
University of Southampton

School of Electronics and Computer Science

Faculty of Engineering, Science and Mathematics

Southampton S017 1 BJ

. ~ '.
,,:. ' >. .· l~
~ . I,;~ ..

'f?o,~i\." :: •
.. ~ ~~ _,.r:

"',~ ~,.

Automatic Key Theme Extraction in Natural Language Texts

by

Bon Yiu Mo

A thesis submitted for the award of Doctor of Engineering (EngD)

September 2005

Academic Supervisor: Professor Wendy Hall

Industrial Supervisor: John Darlington

- .
" .. ~ ...

Active" ~ ->
Navigation

Abstract

Information is the most powerful resource available to an organisation. Problems arise

when the amount of management needed to effectively organise the mass of information

available in data-repositories starts to increase, and reaches a level that is impossible to

maintain. Instead of providing value to an organisation the information can serve to

confuse and hamper. This research presents the topic of automatic key theme extraction

as a method for information management, specifically the extraction of pertinent

information from natural language texts. The motivation for this research was to achieve

improved accuracy in automatic key theme extraction in natural language texts. The

performance was evaluated against an industrial context, which was provided by Active

Navigation Ltd, a content management system. The author has produced an architecture

for theme extraction using a pipeline of individual processing components that adhere to

a lossless information strategy. This loss less architecture has shown that it is capable of

providing a higher accuracy of extracting key themes from natural language texts than

that of Active Navigation. The accurate extraction of key themes is essential as it provides

a solid base for other Active Navigation information navigation tasks. These include

advanced search, categorisation, building summaries, finding related documents, and

dynamic linking. Improving these navigation techniques increases the effectiveness of the

content management system.

2

Acknowledgements

The author would like to acknowledge the direction, insight and inspiration provided by

both John Darlington and Professor Wendy Hall, his industrial and academic supervisors

respectively.

John has been the driving force for this thesis and his knowledge and experience in this

area of research has been invaluable. Furthermore he has been instrumental in

laboriously educating the author in this challenging work. Wendy has provided an air of

authority and wisdom that has been enormously beneficial to the author throughout his

study.

The author would also like to express thanks to his colleagues at Active Navigation who

have all contributed to a warm working environment and aided in the progression of the

thesis.

Finally, the author must express gratitude to his family and friends who have served to

motivate and provide support. Thank you.

3

Contents
1. Introduction .. 11

1.1. Information Management .. 11

1.1.1. Current Approaches to Information Management.. .. 11

1.1.2. Automatic Key Theme Extraction ... 12

1.1.3. Natural Language Texts ... 14

1.2. Research Objectives ... 15

1.2.1. Motivation ... 15

1.2.2. Goals .. 15

1.2.3. Deliverables ... 16

1.3. Structure of the Thesis .. 18

2. Background of Active Navigation and Themes ... 19

2.1. Active Navigation Ltd .. 19

2.1.1. Branding ... 19

2.1.2. Method ... 20

2.1.2.1. Navigation Techniques .. 20

2.1.2.2. Dynamic Links ... 21

2.1.3. Purpose of a Theme ... 24

2.1.4. Competitors .. 25

2.1.4.1. Autonomy .. 26

2.1.4.2. Content Analyst ... 27

2.1.4.3. Overview .. 29

2.1.5. Summary of Section ... 30

2.2. Themes ... 31

2.2.1. Theme Theories ... 31

2.2.2. Theme Extraction ... 32

2.2.2.1. Introduction .. 32

2.2.2.2. Traditional Method ... 33

2.2.3. Ranking Themes .. 35

2.2.3.1. Document Scope ... 35

2.2.3.2. Sentence Scope .. 36

2.2.3.3. Phrase Scope .. 36

2.2.3.4. Word Scope ... 37

2.2.4. Summary of Section ... 38

4

3. Background of Natural Language Processing ... 39

3.1. Constituency Language Model ... 39

3.2. Dependency Language Model .. 41

3.3. Current Parsers ... 44

3.3.1. Constituency Parsers ... 44

3.3.1.1. Head Parsing ... 44

3.3.1.2. Shift-Reduce Left-to-Right Parsing .. 45

3.3.1.3. Problems of Deterministic Parsers .. 46

3.3.1.4. Non-Deterministic Parsers .. 47

3.3.2. Dependency Parsers .. 48

3.3.2.1. Statistical Dependency Parsing ... 48

3.3.2.2. Deterministic Dependency Parsing ... 49

3.3.2.3. Discontinuous and Functional Dependency Parsing 51

3.3.2.4. Constraint Satisfaction Dependency Parsing .. 51

3.3.3. The Rationale for Parsing .. 52

3.4. Example Systems ... 54

3.4.1. General Architecture for Text Engineering (GATE) ... 54

3.4.2. Porter Stemmer. ... 57

3.4.3. Brill Part-Of-Speech Tagger (POS Tagger) ... 58

3.4.4. Treebank " Bracket Parser .. 60

3.4.5. Link Grammar Parser ... 62

3.5. Summary of Chapter ... 65

4. Language Model Issues .. 66

4.1. Constituency Model Issues ... 66

4.1.1. Analysis of Components in a Typical Pipeline ... 66

4.1.1.1. Tokenisation .. 66

4.1.1.2. Morphological Analysis .. 67

4.1.1.3. Sentence Splitting .. 68

4.1.1.4. POS Tagging ... 69

4.1.1.5. Syntactic Analysis .. 70

4.1.1.6. Semantic Analysis ... 71

4.1.1.7. Discourse and Pragmatic Analysis .. 73

4.1.2. Component Issues ... 75

4.2. Dependency Model Issues ... 76

4.2.1. Building on Constituency Components .. 76

5

4.2.2. Dependency Structure Parsing .. 77

4.3. Grammar Issues ... 78

4.4. Summary of Chapter ... 79

5. Design ... 80

5.1. System Architecture Overview .. 80

5.1.1. Traditional Architecture Problems .. 80

5.1.2. Requirement for a Lossless Architecture ... 81

5.1.2.1. Minimising Information Loss .. 81

5.1.2.2. Minimising Error Propagation .. 82

5.2. Quad Formalism ... 83

5.2.1. Attribute-Value Pair .. 83

5.2.2. Confidence Value ... 83

5.2.3. Provenance Rule .. 84

5.2.4. Quad Set .. 84

5.3. Components in Architecture ... 85

5.3.1. The Input .. 87

5.3.2. Tokeniser ... 87

5.3.2.1. Delimitation .. 88

5.3.2.2. Character Splitting ... 88

5.3.2.3. Contraction Expansion .. 89

5.3.3. Sentence Splitter .. 90

5.3.4. Quad Generator ... 91

5.3.4.1. Capitalisation Component ... 92

5.3.4.2. Punctuation Component .. 92

5.3.4.3. Number Component .. 92

5.3.4.4. Hypothesis Component ... 93

5.3.4.5. Function Word Component ... 93

5.3.4.6. Suffix Component .. 94

5.3.4.7. Function Word Context Component .. 95

5.3.5. Dictionary ... 96

5.3.5.1. Function Word Dictionary .. 96

5.3.5.2. Content Word Dictionary ... 97

5.3.6. Tag-Set. .. 98

5.3.7. Word-Class Sentence Scorer .. 99

5.3.8. Natural Language Grammar .. 100

6

5.3.8.1. Dictionary and Natural Language Grammar Size 101

5.3.9. Grammar Parser .. 103

5.3.9.1. Earley Parser ... 103

5.3.9.2. Limitations of the Earley Parser .. 107

5.3.9.3. Robust Parser. ... 107

5.3.9.4. Word-Class Predictor .. 109

5.3.9.5. Syntactic Parse Tree Generator .. 110

5.3.9.6. Limitations of using the Grammar and Parser ... 110

5.3.10. Theme Extraction ... 111

5.3.10.1. Candidate Themes .. 111

5.3.10.2. Key Themes .. 112

5.4. Computational Feasibility .. 116

5.4.1. Word-class Sentence Scorer ... 116

5.4.2. Grammar Parser .. 117

5.5. Implementation ... 118

5.6. Summary of Chapter. .. 119

6. Evaluation .. 120

6.1. Introduction to Chapter ... 120

6.2. Outline of Chapter. .. 121

6.3. Information Extraction Evaluation ... 122

6.3.1. History of Information Extraction Evaluation .. 122

6.3.1.1. TIPSTER ... 122

6.3.1.2. Message Understanding Conferences (MUC) .. 122

6.3.1.3. MUC-7 ... 123

6.3.2. Scoring Strategy ... 124

6.3.3. Metrics .. 125

6.3.3.1. Precision .. 126

6.3.3.2. Recall ... 127

6.3.3.3. The Importance of Precision and Recall ... 127

6.3.3.4. F-measure ... 128

6.4. Human Annotation of Themes .. 130

6.4.1. Gold Documents .. 130

6.4.2. Minimising Subjectivity .. : .. 131

6.4.3. Candidate Theme Extraction Gold Documents ... 131

6.4.4. Key Theme Extraction Gold Documents .. 131

7

6.5. Active Navigation Theme Extraction ... 133

6.5.1. Theme Extraction Architecture ... 133

6.5.2. Theming Parameters .. 135

6.5.2.1. Maximum Number of Themes '" 135

6.5.2.2. Percentage of Themes to use from the Document 135

6.6. Author's Theme Extraction ... 136

6.7. Scoring Strategy ... 137

6.7.1. General Points ... 137

6.7.2. Scoring Key Theme Extraction .. 137

6.7.3. Lenient Partial Matching ... 139

6.7.4. Key Theme Scoring Walkthrough .. 140

6.8. Candidate Theme Extraction .. 142

6.8.1. Description ... 142

6.8.2. Test Set .. 142

6.8.3. Results ... 143

6.8.4. Evaluation of Results ... 143

6.9. Key Theme Extraction .. 146

6.9.1. Description ... 146

6.9.2. Test Sets .. 146

6.9.3. Small Test Set Results ... 147

6.9.4. Evaluation of Small Test Set Results ... 148

6.9.5. Large Test Set Results ... 149

6.9.6. Evaluation of Large Test Set Results ... 150

6.10. Summary of Results ... 151

6.10.1. Summary of Candidate Theme Evaluation .. 151

6.10.2. Summary of Key Theme Evaluation .. 151

6.11. Summary of Chapter ... 152

7. Conclusion ... 153

7.1. Summary of Previous Chapters .. 153

7.2. Research Objectives ... 155

7.2.1. Motivation ... 155

7.2.1.1. Key Theme Extraction ... 155

7.2.1.2. Natural Language Texts .. 155

7.2.1.3. Key Theme Evaluation .. 155

7.2.2. Goals .. 156

8

7.2.2.1. Natural Language Grammar .. 156

7.2.2.2. Language Model .. 157

7.2.3. Deliverables ... 157

7.2.3.1. Lossless Architecture .. 157

7.2.3.2. Architecture Components .. 158

7.3. I mprovements for Active Navigation ... 160

7.4. Future Work .. 161

7.4.1. Improving Key Theme Extraction ... 161

7.4.1.1. Natural Language Texts .. 161

7.4.1.2. Semantics .. 161

7.4.1.3. Natural Language Grammar .. 162

7.4.1.4. Dependency of Key and Candidate Themes .. 162

7.4.1.5. Key Theme Scoring ... 163

7.4.1.6. Computational Feasibility .. 163

7.4.2. The Application of Key Themes ... 164

7.4.3. The Semantic Web ... 164

7.4.4. Statistical Methods ... 166

7.4.5. Alternate Evaluations ... 166

8. Bibliography ... 167

List of Equations

Equation 5-1 - Candidate theme score ... 115

Equation 6-1 - Precision ... 127

Equation 6-2 - Recall .. 127

Equation 6-3 - F-measure ... 128

List of Figures

Figure 1-1 - An illustration of themes .. 13

Figure 2-1 - Dynamic link generation .. 23

Figure 3-1 - A constituency tree [Covington, 2000] .. 40

Figure 3-2 - A dependency relationship graph [Covington, 2000] 41

9

Figure 3-3 - Comparing a constituency tree with a dependency graph [Nivre, 2002] and

[Nivre & Nilsson, 2003] ... 42

Figure 3-4 - A constituency tree showing head information [Charniak, 2001] 45

Figure 3-5 - A full Information Extraction pipeline based on a LaSIE backend with ANNIE

shallow analysis ... 56

Figure 3-6 - Transformation-based error-driven learning [Brill, 1994] 59

Figure 3-7 - Link grammar connections .. 62

Figure 5-1 - System architecture .. 86

Figure 5-2 - The flexi-dictionary component... .. 102

Figure 6-1 - Active Navigation theme extraction architecture .. 134

List of Tables

Table 5-1 - Verb contractions and expansions ... 90

Table 5-2 - Negative contractions and expansions .. 90

Table 5-3 - Earley parSing example .. 106

Table 5-4 - Syntactic label weights ... 114

Table 6-1 - Automated system and human performances over the test set, where F-

measure has precision and recall weighted equally .. 124

Table 6-2 - Partial types used in scoring .. 125

Table 6-3 - Theming parameters .. 135

Table 6-4 - Lenient partial matching example .. 139

Table 6-5 - Key theme scoring example ... 141

Table 6-6 - Key theme example results .. 141

Table 6-7 - Result of candidate theme extraction ... 143

Table 6-8 - Result of key theme evaluation - AN (small test set) 147

Table 6-9 - Result of key theme evaluation - Author (small test set) 148

Table 6-10 - Result of key theme evaluation - AN (large test set) 149

Table 6-11 - Result of key theme evaluation - Author (large test set) 149

10

1. Introduction

Information is the most powerful resource available to an organisation. To maximise the

value of information, people must get access to all and only the information they need,

when they need it [O'Hara, 2002]. Problems arise when the amount of management

needed to effectively organise the mass of information available in data-repositories starts

to increase, and reaches a level that is impossible to maintain. Instead of providing value

to an organisation the information can serve to confuse and hamper.

This chapter presents the topic of automatic key theme extraction as a method for

information management, specifically the extraction of pertinent information from natural

language texts. The traditional methods for information management are also discussed

and their problems highlighted.

The research objectives for this project are stated, which include the motivation, goals

and deliverables for the system. The chapter concludes with a structure for the rest of the

thesis.

1.1. Information Management

1.1.1. Current Approaches to Information Management

The two common approaches to information management are categorisation and search:

Categorisation - This is the classification of documents based on key-words. Traditional

manual categorisation is suitable for shallow taxonomies or for a small quantity of

documents, but is inefficient for large corpora. Large-scale manual categorisation usually

leads to difficulties in categorising new documents, and deeply embedded documents can

be difficult to find. Categorisation of large corpora needs to be automated which requires

documents to be automatically classified by their key content.

Search - This is the retrieval of documents based on key-words. Traditional key-word

search engines are very effective at filtering pages that match explicit queries.

Unfortunately most people find articulating what they want extremely difficult, especially if

forced to use a limited vocabulary such as key-words [Middleton et aI., 2001]. For

11

example a document has the phrase 'a green car at red lights', a search for the words

'red' and 'car' retrieves the document as a positive result, even though the entity 'red car'

does not exist in the document, which is poor precision on the part of the search engine.

In essence key-word search engines cannot acquire the same context that people can

because information is too abstractly represented in a document.

Both approaches to information management lack the capability to automatically

recognise the key content of a document, and to perform the categorisation or search on

this key content.

1.1.2. Automatic Key Theme Extraction

The primary requirement to improve information management is by using information

context. This means extracting the key content from a document, referred to as the

'themes', and not just by the key-words.

A theme can be a concept, a description or a semantic notion. A theme can be either a

single word or a phrase. A theme can be a keyword, however they tend to be richer as

they can contain information context to form phrases. The core requirement of a theme is

to represent a document. This requirement does not change over time. Therefore the job

of the theme extraction process is to produce the best representation of the document.

Examples of themes are illustrated in Figure 1-1 which is an example of Active

Navigation's theme extraction and navigation. In Figure 1-1 the themes of interest are

marked-up as links in the document. The clicking of a theme will reveal links to other

documents sharing similar themes. For example, the theme 'ARPA Internet', links to

documents that have themes about 'ARPA Internet' and 'Internet'.

12

• RfC204S . MIME Format Of
. Internet Message Bodies

PREf ACE

Arpanet. emp loyed ~everal informal ~t.and!lrd~ fo r
(mai l) ~enr. among H~ ho~r. compur.er~. It va~

r.hese practices and provide tor those
The rl!:~ulr. ot r.har. I!:ttort va!!! ~ REClUS' The Hjt chhikers

I Gyide to t he Interne t

RFC2324 . Hyper Text Coffee
Pot Cgntrol prptpcpl
(HTCPCPIl 0)

hV''CT''Ok'.T "S~;~~:~~ ;~~r~:~ :~~m:~n~!r~=:~ ~ Individual themes

A user. navigates

by selecting links

to other

documents with

sirriilar themes.

major changes in I!:x i sting

of interest.

in BIf.......!/1ll, 'vn more complex ARPA
gain adequate

emd t. he ~oftuare
A d 1ttl!:rent

int;er- netuork
introduCl!:d.

However I a n att;empt has been made to t r ee it at any dependence o n
tha't environmen't, ~o 'that it can be applied r.o or.her ner.vork text
rne~~age ~y::!tem:f.

The spec1t1cation at Rf C #733 took place over the cour5le ot
one year, using the ARPANET mail environment, it!!!e l !, r.o provid e
an on-going forum tor di~c u!!!!!!ing the capobi l1ties to be included .
Hore 'Chan twenty individUal!!!, t r om acro~~ the country, partici­
pa'Ced in the origina l di~cusBion. The deve l opment. ot 'Chis
rev i sed specitic::ar.ion ha!!!, !!!iml1arly, utilized netfOlork mai l -ba::led
group disc::u!!!sion . Both spe cific ation effort.::! greatly b e nefited
t r om 'Che comments and ide as ot the participan'tO'.

Figure 1-1 - An illustration of themes

Themes are marked­

up as links in a

document.

The theme extraction process is non-trivial due to the complexities of natural language.

The process of extracting themes in a document is a high-level classification problem that

people take for granted because of our extraordinary data processing abilities.

Whilst people typically have the cultural and linguistic experience to comprehend a notion

such as a theme, a computer system requires a considerable amount of predefined

knowledge to perform the same task.

What is required is a process that automates the human ability to extract the key themes

in a document and not just the key-wordS. This process is termed 'automatic key theme

extraction'.

To simulate this process computationally requires an understanding of natural language,

in particular the grammar and ambiguity of a language, and to provide a suitable

language model to extract the information with .

13

There have been serious efforts in the area of Natural Language Processing to

automatically extract themes in documents by means of linguistic methods based on

language parsing. However, despite these efforts this approach still lacks robustness and

more importantly has serious performance problems.

This research attempts to bridge the gap between the capabilities of humans and

computer systems to automatically extract key themes from natural language documents.

1.1.3. Natural Language Texts

Information repositories are generated on a daily basis. Most information in repositories is

stored electronically in the form of documents. However, rarely does the storage of

documentation come in a standard or structured format. How a document is written can

be dependent on an individuals writing style, use of grammar and extent of their

vocabulary.

Documents are a stream of words and are difficult to interpret because of the ambiguous

nature of language. Single words, phrases and even sentences can have ambiguous

meaning. A theme extraction system must be able to resolve these ambiguities.

These complications mean that a document's key themes can be difficult to comprehend,

because they are not expressed clearly. The challenge of natural language texts ensures

problems when attempting to interpret the meaning of the document and extracting only

key themes from it.

14

1.2. Research Objectives

1.2.1. Motivation

The motivation for this research is to achieve improved accuracy in automatic key theme

extraction in natural language texts. The performance is evaluated against an industrial

context, which is provided by Active Navigation Ltd\ a content management system

(eMS).

This evaluation benefits Active Navigation as it shows how to improve their theme

extraction, which in turn creates a better eMS. This improved eMS allows Active

Navigation to provide more efficient management and organisation of data-repositories for

its clients. A consequence of this is that a client requires less human intervention to

manage their information and should result in a reduction in the quantity of manual labour

and ultimately cost.

1.2.2. Goals

The success criterion is to produce a useable grammar and language model that can be

implemented into Active Navigation's current software. It is assumed that the research

extends the current software's capabilities by providing a more accurate navigation

experience of documents.

A new approach to theme extraction requires focus on many issues of computational

linguistics and in particular the problems of grammar, ambiguity and the choice of

language model.

This requires analysis and development of techniques for theme extraction. It attempts to

resolve some of the complexities of theme extraction in natural language by using an

improved language model.

1 http://www.activenavigation.com _ Active Navigation Ltd was the author's sponsoring company

15

It is believed that Natural Language Processing techniques can help to derive better

representation of documents than any key-word methods commonly used in statistical

document analysis.

This is based on the premise that linguistic processing can uncover certain critical

semantic aspects of document content, something that simple word counting cannot do,

and this should lead to a more accurate representation.

1.2.3. Deliverables

The first deliverable is an architecture for theme extraction using a pipeline of individual

processing components that adhere to a loss less information strategy.

At the heart of the architecture is the idea of minimising the information loss. The

extraction of themes to represent a document results in high information loss as only the

themes are kept. To minimise this loss the strategy used is breadth-first non-determinism.

This strategy will be referred to as minimising information loss in this thesis.

A lossless architecture means that all possibilities are tried rather than just a subset. It is

an exhaustive, brute-force approach with no pruning. This is strictly for academic gain as

in the real-world this is never likely to happen as it is too computationally expensive.

There are time considerations to take into account when using a brute-force approach

and this rarely fits into company strategies.

Information persistence between components is required so that all information is

preserved. This contributes to other desired attributes such as minimising error

propagation, and improving the accuracy of components because the information is

handled more transparently.

A novel formalism is required to represent information persisted by each component. This

formalism is called a 'quad' and it captures attribute-value pairs, the confidence value

associated to the pair, and provenance information which stores the origins of a quad.

The loss less architecture keeps track of all choices made by the components using these

quads.

16

The aim of the architecture is to accurately extract key themes from natural language

documents using a fusion of linguistic, statistical and grammar rules.

The accurate extraction of key themes is essential as it provides a solid base for other

Active Navigation information navigation tasks. These include advanced search,

categorisation, building summaries, finding related documents, and dynamic linking.

17

1.3. Structure of the Thesis

Chapter 2 provides a background to Active Navigation and in particular its branding,

method and competitors. It also contains the motivation for using themes and covers

important aspects of themes such as their purpose, theories, extraction, and ranking.

Chapter 3 provides a background to Natural Language Processing and in particular the

contrast and similarity of the two language models of constituency and dependency which

all Information Extraction systems are based. The chapter also provides the different

types of parsers used for both language models and also example benchmark systems.

Chapter 4 raises the issues for both language models, which includes an analysis and

discussion of the sub-standard components in a constituency model, and the use of these

constituency components and problems of dependency structure parsing in a

dependency model. The choice of grammar with which to map a language is also

discussed.

Chapter 5 outlines the design of the automatic key theme extraction system. It begins with

an overview of traditional architecture issues and a justification for a loss less architecture

which is the basis of a new system. The quad formalism is then presented as the

information representation mechanism in the system. This is followed by a detailed

presentation of all the components used in the lossless architecture, which starts at the

input document and finishes with the key themes extracted for that document. Then the

issue of computational feasibility of a loss less architecture is raised. The chapter

concludes with an overview of the system implementation.

Chapter 6 provides an evaluation of key theme extraction of the system compared with

Active Navigation. This includes a history of Information Extraction evaluation, and the

scoring strategy and metrics used. The results of the evaluation and a discussion are

provided. The chapter concludes with a summary of the results.

Chapter 7 provides the conclusions for the system. It provides a summary of the thesis,

whether the system has met the research objectives, and how the research can improve

Active Navigation. The final section outlines future work to improve key theme extraction,

how these key themes can be applied, and looks at the Semantic Web.

18

2. Background of Active Navigation and Themes

2.1. Active Navigation Ltd

This section provides an overview of Active Navigation which is a content management

system and also the author's sponsoring company. It outlines how the system is branded

in the industrial market place and provides a description of the techniques that it uses as

a navigation solution for information management. This section compares and contrasts a

couple of the company's key competitors, which shows different approaches to a solution

for the information management problem. This section concludes with a summary.

2.1.1. Branding

The quantity of information that needs to be managed is growing quickly. This explosion

of unstructured information has made traditional approaches ineffective. Companies

cannot afford the time and resources of manually categorising information. Existing

search engines and information management systems typically require an unacceptable

amount of human intervention or generally produce an inefficient and ineffective user

experience.

The result is that companies are struggling to organise and manage information as it is

created and collected within their enterprise, or published on their public websites.

Information management demands a fresh method for managing unstructured

information. Active Navigation provides a complete, intuitive, navigation solution that

guides non-expert users to the valuable information they need by intelligently managing

unstructured information.

Active Navigation emerged as a commercial vehicle for research at the University of

Southampton into information navigation. Since then it has focused on the analysis of text

using linguistic and statistical techniques.

19

The result is the most advanced technology available commercially for the rapid and

accurate analysis of large quantities of information2
.

2.1.2. Method

2.1.2.1. Navigation Techniques

Active Navigation uses four main navigation techniques to provide a complete navigation

solution these are categorisation, search, related articles and dynamic links.

• Categorisation - This is the classification of documents based on themes. Active

Navigation's categorisation feature helps an information specialist to create a

taxonomy that reflects the information content. The taxonomy is then filled with

documents either automatically or semi-automatically with the information

specialist making suggestions. This process builds taxonomies within a fraction of

the time taken using traditional approaches.

• Search - This is the retrieval of documents based on themes rather than key­

words. Most search engines retrieve documents based on occurrences of

particular key-words. However, this method lacks any sense of context which is

why many search results are spurious. Active Navigation maintains context by

searching for themes contained within documents. Searching by themes ensures

that only relevant results are returned.

• Related Articles - This uses all the themes of a document to search for similar

documents. Typically, related articles are created manually by a team of editors

creating links between related documents. Active Navigation automatically

generates a list of related documents that contain the same themes as the

document being viewed.

• Dynamic Links - This is the navigation of documents by a particular theme.

Dynamic links are a unique selling proposition of Active Navigation and their

importance is highlighted in the next section.

2 http://www.activenavigation.com/Solutions/solutions.htm

20

2.1.2.2. Dynamic Links

Standard hyperlink injection has a variety of problems as it imposes a rigid structure on

how users are able to navigate information irrespective of the needs of the user.

Hyperlinks only provide a one-to-one and mono-directional relationship between

documents, and tend to be very subjective in nature. A web author manually inserts links

into documents which tends to be a time and resource intensive task. Poor link

maintenance can result in broken links and ultimately the loss of customer loyalty.

Hyperlinks are time consuming, expensive to maintain and are inefficient with increasing

content.

The Active Navigation approach is to use a link database or 'linkbase' which is metadata

about a collection of documents that contains a list of themes and documents, and the

relationships between them, which is often many-to-many. The list of themes is created

by theme extraction over the documents. The linkbase is then used to provide dynamic

link injection which automatically populates a document with dynamic links which, when

naVigated, reveal a set of related documents based on the theme.

This Active Navigation approach originated from ideas presented by Microcosm [Davis et

aI., 1992a, 1992b, 1993] and later by Distributed Link Service (DLS) System [Carr et aI.,

1995, 1998].

Microcosm was an Open Hypermedia System, in these systems links are first-class

objects, stored and managed separately from multimedia data [Carr et aI., 2001]. Link

information was stored separately from documents in linkbases. This storage reduced link

maintenance as it allowed changes made to a linkbase to be immediately effective

wherever the link was available. EI-Beltagy [EI-Beltagy et aI., 1999] mentioned that the

concept of abstracting links from documents allowed for a great deal of flexibility since it

allowed adding hypermedia functionality to documents without changing the document

format or embedding mark-up information.

Microcosm allowed the user to navigate through large bodies of information by a number

of different layers of link mechanism. In most hypermedia systems, links have specific

source and destination anchors. Microcosm supported such 'specific' links, but also

supported more general links. 'Generic' links provided a link from a particular object at

21

any position in any document that connects to a particular object in a destination

document [Davis et aI., 1992a, 1992b]. The generic link enabled the destination of a link

to be resolved at run-time calculated on the basis of the content of a source anchor rather

than simply its location in a document.

The DLS provided a powerful framework to aid navigation and authoring [Carr et aI.,

2001]. It was based on Microcosm, and similarly it utilised a variety of link database

processes to offer flexible hypertext functionality to a wide range of end-user applications,

by providing an independent system of link services for the World Wide Web (WWW) and

allowed authors to create configurable navigation pathways for collections of WWW

resources. This was achieved by adding links to documents as they were delivered from a

WWW server, and by allowing the users to choose the sets of links that they saw

according to their interests [Carr et aI., 1998].

This link service provided important functionality for information systems by increasing the

navigation options for users without increasing the problems of information maintenance.

In conjunction with the WWW it provided a powerful tool with which to address the

restrictions of embedded links that are fixed with the publication of a document [Carr et

aI., 1998].

22

I
I

I
f
I
I
I
I
I
\
\
\
\
\

I

/
I

I

/

/
/

/' ,.,. ,.,.
/'

..­..-
------------- _ ---------.... USf'I' A_

~ ~"
/'

/' ,.,."
/" " /" \,

/ \, \,
1\\

[[[j' / \ ~\ ---....... ~_- .. lbe Hidden Garden ---"___ \

__ ~.. I One of the main attractions at \ ---- __ \ --- f. Windsot- Castle isthe Hidden \ \
,~ Garden, It wascteated at the X \

{ s.me time as the gardens at \ \
J Buckingham Palace under the \
1 direction of the them king, I I
I Geot-ge IV, / I I

Ro I F -I Ch Ilb 1 Many varieties: of~d tQl5t!} I Garden,-ng Channel Themes I
ya am' y anne emes \ have been cultivated atthe I I

\·/indsQY C.astle
Buddng h.am Palace
Geot-qe IV.

9.2!aen5 including the world
\ {aro!'-'Jq;k1P~_' This flower has I I
\ soft yellow colouring and is best f f
\ seen inJuly, I I
\ I I
\ / /

\ \ J /
\

\
\,

\,

"-
" "

' ,

""--_ _ \\ page gets I:_~~ 1/
-------.... ,- chfferent linb for --;/ /1

" .(1fferent p eoplc / / / /
..... / / " ~/ //

r~............ ~//

Figure 2-1 - Dynamic link generation

In the Active Navigation system, each user can see different dynamic links depending on

which linkbases are active, This means that installing different linkbases, as appropriate,

it is possible to provide different views on the same set of documents [Davis et aL, 1993].

In the document 'The Hidden Garden' (see Figure 2-1) the themes of interest for a user

are marked-up as dynamic links, These links are used to navigate between related

documents, For example, User A is interested in themes based on 'gardening' whilst User

B is more interested in themes concerning the 'Royal Family', The dynamic links are

generated on a particular document based on a user's themes, So themes such as

'hybrid rose' and 'gardens' become links for User A from the document 'The Hidden

Garden' but themes such as 'Windsor Castle' and 'George IV' become links for User B,

All the navigation techniques central to the navigation solution require understanding of

the language in order to build relationships between documents, The key requirement

therefore is the extraction of the key themes from a document

23

2.1.3. Purpose of a Theme

The primary requirement to achieve a navigation solution is to provide better navigation

by using information context. This means extracting the key content from a document,

referred to as the themes, and not just by the keywords. A theme in this context can be a

concept, a description or a semantic notion.

Active Navigation's method is to extract these themes then to link together similar

documents based on these themes.

In an information management system such as Active Navigation, the information held by

the system is not the actual document but some metadata representation of the

document. Within such a system a document is represented by an object. A document

object consists of both hidden and visible information. The hidden part is the text of the

actual document that is not held in the system, and it is up to the theme extraction

process to make visible the important parts of the document by exposing the key themes.

The purpose of a theme is to represent a document. This purpose does not change over

time. Therefore the job of the theme extraction process is to produce the best

representation of the document.

The theme extraction and link generation should be viewed as separate components. A

link is independent to a theme, which itself is independent of a document. All three

entities are separate from one another.

Creating the links between documents requires a representation of the potential interests

of the user. An interest is represented by themes in some source document. The themes

can be as simple as a text string or as complex as a semantic relationship. The links must

have destination anchors so the set of potential target documents are identified.

These elements are used in a matching function that provides links as output. The

matching function creates links between all the documents based on the extracted

themes. The matching function can utilise many layers of information, currently the level

of detail used at Active Navigation is a string match, but this lacks context. A superior

matching function requires augmentation with information such as an ontology or another

24

information representation. The representation of a theme can be enhanced by using a

higher layer of information.

The matching function can create links based on real world knowledge, but does not

currently do so. For example 'metal door' is a theme and it can have links to other

themes such as 'aluminium door' and 'steel door'. The matcher can take into account

world knowledge that both 'aluminium' and 'steel' are both forms of metal. When a user

selects a theme, potential documents that share similar themes become available for

navigation.

In summary the themes must be expressed effectively otherwise the matching function is

obsolete.

2.1.4. Competitors

Active Navigation's main competitors use text analysis techniques that range from pure

statistical to pure linguistic. The systems that use linguistics require human language

experts for producing lexical semantic tools such as language or domain specific thesauri

or lexicons, and to perform tasks such as manually predefining rules and manual

classification.

Most of the competitor systems require training. This is typically used for statistical

classification and can be unsupervised or supervised. Unsupervised training requires an

existing document collection. Supervised training needs more human effort as it requires

both positive and negative exemplar documents. Both automatically generate rules that

define categories.

The weaknesses that most systems have are domain dependent navigation techniques,

manual tuning and manual training of systems.

The next two sections give a brief overview of two major competitors, Autonomy3 and

Content Analyst4
. This is followed by a quick assessment of the systems.

3 http://www.autonomy.com

4 http://www.contentanalyst.com

25

2.1.4.1. Autonomy

Autonomy's technology brings a fully-automated solution to the problems caused by the

exponential growth in unstructured information. By facilitating the automated

management and dynamic personalisation of information, it enables enterprises to

optimise both the potential and utilisation of their corporate intranets, extranets and

commercial websites.

Autonomy develops infrastructure technology that automatically processes and organises

large amounts of unstructured information into personally relevant content in real-time

and in an efficient manner. The core technology an Intelligent Data Operating Layer

(IDOL) provides a platform for the automatic categorisation, hyperlinking, retrieval and

profiling of unstructured information, thereby enabling the automatic delivery of large

volumes of personalised information.

Autonomy's IDOL brings together the works of Thomas Bayes and Claude Shannon.

Thomas Bayes' work uses statistical calculations of the relationships between multiple

variables and the impact that one variable has on another. A variable in this context is a

piece of information, and the relationship it forms with other pieces of information

determines its meaning. Claude Shannon's contribution is a theory that the rarer a word

or phrase, the more information it conveys. This approach is independent of the language

of the text and allows the main concepts to be identified and prioritised. It does so by

identifying patterns of words and ideas, as well as determining their relative importance to

individual users.

Autonomy's main information management tasks are listed below:

• Automatic Hyper/inking - Autonomy's infrastructure identifies vital relationships

between information enabling the cross-referencing of content. Given any

document or set of documents, Autonomy can identify related material within the

operating layer. Autonomy's IDOL generates hyperlinks in real-time, ensuring

they are immediately up-to-date. Links are automatically inserted at the time a

document is viewed.

26

• Automatic Contextual Summarisation - Autonomy returns a summary of the

information containing the most salient concepts of the content. Summaries can

be generated that relate to the context of the original inquiry - allowing the most

applicable dynamic abstract to be provided for a given operation.

• Conceptual Search - Built on a unique pattern-recognition technology,

Autonomy's core engine enables a manual or fully automated precise means of

matching and identifying the similarity of pieces of information.

• Automatic Categorisation - Autonomy's technology can automatically categorise

data. The flexibility of Autonomy's categorisation features allows you to precisely

derive categories using concepts found within unstructured text. This ensures that

all data is classified in the correct context with the utmost accuracy.

• Automatic Taxonomy Generation - Autonomy can automatically and consistently

understand and create deep hierarchical contextual taxonomies of information

based on conceptual understanding.

Autonomy's method is based on statistical modelling, which allows the information

content to be domain and language independent. This also means that linguistic tools

such as lexicons and grammar are not required. The IDOL treats words and phrases as

abstract symbols of meaning deriving its understanding through the context of their

occurrence. Statistical modelling means that human intervention is made redundant.

2.1.4.2. Content Analyst

Content Analyst technology is a powerful example of a new class of technologies known

as Text Analytics designed to transform large volumes of unstructured data into relevant

actionable information. Text Analytics products automate most of the human activity

traditionally associated with understanding, organising, prioritising and retrieving

information from large sources of unstructured data.

Content Analyst gives organisations the ability to quickly analyse, organise, access and

share information across multiple languages without extensive human intervention.

27

Content Analyst's method is Latent Semantic Indexing (LSI). LSI is a machine learning

technique that extracts and compares every contextual relation among every concept, in

every document, within a collection of documents. It was originally developed by Science

Applications International Corporation (SAIC).

LSI has been designed to solve two fundamental problems of natural language:

synonymy (where multiple words have the same meaning), and polysemy (where the

same word has multiple meanings). For example in the context of key-word search,

synonymy is a problem because a user entering a search word may not retrieve the

correct document because the incorrect synonym of the word was used. With polysemy a

search word may retrieve spurious documents because of the multiple meanings of the

word.

To alleviate these problems, LSI performs a conceptual comparison, which is a statistical

analysis of word co-occurrences in documents and identifies repeatable contexts, topics

or concepts in which a certain group of words occurs. It then generates a conceptual

representation space of all items based on those relations. Within the conceptual

representation space, proximity is used to provide a direct measure of the conceptual

similarity of any two items represented in that space.

Content Analyst's main Text Analytics capabilities are listed below:

• Automatic Conceptual Comparison - This capability is at the heart of Content

Analyst functionality. Given any arbitrary block of text (from a single word to an

entire book), Content Analyst can automatically map that text block into an

appropriate point in a conceptual representation space. It then can provide a

direct measure of the conceptual similarity of any two items represented in that

space.

• Automatic Summarisation - Content Analyst can instantly identify key sentences

that most accurately represent the key concepts within a document, and uses

those sentences to give users a quick summary of the entire document.

• Advanced Retrieval - Operating on the basis of concepts, Content Analyst does

not depend on the words that users choose when they formulate queries. As a

28

result, Content Analyst can retrieve relevant documents even if they contain no

words in common with the queries.

• Automatic Categorisation - Content Analyst can automatically create relevant

categories based on concepts found within documents or other information

sources. Content Analyst then automatically assigns incoming documents into

these categories.

• Automatic Taxonomy Generation - Content Analyst can automatically sort a

collection of documents into subsets based on their conceptual content. Sorting is

data-driven based solely on the content of the documents, not on any

preconceived ideas of how information should be categorised.

Similar to Autonomy the use of statistical modelling means that the system is language

independent and linguistic tools are not required.

2.1.4.3. Overview

The main weakness for both Autonomy and Content Analyst is that their information

management systems rely too heavily on statistical modelling techniques. They sacrifice

language understanding for reduced manual intervention and language independent

systems. This means that the systems have no understanding of language, as words and

phrases become abstract symbols of meaning deriving a systems understanding through

the context of their occurrence.

Take for example the LSI conceptual representation space, where the items within the

clusters do not have linguistic categorisation of what they have in common. This is

because the dimensions in the space have no interpretable meaning in natural language.

Another problem is that the clustering produces an abstract ideal item, which is usually

the centre of mass in the space. This item though may not be the most important theme in

the space.

Active Navigation uses a hybrid of linguistic and statistical techniques to understand the

language in order to build relationships between documents. Fundamental to improving

29

the Active Navigation navigational solution is this language understanding. The key

requirement therefore is the extraction of the key themes from a document.

2.1.5. Summary of Section

This section has provided an overview of Active Navigation. It has outlined its branding in

the industrial market place, and discussed the techniques it uses to provide a navigation

solution. A couple of competitors were discussed to broaden the perspective of viewing

different solutions to the information management problem.

This section has highlighted the importance of extracting key themes from a document

and what the extracted material can be used for, in particular the use of themes to provide

dynamic linking between documents as well as improving other navigation techniques.

The topic of themes and theme extraction is addressed in the next section.

30

2.2. Themes

This section provides an in-depth overview of themes which is essential for understanding

how to build a theme extraction system. This section contains an overview of the different

theme theories, an introduction to a traditional theme extraction process which has been

shaped by these theme theories, and also the important issue of how to rank extracted

themes using different methods. This section concludes with a summary.

2.2.1. Theme Theories

In this section are five proposals on the notion of a theme presented in [Paradis & Berrut,

1996].

• Dependency - One can assume that if an item is dependent on another in an

expression, then the latter is a theme for that expression. For example, in 'red

car', the noun 'car' is considered more important than the adjective 'red'. This

idea is the basis of many grammars [van Riemsdijk & Williams, 1986]:

head-modifiers, Generalised Phrase Structure Grammar, Lexical Functional

Grammar etc. These grammars only apply to head-final languages such as

English where the final noun is usually the head of the noun phrase, and any

preceding and following words are usually modifiers of the noun.

• Thema - In Zemb's statutory analysis [Melby, 1987], the thema corresponds to

what the sentence is about, the rhema what is said about it, and the phema how it

is said. This idea is closely related to the notion of topic in Information Retrieval.

An approximation of the thema, such as using noun phrases, is often thought to

be sufficient for Information Retrieval purposes [Berrut & Palmer, 1986].

• Topic / Focus - Topic Focus Articulation looks at the progression of themes

across sentences [Hajicova & Sgall, 1984]. The idea is that a topiC or a focus that

is repeated in a subsequent sentence can be considered as a theme. This

approach is similar to term frequency in adjacent sentences, so suffers from a

loss of information as only the word count is used, and all other information

becomes irrelevant.

31

• Given / New - Given or old information is supposedly known to the user, as

opposed to new information, and as such can be considered to belong to the

theme.

• Intentionality - The intention corresponds to the idea(s) the author had in mind

when they wrote the document; Grosz and Sidner suggest in [Grosz & Sidner,

1986] that they can be assimilated to topics. I ntentions are also reflected in

linguistics theories of meaning [Grice, 1971]. Section or document headers can

be considered quite informative on the author's intentions in explanatory texts. It

is suggested in [Hirschberg & Litman, 1993] that some cue phrases are a direct

indication of the topics. Meta-discourse expressions such as 'In this paper we

describe ... ' are quite common in scientific literature, and it is hypothesised that

people use those expressions for determining the themes.

The following two points offer ideas on how to derive themes from logical structure and

domain knowledge [Paradis & Berrut, 1996].

• Logical Structure - The logical structure of the text can help identify themes, as it

reflects the structuring of the topics themselves [Hearst & Piau nt, 1993]. This idea

was already used in Information Retrieval in the mid-eighties [Chiaramella et aI.,

1986]. In other words the importance of a theme is inferred from the logical

structure of the document.

• Domain Knowledge - Given a theme one can deduce other themes using domain

knowledge and relationships such as synonymy. It is important to understand the

semantics of the theme in order to form deductions. In order to do this the

domain-specific knowledge, both the context and the vocabulary, must be

understood.

2.2.2. Theme Extraction

2.2.2.1. Introduction

Theme extraction is the process of automatically identifying and extracting pertinent

information from unstructured information.

32

Traditional theme extraction uses statistical modelling to process documents and extract

themes mainly based on noun phrases and to find relationships between them.

Some statistical methods are even more simplistic and treat theme extraction as a word

frequency approach. With this method all sense of word order and context is discounted

as the only focus is the occurrences of words. A word frequency approach can sometimes

derive some correct themes for a document, but generally it misses the key themes as it

does not take context into account. The loss of information in this method is prominent,

and affects any post extraction techniques.

It is hypothesised that Natural Language Processing techniques can help to provide

better representation of documents for information navigation purposes than any simple

word based methods commonly used in statistical modelling [Strzalkowski et aI., 2000].

This is based on the premise that linguistic processing can uncover certain critical

syntactic and semantic aspects of documents that simple word counting cannot do, and

this should lead to a more accurate representation.

2.2.2.2. Traditional Method

Theme extraction requires understanding of Information Extraction (IE) and Information

Retrieval (IR). It is important to distinguish between the two and identify the position that

theme extraction covers.

IE is the extraction of facts using templates to populate a database. IR is used in the

retrieval of documents. Theme extraction covers parts of IE and IR as it extracts

information from texts that can then be used for document retrieval. The process of

extracting information from texts in theme extraction can be viewed as being similar to

Named Entity recognition.

The theme extraction process requires a substantial quantity of work to build up an

architecture that is capable of extracting themes from unstructured information. The main

components used in a theme extraction architecture include a combination of linguistic

(knowledge-based) and statistical tools. This can be viewed as a linear path consisting of

the following steps:

33

• Tokenisation - The text content of a document must be delimited so that latter

components can process the token stream appropriately.

• Lexical Analysis - Lexical analysis usually has two parts. The first is a lexicon of

syntactic and semantic information about words and idiomatic phrases. Secondly

a collection of morphological rules for recognising regularly inflected forms of

words, for recognising words derived from other words by the addition of prefixes

and suffixes, for recognising words formed as compounds of known words (e.g.

'shoelace'), and for guessing syntactic and semantic information about unknown

words [Woods, 1997].

• Stemming - This is the normalisation of words, where the root form of a word is

extracted. Although stemming is useful in finding other words that have small

derivations, it losses inflectional information from the word and can be inaccurate

because they can be too aggressive or too passive in nature.

• Word-Class Assignment and Word Sense Disambiguation - Determines which

word-classes and word sense (e.g. 'suit' can be either about clothing or with legal

cases) apply, given the particular context in which the word occurs [Cardie,

1993].

• Phrase Analysis - This is the formation of syntactic structures traditionally using

the word-class information derived from the token stream. A parser and grammar

are vital for recognising the structures [Woods, 1997]. Usually noun phrases are

extracted from the syntactic structures to represent candidate themes.

• Pruning of Modifiers - Pruning is a method that loses information. Some losses

are acceptable however. For example the determiner word-class can often be

stripped from the beginning of noun phrases whilst losing only losing minimal

information, but when adjective and adverb word-classes are pruned the essence

and meaning of the theme are lost and this is unacceptable. E.g. in the theme

phrase 'the big red car' the determiner 'the' can be pruned but 'big' and 'red' are

preserved. This pruning of noun phrase modifiers uses a stop-word list which is a

list of function words that do not add content to a theme.

34

• Ranking Themes - Themes that are not representational of the document are

masked. Some linguistic methods for filtering out irrelevant themes for a user are

based on either a thesaurus or a lexicon [Nakata et aI., 1998]. This is particularly

relevant for domain-specific documents or users with a specific interest. Some

statistical methods are scoring strategies or the use of clustering techniques

where the centre of mass and items with a close proximity to it are the ideal

themes to represent the document.

The main problem with current theme extraction systems is that components in the

architecture make decisions which lead to only a single output being presented to the

next component. This 'best-guess' approach means that information is lost, which

critically means that the correct decision is lost or the wrong decision is passed onto the

next component. This means that errors are likely to propagate through the system.

To accomplish theme extraction more accurately requires retention of information, and so

adhere to a loss less ethos. Otherwise as soon as information is lost, there is no way of

getting it back.

2.2.3. Ranking Themes

Representing the relative importance of a theme requires ranking and ordering of it

against others. The ranking of themes requires a weighted calculation of a number of

measurable variables available from the document to determine a themes importance.

Some of the most important ones are explained in the next sections. They can be

categorised by the scope that they work in. These different scopes are document,

sentence, phrase, and word. It is a combination of these variables that decide key

themes, not just on one particular one.

2.2.3.1. Document Scope

• Position in Document - The position of a theme in the document structure can be

an indicator of its importance. Major headings and sub-headings usually function

as concise summaries of their related content bodies, and as such can be

interpreted as key themes. However, some of these do not represent the

document in any way. Document structure alone is not enough reason to extract

35

a key theme; more contextual information is needed to determine how

representative the theme is of the document.

• Frequency of Occurrence - The frequency of occurrence of a theme and of its

synonyms, anaphoric references and derivations, usually indicates it as a key

theme. Critically, sometimes the more subtle, lower occurrence themes can also

be considered to be important.

• Aesthetic Cues - When documents are written, it is human perception that allows

the addition of aesthetic cues to enhance the intentions of an author's original

document. Factors such as colour, font, size and style can help determine the

importance of particular parts in a document. They can signify parts of the

document that are of interest to the reader, or parts that are more important than

other parts, but it does not mean that the part has to be a theme.

2.2.3.2. Sentence Scope

• Syntactic Function - The word order in a sentence gives an indication of

importance. It determines the syntactic function of different parts of a sentence

and aids in identifying potential themes such as the subject and objects of a

sentence.

• Dependency - Word dependencies can often identify the potential theme

amongst a group of words. For example the term 'big red car', the words 'big' and

'red' are dependent on the word 'car' and therefore 'car' has more importance.

2.2.3.3. Phrase Scope

• Explicitness of Context - Longer phrases contain more context than single words.

This context is a primary discriminator of importance. In general longer themes

are preferred to shorter ones as they are more specific representations of a

document. For example 'Prime Minister Tony Blair' is preferred to 'Blair'.

As a longer theme stores more context there is a possibility that it can be

expanded into multiple shorter themes. These shorter themes can be unique

36

themes and the conceptual similarity between the short themes and the longer

theme is close.

• Function Words - Function words (aka closed-class words) can join smaller parts

together to form a theme. The affect of this is that the theme contains more

information and it can also allow the deriving of themes that do not exist in the

text. Understanding the syntax that each function word imposes is essential for

this operation. For example the theme 'safe handling and use of concrete blocks'

can be interpreted as two themes 'safe handling of concrete blocks' and 'use of

concrete blocks', even though they are not explicit given the linearity of the text.

• Modifiers - A theme can have any number of modifiers. The general hypothesis

is that more modifiers are better, but up to an unspecified limit. The key decision

is to stop adding modifiers that do not add value to the theme.

One solution for determining the number of modifiers is to use a weight for each

modifier. This assigns a weight for each modifier based on its word-class. The

product of the modifiers defines how long the modifier chain is. The chain starts

at the theme head and modifiers are only allowed if the product remains above a

threshold.

It is also hypothesised that the proximity of a modifier to the theme head dictates

its importance, so that close or adjacent modifiers are more important than ones

that are further away. E.g. in the phrase 'nice blue metallic car', the modifiers

'nice' and 'blue' have less affect on the theme head 'car' than the modifier

'metallic'.

2.2.3.4. Word Scope

• Word-Class Assignment - A word-class is a syntactic tag that identifies the type

of function that a word serves. Often themes are nouns, but in certain cases they

can be of other types.

• Capitalisation, Proper Nouns, Acronyms and Abbreviations - Capitalisation of a

word usually indicates a proper noun, acronym or abbreviation, which are often

37

candidate themes. However not all of these are considered a theme. The major

problem is ambiguity. For example some words are difficult to distinguish without

extra context. E.g. 'May' can be a name, month, or modal auxiliary verb.

• Common Nouns - Common nouns are often candidate themes.

• Times, Dates and Numbers - The presence of times, dates, and numbers usually

indicates a presence of a theme. These entities often directly modify a theme, but

are sometimes themes on their own right. E.g. '9/11'.

2.2.4. Summary of Section

This section has provided an in-depth overview of theme theories, a typical theme

extraction process, and methods to rank extracted themes.

The theme theories have defined different strategies to identify themes in text. The

author's theme extraction system will aim to be similar to traditional Information Retrieval

systems and to this end it will use an approximation of thema theory, which is to extract

noun phrases, and an approximation of topic/focus theory so that term frequencies can

be used. The system will not be using the dependency, given/new or intentionality

theories as they require too much semantic knowledge. It should be noted that most of

these theme theories assume at least one theme per sentence and there is no such

requirement on the author's system.

This section has also highlighted the various ways that themes can be interpreted from

text and how an automated system can use linguistic methods to extract these themes

and output the most pertinent ones.

The knowledge from this section is used in designing and implementing a theme

extraction system for evaluation with Active Navigation.

38

3. Background of Natural Language Processing

Natural Language Processing (NLP) is the application of Artificial Intelligence techniques

to answer questions about text written in a human language. The question being asked

for this research is how to extract themes from the text.

Understanding of theme extraction first requires an in-depth look into the background

history of NLP, in particular the constituency and dependency language models on which

all Information Extraction systems are based.

This chapter provides a detailed discussion into the two polarised language models of

constituency and dependency, and then parsers are discussed for the language models

as both use grammars to form syntactic representations.

Some benchmark systems for both language models are compared and contrasted; this

shows that the type of model strongly influences the architecture of a system. A summary

concludes the chapter.

3.1. Constituency Language Model

A constituency grammar is the basis of formal language theory as studied by computer

scientists [Covington, 2000]. It is a formal interpretation of a language and is expressed

by a set of grammar rules which provide the coverage of the language.

Constituents are syntactic structures that bracket together parts of a sentence, based on

the grammar rules. The bracketing can be at the lowest level, such as phrase bracketing

or at higher levels, such as clause and sentence bracketing. Constituents are not allowed

to overlap and in this vain the constituents form a hierarchical tree structure, often

referred to as the constituency tree (see Figure 3-1). Each level of attachment in the

constituency tree represents larger constituents.

At the bottom of the tree are the terminal nodes, these are the smallest lexical element

and are often individual words. Each word is given a classification based on its word

class. For example the word 'an' is tagged as a determiner (0) and the word 'grammar' as

39

a noun (N). The non-terminal nodes define the constituents. For example the preposition

phrase (PP) consists of a preposition (P) and a noun phrase (NP). The root of a

constituency tree defines a valid sentence.

--------~----"--.------ --
S -l

~------ -NP VP-------------------
Sentence

I~
Pm V NP

~ Phrase
D N PP

~
P NP

~-=--=-=-
NP N

I
N

I
Word

Tlris is an example of constituency grammar

Figure 3-1 - A constituency tree [Covington, 2000]

Constituency grammars are popular as language models largely because they are easily

modelled by the context-free phrase-structure grammars [Covington, 1990]. The context­

free grammars (CFGs) come from a branch of mathematics rather than of natural

language. Given the nature of CFGs it is obvious that they do not have enough

expressive power for natural language as they require unambiguous grammars. Natural

language though is extremely ambiguous.

Multiple tree interpretations occur in constituency grammars due to attachment

ambiguities and word class ambiguities. It is left up to the grammar rules to resolve these

ambiguities.

Although constituency grammars have been highly successful with English language, it

has trouble with variable word orders for two reasons. First the order of the constituents is

variable, second, and more seriously, variable word order often results in discontinuous

constituents. Although a constituency grammar may be rich enough to handle free word

orders if it is combined with a transformational grammar.

40

3.2. Dependency Language Model

The latest syntactic theories put less and less emphasis on trees as a representation of

structure. The emphasis is shifting toward the grammatical relations (aka dependency

relationships) that link the head of the phrase to the other constituents of the phrase

[Covington, 1990].

The dependency grammar structure is a directed acyclic graph (see Figure 3-2). With

nodes representing lexical elements and edges representing dependency relationships.

Normally there is a requirement that the graph is connected and acyclic, which means

that it is rooted graph with the root node representing the head of the sentence. In

constituency grammar the root is the entire sentence, but in dependency grammar the

root is the main verb, this is because they have sub-categorical arguments (subject,

object etc.) as their dependents.

Pm

This

1\
v D N P N N
is an example of dependency grammar

Figure 3-2 - A dependency relationship graph [Covington, 2000]

In general, the dependent is the modifier, object or complement, it can either precede

(pre-dependent) or follow its head (post-dependent). A word is independent if it is not a

dependent of any other word. The head plays the larger role in determining the behaviour

of the pair, and therefore the notation for the edges usually point from the head to the

dependent.

The dependent presupposes the presence of the head. I.e. adjectives depend on nouns,

not vice versa. Whereas the head does not require the presence of the dependent.

The goal of a dependency grammar is to describe syntactic analysis of sentences using

dependency relations that show the head-dependent relations between words. This is an

improvement on constituency grammars as it allows explicit syntactic disambiguation of a

41

head and its dependents (see Figure 3-3), and the dependency relationships are close to

the semantic relationships needed for the next stage of interpretation. A dependency

relationship can in theory relate one word to another across the entire sentence; this is an

improvement on the constituency grammars, because most of the phrase structures are

limited to local context.

s /vp
NP /~NP

I / /"~
Pro V D~ N

I I I I
she bought a car

t l l_Jj
DET

/~-

SUB.] OB,J

Figure 3-3 Comparing a constituency tree with a dependency graph [Nivre, 2002] and [Nivre & Nilsson, 2003]

In a dependency graph, constituents still exist but they are derived rather than a

fundamental concept; for example a phrase consists of any headword together with all

the words that depend on it. Following the modifier chains of a headword in both

directions, to the most distant modifiers, yields the phrase headed by the word. The label

for the phrase can be generated from the word class of its headword. Therefore the

common formal property of dependency structures, as compared to the more common

syntactic representations based on constituency, the lack of phrasal nodes becomes a

grey area.

There can be a number of parameters that can vary between different dependency

grammars. For example, lexical elements can be assumed to represent words, strings-of­

words or even parts-of-words; and dependency relationships can be labelled with

syntactic functions, semantic roles or not at all. Dependency grammars also vary in the

model that they use, but most incorporate these principal features:

42

• Uniqueness - Every element of the dependency graph has a unique head. The

verb serves as the head of a clause, and the top element of the sentence is thus

the main verb of the main clause.

• Projectivity (aka Adjacency) - A head and its dependent can only be separated

by other dependents of the same headword. More formally, A is adjacent to B

provided that every word between A and B is a subordinate to B. In a linear

dependency grammar this amounts to the requirement that there are no crossing

edges. There is a strong correlation between projectivity and linearity, in that

linear dependency grammars tend to assume projectivity, whereas non-projective

grammars typically use non-linear dependency graphs.

• Valency - This governs which arguments are expected, it describes the number,

and type of modifier a dependency can have. Usually complements (obligatory)

and adjuncts (optional) are distinguished.

• Multiple Parse Trees - As with constituent grammars, multiple parse trees can

occur, this is usually when a word has several syntactic functions with respective

dependency relatives. This forms a dependency forest. Global pruning is required

to extract the dependency relationships that form consistent trees.

43

3.3. Current Parsers

Both language models depend on a grammar to build syntactic structures. Independent of

the choice of language model, a grammar requires a parser to process the information. A

parser is a program that determines the structure of a sentence. This definition of parsing

is taken from [Aho et aI., 1986), "Parsing is the process of determining if a string of tokens

can be generated from the grammar".

Constituency and dependency language models both have many parsing strategies. The

next couple of sections aim to provide an overall guide into the state-of-the-art parsers

available for both language models.

3.3.1. Constituency Parsers

Constituency parsers frequently adopt a bottom-up approach to building constituents, and

therefore rules need to be defined to encapsulate the scope of each and every

constituent, as well as an efficient rule selection process in ambiguous cases. In reality

this is a tough task as a structured approach cannot deal with poorly formed items such

as sentences.

3.3.1.1. Head Parsing

A major branch of constituency parsing is head parsing where the head of each phrase is

passed up the tree. Head parsing is not just a parsing technique but also helps to add

extra information to the parse tree, in this case showing the heads at each non-terminal

node (see Figure 3-4).

44

VPPlil

7\ ppin

/~
verb/put det:rhc noun ball prep in det'tbc noun box

I I I I I I
put the ball III tile box

Figure 3-4 - A constituency tree showing head information [Charniak, 2001]

Charniak's immediate head parser [Charniak, 2001] is a statistical left-to-right parser

using a trigram model. For each sentence position in left-to-right parsing the probability of

the next word is computed based upon the previous two words. These probabilities

cannot be modified. The immediate head parsing model assigns a probability to a parse T

by a top-down process of considering each constituent C in T.

All of the properties of the immediate descendents of a constituent C are assigned

probabilities that are conditioned on the lexical head of C. For example in Figure 3-4, the

probability that the VP expands into 'Verb NP PP' is conditioned on the head of the VP,

as are the choices of the sub-heads under the VP, such as 'ball' (the head of the NP) and

'in' (the head of the PP).

A head parser has the advantage of working from heads out through islands of certainty

before dealing with less certain regions of a parse. Head parsers combine top-down and

head-outward bottom-up parSing, which gives them the distinctive feature of sometimes

working over discontinuous regions around heads rather than left-to-right.

The problem with head parsing is the cost in holding unattached constituents in head-final

languages such as Japanese, Korean and German.

3.3.1.2. Shift-Reduce Left-to-Right Parsing

Most constituency language models adopt a left-to-right parse with a k-token lookahead.

The reasoning behind this is that most languages are read from left-to-right and

predictions are automatically made by the reader of what words occur next.

45

These parsers have a stack and as input the first k-tokens of the input are the lookahead

[Appel, 1998]. Based on the contents of the stack and the lookahead the parser performs

two kinds of action, either 'shift', which moves the first input token to the top of the stack

or 'reduce', when it chooses a grammar rule X -7 ABC; pop C, B and A from the top of the

stack; push X onto the stack. Initially the stack is empty and the parser is at the beginning

of the input. The action of shifting the end-of-file marker is called 'accepting' and causes

the parser to stop successfully.

The problem with left-to-right parsing is the possibility of obsolete rules, and more

importantly errors cannot be corrected later if an incorrect shift or reduction is made.

Ambiguities arise when more than one operation is allowed. A shift-reduce parser

encounters ambiguity in three possible places [Mellish, 2004]:

• Shift / Shift Ambiguity - arises when a word is lexically ambiguous.

• Reduce / Reduce Ambiguity - arises when more than one sequence of

categories at the top of the stack can be reduced (or a sequence can be reduced

in more than one way).

• Shift / Reduce Ambiguity - arises when both a shift and reduce are possible at

some point.

3.3.1.3. Problems of Deterministic Parsers

Head parsing and shift-reduce left-to-right parsing are both forms of deterministic parsing.

Deterministic parsers have unrecoverable problems when faced with issues such as

interpreting an ambiguous grammar, handling sentence context, and performing robust

parsing of input sentences.

Natural language is not deterministic in nature. It is ambiguous and complex. A grammar

that aims to model natural language needs to provide coverage for ambiguous

interpretations of arbitrary input. Unfortunately a deterministic parser cannot manage an

ambiguous grammar mainly for two reasons.

The first is that it uses an unambiguous grammar to make parsing of input simpler. This

forms a distorted grammar as it attempts to fit a grammar to a deterministic parser. This

46

misses the point of modelling natural language as it is the grammar that is paramount, not

the parsing technique. Trying to make a grammar unambiguous loses the structure of a

language.

Secondly deterministic parsers only provide a single syntactic representation as output,

which means that at any ambiguous point in an input, disambiguating rules are used to

decide which path to take. All other possibilities are discarded. These rules are simplistic

in nature. Such as always choosing shift over reduce when conflicts arise; choosing first

matching rule from a set of possible matching rules; or making a decision only using a

single-token lookahead which lacks context. The output is therefore dependent on the

disambiguating rules and not actually on the context of the input, this means that the

output can be incorrect and potentially correct representations are lost.

The author assumed that a natural language can never be fully derivable by a set of

grammar rules. Therefore the grammar is always incomplete. This means that some input

cannot be parsed as there is no suitable grammar rules to consume the input. A

deterministic parser therefore cannot accept the input. A more desirable parser must be

more robust and be able to manage complex input in an appropriate way.

In summary a deterministic parser can only produce one parse per input string, and it is

unable to produce ambiguous multiple parses which means that information is lost. The

solution is to use non-deterministic parsers.

3.3.1.4. Non-Deterministic Parsers

There are many variations of non-deterministic parsers, the most important of these are

Generalised Left-Right (GLR), Tomita, and Earley parsers [Aycock & Horspool, 1999,

2001,2002] [Aycock et aI., 2001] [van den Brand et aI., 2002] [Horspool & McLean, 1996]

[Inui et aI., 1997] [Lavie & Tomita, 1993] [Marino et aI., 1987] [McPeak & Necula, 2004]

[Numazaki & Tanaka, 1990] [Thorup, 1994] [Tomita, 1990] and [Wagner & Graham,

1997].

In essence they all perform the same thing which is to simulate parallel execution of

multiple copies of a left-right parse, and so simulating non-determinism and effectively

taking all actions rather than deciding on a single action.

47

A non-deterministic parser operates on the same principles as left-right parsers, but they

can be used with all arbitrary context-free grammars, including ambiguous grammar. The

parser acts as a normal left-right parser until a conflict forms, it then clones new copies of

itself to track each of the conflicting actions simultaneously. Some copies of the parse

subsequently reach a state where parsing cannot proceed and these copies of the

parsers simply terminate execution.

A non-deterministic parser does not place any restrictions on the grammar, which means

that the parser instead fits around the grammar and making the modelling of human

language more accurate. It also means that information is not lost, and so all syntactic

representations of the input are retained.

3.3.2. Dependency Parsers

Dependency parsing is by accepting and attaching words one at a time rather than

waiting for complete phrases. This is claimed to be closer to human parsing [Abney,

1989) as no presumptions are made in advance. This overcomes the psycholinguistic

objection to shift-reduce parsing. As the parser's job is only to connect existing nodes, not

to postulate new ones (unlike constituency grammars), the task of parsing is in some

sense more straight forward.

3.3.2.1. Statistical Dependency Parsing

The family tree of dependency parsers has many branches, most of the work is based on

'statistical parsers' [Berger & Printz, 1998a, 1998b) [Carroll & Bricoe, 2001) [Carroll &

Charniak, 1992) [Chelba et aI., 1997) [Infante-Lopez et aI., 2002) [Nivre, 2002, 2003) and

[Paskin, 2001). In statistical dependency parsing the disambiguation is performed using

decreasing probabilities and constraints, the main choice to be made is the learning

algorithm to be used.

The probabilities are extracted by running a pass over the training data to extract the

potential information to be used and to use these statistics to form the basis of the model.

The training data tends to be either unmarked text, or marked up with word class

information using a constituency tool called a part-of-speech tagger. The training data is

never marked up with dependency information.

48

The major weaknesses of these approaches are the lack of linguistic information, lack of

syntactic labelling of the dependency relationship and they are limited to projective

grammars. Being of a statistical nature they also suffer from sensitivity to sparse data and

the difficulty of setting heuristic measures.

3.3.2.2. Deterministic Dependency Parsing

'Deterministic parsers' advocated by [Arnola, 1998] and [Nivre & Nilsson, 2003] tend to

build a syntactic analysis based on efficient disambiguation, high accuracy and

robustness. These parsers though can suffer from a lack of labelled links, and the

robustness feature means that a rooted tree is not required, so there is no projectivity

constraint and a complete dependency structure does not need to be found. With

deterministic parsers, once a link had been added it cannot be removed and therefore

blocks the addition of other possible edges, even if the link is later found to be in error.

This also means that local syntactic relationships tend to be formed.

Deterministic dependency parsing can be viewed as an interesting compromise between

so-called deep and shallow processing. It is a kind of deep process in that the goal is to

build a complete syntactic analysis for the input string, not just identify basic constituents

as in partial parsing, but it resembles shallow processing in being robust, efficient and

deterministic. For certain applications of dependency parsing, such as the detection of

dependency relations for Information Retrieval in unrestricted text, the level of precision,

efficiency, and robustness obtained can be sufficient to justify the use of a deterministic

parser.

Deterministic dependency parsers have two major sub-branches, those of 'block-based

parsers' [Krymolowski & Dagan, 2002] [Kubler & Hinrichs, 2001] [Zhou, 2002] and 'finite­

state parsers' [Ciravegna & Lavelli, 1999] [Elworthy, 1999] and [Oflazer, 1999].

Block-based dependency parsers use a constituency-based partial parser plus

dependency parsing on the resulting chunks (a chunk is usually a syntactic structure such

as a phrase). Chunks are usually non-recursive syntactic structures which form larger

recursive structures. Such larger structures are not only desirable for a deeper syntactic

analyses but they also constitute a necessary prerequisite for assigning function­

argument structure that aids robustness by dealing with unrestricted texts.

49

Traditional dependency grammar builds dependency relations between any of two

specific words, which require a large word-based grammar to be produced, which is a

demanding task, and fully annotated treebanks (repositories of manually annotated text)

and specific texts in unique domains, or languages other than English are not readily

available. Block-based parsing uses constituency parsing to compensate for the lack of

knowledge of word-based dependency parsing, and reduces the scope of dependency

relations between dependents and heads of chunks rather than just individual words.

The partial parser produces a structure in which some constituents remain unattached or

partially annotated, in keeping with the partial parsing strategy to factor out recursion and

to resolve only unambiguous attachments. Parsing proceeds by growing islands of

certainty into larger and larger phrases. The major advantage of partial parsing is that

ambiguities are never passed on to higher levels, as the parser is generally aiming to

annotate only partial, reliably discoverable tree structures, the result is containment of

ambiguity. But some phrases are never resolved, and so some constituents are never

attached.

The finite-state dependency parsers use different levels (or cascades) to produce a

dependency structure output. Each level contains parse rules for one or more phrase

types, and passes on completed phrases and unparsed elements to the next level. The

basis of finite-state parsing is computational efficiency, lower time complexity, and easy

integration of levels of processing (modularisation).

The parser attempts to form a phrase from the longest prefix of the input which matches a

rule in the grammar. If it succeeds, it continues with the remainder of the input, if not, the

word remains unparsed and the parser resumes with the following word. There is no

recursion so phrases never contain same-level or high-level phrases. The spans of input

elements are reduced to single elements in each finite transduction, as in traditional

parsing.

Finally dependency links are constructed by means of transducers which introduce

'channels' representing potential locations for dependency links. The actual links are then

constructed for the lexical items and morphemes that are specified to have suitable

potential connections and constraints such as projectivity are respected. The difficulty

50

with this approach is that the grammar must be deterministic (I.e. no conflicting left-to­

right longest match rules).

3.3.2.3. Discontinuous and Functional Dependency Parsing

A couple of other influential dependency parsers are Covington's 'discontinuous

dependency parser' [Covington, 1990, 1994, 2000] and Jarvinen and Tapanainen's

'functional dependency parser' [Jarvinen & Tapanainen, 1998] and [Tapanainen &

Jarvinen, 1997].

The unique selling point of the discontinuous dependency parser is that it can model both

fixed and variable word orders providing unlimited word order freedom by using a non­

deterministic algorithm. Discontinuous dependency parsing treats free word order as the

simplest case, and treats restrictions on word order as additional constraints. Despite

being able to handle unlimited word-order freedom, the parser has a psychologically

realistic preference for near attachment, as it tries near attachments first. To adopt a fixed

word order, the parser needs to be able to specify that a phrase must be continuous, then

specify the order of the head relative to each of its dependents and finally specify the

mutual order of the dependents of a head.

The functional dependency parser is an extension to the original 'constraint grammar

parser of English,5 by adding a dependency parser layer. The reason for this is that the

syntactic tagset of the constraint grammar provided an under-specific dependency

description. The words can be defined as heads but the parent cannot be indicated,

whereas with the functional dependency parser dependencies are made clear by

declaring the heads and dependents. As the original constraint grammar was shallow,

differing tags may have received the same type of label therefore a considerable amount

of syntactic ambiguity cannot have been resolved reliably.

3.3.2.4. Constraint Satisfaction Dependency Parsing

Finally there are 'constraint satisfaction parsers' [Blache, 2000] and [Menzel & Schroder,

1990]. In contrast to the traditional view on parsing as a constructive process, which

5 http://www.lingsoft.fi/doc/engcg/intro

51

builds new tree structures from elementary building blocks and intermediate results,

eliminative approaches organise structural analysis as a candidate elimination procedure,

removing unsuitable interpretations from a maximum set of possible ones. Hence parsing

is constructed as a strictly monotonic process of ambiguity reduction.

In this approach, constraints are not directly expressed over linguistic objects, but over

the relations. This entails a passive use of constraints in the sense that the parsing

process consists in building first these relations, and then verifies that they satisfy the

constraints. Practically, this has an impact on the scope of the constraint which can only

be local and applied to a given structure. Being reductionist in nature it allows arbitrary

categories (not just the head verb) to serve as the top node of the dependency graph, of

course these configurations need to be penalised appropriately but it does give the

grammar an option if no alternative interpretations remain.

Constraint parsers can use weighted violable constraints. Violable constraints allow

marking up of some analyses as better as others, giving the flexibility to provide analyses

for even highly ungrammatical input; this improves the robustness of the parser. Flexible

constraints better model human parsing as it is robust towards grammatical errors in the

input, and can disambiguate between alternate analyses by comparing their plausibility

and picking the best. A complete disambiguation is achieved provided that enough

preferential knowledge is encoded by the constraints.

3.3.3. The Rationale for Parsing

The reason for parsing is the formation of syntactic structures from which to extract

themes. This is the author's chosen method to determine the structure and to identify the

important information of a sentence. An alternative option for identifying important

information would be to use the Minimum Description Length (MOL) [Rissanen, 1978] and

[Grunwald, 2004].

MDL is a method for inductive inference to infer general laws and principles from

particular instances. The first central MDL idea is based on the insight that every

regularity in data may be used to compress that data. The more regularities there are, the

more the data can be compressed. The second central idea is that learning can be

52

equated with finding regularities in data. In other words, the more we are able to

compress the data, the more we have learned about the regularities underlying the data.

In respect to natural language, MOL can be used to substantially compress text, as long

as it is syntactically mostly correct. By first describing a grammar for that language, and

then describing a text T with the help of that grammar, T can be described using much

less bits than are needed without the assumption that word order is constrained

[Grunwald, 2004].

As MOL performs statistical modelling over text, it cannot capture linguistic information

that can identify themes and it cannot identify key themes that occur infrequently. By

parsing the text the actual linguistic structures are generated and the importance of these

structures are analysed to extract the key themes.

53

3.4. Exam pie Systems

This section is an overview of some of the systems used in Natural Language Processing.

The first four are constituency based whilst the final system is similar to a dependency

model. The General Architecture for Text Engineering system is a pipeline for Information

Extraction. It is a solid starting point for understanding the types of components that are

required in a constituency pipeline and their interactions with each other. The Porter

stemmer is a suffix stripping system that can be used as a morphology component in a

constituency pipeline. It is a component that looks trivial, but in fact deals with a complex

problem. The Brill part-of-speech tagger deals with a fundamental part of a constituency

model, it assigns word-class to words. It is arguably the most important component in the

constituency pipeline, as word-class information is required in higher levels in order to

build up larger constituents and for ambiguity resolution. The Treebank II bracket parser

shows how powerful a constituent grammar can be given a rich expressive tagset that

can deal with sentence level structures, the only problem is that it is manually annotated

and so cannot be used in automatic Information Extraction at present. Finally the link

grammar parser based on link grammar an original theory of English syntax. It is very

similar to the dependency model in that it is builds up relationships between words, but it

is far more expressive than any dependency model.

3.4.1. General Architecture for Text Engineering (GATE)

GATE6 comprises an architecture, framework and development environment, and has

been in development since 1995 in the Sheffield Natural Language Processing group

[Maynard et aI., 2000] and [Cunningham et aI., 1999, 2002a, 2002b]. The system has

been used for many language processing projects, in particular for Information Extraction

in many languages.

GATE version 2 is distributed with a shallow Information Extraction system called ANNIE7

(A Nearly New Information Extraction system) [Cunningham et aI., 2002b] it is combined

with LaSIE components (from the original first version of GATE) when doing complex

extraction tasks (see Figure 3-5). ANNIE uses the JAPE (Java Annotation Patterns

6 http://www.gate.ac.uk

7 http://www.gate.ac.uklsale/tao

54

Engine) language developed by Hamish Cunningham and Valentin Tablin. JAPE provides

finite state transduction over annotations based on regular expressions.

A JAPE grammar consists of a set of phases, each of which consists of a set of pattern /

action rules. The phases run sequentially and constitute a cascade of finite state

transducers over annotations. The left hand side (LHS) of the rules consist of an

annotation pattern that can contain regular expression operators. The right hand side

(RHS) consists of annotation manipulation statements. Annotations matched on the LHS

of a rule fire the action on the RHS.

The GATE approach to rule matching requires explicit pattern details, and it is possible

that a lot of information is not captured using regular expression matching.

The system requires three main processing resources: a tokeniser, a gazetteer and a

finite-state transduction grammar [Maynard et aI., 2001].

A 'tokeniser' splits text into simple tokens. The aim is to limit the work of the tokeniser to

maximise efficiency, and enable greater flexibility by placing the burden of analysis on the

grammars. This means that the tokeniser does not need to be modified for different

applications or text types.

55

Input
URL or

Document focmat
(.XI\lIL, HTNIL, SGlvIL, emall,

LIsts

JP.PE Sentence
Patterns

Bnll Rules
LexiGon

ANNIE, LaSIE
IE modules

Jl'.PE NE
Gram.mar
Cascade

NOTE: oq\l;m bOXiiS 1ll1l
rouro::l.d D1II)S ;m

Figure 3-5 - A full Information Extraction pipeline based on a LaSIE backend with ANNIE shallow analysis

A 'gazetteer' consists of lists of entities and names of useful indicators in order to help

disambiguate pseudo sentence endings and to extract domain specific information.

The 'grammar' consists of hand-crafted rules describing patterns to match and

annotations to be created as a result. Patterns can be specified by describing a specific

text string, or annotations previously attached to tokens. Rule prioritisation, if activated,

prevents multiple assignments of annotations to the same text string.

56

3.4.2. Porter Stemmer

This stemming algorithmS was designed by Martin Porter [Porter, 1980]. It is a process for

removing the common morphological and inflexional endings from words in English. Its

main use is term normalisation for Information Retrieval Systems (IRS).

The idea is that a document is represented by terms, terms with a common stem usually

have a similar meaning, and the performance of an IRS can be improved if the term

groups are conflated into a single term. This is achieved by removal of various suffixes to

leave a single root term. In addition, this reduces the total number of terms in the IRS and

hence reduces the size and complexity of the data in the system. Porter tested his

stemmer on a vocabulary of 10k words the resulting vocabulary of stems contained 6,370

distinct entries. Thus the suffix stripping process reduced the size of the vocabulary by

about one third.

The reduction rules appear as (Condition) S1 -7 S2, where if the word ends with S1 and

the stem before S1 satisfies the given condition then S1 is replaced by S2. Only one rule

is applied, the one with the longest matching suffix S1 of the given word, this is true

whether the rule succeeds or fails (I.e. whether or not S2 replaces S 1).

The Porter stemmer iteratively removes suffixes in linear steps. The idea is that the

suffixes in the English language (approximately 1,200) are mostly made up of a

combination of smaller and simpler suffixes, thus stemming is approached in steps. The

stemmer has a five-step process and there are 1 to 21 rules per step. Within each step

only the first valid rule fires and it rewrites the suffix.

If a rule is not accepted (fails its condition) then the next rule in the step is tested, until

either a rule from that step fires and control passes to the next step, or there are no more

rules in that step and control moves to the next step.

Stemmers using very dumb rules work well for English, but unavoidably some errors get

generated by the stemmer, for example the stemmer can over-generalise: 'organisation'

-7 'organ', 'policy' -7 'police', 'army' -7 'arm'.

S http://www.tartarus.org/-martin/PorterStemmer

57

Given two terms, there is some variation in opinion as to whether they are conflated, for

example if 'sand' and 'sander' get conflated so are 'wand' and 'wander', the error here is

that the '-er' of 'wander' has been treated as a suffix when in fact it is part of the stem.

Equally a suffix can completely alter the meaning of the word, in which case removal is

unhelpful.

Although the stemmer can make some bad conflations, using corpus-based analysis of

word variants indicates which words do not belong together. For example using an

Expected Mutual Information Measure (the co-occurrence of words in context) can

conclude that the words are probably not related. This information can be used to create

two disjoint classes rather than one incorrect stem.

3.4.3. Brill Part-Of-Speech Tagger (POS Tagger)

This pos Tagger9 was designed by Eric Brill [Brill, 1994]. It is a transformation-based

error-driven learning module (see Figure 3-6). It is supervised learning using a manually

annotated corpus. It learns language structure by a sequence of transformation rules

which capture contextual factors in predicting correct word-class assignments (hereafter

tags).

9 http://www.cs.jhu.edu/-brill

58

UNANNOTATED

TEXT

INITIAL

STATE

ANmTATED
TRUTH

TEA,

LE."RNER Rl'LES

Figure 3-6 - Transformation-based error-driven learning [Brill, 1994)

An unannotated text is passed through an initial state annotator, the initial state annotator

is applied only to unknown words (I.e. words not found in the lexicon) it assigns the

default most likely tag, for English this is a proper noun tag for all words that start with a

capital letter and a noun tag to all others. The known words are automatically tagged with

the most likely tag from the lexicon. The output is a temporary annotated corpus which is

compared to a goal corpus which has been manually tagged (the truth). The temporary

corpus is passed through the learner. Each time the corpus is passed through, the learner

produces one rule, the single rule that gives the best net improvement (since rules can

introduce errors as well as correcting them) in tagging accuracy. Then the temporary

corpus has the learnt rule applied to it and the process repeats as the temporary corpus is

passed through the learner again. This process terminates when the net improvement

falls below a pre-specified threshold (usually when the net change affects fewer than a

few words). This produces an ordered set of transformation rules.

In fact the learning module produces two disjoint sets of rules as the learner actually

consists of two stages, the lexical and contextual components. The lexical learner module

59

is used for deriving rules for tagging unknown words, whereas the contextual learner

module is used for deriving rules for improving the accuracy (I.e. context rules for

disambiguation). Both types of rule change one type of pas to another.

The space of possible transformation rules is fixed by a set of rule templates, which are

essentially underspecified transformation rules. The unspecified values are instantiated to

specific tags. Rules can also require specific words to appear in the template context.

The major problem of the Brill approach is its learning algorithm. As the transformations

are data-driven, the vast majority of allowable transformations are not examined and

certain rule templates are rarely used. The learner can generate ambiguous rules and

word rules are usually less influential than tag rules. Also information cannot be learnt if

there are no rule templates to capture it with.

The learning is a statistical approach rather than linguistically-driven. It cannot learn

domain-specific rules, just generalisations on what it sees. The learning should not be

based on frequency but by the quality of the disambiguation that it can obtain. What is

required are rules based on disambiguation. This means that stronger disambiguating

constraints need to be added to the lexical and context templates.

3.4.4. Treebank II Bracket Parser

The Penn Treebank Project10 was founded by the Computer and Information Science

Department at the University of Pennsylvania [Bies et aI., 1995]. The Treebank II

bracketing is designed to allow the extraction of simple predicate-argument structure. The

bracketing marks out constituents and represents them in a hierarchical representation,

as shown below.

(5 (UP-5BJ Casey)
(VP will

(VP tlrrow
(IfF the ball))))

10 http://www.cis.upenn.eduHreebank/home.html

60

Treebank II bracketing is a bottom-up approach to constituent parsing. There is only a

small set of tags to represent the syntax but the combined tag set provides a higher level

of constituency mark-up. There are 5 clause-level and 21 phrase-level tags that are

integrated with the Brill pas tag set.

What makes the bracket parsing grammar unique is its approach to accepting all parses

of a sentence. To be able to accept all sentences, without any rejection requires a more

powerful mark-up than that used in conventional constituency grammars, bracket parsing

therefore uses three tools, 'function tags', 'null elements' and 'pseudo-attachment'. It is

the added use of these tools that extend the syntax and provide more effective

annotations. The tools provide additional rules and annotator tags for the grammar.

Function tags are used to provide extra mark-up of individual constituents, phrases or

clauses. The function tag aids in identifying and explicitly marking tacit and implicit

knowledge from a sentence. These can be used in conjunction with each other to

represent a rich mark-up of syntax. There are 20 function tags.

Null elements aid in providing structurally coherent parses. Null elements mark out where

missing, but interpreted words or phrases should appear. This allows for easier

identification of clause and sentence types, as the structures become more apparent. Null

elements can also have co-indexing between the index and a referent, where one (or

both) of the parts appear in an unorthodox position. There are 6 null element tags.

Pseudo-attachment is a method of showing that non-adjacent constituents are related.

This defines the relationships in the overall parse tree, and makes sure that related parts

are joined at the relevant levels. There are 4 pseudo-attachment tags.

The extended grammar caters for simple well defined constituent structures as well as for

rich, intuitive, interpretations of more complex structures. This is beneficial in that it

provides a powerful, almost human understanding of grammar and language.

The problem with the Treebank II bracketing is that it is all manually annotated and the

domain coverage can be poor because the bracketing is on a specific corpus. In industrial

use the expert knowledge of treebanking must be encapsulated automatically and be

readily applied to a range of applications for it to be useful in Information Extraction.

61

3.4.5. Link Grammar Parser

The link grammar parser11 created by Davy Temperley, Daniel Sleator and John Lafferty

is a syntactic parser of English, based on link grammar, an original theory of English

syntax. The grammar is manually encoded and gives lexically specific information.

Given a sentence, the system assigns to it a syntactic structure (see Figure 3-7), which

consists of a set of labelled links connecting pairs of words. A link is formed if both words

have complementary connectors. For example the link between the words 'the' and 'cat'

is permissible because the word 'the' has a D+ link (where the + represents a D link must

be made to the right of the current word), and the word 'cat' possesses the

complementing D- connector (where the - represents a D link must be made to the left of

the current word).

the cat chased a snake

Figure 3-7 - Link grammar connections

A valid link adheres to both 'word' and 'global' rules. Every word has (at least) one rule in

the grammar, which dictates the possible connections it can make in both directions. The

ordering of the connectors is very important as it indicates the relative linear closeness of

the words being connected. Globally the crossing of links is not permitted (the projectivity

constraint of dependency language models) and all words must be indirectly connected.

Both of these global rules stipulate a valid sentence.

There are constraints placed on the connectors to define extra specificity for a word. A

constraint is denoted using a subscript, for example a D+ connector can form a link with a

D- link but a Dx+ connector cannot link with a Dy-. The main constraints applied are for

word agreement, for example a normal D link can connect a determiner to a noun, but a

11 http://www.link.cs.cmu.edu/link

62

Ds link can link a determiner to a singular noun, and a Dp link can link a determiner to a

plural noun.

Word sense ambiguity is resolved using connector subscripts. A word that has multiple

meanings takes subscripts to disambiguate the alternate meanings. E.g. the word 'her'

has two rules for disambiguation because it can occur as a personal pronoun 'her.p' as in

'I know her' and as a possessive pronoun 'her.d' as in 'her umbrella'. It is important that

different meanings, however small, have different rules, as it aids in resolving ambiguities.

This use of connector subscripts to resolve word sense ambiguity is simplistic and may

not be accurate, for further reading of word sense disambiguation systems see Word

Expert Parser [Small, 1980] and WordNet [Miller et ai., 1990].

A further benefit of connector subscripts is that it alleviates the rigidness of the tagset size

problem. This is important because most grammars focus too heavily on getting the

correct tagset in order to map the language with, but in this case the tagset size is flexible

as a new tag can be created by adding an extra subscript on a connector.

The power of the link grammar is having every possible word listed and to show the

connections to other words. The burden of a complete lexicon is that things such as

abbreviations, every inflection of every possible word, compound words, numbers,

punctuation etc., all need to have rules, thus increasing the size of the ruleset and its

complexity. If this is performed correctly and completely then the link grammar can easily

be more powerful than any other syntactic parser, but the realisation is that this is not

achievable. The link grammar therefore uses tools such as morphology to guess unknown

words.

The link grammar is still only a syntactic parser, so it still has problems with semantics. It

does take a step further than constituency parsers as it directly attaches together words in

a particular relationship, but that is where it ends. For example, idiomatic verbs are

identified in the grammar but they are clustered together by their tense and numerical

agreement rather than their semantics.

After a syntactic structure has been established, the structure requires post processing to

validate the generated links. Each sentence is divided up into domains based on its link

63

types. Then post processing applies domain constraint rules, which declares the validity

of a structure based on the combinations of links present in a given domain.

Even after post processing, multiple parses can be expected if there are ambiguous

words, unknown words or first-word capitalisation ambiguity in the sentence. In each

event an exhaustive parse is required and the model with the least cost is chosen. The

aim of the cost system is to select a parse from multiple ambiguous parses by the lowest

cost. It is an aid in choosing a preferred connection.

Sometimes the link grammar cannot find a suitable parse, in order to allow for robust

parsing, a null link system is incorporated. If the parser cannot parse a sentence normally,

it tries ignoring one word in the sentence. The parser then finds all the linkages it can,

ignoring that one word. If it still fails then the number of null links increases incrementally

and tested again. In null link parsing the connectivity requirement is suspended.

Therefore disconnected islands form.

64

3.5. Summary of Chapter

This chapter has provided a background history of Natural Language Processing (NLP),

in particular a detailed discussion into the two polarised language models of constituency

and dependency on which all Information Extraction systems are based.

Often the dependency model has been neglected by researchers but it was provided in

the literature review as it helped to evaluate the strengths and weaknesses of both

models.

This was followed by an overview of the parsers available for both language models.

There was also a comparison of benchmark systems used in NLP for both types of

model. The architecture of these systems helped to articulate a design for the author's

theme extraction system.

65

4. Language Model Issues

This chapter provides an analysis of the constituency and dependency language models

and the main issues that both systems generate.

The constituency model issues focus on the components that are used in constituency

pipeline. The issues for each component are discussed, as well the generic weakness of

all components which is the use of sub-standard components.

The dependency model issues highlight the weakness of using constituency components

to build a dependency system and also an issue with dependency structure parsing.

Both models use a grammar to form syntactic structures and so the issue of the choice of

grammar rules is also discussed. A summary concludes the chapter.

4.1. Constituency Model Issues

4.1.1. Analysis of Components in a Typical Pipeline

The constituency pipeline is a complete architecture consisting of tokenisation,

morphological analysis, sentence splitting, POS tagging, syntax, semantics, discourse

and pragmatics. This section describes each component and its issues.

4.1.1.1. Tokenisation

Tokenisation is the normalisation of the text by breaking up the input string into

delimitations called tokens. The process of converting the input string to a token stream is

performed by the tokeniser. The decision on where to split the input string and the

assigning of attributes to the tokens is instigated by the tokeniser's ruleset.

The tokeniser splits the text into very simple tokens such as words, numbers and

punctuation. The aim is simple recognisation of often repeating items and to enable

greater flexibility by placing the burden of the work on the latter components which are

more adaptable.

66

The default assumption is that an orthographic word (separated by spaces from the

adjacent word) is an appropriate token. Although there are exceptions to this: a single

orthographic word can contain more than one grammatical word. E.g. in the case of verb

contractions and negative contractions such as 'she's', 'they'll', 'don't', 'isn't' etc. In these

cases an attribute needs to be assigned to each grammatical word. Also quite frequent is

the opposite circumstance where two or more orthographic words are given a single

attribute. E.g. multiword prepositions such as 'up to' function as a single word. Naturally,

whether such orthographic sequences are treated as a single word depends on the

context.

The tokenisation problem branches out into trying to capture formal descriptions of

everything, which is not what the author intends to do, but in cases such as finding

multiword tokens, detection needs to be performed as early as possible to stem the flow

of errors in latter components. So it is not only paramount that single tokens are captured,

but also the net effect of combining tokens together to form larger entity types.

Another non-trivial problem is determining the tokenisation of times, dates, numbers and

punctuation. E.g. 'twenty-second of Jan. '96' is semantically equivalent to '22/01/1996'.

Finally, the author does not expect the tokeniser to deliver any semantic information,

because of the limited information context it works with.

4.1.1.2. Morphological Analysis

Morphological analysis is the process of recognising the root form of a morphological

variant. Morphological variants can be of two distinct classes. Inflectional morphological

variants share the same basic meaning and word-class as the root form, which is

important in determining the word-class of unknown words. E.g. 'kick, kicks, kicked,

kicking'. Derivational morphological variants can have a different meaning and different

word-class as the root form. E.g. 'friend, friendly, friendliness, friendship'.

A morphology rule often strips a suffix or prefix from a word, and sometimes adds back

replacement characters, to produce a possible root form [Porter, 1980]. Rules must be

applied recursively as multiple derivations are common. Sometimes stripping prefixes and

suffixes produces unavoidable errors. E.g. 'pretend' -7 'tend', 'army' -7 'arm'.

67

A system that analyses both prefixes and suffixes can generate an ambiguity depending

on the order in which the prefix and suffix are applied. This is sometimes referred to as

prefix-suffix interaction. For example 'undone' if interpreted as 'un' + 'done' means

something that has not been done, another possible interpretation is the past tense of the

word 'undo' and means the reversal of something previously done.

Another form of morphological analysis is lexical compounding. This is when two or more

words are concatenated together to form a new word. The meaning and word-class for

the compound is usually determined as a function of the individual words. Although this

inference is not always correct. Consider the compound noun 'steppingstone'. This is an

instance of non-literal language, because the head noun 'stone' is not the generic

concept for the compound, by contrast compound nouns like 'limestone' and 'gravestone'

are linked to their generic concept [Fellbaum, 1998]. Lexical compounding analysis often

draws the wrong conclusions. However, it is sufficiently productive to make it an important

analysis.

4.1.1.3. Sentence Splitting

Sentence splitting is the task of delimiting a sentence using final sentence punctuation

such as periods, exclamation and question marks, white-spacing and quotations. To rule

out errors caused by the use of abbreviations, a list of potential ambiguous candidates is

dismissed. For example 'Dr. Smith' where the abbreviation 'Dr.' is considered a pseudo

sentence split, similarly acronyms 'A.B.C.' are not contemplated as sentence ends.

A sentence splitter cannot rely purely on abbreviation lists to find incorrect sentence ends

as all possibilities are never accounted for; it needs to be more intelligent about how it

guesses correct sentences. For example a legitimate sentence starts with a capitalised

word and ends with final sentence punctuation, whereas acronyms tend to be all

capitalised and separated by periods.

Well formed sentences are required before applying the next stage of Information

Extraction, that of part-of-speech tagging.

68

4.1.1.4. P~S Tagging

POS tagging is a classification problem. The tagger takes a token as an input and must

guess its tag class. Some tokens are unambiguous so are assigned a unique tag.

Ambiguous tokens are assigned multiple tags. With multiple tags the relative probability of

choosing a particular tag and the ordering of these tags is required to help choose the

correct tag assignment for a token in latter components. This method is not guaranteed to

be successful because of language idiosyncrasies.

In Natural Language Processing one of the major problems with POS tagging is choosing

the correct tag set. In an ideal world this is the minimum set of tags that can incorporate

every token in the language without ambiguity. There is research on tag set design

[Elworthy, 1995] that proves that the relationship between tag set size and tagging

accuracy is a weak one and is not consistent even when applied to the same language.

The conclusion was to choose the tagset according to the requirements of a given

application rather than to optimise it for the tagger.

The external criterion of the tag set is that it must be capable of making linguistic

distinctions required in the output. Such that the number of classes in the tagset must be

related to the distinctions needed by the syntactic structure imposed on the text. The

internal criterion is making the tagger as effective as possible. Sometimes a single tag is

used to cover multiple meanings such as transitive and intransitive verbs, since taggers

cannot reliably predict the correct tag based on the context of only one, two or three

words. These tags can then be handled trivially.

A small tagset should improve tagging accuracy as it puts less burden on the tagger to

make fine distinctions. The number of decisions required is smaller and hence the tagger

need contribute less information to make the decisions. The problem of this is that a later

process using more context is required to disambiguate each word. On the flip-side of this

argument is the use of a larger tagset to give extra specificity to a word, the cost of using

this approach is the complexity of designing the tag set and the correct assignment of

tags.

The improvements needed for better tagging techniques to determine ambiguous and

unknown words are:

69

• Use linguistic knowledge of the language.

• Use a larger window scope to improve context information.

• Limit the class of tags that can be assigned.

• Morphology or any other way of identifying the surface form (I.e. inflectional

analysis of unknown words).

4.1.1.5. Syntactic Analysis

Syntax is the parsing phase of the constituency pipeline, it builds up sentence structure

and aids in the understanding of the parts of the sentence. Syntax disambiguates a whole

sentence based on context information of other words and structures within the sentence.

The most expensive method is to parse all of the input with a natural language parser and

grammar. The parser has complex grammar rules as it is trying to describe the syntax of

the language. This requires being able to deal with larger scopes, bracketing of

constituents, ambiguity resolution etc. The output is a hierarchical tree.

A less costly approach is to accumulate sequences of words that occur between words

specified in a stop word list (a list of words that contain little information). The remaining

sequences are typically simple noun or verb phrases. Occasionally there are words at the

end of the sequence that must be removed to ascertain a correct phrase. A potential

limitation of this approach is that the sequences are interpreted in isolation, without any

understanding of the sentence context in which they occur. This means that local

ambiguities cannot be resolved because of the lack of context.

Syntax though cannot resolve everything, for example it has problems with attachment

ambiguities, mainly prepositional and conjunction. Prepositional phrase attachment is a

common source of ambiguity in NLP, Some major work has been researched by [Brill &

Resnik, 1994] [Collins & Brooks, 1995] [Nakatani, 1991] [Pantel & Lin, 2000]

[Ratnaparkhi, 1998] and [Ratnaparkhi et aI., 1994]. The goal is to attach the prepositional

phrase as a classification of either an adverbial attachment (attaching to a verb) or as an

adjectival attachment (attaching to a noun). The scope is often a 4-tuple.

The reason why it is a problem is that even in human classification of prepositional phrase

attachments, the accuracy given the full context of a sentence is 93.2% and drops to

70

88.2% when only given 4-tuples (the results are based on three treebanking experts on a

set of 300 randomly selected test events from the Wall Street Journal corpus).

It has been argued by Nakatani [Nakatani, 1991] that structural and lexical rules are not

enough to disambiguate all kinds of prepositional phrase attachment, even though there

is a close performance between humans and machines, and Nakatani uses pragmatics to

resolve ambiguities.

4.1.1.6. Semantic Analysis

Semantics deal with interpretation and meaning, for example an idiomatic verb has

semantic representation independent of the semantics of its constituents. I.e. the

idiomatic verb 'scrape the bottom of the barrel' has the interpretation 'take whatever is left

after the best has been taken'; and 'kicked the bucket' means 'died'.

At present formal semantics are not adequate for the richness of natural languages and

also cannot deal with word sense ambiguities, so they do not deal with pragmatics.

Resolving word sense ambiguities [Pantel & Lin, 2002] is important in language

processing as it provides more disambiguation than that of the word form. A polysemous

word can have multiple senses, for example, the word 'suit' has two senses, such as:

'Suit' -7 'Jacket', 'Shirt' etc.

'Suit' -7 'Lawsuit', 'Allegation', 'Case' etc.

Therefore not only does a word need to be identified, but also the correct sense needs to

be recognised. Inventions of manually compiled dictionaries (E.g. WordNet), usually serve

as a source for word senses, however they often include many rare senses while missing

domain-specific senses.

One method of inferring the semantics of a word is to use its context. E.g. 'Tezguno

makes you drunk' makes you think that Tezguno' is a beverage. The intuition is that

words that occur in the same contexts tend to be similar. This is known as the

Distributional Hypothesis. This hypothesis is not limited to words in similar contexts and

can be applied to dependency relationships in dependency graphs [Lin & Pantel, 2001],

71

especially if two dependency relationships tend to link the same set of words, the

hypothesis is that their meanings are similar.

Even when using semantics the results of a parse can still be ambiguous. Using the same

problem of attachment ambiguities introduced in the previous section of syntax, one

sentence can have multiple semantic interpretations. For example 'I saw the man with the

telescope' where the first interpretation is 'the man with the telescope was seen by me',

and the other is 'using a telescope I saw a man'.

Another non-trivial problem is idiomatic verbs (hereafter idioms). They are usually defined

as a non-literal, fixed expression. An idiom is non-literal because its semantic

representation is independent of the semantics of its constituents. An idiom is fixed in that

the words that make up the expression appear next to each other in the correct order, so

'kicked the bucket' is not equivalent to 'the bucket kicked' or 'the kicked bucket' etc.

However, the definition, as with natural language, is not strongly constrained.

The author argues that idioms cannot be easily recognised because non-literal and literal

expressions are hard to disambiguate, and that they are not fixed expressions.

Idioms are a sub-category of phrasal verbs. These are a type of verb that function more

like a phrase than a word. A phrasal verb can have two senses, as a literal meaning or as

an idiom. For example consider the phrasal verb 'drop off':

'Drop off' 'Fall asleep' (Idiom)

'Stop and give something to someone' (Idiom)

'Decline gradually' (Literal)

It is apparent that even a simple expression such as 'drop off' has many ambiguous

meanings, and even problematic, multiple idiomatic meanings. Once again this ambiguity

resolution requires disambiguation using context. In the past context has been used to

resolve single word syntax problems (e.g. POS-tagging) but in this case context needs to

understand whole expressions and the actual semantics that they impose.

Idioms are not fixed because of two major issues. Firstly structural modification can exist

within the expression see [Baldwin & Villavicencio, 2002] and [Ifill, 2002], and secondly an

72

idiom can contain morphology. For example reconsider the idiom 'kicked the bucket' in

these particular contexts:

Modification

Morphology

Both

'Kicked the bloody bucket'

'Kicked the holy bucket'

'kicking the bucket'

'kick the bucket'

'kicking the bloody bucket'

All these examples mean exactly the same thing, they are all derivatives of the verb 'die'

in different tenses, but are expressed uniquely. The only thing that remains fixed is the

word-order of the idiom constituents, but because modification and morphology can affect

the idiom, then it is difficult for a comprehensive lexicon of idioms to be stored.

4.1.1.7. Discourse and Pragmatic Analysis

According to Chan [Chan et ai., 2000], discourse is understood to refer to any form of

language-based communication involving multiple sentences or utterances. The most

important form of discourse of interest to NLP is written text. Whilst text normally appears

to be a linear sequence of clauses and sentences, it has "long been recognised by

linguists that these clauses and sentences tend to cluster together into units, called

discourse segments that are related pragmatically to form a hierarchical structure".

Discourse analysis goes beyond the levels of syntactic and semantic analysis, which

typically treats each sentence as an isolated, independent unit. The function of discourse

analysis is to divide a text into discourse segments, and to recognise and reconstruct the

discourse structure of the text as intended by its author. It is assumed that discourse

provides improved disambiguation where sentential analysis is insufficient because it is

higher-level and encapsulates more context of the text.

The goal of discourse analysis, therefore, is to structure the linguistic context so that it

can be understood as a cohesive sequence of sentences, in essence it is primarily

interested in the correct ordering of sentences. Moreover, it needs to deal with inter­

sentential relationships. Discourse is independent to language variation as it attempts to

understand the linguistic context irrespective of how the information is written.

73

Discourse analysis can be viewed as the use of words and phrases to connect together

separate clauses that are directly related to another to form a coherent story. It is

important to determine which words and phrases are used as discourse clues and

understand how to use them.

Ahrenberg [Ahrenberg et aI., 1990] highlights a problem with discourse by stipulating that

while there is, in the Artificial Intelligence literature, fairly large agreement on the

usefulness of the notion of discourse, there are no simple algorithms for detecting

discourse structure.

Carbonell [Carbonell, 1983] puts it well in that natural language discourse exhibits several

intriguing phenomena that defy definitive linguistic analysis and general computational

solutions. However, some progress has been made in developing tractable computational

solutions to simplified version of phenomena such as 'ellipsis' and 'anaphora resolution'.

More recent research has aimed to integrate literature from discourse, pragmatiCS and

psycholinguistics in order to design systems that better understand the intention of written

text. A prime example of this is work by Aretoulaki [Aretoulaki, 1996, 1997] and

[Aretoulaki et aI., 1998], who reviews the major theories of language analysis and

converts relevant hypotheSiS into an architecture that aims to capture surface,

intermediary and pragmatic functions. Aretoulaki's work aims to integrate these functions

by using the lower (surface and intermediary) levels to objectify the higher, more abstract

(pragmatic) levels.

Often when the issue of discourse is broached then pragmatiCS is also mentioned.

PragmatiCS is the study of the aspects of linguistic structure affected by extra-linguistic

elements - like the users of language and the time and place of utterance - that are

relevant for language production and understanding.

In conclusion discourse analysis is useful in determining the relevance of a theme in a

document as discourse uses the whole document as context. After some consideration, it

was decided that pragmatic analysis is not suitable as it is more to do with intonation and

speech rather than written text, which is not the main goal for this research.

74

4.1.2. Component Issues

Most researchers only focus on one area of the pipeline. This means that they use pre­

developed components, by other researchers, in order to get a complete output from the

pipeline. As a result sub-standard earlier components are used such as poor tokenisers.

By using this type of approach some of the critical information required for theme

extraction is already lost. Ideally the whole pipeline needs to be built from scratch, so that

the boundaries and the work required of each component are known, and the flow of

information from one component to the next are well understood. With all components

their goals, input and output need to be clearly defined. At the end of the pipeline

everything that needs to be captured is captured.

There is also a problem with error propagation. All components have an impact on the

quality of theme extraction; ideally each component builds higher-level constituents whilst

reducing ambiguities from earlier levels and passing on error free constituents to the next

component. This is because error propagates from the bottom-up so every component

depends on the accuracy of the lower components. Ambiguity in the pipeline is resolved

by using larger contexts, which often requires latter rules to grow in complexity.

The final issue is that of commitment, where there is a lockdown of unambiguous

constituents as early in the pipeline as possible. Then these unambiguous constituents

can be used to aid ambiguity resolution.

75

4.2. Dependency Model Issues

The author's theme extraction process will primarily focus on the constituency model.

However to complete an overview of the language models, the issues for dependency

models are discussed below.

4.2.1. Building on Constituency Components

Early computational linguists worked with dependency grammars but only in forms that

were easily convertible to constituency grammars, and can essentially be parsed with the

same techniques. This meant that constituency components were used to build

dependency grammars. For example POS taggers are commonly used in dependency

grammars because they can revert to tag information when information for a particular

word is not available.

As observed in [Nivre & Nilsson, 2003) many systems developed for dependency parsing

use algorithms that are straight forward modifications of the algorithm used for

constituency parsing. Faced with massive ambiguity and non-determinism, these

algorithms rely on dynamic programming and tabulation to derive compact representation

of multiple analyses with reasonable efficiency, but there is no attempt to resolve

ambiguities or remove non-determinism. Similarly entire papers [Xia & Palmer, 2001) are

devoted to converting between constituency and dependency models, even though in the

opinion of the author, the models are polarised.

Frequently the dependency grammar is biased to make the parser more simplistic. Most

dependency parsers compromise the model by not using a full lexicon, as creating the

knowledge is a laborious task, and the given language constraints are not powerful

enough to map natural language.

It order to bring out the full potential of dependency grammar as a framework for natural

language parsing, the author needs to explore alternative parsing algorithms.

76

4.2.2. Dependency Structure Parsing

Dependency parsing also has its problems. Presently the majority of the dependency

world is limited to projective dependency grammars, although it seems clear that certain

constructions in natural language are non-projective in nature.

Dependency parsers also fall into well-known problems having to do with attachment

ambiguity for prepositional phrases and other adjuncts [Nivre, 2003]. This is because

most of the parsers choose the closest possible link to attach to, which of course, may not

be the correct decision. There are also problems with valence violations, linking across

syntactic boundaries and errors caused by elliptical constructions:

• Valence Violations - It is difficult to impose restrictions on the number of

dependents of a single head.

• Linking Across Syntactic Barriers - Despite the fact that most dependencies are

local to the syntactic clause 12, there is nothing that prevents the parser from

adding links across clause boundaries. Valence and linking errors can be

corrected by making the parser sensitive to the number of dependents of a given

head, and to the presence of clause boundaries in the input string.

• Errors Caused by Elliptical Constructions - Dependency grammar presupposes

that all syntactic constructions have a head. However in elliptical construction it is

often the case that the expected syntactic head is omitted. Cases in point are

clauses without a finite verb and noun phrases without a head noun. These errors

require major changes either in the grammar or in the parsing algorithm or both.

12 The word 'clause' used in this sense, means all the dependents of a particular headword, clauses do not exist

in dependency grammars because the linking is word-to-word

77

4.3. Grammar Issues

Traditionally, grammatical models have been constructed by linguists without any

considerations for computational applications, and later by computationally-oriented

scientists who have first taken a parseable mathematical model and then forced the

linguistic definition into the model which has usually been too weak to describe what a

linguist desires.

There requires a balance of linguistic-driven data and mathematical formalism.

Dependency grammar is both descriptively adequate and formally explicit [Jarvinen &

Tapanainen, 1998). Whereas a constituency grammar is too limited given its reliance on

mathematical formalisms such as context-free grammars. Extra linguistic properties need

to be incorporated to make constituency grammars more powerful.

One major aspect of a grammar model is the ordering of its rules. Poor rule ordering can

have many disastrous effects such as thrashing because of poor rule interaction,

erroneous overlapping of rules because of the need for robustness and the production of

redundant rules which never fire.

Finally their needs to be a decision made on the variety of rule types to be used in the

grammatical model. It is hypothesised that with more types, the better a grammar is at

capturing expressive information.

78

4.4. Summary of Chapter

This chapter has provided an analysis of the issues of constituency and dependency

language models. Often the dependency model has been neglected by researchers, but

the author found it necessary to compare the issues surrounding both models.

The typical components used in a constituency pipeline were analysed and their issues

were raised. The main weakness in the constituency model was the use of sub-standard

components. This is because researchers often implement benchmark systems into their

own system which lose information and propagate errors. This can speed up

implementation time but the author argued that the systems be built from scratch.

The dependency model highlighted the weakness of using constituency components to

construct a dependency system rather than building a full grammar for the system. Using

constituency components is the easy alternative, but the main power of a dependency

system is its grammar, which is difficult to implement, but the use of constituency

components only served to detrimentally weaken the dependency model.

The main issue found with both language models was that of ambiguity. In the

constituency model the ambiguity flowed through the whole length of the pipeline

affecting each component. In the dependency model the main ambiguity stemmed from

the use of constituency components to build dependency structures.

Both language models use a grammar to form syntactic structures, so the choice of

grammar was also discussed.

79

5. Design

The constituency language model has been used to design the author's theme extraction

system because the model allows for modularisation of natural language components,

which shows more transparency in their interactions. However the grammar which is the

main strength of a dependency language model is also utilised as a component in the

constituency model with as much syntactic and syntactic function labelling as possible to

increase the performance of theme extraction.

This chapter provides the justifications for the choices of the proposed system. The

problems of traditional architectures are highlighted and the issues are used to justify the

requirement for a new, loss less architecture, which provides benefits such as minimising

information loss and error propagation.

This loss less architecture requires a new formalism for representing information which is

referred to as a quad. The components that are used in the architecture are described,

which contains the purpose of a component and the tasks it performs. This is followed by

the issue of computational feasibility of a lossless architecture and its implementation. A

summary concludes the chapter.

5.1. System Architecture Overview

5.1.1. Traditional Architecture Problems

Traditional language models use deterministic methods to make decisions along the

pipeline. The problem with this is that decision-making components usually lead to

component filtering which propagates a loss of information. Also many systems re-use

benchmark systems that are not the most accurate, such sub-standard components

introduce errors. The combination of losing information and error propagation creates a

deterioration of the quality of information that is propagated by the architecture.

An architecture has been researched by the author to the extent of fully understanding

the components required for theme extraction. Fundamental to this architecture is an

ethos for lossless information.

80

5.1.2. Requirement for a Lossless Architecture

5.1.2.1. Minimising Information Loss

The backbone to the architecture and of its components is based on the idea of lossless

information. This is the retention of a complete information history for all the components

in the architecture and is utilised as a fully referenceable lookup of information produced,

and the component and rule that created that information.

The aim of the architecture is to keep all the decisions, and pass them on through other

components, so that each component has all the information at hand and can make a

more accurate evaluation of all the alternatives.

A lossless architecture means that all possibilities are tried rather than just a subset. It is

in affect an exhaustive, brute-force approach. A benefit is that no decisions have to be

made which means that pruning is not performed. This component filtering is when a

component performs pruning on the input which means that information is lost before it

arrives at the next component. When this occurs the value of the information in a pipeline

slowly degrades and is lost. A lossless architecture stops the pitfalls of component

filtering.

Take for example a traditional part-of-speech tagger which assigns a word-class to a

word. If the word is ambiguous then the tagger makes a decision to assign the most likely

word-class to it, and ignores the rest of the choices but the chosen word-class can be

incorrect. The proposed lossless architecture keeps all the choices and pass them on, so

that latter components can make a more educated guess given more information.

Apart from preventing component filtering a lossless architecture can also transparently

show the interaction of the rules and components. These interactions become more

visible when all the information history is available. The rule history leads to improved

component interaction. Understanding the component interaction minimises the

contention of rules between components, by making rules independent from one another

to reduce rule-overlap, so that information flows easily from one component to another.

Understanding the component interaction also contributes to maximising the utilisation of

81

a component as it shows the information history of other components so allows the

information produced from earlier components to be used in latter components.

A loss less system needs to deal with exhaustive data. The author has not chosen to

make efficiency an issue, so it is not a factor to be considered. However in practice this is

too computationally expensive. There are time considerations to take into account when

using a brute-force approach and this rarely fits into a company's strategy.

5.1.2.2. Minimising Error Propagation

Information persistence is required so that information is always preserved and so that

error propagation can be detected and reduced by latter components.

By keeping all the information, and also having provenance information about each rule,

the architecture preserves a history of rule selection. This improves the design of the rule

interactions as the affect of each rule becomes transparent, and any underperforming

rules that are identified can be modified for effectiveness. This enforces transparency in

the architecture and minimises error propagation by reducing the error passed from one

component to another.

82

5.2. Quad Formalism

The loss less architecture keeps track of all choices using quads. A quad is a novel way of

representing a slice of information and a tool for enforcing the underlying concept of

lossless information. A quad is formalised as follows:

(Attribute, Value, Confidence Value, Provenance Rule)

A quad has a traditional attribute-value pair but it is novel because it also has a

confidence value associated with the pair and also provenance information which shows

which rule and component created the quad. These are discussed below.

5.2.1. Attribute-Value Pair

An attribute is a feature that needs to be preserved. Each component produces a different

set of attributes, and each rule in a component produces a specific attribute. For example

the tokeniser component can produce attributes such as 'word', 'number', 'punctuation'

etc.

A value is the instantiation of the attribute-value pair. It is usually a specific instance of the

attribute. For example attribute is 'number' and value '60'.

5.2.2. Confidence Value

The confidence value is given to the quad based on the likelihood that the attribute-value

pair is assumed to be correct. It is the perceived trust in the pair being correct. The

confidence value ranges from 0-to-100%. A zero-value means that there is no trust, whilst

100% assumes the opposite.

A zero-value is required so that incorrect quads can be determined. This helps in

searching for errors in components and rules. Another reason for giving quads a zero­

value rather than to remove them is that it retains information persistence.

83

At 100% confidence value the quad is be assumed to be committed. I.e. further

components assume that the quad is always correct.

The strategy for deciding the confidence value is statistical in nature, but if it is subjective

then it is usually proportional to the rule context size and / or intuitiveness of the rule.

The confidence value is of major importance when attempting to resolve ambiguity.

Attribute-value pairs can be given different confidence values to order a set of ambiguous

quads.

5.2.3. Provenance Rule

The provenance marks the origin of the rule that created the quad. The provenance

shows the component that created the rule and also the rule itself. This information is

valuable in maintaining a full information history and can suggest changes in components

and rules that create inappropriate quads.

5.2.4. Quad Set

Typically every token in a document has information stored about it as a set of quads

(henceforth quad set). The quad set is initially empty. Each component in the pipeline

creates new quads for the token. A component analyses the token's information in its

quad set and then produce new quads based on which rules fire in the component. The

new quads are then appended to the quad set.

Storing of all quads means that even incorrect quads can still add value to the system as

it allows the system to detect errors and allows recovery to a point where a quad was

assumed correct.

84

5.3. Components in Architecture

The architecture chosen is modular. This is so that each component has distinct input and

output boundaries and has unique task descriptions. The modularisation in essence

provides a balance of work for each component. It also allows for more transparent

component interaction.

The components in the architecture are knowledge engineered, developed using

experience of language and making use of human intuition. The components can be rule

and statistical based. Development of the components is time consuming and changes

are hard to accommodate.

To preserve the lossless ethos the components are built from scratch as often benchmark

systems perform pruning on the output. To this end each component produces and

preserves information. The architecture is shown below (see Figure 5-1).

85

Input

~
I Natural Language Document I

~
I Tokeniser I

i
I Sentence Splitter I

S tring of Tokens

I Quad Generator I

,
I Word-Class Sentence Scorer I
lass Sentence l , Word-C

I Grammar Parser I
i l Candidate Theme Extraction I
i

I Key Theme Extraction I
i

I Set of Key Themes J
~

Output

I Capitalisation Component
I
I
I Punctuation Component
I
I
I Number Component
I
I
I Hypothesis Component I
I
I
I Function Word Component
I
I
I Suffix Component
I
I
I Function Word Context Com pone
I
I
I
I
I Dictionary I

I ~ 1 _______________ -----------

r-------------- ----------
I
I
I

Function Word Dictionary I
I
I

Content Word Dictionary I
I
I
I --------------------------

I Natural Language Grammar I

r--------------------------
I
I
I Robust Parser
I
I
I Word-Class Predictor
I
I
I Syntactic Parse Tree Generator
I
I
I

~--------------------------

Key

-- Com onents p

nt

---,
I
I
I

Sub-Components

Figure 5-1 - System architecture

The further down the component pipeline the larger the contexts that the components

work with. The early components work on single or multiple tokens whilst the latter take

86

sentence and document contexts. This is because latter components handle more

complex processes and also use the larger contexts to provide better disambiguation.

The following sections justify the choice of components and highlight their task

description.

5.3.1. The Input

A discussion of natural language texts (see 1.1.3. Natural Language Texts) concluded

that a written document can be dependent on an individuals writing style, use of grammar

and extent of their vocabulary. It also mentioned that a document can be unstructured

and have ambiguities throughout. The challenge of natural language texts ensures

problems when attempting to interpret the meaning of the document and extracting only

key themes from it. A theme extraction system must be able to resolve these ambiguities.

The input to the system is a collection of natural language texts, so that the system can

be tested in the real-world. These texts were made purposely harder to interpret by

making them only text-based. This collection is referred to as a corpora of plaintext

documents.

Plaintext has been deliberately chosen because of their difficulty and challenge to

interpret and so theme extraction is a harder problem. Plaintext documents contain only

text and no metadata tags so a more detailed understanding of linguistics is required to

understand the documents.

If the system is successful then it can be applied to any type of document as the

technique does not rely on metadata and just functions on the text.

5.3.2. Tokeniser

The tokeniser is the first component in the architecture for theme extraction. It is required

for delimitation of lexical units so that they can be used in latter components.

87

It is often overlooked by language engineers as a simple peripheral component.

Nevertheless the tokenisation process has a significant impact on the rest of the

components if it is incorrectly performed as errors propagate from this first component.

The task of the tokeniser is to recognise the largest possible units that have internal

integrity and have some likelihood of subsequent occurrence [Woods, 1997].

Considerable effort is required to define a default behaviour that is correct in the widest

possible variety of foreseeable circumstances.

5.3.2.1. Delimitation

The tokeniser initially delimits a plaintext document by whitespace to form lexical units

often called tokens. The whitespace is often formatting such as space, tab, and newline

characters. The delimitation process destroys the original structure of the document, and

produces instead a stream of tokens.

5.3.2.2. Character Splitting

The next stage of tokenisation sees the stream of tokens undergo character splitting. This

is the splitting of all non-number and non-word characters from both sides of a token so

that multiple compound parts of a token are split. Splitting off the characters from both

sides reduces the complexity of a token, especially for problem tokens such as those that

contain quote marks or brackets, it also provides more information for latter components.

For example a token is split into multiple tokens as follows:

('$5.6m') $ 5.6m

Tokens that consist of purely punctuation and symbol characters are exempt from

character splitting as they do not have any number or word characters. If this is the case

then the token is ignored.

Tokens with internal punctuation such as hyperlinks (e.g. http://www.news.bbc.co.uk) are

ignored because punctuation is split from the extremities of the token, so the whole

hyperlink is preserved.

88

Problems occur if an apostrophe occurs at the end of a token or if the token has multiple

punctuation. For example if an apostrophe is split off a token (e.g. Joss' album) then it

becomes ambiguously either a single quote or a possessive marker. If it was originally a

possessive and becomes a quote then single quote tracking becomes distorted.

Tokens that have multiple punctuation and in particular punctuation that functions as a

sentence end, can complicate matters. For example consider tokens such as

'continuing .. .' or 'stop!?!', if the character splitter strips all punctuation then each

punctuation character becomes a sentence end which is incorrect.

5.3.2.3. Contraction Expansion

A token can be a contraction. A contraction that uses an internal apostrophe needs to be

recognised as a grammatical compound of two words. The original token is replaced with

the expansion. Using the expansion removes the apostrophe and makes tracking of

single quotes and possessive markers easier. It also makes the original token easier to

interpret as it becomes two grammatical words rather than a complex token.

If a token is a candidate for contraction expansion, regular expressions are used to

pattern match the token to its grammatical interpretation. Contractions can be of two

types, verb and negative.

A verb contraction is always expandable to two words. The first word is a personal

pronoun. It is the text string of the token up to the apostrophe. The apostrophe and the

remaining text string is the contraction of the second word, the second word is either an

auxiliary or modal auxiliary verb.

The contraction can be ambiguous, however the choice of expansion does not have any

significant affect, as the ambiguous options are all the same word-class either auxiliary or

modal auxiliary verbs.

Special disambiguation rules are used for the contraction "s' as it can be either a word or

a possessive marker. The list of verb contractions and their expansions used in the

system are shown in Table 5-1.

89

Verb Contraction Expansions

'm am

're are I were

've have

'd could I should I would

'II shall I will

's does I has I is I was

Table 5-1 - Verb contractions and expansions

A negative contraction also expands into two grammatical words where the second word

is always 'not'. Typically the 'n't' text string of the original token is the expansion, and the

rest of the original token forms the first grammatical word. There are two exceptions to

this which are the words 'can't' and 'won't'. These special cases possess their own rules

and are tested first as they are more specific instances of negative contraction.

Negative Contraction Expansions

n't not

can't can not

won't will not

Table 5-2 - Negative contractions and expansions

5.3.3. Sentence Splitter

A sentence splitter is required to take the stream of tokens produced by the tokeniser and

to build up sentences. This sentence context is accepted as being large enough to

provide useful information and small enough to be used computationally. All the following

components in the pipeline use this sentence context.

There are generally three acceptable sentence delimiters which happen to be punctuation

marks they are periods, exclamation and question marks. In this system an exclamation

or question mark automatically ends a sentence. A period though can be ambiguously

used as either a sentence end, or part of an acronym or abbreviation. Context rules are

used to determine the correct choice.

90

An acronym is typically a proper noun phrase that has been shortened into a single token

where only the initial character of each word in the phrase is kept and stored separated

by periods. The characters in the acronym are usually either lower or uppercase letters.

An abbreviation is typically a contracted form of a proper noun. Therefore they usually are

a capitalised or lowercase word followed by a single period. An abbreviation lexicon is

used by the system as a resource to resolve ambiguities. This is a lexicon of commonly

used abbreviations that can produce false sentence endings. There are 96 abbreviations

in total, it is not assumed to be complete lexicon but contains common cases.

The period punctuation can be interpreted as an ambiguous choice between sentence

end and sentence continuation. This happens when the period is part of an acronym or

an abbreviation and the following word is capitalised. The strategy chosen is to end the

sentence as long as the following token is a capitalised function word. If not then continue

the sentence. For example:

'J.C. Penney' -7

'First Boston Corp. A sole underwriter' -7

sentence continuation

sentence end

If a period is not part of an acronym or abbreviation then it must be a sentence end.

5.3.4. Quad Generator

The quad generator's task is to assign information quads to tokens in a sentence. These

quads are used in latter components. The quad generator performs lexical analysis of

each token as such most of the rules are linguistically based. It uses a series of

components to perform these analyses. The components are:

• Capitalisation component

• Punctuation component

• Number component

• Hypothesis component

• Function word component

• Suffix component

91

• Function word context component

5.3.4.1. Capitalisation Component

The capitalisation component provides information on possible tokens that can be

classed as nouns.

The capitalisation component checks the likelihood of a token being a capitalised word

and assigns it a quad if it believes it is correct. It also assigns a quad for certain types of

acronyms and abbreviations.

5.3.4.2. Punctuation Component

The punctuation component catches non-word and non-number information that can be

useful in latter components.

The punctuation component checks the likelihood of a token being a punctuation and

assigns it a quad if it believes it is correct. It also assigns a quad for the possessive

marker and some symbols.

Punctuation that serve an important syntactic purpose are given their own class, all others

are given a generic punctuation class. For example the symbol '&' can be interpreted as a

conjunction, e.g. 'H&M'.

5.3.4.3. Number Component

The number component catches number information which is useful in latter components.

The number component checks the likelihood of a token being a number and assigns it a

quad if it believes it is correct. There are many types of numbers so this component has

an assortment of rules to capture the information. E.g. apart from numerical digits,

punctuation such as commas (order of thousand, million etc.), periods (decimals), colons

(time or ratio), forward slashes (dates) and hyphens (number-word modification) can be

used in determining numbers.

92

The system does not use a number lexicon so textual numeric representations (e.g.

sixteen) are not be recognised by the system, and also some complex numeric

representations (e.g. 1.3e6) are not recognised by the current rules.

5.3.4.4. Hypothesis Component

Essentially the hypothesis component speculates the word-class of a token based on its

attributes held in previously created quads. This provides extra word-class information for

a token when linguistic cues are seen in the text.

This component takes the quads produced by components that do not produce word­

class attributes, and hypotheses a word-class based on the information it sees. Currently

there are hypothesis rules for attributes from the capitalisation and number components.

5.3.4.5. Function Word Component

This component performs a lexical lookup of a token to see if it is a function word, and if it

is then a set of word-class quads are given to the token. The aim of the component is

therefore to provide each function word with an associated set of word-classes. Only

function words are used because they are a closed vocabulary. The lookup is case

sensitive as this sensitivity preserves more information.

The set of word-class quads is created using two resources a lexicon of function words

and a frequency lexicon created from the Wall Street Journal (WSJ) corpus that contains

the function words and the relative frequencies of that function word occurring as a

specific word-class. A function word can ambiguously have many different word-classes.

The confidence value of each word-class quad is linked to the relative frequency of the

function word occurring as that word-class. The quad's word-classes and confidence

values can help aid in statistical disambiguation in latter components.

As the frequency lexicon has been created from the WSJ the actual quads are domain

dependent. There is also a mapping process that takes WSJ tags and converts them to

word-classes that can be used in the system. Also for a word-class of a function word to

occur as a quad it must occur at least 0.1 % of the time. For example the function word 'A'

93

(lowercase 'a' produces a different set of quads due to case sensitivity) has 3 different

WSJ tags of DT, NNP and NN, and each has different frequency of occurrence:

'A' DT -7 1142

'A' NNP -7 59

'A' NN -7 10

The quads created are:

(Determiner A 94.3 Initial_POS_Rule)

(Proper_Noun A 4.9 Initial_POS_Rule)

(Noun A 0.8 Initial_POS_Rule)

5.3.4.6. Suffix Component

The suffix component checks the likelihood of a token being a particular word-class based

on its suffix. This is based on the hypothesis that the end suffix ultimately provides the

word-class. It performs morphological analysis by analysing token endings to see if its

suffix provides a useful discriminator of word-class information. Its aim is to speculate

useful word-class information from unknown tokens.

The suffix component works over content words (aka open-class words). Words which

match a suffix rule produces a word-class quad, these quads contain an open-class

attribute, either of adjective, adverb, noun or verb.

A suffix rule consists of the suffix, the discrimination rate and the word-class. E.g. 'al 78.7

Adjective'. There are a total of 73 rules.

The suffixes used are amalgamated from work by Quirk [Quirk et aI., 1985], the Porter

Stemmer [Porter, 1980], and linguistic information. This is a class of suffixes that are

strong discriminators of word-class.

The suffixes range from 2 - 4 characters in length. This range was chosen because a

single character does not provide good discrimination rates, and more than 4 characters

over specifies the suffix and leads to a loss of robustness in matching tokens. When

94

matching a word, the rule with the most specific suffix is selected because longer suffixes

tend to provide higher discrimination rates.

The minimum word-class discrimination rate for each suffix is 50%, the mean is 86.2%

and 43 rules are above 90%. The discrimination rate becomes the confidence value for

the quad.

The suffix rules were analysed over the WSJ corpus. So they are domain dependent and

are not applicable to all corpora.

5.3.4.7. Function Word Context Component

This component performs word-class disambiguation of function words. It performs a

lexical lookup of a token to see if it is a function word (or part of a multi-token function

word) and runs a series of associated rules. Each rule functions independently so for

every rule it matches a word-class quad is produced. The aim of the component is

therefore to provide each function word with an associated set of word-class quads. Only

function words are used because there is a limited amount of them so rules can be

designed for every single function word.

The rules are classified by word-class, and further sub-classified as either generic or

specific rules. Generic rules typically apply to all the words in that word-class or a group

of words. Specific rules typically apply to a group of words or a single word.

Every function word has a unique set of rules associated with it. These rules are

linguistically based using real-world knowledge and are manually created so that they

better articulate natural language. Each rule has a central position which is the function

word, and linguistic context which requires matching. The linguistic context can be absent

in some rules, but in the others the context can exist on either or both sides of the central

position.

The linguistic context acts as a constraint to further disambiguate the likelihood of a

function word being correct. This context is matched to the context surrounding the

function word in the token stream. The context is only limited by the sentence

delimitations. If the linguistic context is matched then the rule creates a quad.

95

The linguistic context is made up of specific words, word-classes, punctuation marks,

regular expressions (e.g. zero or one, zero or more), and logical operators (e.g. OR,

NOT). The combination of which provides powerful contextual constraints to increase

function word disambiguation.

The confidence value for the quads has been assigned manually. The objective factor for

the value is dependent on the quantity of linguistic context for the rule. E.g. no context

usually gives a low confidence value, whilst context on both sides of the central token

gives higher values due to the specificity of the constraints. A difference of this

component to the others is that the confidence value can be negative, which means that

the word in question is probably not a function word.

5.3.5. Dictionary

A dictionary is an important part of a natural language system as it is used to associate a

token with a word-class. It is used to compensate for rule scarcity of the quad generator.

This word-class information is useful in latter components.

A dictionary looks up a token and provides it with a quad for every word-class it is

associated with. E.g. the word 'beat' has quads for adjective and verb classes.

There are two dictionaries, a function and a content word dictionary. These dictionaries

are lexicons of words and associated word-classes. The function word dictionary is

assumed to be complete as new words are rarely introduced into a language, whilst the

content word dictionary aims only to be minimal in nature but provide a high impact for

word-class assignment.

The aim was not to build complete dictionaries, but just to form minimal ones that benefit

the system by being able to allocate word-class information to tokens, so that more

accurate syntactic parse of natural language documents is possible.

5.3.5.1. Function Word Dictionary

The function word dictionary stores both single and multi-token function words. There are

314 unique single-tokens and 141 unique multi-tokens. Most of the words are used

96

ambiguously. The multi-tokens are particularly important as they determine the function of

a group of words. This helps to resolve ambiguity of words by committing a group of

words, and produce a more accurate syntactic parse.

The function word dictionary is linguistically produced. It is used primarily by the quad

generator component The words in the dictionary are particularly useful as they are the

most frequently used words in a language and supply grammatical information on how

sentences are structured. Also they are domain-independent which means that they can

be used in any corpora without any bias. An obscure benefit is that function words cannot

be speculated using morphological analysis so it is essential that they are clearly

classified in a dictionary.

5.3.5.2. Content Word Dictionary

The content word dictionary only stores single-tokens. The aim was for a minimal lexicon

that provides a high impact for word-class assignment A complete lexicon cannot be

achieved because content words are often introduced into a language. It is important to

have some minimal content word dictionary as a function word dictionary by itself is not

sufficient for producing accurate syntactic parses, and function words provide only

grammatical information and little meaning, so content words are necessary to supply

semantic information.

The content word dictionary was produced by analysis of the Wall Street Journal (WSJ)

corpus. The resulting lexicon of adjectives, adverbs and verbs became the dictionary. The

size of each is adjectives 3,353; adverbs 284; and verbs 3,221. Most of the words are

used ambiguously. The dictionary size can be reduced if the lexical entries were

stemmed. This was not carried out though as it can have created errors during conflation.

In comparison dictionaries used in other systems are far larger in size, for example Brill's

part-of-speech tagger uses a lexicon, also trained from the WSJ, which contains 70,697

lexical entries.

There are a few major limitations, firstly the dictionary was learned from the WSJ so it is

domain-dependent, secondly the dictionary is assumed to be incomplete, and thirdly

there is no lexicon for nouns.

97

A lack of a noun lexicon means that the system must compensate by being adaptable to

speculate on tokens that function as nouns. Conversely the content word dictionary is

greatly reduced as it does not have to cater for this ever growing word-class.

5.3.6. Tag-Set

The quad generator and dictionaries produce word-class information. These word-classes

are used in latter components to produce syntactic parses from which to extract themes

from. In particular, the grammar rules which build the syntactic structures are completely

dependent on the word-classes.

The collection of word-classes is known as a tag-set. Design of a tag-set is a non-trivial

problem as it is the basis of interaction between a majority of components. Ideally a tag­

set provides unique tags for all classes of words that have a distinct grammatical

behaviour. This way a tag can be used for disambiguating information.

A small tag-set often increases accuracy of word-class assignment as it reduces the

chance of tagging inconsistencies because of fewer tags, but it produces tags that are too

generic to capture linguistic detail and often these tags become ambiguously used.

Conversely a large tag-set leads to complexity issues, redundancy and sparse data

problems. Tag-set size can vary greatly, some example tag-sets and sizes are:

Brown -7 87, which has proliferated into:

Wall Street Journal -7 48

Lancaster - Oslo / Bergen -7 135

Lancaster UCREL -7 165

London - Lund -7 197

The choice of tag-set size always bears a cost. For example the WSJ is based on the

Brown tag-set with syntactic and lexical conflations. The cost of this is that some of its

tags are ambiguous, with distinctions having to be made by human annotators. For

example the tags IN, NN, and VBG are used ambiguously as:

IN

NN

Preposition or subordinating conjunction

Noun, singular or mass

98

VBG -7 Verb, gerund or present participle

In the author's system the tag-set size is 67. These tags are for content words, single­

token function words, multi-token function words, possessive marker, punctuation

markers, and numbers.

5.3.7. Word-Class Sentence Scorer

At this stage in the pipeline every token in a sentence contains zero or more word-class

quads. These quads are used for further processing at the syntactic level. If a token has

zero word-class quads then a class of 'unknown' is assigned to it.

The word-class sentence scorer generates and priorities word-class sentences from the

previously created quads so that they can be used to build syntactic structures.

The generation process produces every permutation of word-class sentences, based on

each token in the sentence and the set of word-classes associated with it.

To prioritise each generated word-class sentence requires three phases. The first phase

evaluates the score of each word-class. This requires the confidence value and

provenance rule of the quad for that word-class. Each provenance rule has a weight

associated with it. The score of the word-class is the product of the confidence value and

the rule weight.

The rule weight depends on the component provenance. Each component in the

architecture can be classed as either intuitive, statistic or linguistic. For example the

hypothesis component is intuitive as it speculates the word-class of a token.

The rule weighting of the components has intuitive as the lowest and linguistic as the

highest. This is because statistical analysis is preferred over intuitive assumptions, whilst

linguistic is preferred over all as it uses the most context.

So in summary, each word-class score is the product of its confidence value and the rule

weight which is associated with its provenance rule. If it is 'unknown' then the score is

zero.

99

The second phase of word-class sentence prioritisation scores the entire word-class

sentence as the sum of all the individual word-class scores.

The final phase prioritises the word-class sentences by a best-first approach. The highest

scoring word-class sentence is the first to be syntactically parsed.

5.3.8. Natural Language Grammar

A grammar is possibly the most important part of a natural language system as it

formalises how a language is used. The aim of a grammar is to provide a formal

description of natural language using syntactic and linguistic information. This requires an

understanding of the structures that are used in natural language. The grammar

highlights the quintessential word-class sequences that occur with each other to form

typical sentences.

A grammar is a set of rules that apply structure and word order to a language. The

grammar rules used in the author's system has been derived from multiple sources

including language books by Quirk [Quirk et aI., 1985], and Biber [Biber et aI., 1999].

There are 222 grammar rules.

An ambiguous grammar is allowed so that the expressiveness of natural language can be

mapped. This means that grammar rules are often ambiguous. This ambiguity keeps with

the lossless information ethos as all possibilities are explored rather than a simple

deterministic choice.

The grammar provides a large coverage of natural language. It caters for both frequently

and non-frequently occurring structures. It is the most descriptive and expressive

component in the system. It is the first component that uses sentence, clause, phrase and

word-level structures, all of which are related in hierarchical fashion. The highest syntactic

level is the sentence and the lowest is the word-class. Higher-level structures are formed

by lower-level ones. Each level covers many specific and generic structure types. As well

as syntactic information the grammar also provides syntactic functions to supply extra

richness such as subject and object.

100

A grammar rule is formalised as having a non-terminal label on the left-hand-side (LHS)

followed by a colon followed by a right-hand-side (RHS) that can be empty, or consist of a

mixture of non-terminals and terminals. A non-terminal used on the RHS of a grammar

rule expands to the grammar rule(s) that has the non-terminal as its LHS label. The

terminals used in the grammar are the word-classes for content and function words,

punctuation markers and numbers. A terminal is enclosed by single-quote marks whilst

non-terminals are not. The top grammar rule is known as the'S' rule.

The grammar allows free word order by allowing rules to be cyclic in nature (i.e. when

non-terminals are repeated in other grammar rules), and having optional structures (i.e.

when a non-terminal can occur zero times).

Grammar rules decide the boundaries of structures. A rule determines how a structure is

formed and also its word-order. A rule can be visualised as a series of specific linguistic

constraints, the more expressive the rule the more constraints it contains.

5.3.8.1. Dictionary and Natural Language Grammar Size

A dictionary and a grammar are perhaps the most important components in a natural

language system for theme extraction. In most systems they tend to be produced by

statistical analysis of manually annotated corpora. The author has approached the

problem from a linguistic perspective and both the function word dictionary and natural

language grammar have been knowledge engineered. However it was noted that the

resulting system did not provide enough word-class information for accurate syntactic

parses so the content word dictionary was designed to resolve this issue.

A major problem with both dictionaries and grammars are their size. The author has

performed work to minimise the size of these components whilst maximising their impact.

The formation of the content word dictionary and improving the coverage of the grammar

were both obtained by use of a flexi-dictionary.

A flexi-dictionary is a component that was used to learn and resolve weaknesses in the

architecture. Its main contribution to the system was to produce a minimal content word

dictionary (see 5.3.5.2. Content Word Dictionary) and improve the coverage of the

grammar from analysis of the Wall Street Journal (WSJ).

101

In the original system only a function word dictionary was used along with linguistic and

statistical components to determine word-class information. The word-class sentences

produced contained many 'unknown' tokens, which were mainly due to content words not

receiving word-class assignment because of a lack of rules. It was valuable at this stage

to produce more word-class information for content words prior to parsing. A flexi­

dictionary was used to increase the number of word-classes in a word-class sentence.

The flexi-dictionary applies a word-class of either adjective, adverb, or verb over the WSJ

to see what affect it has on the output.

The system analyses the WSJ for each word-class. The word-class sentences produced

by the system are analysed by the flexi-dictionary. For each 'unknown' token in the word­

class sentence the corresponding tag in the WSJ corpus is found, if the tag is the same

as the word-class being analysed then the 'unknown' is substituted with the word-class

(see Figure 5-2). The actual 'unknown' word and its following word-class context window

are stored.

Word-Class

Sentence
., W-C Unknown W-C Unknown W-C

Flexi-Dictionary

New

Word-Class

Sentence

i
WSJ Corpus

~ W-C ®:£C "ok","" W-C
Extra constraint

Figure 5-2 - The flexi-dictionary component

After the entire WSJ is analysed the set of stored words becomes the content word

dictionary for that word-class, and the set of word-class context windows is used to

improve the coverage of the grammar.

102

5.3.9. Grammar Parser

The grammar parser component takes as input a word-class sentence and parses the

sentence using the natural language grammar and a non-deterministic parser. The output

is a set of syntactic parses from which to extract themes from.

Deep grammar parsing using non-deterministic components such as the grammar and

parser is beneficial to theme extraction as it shows all possible ways of breaking a

sentence into grammatical constituents and show the relationships between them which

is useful for resolving structural ambiguity.

It is an improvement over deterministic parsers that apply a best-fit analysis and lose vital

information, and over partial parsers that perform shallow Information Extraction so does

not produce relationship information between the extracted constituents.

The non-deterministic parser used in the theme extraction system is described in the next

section.

5.3.9.1. Earley Parser

The Earley parser was choicen as the non-deterministic parser. It is the only component

in the system that was not built from scratch. Nevertheless it is well suited with my

loss less architecture ethos as it retains all information it produces.

Like the other parsers discussed in section (3.3.1.4. Non-Deterministic Parsers), it can

use either an unambiguous or ambiguous grammar and simulate parallel execution of

multiple copies of a left-right parse, and so simulate non-determinism.

The Earley parser performs a systematic search to explore the space of possible

syntactic parses of a word-class sentence based on the natural language grammar. A

word-class sentence can either parse or fail. If it parses it builds a data structure called a

parse graph to store all the syntactic parses.

The parser starts by traversing the top grammar rule, the'S' rule, and expands through

any non-terminals until it reaches rules that expect a terminal, a pointer is then placed

103

before the terminal of that grammar rule. This set of rules expecting a terminal can be

viewed as rules 'in-flight'. Next the parser tries to consume the first word-class from the

word-class sentence, if this word-class matches the expected terminal in a rule in-flight,

then that rule is continued and the pointer for the rule moves past the terminal, and the

word-class is taken as consumed. A rule in-flight is discontinued if it cannot consume the

word-class. If all the rules in-flight are discontinued then the parse for the word-class

sentence fails. The consumption of a word-class therefore acts as a constraint over the

set of possible rules in-flight. The process repeats by using the pointers in the rules in­

flight to generate a new set of rules in-flight for each subsequent word-class in the word­

class sentence. The sentence parses successfully if the entire sentence is consumed and

the top grammar rule has been matched.

Another view of the process is that each rule in-flight is a possible syntactic parse, and

only the parses that consume the next word-class are allowed to continued, and all others

are discontinued. In this view the word-class constrains the set of possible parses.

Formally, an Earley parser is successfully if it achieves the goal of moving from the start

state'S: * ... ' to a final state'S: ... *' after consuming the entire sentence. Where 'S' is the

top grammar rule and '*' represents the pointer position in a rule. The parser uses the

natural language grammar rules and the following pseudo-code for the functions

predictor, scanner, and completer:

If (the pointer is not at the end of a grammar rule)

{

If (the next element is a non-terminal)

{

Run Predictor

} Else

{

Run Scanner

}

} Else

{

Run Completer

}

104

The parser creates a new set of rules in-flight for each new word-class of the input

sentence. Remember that a terminal is enclosed by single-quote marks whilst non­

terminals are not.

• Predictor - If the pointer is not at the end of a rule (i.e. 'X: '" * ... ') and if the next

element is a non-terminal use the predictor. This produces a new rule in-flight.

The new rule always has a pointer at the start of its right-hand-side. E.g. The

grammar rule 'X' expands the non-terminal Y to form a new rule in-flight 'V'.

X: *Y

Y: * 'a'

• Scanner - If the painter is not at the end of a rule (i.e. 'X: ... * ... ') and if the next

element is a terminal use the scanner. If the next word-class in the sentence

matches the terminal then the word-class is consumed and the pointer for the rule

is moved past the terminal. E.g. The grammar rule 'X' consumes the terminal 'a'.

X: * 'a' Y

X: 'a' *Y

• Completer - If the pointer is at the end of a rule (i.e. 'X: ... *') then use the

completer. Which completes the rule and its parent rule now has the non-terminal

completed. E.g. The grammar rule 'V' completes after consuming the terminal 'a',

so its parent rule 'X' can now complete its 'Y' non-terminal.

X: *Y Z

Y: * 'a'

Then terminal 'a' is consumed

Y: 'a' *

X: Y * Z

To demonstrate the parser, a trivial example is used that has an ambiguous grammar.

The input it uses produces two syntactic parses. I.e. S -7 X [a) and Y [b c), and S -7 X [a

b) and Y [c).

105

Input: abc

Grammar: S:XY

X: 'a'

X: 'a"b'

Y: 'c'

Y: 'b"c'

In Table 5-3 below the 'Current Sentence Position' is shown by a '*'. In the 'Rules In­

Flight' column, the numbers in brackets define provenance information. The first number

is the rule identifier and the second number is the parent identifier. This is necessary to

keep track of ambiguous parses.

Current Rules In-Flight Comments

Sentence

Position

-abc (0) s: - X Y (0) The initial set of rules in-flight is produced.

(0) X: - 'a' (0) The top grammar rule'S' is expanded until all rules in-flight expect a terminal.

(0) X: - 'a' 'b' (0) This requires the predictor.

As the grammar is ambiguous there are two 'X' rules.

a- b c (1) X: 'a' - (0) The scanner consumes the terminal 'a'.

(1) X: 'a' * 'b' (0) Rules not expecting the 'a' are discontinued.

(1) S: X - Y (0) The rule 'X: 'a" completes.

(1) Y: * 'c' (1) The parent rule'S' moves past the 'X' non-terminal.

(1) Y: - 'b' 'c' (1) New predictions are made for the non-terminal 'Y'.

a b - c (3) X: 'a' 'b' * (0) The scanner consumes the terminal 'b'.

(3) Y: 'b' * 'c' (1) Rules not expecting the 'b' are discontinued.

(3) S: X - Y (0) The rule 'X: 'a' 'bn completes.

(3) Y: * 'c' (3) The parent rule'S' moves past the 'X' non-terminal.

(3) Y: - 'b' 'c' (3) New predictions are made for the non-terminal 'Y'.

abc - (5) Y: 'b' 'c' - (1) The scanner consumes the terminal 'c'.

(5) Y: 'c' * (3) Rules not expecting the 'c' are discontinued.

(5) S: X Y - (0) Both 'V' rules complete.

The'S' rule completes.

The parse is successful and the parse graph contains 2 ambiguous parses.

Table 5-3 - Earley parsing example

106

5.3.9.2. Limitations of the Earley Parser

The author was forced to make a few major improvements to the Earley parser so that it

met necessary design requirements in order to produce improved syntactic parse trees

for theme extraction. The improvements are a robust parser, word-class predictor and

parse tree generator.

The Earley parser fails to parse a sentence if there are insufficient grammar rules to

provide the necessary coverage for a sentence. The likelihood of failure is high unless the

sentence is short and simple. The parser has been modified so that it can continue to

parse a sentence even after fail points. This way a parse is given to the entire sentence

even if some parts of the parse are fragmented and unconnected. This robust parsing

means that the parser now accepts any input sentence, rather than just valid sentences

as it did before.

Often an input sentence can have 'unknown' classes, which means that no components

in the pipeline had been able to speculate a word-class of a token with any authority. To

allow parsing of these unknowns requires modification of the Earley parser to allow it to

predict a set of word-classes for the token based on the set of rules in-flight.

The original author of the Earley parser has stated that the parse graph is "near

impossible to traverse". However the author has designed a parse tree generator for

traversing the parse graph to produce syntactic parse trees. The parse tree generator is

capable of producing syntactic parse trees for any input sentence.

The robust parser, word-class predictor and parse tree generator are discussed in the

next few sections.

5.3.9.3. Robust Parser

One of the consequences of an incomplete grammar is that a parser sometimes fail with a

given input. If a full parse of a sentence is not possible then a robust parser is used. A

robust parser is required to make sure that as much syntactic information is extracted

from the input as possible. A robust parser is an acceptance that a grammar is

107

incomplete. It is assumed that a perfect grammar can parse all natural language

sentences making robust parsers obsolete as there are no fail points.

In a set of rules in-flight, if there is no rule that can consume the next word-class of input,

then a full parse fails. This occurs because none of the rules can form a constituent given

the current state of the parses and the next word-class. The parse graph before the fail is

analysed and a strategy is used to extract the best syntactic structures. After the fail point,

the input used to build the syntactic structures is considered consumed, and a parse

restarts using the top grammar rule with the remaining input.

The robust parser strategy selects syntactic structures using a series of constraints, which

in order of precedence are:

• Rule Completer - This means that the whole of a grammar rule must be matched

in order to be completed, this is to prevent partial matching of rules which

weakens the linguistic constraints that a grammar imposes. A completed rule also

means a linguistic structure is produced with the correct syntactic boundaries.

• Highest Non-Terminal - This is a choice of parse amongst a set of parses for the

input. The structure with the highest non-terminal is chosen. The order of

precedence is an'S' parse, followed by parses with other non-terminals and the

lowest is a single-token. This is based on the assumption that it is better to have

fewer syntactic parse fragments for an input, so the ideal is a single full parse and

the nightmare scenario is all single tokens.

o 'S' Parse - An'S' parse is the ideal. An'S' parse whether it is for a full

parse or a robust parse functions the same. All ambiguous options for

syntactic parse trees are kept.

o Other Non-Terminal Parse - Sometimes the input successfully parses

but it does not form a'S' parse, nevertheless the information stored in the

parse graph still provides enough information to produce syntactic

parses. A strategy is used to choose the syntactic parse trees from the

highest non-terminal. Some redundant information is removed.

108

o Single-Token Parse - This is the final resort. If the input fails for all

lengths then all that remains is a single-token. This occurs because the

token cannot combine with its surrounding context to form any structures.

This is because there is no suitable grammar rule.

• Longest Match - This is the longest consumption of input that produces a valid

syntactic parse. If the parse is invalid, then one token from the end of the input is

removed until the input parses successfully. The preference for longest match is

because it contains the most context. The longest match criteria is formally

known as a back-tracking left-to-right longest match.

The constraint of rule completion is never relaxed as formation of consistent bracketing is

fundamental for creating accurate syntactic structures. The other two constraints can be

relaxed. The order of relaxation begins with the longest match meaning that a shorter

input can be attempted for a parse, followed by compromising on the highest non-terminal

which means searching down the order of precedence for a parse.

5.3.9.4. Word-Class Predictor

If a token is not associated with any word-classes, then it is given a class of 'unknown'.

These 'unknown' tokens require special processing during parsing.

When an 'unknown' is parsed it assumes the set of expected terminals generated by the

rules in-flight. Each terminal is a candidate word-class that the 'unknown' token can be

given based on the state of the parses and the grammar rules. The task of the word-class

predictor is therefore to generate a set of word-classes that an 'unknown' token can be

given the input and the grammar.

In essence, an 'unknown' functions as a unconstrained terminal as all the rules in-flight

are accepted and all options are explored simultaneously so it does not constrain the set

of possible syntactic parses. Therefore the more unknowns that exist in the input the

weaker the constraints on the proliferation of syntactic parses.

The issue that arises is that predicting unknowns becomes a grammar over-generation

problem. To make some arrears the set of generated word-classes is limited to the open

109

and closed word-classes and does not allow punctuation markers, symbols, numbers or

possessives to be candidates for the 'unknown' token.

5.3.9.5. Syntactic Parse Tree Generator

The author of the Earley Parser, Luke Palmer, warns "don't try to use the parse "graph"

yet, as it is near impossible to traverse". However, the only way of producing the syntactic

parse trees was to attempt this challenge. The author has successfully managed to

traverse the parse graph and produce syntactic parse trees. The parse tree generator is

the component that performs that task.

It can produce the syntactic trees for either a full or robust parse, and for unambiguous or

ambiguous parses.

5.3.9.6. Limitations of using the Grammar and Parser

There are fundamental problems of using the grammar and parser. Although a grammar

can be useful in formalising a language, it can suffer from incomplete language coverage

and contain rules that do not necessary represent idiosyncratic usage of language. Also

the grammar specifies only syntactic information and presents no semantic information

that might be useful in semantic analysis. The parser applies the grammar to only a single

sentence so this limited domain may restrict the information that may be gleamed from

using a larger document context.

The reason for using the grammar and parser is to preserve the flow of information. Both

components are non-deterministic so all possibilities can be explored by the theme

extraction component. Another option would be to use a purpose built linguistic parser

such as GATE. The GATE Information Extraction system, ANNIE, produces figures of

between 80-90% precision and recall on news texts [Cunningham et aI., 2002aj. It should

be noted that GATE uses large noun lexicons in which to identify entities of interest, and

there are no such lexicons in the author's system. However, the main issue for not using

a system such as GATE is that it uses deterministic components that propagate

information loss. Another reason is that GATE uses a shallow parser which does not

preserve deep structure so relationships between grammatical constituents cannot be

used to resolve structural ambiguity.

110

5.3.10. Theme Extraction

The theme extraction component is the final component in the pipeline. It uses the

syntactic parse trees produced for each sentence to extract key themes for the entire

document. Theme extraction is split into two processes, the first extracts the candidate

themes from each sentence, and the second is to extract key themes for a document

based on the set of candidate themes.

5.3.10.1. Candidate Themes

Candidate themes for a sentence are extracted from the syntactic parse trees. Theme

extraction is therefore dependent on the grammar and the parser. The process extracts

structures with labels that can be potential theme indicators. These labels include noun

phrases, and specific types of subjects, objects and prepositional complements. This

provides an objective approach for theme extraction.

A sentence can form multiple syntactic parses. Each parse provides its own set of themes

for a sentence. The aim of choosing a single set of candidate themes for each sentence

therefore requires techniques for conflating all the ambiguous set of themes for that

sentence. A single set of candidate themes simplifies the final process of choosing key

themes. Below is a list of the steps taken in chronological order:

• Removal of Non-Essential Modifiers - To start with, all non-essential modifiers

are removed from each candidate theme. Pre-determiners and determiners do

not add value to a theme so these modifiers are removed from the front of all

candidate themes. E.g. 'the red car' 7 'red car'.

• Ubiquitous Themes - If a theme occurs in every parse tree and has the same

syntactic label, then it is automatically accepted in the set of candidate themes.

For all other themes there are three techniques to conflate them into the single

set of candidate themes. First duplications are removed then analysis is

performed for unique and intersected themes.

• Duplicated Themes - All exact duplications of a theme are merged into one. So if

a theme exists with various syntactic labels because their parse trees were

111

different, then all the variations are merged into one syntactic label of

'ambiguous'. This ambiguous classification is required so that it clearly shows that

the theme used to have multiple syntactic functions. An instance of the duplicated

theme is accepted in the set of candidate themes.

• Unique Themes - A unique theme has no intersection with other themes, so it is

a theme on its own merit. A unique theme is accepted in the set of candidate

themes.

• Intersected Themes - With intersected themes the aim is to choose the best

single representation. This is required so that only one theme represents the

intersection of themes. The choice is the theme that completely consumes the

other themes. I.e. 'average life of the certificates' consumes 'average life' and

'certificates'. So the latter two themes become redundant. This encompassing

theme is kept because the other sub-themes are derivable from it so no

information is lost.

If there is no true consuming theme then intersected themes are combined into a

longer theme that encompasses the themes. I.e. 'rich duke' and 'duke of York'

becomes 'rich duke of York'.

An encompassing theme is given the syntactic label of 'derivation' because the

theme is derived from a collection of other themes. An encompassing theme is

accepted in the set of candidate themes.

5.3.10.2. Key Themes

The key themes of a document are generated based on an analysis of the candidate

themes for each sentence. Each candidate theme is independently scored using

variables for precedence, length, and frequency. These factors aid in identifying key

themes. Below is a list of the factors, followed by the equation used to score each theme,

and how the themes are ranked:

• Sub-Themes - The author assumed that a theme containing function words can

be split so that sub-themes can be extracted. This is based on the assumption

112

that function words act as syntactic glue between potential themes. These sub­

themes are extracted and scored as candidate themes on their own merit. They

are given the syntactic label of 'sub-theme'.

• Theme Precedence - The set of syntactic labels that are used for theme

extraction is listed in Table 5-4. Each label is assigned a weight. The weights are

a way of boosting the importance of different types of themes.

113

Syntactic Weight Comments

Label

Ambiguous 1 An ambiguous label shows that the syntactic label cannot be determined for that

theme. It means that the theme had multiple types of syntactic structure in the parse

trees. Therefore it is weighted the lowest.

Derivation 1 A derivation label is used for an encompassing theme of a set of intersecting themes.

As it is a derived theme then there is a chance that the original themes had multiple

syntactic labels, therefore a derivation is weighted the same as an ambiguous label

as the syntactic label can not be determined for the derived theme.

Noun Phrase 2 A noun phrase is the default theme. It does not serve any syntactic function.

Object 3 An object is a good indicator of a theme.

Prepositional 2 A prepositional complement is weighted the same as a noun phrase as it does not

Complement serve any syntactic function.

Subject 4 A subject is a strong indicator of a theme.

Sub-Theme 1.5 A sub-theme label is used for shorter themes derived from longer themes. They are

given a lower weight than most syntactic labels as their syntactic function is unknown.

Table 5-4 - Syntactic label weights

• Theme Length - The system has a preference for longer themes, which means a

preference for theme phrases rather than single-word themes. The theme length

is a sum of the number of tokens in the theme. The impact of the theme length is

the least significant of the factors as both short and long themes can be key

themes.

To normalise theme length, any themes that contain function words are

penalised. A sum of the number of function words in that theme is used as the

penalty during scoring.

• Theme Frequency - This is the frequency of a theme occurring in the document.

The theme must be matched in its entirety but the matching is case insensitive

because the same theme can have different case depending on where it occurs

114

in the document. Theme frequency is considered to be a major factor in

identifying key themes.

The problem of using theme frequency is that the match needs to be exact

however as the system has no component for stemming then similar themes

cannot be matched.

A candidate theme score is calculated as:

((S . L b 1 W . h Th L h)(Theme Frequency+l)
Candidate Theme Score = -".\ ,---,-y_n_at_a_c_tI_c-;-a_e __ e-=lg,--t_x __ e_m_e_e_n-=g=-t_'-~ ___ --L

(Number of Function Words + 1)

Equation 5-1 - Candidate theme score

Theme frequency and the number of function words both need to be non-zero so their

values are incremented by one.

After the candidate themes are scored, they are ranked, highest-first. The key themes are

those that have a score exceeding a threshold. A maximum of the top 20 key themes are

shown for evaluation purposes. Of course, less are available if their scores do not meet

the threshold.

115

5.4. Computational Feasibility

A lossless architecture is able to improve the accuracy of theme extraction whilst

minimising the propagation of error. However, this preservation of information has a

detrimental affect on computational feasibility as all permutations are tried rather than a

best-first approach.

As mentioned before this research is aimed at quality rather than speed, but some

memory problems have manifested into the system. The main problems arise from the

sizes of the dictionary, tag-set and natural language grammar. The size of each has been

kept to a minimum whilst aimed at providing a maximum impact for theme extraction. The

design of each is non-trivial as they have interactions with the other components in the

architecture.

This section quickly highlights where the author has had to make a decision to speed up

certain components so that the system does not run out of memory. Unfortunately the

cost of these shortcuts is that the ethos of the loss less architecture is not kept which

means that there is a reduction in the potential power of these components and ultimately

vital information is lost.

5.4.1. Word-class Sentence Scorer

The word-class sentence scorer generates and priorities word-class sentences from the

previously created quads. The generation process produces every permutation of word­

class sentences, based on each token in the sentence and the set of word-classes

associated with it. This component sometimes runs out of memory.

A shortcut is used to produce the top word-class sentence rather than generate all

possible options. A potential problem is that the word-classes in the sentence are

incorrect.

116

5.4.2. Grammar Parser

The grammar parser forms syntactic parse trees given a word-class sentence. As the

parser is non-deterministic it generates all possible permutations. This component

sometimes runs out of memory.

If the number of syntactic parse trees produces exceeds a threshold of 50,000 then it

becomes too computationally expensive to perform theme extraction from all this trees. A

shortcut is used to produce the first syntactic parse tree rather than generate all possible

trees. This dramatically reduces computation, as some sentences can produce incredible

numbers of trees because either the word-class sentence has many 'unknown' tokens, so

there is less context to constrain the proliferation of trees, or it has many punctuation

tokens which act as weak constraints.

A potential problem is that the syntactic parse tree does not have the correct structure so

theme extraction is inaccurate, this is a major problem. Also as there is only one tree then

'ambiguous' or 'derivation' themes that are used in theme scoring are not identified.

There has been one occasion where the memory problem occurred whilst actually

producing the parse graph for a sentence. Unfortunately at this stage it is impossible to

determine the number of syntactic parse trees that are likely to be produced. 80 the

system cannot provide a shortcut for this potential problem. The problem was with

sentence 4 (after sentence splitting) of file 'DjVu - ACO 8 Range'. This sentence has

since been removed prior to evaluation.

117

5.5. Implementation

The code for the system was written entirely in ActiveState Perl 13 version 5.6.1. This

programming language was used for its powerful text manipulation, rapid prototyping and

access to the Comprehensive Perl Archive Network 14 (CPAN), which contains useful

modules necessary for the system.

All the components in the system were written from scratch apart from the Earley parser,

which was modified to provide the necessary requirements for use in the system. The

Earley parser and the other modules incorporated from the CPAN are:

• Parse::Earley 0.15 (Luke Palmer) - An implementation of the Earley parser.

• Text::Balanced 1.95 (Damian Conway) - A module that is used by Parse::Earley

to extract delimited text sequences from strings.

• Test::Simple 0.54 (Michael G Schwern) - A set of basic utilities for writing tests.

The hardware used to evaluate the system was an Intel Pentium 3 processor, 850 MHz,

384 MB RAM. The system runs very slowly due to the loss less architecture.

13 http://www.activestate.com

14
http://www.cpan.org

118

5.6. Summary of Chapter

This chapter has provided the justification of the choices for an automatic key theme

extraction system. In particular the need for a new loss less architecture to overcome the

problems of traditional architectures. The key benefits of a lossless architecture are the

minimisation of information loss and error propagation.

The loss less architecture required a new formalism for representing information which

was called a quad which contained an attribute-value pair, confidence value and

provenance rule.

An architecture was implemented by the author that adhered to an ethos of lossless

information. To preserve the loss less ethos the components were built from scratch as

often benchmark systems perform pruning on the output. To this end each component

produced and preserved information.

The design for the architecture used primarily Natural Language Processing (NLP)

techniques to deliver an Information Extraction solution for natural language texts. This

approach was chosen rather than a statistical approach as these systems cannot

articulate human language idiosyncrasies. Even statistical systems that learn over a large

corpora may not be able to build an accurate model of language. The NLP approach has

been chosen as it was assumed that it can provide a better understanding of human

language.

The main component in the architecture was the grammar. This provided the rules for

syntactic structure and ultimately theme extraction, and has been the most difficult

component to build. One of the goals for this research was to produce a grammar that

can be used by Active Navigation. The value of the grammar to Active Navigation is

affected by the cost of this grammar development.

The loss less architecture cannot be used in a commercial context as there is a

consideration for speed, which leads to a trade-off between performance vs. speed.

However computational feasibility was not an issue for this research as computational

power constantly increases, so speed became less of a detrimental factor, and what was

paramount was the performance of the lossless architecture.

119

6. Evaluation

6.1. Introduction to Chapter

This evaluation chapter provides an assessment of the performance of the author's theme

extraction against that of Active Navigation's (AN) theme extraction.

The performances that are evaluated are the ability of the author's system to extract

candidate themes from a plain-text document, and also the ability to extract key themes

from a plain-text document.

The candidate theme extraction is measured against human annotation of themes. The

key theme extraction is measured against both human annotation of themes and AN

theme extraction.

The performances are measured by Information Extraction metrics of precision, recall and

F-measure.

The aim of the research was to compare the set of key themes produced by the system

and by AN, and then to evaluate the strengths and weaknesses of both systems. The

evaluation of theme extraction is therefore only between the system and AN. The human

annotation process is required to produce a gold standard from which to compare the two

systems with.

The evaluation therefore omits from comparisons with other academic work, or with

industrial equivalents.

120

6.2. Outline of Chapter

The chapter begins with a history of Information Extraction evaluation, including its origins

from TIPSTER and the Message Understanding Conferences. This section provides the

scoring strategy and metrics for which the evaluations are based.

The next three sections describe the approach used for human annotation of themes; the

process of Active Navigation theme extraction; and the process of the author's theme

extraction.

This is followed by the evaluations of candidate theme extraction and key theme

extraction. The final two sections summarise the results and provide a summary of the

chapter.

121

6.3. Information Extraction Evaluation

6.3.1. History of Information Extraction Evaluation

6.3.1.1. TIPSTER

Information Extraction systems have been evaluated under the support of Defense

Advanced Research Projects Agency (DARPA) and other government agencies for

almost a decade.

The TIPSTER Text Program 15 was a DARPA sponsored project that encouraged the

advancement of state-of-the-art technologies for text handling through cooperation of

researchers and developers in Government, industry and academia.

The aim was to provide the intelligence community with improved operational tools.

To improve text handling, TIPSTER focused on three metrics-based evaluations. Those

of Information Extraction, document detection, and summarisation.

During the first phase of TIPSTER (1991 - 1994), the participants made major advances

in creating the algorithms for Information Extraction and in improving the techniques for

measuring the advances, through Message Understanding Conferences (MUC).

The project successfully concluded in 1998, an archive 16 is available.

6.3.1.2. Message Understanding Conferences (MUC)

Since early 1990, the MUC 17 evaluations have been funding the development of metrics

and statistical algorithms to support government evaluations of emerging Information

Extraction technologies.

15 http://www.itl.nis!.gov/iaui/894.02/related_projects/tipster/overv.htm

16 http://www.nis!.gov/itl/div894/894. 02/related _projects/tipster/

17 http://www.itl.nis!.gov/iaui/894.02/related_projects/muC/index.html

122

In the mid-nineties MUG evaluations began to provide prepared data and task definitions

in addition to providing fully automated scoring software to measure system and human

performance.

The task definitions grew in complexity. At the beginning the tasks were to produce a

database of events found in newswire articles from one source. More recently, the tasks

were to produce multiple databases of increasingly complex information extracted from

multiple sources of news in multiple languages.

The databases now included named entities, multilingual named entities, attributes of

those entities, facts about relationships between entities, and events in which the entities

partici pated.

The results of these evaluations were reported at conferences during the 1990s. The last

of the conferences was MUG-is.

6.3.1.3. MUC-7

All the participants in the conference develop software systems which perform natural

language understanding tasks. The systems are evaluated based on how their output

compares with the output of human linguists. The MUG scoring software is for that

comparison [Douthat, 1998].

The evaluation of the Named Entity in English task is focused upon, as this is most similar

to theme extraction.

The evaluation begins with the distribution of the task definition and training set. The test

set is distributed later, with results due after than. The domain for training was airline

crashes and the domain for testing was launch events. Both the training and test sets

contained 100 articles with human-generated answer keys from New York Times News

Service corpora.

18 http://www.ill.nist.gov/iaui/894.02/relaled_projecls/muc/proceedings/muc_7 _proceedings/overview.hlml

123

The Named Entity task definition required the systems to mark-up the names of

organisations, persons, locations, mentions of dates and times (relative and absolute),

and direct mentions of currency and percentage.

Fully automated software is then used to evaluate the system. When the scorer is run, it

reads in an output file with the human-generated answer keys, and an output file with the

system's responses. The scorer aligns objects in the answer key file with objects in the

system's response file. It then calculates various scores based on how well the responses

agree with the keys. The scorer then tallies and reports metrics and error types for

developers and evaluators in the form of score reports.

For Named Entity in English, the systems can achieve scores that are close to human

performance [Chinchor, 1999]. The human annotators were still significantly better than

the systems (see Table 6-1).

Systems F-Measure F-Measure F-Measure

Low High Average

Automated 69.67% 93.39% 84.13%

Human 96.95% 97.60% 97.28%

Table 6-1 - Automated system and human performances over the test set, where F-measure has precision and

recall weighted equally

The next couple of sections explain the scoring strategy and metrics used to determine

the performance scores.

6.3.2. Scoring Strategy

A scoring program is required to determine the scoring category for each system output

(henceforth system themes) compared with the human-generated answer keys

(henceforth gold themes). The following scoring categories originate from MUC [Chinchor,

1992]. They have been modified to deal with evaluation of candidate and key theme

extraction.

• Correct - When the system theme and the gold theme occur over the same span

of text in a document.

124

• Partial - When the system theme and the gold theme share a common span of

text in a document. Sometimes a gold theme can encompass more than one

system theme, or vice versa (see Table 6-2). Either way, all the involved themes

still only score as one partial match.

Partial Types Example. Format: 'gold theme(s) -7 system theme(s)'

Multiple themes are separated by '+'

Gold completely subsumes system surface drainage system -7 drainage

System completely subsumes gold asphalt -7 drainage of the asphalt

Gold and system are intersected flow performance -7 performance for any site

Gold completely subsumes Specification of S Range channel units and accessories

multiple system -7 Specification of S Range + units and accessories

System completely subsumes suffix DF + description

multiple gold -7 suffix DF to the description

Gold and system are intersected efficient surface drainage

by multiple themes -7 efficient + drainage of the asphalt

Table 6-2 - Partial types used in scoring

• Missing - This applies only to gold themes. A gold theme is missing if it does not

occur in the set of system themes.

• Spurious - This applies only to system themes. A system theme is spurious if it

does not occur in the set of gold themes.

These scoring categories are used by metrics to produce performance scores. The next

section details each of the metrics.

6.3.3. Metrics

Metrics are pre-defined measures of performance calculable by comparison of system

themes with the gold themes. In other words it is a measure of how well the retrieved

information matches the intended information.

The metrics that are commonly used in Information Extraction have been influenced by

the MUC competitions. As there is a strong connection between Information Extraction

and MUC, often the MUC evaluation metrics of precision, recall and F-measure

[Chinchor, 1992] tend to be used for Information Extraction. These metrics have

125

originated from the closely associated field of Information Retrieval and extended for

MUC [van Rijsbergen, 1979j.

Precision and recall measure different aspects of performance. The third metric, the F­

measure, is a combined score for the overall performance.

Each of these can be calculated according to 3 different criteria - strict, lenient and

average 19 [Cunningham et aI., 2002bj. The reason for this is to deal with partially correct

themes in different ways.

• Strict - Considers all partially correct themes as incorrect (i.e. they are

categorised as either missing or spurious depending if the theme was either a

gold or system theme respectively).

• Lenient - Considers all partially correct themes as correct.

• Average - Allocates a half weight to partially correct themes (i.e. it takes the

average of strict and lenient).

The author used the 'average' criteria for partially correct themes. This is the most

frequently used criteria in calculating performance scores. The metrics for precision, recall

and F-measure are detailed in the following sections.

6.3.3.1. Precision

Precision is a measure of the ability of a system to present only relevant themes.

The precision metric20 [Cunningham et aI., 2002bj is a measure of the number of correctly

identified themes as a percentage of the number of themes identified (see Equation 6-1).

In other words, it measures how many of the themes that the system identified were

actually correct, regardless of whether it also failed to retrieve correct themes.

19 http://www.gate.ac.uklsale/laolindex.hlml

20 http://www.gale.ac.uklsale/lao/index.hlml

126

The higher the precision, the better the system is at ensuring that the themes that it

extracts are correct.

6.3.3.2. Recall

Correct + Ii Partial
Precision = -------"------

Correct + Spurious + Ii Partial

Equation 6-1 - Precision

Recall is a measure of the ability of a system to present all relevant themes.

The recall metric21 [Cunningham et aI., 2002b] is a measure of the number of correctly

identified themes as a percentage of the total number of correct themes (see Equation 6-

2).

In other words, it measures how many of the themes that should have been identified

actually were identified, regardless of how many spurious themes were found.

The higher the recall, the better the system is at extracting all the correct themes.

Correct + Ii Partial Recall = -------'--''------
Correct + Missing + Ii Partial

Equation 6-2 - Recall

6.3.3.3. The Importance of Precision and Recall

The metrics of precision and recall are used to evaluate the automated systems.

The reason for their choice is that they are well used and understood metrics.

21 http://www.gate.ac.uklsale/taolindex.html

127

It is assumed that their performance scores are indicative of how accurate an automated

system is at theme extraction. In other words it is a measure of the ability of the system to

extract relevant themes whist constraining the extraction of non-relevant themes.

6.3.3.4. F-measure

The metrics of precision and recall are often equally important yet negatively correlated.

Normally as precision goes up, recall tends to go down and vice versa. For example if a

system is conservative then is tends to miss extracting relevant themes (high precision

and low recall), and if it is aggressive then it tends to extract non-relevant themes (low

precision and high recall).

A balance needs to be made as a system can achieve perfect precision by extracting

nothing and so does not generate spurious themes, or it can achieve perfect recall by

extracting everything and so not missing any themes.

In Information Retrieval, a method was developed for combining the measures of

precision and recall to get a single measure. The F-measure [van Rijsbergen, 1979] (see

Equation 6-3) provides a way of combining precision and recall to get a single measure

which falls between recall and precision [Chinchor, 1992].

{~2 +l)xPxR
F - measure = -"-~-----::-----''----­

~2 X P + R

Equation 6-3 - F-measure

Where P is precision, R is recall, and ~ is the relative importance given to recall over

precision. If recall and precision are of equal weight, ~ = 1.0. For recall half as important

as precision, ~ = 0.5. For recall twice as important as precision, ~ = 2 .0 [Chinchor, 1992].

The F-measure is higher if the values of precision and recall are similar. So, for ~ = 1.0, a

system which has a precision of 50% and recall of 50% has a higher F-measure than a

system which has a precision of 80% and recall of 20% [Chinchor, 1992].

128

This behaviour demonstrates the importance of an Information Extraction system to be

accurate in both precision and recall, and not to focus attempts on just one of the metrics.

The author used a ~ value of 1.0, as both precision and recall are deemed equally

important in an Information Extraction system.

129

6.4. Human Annotation of Themes

In order to evaluate an Information Extraction system, there needs to be a set of gold

documents in which to base a comparison with.

There are two evaluations to be performed. The first evaluates candidate theme

extraction, and the second evaluates key theme extraction. For both evaluations a set of

gold documents needs to be produced.

6.4.1. Gold Documents

A gold document in Information Extraction is a perfect set of themes that need to be

extracted by a system. It is assumed that a gold document is accurate and is flawless.

The actual content of the gold document is dependent on what it is compared against. If it

is used to evaluate candidate themes, then the gold document has a list of all candidate

themes that a system should extract. Likewise for evaluation of key themes, the gold

document contains a list of all key themes that should be extracted.

The generation of a gold document is a manual process. A test document is analysed and

its themes are manually extracted. The themes extracted are referred to as gold themes.

This manual theme extraction process is intuitive and there are no rules or restrictions on

extraction. There is no limit to the number of themes that can be extracted.

The resultant gold themes are rich, as the human annotators are able to make use of

semantic information in the documents.

The annotation of gold corpora can suffer from certain problems. Gold corpora standards

can be open to debate as there is usually a lack of agreement on which annotations

should be used and how they should be categorised, leading to inconsistencies and

potentially errors. Secondly, the annotation of gold corpora is a time intensive task.

130

6.4.2. Minimising Subjectivity

The main concern when creating a gold document is subjectivity. Unless a document is

trivial, it is highly unlikely that multiple annotators produce a set of gold themes that are

equivalent.

This does not mean that one annotator is more accurate than another. It just means that

the nature of the job is very subjective.

To make the process as scientific as possible, two or more human annotators are used to

produce themes for each document. Also all annotators formed a consensus over the

questions of 'what constitutes a candidate theme?' and 'what constitutes a key theme?'.

The core requirement for the gold themes is that they represent the document, and they

can be either a single word or a phrase (see 1.1.2. Automatic Key Theme Extraction for a

fuller description).

Each document was themed independently by each annotator. Then each annotator's

gold documents were vetted. Then an agreed set of gold themes for each document were

chosen.

6.4.3. Candidate Theme Extraction Gold Documents

The gold corpora consists of 6 documents. There were 3 human annotators for this task.

Each annotator themed for both candidate themes and also key themes. The results were

compared with each other and a gold corpora was agreed.

The aim was for an exhaustive set of candidate themes.

6.4.4. Key Theme Extraction Gold Documents

The gold corpora consists of 117 documents. There were 2 human annotators for this

task. Each annotator themed for key themes. The results were compared with each other

and a gold corpora was agreed.

The aim was for a set of between 5 - 15 key themes.

131

It would be preferable to use a larger test set for evaluation, however it was not practical

because of the length of time it takes to identify the gold themes and to analyse the

results of key theme extraction for each document.

132

6.5. Active Navigation Theme Extraction

The Active Navigation (AN) theme extraction engine is a commercial product, so detailed

assessment of the system cannot be made publicly available as it infringes on Intellectual

Property.

An overview of the system is provided. However, the reader must bear in mind that some

confidential parts are omitted.

The AN theme extraction engine produces key themes from analysis of document

context. The evaluation of this system is black-box, as the actual program being executed

is not examined. Only the output is evaluated.

6.5.1. Theme Extraction Architecture

The architecture (see Figure 6-1) is similar to conventional Information Extraction

systems. A document is first tokenised and then the tokens are analysed to recognise the

language that the document was written in.

If it was written in English then an English-specific stemmer is used to find the root form of

the token. The stream of tokens is then used to generate either single-token themes

(Token Data) of multi-token themes (Phrase Buffer).

There are a group of files (Language Files) for deciding which themes are selected from a

document. These language files contain words and phrases that modify how themes are

selected from a document. There are three different categories into which words and

phrases can be placed. These are:

• Noise - This is a set of words and phrases that appear frequently in the

documents and should not appear as themes. They are also used to determine a

document's language.

• Ntheme - This is a set of words and phrases that should not appear as themes,

but which can be used to build a longer phrase. For example, entering 'PC' stops

'PC' from being a theme, but allows phrases such as 'PC World'.

133

• Ftheme - This is a set of words and phrases that you always want to be themes,

irrespective of their score.

The final stage is harvesting the themes, where the theming parameters filter the set of

themes.

Language

1------ -------,
: Build Token
I
I Data I t ____________ _

Token Data

Theme Phrase

I - - - - - - -J -----~

I
I I

: Harvest Themes :
I

Themes Out

Phrase Tree

Stemmer
I l _____________ _

Key

Non-process

Process

Figure 6-1 - Active Navigation theme extraction architecture

134

6.5.2. Theming Parameters

The theming parameters (see Table 6-3) have been left at their defaults as they provide

good approximations when extracting key themes. The only change was the percentage

of themes to use from the document. This was originally 80% and has been increased to

100% to avoid overly aggressive filtering of themes.

Theming Parameter Setting

Maximum number of themes 20

Percentage of themes to use from the document 100

Minimum score limit 0.02

Phrase bias (percent) 50

Table 6-3 Theming parameters

In summary, only up to a maximum of 20 key themes that are over the threshold value

are output for each test document. Below is a more detailed explanation of the critical

parameters.

6.5.2.1. Maximum Number of Themes

This limits the number of themes that are generated for each individual document. This

works in addition to the percentage of themes to use from the document to try and ensure

that only the most relevant themes are generated by imposing a maximum limit on the

number of themes.

6.5.2.2. Percentage of Themes to use from the Document

When each document is themed, a list of ali possible words and phrases that are potential

themes for that document is stored. This parameter sets the retention level. A percentage

of these - the best - are kept the rest are discarded.

135

6.6. Author's Theme Extraction

The author's system is evaluated against candidate theme extraction and key theme

extraction.

When evaluating against candidate theme extraction, all the system's candidate themes

for each test document are output.

When evaluating against key theme extraction, the system outputs up to a maximum of

20 key themes that are over a specified score threshold for each test document. This

makes the evaluation comparable to the Active Navigation key theme extraction.

136

6.7. Scoring Strategy

6.7.1. General Points

The scorer takes two documents, one contains the gold themes and the other the system

themes. The scorer allocates either a category of correct, partial, missing or spurious to

all of the themes in both the documents.

The scoring strategy for candidate themes and key themes are different, this is because

the systems for the candidate theme extraction task keep a record of the position

information of each extracted theme, whereas the systems for key theme extraction do

not.

The consequence is that candidate theme scoring is trivial as the position information

allows the scorer to quickly identify the scoring category. For example if a gold theme and

the system theme both have the same start and end positions, then the themes must

span the same text range and so must be equivalent and therefore categorised as

correct. The candidate theme scoring strategy was covered earlier (see 6.3.2. Scoring

Strategy).

Without position information, the key theme scorer has to rely on a more sophisticated

strategy to best ascertain accurate score category assignments. The key theme scoring is

formalised, so that every document in the test sets are scored with consistency. A

walkthrough for key theme scoring is also provided.

6.7.2. Scoring Key Theme Extraction

Key theme scoring is case insensitive, this is because a key theme can occur multiple

times in a document and its case can be different some of the time, a gold theme and

system theme can therefore have different cases, but in essence it is still the same

theme.

Below is the list of steps for key theme scoring to be performed in chronological order.

Each step ends when no more actions can be taken:

137

• Correct - First match all themes that are exactly the same in both gold and

system theme sets. Remove the instance of both from the gold and system

theme sets. Increment the correct count for the match.

• Missing - Next look for all gold themes that do not occur, even partially, in the

system theme set. Remove each missing gold theme. Increment the missing

count for each missing gold theme.

• Spurious - Next look for all system themes that do not occur, even partially, in the

gold theme set. Remove each spurious system theme. Increment the spurious

count for each spurious system theme.

Now only gold and system themes that can partially match with each other

remain. Remember that a partial match can subsume more than one theme at a

time (see Table 6-2). Partial matching also adheres to a lenient partial matching

strategy (see 6.7.3. Lenient Partial Matching).

• Partial Semantic 1-to-1 - Gold and system themes can be deemed semantically

similar even though they are not syntactically equivalent. This occurs when the

human annotator and the system both choose themes in the document that are

not from the same text span but still represent the same theme.

This step allows for theme stemming, and reordering of theme phrases, but does

not involve synonym matching. For example, 'decommissioning' =
'decommissioned'; 'human cloning' = 'clone humans', but 'science' 'f:. 'scientists'.

This requires high-level semantic matching. This step needs to be performed by a

human as an automated scorer cannot provide enough accuracy. This means

that key theme scoring is performed manually rather than as an automated

process. This step is subjective, though every effort is made to keep the process

as consistent as possible.

This makes the performance scores a more accurate representation of a

system's ability to extract key themes from a document, as it takes into account

138

both syntactic and semantic matching. The scoring does not take into account

semantic matching of synonyms as this is outside the scope of the scorer.

If there is gold and system theme that are semantically similar then remove the

instance of both from each theme set. Increment the partial count for the partial

match.

• Partial 1-to-1 - If there is a gold and system theme that can only partially match

with each other then remove the instance of both from each theme set. Increment

the partial count for the partial match.

• Partial 1-to-M - If there is a theme (either gold or system) that can only partially

match with another theme, regardless if the second theme can ambiguously

match with other themes. Then remove the instance of both from each theme

sets. Increment the partial count for the partial match.

• Missing or Spurious - The remaining themes are either all gold themes or all

system themes. These are removed. Increment the missing or spurious counts as

appropriate.

6.7.3. Lenient Partial Matching

Partial matching is the most complex case for key theme scoring. In cases where multiple

gold themes can match multiple system themes (M:N matches) a lenient matching

strategy is used. The aim is to provide as many partial matches as possible.

For example the table below (see Table 6-4) are real sets of key themes produced by

human annotation and by Active Navigation over the '409 5k 33' document.

Gold Themes Active Navigation Themes

Frank H. Netter Netter collection

NeUer's medical illustrations medical illustrations

13-volume Netter Collection of Medical Illustrations Netter

Volumes Volume

Table 6-4 - Lenient partial matching example

139

There are many ways to score these themes, but by aiming to provide as many partial

matches as possible, then these themes give 4 partial matches as shown below:

Partial:

Partial:

Partial:

Partial:

'13-volume Netter Collection of Medical Illustrations' -7 'Netter collection'

'Netter's medical illustrations' -7 'medical illustrations'

'Frank H. Netter' -7 'Netter'

'Volumes' -7 'volume'

Rather than for example 2 partial matches and 2 missing as shown below:

Partial:

Partial:

Missing:

Missing:

'13-volume Netter Collection of Medical Illustrations' -7

'Volume' + 'Netter collection' + 'medical illustrations'

'Frank H. Netter' -7 'Netter'

'Netter's medical illustrations'

'Volumes'

The lenient partial matching strategy is used whenever there are potential M:N matches.

This provides consistent scoring of these complex cases.

6.7.4. Key Theme Scoring Walkthrough

This shows a demonstration of how the scoring strategy is applied. The table below (see

Table 6-5) are real sets of key themes produced by human annotation and by Active

Navigation over the 'ACO S Range' document.

140

Gold Themes Active Navigation Themes

10 'ACO S Range' 4 'Technical Design Guide'

3 'Specification features' 1 'ACO Technical Design Guide'

12 'Specification of S Range channel units and accessories' 11 'Range channel'

1 'ACO Technical Design Guide' 2 'hydraulic performance'

11 'S Range channel' 10 'ACO'

9 'draining porous asphalt' 9 'asphalt'

2 'Hydraulic performance' 5 'constant'

6 'drainage'

9 'porous'

7 'depth'

8 'OF'

Table 6-5 - Key theme scoring example

Below (see Table 6-6) is a list of the steps taken, the score category assigned and the

themes affected.

Step Step Name Score Themes Affected

Number Category

1 Correct Correct ACO Technical Design Guide - ACO Technical Design Guide

2 Correct Correct Hydraulic performance = hydraulic performance

3 Missing Missing Specification features

4 Spurious Spurious Technical Design Guide

5 Spurious Spurious Constant

6 Spurious Spurious Drainage

7 Spurious Spurious depth

8 Spurious Spurious OF

9 Partial 1-to-1 Partial draining porous asphalt -7 porous + asphalt

10 Partial 1-to-M Partial ACO S Range -7 ACO

11 Partial 1-to-M Partial S Range channel -7 Range channel

12 Missing or Spurious Missing Specification of S Range channel units and accessories

Table 6-6 - Key theme example results

141

6.S. Candidate Theme Extraction

6.8.1. Description

This is an evaluation between human candidate theme extraction and the author's system

for candidate theme extraction. It is a comparison between the gold candidate themes

and the author's candidate themes using the candidate theme scoring strategy. The

metrics of precision, recall and F-measure show the system's performance.

6.8.2. Test Set

The test set consists of 6 documents. There are 3 different domains, each has 2

documents. The domains are of BBC news articles, emails and DjVu documents.

The test set provides various challenges as the documents have domain-specific

vocabulary; varying levels of grammatical correctness; spelling errors; varying writing

styles; varying quantity of content; and can be highly semantic.

The documents were converted to plain-text to provide a fair testing platform.

142

6.8.3. Results

Document Correct Partial Missing Spurious Precision Recall F-measure

Email-

Minutes 55 51 15 15 84.29% 84.29% 84.29%

Email-

US 68 49 6 35 72.55% 93.91% 81.86%

DjVu-

ACO 14 23 17 2 92.73% 60.00% 72.86%

DjVu-

Anchor 27 13 13 3 91.78% 72.04% 80.72%

BBC-

IRA 65 38 12 14 85.71% 87.50% 86.60%

BBC-

Iran 51 35 6 14 83.03% 91.95% 87.26%

Averages

47 35 12 14 85.02% 81.62% 82.27%

Table 6-7 - Result of candidate theme extraction

6.8.4. Evaluation of Results

Although the tasks are not equivalent, they are related, so the performance scores for

candidate theme extraction have been compared to the MUC-7 Named Entity (NE) in

English task (see 6.3.1.3. MUC-7).

My system has an average F-measure of 82.27% which is comparable with the average

F-measure of 84.13% of the automated systems for the NE task. What is significant is

that the author's system did not use any noun dictionaries so the performance score for

candidate theme extraction is noteworthy.

The range of F-measures across the test set is very similar. This is because the author's

system used mainly domain independent components so extracts themes regardless of

document type.

143

The average precision and recall scores are similar, but also high (precision 85.02%;

recall 81.62%). This means the system has the ability to extract relevant themes whist

constraining the extraction of non-relevant themes.

The low recall and F-measure for the 'OjVu - ACO' document can be explained. The

author's system uses a shortcut when it recognises that full theme extraction on a

sentence cannot be performed because of memory considerations. For these sentences

theme extraction is performed on the first parse tree (rather than on all trees). There is

therefore a high chance that a full list of candidate themes are not extracted, and

consequently be missing from the system's candidate theme set. 11-of-the-17 missing

themes in the 'OjVu - ACO' document exist in two sentences that use only the first tree.

This shortcut extends to all test documents but is most notable in this document.

It means that recall in documents tend to be lower than what the system can actually

achieve.

The average scores for themes that are correct are higher than partially correct themes

(correct 47; partial 35). This means that the system is capable of picking out clear

boundaries for some themes but not for others.

Analysis of the correct themes indicates that the system is successful at extracting named

entities, phrases, and common nouns.

Analysis of the partial themes indicates that the theme boundaries are unclear because of

two reasons. The first is due to the choice of modification (pre or post) of themes. For

example 'sharp edges' vs. 'injury from sharp edges'; '26 November election date', or '26

November election'. The second reason is the non-trivial task of correctly stipulating and

extracting theme phrase boundaries. For example 'suffix OF to the description' vs. 'suffix

OF' and 'description'; 'Vienna-based International Atomic Energy Agency (IAEA)' vs.

'International Atomic Energy Agency' and 'IAEA'; 'France, Germany and the UK' vs.

'France' and 'Germany' and 'UK'; 'clarification on traces' vs. 'clarification' and 'traces'.

The average scores for themes that are missing or spurious are similar (missing 12;

spurious 14). As stated before this means that the system has struck a balance between

extraction of relevant themes whist constraining the extraction of non-relevant themes.

144

Analysis of the missing themes indicates that the system finds it difficult to extract certain

candidate themes. This is due to the choice of the system to extract some types of

themes and not others. For example the main missing themes are gerund verbs

'decommissioning', 'branching'; phrases utilising verbs 'twinfish dying', 'encoding issue';

and semantic dates '9/11'. None of these types are considered as themes by the current

system.

Analysis of the spurious themes indicates that the system over-generates themes that are

either capitalised sentence starters 'Wide', 'Simple'; or common nouns that do not

represent candidate themes 'strongest words', 'initial response', 'crunch moment'.

145

6.9. Key Theme Extraction

6.9.1. Description

Key themes are generated using the candidate theme set. Only the most promising

candidate themes become key themes.

This key theme evaluation is a combination of two separate evaluations. The first

evaluation is a logical conclusion of the candidate theme results, and is an evaluation

between human key theme extraction and the author's system for key theme extraction. It

is interesting to see the performance score of the key theme extraction knowing the

results of the candidate theme extraction. This is referred to as the small test.

The second evaluation, in comparison, is a large-scale evaluation of key theme

extraction. This is an evaluation between human key theme extraction, and both the

automated key theme extraction system's of AN, and the author's. This is referred to as

the large test.

Both evaluations are comparisons between the gold key themes and the system's key

themes using the key theme scoring strategy. The metrics of precision, recall and F­

measure show the system's performance.

6.9.2. Test Sets

There are two test sets; one small and one large. The small test set is the same set of

documents that were used in candidate theme extraction (see 6.8.2. Test Set).

The large test set consists of 117 documents. They are taken from the Nature Corpus

2001 borrowed from Active Navigation. The documents are from subsets 409 and 410.

Each document is approximately one page of text (either 4 or 5 Kb in size), which

provides sufficient content for key theme extraction, as well as providing similar size

documents for the test set. The documents are from a broad range of topics so are not

domain dependent.

146

The large test set provides a rich document set for evaluation. The documents provide a

real test as the documents are by numerous authors, all with unique written styles, and

there are many written errors introduced by the authors.

The size of the document set minimises the affect of any human errors made by key

theme coring. It also means that the evaluation is not adversely affected by the result of

individual documents.

The documents were converted to plain-text to provide a fair testing platform.

6.9.3. Small Test Set Results

Document Correct Partial Missing Spurious Precision Recall F-measure

Email-

Minutes 8 2 1 6 60.00% 90.00% 72.00%

Email-

US 9 4 6 5 68.75% 64.71% 66.67%

DjVu-

ACO 2 3 2 5 41.18% 63.64% 50.00%

DjVu-

Anchor 3 0 4 3 50.00% 42.86% 46.15%

BBC-

IRA 7 2 5 5 61.54% 61.54% 61.54%

BBC-

Iran 4 5 5 5 56.52% 56.52% 56.52%

Averages

6 3 4 5 56.33% 63.21% 58.81 %

Table 6-8 - Result of key theme evaluation - AN (small test set)

147

Document Correct Partial Missing Spurious Precision Recall F-measure

Email-

Minutes 8 1 2 11 43.59% 80.95% 56.67%

Email-

US 9 3 7 8 56.76% 60.00% 58.33%

DjVu-

ACO 3 4 0 8 38.46% 100.00% 55.56%

DjVu-

Anchor 3 1 3 2 63.64% 53.85% 58.33%

BBC-

IRA 6 3 5 11 40.54% 60.00% 48.39%

BBC-

Iran 6 3 5 9 45.45% 60.00% 51.72%

Averages

6 3 4 8 48.07% 69.13% 54.83%

Table 6-9 - Result of key theme evaluation - Author (small test set)

6.9.4. Evaluation of Small Test Set Results

The average F-measure's of AN and the authors' systems are (AN 58.81%; Author

54.83%). Over the small test set AN has a performance score that is 4% higher.

The average precision and recall scores show that AN has 8% higher precision but 6%

lower recall than the author's system (precision AN 56.33%; Author 48.07%) (recall AN

63.21 %; Author 69.13%). This means that AN has a better capability to extract relevant

themes whilst the author's system is better at constraining the extraction of non-relevant

themes.

The average scores for themes that are correct and partial are exactly the same (correct

AN 6; Author 6) (partial AN 3; Author 3). This shows that both systems extract the same

quantity of correct and partially correct themes.

The average scores for themes that are missing and spurious are (missing AN 4; Author

4) (spurious AN 5; Author 8). This shows that both systems miss extracting the same

quantity of gold themes, but the author's system tends to over-generate themes.

148

The small test set results are a precursor for the large test set evaluation. This shows a

more accurate comparison between AN, and the author's system for key theme

extraction.

6.9.5. Large Test Set Results

Corpora Subset Averages

Corpora No. of Docs Correct Partial Missing Spurious Precision Recall F-measure

Subset

4094k

19 1 3 5 2 67.60% 37.73% 46.62%

4095k

33 2 3 4 3 50.78% 43.47% 45.65%

4104k

36 2 2 4 3 54.12% 45.24% 47.76%

4105k

29 2 2 5 4 50.96% 42.93% 45.03%

Corpora

Average 2 2 4 3 54.58% 42.95% 46.30%

Table 6-10- Result of key theme evaluation - AN (large test set)

Corpora Subset Averages

Corpora No. of Docs Correct Partial Missing Spurious Precision Recall F-measure

Subset

4094k

19 2 4 3 3 61.27% 64.55% 60.20%

4095k

33 4 3 3 5 54.30% 67.95% 59.02%

4104k

36 3 2 2 4 54.81% 70.24% 59.62%

4105k

29 3 3 3 6 44.45% 63.74% 51.39%

Corpora

Average 3 3 2 5 53.15% 67.06% 57.51%

Table 6-11 - Result of key theme evaluation - Author (large test set)

149

6.9.6. Evaluation of Large Test Set Results

The average F-measure's of AN and the authors' systems are (AN 46.30%; Author

57.51 %). Over the large test set the author's system has a performance score that is 11 %

higher (a 24% improvement). This means that the author's system performs better at key

theme extraction than that of AN.

The average precision and recall scores show that AN has 1% higher precision but 24%

lower recall than the author's system (precision AN 54.58%; Author 53.15%) (recall AN

42.95%; Author 67.06%). This means that both systems have the same capability to

extract relevant themes whilst the author's system is considerably better at constraining

the extraction of non-relevant themes.

The average scores for themes that are correct and partial are (correct AN 2; Author 3)

(partial AN 2; Author 3). This shows that consistently the author's system extracts more

correct and partially correct themes than AN.

An analysis shows that AN is better at extracting themes that do not occur frequently in

the document. It also shows that AN extracts shorter themes and the author's system has

a better capability of extracting longer themes.

The average scores for themes that are missing and spurious are (missing AN 4; Author

2) (spurious AN 3; Author 5). This shows that AN misses extracting more gold themes,

but the author's system tends to over-generate themes.

An analysis of the spurious themes generated by the author's system show that many of

them are derivations of a matched string. For example, if a full name is used as a gold

theme, and if the system extracts both a full name plus a derivation (say, just the

surname) then only the full name matches and the derivation becomes spurious.

Also the author's system allows key themes that consist of entirely closed-class words.

Typically these never function as key themes. Removal of these themes reduces the

numbers of spurious.

150

6.10. Summary of Results

6.10.1. Summary of Candidate Theme Evaluation

The performance score of the author's system for candidate theme extraction was

compared to the MUC-7 Named Entity (NE) in English task (see 6.3.1.3. MUC-7).

The author's system has an average F-measure of 82.27% which is comparable with the

average F-measure of 84.13% of the automated systems for the NE task. What is

significant is that the author's system does not use any noun dictionaries so the

performance score for candidate theme extraction is noteworthy.

6.10.2. Summary of Key Theme Evaluation

The author's system and AN were both evaluated for key theme extraction. There were

two tests, one small and one large.

For the small test, the average F-measure's of AN and the authors' systems are (AN

58.81 %; Author 54.83%). Over the small test set AN has a performance score that is 4%

higher.

For the large test, the average F-measure's of AN and the author's system are (AN

46.30%; Author 57.51%). Over the large test set the author's system has a performance

score that is 11 % higher (a 24% improvement).

The large test provides a more accurate measure of system performance. The results

show that the author's system performs better at key theme extraction than that of AN.

151

6.11. Summary of Chapter

This chapter has provided an evaluation of the performance between the author's and

Active Navigation's theme extraction.

The chapter began with a history of Information Extraction evaluation and provided the

scoring strategy and metrics for which the evaluations were based. The performances

were measured using established metrics for precision, recall and F-measure. The

performances that were evaluated were the ability of the system to extract candidate

themes from a plain-text document, and also the ability to extract key themes from a

plain-text document.

The candidate theme evaluation showed that the author's system has the ability to extract

relevant themes whist constraining the extraction of non-relevant themes.

The key theme evaluation showed that the author's system performed better at key theme

extraction than that of Active Navigation. For the large test set, the average F-measure's

of Active Navigation and the author's system were (Active Navigation 46.30%; Author

57.51%). Over the large test set the author's system had a performance score that was

11 % higher (a 24% improvement).

152

7. Conclusion

This chapter provides the conclusions for the system. It provides a summary of the

chapters in the thesis, a discussion on whether the system has met the research

objectives, and how the research can be used to improve Active Navigation. The final

section outlines future work, this includes how to improve key theme extraction, how

these key themes can be applied, and looking forward to their use in the Semantic Web.

7.1. Summary of Previous Chapters

Chapter 1 provided an introduction to information management, the problem with current

approaches, and suggested how automatic key theme extraction can benefit an

information management system. The chapter also included the non-triviality of written

information in the form of natural language texts used in these systems. The chapter

concluded with a definition of the research objectives for this project including the

motivation, goals and deliverables.

Chapter 2 provided the aims of Active Navigation and the importance that themes play in

achieving those aims. The chapter included an overview of Active Navigation, an outline

of its branding, navigation solution and competitors. The chapter set the importance of

extracting key themes from a document by providing an in-depth overview of a themes

purpose, theories, a typical theme extraction process, and methods to rank extracted

themes.

Chapter 3 provided a background history of Natural Language Processing (NLP), in

particular a detailed discussion into the two polarised language models of constituency

and dependency on which all Information Extraction systems are based. This was

followed by an overview of the parsers available for both language models, and

concluded with a comparison of benchmark systems used in NLP.

Chapter 4 provided an analysis of the issues of constituency and dependency language

models. The main issue found with both language models was that of ambiguity. In the

constituency model the ambiguity flowed through the whole length of the pipeline

affecting each component. In the dependency model the main ambiguity stemmed from

153

the use of constituency components to build dependency structures. Both language

models are strongly affected by the choice of grammar as it affected the mapping of a

language.

Chapter 5 provided the justification for the choices of the automatic key theme extraction

system. In particular the need for a new lossless architecture and the benefits it achieves.

This required a new formalism for representing information which was called a quad. An

architecture was researched by the author to the extent of fully understanding the

components required for theme extraction. Fundamental to this architecture was an ethos

for loss less information. To preserve the lossless ethos the components were built from

scratch as often benchmark systems perform pruning on the output. To this end each

component produced and preserved information. Then the issue of computational

feasibility of a lossless architecture was raised. The chapter concluded with an overview

of the system implementation.

Chapter 6 provided an evaluation of the performance between the author's and Active

Navigation's theme extraction. The chapter began with a history of Information Extraction

evaluation and provided the scoring strategy and metrics for which the evaluations were

based. The performances were measured using established metrics for precision, recall

and F-measure. The performances that were evaluated were the ability of the system to

extract candidate themes from a plain-text document, and also the ability to extract key

themes from a plain-text document. The candidate theme evaluation showed that the

author's system has the ability to extract relevant themes whist constraining the extraction

of non-relevant themes. The key theme evaluation showed that the author's system

performed better at key theme extraction than that of Active Navigation. For the large test

set, the average F-measure's of Active Navigation and the author's system were (Active

Navigation 46.30%; Author 57.51 %). Over the large test set the author's system had a

performance score that was 11 % higher (a 24% improvement). The chapter concluded

with a summary of the results.

154

7.2. Research Objectives

This research has presented the topic of automatic key theme extraction as a method for

information management, specifically the extraction of pertinent information from natural

language texts.

7.2.1. Motivation

The motivation for this research was to achieve improved accuracy in automatic key

theme extraction in natural language texts. The performance was evaluated against an

industrial context, which was provided by Active Navigation Ltd, a content management

system.

7.2.1.1. Key Theme Extraction

The system extracted key themes from each document. These themes represented the

key content of the document. The extraction process automated a human ability to extract

key themes.

7.2.1.2. Natural Language Texts

Natural language texts were used to evaluate the extraction process as they provided a

real document set that is used in industry. These documents were unstructured and only

contained plaintext to prevent metadata information from being gleaned from them.

Successful key theme extraction of these non-trivial texts is beneficial to other types of

text as the extraction process did not require any extra information apart from the

plaintext. The biggest challenge of these documents was interpreting the meaning of a

document and extracting only key themes from it because of the complexity of natural

language, in particular its ambiguous nature.

7.2.1.3. Key Theme Evaluation

The key theme evaluation showed that the author's system performed better at key theme

extraction than that of Active Navigation. For the large test set, the average F-measure's

155

of Active Navigation and the author's system were (Active Navigation 46.30%; Author

57.51 %). Over the large test set the author's system had a performance score that was

11 % higher (a 24% improvement).

7.2.2. Goals

The goals that needed to be achieved were to produce a useable grammar and language

model that can be implemented into Active Navigation's current software. It was assumed

that the research extended the current software's capabilities by providing a more

accurate navigation experience of documents.

7.2.2.1. Natural Language Grammar

A natural language grammar was produced. This was the most important component of

the system as it formalised how a language was used. The grammar provided a formal

description of natural language using syntactic and linguistic information. As well as

syntactic information the grammar also provided syntactic functions to supply extra

richness such as subject and object.

The grammar was allowed to be ambiguous so that the expressiveness of natural

language was mapped. This ambiguity kept the lossless information ethos as all

possibilities are explored rather than a simple deterministic choice.

The grammar provided a large coverage of natural language. It catered for both

frequently and non-frequently occurring structures.

The grammar was used in the system to produce syntactic parse trees from which the

candidate themes were extracted.

Active Navigation currently do not use a grammar, it is beneficial to see the affect of the

application of such a linguistic tool on the quality of its key theme extraction.

156

7.2.2.2. Language Model

A new language model was produced. The constituency and dependency language

models were analysed for strengths, weaknesses and issues, the result of the analysis

was the formation of a new language model, which put at its foundation the use of Natural

Language Processing techniques to improve theme extraction.

The constituency language model highlighted the weaknesses of sub-standard

components used in the pipeline, the loss of critical information, and error propagation.

The dependency language model highlighted that constituency components were used to

build dependency grammars, and that frequently the dependency grammars

compromised the model by not using a full lexicon, as creating the knowledge is a

laborious task.

To resolve these issues the new language model was built from scratch and based on a

constituency model, so that the boundaries and the work required of each component

were known, and the flow of information from one component to the next was well

understood. With all components their goals, input and output were clearly defined. The

specific details for the new language model were defined in the deliverables.

7.2.3. Deliverables

The deliverables required were an architecture for theme extraction using a pipeline of

individual processing components that adhered to a loss less information strategy. The

aim of the architecture was to accurately extract key themes from natural language

documents using a fusion of linguistic, statistical and grammar rules.

7.2.3.1. Lossless Architecture

Traditional language models use deterministic methods to make decisions along the

pipeline. The problem was decision-making components usually lead to component

filtering which propagated a loss of information. Also many systems re-use benchmark

systems that may not be the most accurate, such sub-standard components introduced

157

errors. The combination of losing information and error propagation created a

deterioration of the quality of information that was propagated by the architecture.

The new language model was built based on the idea of lossless information. This was

the retention of a complete information history for all the components in the architecture.

The aim of the architecture was to keep all the decisions, and pass them on through other

components, so that each component has all the information at hand and can make a

more accurate evaluation of all the alternatives. A lossless architecture stopped the

pitfalls of component filtering.

Information persistence in the architecture preserved a history of rule selection. This

improved the design of the rule interactions as the affect of each rule became

transparent, and any underperforming rules that were identified were modified for

effectiveness. This enforced transparency in the architecture and minimised error

propagation by reduction of the error passed from one component to another.

The lossless architecture kept track of all choices using quads. A quad was a novel way

of representing a slice of information and a tool that enforced the underlying concept of

lossless information.

7.2.3.2. Architecture Components

The architecture was built modularly. This was so that each component had distinct input

and output boundaries and had unique task descriptions. The modularisation in essence

provided a balance of work for each component. It also allowed for more transparent

component interaction.

The components in the architecture were knowledge engineered, developed using

experience of language and made use of human intuition. The components were rule and

statistical based.

To preserve the lossless ethos the components were built from scratch as often

benchmark systems perform pruning on the output. To this end each component

produced and preserved information.

158

The further down the component pipeline the larger the contexts that the components

worked with. The early components worked on single or multiple tokens whilst the latter

took sentence and document contexts. This was because latter components handled

more complex processes and also used the larger contexts to provide better

disambiguation.

159

7.3. Improvements for Active Navigation

The author has designed, implemented and evaluated a new language model based on

an architecture of individual components that adhered to a lossless ethos. This loss less

architecture has shown that it was capable of providing a higher accuracy of extracting

key themes from natural language texts than that of Active Navigation (AN).

The key theme evaluation showed that both systems had a similar capability to extract

relevant themes (precision AN 54.58%; Author 53.15%) whilst the author's system was

considerably better at constraining the extraction of non-relevant themes (recall AN

42.95%; Author 67.06%), a significant 56% improvement in recall.

The evaluation did show that AN was better at extracting themes that occur infrequently in

a document, and that AN extracts shorter themes whereas the author's system had a

better capability of extracting longer themes.

It has been shown that a lossless architecture using predominantly linguistic components

can yield more accurate results for key theme extraction. The loss less architecture and

the components, especially the grammar can be utilised by AN, in particular to increase

the constraining power over non-relevant themes and to improve on the extraction of

longer themes.

160

7.4. Future Work

This section concludes the thesis by highlighting future work that is aimed at improving

key theme extraction, discussing the application of these extracted themes, and looking

forward to their use in the Semantic Web.

7.4.1. Improving Key Theme Extraction

There are various factors that influenced the result of the evaluations. The main ones are

the use of natural language texts, the omission of semantic components, the natural

language grammar, the dependency of key and candidate themes, the scoring of key

themes and computational feasibility. These factors are discussed below.

7.4.1.1. Natural Language Texts

The test sets used in the evaluations were all plain-text natural language documents.

Plain-text was a non-trivial problem because there was a lack of information mark-up in a

document. Which meant that the determination of themes was more difficult, because

there are no visual cues (e.g. for emphasis) or discourse information in the document

(e.g. headings).

As well as the plain-text issue, the natural language context provided many other complex

problems such as different written styles, use of grammar and ambiguities. The

combination of these difficulties made theme extraction more difficult.

It was assumed that the quality of results for key theme extraction was related to the type

of document used and that plain-text natural language documents are particularly difficult.

Simpler document types are assumed to yield improved results.

7.4.1.2. Semantics

The system did not include semantic components, so there were no semantic lexicons for

word sense disambiguation or providing semantic information. The content word

161

dictionary used in the system only contains lexical entries, and there was no noun

dictionary for providing semantics.

It would be interesting to see what affect semantic components have on resolving

ambiguities and key theme extraction.

7.4.1.3. Natural Language Grammar

The grammar dictated which structures are extracted as themes, because of this

constraint there were potential types of themes which were not extracted. For example

the main missing themes were gerund verbs 'decommissioning', 'branching'; phrases

utilising verbs 'twinfish dying', 'encoding issue'; and semantic dates '9/11'. None of these

types were considered as themes by the system.

The grammar extracts incorrect themes because they were labelled as themes in the

syntactic parse trees. For example the system over-generated themes that were either

capitalised sentence starters 'Wide', 'Simple'; or common nouns that did not represent

candidate themes 'strongest words', 'initial response', 'crunch moment'.

The grammar also provided unclear theme boundaries because of two reasons. The first

was due to the choice of modification (pre or post) of themes. For example 'sharp edges'

vs. 'injury from sharp edges'. The second reason was the non-trivial task of correctly

stipulating and extracting theme phrase boundaries. For example 'suffix OF to the

description' vs. 'suffix OF' and 'description'.

The natural language grammar was a major component in the system for extrapolating

theme information, but more techniques are required to intelligently choose the correct

theme representation given the information in the syntactic parse trees.

7.4.1.4. Dependency of Key and Candidate Themes

In the author's system, key theme extraction was entirely dependent on candidate theme

extraction. Key themes were generated from analysing the candidates and choosing the

most pertinent ones. If the candidate was not extracted from the original document then it

never became a key theme.

162

This dependency strongly biased the results, and in future it might be preferable to

perform the key theme extraction directly over the document, rather than the candidate

themes, which might provide an improvement in results.

7.4.1.5. Key Theme Scoring

Key theme scoring can be improved by identifying important themes that either explicitly

exist or can be inferred from the candidate theme set. In technical terms this requires

theme stemming, reordering of theme phrases, and synonym matching. All of which, are

absent from the current system. For example, if a candidate theme set contains themes

for 'teaching of evolution' and 'evolution teaching'; or 'tobacco firm' and 'tobacco

company'; then the system must realise that they are semantically the same so the

scoring must take into account that they are the same and not separate themes.

The scoring strategy should also take into account other factors that can influence the

score of the theme (see 2.2.3. Ranking Themes) as currently the scoring strategy was

affected by a small set of factors which can bias the score.

7.4.1.6. Computational Feasibility

A loss less architecture was able to improve the accuracy of theme extraction whilst

minimising the propagation of error. However, this preservation of information had a

detrimental affect on computational feasibility as all permutations were tried rather than a

best-first approach.

As mentioned before this research was aimed at quality rather than speed, but some

memory problems manifested into the system. The author had to make a decision to

speed up certain components so that the system does not run out of memory.

Unfortunately the cost of these shortcuts was that the ethos of the lossless architecture

was not kept which meant that there was a reduction in the potential power of some

components and ultimately vital information was lost.

These memory considerations meant that the power of the loss less architecture was not

fully utilised as only a limited set of options were pursued. Trying more options can

produce different sets of results, and perhaps more accurate results.

163

7.4.2. The Application of Key Themes

The accurate extraction of key themes was essential as they can be used as a solid base

for other Active Navigation information navigation tasks. These include advanced search,

categorisation, building summaries, finding related documents, and dynamic linking.

Improving these navigation techniques increases the effectiveness of the content

management system.

Take categorisation and dynamic linking for example, after extracting the key themes

from a document the categorisation task becomes more accurate in populating a

taxonomy and at the same time reduces human intervention. With dynamic linking,

improved links can be dynamically generated between related documents based on their

themes. This is based on the assumption that the processes of theme extraction and

linking are symmetrical, so that improved theme extraction ultimately improves the quality

of the linking.

In conclusion, the extraction of key content benefits an organisation by aSSisting it to

manage and optimise its data-repositories for efficient use. This is a critical process for

any organisation that wants to avoid being overwhelmed by an explosion in the volume of

information.

A consequence of this is that human intervention is minimised and should result in a

reduction in the quantity of manual labour and ultimately cost.

7.4.3. The Semantic Web

The research for this project has focussed primarily on the role of Natural Language

Processing techniques to deliver an Information Extraction solution for natural language

texts. However, a fast emerging factor is the need for an organisation to be able to

capitalise on technology advancements such as the Semantic Web, which utilise richer

representations of information rather than just natural language texts. This requires a

development of new methods to extract information.

The Semantic Web vision, as articulated by Tim Berners-Lee, is of a Web in which

resources are accessible not only to humans, but also to automated processes

164

[Bechhofer et aI., 2002]. The key idea is to have data on the web defined and linked in

such a way that its meaning is explicitly interpretable by software processes rather than

just being implicitly interpretable by humans. The consequence is that the Semantic Web

becomes dependant on the production of machine-definable and machine­

understandable information.

To realise this vision, it is necessary to associate metadata with Web resources. One

mechanism for associating such metadata is annotation. In particular, the annotation of

resources with semantic metadata that provides some indication of the content of a

resource. This metadata is often used as part of an ontology. An ontology is a conceptual

model that contains all the relevant concepts and their relationships and rules that are

applicable to a specific domain. The problem with metadata annotation and building

ontologies is that the information is painstaking to create.

A system that exploits the use of semantic information for information navigation is

Conceptual Open Hypermedia Services Environment (COHSE) [Carr et aL, 2001] and

[Bechhofer et aL, 2002]. COHSE combined the Distributed Link Service (see 2.1.2.2.

Dynamic Links) with an ontology service to form a conceptual hypermedia system to

enable documents to be linked using metadata describing their contents. Traditional link

services provide destination anchors based only on the keywords found in the source

document, however, COHSE links on concepts in the ontology found in the document.

The structure made explicit in an ontology enabled COHSE to also broaden and narrow

the destinations of a link.

COHSE and other systems seeking to take advantage of a Semantic Web require more

semantic annotation of current Web resources. Millard [Millard et aL, 2003] suggests that

Information Extraction is one of a number of promising methods for enriching Web

documents with semantics for the purpose of future semantic interpretation.

It is a future goal of the author to see how the key theme extraction system can be

modified to extract metadata, in particular concepts and relationships, to see if can be

used to automatically populate an ontology. This may be a difficult transition as the

construction of ontologies from text can suffer from data sparseness if the key concepts

are implicit or never stated in the text.

165

7.4.4. Statistical Methods

This research has emphasised the importance of linguistic tools to promote theme

extraction. However there is a great deal of literature using statistical methods to perform

similar tasks. It would be wise to explore statistical systems to compare with the author's

theme extraction. For example the Minimum Description Length (see 3.3.3. The Rationale

for Parsing).

Statistical systems can use the regularities found in language to form rules for finding

important themes. They require less linguistic knowledge and can provide results in a

shorter period of time compared with the author's current system.

7.4.5. Alternate Evaluations

The current evaluation only compares the output of Active Navigation and the author's

theme extraction systems with gold standard documents. This only gives a figure of how

effective a system is at presenting the key themes in a document. However, it does not

provide a conclusive evaluation of the value of the themes extracted and how effective

these themes are at retrieving related documents.

It would be worthwhile to consider alternate evaluations. For example it would be valuable

to use client surveys to assess evaluation documents. Clients of Active Navigation could

be used to assess the documents retrieved for particular themes; this would provide a

real-world evaluation of theme extraction. This would demonstrate the effectiveness of the

system to retrieve only relevant documents based on themes, and more generally the

navigation of documents based on themes.

Another form of evaluation may involve a knowledge acquisition study in which language

experts familiar with Information Retrieval participate in assessing evaluation documents.

This sort of study may result in the production of a reliable and agreed upon standards for

themes and document navigation.

166

8. Bibliography

[Abney, 1989]

[Aho et aI., 1986]

[Ahrenberg et aI., 1990]

[Appel, 1998]

[Aretoulaki, 1996]

[Aretoulaki, 1997]

[Aretoulaki et aI., 1998]

Abney, S. (1989). "A Computational Model of

Human Parsing". Journal of Psycholinguistic

Research, 18 pp 129-144.

Aho, A, V., Sethi, R., and Ullman, J. (1986).

" Compilers: Principles, Techniques and Tools".

Addison-Wesley, Reading, MA, Second Edition,

1986.

Ahrenberg, L., Jonsson, A, and Dahlback, N.

(1990). "Discourse Representation and

Discourse Management for a Natural Language

Dialogue System". In Proceedings of the 2nd

Nordic Conference on Text Comprehension in

Man and Machine, Taby, Stockholm, 1990.

Appel, A, W. (1998). "Modern Compiler

Implementation in Java". Cambridge University

Press; ISBN: 0521583888.

Aretoulaki, M. (1996). "COSY-MATS: A Hybrid

Connectionist-Symbolic Approach to the

Pragmatic Analysis of Texts for their Automatic

Summarisation". Ph.D. Thesis, Dept. of

Language Engineering, University of Manchester

Institute of Science and Technology (UMIST),

Manchester, U.K., March.

Aretoulaki, M. (1997). "COSY-MA TS: An

Intelligent and Scalable Summarisation Shelf'. In

Proceedings of the ACL'97 / EACL'97 Workshop

on Intelligent Scalable Text Summarisation

(ISTS'97), Madrid, Spain, July 1997.

Aretoulaki, M., Scheler, G., and Brauer, W.

(1998). "Connectionist Modeling of Human Event

Memorization Processes with Application to

Automatic Text Summarization". In Proceedings

167

[Arnola, 1998]

[Aycock & Horspool, 1999]

[Aycock & Horspool, 2001]

[Aycock & Horspool, 2002]

[Aycock et aI., 2001]

[Baldwin & Villavicencio, 2002]

[Bechhofer et aI., 2002]

of AAAI Spring Symposium on Intelligent Text

Summarization, Stanford University, California,

March, 1998.

Arnola, H. (1998). "On Parsing Binary

Dependency Structures Deterministically in

Linear Time". In Kahane & Polguere (eds),

Workshop on Dependency-Based Grammars,

COLING-ACL 1998, pp 68-77, Montreal.

Aycock, J., and Horspool, N, R. (1999). "Faster

Generalized LR Parsing". In Proceedings of the

8th International Conference on Compiler

Construction, pp 32-46, 1999.

Aycock, J., and Horspool, N, R. (2001). "Direct/y­

Executable Earley Parsing". In Proceedings of

the 1 oth International Conference on Compiler

Construction, pp 229-243, 2001.

Aycock, J., and Horspool, N, R. (2002).

"Practical Earley Parsing". The Computer

Journal, 45(6): pp 620-630, 2002.

Aycock, J., Horspool, N, R., Janousek, J., and

Melichar, B. (2001). "Even Faster Generalized

LR Parsing". Acta Informatica, Volume 37, Issue

9, pp 633-651, 2001.

Baldwin, T., and Villavicencio, A. (2002).

"Extracting the Unextractable: A Case Study on

Verb-Particles". In Proceedings of the 6th

Conference on Natural Language Learning

(CoNLL-2002), Taipei, Taiwan, 2002.

Bechhofer, S., Carr, L., Goble, C., Kampa, S.,

and Miles-Board, T. (2002). "The Semantics of

Semantic Annotation". ODBASE: First

International Conference on Ontologies,

Databases, and Applications of Semantics for

Large Scale Information Systems 2519, Irvine,

California. 2002.

168

[Berger & Printz, 1998a]

[Berger & Printz, 1998b]

[Berrut & Palmer, 1986]

[Biber et aI., 1999]

[Bies et a!., 1995]

[Blache, 2000]

[van den Brand et a!., 2002]

Berger, A., and Printz, H. (1998). "A Comparison

of Criteria for Maximum Entropy / Minimum

Divergence Feature Selection". In Proceedings

of the 3rd Conference on Empirical Methods in

Natural Language Processing (EMNLP) 1998, pp

97-106, Granada, Spain.

Berger, A., and Printz, H. (1998). "Recognition

Performance of a Large-Scale Dependency­

Grammar Language Modef'. In International

Conference on Spoken Language Processing

(ICSLP 1998), Sydney, Australia.

Berrut, C., and Palmer, P. (1986). "Solving

Grammatical Ambiguities within a Surface

Syntactical Parser for Automatic Indexing". In

ACM-SIGIR, Pisa, September.

Biber, D., Johansson, S., Leech, G., Conrad, S.,

and Finegan, E. (1999). "Longman Grammar of

Spoken and Written English". Longman.

Bies, A., Ferguson, M., Katz, K., and Macintyre,

R. (1995). "Bracketing Guidelines for Treebank "

Style Penn Treebank Project'. University of

Pennsylvania, 1995.

Blache, P. (2000). "Constraints, Linguistic

Theories and Natural Language Processing". In

Natural Language Processing, Christodoulakis,

D. (ed), Lecture Notes in Artificial Intelligence

1835, Springer-Verlag.

van den Brand, M, G, J., Scheerder, J., Vinju, J.,

and Visser, E. (2002)."Disambiguation Filters for

Scannerless Generalized LR Parsers". In

Horspool, N. (ed), Compiler Construction,

Volume 2304 of Lecture Notes in Computer

Science, pp 143-158, Grenoble, France, April

2002.Springe~Verlag.

169

[Brill, 1994]

[Brill & Resnik, 1994]

[Carbonell, 1983]

[Card ie, 1993]

[Carr et ai., 1995]

[Carr et ai., 1998]

[Carr et ai., 2001]

Brill, E. (1994). "Some Advances in

Transformation-Based Part of Speech Tagging".

In Proceedings of the 12th National Conference

on Artificial Intelligence, 1994.

Brill, E., and Resnik, P. (1994). "A Rule- Based

Approach to Prepositional Phrase Attachment

Disambiguation". In 15th International

Conference on Computational Linguistics

(COLlNG) 1994.

Carbonell, J, G. (1983). "Discourse Pragmatics

and Ellipsis Resolution in Task-Oriented Natural

Language Interfaces". In Proceedings of the 21 st

Annual Meeting of the Association for

Computational Linguistics (ACL-83): pp 164-168.

Cardie, C. (1993). "A Case-Based Approach to

Knowledge Acquisition for Domain-Specific

Sentence Analysis". In Proceedings of the

Eleventh National Conference on Artificial

Intelligence, pp 798-803, Washington, DC. AAAI

Press / MIT Press.

Carr, L., De Roure, D., Hall, W., and Hill, G.

(1995). "The Distributed Link Service: A Tool for

Publishers, Authors and Readers". Proceedings

of Fourth International World Wide Web

Conference: The Web Revolution, Boston,

Massachusetts, USA, December 1995.

Carr, L., De Roure, D., Davis, H., and Hall, W.

(1998) "Implementing an Open Link Service for

the World Wide Web". World Wide Web Journal

1 (2).

Carr, L., Bechhofer, S., Goble, C., and Hall, W.

(2001). "Conceptual Linking: Ontology-based

Open Hypermedia". Tenth World Wide Web

Conference, Hong Kong. 2001.

170

[Carroll & Bricoe, 2001]

[Carroll & Charniak, 1992]

[Chan et aI., 2000]

[Charniak,2001]

[Chelba et aI., 1997]

[Chiaramella et aI., 1986]

[Chinchor, 1992]

Carroll, J., and Bricoe, T. (2001). "High Precision

Extraction of Grammatical Relations". In

Proceedings of IWPT 2001, pp 78-89.

Carroll, G., and Charniak, E. (1992). "Two

Experiments on Learning Probabilistic

Dependency Grammars from Corpora". In MAl

1992 Workshop Program: Statistically-Based

NLP Techniques, San Jose, California.

Chan, S., Lai, T., Gao, W., and T'sou, B. (2000).

"Mining Discourse Markers for Chinese Textual

Summarization". In Udo Hahn, Lin, C., Mani, I.,

and Radev, D, R. (eds), Proceedings of the

Workshop on Automatic Summarization at the 6th

Applied Natural Language Processing

Conference and the 1st Conference of the North

American Chapter of the Association for

Computational Linguistics, Seattle, WA, April

2000.

Charniak, E. (2001). "Immediate Head Parsing

for Language Models". In Proceedings of the 39th

Annual Meeting of the Association for

Computational Linguistics, 2001.

Chelba, C., Engle, D., Jelinek, F., Jimenez, V.,

Khudanpur, S., Mangu, L., Printz, H., Ristad, E.,

Rosenfeld, R., Stolcke, A, and Wu, D. (1997).

"Structure and Performance of a Dependency

Language Modef'. In Proceedings of

Eurospeech, Volume 5, pp 2775-2778, Rhodes,

Greece, 1997.

Chiaramella, Y., Defude, D., and Bruandet, M.

(1986). "IOTA: A Full Text Information Retrieval

System". In Proceedings of the 9th ACM-SIGIR,

Pisa, Italy, pp 207-213.

Chinchor, N, A. (1992). "MUC-4 Evaluation

Metrics". In Proceedings of the Fourth Message

171

[Chinchor, 1999]

[Ciravegna & Lavelli, 1999]

[Collins & Brooks, 1995]

[Covington, 1990]

[Covington, 1994]

[Covington, 2000]

[Cunningham et aI., 1999]

Understanding Conference, McLean, Virginia, pp

22-29, June 16-18, 1992.

Chinchor, N, A. (1999). "Overview of MUC-7 /

MET-2". In Proceedings of the Message

Understanding Conference MUC-7.

Ciravegna, F., and Lavelli, A. (1999). "Full Text

Parsing using Cascades of Rules: An

Information Extraction Perspective". In

Proceedings of the 9th Conference of the

European Chapter of the Association for

Computational Linguistics, Bergen, Norway,

1999.

Collins, M., and Brooks, J. (1995). "Prepositional

Phrase Attachment through a Backed Off

Modef'. ACL 3rd Workshop on Very Large

Corpora, pp 27-38, Cambridge, Massachusetts,

June 1995.

Covington, M, A. (1990). "A Dependency Parser

for Variable-Ward-Order Languages". In Brown,

H, U. (ed), Computer Assisted Analysis and

Modelling on the IBM 3090, Cambridge, MA, MIT

Press.

Covington, M, A. (1994). "Discontinuous

Dependency Parsing of Free and Fixed Word

Order". Work in Progress. Research Report AI-

1994-02, University of Georgia, Athens, Georgia

30602 USA, April 1994.

Covington, M, A. (2000). "A Fundamental

Algorithm for Dependency Parsing".

Cunningham, H., Gaizauskas, R., Humphreys,

K., and Wilks, Y. (1999). "Experience with a

Language Engineering Architecture: Three Years

of GAT£'. Proceedings of the AISB'99 Workshop

on Reference Architectures and Data Standards

for NLP, 1999.

172

[Cunningham et aI., 2002a]

[Cunningham et aI., 2002b]

[Davis et aI., 1992a]

[Davis et aI., 1992b]

[Davis et aI., 1993]

[Douthat, 1998]

[EI-Beltagy et aI., 1999]

Cunningham, H., Maynard, D., Bontcheva, K.,

and Tablan, V. (2002). "GA TE: A Framework and

Graphical Development Environment for Robust

NLP Tools and Applications". Proceedings of the

40th Anniversary Meeting of the Association for

Computational linguistics (ACL'02),

Philadelphia, US.

Cunningham, H., Maynard, D., Bontcheva, K.,

Tablan, V., Ursu, C., and Dimitrov, M. (2002).

"Developing Language Processing Components

with GATE (User's Guide)". Technical Report,

University of Sheffield, UK, (2002).

Davis, H., Hall, W., Heath, I., Hill, G., and

Wilkins, R. (1992). "Microcosm: An Open

Hypermedia Environment for Information

Integration". Technical Report, Southampton

University, 1992. CSTR 92-15.

Davis, H., Hall, W., Heath, I., Hill, G., and

Wilkins, R. (1992). "Towards an Integrated

Information Environment with Open Hypermedia

Systems". Proceedings of the Fourth ACM

Conference on Hypertext (ECHT '92), Lucarella,

D., Nanard, J., Nanard, M., and Paolini, P. (eds),

Milan, Italy, pp 181-190, December 1992.

Davis, H., Hutchings, G., and Hall, W. (1993).

"Microcosm: A Hypermedia Platform for the

Delivery of Learning Materials". Technical

Report, Southampton University, 1993. CSTR

93-10.

Douthat, A. (1998). "The Message

Understanding Conference Scoring Software

User's Manuaf'. In ih Message Understanding

Conference Proceedings, MUC-7, 1998.

EI-Beltagy, S., De Roure, D., and Hall, W.

(1999). "A Multiagent System for Navigation

173

[Elworthy, 1995]

[Elworthy, 1999]

[Fellbaum, 1998]

[Grice, 1971]

[Grosz & Sidner, 1986]

[Grunwald, 2004]

[Hajicova & Sgall, 1984]

Assistance and Information Finding". In

Proceedings of the Fourth International

Conference on the Practical Application of

Intelligent Agents and Multi-Agent Technology,

pp 281-295.

Elworthy, D. (1995). "Tagset Design and

Inflected Languages". In Proceedings of the ACL

SIGDAT Workshop, Dublin, 1995.

Elworthy, D. (1999). "A Finite-State Parser with

Dependency Structure Outpuf'.

Fellbaum, C. (1998). "Towards a Representation

of Idioms in WordNer'. In Harabagiu, S. (ed),

Proceedings of the Workshop on Usage of

Word Net in Natural Language Processing.

Systems, COLI NG/ACL 1998, Montreal, Canada.

Grice, H, P. (1971). "Meaning". In Steinberg, D,

D., and Jakobovits, L, A. (eds), Semantics. An

Interdisciplinary Reader in Philosophy,

Linguistics and Psychology, pp 53-59.

Cambridge University Press.

Grosz, B, J., and Sidner, C, L. (1986). "Attention,

Intentions, and the Structure of Discourse".

Computational Linguistics, 12(3) pp 175-204,

July-September.

Grunwald, P, D. (2004). "Tutorial on Minimum

Description Length". Chapter in Grunwald, P, D.,

Myung, I, J., and Pitt, M, A. (eds), Advances in

Minimum Description Length: Theory and

Applications, MIT Press.

Hajicova, E., and Sgall, P. (1984). "From Topic

and Focus of a Sentence to Linking in a Texf'. In

Bara, B, G., and Guida, G. (eds), Computational

Models of Natural Language Processing, pp

151-163. Elsevier Science Publishers B. V.

(North Holland).

174

[Hearst & Plaunt, 1993)

[Hirschberg & Litman, 1993)

[Horspool & McLean, 1996)

[Ifill, 2002)

[Infante-Lopez et aI., 2002)

[Inui et aI., 1997)

[Jarvinen & Tapanainen, 1998)

[Krymolowski & Dagan, 2002)

[Kubler & Hinrichs, 2001)

Hearst, M, A., and Plaunt, C. (1993). "Subtopic

Structuring for Full-Length Document Access". In

Proceedings of the 16th ACM-SIGIR, Pittsburgh,

PA, pp 59-69.

Hirschberg, J., and Litman, D. (1993). "Empirical

Studies on the Disambiguation of Cue Phrases".

Computational Linguistics, 19(3) pp 501-530.

Horspool, N, R., and McLean, P. (1996). "A

Faster Earley Parser". In Proceedings of the 6th

International Conference on Compiler

Construction, pp 281-293, 1996.

Ifill, T. (2002). "Seeking the Nature of Idioms: A

Study in Idiomatic Structure". Thesis.

Infante-Lopez, G, G., Rijke, M., and Sima'an, K.

(2002). "A General Probabilistic Model for

Dependency Parsing". In Proceedings of the

BNAIC 2002, Leuven, Belgium.

Inui, K., Sornlertlamvanich, V., Tanaka, H., and

Tokunaga, T. (1997). "A New Formalization of

Probabilistic GLR Parsing". In Proceedings of the

International Workshop on Parsing

Technologies, 1997.

Jarvinen, T., and Tapanainen, P. (1998).

"Towards an Implementable Dependency

Grammar". In Processing of Dependency-Based

Grammars, Montreal, Canada. Kahane, S., and

Polguere, A. (eds), COLING-ACL 1998,

Association for Computational Linguistics, pp 1-

10, Universite de Montreal.

Krymolowski, Y., and Dagan, I. (2002).

"Targeted Partial Dependency Parsing".

Kubler, S., and Hinrichs, E, W. (2001). "From

Chunks to Function Argument Structure: A

Similarity Based Approach". Association for

Computational Linguistic, 39th Annual Meeting

175

[Lavie & Tomita, 1993]

[Lin & Pantel, 2001]

[Marino et aI., 1987]

[Maynard et aI., 2000]

[Maynard et aI., 2001]

[McPeak & Necula, 2004]

and 10th Conference of the European Chapter,

Proceedings of the Conference, July 9-11, 2001,

Toulouse, France. Morgan Kaufmann

Publishers, 2001, pp 338-345.

Lavie, A. and Tomita, M. (1993). "GLR* - An

Efficient Noise-skipping Parsing Algorithm for

Context Free Grammars". In Proceedings of

Third International Workshop on Parsing

Technology, pp 123-134, 1993.

Lin, D., and Pantel, P. (2001). "Discovery of

Inference Rules for Question Answering".

Natural Language Engineering 7(4) pp 343-360,

2001.

Marino, M., Spiezio, A., Ferrari, G., and

Prodanof, I. (1987). "An Efficient Context-Free

Parser for Augmented Phrase-Structure

Grammars". In Proceedings of the Third

Conference on European Chapter of the

Association for Computational Linguistics,

Copenhagen, Denmark, pp 196-202, 1987.

Maynard, D., Cunningham, H., Bontcheva, K.,

Catizone, R., Demetriou, G., Gaizauskas, R.,

Hamza, 0., Hepple, M., Herring, P., Mitchell, B.,

Oakes, M., Peters, W., Setzer, A., Stevenson,

M., Tablan, V., Ursu, C., and Wilks, Y. (2000). "A

Survey of Uses of GATE". Technical Report CS-

00-06, University of Sheffield, Department of

Computer Science, 2000.

Maynard, D., Tablan, V., Ursu, C., Cunningham,

H., and Wilks, Y. (2001). "Named Entity

Recognition from Diverse Text Types". In Recent

Advances in Natural Language Processing 2001

Conference, Tzigov Chark, Bulgaria, 2001.

McPeak, S., and Necula, G, C. (2004).

"Elkhound: A Fast, Practical GLR Parser

176

[Melby, 1987]

[Mellish,2004]

[Menzel & Schroder, 1990]

[Middleton et aI., 2001]

[Millard et aI., 2003]

[Miller et aI., 1990]

[Nakata et aI., 1998]

Generator". Compiler Construction, Proceedings.

2985, pp 73-88.

Melby, A, K. (1987). "Statutory Analysis".

Technical Report, Birgham Young University,

Provo, Utah, October.

Mellish, C. (2004). "Resolving Structural

Ambiguity in Generated Speech". Belz, A,

Evans, R., and Piwek, P. (eds), Natural

Language Generation, Third International

Conference, INLG 2004, Brockenhurst, UK, July

2004.

Menzel, W., and Schroder, I. (1990)."Decision

Procedures for Dependency Parsing using

Graded Constraints". In Proceedings of ACL

1990.

Middleton, S., DeRoure, D., and Shad bolt, N.

(2001). "Capturing Knowledge of User

Preferences: Ontologies in Recommender

Systems". In Proceedings of the ACM K-CAP'Oi,

2001, Victoria, Canada: ACM Press.

Millard, D, E., Alani, H., Kim, S., Weal, M, J.,

Lewis, P., Hall, W., De Roure, D., and Shad bolt,

N, R. (2003). "Generating Adaptive Hypertext

Content from the Semantic Web". In

Proceedings of 1st International Workshop on

Hypermedia and the Semantic Web, Nottingham,

UK.

Miller, G, A, Beckwith, R, T., Fellbaum, C, D.,

Gross, D., and Miller, K, J. (1990). "WordNet: An

On-line Lexical Database." International Journal

of Lexicography, 3(4), pp 235-244.

Nakata, K., Voss, A, Juhnke, M., and Kreifelts,

T. (1998). "Collaborative Concept Extraction

from Documents". In Proceedings of the 2nd Int.

Conf. on Practical Aspects of Knowledge

177

[Nakatani,1991]

[Nivre, 2002]

[Nivre, 2003]

[Nivre & Nilsson, 2003]

[Numazaki & Tanaka, 1990]

[Oflazer, 1999]

[O'Hara, 2002]

[Pantel & Lin, 2000]

Management (PAKM 98), Basel, Switzerland,

29-30.

Nakatani, C, H. (1991). "Resolving a Pragmatic

Prepositional Phrase Attachment Ambiguity".

29th Annual Meeting of the Association for

Computational Linguistics, 18-21 June 1991,

University of California, Berkeley, California,

USA, Proceedings. ACL 1991 pp 351-352.

Nivre, J. (2002). "Two Models of Stochastic

Dependency Grammar". MSI Report 02118.

Vaxjb University, School of Mathematics and

Systems Engineering.

Nivre, J. (2003). "Optimizing a Deterministic

Dependency Parser for Unrestricted Swedish

Texf'. In Proceedings of Promote IT, Gotland

University, 3-5 May 2003.

Nivre, J., and Nilsson, J. (2003). "Three

Algorithms for Deterministic Dependency

Parsing". NODALIDA and Related Activities,

Rejkyavik, May 2003.

Numazaki, H., and Tanaka, H. (1990). "A New

Parallel Algorithm for Generalized LR Parsing".

In Proceedings of the 13th International

Conference on Computational linguistics -

Volume 2, Helsinki, Finland, pp 305-310,1990.

Oflazer, K. (1999). "Dependency Parsing with an

Extended Finite State Approach". In Proceedings

of the 3ih Annual Meeting of the Association for

Computational Linguistics, University of

Maryland, College Park, MD.

O'Hara, K. (2002). "The Internet: A Tool for

Democratic Pluralism?". Science as Culture

11 (2): pp 287-298.

Pantel, P., and Lin, D. (2000). "An Unsupervised

Approach to Prepositional Phrase Attachment

178

[Pantel & Lin, 2002]

[Paradis & Berrut, 1996]

[Paskin,2001]

[Porter, 1980]

[Quirk et aI., 1985]

[Ratnaparkhi, 1998]

[Ratnaparkhi et aI., 1994]

[Rissanen, 1978]

using Contextually Similar Words". In

Proceedings of the 38th Annual Meeting of the

Association for Computational Linguistics, pp

101-108, Hong Kong.

Pantel, P., and Lin, D. (2002). "Discovering Word

Senses from Text'. In ACM SIGKDD Conference

on Knowledge Discovery and Data Mining,

Edmonton, Canada, May 2002.

Paradis, F., and Berrut, C. (1996). "Experiments

with Theme Extraction in Explanatory Texts". In

Second International Conference on

Conceptions of Library and Information Science,

CoLIS 2. pp 433-437.

Paskin, M, A. (2001). "Grammatical Bigrams".

Porter, M. (1980). "An Algorithm for Suffix

Stripping". Program (Automated Library and

Information Systems) 14 (3): pp 130-7, July

1980.

Quirk, R., Greenbaum, S., Leech, G., and

Svartvik, J. (1985). "A Comprehensive Grammar

of the English Language". Longman.

Ratnaparkhi, A. (1998). "Statistical Models for

Unsupervised Prepositional Phrase Attachment'.

In Proceedings of the 36th ACL and 1 ih

COLlNG, pp 1079-1085.

Ratnaparkhi, A., Reynar, J., and Roukos, S.

(1994). "A Maximum Entropy Model for

Prepositional Phrase Attachmenf'. In

Proceedings of the ARPA Workshop on Human

Language Technology, pp 250-255, Plainsborg,

N J, March 1994.

Rissanen, J. (1978). "Modeling by Shortest Data

Description". Automatica, Vol. 14, pp 465-471.

179

[van Riemsdijk & Williams, 1986]

[van Rijsbergen, 1979]

[Small, 1980]

[Strzalkowski et aI., 2000]

[Tapanainen & Jarvinen, 1997]

[Thorup, 1994]

[Tomita, 1990]

[Wagner & Graham, 1997]

van Riemsdijk, H., and Williams, E. (1986).

"Introduction to the Theory of Grammars".

Cambridge: The MIT Press.

van Rijsbergen, C, J. (1979). "Information

Retrievaf'. Butterworths, London, 2nd edition.

Small, S, L. (1980). "Word Expert Parsing: A

Theory of Distributed Word-based Natural

Language Understanding". Doctoral Dissertation,

Department of Computer Science, University of

Maryland, September 1980.

Strzalkowski, T., Stein, G, C., Wise, G, B., and

Bagga, A. (2000). "Towards the Next Generation

Information Retrievaf'. In Proceedings of the

RIAO-2000, 6th International Conference on

Intelligent Multimedia, Information Retrieval

Systems and Management, Paris, April, 2000.

Tapanainen, P., and Jarvinen, T. (1997). "A Non­

Projective Dependency Parser". In Proceedings

of the 5th Conference on Applied Natural

Language Processing, Association for

Computational Linguistics, Washington, D.C.

Thorup, M. (1994). "Controlled Grammatic

Ambiguity". ACM Transactions on Programming

Languages and Systems (TOPLAS), Volume 16,

Issue 3 (May 1994), pp 1024-1050, 1994.

Tomita, M. (1990). "The Generalized LR Parser /

Compiler v8-4: A Software Package for Practical

NL Projects". In Proceedings of the 13th

International Conference on Computational

Linguistics - Volume 1, Helsinki, Finland, pp 59-

63, 1990.

Wagner, T, A., and Graham, S, L. (1997).

"Incremental Analysis of Real Programming

Languages". In Proceedings of the ACM

SIGPLAN 1997 Conference on Programming

180

[Woods, 1997]

[Xia & Palmer, 2001]

[Zhou, 2002]

Language Design and Implementation, Las

Vegas, Nevada, United States, pp 31-43, 1997.

Woods, W, A. (1997). "Conceptual Indexing: A

Better Way to Organize Knowledge". A Sun Labs

Technical Report: TR-97-61. Editor, Technical

Reports, 901 San Antonio Road, Palo Alto,

California 94303, USA.

Xia, F., and Palmer, M. (2001). "Converting

Dependency Structures to Phrase Structures". In

the Proceedings of the Human Language

Technology Conference (HL T 2001), San Diego,

CA, March 18-21, 2001.

Zhou, M. (2002). "A Block-Based Robust

Dependency Parser for Unrestricted Chinese

Text'. The second Chinese Language

Processing Workshop attached to ACL 2000,

Hong Kong, October 8th
, 2000.

181

