another. 

3.6 Summary 

Rate-based plasticity rules describe the activity of pre- and postsynaptic neurons 

by the recent time-averaged firing rate. Much of the early work on activity­

dependent neuronal plasticity was conducted within such a framework, including 

that of the Hebb-rule along with its various permutations. 

The learning properties of simple Hebbian-rules have been explored in some 

detail. A common problem amongst early rate-based rules of plasticity is uncon­

trolled growth of input weights. A variety of means of preventing uncontrolled 

growth, such as introducing bounds on input weights, have been explored. Nor­

malisation of input weights, often with the aim of introducing competition be­

tween inputs, has also been investigated. 

The BCM-rule is one of the more widely cited rate-based models of plasticity. 

The BCM-rule implements competition by means of a sliding threshold between 

potentiation and depression. The rule has been successfully applied to explain 
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various developmental phenomena, such as the activity-dependent development 

of orientation selectivity and binocularity in the developing visual cortex. 

Despite these successes, the intrinsic structure of rate-based models means that 

they are unable to accommodate more recent experimental results which suggest 

that it is the timing of individual action potentials, rather than their mean rate 

of arrival, that determines the degree and polarity of change. 





Chapter 4 

Spike-based Models of 

Neuronal Plasticity 

4.1 Spike-Based Models of Neuronal Plasticity 

Recent experimental work has uncovered a form of plasticity, known as spike­

timing-dependent-plasticity (STDP), where the relative timing of pre- and post­

synaptic action potentials determines the degree and polarity of change in input 

weights. STDP has been reliably observed in a variety of species, across sev­

eral brain areas, and at different stages of development. Various spike-based 

descriptions of plasticity have been formulated based on these results. This is in 

contrast to the purely rate-based descriptions described in Chapter 3 which do 

not explicitly represent pre- and postsynaptic spikes. 

As before, we denote the presynaptic firing rate vector U, and the postsynaptic 

firing rate as v. In the context of spike-based descriptions of neuronal activity, 

the "rate" of firing is interpreted as the recent-time average of the number of 

spikes arriving per second. In addition, we introduce a new notation to denote 

particular spike-train patterns. In this notation, we denote presynaptic spikes by 

7r and postsynaptic spikes by p. For example, the 4-spike train pre-post-post-pre 

would be written simply as 7rpp7r. 

A common induction protocol for STDP is pairing of two action potentials, one 

pre- and one postsynaptic, at various timing differences (Bi and Poo, 1998). 

To aid our discussion, we define the spike-timing difference, 6.t to be the time 

between pre- and postsynaptic spiking. That is, 6.t = tpost - tpre , where tpre and 

tpost are the pre- and postsynaptic spike times, respectively. Thus, 6.t > 0 if 

the postsynaptic spike follows the presynaptic spike, and 6.t < 0 if this order is 

reversed. In the literature, these two cases are often referred to as "positively" 

49 
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and "negatively" correlated firing, respectively. It is usual to constrain the input 

weight vector, w, by imposing a hard lower bound to prevent its components 

from becoming negative, Wi ;:::: 0 V i. For learning rules which give rise to runaway 

learning, a hard upper bound, W max , is also usually imposed. 

Learning rules based on STDP data have been implemented in several mod­

elling studies. A convenient distinction may be made between phenomenological 

and biophysical models. Biophysical models attempt to explain experimental 

observations in terms of the various biological mechanisms thought to underlie 

plasticity. Phenomenological models place their emphasis on the computational 

properties of a particular learning rule, standing some way above the actual 

biological implementation. As a result, phenomenological models are often sim­

pler in nature. We review these studies, and outline the main findings of each 

implementation. 

4.2 Phenomenological STDP Models 

We refer to models taking the observed STDP-curve over directly to govern input 

plasticity as phenomenological STDP models. The learning rule typically takes 

the form of a biphasic modification window, with the spike-timing difference, 

D.t, determining the degree and polarity of change. Such a modification is de­

scribed by the maximum amplitude and characteristic time constant associated 

with each phase. We denote the potentiating and depressing phase maximum 

amplitudes as A+ and A_, respectively. The plasticity rules we examine are 

monotonic, in the sense that each phase is non-decreasing in amplitude as the 

time difference approaches zero. Thus, the maximum amplitude, A±, occurs 

when D.t ---4 O. Similarly, we denote the potentiating and depressing phase char­

acteristic time constants as T + and L, respectively. The precise interpretation 

of T ± differs depending on the functional form of the proposed learning rule. For 

example, under a learning rule composed of two exponential phases (a common 

approximation of the STDP-curve), T ± are exponential decay constants. 

The phenomenological STDP models reviewed here share several common fea­

tures. Typically, the STDP-curve is approximated as a biphasic, double expo­

nential. That is, a spike pair of spike-timing difference D.t, adjusts the input 

weight W according to W ---4 W + D.w, with 

for D.t ;:::: 0 

for D.t < 0 
(4.1) 

where A± are the plasticity amplitudes and T ± the characteristic time constants, 

as defined above. The magnitudes of plasticity, A±, represent the change in 
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input weight due to a single spike pairing. As experimental results invariably 

rely on multiple spike-pairings to evoke a statistically meaningful change, A± are 

typically estimated by dividing the total change in input weight by the number of 

spike-pairings. This makes the implicit assumption that multiple spike pairings 

gave an overall change consistent with a linear sum of pairings under the learning 

rule. 

Learning may be implemented additively (where changes in input weights are 

independent of their initial value), multiplicatively (where there is some depen­

dence), or by some combination of the two. It is not necessarily the case that 

potentiation and depression share the same dependence on initial input weight. 

When learning is multiplicative, the fixed quantities A± are replaced by vari­

able quantities Q±f(w), where 0 :S Q± :S 1 are the relative changes and f(w) 

describes the dependence on initial input weight. 

4.2.1 The Integrate and Fire Neuron 

Phenomenological STDP rules are often explored in the context of a set of plastic 

excitatory inputs synapsing onto a simple integrate-and-fire target cell. The 

integrate and fire model generates the explicit postsynaptic spike times that are 

required to calculate afferent plasticity under spiking rules. This is in contrast 

to the rate-based approximations discussed in Chapter 3 which described the 

postsynaptic firing rate as the linear weighed sum of its presynaptic inputs. The 

integrate and fire neuron captures the basic features of neuronal spiking, such as 

the non-linear spike generation mechanism, while still having the advantage of 

being relatively simple in nature compared to more detailed models. The leaky 

integrate and fire neuron describes the evolution of the membrane potential, Vm , 

according to 

( 4.2) 

where Vrest is the resting membrane potential (which may be defined to be zero), 

Tm the membrane time constant, Ii an injected current, and R the membrane re­

sistance. Thus, under a constant current injection the membrane potential, V m, 

will relax exponentially to Vrest + RIi . In the spike-timing plasticity rules exam­

ined here the injected current, Ii, is typically zero in which case the membrane 

potential relaxes to its resting value, Vrest . 
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The influence of presynaptic spiking may be incorporated by adding a synaptic 

current, which we denote Is. Labelling the presynaptic inputs with i, we may 

write the synaptic current Is as 

Is = LWiLI(t-t{) 
f 

where Wi is the efficacy of input i, t{ is the time of spike f at input i, and 

I(t) = gs(t) (Es - Vm(t)) 

(4.3) 

(4.4) 

where gs(t) is the synaptic conductance and Es is the reversal potential of the 

relevant ion type. For excitatory synapses this is sodium, and Es "-' Om V. For 

inhibitory synapses, this is potassium and Es "-' -75m V. The time course of 

synaptic conductivity, gs(t), is typically described as the superposition of expo­

nentials scaled by some maximum conductance value, g. In this conductance 

based approach, therefore, input weights and the plasticity amplitudes, A± (or 

f(w) in the multiplicative case), are described in terms of peak synaptic conduc­

tances, measured in pico-Siemens (pS). Postsynaptic spiking is a nonlinear event, 

defined to occur if Vm ~ vt, where vt is some defined threshold potential. On 

initiation of an action potential, Vm is set immediately to some reset potential, 

v"eset which is typically slightly less than the resting value, Vrest . 

4.2.2 Song et al., (2000) 

In the Song model, a biphasic, exponential approximation of the STDP-curve 

forms the basis of the learning rule (Song et al., 2000). This, it may be argued, 

is a reasonable approximation of a range of experimental data (Bi and Poo, 

1998; Zhang et al., 1998). Parameters are taken mainly from the data of Bi and 

Poo (1998), but are not in disagreement with the majority of experimental work 

(but see Bell et al., (1997)) . The Song model is additive, so input weights are 

adjusted upwards or downwards according to the learning rule by fixed amounts 

A±. That is, when a spike pair occurs with spike-timing difference 6.t, the input 

weight W is adjusted according to W -.-, W + llw, with 

for llt ~ 0 

for llt < 0 
(4.5) 

where A± are the plasticity amplitudes, and 7" ± the exponential decay constants. 

This learning rule is depicted in Fig. 4.1. A hard lower bound is imposed upon 

w at zero to prevent input weights from becoming negative. The authors note 

that, under this particular formulation, there is a requirement for an overall 
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FIGURE 4.1: The biphasic, exponential-like learning rule of Song et. aL, (2000). 
The change in input weight, F(f::,.t), as a function of spike-timing difi"erence, 
f::,.t = tpost - t pre , is given as a percentage of the maximum input weight, W max 

(from Song et al. (2000)). 
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dominance of depression over potentiation. That is, the condition T +A + < T _A_ 

can empirically demonstrated to be necessary to prevent every input weight 

from being potentiated uncontrollably_ This condition may be interpreted as the 

integral of the depressive phase being greater than that of the potentiating phase. 

Thus, the various experimentally observed asymmetries in the parameters (In the 

hippocampal slice cultures used in Bi and Poo (1998), T_ is about twice T+ and 

A+ is about two-and-a-half times A_) are not strictly essential, only that, overall, 

depression dominates. The authors choose to set T + = L 20ms throughout, in 

rough agreement with experiment, which leads to the new condition that A+ < 
A_. This new condition is duly satisfied by setting the ratio A_ / A+ = 1.05. The 

learning rule is applied to a system of multiple inputs innervating a single target 

cell. The target neuron is represented by a simple integrate-and-fire scheme_ 

Input weights are therefore interpreted as conductances, and presynaptic firing 

triggers excitatory synaptic currents which depolarise the target cell. 

The Song model always produces runaway learning. This can intuitively be 

seen by considering the behaviour of an input which is initially potentiated due 

to some random fluctuation_ After potentiation, the input will influence the 

postsynaptic integrate-and-fire neuron to a greater degree_ As a result, there is a 

slightly higher probability that further potentiation events will occur. This even­

tually leads to the situation where one input is sufficiently strong to completely 

control the postsynaptic response, and as a result it is continually potentiated 

with all other input weights falling to zero_ A hard upper bound is therefore 

imposed on input weights, w max , chosen to be equal to 0_015. 

A value for A+ was partially derived from experimental work (Bi and Poo, 1998) 

by making the assumption that the effects of multiple spike-pairings sum linearly. 

Thus, the observed percentage changes in input weights in the spike-pairing 



54 Chapter 4 Spike-based Models of Neuronal Plasticity 

experiments of Bi and Poo (1998) were simply divided by the number of spike­

pairs used in the protocol. A+ was therefore set to 0.005 W max , corresponding to 

a modification of 0.5% of the maximum input weight (occurring as b.t ---+ 0). 

The purely additive nature of the learning rule is a departure from experimen­

tal observations, where depression (but not potentiation) apparently occurs in a 

multiplicative manner (Debanne et al., 1996; Bi and Poo, 1998; Debanne et al., 

1999). No temporal restrictions were place on the interaction of pre- and postsy­

naptic spikes. Thus, in the spike train 7rPPP7r, the outer two presynaptic spikes 

would individually interact with all three postsynaptic spikes, giving a total of 

three pre-post and three post-pre spike pairs. As mentioned above, these inter­

actions are assumed to sum linearly. At the time, experimental data had only 

examined the effect of isolated spike-pairs. The assumption that plasticity sums 

linearly has since been questioned on both experimental and theoretical grounds 

(Froemke and Dan, 2002; Izhikevich and Desai, 2003). Although there is no ex­

plicit relationship between the plasticity rule and the rate of presynaptic firing, 

changes in the input firing rate alter the final input weight distribution without 

destroying the competitive nature of the rule. 

Simulations of a single, leaky, integrate-and-fire neuron, innervated by 1000 exci­

tatory and 200 inhibitory inputs, were made. The target neuron had a membrane 

time constant of Tm = 20ms, a resting potential of -70mV, and a threshold po­

tential for spike initiation of -54m V. The input resistance was set to 100MD, 

which implies that the maximum input weight, W max = 0.015, corresponds to 

a peak synaptic conductance of 150pS. Excitatory and inhibitory reversal po­

tentials were Om V and - 70m V, respectively, and had time courses described by 

simple exponential functions with time constants Tex,in 5ms. Inhibitory inputs 

were non-plastic, with fixed conductances of 500pS each, and received Poisson 

spike trains at 10Hz. Excitatory inputs were modified according to the learning 

rule given above. Although there is no variability in either the level of level of 

plasticity or the timing of spikes, our own simulations, presented in Chapter 5, 

show that the introduction of any reasonable level of Gaussian noise to either 

quantity does not qualitatively affect any of these results. 

Under this learning rule, a population of excitatory inputs receiving uncorrelated 

Poisson spike trains will reach a bimodal equilibrium distribution of input weights 

(Fig. 4.2a). The weights tend to cluster around the upper and lower bounds, a 

result independent of the initial distribution provided the postsynaptic neuron 

is initially firing action potentials. Increasing the presynaptic firing rate shifts 

this distribution towards the lower bound, a reflection of the highly competitive 

dynamics (Fig. 4.2b). As a result of this shift, the postsynaptic firing rate is 

relatively insensitive to changes in the mean presynaptic firing rate (a property 

referred to as "rate-normalisation" by the authors). The bimodal distribution of 
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FIGURE 4,2: Equilibrium distribution of input weights reached under the Song 
learning rule when presynaptic firing is governed by independent Poisson spike­
trains. The histogram shows the fraction of input weights falling into different 
bins, ranging from 0 to W max (referred to as W max in the figure), for input firing 
rates of (A) 10Hz and (B) 40Hz. Note the characteristic bimodal distribution, 
and the shift of this distribution lower input weights as the presynaptic firing 

rate is increased (from Song et al. (2000)). 
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input weights, and the highly competitive dynamics, are characteristic properties 

of the Song model. We return to this particular implementation of an additive 

STDP-like rule in Chapter 5, where we present a more detailed analysis of its 

underlying assumptions and explore the learning dynamics more fully in our own 

simulations. 

4.2.3 van Rossum et al., (2000) 

van Rossum et al., propose a mixed STDP learning rule, where potentiation is 

additive but depression is assumed to be multiplicative. A biphasic, exponen­

tiallearning rule, is postulated, very similar to that of Song et al., (2000), with 

parameters also taken mainly from Bi and Poo (1998). The experimental asym­

metry in the time constants for potentiation and depression were again found to 

be non-essential, and the authors set T + = L. Potentiation takes place in an 

additive manner, whereas depression is multiplicative. That is, the amplitude 

of a depressive change is proportional to the initial weight of the input. Such 

a scaling of depression, but not potentiation, with initial input weight has been 

observed in various experimental preparations (Debanne et al., 1996; Bi and Poo, 

1998; Debanne et al., 1999). 

Variability in the level of plasticity is implemented in a multiplicative manner. 

Thus, when a spike pair occurs with spike-timing difference fj,t, the input weight 
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FIGURE 4.3: The biphasic, exponential-like learning rule of van Rossum et. 
a!., (2000). The relative change in input weight as a function of spike-timing 
difference is shown for (A) weak inputs and (B) strong inputs. Due to the 
additive nature of the potentiating phase, stronger inputs are potentiated by 
a smaller amount relative to their weight. By contrast, the multiplicative de-

pressive phase depresses all inputs equally (from van Rossum et a!. (2000». 

w is adjusted according to w ---+ w + 6.w, with 

6.w 
for 6.t ::::: 0 

for 6.t < 0 
(4.6) 

where (L = 0.03 is the relative level of depression, A+ 7pS the potentiation 

amplitude, T ± = 20ms the exponential decay constants, and x is a Gaussian dis­

tributed random variable of zero mean and standard deviation ()" = 0.015. This 

multiplicative noise plays an important role in shaping the equilibrium distri­

bution of input weights. With simple additive noise, or in the absence of noise 

altogether, the final distribution of input weights is significantly different. The 

interaction of pre- and postsynaptic spikes was subject to a temporal restric­

tion, in that spikes were only allowed to interact with their nearest neighbours. 

Thus, in the spike train 7fPPP7f, only the first pre-post pair and the last post-pre 

pair will evoke plasticity. This is in contrast to other simple models of STDP, 

where spikes are not subject to any temporal constraints (Song et al., 2000). 

The learning rule is illustrated in Fig. 4.3. The plasticity rule is not dependent 

on the presynaptic firing rate in any way, and increasing the input firing rates 

serves only to increase the rate at which potentiation and depression occur. In­

troducing a presynaptic rate-dependence serves only to adjust the mean input 

weight and does not affect the stability or competition of the rule. 

Activity-dependent scaling (ADS) of input weights can be included to regulate 

the level of postsynaptic firing, and introduce competitive dynamics. The authors 

choose to impose a multiplicative ADS that is independent of presynaptic firing 

rates. Thus, the input weights, w, receive an additional modification term, which 
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takes the form of an integral controller 

dw (t) ( ) [ ( () rt I I ~ = aw t Vgoal - v t)] + bw t J
o 

dt [Vgoal - V(t )], (4.7) 

where Vgoal is the desired level of postsynaptic firing, and a and b are constants. 

The postsynaptic firing rate v(t) is described as a slowly-varying sensor, receiving 

injections upon each presynaptic spike, relaxing to zero otherwise 

dv(t) 
Tv~ = -v(t) + L o(t - ti), (4.8) 

where the ti are a list of presynaptic spike times, and Tv is the characteristic time 

constant associated with the sensor. Tv is assumed to be large, and set equal to 

100 seconds. The integral term in Eqn. (4.7) accumulates error over time, and will 

become dominant if the postsynaptic firing rate does not approach the desired 

value, Vgoal, which was set to 20Hz. The parameters a = 4xlO-5s-1Hz- 1 and 

b = 10-7 s-2 H z-l were chosen to minimise oscillatory behaviour. The overall 

effect of this activity-dependent scaling is to adjust the balance of potentiation 

and depression, moving the mean input weight without affecting the shape of 

the distribution. 

Simulations of a single, leaky, integrate-and-fire neuron, innervated by 100 ex­

citatory and 25 inhibitory inputs, were made. The target neuron had an input 

resistance of 100Mfl, a membrane time constant of T m = 20ms, a resting potential 

of -60m V, and a threshold potential for spike initiation of -50m V. Excitatory 

and inhibitory reversal potentials were Om V and -70m V, respectively, and had 

identical time constants, Tex = Tin = 5ms. Inhibitory inputs received Poisson 

spike trains at 20Hz, and were non-plastic with fixed conductances of 2000pS 

each. Excitatory inputs received both correlated and uncorrelated spike trains, 

and were subjected to the learning rule give in Eqn. (4.6). 

Initially, excitatory inputs received uncorrelated Poisson spike trains. Prolonged, 

random stimulation in this manner led to the stable, unimodal distribution of 

input weights shown in Fig. 4.4. This distribution is relatively insensitive to 

parameter choices, but was noted to be dependent on the presence of multiplica­

tive noise. With simple additive noise, or in the absence of noise altogether, the 

final distribution of input weights is much narrower. This distribution may be 

intuitively understood by considering the behaviour of a single input under this 

learning rule. With an integrate-and-fire neuron, stronger inputs are more likely 

to trigger postsynaptic spiking than weaker inputs. Thus, stronger inputs are 

more likely to precede postsynaptic firing than weaker inputs, which, under the 

plasticity rule given in Eqn. (4.6), means they are strengthened more often. This 

tendency for strong inputs to become even stronger is a destabilising force, and 
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FIGURE 4.4: Equilibrium probability distribution of input weights reached 
under the van Rossum learning rule when presynaptic firing is governed by 
independent Poisson spike-trains at 20Hz. The histogram shows the fraction of 
input weights (written as "synaptic weight" in the figure) falling into different 
bins when a target integrate-and-fire neuron is simulated. The solid line is the 
corresponding analytical result. The dashed line is the related analytical re­
sult, under the additional assumption stronger inputs do not have an increased 
probability of triggering postsynaptic spiking (and hence have an equal chance 

of potentiation as weaker inputs) (from van Rossum et al. (2000)). 

would typically lead to runaway learning. However, in this multiplicative model, 

the reduction in the relative level of potentiation for stronger inputs acts as a 

stabilising force. The observed unimodal distribution arises due to the balance 

of these stabilising and destabilising forces. In purely additive models, where 

the level of potentiation does not decline with increasing input weights, the sta­

bilising force is removed and, unless hard bounds are imposed on input weights, 

runaway learning occurs (Song et al., 2000). 

Correlations amongst presynaptic firing were introduced by randomly generating 

N Poisson spike trains, then assigning each input a spike train with probability 

l/N at the start of each time step. With N < 100, some inputs will, by definition, 

be assigned the same spike train. This gives rise to a well defined cross-correlation 

coefficient of C(t5t) = l/Nr5(b..t). Inputs firing in groups are more likely to 

trigger postsynaptic spiking, and thus be potentiated. Accordingly, with more 

correlated inputs the input weight distribution is shifted towards a higher mean 

weight (Fig. 4.5). The mean weight of a group of inputs is proportional to their 

level of input correlation. 

Competition is almost absent under this learning rule. This can be seen in 

simulation by dividing the 100 excitatory inputs into two groups. The first 

group receives purely uncorrelated Poisson spike trains, the second group initially 

receives uncorrelated Poisson spike trains but at some point in time begin to be 

correlated. Both groups initially arrive at a distribution with the same mean 

weight. After the correlations are introduced into group two, the mean input 

weight of group two increases, shifting the distribution of weights to the right. 

The distribution of group one weights is, however, hardly affected by this shift 
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FIGURE 4.5: Introducing correlations between presynaptic spiking leads to 
an equilibrium probability distribution shifted to higher mean weight, while 
leaving the overall shape relatively intact. The learning is non-competitive, 
with the four groups of inputs behaving independently. That is, increases in 
the mean weight of one group will not cause a subsequent decrease in another. 
The inset shows the relationship between input correlation parameter and mean 

equilibrium input weight (from van Rossum et al. (2000)). 
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FIGURE 4.6: The effect of activity-dependent scaling (ADS) on the equilib­
rium distributions of two populations inputs. Top: without ADS, introducing 
correlations into one group (dotted line) causes that group to arrive at a higher 
mean input weight without affecting the distribution of the uncorrelated group 
(solid line). The total postsynaptic input is therefore high, and the postsynap­
tic neuron fires at a high rate. Bottom: with ADS, the mean input weight of 
both groups are scaled down, and the postsynaptic firing rate remains at the 

desired level, Vgoal (from van Rossum et al. (2000)). 
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(Fig. 4.6). This increases the total presynaptic input, and drives the postsynaptic 

cell to a higher firing rate. The postsynaptic firing rate therefore follows the total 

input, and is very sensitive to input rate fluctuations. 

Competitive dynamics may be introduced by including activity-dependent scal­

ing (ADS), as outlined above. The shape of the input weight distribution, and 

its stability, are not affected by the introduction of ADS. ADS operates indepen­

dently of the presynaptic firing rate, whereas the spike-timing learning rate is 
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accelerated for high-rate inputs. Thus, low rate inputs are effectively governed 

by ADS and high-rate afferents by spike-timing plasticity. 

4.3 Biophysical Models of STDP 

An alternative approach to modelling STDP is the attempt to reconstruct the 

biochemical induction and expression pathways of plasticity across a particular 

type of connection. Unlike the phenomenological approach, these models commit 

themselves to a particular mechanistic paradigm. This can limit the generality 

of any theoretical insights which may be obtained. For example, the theoretical 

implications of a particular model may only be considered in the context of 

other connection types if those connections are themselves amenable to a model 

of similar intrinsic structure. 

4.3.1 The Calcium-Control Hypothesis 

A large body of evidence suggests that calcium plays a critical role in some 

forms of neuronal plasticity. In particular, studies on the N-methyl-D-aspartate 

(NMDA) subtype of ionotropic glutamate receptor have suggested that it might 

provide a kind of molecular coincidence detection mechanism that could under­

lie STDP at certain synapses. The idea that NMDA-receptor-dependent cal­

cium dynamics may underlie STDP has become known as the calcium-control 

hypothesis. This hypothesis may be summarised as follows. Presynaptic gluta­

mate release activates the postsynaptic AMPA- and NMDA-receptors. Activa­

tion causes the receptor molecule to undergo a conformational change, allowing 

the associated ionic channel to open and create a tunnel through the cell mem­

brane. The AMPA-receptors has an ion channel that is largely permeable to 

sodium and potassium. Presynaptic activation activates the population of post­

synaptic AMPA-receptors, and the influx of sodium creates a postsynaptic de­

polarisation. Although various other processes contribute to this depolarisation, 

AMPA-receptor-mediated sodium influx is the dominant component. NMDA­

receptors also allow the passage of sodium ions, but in addition allow calcium 

influx. However, the resting NMDA-receptor is blocked by a magnesium ion, 

which requires postsynaptic depolarisation to clear. Thus, glutamate binding 

must be coupled with sufficient postsynaptic depolarisation (such as that occur­

ring during an action potential) in order to allow postsynaptic calcium entry. 

The resulting high level of postsynaptic intracellular calcium is thought to trig­

ger some change that upregulates the strength of the connection between the 

pre- and postsynaptic neurons. 
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On the other hand, when the postsynaptic depolarisation caused by the AMPA­

receptors is insufficient to trigger an action potential, the magnesium block on the 

NMDA-receptors is only partially relieved, and the level of postsynaptic calcium 

is elevated to some sustained intermediate level. Some change then takes place 

such that the efficacy of the connection between pre- and postsynaptic neurons 

is decreased. 

Thus, the distinct spatio-temporal calcium transient profiles due to the partial or 

complete activation of NMDA-receptors are thought to trigger distinct signalling 

cascades leading to either LTP or LTD (Yang et al., 1999). Calcium-activated 

calmodulin kinase II (CaMKII) may provide the driving mechanism behind this 

bidirectional plasticity by responding with different kinetics to the two regimes 

(Soderling, 2000). For example, the carboxyl terminal could promote facilitation 

of calcium channels and lead to LTP, and the amino terminal could promote 

inactivation of the same channel and lead to LTD. CaM also participates in 

multiple local (and hence input specific) signalling complexes. The dynamics 

and binding of calcium to various proteins, and the consequent induction of 

LTP or LTD, may therefore reasonably depend in a highly nonlinear way on the 

relative timing of pre- and postsynaptic action potentials. 

The calcium-control hypothesis requires a signal to pass from the soma to the 

dendrites indicating that an action potential has taken place. It has been sug­

gested that this postsynaptic signal takes the form of a back-propagating action 

potentials (BPAP). BPAPs have been shown experimentally to modulate LTP 

induction in a manner consistent with this role (Magee and Johnston, 1997) and 

a persistent after-hyperpolarisation following a dendritic action potential is a 

necessary condition for some biophysical models of STDP (Shouval et al., 2002). 

Other work has shown that at stimulation frequencies below around 10Hz, LTP 

is not induced (Markram et al., 1997). However, this result may stem, in part, 

from a lack of BPAP initiation at such low stimulation frequencies. Thus, al­

though the calcium control hypothesis has received considerable experimental 

support, there remain a number of outstanding questions. 

Several models of STDP have been based around a description of calcium dy­

namics in accordance with the calcium control hypothesis. We review the major 

findings here. 

4.3.2 Senn et al., (2000) 

As discussed above, a biophysical model is specific in the sense that it aims to 

reconstruct the underlying pathway of a particular type of plasticity. Senn et 
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aI., (2000) set out to construct a detailed biophysical model of plasticity ex­

pressed by connections between neighbouring, thick-tufted pyramidal cells from 

layer 5 (L5) of the neocortex. Experimental work based on dual whole-cell volt­

age recordings from neighbouring L5 pyramidal cells has demonstrated a form 

of STDP-like input plasticity that depends upon the activation of N-Methyl-D­

Aspartate (NMDA) receptors (Markram et aI., 1997). This form of plasticity is 

timing-dependent, input specific, and shows a noticeable frequency-dependence 

for the onset of afferent modification. In addition, the response of these neo­

cortical neurons to a train of presynaptic action potentials has a characteristic 

time course, with later spikes in the train evoking a smaller excitatory postsy­

naptic potential (EPSP) as shown in Fig. 4.7. This effect has been attributed 

to the depletion of the pool of neurotransmitter vesicles available for discharge, 

which would be consistent with the hypothesis that a finite number of vesicles 

are docked and available for release at anyone time. Potentiating these inputs 

causes the early-spike response to increase and the late-spike response to be de­

pressed, an effect known as "synaptic redistribution". Synaptic redistribution 

is consistent with plasticity being expressed at a presynaptic locus, with, for 

example, changes in the probability of presynaptic vesicle release underlying the 

apparent change in input weight. This presynaptic mechanism is in contrast to, 

for example, a general increase in postsynaptic responsiveness by the insertion 

or up-regulation of postsynaptic neurotransmitter receptors. Accordingly, Senn 

et aI., (2000) formulate a model of neocortical plasticity, based around the idea 

that changes in the probability of presynaptic neurotransmitter vesicle release 

govern changes in input weight. The probability of vesicle release is denoted 

Prel, and it is assumed to be the product of vesicle discharge probability times 

the probability that a vesicle is available for release Prel = PdisPves. Changes in 

the discharge probability, P dis , are assumed to be solely responsible for observed 

changes in input weight. These changes are assumed to result from two indepen­

dent second-messenger pathways, one that drives up-regulation after a 1fP spike 

pair and one that drives down-regulation following a p1f pair. 

Unlike other models of STDP, changes to input weights in response to pre- and 

postsynaptic spiking do not occur instantaneously, but rather are assumed to 

be expressed only after 10-20 minutes have elapsed. In terms of simulation, 

this means that the modifications arising to Pdis due to coincidences of pre- and 

postsynaptic activity are only realised after the stimulating protocol has finished. 

That is, changes are recorded and summed linearly 1] = Li b..Pjis' where b..Pjis 

is the i'th modification to P dis . The step modification P dis ---+ P dis + 1] occurs 

only after the stimulation patterns have ceased. The consideration of plasticity 

is limited to that expressed on the time scale of 10-20 minutes. There is no 

explicit representation of the short-term transient potentiation that typically 
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FIGURE 4.7: Effect of repeated pairing of pre- and postsynaptic action poten­
tials on the postsynaptic response to trains of action potentials. The graph 
shows the postsynaptic response to a 23-Hz train of presynaptic action poten­
tials before and after pairing. After pairing, the early part of the postsynaptic 
response is potentiated, but the later response remains at the same. The av­
erage response of 58 sweeps is shown before and 20 min after pairing (from 

Markram et al. (1997)). 
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follows a presynaptic spike-train (post-tetanic potentiation, or PTP), not any 

consideration of decay of plasticity on time scales greater than one hour. 

The central postulate of the model is that postsynaptic NMDA-receptors are 

responsible for mediating up- and down-regulation of input weight, via these two 

second messenger pathways. Although this hypothesis is plausible, and it has 

been experimentally demonstrated that NMDA-receptor activation is necessary 

for both up- and down-regulation, the exact role of NMDA-receptors in plasticity 

is still unclear. The NMDA-receptors are assumed to be able to reside in one 

of three possible states; resting, active, and calcium modulated. There is a 

fixed population of NMDA-receptors, and the proportion residing in each state 

is denoted N r , N a , and Nc , respectively. The second messenger responsible for 

triggering the changes in Prel may be in an active state, Bu,d or an inactive 

state Au,d, where the subscript u, d denote the up- and downregulating second 

messengers, respectively. 

Under normal circumstances, Pves = 1, but, following vesicle release, Pves is set to 

zero then recovers according to a Poisson process of time constant T ves = 800ms. 

This is in accordance with the 'univesicular hypothesis' (Triller and Korn, 1982), 

which assumes that there is, at most, one vesicle docked and ready for release at 

anyone time. This vesicle depletion model is a stochastic version of the authors' 

earlier depressing-synapse model (Markram et al., 1997). This stochastic model 
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replicates the statistics of non-averaged responses seen during experiments in­

volving a single instance of a stimulation pattern. Averaging over repeated trials 

of the same presynaptic stimulation protocol gives a mean postsynaptic response 

(in the form of an excitatory postsynaptic potential, or EPSP) which is propor­

tional to PreZ. 

When presynaptic release of neurotransmitter does occur, for example in re­

sponse to a presynaptic action potential, it is assumed to immediately diffuse 

across the synaptic cleft and cause some proportion, r a, of NMDA-receptors cur­

rently in the resting state to make the transition from the resting to the active 

state, Na -7 Na + raNr . Neurotransmitter release may also occur spontaneously, 

triggering an identical set of events. Postsynaptic action potentials are assumed 

to trigger a significant depolarisation of the dendritic membrane, allowing cal­

cium influx via the population of activated NMDA-receptors. This calcium influx 

has two effects. Firstly, activation of a proportion, r sNa, of the potentiating sec­

ond messenger occurs, Bu -7 Bu + r ANaAu, which then diffuse in a retrograde 

manner to the presynaptic site and triggers up-regulation of T/ by the amount 

rdnT/[Bd - Bd]+, where Bd is the threshold on level of down-regulating messenger 

activity required for down-regulation, and the quantity [x] + = max[x, 0]. Sec­

ondly, additional calcium influx occurs through voltage-gated calcium channels. 

This calcium influx causes some proportion, re , of NMDA-receptors to make the 

transition from the resting to the calcium modulated state, Ne ---+ Ne + reNr . 

A subsequent presynaptic release of glutamate acts upon these altered-state 

NMDA-receptors, which activate a proportion, r ANe , of the down-regulating 

second messenger, Bd -7 Bd + r ANeAd. This down-regulating second messenger 

also diffuses to the presynaptic site and triggers a down-regulation of T/ by the 

amount rup(l- T/)[Bu - Bu]+, where Bu is the threshold on level of up-regulating 

messenger activity required for up-regulation. 

The NMDA-receptors thus act as coincidence detectors of pre- and postsynap­

tic spiking. The spike train 7fP will lead to up-regulation of presynaptic release 

probability, and the spike train p7f will lead to a down-regulation. In the ab­

sence of further pre- or postsynaptic spiking, the quantities N a, Ne, and B u, Bd 

decay with time constants TN and TE, respectively. This kinetic scheme may 

be expressed in differential equation form as follows. First, the evolution of the 

proportion of NMDA-receptors in the activated, calcium modulated, and resting 

states (Na, Ne, and Nr , respectively) as functions of time, t, are given by 

(4.9) 

(4.10) 
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( 4.11) 

where the delta function o(t - t~,p) represents the injection received upon the 

ith pre- or postsynaptic spike, occurring at time t~,p" Similarly, the equations 

governing the up- and down-regulating second messenger activation states, Bu 

and Bd, are 

(4.12) 

(4.13) 

The accumulated change in Pdis , denoted 7], then evolves according to 

(4.14) 

where B;; and Bd are the values of Bu and Bd immediately after a post- and 

presynaptic spike 

(4.15) 

(4.16) 

Finally, the discharge probability, Pdis asymptotes to its final value, 7], according 

to 

(4.17) 

with time constant Try 6.105 ms. 

Simulations were made of a range of stimulation protocols used in experimental 

work (Markram et al., 1997). Bursts of pre- and postsynaptic spikes (5 spikes 

in a 10Hz train, repeated at 2.5Hz) were simulated, with the bursts initiated 

at timings of tpost - tpre = ±lOOms and ±10ms. In experimental work, spike 

bursts initiated lOOms apart were unsuccessful at inducing plasticity, and bursts 

at timings of + lOms and -lOms giving potentiation and depression, respectively. 

Both these findings are reproduced by the model, as shown in Fig. 4.8. Param­

eters were chosen to fit the experimental data, with NMDA-receptors described 

by Ta 1, Tc = 0.5, TN = 300ms, the second messenger dynamics by T A = 0.7, 

TB = 600ms, and the plasticity action by T up = T dn = 0.1. This gives good qual­

itative agreement with the experimental data, but the magnitude of plasticity is 

only around half that seen experimentally. 
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FIGURE 4.8: Asymmetry of modification under the biophysical learning rule 
of Senn et al., (2000). Simulated results of presenting a pre- and postsynaptic 
spike train (5 spikes, at 10Hz) at spike timings of +lOms (top trace) and -lOms 
(bottom trace) are shown. The graph shows the percentage change in Pd-;s as 
a function of time. When the spike trains were initiated with a time difference 
of lOOms, no plasticity was induced (middle trace). Parameter values are given 
in the text, and were set by fitting the simulation results to experimental data 

(from Senn et al. (2000)). 
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FIGURE 4.9: The frequency-dependence of modification under the learning 
rule. A sharp onset of plasticity occurs when the spike trains (5 spikes, 2 to 
40Hz) reach a frequency of 10Hz. The percentage change in Pdis is shown 60 
minutes after pairing of pre- and postsynaptic spike bursts at a spike timing of 

+2ms (from Senn et al. (2000)). 

Fig. 4.9 shows the simulated effect of repeating the protocol with a fixed inter­

burst delay of 2ms, while varying the spike train frequencies (from 2 to 40Hz). 

The model reproduces the main characteristics of the frequency-dependent learn­

ing curve, with a sharp onset at around 10Hz and a saturation at higher frequen­

cies (Markram et al., 1997). This is expected, as the model is formulated to ac­

commodate this frequency-dependence by explicitly including pair of thresholds, 

B±, to exclude too much modification at low firing rates. However, the final value 

for the change in discharge probability, T), was approximately half that seen in 

experimental work (Markram et al., 1997). 

A third experimental protocol was simulated, where spike trains consisted of 

a variable number of spikes at 20Hz paired at a delay of 2ms. In experimental 

work, an increased number of spikes in a train reduced the level of LTP expressed 
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FIGURE 4.10: The STDP-like modification curve. The percentage change 
in Pd'is is shown after 50 spike pairings at various spike-timing differences, 
!::"t = tpost -tpre . Although qualitatively similar to the experimentally observed 
STDP curves, the magnitude of plasticity is only 2% of that typically observed 

experimentally (from Senn et al. (2000)). 
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(Markram et al., 1997). In simulation, this behaviour was only approximately 

captured, with a noticeable departure as the number of spikes became small 

(although the results still lie within the high standard deviations of the data). 

In a number of spike-pairing experimental protocols, a low firing rate is chosen 

specifically to demonstrate that it is the individual spike pairs that give rise to 

the observed overall change in input weight, rather than the averaged effect of 

longer, multi-spike trains (Bi and Poo, 1998). Thus, the experimental protocols 

typically used to assess the effect of individual spike pairs involve presentation 

at frequencies lower than that required to elicit significant plasticity under this 

model. The simulated change in Pdis due to a typical STDP protocol are shown 

in Fig. 4.10. Although the overall shape of the STDP-like curve is qualitatively 

the same, such protocols give a simulated changes of less than 2% that seen in 

experiment (Zhang et al., 1998; Bi and Poo, 1998). This is a direct consequence 

of the thresholds, B±, which are included in the model to accommodate the 

frequency-dependence of LTP discussed above. 

4.3.3 Shouval et al., (2002) 

The Shouval model is another biophysical, calcium-based description of neuronal 

plasticity (Shouval et al., 2002). In the Shouval model, two key assumptions 

are made. First, that calcium is the primary signal for plasticity, and second, 

that the NMDA-receptor-dependent calcium influx is the dominant source of 

this calcium. The authors postulate a learning rule of the form of a differential 
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FIGURE 4.11: Plots of (A) the learning function, [2, and (B) the learning rate 
T), as a function of postsynaptic calcium concentration. The learning function is 
translated directly in changes in input strength. When the calcium concentra­
tion is below a threshold, Bd, the learning function is zero and no plasticity is 
induced. Between Bd and Bp the learning function is negative, representing de­
pression, and above Bp the function is positive, representing potentiation (from 

Shouval et al. (2002)). 

equation describing the rate of change in input strength of input j, Wj' This 

differential equation is written as 

(4.18) 

where aj is the level of postsynaptic intracellular calcium, O( a j) is the learn­

ing function and 7)( aj) the calcium-concentration-dependent learning rate. The 

second term inside the bracket is a decay term to prevent uncontrolled poten­

tiation. This is not essential and, for example, a hard upper bound on input 

weights could be used instead. 

Plasticity occurs in this model in response to elevation of intracellular calcium 

levels above normal levels. The learning function 0 describes the exact depen­

dence of this learning on the level of calcium, and is assumed to be the two-phase 

function shown in Fig 4.11A. The learning function has two explicit thresholds 

which denote the point at which depression begins, ed, and the point at which 

depression turns into potentiation, ep • The dependence of 7) on aj prevents os­

cillations and ensures that input strengths do not decay to zero when aj returns 

to basal levels. Thus, we have changes in input weights driven by both changes 

in the total level of intracellular calcium, through the function n, and by the 

temporal pattern of those changes, through the learning rate 7). 

Postsynaptic calcium dynamics are assumed to be purely NMDA-receptor-dependent. 

A standard set of assumptions are made about NMDA-receptor dynamics, and 

the calcium current, I(t), at some time t following a presynaptic spike is assumed 



Chapter 4 Spike-based Models of Neuronal Plasticity 69 

to be 

(4.19) 

where If and Is describe fast and slow components, respectively, with T f 50ms 

and Ts = 200ms. P describes the activation profile of the NMDA-receptors, 

accommodating such factors as the fraction of NMDA-receptors activated by 

arrival of a presynaptic spike, and H (v) describes the voltage-dependence of the 

magnesium block. Thus, the calcium influx at time t after some presynaptic 

spike is the sum of a fast and slow component of NMDA-receptor activation, 

modulated by the functions P and H(v). 

The postsynaptic voltage, v, is assumed to depend on the recent history of presy­

naptic spiking in two ways. First, there is the usual depolarisation due to AMPA­

receptor-dependent sodium influx. Second, there is a much larger depolarisation 

whenever a postsynaptic spiking occurs, which is assumed to be transmitted 

throughout the dendritic tree by a backpropagating action potential (BPAP). 

The time course for this BPAP is critically important for the model. If it is too 

short, then a pre-post spike pair will only elevate the postsynaptic calcium con­

centration by a modest amount and trigger a relatively minor increase in input 

strength. Worse, a post-pre pair will trigger postsynaptic calcium levels that 

are indistinguishable from presynaptic spiking alone. It is therefore necessary to 

postulate an extended depolarising tail for the BPAP, that persists well after the 

PSAP that triggered it. The depolarisation due to a BPAP is therefore modelled 

as 

(4.20) 

where IJ and I~ describe fast and slow components of the BPAP, respectively, 

with Tj = 3ms and T~ = 25ms. The shape of the BPAP is nearly independent of 

the slow component provided that the magnitude of the slow component is much 

smaller than that of the fast component. Thus, although the particular form of 

BPAP chosen by the authors is motivated by a theoretical requirement of the 

model rather than a desire to reproduce experimental data in a minimal fashion, 

the form chosen is not in direct conflict with experimental data (Magee and 

Johnston, 1997; Larkum et al., 2001). Finally, calcium dynamics are modelled 

by the simple differential equation 

daj = I(t) _ aj 
dt Ta 

(4.21) 

where Ta = 50s is the time constant for the decay of the calcium level, represent­

ing the various processes by which calcium is returned to basal levels. One of the 
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key assumptions of the model is that NMDA-dependent influx is the dominant 

of calcium. Thus, although the consideration of additional, secondary sources 

of calcium (such as release from intracellular calcium stores) might appear de­

sirable, to first order the learning behaviour exhibited by the model would be 

unchanged. 

Plots of NMDA-receptor activation and postsynaptic depolarisation (panels 1, 

3 and 5) and the resulting postsynaptic calcium transient (panels 2, 4 and 6) 

for various spiking protocols are shown in Fig. 4.12. Presynaptic spiking alone 

is insufficient to trigger plasticity as the calcium concentration does not exceed 

the lower threshold, Bd. A post-pre spike pair causes some intermediate level 

of calcium elevation to a level between Bd and Bp, triggering a decrease in input 

strength. A pre-post spike pair causes a high level of calcium elevation, exceeding 

the potentiation threshold Bp, triggering an increase in input strength. Thus, 

the basic spike-pairing protocol of a typical STDP experiment will adequately 

be accounted for (Bi and Poo, 1998). 

The need for a calcium-concentration-dependent learning rate can clearly be seen 

by considering the calcium transient induced by a pre-post spike pair, shown in 

box 6 of Fig. 4.12. Such a spike pair would be expected to induced potentiation 

of input strengths (Bi and Poo, 1998; Zhang et al., 1998). Accordingly, the level 

of potentiation induced by the region above Bp must be greater than the level of 

depression induced by the time spent between Bd and Bp. This achieved through 

the variable learning rate, 7], which amplifies changes occurring at higher levels 

of intracellular calcium. Without this variable learning rate, the time spent in 

the depressing regime would reverse and cancel out any potentiation. 

Pairing of presynaptic spikes with sustained postsynaptic depolarisation, such 

as that performed during voltage-clamp experiments, was simulated. No plas­

ticity was observed when the level of depolarisation was below -65mv. When 

the depolarisation was between -60mv and -35mv LTD was induced, and when 

the depolarisation was above -30mv, LTP was induced. As sustained depo­

larisation paired with presynaptic spiking translates quite straight forwardly to 

postsynaptic calcium levels, the shape of this dependence is essentially that of 

the learning function, n. Thus, as n was formulated to induce zero change at 

low calcium levels, LTD at intermediate levels, and LTP at high level, this first 

result is expected. 

Simulations of rate-based induction protocols were also performed. Presynaptic 

activity was set to a rate ranging from OHz to 20Hz. Coupled with a simple 

statistical model of postsynaptic spike generation, this produced a plasticity 

curve which was, again, similar in shape to the learning function n. The cross 

over point from depression to potentiation was around 8Hz. This curve is similar 
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FIGURE 4.12: The postsynaptic response (the NMDA-receptor activation level 
and the postsynaptic depolarisation), and the resulting calcium transient, for 
both isolated presynaptic spiking and presynaptic spiking paired with postsy­
naptic spiking. The leftmost plots are (1) the postsynaptic response and (2) 
the corresponding calcium transient due to isolated presynaptic spiking. The 
fin-shaped trace in (1) is the NMDA-receptor activation level. Postsynaptic 
depolarisation for this protocol is very small. The calcium transient in (2) 
is below the lower threshold, ed, represented by the lower dotted line and no 
plasticity is induced. The centre plots are (3) the postsynaptic effect and (4) 
the corresponding calcium transient due to postsynaptic spiking followed by 
presynaptic spiking at a 10ms time difference. Again, the fin-shaped trace 
in the upper plot is the NMDA-receptor activation levels. This time, a large 
postsynaptic depolarisation results the postsynaptic action potential. The re­
sulting calcium transient shown in (4) is between the two thresholds, ed and 
ep , and depression is therefore induced. The rightmost plots are (5) the post­
synaptic effect and (5) the corresponding calcium transient due to presynaptic 
spiking followed by postsynaptic spiking, again at a lOms time difference. The 
temporal ordering of the fin-shaped, NMDA-receptor activation level and the 
postsynaptic depolarisation spike is reversed. The resulting calcium transient 
shown in (6) exceed the upper threshold, ep , and potentiation is induced (from 

Shouval et al. (2002)). 

to the ¢ function of the BCM-model discussed in Chapter 3. Thus, the model is 

able to accommodate simple rate-based induction of plasticity. The authors note 

that the threshold between potentiation and depression can easily be modified 

by allowing the parameters describing the NMDA-receptor dynamics to change. 

This "meta-plasticity" could offer a way to introduce stability to the learning 

dynamics of this model of STDP by by allowing this threshold to slide in a 

BCM-like manner. 

As is apparent from Fig. 4.12, the Shouval model provides an explanation of the 

basic spike-pairing results of STDP (Bi and Poo, 1998; Zhang et al., 1998), with 

spike pairings at 1Hz at time + 10ms giving rise to LTP and those at -10ms giving 

rise to LTD. However, when the full STDP curve is plotted for spiking timings 
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ranging from -lOOms to lOOms, an additional LTD window is observed a high 

positive spike-timing (that is, when presynaptic spiking precedes postsynaptic 

spiking). This is not in agreement with the majority of experimental results 

(Bi and Poo, 1998; Zhang et al., 1998) although one exception does exist where 

an additional LTD window of this nature was observed (Nishiyama et al., 2000). 

This second LTD window is due to the intermediate level of calcium elevation that 

a pre-post spike pair of large spike-timing difference triggers, and, as a result, is 

a robust prediction of the model. A strong rate-dependence exists in this model, 

and as the rate of pre- and postsynaptic spiking increases LTP becomes more 

and more dominant. Pairing of pre- and postsynaptic spikes will therefore induce 

potentiation, regardless of spike-timing, if the pairing takes place above around 

10Hz. 

4.3.4 Karmarkar et al., (2002) 

In most experimental work, a single LTP and a single LTD window have been 

observed (Bi and Poo, 1998; Zhang et al., 1998). The prediction of a second 

LTD window at large pre-post spike timings in simple calcium based models of 

STDP is inconsistent with this observation. An attempt to remedy this prob­

lem by the introduction of a second coincidence detector has been made in the 

form of the Karmarkar model (Karmarkar and Buonomano, 2002). The model is 

consistent with the calcium control hypothesis, and incorporates both NMDA­

receptor-dependent and voltage-gated-calcium-channel (VGCC) dependent cal­

cium influx. Both NMDA-receptors and VGCCs have been implicated in playing 

a role in spike-timing plasticity (Bi and Poo, 1998). 

NMDA-receptor-dependent calcium influx was assumed to be responsible for 

driving LTP. Intracellular calcium levels due to the action of NMDA-receptors 

were assumed to be governed by the differential equation 

dCaNMDA 

dt 
CaNMDA 

T 
( 4.22) 

where Vm is the membrane potential, T is the time constant governing cal­

cium removal, and CaNMDA is NMDA-receptor-dependent calcium concentra­

tion. VGCC-dependent calcium influx was assumed to be responsible for driving 

LTD. In a similar manner to that of NMDA-receptors, the VGCC-dependent 

intracellular level was assumed to be governed by the differential equation 

dCavGcc _ b Vm - 140 
dt - 11 + eb2-Vrn 

CaVGCC 

T 
( 4.23) 
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where CavGcc is VGCC-receptor-dependent calcium concentration. The con­

stants aI, a2, bl, b2 are taken from the literature (see Karmarkar and Buonomano 

(2002) for details). 

The VGCC-dependent calcium influx was assumed to induce LTD via the coin­

cidence of the resulting intracellular calcium elevation with presynaptic gluta­

mate release. Such a process could be governed, biologically, by a metabotropic­

glutamate-receptor (mGluR) dependent pathway, which requires postsynaptic 

calcium entry followed by presynaptic glutamate release. In the model, the 

integral of the intracellular calcium level across the period where presynaptic 

glutamate was present is then directly translated into the level of LTD. Simi­

larly, NMDA-receptor calcium influx is integrated and translated directly into 

the induced level of LTP. As discussed above, NMDA-receptors only permit cal­

cium influx when presynaptic firing is followed by postsynaptic firing due to the 

requirement for both glutamate activation and the voltage-dependent relief of 

the magnesium block. Thus, pre-post pairings give rise to LTP via the NMDA­

receptor pathway and post-pre pairings give rise to LTD via the VGCC pathway. 

In both cases, there must be some mechanism that translates the intracellular 

calcium rise into a graded change in synaptic strength. 

The integral values for NMDA-receptor calcium influx and VGCC calcium influx, 

and the corresponding STDP rule are shown in Fig. 4.13. The STDP rule has 

two phases, a negative phase representing LTD when presynaptic spiking follows 

postsynaptic spiking, and a positive phase representing LTP when the order is 

reversed. There is no additional LTD phase a large pre-post spike timings, as 

the VGCC-dependent pathway which governs LTD is never activated under a 

pre-post a spike pair. Thus, the introduction of a second coincidence detector, 

and the distribution of labour that this allows, produces a calcium-based STDP 

rule capable of supporting a biphasic learning rule of the form observed in a 

variety of experimental preparations (Bi and Poo, 1998; Zhang et al., 1998). 

4.3.5 Saudargine et al., (2005) 

The problem of a second LTD window under pre-post pairings at large spike­

timings in a calcium-control model has also been discussed in the Saudargine 

model (Saudargine and Porr, 2005). In contrast with models of plasticity where 

changes are dependent only on the absolute level of postsynaptic calcium (Shou­

val et al., 2002), in the Saudargine model plasticity is directed by the gradient 

of intracellular calcium changes. The basic principles of the calcium control 

hypothesis, that it is NMDA-receptor-dependent calcium that drives synaptic 

plasticity, are then reinterpreted in this context. NMDA-receptor dynamics are 
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FIGURE 4.13: (A)The integral values for the proposed NMDA-receptor LTP 
pathway (black) and VGCC-mGluR LTD pathway (grey). By introducing two 
separate coincidence detectors, the two process may be kept distinct. There is 
no overlap between the LTP process and the LTD as each is only activated by 
a specific spike-ordering (either pre-post for NMDA-receptor-dependent LTP, 
or post-pre for VGCC-mGluR-dependent LTD). (B) The resulting STDP rule. 
The rule uses the integral values shown in (A) to determine the level of plasticity 
directly. The rule is biphasic, with a single LTP and a single LTD phase. The 
second LTD phase at large pre-post spike timings seen in single-detector models 
of the calcium control hypothesis is absent (from Karmarkar and Buonomano 

(2002)) . 

modelled according to a simple definition standard in the literature (Koch and 

Segev, 1998). In this scheme, the NMDA conductance, g(t), is written as 

e-t/Ta _ e-t/ Tb 

g(t) = gmax 1 + T/Me-'YV,n ' (4.24) 

where gmax is the peak conductance, M the magnesium concentration, and Vm(t) 

the postsynaptic depolarisation. The time constants Ta « Tb represent slow and 

fast components of activation, respectively. T/ and '"Yare constants of proportion­

ality, and we refer the reader to the original work for further details (Saudargine 

and Porr, 2005). 

The authors assume that both increases (influx) and decreases (elimination) of 

intracellular calcium depend directly on the postsynaptic membrane voltage. 

Specifically, the derivative of the postsynaptic voltage, Vm, is translated directly 

into influx (positive) and elimination (negative). By using the derivative of Vm , 

rather than its instantaneous value, the level of intracellular calcium will depend 

on the temporal profile of postsynaptic depolarisation not simply its magnitude. 

This approach is different to that of, for example, Shouval et al., (2002) discussed 

above and, as we will see, prevents the prediction of an additional LTD window 

at large pre-post spike timings. 

Before taking the derivative, the postsynaptic membrane potential is convolved 

with a low-pass filter. This filter is chosen to reproduce the steep-rise and slow 
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decay of intracellular calcium transients (Sabatini and Oertner, 2002). The re­

sulting function is termed the "postsynaptic influence", and written 

F(t) = d (Vm(t)h(t)) 
dt 

( 4.25) 

where h(t) is the low-pass filter. Defining fL to be some learning rate, the afferent 

plasticity induced from a spike-pairing of time difference t::.t, denoted t::.w, is then 

defined to be 

t::.w(t::.t) fL roo F(t')GN(t' + t::.t) 
J!:::.t 

(4.26) 

for t::. t > 0 (pre-post pairings) or 

t::.w(t::.t) = fL roo F(t' - t::.t)GN(t') 
J!:::.t 

(4.27) 

for t::.t < 0 (post-pre pairings), where GN(t) is the NMDA-receptor conductance. 

The temporal ordering of pre- and postsynaptic events, which are represented by 

GN(t) and F(t), respectively, are implemented in these equations by a temporal 

shift of t::.t in one of the functions. 

Thus, the derivative of the filtered postsynaptic membrane potential, F(t), is 

multiplied by the NMDA-receptor conductance, G N(t), and integrated over all 

time t > t::.t. The result is then translated directly into a change in input 

strength. There is no need to postulate any form of biphasic learning function 

to account for LTD, as the derivative of the filtered postsynaptic voltage may 

be positive or negative. Note, however, that this still requires that machinery 

exist that is capable of translating the postsynaptic voltage derivative, via this 

integral, into a graded change in input strength. 

The resulting plasticity rule produces the biphasic, STDP learning curve shown 

in Fig. 4.14A. In accordance with the majority of experimental results, the rule 

predicts a single LTP window and a single LTD window (Bi and Poo, 1998; Zhang 

et al., 1998). The basic phenomenology of STDP, that isolated spike-pairings can 

produce bidirectional changes dependent on the precise spike-timing, is therefore 

reproduced. Increasing the time constant governing the membrane voltage, so 

that the temporal profile is prolonged, produces a curve where LTD is increas­

ingly dominated by LTP (Fig. 4.14B). Thus, at different synaptic sites the same 

STDP rule is of potentially different character, depending on local conditions. 

For example, at synapses further from the soma, where the postsynaptic depolar­

isation arising from a PSAP is broader and more sustained, the STDP learning 
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FIGURE 4.14: The STDP-like learning rule of the Saudargine model. The 
predictions of the model depend critically on postsynaptic membrane potential 
dynamics. In (A) the time constant governing the membrane voltage, T m , is set 
to 10ms. The resulting STDP curve has a roughly equal balance of potentiation 
and depression, and is in qualitative agreement with the STDP curves observed 
in experimental work (Bi and Poo, 1998). In (B) Tm = 40ms, resulting in a 
prolonged, slowly rising depolarisation after a PSAP. This translates into a 
STDP curve dominated by potentiation. (from Saudargine and Porr (2005)). 

rule will be dominated by LTP. A simulated increase in magnesium concentra­

tions suppresses the STDP curve of the Saudargine model but does not change 

its overall shape. 

In summary, the Saudargine model is a calcium-based, biophysical of STDP 

broadly in line with the calcium-control hypothesis. A central postulate is that 

postsynaptic calcium concentration depends directly on the postsynaptic mem­

brane potential, Vm . Importantly, this dependence is on the gradient of Vm , 

rather than its absolute value. When the calcium concentration is translated 

into an evoked plasticity, a rule is produced that is STDP-like in nature, with a 

biphasic learning curve. The learning curve does not predict an additional LTD 

phase at large pre-post spike timings, which is a robust feature of other, purely 

concentration-based, approaches (Shouval et al., 2002). 

4.4 Summary 

A great variety of models of activity-dependent neuronal plasticity have been 

proposed. These range from simple rate-based, rules to more recent, biologically 

plausible, spike-based ones. 

Rate-based plasticity rules describe the activity of pre- and postsynaptic neu­

rons by the recent time-averaged firing rate. Much of the early work on activity­

dependent neuronal plasticity was conducted within such a framework, including 

that of the Hebb-rule along with its various permutations. Rate-based models 

have been successfully applied to a range of problems, such as the activity­

dependent development of orientation selectivity in the developing visual cortex. 



Chapter 4 Spike-based Models of Neuronal Plasticity 77 

However, due to their intrinsic structure, rate-based models are unable to ac­

commodate more recent experimental results which suggest that it is the timing 

of individual action potentials, rather than their mean rate of arrival, that de­

termines the degree and polarity of change. Spike-based plasticity rules do not 

suffer from such a limitation as they explicitly consider individual pre- and post­

synaptic spiking events. They may be divided into two groups; phenomenological 

and biophysical. Biophysical models aim to show that particular input plasticity 

rules can be explained in terms of the complex biological mechanisms thought to 

underlie plasticity. Such models can often be convoluted, with poorly constrained 

parameters, and offer little scope for generalisation. Phenomenological models 

place more emphasis on the computational properties of a particular learning 

rule, standing some way above the actual biological implementation, and as a 

result are often simpler in nature. However, by their very nature, these models 

make the implicit assumption that the STDP-curve is valid across individual 

afferents, and for individual spike pairs. Although certainly possible, it is not 

necessarily true that the observed STDP-curve is valid on any other level than 

this multi-afferent and multi-spike pair level. Indeed, a large proportion of ex­

perimental work on STDP has measured the overall plasticity of several afferents 

in response to multiple spike pairings. We explore the implications of this ap­

proach more fully in Chapter 6, where we show that the observed STDP-curve 

may, indeed, emerge due to the ensemble averaging of individually much simpler 

changes. We also show that there are several possibilities as to the locus of such 

an averaging process, so that the averaging may take place at either the input, 

spike-pair, or synaptic level. 





Chapter 5 

The Song Model of Neuronal 

Plasticity 

A standard implementation of a phenomenological STDP-like learning rule is 

the Song model (Song et aI., 2000). Although the Song model is based mainly 

on the data of Bi and Poo (1998), the form of the learning rule is not in direct 

conflict with the majority of experimental results (but see Bell et al. (1997)). 

The original work focused on the competitive and stabilising properties of the 

learning rule when applied to multiple afferents innervating a single target cell. 

In this Chapter we reproduce these simulations, then explore more fully both the 

parameter space and the underlying assumptions of the model. This illustrates 

issues common to several existing formulations of STDP and motivates our own 

model of STDP presented in Chapter 6. 

5.1 Formulation of Model 

Experimental work has shown that the activity of an afferent and its target cell 

can trigger an adjustment of afferent efficacy dependent on the time delay be­

tween pre- and postsynaptic firing, a phenomenon known as timing-dependent 

long-term potentiation STDP. The closer pre- and postsynaptic firing times are, 

the larger the change in connection strength. In the Song model, the experimen­

tally observed spike-timing dependent plasticity results are taken over directly 

to form a simple learning rule describing the plasticity of individual inputs. A 

biphasic, exponential relationship between the timing of pre- and postsynaptic 
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FIGURE 5.1: Timing-dependent plasticity; A the STDP curve measured in 
experimental work on rat hippocampal slice cultures (from Bi and Poo (1998)) 
and B the learning rule of Song et al. (2000) inspired by it (from Song et al. 
(2000)). The two curves are qualitatively similar, with their apparently oppo-

site polarities simply arising from a difference in the definition of b.t. 

spikes and the magnitude of afferent plasticity is postulated. The change in input 

strength, D.A, given a spike time interval, t, is given by 

for t ~ 0 

for t < 0 
(5.1) 

where A± are the amplitudes of plasticity, and T ± the characteristic time scales 

over which plasticity occurs. The quantity 9max represents the maximum input 

weight. Fig. 5.1A shows the STDP curve from Bi and Poo, (1998) and Fig. 5.1B 

the resulting learning rule from Song et al., (2000). 

The learning rule is constructed by making a simple exponential fit to the exper­

imental data. This guarantees that the characteristic biphasic, exponential form 

of the STDP curve is reproduced. The parameters of the learning rule may be 

chosen to give the best possible match to the data. Experimentally, the magni­

tude of potentiation is greater than that of depression, but the depressive phase 

has an apparently larger time constant. Integrating the learning curve over all 

time takes into account the balance of these two factors and gives an indication 

of whether, overall, potentiation or depression dominates. A negative integral 

indicate that depression is dominant over potentiation. We show later that in 

order for the learning rule to exhibit competitive dynamics, this integral must 

indeed be negative. 

In numerical simulations, discrete time steps of 1O-4s were used. This value is 

1/200th of the STDP-curve decay constants and gives an appropriate temporal 

resolution. The postsynaptic target cell is modelled as a leaky, integrate-and­

fire neuron (Dayan and Abbott, 2001), with 1000 excitatory and 200 inhibitory 

inputs. The spike-timing plasticity rule is applied to excitatory afferents, which 
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change their weight according to the correlations between afferent and target cell 

firing. The inhibitory synapses are non-plastic, with a fixed, uniform efficacy. 

Each afferent receives uncorrelated spike trains generated by independent Poisson 

processes. Poisson spike trains are known to approximate spontaneous activity 

seen vivo, with a highly variable interspike interval (lSI). However, ISIs in vivo 

are often correlated and neurons often exhibit bursting behaviour, especially dur­

ing learning episodes (Bair et al., 1994). Although the excitatory and inhibitory 

afferents receive spike trains at different rates, the firing rates are uniform within 

each group. 

Although the equations governing the system are developed using a conductance­

based approach, the actual implementation treats this conductance as a direct 

measure of afferent strength. This measure is more conventionally called the 

"synaptic efficacy", but we make a more careful distinction between synaptic and 

afferent strengths. It is implicit that afferents make multiple synaptic contacts 

with target cells, and that the efficacy of these individual contacts is summed in 

some manner to give the total afferent strength. The Song model is a description 

of afferent plasticity, and contains no explicit treatment of individual synaptic 

strengths. We will return to this issue in the discussion. The terms "strength" 

and "weight" are equivalent and may be used interchangeably, as may the terms 

"afferent" and "input"'. 

Under the integrate-and-fire neuron approximation, the various processes of 

synaptic transmission which have a finite time course (such as neurotransmitter 

vesicle binding, diffusion of neurotransmitter across the synaptic cleft, ligand 

binding and ionic channel dynamics) are typically assumed to be instantaneous. 

Here, we include an element of Gaussian noise in spike timings to reflect both 

the noise in synaptic transmission, as well that from other experimental sources. 

The plasticity rule is implemented using a set of decaying functions. Pi is asso­

ciated with the afferents, where i = 1,2,3 ... , and Px associated with the post­

synaptic target cells, where x = 1,2,3.... When a pre- or postsynaptic spike 

arrives, Pi or Px is incremented, respectively. In the absence of further firing, the 

Pi,x decay exponentially 

dPi,x 
T± - p' ill - - t,X (5.2) 

where T ± are the decay constants. The use of these functions is a computational 

device to simplify the implementation of the learning rule. Instead of record­

ing an exponential decaying "interaction function" for each pre- or postsynap­

tic event, the algorithm simply makes injections to two exponentially decaying 

functions that combine all the contributions of either presynaptic or postsynaptic 
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firing into a single value. It can be intuitively seen that this approach only works 

if evolving a sum of n values according to an exponential decay is equivalent to 

evolving those n values independently, then summing at the end. It is easy to 

show this is true by considering a sequence of n presynaptic events at times (-ti) 

where i 0, ... , n. Examining the interactions function, Pi, at some later time, 

t > 0, we have that 

(5.3) 

where Pi( -ti) is the initial value of function i. The sum of the n functions at 

time t is then 

(5.4) 

where we have dropped the time argument of the initial values for clarity. How­

ever, instead of evolving n separate functions then summing, we could write 

so that their sum is 

( -tl + -t2 + + -tn) -t _ ( I + I + + I) -t PIe P2 e ... Pne e - PI P2 ... Pn e . 

(5.5) 

(5.6) 

Thus, a simple rewriting of the terms allows us calculate sum of primed values 

once then evolve this sum, rather than evolving and summing all n non-primed 

values individually. Subsequent presynaptic events are adequately accommo­

dated by making a step-contribution to the sum, which then continues to evolve 

as a single entity. 

This simplification only works if the interaction functions evolve according to 

an exponential decay, and therefore possess the lack of memory property. If a 

different interaction function were used this simplification could not be made. 

We also require that the interactions from multiple spike-pairings are assumed 

to sum linearly. If this were not the case, the origin of the contributions to the 

overall interaction function not just their combined value would be important 

for determining plasticity. This method contrasts to the more intuitive, but 

computationally intractable, approach where the time step at which each event 

takes place is recorded and compared to all past events (see below). Under a 

simple one step Euler method, Eqn. 5.2 becomes 

(5.7) 
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where /;).t is the discrete time step. An action potential occurring at input i trig­

gers a postsynaptic depolarisation in proportion to that inputs strength. Two 

additional plasticity-related computations are also made. Firstly, Pi is incre­

mented by an amount A+ and secondly, the afferent efficacy of the firing input 

gi is reduced by an amount Pxgmax' When inhibitory inputs fire, they exert an 

inhibitory influence on the target cell but do not engage in plasticity. Each time 

a postsynaptic neuron is driven beyond threshold, an action potential is triggered 

and two plasticity computations occur. Firstly, Px is decremented by an amount 

A_, and secondly, every excitatory input has its efficacy increased by Pigmax' At 

all times, input weights are constrained to be positive, so that 0 ::; gi :::; gmax' 

This computational scheme uses the functions Pi and Px to encode the two expo­

nential phases of the learning rule. At each time step the five equations describing 

the evolution of the state variables are numerically integrated using a one-step 

Euler method (Gerhald and Wheatley, 1994). The order of integration is arbi­

trary and has no effect on the equilibrium distributions produced. There are no 

explicit absolute or relative refractory periods. Both the afferents and the target 

cell are therefore able to fire an action potential at every time step, although 

this rarely happens in practice. 

In summary, the plasticity functions associated with each afferent and target 

cell receive one time injections whenever an appropriate spike occurs, and then 

decay according to an STDP-like exponential curve. The functions are recalled 

at a later time and used to make appropriate changes in afferent efficacy. This 

slightly esoteric approach is purely a computational device adopted for tractabil­

ity. Consider, for example, the more intuitive approach of simply recording the 

firing time of every pre and postsynaptic event and comparing them under the 

STDP-like learning rule. As interactions between spike pairs are temporally 

unconstrained, each pre- or postsynaptic spike interacts with all preceding pre­

and postsynaptic spikes. Once a simulation begins, the number of pre- and 

postsynaptic spikes since the start of the simulation increases very rapidly, and 

the number of interactions increases in a similarly rapid fashion. To run a full 

simulation would typically require around 1012 spike times to be recorded, and 

an equal number of exponential calculations to be made whenever a new spike 

occurred. Although possible, in practice this approach is computationally in­

tractable. Introducing temporal constraints, such as a finite temporal window 

in which spikes interact, would address this issue but only at the expense of 

introducing additional, arbitrary, constraints into the model. 
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5.1.1 Parameter Selection 

Experimentally, multiple spike pairings (60 pairings at 1Hz) were used to evoke 

statistically meaningful changes in evoked postsynaptic excitatory potentials 

(EPSPs) (Bi and Poo, 1998). Due to the variability in initial input strength, 

this data was presented in the form of a percentage change in input strength. 

In order to obtain a value for the magnitudes of plasticity, A±, it is assumed 

that the effect of multiple spike pairing events sum linearly, so that A± can be 

found by simply dividing the total change by the number of pairings that caused 

it. The values thus obtained are, however, only approximate A± as the addi­

tional scaling of all afferent strengths by gmax is ignored. The values for A± that 

are used, 0.005 for potentiation and -0.00525 for depression, are therefore only 

roughly consistent with the experimental data. 

The decay constants, T ±, determine the size of the time window over which 

spikes interact and cause a change in afferent efficacies. By making them larger, 

an afferent can fire further in advance of postsynaptic firing and still enjoy an 

up regulation of efficacy. The same will be true for depressive pairing when 

the order is reversed. Making it smaller has the opposite effect, reducing the 

time window in which pre- and postsynaptic spiking can effectively interact. 

Experimental data on the width of the STDP window are mixed. Some results 

have suggested that the two sides are of roughly equal duration (Markram et al., 

1997; Bi and Poo, 1998; Zhang et al., 1998), others that the depressive phase is 

longer (Debanne et al., 1998; Feldman, 2000). As experimental results are drawn 

from a variety of preparations, this may reflect functional as well as experimental 

differences. The dynamics of the Song model are insensitive to minor differences 

in the time constants, Tpm, as long as the constraint A+ T + ::; A_ T _ is maintained. 

We set T± = 20ms in accordance with the original paper. The maximum synaptic 

efficacy, gmax, is set to 0.015. This corresponds to a peak synaptic conductance 

of 150pS, which lies within accepted experimental bounds (Hille, 1992). The 

inhibitory synapses are non-plastic, with fixed conductances of 0.05. 

Noise in the timing of spikes, reflecting both experimental error and variable 

transmission times, is drawn from a Gaussian distribution with standard devia­

tion of 1ms. 

The action potential threshold for the integrate and fire neuron was set to 

-54m V, resting potential to -70m V, inhibitory and excitatory conductance de­

cay constants to 5ms, and membrane time constant to 20ms. These values are 

all roughly standard from the literature. The excitatory and inhibitory reversal 

potentials are set to the Om V and -70m V, respectively. The reset potential was 

set to -60m V by matching the neuronal gain of a simple integrate and fire model 

to match the observed value for pyramidal and sparsely spiny stellate neurons of 



Chapter 5 The Song Model of Neuronal Plasticity 85 

the neocortex (Troyer and Miller, 1997). The dynamics of the integrate and fire 

neuron, when acting as a simple integrator of synaptic input, then give a reason­

able approximation to the highly variable ISIs for action potential production as 

seen in vivo without resorting to balanced inhibition or correlated inputs. Song 

et aI., suggest that this is a desirable property when modelling cortical neurons. 

However, we show later that the dynamics of the learning rule are relatively in­

sensitive to changes in the reset potential. At the start of each simulation, the 

target neuron was initially set to its resting potential of -70m V. 

5.1.2 Computational Scheme 

After initialisation of parameters and clearance of data storage variables and 

arrays, the following steps are repeated until a fixed amount of simulated time 

has elapsed. 

1. Decay of state variables: State variables gex, gin, Px and Pi decay, subject to 

a lower bound of zero. 

2. Compute excitatory input For each excitatory input, Poisson statistics are 

used to determine if an excitatory afferent fires an action potential or not. If 

if does, gex is incremented by the afferents weight and gi is weakened by mi, 

subject to a lower bound of zero. Pi is also incremented by A+. 

3. Compute inhibitory input: For each inhibitory input, Poisson statistics are 

used to determine if an inhibitory afferent fires an action potential or not. If it 

does, gin is incremented by the afferents weight. 

5. Integrate and fire: Rate of change of membrane potential calculated for the 

leaky, integrate-and-fire target neuron. The target neuron membrane potential 

is incremented using a one step Euler method. If the firing threshold is exceeded, 

a postsynaptic action potential is triggered. v then changes immediately to the 

reset potential, and mx is decremented by A_. The input weights, gi, are then 

strengthened by Pi, subject to an upper bound of gmax' 

5.2 Results 

We now reproduce the main findings of the original work on the Song model 

(Song et aI., 2000). In most cases, 1000 seconds of simulated time is sufficient 

for the distribution of afferent efficacies to reach a dynamic equilibrium. At this 

point, individual afferents may still move between high and low strength with 

time, but no change is seen in the overall distribution beyond those associated 

with the stochastic nature of the simulation. As input firing rates are reduced, 



86 Chapter 5 The Song Model of Neuronal Plasticity 

or the ratio A_ / A+ is decreased, the learning rate naturally falls. This results in 

a dramatic increase in convergence time, and the simulation must run for longer 

for the system to reach equilibrium. 

5.2.1 Input-Rate Adaptation 

The 1000 excitatory synapses were given an initial efficacy of 9max. This pro­

duces a very high postsynaptic firing rate, with the target neuron firing regularly, 

as would be expected when averaging the input of a large number of afferents of 

roughly equal weight. The postsynaptic spiking at this stage is largely indepen­

dent of individual presynaptic spike timing, so approximately equal numbers of 

presynaptic spikes will fall either side of the postsynaptic spike. The negative 

integral of the learning rule STDP-like learning curve means that, on average, 

the inputs will be weakened. As equilibrium is approached, a more balanced 

distribution is produced with total afferent input maintaining the postsynaptic 

neuron very near to its firing threshold. The result is postsynaptic firing that 

occurs in a manner similar to a Poisson spike train, with postsynaptic spiking 

occurring in response to random fluctuations in the total afferent input. 

As random correlations in input firing are now needed to evoke a postsynaptic 

spike, more presynaptic events tend to occur before a spike than after. Other 

afferents continue to weaken in accordance with the overall dominance of de­

pression. Once a group of afferents begin to strengthen they begin to win more 

and more control of the postsynaptic spiking. The remaining afferents weaken 

further, eventually losing all control of the postsynaptic cell. The learning rule is 

therefore competitive, with some afferents increasing in strength at the expense 

of the others. 

Eventually, an equilibrium distribution arises. Afferent strengths fall in the range 

defined by the hard upper and lower bounds, between zero to gmax. Fig. 5.2 

shows a histogram of the equilibrium efficacy distribution for excitatory input 

firing rates of 10Hz, and Fig. 5.3 shows the same for input firing rates of 40Hz. All 

other parameters were held fixed. We see the characteristic bimodal distribution 

of this model (Song et al., 2000), with afferent efficacies clustering around the 

upper and lower bounds. A lower excitatory firing rate causes more efficacies 

to approach the upper bound, which may be interpreted as a kind of input-rate 

adaptation where the total synaptic input (the product of afferent efficacy and 

firing rate, summed over all inputs) is kept roughly constant across different 

firing rates. As a result, the postsynaptic firing rate is largely insensitive to 

the presynaptic firing rates. The initial distribution of afferent efficacies has no 

effect on the equilibrium distribution. This is assuming, of course, that there 
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FIGURE 5.2: Equilibrium distribution of afferent efficacies for excitatory input 
firing rates of 10Hz. The characteristic bimodal distribution of the Song model 
can clearly be seen. The afferent efficacies lie between zero and 9max = 0.015, 
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FIGURE 5.3: Equilibrium distribution of afferent efficacies for excitatory input 
firing rates of 40Hz. The bimodal distribution is shifted towards zero, so that 
the cluster of inputs with efficacy around 9max is much reduced. The afferent 
efficacies lie between zero and 9max = 0.015, so that each bin represents an in­
terval of 0.00075. The postsynaptic firing rate is, as a result, almost unchanged 

(an effect referred to as input-rate-adaptation). 
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is sufficient initial input to trigger postsynaptic spiking, as in the absence of 

postsynaptic firing no plasticity is evoked. 

The excitatory input firing rate was varied from 10 to 50Hz, with all other pa­

rameters held fixed. Fig. 5.4 shows the effect on the postsynaptic firing rate and 

coefficient of variation. In the figure, the postsynaptic firing rate has been scaled 

by a factor of 1/10. The postsynaptic firing rate increases by around 1Hz for each 
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FIGURE 5.4: Effect of changing the presynaptic firing rate on the postsynaptic 
firing rate (top line) and coefficient of variation (bottom line). The postsynaptic 
firing rate has been scaled by a factor of 1/10, and the data points are the 

average of 10 runs. 

5Hz increase in presynaptic rates, demonstrating the regulation of postsynaptic 

firing rates under this learning rule. The coefficient of variation is high, and the 

neuron remains highly sensitive to random fluctuations in the input firing rates. 

Fig. 5.5 shows the ratio of total inhibitory to total excitatory synaptic input. 

There is a slight dominance of inhibition across the whole range of presynaptic 

firing rates, and this balance of inhibition and excitation contributes to the high 

variability of postsynaptic spiking. The percentage of strong excitatory afferents 

(were strong is defined as Ai 2: 0.89max) decreases with increased firing rate. 

This provides an additional source of variability in postsynaptic spiking as sev­

eral excitatory inputs must fire together in order or trigger a postsynaptic action 

potential. 

The ratio of A_ / A+ determines whether potentiation or depression is dominant 

(as 7+ = L, always). For A_/A+ 2: 1 the integral of the STDP-like learning 

curve is negative, and depression is, on average, dominant. We vary the value 

of the ratio from 1.05 to 1.20. Fig. 5.6 shows the equilibrium postsynaptic 

firing rate, and coefficient of variation. As the ratio increases, the equilibrium 

postsynaptic firing rate decreases and the coefficient of variation increases in a 

non-linear fashion. 

As demonstrated in the original work, the bimodal distribution of afferent effica­

cies can be "filled in" to some degree if 9max is made 2.33 times higher, and both 

A_ and A+ are made 4 times higher (Song et al., 2000). As Fig. 5.7 shows, this 

empirical choice of parameters preserves the basic characteristics of the learn­

ing rule, such as postsynaptic rate and coefficient of variation regulation, while 
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FIGURE 5.6: Effect of changing the dominance of depression over potentiation 
on the postsynaptic firing rate (decreasing) and coefficient of variation (increas­
ing). The postsynaptic firing rate has been scaled by 1/10, and the data points 

are the average of 10 runs. 
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FIGURE 5.7: Equilibrium distribution of afferent efficacies at 10Hz, with gmax 
2.33 times larger, and A_/A+ 4 times larger. The bimodal distribution is 
still present, but has been "filled-in" to some extent. The afferent efficacies 
lie between zero and gmax = 0.015, so that each bin represents an interval of 

0.00075. 

producing a smoother afferent efficacy distribution. Experimental work measur­

ing the size of miniature EPSPs (which may be interpreted as an indication the 

afferent efficacy) suggests that such a distribution is more biologically plausible. 

5.2.2 Latency Reduction 

We now explore the dynamics of the Song rule in response to presynaptic burst 

firing. We continue to set A+ = 0.005, A+/A_ = 1.05, and T± 20ms. Both 

excitatory and inhibitory afferents fire at a rate of 10Hz, and have initial synaptic 

weights equal to 0.2gmax . In addition to this background firing, each excitatory 

afferent was made to fire a single burst of action potentials ten times a sec­

ond. The bursts consisted of a Poisson spike train at 100Hz lasting for 20ms. 

These bursts were not synchronous, with each excitatory afferent assigned a 

fixed random latency, drawn from a Gaussian distribution with zero mean and 

standard deviation of 15ms. Excitatory afferents with low latencies fired earlier 

during each bursting phase, and as a result tended to precede the postsynaptic 

response. Under this learning rule, these low latency afferents are preferentially 

strengthened. Afferents spiking with higher latency tended to spike after the 

postsynaptic response, and as a result were weakened. The simulation ran for 

1000 seconds of simulated time. This was sufficient to reach an equilibrium in 

afferent efficacies, as the spread in latencies creates an environment where the 

final strength of each synapses converges rapidly and predictably. 
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to gmax and high latency inputs weakened to zero. A sharp transition exists 
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The initial afferent efficacy distribution, as a function of assigned latency, is 

shown in Fig. 5.S. All afferents have an efficacy of O.2gmax , and the distri­

bution is Gaussian. Fig. 5.9 shows the equilibrium distribution. Afferents with 

lower latency have invariably been strengthened to the maximum weight allowed. 

Higher latency inputs have invariably weakened and remain very small. A sharp 

transition may be seen between the two populations. Thus, at equilibrium, the 

target neuron responds much quicker to the onset of afferent bursting, as the low 

latency afferents effectively control postsynaptic spiking. 
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5.2.3 The Reset Potential 

In the original paper, the reset potential of the integrate and fire neuron was set 

to -60m V by matching the neuronal gain of a simple integrate and fire model 

to match the observed value for pyramidal and sparsely spiny stellate neurons of 

the neocortex (Troyer and Miller, 1997). The authors claim that the dynamics 

of the integrate and fire neuron, when acting as a simple integrator of synap­

tic input, then give a reasonable approximation to the highly variable ISIs for 

action potential production as seen in vivo without resorting to balanced inhi­

bition or correlated inputs. Song et al., suggest that this is a desirable property 

when modelling cortical neurons. It is important, however, to explore the ef­

fect that this somewhat counterintuitive value (a more standard value would 

be somewhere around -90mv) has on the learning rule. We therefore repeat 

the input-rate adaptation simulations at 10Hz, using the more standard reset 

potential of -90mv. We find that the characteristic bimodal distribution of 

equilibrium afferent efficacies is qualitatively unchanged. The slight differences 

between the two distributions are due to the stochastic nature of the simulation. 

This result is expected, as the competitive dynamics that produce the bimodal 

distribution arise directly from the use of a non-linear integrate-and-fire neu­

ron. As this mechanism is still present, we would expect qualitatively similar 

dynamics. Certain properties of the postsynaptic neuron, such as the variability 

of inter-spike-intervals, are, however, influenced by the choice of reset potential 

Song et al. (2000). We conclude, therefore, that the key properties of the STDP­

like learning rule, such as the presence of competitive dynamics, are insensitive 

to the precise value of the reset potential of the integrate and fire neuron. 

5.2.4 Stability 

It is important to examine the stability of a learning rule to determine which 

of its properties are more than just transient behaviours. The characteristic, 

bimodal, equilibrium distribution of input weights of the Song model, shown 

in Fig. 5.2 is described in the original paper as being "stable". However, this 

stability is only in the sense that the overall distribution does not change over 

time. Individual inputs may still change, moving about within the distribution 

without affecting its overall shape. It is entirely possible, therefore, for an input 

of high strength (one that is part of the cluster around gmax) to weaken, pass 

through the intermediate region, and eventually become an input of low strength 

in the cluster around zero. Fig. 5.11 shows the evolution of five afferents during a 

simulation lasting 5000 seconds. This duration is approximately five times that 

required to reach a bimodal distribution of input weights. We see, as expected, 

that by 1000 seconds all of the afferents have joined one of the two clusters around 
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FIGURE 5.10: Equilibrium distribution of afferent efficacies at 10Hz using a re­
set potential of -gOm V. The characteristic bimodal distribution is qualitatively 
unchanged from the case where the reset potential is -65m V. The afferent effi­
cacies lie between zero and gmax = 0.015, so that each bin represents an interval 

of 0.00075. 
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zero or 9max. However, over the next few thousand seconds two of the afferents 

independently transition from one extremum to the other. A simple numerical 

investigation confirms that this observation holds for any value of 9max in the 

region of those chosen in the original work. Thus, the bimodal distribution 

is stable when viewed as a whole but unstable when examined at the level of 

individual afferents. Scaling the values of A± do not affect this result. This 

is expected, as it can be intuitively seen that it is the nOn-zero probability of 

finding afferents between the clusters at zero and 9max (the "filled-in" nature 

of the distribution) that permits gradual transitions between the two extrema. 

Scaling A± leaves this distribution unchanged, altering only the length of time 

taken by afferents to move around within the distribution. That is, scaling A± 

simply alters the overall learning rate. 

Under the parameters chosen in the original paper, then, the Song model is only 

stable in the sense that the overall distribution of input weights does not change. 

Individual inputs are not stable as they may flip from a state of high strength to 

one of low strength over a long enough time period. Even over relatively short 

periods, inputs are capable of undergoing quite large fluctuations in strength. 

The segregation of inputs that occurs in the Song model is therefore of a quite 

different nature to, say, that in the BCM-rule (Bienenstock et al., 1982) in which 

a single input reliably wins control of the target cell and all other inputs are 

suppressed. In the BCM-rule, the segregation is stable so that the winning 

afferent retains control of the target cell and does not subsequently lose control 

to a different input due to some large fluctuation in strength. 
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FIGURE 5.11: Evolution of five afferents over 5000 seconds of stimulated time. 
Afferents initially segregate into two clusters around zero and gmax. These two 
clusters underlie the characteristic bimodal distribution shown in Fig. 5.1 and 
Fig. 5.2. Subsequently, two afferents transition from one of the extremes to the 
other. The bimodal distribution is therefore only stable in a global sense, not 
from the point of view of individual afferents. Parameters are as for Fig. 5.2. 

It is possible to stabilise the Song model somewhat by choosing a much higher 

value for gmax' Although this issue was not addressed in the original work, our 

own simulations show that with a higher gmax an equilibrium distribution may 

be produced where the majority of inputs are clustered around zero with a few, 

very high strength afferents clustered around gmax' Transitions between states 

of low and high strength then become very unlikely, and individual inputs as well 

as the overall distribution are stabilised. This occurs because, with a suitably 

high gmax, the bimodal distribution is prevented from being "filled-in", so that 

very few inputs with weight intermediate between the zero and gmax exist. 

5.3 Comparison to Original Implementation 

Our implementation of the STDP-like learning rule of Song et al., (2000) repro­

duces all their main findings. Small quantitative differences in the equilibrium 

distribution of afferent efficacy are to be expected, and are consistent with the 

stochastic nature of the simulations. The histograms showing the bimodal dis­

tribution of input weights characteristic of the Song model are taken from a 

single simulation, and do not represent data averaged over many repetitions. 

At best, therefore, a qualitative match between the original paper and our own 

simulations would be expected. Fig. 5.6 shows the effect of changing the dom­

inance of depression over potentiation (the ratio A_/A+). For low values of 

A_ / A+ ::::: 1.05 there were significant quantitative differences when compared 
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to the original paper, although the qualitative picture is the same (data not 

shown). It is likely that this numerical difference stems from the fact that we 

use simulations of fixed duration (around 1000 seconds of simulated time), but 

the convergence time of the simulations increases dramatically as the integral of 

the STDP curves approaches zero. Reducing input firing rates also dramatically 

increases the convergence time, as more simulated time is needed to allow a suf­

ficient number of spike pairings to occur for the system to reach equilibrium. 

A closer examination of the afferent efficacy distribution when the simulation 

terminates supports this conclusion. For A_/A+ :::; 1.05 the efficacy distribution 

is very similar to the initial conditions (unimodal, and clustered around 9max). 

Running the simulation for longer results in values closer to, but still significantly 

different to, those presented in the original work. However, in the absence of any 

discussion of these convergence issues in the original paper, we choose to fix our 

simulation duration at 1000 seconds and examine the areas of the curve where 

convergence is more likely, when A_/A+ ?': 1.05. 

5.4 Discussion 

The Song model is a phenomenological, additive STDP learning rule formulated 

by taking a typical experimentally observed STDP curve over directly to gov­

ern input plasticity. The proposed learning rule sets out explicitly how pre­

and postsynaptic spiking may interact to drive changes in input strength. It 

has been shown in other modelling studies that the implementation details of a 

simple STDP-rule can have important consequences for the learning dynamics 

(van Rossum et al., 2000; Izhikevich and Desai, 2003). It is therefore impor­

tant to critically evaluate the formulation of a model, and understand fully any 

assumptions behind it. 

5.4.1 Formulation 

Experimental results have suggested that the STDP curve has two distinct 

phases, one for potentiation with positively correlated pre- and postsynaptic 

spiking, and one for depression with negatively correlated spiking. Approximat­

ing the STDP curve with a double-exponential learning rule seems an obvious 

first choice, and this appears to give a reasonable match to the data of Bi and 

Poo (1998). However, the infinite tail of the exponential means that, in the con­

text of a learning rule, every presynaptic spike will interact with every earlier 

postsynaptic spike (albeit to an exponentially diminishing degree). This lack 

of temporal restriction may appear trivial, but it is just such restrictions that 
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have been proposed elsewhere to connect simple STDP learning rules with the 

BCM-theory (Izhikevich and Desai, 2003). 

The learning rule is assumed to be of a fixed form, treating each spike pair as 

an independent event, with the effects of multiple spike-pairs summing linearly. 

In a situation where three spikes occur, removing anyone will not affect the 

contribution arising from the interaction of the other two in any way. Recent 

experimental results suggest that real spike pairs do not always sum linearly 

in such a simple manner (Froemke and Dan, 2002). In the triplet interactions 

investigated by Froemke and Dan(2002), repeated pairing of two presynaptic 

action potentials with a single postsynaptic event (60-80 pairings at 0.2Hz) in 

pyramidal neurons in layer 2/3 of rat visual cortical slices led to a supralinear 

overall change that cannot be explained under a simple, biphasic, exponential 

STDP curve. An additional non-linearity, in the form of spike suppression, is 

required to accommodate these spike-triplet results in simple STDP models such 

as the Song model. 

A sharp transition is assumed to exist between the up and down phases of the 

learning curve. Although it is indeed possible that the "real" STDP curve has 

the same underlying form, perhaps masked by the presence of noise, this is 

certainly not the only possibility. For example, a much smoother transition may 

occur. The transition region is potentially very important, as this is the region 

where the largest plasticity events are evoked. This issue of the transition zone 

becomes even more important when inputs fire bursts of action potentials instead 

of single spikes as, with bursting inputs, a larger proportion of interactions would 

be expected to occur in the transition region. 

Finally, we note that, in real biological systems, each afferent makes multiple 

synapses with its target cells. The total afferent efficacy is then the sum of all 

the individual synapse efficacies, and there is a distinction between individual 

synaptic and total afferent efficacy. Experimentally, measurements are invariably 

made of changes in overall input strength, or even of groups of inputs, rather 

than of individual synapses. The measured STDP rule is therefore also being 

measured at this input level. Although it is indeed possible that the STDP curve 

is respected at each individual synapse, it is not the only interpretation of spike­

timing results. In the Song model, this distinction between input and synaptic 

efficacies is not considered. It is implicitly assumed that each afferent supports a 

single synapse onto the target, and that each is influenced by postsynaptic firing 

in an identical manner. Each synapse is therefore required to compute the STDP 

curve, recording pre- and postsynaptic spike-timings and making some graded 

change in synaptic strength based on their difference. This places considerable 

computational burden on the synapse, and requires that a range of coincidence 

detection machinery be postulated and deployed. Thus, although the Song model 
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is an apparently minimal model of STDP, it nevertheless places considerable 

computational demands on the synapse. 

5.4.2 Simulation 

The learning dynamics of any plasticity rule will depend, in part, upon the par­

ticular domain in which it is explored. For example, the choice of input firing 

patterns may strongly influence the observed plasticity. The particular choice of 

parameters may also have an important influence on the learning behaviours ex­

pressed. The majority of parameters in the Song model are poorly constrained by 

experimental data, and often little justification is given (beyond simple empirical 

observations) for confining simulations to a particular parameter space. 

The parameters A±, which determine the maximum modification that can occur 

due to a single spike pair, are poorly constrained by experimental data. The 

experimental protocols of Bi and Poo (1998), which are typical of this kind 

of plasticity experiment, used multiple pairings (50 pairings at 1Hz) to evoke 

statistically reliable changes in evoked EPSPs (a measure of afferent efficacy). 

Due to the natural variability in initial EPSC strength, these experimental results 

are often reported as changes in relative afferent strength. In the Song model 

A± describe the maximum absolute change induced by a single spike pairing. 

Values for A± are found by making the assumption that multiple spike pairings 

sum linearly to give an overall change in afferent efficacy, and as a result the 

change induced by a single spike pair is simply this total change divided by the 

number of pairings. However, values found by this simple method cannot be 

directly mapped onto values of A±, as this ignores the additional scaling factor 

of gmax' Nevertheless, this is precisely what the authors do. In effect, they make 

the assumption that every afferent involved in the experiment of Bi and Poo had 

an initial efficacy of 0.52gmax . Given that the results of Bi and Poo are presented 

as percentage changes precisely due to the variation in initial afferent strength, 

this is unlikely to be the case. The values for A± used, 0.005 for potentiation 

and -0.00525 for depression, cannot therefore be said to be drawn directly from 

experimental results, as those results were concerned with relative changes only. 

At best, it can be said that since A+ is positive and A_ is negative they are not 

in direct conflict with the majority of experimental results. 

Input spiking is governed by independent Poisson spike trains, which are arguably 

a reasonable model of spontaneous firing pattern in the biological system. How­

ever, in reality such background levels of firing are almost always supplemented 

by bursting behaviours, especially during learning episodes (Bair et al., 1994). 

The properties of the learning rule discussed here, such as it competitive dy­

namics, bimodal distribution of input weights, and input rate-normalisation, 
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therefore do not require any form of structured input. That is, the inputs will 

segregate into two groups under purely stochastic input, with each input eventu­

ally finding itself randomly placed into one of the two groups. A correlated group 

of inputs will, of course, be more likely to potentiate as they will tend to precede 

postsynaptic spiking more than randomly spiking inputs but the correlations 

are not in themselves a prerequisite for segregation to occur. Thus, though this 

STDP-like rule may appear to offer an attractive way of generating segregation 

of two populations of inputs it does so in a very particular manner. This is in 

contrast with, for example, the BCM-rule, where it is precisely the presence of 

correlations between two input groups that drives the segregation (Bienenstock 

et al., 1982). 

5.5 Summary 

The Song model implements a simple, phenomenological STDP-like learning 

rule, based around a biphasic, exponential approximation to the experimentally 

observed STDP curve describing afferent plasticity. The rule leads to a bimodal 

equilibrium distribution of afferent weights, subject to hard upper and lower 

bounds on afferent efficacies. This distribution is stable in the sense that its 

overall shape does not change, but, importantly, individual inputs are not stable 

and may transition between states of low and high strength. The distributions 

produced represent a balance of excitatory and inhibitory input which forces 

the target neuron into a balanced, irregular firing regime where it is sensitive 

to the timing of input action potentials. This sensitivity on the timing of input 

spiking leads to competition among afferents. When the inputs fire with different 

latencies and correlations, the learning rule will selectively strengthen those firing 

with a short latencies and stronger correlations. 

The non-linearity of the spike generation method plays a crucial role in produc­

ing the observed learning dynamics. If the chance of spiking increases linearly 

with membrane voltage then there is no increase in the proportion of inputs fir­

ing before a postsynaptic action potential once the system reaches equilibrium. 

Experimental data only broadly constrains the models parameters. However, the 

values used are consistent with a range of experimental results, and the equilib­

rium properties of a Song model are insensitive to the small variations in the 

models parameters. It is critical, however, that depression dominates potentia­

tion overall (Song et al., 2000). 

As the Song model takes the STDP curve over directly to govern input plasticity, 

it is guaranteed that the model is consistent with those spike-pair results. It 
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does not, however, generalise well to accommodate other results, such as spike­

triplets or quadruplets (Froemke and Dan, 2002). It is, however, possible to 

make a variety of modifications to the Song model rule in order to account for 

additional experimental results not considered in the original work. Introducing 

"spike-suppression", where the plasticity induced by a spike-pair is reduced if 

preceded by another spike, can accommodate the spike-triplet results of Froemke 

and Dan (2002).In other work, it has been shown that introducing asymmetric 

temporal limitation on the interactions of presynaptic spikes can produce a rule 

that, when averaged over the course of a long spike train, predicts a change in 

input weight compatible with the BCM model (Izhikevich and Desai, 2003). 

5.6 Conclusions 

The Song model is a commonly cited example of a phenomenological, additive 

STDP learning rule. Although the exploration of the Song model has been 

mostly numerical, several key properties have been noted. In this Chapter, we 

have reproduced the main findings presented in the original paper (Song et al., 

2000), then extended our simulations to further characterise the model. We find 

that the learning dynamics of the rule are relatively insensitive to the parameters, 

with the exception that depression is always required to dominate potentiation, 

on average. 

The Song model makes the implicit assumption that STDP is valid at the level 

of synapses as well as inputs. This view is widely adopted in the literature. 

However, this is only one possible interpretation of STDP results. We show in 

Chapter 6 that an alternative view is viable; that the observed change in afferent 

efficacy arises due to the temporal and spatial average of much simpler changes 

occurring at the individual synapses comprising that afferent. This ensemble 

interpretation of STDP leads to a much simpler synaptic rule, which explains 

a range of spike- and rate-based experimental results while at the same time 

greatly reducing the computational burden on individual synapses. 





Chapter 6 

An Ensemble Interpretation of 

S pike-Timing-Dependent 

Plasticity 

The work in this Chapter is based primarily on the paper "A Synaptic and 

Temporal Ensemble Interpretation of Neuronal Plasticity" (Appleby and Elliott, 

2005). 

6.1 The Synaptic Basis of Neuronal Plasticity 

The models of activity-dependent plasticity discussed in Chapter 3 and Chap­

ter 4 may be classified as either rate- or timing-based, depending on the under­

lying description of neuronal firing. A further distinction may be made between 

phenomenological models and those based on a more biophysical approach. 

Rate-based models of plasticity have been successful in explaining certain de­

velopmental phenomena, such as the development of orientation selectivity in 

the visual system (Bienenstock et al., 1982). However, by their very, nature 

rate-based models are unable to accommodate recent experimental results sug­

gesting that it is the exact timing of pre- and postsynaptic action potentials that 

determines the degree and polarity of afferent plasticity. More recently, timing­

based models have been formulated that consider the interactions of individual 

pre- and postsynaptic spikes. A variety of phenomenological learning rules have 

been proposed which take the experimentally observed spike-timing plasticity 

rule over directly to govern plasticity at individual inputs. In conjunction with 

certain constraints, this approach can give rise to stable distributions of input 

weights (Song et al., 2000; van Rossum et al., 2000). Biophysical models have 

101 
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mainly focused on modelling calcium and NMDA-receptor dynamics according 

to a "calcium-control hypothesis" (Senn et al., 2000; Shouval et al., 2002; Kar­

markar and Buonomano, 2002; Saudargine and Porr, 2005). This approach has 

yielded models of some complexity which, although reproducing STDP-like plas­

ticity curves, often display behaviours not generally seen experimentally, such 

as the prediction of an additional second LTD window at large pre-post timing 

differences (but see Nishiyama et al., 2000). They are also, in general, more 

difficult to analyse than phenomenological models, and can be sensitive to the 

choice of parameters. 

We note that experimental works invariably measures plasticity across a con­

nection, or group of connections, rather than across individual synapses. As an 

afferent typically makes multiple synapses onto a target cell, it is possible that 

the observed STDP plasticity rule exists only the input level, with a different 

rule governing changes at the synaptic level. That is, the observed plasticity rule 

may emerge due to the averaging of some other synaptic rule rather than actu­

ally being implemented at any individual synapse. In this Chapter, we propose 

such a rule, in the form of a three-state synaptic switch that governs plasticity 

at individual synapses, and find that this simple rule can explain a variety of 

rate- and timing-based plasticity results. 

6.2 Basic Formulation 

We now construct an activity-dependent synaptic plasticity rule that governs 

changes at individual synapses in response to pre- and postsynaptic spiking. We 

propose that a positively correlated spike pair will potentiate a given synapse by 

a fixed amount A+, subject only to the requirement that the postsynaptic spike 

occurs within a finite time window relative to the presynaptic spike. Outside 

this time window, the postsynaptic spike does not evoke any change in synap­

tic strength. The duration of this time window is not fixed, but is taken to be 

a stochastic quantity governed by some probability distribution. This simple 

modification rule could be embodied by some biological, synaptic switch mech­

anism. The arrival of a presynaptic spike activates some process that elevates 

the synapse into a different functional state. The arrival of a postsynaptic spike 

while this process is still active, and the synapse is still in the elevated state, 

induces potentiation of the synapse by a fixed amount A+. The postsynaptic 

spike is also taken to deactivate the process. In the absence of postsynaptic 

firing, the process will naturally deactivate in a stochastic, random manner, and 

subsequent postsynaptic spiking will not evoke a change in synaptic strength 

unless preceded by further presynaptic spiking. 
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FIGURE 6.1: The simplest, self-consistent forms that the proposed synaptic 
switch can take, and its resulting plasticity rule. (A) shows the states and 
transitions that must exist in a switch accommodating the timing-dependent 
induction of LTP due to pre- and postsynaptic spiking; (B) same as (A) but for 
the induction of LTD; (C) a unified, 3-state synaptic switch that can exhibit 
both LTP and LTD; (D) change in synaptic strength evoked under the unified 
3-state switch for a representative spike pair at various spike timings. In this 
example, the switch was activated to the POT or DEP state and remained 
there for some arbitrary time t±. Although we show the case where t+ = L, 
these times would, in general, be different and would also vary from trial to 
trial. The arrows 11 and .u- indicate the induction of potentiation and depression, 

respectively. 

We label the resting state of the synapse as the OFF state. The elevation of 

the synapse into a different functional state, due to the arrival of a presynaptic 

spike, is represented by a transition to a different state that we label the POT 

state. While in the POT state, additional presynaptic spiking has no further 

effect. If, on the other hand, a postsynaptic spike occurs while the switch is in 

the POT state, then the switch is immediately returned to the OFF state via 

the transition POT -) OFF. This transition is defined to induce an associ­

ated potentiation of synaptic strength of A+. In the absence of further spiking, 

the switch will move from the POT state back to the OFF state in a stochas­

tic manner, governed by some probability distribution. We refer to transitions 

triggered by pre- or postsynaptic spiking as active transitions, while those that 

occur stochastically are referred to as passive transitions. This abstracted rule 

is represented in Fig. 6.1A, with semicircles representing active transitions and 

wavy lines representing passive transitions. The active transition POT -) OFF 

is the only transition capable of inducing potentiation of synaptic strength. 

To account for depression of synaptic strength under negatively correlated spik­

ing, a second synaptic switch is postulated, see Fig. 6.1B. This switch behaves in 

a very similar manner to the one just described, except here postsynaptic spiking 

triggers the initial active transition to a different functional state OFF -) DEP. 

When in the DEP state, further postsynaptic spiking has no effect, but a presy­

naptic spike will trigger the active transition DEP -) OFF with an associated 
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decrease in synaptic strength, by an amount A_. The stochastic, passive tran­

sition DEP -; OFF returns the switch to the OFF state in the absence of 

further spiking. 

These two switch mechanisms adequately describe a step change in synaptic 

strength in response to positively or negatively correlated spiking. The two 

switches could exist independently, but we can unify them into a single, three­

state synaptic switch, see Fig. 6.1C. The parameters of this three-state switch 

are not necessarily symmetric, which in biological terms reflects the possible 

independence of the processes activated by pre- or postsynaptic firing when the 

synapse is in the OFF state. The modification induced by a representative spike 

pairing at various spike time differences is plotted in Fig. 6.1D. The switch rule 

gives rise to a modification in accordance with a two-step function of fixed step 

heights, A±. The two random step widths, t±, are governed by the probability 

distributions that describe the passive transitions POT -; OFF and DEP -; 

OF F. If this hypothetical spike pairing were repeated, then the widths t± would 

likely take different values, giving rise to a different "critical window". It is 

important for our model that the magnitude of synaptic plasticity, represented by 

the heights of the two step functions, is not dependent on the difference in spike 

times. The level of coincidence detection required is therefore minimal, as the 

synapse is required only to record the occurrence of a pre- or postsynaptic spike, 

not the precise time of occurrence. Although additional states and transitions 

may freely be added, we find that this simple, three-state switch is all that is 

required to reproduce a variety of STDP results. 

We do not propose that synapses themselves are discretised, only that their 

potential to undergo plasticity is determined by some controller mechanism that 

has 3 distinct states. Synaptic strengths are therefore continuous quantities 

which are adjusted in finite amounts in response to transitions in the controller 

switch. There is thus no intrinsic upper bound on synaptic strengths. 

We note that the active transitions OFF -; POT and OFF -; DEP could be 

made stochastic, perhaps occurring with some fixed probability when a pre- or 

postsynaptic event occurs. Such a modification would adequately accommodate 

various sources of noise such as unreliability in synaptic transmission or failure 

of action potentials to propagate. However, such a modification simply alters 

the effective learning rates of the two halves of the switch, a change which can 

be absorbed into a scaling of A±. 

We assume that an afferent makes multiple synapses onto a target cell. The 

overall strength of the connection between the two cells is defined, for simplicity 

and according to the usual convention, to be the linear sum of each individual 

synaptic strength. The synapses are treated independently, which, due to the 
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stochastic nature of the synaptic modification rule, means that the synapses 

comprising a connection will often be in different states. It is therefore the 

spatial average over synapses, and the temporal average over spike pairs, that 

determines the overall change in connection strength. 

For notational convenience throughout the analysis, we denote a presynaptic 

spike by the symbol "7f" and a postsynaptic spike by the symbol "p". Pre- and 

postsynaptic firing are assumed to be independent Poisson processes with rates 

A1f and Ap, respectively, and we set /3 = A1f + Ap. Because they are independent, 

the combined pre- and postsynaptic spike sequences form a single Poisson pro­

cess of overall rate /3. For a Poisson process of rate A, the inter-event time (the 

"waiting time") is an exponentially-distributed random variable with parameter 

A, and thus, in particular, the waiting time between any two spikes is exponen­

tially distributed with parameter /3, and has the probability density function 

fr(t) /3e- f3t . For any given spike in the combined train, the probability that 

it is presynaptic is A1f 1/3 and the probability that it is postsynaptic is Api /3. 

6.3 The 2-spike Response Function 

Here we restrict our analysis to spike trains consisting of two spikes only, so 

that a two-spike train can manifest itself as one of four possible sequences: 7f7f, 

7fP, p7f or pp. The probability of observing a particular spike pattern ij, where 

i,j E {7f,p}, is then just Pij = AiAjl/32. Longer spike trains are investigated 

numerically in Results. Despite the more complicated nature of the higher order 

interactions between multiple spikes, our results for longer spike trains share 

characteristics similar to those for the two-spike case. 

Under a specific spike pattern, modification of synaptic strength mayor may 

not occur, depending on the state of the switch when the second spike arrives. 

We therefore seek an expression for the expected change in synaptic efficacy 

induced by a single spike pair under our switch rule. The spike patterns 7f7f 

and PP cannot cause a change in synaptic strength under our switch rule, so 

we need only to consider the 7fP and p7f patterns. Consider the 7fP pattern. 

The initial presynaptic spike triggers the active transition OFF ----+ POT. The 

switch remains in the POT state until either the arrival of the postsynaptic spike 

or the occurrence of a stochastic, passive transition. In either case, the switch 

will be returned to the OFF state, but the active transition triggered by the 

postsynaptic spike will also induce a change in synaptic strength. We therefore 

have a sum of four integrals. However, only two of these integrals make non-zero 

contributions to 1;).5 (those corresponding to 7fP and p7f) and we may discard the 

remaining two. Performing this integrals is, for the two-spike trains considered 
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here, relatively straightforward. Consider the term arising from np. We have 

that 

E[6.S7fP] = P7fP 100 

dtl h(tl) 100 

dt2 h(t2)6.S7fP (t2). (6.1) 

Writing this out explicitly 

where the integral over tl evaluates to unity, representing the arbitrary timing 

of the initial 7r spike. A change of variables to y = t2 ((3 + A+), yields 

\ \ (3 n-l Ai 1 j.OO 
[A 7fP] _ A A7fAp ~ + d -y i 

E DS - + -(32 (3 \ ~ -., ((3 \). ye y. + A+ i=O z. + A+" 0 
(6.3) 

We recognise the integral over dy as the integral definition of the gamma function, 

which evaluates to i!. Thus, 

(6.4) 

Explicitly summing this geometric sum, we arrive at 

[ AS7fP] _ A7fAp A [ 1] 
ED - 7f2 + 1 - (1 + AT+)n+ . (6.5) 

An identical process leads to the corresponding expression for E[6.SP7f]. Sum-

ming these two terms gives 

(6.6) 

Defining 

(6.7) 

we then obtain 

(6.8) 
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as the expected synaptic change arising from any two-spike sequence. 

This equation is an analytical expression for the expected change in synap­

tic efficacy induced by a two-spike train at given pre- and postsynaptic firing 

rates, An and Ap. In the limit of large An and Ap in Eq. (6.8), we have that 

E[,6,Sj ex (A+ - A_). The sign of this expression indicates whether potentiation 

or depression of synaptic strengths is expected for high pre- and postsynaptic 

firing rates. Experimental work on rate-based LTP shows that high pre- and 

postsynaptic firing rates generally lead to LTP (Sjostrom et al., 2001). This 

requires that E[,6,Sj > 0 for large An and Ap, i.e. A+ > A_. However, to be 

able to generate competitive dynamics, we also require a depressive phase where 

E[,6,Sj < 0, otherwise synapses can never weaken on average. Putting Ap = An, 

and maintaining the requirement that A+ > A_, a sufficient condition is that 

oE[,6,Sl/oAnIArr,Ap=O < O. As E[,6,SjIArr,Ap=O = 0, this guarantees the presence 

of a depressive region. This produces a second constraint, 

(6.9) 

which we interpret as depression dominating over potentiation. An identical 

condition has been observed, but not mathematically derived, for simulations of 

exponential-like STDP plasticity rules in the context of generating dynamics that 

give rise to bimodal synaptic distributions (Song et al., 2000). Empirical work 

has also shown it to be a requirement for a BCM-like learning rule to emerge 

on average from such rules (Izhikevich and Desai, 2003). Here, we have shown 

that requiring our switch-rule to maintain, on average, a BCM-like learning rule 

leads to mathematically derivable constraints. Whether or not the presence of 

a depressive regime, for which ry < 1, guarantees the presence of competitive 

dynamics in our switch rule is an issue that we shall explore in Chapter 8. 

We set A+ = 1 and A_ = 0.95, in accordance with the condition that A+ > 
A_, and choose n+ = n_ = 3, as before. Setting T _ = 20ms and choosing ry 

determines the remaining parameter T +. We also assume that the postsynaptic 

firing rate Ap is linearly related to the presynaptic rate An once it exceeds a value 

e, so that 

(6.10) 

and we set e = 5Hz. Varying the presynaptic firing rate An produces the family 

of curves shown in Fig. 6.3 for different values of ry. When ry < 1 we observe that 

the behaviour is qualitatively BCM-like, with a depressive phase at low presynap­

tic firing rates followed by a transition to potentiation as a threshold is passed. 

We find exact agreement, presented in Results, between this analytical result 
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FIGURE 6.2: The expected change in synaptic strength as a function of the 
spike time difference t, from Eq. (6.8). 

and numerical simulation of two-spike trains. For longer spike trains, Eq. (6.8) 

represents the expected change induced by any pair of spikes, not the expected 

change induced by all spike interactions in these processes. Nevertheless, for 

longer spike trains the total change induced by multiple spike interactions is 

of a qualitatively similar character, as we will show in Results. An important 

feature of the BCM model (Bienenstock et al., 1982) is the sliding of the potenti­

ation threshold in response to changes in the postsynaptic firing rate (Kirkwood 

et al., 1996; Philpot et al., 2003). As the analytical expression shows, a threshold 

emerges from our model which is a function of various, easily modifiable param­

eters. Allowing some of these parameters to depend on the recent time average 

of postsynaptic firing, in a manner similar to other modelling approaches, would 

capture the sliding threshold of the BCM rule in a satisfactory way. 

6.4 Numerical Results 

We now turn to numerical simulation to study the behaviour of a single afferent 

innervating a single target cell. The connection between the afferent and target 

cells is assumed to comprise of multiple synapses, which individually obey the 

stochastic switch rule set out above. The STDP curve governing changes in 

overall connection strength emerges from the averaged effect of our synaptic 

switching rule. This averaging process can take place over multiple synapses or, 

equivalently, multiple spike pairings. We choose to simulate ten synapses per 

afferent. This is partly so that an averaging process can be observed even with 

single spike pairs, but also to show that the synapses comprising a connection can 

often be in different states and undergo different modifications while still giving 
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FIGURE 6.3: The expected change in synaptic strength due to a single pair of 
spikes, for values of r shown attached to each curve. The pre- and postsynaptic 

cells fire according to a Poisson process. 

rise to the STDP curve when viewed as an ensemble. As the stimulation protocols 

used involve many spike pairings, the simulations can, in fact, be repeated with 

just one synapse. The averaging process then occurs at this one synapse over 

many events, and the results are qualitatively similar. 

A typical experimental protocol relies on evoking pre- and postsynaptic action 

potentials in synaptically coupled cells. In both cases, the normal function of a 

synapse as a propagator of neuronal activity is suppressed, with external current 

injections typically used to achieve spiking on demand. In our simulations, as 

in the experimental procedures, afferent and target cell spiking is assumed to be 

driven by an external force. Presynaptic spiking does not contribute to postsy­

naptic spiking in any way, and simulation of any kind of integrate-and-fire target 

cell is not required. 

Due to a high level of variability, the majority of experimental data on STDP 

describes relative changes in connection strength. Multiple spike pairings are 

needed to evoke a statistically significant change in overall connection strength. 

We adopt a similar approach by defining the combined initial synaptic strength of 

the input afferent to be equal to 1, and then scaling the magnitudes of synaptic 

plasticity, A+ and A_, to reproduce the measured relative change in overall 

connection strength under a particular experimental protocol. 

6.4.1 Spike based results 

In order to examine the timing dependence of our rule, we implement a partic­

ular experimental protocol that has been shown to evoke STDP-like changes in 
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embryonic rat hippocampal cultures (Bi and Poo, 1998). This protocol is typ­

ical of timing-based LTP experiments and our parameters are chosen to reflect 

the main features of these data. As described above, we set n+ = n_ = 3, 

A+ = 1.00, A_ = 0.95, and L = 20ms. Choosing "( = 0.70 generates a value 

for T+ = "(A_L/A+ c::: 13ms. The magnitudes of synaptic plasticity, A+ and 

A_, set the overall scale for synaptic modifications. To match the experimental 

data, we require that the maximum possible relative change in overall connec­

tion strength evoked by 60 spike pairings is approximately ±1. We therefore 

require a scaling factor of 60 to be applied to the magnitudes of synaptic mod­

ification, and we set A+ = 1.00/60 and A_ = 0.95/60 accordingly. This scaling 

has no other effect beyond producing a simulated change in overall connection 

strength equal to the experimentally observed value, and the dynamics of the 

synaptic switch are unchanged. Noise in the timing of spikes, reflecting both 

experimental error and variable transmission times, is drawn from a Gaussian 

distribution with standard deviation of 1ms. The spike pairing protocol consists 

of 60 pairings at 1Hz applied at time differences ranging from -80ms to +80ms 

(Bi and Poo, 1998). The averaging of the synaptic modification rule over multi­

ple synapses and pairings gives an overall change in connection strength that has 

two exponential-like phases, plotted in Fig. 6.4. This change is consistent with 

experimental data (Bi and Poo, 1998), with polarity depending only on the signs 

of A±. These simulation results agree with the analytical expressions, and are 

qualitatively unchanged for any realistic level of temporal Gaussian noise with 

a standard deviation (J :::; 10ms. The parameters T ± determine the width of the 

temporal window as T ± increase, spike pairings at greater time differences 

begin to evoke a significant change in synaptic efficacy. As discussed above, A± 

determine the maximum amplitude of plasticity, evoked when the time difference 

is very small. Adjustment of these parameters produces a family of STDP curves 

that can reproduce a variety of experimental results without altering the basic 

characteristics, such as the exponential-like slopes, of the curve. 

A number of more complicated spike patterns, including triplets and quadruplets, 

have been explored in experimental preparations (Froemke and Dan, 2002). In 

the case of spike triplets, the experimental protocols are very similar to that of 

spike-pairings, but instead of one pre- and one postsynaptic spike, an additional 

third spike (either pre- or postsynaptic) is introduced. We reproduce the exper­

imental protocol exactly, repeating a particular stimulation pattern 60 times at 

0.2Hz. The parameters are the same as for the spike pairing simulations, and the 

results are set out in Table 6.1. The simulated results for the spike-triplet proto­

cols are in close agreement with experiment (Froemke and Dan, 2002), a result 

that cannot be reproduced under other modification rules without additional 

constraints on spike interaction such as spike suppression (Froemke and Dan, 

2002). Under earlier models of STDP, spike triplets were treated as two separate 
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FIGURE 6.4: Simulated total change in overall connection strength as spike­
timing varies. 

spike pairings that individually obeyed a STDP-like modification curve. Their 

linear addition gives a predicted change that is not in agreement with experi­

mental data. Here, the switch provides a mechanism, in the form of the passive 

transitions to the OFF state, under which a triplet can evoke a change with 

a sign opposite to that predicted by such linear addition of pairings respecting 

the STDP curve. With two presynaptic spikes and one postsynaptic spike, the 

first presynaptic spike moves the switch into the POT state. If the postsynaptic 

event occurs in a timely fashion, it will move the switch back to the OFF state 

and trigger an increase in synaptic strength. In this case, the second presynaptic 

event will only move the switch to the POT state, and this does not trigger any 

change in synaptic strength. If, however, the postsynaptic events occurs too late 

and the switch has already returned to the OFF state via a passive transition, 

then the switch will instead be moved to the DEP state. In this case, the second 

presynaptic event moves the switch back to OFF and triggers a depression of 

synaptic efficacy. It is the choice of parameters describing the switch, A±, n±, 

and 7±, that determines the average outcome for a given protocol. In fact, the 

parameters chosen roughly to reflect simple spike pairing results are sufficient 

to accommodate spike triplets. This explanation of triplet interactions emerges 

as a natural consequence of the switch rule, with no need for modifications or 

additional constraints. 

In the case of spike quadruplets, comprised of two pre- and two postsynaptic 

spikes, the switch rule leads to potentiation under both of the protocols set out 

in Table 6.1. This is not in agreement with the experimental results, where the 

second quadruplet protocol leads to depression. 
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I Pattern I Timing (ms) I Experiment I Simulation I 
7fP7f 2.6/6.0 l' +1.00 
pnp 6.5/0.5 1 -0.94 

7fPP7f 8.8/10.6/9.6 l' +0.03 
p7f7fP 7.9/9.6/9.0 1 +0.03 

TABLE 6.1: The experimental (Froemke and Dan, 2002) and simulated effect 
of spike triplets and quadruplet. The first column gives the spiking patterns 
(a presynaptic spike is denoted by n, and a postsynaptic spike by p). The 
second column gives the spike time differences for the patterns. The third 
column gives an indication of the experimental measurement (Froemke and 
Dan, 2002), upward arrows indicate potentiation, downward arrows indicate 

depression. The fourth column gives our simulated results. 

It is possible to accommodate the quadruplet results by replacing the active 

transitions POT..,> OFF and DEP ..,> OFF with active POT -+ POT and 

DEP..,> DEP transitions, respectively. Such a modification does not disrupt the 

spike-pair results by the following argument. The initial spike triggers an active 

transition OFF..,> POT or OFF..,> DEP. If the second spike arrives before the 

switch decays back to OFF then plasticity will be induced. Whether this spike 

also induces a transition POT..,> OFF or POT..,> POT is, from a plasticity 

point of view, irrelevant as there are no further spikes and, by definition, there 

can be no further plasticity events. Under a spike triplet this is not the case. 

After a plasticity event, the synapse may undergo further plasticity dependent 

on the termini of the POT..,> OFF and DEP..,> OFF transitions. However, we 

find that the contribution from such processes is small, and that the spike-triplet 

results are also largely unaffected by this proposed modification. We are thus 

free to modify such transitions without greatly affecting pair or triplet results. 

However, such a modification of our switch rule destroys the stability of the rate­

based limit (unpublished results), and this seems to be a high price to pay to 

account for results whose significance is currently unclear. 

6.4.2 Rate based results 

Induction of LTP using a rate-based protocol was simulated by driving the presy­

naptic cell at a fixed frequency (ranging from 0-200Hz) governed by a Poisson 

process, as set out above. The postsynaptic cell fires in a similar, Poisson man­

ner, with frequency given by Eq. (6.10). This suppresses postsynaptic firing at 

very low presynaptic rates, as would be expected in a real system with many 

inputs. The cells are decoupled in the sense that presynaptic firing does not 

influence the postsynaptic cell membrane potential in any way, thus reproducing 
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FIGURE 6.5: Change in overall connection strength, per pair of spikes, for 
simulated two-spike trains, as a function of presynaptic firing rate. The solid 

line shows the corresponding analytical result. 

a typical experimental protocol in which two cells are held in current clamps and 

current injections are used to induce spiking (Bi and Poo, 1998). The parameters 

are identical to the spike-pairing simulations. In order to verify our analytical 

results, we first simulate the effect of pairs of spikes by truncating the simulation 

after the first pair of events. Each pair of events can therefore consist of either 

two presynaptic spikes, two postsynaptic spikes, or one of each. The average, 

overall connection change after a total of 106 total spikes is shown in Fig. 6.5, as 

a function of the presynaptic firing rate. We see exact agreement between the 

simulated two-spike interaction and the analytically derived result, Eq. (6.8). 

The two-spike results consider spike trains containing exactly two events, the 

interactions of which gives rise to a BCM-like change in the overall connection 

strength. An identical change will arise from the interaction of any pair of spikes 

in a train provided that the synapse is in the OFF state. However, when longer 

pre- and postsynaptic spike trains are considered, further spike interactions may 

occur and it is important to show that qualitative form of the two-spike learning 

rule is unchanged by these higher order corrections. We therefore simulate longer 

spike trains, of 50 and 100 spikes. The total change in overall connection strength 

then arises from a summation of the many individual transitions that occur. The 

simulated overall connection change per spike pair, averaged over many such 

trains, is shown in Fig. 6.6, allowing a direct comparison to the two-spike train 

result, which is also shown. An averaged, BCM-like plasticity rule emerges in 

all cases. The 50- and 100-spike trains give an average change per spike pair 

that is different from that calculated for simple two-spike trains, reflecting the 

influence of higher order interactions between the spikes, but the results are 

nevertheless qualitatively similar. The higher order interactions are of smaller 
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FIGURE 6.6: Change in overall connection strength, per pair of spikes, for 
simulated trains of 50 spikes (vertical crosses) and 100 spikes (diagonal crosses), 
as a function of presynaptic firing rate. The change per pair of spikes for a 50-
spike train is almost identical to that for the 100-spike train. Also shown for 

comparison is the analytical two-spike result, represented by the solid line. 

and smaller significance, with the average change in connection strength per pair 

of spikes converging to a limiting value as the number of spikes in a train grows 

large. Thus, as intuitively expected, if we were to plot the total change after 

the IOO-spike train, it would simply be twice the total change after the 50-spike 

train. 

6.5 Discussion 

In this Chapter, we have shown that our proposed synaptic switch rule is a viable 

model of STDP. The model is susceptible to some degree of understanding and 

analysis, and very much reduces the computational demands placed on synapses. 

We have postulated that an individual synapse, when presented with a pre- and 

postsynaptic spike pair, adjusts its synaptic strength by a constant positive or 

negative jump, or does not change its strength at all. Our hypothetical synapse 

is therefore only required to record the occurrence of a pre- Or postsynaptic event 

and adjust its strength by a fixed amount if an appropriate spike is generated in a 

timely fashion. Provided that the synapse destroys this record in some stochastic 

manner, so that the trace is short-lived, we have shown that we can derive the 

STDP rule directly. Thus, a simple synaptic modification rule can indeed give rise 

directly to a much more complex STDP rule. In this interpretation, the STDP 

rule can be viewed as an average, ensemble, emergent property of neurons, where 

the average is over either multiple synapses or multiple spike pairings (or both). 
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Our switch rule also provides a mechanism by which spike triplets may naturally 

give rise to an overall change in connection strength similar to that observed 

in experiment. Under typical STDP models (Song et al., 2000) this result can 

be achieved by introducing additional non-linearities, such as spike-suppression 

(Froemke and Dan, 2002). In our model, once a synapse is in, say, the POT state, 

this state cannot be changed by further presynaptic spikes until the synapse 

returns to the OFF state. In a strict sense, the synapse suppresses the effect of 

these subsequent presynaptic spikes, but this non-linearity is of a rather different 

form from that proposed by Froemke and Dan (2002), in which the values of A+ 
and A_ are scaled depending on the spike history. 

We have also shown that a BCM-like, rate-based rule (rather than spike-based 

rule) can be formally derived from our model. This derivation requires no further 

assumptions, and produces two explicit constraints on the choice of parameters. 

First, in order to generate LTP when both pre- and postsynaptic firing rates 

are high, we require that A+ > A_. That is, the level of potentiation induced 

under our switch rule by a presynaptic spike followed by a postsynaptic spike 

must be greater than the level of depression induced when the spike order is 

reversed. Second, in order to generate LTD at low firing rates, we require that 

'Y = (A+n+T+)j(A_n_L) < 1. This may be interpreted as depression dom­

inating over potentiation. An identical condition has been observed to be a 

requirement for generating bimodal synaptic distributions under a simple, addi­

tive STDP rule (Song et al., 2000). 

In the analysis presented here, we deconstruct a 2-spike train into all possible 

combinations of spikes, then calculate the expected synaptic response. Sum­

ming the expected response over all possible combinations gives Eqn. 6.8: the 

expected response to an average 2-spike train. In a 2-spike train, the number of 

possible combinations of spikes, and the way in which those combinations can 

interact, is relatively restricted. For 3-, 4-, or 5-spike trains the number of spike 

combinations, and the number of possible interactions, is considerably increased. 

Thus, the direct approach to calculating the spike-response function used in this 

Chapter, although sufficient for small numbers of spikes, rapidly becomes cum­

bersome as the number of spikes increases. We therefore desire a more general 

approach that allows us to calculate explicitly any n-spike response function. We 

will investigate such a general approach in Chapter 7. 

That a BCM-like form may be obtained from the 2-spike form of our switch 

rule does not necessarily mean that the learning dynamics characteristic of the 

BCM-rule are also reproduced. The BCM-rule has several desirable properties 

as a model of plasticity, such as the presence of stable, competitive dynamics 

(Bienenstock et al., 1982). Such learning dynamics are necessary to explain 

phenomena such as the formation of orientation selectivity or ocular dominance 
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columns. A more detailed examination of the 2-spike rule, and a characterisa­

tion of its learning dynamics, is therefore necessary. We will explore the learning 

dynamics of the 2-spike rule in more detail in Chapter 8, and examine the differ­

ences between the 2-spike response function derived here and the more general 

n-spike response functions derived in Chapter 7. 

6.6 Conclusions 

Under our proposed switch rule, a variety of experimental results on spike-timing­

dependent plasticity can emerge from temporal and spatial averaging over multi­

ple synapses and multiple spike pairings. In particular, a critical window for the 

interaction of pre- and postsynaptic spikes emerges as an ensemble property of 

the collective system, with individual synapses exhibiting only a minimal form 

of spike coincidence detection. In addition, a Bienenstock-Cooper-Munro-like, 

rate-based plasticity rule emerges directly from such a model. This demonstrates 

that two, apparently separate, forms of neuronal plasticity can emerge from a 

much simpler rule governing the plasticity of individual synapses. 



Chapter 7 

Multi-Spike Interactions in the 

Switch Rule 

The work in this Chapter is based primarily on the paper "Multi-Spike Interac­

tions in a Stochastic Model of Spike Timing Dependent Plasticity: Derivation of 

Learning Rules" Appleby and Elliott (2005) (submitted). 

7.1 Introduction 

In the previous Chapter, we presented a stochastic, ensemble-based view of 

STDP in which STDP is an emergent property of neurons at the temporal or 

synaptic ensemble level (Appleby and Elliott, 2005). We showed that it is possi­

ble to build a model in which single synapses respond to spike pairs by adjusting 

their synaptic efficacies in a fixed, all-or-none fashion (cf. Petersen et al., 1998; 

O'Connor, Wittenberg, and Wang, 2005). If the second spike arrives within a 

time window that is stochastically determined, then a fixed level of potentiation 

or depression will occur, but if the second spike arrives too late, then no change 

in efficacy will take place. Critically, any changes that do take place do not 

depend on the time of the second spike relative to the first. Because the win­

dow size is stochastic, different synapses can respond to the same spike pairing 

differently, and the same synapse can respond to multiple presentations of the 

same pairing differently. Only at this temporal or synaptic ensemble level does 

the overall synaptic connection between a pair of neurons exhibit STDP. Due 

to the overall structure of the proposed model, we found that the experimental 

data on spike triplet interactions (Froemke and Dan, 2002) were automatically 

reproduced, and we also showed that a BCM-like learning rule can emerge from 

the 2-spike interactions. 

117 



118 Chapter 7 Multi-Spike Interactions in the Switch Rule 

Here, we derive exact, analytic results for the general multi-spike or n-spike inter­

action functions, for any n ;:::: 2, averaged over all possible sequences of n spikes 

in our model. This is achieved by extending our previous model slightly, and 

then finally taking a limit that reduces it to its original form. Although we derive 

exact results for the n-spike interaction function, we show that the asymptotic, 

large n form of this function is of particular interest, not least because the finite 

n form rapidly converges to the asymptotic limit, so that the limit is achieved 

within just a few tens of spikes. We derive these results here in preparation for 

a later analysis of the differences between the 2-spike and the general n-spike, 

n > 2, interaction functions, this analysis showing that, at least in our model, 

the 2-spike interaction function's form is entirely different from the general form 

observed for all other n-spike interaction functions. 

7.2 Preliminaries 

It is convenient before deriving general results for f).Sn to derive some preliminary 

results that will be of use throughout the remainder of this Chapter. For the 

moment, we do not consider resetting. 

Consider first a sequence of n identical spikes, say 7r spikes, followed by a different 

spike, say a p spike, giving a total of n + 1 spikes, the first spike occurring at 

time to and moving the synapse into the POT state, and let the subsequent 

interspike intervals be tl, ... ,tn, so that ti, i > 0, is the time between the ith 

spike and (i + l)th spike. The time of the ith spike is then 2:::j:1 tj, any i. Let 

the multi-argument function P6N(tl, ... , tn) be the probability that the synapse 

is in the POT state (PON for the DEP state and p spikes) at time 2:::7=0 ti 
when the final spike arrives; clearly P5N do not depend on the time of the first 

spike, to, as this merely moves the synapse from the OFF state to the POT or 

DEP states. If, when the second spike arrives, the synapse is OFF due to a 

stochastic decay, then this second spike moves the synapse back to POT, and 

the probability, given OFF at time to + tl, that the synapse is in the POT state 

at time 2:::7=0 ti is just P6N(t2, ... ,tn). The probability of being in the OFF 

state at time to + tl is just 1 - P+(tl)' The probability of being in the POT 

state at time to + tl is obviously P+(tl), so we can write 

[1 P+(tI)]P6N(t2, ... , tn) 

+ P+(tl)P6N(t2,"" tnlPOT at to + tl), (7.1) 

where P6N(t2," . ,tnIPOT at to + tl) is the conditional probability that the 

synapse is in the POT state at time 2:::7=0 ti given that it was still in the POT 
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state when the second spike arrived at time to + h. Thus, we condition on 

whether or not the synapse is still in the POT state at time (to + tl). Note 

that P6N(t) represents the total probability of being in the POT state at some 

later time, t. This accounts for all possible processes which terminate in POT at 

time t, including processes which involve transitions to OFF then back to POT 

during the intermediate time. It contrasts with the function P+(to + tl) which 

is the probability that the synapse is still in the POT state at time (to + tl) 

without ever having returned to the OFF state in the intervening time. We now 

repeat the above argument, conditioning on whether the synapse is still in the 

POT state when the third spike arrives at time to + tl + t2 given that it was 

still in the POT state when the second spike arrived at time to + tl. Suppose 

that the synapse is in the OFF state at time to + tl + t2 given this sequence. 

Then the third spike sends the synapse back to POT. The probability that the 

synapse is in the OFF state at time to + tl + t2 given that it was in the POT 

state at time to + h is 1 - p+ (tl + t21POT at to + tl), and the probability that it 

is still in the POT state is P+(tl + t21POT at to + tl). Hence, we can now write 

[1 P+(tl)]P6N(t2, ... ,tn) 

+ [P+(tl) - P+(tl + t2)]P6N(t3, ... ,tn) 

+ P+(h + t2)P6N(t3, ... , tnlPOT at to + tl + t2), (7.2) 

where we have used the definition of the conditional probability, 

P+(POT at to + tl + t2 & POT at to + tl) 

P+(POT at to + td 

p+ (tl + t2) 
P+(tl) 

Thus, repeating the above argument for all subsequent spikes, we see that 

P6N(tl, ... , tn ) [1 - P+(tl)]P6N(t2, ... , tn) 

+ [P+(tl) P+(tl + t2)]P6N(t3, ... , tn) 

+ 
+ [P+(tl + ... + ti-l) 

+ 
+ [p+ (tl + ... + tn-2) 

+ P+(tl + ... + tn), 

(7.3) 

(7.4) 
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where clearly P6N(t) == P+(t). 

The conditional expectation value for the extent of potentiation or depression 

induced by this sequence of n identical spikes followed by a different spike is just 

+A+P6N(tl,"" tn) or -A_PON(tl,.'" tn), respectively. As with the 2-spike 

calculation, we convert these into unconditional expectations by integrating out 

the interspike intervals according to their pdfs and weighting by the spike se­

quences' probabilities. We do this for the general distribution PoN , not specify­

ing whether P6N or PON' and hence we do not at this point weight by the spike 

sequence probabilities as these differ for the two possible cases. Because the 

combined pre- and postsynaptic spike sequence is Poisson with rate (3 An + Ap , 

fortunately the interspike pdf is always the same, although in general, for non­

Poisson processes, this will not be true. 

We take Eq. (7.4) and integrate tl," . ,tn over their entire ranges, ti E [0,(0), 

having weighted by (3n exp(-(3'LJ=l tj). Notice that the integration over the 

first spike time, to, always produces a result of unity, by the definition of the 

pdf. Defining 

(7.5) 

and 

(7.6) 

where P(tl + ... + tl) is the conditional probability of the switch still being in 

the POT or DEP state at time tl + ... + tl without having returned to OFF 

in the intervening time. Both equations apply for I ::": 1. We then have 

Tn ((3) Tn-l ((3) [1 - K 1 ((3)] 

+ Tn-z((3)[Kl((3) - K z((3)] 

+ 
+ Tn- i((3) [Ki- 1 ((3) - Ki(!3)] 

+ 
+ Tl ((3) [Kn-z ((3) Kn- 1 ((3)] 

+ Kn((3) , (7.7) 
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or, defining Ko((3) == 1, in a more compact notation, dropping the arguments on 

the functions ~ and Ki for notational convenience, we have 

n-1 
Tn = Kn + L Tn-i(Ki- 1 - Ki). 

i=l 

(7.8) 

Thus, Tl ([3) denotes the probability that the switch is in an activated state (either 

POT or DEP) after l subsequent spikes, in any possible way. This includes 

transitions back to OFF and subsequent reactivation. Thus, the probability Tl 

focuses only on the final state of the switch, and is made up of a sum of many 

individual processes that arrive in POT or DEP after l spikes. K[ denotes the 

probability that the switch is in the POT or DEP state after l subsequent spikes, 

without having returned to OFF. That is, Kl excludes those processes which 

involved a transition to OFF followed by reactivation. 

Unless explicitly indicated otherwise in what follows, the argument of the T;'s or 

Ki'S is always (3. Using the gamma pdfs for P(i) above, it is a straightforward 

although tedious matter to show that 

(7.9) 

The Ki'S will play an important role throughout. It follows from the standard 

properties of the binomial coefficients that the Ki'S are ordered, so that Kl+m ~ 

K1Km· 

Returning to Eq. (7.8), defining To((3) == ° and tlTi = Ti - Ti- 1, i > 0, we may 

rewrite this equation in the more elegant form 

n-1 
L KjtlTn_j = Kn, 
j=O 

(7.10) 

for n ::::: 1. Direct calculation of the first few tlT/s reveals that 

tlT1 K 1, 

tlT2 K2 - Kr, 

tlT3 K3 - 2K2K1 + Kr, 

tlT4 K4 - 2K3K1 + 3K2Kr- Ki - Kt, 

tln K5 - 2K4K1 + 3K3Kr- 2K3K2 4K2K r + 3KiK1 + Kf. 
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We see that, perhaps as expected, the expression for 6.Tl involves multiples of 

powers of the K/s that form the integer partitions of l. It is hardly surprising 

that integer partitions should appear in this calculation, because Tl is essentially 

combinatoric in nature, determined by traversing a binary decision tree governed 

by conditioning on the synapse's state at each spike arrival time (or node in the 

tree). Let Pl = {al' ... ,at} be a partition of the integer l, so that L~=l iai = l, 

into k parts, so that L~=l ai = k. Then we observe that 

l 

6.11 = - L L (7.11) 

where L{PIf-k} means a sum over all partitions of l into k parts. We also have 

the standard result that 

L al!~!.al! = (~=~). 
{Plf-k} 

(7.12) 

Such identities as these are standard in the theory of combinatorics and we shall 

require a similar identity to that for 6.Tl later when finding a generating function 

for the terms that appear in 6.Sn . 

7.3 Extensions 

We now extend the model to a slightly more general form that will facilitate the 

derivation of general multi-spike interaction functions. In the basic formulation, 

we assumed that if a synapse is in the POT (DEP) state, then further presynap­

tic (postsynaptic) spiking has no effect. We now propose, instead, that after r 

additional presynaptic (postsynaptic) spikes, the stochastic processes governing 

the return of the synapse from the POT (DEP) state to the OFF state are 

reset, provided that the synapse has not returned to the OFF state at any time 

after the first spike moved it into the POT (DEP) state. The overall result 

of this is to increase the likelihood that potentiation or depression will occur 

by essentially discarding the spike history of the synapse after r + 1 identical 

spikes and starting afresh. For n± = 1, however, the exponential distribution is 

memoryless, so such a system should exhibit dynamics independent of the value 

of r. Strictly, we should allow differing numbers of spikes to reset the POT and 

DEP states, but it is easy to generalise our results to this case. Furthermore, we 

are particularly interested in the properties of the r = 1 and r ~ 00 models, the 

latter being equivalent to the original form of our model. Arguably, these r = 1 

and r ~ CXl models are more biologically plausible than models with other values 

of r: either a spike of the appropriate sort resets the stochastic process or it does 
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not. Other values of r would require us to postulate some form of spike counting 

machinery at the synapse which, in the spirit of reducing the demands placed on 

the synapse as far as possible, we consider to be less likely. Issues such as the 

finite transmission probability of synapses, or action potential propagation fail­

ure, do not affect this argument as inclusion of such processes would only change 

the effective learning rate, a change that would be absorbed into a redefinition of 

A±. We therefore assume that r additional spikes of the appropriate kind reset 

both stochastic processes for DEP ----+ OFF and POT ----+ OFF, and we refer 

to this generalised model as the r-reset model. We call the I-reset model the 

resetting model and the oo-reset model the non-resetting model. 

We may consider how the possibility of spikes resetting the stochastic processes 

affects the above analysis. In the r-reset model, if r + 1 < n, then after the (r + 
1 )th identical spike, the process, if it has never de-activated during these identical 

spike events, is reset. This has the effect of making subsequent probabilities 

independent of any of the events that occurred before the (r + I)th identical 

spike arrived, and causes subsequent conditional probabilities to cease to depend 

on times earlier than to + ... + tr . 

For concreteness, consider r 1. In moving between Eqs. (7.1) and (7.2), we 

had to expand P3N(t2, ... ,tnlPOTat to + tl) by conditioning on the state of the 

synapse when the third spike arrived. However, for r = 1, the second 7r spike at 

time to + tl resets the stochastic process, because it is given that the synapse has 

stayed in the POT state since the first 7r spike at time to moved the synapse into 

the POT state. Thus, subsequent changes in synaptic strength are independent 

of the fact that the synapse did not move to the OFF state between the first 

and second 7r spikes, because the second 7r spike restarted the stochastic process 

afresh. Thus, 

(7.13) 

Hence, Eq. (7.1) becomes P3N(tl, ... ,tn ) P3N(t2, ... , tn ) and of course we 

finally arrive at P3N(h, ... , tn ) = ... = P3N(tn ) == P+(tn ). This equation 

means that, for r = 1, the final spike in a long sequence of identical spikes is the 

only spike that counts. Hence, for r = 1, we have that T{ = Tl = K 1 , any l, 

by the definition of the T/s in Eq. (7.5). Putting Tz Kl into Eq. (7.8), which 

we now regarded as an equation defining the Ki'S in terms of the Ti's, it is easy 

to see that, for this r = 1 case, K{ = Ki. Thus, we extract the I-reset model 

from the non-resetting model by replacing K{ by Ki in any equations in which 

it occurs. 

We can see this K{ ----+ Ki rule in another way. If we are myopic and do not 

notice the obvious cancellation between terms in Eq. (7.1) for r = 1, then we 
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would condition on the third spike as usual, but using P6N(t2," . ,tn) instead of 

P6N(t2,'" ,tniPOT at to + td· Thus, Eq. (7.2) would become, for r = 1, 

P6N(tl,"" tn) [1 - P+(tl)]P6N(t2, ... , tn) 

+ [P+(tl) P+(tl)P+(t2)]P6N(t3, ... , tn) 

+ P+(tl)P+(t2)P6N(t3,"" tn). (7.14) 

Comparing this to Eq. (7.2), we see that P(tl + t2) is replaced by the product 

P(tl)P(t2), and, in general, after further conditioning, it is easy to see that 

P(tl + ... + tz) is replaced by rr~=l P(ti) in the r = 1 model. Replacing P(tl + 

... + tz) by this product in the definition of the K/s in Eq. (7.6), we again see 

that Kz ~ Ki. Making this substitution in Eq. (7.11), we obtain 

z~ k(l-l) t1Tz ~ -Kl L.".(-I) " == 0, 
k=l k - 1 

(7.15) 

for l > 1, by the binomial theorem. Thus, we see again that, for r = 1, Tz = K 1 , 

any l. These results, in fact, make the I-reset model particularly simple to 

analyse, with simple expressions available for t1Sn , any n. 

Using similar arguments to these for the I-reset model, it is easy to see that the 

r-reset model replaces P(tl + ... + tzr+s), s < rand l > 0 , with 

P(tl+ .. ·+tr) 

x P(tr+l + ... + t2r) 

x 

x P(t(i-l)r+1 + ... + tir) 

x 

x P(t(Z-l)r+l + ... + tZr) 

x P(tZr+l + ... + tzr+s), 

where of course the last term is absent if s O. After integrating out the spike 

times, the r-reset model therefore replaces Krz+s with K~Ks, so any results that 

we obtain for the non-resetting model can be converted into those for the r-reset 

model by the substitution Krz+s ~ K~Ks. In terms of the Ti'S, the conditioning 
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argument that led to Eq. (7.8) terminates with a cancellation at the rth step, 

giving a truncated form of the recurrence relation in Eq. (7.10), so that 

r-l 

L KjD.Tn_j 0, (7.16) 
j=O 

for n 2: r. For r = 2, we have the particularly simple result D.Tn+2 = (-KI)n D.T2 , 

n 2: 0, with D.TI = K I. 

In general, the finite r models are useful precisely because they limit multi-spike 

interactions to at most r + 1 spikes, and this enables us to set up a recurrence 

relation in D.Sn that is always of order r + 1. 

7.4 Multi-Spike Recurrence Relations 

We previously derived the expected response to an average 2-spike pairing 

D.S2 = L A~Aj 100 

dtofy(to) 100 

dtdT(tI)D.Sij(tl), 
i,jE{7l',p} 0 0 

(7.17) 

In this Chapter, we shall principally be concerned with the derivation of an ex-

pression for D.Sn, the expected response to an average n-spike sequence. Our 

strategy in much of what follows is to extract n-spike results for the small r mod­

els, because r limits the possible extent of spike interactions in a long sequence 

of spikes. The behaviour for large r will then be clear and the results will fall 

out directly. 

By considering the effect of adding m additional spikes in front of this n spike 

train, we may derive a recurrence relation describing how the expected change 

in synaptic strength for the n + m spike train, D.Sn+m, is related to that of the 

n spike train, D.Sn. We first develop recurrence relations for the 1-,2- and 3-

reset models and then, having developed intuitions based on these small r cases, 

proceed to derive the results for the arbitrary r-reset model. 

7.4.1 I-Reset Model 

Let ~n(to, tl,"" tn-I) denote an arbitrary sequence of n spikes with interspike 

intervals ti, i > 0, and to the time of the first spike, and let the function 

WEn (to, ... , tn-d denote the pdf and spike probability weighting for this se­

quence that is required to transform conditional expectation values into uncon­

ditional expectation values. Let D.SEn(tl,"" tn-I) be the conditional expecta­

tion value for the change in synaptic strength induced by the sequence ~n' This 
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conditional expectation value depends only of the interspike intervals. It is not a 

function of the first spike time, to, as the first spike always moves the switch into 

the POT or DEP state and starts the stochastic process governing the decay 

back to OFF. 

Consider a sequence of n+ 2 spikes, the first two of which are either both 7r spikes 

or both p spikes. For the T = 1 model, the first spike is essentially irrelevant 

because the second, identical spike either re-activates the same process if the 

synapse is in the OFF state when it arrives at time to + tl, or resets the process 

if the synapse is still in the POT state. We therefore see that 

.6.S7r7r~n (tl, ... ,tn+l) 

.6.SPP~n (tl' ... , tn+ 1) 

.6.S7r~n (t2, ... , tn+ 1)' 

.6.SP~n (t2, ... ,tn+ 1) . 

(7.18) 

(7.19) 

Now consider the spike sequence 7rp'2:,n(to, . .. ,tn+l). The first 7r spike activates 

the synapse into the POT state. If the synapse has decayed back to the OFF 

state before the second, p spike arrives, then that first spike is irrelevant and 

we may disregard it entirely. If, on the other hand, the synapse is still in the 

POT state when the p spike arrives, then the p spike will return the synapse to 

the OFF state and induce a potentiation by an amount A+. The Markovian 

property associated with a return to OFF means that the remainder of the spike 

sequence ~n( t2, ... ,tn+1) contributes to .6.S7rP~n (tl' ... , tn+l) independently of 

these first two spikes. Hence, we have that 

[1 - p+ (tl)l.6.SP~n (t2' ... , tn+l) 

+ P+(tl)[.6.S~n(t3, ... , tn+1) + A+l· (7.20) 

The first term is the case where the synapse returns to OFF before the p spike 

arrives. The second term is the case where the synapse is still in the POT state 

when the p spike arrives. An identical argument leads to 

[1- P-(tl)l.6.S7r~n(t2' ... ' tn+l) 

+ P-(td[.6.S~n(t3, ... ,tn+l)-A-l· (7.21 ) 
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Defining 

(7.22) 

where the absence of temporal arguments on /:).SEn indicates that interspike 

intervals have been integrated out according to their pdfs and spike probabilities 

included. Eqs. (7.18) and (7.19) therefore become 

A~/:),S7fEn , 

A~/:),SPEn' 

(7.23) 

(7.24) 

where the factors of A~ and A~ arise because the dependence of W7r71'En or WppEn 

on the first spike factors out and the remainder of W7fEn or WpEn is absorbed 

into the definition of /:).S7fEn or /:).SpEn. Similarly, 

where 

A~(1- Ki)/:).SpEn + A~A~K:(/:),SEn + A+FE.,J, 

A~(l - K;)/:).S7fEn + A~A~Kl(/:),SEn A-FEn), 

FEn = 100 

dt2" .100 

dtn+1 WEn (t2,'" ,tn+1) = A~ m A~ n-rn 

if the spike sequence En contains m 7r spikes and n - m p spikes. 

(7.25) 

(7.26) 

(7.27) 

We now sum over all possible spike sequences En, of which there are 2n. Let 

L{En} denote this sum and define /:).Sn = L{En} /:).SEn, /:).S;:-+l L:{En} /:).S7fEn , 

/:).S;:-+2 = L{En} /:).S7f7fEn , etc., in an obvious notation. Then we have that 

/:),S~+2 

/:),S~~2 

/:),S~~2 

/:),S~~2 

A~/:),S~+1' 

A~(l Kn/:),S~+1 + A~A~K:(/:),Sn + A+), 

A~(l - Kl)/:),S;:-+l + A~A~Kl(/:),Sn - A_), 

A~/:),S~+1' 

(7.28) 

(7.29) 

(7.30) 

(7.31 ) 

where we have used the binomial theorem, L{En} FEn == 1. Since /:)'S~+2 == 
/:).S;:-+2 + /:),S~~2 and /:),S~+2 == /:),S~~2 + /:),S~~2 (by summing over all possible 
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second spikes), and /)"Sn == /)"S;, +/)"Sh, we finally obtain the coupled recurrence 

relation 

+ (7.32) 

where ~Sn = (/)"S;" /)"Sh)T, the superscript T denoting the transpose. This 

coupled recurrence relation represents our final form for the I-reset model. 

7.4.2 2-Reset Model 

For the I-reset model, we had to look at specific spike patterns extending out 

to 2 spikes. For the 2-reset model, we must go out to 3 spikes, because only 

the third spike in a sequence of three identical spikes possesses the capacity to 

reset the stochastic processes. Consider /)"S7f1r7rE n (tl' ... , tn+2)' As usual, we 

condition on the state of the synapse as the second and third 'if spikes arrive. If 

the synapse is in the OFF state when the second 'if spike arrives, we obtain a 

subsequent change governed by /)"S7f1rE n (t2, ... ,tn+2)' If the synapse is still in 

the POT state when the second spike arrives, then we look at the state when the 

third spike arrives. If the synapse is in the OFF state at this time, we obtain a 

subsequent change governed by /)"S7rE n (t3,'" ,tn+2)' However, if the synapse is 

still in the POT state, then the third spike resets the process, and subsequent 

changes are still governed by /)"S7rEn (t3,'" ,tn+2)' Hence, two conditioning steps 

lead to 

/)"S7r7f1rE n (tl, ... , tn+2) p+ (td/)"S7f1rEn (t2, ... , tn+2l p OT at to + tl) 

+ [1-P+(tl)]/)"S7f1rEn (t2, ... ,tn+2), (7.33) 

where the conditional change 

/)"S7f1rEn (t2,'" ,tn+2IpOT at to + tl) 

P+(tl + t21pOT at to + h)/)"S7rEn (t3,'" ,tn+2) 

+ [1 - P+(tl + t21pOT at to + td]/)"S7rEn (t3,"" t n+2) 

/)"S7rEn (t3,'" ,tn+2), (7.34) 
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so that 

~S7f7f7fEn (iI, ... , tn+2) p+ (tI)~S7fEn (t3, ... , tn+2) 

+ [1- p+(tl)1~S7f7fEn(t2"'" tn+2)' (7.35) 

This cancellation between the conditional probabilities in the final conditioning 

step is characteristic of all the r-reset models and is due precisely to the stochastic 

process resetting, as we saw in the derivation of the recurrence relation for the 

Ii's above. Similarly, we obtain 

~S7f7fpEn(tI, ... , tn+2) = PtN(tl, t2)[~SEn(t4"'" tn+2) + A+l 

+ [1 - ptN(tl, t2)1~SpEn (t3,' .. ,tn+2), (7.36) 

~S7fP7fEn (tl' ... , tn+2) p+ (tl)[~S7fEn (t3, ... , tn+2) + A+ 1 

+ [1- p+(tI)1~SP7fEn(t2"'" t n+2), 

P+(tl)[~SpEn(t3, ... , tn+2) + A+l 

+ [1- P+(tl)1~SppEn(t2"'" t n+2), 

(7.37) 

(7.38) 

and the remaining four expressions with a leading p spike follow by symmetry. 

Integrating out the spike times and summing over all spike sequences ~n as for 

the I-reset model, we have 

~S~~1 '\~(1 - Kn~S~~2 +,\~ 2 Kt ~S~+l' 
~S7f7fP 

n+3 ,\~2(1_ Ti)~S~+l + ,\~2'\~Ti(~Sn + A+), 

~S7fP7f 
n+3 '\~(1 - Tt)~S~~2 + '\~'\~Tt(~S~+l + '\~A+), 

~S7fPP 
n+3 '\~(1 - Tl+)~S~~2 + '\~'\~Tt(~S~+l + '\~A+). 

~S~~3 = ,\~ 2(1_ T2+)~S~+l + ,\~2'\~T2+(~Sn + A+) 

+ '\~(1 - Kn~S~~2 +,\~ 2 
Kt ~S~+l' 

'\~(1 Tn~S~+2 + '\~'\~Tt(~Sn+l + A+). 

(7.39) 

(7.40) 

(7.41 ) 

(7.42) 

(7.43) 

(7.44) 

The trick to simplify these equations further is to observe that ~S~+2 = ~S~+2-

~S~~2 and use Eq. (7.44) to rewrite ~S~~2' Since this equation has no terms in 

~Sn' this trick does not increase the order of the resulting recurrence relation, 

but does reduce it from a coupled 4 x 4 matrix to a more manageable, coupled 
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2 x 2 matrix system. Hence, 

flS~+3 A~ 2 A~[T2+ - Tt (1 - Ki)](flSn + A+) 

+ A~ 2[1 - T2+ - (1 - Tt)(l - Ki)lflS~+l + A~ 2 
Kt flS~+1 

(7.45) 

A symmetrical version of this equation holds for flS~+3' We observe that T2+ -

Tl+(l Ki) Kt and 1- Tt - (1 Tt)(l- Ki) = Ki Kt, and the overall 

multiplier of A+ is A~(A~Kt + A~ 2 Kt). So, defining Qt = A~Kt + A~2 Kt and 

Q2 = A~Kl + A~ 2 K:;, we obtain the coupled system 

+ 

+ (7.46) 

This coupled recurrence relation represents our final form for the 2-reset model. 

7.4.3 3-Reset Model 

Now we go out to the first four spikes in the sequence because the fourth identical 

spike possesses the capacity to reset the stochastic processes. Three conditioning 

steps and the usual weighting by W give 

Tl f . f AS7rP 7r7r AS7rP7rP AS7rPP7r d AS7rPPP 11 . 1e our equatlOns or D n+4 ,D n+4' D n+4 an D n+4 a sum to gIVe 

(7.48) 

while those for flS~:~7r and flS~:~P sum to give 

(7.49) 

and we also have 

(7.50) 

In these four equations, for reasons that will become clear in the r-reset model, 

we maintain a rigorous distinction between Tt and Ki even though they are 

identical. We see that these last three equations are, in fact, instances of the 
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generic equation 

(7.51 ) 

for m > i, where 7fip means i 7f spikes followed by a p spike. This equation 

follows easily, in fact, from conditioning on whether the synapse is in the POT 

state when the first p spike arrives, leading to the T/ term, or in the OFF state 

when the first p spike arrives, leading to the 1 - T/ term, and then, as usual, 

integrating out interspike intervals and summing over all subsequent spikes. 

By observing that 
i-I 

6.S7f = 6.S7ri + ~ 6.S7rjp 

m m ~ m' (7.52) 
j=1 

we can use this equation to eliminate all occurrences of 6.S;;: terms, i > 1, from 

Eq. (7.47) and then use Eq. (7.51) to eliminate all occurrences of 6.S;;;'P terms, i > 
0, leaving terms in 6.S;' and 6.S~ only. Defining Qt = >'~K: +>.~ 2 Kt +>.~ 3 Kt, 
after some algebra, we finally obtain 

(7.53) 

with a similar equation for 6.S~+4' It is convenient to define k/ = )..~ i Kt and 

k i- = >.;i K i-. Then Qr = L~=1 kt and we may finally write 

+ 

+ 

+ (7.54) 

This coupled recurrence relation represents our final form for the 3-reset model. 

7.4.4 r-Reset Model 

Having built some intuitions for small r, we can now proceed to the general r 

case. The standard conditioning argument gives 

(7.55) 
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where k~ == 1, and we still have the generic results in Eqs. (7.51) and (7.52). It 

is, of course, Eq. (7.55) that always ensures that the resulting recurrence relation 

in f::,.S~ and f::,.S~ is of order r + 1 and hence a finite system of coupled equations. 

Pulling out the i = r -1 term from the sum and then writing j = i + 1, we have 

the slightly more convenient form 

(7.56) 

Using Eq. (7.52) to eliminate terms in f::,.S;;;', i > 1, and then Eq. (7.51) to 

eliminate terms in f::,.S;;;'P, i > 0, we obtain the apparently rather unpromising 

equation 

(7.57) 

where 

r-1 

A~k:_1f::,.S~+1 + L(A~kt-1 (7.58) 
j=l 

r r-1 r-j 
"" A' jT+ - "" "" A' i+j(K+ - K+)T+ L.-t 7C J L.-t L.-t 7C J-1 J z' (7.59) 
j=l j=l i=l 

r r-1 r-j 
X3 L A~jT/ f::,.Sn+r-j - L L A~i+j (Kt-1 - Kj)1i+ f::,.Sn+r-i-Y7.60 ) 

j=l j=l i=l 

r 

X 4 L A~j (1 - T/)f::,.S~+r+1_j 
j=l 

r-1 r-j 

- L L A~i+j (Kt-1 Kj)(l 7i+)f::,.S~+r+1-i-j· 
j=li=l 

(7.61 ) 

However, the quantities X 2 , X3 and X 4 simplify dramatically. Consider, for 

example, X3: 

r r-1 r-j 
X3 L A~jT/ f::,.Sn+r-j - L L A~i+j (Kt-1 - Kj)1i+ f::,.Sn+r-i-j 

j=l j=l i=l 

r r k-1 
L A~jT/ f::,.Sn+r-j - L A~ k f::,.Sn+r-k L(Ki'=-l - Kt)T:_I 
j=l k=2 1=1 

A~Tt 6SnH-, + t,A~j 6SnH- j [7t -~(Kt, - KtlTJC,] 

r 

A~Tt f::,.Sn+r-1 + L A~j f::,.Sn+r-jKt 
j=2 

(7.62) 
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where the penultimate line follows from the recurrence relation defining T/ in 

Eq. (7.8). This was the reason for rigorously distinguishing between T1 and 

K 1 , even though they are identical, so that we could immediately use Eq. (7.8) 

without any further manipulation. The key step in this simplification is to rewrite 

the double sum by defining i + j to be k and summing over its range. Identical 

manipulations reduce X 2 and X 4 , giving 

r 

~k+=Q+ 
~ J - r' (7.63) 
j=l 

r 

L(,,\~k/-1 - k/)tJ.s~+r+1_j· (7.64) 
j=l 

Thus, finally we have 

r-1 

>-;A+Q; + >-~k:_1 tJ.S~+1 + L(>-~kt-1 - kt)!:::"S~+r+1-j 
j=l 

(7.65) 

This expression is valid for all r > 1. After a little further manipulation, we 

obtain, for r ;:: 2, 

>-;A+Q; + >-;k: tJ.Sn + k:_1 tJ.Sn+1 k: tJ.S~+l 
r-2 
~ -+ -+ I -+ + ~(Kj - Kj+1)tJ.Sn+r- j + (\r - K1 )tJ.Sn+r . (7.66) 
j=l 

To obtain the correct expression for r = 1, we must replace the terms in tJ.Sn+1 

and tJ.S~+l by >-~tJ.Sn+1 - kt tJ.S~+1. A similar expression follows by symmetry 

for tJ.S~+r+1' so that in matrix form, for r ;:: 2, we have 

(7.67) 

where, of course, ~j:i == 0 for r = 2. 

Notice that the equations for tJ.S~+r+1 and tJ.S~+r+1 involve terms in tJ.Sm only, 
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except for the single terms ~S~+l and ~S~+1' These two terms thus prevent us 

from simply adding the equations for ~S~+r+l and ~S~+r+l and hence obtaining 

a single, uncoupled (r+ 1 )th order recurrence relation for ~Sm' The above matrix 

recurrence relation represents our final form and we now turn to obtaining the 

exact solution for r = 1 and the asymptotic, large n solution for r > 1. 

7.5 Solution of Recurrence Relations 

We now solve the I-reset model exactly for any n, then determine the leading 

order, asymptotic solutions for large n for the r-reset, r > 1, model. Finally we 

perform some consistency checks on these various results. 

7.5.1 Exact Solution of the I-Reset Model 

The I-reset model has the second order recurrence relation given by 

A' -k+) 
IT 1 .6.Sn+1' 

A' p 

(7.68) + 

We are not interested in how the separate components ~S~ and ,6.Sh evolve but 

only in their sum, ~Sn = (1, I)T . .6.Sn = ~S~ + ~Sh. We have that 

and also 

(A;A+Qt - A~A-Ql) + (A;kt + A~k1),6.Sn 
+ ~Sn+l - (kt ~S~+1 + k1 ~S~+1) (7.69) 

At the cost of increasing the order of the recurrence relation, we can thus obtain 

a relation purely in ~Sm, to give 

(7.71) 

where we have defined the inhomogeneous part of this equation, jb, by 

(7.72) 



Chapter 7 Multi-Spike Interactions in the Switch Rule 135 

The characteristic equation for the homogeneous part of the equation has the 

three roots + 1 and ± J Kt k;. Since ° :S Kt < 1 for finite f3 and 0 :S A~ , A~ :S 
1, these last two roots are real and have moduli less than unity. The general 

solution of this equation is then 

where the constants D 1 , D2 and D3 can be determined by requiring that 

0, 

0, 
I - + I --ApA+Kl - ArrA-Kl . 

(7.73) 

Because Kt Kl < 1, the asymptotic, large n form of this solution is then just 

(7.74) 

The solution for large enough n thus essentially scales linearly with n, and this 

is exactly what we should expect: a typical train of 2n spikes should induce, 

on average, twice as much change in synaptic strength as a typical train of n 

spikes, for n sufficiently large. Of course, real neurons would not be expected 

to scale in this manner, because synaptic strengths are presumably constrained 

and thus saturate at upper or lower limits. In the general T-reset model, we shall 

deploy this scaling argument to discard the non-unity solutions of the associated 

characteristic equation, leaving only the asymptotic, scaling solution. 

It is worth using the recurrence relation directly to compute the first few 6oSn , 

in order to develop an intuition for how the terms develop. Although Eq. (7.73) 

of course produces these solutions, they are rather opaque. Defining 60S:); to be 

only the A+-dependent part of the solution, with 60S;;, the A_-dependent part, 

following by symmetry, we can directly compute the following: 

I -+ ApA+Kl [1], 

A;A+Kt [2 -lK1] , 

A;A+Kt [3 2Kl + l(Kl Kt)] , 

A;A+Kt [4 - 3K1 + 2(Kl Kt) -lK1(K1 Kt)] , 

A;A+Kt [5 - 4Kl + 3(Kl Kt) - 2Kl(Kl Kt) + l(Kl Kt)2] . 

The trend is absolutely clear, and in fact, for the general T-reset model, we shall 

prove such a trend, although the terms are rather more complicated in that case. 
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Indeed, it is one of the virtues of the I-reset model, mathematically speaking, 

that its solutions are so transparent, allowing intuition to develop for the more 

difficult, general 'r model. 

We can relate the solution obtained by iterating the recurrence relation above to 

that obtained by a direct, general solution of the recurrence relation, Eq. (7.73). 

For n = 2m + 1, m ;:::: 1, the general expression for !:::,.S;; is seen to be 

(7.75) 

and for n = 2(m + 1), m ;:::: 0, we have 

m . 

!:::"stm+l) = A~A+K: L {[2(m - i) + 1](1- Ie;) + Ie;} (K: Kl) 2. (7.76) 
i=O 

These two expressions should really be regarded as a conjecture for the general 

form of the solution, since they are based on a generalisation from the small 

n case only. We can directly evaluate the sums in Eqs. (7.75) and (7.76) and 

obtain expressions that agree exactly with the A+-dependent part of Eq. (7.73) 

after an evaluation of D1 - D2 , Dl + D2 and D3, thus confirming the conjecture. 

We therefore see that although the exact solution in Eq. (7.73) was obtained 

very easily and is mathematically very simple, its structure actually obscures 

the regularity in the expansion producing Eqs. (7.75) and (7.76). 

7.5.2 Asymptotic Solution of the r-Reset Model 

As for the I-reset model, we can write 

!:::,.Sn+r+1 (A~A+Q; - A~A_Q;:-) + (A~K: + A~k;)~Sn 
+ (k:_1 + k;_l)!:::,.Sn+l + (1 - k: kl)~sn+r 

r-2 

+ L(kt+kj-
j=l 

(k: !:::"S~+l + k; !:::"S~+l) (7.77) 
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and 

r-2 

+ L [k;(1<t - kt+1) + k::(kj- - k j-+1)] /:).sn+r-j 
j=l 

,-+ ,-- -+-- ---+ + (ApKr + A1fKr )/:).Sn+r - (K1 Kr + K1 Kr )/:).Sn+r' 

Hence, defining 

after some algebra we have 

/:).Sn+2r+1 - /:).Sn+2r 
- - + --Ar + Kr Kr (/:).Sn+1 - /:).Sn) 

r-1 

L(kt + kn(/:).Sn+2r+1-j /:).Sn+2r-j) 
j=l 
r-1 

+ L(ktk ; + kj-k:)(/:).Sn+r+1-j -/:).Sn+r-j), 
j=l 

137 

(7.78) 

(7.79) 

(7.80) 

where we have written this equation so that it is clear that there is a + 1 solu­

tion of the characteristic equation for the homogeneous form of the recurrence 

relation. With I:j:i == 0 for r = 1, this equation is valid for all r 2': 1. 

We define Un = /:).Sn+1 - /:).Sn, with /:).Sl == 0, so that /:).Sn+1 = I:~=1 Ui· 

Eq. (7.80) then implies that the Ui'S satisfy the recurrence relation 

r 

LAjUn+2r-j 
j=O 

r 

L(kt k,-: + k; k:)Un+r- j (7.81) 
j=O 

-+ -where Aj = K j + K j-, j 2': 1, and we define AD == 1. These Ui's will play an 

important role later in the construction of a generating function for /:).Sn' The 

characteristic equation for the homogeneous part of Eq. (7.81) is, after a little 

re-arrangement 

r-1 r-1 
e2r + L Aje2r- j - L(kt k; + k j- k:Wr- j - k: k; O. (7.82) 

j=l j=l 

There is no er term. This equation has 2r roots. Call them ei , i = 1, ... , 2r. 

Of course, the roots of the characteristic equation for the homogeneous part of 
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Eq. (7.80) are just the Bi'S supplemented with the additional, known unity root. 

For r = 1, we saw that IBil < 1, all i, leading to the observed scaling behaviour. 

In principle, we could find the B/s for r = 2, but the expressions are messy. 

Furthermore, we would still be left with all the r > 2 cases, for which closed­

form expressions for the roots in general likely do not exist. In order to be able 

to understand the asymptotic behaviour of /:::"Sn for general r, we need to bound 

IBil, all ,i. The standard bounding theorems (e.g., Gerschgorin's circle theorem 

applied to the companion matrix ofEq. (7.82)) do not appear to bound the IBil's 

sufficiently strongly for our purposes. We therefore adopt a different approach 

to show that IBil ~ 1, all i. 

We can, in fact, prove that /:::"Sn grows no faster than linearly in n in the 

general r-reset model without having to check by explicit calculation that the 

roots Bi do not have moduli greater than unity. Consider a sequence of spikes 

En(to, . .. ,tn-d containing m 7r spikes and n - m p spikes. Each 1f spike could 

ind uce a change of - A_ in synaptic efficacy if it triggers a DE P ---+ OFF tran­

sition; otherwise it induces no change. Similarly, each p spike could induce a 

change of +A+ if it triggers a POT ----.> OFF transition; otherwise it induces no 

change. Hence, /:::"S'f',n (to, ... , tn-l) is bounded, 

(7.83) 

We integrate out the interspike intervals, weight by the probability of the par­

ticular spike sequence En, and sum over all such sequences to obtain 

-A_ to ( : ) m>'~ m>.;n-m ~ /:::"Sn ~ +A+ to ( : ) (n - m)>'~ m>.;n-m, 

(7.84) 

or 

(7.85) 

Thus, /:::"Sn is bounded from both above and below by a linear function of nand 

so cannot grow faster than linearly in n. All the roots Bi must therefore have 

moduli not exceeding unity. 

We can dispense with the roots Bi satisfying the strict inequality IBi I < 1 because 

we know that the particular solution of Eq. (7.80) induces at least a linear term in 

n (because of the known, unity root), and this will dominate these exponentially 

decaying Br terms. We are left with any possible roots satisfying IBil = 1. If 

these are unrepeated, then, again, the particular solution dominates for large 

enough n. We must therefore examine the possibility of repeated, unit modulus 

roots, including the supplemental, known unity root. 
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By applying Descartes' rule of signs to Eq. (7.82), we see that there is precisely 

one positive (real) root. Applying the rules of synthetic division to obtain an 

upper bound on the location of this root, we find that it is less than unity. 

The known, unity root of the characteristic equation for I:1Sn is therefore not 

repeated, and so does not contribute any linear (or higher) terms to I:1Sn , which 

would affect the asymptotic solution. Moreover, we know that were this unity 

root repeated m times, m > 1, the particular solution of the recurrence relation 

would have to grow like n m , and this can be excluded by the bounding argument 

above. We are then left with the possibility ofrepeated leil = 1, ei yf 1 roots. We 

know that such roots cannot be repeated three or more times, since otherwise 

they would contribute quadratic or higher terms to I:1Sn , violating the bound 

above. Thus, if there are any repeated leil = 1, ei -I 1 roots, then they can 

only be repeated twice. However, such twice-repeated roots would contribute 

linearly-growing, oscillatory terms to I:1Sn , and, given the construction of our 

model, we can exclude this possibility on the grounds of incompatibility with 

the model's dynamics. 

In summary, we have that leil ::::: 1, all i, and if there are any roots ei -I 1 

satisfying leil = 1, then they are not repeated. In fact, numerically, it appears 

that all the ei satisfy the strict inequality leil < 1, so that unit modulus roots 

(except the singleton, known unity root) appear to be entirely excluded, except 

in certain, limiting cases. So as not to disrupt the flow of the Chapter, we explore 

in the appendix particular cases in which the roots can be calculated exactly. 

The linear boundedness of I:1Sn derived in Eq. (7.85) proves the linear scaling 

behaviour of I:1Sn in general, and we have argued that the dominant, linear term 

in this scaling behaviour must derive only from the particular solution of the 

recurrence relation. Thus, we finally obtain the asymptotic, large n solution 

(7.86) 

valid for any T. We will provide two different derivations of this asymptotic so­

lution, one from a direct construction of a generating function for I:1Sn . These 

approaches do not involve any discussion of the roots ei , and therefore these al­

ternative derivations can be viewed as independent, although somewhat indirect 

proofs that lei I ::::: 1, all i. We shall see later that the asymptotic solution is 

pretty good even for n ~ 10. 

The formal limit T ----> (Xl is, of course, beset by various technical difficulties 

associated with the limit and the resulting sum over a potentially infinite number 

of polynomial roots. However, in the usual spirit of applied mathematics, we 

shall ignore these possible difficulties and just assume that the limit of the finite 

T asymptotic solution is the asymptotic solution of the non-resetting model (and 
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confirm this numerically). Now, Kr ---+ 0 as r ---+ 00, and we require Q± 

limr---too Q;. We have, for example, 

00 

Q+ = LA~lKt(!3) 
l=1 

(7.87) 

where we summed the infinite series by recognising it as a binomial expansion for 

negative powers. Similarly Q- = ;:K1 (A7J")' so, for the non-resetting or r ---+ 00 

model, we obtain the particularly simple expression 

(7.88) 

Notice that the limits A7J" ---+ 0 or Ap ---+ 0 are well defined since Kl (A) ---+ 0 as 

A ---+ 0 at least as fast as A. 

7.5.3 Consistency Checks on Solutions 

According to the arguments of section 7.2, we can obtain the r-reset model by 

the general substitution Klr+s ---+ K~Ks, s < rand l some non-negative integer. 

More particularly, the (rl r2)-reset model should reduce to the rl-reset model 

under the global replacement Klrl +s ---+ K~l K s, s < rl. We check that this is 

actually the case for the asymptotic (rl r2)-reset result, 
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We have, dropping ± superscripts for notational convenience, 

i=l 

(K1 + ... + Kr1 ) + (Kr1+1 + ... + K2r1 ) + (K2q+1 + '" + K3r1 ) 

+ ... + (K(r2-1h+1 + ... + Kr1r2 ) 

~ (K1 + ... + KrJ(1 + Kr1 + K;1 + ... + K;;-l) 

(7.90) 

Of course, Kr1r2 ~ K;; in Eq. (7.89), so 

)..,' A Q:1 -)..,' A Q~1 
P +l-K~ n -l-K~ 

1 + Q:\ + Q~l_ 
1-KT] 1-KT] 

)"'~A+(1 - K;;)Q~ - )"'~A_(1- K~)Q:;; 
(7.91 ) 

So, indeed, the (T1T2)-reset model's asymptotic solution reduces to the T1-reset 

model's asymptotic solution under the appropriate substitution. 

For n± = 1, the memorylessness of the exponential distribution requires that all 

the T-reset models reduce to the I-reset model. We have that 

(7.92) 

[Kf(fJ) ] I, and 

to reduce the l-reset model to the I-reset model, we would have to make precisely 

this substitution, Kl ~ Ki, throughout. For n± = 1, this replacement holds in 

virtue of the strict identity Kl = Ki in this case, and hence, for n± = 1, all 

T-reset asymptotic solutions reduce to the I-reset model's asymptotic solution, 

as required. 

The consistency checks on the asymptotic solutions do not amount to consistency 

checks on the full solutions. Although we have not yet derived the full solution 

for the general T-reset model, we can in principle check that the recurrence 

relation for the (T1 T2)-reset model reduces to that for the T1-reset model under 

the appropriate substitution. As an example, we show that the I-reset model's 

recurrence relation is identical to that for the 2-reset model's recurrence relation 

after the replacement of K2 by Kt in the latter. Of course, the 2-reset model's 



142 Chapter 7 Multi-Spike Interactions in the Switch Rule 

equation is third order, while that for the I-reset model is second order. Thus, we 

must use the I-reset model's recurrence relation to take a further step, generating 

a third order equation. So, in Eq. (7.68), we replace n by n + 1 and then write 

;1 ), )..' -k+) ()..' -k+ )..' -k+) (k+ 1l" 1 = 1l" _1 1l" _1 + 1 
)..' )..' - K- )..' - K- 0 

p pIp 1 

(7.93) 

this being the matrix multiplying the ~Sn+2 term. We then substitute Eq. (7.68) 

(at order n + 2, not n + 3) back into the second term on the right-hand-side of 

Eq. (7.93) and, after a little re-arrangement, obtain 

+ 

+ 

+ (7.94) 

which is precisely the 2-reset model's matrix recurrence relation under the sub­

stitution K2 -+ Kr. Hence, the solutions (asymptotic or otherwise) of the 2-reset 

model must reduce to the solutions of the I-reset model under the appropriate 

substitution. 

7.6 1-Transition Processes 

We now seek to provide a deeper understanding of the asymptotic solutions 

derived above. This will then permit us to develop a generating function for 

!1Sn in the next section. 

We rewrite the general, asymptotic solution in the slightly more transparent form 

(7.95) 

where 

(7.96) 

(7.97) 
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and we work, henceforth, for convenience, only with the non-resetting, r ----+ (Xl 

model, so that 

A~A+Q+ - A~A_Q-, 

1 + Q+ + Q-. 

(7.98) 

(7.99) 

We specifically do not sum the terms in Q±, obtaining, for example, Q+ = 
-?-K1 (Ap ), as this obscures the reduction of this model to the r-reset model and 

p 

also renders opaque a natural interpretation of the terms in Tr and N 1 . Notice 

that, for the reduction to the r-reset model, we have, for example, 

(7.100) 

so we see immediately how terms like Q:- /(1- k:) arise from Q+ and therefore 

no longer need to consider the general r-reset model. 

We define T/ = +A~A+Q+ and Tr- = -A~A_Q-, so that Tr = Tr+ + Tr-. What 

processes give rise to the terms that occur, for example, in Tr+? We have that 

00 

Tr+ = A~A+ I: A~iKt· (7.101) 
i=l 

We know that a Ki+ term arises from a sequence of i 7f spikes in which the 

synapse never returns to the OFF state once placed in the POT state by the 

first 7f spike. That is, Kt arises from the probability that the synapse never 

returns to the OFF state during the whole time interval [to, 2:::;=0 tj), which is 

p+ (tr + ... + ti). If the synapse is in the POT state when a final p spike arrives 

at time 2:::J=o tj, then a change in synaptic strength by an amount A+ will occur. 

Thus, the term A~A+kt is obtained from the spike sequence 7fip in which no 

stochastic transitions back to OFF ever occur and in which the only transition 

back to OFF is induced by the final p spike. An identical argument holds for 

the term -A~Aiki- for the pi7f sequence. Tr+ is thus obtained by summing 

over all spike sequences 7fP, 7f2p, 7f3p, ... , in which there is only one transition 

back to the OFF state, inducing potentiation by an amount A+. Similarly for 

Tr-. We refer to such processes as I-transition processes. Tr is therefore the 

expected change in synaptic strength induced by all I-transition processes. Note 

that if we consider a train of spikes, which may be decomposed into a train 

of potentiating or depressing I-transition processes, the final potentiating or 

depressing transition need not necessarily occur at the very end of the train. That 

is, further spikes and transitions may freely occur after the final potentiating or 

depressing transition to OFF, provided that any resulting transitions to OFF 

do not induce any change in synaptic strength. 
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Another I-transition process is of the form 7r i "(, where the "( represents the first 

stochastic transition back to the OFF state. Of course, such a process induces 

no change in synaptic strength and so does not contribute to Ti. What is the 

expected number of spikes in all possible I-transition processes, 7r ip, pi 7r, 7ri "( 

and pi"(, any i > o? The expected number of spikes in all the sequences 7r i p is 

just 
00 

Np+ A~ L(i + l)kt, (7.102) 
i=l 

and similarly for p i 7r sequences we have 

00 

N; = A~ L(i + l)ki-· (7.103) 
i=l 

For the sequence 7r i "(, the probability that the first stochastic transition back to 

the OFF state occurs after the ith 7r spike is P+(h + .. ·+ti-l)-P+(tl + .. ·+ti), 

i> 1, leading to Ktl - Kt, with Kit 1, i > O. Hence, the expected number 

of spikes in all the sequences 7r i "( is 

00 

N:; = L i(A~kt_l - kt) (7.104) 
i=l 

and in all pi"( sequences, we have 

00 

N"j- = L i(A~ki __ l - kn· (7.105) 
i=l 

Now, 

00 

L [iA~ki~l - ikt + A~(i + l)kt] 
i=l 

00 

A~ + L [(i + l)ki+ - ikt] 
i=l 

A~ + Q+. (7.106) 

Similarly N; + N"j- = A~ + Q-, and so the expected number of spikes in all 

I-transitions is just 1 + Q+ + Q-, which is precisely N 1 , the denominator is the 

asymptotic expression for lJ..Sn . ~ is therefore the expected change in synaptic 

strength in all I-transition processes, and Nl is the expected number of spikes 

in all I-transition processes. 

Consider some general sequence of n spikes. This sequence will decompose, by 

definition, into a chain of successive I-transition processes defined by the synapse 

returning to the OFF state at the end of each I-transition process. How many 1-

transition processes do we expect, on average, to occur in a sequence of n spikes? 
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Because the average length of a I-transition process is N1 spikes, obviously there 

are n/ N1 I-transitions in a chain of n spikes, on average. Each such I-transition 

process induces, on average, a change in synaptic strength by an amount 7 1, The 

total change induced by n spikes is thus expected to be ~ x (n/N1 ) , but this 

should just be approximately ~Sn' the expected change induced by n spikes. 

When n is sufficiently large, the statistical error should become negligible, so we 

should have 

(7.107) 

which is, of course, Eq. (7.95). 

It is a remarkable fact that the asymptotic solutions that were derived somewhat 

laboriously from the recurrence relations nevertheless can be extracted so quickly 

by carving up an arbitrary sequence of spikes into its natural articulation points, 

these being the times at which the synapse has returned to the OFF state. This 

is possible because of the underlying Markovian nature of I-transition processes: 

once the synapse has returned to the OFF state, its subsequent evolution is 

independent of its history at that point. It is therefore natural to think in terms 

of a chain of I-transition processes, the end point of each of which is the OFF 

state. 

Of course, the recurrence relations and their exact solutions are primary, while 

the asymptotic solutions are only approximate and thus secondary. However, we 

can now show that the asymptotic solutions provide a generating function for 

~Sn that is, in fact, exact, for all n, not just large n. 

7.7 Generating Function for 6..Sn 

We shall now show that although the asymptotic solution for ~Sn is approxi­

mate, it in fact contains all the information required to build the exact solution 

for ~Sn, any n. Although this seems astonishing, we shall show that it is a 

natural consequence of the manner in which the asymptotic solution is obtained 

from the exact form of ~Sn so constructed. 

We consider again the non-resetting model, r ~ 00. Inspired by the earlier 

I-transition analysis, and also the regularity in the terms for ~s;t for the 1-

reset model, we explicitly calculate ~Sn for small n by decomposing ~Sn into 

terms representing the final potentiating or depressing I-transition process in the 

sequence of n spikes. Lengthy calculation then reveals that the A+-dependent 
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parts are given by 

I).st A~A+ [Fokt] , 

I).st A~A+ [Fokt + (Fa + Fdkt] , 

I).st A~A+ [Fokt + (Fa + Fdkt + (Fa + Fl + F2)kt] , 

where 

Fa 1, 

Fl l-Al' 

F2 1 - Al - (A2 - Ai). 

The expressions for the A_-dependent parts are given by the usual transforma­

tions of the Avdependent parts, namely A~ f--) A; and + f--) -. Notice that 

Fa, Fl and F2 are invariant under these transformations, and so the I).S;; have 

identical Pi coefficients to those for the I).S;. 

In general, by this final I-transition process decomposition, we know that we 

must be able to write 

n 

I).Sn+1 2:: Gn-i(A~A+kt - A~A-kn, (7.108) 
i=l 

where the A;A+kt term represents the final I-transition process contribution 

from a final spike sequence 7(ip, and -A~A_ki- that from a final piJr sequence. 

They must have the same coefficient, Gn-i, because Gn- i essentially counts all 

the possible ways in which we arrive at the OFF state before the final I-transition 

process occurs, and this must be independent of whether that final process is 7(ip 

or pi7(, by the Markovian property of I-transitions. Moreover, although G i will 

be a function of the k;, it must be a symmetric function of them, so that 

Gi ----) G i under A~ f--) A; and + f--) -, because for any sequence L:i that arrives 

at the OFF state after i spikes, there is a complementary sequence I;i that also 

arrives at the OFF state after i spikes, where :ti is obtained from L:i by 7( f--) p, 

i.e. replace every 7( spike by a p spike and every p spike by a 7( spike. So, the 

expansion in Eq. (7.108) is generic, exploiting the importance of the I-transition 

processes. It remains to determine the coefficients Gi . Since Un llSn+l -I).Sn, 

we have the expansion 

(7.109) 

where Fa = Go = 1 and Fi = Gi-Gi-I, i > 0, or Gi = L:~=o Fj . So, equivalently, 

we can determine instead the coefficients Fi rather than Gi. 
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Although we are now interested only in the non-resetting model, because we know 

how to extract the r-reset model from it, a determination of the coefficients Fi 

depends critically on the recurrence relations for the r-reset models. In fact, we 

can explicitly calculate the sequence of functions 6.8n , n = 2,3,4, ... , for the non-

resetting model in an incremental manner from the 1-, 2-, 3-, ... , reset models, 

in the following manner. Consider 6.82. The sequences that could possibly 

contribute to the function are just 7f7f, 7fP, p7f and pp. The two sequences 7fP 

and p7f never probe any resetting properties, because we need a chain of at least 

two identical spikes for this. Although the sequences 7f7f and pp do probe 1-

resetting properties, they give exactly zero contribution to the function. Hence, 

the function 6.82 is independent of r for r 2: 1, and we can therefore use the 

r = 1 recurrence relation, Eq. (7.68), with n = 0 and 6.80 0 and 6.81 0 

to calculate it. Now consider 6.83 , Eight sequences could possibly contribute to 

it. Only 7f7f7f and ppp could probe 2-resetting properties, but, again, they give 

zero contribution. All the other sequences probe at most I-resetting properties. 

Thus, 6.83 is independent of r for r 2: 2. We can therefore use the r = 2 form of 

the recurrence relation in Eq. (7.67), with n = 0 and the initial values 6.80 = 0, 

6.81 = 0 and 6.82 calculated from the r = 1 recurrence relation, to calculate 

6.83 , Similarly, 6.84 is independent of r for r 2: 3, and we can use the r = 3 

form of Eq. (7.67) with n = 0 to calculate it, using the forms of t::.8i , i ::::: 3, 

already established. In general, therefore, we see that 6.8m +1 is independent of 

r for r 2: m because m + 1 spikes cannot probe the m-resetting properties with 

non-zero contributions, so we can use the r = m form of Eq. (7.67) with n = 0 

and all the previously established forms of 6.8i , i ::::: m, to calculate 6.8m +1. 

The important thing to notice about this procedure is that we always set 6.80 = 0 

and 6.81 O. This means that the corresponding matrices multiplying the vec­

tors .dSo and .dS1 in Eq. (7.67) with n 0 do not contribute to the calculation 

of 6.8m +1 for r 2: m. But it was the form of the matrix multiplying the .dS1 

term (the .dSn+1 term for non-zero n) in particular that prevented us before 

from simply adding the two equations for 6.8~ and 6.8~ to obtain a scalar 

equation entirely in 6.8m and not a matrix equation in .dSm . So, now with 

6.80 = 0 and 6.81 = 0, we are free to add the equations, obtaining 

m-2 

6.8m +1 = (A~A+Q;t-, A~A_Q;;;) + L (Ai - A i+1)6.8m - i , (7.110) 
i=O 

valid for m 2: 1 with 2::02 == 0 for m = 1, and we have used Ao == 1. After a 

little re-arrangement, we have 

m-1 

L AiUm - i = A~A+Q;t-, A~A_Q;;;, (7.111) 
i=O 
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where we have used the definition Ui = ,0.Si+l - ,0.Si. This recurrence relation 

succinctly encodes the procedure described above, and thus determines the form 

of ,0.Srn+l for an r-reset model in which r ;:::: m. Taking the limit r ----; CX) to 

give the non-resetting model, Eq. (7.111) is valid for any m ;:::: 1, and represents 

a simple recurrence relation to calculate the form of Urn, any m, in the non­

resetting model. 

Substituting the expansion in Eq. (7.109) into the recurrence relation in Eq. (7.111) 

and looking at, say, only the A+-dependent piece, we have 

(7.112) 

and we can re-arrange the double sum to give 

m m-i 

(7.113) 

Since Q;;; = 2.:::1 i<t, we see that Eq. (7.109) is a solution of Eq. (7.111) 

provided that the Fi satisfy the recurrence relation 

n 

2.::: FiAn-i 1, 
i=O 

any n. With Fo = Ao 1, we can compute the first few Fi'S: 

Fo 1, 

Fl 1 AI, 

F2 1 - Al - (A2 - Ai), 

F3 1 - Al - (A2 - Ai) - (A3 - 2AlA2 + Ar), 

F4 1 - Al - (A2 - Ai) - (A3 - 2AlA2 + Ar) 

- (A4 - 2AlA3 + 3AiA2 - A§ + Ai), 

(7.114) 

the first three of which agree with those calculated directly earlier. We recognise 

the new terms at each iteration as very closely related to the ,0.Ti 's, computed 

explicitly before. Again, as expected, we see combinatorial results playing a 

critical role. 

We now write Fi = 2.::;=0 Cj , Co == 1. By subtracting 2.::~:01 FiAn +l-i from 

2.::~0 FiAn- i , we see that Ci must satisfy the recurrence relation 

n 

2.::: CiAn - i 0, 
i=O 

(7.115) 
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for n 2: 1, with Co == 1. We then have 

Co 1, 

Cl -AI, 

C2 -(A2 - Ai), 

C3 -(A3 - 2AlA2 + Ar), 

etc., carving up the Fi'S in the natural way according to the partition of the 

integer at each step in the Ci's. We have the standard combinatorial expansion 

in terms of integer partitions, 

(7.116) 

and, in fact, this is its own inverse, so that 

(7.117) 

It is straightforward to construct a generating function for the Ci's, i.e. the func­

tion 2..:~0 Cixi. Consider the product (2..:~0 Cixi) x (2..:~0 Aixi). The coefficient 

of the general xn term in this product is just 2..:~=0 CiAn-i. But, for n 2: 1, the 

recurrence relation for the Ci's tells us that 2..:~0 CiAn- i O. The coefficient of 

the x O term is just CoAo, which is 1. Hence, we have the result 

00. 1 
L Cix' = 2..:';'0 Axi ' 
i=O ,=0 ' 

(7.118) 

Equally, 1/(2..:~0 Cixi) is the generating function for the Ai's, explaining the 

form of the inverse of Eq. (7.116), since we can replace Ci f--7 Ai throughout by 

the reciprocity of their respective generating functions. Because the coefficient 

of the xn term in the expansion (1 x)-l 2..:~0 CiX i is just 2..:j=o C j Fn, we 

can see that the generating function for the Fi'S is 

00 . 1 1 
LFix' = --2..:00 A ., 
i=O 1 - X i=O iX' 

(7.119) 

and similarly, the generating function for the Gi's is 

(7.120) 
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We can at last construct an explicit generating function for 6Sn . By direct 

calculation, we find that 

(7.121) 

where we recognise this as essentially the generating function of the Gi's multi­

plied by that for A~A+kt - A~A_ki-. We can directly evaluate the two sums 

L:~o k;xi that appear in these generating functions, but we choose not to be­

cause the resulting expressions make the reduction to the general I-reset model 

opaque. 

We are now in a position to re-examine the form of the asymptotic limit of ~ ,6.Sn. 

We know that Gi = L:j=o L:{=o Ck, so that, explicitly, 

We then have 

1 
--Gn - i 
n+1 

Gi = 2.:)i + 1 j)Cj . 

j=O 

n-i 

_1_ ""(n + 1- i - j)C 
n+1L...,. J 

j=O 
n n-i 

= "" C - _1_ ""(i + j)C 
L...,. J n+1L...,. J 
j=O j=O 

(7.122) 

n 

I: Cj. (7.123) 
j=n-Hl 

Under suitable assumptions about the large order behaviour of the Ci's, we then 

have the asymptotic behaviour 

(7.124) 

For large enough n, therefore, the sum in the equation 

n 

,6.Sn+l = I: Gn-i(A~A+kt - A~A_ki-) 
i=l 
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basically factorises, so that 

again giving the standard asymptotic behaviour ~ llSn "-' Til N 1 . All this ar-

gUlnent really does is to encode our expectation that, for n large enough, the 

number of ways of arriving back at OFF after n - (i - 1) and n - i spikes tend to 

the same number, so the final I-transition processes of length i 1 or i contribute 

equally to the overall sum. The expressions for 'h and Nl that appear in the 

asymptotic form contain all the information necessary to reconstruct the exact 

form of llSn, precisely because of the manner in which the asymptotic limit is 

extracted from the exact, finite n result, and the individual components Ci can 

be extracted uniquely from Nl because the integer partitions can be uniquely 

identified with the integer i. 

Summarising these various results, we have that 

n 

Un 2::: Fn-i()"~A+kt - )"~A-kn, 
i=l 

n 

i=l 

where Gi = ~j=o Fj and Fi = ~j=o Cj, and the Ci'S are generated by the 

function 1 / ~:o AiXi. By simple re-arrangements of the sums in these two 

representations of Un and llSn+1, we also have 

n 

Un 2::: Cn-i()"~A+Qt )"~A-Qn, 
i=l 

n 

2::: Fn-i()"~A+Qt )"~A-Qi)· 
i=l 

These equivalent expressions represent the exact solution of the non-resetting 

model. Of course, the r-reset model is obtained by the standard replacement 
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(7.125) 

in the various associated generating functions. 

We conclude this section, finally, by indicating an alternative method of calcu­

lating the coefficients Fi . Consider a train of i spikes and consider the number of 

ways of arriving finally at the OFF state after the last, ith spike. After weighting 

the spike trains by their pdfs and individual spike probabilities, and summing 

over all possible spike trains, using the methods of section 7.4, we arrive at a 

recurrence relation of order r + 1 for the r-reset model. This recurrence relation 

is identical to that for !J.Sn, except that it is homogeneous, i.e. the Ar term is ab­

sent. Iterative solution of this homogeneous equation starting from Fo == 1 yields 

precisely the Fi coefficients appearing in the equation for Un- Thus, the form for 

Un represents a decomposition into all possible sequences of I-transitions return­

ing to the OFF state, giving the Fi coefficients, followed by a final I-transition, 

giving the A~A+Kt - A~A_ Ki- term, and summing over all possible lengths of 

the final I-transition. 

7.8 Analytical and Simulated Results 

In this section, we turn to a comparison between the analytical results derived 

above and numerical results obtained by the computational simulation of the r­

reset model. We are particularly concerned with establishing how rapidly ~!J.Sn 

converges to the analytical asymptotic results; establishing that the non-resetting 

model's asymptotic result matches a large n simulation of the same model, con­

firming indeed that the r ----+ 00 limit of the r-reset model's asymptotic result 

really is the asymptotic result of the non-resetting model; and establishing how 

rapidly the r-reset model tends to the non-resetting model as r ----+ 00. 

We run simulations of the stochastic model as in Chapter 6 (Appleby and Elliott, 

2005), with the standard set of parameters used there: 

A+ 1.00, 
A_ 0.95, 

T+ 13.3 ms, 
T_ 20.0 ms, 

n+ 3, 
n_ 3. 
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These parameters were chosen because they reproduced a large variety of the 

experimental results available in the literature, including the replication of the 

spike triplet results (Froemke and Dan, 2002). These parameters also guarantee 

the presence of both a depressing and a potentiating regime in the function b.S2, 

so that depression and potentiation can both occur at the ensemble level. In 

most of the simulations below, each simulation is run over exactly 107 spikes. 

Thus, in obtaining the numerical form of ~b.Sn' we perform 107 In separate runs 

over n spikes, and average over all these runs. Of course, as n increases, there 

are fewer runs over which to average, but there is more averaging within each 

sequence of n spikes. This means that the statistical error should be roughly 

equivalent for any value of n, this being the reason for keeping the total number 

of spikes fixed at 107 . b.Sn is, of course, a function of both Arr and Ap. Previously, 

we set 

(7.126) 

as a simple model of postsynaptic firing with a threshold set at e = 5 Hz. This 

gives a cross section through the Arr~Ap plane. We will also show contour plots 

of ~b.Sn in the Arr~Ap plane. 

In Fig. 7.1, we investigate how rapidly ~b.Sn approaches the asymptotic limit 

derived above. We use the r = 1 reset model for convenience, since we also have 

very simple, exact solutions against which to compare the numerical results. We 

see very rapid convergence to the asymptotic limit, so that even n = 8 gives the 

limit to within a few percent. This means that after n ;:::; 10 spikes, we expect to 

see the scaling property observed earlier for the I-reset model, so that doubling 

the spike train length merely doubles the expected change in synaptic efficacy, 

adding no new qualitative features to the dynamics. 

The results for the non-resetting model are shown in Fig. 7.2. Here we do not plot 

the corresponding finite n analytical results, but we show the analytical asymp­

totic limit. This figure demonstrates that the r -) 00 limit of the asymptotic 

result for the r-reset model is, indeed, the asymptotic result for the non-resetting 

model. 

We address the question of how rapidly the r-reset model converges to the non­

resetting model as r -) 00 in Fig. 7.3. We see that even the 4-reset model is 

extremely close to the non-resetting model, and the 8-reset model is virtually 

indistinguishable from it. For Arr ;:::; Ap, we have that A~ ;:::; 0.5 and A~ ;:::; 0.5. 

Thus, the probability of a long sequence of identical spikes in this case is maxi­

mally suppressed, and the contributions of such sequences to b.Sn are weighted 

by these small probabilities. However, to resolve the difference between the r­

reset model and the (r + I)-reset model for large r, we require precisely such 
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FIGURE 7.1: Analytical and numerical values of ~t.Sn plotted as a function 
of A7r for the I-reset model for various values of n. The solid lines show the 
numerical results for n = 2,4,8,16,32 and 64 spikes, while the corresponding 
dotted lines show the exact, analytical result. The n = 2 pair of lines corre­
sponds to the bottom pair, n = 4 the next pair up, etc., the function ~t.Sn 
increasing as a function of n for fixed A7r . The dashed line shows the exact, 

asymptotic limit, n --> 00. 
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FIGURE 7.2: Numerical values of ~t.Sn plotted as a function of A7r for the 
non-resetting model for various values of n. The solid lines again show the 
numerical results for n = 2,4,8,16,32 and 64 spikes, with the bottom line 
corresponding to n = 2, the next line up n = 4, etc., ~t.Sn exhibiting the 
same mono tonicity as a function of n for fixed A7r as in the I-reset model. The 
dashed line shows the exact, analytical result for the asymptotic limit of the 

non-resetting model. 
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FIGURE 7.3: The analytical asymptotic limit of ~t,.Sn for the r-reset model 
plotted as a function of A" for various values of r. Shown are results for 
r = 1,2,4,8,16, and the non-resetting model. The top curve corresponds to 
r = 1, the next one down r = 2, etc., ~t,.Sn monotonically decreasing as a 
function of r for fixed A". The curves for the 8-, 16- and non-resetting models 

are virtually identical, almost superimposed on top of each other. 
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long sequences of identical spikes. Hence, we should not be too surprised by this 

rapid convergence of the r-reset model to the non-resetting model. 

The numerical simulations presented in Fig. 7.1 and Fig. 7.2 show data averaged 

over a large number of runs. However, we know that for n sufficiently large, 6.Sn 

scales linearly with n. This means that a single run over a typical spike train 

(without averaging over multiple runs) for a sufficiently large number of spikes 

should start to exhibit self-averaging properties, and the data should settle down 

to the exact, average result for 6.Sn . As the spike train length tends to infinity, 

the numerical result over this single spike train should converge to the analytical 

result for the average, asymptotic behaviour. A natural question is, therefore, 

how many spikes are required in such a train before the single-train form for the 

change in synaptic strength per spike begins to resemble the analytical result for 

k6.Sn , which is averaged over all spike trains of length n? In Fig. 7.4, we plot 

the raw data for the I-reset model obtained from a single spike train containing 

50,000 spikes, and, for comparison, we plot the exact, asymptotic limit of k6.Sn . 

We see that, although noisy, as expected, the single-train data follow the exact 

result. If the spike train length is increased to 100,000 spikes, the noise is much 

reduced, while for a spike train length of 10,000 spikes, although the trend in 

the mean is still clear, the noise begins to swamp the mean behaviour. We 

conclude that, for the parameter values used here, approximately 50,000 spikes 

are required for the self-averaging property of a long spike train to reduce the 

overall variance in the data significantly. 
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FIGURE 7.4: The change in synaptic strength per spike for a single, random 
spike train of 50,000 spikes for the I-reset model plotted as a function of '\". 
The crosses indicate the change at each value of '\". For comparison, the solid 
line shows the exact, analytical result for the asymptotic limit of ~t:,.Sn, which 

represents an average over all possible spike trains. 

In Fig. 7.5, Fig. 7.6 and Fig. 7.7 we show contour plots for the analytical form of 

~,6.Sn for the I-reset model for n = 2, n = 3 and the asymptotic limit n -+ 00, 

respectively. Contour plots for other values of n are all very similar to those 

for n = 3 and n -+ 00. These trends are also observed, for example, for the 

non-resetting model. 

We see a significant difference between the n 2 landscape and that for all 

other values of n. For the n = 2 rule, the landscape is symmetrical about the 

line A7f = Ap. This symmetry can be seen directly from an examination of the 

2-spike learning rule derived in Chapter 6 

(7.127) 

Where A~ = A7f 1(3 and A~ = Api (3. We see that, in the 2-spike rule, the quantities 

Ap and A7f only ever appear as a sum or a product. The surface is therefore 

symmetric under the interchange of A" and Ap, and hence is symmetric about 

the line A7f = Ap. In contrast, the n = 3 landscape in not symmetric. We can 

see this directly by examining the the 3-spike rule 

,6.S3 = A+ [2A~A~Kt - A~(A~)2 Kt K1J - A_ [2A~A~Kl + (A~)2 A~Kt K1J . 
(7.128) 
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FIGURE 7.5: A contour plot of the function ~flSn for the I-reset model, 
with n = 2, in the Arr-Ap plane. Black areas represent minimum values and 
white areas maximum values, and nine shades of grey interpolate between these 
extremes. The minimum value on this partial plane is -0.0122, while the 

maximum value is +0.0059. 
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Which contains terms which have unequal powers of Ap and A7r • Thus, the 3-

spike rule is not invariant under the transformation Ap B A7r , and is therefore 

not symmetric about the line Ap = A7r • 

We may offer an explanation of why the 2- and 3-spike rules, and therefore the 

learning surfaces they encode, are fundamentally different by examining directly 

the nature of the terms that make up the learning rules, 6.82 and 6.83 . We 

do this explicitly, deconstructing the calculation of 6.8n and examining the con­

tribution and spike- probability weighting of each term. We may then identify 

the dominant terms and compare their contributions, explaining the resulting 

average learning behaviour as a sum these processes. Consider, first, the 2-spike 

rule. As discussed in Chapter 6, the rule is constructed from four terms, 7rP, 'Wlr, 

p7r and pp. Only trp and p7r contribute to plasticity. Examining these two terms 

more carefully we have that 

(7.129) 
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FIGURE 7.6: A contour plot of the function ~,~.sn for the I-reset model , with 
n = 3, in the A,,-Ap plane. The minimum value on this partial plane is -0.0284, 

while the maximum value is +0.0342. 

(7.130) 

We consider the learning surface away from the origin, so that at least one of 

A1I" or Ap is large. Thus, as (J = A1I" + Ap, we have that Kt((J) -t 1. The two 

plasticity terms given above therefore reduce to 

(7.131 ) 

and 

(7.132) 

The sum of these two processes is the overall learning rule, 6.82. When synaptic 

strengths become large, the postsynaptic firing rate, Ap , also becomes large and 

A~ ---' 1 while A~ ---' o. Alternatively, if presynaptic firing rates become large, we 
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FIGURE 7.7: A contour plot of the function ~t.Sn for the I-reset model, in 
the asymptotic limit n ....., 00, in the A7r- Ap plane. The minimum value on this 

partial plane is -0.1071, while the maximum value is +0.1148. 

have that A~ ~ 1 and A~ ~ o. In both cases, we see immediately that 

(7.133) 

We previously assumed that A+ > A_, and thus, in the limit of high pre- or 

postsynaptic firing rates, the potentiation process 7rp dominates overall and the 

learning surface is positive. 

For the resetting 3-spike rule, the contributing terms are 7r7rp, pp7r, p7r7r, 7rpp, 

p7rp, and 7rp7r. The first four are essentially spike-pair terms weighted by some 

spike probability. The final two terms are the "triplet" terms, and encode the 

multi-spike interactions that differentiate the multi-spike rules from the 2-spike 

rule. Examining these six terms more carefully, we find that 

(7.134) 

(7.135) 
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(7.136) 

(7.137) 

(7.138) 

(7.139) 

Collecting these terms, we have the A+, potentiating terms 

(7.140) 

and the A_, depressing terms 

(7.141) 

The first term in both equations comes from the 3-spike interactions that reduce 

to terms resembling "pure" 2-spike terms. For example, for the A+ equation 1T1Tp 

and 1Tpp both produce pure 2-spike terms. For the A_ equation it is pp1T and p1T1T. 

The second term in both equations stem from the irreducibly 3-spike interactions 

present in the interleaved spike trains p1Tp and 1Tp1T. Consider, for example, the 

spike train 1Tp1T. This train gives rise to the switching process 1Tr+P1T, where 1'+ 

represents a passive transition from POT to OFF, leading to a term of the form 

A_(l- Ki)K1. Thus, an irreducible 3-spike term -A_Ki Kl is produced. An 

identical argument leads to the irreducible A+ terms. Adding the A+ and A_ 

terms together, we have 

b,.S3 = A+ [2A~A~Ki - A~(A~)2 Ki K1] - A_ [2A~A~Kl + (A~)2 A~Ki K1] . 
(7.142) 

Which, on taking the same limit in (3 as for the 2-spike rule, reduces to 

(7.143) 
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where the first and second terms in each square bracket are the pure 2-spike 

terms and irreducible 3-spike terms, respectively. Consider now the limit that 

A; --+ 1 and Ax --+ O. We see immediately that 

(7.144) 

which is negative for our standard parameter choices. In other words, for large 

input weights, the irreducible triplet term -A~(A;)2 Ki Kl has the effect of re­

ducing the magnitude of the A+ potentiating term. In contrast, the correspond­

ing irreducible triplet term (A~)2 A;Ki Kl has vanished and does not affect the 

A_ depressing term. We therefore experience depression overall, and the learning 

surface is negative. 

In the limit where A~ is large, we have that A; --+ 0 and A~ --+ 1, giving 

(7.145) 

which is positive as A+ A_ > O. Thus, for high presynaptic firing rates we 

experience potentiation overall, and the learning surface is positive. 

Thus, we see that this process of decomposing the 3-spike rule into its con­

stituents allows us to identify the exact processes which lead to the asymmetry 

of the 3-spike learning surface. These processes are the irreducible 3-spike terms 

arising from 7rp7r and p7rp. This result contrasts with other models of STDP, 

where the spike trian 7rp7r would simply be a linear sum of two spike pairs which 

would approximately cancel (Song et aI., 2000). 

We find a similar asymmetric learning surface in all n 2': 3 rules. Such rules, 

therefore, will not necessarily suffer from runaway learning, but may display 

more interesting dynamics. These simple observations show that, although there 

tends to be an emphasis in the literature on the form of the 2-spike rule, multi­

spike rules, at least in our model, are qualitatively different in character. We 

shall explore these differences in Chapter 8, showing that they have important 

consequences for the presence and nature of competitive dynamics in the switch 

model. 

7.9 Discussion 

In this Chapter we have extended our earlier, ensemble-based, stochastic model 

of STDP in order to derive exact, analytical results for general n-spike interac­

tions for n > 2. By extending the model to include stochastic process resetting, 

we essentially constructed a mathematical ladder that we could ascend in order 
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to arrive at exact results for the non-resetting model. Once there, we can extract 

the general r-reset model from the non-resetting model. As suggested earlier, 

the most biologically plausible forms of these various resetting models are, ar­

guably, the I-reset model and the non-resetting model. Other finite r, r i- 1, 

forms require us to postulate some kind of spike-counting machinery at individ­

ual synapses that, in the spirit of reducing the computational burden placed on 

any single synapse as much as possible, we consider to be less likely. 

Although the general results for ~/iSn for all but the I-reset model are somewhat 

cumbersome (we regard the roots of the quartic equation associated with the 

2-reset model as cumbersome, even though the n-spike interaction function is 

available explicitly in terms of these roots), in fact we find rapid convergence of 

~/iSn to its asymptotic, large n form, so that even by approximately 10 spikes, 

~ /iSn is within just a few percent of the limiting result. Furthermore, in terms of 

the general form of the function /iSn in the An-Ap plane, we find no qualitative 

changes in the structure of the landscape for any n :::: 3. These two facts lead us 

to suppose that any properties exhibited by the asymptotic form of the n-spike 

function will also be exhibited by all the n-spike functions for n 2: 3. Of course, 

we expect quantitative differences, but the overall dynamics, as determined by 

the overall structure of the function, should be similar. 

The n-spike interaction functions we have derived are unconditional expectation 

values that represent, in essence, rate-based learning rules in which the underly­

ing spiking processes have been integrated out and summed over. We are thus 

led to ask whether a purely spike-based system experiencing a specific, typi­

cal pattern of pre- and postsynaptic spikes would exhibit a change in synaptic 

strength consistent with the rate-based, n-spike interaction function? In other 

words, what are the conditions that lead the spike-based behaviour to match 

the rate-based results derived above? The answer to this question, as shown in 

figure 7.4, is that n must be sufficiently large that enough self-averaging within 

a long spike sequence can take place, reducing the overall standard deviation in 

the data to well below the mean, so that the mean behaviour is not swamped by 

noise. We saw that "sufficiently large", for our parameter choice in the I-reset 

model, means about 50,000 spikes. At a rate of around 10 Hz, this corresponds 

to 5000 seconds, or a little over an hour's worth of synaptic activity. At a rate of 

around 100 Hz, this is reduced to 500 seconds, or a few minutes' worth. These 

results are consistent with our general expectation that, if we consider synaptic 

plasticity over the time course of at least a few minutes, even though the neuron 

computes at the level of individual spikes, it behaves as though it were following 

an abstracted, rate-based rule. 

In Chapter 6 we considered purely numerical simulations of n-spike interactions 
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for n > 2. There, we looked specifically at the cross section of the A7r-Ap land­

scape corresponding to Eq. (7.126) and found little quantitative difference be­

tween the 2-spike and the general n-spike results, all forms exhibiting a BCM-like 

profile with depression at low presynaptic rates switching over to potentiation 

for higher presynaptic rates. This observation reflects the highly specific cut 

through the A7r-Ap plane. Other cuts reveal profound differences between the 

2-spike and the general n-spike results, as seen in figures 7.5, 7.6 and 7.7. The 

particular model of postsynaptic firing in Eq. (7.126) might be expected to be 

fairly reasonable (modulo issues of saturation, etc.) for a target cell innervated 

by precisely one afferent, so that the postsynaptic response follows closely the 

presynaptic input. However, for a target cell innervated by multiple afferents, it 

is entirely possible for there to be large differences between some of the presy­

naptic rates and the postsynaptic rate, because the postsynaptic rate will reflect 

all the inputs. We are then led to examine the whole A7r-Ap plane, which reveals 

these differences. Indeed, it is precisely these differences between the 2-spike and 

the general n-spike interaction functions, observed initially numerically, that mo­

tivated our derivation of the above analytical results for the n-spike function. We 

shall explore the learning dynamics of the different, n-spike rules we have derived 

in Chapter 8. 

7.10 Conclusion 

In conclusion, we have generalised the synaptic switch rule of STDP presented in 

Chapter 6. We now distinguish two forms of the model, based on the response of 

the process governing the stochastic transitions of the switch to multiple spikes 

of the same character. In the resetting model, multiple spikes can reset the 

stochastic process, while in the non-resetting model they cannot. We made this 

generalisation in order to extend our earlier analysis, in which spike interactions 

were limited to at most two spikes, to the case where spike interactions were not 

limited in any way. We thus derive exact, analytical expressions for the n-spike 

interaction function arising under our synaptic switch rule. 

Even in retrospect, it is astonishing that many of these results can be derived ex­

actly. This is partly due to the use of a stochastic model with intrinsic Markovian 

properties, and partly because the model is actually quite simple in its overall 

structure. 

We note that the 2-spike rule is of qualitatively different character compared 

to all other multi-spike rules. This result is especially interesting given the 

essentially 2-spike nature of other models of STDP. In Chapter 8, we shall focus 



164 Chapter 7 Multi-Spike Interactions in the Switch Rule 

on the profound differences between the 2-spike interaction function and higher­

order interaction functions, and the consequences for the presence of stable, 

competitive dynamics in our model. 

7.11 Appendix: Roots of Characteristic Equation 

We return to a consideration of the roots ai, i = 1, ... ,2r, of Eq. C7.82), 

1'-1 1'-1 
a2r + "" A ·a2r- j - ""Ck+ k- + k-:- k+)ar- j - k+ k- = 0 LJ LJr Jr 1'1" 

j=l j=l 

for specific cases in which the roots can be computed exactly. We know that for 

r = 1 and r = 2 the roots are available in closed form, but we seek cases for 

which exact expressions are available for the general r case. 

A little re-arrangement of Eq. C7.82) gives 

1'-1 
(a2r - k: k;) + 2: ar- j [kt (ar - k;) + k j- (ar k:)] = o. C7.146) 

j=l 

We see that if k: = k;, then an overall factor of ar - k: can be pulled out, 

yielding the r roots w(kt)l/r, where w is an rth root of unity, wr = 1. In 

general, however, we still have the roots of the remaining rth degree factor to 

extract. Moreover, kt = k; is very rarely satisfied, except for very particular 

choices of the rates A7f and Ap and the parameters T ± and n±. 

A much less constraining case in which all the roots can be computed exactly 

is that for which kt = Ckt)i. This corresponds, for example, to the I-reset 

model or to a general r-reset model in which n± = 1. Defining R2 = ki k 1, we 

then have 

1'-1 
(a2r - R2r) + 2: (Ckt)j + (kn j ) aj (a2(r- j ) - R2(7'-j)) = O. 

j=l 
(7.147) 

We see that a common overall factor of a2 - R2 can be pulled out. The solutions 

a = ±R, of course, are already known for the r = 1 model, so we expect to 

reproduce these. We define the remaining 2(r - 1) degree polynomial whose 

roots have yet to be determined to be R2(r-1) fca), so that 

1'-1 1'-1 r-j-1 
R2(r-1) f(a) = 2: a2i R2(r-1-i) + 2: ((kn j + (k1)j) aj 2: e2i R2(r-1-i-j). 

i=O j=l i=O 

(7.148) 
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Defining B± = B / kt, dividing through by R2(r-l), writing B2 / R2 = B+B_ and 

(kt)j Bj / R2j B~, we then have 

r-l r-l r-j-l 

I(B) L B~B~ + L (B~ + B~) L B~B~. (7.149) 
i=O j=1 i=O 

Re-arranging the double sums, we have 

r-lr-j-l r-l i-I 

L L B~+jB~ LB~LB~ 
j=1 i=O i=1 j=O 

L B~B~. (7.150) 
O:S;j<i:S;r-l 

Similarly, 
r-lr-j-l 

L L B~B~+j = (7.151) 
j=l i=O O:S;i<j:S;r-l 

By observing that 

(7.152) 
i=O O:S;i=j:S;r-l 

we see that I(B) factorises into separate B+ and B_ pieces, so that 

I(B) = (~B~) (~B~) , 
2=0 J=O 

(7.153) 

or 
I(B) = 1-B+1 B~. 

1- B+ 1- B_ 
(7.154) 

Hence, I(B) has the 2(r - 1) roots B = ktw, wr = 1, w oF 1. Since kt < 1 for 

finite (3, all 2r roots of the characteristic equation therefore have moduli strictly 

less than unity. This factorisation of the K+ and K- components does not 

appear to carryover to the completely general form of Eq. (7.82). 

The cases n± = 1 and r = 1 are not the only cases for which k i± = (kt)i. In 

the limit n± ---+ 00, we have that Ki± ---+ 1. Hence, for example, kt ---+ A~ i, so 

kt = (kt)i in this limit too. For A~ = 1, we then have kt = 1, so, in this 

limit, the roots ktw approach the unit circle. However, they are not repeated 

because when A~ = 1 we have A~ = 0, so the other roots collapse around zero. 

Another case is that in which (3 ---+ 00, for which, again, Ki± ---+ 1. This case is 

valid for any n±, and so, in the limit of large (3, 2(r -1) of the roots of Eq. (7.82) 

will approach multiples of the rth roots of unity. Again, in the directions A~ = 1 

and A~ = 1, these roots reach the unit circle, but are never repeated. All the 

cases for which we are able to solve Eq. (7.82) exactly (except for the general 

r 2 solutions) appear to fall into subsets of all the above cases. 
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FIGURE 7.8: The distribution of roots of the characteristic equation of the 
8-reset model with parameters n± = 3, T + = 13.3 ms, T _ = 20.0 ms, plotted in 

the complex plane. The bounding unit circle JzJ = 1 is also shown. 

We know that k i ::; k1, and so this suggests that we should write k i = kl- Ei, 

Ei :::: 0 and then expand about the roots ktw obtained above. The validity of 

such solutions depends on the various E/S being small. For i large enough, this 

is always true (except in the limits considered above). For small i, however, 

E/S being small will depend on parameter choices. Nevertheless, if we expect 

the roots of the characteristic equation to be (at least piecewise) continuous 

functions of the parameters, then these arguments suggest that in the general 

case, the roots should roughly speaking cluster around the roots of unity, with 

some possibly large perturbations. In figure 7.8, we show the distribution of 

roots for parameter choices giving rise to the earlier figures, n± = 3, T _ 20.0 

ms, T+ = 13.3 ms, with A1T , Ap E (0,200] Hz. We set r = 8 as an example value. 

We see that, indeed, the roots cluster around the eighth roots of unity. For all 

choices of (finite) n± and T ± examined, all plots are qualitatively similar to the 

n± = 1 case, but with perturbations around the known roots of this case. 



Chapter 8 

Stable, Competitive Dynamics 

in the Switch Rule 

The work in this Chapter is based primarily on the paper "Stable Competitive 

Dynamics Emerge from Multi-Spike Interactions in a Stochastic Model of Spike 

Timing Dependent Plasticity" Appleby and Elliott (2005) (submitted). 

8.1 Summary of learning rules 

We make use of several of the n-spike learning rules derived in Chapter 7. For 

convenience, we reproduce these rules here. Defining 

(8.1) 

and 

r 

(8.2) 

we have the 2-spike result 

(8.3) 

and the asymptotic, r-reset, n-spike result 

167 
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In particular, we are interested in the resetting (r 1) and non-resetting (r ----+ 

CXJ) forms of this asymptotic, n-spike result 

(8.5) 

(8.6) 

8.2 The 2-Spike Rule and Beyond 

We first examine the 2-spike rule and show that it leads, without further modifi­

cation, to pathological learning dynamics. We then move beyond the 2-spike rule 

and perform an initial analysis of the multi-spike rules, indicating the reasons 

why their dynamics differ from the 2-spike rule's dynamics. 

8.2.1 Failure of the 2-Spike Rule 

To study 2-spike interactions, we consider a system of m afferents innervating a 

single target cell, and explore their behaviours in the context of the averaged, 

2-spike learning rule, 6.S2 . We label the m afferents with indices such as i and 

j, so that i,j E {l, ... , m}. Let afferent i support li synapses of strength Sia, 

0: E {I, ... ,ld. Let afferent i fire at rate Ani' and the target cell fire at rate Ap. 

We then define 

(8.7) 

where we have noted the explicit dependence of 6.S2 on the pre- and postsynaptic 

firing rates. Since 6.S2 is independent of the synapse label 0:, all Sia experience 

the same change at each time step: all of afferent i's synapses experience identical 

pre- and postsynaptic firing rates. Hence, we may consider the evolution of either 

the total synaptic strength supported by afferent i, sf == I:a Sia, or the average 

synaptic strength, sf == t I:a Sia, evolving according to dsf jdt = li 6.S2 (Ani , Ap) 

or dsf j dt = 6.S2 (Ani> Ap), respectively. We set the postsynaptic firing rate Ap 

to be the standard linear sum of the presynaptic firing rates weighted by the 

synaptic strengths. Thus, if we consider the total strengths sf, we set Ap = 

I:i sf Ani' while if we consider the average strengths sf, we set Ap = I:i lisf Ani' 

Since we study competitive dynamics, we do not consider scenarios in which 

some afferents at least initially enjoy an advantage over other afferents, and 

in particular, we do not consider scenarios in which the numbers of synapses 

supported by a group of afferents differ significantly. Hence, for convenience we 
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take li to be independent of i: all afferents support the same number of synapses. 

We may then dispense with the factors of li since they can be absorbed into a 

re-definition of time (for the total strength) or a re-definition of afferent rates, 

which is equivalent to a re-definition of time (for the average strength). We 

therefore consider one common quantity Si, which can be thought of as either 

total or average synaptic strength, evolving according to the equation 

(8.8) 

for which we set Ap = 2:i SiA7ri' As we consider only excitatory synapses, we 

insist that Si ;::: O. Hence, if Eq. (8.8) tries to drive Si negative, we truncate the 

evolution and set Si to zero. The synapse is not frozen there: it can re-grow to 

non-zero strength. 

We may obtain a qualitative understanding of the dynamics induced by Eq. 

(8.8). Consider a scenario in which at least one afferent, say afferent i, has a 

large synaptic strength, Si. The postsynaptic firing rate Ap will thus typically 

be large, and so the variables f3i = A7ri + Ap will typically be large. In this limit, 

Kt(f3i) R;:: 1, so the 2-spike learning rule reduces to dsj/dt ex A+ - A_ > 0, for 

any afferent j. Thus, we see that once one afferent becomes strong, it induces all 

afferents to become strong, and this induces a positive feedback mechanism, in 

which all afferents reinforce each other. So, unless the first afferent that becomes 

strong is silenced with low A7ri for a sustained period, so that Ap does not become 

large, all afferents' strengths will escape to infinity. Consider now a scenario in 

which all synaptic strengths Si are small. Here we may write f3i :::::: A7ri since Ap is 

small, and the 2-spike rule becomes dsj/dt ex A+K;(A7rj)-A_Kl(A7rj)' Writing 

this out according to the definitions of Kt, we have two terms, a negative term 

that goes like 'Y - 1 and a positive term that grows with A7rj" However, only for 

presynaptic firing rates in excess of at least 100 Hz does ds j / dt become overall 

positive. Thus, if the Si are all small, then dsd dt < 0 for all but high, sustained 

firing rates, and so the Si become even smaller. These weak afferents become 

trapped in the depressing phase and fall to zero strength. These simple limiting 

scenario arguments therefore suggest that the phase space for the 2-spike rule 

is partitioned into two regimes, with all afferents either pulled towards zero on 

average or pushed towards infinity on average. Although these arguments are not 

rigorous proofs, their conclusion is confirmed by a full fixed point analysis of the 

2-spike rule. Indeed, we see that the fixed-point structure of the 2-spike rule is, in 

fact, identical to that of the early form of the BCM-rule which did not include a 

sliding threshold (Cooper et al., 1979). In both cases, the system in governed by 

an unstable fixed-plane, and any perturbations about this plane grow without 

bound. We may therefore equate the unmodified, 2-spike rule directly to the 

fixed-threshold form of the BCM-rule as these two models are, at least at this 
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averaged, rate-based level, identical. This allows us to directly deploy any of the 

analytical results derived elsewhere for the BCM-rule (Castellani et al., 1999). 

Moreover, the reciprocal relationship will also be true. That is, given the above 

analysis we may state immediately that, if postsynaptic spiking is assumed to 

occur according to a Poisson process with parameter given by the linear sum of 

input rates weighted by their connection strengths, the fixed-threshold BCM rule 

will also produce runaway learning in the same way as the unmodified 2-spike 

rule. 

We therefore see that despite having a BCM-like form, the learning behaviour 

of the rate-based, 2-spike rule is, in fact, pathological and always leads to the 

afferents either all dying or all escaping to infinity. To demonstrate that the 

spike-based system also exhibits the behaviour characteristic of the rate-based 

system, in Fig. 8.1 we show a spike-based simulation of four afferents innervating 

a single target cell. Spike trains are truncated at two spikes: there is no interac­

tion between successive pairs of spikes. We see that the spike-based simulation 

exhibits the same two regimes discussed above for the rate-based system. This 

behaviour is, as argued above, independent of the number of afferents because 

the governing factor in this behaviour is the postsynaptic firing rate, Ap , which 

is common to all afferents synapsing on the target cell. Once Ap begins to move 

towards or away from zero, uncontrolled learning ensues and the afferents either 

all die or all escape to infinity. The instability inherent in the 2-spike learning 

rule, whether rate- or spike-based, thus shows that it is unable to support the 

stable, competitive dynamics characteristic of, for example, ODC formation. 

This situation appears rather unpromising. For both experimental and theoret­

ical reasons, we require that a BCM-like form emerges from the 2-spike learning 

rule on average, yet this requirement leads directly to these pathological learn­

ing behaviours. Without further modification designed specifically to prevent 

runaway learning, such as hard upper bounds on synaptic strengths, the rule 

will always lead to uncontrolled learning. One possible remedy is to allow the 

threshold between the potentiating and depressing regimes, which is a function 

of various easily modifiable parameters, to depend on the recent time average 

of postsynaptic firing in a manner similar to the BCM rule Bienenstock et al. 

(1982). In effect, this "couples" potentiation and depression together, in the 

sense that the dependence of the plasticity threshold on the recent time average 

of postsynaptic firing allows the history of potentiation and depression to influ­

ence later plasticity events. The result of this coupling in the BCM rule is to 

stabilise the learning behaviour and prevent runaway learning. 

We see a similar result when we modify the 2-spike rule to incorporate a sliding 

threshold. In the BCM model, the sliding threshold eM is explicitly set as a 

function of the recent time-averaged postsynaptic firing rate, >-p. In our 2-spike 
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FIGURE 8.1: A spike-based simulation of the 2-spike rule for four afferents 
innervating one target cell. The dynamics are partitioned into two distinct 
regimes, determined by the postsynaptic firing rate. (A) When initial synaptic 
strengths are large, the afferents drive the postsynaptic cell to a high firing rate 
and runaway learning ensues. (B) When initial synaptic strengths are small, 
the postsynaptic firing rate is low and all four afferents fall to zero strength. 
In both cases, we simulate four afferents with 10 synapses each, innervating 
a single target cell then evolve the system according to the switch rule. Pre­
and postsynaptic spiking occurred according to Poisson statistics, with the 
postsynaptic firing rate given by the simple linear sum of input rates weighted 
by connection strengths. One iteration translates to one second of simulated 

time. 
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rule, the threshold is dynamically determined by the solution of 

(8.9) 

With the six parameters A±, n± and T± held fixed, this gives a value for {3. 

However, for a given value of {3 (and fixed parameters A±, n± and T _), we can 

instead regard this equation as determining a value of T +. We denote this value 

of T+ by TM = j({3), where j is the function that gives the solution of Eq. (8.9). 

Since it is unrealistic for the value of T + to depend on the instantaneous value of 

(3, we instead make it depend on the recent time average similarly to the BCM 

rule, so that TM = j(fJ). Thus, for a given value of fJ our preferred value of 

T + should be set so that T + = TM. Such a value would place the threshold at 

exactly the right location, putting some afferents in the depressing region and 

the others in the potentiating region. Thus, if we make T + dynamically evolve 

towards TM (fJ), we will achieve a sliding threshold sensitive to the recent time 

average of postsynaptic firing, )..p, through fJ = )..11' + )..p. Setting 

(8.10) 

represents one simple way in which to realise such sliding, where f is some small 

inverse time constant for the relaxation of T + to the (changing) value of TM (fJ). 
Implementing this sliding threshold in the 2-spike rule, we replicate the dynamics 

of the BCM rule. Synaptic strengths are therefore stabilised, and uncontrolled 

learning prevented. The behaviour of a set of four afferents operating under this 

modified, rate-based 2-spike rule is shown in Fig. 8.2. We have chosen initial 

conditions so that all synapses would grow without bound under the unmodified 

2-spike rule. For the modified rule, we see that I therefore decreases very rapidly 

(within the first few thousand time steps), moving all synapses into the depress­

ing regime. As they depress, I slowly increases. Eventually three of the synapses 

hit zero strength. The surviving synapse initially continues in the downward di­

rection, but I increases rapidly, moving the synapse into the potentiating regime. 

The synapse grows and stabilises, and I remains approximately constant. We 

therefore see, as expected, that the introduction of a sliding threshold stabilises 

the learning behaviour. 

8.2.2 Beyond Two Spikes 

Although coupling potentiation and depression in the manner described above 

for the modified 2-spike rule stabilises the learning dynamics exhibited by it, 

doing so forces us to make assumptions concerning the exact dependence of 

our model's parameters on the recent firing history. To avoid such somewhat 
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FIGURE 8.2: The evolution of four afferents innervating a single target cell un­
der the modified 2-spike, rate-based rule, which allows the threshold between 
depression and potentiation to slide as a function of the time-averaged postsy­
naptic firing rate. The four solid lines show the strengths of the four afferents, 
while the dashed line shows the value of "/. The introduction of the sliding 
threshold has stabilised the dynamics and generated competition. We simulate 
four afferents with 10 synapses each, innervating a single target cell then evolve 
the system according to the 2-spike, rate-based learning rule. Pre- and postsy­
naptic spiking occurred according to Poisson statistics, with the postsynaptic 
firing rate given by the simple linear sum of input rates weighted by connection 

strengths_ One iteration translates to one second of simulated time. 
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ad hoc complications, we seek to determine whether higher-order spike interac­

tions can instead exhibit the required stable, competitive dynamics. One reason 

why higher-order spike interactions might achieve this is that they automatically 

provide the coupling between potentiation and depression that leads to stable 

behaviour under the modified 2-spike rule. This coupling takes place in the sense 

that once the synapse enters the POT (DEP) state, it cannot subsequently enter 

the DEP (POT) state without having first returned to the OFF state. That 

is, once a synapse has entered the potentiating mode, that synapse is prevented 

from entering the depressing mode without having first been deactivated to the 

resting state. For this coupling to be expressed, however, we require a minimum 

of three spikes. Consider, for example, the 2-spike train 1fp. Once the first presy­

naptic spike has elevated the synapse into the POT state, the paucity of spikes 

prevents the synapse from subsequently visiting the opposite half of the switch 

and undergoing depression. There is therefore never any coupling under 2-spike 

trains. This is not the case for higher-order spike trains. Consider, for example, 

the spike train 1fp1f. As before, the first presynaptic spike elevates the synapse 

into the POT state. If a transition back to OFF does not occur before the p 

spike arrives, then a potentiation event occurs as usual, and the last 1f event is of 
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no importance. If, however, a transition back to OFF occurs before the second 

p spike arrives, then that p spike will cause the synapse to move to the DEP 

state, enabling the synapse possibly to undergo a depression event (assuming 

the final 7r spike arrives in good time). A similar argument applies for any num­

ber of spikes greater than two. Hence, if the switch is unified, all multi-spike 

rules couple potentiation and depression together, but the 2-spike rule does not. 

Given that the coupling of potentiation and depression endows the BCM rule 

with a structure that supports stable, competitive dynamics, it is natural to ask 

whether the presence of this coupling in the multi-spike rules alters the learning 

dynamics compared to the 2-spike rule. 

In studying the dynamics of the multi-spike interactions we again consider a 

system of m afferents innervating a single target cell, and explore their behaviour 

in the context of the averaged, n-spike learning rules. The same arguments that 

led to Eq. (8.8) now lead to 

(8.11 ) 

as the synaptic strength modification equation corresponding to the n-spike rule. 

We continue to truncate Si at zero if it is driven negative. 

A numerical exploration of the 3-spike, rate-based rule (either resetting or non­

resetting) shows that, indeed, its learning dynamics differ significantly from those 

of the 2-spike rule. Under the 3-spike rule, the uncontrolled learning behaviour 

seen for the (unmodified) 2-spike rule is absent for a broad range of parameters. 

Afferents compete for control of the target cell, with stable segregation robustly 

occurring. Fig. 8.3 confirms that these observations are also true for the spike­

based version of the 3-spike rule. Stable, segregated fixed points exist under the 

3-spike rule, leading to the same competitive dynamics exhibited by the BCM 

rule. Thus, the ability of the 3-spike rule to probe the coupling of potentiation 

and depression under a unified switch, however modest, dramatically alters the 

dynamical landscape compared to that of the 2-spike rule, which cannot probe 

coupling. We observe a similar result for any multi-spike rule. Attempts to 

modify the 2-spike rule, such as introducing a sliding threshold, while adequate 

in terms of stabilising the learning dynamics, are therefore unnecessary: all that 

is required is to extend our consideration of spike interactions to three or more 

spikes with no ad hoc modifications of the learning rules. 

The success of the multi-spike rules depends critically on the unification of the 

switch mechanism and thus the coupling of potentiation and depression. We can 

see this explicitly by examining the multi-spike learning rules for two ununified 

switches, so that we consider the potentiating and depressing lobes of the switch 

separately. We can reduce the unified switch to two separate potentiating and 



Chapter 8 Stable, Competitive Dynamics in the Switch Rule 

0.4 

(/) 0.3 .r:: ..... 
0} 
c 
Q) .... .-

(f) 
t) 

0.2 
~ 
0.. ro 
c 
>. 0.1 (f) 

o 
o 0.2 0.4 0.6 0.8 1 

Time Step (Millions of Iterations) 

FIGURE 8.3: A spike-based simulation of the non-resetting 3-spike rule for four 
afferents innervating one target cell, with an explicit simulation of postsynaptic 
spiking via an integrate and fire neuron. As for the Poisson-based simulation, 
the rule is competitive, with stable segregation of the afferents being observed. 

One iteration translates to one second of simulated time. 
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depressing switches by setting T _ = ° and T+ = 0, respectively. Setting T _ = 0, 

for example, means that the depressing lobe of the unified switch is effectively 

unavailable, because any transition to the DEP state results in an instantaneous 

stochastic decay back to OFF with nO depression. Similarly with T + = 0, the 

potentiating lobe is unavailable. Adding the two rules derived by separately 

setting T + = ° and T _ = ° gives the plasticity rule corresponding to the operation 

of two ununified, separate switches. Consider, for example, the resetting oo-spike 

rule. Setting T _ = ° gives 

b:,.SPOT = A' A k+ ((3) 
00 p + 1 , (8.12) 

and setting T + = ° gives 

b:,.SDEP = -A' A k-((3) 
00 11" - 1 , (8.13) 

so that the overall rule is 

(8.14) 

The resetting, oo-spike rule therefore reduces to the 2-spike rule when the switch 

is split into two halves. Repeating this manipulation for any resetting, multi­

spike rule produces the same result, so that b:,.S;:OT + b:,.S;:EP = b:,.S2 '\In. Thus, 

the unification of the separate switches, which was proposed initially on the 
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grounds of simplicity, has unexpected consequences for the dynamics of the 

model. Examining the non-resetting, oo-spike rule under an identical manip­

ulation, we find that the potentiating half (when T _ = 0) gives 

and the depressing half (when T+ = 0) gives 

I:1SDEP = 00 

so that the overall rule is 

A~A_ Kl (A7r ) 

1 + ~Kl(A7r) 

A~A_Kl(A7r) 

1 + ;:K1(Arr ) 

(8.15) 

(8.16) 

(8.17) 

Although this non-resetting rule has not reduced to the 2-spike rule, a similar 

analysis of the cases of large and small Si (or large and small Ap) as performed 

above for the 2-spike rule reveals identical conclusions, so that afferents either 

all escape to infinity or all die at zero. We therefore conclude that the presence 

of higher-order spike interactions under a unified, 3-state synaptic switch differ­

entiates the 2-spike and multi-spike rules by allowing a probing of the coupling 

between potentiation and depression in the unified model. These higher-order 

interactions are responsible for giving rise to the stable, competitive dynamics 

that we observe for the multi-spike rules. 

Examining the large (3 limit of the (unified) multi-spike rules reveals that their 

asymptotic behaviour differs significantly from that of the 2-spike rule. For large 
± - + z - z (3, K z ((3) ---+ 1, so K z ((3) ---+ A~ and K z- ((3) ---+ A~. Because A~ + A~ = 1, we 

introduce a new variable, x E [0,1], such that 

A' 
7r 

1 
2(1 - x), (8.18) 

1 
2(1 + x). A' p (8.19) 

It is easy to see that x is the tangent of the angle between the vector (A7r' Ap)T, 

the superscript T denoting the transpose, and the line A7r = Ap. If B is the 

standard angle in a polar co-ordinate system (A7r = r cos B, Ap = r sin B ), then x 

is just 

x = tan(B - 7f/4). (8.20) 
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In this large f3 limit, we re-write the 2- and multi-spike rules in terms of the 

variable x and find that 

£),82 
1 2) A_), (8.21 ) ----+ -(1- x (A+ 
4 
1 

x2) [A+(3 - x) - A_(3 + x)], £),83 ----+ -(1 (8.22) 
8 

£),84 
1 2 [ 4x - x2) - A_ (9 + 4x x 2

)] , (8.23) ----+ -(1 - x ) A+(9 
16 

£),800 
1 C -X2) ----+ - --2 [A+(1- x) - A_(1 + x)]. (8.24) 
2 3+x 

Because the f3 ----+ 00 limits of the resetting and non-resetting models are identical, 

the results above are independent of the form of the model, although the limit 

of the oo-spike resetting rule is much easier to extract. We see that while the 

2-spike rule, £)'82 , is symmetric about x = 0, and thus symmetrical about the 

line An = Ap, the other rules exhibit an asymmetry about x = 0 due to the 

presence of odd powers of x. This property is true for all the multi-spike rules, 

not just £)'83 , £),84 and £),800 given above. For x 2 < 1, the right-hand-side of 

Eq. (8.21) is strictly positive, because A+ > A_. Hence, the 2-spike rule always 

potentiates in the large f3 limit, as we saw earlier. This behaviour is not the case 

for the multi-spike rules. Consider the cases x ~ + 1 and x ~ -1 in the above. 

Then we find 

£),83 { A+ - 2A_ for x ~ +1 
(8.25) ex: 

2A+ - A_ > 0 for x ~-1 

£),84 { A+ - 3A_ for x ~ +1 
(8.26) ex: 

3A+ - A_ > 0 for x ~-1 

£),800 { -A_ < 0 for x ~ +1 
(8.27) ex: 

+A+ > 0 for x ~-1 

Indeed, by using the general form of the (n + I)-spike rule Appleby and Elliott 

(2005), we find 

1\8 { A+ - nA_ for x ~ + 1 
L..l. n+l ex: 

nA+ - A_ > 0 for x ~ -1 
(8.28) 

The multi-spike rules therefore always potentiate in the x ~ -1 or large An, 

small Ap direction. For the 3-spike rule, if A+ < 2A_, then it, and all higher­

order rules, depress in the x ~ +1 or small An, large Ap direction. If, however, 

A+ > 2A_, then the 3-spike rule potentiates in all directions and will exhibit 

runaway learning just like the 2-spike rule. Although it may be the case that 

A+ > 2A_, it may not be the case that A+ > 3A_. Here, although the 3-

spike rule fails, the 4-spike rule will depress in the x ~ + 1 direction. Indeed, 

by looking at the behaviour of the general (n + I)-spike rule in Eq. (8.28), we 
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see that provided A_ -I 0, there always exists a value of n above which the 

multi-spike rules will start to depress in the x ~ +1 direction. In particular, for 

n > A+ / A_, the (n + 1 )-spike rule will always potentiate in the x ~ -1 direction 

and depress in the x ~ + 1 direction. With such "mixed" dynamics at large (3, 

large Ap will not induce runaway learning. Since A+ / A_ > 1, the 2-spike rule 

can never achieve this. Hence, the 2-spike rule is irredeemably pathological in 

its learning behaviour due to a symmetry that is absent in all the multi-spike 

learning rules, and although the multi-spike rules can fail in the same way as the 

2-spike rule, this is parameter-dependent (unlike the 2-spike rule), and we are 

guaranteed (for A_ -I 0) that there exists an n above which the n-spike rules 

will not fail. 

Plotting the ~Sn in the An-Ap plane illustrates these results. For the 2-spike 

rule (Fig. 8.4), we see a depressing well around the origin, and a potentiating 

regime away from it. The 2-spike surface is symmetrical about the line An = Ap. 

Depression therefore always occurs at low (3, and potentiation always occurs at 

high (3. For the non-resetting forms of the 3- (Fig. 8.5), 4- (Fig. 8.6), and 00-

spike (Fig. 8.7) rules, the symmetry about the line An Ap is absent, and it is 

possible to induce either potentiation or depression at high (3 depending on the 

value of e (or x), for the parameter choice used here. Thus, the values of An and 

Ap together determine whether potentiation or depression occurs. 

8.3 Fixed Point Analysis of a Rate-Based Rule 

Having derived various multi-spike, rate-based rules from our switch model and 

performed an initial study of the differences between the 2- and multi-spike rules, 

we may proceed to develop a deeper analytical understanding of the learning 

dynamics exhibited by the multi-spike rules. In particular, we continue to study 

Eq. (8.11) by performing a fixed point analysis of the oo-spike learning rule. 

We assume that all m afferents have the same mean firing rate, f-l, > 0, and 

variance, (J2 > 0. The firing rate of each afferent therefore fluctuates about 

a common mean. The fluctuations distinguish the afferents (unless they are 

perfectly correlated), while preventing any afferent from enjoying an overall ad­

vantage. We set Ani = f-l,(1 + ai), where ai is some small perturbation about the 

mean, lail « 1, and take the mean of ai to be zero, (ai) = 0, so that (An;) = f-l" 

as required. As we will average over the ensemble of activity patterns, we must 

obtain an expression for (ai aj). The variance in the activity of afferent i is 

(8.29) 
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FIGURE 8.4: A contour plot of 6.82 in the Arr-Ap plane. Black areas represent 
minimum values and white areas maximum values, and nine shades of grey 
interpolate between these extremes. The minimum value on this partial plane 

is -0.0244, while the maximum value is +0.0118. 

so that (at) = &2, where & = 0,/ J1, with &2 « 1. Assuming for convenience that 

the afferents' activities are uncorrelated, so that their covariance Cov( ai, aj) = ° 
for i -=I- j 1 we then have 

(8.30) 

where Oij is the Kronecker delta, equal to one if i = j and zero otherwise. Defining 

the vectors s = (Sl,"" smf and a = (a1 , " . , am)T, we then have 

(a· s) 

(ai(a . s)) 

((a. S)2) 

0, 

&2Sil 

&2IsI2. 

(8.31) 

(8.32) 

(8.33) 

As the perturbations are smail, &2 « 1, we may expand any n-spike rule in ai 

and then average over the ensemble of afferent activity patterns using the three 

equations above. This expansion must be to second order in ai, as the mean 

of ai is zero. We thus arrive at a set of equations describing the evolution of 

afferents governed by the n-spike switch rule when the activities of the afferents 

fluctuate about some common mean firing rate. We may then extract the fixed 

point structure that characterises the dynamics of this system. Because Si 2:: 0, 
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FIGURE 8.5: A contour plot of 6.St:R for the non-resetting model in the A.,..-Ap 

plane. The minimum value on this partial plane is -0.0826, while the maximum 
value is +0.1007. 

any fixed points must lie in the non-negative hyperquadrant of the vector space 

defined by s in order to be accessible to the afferents . 

We now explore the fixed point structure of a simplified form of the oo-spike rule, 

the simplification merely allowing a less messy analytical characterisation of the 

locations and stabilities of the various fixed points. We then examine the full, 

unsimplified rule. Although analytical results can still be obtained for the full 

rule, they are messy, cumbersome and rather opaque, so we do not reproduce 

them here. Nevertheless, both the simplified and full forms of the model exhibit 

qualitatively identical dynamics. 

8.3.1 Simplified oo-Spike Rule 

We consider a simplified form of the full oo-spike non-resetting rule given in 

Eqn. 8.6, that excludes the denominator. This exclusion simplifies the expan­

sion, making the resulting expressions more transparent. The price for this 

transparency is that the location and stability of any fixed point in this sim­

plified model will be slightly different from that of the full model. To zeroth 

order in 0-2
, the simplified model and full model are, however, identical in their 
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FIGURE 8.6: A contour plot of !1SfR for the non-resetting model in the A7r-Ap 

plane. The minimum value on this partial plane is -0.1686, while the maximum 
value is +0.1926. 

fixed point structure. For reasons of analytical tractability, we set n± = 1. The 

simplified oo-spike, non-resetting rule is then 

and we set 

dSi = 6.SSim (A A) dt 00 7ri! P • 

(8.34) 

(8.35) 

We denote the sum of the synaptic weights as S+ = 2:i Si and we define t+ = 
l+s+. Expanding the simplified rule to second order in (Xi and averaging over the 

ensemble of afferent activity patterns as set out above yields the averaged form of 

the rule. Dropping the angle brackets around the Si for notational convenience, 

after lengthy algebra we obtain 

(8.36) 

where 
1 

(8.37) 
1+/LL' 
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FIGURE 8.7: A contour plot of b.S;;'R for the non-resetting model in the A,,-Ap 

plane. The minimum value on this partial plane is -0.1010, while the maximum 
value is +0.1036. 

(S.3S) 

where 

and 

fJ,T_S+ 

(1 + fJ,L)2' 

(S.40) 

At a fixed point, we require that ds/dt = O. Solving this equation exactly for the 

location of all the fixed points is usually difficult if not impossible, so we proceed 

by finding an approximation to zeroth-order in 0- 2 , for which all the fixed points 

can be located, then calculate first-order corrections in 0- 2 . We therefore write a 

fixed point as 

(S.41) 

where x is the zeroth-order approximation to the location of the fixed point, 
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SFP, and y the first-order correction. We define x+ = I:i Xi and y+ I:i Yi, so 

that s+ x+ + 0-2y+. 

8.3.1.1 Zeroth-Order Solutions and Behaviour 

To zeroth order in 0-2 , Eq. (8.36) becomes 

(8.42) 

which depends only on s+ and not the individual components Si. By inspection 

we see that there are two fixed hyperplanes. One of these corresponds to the 

hyperplane x+ = O. All points except x = 0 in this hyperplane have at least one 

negative component of x, and all these points are therefore forbidden. Hence, 

the only fixed point on this hyperplane of fixed points accessible to the afferent 

weight vector is the origin. We refer to this point throughout as the zero fixed 

point. The other fixed hyperplane arises from the solution of 

1 
(8.43) 

l+JLL' 

or 
,(l+JLL)-l 

x+ = . 
JLT+ 

(8.44) 

So that at least some points in the hyperplane s+ = x+ have all non-negative 

components, we require x+ > 0, or 

1 
(8.45) ,> 'a == 1 + JLL 

We refer to the hyperplane S+ = x+ > ° as the non-zero fixed hyperplane. If 

, = ,a, then the non-zero hyperplane becomes co-incident with the hyperplane 

s+ = 0, and the only permitted fixed point that exists for , = 'Yo is the origin, 

x=O. 

To determine the stability of these fixed points we examine the behaviour of the 

system under small perturbations about them. We denote a perturbation by 

0= (01"'" Om)T and write s = SFP + O. We define 0+ = I:i Oi' 

Expanding and linearising Eq. (8.42) about the zero fixed point, SFP = 0, we 

have 

(8.46) 

The m eigenvalues of the associated matrix characterising these linearised dy­

namics are therefore easily seen to be 

(8.4 7) 
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and 

Ai = 0, \j i > 1. (8.48) 

The m - 1 repeated zero eigenvalues indicate that there is no flow along the 

associated eigenvectors. The flow towards or away from the origin will therefore 

only occur parallel to the eigenvector associated with A1, which is (1, ... , l)T. 

The stability of the zero fixed point is determined by the sign of AI. For 'Y < 'Yo, 

the origin is stable, while for 'Y > 'Yo, it is unstable. Note that when 'Y > 'Yo, the 

non-zero fixed hyperplane s+ = x+ > 0 intersects the positive hyperquadrant, 

so the origin becomes unstable precisely when this hyperplane moves into the 

positive hyperquadrant. 

Now expanding and linearising Eq. (8.42) about any point in the non-zero fixed 

hyperplane, we obtain 

(8.49) 

with associated eigenvalues 

(8.50) 

and 

Ai = 0, \j i > 1. (8.51) 

The flow towards the non-zero fixed hyperplane is parallel to (1, ... , 1) T. As 

for the zero fixed point, the sign of Al determines the stability of the non-zero 

fixed hyperplane. For x+ > 0, i.e. when the non-zero fixed hyperplane intersects 

the positive hyperquadrant, the non-zero fixed hyperplane is stable. Note that 

x+ > 0 requires 'Y > 'Yo, so when the non-zero fixed hyperplane is stable, the 

origin is unstable. 

The zeroth order dynamics are therefore uniquely determined by the sign of the 

quantity 'Y - 'Yo. We briefly summarise the dynamics in each of the two possible 

regimes. 

When'Y < 'Yo, a single fixed point SFP = 0 is permitted for the afferent weight 

vector. This point is stable, and the afferent weight vector will initially flow 

towards the hyperplane S+ 0 parallel to the vector (1, ... ,1)T. When it hits 

a hyperplane defined by Si 0, for some i, it is prevented from crossing it 

because Si is always truncated at zero. The weight vector therefore remains in 

this Si = 0 hyperplane and flows towards the origin. It may hit other Sj = 0, 

j i= i, hyperplanes as it further evolves, and again will be constrained to remain 

in them. The weight vector will therefore always arrive at the origin, regardless 

of the initial conditions. 
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When 'Y > 'Yo, the origin is an unstable fixed point and there exists a hyperplane 

of stable, non-zero fixed points in the positive hyperquadrant. The afferent 

weight vector initially flows parallel to the vector (1, ... , l)T towards the hy­

perplane S+ = X+ > 0, either from above or from below it. For some initial 

conditions, the weight vector will directly hit the non-zero hyperplane and stop 

evolving. For other initial conditions, the weight vector will hit a hyperplane 

Si = 0, for some i, first, and then flow in this hyperplane until it reaches the in­

tersection with the S+ = x+ > ° hyperplane, and then stop evolving. Regardless 

of the initial conditions, the weight vector will always arrive at some point on 

the non-zero fixed hyperplane. 

Of course, overall these dynamics are rather uninteresting, precisely because the 

zeroth-order solutions do not discriminate between afferents, since all afferents 

fire with a common rate fl. Nevertheless, the zeroth-order solutions are the foun­

dation on which the first-order corrections are determined, and this is why we 

have laboured the analysis of the zeroth-order case somewhat. The first order 

corrections do permit a discrimination between afferents based on the fluctua­

tions in their firing rates, and so we expect to find a more compelling set of 

dynamics at first order. We now turn to this case. 

8.3.1.2 First-Order Corrections and Behaviour 

We now examine the full form of Eq. (8.36), including the first-order corrections. 

For the first-order dynamics, we find that several different classes of fixed point 

exist. 

By simple inspection of the terms in Nt, the first-order correction in Eq. (8.36), 

we see that the system still possesses a fixed point at s = 0, and thus there are 

obviously no first order corrections to its location. However, there are corrections 

to the eigenvalues of the stability matrix. Expanding and linearising Eq. (8.36) 

about the zero fixed point as usual, we now find 

with associated eigenvalues 

(8.53) 

and 

(8.54) 
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The eigenvalues Ai, i > 1, are always positive, so the first-order corrections have 

made the zero fixed point always unstable. The precise classification of the zero 

fixed point depends on the sign of AI. When Al < 0, the origin is a saddle node 

and when Al > 0, it is a repeller. The transition of the zero fixed point from a 

saddle to a repeller occurs at the value of "( given by 

_ 1 [ A2 J-LT- (J-LL 1 )] "(="(2= 1+0" --
I + J-LL 1 + J-LL 1 + J-LT _ m 

(8.55) 

Unlike the zero fixed point, the first order corrections do affect the location of 

the non-zero fixed points. Indeed, the corrections destroy the entire non-zero 

hyperplane of fixed points, leaving one real fixed point and m quasi-fixed points, 

together with a set of other fixed points that are essentially uninteresting because 

their existence merely renders the global fixed point structure consistent. Unless 

S 0, the first-order corrections in the expression for Nt break the symmetry 

between the afferents that is present at zeroth order. It is precisely this symmetry 

that endows the zeroth-order system with an entire hyperplane of fixed points. 

At first order, this symmetry is absent, and the hyperplane collapses into a set 

of isolated quasi-fixed points and real fixed points. We first define what we mean 

by quasi-fixed points and examine their stability, then examine the other fixed 

points. 

In models of synaptic competition that possess a fixed point structure, there are 

usually fixed points in which all but one Si are zero. Such fixed points correspond 

to segregated states, since at each fixed point, only one afferent innervates the 

target cell. With m afferents, there are m such segregated fixed points. Of course, 

the defining condition of a fixed point is that ds/dt = 0 when the derivatives are 

evaluated at the fixed point. Suppose, however, that we have a point for which 

Si -=I- 0 and Sj = ° \lj -=I- i for which dsi/dt = ° and dsj/dt < 0, Vj -=I- i, when 

the derivatives are evaluated at this point. Such a point is not strictly a fixed 

point. However, if a model's dynamics include truncation of S j as it tries to pass 

through zero into a region of negative Sj, then Sj will be returned to zero. Such 

a point would therefore appear to be a fixed point, since the dynamics could 

evolve the weight vector to this point and then it would remain there. We refer 

to such points as quasi-fixed points. If ds j / dt < ° for those components that are 

zero, and if the non-zero Si direction is stable, then we refer to the quasi-fixed 

point as stable; otherwise we refer to the quasi-fixed point as unstable. 

Eq. (8.36) possesses m such points corresponding to segregated quasi-fixed points. 

Consider the point SQFP = (O, ... ,O,s+,O, ... ,O)T, where only the ith compo­

nent is non-zero, and where we write the usual expansion, s+ x+ + (j2y+. The 

component Si must therefore have zero derivative at SQFP, and this requirement 

determines the value of S+. Solving the equation dsi/dtlsQFP = 0 we of course 
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obtain the zeroth order solution 

(8.56) 

which is Eq. (8.44), reflecting the fact that all non-zero solutions at zeroth order 

must live in the non-zero fixed hyperplane, and, after a little algebra, the first­

order correction is found to be 

1 1-'Y1-'YW­
y+=---

fJT+ 'Y 1 + fJL 
(8.57) 

We require that S+ x+ + 0-2y+ > 0 for this point to be in the non-negative 

hyperquadrant, so we will obtain a first-order correction to the bound on 'Y. At 

zeroth order, the condition that x+ > 0 forces 'Y > 'Yo. We now write [ 'Yo +0-2'1' 
and determine a condition on '1' so that s+ > O. We find that 

(8.58) 

and so, for s+ > 0 at these m possible segregated points, we need 

(8.59) 

It is easy to see that [2 ~ 'Y1 since m ~ 1. Thus, these m points become accessible 

to the weight vector before the origin turns from a saddle into a repeller. We 

now need to determine the sign of dsj/dt, j -I- i, at sQFP in order to determine 

whether these points are possibly stable. We find that for j -I- i, 

dSj I A ,2 x+ 1 1 [( 1) fJL ] - = T fJ ()" - x+ 'Y - - [ 
dt S=SQFP - - (1+x+)2[1+fJL l+W- l+fJL ' 

(8.60) 

This equation is purely first order in 0-2 and thus any resulting bound on 'Y 

derived from it will be purely zeroth order in 0- 2 . To calculate a higher order 

correction to any resulting bound on 'Y, we would be compelled to extend our 

expansion out to order 0-4 . One consequence of this is that while at first order 

in 0-2 the quantity x+ is allowed to be negative, because the correction 0-2y+ 

can pull the sum s+ = x+ + 0-2y+ overall positive, nevertheless, in determining 

the sign of the right-hand-side of Eq. (8.60), we must take x+ strictly positive, 

because the resulting bound on 'Y will be only zeroth order, for which we are only 

allowed to have x+ > O. Hence, the sign of the right-hand-side of Eq. (8.60) is 

determined by the terms in square brackets. For negative derivatives, we require 

( 1) fJL x+ 'Y - -[ < O. 
l+fJL l+fJL 

(8.61 ) 

Replacing x+ by its expression in Eq. (8.56) and writing T+ = 'F_A-/A+ since 
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we regard T + as a function of 'Y with T _ and A± fixed, we then obtain the 

quadratic equation 

(8.62) 

Solving this equation for 'Y gives bounds on 'Y that, after a little algebra, are 

A+(1 + J..lL) J..lLVJI+lC A+(1 + J..lL) + w-v0ftJC 
A+(1 + 2J..lL) + (A+ - A_)J..l2T~ < 'Y < A+(1 + 2J..lL) + (A+ - A_)J..l2T~· 

(8.63) 

Notice that 'Y = 'Yo satisfies Eq. (8.62), so the relevant bound on { is the upper 

bound. Defining 

(8.64) 

we require that 'Y < 'Y3 in order that the segregated quasi-fixed points SQFP may 

be stable. For 'Y > 'Y3, the derivatives dsj/dt, Vj -I- i become positive, so the 

segregated quasi-fixed points are certainly unstable in this region. It remains to 

be assured that the non-zero, Si direction is stable. At zeroth order, the various 

points SQFP are part of the non-zero fixed hyperplane, which we know to be 

stable for 'Y > 'Yo. Hence, the Si direction is always stable, at zeroth order. Thus, 

the segregated quasi-fixed points are certainly stable for 'Yo < 'Y < {3, where for 

consistency the lower bound 'Yo is of the same order in a-2 , namely zeroth order, 

as the upper bound 'Y3. This leaves open the small, first-order-sized window 

'Y1 < 'Y < 'Yo in which the segregated quasi-fixed points exist in the non-negative 

hyperquadrant. In fact, the quasi-fixed points are stable in this small region too. 

Strictly speaking, it is inconsistent to write the condition on 'Y that guarantees 

the stability of the segregated quasi-fixed points in the form 'Y1 < 'Y < 'Y3, since 

the orders of the two bounds differ, but we shall do so anyway, in order to close 

the small 'Y1 < 'Y < 'Yo window. 

We may now turn to a real, unsegregated fixed point. This fixed point is defined 

by SFP having entirely non-zero components. From the definition of a fixed­

point, we require that 

(8.65) 

we must have Nt = Nt, Vi -I- j. The simplest solution of this equation is, of 

course, s~p = s~p, Vi -I- j, so that all the components of SFP are equal (and 

non-zero). Because all the components are equal, we refer to this point as the 

unsegregated fixed point. We write SFP = ,k(s+, ... , s+f and again expand 

S+ as S+ = x+ + a-2y+. The zeroth order solution must lie on the zeroth order 
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non-zero fixed hyperplane, so we again have 

(8.66) 

We find that the first-order correction is 

ILL ( 1 )] 
1 +x+ 1- m . (8.67) 

Again, we require that s+ x+ + (j2y+ > 0 for this unsegregated fixed point to 

be accessible to the weight vector, so, expanding 'Y as 'Y = 'Yo + 0-21' as for the 

segregated quasi-fixed points, we find that 'Y must satisfy 

1 [ A 2 ILL (ILL 1 )] 'Y> 1+0' -- . 
1 + ILL 1 + ILL 1 + f.LT _ m 

(8.68) 

The right-hand-side of this inequality is precisely 'Y2 defined in Eq. (8.55), which 

determines the value of'Y at which the zero fixed point turns from a saddle into a 

repeller. Thus, as the unsegregated fixed point passes through the origin into the 

positive hyperquadrant, the zero fixed point turns into a repeller. To determine 

the stability of the unsegregated fixed point we expand and linearise about it as 

usual, and after lengthy algebra we find that 

(8.69) 

where J is a long and unwieldy expression that we do not reproduce here, and 

K is given by 

( 1) ILL K = x+ 'Y - - 'Y . 
l+ILL l+ILL 

(8.70) 

The eigenvalues of the associated matrix are then just 

(8.71) 

and 
\ A_ LIL 1 1 A 2K w 
/\i = 1 + ILL (1 + x+)2 'Y 0' , vi> 1. (8.72) 

Although the expression is messy, it is easy to show that AI, associated with 

the eigenvector (1, ... , 1) T, changes sign at 'Y = 'Y2, being posi ti ve for 'Y < 'Y2 

and negative for 'Y > 'Y2. Hence, as the unsegregated fixed point moves into the 

positive hyperquadrant, the zero fixed point turns into a repeller because the 

direction corresponding to (1, ... , l)T becomes unstable and the unsegregated 

fixed point becomes stable precisely in this same direction. The sign of all the 

other eigenvalues associated with the unsegregated fixed point is determined 

solely by K. Stability in all the directions orthogonal to (1, ... , l)T thus requires 
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K > 0, or 

( 1) f.LL x+ 1- -I > O. 
l+W- l+W-

(8.73) 

This is identical to Eq. (8.61), determining the stabilities of the segregated quasi-

fixed points, except that the inequality is opposite. Thus, we see immediately 

that we must have 1 > 13 for the stability of the unsegregated fixed point, and 

for 12 < 1 < 13, the unsegregated fixed point is an unstable saddle node. The un­

segregated fixed point becomes stable precisely when the segregated quasi-fixed 

points become unstable, and the unsegregated fixed point becomes accessible to 

the weight vector precisely when the zero fixed point turns into a repeller. Thus, 

all three sets of fixed points are dynamically coupled in terms of their stabilities. 

Because the local fixed point structure must be globally consistent, we can deduce 

that there must exist other fixed points for m ;:::: 3. For example, in the interval 

1 E bl' 13), there must exist saddles that partition the afferent weight vector 

space into m regions, each region being defined by the requirement that an initial 

weight vector in the region always flows to the same quasi-fixed point. Consider, 

for example, three afferents labelled Si, Sj and Sk. Examining the surface Sk = 0, 

we still see segregation of Si and Sj on this surface, with flow similar to that 

shown in Fig. 8.8A. That is, there exists a line of fixed points that divide the 

surface Sk = 0 into two regions, according to whether the flow is to the Si -=J 0 or 

to the Sj -=J 0 segregated state. There exist, therefore, points of the form (s, s, 0), 
which represent a partially segregated state. However, we are only interested in 

such points if they are stable and, for uncorrelated afferents, these points are not 

stable but saddles. 

The situation is not so clear for correlated afferents. If two afferents were per­

fectly correlated then these afferents would be indistinguishable. A 3-afferent 

system with two perfectly correlated and one uncorrelated afferent would there­

fore be identical to a (uncorrelated) 2-afferent system. Moving between the two 

descriptions would simply involve combining the strength of the two perfectly 

correlated afferents into one. Thus, the partially segregated fixed-point (s, s, 0) 
would, in the case of two perfectly correlated afferents, be equivalent to the seg­

regated fixed-point (s,O) in the 2-afferent case, and would therefore be stable. 

Thus, the system would evolve to a either a segregated or partially-segregated 

fixed-point and remain there. As reported for other models of competition (El­

liott and Shadbolt, 1996) we expect that perfect correlation is not, in practice, 

required to observe this behaviour. We would instead expect to find critical cor­

relation threshold above which afferents cannot be segregated but instead evolve 

to unsegregated fixed-points like (s, s, 0). 

However, as we consider only un correlated afferents, these partially-segregated 

fixed-points are always saddles. We do not explore these additional, essentially 
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uninteresting fixed points here because they merely render consistent the global 

fixed point structure that is determined by the stability of the segregated quasi­

fixed points and the unsegregated fixed point. It is the stabilities of the segre­

gated and unsegregated states in which we are principally interested here, since 

these are the states relevant for a putative model of synaptic competition. 

We see that the first-order dynamics are again uniquely determined by the value 

of "I, but in contrast to the zeroth-order dynamics, which had only two distinct 

regimes, the first order system has four distinct regimes. We now summarise the 

dynamics in each of the regimes. 

For "I < "11, there is only one fixed point, at the origin. Although a saddle node, 

it is stable in the (1, ... ,1)T direction. Hence, all flow initially moves parallel to 

this vector in the direction of the origin. If the weight vector moves sufficiently 

close to the origin, it will experience a repulsion in the directions orthogonal to 

(1, ... , l)T, but for "I < "II this repulsion is never sufficiently strong to reverse 

the downward components of flow towards the origin. In all cases, the weight 

vector will eventually hit an Si = 0, for some i, hyperplane and be trapped in 

it by the truncation procedure. Because there are still negative components of 

flow, the weight vector continues to move towards the origin, becoming trapped 

in further Sj = 0, j i= i, hyperplanes. The weight vector thus is always driven 

towards the origin and ends up there, despite the origin's being a saddle node. 

The truncation at zero thus overrides this fixed point's instability. 

For "II < "I < "12, the zero fixed point is still a saddle node, and now there exists 

a set of m stable, segregated quasi-fixed points. In this regime of I the repulsion 

away from the origin is sufficiently strong to reverse the negative components of 

flow. Thus, for a weight vector sufficiently close to the origin, it hits an Si = 0, 

for some i, hyperplane and is turned away from the origin, so that it starts 

moving in the opposite direction. It moves up Si ° hyperplanes until it reaches 

a stable, quasi-fixed point, and remains there. For weight vectors sufficiently 

distant from the origin, they flow towards the origin parallel to the direction 

(l, ... ,l)T. These vectors never go sufficiently close to the origin to have their 

negative components of flow reversed. They thus hit Si = ° hyperplanes and 

move down towards the stable, quasi-fixed points, and stay there. 

In the regime "12 < "I < "13, the zero fixed point has now turned into a repeller, so 

there are never any components of flow towards the origin in the neighbourhood 

of the origin. An unsegregated fixed point has become accessible, but it is a 

saddle node. The segregated quasi-fixed points remain stable. Hence, this regime 

is essentially identical to the regime in which "II < "I < "12, except with local 

differences near the origin and around the now-accessible unsegregated fixed 

point. All flow therefore ends up at the stable, segregated quasi-fixed points. 
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The combined regime 1'1 < l' < 1'3 therefore supports stable, competitive dy­

namics, allowing afferents to segregate on the target cell in an activity-dependent 

manner, as required, for example, in a model of ODe formation. 

Finally, when 1'3 < 1', the segregated quasi-fixed points become unstable, and the 

unsegregated fixed point becomes an attractor. The origin remains a repeller. 

Hence, all flow ends up at the unsegregated fixed point. 

The phase portraits for the two interesting, dynamically distinct , regimes are 

shown in Fig. 8.8, for a 2-afferent system. We do not show the low l' regime, 

l' < 1'1, because the portrait is trivial, with all initial conditions flowing to 

the origin. Fig. 8.8A shows the regime in which l' takes an intermediate value, 

1'1 < l' < 1'3, for which a set of stable, segregated quasi-fixed points exists. The 

system always evolves to one of these segregated points. For this intermediate 

value of 1', the unsegregated fixed point is unstable. When l' is too high, 1'3 < 1', 

shown in Fig. 8.8B, the segregated quasi-fixed points become unstable, and the 

unsegregated fixed point becomes stable, so afferent segregation on the target 

cell breaks down and the afferent weight vector always flows to the unsegregated 

fixed point. 

8.3.2 Full oo-Spike Rule 

The above fixed point analysis for the simplified rule may be repeated for the 

full, non-resetting, oo-spike rule, for the convenient parameter choice n± l. 

\Ve do not present the results of this analysis here because the expressions that 

arise from the full model are unwieldy and thus lack the transparency of those 

for the simplified model. The simplified model has the virtue, compared to the 

full model, that almost all the resulting expressions can be stated on one line, 

while those for the full model occupy several lines. Nevertheless, the full model 

possesses dynamics that are qualitatively identical to those of the simplified 

model discussed above. 

In the full model, we observe similar critical values of l' at which new quasi- or 

real fixed points become accessible to the afferent weight vector, or at which the 

fixed points change their stability. In particular, corresponding to the values 1'1 

and 1'2 for the simplified model, we have the values, say, '71 and "72 for the full 

model, where these differ from 1'1 and 1'2 by terms of order 8-2. At l' = 1'1' the 

segregated quasi-fixed points become available and are initially stable. At l' = '72' 

the unsegregated fixed point moves into the non-negative hyperquadrant, being 

initially an unstable saddle, and the zero fixed point at the origin simultaneously 

changes from a saddle node into a repelling node. We still have 1'1 :s: 1'2 as in 

the simplified model. 
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FIGURE 8.8: Phase portraits of the simplified, non-resetting oo-spike rule, with 
n± = 1, in a system with two afferents. (A) Evolution to the segregated quasi­
fixed points with 'Y = 0.65. (B) Evolution to the unsegregated fixed point with 

'Y = 0.95. 
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Corresponding to 1'3 in the simplified model, we also have a new value, say, 13 

in the full model. Although derived from first-order equations, 1'3 and 13 are 

nonetheless purely zeroth-order in (j2. Hence, 1'3 and 13 differ even at zeroth 

order. Despite this, the dynamics associated with the l' = 1'3 transition in 

the full model are identical to those associated with the l' = 1'3 transition in 

the simplified model. At this point, the segregated quasi-fixed points become 

unstable and the unsegregated fixed point simultaneously becomes stable. 

Although our analyses of the full and simplified models have been performed 

only for the case n± = 1, for reasons of analytical simplicity, we can explore 
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numerically the impact of other values of n± on the full and simplified models. 

For n± = 3, for example, we observe dynamics that are qualitatively similar to 

the n± = 1 case, with the same three, essentially distinct parameter regimes in 

8.3.3 Beyond Small ai 

In the above fixed point analysis, we expanded, for example, Eq. (8.34) in the 

variables ai, representing small fluctuations about a common mean afferent activ­

ity, /-1, and then performed an ensemble average over these fluctuations. Although 

this permits us to make some progress in terms of understanding the fixed point 

dynamics of the model, it necessarily does not allow an examination of the large 

ai regime, in which the fluctuations about the mean activity can be large. In 

principle, because we defined the size of these fluctuations with respect to the 

mean firing rate, so that lail ::; 1, we could continue the expansion to yet higher 

orders in 0-2
. Although possible, doing so would be tiresome and the resulting 

expressions an uncontrollable mess. It is therefore not clear that any additional 

analytical insight would be possible in the face of the growing complexity of the 

new terms. 

We can, however, explore the fixed point structure for large ai by means of 

numerical simulation. When we do so, we find essentially the same three regimes 

in 'Y for both the full and simplified models considered above. In particular, 

'Y1 and 'Y2 still exist and define the points at which the segregated quasi-fixed 

points and the unsegregated fixed point, respectively, move into the non-negative 

hyperquadrant and thus become accessible to the weight vector. However, the 

'Y3 critical value in both models is somewhat modified. The large ai fluctuations 

"split" this value of'Y into two different values; call them, say, 'Y~ and 'Y~, where 

'Y~ < 'Y~. At 'Y = 'Y~, the unsegregated fixed point becomes stable while the 

segregated quasi-fixed points remain stable. Only at 'Y = 'Y; do the segregated 

quasi-fixed points become unstable. Thus, there is a narrow interval for 'Y, 'Y E 

h~, 'Yf), of size of order 0-2 or higher, in which the system may evolve either to a 

segregated quasi-fixed point or to the unsegregated fixed point. To which point 

the system evolves is determined by the initial conditions. Because the fixed 

point structure must be globally consistent, we deduce that there must exist in 

this narrow regime a new set of saddle fixed points that partition the space into 

a region containing the unsegregated fixed point, to which any initial point in 

this region will flow, and m regions containing the segregated quasi-fixed points. 

The existence of this narrow transition region in which both the segregated quasi­

fixed points and the unsegregated fixed point are simultaneously stable is all that 

appears to distinguish the dynamics of both the full and simplified models in the 
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FIGURE 8.9: Spike-based simulation of two afferents, for large Ct, and 'Y = 0.1. 
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small ai, analytically-explored regime from the large ai, numerically-explored 

regime. It is likely, in fact, that this transition region is present even for small 

ai, but is so narrow as to be extremely difficult to observe numerically. 

Fig. 8.9 shows the evolution of the spike-based, large a simulation, for 'Y = 

0.1. At this low 'Y value, the fixed-point at the origin is, effectively, stable and 

the afferents fall to zero. Fig. 8.10 shows the medium 'Y regime, where the 

afferents engage in competitive interactions and evolve to a stable, segregated 

fixed-point. Fig. 8.ll shows the high 'Y regime where the only stable fixed-point is 

the unsegregated fixed-point, and the afferents evolve to a state of equal strength. 

Finally, Fig. 8.12 and Fig. 8.13 show the intermediate regime where stable fixed­

points exist of both segregated and unsegregated character. The evolution of the 

system depends on the initial conditions, with the afferents segregating in one 

case and not in the other. 

8.4 Computation In the Rate-Based Limit 

To derive the n-spike, rate-based rules we integrated over the interspike intervals 

and averaged over all 2n possible spike trains to compute an unconditional ex­

pectation value for the change in synaptic efficacy due to a typical n-spike train. 

The resulting rate-based rule is somewhat abstract, in the sense that the neuron 

does not really compute at the level of this rate-based rule, but continues to 

compute at the level of individual spikes. We may ask, however, whether there 
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are any conditions under which, although the neuron is computing at the level of 

spikes, it nevertheless behaves as if it were following the rate-based, n-spike rule. 

If no such conditions exist, then our analysis is somewhat academic, since the 

derived rules would be merely mathematical abstractions to which the neuron's 

behaviour cannot ever approximate. 

We can identify two limiting cases of interest. First, if the spike train is ex­

tremely long and not highly unusual, then we can think of the train as naturally 

decomposing into a set of shorter sub-trains. The neuron can then effectively 

average its behaviour over these sub-trains. If there are enough sub-trains, then 

sufficient averaging over them will occur in order for the neuron's mean dynam­

ics to approximate the rate-based rules. However, the variance in this behaviour 

could be large, and these fluctuations could thus nevertheless prevent the emer­

gence of stable, segregated states at the spike-based level. Second, we know that 

even for small n, n ~ 3, the rate-based rules exhibit stable, segregated states, 

and the above considerations for large n do not apply. Of course, if we present 

a neuron with a single instance of an n-spike train, n small, then we would not 

expect its synaptic strengths to evolve much during this short train. The neuron 

must therefore be presented with a long sequence of such n-spike trains, so that 

it can average over this sequence, and the trains must be sufficiently well sepa­

rated that all the synapses return to the OFF state between trains. Again, the 

averaging will ensure that the mean behaviour is exhibited, but the fluctuations 

could destroy the stability. We therefore see that the key to stability is to ensure 

that the fluctuations are small. 

Small fluctuations can be guaranteed provided that the neuron's dynamics are 

not dominated by the most recent spike train (or sub-train). If the most re­

cent spike train essentially erases the neuron's state developed from exposure to 

earlier trains, then the neuron's behaviour will be dominated by train-to-train 

fluctuations. We therefore require that the change in synaptic strength induced 

by each spike train is small compared to the (non-zero) synaptic strengths. This 

can be achieved by setting A± sufficiently small, since these two parameters set 

the overall magnitude of plasticity. 

Changing the magnitude of plasticity (the overall scale of A±) is, of course, 

equivalent to changing the learning rate in a model's dynamics. The learning rate 

is essentially the step size in a numerical integration procedure. It is well-known 

that the stability of the numerical solutions of a set of differential equations 

depends critically on the step size, and that there usually exists a threshold 

above which the integration scheme fails to converge to the exact solutions, with 

chaotic instability or divergent behaviour ensuing. We should therefore not be 

too surprised that when the magnitude of plasticity is sufficiently small, the 

spike-based behaviour will be expected to converge to the rate-based behaviour. 
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Given the complexity of the switch model, however, determining the location 

of the threshold above which the neuron does not compute in the rate-based 

limit, and exhibits instead a strong dependence primarily on the last spike train, 

is a difficult matter. We therefore resort to a simple numerical search for the 

approximate location of this threshold. 

To obtain a condition on the magnitude of plasticity below which the rate-based 

behaviour becomes dominant in a spike-based simulation, we determine when the 

spike-based system exhibits qualitatively the same fixed point structure known 

to exist in the rate-based system. We consider a system of two afferents for 

simplicity. A rate-based simulation of two afferents will stably segregate, with 

one afferent gaining complete control of the target cell, provided that /1 < / < 
/3. Thus, we select a value of / in this range and run a spike-based simulation 

for various values of the overall scale of A±. In these simulations, in order to 

examine the n-spike rule, we present a series of n-spike trains to each of the 

afferents' synapses, and after every train force the synapses to return to the 

OF F state, which is equivalent to spacing the trains sufficiently far apart that 

they do not interact. Within each train, the afferents have their Poisson firing 

rates randomly fixed either "high" (75 Hz) or "low" (25 Hz). We perform an 

initial presentation of 2.5 x 107 spikes, partitioned into n-spike trains, in order 

to allow for sufficient time for the afferents to segregate on the target cell. At a 

typical, average rate of 50 Hz, this corresponds to approximately 6 days' worth 

of simulated synaptic activity, which is not too dissimilar to the typical time 

scale for developmental processes in the nervous system. After this initial period 

to allow time for segregation, we present another series of 2.5 x 107 spikes, again 

partitioned into n-spike trains, during which we probe the extent and stability 

of any segregation. After each train presentation, we calculate the segregation 

index, Sf, which we define to be 

(8.74) 

If the afferents are well-segregated, then Sf will take values close to + 1 or -1, 

depending on which afferent controls the target cell. If segregation is stable, then 

this index will not change much, except for small fluctuations. If the afferents are 

segregated, but not stably so, with control switching between the two afferents, 

then Sf will flip between + 1 and -1. Averaged over sufficient trains, its value will 

be roughly zero. If the afferents are not segregated, but oscillate about a mean 

synaptic strength, then Sf will always be roughly zero, and of course its average 

will be roughly zero. Thus, for this probing phase, we determine (SfIP, where 

Op denotes the average value of Sf during this second period. We then take the 

absolute value of this average, and average this value over 50 distinct runs for 
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each value of the overall scale of A±. Thus, our final measure of segregation and 

stability is (I(SI)pl)R, where OR denotes an average over runs. 

In Fig. 8.14, we plot (I(SI)pl)R as a function of the overall scale of A± for 3-, 

9- and 15-spike train simulations for the non-resetting model with n± = 3 and 

, 0.6. We obtain qualitatively similar results for the resetting model and 

for different values of ,. Also shown in Fig. 8.14 is the fit of our raw data to 

logistic-like functions, a - b tanh( cx - d), where a, b, c and d are fitted parameters. 

That the fits to logistic-like functions match the raw data well indicates that the 

transition from stable segregation to unstable segregation is relatively sharp. For 

an overall scale of plasticity of approximately 10-3 or lower, depending on the 

number of spikes in the train, we observe robust and stable afferent segregation, 

while for a scale greater than this value, segregation is achieved, but is not stable, 

so that the afferents change their control of the target cell over time. For values 

of the overall scale very much greater than 10-3 , segregation is not achieved at 

all. We observe that as the train length increases, the mean segregation index 

increases for a fixed value of the overall plasticity magnitude. However, by about 

10 to 20 spikes, asymptotic behaviour is reached, with no further increase in the 

index observed. This is in accord with our expectations, since the n-spike rate­

based learning rules converge very rapidly as a function of n, with convergence 

achieved by n ~ 10 spikes Appleby and Elliott (2005). 

The data in Fig. 8.14 are obtained by randomly fixing the afferents' Poisson firing 

rates within each spike train. For longer trains, therefore, each afferent fires for 

longer with the same firing rate. It could therefore be argued that the dependence 

of the magnitude of plasticity on the number of spikes in a train merely reflects 

this longer exposure to the same firing pattern. We can rule this out in two 

ways. First, instead of fixing each train's afferents' rates, we can instead fix 

each afferent's rate for a given period of time (a firing "epoch"), regardless of 

the number of spikes in each train. For a firing epoch length of 1000ms, for 

example, we obtain data that are essentially identical to those in Fig. 8.14 (data 

not shown). Second, we can, for example, consider 3-spike trains with fixed firing 

per train, but simply duplicate the firing patterns between consecutive trains, 

so that 2-train sequences of 3-spike trains have the same rates. Doing this, we 

produce data identical to the 3-spike data shown in Fig. 8.14 and not the 6-spike 

data with an enhancement in the segregation index (data not shown). Thus, 

longer exposure to the same activity patterns is not responsible for the trend 

exhibited in Fig. 8.14. Rather, the observed trend reflects the fact that as the 

number of spikes increases in a train, competition becomes stronger and stronger, 

as revealed by Eq. (8.28). 

Although this numerical treatment is not exact, it is sufficient for our purposes to 

demonstrate that computation in the rate-based limit is realistically available to a 
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real, spike-based system and to have an approximate idea of where that limit lies. 

Assuming that A± satisfy the numerically-obtained condition on the magnitude 

of plasticity below which the rate-based behaviour becomes dominant, we may 

dispense with spikes completely and work in the rate-based limit. The analysis of 

Section 4 was carried out in the rate-based limit and did not consider individual 

spikes. The stable, competitive dynamics that we observed will therefore be the 

dominant mode of computation provided that A± ,....., 10-3 or lower. 

8.5 Integrate and fire neuron 

So far in our exploration of the switch rule we have assumed that postsynaptic 

firing is governed by a Poisson process with a firing rate given by the simple 

linear sum of input firing rates weighted by their connection strength. Post­

synaptic spiking therefore occurs independently of presynaptic spiking. This 

was motivated partly by simplicity and the resulting analytical tractability, and 

partly by the desire to show that the dynamics of the model are not dependent 

upon the presence of the additional non-linearities, such as the hard resetting 

mechanism, present in an integrate-and-fire neuron. The assumption of Poisson 

postsynaptic firing is also, arguably, the most appropriate assumption to make 

when modelling cortical neurons that may possess many thousands of synaptic 



202 Chapter 8 Stable, Competitive Dynamics in the Switch Rule 

inputs. In such cases the influence of anyone individual input would be very 

small and ensemble input properties might reasonably be expected to dominate. 

It is important, however, to show that this assumption is a realistic one, and that 

the direct correlations in pre- and postsynaptic firing that follow from an explicit 

model of postsynaptic spiking do not destroy any of our results. We therefore 

extend our simulations of the switch model to include an explicit integrate-and­

fire postsynaptic neuron, similar in nature to those used in other theoretical 

studies of STDP (Song et al., 2000). If the assumption of Poisson spike trains is 

a reasonable one, we would expect to find that all the basic results presented in 

this Chapter are preserved. For example, we would expect simulation of 2-spike 

trains to display some form of pathological learning, and all higher-spike rules 

to display stable, segregation of afferents. However, given that the intergrate­

and-fire neuron also contains various non-linearities such as a hard reset after 

each postsynaptic spike, we may expect to see some differences in the learning 

dynamics. We may indicate, however, which differences are due to the integrate­

and-fire mechanism itself, and not due to the temporal correlations, by rerunning 

the simulations with Gaussian noise in the timing of postsynaptic spikes. 

We implement an integrate-and-fire neuron identical in nature to that used in 

Song (2000) (see Chapter 6), with the exception that we use a more standard re­

set potential of - 90m V. If we were to simulate a large number of afferents, then 

each individual afferent will exert a relatively small influence on postsynaptic 

spiking. Decreasing the number of afferents would increase the ability of indi­

vidual afferents to directly influence the postsynaptic cell. As we are interested 

in showing whether the direct correlations between pre- and postsynaptic spiking 

due to the integrate-and-fire mechanism affects the learning behaviour, we delib­

erately simulate a low number of afferents and choose, as for the Poisson-based 

simulations, to simulate 4 afferents innervating a single target cell. We examine 

the 2-spike rule for low and high initial weights, with 'Y < 1, and the 3-spike and 

(Xl-spike rules for the three 'Y regimes derived above. We define low 'Y to be 0.1, 

medium'Y to be 0.7, and high 'Y to be 0.98. The behaviour of the model under 

these eight scenarios can be viewed as a test of whether the essential dynamics 

of the switch model are preserved. 

Fig. 8.15 shows the simulation of 2-spike trains with an integrate-and-fire post­

synaptic neuron, starting from all afferents at "normal" strength (0.15, roughly 

commensurate with that used in Song (2000)). We see that the dynamics are still 

dominated by runaway learning, in the sense that one afferent potentiates un­

controllably. However, we note that the potentiating afferents seems to suppress 

the other inputs, a behaviour that does not occur in the original Poisson-based 

simulations. 
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The integrate-and-fire neuron is known to introduce competition when combined 

with an overall depressive STDP window h < 1 in our notation) (Song et al., 

2000). It has been argued elsewhere that this is because the integrate-and-fire 

mechanism allows one input to effectively control postsynaptic spiking, so that 

a spike arriving at this input always evokes a postsynaptic reply. Such an in­

put is therefore always potentiated. Other inputs, on the other hand, hardly 

influence postsynaptic spiking at all, and, since they are uncorrelated with the 

dominant afferent, they will experience the "average" of the STDP window. As 

A+ T+ < A_ T _, so that I < 1, these inputs are depressed. We note, however, 

that the introduction of Gaussian temporal noise to the timing of postsynaptic 

spikes does not destroy the result shown in Fig. 8.15. In other words, remov­

ing the temporal correlations does not restore the Poisson result. Thus, the 

competitive, "suppressive" interaction is, in fact, produced by some more com­

plicated interaction between the STDP rule and the integrate-and-fire neuron, 

not simply from the introduction of temporal correlations as argued elsewhere 

(Song et al., 2000). In the 2-spike simulation of Fig. 8.15 this suppressive in­

teraction prevents the potentiating afferent from pulling up the other inputs. 

In contrast, the Poisson-based simulations has neither temporal correlations nor 

the non-linearities of the integrate-and-fire mechanism, so this suppressive dy­

namic is absent. A high postsynaptic firing rate therefore produces, on average, 

potentiation for all inputs, which are consequently rescued from zero. 

The case of runaway depression, where all afferents fall to zero, has no analogue 

in the integrate-and-fire case as when afferent weights become small, but non­

zero, the postsynaptic neuron stops spiking altogether and afferents cease to be 

modified. We therefore do not show this case. We cannot try to remedy this by 

increasing synaptic strengths a little because, when the afferents become strong 

enough to evoke postsynaptic spiking, we immediately begin to experience the 

suppressive dynamics discussed above. 

Fig. 8.16 shows the simulation of 2-spike trains with an integrate-and-fire postsy­

naptic neuron, starting from all afferents at "high" strengths (15, ten times that 

used above). The dynamics differ to that of the Poisson-based simulation, in that 

we do not see runaway potentiation, and also differ to the "normal" strength case 

above, in that we do not see competitive interactions. These differences are not, 

however, due to a genuine difference in the dynamics of the temporally corre­

lated system compared to the Poisson-based or "normal" strength system, but is 

a result of the integrate-and-fire mechanism itself. When the postsynaptic firing 

rate gets very high, the details of the neuron model, such as the choice of reset 

potential, refractory periods and so on, begin to exert an important influence on 

the dynamics. When all afferents have high strengths, the postsynaptic neuron 

is spiking and being reset almost constantly (the injections to the excitatory 



204 

en 
J:: -OJ 
C e 
1i5 
() 

E-
cO 
c 
>­

Cf) 

2 

1.5 

0.5 

o 
o 

Chapter 8 Stable, Competitive Dynamics in the Switch Rule 

... ~ 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 

Millions of iterations 

FIGURE 8.15: A spike-based simulation of the 2-spike rule for four afferents 
innervating one target cell, with an explicit simulation of postsynaptic spiking 
via an integrate and fire neuron. We start the afferents from normal strengths, 
as detailed in the text. As for the Poisson-based simulation, we see dynamics 
dominated by a form of runaway potentiation. However, we note that the 
integrate-and-fire neuron has introduced an additional suppressive interactions 
that forces all other afferents to zero. One iteration translates to one second of 

simulated time. 

conductance persist for some time following a spike) and we begin to probe the 

machinery of the integrate-and-fire mechanism. In the 2-spike case this causes 

inputs to stabilise and prevents competition, but this result depends largely on 

the particular choice of implementation. A different choice of coupling pre- and 

postsynaptic spiking together may well have led to very different results. Again, 

we find that the introduction of Gaussian temporal noise to the timing of post­

synaptic spikes does not destroy this result. 

In summary, we see that simulations of 2-spike trains are still pathological in 

the integrate-and-fire model, and a form of runaway learning is still observed. 

We see, however, that the integrate-and-fire neuron has introduced an additional 

competitive mechanism in the form of a new, suppressive interaction. For nor­

mal synaptic strengths, this allows one afferent to potentiate away and suppress 

the others to zero. When high synaptic strengths, we see non-trivial behaviours 

stemming from the actual integrate-and-fire mechanism itself. This serves to 

stabilises the afferent in some manner, but we note that this would not neces­

sarily occur under a different model of postsynaptic spiking. Repeating these 

simulations after introducing Gaussian noise into the timing of spikes, so that 

the actual temporal correlations become minimal, does not affect any of these 

results. We therefore see that these differences are due to the integrate-and-fire 
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FIGURE 8.16: A spike-based simulation of the 2-spike rule for four afferents 
innervating one target cell, with an explicit simulation of postsynaptic spiking 
via an integrate and fire neuron. We start all afferents from high strengths. We 
see, in contrast to the Poisson-based simulation, that the afferents are stabilised 
and do not experience runaway potentiation. This arises due to non-trivial 
response of the spiking mechanism to a sustained level of high presynaptic 

input. One iteration translates to one second of simulated time. 
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neuron itself rather than the temporal correlations it introduces, and that the 

basic behaviour of the switch model is preserved. 

Under the 3-spike rule, competition is already present in the switch model, arising 

from multi-spike interactions not present under the 2-spike rule. The suppres­

sive dynamics introduced by the integrate-and-fire neuron might therefore be 

expected to playa less important role. The low and medium, regimes for the 

non-resetting 3-spike rule are shown in Figs.8.l7 and 8.18, respectively. For low 

, we see that all the afferents fall towards zero, which we know acts as a stable 

fixed-point in this system. However, as for the 2-spike simulations, the affer­

ents cannot ever reach zero due to the integrate-and-fire neuron shutting down, 

and instead they reach some lower bound on total synaptic strength then stop 

evolving. For medium " we see that, as for the Poisson-based simulations, the 

afferents engage in competitive interactions and reliably segregate, with all but 

one falling to zero. The system thus evolves to a stable, segregated fixed-point 

as expected. 

Fig.8.l9 shows the high, regime. We expect to see the afferents evolve to the 

stable, unsegregated fixed-point. In other words, we expect to find that, in 

the high, regime the switch rule is non-competitive. However, we find that 

this behaviour is destroyed, presumably because the competition which is now 
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FIGURE 8.17: A spike-based simulation of the non-resetting 3-spike rule for 
low /, with four afferents innervating one target cell and an explicit simulation 
of postsynaptic spiking via an integrate and fire neuron. As for the Poisson­
based simulation, the afferents fall to zero. However, as the integrate-and­
fire mechanism shuts down when afferent weights become small, the afferents 
stop evolving when total synaptic strength reaches some lower threshold. One 

iteration translates to one second of simulated time. 
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FIGURE 8.18: A spike-based simulation of the non-resetting 3-spike rule 
medium /, with four afferents innervating one target cell and an explicit sim­
ulation of postsynaptic spiking via an integrate and fire neuron. As for the 
Poisson-based simulation, the rule is competitive, with stable segregation of 
the afferents being observed. One iteration translates to one second of simu-

lated time. 
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FIGURE 8.19: A spike-based simulation of the non-resetting 3-spike rule high I, 
with four afferents innervating one target cell and an explicit simulation of post­
synaptic spiking via an integrate and fire neuron. The suppressive dynamics of 
the integrate-and-fire neuron playa strong role and, unlike the Poisson-based 
simulation, we do not see the afferents evolve to the stable, unsegregated fixed­
point. Instead, dynamics similar to the medium I case are produced. One 

iteration translates to one second of simulated time. 
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absent from the switch is compensated for by the suppressive dynamics of the 

integrate-and-fire neuron, producing behaviour that resembles the medium I 

regime. Again, we find that this behaviours is not destroyed by introducing 

Gaussian noise into the timing of postsynaptic spiking. It therefore arises due 

to the integrate-and-fire mechanism itself (specifically, the suppressive dynamics 

it introduces) rather than the temporal correlations in spike times. 

We find that the observations made for the n = 3 case hold for all multi-spike 

simulations, including the oo-spike rule. In particular, we find that, as for the 

Poisson-based case, we observe stable, competitive dynamics in the medium I 

regime for all n-spike, n > 2 rules. 

The use of an integrate-and-fire neuron, or any explicit model of postsynaptic 

spiking, introduces many additional features beyond the temporal correlations 

we seek to explore. These additional features can have strong implications for 

the dynamics observed. We have shown that these new dynamics are not due to 

the effect of temporal correlations on our model, but due to the integrate-and-fire 

neuron itself, by the observation that all of the differences are preserved even 

when we effectively remove the temporal correlations by introducing Gaussian 

noise into the postsynaptic spike times. A more detailed study, which would 

be a topic of future work, would seek to address this issue in a more controlled 

manner by introducing temporal correlations in spike timing without the need 
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to also introduce the spiking machinery associated with an integrate-and-fire 

mechanism. 

8.6 Large-Scale Numerical Simulations 

In Section 4 we established that the oo-spike, non-resetting rule possesses a fixed 

point structure consistent with the presence of stable, competitive dynamics in 

the model. The presence of such dynamics has also been argued for in all multi­

spike rules for an appropriate choice of parameters. In Section 5, we established 

that the rate-based multi-spike dynamics are actually available to neurons in the 

sense that, although computing at the level of single spikes, the neuron's dy­

namics will respect the fixed point structure of the rate-based rules and exhibit 

stable, competitive dynamics. We are therefore now in a position to consider 

a large-scale simulation of, for example, ODe development, in order to demon­

strate that the results shown for a single target cell scale up without difficulty 

to multiple target cells. Moreover, while for convenience we considered above 

only uncorrelated afferent activity patterns, a simulation of ODC development 

will permit us to explore negatively- or positively-correlated afferent activity 

patterns too. For ODe development in the cat, which develops ODes in the 

presence of presumably positively-correlated afferent activity after eye-opening, 

the case of positive correlations is more pertinent. This is also usually the much 

harder task: models that can segregate negatively-correlated afferents frequently 

cannot segregate positively-correlated afferents. For our switch model to be a 

candidate model of developmental synaptic plasticity, we must therefore show 

that it operates successfully in the face of positively-correlated afferent activity 

patterns. 

We run ODe simulations according to existing, documented protocols Elliott 

and Shadbolt (1998). We use the rate-based, non-resetting oo-spike rule with 

n± = 1 as the synaptic modification rule. In brief, we simulate two patches of 

retinotopically equivalent lateral geniculate nucleus (LGN), each containing a 

square array of cells of size 13 x 13, with periodic boundary conditions imposed 

for convenience. The cortex is a 25 x 25 square array of cells, again with periodic 

boundary conditions. Each LGN cell arborises over a retinotopically appropriate 

patch of cortex, of size 7 x 7. LGN activity patterns are constructed according 

to the method of Goodhill (1993), taking the form of Gaussian correlated noise. 

The parameter p E [0,1] determines the activity correlations between the two 

LGN patches, with p = 0 corresponding to perfectly anti-correlated patterns and 

p = 1 corresponding to perfectly correlated patterns. Cortical activity is just 

the standard linear sum of afferent input, but smeared by convolving cortical 

activity with a short-range Gaussian function. Such smearing could be achieved, 
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FIGURE 8.20: A simulation of ocular dominance column formation in the non­
resetting, oo-spike model with n± = 1 for the three values of the inter-ocular 
correlation probability shown above each map. In these maps, each square 
represents a single cortical neuron. The shade of grey assigned indicates the 
relative degree of control by the two eyes. A white square indicates complete 
control by the left eye, while a black square indicates complete control by the 
right eye. Shade of grey, as shown in the key, interpolate between these two 

extremes. 
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for example, by lateral excitation. In this way nearby cortical cells fire similarly, 

which is necessary in order to develop structured ODes rather than a pattern of 

salt-and-pepper segregation. It is well known that presynaptic constraints must 

typically be introduced in order that the pattern of ODes exhibits some degree 

of regularity, with fairly constant stripe widths across the whole simulated patch 

of cortex. To achieve this, we introduce a lower bound on the total synaptic 

strength that an afferent may support. If it falls below 75% of the average 

total strength supported by all afferents, we simply freeze depression. We use 

this method because it is convenient and removes the need for us to calculate 

explicitly the expected total afferent strength in such a simulation, and then set 

a lower bound accordingly. 

In Fig. 8.20 we show three ODe maps corresponding to three different values of p: 

p = 0.3 representing negatively-correlated activity patterns; p = 0.5 representing 

uncorrelated activity patterns; p = 0.7 representing positively-correlated activ­

ity patterns. We see clear patterns of ODes in all cases, with well-segregated 

afferents, although with increasingly binocular boundaries between ODes as p 

increases, as expected. We also observe a clear decrease in the widths of ODes 

as the inter-ocular correlations increase. This phenomenon was first observed by 

Goodhill (1993) in simulation, and subsequent experimental results supported 

the possibility that the widths of ODes are not fixed, but may be partially de­

termined by visual experience Lowel (1994); Tieman and Tumosa (1997). Our 

results here show that our switch model of STDP scales up to a large-scale simu­

lation without difficulty, and can comfortably segregate afferents whose activities 

are positively correlated. 
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8.7 Discussion 

In this Chapter we have studied the synaptic dynamics induced by the 2- and 

multi-spike rules that are derived within the context of a stochastic model of 

STDP. The structure of the postulated unified 3-state synaptic switch, which 

was initially designed only to account for the basic phenomenology of the STDP 

learning rule seen in the context of interactions between two spikes, tightly con­

strains the form of the multi-spike interactions that exist in our model. One 

freedom that the model possesses is to allow stochastic process resetting in the 

DEP and POT states. Although resetting changes the precise form of the multi­

spike interaction functions, the dynamics remain qualitatively unchanged. 

We find that a broad parameter regime exists in which the rate-based, 2-spike 

learning rule is qualitatively BCM-like. This BCM-like form gives rise to in­

stabilities in the 2-spike rule. Indeed, without further modification, the 2-spike 

learning rule is irredeemably pathological, sending all afferents either to zero 

strength or to unbounded growth. The 2-spike learning rule cannot therefore 

support the stable, competitive dynamics that are essential within the context 

of developmental synaptic plasticity. However, we find that all n-spike interac­

tion functions, where n > 2, arising exhibit dynamics that differ significantly 

from those exhibited by the 2-spike interaction function. For a very broad range 

of parameters all these rules exhibit stable, competitive dynamics without any 

further modification. 

Thus, extending our considerations from two spikes to three spikes immediately 

solves the inherent problems of the 2-spike rule. This result is quite remark­

able. We argued that this is because in the unified switch rule, depression and 

potentiation are coupled in the sense that activation of the potentiation lobe 

of the switch precludes a simultaneous activation of the depression lobe of the 

switch, and vice-versa. By breaking the two lobes into two separate switches, so 

that they may be simultaneously active, we showed that competition immedi­

ately breaks downs, resulting in the runaway learning characteristic of the 2-spike 

rule. Critical to probing this coupling between potentiation and depression is the 

presence of three or more spikes; even in the unified switch, two spikes cannot 

ever probe this couplings, and so 2-spike interactions always induce uncoupled 

potentiation and depression dynamics. It therefore appears that this coupling, 

or interaction, between potentiation and depression processes at the level of a 

single neuron is vital to the presence of stable, competitive dynamics. 

In the above analyses, we have truncated Si at zero when it is driven nega­

tive. We saw, for example, that although the zero fixed point is a saddle for 

/ < /2 in the simplified oo-spike resetting model, nevertheless, the truncation 

procedure dynamically converts it into a stable node when / < /1. Moreover, 
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the truncation gave rise, partly, to the existence of quasi-fixed points. It might 

therefore appear that the truncation procedure is playing an important role in 

our model's dynamics, being partly responsible for the presence of stable, com­

petitive dynamics in it. This is not, however, the case. We can see this in two 

different ways. 

First, from a mathematical point of view, we set dsi/ dt = t6.Sn (>\7ri' Ap) and used 

this as our synaptic strength update rule. This is not the only choice available 

to us. In this formulation, Si represents the average synaptic strength over all 

of afferent i's synapses on the target cell. Suppose, however, that we instead 

think of Si as the (possibly scaled) number of synapses supported by afferent 

i, each of which experiences the single-synapse learning rule. Then the overall 

change in afferent i's synaptic strength will be the individual change multiplied 

by the number of synapses, Si. Hence, on this view, we would instead write 

dsi/ dt = Si/;j,Sn ()" 7ri' .A.p). The presence of the extra factor of Si in this rule 

immediately means that synapses cannot evolve below zero, and thus the quasi­

fixed points are converted into real fixed points, with their location and stability 

completely unchanged. Furthermore, it is easy to see that the zero fixed point in 

this formulation is genuinely stable for 7 < 71. We further note that truncation 

at zero is a hard non-linearity to which the afferents are completely insensitive 

when Si > O. Thus, their evolution to the vicinity of the segregated quasi-fixed 

points in the interval 7 E (71,73) is entirely independent of truncation: it is 

a dynamical consequence of the overall structure of the model. The need for 

truncation, then, is merely a technical issue that does not fundamentally modify 

the model's prior dynamics. 

Second, from a biological point of view, when a synapses reaches zero or close-to­

zero synaptic strength, we expect it either to shut down and evolve no further, 

or to be retracted entirely. Biologically, an excitatory synapse of zero strength 

cannot turn into an inhibitory synapse. Our derivation of the learning rules, 

however, takes no account of this, for the purposes of tractability. However, the 

simplest remedy to this situation is merely to prevent a synapse from depressing 

when such depression would takes its synaptic strength negative. (Indeed, this 

it the presynaptic constraint that we used to model ODe development, in order 

not to obtain irregular patterns of afferent segregation, except that the lower 

limit on synaptic strength was set at some non-zero value.) This prevention 

of depression is tantamount to switching off the depressing lobe of the switch, 

perhaps by setting A_ 0, when the synapse is too weak to permit further 

depression. In such a state, it could be potentiated, but not depressed. This, 

though, is essentially equivalent to truncation of strengths at zero. The key, 

competitive dynamics in the model are those that precisely allow a synapse to 
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move towards a quasi-fixed point near which truncation, or the closing down of 

depression, then becomes necessary. 

We observe three essentially distinct parameter regimes in our model's dynam­

ics, corresponding to different ranges for the parameter T For low r, all afferent 

strengths fall to zero. For high ,,/, afferents evolve to an unsegregated fixed point 

in which all afferents equally control the target cell. Only for intermediate val­

ues of "/ do we see the evolution of the system to stable, segregated final states. 

Considered within the context of a simulation of ODC formation, the low- and 

high-,,/ regimes would correspond to a breakdown of ODC formation, while the 

intermediate regime would correspond to the normal development of ODCs. Do 

these three regimes correspond to real experimental situations, or are they just 

mathematical fictions? Interestingly, the infusion of the neurotrophic factors 

brain-derived neurotrophic factor (BDNF) or NT-4/5 (Cabelli et al., 1995) or 

the blockade of their common, endogenous receptor trk-B (Cabelli et al., 1997) 

both result in the abolishing of ODC development. In the former case, autora­

diographic labelling reveals a higher-than-normal labelling, while in the latter 

case, the labelling is lower than normal. One interpretation of these results is 

that BDNF or NT-4/5 infusion causes a growth of afferent axonal arbors, while 

removing available BDNF or NT-4/5 from afferents causes their axonal arbors to 

atrophy. A similar influence of neurotrophic factors on axonal branching is also 

observed in the frog retinotectal system (Cohen-Cory and Fraser, 1995). Low 

and high ,,/, which cause the breakdown of ODC development, could therefore 

correspond to these experimental regimes. Moreover, low "/ corresponds to very 

weak synapses while high "/ corresponds to strong synapses. Under an anatomical 

interpretation of synaptic strength, these would correspond to small and large 

axonal arbors, respectively. Intermediate values of "/ then correspond to nor­

mal patterns of development. Given the capacity of neurotrophic factors rapidly 

to modulate synaptic transmission in the visual system (Akaneya et al., 1996; 

Carmignoto et al., 1997; Sala et al., 1998), we can thus imagine a scenario in 

which neurotrophic factors dynamically determine the parameter r in our model 

of STDP. 

We may offer an explanation of why the higher-spike rules emerging from the 

switch model are intrinsically stable, and why they do not suffer from runaway 

learning as with the 2-spike rule by examining the learning surface that each rule 

encodes. We demonstrated in Chapter 7 that, for a low numbers of spikes, we may 

examine the nature of the terms that make up the learning rule, !::.Sn explicitly, 

deconstructing the calculation of tJ.Sn and examining the contribution and spike­

probability weighting of each term. We find that the n > 2 learning rules, and 

their resulting learning surface, are asymmetric. This is because all higher-spike 
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rules contain asymmetric terms that cannot be reduced to sums of simple spike­

pairs. For example, the 3-spike learning rule contains the processes 7fP7f and 

p7fP which give rise to the irreducible triplet terms A+Ki Kl and - A_Ki K 1. 
Given that we understand the origins of the n-spike learning surfaces, we may 

explain the dynamics of any rule simply by examining the form of its learning 

surface at a point of interest. 

For the 2-spike surface, when [3 is low, the afferents lie in a depressing regime 

around the origin. Afferents will therefore fall to zero. When [3 is high, on the 

other hand, the afferents always lie in a potentiating regime. Afferents governed 

by the n = 2 rule therefore will suffer from a form of runaway learning, with 

potentiated inputs driving Ap (and therefore (3) higher and higher and, as a 

result, experiencing more and more potentiation. 

Examining the n = 3 surface we see that the symmetry present in the n = 2 

case is absent. For the n = 3 rule, we may either have potentiation or depression 

in the high [3 regime, depending on the balance of pre- and postsynaptic firing 

rates. We will, therefore, not necessarily see runway potentiation at high synaptic 

strength. Consider, for example, the dynamics of the system along a line of 

constant A1T • This line corresponds to a fixed presynaptic firing rate. Initially, 

synaptic strength are low. As the learning surface in this region is positive, 

synapses will be potentiated and the postsynaptic firing rate, Ap , will increase. 

As the postsynaptic firing rate increases we pass into a region where the learning 

surface is negative. Synaptic strengths are therefore depressed and, unlike in the 

2-spike case, the system is stabilised. We therefore do not experience runway 

potentiation. 

Thus, we find stable, competitive dynamics emerge from our switch model that 

are able to segregate uncorrelated inputs. Although many models of competi­

tion perform similarly, it is relvent to ask if such a process is biologically useful, 

or even desirable. There exist several examples in biology of competitive inter­

actions which occur between apparently uncorrelated inputs. For example, the 

development of ocular dominance columns in monkeys and ferrets is initiated 

prior to eye-opening, and therefore begins prior to the appearance of correlated 

firing patterns between the two eyes. Despite the lack of correlations between 

inputs, however, competitive interactions still occur and afferents are able to 

segregate into zones of ocular control in the primary visual cortex (Rubel and 

Wiesel, 1962). Likewise, the activity patterns of afferents during synaptic rear­

rangement in the development of the neuromuscular junction are also apparently 

unstructured, yet afferents reliably engage in competitive interactions to win con­

trol of muscle fibres (Sanes and Lichtman, 1999). From a theoretical point of 

view, it is well known that the overall correlation strength plays an important 

role in determining whether or not segregation occurs (von der Malsburg, 1973; 
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Kempter et al., 1981; Goodhill and Barrow, 1994; Miller and Mackay, 1994; El­

liott and Shadbolt, 1996). These studies have shown that, if a model is unable 

to segregate uncorrelated inputs, it will not, in general, be able to segregate 

correlated inputs such as those present after eye-opening in the vertebrate vi­

sual system. Thus, segregation of uncorrelated inputs is necessary if a model 

of competitive plasticity is to explain various well characterised developmental 

processes. 

8.8 Conclusions 

In conclusion, we have extended our earlier analysis of a stochastic model of 

STDP (Appleby and Elliott, 2005) to include an examination of multi-spike 

interactions. We have found that a consideration of multi-spike interactions is 

sufficient to endow our model with a fixed point structure consistent with the 

presence of stable, competitive dynamics. In contrast, at least in our formulation, 

2-spike interactions by themselves cannot give rise to competitive dynamics. 

Multi-spike interactions therefore appear critical to understanding the presence 

of stable, competitive dynamics under STDP. 
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Discussion 

STDP has attracted a great deal of interest from the theoretical community since 

it was first observed in the late 1990s (for review, see Roberts and Bell, 2002). 

This interest is due, in part, to the potential for new forms of computation arising 

from the dependence of the plasticity on the timing of pre- and postsynaptic 

action potentials, as well as the prospect that a spike-timing framework may be 

able to account for a range of different, apparently distinct, forms of synaptic 

plasticity. 

STDP is apparently widespread, and a range of different STDP-like learning 

curves have been observed in experimental work Bell et al. (1997); Zhang et al. 

(1998); Bi and Poo (1998). The heterogeneity of STDP rules suggests that 

STDP could possibly underlie several distinct functions in the nervous system. 

The computational properties of STDP are therefore of potentially quite wide 

reaching consequence. In theoretical studies, a variety of phenomenological and 

biophysical models of STDP have been proposed. Phenomenological models typi­

cally approximate the two phases of the STDP curve by two exponential functions 

with different amplitudes, polarities and decay constants then apply the result­

ing rule directly to determine changes in synaptic strength. In conjunction with 

certain constraints, this method can give rise to stable distributions of synaptic 

efficacies with competitive dynamics either emerging directly or introduced by 

synaptic scaling (Song et al., 2000; van Rossum et al., 2000; Izhikevich and Desai, 

2003). Biophysical models do not take the STDP curve over directly, but rather 

attempt to derive STDP from a more detailed, biophysically plausible analysis 

of the molecular machinery present at the synapse (Senn et al., 2000; Castellani 

et al., 2001; Karmarkar and Buonomano, 2002; Shouval et al., 2002; Saudargine 

and Porr, 2005). Typically, these models employ the idea that NMDA-receptor­

dependent calcium dynamics serve as a molecular coincidence detector. Both 

phenomenological and biophysical approaches have had some success in repro­

ducing the basic STDP (Bi and Poo, 1998) and multi-spike (Froemke and Dan, 
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2002) results, and connections to the BCM-rule have been made (Izhikevich and 

Desai, 2003). 

In Chapter 6 we proposed a new model of synaptic plasticity. This model is based 

on the idea that the synapses making up a connection can exist, independently 

of the other synapses, in one of three functional states. Pre- and postsynaptic 

spiking causes the synapse to transition between these states, with certain tran­

sitions associated with changes in synaptic strength of fixed magnitude. The 

transitions that return the synapse to the resting state (which we labelled the 

OFF state) occur in a stochastic manner. This simple, 3-state, stochastic switch, 

when averaged across multiple synapse and multiple spike-pairings, gives rise to 

an overall change consistent with the experimentally observed STDP curve. The 

rule is robust under highly variable spike timings, and, as the changes in synap­

tic strength are of fixed magnitude, removes the need for precise coincidence 

detection machinery that is capable of translating spike timing differences into 

graded changes in synaptic strength. An explanation of spike triplet interactions 

also emerges as a natural consequence of the switch, with no need to introduce 

additional constraints. 

We examined the effect of multi-spike interactions, and derived the various multi­

spike, rate-based learning rules that emerge from the switch model in Chapter 7. 

We saw that a Bienenstock-Cooper-Munro (BCM)-like (Bienenstock et al., 1982), 

rate-based plasticity rule emerges directly from the switch model for all n-spike 

rules. In Chapter 8 we explored the learning dynamics of the multi-spike rules, 

and found that the 2-spike rule displays pathological learning behaviours. We 

also found that, by extending our consideration to more than two spikes, we could 

resolve these problems without the need to introduce additional modifications 

designed explicitly to ensure stability. We now discuss in more detail the various 

issues surrounding the switch model, and its relation to other models of STDP. 

9.1 Interpreting Experimental Data 

Any model must ultimately be compared to some form of experimental result. 

This comparison typically take place during the models initial formulation and 

also later, in the form of comparison of predictions to new experimental results. 

If a model is to be compared to a particular experimental result, then that result 

must be carefully interpreted and critically evaluated. This need to critically 

evaluate the data is especially important in biology, as experimental preparations 

are often unavoidably rather different from the natural system the experimenter 

sets out to study. For example, as discussed in Chapter 2, acute cortical slices 

offer a way of gaining easy access to neuronal assemblies which are amenable 
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to a variety of manipulations. However, the vast loss of connectivity, trauma 

of slicing, silencing of background activity, and numerous other factors mean 

that the preparation is, in some senses, far removed from the "ideal observer" of 

cortical function that the experimenter seeks. Other, apparently uncontroversial 

decisions, such as the choice or balance of constituents of a buffer solution, can 

have unexpected consequences for neuronal function, and can possibly lead to 

misleading results. 

In biology, then, just as in other sciences, experimental results must be carefully 

evaluated and taken within their experimental context. Consider, for example, 

the STDP results discussed in Chapter 2. Despite the variety of experimental 

techniques, methodologies, and stimulation protocols, some common issues arise 

in the majority of STDP experiments. In particular, in order to generate statisti­

cally meaningful changes in the measured postsynaptic response repeated pairing 

of some form of pre- and postsynaptic stimulation is required. It is also usually 

the case that multiple inputs are stimulated, both to increase the magnitude of 

response and to compensate for often low levels of synaptic connectivity (but see 

Petersen et al., (1998) and Wang et al., (2005)). Taken together with the gen­

eral experimental issues already mentioned, it is clear that plasticity experiments 

typically produce a very particular kind of result - a population or ensemble mea­

surement taken from neurons that have been considerably disrupted compared 

to their normal operating environment. 

These limitations are, of course, to be expected in so technically challenging 

endeavor as measuring synaptic plasticity. A great deal of skill is required to 

produce usable results from even the simplest plasticity experiment. This does 

not mean, however, that these limitations may be ignored or the issues arising 

from them left unaddressed. Indeed, one of the principle motivations for pursu­

ing a theoretical study is to interpret the data, draw attention to experimental 

issues, and explicitly examine any underlying assumptions of the theory. In con­

trast, accepting results at face value is likely to lead to models which are simply 

reparameterisations of the data, rather than those that can offer valuable insights 

into the phenomenon in question. 

In theoretical work on neuronal plasticity, many of these issues are often ig­

nored. Experimental results are often interpreted literally without a critique of 

the various issues surrounding them. Such a literal interpretation typically car­

ries with it implicit assumptions that can, in fact, turn out to have important 

theoretical consequences. In the case of plasticity, it is typically assumed that 

experimentally observed plasticity rules, such as STDP, despite being measured 

at the ensemble and population level, are valid for each individual afferent (and, 

indeed, at each individual synapse) for every spike pair. The assumption that 
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synapses are capable of implementing STDP-like computation has become al­

most standard in the literature, and a number of modelling studies have been 

put forward on this basis (Song et al., 2000; van Rossum et al., 2000; Senn et al., 

2000; Shouval et al., 2002; Karmarkar and Buonomano, 2002; Saudargine and 

Porr, 2005). These modelling studies have had some success in explaining vari­

ous STDP and rate-based results (Izhikevich and Desai, 2003). It is interesting 

to note, however, that learning rules formulated on a literal interpretation of 

STDP data often struggle in even the early states, and especially when attempts 

are made to generalise the models to accommodate experimental results beyond 

those involved in the models initial formulation. 

In our own studies, we find that a critical re-evaluation of STDP results allows an 

alternative, and equally valid, formulation of STDP in which apparently compli­

cated spike-timing computation emerges due to the averaging of a much simpler 

synaptic rule. This synaptic rule explains a range of spike- and rate-based results, 

and greatly reduces the computational burden placed on individual synapses. 

The model also produces specific predictions regarding the response of inputs 

to multiple spike trains, which provides a specific focus for further experimental 

studies seeking to distinguish our proposed model from competing theories. 

9.2 Emergent Computation 

The phenomenological studies of STDP discussed in Chapter 4 typically set 

out to formulate a STDP-like learning rule then examine the computational 

consequences of that rule. Biophysical studies take a slightly less direct approach, 

typically proposing some biologically plausible mechanism that could underpin 

STDP rather than modelling the data directly. In both cases, a mechanism 

must exist at the synapse level that is capable of making graded changes based 

on spike-timing differences. 

The computational properties of both types of learning rule are often heavily 

dependent on the details of its implementation. In both types of model, STDP is 

"built in" in the sense that they contain an explicit representation of the STDP 

curve. In the phenomenological models, it is immediately apparent that the 

two phase modification function used to adjust synaptic strength is this explicit 

representation (Song et al., 2000). In biophysical models, a representation of the 

STDP is often implemented in a less direct manner. For example, the NMDA­

receptor model of Senn et al., (2000) uses a dynamic population of NMDA­

receptors to record spike timing and make graded changes in synaptic strength. 

The population of NMDA-receptors, which decay back to some resting state, 

therefore act as a discretised counting device which together implement a STDP 
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curve. In the Shouval model (Shouval et al., 2002) a biphasic learning function 

is postulated which translates directly into a biphasic STDP curve. 

Naturally, any model that contains an explicit representation of the STDP curve 

is guaranteed to explain the basic spike-pairing results of STDP. However, this 

does not mean that the model will generalise to accommodate other experimen­

tal results. The generalisation of existing models of STDP to accommodate, 

for example, spike-triplet or rate-based results is often only achieved through 

the introduction of additional non-linearities such as spike suppression (Froemke 

and Dan, 2002) or through the temporal limitation of spike interactions (Izhike­

vich and Desai, 2003). Although such modifications are often very successful 

(as would be expected given the empirical nature by which the modifications are 

made) this success does not generally extend beyond the immediate experimental 

result in question. For example, introducing spike suppression into simple mod­

els of STDP such as the Song model (Song et al., 2000) adequately accounts for 

spike-triplet results (Froemke and Dan, 2002) but, importantly, spike suppres­

sion does not offer an explanation of more general, multi-spike interactions. An 

explanation of multi-spike phenomena requires the introduction of additional, 

quite different modifications in the form of asymmetrical temporal limitation of 

spike interactions (Izhikevich and Desai, 2003). 

The construction of an explicit representation of an STDP curve designed specif­

ically to reproduce spike-pairing data is not the only approach to modelling 

STDP. An alternative approach is to construct simpler, more general models of 

spike-based plasticity without building in a representation of the STDP curve so 

explicitly. The aim of such an approach would be to produce tractable models 

which, it is hoped, would yield valuable insights into the nature of spike-timing 

plasticity. In our switch model of synaptic plasticity, we proposed a simple rule 

where changes in synaptic strength are in jumps of fixed magnitude. We showed 

that we can derive an STDP-like plasticity rule due to the averaging of this sim­

ple rule over multiple synapse and multiple spike-pairings. Only at the synaptic 

or temporal ensemble level does the overall connection strength between the 

two neurons therefore respect a STDP-form of synaptic plasticity. Individual 

synapses obey a much simpler, double step-function response when presented 

with a single spike pair. The apparently complicated STDP rule is therefore, in 

our model, an emergent form of computation that is nowhere instantiated at any 

individual synapse. 

This approach is analogous, for example, to the relationship between thermody­

namics and statistical mechanics in physics. The gas laws, such as Boyle's law, 

are not followed by individual gas molecules, but rather emerge, statistically, 

from the underlying motions of molecules following Newton's laws. Temperature 
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and pressure are not intrinsic properties of individual gas molecules, but emerge 

as properties of the collective system. 

The concept of emergent computation is a powerful one. By taking advantage 

of emergence wherever possible, a system may perform apparently complicated 

calculations with the minimum of effort. Consider the emergence of rate-based 

rules under our synaptic switch model. The rate-based rules emerge as a natural 

consequence of the simple, synaptic switch rule. There is no explicit representa­

tion of firing rates, with its attendant requirement that neurons perform some 

kind of recent time-averaging of their activity level. Nor is there some explicit 

learning function that requires the neurons to translate these recent time aver­

ages into changes in synaptic strength. From the point of view of the synapse, 

there is only a simple switch rule that governs its response on a spike-by-spike 

basis. The rate-based rule is emergent, appearing only at some abstract level, 

and is no where instantiated at any individual synapse. 

Of course, biological machinery may be postulated that performs almost any 

required function, such an explicit representation of firing rates. However, under 

our approach we find that, by exploiting emergence, this machinery is simply 

unnecessary. In some sense, the rate-based behaviour in our model is "doubly" 

emergent, as it arises from the averaging of an STDP rule which is, itself, an 

emergent property of our model. This emergence is in contrast to simple phe­

nomenological models of STDP, where additional non-linearities are required, in 

the form of temporal limitation of spike interactions, to ensure that the averaged 

learning behaviour is consistent with experimental data (Izhikevich and Desai, 

2003). 

Thus, despite being formulated as a model of spike-pair interactions, we see a 

natural explanation of a range of experimental results under our simple synaptic 

switch. We see an STDP-like plasticity rule appear at the level of temporal and 

spatial ensemble average over multiple synapses and spike-pairings. We see an 

explanation of spike-triplets emerge alongside these spike-pair results as a conse­

quence of the structure of the switch. We also see that the averaged, rate-based 

behaviour of our learning rule is BCM-like in form, with a depressing regime 

followed by a transition to a potentiating one. All of these results arise from 

the intrinsic structure of the switch. By comparing our model to experimental 

data we may constrain the parameters of our model. At no stage are we required 

to modify our model in order to introduce a particular behaviour or prevent an 

undesirable one. This is a remarkable result, especially given that our emer­

gent approach yields a model that is considerably simpler than many competing 

models of synaptic plasticity, and that greatly reduces the computational burden 

placed on the synapse. 



Chapter 9 Discussion 221 

9.3 Multi-Spike Interactions 

Both phenomenological and biophysical models of STDP have generally been 

put forward as models of 2-spike interactions. That is, they are formulated to 

explain the results of spike-pairing experiments, such as those of Bi and Poo 

(1998). These 2-spike models are then generalised to accommodate additional 

experimental results, such as spike triplet data (Froemke and Dan, 2002) or rate­

based results (Abraham et al., 2001). We note, however, that even at the early 

stages of formulation some of these 2-spike models begin to encounter difficul­

ties. For example, the biphasic, exponential model of Song et al., (2000) in its 

simplest possible form always produces either runaway potentiation or runaway 

depression, depending on the choice of parameters. As runaway potentiation 

is undesirable in any model of plasticity, the authors choose to have depression 

dominate potentiation and impose a hard lower bound at zero to prevent synap­

tic strengths from becoming negative. In order to avoid the situation where all 

the inputs fall to zero and remain there, the authors are then obliged to intro­

duce some non-linearity. In the original implementation this was in the form 

of a non-linear, integrate-and-fire target neuron. Unlike a Poisson model, the 

integrate-and-fire neuron responds "directly" to input spikes. Stronger inputs 

will therefore exert more of an influence than weaker inputs, and will tend to 

cause the postsynaptic cell to follow their spiking. Once an input becomes suf­

ficiently potentiated it will therefore dominate postsynaptic firing in the sense 

that, when it fires, a postsynaptic action potential will invariably be triggered 

within a few milliseconds. The input will therefore be potentiated almost every 

time it fires, leading to runaway learning. This obliges a further non-linearity in 

the form of a hard upper bound on synaptic strengths. Thus, four of the five ba­

sic features of the Song formulation (the fifth being the exponential rule itself) 

are, in effect, forced upon the model in order to prevent undesirable learning 

behaviours. Each additional modification or non-linearity brings with it impor­

tant consequences for the learning dynamics expressed, and the behaviour of the 

model is therefore heavily influenced by the details of its implementation. For 

example, the characteristic bimodal equilibrium distribution of input weights in 

the Song model is a direct consequence of the choice of non-linearities imposed 

to solve the various problems with runaway learning inherent in the biphasic, 

exponential learning rule. 

In attempting to generalise such a model to accommodate spike-triplet results, 

we find that further modifications are required, such as the introduction of spike 

suppression (Froemke and Dan, 2002). Likewise, in order to explain various 

rate-based results (Abraham et al., 2001), even more non-linearities must be in­

troduced, such as the temporal restriction of spike interactions (Izhikevich and 

Desai, 2003). At each stage, the model is found to be inadequate, and at each 
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stage additional modifications designed explicitly to rescue the model are intro­

duced. All of these modifications may, of course, be justified in the sense that 

biological machinery plausibly exists capable of implementing the proposed non­

linearities. However, following this approach, and introducing modifications in 

this ad hoc manner, produces models of substantial complexity which can be 

hard to understand. Indeed, almost all of the modifications to the Song model 

described above were introduced in an empirical manner. The justification for 

doing do was, in each case, little more than the observation that the partic­

ular modification produced the desired behaviour or incorporated a particular 

experimental result. 

In more recent experimental work, further evidence has emerged that multi-spike 

interactions potentially playa very important role in STDP. In neonatal rat 

hippocampal cultures, Wang et al., (2005) use spike triplets and quadruplets to 

show that the evoked plasticity is inconsistent with the commonly adopted view 

that spike-pairs sum linearly. The authors suggest that more accurate, "second­

order" STDP rules would consider these interactions, and find that they make 

significant contributions to plasticity. 

In other models of STDP we see similar problems arise from a very early stage. 

A key aim of the biophysical model of Senn et aI, (2000) was to capture the fre­

quency dependence of STDP observed in L5 neocortical pyramidal cells (Markram 

et al., 1997). This frequency dependence is incorporated by means of explicit 

thresholds to prevent too much potentiation at low firing rates. However, when 

at attempt is later made to reproduce the low frequency spike-pairing results of 

experiments like Bi and Poo (1998), the authors find that the predicted change 

under their biophysical model of STDP the predicted change in around 2% of that 

seen experimentally. Thus, we again see that the choice of a non-linearity intro­

duced explicitly to accommodate a particular experimental results has profound 

consequences for the overall learning dynamics of the rule. The introduction 

of an explicit threshold to explain the frequency dependence seen in one set of 

experimental results creates difficulty when it comes to explaining a different 

set of results. It is easy to imagine further modifications which would solve this 

problem as well, but there is no guarantee that the model would then explain any 

other experimental results. Thus, this approach of generalisation by modification 

typically only works on a case-by-case basis. 

Under our synaptic switch rule we find that a range of spike- and rate-based 

results are accommodated. In particular, an explanation of spike-triplet results 

emerges as a natural consequence of the models structure. We are therefore not 

required to consider modifications designed to ensure compatibility with these 

results. In addition, we see a BCM-like, rate-based learning rule emerge when our 

synaptic switch rule is averaged over many spikes. Again, we are not required to 
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postulate any additional modifications or non-linearities to guarantee this result. 

In fact, the requirement for a BCM-like, rate-based learning rule to emerge on 

average from our synaptic switch model serves to neatly constrain the parameters 

of our model. Unlike other models of STDP, there is no need to introduce any 

additional non-linearities to achieve these results. 

We note, however, that the 2-spike form ofrate-based learning rule emerging from 

our synaptic switch model, despite possessing a BCM-like form, is irredeemably 

pathological in its learning behaviour. The 2-spike learning rule cannot therefore 

support the stable, competitive dynamics that are essential within the context 

of developmental synaptic plasticity. Thus, the presence of a BCM-like learning 

rule is not, in our case, sufficient to ensure the presence of stable, competitive 

dynamics. We may remedy this problem by introducing an explicit dependence 

of the threshold between potentiation and depression on the recent time average 

of postsynaptic firing rate, in a manner similar to the BCM-rule. Our model 

is then, at this level, equivalent to the BCM-rule and produces qualitatively 

similar dynamics. Given that other models of STDP can produce similar, BCM­

like rate-based rules (Izhikevich and Desai, 2003; Shouval et al., 2002) we may 

expect that they too would display similar learning dynamics, provided that 

they were capable of supporting some form of sliding threshold. In all cases, 

however, we require the introduction of an explicit non-linearity designed to 

ensure stability. 

However, as we saw in Chapter 8, extending our consideration to just three or 

more spikes creates a rather different dynamical landscape compared to that 

produced under 2-spike interactions only. The learning dynamics of all multi­

spike rules, while possessing an overall BCM-like, rate-based form similar to that 

of the 2-spike rule, exhibit dynamics that differ significantly from those exhibited 

by the 2-spike interaction function. We found that the dynamics of all multi-spike 

rules are governed by the presence of stable, segregated fixed-points which exist 

for a broad range of parameters. The learning behaviour we see under multi­

spike rules is therefore one of stable competition, where afferents vie for control 

of the postsynaptic target cell. Importantly, we do not require the introduction 

of a sliding threshold for these rules. Instead, the learning dynamics arise as a 

result of the intrinsic properties of the multi-spike rules. 

Thus, by extending our analysis to consider to more than 2-spikes we find a 

novel method of introducing competition into our model that does not require 

modification of the underlying plasticity rule. We argued that the differences 

between the 2-spike and multi-spike interaction functions is that the multi-spike 

rules can probe the coupling of potentiation and depression that occur under 

our switch rule. This coupling occurs in the sense that, in the unified switch 

rule, activation of the potentiation lobe of the switch precludes a simultaneous 
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activation of the depression lobe of the switch, and vice-versa. By breaking the 

two lobes into two separate switches, so that they may be simultaneously active, 

we showed that competition immediately breaks downs, resulting in the runaway 

learning characteristic of the 2-spike rule. It therefore appears that this coupling 

between potentiation and depression processes at the level of a single neuron is 

vital to the presence of stable, competitive dynamics. 

It is interesting to speculate as to the role of coupling in other models of neuronal 

plasticity. In the BCM model, for example, the sliding threshold between po­

tentiation and depression is determined by the firing history of the cell, and this 

firing history is dependent on the strengthening and weakening of the synapses 

that the cell supports. Thus, a sliding threshold provides a means of coupling 

potentiation and depression events, albeit in a slightly different manner to our 

own model. Without this coupling, so that the threshold is fixed, stability and 

competition in the BCM model break down. It appears in general, therefore, 

that in order for a model of synaptic competition to operate successfully, the 

machinery of potentiation and the machinery of depression cannot be indepen­

dent. Although the dependence of the two processes is rather indirect in the 

BCM model, via the sliding threshold, it is nevertheless critical to the model's 

successful operation. We therefore speculate that any model in which potentia­

tion and depression are completely independent processes cannot be competitive. 

The apparent ease with which all these results, from the explanation of spike­

triplets to the emergence of a BCM-like learning rule and the emergence of sta­

ble, competitive dynamics, contrasts markedly with competing models of STDP 

which, at almost every stage, require modifications to be made and non-linearities 

to be introduced. The approach of introducing ad hoc modifications to rescue 

an otherwise ailing model is also unlikely to produce the kind of deep insights 

into STDP that the theoretical community seeks. Indeed, in other sciences, such 

as physics, the emphasis is on simple, tractable models upon which a deeper 

understanding of the phenomenon can be built. When a simple model is found 

to be inadequate in explaining some new experimental result then, rather than 

introducing modifications designed to prolong the models lifespan, the underly­

ing assumptions are examined and new theories proposed which seek to reconcile 

the new data with established results. In the context of STDP, we propose that 

the difficulty in accommodating spike-triplet and rate-based experimental results 

into many existing theories of STDP arises due to the exclusively 2-spike basis 

of those theories. 

As we saw in Chapter 4, restricting a theory to one of 2-spike interactions almost 

always obliges the introduction of additional nonlinearities to explain multi-spike 

phenomena. Although, naturally, any model of plasticity must be consistent with 

the basic STDP data, the consequences of such a model must also be understood 
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in terms of its response to natural spike trains. Certainly, multi-spike interac­

tions are more "natural" in the sense that a neuron does not experience a series of 

isolated spike-pairs but rather continuous, overlapping trains of pre- and postsy­

naptic spikes. However, it is just such natural spike trains that create difficulties 

for many existing models of STDP. In contrast, under our synaptic switch rule we 

find an explanation of a range of spike- and rate-based results arising as a result 

of the models intrinsic structure. We find that the consideration of multiple­

spike interactions provides a natural method of introducing stable, competitive 

dynamics. These dynamics are capable of explaining a range of developmental 

phenomena, such as the development of ODCs. These results are emergent in 

the sense that the switch rule is formulated as a model of spike-pairing interac­

tions. At no stage do we introduce modifications designed to accommodate a 

particular experimental result. In addition, our model is considerably simpler 

than competing models of STDP, and dramatically reduces the computational 

burden place on the synapse. 

9.4 Coincidence Detection 

Common to both the phenomenological and biophysical approaches to modelling 

STDP, which we discussed in Chapter 4, is the view that STDP must be valid, 

at some level, at individual synapses for a single spike pair. Individual synapses 

in such models are required to possess some representation of spike-timing differ­

ences and adjust their strengths accordingly in a graded manner. Each synapse 

must therefore possess machinery capable of both resolving pre- and postsynaptic 

spike timing with millisecond accuracy and of translating the difference between 

these times into a graded changes in synaptic strength. That is, each synapse 

must perform as a millisecond resolution coincidence detector. This requirement 

places a considerable computational burden on the synapse. 

Although mechanisms of coincidence detection have been suggested to exist at 

the synapse, such as the NMDA-receptor dependent calcium dynamics of the 

calcium control hypothesis discussed in Chapter 4, the conjecture that synapses 

are capable of precise coincidence detections is still far from proven. 

Consider, for example, the calcium control hypothesis. It is true that the NMDA­

receptor can operate in the manner of a coincidence detector as, following acti­

vation by presynaptic glutamate release, calcium entry through NMDA-receptor 

associated channels is only permitted once the characteristic voltage-dependent 

magnesium block is released. There is therefore a requirement for coincident 

presynaptic glutamate release and postsynaptic depolarisation. It is also true 

that the individual elements of the calcium control hypothesis have been shown 
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to be involved in plasticity, for example changes in the concentration of post­

synaptic intracellular calcium concentration has been shown to induce up- or 

downregulation in synaptic strengths Yang et al. (1999). However, it has not 

been shown that NMDA-dependent calcium influx in the only relevant mecha­

nism, and that a model of NMDA-receptor function is sufficient to explain STDP. 

Other processes may make equal, or even more, important contributions to plas­

ticity at the synapse, and a range of secondary processes may also contribute in 

various ways. 

In modelling studies, the calcium control hypothesis has been shown, under ap­

propriate constraints, to account for various induction protocols of STDP (Senn 

et al., 2000; Shouval et al., 2002). Such models are, however, rather sensitive to 

parameters and often predict an additional LTD window at large pre-then-post 

spike timings which has rarely been reported (but see Nishiyama et al., 2002). 

A more complicated model, which relies on a second coincidence detector in ad­

dition to NMDA-receptors, has been proposed specifically to resolve the issue of 

the extra LTD phase at large spike timings (Karmarkar and Buonomano, 2002). 

More recently, a gradient-based rule has been proposed which achieves the same 

result (Saudargine and Porr, 2005). Although both these models eliminate the 

additional LTD window, it is difficult to view either approach as anything more 

than a specific remedy for a very particular problem with the calcium control 

hypothesis. In addition, biophysical based models are generally motivated by 

the view that they may offer a deeper understanding of the processes underlying 

STDP without the need to explicitly formulate, for example, two exponentials 

to account for the two halves of the STDP-curve. However, in the case of Kar­

markar et al., (2002), the introduction of a second coincidence detector reduces 

the model to a reparamterisation of the double exponential STDP-curve, which 

is equivalent in some respects to the simple phenomenological models discussed 

elsewhere (Song et al., 2000; van Rossum et al., 2000). Thus, although the two 

coincidence detector model is largely successful in explaining STDP the increased 

complexity undermines the advantages of this approach, to explain STDP from 

simple biophysical arguments. In addition, the computational burden on the 

synapse increased even further, requiring it to possess two coincidence detectors 

rather than one. Although it is true that the synapse may possess such machin­

ery, and that a faithful biophysical description of it is necessary to explain STDP, 

such conjectures are far from proven. In such a situation, it is the role of the 

theorist to examine the simplest theories first, and seek to explain a phenomenon 

without resorting to may be recognised later as unnecessary complexity. 

That a biophysical model of the calcium control hypothesis can explain certain 

experimental results on STDP is by no means proof that the hypothesis is cor­

rect. Indeed, if NMDA-receptor-dependent calcium dynamics were the critical 
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process underlying STDP, it might be expected that a model of this process 

would be more successful in explaining STDP results. Throughout the litera­

ture, what is interpreted as considerable experimental support is often simply 

evidence that all the elements of a biophysical theory are somehow involved in 

plasticity. This is not the same as having direct experimental evidence that one 

particular pathway is responsible for STDP, and that a model of this particu­

lar pathway will offer a full explanation of the phenomenon. For example, a 

large number of signal transduction molecules have been implicated as having 

some role in synaptic plasticity, for example neurotrophins such as brain-derived 

neurotrophic factor (Zakharenko et al., 2003; Schinder and Poo, 2000), postsy­

naptically released endocannabinoids (Sjostrom et al., 2003), arachidonic acid 

(Williams et al., 1989), or even nitric oxide and carbon monoxide (Zhuo et al., 

1993). Determining which of these components are essential for, and which are 

involved more indirectly in, synaptic plasticity is often technically difficult. It 

has also been observed that some forms of NMDA-dependent LTP may be in­

duced presynaptically (Zakharenko et al., 2003; Humeau et al., 2003), which is 

not consistent with the exclusively postsynaptic induction of the calcium control 

hypothesis. 

Furthermore, for even the most basic predictions of the calcium control hypoth­

esis to be consistent with experimental data, some careful parameter selection is 

required. For example, the binding constant of NMDA-receptors to glutamate is 

typically quite large. Under the calcium control hypothesis, this leads an unnatu­

rally long potentiation tail on the STDP curve which is not seen experimentally 

(Bi and Poo, 1998; Zhang et al., 1998). In the absence of any understanding 

of why pre-post spike interactions are temporally restricted to timescales much 

shorter than the timescale governing glutamate binding to NMDA-receptors, the 

time constant for glutamate binding is simply reduced (Karmarkar and Buono­

mano, 2002). Likewise, in its basic form, the calcium control hypothesis predicts 

an LTD phase of a much shorter temporal duration than is observed experimen­

tally (Bi and Poo, 1998). It was noted empirically that introducing a long after 

depolarisation lasting tens of milliseconds following a postsynaptic action poten­

tial extends the predicted LTD time window to a more appropriate size (Shouval 

et al., 2002; Karmarkar and Buonomano, 2002). A long after depolarisation was 

duly introduced, and subsequently elevated to the level of a basic assumption of 

the hypothesis (Shouval et al., 2002). 

Moreover, it is not clear that calcium transients can offer the kind of accuracy 

demanded by the calcium control hypothesis. Natural variability in synaptic and 

dendritic transmission, as well as in calcium entry and reuptake, may wash out 

the precise temporal profile required by modelling studies (Shouval et al., 2002). 
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Thus, although attractive, the translation of the calcium control hypothesis into 

a coherent theoretical framework for synaptic plasticity is still incomplete. Direct 

experimental proof has not been produced, and modelling studies have been only 

partially successful in explaining STDP. Indeed, in its basic form, the calcium 

control hypothesis produces rather eccentric STDP curves, and various modifi­

cations must be made to ensure a temporal profile consistent with the majority 

of experimental work (Senn et al., 2000; Shouval et al., 2002; Karmarkar and 

Buonomano, 2002; Saudargine and Porr, 2005). 

Of course, it is unreasonable to expect a biophysical model of STDP to explain 

every experimental result in its first formulation. It is reasonable to expect, how­

ever, that it explain a range of experimental data without the need to introduce 

modifications designed specifically to ensure consistently with those result. It 

is also desirable, from a theoretical point of view, that the model be as simple 

as possible, and only place as much computational burden on the synapse as is 

absolutely necessary. 

In contrast to the other models of STDP, our switch mode requires only a simpli­

fied form of resolution coincidence. We only require that the synapse is capable 

of recording whether there has been a pre- or postsynaptic spike, and that this 

trace is destroyed in a stochastic manner. Importantly, we do not ask that the 

synapse records the times of pre- and postsynaptic events. We also do not re­

quire a time difference to be translated into some graded change in synaptic 

strength, as all changes occur in jumps of fixed magnitude. By eliminating the 

need for precise coincidence detection in this way, our switch model considerably 

reduces the computational burden on the synapse. From a biological point of 

view, the switch may be implemented in a variety of ways, and we do not commit 

to one particular implementation. We are therefore free to postulate many ways 

in which the machinery present at the synapse may contribute to plasticity. 

In addition, our switch model of STDP successfully explains range of spike-pair, 

spike-triplet, and rate-based results, without the need for additional modifica­

tions or the introduction of additional non-linearities. Thus, we show that alter­

native interpretations of STDP may give rise to models which are more successful, 

while at the same time being much simpler, than competing models. 

Of course, exploring the machinery of the synapse is a worthwhile activity in its 

own right. However, entering into the task with the goal of determining if the 

synapse can support the computation demanded by a particular hypothesis of 

synaptic plasticity is potentially misleading. Given the range of mechanisms in 

operation at the synapse, the ubiquity of signalling molecules, and issues such 

as the active properties of dendrites, it is likely that processes exist that may 

be construed as supporting almost any form of computation. As many of these 
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processes are only partially understood it is possible to imagine a whole range of 

computational activities that the synapse could engage in. In theoretical terms, 

therefore, it is more interesting to ask what is necessary to explain STDP, rather 

than ask what forms of computation the synapse can possibly support. 

As we only require a minimal form of coincidence detection, we are freed from 

having to postulate some complicated mechanism as a substrate for our model. 

All that we require is that the synapse can records that pre- and postsynaptic 

spiking has occurred and then make changes in efficacy of fixed magnitude. As 

we discuss in Section 9.5, this may be implemented in a variety of ways. Thus, 

despite the considerable experimental effort that has been invested in looking 

for coincidence detection mechanism at the synapse, it is not clear that such 

mechanisms are even necessary to explain STDP. 

9.5 Molecular Implementation 

We have proposed that single synapses implement something akin to a three­

state switch, with changes in synaptic strength occurring in discrete jumps of 

a fixed magnitude, and shown that the model can explain a variety of spike­

and rate-based experimental results. The discrete nature of our model is in con­

trast to other theories of STDP, such as the calcium control hypothesis, which 

involve graded changes in synaptic strength and, as a result, are required to pos­

tulate coincidence detection machinery that is capable of translating differences 

in spike-timing into some graded change. This reduces the level of computa­

tion that individual synapses are required to perform, and opens up a range of 

possible molecular implementations. 

Where might the machinery that implements this switch reside? The switch 

moves from the OFF state to the DEP state following a postsynaptic spike. All 

of a target's input synapses might thus be expected to move into the DEP state, 

and this suggests that the natural locus for the DEP state of the switch may be 

the postsynaptic aspect of the synapse. Similarly, when the switch moves from 

the OFF state into the POT state following a presynaptic spike, all of the affer­

ent's output synapses might be expected to move into the POT state, and so this 

perhaps suggests a presynaptic locus for the POT state of the switch. Thus, the 

switch may actually be distributed across the entire synapse, rather than con­

fined exclusively to the pre- or postsynaptic side of the synapse. Under such a 

distributed switch, an active transition back to the OFF state caused by a presy­

naptic spike may cause a postsynaptic change in the synapse, for example the 

removal of some neurotransmitter receptors from the postsynaptic membrane, 

leading to a decrease in synaptic strength. Similarly, an active transition to 
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the OFF state caused by a postsynaptic spike may change the presynaptic side 

of the synapse, perhaps enhancing neurotransmitter release, or even inducing 

terminal synaptic sprouting, so that synaptic strength is increased. 

It is also relevant to discuss how our synaptic switch might be implemented. 

Given the range of signalling molecules available at the synapse, such as the 

neurotrophins (Zakharenko et aI., 2003; Schinder and Poo, 2000), and endo­

cannabinoids (Sjostrom et aI., 2003) mentioned in Section 9.4, there is plenty of 

scope for implementing our proposed synaptic switch at a molecular level. In 

the absence of any conclusive experimental data, we are therefore cautious in 

identifying one particular mechanism as a more likely than another. Indeed, it 

may be that the switch is implemented in different ways in different parts of 

the nervous system, or across different species, while still subserving the same 

broad function. All that we require is that synapses are capable of recording 

whether a pre- or postsynaptic spike has occurred, that this trace is destroyed 

in a stochastic manner, and that subsequent pre- or postsynaptic spikes which 

occur in a timely fashion are capable of triggering an up- or down-regulation in 

synaptic strength in jumps of fixed magnitude. 

The requirement that synapses record that a pre- or postsynaptic spike has 

occurred requires a form of coincidence detection that is, in some respects, sim­

ilar to the initial stages of the coincidence detection present in other models of 

STDP. We may therefore appeal to similar kids of mechanism as appealed to 

elsewhere. For example, postsynaptic NMDA-receptors, with their requirement 

for both presynaptic glutamate releases and concurrent postsynaptic depolarisa­

tion, would serve adequately in our model, as elsewhere, for detecting coincident 

pre- and postsynaptic spiking. However, we stress that although we require some 

level of coincidence detection in our model, it is minimal in the sense that we do 

not require the synapse to record the spike-timings with millisecond accuracy or 

that these spike-timings are then translated into some graded change in synaptic 

strength. That is, although we require some form of coincidence detection, it 

is, in some sense, equivalent to the "first step" of other models. We do not re­

quire the subsequent steps of comparing spike-timings or making graded changes 

based upon them. As a result, the demands we place upon the synapse, and the 

complexity of the molecular machinery we are required to postulate, are greatly 

reduced. We are therefore not committed to this particular form of postsynaptic 

NMDA-receptor-dependent coincidence detection, but may instead consider a 

range of possibilities. 

The step-like changes in synaptic strength that occurs under our switch model 

could also be implemented in a number of ways. Switch-like activation of a 

process is not an uncommon phenomenon in biology. Indeed, CaMKII, which 

plays an key role in effecting the graded changes in synaptic strength required 
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by the calcium control hypothesis, has itself been shown to display a switch-like 

activation to calcium concentration levels (Bradshaw et al., 2003). This arises 

due to the steep dependence of the autophosphorylation of CaMKII on intra­

cellular calcium concentration, an effect which is amplified by the competing 

dephosphorylation action of protein phosphatase 1 (PP1). The CaMKII-PP1 

system may therefore function together as a simple molecular device that trans­

lates a calcium signal into all-or-none potentiation of individual synapses. That 

all-or-none potentiation or depression consistent with such a molecular switch 

can occur during plasticity episodes has recently been demonstrated in the hip­

pocampus (Petersen et al., 1998; O'Connor et al., 2005). Although these results 

concerned ~utative individual afferents identified by means of a minimal stimu­

lation protocol, they do provide evidence that all-or-none, binary changes such 

as the kind required by our switch model can occur in the nervous system. We 

also note that the observed differences in number of stimuli required to evoke po­

tentiation and depression could easily be accommodated in our synaptic switch 

model through an appropriate choice of T ±. These results raise the question as 

to whether the apparently graded changes seen in other plasticity experiments, 

which have largely motivated the search for high-level coincidence detection at 

the synapse, are due instead to the recruitment of multiple inputs with different 

plasticity thresholds. 

Thus, the implementation of our proposed synaptic switch may occur in a variety 

of ways. Given the ubiquity of both anterograde and retrograde messengers in the 

nervous system, we should be cautious in utilising any arguments about a specific 

locus or mechanism for the switch. The mathematical details of the switch do 

not commit us to any particular view concerning its exact locus, nor to the 

precise molecular machinery involved in its implementation. We note that several 

elements of existing theories of STDP, such as the NMDA-receptor/CaMKII 

pathways of the calcium control hypothesis, would adequately serve to underlie 

certain aspects of our model. However, we do not require the more complicated 

elements of this theory such as the translation of accurately recorded spike times 

into graded changes in synaptic strength. The level of coincidence detection 

we require is of a much reduced form, and we are therefore not required to 

commit to this particular mechanism but are free to imagine a variety of other 

implementations. 

9.6 Experimental Tests 

We may propose various experimental tests of our synaptic switch rule that 

would distinguish it from other competing models of STDP. These experimental 
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tests might come in two forms. Firstly, we could examine the key underlying as­

sumptions of the model, such as the requirement that for the purposes of driving 

plasticity synapses operate as discrete switches, and propose direct experimental 

tests of theses assumptions. Secondly, perhaps more realistically, we may make 

predictions about the response of a system to various stimulation protocols, such 

as 3-, 4- or 5-spike trains. In addition to distinguishing our model of synaptic 

plasticity from competing models, these tests could also serve to distinguish the 

different forms of our model such as the resetting and non-resetting forms dis­

cussed in Chapter 7. 

As discussed in Section 9.5, the mathematical formulation of our synaptic switch 

rule is broadly consistent with a range of possible biological implementations. 

Attempts to deconstruct the synapse and determine if the molecular machinery 

capable of supporting our switch exists at the synapse are therefore unlikely to 

provide clear evidence for or against our hypothesis. In terms of distinguish­

ing between our synaptic switch rule and other competing models of STDP, the 

search for molecular evidence in support of one model over another is hindered 

by the fact that models of STDP often have certain common requirements, such 

as the need for some form of coincidence detection. Indeed, certain molecular 

pathways that have been identified as potential candidate mechanisms for other 

models of STDP, such as the well characterised NMDA-receptor-CaMKII path­

way, would serve quite adequately to explain certain aspects of our switch rule. 

We therefore discuss experimental tests that focus on the computational proper­

ties of our plasticity rule rather than its underlying molecular implementation, as 

these tests are more likely to clearly distinguish our model from its competitors. 

The most direct test of our synaptic switch hypothesis would be to examine 

changes occurring at individual synapses in response to controlled pre- and post­

synaptic spiking. We predict that changes would occur in jumps of fixed magni­

tude, rather than in a graded fashion predicted by other formulations of STDP 

(Song et al., 2000; van Rossum et al., 2000; Shouval et al., 2002; Senn et al., 

2000). We also predict that the timing window in which postsynaptic spiking 

must follow presynaptic spiking in order to induce these fixed jumps varies in a 

stochastic manner. Thus, we expect that repeated pre- and postsynaptic spike 

pairs of a fixed time difference will sometimes evoke potentiation of a fixed mag­

nitude and sometimes not. This is contrast to other models of STDP which 

would predict that the spike pairings would consistently evoke some intermedi­

ate level of potentiation with every spike pair. In our model, only when these 

step-like changes are averaged over many individual spike pairings, or over may 

synapses, will the overall change resemble the apparently continuous changes ob­

served in conventional STDP experiments (Bi and Poo, 1998). That all-or-none 

changes in synaptic efficacy can occur in a biological setting has recently been 
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demonstrated in the hippocampal formation (Petersen et al., 1998; O'Connor 

et al., 2005). Although these experiments were concerned with putative single 

inputs, identified by means of a minimal stimulation protocol, and a number of 

issues still remain to be clarified, they do at least show that step-like or binary 

changes can occur in the context of synaptic plasticity. We note that the kind of 

changes observed in these experiments, with their characteristic fixed-magnitude 

and rapid onset, cannot easily be accommodated into existing models of STDP 

which are formulated explicitly around the need to invoke graded changes in 

synaptic strength. 

As the technical difficulties associated with recording from single synapses are 

formidable, it is prudent to discuss other, less direct tests of out synaptic switch 

hypothesis. We therefore propose some hypothetical experimental protocols 

which would, while still being within easy technical reach, would nevertheless 

effectively distinguish our model from competing models of STDP. We originally 

presented our switch model in Chapter 6 as a model of two-spike interactions, 

which guarantees that the model is consistent with basic spike-pairing STDP 

data (Bi and Poo, 1998). Examining the effect of spike-triplet interactions, such 

as those explored by Froemke and Dan (2002), we find that our synaptic switch 

model produces a natural explanation of spike-triplet results due to its intrinsic 

structure. No additional modifications or the introduction of additional non­

linearities is required. This is in contrast to other models of STDP, such as 

the Song model (Song et al., 2000), which require the introduction of additional 

devices, such as spike suppression (Froemke and Dan, 2002), to explain the spike­

triplet data. 

Of course, we cannot really view this explanation of spike-triplets as a prediction 

because, despite our model being formulated as purely a model of spike-pair 

interactions and this emergence of an explanation of spike-triplet interactions 

for free, the spike-triple experiments were carried out prior to the publication 

of our model. We can, however, pursue this idea of multi-spike interactions 

further, and examine the predicted change in synaptic strength induced by more 

complicated spike trains. These predictions could be used to distinguish our 

synaptic switch rule from competing models of STDP, as well as differentiate 

the two forms of our model, resetting and non-resetting, that we presented in 

Chapter 7. 

Consider a simple spike pairing, 7rP, where spikes occur at times to and to + iI· 
Most models of STDP (Song et al., 2000; van Rossum et al., 2000; Senn et al., 

2000; Shouval et al., 2002) give qualitatively similar predictions for the expected 

change in synaptic strength. In all cases, the spike pairing will induce some 

graded change in synaptic strength whose precise value is dependent on the 

time difference tl. Under our switch model, we would observe a very similar 
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result. Of course, under our model the apparently graded change arises due to 

the temporal averaging of discrete changes in synaptic strength over multiple 

spike pairings. However, as multiple spike pairings would always be required in 

order to produced a statistically meaningful change in afferent strength (Bi and 

Poo, 1998), we cannot appeal to arguments about observing graded as opposed 

to discrete changes in synaptic strength. We can, however, consider the effect 

of introducing an additionalJr spike at time in front of the JrP pair, to produce 

a spike-triplet JrJrp. In such a triplet there are two possible 7Tp interactions. 

In the Song model, these spike interactions are summed linearly. The second 

JrP interaction, with its shorter time difference and resulting large change in 

synaptic strength, would therefore make a larger contribution to plasticity than 

the first JrP interaction. Under the spike suppression model, however, the initial 

presynaptic spike will suppress the influence of the second presynaptic spike. 

As a result, the total potentiation evoked will be somewhat less than predicted 

by the song model. The exact value of this potentiation will depend on the 

strength of the suppressive influence of the first Jr spike. Under both the Song 

model and the spike-suppression model, therefore, the addition of this extra 

presynaptic spike changes the expected plasticity level from that of the simple 

JrP pair. Thus, in general, !::::"snp -I- !::::"S7rP. This observation holds for all other 

models of STDP. For example, in the calcium-based model of Senn et aI., (2000) 

, additional presynaptic spikes move more of the popUlation of NMDA-receptors 

into their activated state. The potentiation induced by the final postsynaptic 

spike is therefore to a higher level than if only a single presynaptic spike had 

occurred. 

In the resetting form of our switch model, it is not the case that additional 

presynaptic spikes modify the expected change in synaptic strength induced by 

the final p spike. In the spike train JrJrP, the initial Jr spike elevates the synapse 

to the POT state. By the time the second Jr spike arrives, the synapse will 

either still remain in the POT state or it will have spontaneously returned to 

OF F. If the synapse has returned to OFF then the second 7T spike elevates 

the synapse to the POT state. If, on the other hand, the synapse remained in 

the POT state, the second Jr spike resets the stochastic process governing the 

return to OFF. Thus, the stochastic process governing the transition to OFF 

is always restarted, regardless of whether the synapse returned to OFF before 

the arrival of the second spike or not. In effect, the initial presynaptic spike may 

be ignored, and only the final JrP spike pair is relevant. This is a general feature 

of the resetting model, only the final spike in a long train of identical spikes is 

relevant for the purposes of inducing plasticity, and was discussed in Chapter 7. 

The expected potentiation under the resetting switch model for this JrJrP train 

is therefore the same as that for spike pair JrP provided the time difference of 

the last two spikes is the same. Thus, the spike trains JrP, JrJrP, and JrJrJrP are, 
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in terms of evoking plasticity, all identical under our switch model provided 

the time difference of the last two spikes is the same. We may therefore write 

6.S7r
i
p = 6. S7rP , any i, provided that the time difference of the last two spikes is 

the same. 

This property of the resetting form of the switch model, that, in a train of 

identical spikes, only the last spike is relevant with respect to inducing plasticity 

provides a convenient experimental focus for distinguishing our model from other 

models of STDP. In general, the observation that 6.S7r
i
p = 6.S7rP , any i, does not 

hold for the non-resetting form of our model. We may still, however, construct 

various spike trains and compute the expected change in synaptic efficacy aris­

ing from the non-resetting forms of our switch mode to provide predictions for 

comparison to experimental results. It is easy to conceive of certain spike trains 

that, while perhaps slightly contrived, would produce different predictions from 

various competing models of STDP and from our own switch model. 

Of course, this also means that we may use the hypothetical experiment discussed 

above to distinguish the resetting and non-resetting forms of our synaptic switch 

model. In the resetting form of the model, the spike train 7f7f ... 7fP would induce 

the same plasticity as the spike pair 7fP, provided the timing difference of the 

last two spikes was the same. In the non-resetting model, this would not be the 

case, and the two spike trains would, in general, not evoke the same change. 

We proposed in Chapter 7 that the resetting and non-resetting forms of the 

switch model are more biologically plausible than the general r-reset case. This 

is because, in the resetting and non-resetting models, additional pre- or post­

synaptic spiking can either reset the stochastic process governing the return to 

OFF (the resetting model) or it cannot (the non-resetting model). Other, gen­

eral r, cases require that some form of spike counting machinery exists at the 

synapse that, in the spirit of reducing the computational burden on the synapse 

as far as possible, we consider to be less likely. Nonetheless, for completeness we 

discuss an experimental test that would differentiate the different r-reset models 

from each other. This test would be very similar in character to the experiment 

already discussed. This time, spike trains of increasing length, say 7fP, 7f7fP, 

7f7f7fP, and so on, would be used. As the r-reset model resets after r identical 

spikes, we would expect that the 7fTp train would induce the same plasticity as a 

simple 7fP pairing, again provided that the time difference of the final two spikes 

was the same. All that would be required, therefore, is to determine r in an 

iterative manner. 

In summary, direct experimental evidence of our proposed synaptic switch rule 

would be technically difficult. A search for molecular evidence would suffer 

from similar problems, and in any case, would be unlikely to distinguish clearly 
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between competing models of STDP. We therefore propose that a consideration of 

plasticity evoked by trains of multiple spikes could distinguish both the resetting 

and non-resetting forms of our switch model, and differentiate our model from 

competing models of STDP. This approach is also within easy technical reach, 

representing a simple extension of existing experimental plasticity protocols. 

9.7 Comparison to Other Models of STDP 

Although some existing models of STDP bear some superficial resemblance to 

our own switch model of synaptic plasticity, these similarities belie much deeper 

conceptual differences. 

The biophysical model of Senn et al., (2000), which we discussed in Chapter 4, de­

scribes an NMDA-receptor-dependent plasticity rule in which the activation state 

of a fixed population of NMDA-receptors drives changes in synaptic strength. 

NMDA-receptors are postulated to transition from a resetting state to one of 

two activated states in response to pre- or postsynaptic spiking. Subsequent pre­

or postsynaptic spiking is translated into a graded change in synaptic strength, 

with size and polarity determined by the relative populations of the three states. 

In the absence of further spiking, the population of NMDA-receptors in the acti­

vated states decay back to the resting state. Thus, the distribution of the popula­

tion ofNMDA-receptors between the three states is used to explicitly record spike 

timings, and these spike-timing are translated into graded changes in synaptic 

strengths. In effect, the NMDA-receptors act as a discrete-state counting device 

and encode an exponential, biphasic learning rule similar in character to that of 

various phenomenological models (Song et al., 2000; van Rossum et al., 2000). 

Thus, in the Senn model, there is still the need for a comparatively high level of 

coincidence detection, and a translation of this coincidence detection into graded 

changes in synaptic strength. The population of NMDA-receptors, which have 3 

distinct activation states, provide a mechanism for implementing this coincidence 

detection and the translation of spike times into graded changes. In our switch 

model we also utilise a discrete, 3-state mechanism. However, in the switch 

model this 3-state mechanism is in the form of a synaptic controller switch which 

governs plasticity at individual synapses. Transitions of the synaptic switch to 

different activation states refer not to some population of receptors present at 

the synapse, but to the whole synapse. Once pre- or postsynaptic spiking has 

activated the synaptic switch, the arrival of further pre- or postsynaptic spikes 

triggers step-changes in synaptic strength, provided those spikes arrive before the 

switch has deactivated. There is no decaying population with which spike times 

may be recorded, nor any translation of differences in spike timing into graded 
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changes in synaptic strength. Thus, unlike the Senn model, there is no explicit 

representation of the STDP curve in our switch rule, with the exponential STDP 

curve emerging instead due to averaging over multiple synapses and over multiple 

spike pairings. 

Of course, in the Senn model, the 3 NMDA-receptor activation states are needed 

to encode the two phases of the STDP curve. In our switch model, we also 

seek to explain the bidirectional change characteristic of STDP and, therefore, 

our synaptic controller switch was also postulated to have 3 discrete states. 

However, this similarity is only superficial in the sense that, despite the Senn 

model and our synaptic switch model both containing some form of discrete, 

3-state mechanisms, the two models apply these mechanisms in very different 

ways. 

Binary synapses, whose strength is constrained to one of two values, have been 

studied in various contexts (Fusi, 2000; Fusi et al., 2002), and models based on 

such synapses have been shown to be capable of reproducing various rate- and 

spike-based results. In the Fusi model (Fusi et al., 2002), synapse are permitted 

to exist in a state of either lower high efficacy. Some internal variable determines 

when transitions are made between these two states. A threshold is chosen to 

control state transitions. When the internal variable is above the threshold, 

the synaptic efficacy is set to the high value, and when the internal variable is 

below the threshold the synaptic efficacy is set to the low value. Presynaptic 

spiking cause the internal variable to receive injections whose magnitude and 

sign are dependent on the level of postsynaptic depolarisation. In the absence of 

presynaptic spiking, the internal variable will drift to one of the limits, depending 

on its value compared to the threshold. Thus, the binary synapses are stabilised 

over time by the drift of the internal control variable. Correlations in pre- and 

postsynaptic spiking are then required to drive the variable across the threshold 

and cause the synapse to transition to the state of opposite strength. In contrast, 

in our model we refer to a discrete state switch that governs the plasticity of a 

continuous synaptic strength variable. Pre- and postsynaptic spiking induces 

changes in synaptic strength of a fixed amount according to the state of the 

synaptic switch. Although these changes are of fixed-magnitude, the synaptic 

efficacy is still continuous, and nowhere do we constrain its value to be one of 

a set of discrete values. Nor do we include a drift term to stabilise synapse 

strengths. 

In some sense, a more accurate name for our switch model would be the "synaptic 

plasticity-switch" model, which highlights the fact that we consider continuous 

synapses that are governed by a discrete plasticity rule. Thus, although sharing 

some conceptual similarities, our model is quite distinct from existing studies 

of binary synapses. We consider synaptic strengths to be continuous variables, 
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and it is only the controlling switch that occupies discrete states. We note, 

however, that we do not rule out the possibility of binary-strength synapses. 

A variation of our switch model, where synaptic strengths are constrained to 

be either one of two states, can also be formulated. Provided that each input is 

comprised of a large enough number of these binary synapses, sufficient averaging 

will occur and the basic findings of our model will be preserved. Indeed, when 

the number of synapses becomes very large, this averaging becomes exact and 

the binary and continuous formulations of the model are identical. Thus, we do 

not commit, necessarily, to a continuous- or binary-synapse description, as our 

model is largely independent of this choice. Our choice to present a continuous 

formulation was originally motivated on the grounds of simplicity, but we note 

that a continuous formulation permits a more transparent demonstration of the 

stability of the multi-spike learning rules that emerge under our switch rule. 

These rules were discussed in Chapter 7 and Chapter 8, where we showed that 

stable, competitive dynamics emerge under all multi-spike rules, but not under 

the 2-spike rule. With binary synapses, a natural upper bound exists on synaptic 

strength and, as a result, total input strengths. Had we chosen to formulated our 

model in a binary manner, this natural hard upper bound may have concealed 

the intrinsic stability of multi-spike rules in our switch model. 

9.8 Future Work 

Our synaptic switch rule provides an explanation of a range of spike- and rate­

based results. Compared to other models of STDP that attempt to explain 

similar results our synaptic switch rule explains the phenomena in a much more 

natural manner - relying on intrinsic, emergent properties rather than empirical 

modifications designed specifically to incorporate experimental results on a case­

by-case basis. Several issues arise from our switch model of synaptic plasticity 

that we will explore in future work. We discuss these issues in turn. 

9.8.1 Frequency-Dependence of STDP 

We have deliberately presented our switch rule in the simplest form possible 

that is consistent with a variety of spike-timing data. This permits a degree 

of analytical understanding of the rule, enabling us to determine the properties 

of the model without resorting to a purely numerical approach. Although our 

switch rule accommodates a wide range of experimental results, we cannot expect 

our model to be comprehensive at this stage. 

We note, in particular, that the frequency-dependence of the STDP observed 

in thick-tufted L5 neocortical pyramidal cells (Markram, 1996) is not captured 
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by our model in its present form. In this experiment, bursts of pairings were 

presented at approximately 1/2 second intervals. A burst consisted of five presy­

naptic spikes paired with five postsynaptic spikes. The postsynaptic spikes were 

induced by current injection approximately 5ms after each presynaptic spike. 

It was observed that the bursts of pairings only induced potentiation when the 

frequency of pairings within a burst was greater than around 10Hz. In other 

STDP experiments, such a protocol would be expected to induce potentiation 

even at burst rates as low as 1Hz (Bi and Poo, 1998). This apparent frequency­

dependence could reflect important functional differences in the STDP rule in 

different areas of the brain. 

9.8.2 Rate-based Computation 

The rate-based rules that emerges from our switch model are, as \ve described 

them before (Appleby and Elliott, 2005), "doubly emergent", because they de­

pend on the emergence of STDP at the synaptic or temporal ensemble level in 

our model, and then this STDP is itself averaged over time and over many spike 

patterns, giving rise to the rate-based behaviour. 

Mathematically speaking, the STDP rule takes the form of a conditional ex­

pectation value for synaptic change, conditional, that is, on a given spike time 

difference. Second, to turn this conditional expectation value into an uncondi­

tional value, we must weight it by some probability density function for the spike 

time difference, and the probabilities of each possible spike pair. Thus, in order 

to obtain the BCM-like rule, we assumed that the spike time difference distribu­

tion originated from Poisson spike trains. Had we chosen to drive the afferents in 

some other, non-Poisson manner, a different rate-based synaptic plasticity rule 

may have emerged. In this sense, the BCM-rule emerges from an interaction 

between the STDP rule, which is itself emergent, and how we have decided to 

drive the afferents. 

It would be interesting to explore more fully the kind of rate-based learning 

rules that can emerge from our synaptic switch rule under different afferent 

firing patterns. In particular, to explore whether the BCM-like learning rule we 

obtain for Poisson driven inputs is a general feature of the model. If different 

firing patterns were found to give rise to different learning rules, then this would 

suggest the possibility that apparently different rate-based rules may, in fact, 

merely reflect different choices available to the experimenter in how he decides 

to probe his experimental system or, indeed, that as synaptic patterns change 

and hence neuronal firing patterns change, the nervous system may slowly change 

its own rate-based learning rule. 
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9.8.3 Coupling of Potentiation and Depression 

In our switch model we find that the presence of stable, competitive dynamics 

requires that the machinery of potentiation and the machinery of depression 

cannot be completely independent, but rather potentiation and depression must 

be coupled together. This coupling occurs in the sense that once the synapse 

has entered the POT state it cannot subsequently enter the DEP state without 

having first returned to the OFF state. 

A similar coupling is present in other models of competitive plasticity, in partic­

ular the BCM model (Bienenstock et al., 1982) and the Song model (Song et al., 

2000), albeit in a slightly different manner. In the BCM model, the sliding of 

the threshold between potentiation and depression provides the coupling. Again, 

this coupling is critical to the model's successful operation. Without the sliding 

threshold, the BCM rule breaks down with afferents either all falling to zero 

or experiencing runaway potentiation (Bienenstock et al., 1982). In the Song 

model, it is the non-linear integrate-and-fire target neuron that couples potenti­

ation and depression together. With an integrate-and-fire neuron, inputs which 

are potentiated are more likely to experience further potentiation as they exert a 

greater influence on the postsynaptic spike timing. Without the nonlinearity in 

postsynaptic spike timing provided by the integrate-and-fire neuron competition 

in the model breaks down. If, for example, postsynaptic spiking was governed 

according to a Poisson process with rate given by the linear weighted sum of 

its inputs afferents in the Song model will invariably fall to zero or experience 

runaway potentiation, depending on the choice of parameters. 

Thus, we see that in the Song, the BCM, and our own synaptic switch models, 

coupling of potentiation and depression is required to avoid pathological learning 

behaviours. In other models of STDP, despite coupling of potentiation and 

depression being only partially explored, it has been observed that some form of 

coupling could stabilise learning dynamics (Shouval et al., 2002). It is interesting 

to speculate about the role of coupling in a more general model of synaptic 

plasticity. In particular, whether a model in which potentiation and depression 

are completely independent processes can be competitive or not. It would be 

desirable to seek to prove this within the context of the most general class of 

model possible, although this is likely to be very difficult. 

9.9 Closing Summary 

In this thesis we have been concerned with activity-dependent neuronal plasticity 

in the nervous system. We motivated our study of plasticity with a discussion 
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of the often dramatic role plasticity processes can play throughout the life of 

an animal. We then presented a range of experimental results on plasticity, 

from early tetanus-based experiments to more recent spike-timing and single­

input results. A critical reinterpretation of this experimental evidence led us 

to make several key observations. In particular, we noted that spike-timing 

results are often interpreted literally, despite the range of experimental issues 

that still surround these results. We discussed various rate- and timing-based 

models of neuronal plasticity and examined their learning properties. A detailed 

examination of one particular model of STDP, the Song model (Song et al., 

2000), highlighted several important issues surrounding the interpretation of 

STDP results. 

Drawing upon this work, we proposed a new model of plasticity, in the form of a 

synaptic switch rule. The rule governs changes at individual synapses and only 

when the rule is averaged over multiple synapses and multiple spike-pairs does 

an STDP-like rule emerge. The STDP-like rule is therefore an ensemble property 

of our model, which is nowhere instantiated at any individual synapse. In addi­

tion, we found that our switch rule explains a variety of spike- and rate-based 

plasticity results essentially for free. We also found that stable, competitive dy­

namics emerge naturally due to multi-spike interactions. At no stage were we 

required to introduce additional modifications to accommodate particular ex­

perimental results or avoid otherwise undesirable learning behaviours. Indeed, 

ensuring consistency with various experimental results serves to neatly constrain 

the parameters of our model in a concise manner. This is in contrast to many 

other models of STDP, which are often required to introduce additional mod­

ifications and non-linearities to explain experimental results on a case-by-case 

basis. Furthermore, our synaptic switch rule is considerably simpler than many 

competing models of STDP and places a much lower computational burden on 

individual synapses. We are therefore freed from the need to postulate precise 

coincidence detections mechanisms and, as a result, out synaptic switch rule is 

broadly consistent with a range of possible biological implementations. 
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