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More and more scientific code is being written in higher level languages than the tra­

ditional choice of Fortran. Such languages are more accessible to less computer science 

minded people and bring with them large libraries, geared towards solving mathemat­

ical problems. MATLAB is such a language and allows the rapid development of high 

performance codes. In this thesis, we describe the problems associated with the creation 

of high performance code for mathematical computations. We discuss the advantages 

and disadvantages of using a high level language like MATLAB and then propose partial 

evaluation as a way of lessening the disadvantages at little cost. Partial Evaluation is a 

program transformation technique, which propagates constants and performs static com­

putations, resulting in faster residual programs. We present our approach to partially 

evaluate MATLAB programs using the online methodology, whereby decisions about 

static or dynamic values are made at specialisation time rather than as a pre-process. 

We also describe an implementation called MPE (MATLAB Partial Evaluator). As 

well as propagating static values to produce fast residual programs, MPE uses exten­

sive shape and type inferencing to extract static information from otherwise dynamic 

contexts. Partially evaluated programs frequently contained redundant code, necessi­

tating a post-processing phase to prevent irrelevent computations at run-time and also 

to reduce the amount of code produced. The post-processor is able to remove much of 

this redundancy by a combination of dead code elimination using ud-chains and dupli­

cate function detection, using structural equivalency. To ascertain the efficacy of our 

approach, we obtained empirical results for a variety of real MATLAB programs. These 

results showed performance increases in various programs, from the relatively simple 

Chebyshev approximation and Lagrange Interpolation codes (with speed-ups of up to 

100%) to the several different Ordinary Differential Equations solvers (speed-ups range 

from 57% to 568%) to a Computational Fluid Dynamics solver, which was sped up by 

92%. Since these results were produced with a minimal of manual interference, we sug­

gest that partial evaluation is a viable automated technique for use by those actually 

coding scientific codes. 
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Chapter 1 

Introduction 

Scientific computing can be described as the use of computers to solve scientific problems. 

As computers have become cheaper and faster, it has become possible to model ever more 

complicated phenomena with ever more accuracy. Rarely is any large engineering effort 

undertaken today, without some model first being built, which can be tested to find 

flaws before anything real has been constructed. 

1.1 The Problems of Scientific Computing 

Problems range in complexity from calculating the amount of thrust required to put a 

satellite into a desired orbit to calculating the effects of "greenhouse gases" on the tem­

perature of the earth over a hundred years. Even medicine is benefiting from advances in 

computing, as biologists can now model how proteins "fold" using large scale distributed 

computing efforts and then use the information to find out what causes diseases such as 

Alzheimer's and BSE [22]. 

At the core of much of this work is the production of new algorithms to solve previously 

insoluble problems. Doubling the clock speed of a processor can at best double the speed 

of a model. Models are however rarely linear and so doubling the size of a model will 

often have a far larger effect on the time taken to compute it. Replacing an algorithm 

with cubic time complexity by one with quadratic time complexity can greatly increase 

the size of problems that are manageable. 

To this end, the barriers to the construction of algorithms need to be broken down so 

that scientists do not struggle with problems that need not concern them. If algorithms 

exist to perform linear algebra operations and which fully take advantage of the hard­

ware available, then those algorithms should be made readily available in the form of 

environments which make them integral. 

1 
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Unforgiving environments, designed for ease of implementation by compiler writers in 

mind, can rarely offer users the flexibility and the ease of use desired by users without 

computer science backgrounds since their focus is necessarily different. Learning an 

arcane syntax which does not easily map to their other scientific experiences should be 

avoided. 

Scientific computing is moving away from hand-coded, hand-optimised codes, written in 

low to medium level languages like FORTRAN, towards general codes written in high­

level domain specific programming languages or using problem solving environments, 

e.g. MATLAB [75], Maple [46] MATHEMATICA [47]. This trend is also apparent 

in general purpose computing, where languages like Python are now being adopted for 

projects traditionally written in CjC++, since the large standard library includes string 

processing and network communications in a way that saves users knowing the specific 

architectural features of the computer or operating system [27]. 

With the current diversity of computer architectures (due to differences in cache con­

figurations, speeds and memory bandwidths as well as processor types), it is becoming 

increasingly difficult to produce near optimal code without expending excessive time. 

Even then the code ties the developer to one architecture, which is no longer ideal in an 

era of heterogeneous systems. With high-level languages and integrated problem solving 

environments, these details are both solved and yet hidden from the user, greatly easing 

their work. 

1. 2 MATLAB as a Solution 

The use of high level languages allows rapid prototyping to ease development, while 

hiding the complex implementation details from the user, who is only interested in 

getting fast (both in execution and implementation) and accurate results. Users will 

happily sacrifice some execution speed in the initial development period, if it means 

they can quickly produce a working solution. This applies not just to the choice of 

platform but the development methodology, where general solutions are sought which 

can be applied to a wide variety of problems albeit slowly due to their generality. The 

approach results in programs which can contain redundant and irrelevant computations, 

thus causing significant reductions in performance. Later, once the prototype has been 

verified, serious optimisation efforts can be made, often by rewriting the program in a 

language like FORTRAN, which offers low level control. 

MATLAB easily fills this hole in the development model. It closely maps to mathemat­

ical notation and treats matrices and multi-dimensional arrays as "first-class citizens", 

so that they can be manipulated with the ease of scalars in more traditional languages. 

It relies on highly optimised libraries such as ATLAS [80] for linear algebra routines and 
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FFTW [23] for Fast Fourier Transforms, so that users never have to worry about the 

hand-coding of such fundamental operations. 

Programs in MATLAB tend to be very general and multi-purpose, using input param­

eters to determine and configure which particular method is to be used in a particular 

invocation. A familiar example of this might be a general purpose numerical library, 

where selection and configuration of an eigenvalue solver is done at run time by setting 

some parameter values. However, it also happens in full-scale engineering calculations -

a particular example arises in the process of design search and optimisation, in which the 

performance of a device, system, or component is systematically improved by a series 

of computational simulations. At the heart of this process is a device and the compu­

tational experiment needed to analyse its performance, which is described by a large 

number of variable parameters, which can each be modified to change some aspect of 

either the device itself (e.g. its size/material/topology) or the analysis process (resolu­

tion of simulation, number of iterations, etc.). The design process consists of a number 

of studies, in each of which the code is executed a number of times with a (different) 

large subset of the parameters fixed while the remaining ones are varied at run-time. In 

each of these cases, we believe that partial evaluation could offer performance benefits 

to users. 

1.3 Partial Evaluation 

Partial evaluation is the process of transforming programs by the early specification 

of some of the program parameters. The resulting programs contain the precomputed 

results of calculations that depended only on the pre-specified parameters; since the new 

program does not need to perform these calculations itself, it is usually faster than the 

original program. Optimisations such as loop unrolling, previously impossible due to 

lack of information, become possible. 

With component-based software engineering, programmers are encouraged to create 

general code which can be reused, thus saving later development time. The trade-off 

is that performance can suffer. With access to an effective partial evaluator, software 

engineers can produce the general code that will ultimately lower their production costs 

and yet often achieve the performance of a bespoke system. 

High level code optimisation and partial evaluation techniques are quite different from 

the low level optimisation done, for instance, on the assembly language produced by C 

compilers. High level languages often provide special functionality not provided in low 

or medium level languages which needs to be exploited to get maximum performance: 

e.g. vectorisation in MATLAB and also FORTRAN 90. However unlike in low level 

languages, there are few opportunities to influence the exact details of basic operations 

like arithmetic operations. Indeed in a typical well written MATLAB program, most of 
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the computation is done inside the run-time libraries, which we cannot influence. Since 

these libraries are very general, they must cater to many eventualities including invalid 

or incompatible parameters, in which case checks must be performed first regardless of 

whether we can infer that they are redundant. Recent efforts involving Just-In- Time 

compilation seem to offer a solution to this problem, but there are often static aspects 

of programs which, if found before execution, can be dealt with effectively using partial 

evaluation. 

More commonly partial evaluation has been applied to the more academic side of com­

puter science. The focus of most research has been on functional and declarative lan­

guages, like Scheme [37] and Prolog [45], although partial evaluators do exist for C [5] 

and Java [64]. While there has been· research on numerical applications for Fortran 

[41], this work has not been continued recently, and certainly has not been updated for 

languages like MATLAB and Maple. 

1.4 Thesis Aims and Outline 

The aim of this project is to address these issues by taking general programs written 

(or produced by other programs) in high level languages such as MATLAB and produc­

ing code that executes more quickly using partial evaluation and other high level code 

optimisations. 

The main contribution of this work is an online partial evaluator for MATLAB called 

MPE (MATLAB Partial Evaluator). This is a program transformation tool, which takes 

a MATLAB program and produces a new one specialised according to some specified 

static data. This transformation is guided by our extensive abstract interpretation 

system, which allows information about the dynamic types of MATLAB to be captured. 

The tool is firmly grounded in practicality and so eschews some of the more theoretical 

decisions taken to achieve results such as self-application as this is superfluous to our 

goal of speeding up mathematical codes. 

In combination with our partial evaluation techniques, we also demonstrate an effective 

post-processing phase, which combines dead code removal using ud-chains and function 

duplication elimination via structural equivalency detection. 

This work demonstrates that program specialisation can effectively improve the perfor­

mance of MATLAB programs without placing too much burden on the end-user. Typical 

results for non-trivial systems such as the solution of ordinary differential equations us­

ing the generic solver provided as part of MATLAB show that partial evaluation can give 

100% increases in speed. When the MATLAB compiler is used, speed-ups are retained 

mostly intact and in some cases compilation in combination with partial evaluation gives 

much larger performance increases. 
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In Chapter 2, we examine the MATLAB programming language, looking at its structure 

and performance issues as well as examining previous work on increasing execution speed 

using techniques like parallelisation and compilation. In Chapter 3, we examine existing 

work in the field of partial evaluation. Chapter 4 presents a formal analysis of the type 

system used in MPE. The loading and parsing of a MATLAB program including all of 

the supporting functions is described in Chapter 5. The core partial evaluation details 

are given in Chapter 6. Chapter 7 describes how we remove dead code and perform 

other post-processing optimisations. In Chapter 8, we demonstrate the effectiveness of 

automatic partial evaluation by applying our tool to several test programs and comparing 

timings. Future work that could enable further improvements is described in Chapter 9 

and our final conclusions are presented in Chapter 10. Some of the early work of Chapters 

4, 6, 7 and 8 appeared in [20]. 



Chapter 2 

Overview of MATLAB 

MATLAB is a problem solving environment sold by The Mathworks [75], whose users 

world-wide have grown in number from 400,000 in 2000 [72], to around 1,000,000 today 

[71]. 

The Mathworks sells MATLAB to a variety of industries, from the aerospace and defence 

industry, to communication equipment manufacturers, to semi-conductor suppliers [73]. 

In the Aerospace and Defence industries, MATLAB and its related tools are used to 

"provide a flexible software environment for designing multidomain systems simulating 

high fidelity behavioral dynamics, testing and generating safety-critical flight computer 

code". Semi-conductor engineers use it in their design process from "algorithm develop­

ment and the creation of specifications, to system-level simulation, testing, and verifica­

tion". As communications equipment manufacturers strive to improve "the transmission 

of voice, music, data, and video", they have found that the MATLAB family of tools 

"accelerate[s] tasks such as data analysis, algorithm development, large-scale system 

simulation, performance analysis, hardware and software verification, and automatic 

code generation for prototyping and deployment". 

The MATLAB environment enables these applications through its large mathematical 

libraries and the ready mapping from traditional notation to implementation by its con­

trolling language, also known as MATLAB. From now on when we refer to MATLAB, 

we are referring to the language unless otherwise stated. The main characteristics are 

that it is a dynamically typed imperative language which is normally interpreted. Vari­

ables do not need to be declared and can change type. Matrices and arrays are not of 

fixed size but are reshaped when assignments are made to subscripts outside the current 

bounds. Function calls are always call-by-value, (although a copy-on-write approach is 

taken internally) and it is not possible for data structures to share values. As such this 

means that there are none of the aliasing problems that exist in languages like C [52]. 

6 
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For the purposes of this project we intend only to look at a subset of MATLAB. This 

subset includes most MATLAB features and is large enough to handle non-trivial pro­

grams without modification. This subset has grown significantly since [20] as wider 

testing revealed further desirable features. In this chapter the structure of MATLAB 

will be discussed in order to give a better understanding of the later chapters. Sections 

2.1 to 2.3 describe the features we include in the subset, while Section 2.4 outlines the 

main features that we have chosen to exclude. A mostly complete EBNFl will be given 

to show this structure. This description is not intended to be complete; in particular, 

the use of whitespace to delimit matrix columns and rows is not discussed. A fuller if 

slightly outdated discussion on parsing MATLAB can be found in [36]. 

2.1 M-files 

MATLAB code is always stored in a file with a .m extension, called an m-file. An 

m-file is either a script or a function, depending on whether the file starts with the 

function keyword. Scripts are executed within the current scope whereas functions 

execute within their own scope. For simplicity we deal only with functions as their 

scoping rules are simpler. 

Functions are declared using the function keyword. This must come at the start of the 

file (excluding whitespace and comments), although additional local function definitions 

can appear later in the same file. 

Functions can return zero or more values and take zero or more parameters. Whatever 

values are stored in the output variables at the end of the execution of the function are 

returned. E.g. 

function [a,b] ; f(x,y) 

It is also possible to declare functions that take a variable number of parameters by 

adding a final parameter called varargin. Functions can return any number of outputs 

by making the last output varargout. The EBNF of functions is given in Figure 2.1. 

MATLAB statements are either separated by new lines, semi-colons or commas. Using a 

comma to delimit a statement is equivalent to using a new line and so from now on only 

new lines will be mentioned. All the legal MATLAB statements are shown in Figure 2.1 

using EBNF. 

lExtended Backus Naur Form 
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m file script_file 
function file 

script_file = { statement } ; 

function file function { function } ; 

function = func_pream { global } block 

func_pream = "function" [ ret vars "=" ] identifier [ params ] 

ret vars identifier 
"[" { identifier 

params C "C" { identifier 

II II , 

II II 

} identifier IIJ 11 

} identifier ")" ) 

global = "global" identifier { identifier} 

block { statement C "\n" I II. II 
" II ) } 

FIGURE 2.1: EBNF for MATLAB functions 

2.2 Statements 

8 

In the following pages we will now describe the effect of each of the MATLAB statements 

gi ven in Figure 2.1. 

Expressions. MATLAB is in many ways like a calculator and can be used just to 

evaluate expressions. If an expression is terminated by a new line, the result is printed 

to the screen. If it is terminated by a semi-colon, the result is computed but not 

displayed. The result would normally be stored in a special variable called ans but 

we will require explicit assignments, as the use of ans is mostly employed only in the 

interactive environment, where MATLAB is being used as a calculator. The make-up of 

expressions will be discussed in more detail later in this section. 

As some functions do not return anything, it is possible for an expression to have no 

value. Such a function cannot be used anywhere where a value is required, which means 

that it can only appear as an expression statement (but not part of a binary expression). 

When these functions are executed, no output value is displayed even if the semi-colon 

is omitted. Such functions would merit their own case distinct from expressions, except 

that determining that a function returns nothing is not trivial since the presence of 

return variables in a function declaration only means that it can return values if these 

variables are defined when the function exits. E.g. 

1 + a * [2 3J' 

disp (' hello') 
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statement expression 
special_func 
assignment 
for_loop 
while_loop 
if_statement 
switch 
try_catch 
control_flow_change 

assignment (target "=" expression ) 
I ( subscript "=" "[J" ) 
I ( "[" { target "," } target "J" 

special-func = identifier { string} ; 

func call ) 

for_loop = ( "for" variable "=" expression block "end" ) 

while_loop = ( "while" expression block "end" ) ; 

if statement = ( "if" expression block else block) 

else block "end" 

switch 

choice 

"else" block "end" 
"elseif" expression block else block 

"switch" expression 
{ "case" choice block} 
[ otherwise block J 
"end" ; 

expression 
( "{" { expression II 11 } expression "}" ) 

try_catch = "try" block "catch" block "end" 

"return" 
"break" 
"continue" 

FIGURE 2.2: EBNF for MATLAB statements 

9 
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Assignments. There are three kinds of assignment, all indicated by the = operator. 

The most common is an assignment from an expression to a variable or to within a 

variable using indices. In addition multiple variables can be assigned if the right hand 

side is a function call. The final kind of assignment is the delete assignment, indicated 

by an assignment from the empty matrix [J to a subscript of a variable. This can be 

used to delete elements from arrays. If no semi-colon is present, then the values of all 

assigned variables are displayed. E.g. 

a = 1 

a(2) = 1 

[a,b] = size(c) 

a(5) = [] 

if statements. if statements check the value of an expression before executing a 

list of statements. There is also an optional else clause with elseif being "syntactic 

sugar" for a nested if statement inside an else block. The final list of commands is 

terminated by an end on its own. Usually the expression will be a scalar, in which case 

if it is non-zero the first set of commands will be executed. In the case of arrays, every 

value must be non-zero. E.g. 

if a == 1 

n = 20 

else if a 

n = 30 

else 

n = 0 

end 

I. every element of a must be 1 

I. every element of a must be non-zero 

Logical operators are evaluated differently inside if statements. Normally neither I 

nor & shortcuts (skips evaluation of the second operand when the evaluation of the first 

predetermines the final result), but it does in if statements. When no shortcut occurs, 

the semantics revert to the normal behaviour of the logical operators. Unfortunately this 

is implemented in a manner likely to cause confusion, with the possibility of incorrect 

results. 

if [1 0] I [0 1] 

dispel) 

else 

disp(2) 

end 

if [1 0] I ([0 1] Be [0 1]) 

disp (1) 

else 

disp (2) 

end 

The above examples were run in MATLAB 6.1 and 6.5, and both printed 1 and then 2 

on the screen, when most likely the expected result would be 1 and 1 or 2 and 2. In the 
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first example [1 OJ is evaluated and found to be false, no shortcut occurs and so it is 

logically ORed with [0 1J which produces the result [1 1J, which is true. 

In the second example, [1 OJ is evaluated and found to be false, then [0 1J is evaluated 

and also found to be false and so the result is logically ORed with [0 1] 1 which gives 

[0 1]. Instead of then logically ~Ring [1 OJ with [0 1J and getting true, it actually 

logically ORs 0 with [0 1] and so evaluates to false causing 2 to be printed. This 

behaviour is ultimately the result of the ambiguous semantics obtained by combining 

shortcuts with an element-wise logical operator. 

MATLAB 6.5 introduces && and II as shortcut operators but does not remove the 

shortcut semantics from & and I. The new shortcut operators can only be used with 

scalar operands, and so it is not possible to write a I I b == c when either a, b or c 

are non-scalar. A better implementation would implicitly convert operands to logical 

scalar values. We do not fully support MATLAB 6.5 (including these new operators), 

although we plan to shift to a newer version in future. 

for loops. These execute a series of statements multiple times, while varying a loop 

variable on each iteration. The loop variable takes its values from a list, which in most 

cases is an arithmetic progression, although any list is allowed. The end of the loop is 

marked by the end keyword. In the example below, 1: 10 expands to [1 2 3 4 5 6 7 

8 9 10J, although the interpreter and compiler can frequently optimise loops like this. 

E.g. 

for a = 1:10 

b b+c(a) 

end 

while loops. These statements repeatedly evaluate the value of an expression, check­

ing its value for zero (in the same way as with if statements) before executing a series 

of statements. The end of the loop is marked by the end keyword. E.g. 

while a > 0 

b b+c(a) 

a = a - 1 

end 

As with if statements, logical operators in while loops have shortcut semantics. 

swi tch statements. These evaluate an expression which must be either a scalar or a 

string and check the value against a series of case clauses, executing the appropriate 

code if it matches before control flows to the end of the switch block. There can also 

be an otherwise clause which is executed if no other clauses match. The final list of 

commands is terminated by the end keyword. E.g. 
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switch a 

case 1 

end 

n = n + 1 

case {2, 3, 4} 

n = 0 

otherwise 

n = 1 
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return, break and continue statements. Normally functions finish executing when 

control passes off the textual end of the function. However return can be used to 

explicitly end the function at any point, with the current values of the return variables 

immediately returned. 

break causes the execution of the innermost loop to terminate and control to flow to 

the end of it. If a break appears outside of a loop, it terminates the function in the same 

way as return. continue causes the execution of the current iteration of the innermost 

loop to terminate and control to be passed back to the beginning of the loop; it can only 

appear inside loops. 

2.3 Expressions 

MATLAB allows the creation of complex expressions in a very intuitive way using the 

syntax described in Figure 2.3. The basic construct is the matrix, of which vectors and 

scalars are special cases. Matrices are created by enclosing the elements in square brack­

ets ([. .. ] ). Apart from standard matrices which are two dimensional, MATLAB also 

has n-dimensional arrays. No syntax exists to create n-dimensional arrays directly, but 

they can be created using built-in functions and through indexed assignments. Arrays 

are laid out in memory in rows first, then columns and then any further dimensions. 

Arrays have a class associated with them as well as some type traits, which are some­

what independant of class. Type traits indicate whether arrays are real, complex or 

logical. The combination of traits and class makes up the intrinsic type of an array. 

Logical arrays are returned from boolean operators and built-in functions like isreal 

and isinf. While generally they will have the values 0 or 1, they can have any real 

value. Strings are arrays of class 'char', which contain only integer values (which use 2 

bytes of storage). Arrays always have the same number of elements in each row, column 

or further dimension. The intrinsic type of an array applies to every element within it. 

» a [1 2 3; 4 5 6; 7 8 9J 

a = 

2 3 

4 5 6 

7 8 9 

» b a > 4 
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expression 

target 

( expression bin_op expression ) 
( Ull_prefix_op expression ) 
( expression Ull_postfix_op ) 
( "(" expression ")" ) 
( expression ":" expression) 
( expression ":" expression "." expression) 
( "[" {row";" } row "J" ) 
( ",,, string ",,, ) 
( "@" identifier) 
target 
number 
complex_number 
matrix 
fUllc_call 
II. " 

"end" ; 

indexable 
( indexable "(" { expression II II } expression ")" ) 

indexable variable 
( indexable 
( indexable 

"{" { expression 
identifier ) 

II " } expression "}" ) 
II " 

variable identifier 

fUllC call identifier 
( identifier "(" { expression II " } expression ")" ) 

"+" I II_II I "*11 I "/" I 11\" I II ...... I " I" I "&" I 
"<" I ">" I " .*11 I " ./11 I ".\11 I " -II 11==11 

11-=" I ">=" "<=" 

Ull_prefix_op = "-,, I "-" I "+" 

Ull_postfix_op = ",,, I ".'" ; 

general_number number [ "e" [ "+" I "-" J digit* J 

complex_number = general_number "i" ; 

number = ( [ digits J "." digits) ( digits [ II " J ) 

digits = digit { digit} 

digit "0 .. 9" 

row expression ( { expression II " } expression ) 

FIGURE 2.3: EBNF for MATLAB expressions 

13 
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b 

o 
o 

o 
1 

1 

»C 'a string' 

C ; 

a string 

» d ; a + b * j 

d 

1.0000 

4.0000 

o 
1 

1 

7.0000 + 1.0000i 

2.0000 

5.0000 + 1.0000i 

8.0000 + 1. 0000 i 

3.0000 

6.0000 + 1. 0000 i 

9.0000 + 1.0000i 
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Nearly all binary operators in MATLAB are array operators. This means they are 

element-wise and require that both operands have the same shape. The shape of an 

array is described by the sizes of its dimensions. Array operators perform a computation 

for each pair of elements in the two operands with equivalent positions and return an 

array with an identical shape. For instance, using the + operator on the two vectors 

[1 3J and [4.5 OJ gives us [5.5 3J. If one of the operands is a scalar (and therefore 

has 2 dimensions, both of size I), then the result will have the same shape as the other 

operand and the result will be the result of applying the operator to the scalar and each 

of the elements in the non-scalar. If both are scalars, the result is also a scalar. 

The exceptions to this are matrix operators like *, \, / and -. Given one or more scalar 

operands, these behave exactly like array operators. To achieve the same for non-scalar 

operands, the array forms must be used: . *, . \, . / and. -. Each of the matrix forms 

has different operand requirements although all require operands be 2-dimensional: 

• * requires the number of columns in the first operand be the same as the number 

of rows in the second. 

• \ requires the second operand to have as many rows as the first operand. The 

result will have as many rows as the first has columns and as many columns as the 

second has columns. 

• / requires the second operand to have as many columns as the first operand. The 

result will have as many rows as the first has rows and as many columns as the 

second has rows. 

• - requires that one of the operands be a scalar and the other a square matrix. The 

result will have the same shape as the matrix operand. 

One consequence of allowing * to be used both as an array and a matrix operator in 

different circumstances is that it is no longer truly associative. Array multiplication 

and true matrix multiplication are both associative but the combination that MATLAB 

presents in the * operator is not. For instance: 
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» a = [1 2; 4 5] ; b [1 2 3] ; c [3 ; 2; 1]; 

» a * (b * c) 

ans 

10 20 

40 50 

» a * b * c 

??? Error using ==> * 
Inner matrix dimensions must agree. 

This has consequences for bracketing when printing MATLAB code as we cannot remove 

what would appear to be redundant brackets without first checking whether it is safe 

to do so. In practice, we do not perform this check and so never reb racket , which also 

means that our partial evaluator will not change the order of execution, which in some 

cases can lead to a change in complexity (see Section 9.3). 

Ordinary arrays and matrices can only store values of the same type and each of these 

values must be a scalar. While cell arrays must be regularly shaped, each element can 

have any type including cell arrays themselves. Cell arrays are created by enclosing the 

elements in braces ({ ... } ). 

» a = {1 2 3; 4 5 6; 7 8 9} 

a = 

[1] 

[4] 

[7] 

[2] 

[5] 

[8] 

[3] 

[6] 

[9] 

» b = {a, 'hi'; 5 + j, 10} 

b = 

{3x3 cell} 'hi' 

[5.0000+ 1.0000 iJ [10] 

Structures consist of a number of fields each containing a value. The fields are strings, 

while the value can be any MATLAB array including cell arrays and other structures. 

Fields can be added to a structure at any time and there is no concept of named struc­

tures as in C. Structures can either be created incrementally by assigning to each of the 

fields in turn (using the' .' operator) or by using the struct built-in. Fields can be 

accessed using the' .' operator or the getfield function and can be deleted using the 

function rmfield. 

» a = []; 

»a.fieldl 5 

a = 

fieldl: 5 

» a.anotherfield 

a = 

fieldl: 5 

{'hello', [1, 2]} 

anotherfield: {'hello' [1 2]} 

»b struct('fieldl', 5, 'anotherfield', {{'hello' [1, 2]}}) 

b = 

fieldl: 5 

anotherfield: {'hello' [1 2]} 
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Indexing into matrices is done using round brackets, as in a(3). MATLAB allows more 

than just scalars as indices. An appropriately sized matrix is also a valid index. In 

particular, ranges can be used to extract parts of matrices. Indices start at 1 and 

end can be used to get the last element. Finally, if an index is logical it predicates which 

part of the matrix should be extracted. E.g. 

» a ~ [1 , 2, 3; 4, 5, 6; 7, 8, 9] ; 

ans 

1 2 3 

4 5 6 

7 8 9 

» aCl,: ) 

ans 

2 3 

» a(2,2:end) 

ans 

5 6 

» a(a > 4) 

ans 

5 6 7 8 9 

It is possible to index into a matrix using more dimensions than the matrix has, as long 

as the extra indices are all equal to 1. If fewer dimensions are used then the dimensions 

that are not explicitly specified are flattened, so that the final index can be used to access 

all of them. For example, matrices can be indexed linearly (remembering of course that 

the values are stored in row-column order). 

» a ~ [1, 2; 3, 4]; 

» a(2, 2, 1, 1, 1) 

ans 

4 

» a ( : ) 

ans 

1 

3 

2 

4 

Indexing into cell arrays using round brackets produces a cell array as the result and 

so it is not suitable for extracting the elements themselves. Instead braces need to be 

used as in a{1}. As this extracts the elements themselves and not a subset of the cell 

array, the behaviour is very different when the indices are not scalars. In this case such 

an expression would evaluate to more than one value and so it only makes sense in a 

context that allows comma separated expressions (like a function call invocation or in 

the construction of a matrix). This is of special importance for functions which have 

the varargin parameter. This parameter will be a cell array containing all the extra 

parameters passed into the function. In order to pass all of these extra parameters onto 

a second function, they must be expanded in the function invocation. 
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function y ; f(varargin) 

y ; g(varargin{:}) + 10; 
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Cell array expansion using braces, can be used in any place where comma-separated lists 

are accepted. This includes function call parameter lists, index lists and matrices. 

Another important type is the function handle. These are like pointers to functions 

in C. They are created by prefixing a function name with © and also by using certain 

functions. The built-in feval is used to invoke the function represented by the function 

handle. These are used by many general numerical solvers like quad which evaluates 

integrals using adaptive Simpson quadrature and ode45 which solves non-stiff differential 

equations using a medium order method. 

The description of matrices given in Figure 2.3 is incomplete as the use of white space to 

denote column and row separators is not given, as it is just "syntactic sugar" for the form 

given. It is also an ambiguous grammar as there is nothing to distinguish a function 

call from an array access. This is because it is impossible to make this distinction 

using a context-free grammar and the method for performing this disambiguation will 

be described in Section 5.4. 

2.4 U nhandled Constructs 

In order to simplify, there are several MATLAB features that we do not consider: 

try-catch statements. This construct is used to handle exceptions and is mostly of 

interest when dealing with I/O. While we do not attempt to do any partial evaluation 

of this construct, our parser does recognise it. This allows partial evaluation of func­

tions to go ahead when functions use the construct but the statement appears on an 

execution path not taken by the partial evaluator. Partial evaluation of this construct 

is especially difficult as control could theoretically flow from any point in the try block 

to the catch block making data flow analysis difficult. 

Struct arrays. By creating a cell array of structs, it is not possible to constrain the 

fields that each struct must have. Indeed it is not even possible to assure that each 

element is even a struct. An alternative is the struct array, which is a generalisation of 

the struct as described earlier. In addition it can stores more than one element. We 

ignore it as it is rarely used and complicates parsing. As a result we require that the 

size function always returns [1 1J for a struct. 



Chapter 2 Overview of MATLAB 18 

Classes. Classes allow the definition of user defined objects which can have methods 

executed on them polymorphically. While we support some features of classes we do not 

support the creation of user defined classes or any class which is not directly built into 

MATLAB. 

When MATLAB is to execute a function call, the function that MATLAB invokes is 

dependent on the class of the first parameter in the invocation. If the parameters is of 

class A, MATLAB searches for directories called @A containing a matching function. If 

no such function is found then the default function is called instead. 

It would not be difficult to handle polymorphic function calls when the class can be 

statically determined, but when the class is unknown any number of functions could 

be invoked, thus complicating any analysis. One could abstractly interpret or partially 

evaluate each possible function, but this could be expensive. Currently we completely 

ignore the existence of functions contained in class directories, which could lead to 

incorrect code generation even for built-in classes. 

Global and persistent variables. Global variables are declared on lines prefixed 

with global. Globals can be declared at any point of a program, including after a 

variable has been used as a local variable. To simplify matters, we required that global 

variable declarations come immediately after the function declaration and that they 

cannot appear anywhere else. This explicitly makes illegal declaring a variable as a 

global after it has already been used. We also require that global variables do not 

shadow function parameters, which means a function cannot declare that it takes a 

parameter and also use a global variable with the same name. 

Persistent variables are like static local variables in C. They retain their values between 

function invocations, but are not available outside of the function in which they were 

declared. They are declared just like global variables but using the persistent keyword. 

For now these are treated as if they were ordinary global variables. 

It is necessary for a partial evaluator to parse global declarations since they can occur in 

the main MATLAB libraries, but beyond this we largely ignore them. We do not store 

any information about them since they could be overwritten by other functions. It is 

rare that global variables are used in MATLAB programs in ways that partial evaluation 

could help. Any code that does can often be written to avoid using globals. 

Recursive functions. Recursive functions with dynamic control cannot be handled 

as cycles are not detected by the polyvariant specialisation. This means that recursive 

functions which would normally terminate can be infinitely specialised leading to non­

termination of the partial evaluator. This could be handled by marking the function 

call signature as currently being specialised and immediately return control to the caller. 
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This would not help with recursive functions which statically altered their parameters, 

but use of the widen annotation described in Section 6.1.7 could help. 

If the recursion is completely static, as with a recursive power function where the expo­

nent is static, then the partial evaluator will terminate but will produce a new function 

for each recursive call, which mayor may not be desired. In combination with inlining 

it could reduce the simple recursive power function into a single line function. 

Special functions. Certain functions can have unpredictable effects on the execution 

of MATLAB programs. These include functions like clear and assignin which ma­

nipulate variables. The clear function is mostly used interactively and it is uncommon 

to see it used in functions. 2 The function deletes a variable and makes it undefined. 

If it is used with static input, it might be possible to correctly handle it. However if 

the variable to be cleared cannot be determined statically at partial evaluation time, to 

ensure correctness we would have to throwaway everything we know about all variables 

from that point on as anyone of them might have been affected. 

Multiple outputs through cell array subscripts. As previously stated, functions 

can return a variable number of outputs. Through the use of cell array subscripts it is 

possible to make a program, in which the number of outputs to a function cannot be 

statically determined. 

[a{b}] = f (x) 

If the size of b is not known, then the value of nargout will be unknown in f. Also if 

the size of b is known then the only way to split the assignments if the result of f (x) is 

static, is as follows (where b has 3 elements): 

a{b O)} 

a{b (2)} 

a{b(3)} 

Ideally, this transformation should occur before the function call is partially evaluated 

as follows: 

[a{bO)} a{b(2)} a{b(3)}] f(x) 

Unfortunately this transformation produces a reduction in performance, and even if some 

of the outputs are static, it is unlikely that speed-ups will be possible as assignments will 

have to be inserted which are unlikely to be removed by post-processing as the dynamic 

outputs will mark the whole of a as dynamic. 

2clear is often seen in scripts which operate in the caller scope and need to clear variables to avoid 
conflicts. 
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Ultimately our partial evaluator assumes that each entry in the output list requires one 

and only one output and so in the original example, b will be assumed to be scalar and 

nargout for f will be 1. 

In addition, we also require that the outputs do not contain any conflicts. I.e. two 

outputs cannot be to the same variable and a variable cannot be written to if it is used 

as an index in another output. 

By limiting the set of MATLAB features that we can handle we limit the number of 

MATLAB programs with which we can initially work. However we have to make a prag­

matic decision to ignore certain features that are not critical to testing our hypothesis 

that partial evaluation is a viable technique for the optimisation of MATLAB programs. 

In the future, it is hoped that these features could also be added to our tool. 

2.5 Optimising MATLAB - Current Technologies Review 

The Mathworks provides a compiler called MCC [74], which translates MATLAB into 

C. This C code is then compiled by the native compiler to produce an executable which 

can be executed without a full MATLAB installation. The C code produced is portable 

but, since it requires the MATLAB runtime libraries, is tied to the platforms that 

MAT LAB supports. The code produced consists mostly of function calls and very little 

attempt is made to use native C types. This is due to the dynamic typing which means 

that a variable could contain anything from a matrix to a function handle. Because 

the MATLAB base libraries call optimised routines in libraries such as ATLAS [80], 

LAPACK [44] and FFTW [23], these function calls are executed very quickly but have 

to inspect the parameters to determine the type of function to call. 

Another compiler is FALCON, which produces Fortran 90 code [57]. This uses extensive 

type inferencing at compile time to produce code which does very little type checking. 

Using user defined types (encompassed by existing MATLAB types), [26] describes how 

to make FALCON take advantage of structural information such as diagonal or upper 

triangular matrices, to improve results. Initial results showed FALCON outperforming 

MCC, but there have been improvements to the Mathworks compiler recently and so it 

is not clear which would perform better now as the FALCON source code was not made 

available and no recent comparisons have been reported by its authors. 

Following on from FALCON, Almasi has developed MaJIC, a MATLAB Just-In-Time 

compiler described as "an interactive front-end that looks like MATLAB and com­

piles/optimises code behind the scenes in real time, employing a combination of just-in­

time and speculative ahead-of-time compilation". [3] Because MaJIC compiles code in 

an interpreted environment, it has information about the parameters used to call func­

tions and attempts to produce more appropriate code. When compiling Just-In- Time 
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it eschews most optimisations in favour of fast compilation times and so cannot easily 

perform the types of aggressive optimisation seen in offline compilers and partial eval­

uators. MATLAB 6.5 also introduced Just-In-Time compilation as part of its normal 

operation and this often gives better results and is reported to be much improved in the 

recently released MATLAB 7. 

Other approaches to speeding up MATLAB execution have involved parallelisation. 

Mostly this involves adding parallel extensions to the language, like MultiMATLAB 

[50] or the DP toolbox [53]. However Otter is an attempt to translate MATLAB scripts 

into C programs targeting parallel computers supporting ScaLAPACK [54]. This ap­

proach produces varying results depending on the sizes of matrices and the complexity 

of the operations performed on them. 

In [48] and [49], the authors discuss source-level optimisations that would be appropriate 

for MATLAB. These include vectorisation of loop operations to take advantage of the 

more efficient MATLAB libraries, preallocation of arrays to prevent repeated resizing 

and expression optimisation through reordering. Many of these issues would already be 

apparent to MATLAB programmers, who would seek to avoid these pitfalls. However 

other automatic source level transformations, including partial evaluation, may yield 

opportunities to perform these optimisations. 

In [35], the authors use a static shape analysis to try and optimise the memory used by 

MATLAB programs. This results in quite significant speed increases as cache utilisation 

is improved. The shape analysis is described in more detail in [32]. This shape analysis 

is capable of determining that the shapes of two arrays must be the same, even when 

the shape itself is unknown, leading to fewer run-time checks. 

Type inferencing [1, 30] has been examined for other dynamically typed languages, like 

Scheme, since it is enables early detection of errors due to type mismatches as well as 

enabling many optimisations, such as replacing general arithmetic operators with integer 

specific operators. 

2.6 Summary 

In this chapter we have seen the structure of the MATLAB language, including some of 

its idiosyncrasies. The language was clearly designed to try and minimise the distance 

from the mathematical description of a problem to its solution. In doing so, many of the 

methods used to implement languages in the past have been ignored, since they serve 

only to distract from the immediate problem. In ignoring these methods, the developers 

of MATLAB have created a different set of problems, which must be solved to achieve 

satisfactory performance. 
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MATLAB was developed outside academic computer science and is a niche-language 

since it is not readily applicable for general computation. It is however an important 

niche growing in size as computers become fast enough to allow realistic models to be 

built before any concrete engineering is even contemplated. To allow it to grow even 

further, more methods from the academic world need to be introduced. Approaches like 

compilation have served to give better performance, and indeed such work is ongoing. 

The common theme to MATLAB usage, is the flexibility and the easing of traditionally 

complex tasks. Engineers can focus on solving the problem at hand rather than the 

reinvention of existing technology for each new application. This culture of reuse and 

componentisation can gain significantly from processes which seek to solve its associated 

problems. 

We will, in the next chapter, introduce one such process which could improve the produc­

tivity achievable with MATLAB, both through execution time reductions and reduced 

development effort. Partial evaluation has more often been applied to traditionally aca­

demic languages, like Scheme and Prolog, and very mainstream languages like C and 

Java. In this work, we seek to expand its domain to MATLAB. 
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Partial Evaluation 

Partial evaluation is a technique to partially execute a program, when only 

some of its input data are available. [51] 

The above statement means to take a program, for which some of the inputs are known 

prior to full execution, and execute as much of the program as possible. In cases where 

programs are executed many times with only a few parameters changing, dramatic 

savings can be made as many calculations can be performed during the partial evaluation 

and thus only once. Partial evaluators can also perform aggressive optimisations like 

loop unrolling and inlining which, while also possible in traditional compilers, are less 

easy to control or see the effects of when the transformation is not source to source. A 

program generated by partial evaluation is called a residual program. 

3.1 Review 

The most complete description of partial evaluation can be found in [37]. A similar 

technique known as supercompilation is described in [77]. 

Traditionally partial evaluation has been mostly applied to declarative languages, like 

Scheme [37] or Prolog [45]. But there are also partial evaluators for C [5], Java [64] 

and Fortran [41]. Frequently the work on partial evaluation of languages like Scheme 

and Prolog has focussed on efficient self-application [15, 38]. While it is possible to 

compile programs, by specialising interpreters with respect to a static source program, by 

specialising the partial evaluator with respect to the interpreter, it is possible to produce 

a compiler [25]. This compiler can be much faster than specialising the interpreter and 

so self-applicable partial evaluators are often desirable. 

There are two main forms of partial evaluation, online and offline. In offline partial 

evaluation, a Binding-Time Analysis (BTA) is performed first which given a source 

23 
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program and a division for the initial input, determines which parts of the program are 

static and which parts are dynamic. This data is then embedded in the source file in the 

form of annotations which are used by the partial evaluator to produce the final result. 

This final process is sometimes called reduction. 

In online partial evaluation, there is no binding-time analysis step but instead decisions 

about static vs. dynamic expressions are made as late as possible, and it is thus, in 

principle, more precise. In general, offline partial evaluators can be made more efficient 

and predictable. On the other hand, online partial evaluators are typically slower but 

can detect and thus evaluate more static expressions. 

1.# x size [STATIC DYNAMIC] 

1.# c STATIC 

if size (x, c) == 1 

else 

end 

In the example above, x is a matrix for which the number of rows is declared static but 

the number of columns is dynamic. This code checks to see if the size of the dimension 

indicated by c is equal to 1. Even though c is static, offline partial evaluation will not 

easily allow us to remove the if-statement if c turns out to be 1 (or greater than 2). 

With online partial evaluation, the expression is only examined when we know the value 

of c and so the if-statement can be removed. 

The advantage of offline partial evaluators is that they are simpler to build and as the 

binding-time analysis is separate from the specialisation phase, it can be done just once 

while the specialiser is then called multiple times for different parameters. The binding­

time analysis can also be manually adjusted in cases where the automatic analysis is 

imperfect. Offline partial evaluators are currently the only way to effectively handle 

self-application. 

One approach to offline partial evaluation is not to generate a full program directly 

from the annotated source (after binding-time analysis), but to generate a program 

which takes as input the static inputs. This program then outputs the final program. 

This program is called a generating extension and the approach is known as the cogen 

approach. 

Most offline partial evaluators use a monovaT"iant BTA. This means that each expression 

at each program point has at most one binding type. The BTA will normally determine 

this to be the binding that works given the binding division of the input variables. 

This means that a function called with dynamic parameters at OIle program point and 

static parameters at another, will only be residualised based on the most conservative 

set of bindings, i.e. the most dynamic ones. A polyvariant BTA could produce two 

different sets of bindings for the fUIlction and so could produce more suited residual 
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code. Polyvariance can be achieved by function cloning, where every time a different 

binding is required, the called function is cloned and the BTA is performed on the new 

function [76]. Polyvariant binding time analysis need not work at the function level, but 

instead program points can have multiple binding types associated with them, where the 

most appropriate one is selected at specialisation time. This allows the code fragment 

given earlier to be specialised by an offline partial evaluator in the same way as an online 

one would. 

Monovariant specialisation produces, for every function in the source program, at most 

one function in the residual program. Polyvariant specialisation produces more than one 

function if required. A maximally polyvariant specialiser would produce a new function 

for every residualised function call, although more generally duplicate function signatures 

are combined so that functions can be shared. Polyvariant specialisers are more prone 

to termination issues as they can potentially produce infinitely many functions in cases 

where a static parameter grows under dynamic control in a recursive function. The 

process of detecting and eliminating this problem is called generalisation. 

There has been some work on hybrid online/offline partial evaluators, including [69], 

which is essentially an online specialiser which produces generating extensions, where 

some offline decisions have already been made in order to speed up the final speciali­

sation. Sperber [66] produced an "online" specialiser which could be realistically self­

applied, but this was effectively an offline partial evaluator which could defer some 

binding-time decisions to specialisation time. Christensen and Gluck [12] have also 

demonstrated that offline partial evaluation can be as accurate as online using a max­

imally polyvariant BTA, although as effective generalisation is not possible. In [28], 

Gluck showed that offline partial evaluators in conjunction with binding-time improve­

ments can always achieve as efficient residual programs as online partial evaluators. 

For the online partial evaluator FUSE, the authors use fix-point analysis to find the types 

of return values from functions [61]. This is required because the value of a recursive 

function is itself dependent on its own type, making repeated iteration necessary. This 

approach can be generalised to the non-recursive structured loops present in imperative 

languages. They also introduced the idea of producing a graph of the suspended compu­

tation rather than directly producing code [78]. This makes detecting and removing code 

duplication, due to expanding variables to expressions, much simpler. While most spe­

cialisers will recognise when a function is invoked with a signature that has already been 

specialised, and reuse the earlier specialisation, it is more difficult to recognise when sig­

natures are only slightly different and will lead to the same specialisation. FUSE tackles 

this [59] by storing information about what properties of the parameters led the function 

to be specialised in the way that it was. This allows a looser signature to be constructed 

which would result in the same specialisation. If a signature is then encountered which 

falls inclusively between the two signatures, the specialisation can be reused safely with 

no chance of missing optimisation opportunities. 
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Instead of writing partial evaluators directly, it is possible to produce partial evaluators 

using an interpreter and an existing self-applicable partial evaluator written in the same 

language [67]. This requires a specially written interpreter, which divides inputs to the 

source program into dynamic and static parts. The partial evaluator is then partially 

evaluated with respect to the interpreter. The result will be a program, which given 

a source program and the static input, will produce a residual program written in the 

source language of the interpreter. This program will be a partial evaluator, although 

its output will not be the same language as its input. This does, however, demonstrate 

an automatic way of producing a partial evaluator. 

Alternatively, source code can be compiled to a language, for which a partial evaluator 

already exists. For instance, the main MATLAB compiler produces C code, which could 

then be partially evaluated using cmix [5]. Brief experimentation showed that cmix is 

not capable of parsing the raw output of the MATLAB compiler, although this could no 

doubt be worked around. Even then, such partial evaluation would be unlikely to ever 

take advantage of type information that could be statically inferred for dynamic arrays 

as the array structure is opaque to everything except the run-time libraries. 

Tempo [13] is a partial evaluator for C, which can generate residual programs which 

perform run-time specialisation, using optimised binary code templates, as well as per­

forming standard partial evaluation. This system has been deployed in various fields, 

with notable work on operating systems software including Sun RPC and the BSD packet 

filter. 

Psyco [56] is an implementation of the Python language, which performs just-in-time 

specialisation to remove the overheads introduced by the highly dynamic nature of the 

Python type system. 

A particular problem in languages with complex types, is the concept of lifting. This 

occurs when a static value is required in a dynamic context. For simple types such as 

integers this is easily achieved by inserting a textual representation into the residual 

program. For more complex types, this may not be possible. Pointers, for instance, 

cannot be lifted as their value at the time of partial evaluation is meaningless when the 

residual program runs. Structured types can often incur a cost to build, or may not 

even be possible to construct within a single line. 

In many cases, the requirement to lift a variable with a complex type, leads to the 

variable being made dynamic in all cases, thus reducing the number of possible static 

computations. Hornof et al [31] use an analysis of the uses of a variable to avoid mak­

ing variables completely dynamic in the Tempo specialiser for C. This problem is also 

addressed by Asai [6] for functional languages. 

Aside from program specialisation, another technique first introduced by [8], which uses 

early computation to reduce final execution time, is Data Specialisation. This technique 
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precomputes static computations and stores them in a cache. A residual program is then 

created which loads the static data from the cache and uses it to perform the work of 

the original program. The advantage of this method over program specialisation, is that 

the residual program does not grow with the size of the input data. The disadvantage 

is that it is only effective if the cached computations are sufficiently expensive to justify 

the time and space for storing and accessing them. Knoblock and Ruf [42], demonstrate 

an automatic system to perform data specialisation for C, especially with regard to 

improving shader performance. The route taken by Chirokoff and Consel [11] seems 

promising, in that they combined program and data specialisation in the Tempo partial 

evaluator. By using both approaches code size does not increase as quickly as with 

normal program specialisation, and yet performance does not differ by much. This 

allows much larger data sets to specialised than with partial evaluation alone, where the 

residual program can become so large that performance is affected adversely. 

Reps and Turnidge [55] use a technique know as program slicing to specialise programs. 

This technique extracts a slice of the program that produces a specified result. For 

instance a program that produces two outputs can be specialised to produce only one, 

in which case computations which do not contribute to this single output can be removed 

from the residual program. This technique holds an advantage over partial evaluation, 

in that the slice is not determined by the program parameters and so can be based on 

a parameterisation not originally envisioned by the program author. 

Berlin and Surati [9, 70] used partial evaluation to expose parallelism m large scale 

numerical applications. This is possible because partial evaluation can remove many 

conditional checks based on structure sizes, resulting in a program which contains largely 

only numerical calculations. 

Specialisation of Fortran [7] has yielded impressive results for numerical applications, 

showing that the Fast Fourier Transformation can see a between 3 and 4--fold speed-up 

by specialising with respect to the number of data points to be returned. Cubic spline 

interpolation specialised with respect to range conditions, the number of values and the 

distance between consecutive values is 4 times faster in general and 6 times faster for 

periodical range conditions. 

Continuing in the vein of partial evaluation for high performance computing, there 

have also been attempts at improving partial evaluation using the high performance 

computing technique of distributed computing. Sperber [68] describes a client-server 

system for processing function specialisation requests and gains speed-ups of up to 3 

times using up to 6 processors. 
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3.2 Summary 

This chapter has given an overview of the previous work on partial evaluation and related 

techniques. We have seen that offline partial evaluation can offer efficient specialisation, 

but requires conservative approximations which can sacrifice some performance in the 

residual program. On the other hand, online specialisation can produce faster residual 

programs, but is less predictable and often slower. Offline partial evaluation can be 

carefully guided to produce the desired result, but this requires expert knowledge from 

the user. Online partial evaluation, on the contrary, is largely an automatic process 

possibly making it accessible to more users. 

Several functions exist in MATLAB which discover information about the characteristics 

of MATLAB values. While the values themselves will often change rapidly, the intrinsic 

type and shape of arrays will often be constant. Successful type inferences can often 

allow us to replace calls to type-query functions with constants, frequently enabling the 

unrolling of loops dependent on array shapes and the removal of conditionals that verify 

parameter types. 

To this end, a formalisation of the MATLAB type system is given in the next chapter, 

which captures information about both the intrinsic type of arrays, which is comprised 

of its class and certain traits which are common to all classes, and the shape of arrays, 

made up from a number of dimension sizes. 
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Abstract Domains 

In this chapter, we describe lattices and then use them to formalise the abstract domains 

our partial evaluator uses to capture information about arrays, for when concrete values 

are not available. We also give equations for deriving types of arrays resulting from using 

operators, calling functions and indexing into arrays. The notation and methodology is 

mostly based on [3] and [14]. 

4.1 Partially Ordered Sets, Lattices and Fixpoints 

This chapter uses partially ordered sets (posets) and lattices extensively as the basis for 

our symbolic execution system. 

Definition 4.1. A poset, (5, ~), is a set for which a partial order (~) is defined. This 

ordering is an antisymmetric relation, such that "Ix, y E 5 : x ~ y 1\ Y ~ x :::::} x = y. 

If an ordering exists between all elements ("Ix, y E 5 : x ~ y V Y ~ x) then it is a total 

ordering. 

Definition 4.2. An upper bound of X <:;;: 5 is an element'll. E 5, such that "Ix E X, x ~ 

'11.. The least upper bound is an upper bound, which is ordered lower than all of the 

other upper bounds. Put formally, the least upper bound of X <:;;: 5 is l E 5, where 

"Ix E X, x ~ l and V'll. E 5, such that "Ix E X, x ~ '11. =:::::} I ~ '11.. If the least upper 

bound exists, it is unique and is written uX. Lower bounds and greatest lower bounds 

are defined in the same way using the reverse ordering G:l). The greatest lower bound 

is written nX. 

Definition 4.3. A lattice (L,~, -.l, T, u, n) is a poset (L, ~), for which "IX <:;;: L,:J nx 1\ 

::1 uX. The supremum of L is T = uL and the infimum is -.l = nL. The least upper 

bound of the set, {x, ylVx, y E L} is xU y and the greatest lower bound is x n y. 

29 
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In terms of the approximations we use in our symbolic execution, if I;;;; is an ordering 

based on accuracy, i.e. x I;;;; y means that x is more accurate than y, then x U y is an 

approximation that best fits both x and y. When we say the approximation best fits x 

and y, we mean that it is the least conservative approximation possible, which is valid 

for both x and y. If x and yare sufficiently different then the result will be T, which 

encompasses all possible values. In addition x n y is the least precise approximation 

which is included in both x and y. If no approximation fits at all then the result will be 

1... Since we will use more than one lattice, each with their own infimums, supremums 

and partial orders, we will add subscripts to these to distinguish them. 

Definition 4.4. A function f : X -----t X is monotone (with respect to the ordering), if 

x);;;; y ===? f(x) I;;;; f(y)· This means that application of f maintains the ordering. 

Definition 4.5. A fixpoint of a function f : X -----t X is a x E X such that f(x) = x. It 

follows that if X is finite and f is monotone, repeated application of f will always result 

in a fixpoint and therefore iteration will never be infinite. We will later use this to show 

under what circumstances our analysis terminates. For a more detailed explanation of 

lattices and their use, see [14]. 

4.2 Abstract Type System 

MATLAB has a complicated type system which has evolved over time from just repre­

senting two dimensional matrices to N-dimensional arrays, cell arrays, structures, strings 

and function handles. In essence expressions evaluate to arrays. Each array has a class, 

which can be retrieved using the class built-in function. In addition, each array has two 

properties which are returned by the boolean functions, isreal and islogical. These 

functions are overloaded for all classes and for instance can be used for both full matrices 

and sparse matrices. A more thorough description is given in the previous chapter. 

The main aim in producing a type system is to capture information about dynamic 

expressions. As in [1], we require that types be comparable. This means that we can 

detect the equivalence of two types and also whether one type is a subtype of another. 

As such, one can imagine a type system as defining the sets of values that can have each 

type. If two sets are equivalent, they describe the same type. The operators U and n 
would then be analogous to the set operators U and n, while the relation I;;;; is analogous 

to t::;;. The supremum, T, is like the full set of values, while the infimum is like the empty 

set, 0. 

4.2.1 Class Information 

Definition 4.6. MATLAB classes (shown in Table 4.1), are modelled using the lattice 

(K, I;;;;k, 1.. k , T k, Uk, nk), where K is defined in (4.1) and Vk1, k2 E K - {T k, 1..d, kl I;;;;k 
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Class Description 
double Real and complex numbers (scalars, vectors, matrices and 

N-dimensional arrays 
char Strings (single line, multi-line and N-dimensional) 
cell Cell arrays that can store any other type of array 

struct Stores elements in named fields 
sparse Sparse version of double 
single Like double but single precision 

int8, int16, int32 Signed integers of various sizes 
uint8, uint16, uint32 Unsigned integers of various sizes 

function handle Similar to pointers to functions in C 

TABLE 4.1: MATLAB classes 

K = {..lk' double, char, cell, struct, sparse, single, int8, 

int16, int32 , uint8, uint16, uint32 , junction, T d ( 4.1) 

The concrete elements of K, (i.e. K - {T k,..ld) are equivalent to the values returned 

by the MATLAB function class. 

4.2.2 Type Trait Information 

In addition to classes, there are type traits. The two traits we deal with are real and 

logical. An array can be either real, complex or logical; although logical arrays are 

also real. In MATLAB, the built-in functions, isreal and islogical, can determine 

whether an array has a specific trait. An array of type real is made up from double 

precision floats. Complex arrays use twice the memory of real ones, in order to store the 

real and imaginary components. Logical arrays are identical to real arrays except for a 

flag indicating that they are logical. The only functional difference occurs when logical 

arrays are used as indices. Used as an index, a logical array acts like a filter, where 

non-zero elements indicate that a value should be retained and zero elements indicate it 

should be skipped. 

Many mathematical operators and functions return complex numbers in MATLAB. This 

happens automatically when the parameters dictate the result is not real, although it is 

also possible to create a complex array even when the imaginary component is 0 using the 

complex built-in function. In many cases, there is no way of predicting whether the result 

of a computation will be complex just based on the presence or absence of the complex 

trait as for instance the addition and multiplication of two complex conjugates produces 

a real result. Examples of arrays with the various traits can be seen in Figure 4.1. 
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» [isreal([-l 2 pi]), islogical([-l 2 pi])] 

ans 
o 

» [isreal (3 2), islogical (3 2)] 
ans = 

1 1 

» [isreal (23 + 3i), islogical (23 + 3i)] 
ans 

o 0 

FIGURE 4.1: Examining MATLAB traits (Non-zero values indicate true) 

Definition 4.1. B = {T b, true, false, l..b} is the extended boolean type. The lattice 

(B, ~b, T b, l..b, Ub, nb), is such that l..b ~b false ~b T band l..b ~b true ~b T b. This will 

be used to describe true or false values, where T b indicates that the value is unknown 

and l..b indicates an invalid value. 

Type traits can be modelled using the extended boolean type given above, with one for 

the real flag and one for the logical flag. While in theory this would allow 42 possible 

combinations, in practice the value of one flag often dictates the value of the other 

flag, as for instance a logical array cannot be complex. There are in fact only 7 valid 

combinations including invalid, which are listed in Table 4.2. 

real logical 

Tb Tb 
Tb false 

false false 
true Tb 
true false 
true true 
l..b l..b 

TABLE 4.2: Valid type trait combinations 

Definition 4.8. To describe type traits, we define the lattice (T, ~t, T t, l..t, Ut, n t), 

where T c B x B is the set of all valid tuples and is given in (4.2). The partial order 

~t associated with T is given by (x, y) ~t (x/, y/) <===? x ~b x/ 1\ Y ~b y/ and is depicted 

in Figure 4.2. 

T {(Tb, T b), (Tb,false) , (jalse,false) , (true, T b), 

(true,false) , (true, true), (l..b, l..b)} (4.2) 

Using Figure 4.1 as an example, [-1 2 pi] has traits tl = (true, false), 3 == 2 has 

traits t2 = (true, true) and 23 + 3i has traits t3 = (jalse, false). The approximation 

which best fits tl and t2 is tl Ut t2 = (true, T b), while the intersection of the two trait 
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FIGURE 4.2: Visualisation ofthe type traits lattice, where each line indicates a covering 
from top to bottom 
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tuples, t2 and t3 is t2 nt t3 = (l-b, ..ib). The significance of these results will be explained 

later. 

4.2.3 Combining Classes and Traits 

The class and type traits of an array are not entirely independent, as not all combinations 

are legal. Specifically character arrays can only be real and cannot be logical, while cell 

arrays, structures and function handles all return false to both isreal and islogical. 

Additionally it makes little sense to have invalid traits with a valid class or valid traits 

with an invalid class, so if either is invalid, the other must be as well. 

Definition 4.9. The type of an array can now be described using the lattice, (11', [;;;T 

,TT,..iT,UT,nT), where 11' is defined in (4.3), TT = (Tk,Tt) and..iT = (..ik,..i t ). If 

Tl = (kl' tl) and T2 = (k2' t2), then Tl [;;; T2 ¢::::::? kl [;;; k2 V tl [;;; t2 and Tl U T2 = 

(k1 U k2, tl U t2). 

T' T - {..id 

K' K - {cell, struct, function, char, ..id 

11' {(k, t) IkE K', t E T'} U 

{\k, (false,false)) IkE {cell, struct, function} } U 

{ \ char, (true, false) ), (..ik' ..it) } (4.3) 

The following arrays have Tl = \ cell, (false ,false)) and T2 = \ double, (false ,false) ). 

{lO, [3 4jJ, 'abc '} 

5 + j 
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The best approximation which fits both Tl and T2 is T 1UTT2 = (Tk' (false, false)), while 

no array could have a type approximated by both Tl and T2 and so Tl nT T2 = -LT. The 

second result indicates that if the two types are both fully specified, (i.e. there are no T 

terms), the meet of two types will always be -LT unless the two types are identical. 

Ours appears to be the first approach to MATLAB, that considers the intrinsic type 

(made up from the class and its type traits) and attempts to preserve it exactly as it 

appears in MATLAB. All the compilers mentioned [58, 54, 2] have used a simplified type 

system whereby types form a single increasing chain from ..1 through boolean through 

integer through real up to complex. This is also the case for the recent work by Joisha 

[34, 32] which, while it goes further than previously and recognises multi-dimensional 

arrays, ignores classes, instead continuing with the simplistic approach of others. All 

of these works use lattices to find the least complex representation for variables which 

means that memory utilisation can be minimised (since complex numbers require twice 

as much memory as real numbers) and so that simpler instructions can be used (for 

instance replacing floating point instructions with integer instructions). We have no 

control over the actual types used but just wish to pre-evaluate calls that are directly 

dependant on the types. 

These compilers can take this approach because they are not producing MATLAB code 

as output. Since MATLAB as produced by The Mathworks is the authoritative imple­

mentation, we choose to mimic their behaviour, although it could be argued that slavish 

adherence to this standard sacrifices many optimisation opportunities. This does allow 

us to use features of MATLAB like function handles and sparse arrays, which are not 

available to these other compilers. 

4.2.4 Dimension Information 

The above abstract domain captures the types of arrays. As matrix manipulations are 

the backbone of MATLAB, to enable many optimisations, we need to capture abstract 

information about the shape of matrices. The shape of an array describes the size of 

its dimensions. As loops are frequently controlled by the size of a matrix dimension, 

knowledge of array shapes can enable loop unrolling. 

Arrays have a number of dimensions, which is always greater than or equal to 2 and is 

returned by the ndims function. Each dimension then has a size greater than or equal to 

O. The size function is used to get the dimension sizes. Requesting a dimension beyond 

the number of dimensions always returns 1. The shape of an array is defined initially in 

Definition 4.12 and Definition 4.13. Figure 4.3 is an example showing two arrays, a and 

b, along with some of the functions used to ascertain information about their shapes. 

The indexed assignment to b creates a 1-by-2-by-3 element array consisting of all zeros 

apart from a 1 at the indexed element. 
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» a = [1 , 2, 3] ; 
a = 

2 3 
» b(1,2,3) = 1 
b (: , : ,1) 

0 0 
b (: , : ,2) 

0 0 
b ( : , : ,3) 

0 1 

» ndims (a) 
ans = 

2 
» size(a) 
ans = 

3 
» size(a, 3) 
ans = 

1 

» ndims(b) 
ans = 

3 
» size(b) 
ans = 

1 2 3 
» size(b, 3) 
ans 

3 

FIGURE 4.3: Examples of creating and examining arrays with different shapes 

Definition 4.10. We define the extended set of non-negative integers NW = N u {w}. 

We extend the ordering < on NW by stating Vn E NW, n ::; wand also w ::; n ::::} n = w. 

Definition 4.11. A range is a tuple (l, u), where lEN, u E NW and l ::; u. Ranges 

represent all the numbers between two inclusive bounds, which is to say (l, u) is a valid 

approximation of x, if l ::; x ::; u. The most constrained approximation to x would 

be (x, x). We define the set R to contain all possible ranges with the addition of the 

1-r element to indicate an invalid range (R = {(l,u)ll E N,u E NW,l ::; u} U {1-r}). 

The supremum is the least constrained range possible, i.e. T r = (0, w). We define 

two functions: low((l,u)) = land up((l,u)) = u. We also define join (Ur ) and (nr) 

operations on this set. 

x E (l, u) -¢:::=:} x::::: l/\ x ::; u, where x E NW 

(ll' Ul) ~r (l2' U2) -¢:::=:} ll::::: l2 /\ Ul ::; U2 

(min(ll, l2), max(ul' U2)) 

{ 
(max(ll,l2),min(ul,u2)) 

1-r 

if II ::; U2/\ l2::; Ul 

otherwise 

Throughout this chapter we use ranges to represent the possible values, shape charac­

teristics can have. Note that while the lower bound must be finite, the upper bound can 

be w. This makes the range unbounded, which is useful in the case where little or no 

information is available. 
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Definition 4.12. The number of dimensions of an array is a range as defined in Defini­

tion 4.11, except that the lower bound is always at least 2, as MATLAB arrays always 

have at least 2 dimensions. This is given by the set, N = R - { (i, j) liE {O, I}, j E NW}. 
The top element in N is Tn = (2, w). The partial ordering r;:n and operations nn and 

Un are equivalent to r;:r, nr and Ur respectively. 

Definition 4.13. To represent the list of dimension sizes for an array, we introduce the 

set, D = R* U ..Ld. This includes all sequences of ranges, (TI' T2,' .. ,Tn) E R* and the 

invalid list ..Ld. We also define two functions low(i, d) = lOW(Ti) and up(i, d) = Up(Ti), 

which return lower and upper bounds from a list of dimensions, d. The length of a 

list, d, is given by Idl. Below the operators are defined using d = (TI' T2," . Tn) and 

d' = (T~, T~, ... T:n), although Ud, nd and r;:d are only defined for n = m. 

(TI Ur T~, ... , Tn Ur T~) 

(TI nr T~, ... , Tn n T~) 

Definition 4.14. The function in (4.4), given i E Z+, n E Nand d E D, gives the 

range representing the size of the ith dimension. This function combines the information 

present in the elements of Nand D and is the basis for our later creation of a canonical 

form for the shape. The function is comprised as follows: if the desired dimension is in 

the list of dimensions then the value is the ith range in the list of dimensions; else if the 

dimension number is less than the number of dimensions, the dimension size is unknown 

so the value is T r; otherwise the dimension is beyond the number of dimensions and 

therefore its size is 1. Not all values of nand d give meaningful values for Definition 4.4 

and we will describe constraints in Section 4.2.6. 

dim(i, n, d) = 

4.2.5 Definedness 

..L r 

(low(i, d), up(i, d)) 

(0, w) 

(1, 1) 

if n = ..Ln V d = ..Ld 

if i S; Idl 
if Idl < i S; up(n) 

otherwise 

( 4.4) 

We also need to consider the possibility that a variable may not be defined. When a 

function is called, it does not need to be passed as many parameters as there are in 

the function signature, resulting in some of the function parameters being undefined. 

Variables can also be undefined if they are only set on one branch of a conditional 

statement or in the body of a loop that may never be executed. In this case, it would be 

unknown whether the variable was defined, since we do not what branch will be taken. 

This is not a problem for a MATLAB interpreter, since the decision about whether 
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the variable is defined is taken only after the branch has been chosen. Although it is 

quite possible to write code like this and have it run without error (assuming the right 

branches are always taken), it can be difficult to determine this statically and it is almost 

always an indication of programmer error. The defined flag is 0 E B. It is an error to 

use an undefined variable, but the built-in function exist can take a variable name as 

a string and returns whether a variable with that name is defined. 

Storing information about definedness allows us to remove calls to exist at partial 

evaluation time, which can often lead to the removal of conditional statements. In 

addition some uses of undefined variables can be caught earlier. 

4.2.6 Putting it all together 

We have now developed all the components of our type system, which allows us to 

describe many different attributes of MATLAB arrays when information about their 

values is not available. The full type of a MATLAB array could now be described by 

1I' x N x D x B, but this is insufficient as the individual components of the type are not 

entirely independent. It is possible to produce many n E N, dE D which give the same 

values of dim( i, n, d) for all i E Z+, for instance: 

(2,2), dl 

(3,3), d2 

(2,3), d3 

(2,3), d4 

(2,3), d5 

((1, I), (1,1)) 

((1, I), (I, I), (I, 1)) 

((5,10), (2,2)) 

((5,10), (2,2), (0, w)) 

((5,10), (2,2), (0, w), (I, I), (I, 1)) 

In the above examples, (nl' dl ) and (n2' d2) represent the same shape. However MAT­

LAB would return 2 as the value of ndims and so the value of n2 is wrong. The same 

values of dim would also be given for (n3, d3), (n4' d4) and (n5, d5) so clearly redundant 

information is present in d4 and d5. Finally if n = (2,2) and d = ((I, I), (I, I), (2,2)), 

then clearly nand d contradict each other, as there are 3 dimensions. In order to do 

comparisons of types, there needs to be a concrete description of each type with no 

ambiguity. In addition if a variable is undefined, it is meaningless for it to have shape or 

intrinsic type. If its definedness is unknown, it can still have shape and type as might 

be the case when a variable is defined in only one branch of a conditional statement. 

The constraints on the type are thus given below: 

1. If an array, with full type (t, n, d, 0), is undefined, e.g. 0 = false, then the values 

of t, nand d can only be ..iT, ..in and ..id respectively. 

2. The shape must be in the canonical form described in Definition 4.15. 
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Definition 4.15. The canonical form (n', d') of (n, d), where n, n' E Nand d, d' E D, 

is calculated as follows with l = low(n), u = up(n), and di as the ith range in d. We 

also define 1 = (1,1) and 00 = (O,w). 

1. If n = -.In or d = -.ld, then n' = -.In and d' = -.ld, otherwise go to step 2 

2. If Vj E Z+, dim(j, n, d) = 1, then choose l' = u' = 2 and go to step 5, otherwise go 

to step 3. 

3. Choose u' such that u' = max(2, x), where dim(x, n, d) =j: 1 and Vi > x, 

dim( i, n, d) = 1· 

4. Choose l' such that l' = max(2, y), where dim(y, (l, u'), d) nr 1 = -.lr and 

Vj > y, dim(j, (l, u'), d) ~r 1· 

5. Choose n' = (l',u'), and d' such d' = trunc(d,i),1 where dim(i,n',d) =j: 00 and 

Vk, i < k:::; u', dim(k, n', d) = 00. 

The canonical form produces the correct values for the MATLAB function ndims and is 

the most compact form possible. Without a canonical form, two identical shapes could 

have different values of (n, d), whereas with the canonical form, these values must be 

identical. This reduces the problem of comparing shapes to checking for equality. The 

function canon(n, d) gives (n', d'), where n' and d' are the canonical forms of nand d. 

Using the examples from the previous page, we see that canon(nl, dl ) = canon(n2' d2) = 

(nl' dl ) and that canon(n3, d3) = canon(n4, d4) = canon(n5, d5) = (n3, d3). 

Theorem 4.16. The canonical form (n, d) of (n', d') is the most compact form, for 

which dim(i,n,d) = dim(i,n',d'), Vi E Z+. 

Proof. To see that the canonical form is the most compact form possible, it is necessary 

to try to remove elements from the list of dimension sizes. If it is possible to do this 

without loss of information then it is not the most compact. 

If the canonical form (n, d) is not the most compact, then (n, trunc(d, Idl - 1)) must be 

an equally valid form. Validity is determined by whether the same values are calculated 

by the function dim. If it is valid then: 

dim(ldl, n, d)) dim(ldl, n, trunc(d, Idl - 1)) 

But by step 5 in Definition 4.15, d was chosen so that dim(ldl, n, d) =j: 00. Thus removing 

one element must entail a loss of information and so the canonical form is the most 

compact. o 
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Joisha [33, 32] also describes canonical shapes and coins the term selective rank demotion 

to describe how excess 1 elements can be removed from the end of dimension lists with 

no loss of information. Since their work is for a compiler, it has a different focus as with 

the intrinsic types. One of the key aims is to determine if two arrays have the same 

shape even when this shape information is unavailable. This allows run-time checks for 

shape equality to be removed. This information is less likely to be useful at partial 

evaluation time. 

Definition 4.17. While the canonical form is the most compact, it is difficult to work 

with as the two components must be kept synchronised. It is often easier to convert the 

list of dimensions to an infinite list, manipulate the list and then convert it back, as the 

infinite list is conceptually simpler. To this end, we give the definition of canon: Roo -> 

NxD. 

1. If ::Ii, di = ..Lr , then s = (..L r , ..Ld) otherwise go to step 2. 

2. If Vj E Z+, dj = 1, then choose l' = u' = 2 and go to step 5, otherwise go to step 

3. 

3. Choose u' = max(2, x), where dx i-1 and Vi > x, di = 1. 

4. Choose l' = max(2, y), where dy nr 1 = ..Lr and Vj > y, dj ;;;;ir 1-

5. Choose d' = trunc(d, max(2, i)), where di i- 00 and Vk, i < k :::; u' , dk = 00, and 

n' = ([I, u/). Choose s = (n', d' ). 

From this definition, it can be seen that there are some d E Roo, for which no canonical 

form exists, since the canonical form must be finite. An infinite list consisting solely of 

(1, w) cannot be canonicalised, which means there is no way to represent the shapes of 

all non-empty arrays. 

Definition 4.18. We define a function pad (d, u, m), where d ED, u E NW
, mEN, which 

gives a list of dimensions of size m, padding out any missing elements with 00 and 1 as 

appropriate. This function is necessary as the operators defined in Definition 4.13 can 

only be used with lists of equal length. Note x = min(u, m) - Idl and y = m - x. 

pad(d, u, m) d . (00 ... (0) . (1· .. 1) 
'---v--' "-v-' 

x y 

Definition 4.19. We now define the shape to be SeN x D with the restriction 

that S must always be in the canonical form described in Definition 4.15. So in fact 

S = canon*. We now define the lattice (S, ~s, T s, ..L s, Us, ns ), with Ts = ((2,w), 0) and 

..Ls = (..L n , ..Ld)· The partial order and join and meet operations are now defined with 
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d' 1 

d' 2 

51 Us 52 

51 ns 52 

pad(d1, up(nd, max(ld1 1, Id21)) 

pad (d2, up( n2), max(ld1 1, Id21)) 

canon(n1 Un n2, d'l Ud d;) 

canon(n1 nn n2, d~ nd d;) 

40 

We can describe many shapes using our canonical form, but in one area it is deficient: 

It cannot be used to specify a minimum value that would be returned by ndims without 

also specifying the size of some dimensions. Since an array has 3 dimensions if the third 

dimension has size 0 or greater than 1, there is no way to specify this without also 

including 1, which gives the possibility that the array might only have 2 dimensions. 

Definition 4.20. The full abstract type can now be represented by C c ']f x S x B. 

The full type lattice is thus £e = (C, ~e, T e, -.ie, Ue, ne) with T e = (T T, T s, T b) and 

-.ie = (-.iT, -.is, -.ib). Given C1, C2 E C, where C1 = (t1' 51, (1) and C2 = (t2' 52, (2), with 

t 1, t2 E ']f, n1, n2 EN, d1, d2 ED and 61,62 E B. 

(t1 UT t2, 51 Us 52,61 Ub (2) 

(t1 nT i2, 51 ns 52,61 nb (2) 

In later chapters we will use £e extensively in our data flow analysis, to show how type 

information is propagated as a program is executed. The join operation for the full type 

(Ue ) is of great importance as it can be used to merge the types of variables emerging 

from two different paths of a conditional statement. The meet operation for shapes (ns) 

is of use with operators where the operands must have the same shape. In which case 

the meet of the two shapes will be -.is if the shapes are incompatible. The functions, 

shape : C -t S and type: C -t ']f can be used to extract the shape and type components 

from a full abstract type tuple. 

4.3 Full Type System 

In the previous section, we defined the abstract type system. This is used to capture 

information about dynamic data in programs when the actual value is unknown. On the 

other hand, full static information is frequently available and is vital to the effectiveness 

of any partial evaluator. 

When the value of a variable or expression is known statically, the value is stored in the 

MATLAB library type, mxarray. This is the structure which is passed to all MATLAB 
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library function calls and is capable of expressing all the MATLAB types available to 

the libraries. 

Definition 4.21. We define the set, M, to contain all possible mxarray structures. 

Definition 4.22. Combining C, from Definition 4.20, with M, from Definition 4.21, 

gives us all the expressiveness required for the symbolic execution method used by MPE. 

Below we define the set of tagged values, A, used by our execution engine. 

{(dynamic,c)lc E C} 

{(static,m)lm E M} 

A~ UAb 

(4.5) 

(4.6) 

(4.7) 

Definition 4.23. Often static arrays need to be made dynamic, as in the case of op­

erators where one operand is static and the other is dynamic. For this we define the 

abstraction function, a : A ---T C. We also define a concretisation function, , : A ---T PM, 

which gives us the set of all arrays that fit the abstraction. For a E A b, ,(a) is a set 

with only one value. The function " : A ---T M, is only defined when b(a)1 = 1 (when 

there is only one concrete value associated with an abstraction) and is equal to that 

one static value. It is however still defined for some a E A~, since a fully specified class 

and traits, along with a completely specified but empty shape, has only one valid static 

array which could represent it. 

The following code demonstrates the information that is extracted from the static array 

to get the dynamic array representation. 

n = ndims(a); 

dims = size(a); 

defined = 1; 

isreal = isreal(a); 

islogical = islogical(a); 

k = class (a); 

Each of these values is then converted into the form used by the abstract representation. 

For instance ndims returns a positive integer, which is converted into a range using the 

following equation. 

convert_to_range (n) (n, n) (4.8) 

The list of dimensions, returned by size, is a list of positive integers, which is converted 

into a equivalently sized list of ranges. 

(4.9) 
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The type properties returned by isreal and islogical are integers which need to be 

converted to concrete boolean values. 

converLto_exbool (b) 
{

true if b = 1 

false otherwise 
(4.10) 

The class function returns a string representation of the class which maps directly to 

a member of K as in (4.1). 

We now define a partial order over A (aI, a2 E A), with supremum, Ta = (dynamic, Tc): 

(4.11) 

With this definition, static values are never looser than dynamic values. The most 

accurate abstraction of the value of a variable is the value itself. The join operator is 

defined as follows: 

if al E Ab 1\ al = a2 

otherwise 
( 4.12) 

This operator is fundamental to merging the states from the branches of conditional 

statements. If a variable is assigned the same static value on both branches, the state 

will contain this same value after the conditional. On the other hand, if each branch 

sets it to a static but different value, the value will be abstracted and an approximation 

to the type will be recorded in the environment instead. 

In the following subsections, we will derive equations for calculating various pieces of 

type information required for the symbolic execution. In Sections 4.3.1 and 4.3.2, we 

give equations for calculating the shape resulting from each of the binary and unary 

operators. In Section 4.3.4, we give the equations for determining the shape resulting 

from the various forms of array indexing. Section 4.3.5 gives equations for finding the 

class resulting from using the various operators, while Section 4.3.6 does the same for 

traits. Section 4.3.7 then brings together the previous sections with regard to calculating 

full type information for operators. 

4.3.1 Shape Equations For Binary Operators 

Most binary operators in MATLAB are called element-wise binary operators, including 

+, . * and ==. These either operate on two arrays with equal dimensions, one non-scalar 

and a scalar or two scalars. They always result in an array of the same shape as the 

non-scalar operand (or a scalar in the case of two scalars). In this section, we will derive 

equations for calculating the shape resulting from a binary operator given the shapes 

of its operands. Joisha [33], also derives equations for the shape resulting from binary 

operators, using his type formalisation. 
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Assuming a binary expression a EEl b, where a and b have shapes Sa, Sb E Sand Ss is the 

shape of a scalar, then the two scalars case is represented by: 

( 4.13) 

The case where both are non-scalars is given by: 

(4.14) 

When the first operand is a scalar and the second an array, we have: 

(4.15) 

Similarly, when the second is a scalar we have: 

(4.16) 

The function, inc: S x S --+ S, is defined to be T s, when the first shape also includes 

the second and ...Ls otherwise: 

inc (a, b) 
{ 

Ts if a ~s b 

...Ls otherwise 
(4.17) 

The resulting shape, binoPs(sa, Sb), is given by the combination of (4.13), (4.14), (4.15) 

and (4.16): 

Sl Us S2 US S3 US S4 

(sa ns Sb n Ss) Us (Sa ns Sb) Us (inc(sa, Ss) ns Sb) Us (inC(Sb' Ss) ns Sa) 

( 4.18) 

If binoPs(sa, Sb) is ...Ls, it implies that applying an array binary operator will result in an 

error as the shapes are incompatible. 

The matrix multiply operator, *, is the same as the array multiply operator, . *, except 

when neither operand is a scalar. In this case both operands must be matrices with 

matching inner dimensions, the equation for which is given below, with Sij = dim(si,j): 

(4.19) 
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The functions, eq : R x R -; S, neq : R x R -; S and matrix: S -; S, are defined as 

follows (neq is not used here, but is required later in this chapter): 

eq(dl , d2) { -.ls if dIn d2 = -.lr 
( 4.20) 

Ts otherwise 

neq(dl , d2) { Ts if d l =1= d2 
(4.21) 

-.ls otherwise 

matrix(s) { Ts if ndims(s) ~r (2,2) 
( 4.22) 

-.ls otherwise 

The shape resulting from matrix mult~plication, multiplYs(sa, Sb), is then given by the 

join of (4.13), (4.15), (4.16) and (4.19): 

= (sa ns Sb n ss) Us (inc(sa, Ss) ns Sb) Us 

(inC(Sb' ss) ns sa) Us (( (2,2), (Sal, Sb2)) ns 

eq(Sa2' Sbl) ns matriX(Sa) ns matrix (Sb) ) ( 4.23) 

Left matrix division (a \ b), works like array division when the first operand is a scalar, 

but otherwise requires two matrices, each with the same number of rows. The result will 

have as many rows as the first had columns and as many columns as the second matrix, 

since it computes a-lb. 

(inc(sa, ss) ns Sb) Us (matrix (sa) ns matrix(sb) ns 

eq(Sal' Sbl) ns ((2,2), (Sa2' Sb2))) (4.24) 

Right matrix division (a / b), works like array division when the second operand is a 

scalar, but otherwise requires two matrices, each with the same number of columns. The 

result will have as many columns as the first had rows and as many rows as the second 

matrix. 

(inC(Sb, ss) ns sa) Us (matrix(sa) ns matrix(sb) ns 

eq(Sa2' Sb2) ns ((2,2), (Sal, Sbl))) (4.25) 

The final binary operator is matrix power (a - b), which requires one operand to be a 

scalar, while the other must be a square matrix. The result has the same shape as the 

matrix. 

(inc(Sa, ss) ns ((2,2), (Sbl ns Sb2, Sbl ns Sb2))) Us 

(inc(sb, ss) ns ((2,2), (Sal ns Sa2, Sal ns Sa2))) ( 4.26) 
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4.3.2 Shape Equations For Unary Operators 

There are only 4 unary operators in MATLAB: unary plus and minus as well as two 

types of transpose. The transpose operators, ' and .', both require a matrix operand 

and result in a matrix with the number of rows and columns swapped. 

canon ( (ndims(s) nn (2,2), (dim(s, 2), dim(s, 1)))) ( 4.27) 

If the operand is not a matrix (i.e. it has more than two dimensions), ndims(s) nn (2,2) 

will be ..Lr , indicating an error. 

The other two unary operators, - and +, produce a result with an identical shape to the 

operand. 

4.3.3 Shape Equations For Built-in Functions 

In this section, we will give shape equations for the results of executing built-in functions. 

We only demonstrate a few of these, since there are at least 300 built-in functions in 

MATLAB 6.1. This seems a lot, but many of these do not return values or return 

values with trivial shapes such as scalars. In addition many functions share the same 

shape characteristics. Our interest here is only to demonstrate functions, which return 

values whose shapes can be determined by examining the shapes of the parameters. The 

functions examined in this section are size, horzcat, vertcat and cat. We also look 

at numel which returns a scalar and is useful in other equations. 

The size function, when invoked with one parameter and one output, returns a row 

vector containing the size of each of its dimensions. This vector always has at least two 

elements as arrays always have at least two dimensions. Even when an array is dynamic, 

this function can be fully evaluated, when the dimension information itself is static. If 

it is not static, we can infer the shape of the size vector itself. 

size (s) ((2,2), (1, ndims(s))) (4.28) 

The function numel gives the total number of elements in an array. This is given by the 

product of the sizes of all the dimensions. The number of elements in an array is given 

by the function, numel : S ~ R: 

numel(s) = II dim(s,i) 
iE2+ 

(4.29) 
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Multiplication over R is defined as follows: 

{ 

(0,0) if Ul = 0 V U2 = 0 

(ll' ul).(l2, U2) = (ll.l2,W) if Ul = W V U2 = W 

(h·l2, Ul.U2) otherwise 

( 4.30) 

Clearly if numel(s) = (x,x), the result is static and the function call can be removed 

and replaced with a constant value. While (4.29) requires iteration over an infinite set, 

it is not difficult to rework this for our canonical form: 

if Idl = U 
(4.31) 

otherwise 

Another important function is horzcat, which concatenates two arrays horizontally. 

This function is used implicitly in the construction of matrices as [2 2J is equivalent to 

horzcat (2,2). Vertical concatenation is done using vertcat, which is used implicitly 

in expressions like [1; 2J. Concatenation along any dimension is possible using cat 

with the dimension number as the first parameter. 

If concatenation is along dimension i, then all dimensions except for i must be the same 

size or an error will result. The resulting shape will have all of these dimensions the 

same size, while dimension i will be the sum of the sizes of dimension i in the parameter 

arrays. The one exception is if one of the arrays is the empty matrix, [J, which has 

shape \ (2,2), ((0,0), (0,0)) ). Concatenating [J with x or x with [J, results in x. Other 

empty arrays, (e.g. zeros 00, 0)), do not have this property. We define two auxiliary 

functions empty and notempty, which give T s if the shape could possess the requisite 

property. 

empty(s) { Ts if s ~s \ (2,2), ((0,0), (0,0)) ) 
(4.32) 

..is otherwise 

notempty(s) { Ts if s i= \ (2,2), ((0,0), (0,0)) ) 
(4.33) 

..is otherwise 

We now derive an equation giving the shape resulting from the function call cat (n, a, b), 

where a and b have shapes, Sa and Sb, and n E Z is the value of n. Below are the two 

cases where either of the two arrays to be concatenated could be empty. 

empty(sa) ns Sb 

empty(sb) ns Sa 

(4.34) 

(4.35) 

To do concatenation of non-empty arrays, we define a function setdim : S x Z x D ---t S, 

which, given a shape, is equal to it, but for a specified dimension set to a new size. We 
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also define a function plus: R x R -+ R, which gives the Sum of two ranges. 

replacedim( (d 1, . .. ,dn ), i, d) 

setdim(((l,u), ds),i,d) 

(d1, ... , di- 1, d, di+1, ... , dn ) (4.36) 

canon (replacedim (pad (ds, u, (0), i, d)) (4.37) 

if r1 = ..iT V r2 = ..iT 

otherwise 
( 4.38) 

The shape produced by concatenating two non-empty arrays along a dimension, i, is 

given be S3: 

S3 notempty(sa) ns notempty(sb) ns 

setdim( setdim( Sa, i, (0) ns setdim( Sb, i, (0), i, plus( Sai, Sbi)) ( 4.39) 

The function con cat : S x S x N -+ S gives the shape produced by concatenation along 

a specific dimension and is the combination of (4.34), (4.35) and (4.39). 

Sl Us S2 US S3 

(empty( sa) ns Sb) Us (empty( Sb) ns sa)Us 

(notemptY(Sa) ns notemptY(Sb)ns 

setdim( setdim( Sa, i, (0) ns setdim( Sb, i, (0), i, plus (Sai' Sbi))) 
(4.40) 

4.3.4 Shape Equations For Array Indexing 

The shape resulting from array indexing is dependent on both the shape of the array 

being indexed and the index. In addition logical indexes have a different behaviour 

to non-logical indexes. Indexing using normal parentheses (a (1 : 3)) is also different to 

using braces (a{1:3}). 

Indexing using braces is used for extracting elements from cell arrays and produces shape 

results which cannot be inferred from the shape of the cell array. As no information 

is stored about the contents of cell arrays, we cannot say anything except to recognise 

when an index is out of bounds. As such, this is an example where we do not want to 

immediately abstract all of the values involved if one of them is dynamic. For instance, 

a(1==O), is always [J, regardless of the contents of a, so long as it is defined. This is 

true whenever the index is logical and contains only Os. 

In the following subsections we will derive shape equations for the result of an ordinary 

(using normal parentheses) array index. The four types of array indexing described 

are: indexing with a single non-logical value, indexing with multiple non-logical values, 



Chapter 4 Abstract Domains 48 

indexing with a single logical value and finally indexing with multiple indices where the 

final one is logical. 

4.3.4.1 Single index non-logical subscripts 

We will first consider subscripts with only one index. If the index is not logical, then 

the result will normally have the same shape as the index. Unfortunately it is not quite 

that simple, in that MATLAB considers vectors to be special cases and gives different 

behaviours for them. In the case of indices, a vector is an array with 2 dimensions and 

either only one row or column of non-unit length. The array being indexed is considered 

a vector if all but one of its dimensions has unit length. 

When both the array and the index are vectors by the definitions above, the result will 

be a vector, along the non-unit-Iength dimension of the array, with the same size as the 

index. Consider the array access p (q), where p has size [a bJ and q has size [c dJ, 

then p (q) will have size [e fJ. Normally e = c and f = d, but Table 4.3 below gives 

the exceptions caused by the vector behaviour. For array accesses on multi-dimensional 

vectors, the result will also be a multi-dimensional vector, although this is not shown 

in the table. Here we define the function array_vector: S --t P;;Z+, which gives the 

a b c d e f 
0 1 1 0 0 1 
1 0 0 1 1 0 
1 y 0 1 1 0 
1 y m 1 1 m 
x 1 1 0 0 1 
x 1 1 n n 1 

TABLE 4.3: Non-regular matrix accesses using a single index 

dimensions which could be of non-unit length when all the others could be unit length. 

In addition indeLvector : S --t R, gives a range approximating the length of the index 

if it is a vector. 

array_vector ( s) 
{ iii E N 1\ (neQ(Si, l) nr . n. (eQ(Sj,l))) = Tr} (4.41) 

JEN-{t} 

U (si nr neQ(Si,l)nr n (eQ(Sj,l))) (4.42) 
iE{I,2} jEN-{i} 

indeLvector( s) 

Using these two functions, we can develop a flawed equation for the list of dimensions 

produced by indexing into an array. 

d = U (1· .. 1). (indeLvector( Sb)). (1 .. ·1) 
'-..,-' '-..,-' 

iEarmy_vector(sa) i-I 00 

( 4.43) 
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This equation is fine for all cases where the upper limit of the number of dimensions in 

Sa is finite. Unfortunately if it is wand the value of indeLvector(sb) is not lor 00 then 

there will be no canonical form of the shape, as the size of ithe dimensions list will be 

infinite. 

Our solution is to sacrifice some accuracy when the list of dimensions is not complete 

(because it has been padded out with (0). This is not a great problem, as lack of 

information about the number of dimensions usually indicates that not all that much 

was known in the first place. To do this, we define a function, vector: S x R ----+ S, 

which given the shape of the indexed array and a range which will be the length of any 

new vector, returns the shape describing all the possible vectors. 

d' = 

s/ Us canon(d') vector( s, r) 

indices 

s/ 

array_vector(s) n {i E filii S Idims(s)l} 

U canon((l···l).(r).(l .. ·l)) 
'-v-" '-v-" 

iEindices i-l 00 

if up(ndims(s)) = Idims(s)1 

00 

(U ).~ if up(ndims(s)) = W 

Idims(s)1 00 

( 1· . ·1 ). ( T r ... T r ) . (1 .. ·1) otherwise 
'-v-" '-v-' '-v-" 
Idims(s)1 up(ndims(s))-ldims(s)1 CXJ 

( 4.44) 

(4.45) 

( 4.46) 

( 4.47) 

No accuracy is lost if up(ndims(s)) = Idims(s)l. Using canon from Definition 4.17, the 

final result for a single index subscript involving vectors is: 

vecsubscript(sa, Sb) = vector(sa, indeLvector(sb)) ( 4.48) 

Now it is necessary to bring in the standard case where either the array or index is not 

a vector (notvec : S x S ----+ S). 

( ) 
{ 

T s if array_vector(sa) = 0 V indeLvector(sb) = ..ir 
notvec sa, Sb = 

..is otherwise 
(4.49) 

The final equation is therefore (subscript : S x S ----+ S): 

(4.50) 

4.3.4.2 Multiple index non-logical subscripts 

Indexing into an array with multiple indices, none of which are logical, is very simple 

to understand. Each of the indices is flattened so that all its elements form a vector. 
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Its length is the product of the sizes of all of its dimensions. This is the value that 

is returned by the numel built-in function, for which an equation was given in (4.31). 

The resulting array will have as many rows as the first index has elements and as many 

columns as the second index has elements and so on for further indices. If the indexed 

array has more dimensions than there are indices then the extra dimensions are flattened 

into the final one. 

The equation for array indexing with multiple indices is therefore (subscript: S x S* ~ 

S): 

subscript( Sa, (Sl ... sn)) = canon (( numel(sd, ... numel( sn))· (1 ... 1) ) 
'-v--" 

(Xl 

4.3.4.3 Single logical subscripts 

(4.51) 

A single logical index acts like a filter, where non-zero elements select elements in the 

array to extract. The extracted elements are placed in a vector. The vector can have 

as many elements as the index has, but could also be empty. This number is given as a 

range by lnumel : S ~ R. 

lnumel(s) = (0, up(numel(s))) ( 4.52) 

As with non-logical single index subscripts, when vectors are involved, the analysis 

becomes complicated. When the indexed array is a vector (along any dimension), the 

result will also be a vector along that dimension. When the indexed array is not a vector 

then the type of the vector produced depends on whether the index has more than one 

row. If it does the result will be a row vector, otherwise it will be a column vector. 

The index can be larger than the array into which it is indexing, but an error will occur 

if a non-zero element occurs in a place which would retrieve a non-existent element. For 

the purposes of this analysis we will ignore this error case and assume that only valid 

elements are accessed. 

The vector case is covered by: 

Sf = vector(Sa, lnumel(sb)) (4.53) 

The non-vector case is covered by (neq is given in (4.21)): 



Chapter 4 Abstract Domains 

class ( a) class(b) class ( c) 
double double double 
double sparse double 
double char double 
sparse sparse sparse 
sparse char double 
char char double 

TABLE 4.4: Class table for addition like binary operators. (Only valid classes are shown 
- all other classes would produce an error). 

The final shape equation for single logical subscripts is: 

S' Us s" 

vector(Sa, lnumel(Sb)) Us 

51 

(nonvec(Sa) ns ((2,2), (neq(sb1' 1) nd (lnumel(sb), 1)) Us 

(eq(sb1,1) nd (1, lnumel(sb))))) (4.55) 

4.3.4.4 Multiple indices with a final logical index 

With multiple indices, only the final index can be logical or an error will occur. The final 

logical index filters over the remaining dimensions, which are all flattened into one. Like 

the non-logical case, the size of each index gives the size of the corresponding dimension 

in the result. The dimension corresponding to the logical index has a size between 0 

and the maximum number of elements of the logical index (as would be given by the 

function numel). The function subscript: S x S* x S ---t S, gives the resulting shape. 

5ubscript( Sa, (51 ... Sn), 5b) = canon ( (numel(sd, ... numel( Sn), lnumel (Sb), 1· .. 1) ) 
'-..-' 

00 

( 4.56) 

4.3.5 Class Equations For Operators 

The class of an array produced by operators is often predictable. For instance adding 

two real double arrays will produce a real double array. Adding two real sparse arrays 

will produce a real sparse array, but adding a real double array to a real sparse array 

will produce a real double array. On the other hand array multiplication of a sparse 

array by a double array produces a sparse array. 

Table 4.4 and Table 4.5 show the resulting class for addition and array multiplication. 

Since these operators are symmetric, redundant entries have been removed. Table 4.6 

shows the class table for the non-symmetric operator, array right division. Left division 

will be equivalent to swapping the operands. Since only double, sparse or char classes are 
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class(a) class(b) class ( c) 
double double double 
double sparse sparse 
double char double 
sparse sparse sparse 
sparse char sparse 
char char double 

TABLE 4.5: Class table for array multiplication like binary operators. (Only valid 
classes are shown - all other classes would produce an error). 

class ( a) class(b) class ( c) 
double double double 
double sparse double 
sparse double sparse 
double char double 

char double double 
sparse sparse sparse 
sparse char sparse 
char sparse double 
char char double 

TABLE 4.6: Class table for right array division. (Only valid classes are shown - all 
other classes would produce an error). 

class ( a) class(b) class ( c) 
double double double 
double sparse sparse 
double char double 
sparse sparse sparse 
sparse char sparse 
char char double 

single * uint8 
int8 * uint8 

int16 * uint8 
int32 * uint8 
uint8 * uint8 
uint16 * uint8 
uint32 * uint8 

TABLE 4.7: Class table for logical binary operators. (* indicates includes any class in 
the table). 

52 



Chapter 4 Abstract Domains 53 

defined for arithmetic operations, we define the function, arithk : K --t K, to determine 

whether an operand is valid: 

{ 
T k if c E {double, sparse, char, T k} 

-.lk otherwise 
( 4.57) 

Using the previous tables, we can easily derive the following function:, plusk : K x K --t 

K, multiplYk : K x K --t K, rdividek : K x K --t K and ldividek : K x K --t K. These 

functions all use the operand classes to determine the class of the result. 

plUSk(C1, C2) = (C1 nk double nk arithk(c2)) Uk (C2 nk double nk arithk(cd) Uk 

(eq(c1' char) nk double nk arithk(c2)) Uk 

(eq(c2' char) nk double nk arithk(C1)) Uk (C1 nk c2 nk sparse) (4.58) 

(C1 nk sparse nk arithk(C2)) Uk (C2 nk sparse nk arithk (C1)) Uk 

((eq(C1' double) Uk eq(c1' char)) nk 

(eq(c2' double) Uk eq(c2' char)) nk double) 

(( C1 nk double) Uk (C1 nk sparse) Uk 

(eq(c1' char) nk double)) nk arithk(c2) 

(( C2 nk double) Uk (C2 nk sparse) Uk 

(eq(c2' char) nk double)) nk arithk(cd 

(4.59) 

( 4.60) 

(4.61) 

The types of the matrix operators, *, / and \, are more complicated than the array 

binary operators. If the operator is used as a pure matrix operator then the result is 

different to when one of the operands is a scalar and an array operation takes place. 

Since this is dependent on knowing the dimensions of the operands as well as their types, 

the full type equation is deferred to later. Assuming the true matrix operation semantics 

are being used, then matrix multiplication and left and right division have an equivalent 

class equation to addition. 

Table 4.7 shows the classes produced by logical operators such as equals, greater than 

and logical and. These operators are all symmetric and produce a valid output for all but 

the cell array, struct and function handle classes. This is modelled using the function, 
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lbinoPk : K x K ---+ K. 

{single, int8, int16, int32 , uint8, uint16, uint32} 

{cell, struct, junction, .ld 

.lk if Cl E Kinv V C2 E K inv 

uint8 if C1 E Ku V C2 E Ku 

T k if C1 = T k V C2 = T k 

sparse if C1 = sparse V C2 = sparse 

double otherwise 

4.3.6 Trait Equations For Operators 
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( 4.62) 

( 4.63) 

(4.64) 

All the operators in MATLAB can accept both logical or complex operands. Logical 

arrays only differ in behaviour when used as indices and so are equivalent to non-logical 

arrays in this context. The main problem with arithmetic operators comes from complex 

arrays. It cannot be determined statically whether the result of adding two complex 

arrays will be complex as well. In addition, complex arrays with no imaginary component 

can be created, meaning that a complex array added to a real array is not necessarily 

complex. The only certainty exists when both operands are real, in which case the result 

will also be real. The function, binoPt : TxT ---+ T models this: 

{ 
(true,jalse) 

(T b,jalse) 

For unary minus, we have umint : T ---+ T: 

if r1 = true 1\ r2 = true 

otherwise 

{ 
(true,jalse) 

(T b, jalse) 

if r = true 

otherwise 

(4.65) 

(4.66) 

The transpose operators retain the logical trait from the operand and so we have, 

tmnspt : T ---+ T: 

tmnspt ((r, l)) { 
(true,l) 

(T b, l) 

4.3.7 Full Type Equations For Operators 

if r = true 

otherwise 
(4.67) 

In this section, we bring together the equations from the previous sections, to give full 

type equations encompassing both binding, shape, class and type trait information. 

The full equation for unary minus, umin : A ---+ A, is a simple case. If the operand 

is static, then apply the operator to the concrete representation, otherwise an abstract 
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representation is found: 

umin( (b, v)) 

umina.( (k, t), s, 6)) 

{
(static, interp_u_op(UlIlin, v)) 

(dynamic, umina. (cx( v))) 

((umink(k), umint(t)), s, true} 

if b = static 

otherwise 
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( 4.68) 

( 4.69) 

The full equation for transpose, transp : A -7 A, is as follows: 

transp ((b, v)) 

tra nsp a. ( (k, t) , s, 6) ) 

{
(static, interp_u_op(transpose, v)) if b = static ( 

4.70) 
(dynamic, transpa.( cx( v))) otherwise 

((transPk(k), transPt(t)), transps(s) , true} (4.71) 

Addition has the function, plus: A x A -7 A. 

if b1 == static A b2 == static 

otherwise 

(4.72) 

plusa.( (k1' t1), sl, 61), (k1' t 1), Sl, 61)) == ((binoPk(k1, k2), binoPt(t1, t2)), binoPs(sl, S2), true} 

(4.73) 

All arithmetic array binary operators, like subtract, multiply and power, have very 

similar equations, differing only in which concrete function is called. Logical and is an 

example of a logical binary operator like equals and greater than. 

anda.( ((k1' t1), Sl, 61}, ((k2' t2), s2, 62}) = ((lbinoPk(k 1 , k2), (true, true)), binoPs(sl, S2), true) 

(4.75) 

The full equations for matrix multiply, divide and power are very similar to the equations 

already given here but with the functions changes appropriately. 

4.4 Concrete and Symbolic Execution 

The main work of MPE is performed by two interpreters: a concrete interpreter, which 

takes fully static data and produces a fully static result and a symbolic interpreter, 

which takes possibly static or dynamic data and produces a static or dynamic result. 
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The symbolic interpreter examines expressions and determines from their sub-terms, 

whether the result will be static or dynamic, while it symbolically interprets statements. 

If an expression contains only fully static terms, then the result will generally be fully 

static. In fact the symbolic interpreter invokes, for static expressions, the same library 

calls as the concrete interpreter. If an expression is not sufficiently static, the result 

will be dynamic, but an attempt is made to infer some information about the result 

even if the value cannot be found. For each operator, an equation like the ones given 

in the previous section is used to find the abstract interpretation of the result, given its 

operands. 

The concrete interpreter is reasonably fast (hence why it is used instead of the symbolic 

interpreter where possible), but it is not as fast as MATLAB. While it uses MATLAB 

library calls to calculate its results, it uses a method now deprecated by Mathworks. 

This method puts the onus on us to keep track of deleting temporary arrays once they 

have been used, which is both slower and more complicated to code, unlike the method 

favoured by Mathworks which automatically deletes temporary arrays used as parame­

ters to library functions. But unfortunately the new technique causes crashes in some 

circumstances and although this bug is noted on the MATLAB website, it has not been 

fixed. Using the newer method of managing arrays greatly speeds up interpretation, 

but this will have to wait until the bugs are eliminated. An alternative method would 

be to replace the concrete interpreter with one which directly invokes the MATLAB 

interpreter allowing any advances in the MATLAB engine to speed up our partial eval­

uator. This may be problematic given the amount of data that would have to be passed 

between the MATLAB interpreter and the partial evaluator. 

In MPE, symbolic execution is always a forwards iterative process. Information inferred 

about function parameters or operator operands is not used to update the parameters 

or operands themselves. Kg. 

1.# b size [2 UNKNOWN] 

c = b * b; 

In the above example b is declared to have 2 rows but an unknown number of columns. 

In the following statement b is multiplied by itself. From (4.23), the shape of c is 

determined to be ((2,2), ( (2, 2), 00 ) ). Because information was only passed forwards, 

it was not inferred that since the inner dimensions must match, that b also must have 

2 columns for the expression to be valid, in which case c would also have 2 columns. 

To do backward shape inferencing would require a far more complicated infrastructure 

than is present in MPK 

In Section 6, we will describe how this symbolic execution framework is actually used. 

Section 6.1 describes how each statement is partially evaluated and it refers heavily to 

the abstract domains defined in this chapter. Section 6.1.5 contains a description of 

the fixed point algorithm used for computing the least upper bound of the entry point 
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to loops. This is later revised in Section 6.3 to work with loops containing break and 

continue statements. 

4.5 Precision 

The abstract domains contained in this chapter will later be used to approximate the 

types of concrete values. This approximation clearly loses all information about ac­

tual values when a concrete value is abstracted, but this is not unexpected. Possible 

shortcomings however can arise when combining type information following conditional 

blocks. 

If the class of a variable on exit from each branch of a conditional is fixed but different, 

all class information will be discarded. This insures that the class lattice has only 

n + 2 elements, where n is the possible number of classes, but is perhaps unnecessarily 

restrictive. Knowing that an array could be either of class double or char would allow 

us to infer that arithmetic operations on it were allowed. If the array was either a cell 

array or struct, then we could immediately infer that any arithmetic operation would 

always fail. This could be modelled by a bit-vector of size n, which flagged every class 

that might be possible, leading to a lattice with 2n elements. Clearly such an approach 

would become expensive for a system with an unbounded number of classes. 

However the main way of extracting further static type information from the class of 

a dynamic array is through the class built-in function, which returns the class as a 

string. Clearly if this string was compared with certain other static values then it might 

be possible to remove the comparison. However since no information about values is 

currently retained, 

4.6 Summary 

This chapter has seen the creation of a full type system for MATLAB, capturing in­

formation about arrays that will later be used to make specialisation decisions. Since 

MATLAB is a dynamically typed language, to provide input validation, functions must 

check their parameters types at run-time. While in C, passing an integer (instead of a 

string) as the first argument to the printf function will be spotted at compile time, this 

will not happen in MATLAB. If we can maintain accurate information about the types 

of dynamic variables, we should be able to remove these checks without producing an 

unreliable program. 

This chapter contains a formalisation of the MATLAB type system, which is we believe 

more complete than any other work on MATLAB, particularly since it supports classes. 
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Details are given for deriving types for all MATLAB operators, including matrix multi­

plication and array addition. We have described how to infer the shapes for several key 

built-in functions as well as the many forms of array indexing. 

In the following chapter, we will lay the foundations for a partial evaluator by describing 

details related to loading and parsing MATLAB programs, particularly with regard to 

differentiating between function calls and variables. 



Chapter 5 

Handling full MATLAB programs 

We have produced an online partial evaluator because many of the problems that offline 

partial evaluation helps alleviate are less likely to occur in MATLAB. With online partial 

evaluation, we can easily handle function handles. In addition we wish to perform 

optimisations based on the characteristics of arrays such as shape and type. For example, 

while the exact value of a matrix may be unknown, its shape and whether it is real or 

complex could well be known. In this case built-in functions which try to determine 

these properties can be replaced by the actual values, which might lead to speed-ups 

due to loop unrolling and the removal of conditionals. This is less likely to be possible 

using offline partial evaluation since the static/dynamic divide must be declared before 

specialisation and must be conservative in cases where it could go either way. 

While offline partial evaluators are generally more efficient and predictable, we have 

different motives in our use of MATLAB. Theoretical results such as self-application are 

mostly irrelevant to us, as MATLAB would be an unlikely choice for writing interpreters. 

The language does not use recursion extensively since it is imperative, meaning termi­

nation issues that can cause problems in online partial evaluators of heavily recursive 

languages are unlikely to cause problems. 

The complexity of the information that we wish to store about expressions means that 

using MATLAB to create the partial evaluator itself would be cumbersome. One reason 

is that MATLAB has no tools for parsing programs, such as lex and yacc. While this 

step could be performed elsewhere, MATLAB has many other deficiencies which makes 

string handling difficult and complex data structures complicated. The lack of call-by­

reference semantics and sharing of data would also likely make the partial evaluator very 

inefficient. 

Since MATLAB was not an option itself for the implementation language, we were re­

stricted to either C, C++ or Fortran, since these are the languages for which Mathworks 

provided libraries. Our MATLAB partial evaluator (MPE) was written for GNU /Linux 
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systems in C++, and should be portable to any system with a good C++ compiler and 

which has MATLAB support. 

In this section we describe the steps taken to load in full MATLAB programs and parse 

them as MATLAB itself would do. While the parser is not perfect, we believe it to be 

current up to MATLAB 6.11 and able to handle the majority of MATLAB codes. 

A program, as recognised by our system, consists of one or more m-files situated in one 

or more directories. Files are not explicitly included in a program but are implicitly 

included by calling the functions present within them. 

MATLAB provides many functions in m-files, which can be called by user programs. 

While some of these are self-contained, others can call many other functions, themselves 

contained in m-files. This can greatly increase the time to load and parse a MATLAB 

program as well as the memory usage, especially since the presence of a function call in 

an m-file does not mean that it will definitely be called. Since partial evaluation will 

often determine that a function will not be called, we can use this property to avoid 

parsing unnecessary files. To this end, MPE only loads functions when they are called. 

5.1 Overview 

Below we give an overview of the stages of the partial evaluator. 

1. Parse source file to be partially evaluated (Section 5.2) producing an Abstract 

Syntax Tree (AST). 

2. Insert static values at beginning of AST (Section 5.3). 

3. Convert placeholders in the AST (Section 5.4). 

4. Partially evaluate the function obtaining a new AST (Chapter 6). This stage 

requires the partial evaluation of further functions. In each case the process is 

started from stage 1. 

5. Post-process the new tree, removing dead code (Chapter 7). 

6. When the original m-file has been completed, traverse new main function AST, 

marking any functions that are called. 

7. Write out all called functions as MATLAB source code. 

Each of these stages will be described in more detail in the following sections. 

lWe do not handle the explicit short-cut logical operators of MATLAB 6.5, && and II. 
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MPE is invoked from the command line and produces a single m-file as output. This 

file contains all the specialised functions. Since all the functions are placed in a single 

file, there is a chance that two identically named functions could be produced and then 

one of them would be inaccessible. This could only happen if an additional function in 

an m-file (accessible only in that m-file) shared the same name with another function. 

This could be corrected by renaming conflicting functions, but has not proven to be a 

problem in any of our tests. 

5.2 Lexical Analysis and Parsing 

MATLAB was designed more to allow mathematicians to read it than for simple parsing. 

This leads to ambiguous constructs that are fairly simple for a human to understand as 

they can more easily make contextual judgements, but a lot harder for a lexical analyser. 

Problems occur because in matrices, spaces can be column delimiters or white space. 

Outside matrices new lines are treated as an end of command indicator, but inside 

they are treated as row separators. Fortunately flex [21] can be made stateful thus 

avoiding the need for a hand-written lexical analyser. Joisha et al describe how to parse 

MATLAB in [36], although since that publication many of the problems, to which they 

refer, have disappeared as MATLAB was made more "compiler-friendly". This section 

will not attempt a full description of parsing, but will highlight some areas where our 

implementation differs from [36]. 

Due to difficulties in disambiguating variables and function calls, identifiers that could 

represent either are stored initially as placeholders. In the following stage, these will be 

replaced with either variables or function calls in the case of identifiers not followed by 

parentheses or by subscripts or function calls for identifiers followed by parentheses and 

a list of indices or parameters. 

Other problems arise because the MATLAB grammar is not fully documented. There are 

some (admittedly contrived and probably due to bugs) circumstances in which MATLAB 

interprets the input in seemingly unpredictable ways. This has improved in recent 

MATLAB versions as The Mathworks have themselves introduced compiling technology 

for MATLAB and MATLAB 6.5 has largely eliminated these problems. 

There is one quirk of MATLAB functions, that we choose to ignore because dealing with 

it would require a more complicated lexical analyser for little benefit. The problem is 

due to MATLAB allowing the calling of functions without parentheses. E.g. 

shading gouraud 

clear abc 

These examples are equivalent to shading (J gouraud J) and clear (J a J, J b J, J C J). 

Unfortunately when MATLAB sees a function not followed by parentheses it assumes 
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the function will be of this form even if the function takes no parameters. So if f is a 

function then f * 10 will be interpreted as f (' *', '10'). Trying to use lex to handle 

this would be difficult, as it would need context to realise that f was a function and 

that everything following it should be interpreted as strings. Function calls are only 

parsed like this when they begin a line and not as part of an assignment or part of 

another statement. We call such statements directives and only partially consider them, 

noting that they traditionally cause side-effects and need to be retained in the residual 

program. MPE will not recognise f * 10 correctly if f is a function but will instead 

create a binary expression, but we do not see this causing problems as such code would 

be unlikely except due to programmer error. When Joisha [36] parses these function 

calls, he requires that the function arguments be enclosed in quotes. We do not take 

this approach since this would cause many library functions to fail to parse (although 

this form is also acceptable to our parser). 

The only notable problem that actually arose in the MATLAB libraries is the use of 

keywords after a function, e.g. dbstop if error. Since if is a keyword, this will cause 

a parse error and abort MPE. This can be avoided by wrapping parameters with inverted 

commas, e.g. dbstop 'if' error. 

This stage is performed on m-files and produces an m-file object containing a repre­

sentation of each of the functions found in that m-file. Functions are represented as 

a list of input parameters, output variables and an AST. Assignment and expression 

statements have a flag, which indicates whether they are terminated with semi-colons 

and therefore should be silent. Statements can be either expressions, assignments 

(normal assignments, multi-output assignments and delete assignments), for loops, 

while loops, if statements, switch statements, control-flow-change statements (return, 

continue and break), directives or annotations. 

5.3 Handling command line definitions 

To specify the values of parameters to the main function, the user will give a command 

line flag (-d) along with an assignment from some variable to a static value. These 

assignments are inserted at the start of the AST which will contain the residual program. 

The expression is parsed just like any other MATLAB code and so can be a matrix or 

any other valid MATLAB expression. Additionally a file, containing a list of assignments 

and annotations, can be specified using the -a flag. 

The function declaration is then modified to remove any parameters that were specified 

at the command line. E.g. 

function z = f(x,y) 
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After partial evaluation by illpe -d x 1 f. ill, this becomes: 

function z ~ f(x) 

This approach was chosen purely due to its simplicity. By adding assignments no special 

code needs to be generated to ensure that the values are propagated through the program 

as this occurs in the normal course of partial evaluation. It also avoids the problems of 

indexed assignments which assume the variable is already in existence. 

5.4 Converting placeholders 

This stage is necessary because the distinction between variables and functions is not 

immediately determinable unlike in C. This stage also appears in most of the literature on 

MATLAB compilers including [58] and [2], where it is called disambiguation. Variables 

do not have to be declared but are created as required by assignments. Variables can also 

shadow the names of both built-in and ordinary functions. This means that an identifier 

could be used to indicate a function call at one point in a function and then later be used 

to access a variable if there is assignment to the variable in between. Variables can also 

be deleted using functions such as clear, which, if they shadow a function name, means 

that the function can again be called using that identifier. We choose to ignore the 

clear function as its results are quite unpredictable especially when used with dynamic 

input. As a result of this ambiguity when the parser encounters a symbol, it inserts a 

placeholder into the AST for later conversion. 

Our criteria for determining whether a placeholder represents a function call or a vari­

able access are similar to those of De Rose, although ours is more extensive than that 

described in [57], as MATLAB has evolved since it was written. An identifier that has 

been previously used as a variable will always be a variable. Otherwise a function with 

that name is sought in the following places with descending precedence2 : 

1. Built-in Functions 

2. Functions in current file 

3. M-files in current directory called function-name. ill 

4. M-files in a subdirectory, private, of the directory of the current m-file, called 

function-name.ill 

5. M-files in the path called function-name. ill 

2this order ignores «Iclass directories which MPE does not support. 
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If no function is found, then the identifier is assumed to represent a variable allowing 

code like the (extremely contrived) following code to work: 

for n = 1:10 

if n > 1 

a = [a nJ; 

else 

a = 1; 

end 

end 

A particularly confusing and yet possibly valid statement is x ex) = x eX), where x is a 

function and has not been used previously as a variable. This problem is discussed by 

De Rose [57]; in particular he discusses how conditional statements can affect whether 

an identifier is seen as a variable or function. We take the same approach and assume 

identifiers which have no visibly defined function are variables as we cannot defer the 

decision unlike an interpreter. 

If an appropriately named file is found for a previously unseen identifier, the placeholder 

is converted to a function call. The file is not however parsed until the call is partially 

evaluated (or abstractly interpreted). With many programs this prevents memory being 

wasted on functions which will never be called and can sometimes allow partial evaluation 

of programs which contain features we do not support. 

The end result of this stage is one parse tree where all placeholders have been replaced 

with either variable, subscript or function call identifiers, for each function in all m-files 

in the system. 

5.5 Summary 

This chapter first described our motivation in using online partial evaluation. It then 

listed the stages that make up our partial evaluator and then described the early stages, 

by giving a brief description of the problems associated with parsing large MATLAB 

programs and them disambiguating variable and function symbols. This is not presented 

as unique research, since it is documented elsewhere, but is presented for completeness. 

Having parsed an m-file and produced the Abstract Syntax Tree for it, it is now possible 

to partially evaluate it. In the next chapter, we will describe the core of a partial 

evaluator. This includes a description of how to handle every kind of statement as well 

as whole functions. It is this work which accounts for the bulk of the partial evaluation 

time. 



Chapter 6 

Partial Evaluator Core 

Functionality 

In this chapter we describe the core of the partial evaluator and how the abstract domains 

and equations from Chapter 4 are used. 

The initial input is the first function in the m-file specified on the command line along 

with a list of parameter values. Each value is from the set A, defined in Definition 4.22, 

and so can be completely static, dynamic with some shape information, or perhaps 

undefined. Since the number of parameters and outputs can themselves be dynamic, the 

list of parameters is also supplemented by two additional parameters, nargin, nargout E 

R, whose values are ranges from Definition 4.11. 

For non-vamrgin functions, which can only take a certain number of parameters, nargin 

is capped to this maximum (nargin' = nargin nr (0, n)). The same is done to nar­

gout for non-varargout functions. For varargin functions, the excess parameters are 

directly mapped into a cell array. If any of these parameters is dynamic, then so will the 

varargin variable. The size of this parameter list is now definitely finite even if nargin 

is unbounded. 

The environment is a hash-table mapping symbols to values (sym ---t A). This environ­

ment has several extra fields: nargin, nargout and current-mfile. The current-mfile field 

is used when determining where to look for functions. This is not necessary for functions 

found by the converting placeholders stage from Chapter 5, but for calls to feval as 

will be described later. 

We use hierarchical environments to reduce copying at points where execution branches. 

Each table has a parent field. When partial evaluation starts for a function, this field is 

NULL. On partially evaluating a conditional with two branches, two empty environments 

will be created, each with the current environment as their parent. If searching for a 

symbol fails in the current environment, the parent is searched recursively until there 
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are no more parents or the symbol is found. Updates to the environment only affect 

the most recent environment so as not to affect the state of alternate branches. On 

completing both branches, the two environments will only contain symbols which were 

altered and so only these need to be examined. 

The initial environment is then populated with the parameter symbols and their values 

and partial evaluation can now commence. The function is partially evaluated statement 

by statement, updating the environment as it goes. 

6.1 Partially evaluating statements 

For each of the statements discussed in Chapter 2, we will now describe how it is partially 

evaluated. 

6.1.1 Expressions 

In MATLAB, when an expression appears on a line on its own, it is evaluated and 

the answer displayed (assuming a semi-colon is omitted), as in a calculator, but more 

frequently expressions are found in other statements such as assignments. The rules for 

evaluating expressions as described here apply in all cases, although other statements 

use the expression values in different ways. 

Binary expressions are stored in a binary tree. Our implementation performs a depth 

first traversal of the tree evaluating wherever possible. The nature of the tree has an 

effect on the amount of evaluation that is possible. For instance 2 + x + 4 and x + 

2 + 4 will not be reduced to 6 + x because the tree stores them as (2 + x) + 4 and 

(x + 2) + 4. Either a strategy would have to be developed to propagate the addition 

across the inner binary expression or N-ary expressions with reordering could be used. 

Any strategy that used expression reordering based on associativity or commutativ­

ity would have to be very careful about causing an adverse change in execution time. 

Menon and Pingali [49] discuss how we can use the semantic properties of operations 

in conjunction with type information to realise previously infeasible operations. For 

instance in evaluating A * B * x, if A and B are matrices and x is a vector, the 

time complexity is O(n2 ) evaluating from right to left, but O(n3 ) if we evaluate from 

left to right. It is also possible to introduce rounding errors by reordering expres­

sions, as 1 + 1e-16 + 1e-16 - 1 is evaluated as exactly 0 by MATLAB, where as 

1 + Oe-16 + 1e-16) - 1 produces rv 2 X 10- 16 . 

Other problems can arise from the dynamic typing of MATLAB. For instance it is not 

possible to assume that multiplication is commutative as matrix multiplication is not. 
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(Commutativity can be assumed if . * is used). A * 0 is not necessarily 0 but could be a 

matrix of Os or a sparse empty matrix. 

Each node in an expression has two pieces of information associated with it. Its Value 

(v E A) and the code which produces it. These two pieces of information are returned 

by the expression partial evaluator. In the case of static values (v E Ab), the code to 

reproduce it not actually created until the function is written out. This means that little 

time is wasted on the static values of sub-expressions which are immediately consumed 

by another static expression. Instead the code generated for static values, is just an 

instruction to lift the value when code is actually required. For dynamic values (v E Ati), 

the code is immediately created. We assume the availability of functions which call the 

concrete interpreter on static parameters, like apply_op, : Op X M x M ~ M, which 

applies an operator concretely to two operands. 

We will now describe how the various types of expressions are handled, starting with 

the binary expression binop( op, el, e2), where peval(el, E) = (e~, VI) and peval(e2' E) = 

(e~, V2), with environment E: 

peval (binop( op, el, e2), E) = 

( (static, apply_op,( op, " (VI), " (V2))), lift) 

if VI, V2 E Ab 

( (dynamic, apply_opo (op, 0:( vd, 0:( V2))), binop( op, e~, e~)) 

otherwise 

(6.1 ) 

As described here, only fully static binary expressions produce a static result, even in 

the case of expressions like x * o. Such transformations are ignored, as they are not 

often applicable and can also produce changes in the semantics of a program. Where the 

expression component is 'lift', this is a short hand for the expression obtained by lifting 

the value component. We assume the existence of a function apply_opo : Op X A x A ~ 

A, which selects the correct type determination function based on the operator. 

For the unary expression, represented by unop(op, e), where peval(e, E) = (e', v), partial 

evaluation proceeds as follows: 

( ( )) 
{

((static, apply_op,(op,,'(v))),lift) 
peval unop op, e ,E = , 

( (dynamic, apply_opo( op, 0:( v))), unop( op, e )) 

if v E Ab 

otherwise 

(6.2) 

A constant, represented by const(c) in the AST, with value, c E M (Definition 4.21) is 

handled as follows: 

peval(const(c)) = ((static, c), lift) (6.3) 
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Variables for which there is a static value in the environment are replaced with the static 

value: 

( ( ) E) 
{ 

(E(sym), lift) if E(sym) E Ab 
peval var sym, = 

(E(sym), var(sym)) otherwise 
( 6.4) 

An expression Subscript( sym, format, (el ... en)) is an indexed variable access, like a {3} 

or v. field(2). The format describes where the indices are placed and takes the form 

{?} and. field(?) for the examples respectively. Subscripts are handled by first par­

tially evaluating the indices. Since the indices are in the form of a comma-separated list, 

there is a chance that more or even fewer than n elements will be produced by partially 

evaluating the list. This is because one of the indices might be a cell array subscript 

itself. Such a subscript can expand to any number of values. This can happen anywhere 

that comma-separated lists are expected, e.g. function parameters. 

The function, pevaLlist : Exp* x Env x Exp* x A * x R -t Exp* x A * x R, is used 

to partially evaluate a comma-separated list of expressions. It produces a new list of 

expressions, a list of values as well as a range for the size of the list. Where applicable, 

(e~,v~, (l',u')) = pevaLin_list(el' E) and n' = (l',u'). 

pevaUist( (el ... en), E, e~, vs, n) pevaUist( (e2 ... en), E, e~ .e~, vs.v:, n + (l', l')) 
pevaUist( (el ... en), E, e~, VS, n) pevaUist2 ((e2 ... en), E, e~.e~, vs.v:, n + n') 

pevaUist ( 0 , E, e~ , V s, n) (6.5) 

The second part of pevaLlist above, matches the case where n' is not a constant, but a 

range of values. In this case there is no point continuing to build the list of values as it 

is not known where they will fit. Instead, the rest of the expression list is built up by 

pevaUist2, which just passes through VS' Anything which uses vs, will also have nand 

will therefore know that this list is incomplete. 

pevaUist2 ((el ... en), E, e:, vs, n) 

pevaUist2( 0, E, e~, vs, n) 

pevaUist2( (e2 ... en), E, e~.e~, Vs, n + n') 

(6.6) 

Similar to pevaUist is pevaLindex-list, which has an additional parameter, format, 

which it returns updated to take account of any expressions that were expanded. For 

instance in the case of b (a{ [1 2J}), format = '(?)' for the indices of the subscript to 

b, but if a is static, it will be expanded and so format' = '(?,?) '. If a was not static, it 

would not have been expanded and format' would be the same as format. 

Each of the individual expressions that make up the list are partially evaluated using 

the function pevaLin_list : Exp x Env -t Exp* x A * x R. If c is a cell subscript, such 

that c = subscript(sym,format, (el" .et)), where format E CellSubscript (the set of all 
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format strings, which represent cell accesses) then: 

pevaLin_list(c, E) = \ (v~, ... v~), (e~, ... e~), n') (6.7) 

where the components are defined below, given that: 

pevaLindeLlist( (el' ... et), format, E) = \ (e~, e:, ), (v~, ... v~), n,format') 

1. If Vi,v? E AD!\ low(n) = up(n)!\ E(sym) E AD, the result is static, p = q and 

using a function celLsubscripty : AD x Format x A D* x N --t AD*: 

( , .I ) vl' ... vp 

(el, ... ep ) 

celLsubscripLky'(E(sym)),format', (r'(vn, ... 'Y'(v~)),low(n)) 

(lift ... lift) 
'-v-' 

p 

n (p,p) 

2. Otherwise the result will be dynamic and the subscript needs to be constructed. 

n = { fh .. 8 numel(shape(v~')) if low(n) = up(n) 
00 otherwise 

Since no information is known about the contents of a dynamic cell array, the list of 

values just consists of unspecified but defined values. The subscript expands to the 

product of the number of elements within all the indices. This is calculated using 

a combination of numel from (4.31) and the fact that if the number of elements, 

to which the indices expand is unknown, then we have no information about how 

many elements the outer subscript will expand to. Consequently we only store the 

maximum number that it definitely expands to and so p = low(n): 

Vi, 1 :::; i :::; p, v~ = (T T, T 8, true) 

The subscript has not been expanded so q = 1 and: 

el = Subscript( sym, (e~, ... e:) ,format') 

Returning to partially evaluating the elements in a list. Any expression that is not a 

cell subscript will evaluate to a list of size 1 and is handled by the following equation. 

(This equation uses. to concatenate arbitrary tuples). 

pevaLin_list(e, E) = \peval(e, E).(l)) (6.8) 
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Subscripts in non-list positions like operands to binary expressions, must evaluate to a 

single value or an error will occur. Given the definition of s as above: 

(6.9) 

In the following example, a is a 4-by-4-by-2 static real double array, b is 5, c is a dynamic 

2-by-1 non-logical array and d is a dynamic cell array with unknown shape information. 

a(b, b + c, d{c}) 

To partially evaluate this expression, first the indices to the subscript to a would be 

partially evaluated. The first index is b, so the E(b) is checked (6.4) and found to 

be static with a value of 5, so the result is ((static, 5), lift). The second index is a 

binary expression, b + c. As before b is static, but c is not and so from (6.1), we get 

((dynamic,a2),binop(+,const(5),var(c))), where (with.2.= (2,2)) 

The final index is a cell array and so its index need to be partially evaluated. Doing so 

gives ((dynamic, a2), var( c)). Since numel(shape(v~)) = numel( (.2., (.2.,1))) = .2., the sub­

script to d will expand to two elements, but as d is dynamic, we can infer no information 

about their types or values. Consequently we will get as final code: a(5, 5 + c, d{c}) , 

when the inferred shape is the result of indexing with a scalar, a 2-by-1 non-logical array 

and two unknown elements. From this we can infer (using the shape equations for index­

ing from Chapter 4) that the shape of the final result has between 2 and 4 dimensions, 

the first two of which have sizes 1 and 2 respectively. The other 2 dimensions have 

unknown size. The type will be the same as a, which means it will also be a real double 

array. 

Built-in functions that have static parameters can usually be executed directly via the 

MATLAB runtime libraries. There are however some built-in functions which cannot 

be executed directly as they require context or produce side-effects. Examples include 

exist, which can be used to determine the existence of variables as well as files and 

functions; I/O functions like disp, fopen, fprintf and fclose; graphing functions like 

plot and plot3; and timing functions like cputime and clock. 

Some built-in functions like exist can be evaluated indirectly by examining the envi­

ronment. It does, however, make little sense to evaluate timing functions while partially 

evaluating, as it is more likely it was intended that the timing actually take place when 

the residual program is executed. This is an area where offiine partial evaluation gives 

the user explicit control of which functions to execute early and which to leave to the 

residual program. 
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No I/O operations are performed while specialising, but are always inserted into the 

residual program. This does limit the amount of static data that MPE can see as static 

data files are never read. It would not be too onerous to remove this limitation through 

explicit user annotations, if it was later deemed useful. 

Built-in functions that cannot be evaluated directly, due to lack of static parameters or 

side-effects, are handled by the partial evaluator internally. For each built-in function 

we extract as much information as possible about the return values based on the input 

passed to it. In the case of functions like size and ndims which examine the shapes of 

matrices, we can sometimes fully evaluate them provided we have that information. If 

insufficient information is available to fully evaluate the function, we instead return an 

entry describing the shape and type of the returned value in so far as we can determine 

it. 

When a non-built-in function call appears in an expression, there are two main ways of 

handling it. If all the parameters are static, the call can be fully evaluated and then the 

result is either embedded in the residual program or is used as part of some other static 

computation. Alternatively if the parameters are not entirely static, the function call 

needs to be specialised. Function specialisation is described in Section 6.4, but for now 

we will assume that the result is a new function name (constructed from the old name 

and a variant number) and a list of return values, Vi E A. 

If it is a built-in function, a list of special functions is checked. If the function is on that 

list, it will never be concretely interpreted even if the parameters are completely static. 

Functions which cannot be directly executed either because they are not completely 

static or because they are on the special function list, are instead handled internally by 

the partial evaluator. In either case the result will be a list of return values, Vi E A. 

(For side-effecting built-in functions, which are always special, Vi will never contain static 

elements, i.e. Vi, Vi E AU). 

The equations for built-in functions are not given here, but essentially most require fully 

static parameters to produce a static result, otherwise they will produce a dynamic re­

sult. The exceptions to this are the shape accessor functions like size, length, isempty 

and numel; and type accessor functions isreal, islogical and class. These functions 

can examine the components of a dynamic type and extract a static result if it exists, 

which means that the function call is replaced by a constant in the residual program. 

Given a non-built-in function call, f = Function(sym, (el ... en)), where 

peval_list ( (e 1, ... en), E) = (( V~, ... Vp ), (e~ , ... e~) , n) 

then the equation for partially evaluating the function is: 

{ 
(Function( sym', (e~ ... e~)), vD 

peval (j, E) = 
(lift, vn 

if v~ E A~ 

otherwise 
(6.10) 
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where v~ is the result of evaluating that function with the parameters (v~, ... v~) and 

nargin, n. This evaluation procedure will not return v~ E AD, unless the function sym 

has no possible side-effect for that call. If the call does not return a static result then a 

new function sym' will be produced. The function call will be replaced by one that calls 

the new specialised function. 

Currently if a call to feval is passed a dynamic function handle or string, no attempt 

is made to infer information about the return value of the function or even to specialise 

it. This means opportunities are lost, but since we do not attempt to find all the 

possible function handles that could reach a feval call, there is no way to infer anything. 

Ruf and Weise [60] use control flow analysis in their partial evaluator, FUSE, to find 

lambda expressions that can reach a dynamic application. A generalised argument list 

is found which fits each of these lambda expressions by examining every place where the 

expression could be applied. This is all done in a pass after the initial specialisation is 

complete and requires a specialisation method, which allows for code to be iteratively 

improved. All of this is far more important for FUSE, because it partially evaluates 

Scheme, where recursion and higher-order functions are much more common. 

If the call to feval uses a static function, then the call to feval is replaced with a 

direct call to the function. This transformed function call is then partially evaluated as 

normal. 

Arrays containing only constants are constructed at parse time to avoid the cost of re­

construction, every time an expression is encountered while partially evaluating. Arrays 

that cannot be fully constructed at parse time, such as ones including expressions, are 

built by applying the appropriate horzcat and vencat functions repeatedly. For fully 

static values, this will produce a fully static array. If any of the elements that make up 

an array are dynamic, the whole array becomes dynamic and so the shape determining 

functions are used. This allows expressions such as [2, x; 4, yJ to be inferred as a 

2-by-2 matrix when x or y is known to have only one column. 

6.1.2 Assignments 

Simple assignments discard the old value of the target variable and are relatively easy 

to handle. In a single value assignment, we partially evaluate the right hand side as 

described above, and create a new assignment with this new expression. The value, 

(v E A) of the expression is then stored in the environment for non-indexed assignments 

(E = E(sym -+ v)). For indexed assignments, the value in the environment is updated 

if it is static and the indices are static with a new static value. If the indices or the right 

hand side are not static then the environment is updated with a value inferred from 

shape analysis. 
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With multiple output assignments, the right hand side can only be a function. In 

which case it is evaluated as for function call expressions and the multiple outputs are 

distributed to assigned variables. Ideally the outputs will be completely static and so 

the statement can be replaced with one new assignment with a static value for each 

output. 

[a,b] size(c); 

If the shape of c is known then assignments to a and b are substituted. E.g. If c is a 

matrix with 4 rows and 2 columns, this will become: 

a 4· 

b = 2; 

But if only the number of columns is known then we would have to use a function call. 

E.g. 

a = size(c,1); 

b 2; 

This is more expensive than the original as there are two assignments and a function 

call, but post-processing could completely eliminate the assignment to b. It is easy 

to transform the size function into multiple assignments as above, but most built-in 

function calls are not so simple and so we do not perform this kind of transformation 

when there is a mix of dynamic and static return values. 

For functions provided in m-files, moving the static assignment from the called function 

to the calling function provides more opportunities for dead code removal by dead code 

removal. E.g. 

function y = f(x) 

[a, b] = g(x, 6); 

y = a * b; 

function [a, b] 

a = x * 2· 

b = Y * y; 

g(x, y) 

If static outputs are not removed from the function call then the following code will be 

produced: 

function y = f __ l(x) 

[a, b] = g __ l (x); 

y = a * 36; 

function [a, b] 

a = x * 2; 

b = 36; 

The value of b is known and so it can be propagated later in the function meaning that 

b is never required in the residual code, and any dead code elimination system which 
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works locally on a function will not be able to remove any code from this example. If 

the static output is removed then the following code is produced. 

function y = f __ 1(x) 

a = g __ l(x); 

b 36; 

y a * 36; 

function a g __ l(x) 

a = x * 2· 

b = 36; 

While this code is not really any shorter, the redundant assignments to b in C_l and 

g __ l can easily be removed in post-pr<?cessing producing a shorter faster program (and 

in fact inlining will later be shown capable of completely removing the function g __ l). 

6.1.3 if statements 

If the value of the condition expression is static (v E AD), the conditional statement is 

removed and replaced with an appropriate set of commands. To do this the condition 

expression is partially evaluated and if found to be static and non-zero, the first set of 

commands are partially evaluated and inserted into the residual code directly. If the 

condition expression is static and evaluates to zero and there is an else clause, those 

commands are partially evaluated; otherwise the if statement is removed and no code 

is inserted in the residual function. 

If the condition expression is dynamic, then both sets of commands need to be partially 

evaluated with the same initial conditions and the resulting environments merged. This 

means that if both sets of commands set a variable to the same value, it will have that 

value after the loop. If the value is different, but the type or size of the array are the 

same, then this information is retained instead. For instance: 

a = 5; 

if a > x 

a = a + 1; 

else 

a = 0 

end 

In the above code, if x is static and has the value 1, then the condition expression is 

static as a is static as well and so the conditional is replaced with the following code: 

a = 5; 

a = 6; 

If x were unknown then the following code would be produced instead: 

a = 5; 

if 5 > x 

a = 6; 
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else 

a = 0 

end 

The environment would then be updated with the a equal to a dynamic real non-logical 

double scalar. 

6.1.4 swi teh statements 

As with if statements, if it is possible to predetermine the switch value along with the 

case values, the switch statement can be removed completely and replaced with the 

appropriate statements. Because the case values do not need to be constants and the 

cases are checked in order, it is important not to remove a switch statement when a 

case matches if there are one or more dynamic cases before it. In this case, the preceding 

cases need to be left in place while the matching case is replaced by an otherwise clause, 

thus removing the need for a comparison. Cases that can never match can be removed 

thus eliminating redundant comparisons. If as the result of eliminating comparisons 

only one comparison would ever be carried out, then it may be better to substitute an 

if statement as they are faster to execute. 

One proviso here is that an error would be thrown if the switch value was neither a 

scalar or a string. By replacing the switch statement with an if statement, the program 

semantics change slightly, unless the switch value can be inferred to be a scalar or string. 

In addition, the equality operator == requires that both of its operands have the same 

shape for this optimisation to produce equivalent code. The function, isequal, would 

be a valid substitute but it brings with it the overhead of a function call. 

As with if statements, if the exact control flow cannot be determined, each branch 

of the switch statement needs to be partially evaluated in parallel and the resulting 

environments then merged. Clearly branches that will never be reached can be skipped. 

In the following example, there are several possible specialisation opportunities: 

switch a 

_ end 

case 'foo' 

disp (' Monday') 

case 'foobar' 

disp (' Friday') 

otherwise 

disp('Another time') 

If a is completely static and has the value 'foobar' then the code produced is: 

disp (' Friday') 

On the other hand if a is dynamic, but it is known to have a length of less than 4, then 

the following would be produced: 
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switch a 

end 

case J foo) 

disp (, Monday') 

otherwise 

disp('Another time') 

If the length was exactly 3, then this would be optimised to the following: 

if a;; 'foo' 

disp (' Monday') 

else 

disp('Another time') 

end 

6.1.5 for loops 

76 

The number of iterations for a for loop is fixed from the moment that loop execution 

commences (unlike in languages like C where the loop constraints are re-evaluated after 

every iteration) and so determining whether to unroll requires no data flow analysis on 

the loop body. If the loop constraints are static then the loop will be automatically 

unrolled unless there is an annotation prohibiting it (as described later). 

To unroll a loop, the body of the loop is partially evaluated once for each iteration. For 

each iteration, the loop variable is set to the appropriate static value, although generally 

an assignment will not be generated for this. The exception to this, is if the loop contains 

an assignment to the loop variable. In this case, omitting the assignment at the start 

of the iteration could produce invalid code if the assignment inside the loop is under 

dynamic control. 

At the end of the loop, an assignment will be required to ensure the final value of the 

loop variable is available to the rest of the program following the loop. This assignment 

is only required if no assignments to the loop variable were inserted at the start of each 

iteration. Inserting assignments for the loop variable will often produce redundant code, 

but in these cases post-processing will remove it at a later stage. 

When the loop constraints would mean that the body of the loop is never executed, 

(e.g. a: b, where b < a), then this is a special case of unrolling with no iterations in 

which case the entire loop is skipped. MATLAB does reset the loop variable to [J and 

so an assignment needs to be inserted for this, which will in most cases be removed by 

post-processing. 

When the loop constraints are dynamic, the loop is retained. More complicated loop 

unrolling could be performed, including partial unrolling but for simplicity this is ignored 

here. Care now needs to be taken with variables inside the loop. Naively partially 

evaluating the loop, using the state before the loop was reached, would result in a loop 
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that might only execute correctly for the first iteration. Instead information about the 

state after each iteration needs to be combined with the initial state. 

This is achieved using iterative data-flow analysis. The body of the loop is iterated over 

using our abstract interpretation method which computes, for each variable, either an 

abstract value or a concrete value (x E A) storing the result in the environment. Algo­

rithm 1 requires an initial environment, the list of commands comprising the loop body, 

a flag indicating whether we know if the loop always iterates at least once as well the 

identifier for the loop variable along with the abstract description of its value, (a E A~). 

It gives us two environments, one with which to partially evaluate the loop and another 

giving the state after the loop has been executed. The following algorithm assumes the 

existence of a function frun which takes an environment and a list of commands and 

returns the environment that would be obtained by running those commands. 

Algorithm 1 Calculate the fixpoint state for the loop 
Require: eorig E (Ident --t Value), comms E Block, always_iterates E Boolean, 

loop_var _id E Ident, loop_var _val E Value 
Ensure: einput, efinal E (Ident --t Value) 

e f- eorig 

repeat 
einput f- e[loop_vaLid --t loop_var_val] 
eoutput f- frun ( comms, einput) 

e f- eoutpudloop_var _id --t loop_vaLval] U einput 

until e = einput 

if always_iterates then 
efinal f- eoutput 

else 
efinal f- eoutput U eorig[loop_var _id --t [J] 

end if 

If it cannot be determined that the loop will ever execute even once, the final state 

environment of the loop is merged with the environment that would be obtained if the 

loop never executed. In some cases this could result in a lot of information being lost, 

and so it is important to examine the loop constraints first in case this merge can be 

skipped. For example: 

a = 0; 

for n = 1:5 

a = a + n - b· 

end 

This loop can be fully unrolled, resulting in a sequence of assignments. (Note that 1 - b 

is not identified as equivalent to 1, as this does not hold true if b is not a scalar). 

a = o· 
a = 0 + 1 - b; 

a = a + 2 - b; 

a = a + 3 - b; 

a = a + 4 - b; 
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a = a + 5 - b; 

n 5; 

In the following example, the loop cannot be unrolled when x is unknown. 

a = 0; 

b = 2· 

for n 1: x 

a = a + n - b; 

end 

In fact the only optimisation possible is the propagation of the value of b which can be 

determined not to change, when the least upper bound is found. 

a = 0; 

b = 2· 

for n = l:x 

a = a + n - 2; 

end 

The following is an example of code where the loop assignments must be generated to 

insure equivalent behaviour. 

a = 0; 

for n=1:4 

n(2) = x; 

a = a + n; 

end 

The assignments to n must be written out as there is an indexed assignment to n inside 

the loop. 

a = 0; 

n = 1; 

n(2) = x; 

a = 0 + n; 

n = 2; 

n(2) = x; 

a = a + n; 

n = 3; 

n(2) = x; 

a = a + n; 

n = 4; 

n(2) = x; 

a = a + n; 

While we have not implemented such a transformation, it may be possible to then convert 

the two assignments to n for each iteration above to a single one of the form: n = [1 xJ. 

There is never a risk that unrolling for loops will causes the partial evaluator to loop 

infinitely as the maximum number of iterations is always bounded. These loops can 

terminate earlier if break or return statements are present. 
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6.1.6 while loops 

Unlike for loops, while loops cannot be so easily determined as unrollable. There are 

two approaches to unrolling such loops: one method is optimistic and unrolls the loop 

until the loop condition indicates that it has terminated or the loop condition becomes 

dynamic. The second method uses a binding time analysis (BTA) to determine if the 

loop condition will be static on every iteration. 

Using the optimistic approach, there are no problems if the loop is found to terminate 

without the loop conditions becoming dynamic. However if the loop conditions become 

dynamic then unrolling cannot continue and the loop must be inserted into the residual 

code. The body of the loop and the loop condition are partially evaluated with respect 

to the least upper bound of the state after any unrolling that was successful. 

Using this method, the following loop has the initial iteration unrolled, but then the 

loop must be inserted as y becomes dynamic. 

'l.# x size [1 10] 

Y = 0; 

a = 0; 

while y < length(x) 

a = a + x(y); 

y y + a; 

end 

Using an optimistic approach to unrolling, this becomes: 

'l.# x size [1 10] 

Y 1; 

a = 0; 

a=O+x(1); 

y 1 + a; 

while y < 10 

end 

a = a + x(y); 

y y + a; 

One way of performing the BTA, would be to abstractly interpret the loop to see if it 

terminated or if the loop condition became dynamic. If it terminates during abstract 

interpretation, then the loop is static and can be unrolled. The problem with this 

approach is that involves doing most of the work of unrolling the loop without generating 

any code. Once it has been determined that the loop can be unrolled, much of this work 

must be repeated. If the loop cannot be unrolled then a fixpoint iteration to find the 

least upper bound would also still be required in the same way as after the optimistic 

unrolling. 

Another approach to determining whether to unroll is to find a conservative approxima­

tion of the staticness of the loop condition using a simple abstract interpretation model 

for which variables have three states, dynamic, static and undef. Our more complicated 
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environment maps directly to this without difficulty. ¥ie then perform a fixpoint itera­

tion on the loop maintaining a table of bindings for each variable. The reason for the 

undef binding is that the binding table is nested in the same way as the main symbol 

table. If a variable is undef in one table, its parents are checked for a non-undef binding. 

If no static/dynamic value can be found in any ancestor table then undef is returned 

by the lookup function. This fixpoint iteration will be considerably faster than the one 

used to find the least upper bound of the state as no computation is performed. 

For each expression we calculate the binding as follows: 

• Constants are static. 

• Variables are static if they are not dynamic in the environment. 

• Binary expressions are static if both operands are static. 

• Unary expressions are static if both the operand is static. 

• Function calls are static if all the parameters are static, the function exists and 

does not have side-effects. 

• Array accesses are static if the variable is not dynamic in the environment and the 

indices are all static. 

For assignments, the binding is stored in the symbol table. In the case of assignments 

to subscripts, a static binding is only recorded if the existing binding is static or undef 

and if the indices are also static. 

For conditional statements, if the condition is static, each branch is determined in par­

allel and the results merged using nested tables. If the condition is dynamic then any 

assignments appearing inside it mark their variables as dynamic. Static loops are de­

termined by performing a nested fixpoint iteration. Dynamic loops require that all 

assignments inside the loop mark their variables as dynamic. 

This approach can do nothing with the previous example, as the simple approximation 

would make x dynamic and therefore length (x) would be dynamic. The code could 

be rewritten to avoid this by calculating the value of length (x) before the loop and 

storing it in a variable which would then be static for the duration of the loop. This 

would be both a binding-time improvement and an optimisation to the original code 

since the length of x does not change. The advantage of performing a simple BTA step 

first, is that it almost always guarantees that the loop can be fully unrolled and it does 

this fairly quickly. 

Before attempting the BTA, the loop condition is abstractly interpreted once. If it 

is static and false, then the loop can be immediately deleted. Otherwise the BTA is 
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performed and if it is determined that the loop condition is static it is unrolled by 

partially evaluating the body of the loop for each iteration. At the end of each iteration 

the loop condition is checked and if still true, the unrolling is continued. If, at the end of 

an iteration, the loop condition has become dynamic then the partial evaluator aborts 

(or alternatively the loop could be inserted at this point). Reasons why this might occur 

are discussed in 6.1.7. Another way of dealing with the loop condition becoming dynamic 

during unrolling is to insert the original loop at that point as with the other method 

of unrolling. In practice, very few codes produced different results, presumably because 

loops which depend on the shapes of parameters are for loops which can already be 

unrolled. 

If the loop cannot be unrolled, a while loop is then inserted with the loop condition 

and body partially evaluated with respect to the least upper bound for the loop starting 

state. 

Algorithm 1 can be reused for finding the fixpoint for while loops by removing all the 

references to loop_var _id and loop_var _val. 

Unrolling while loops can cause infinite looping. If the loop would never terminate when 

the program was run normally, then the loop will be unrolled infinitely. One problem 

is that if the loop would not normally terminate but its execution only occurs when 

a dynamic condition is met, the partial evaluator will execute both paths. Hence the 

partial evaluator will always loop infinitely where the original program would only loop 

infinitely in some cases. Cases like this are not common but are not always contrived: 

if x < y + w 

y = 10; 

else 

while x - y 

x = x - 1; 

end 

end 

If X and yare static and w is dynamic then both branches of the if statement will be 

partially evaluated leading to the second loop being unrolled. If there is an assumption 

that w is always positive then normally the loop would never be executed if x was less 

than y and (assuming x and y differ by an integral amount) the code would always 

terminate. Since the partial evaluator always unrolls the loop, it will loop infinitely if x 

is less than y. In this case the code would need to be rewritten to avoid this problem, 

possibly by replacing -= with >. 

Listing 6.1 shows an implementation of a sprintJ-like function in MATLAB using a 

while loop. This relies on two functions, int2str and num2str, which are provided as 

part of MATLAB in m-files. 

function output = strprintf (format_string. varargin) 
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output = )'; 

count = 1; 

pos = 1; 

length = length(format_string); 

while pos <= length 

end 

if format_string(pos) == 'Yo' 

else 

end 

code = format_string(pos + 1); 

switch code 

end 

case 'd' 

output = [output int2str(varargin{count})]; 

count = count + 1; 

case 'f' 

output = [output num2str(varargin{count})]; 

count = count + 1; 

case's' 

output = [output varargin{count}]; 

count = count + 1; 

case 'I.' 
output = [output 'I. ']; 

pos pos + 2; 

output = [output format_string(pos)]; 

pos = pos + 1; 

LISTING 6.1: A simple implementation ofsprintf 

If we partially evaluate this function with the following format string: 

'My name is I.S, and I am I.d years old' 
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We get the output shown in Listing 6.2. (In fact this is the result after the post-process 

phase of the next chapter is applied, but the original was considerably longer and could 

have obscured our result). This new program has no control flow as the while loop has 

been unrolled and the conditional statements have all been determined as static. 

function output = strprintf __ 1(varargin) 

output [' My name is , varargin{1}] ; 

output [output ' , J] ; 

output [output , '] ; 

output [output 'a'] ; 

output [output 'n'] ; 

output [output 'd 'J; 

output [output , '] ; 

output [output 'I '] ; 

output [output , '] ; 

output [output J a' ] ; 

output [output 'm'] ; 

output [output , '] ; 

output [output int2str __ 1 (varargin{2})]; 

output [output , '] ; 

output [output 'y '] ; 

output [output 'e '] ; 

output [output 'a)] ; 

output [output 'r'] ; 

output [output 's )] ; 
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output 

output 

output 

output 

[output , 'J ; 
[output '0'] ; 

[output '1' J; 

[output 'd 'J; 

LISTING 6.2: A test function for our strprintf function 

6.1.7 Annotations 
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In addition to standard MATLAB language constructs, our tool recognises annotations 

which guide the partial evaluation. These always begin with %# and are ignored by 

MATLAB as comments. Annotations are just copied directly into the final code, but 

they do modify the symbol table. 

There are two types of annotations: variable annotations and general annotations. Vari­

able annotations describe variables, specifying the type, shape and definedness. This is 

useful for dealing with function parameters and also for preventing a variable identifier 

from being treated as if it was a function. 

% Declare that x is a scalar 

%# x size [1 1J 

% Declare that x is complex 

%# x complex 

% Declare that y is undefined 

%# y undefined 

For convenience we define two extra annotations: realdouble indicates that the variable 

is of class double and is real and not logical. In addition, realscalar is the same as 

realdouble but also indicates that the variable is a scalar. 

Function annotations describe how the function has been called. They specify the val­

ues returned by built-in functions like nargin and nargout, which return the number 

of parameters used to call the function and the number of return values requested re­

spectively. 

% Declare that the function is called with 2 parameters 

%# nargin 2 

% Declare that the function is called with 1 output 

%# nargout 1 

Currently MPE can loop infinitely on input containing loops which steadily widen shape 

values. Consider the following code: 

function y = f(x) 

y = 1; 

for n=2:x 

y = [y nJ; 

end 
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This function returns a vector of values from 1 to x with increment 1. The current 

implementation of MPE will iterate over the loop trying to find the shape of y. It can 

easily determine that it is a two dimensional matrix with 1 row. However each successive 

iteration will increase the number of columns by 1. Since iteration only ceases when 

stabilisation of shape information is achieved, the iteration will be infinite. To prevent 

this problem, the number of columns needs to be widened. If the number of columns is 

set to (1, w), no further iteration would be required. 

To this end, ideally we would develop heuristics to determine when there is a possibility 

of infinite iteration. For now the widen annotation can be used: 

function y = f(x) 

y = 1; 
for n=2:x 

end 

'l.# y widen 2 

y = [y n]; 

In this case, the second dimension of y has been widened, which means that iteration 

will not be infinite. Currently MPE limits the number of iterations for finding the least 

upper bound. When the limit is exceeded, it aborts, printing the variables that have 

not stabilised along with the information for the last two iterations allowing the user to 

determine which variables need to be widened. 

Printing differences for function f 

y ---------------

e1 (ndims 2) (size 

e2 : (ndims : 2) (size 

1 1-20) (type 

1 1-21) (type 

real) (value 

real) (value 

unknown) 

unknown) 

By default MPE will always unroll a for loop when the loop range is static. In addition 

if the loop condition of a while loop can be inferred to be static then it too will be 

unrolled. Sometimes this will cause an excessive increase in code size; this can be 

stopped by inserting a nounroll annotation in front of the loop. In addition the simple 

BTA may sometimes determine a loop to be unroll able when it is in fact not. This 

occurs when functions are called which are not static even when called with fully static 

parameters. Examples are nargin and nargout called with no parameters, which mayor 

may not be dynamic. These could be treated as special cases by storing whether nargin 

and nargout are static or dynamic in the binding table. However other functions cannot 

be dealt with so easily without making the analysis much more complicated. In cases 

where this mistake is made, a nounroll annotation is required to prevent the partial 

evaluator aborting. Alternatively the optimistic loop unrolling approach can be used, 

which just inserts a loop after unrolling becomes no longer possible. 

Loops which contain break or continue statements will never be unrolled by default. If 

the user knows that the loop conditions are static and that the control flow around these 

statements is also static, then an unroll annotation can be added before the loop to 

force unrolling. For while loops, the unrolling test is very conservative and will classify 
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loops as not unrollable when the loop condition depends on dynamic data for which size 

or type information exists, when using the simple BTA method. If during unrolling, it 

is found that the conditions were not static then partial evaluation will abort. 

Whenever MPE is generating code and it comes across a non-built-in function which 

cannot be executed directly, it will attempt to generate a specialised version of the 

function regardless of whether specialisation will actually be useful. It will also specialise 

MATLAB library calls for which MATLAB code can be found. This is sometimes 

undesirable and so the preserve annotation can be inserted to declare that a function 

should never be specialised. If the function has fully static data, it can still be directly 

executed and the call removed from the residual program. 

Sometimes functions are called with fully static data, for which it is undesirable to 

execute directly at partial evaluation time. This might be because the function calls 

other functions which have side-effects, which would then not be present in the residual 

code. One approach would be to detect any functions which might have side-effects and 

bar them from being directly interpreted, but this might bar functions which only have 

side-effects with certain parameters which are not used in the code to be specialised. 

To allow specialisation here, we introduce the nointerpret annotation which forces 

the function to be abstractly interpreted even if it has fully static parameters. If a 

function is directly interpreted and during this interpretation calls a side-effecting built­

in then partial evaluation will abort citing the function which called the built-in. In 

addition directly interpreting a function which calls a function which cannot be directly 

interpreted because of annotations will cause a similar error. 

6.2 Control Flow Change statements 

Control Flow Change statements cause the current control flow to jump to another point, 

such as the end of a function. We also include statements which cause the program 

to end such as errors and exit statements. For all the possible control flow statements 

described in the following subsections, abstract interpretation is not described explicitly. 

Since abstract interpretation has the same effect on the environment as when generating 

code, the only difference is that code is not generated. 

6.2.1 return statements 

Until now it has been assumed that the only way that a function can exit, is if control 

reaches the end of the function. However if control reaches a return statement then the 

function immediately terminates and returns the current values of the return variables. 

To handle this an extra environment is added, which stores the values to be returned 

from the function. 
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Its value is calculated by: 

tresult = tend U U ti 
i=l...n 
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(6.11) 

Where tresult is the final environment for the function, tend is the environment when 

control reaches the end of function (its value is ..1 if control never reaches the textual 

end of the function) and ti are the environment values at each of the n return statements 

in the function (which are equal to ..1 if control never reaches them). 

This is calculated in the partial evaluator by updating tresultJ whenever the partial eval­

uator generates a return statement or when it reaches the end of the function. Since 

these statements prevent control flowing further in the function, they immediately cause 

the partial evaluator to stop working on the current block. If the current block is the 

top level block, then the partial evaluator would have finished with the whole function. 

If the statement is contained in a dynamic conditional then the other branches still need 

to be partially evaluated. 

To handle this, the block partial evaluator returns a value, denoting how the block ended. 

If the block ended normally, it returns CFC_NONE and if it was ended by a return, it 

returns CFC_RETURN. The full set of values is given in Table 6.1. This set of values allows 

CFC_NONE 1 
CFCRETURN 2 
CFC_BREAK 4 
CFCCONTINUE 8 
CFC_EXIT 16 

TABLE 6.1: Exit values returned by the block partial evaluator 

blocks to terminate in several other ways, which will be described later. Each of the 

values corresponds to a single bit being set, which means that we combine and then 

test the values using the binary operators, OR and AND. The set CFC contains all the 

possible combinations, where at least one flag is present, e.g. CFC = {x E Nil::; x ::; 31}. 

If one branch of an if statement ends with a return, and one ended normally, the exit 

value would be CFC_NONE I CFC_RETURN. The partial evaluator would then discard the 

environment generated by the return block when calculating the environment after the 

if statement. Consider the following code: 

if a == 1 

b = 2; 

return 

else 

b = 4; 

end 

In this example, both branches set the value of b. However, any code after this condi­

tional will see a static value of 4 for b since the other branches contributes a value only 
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to the final value of the function. If both branches had ended with return, the block 

containing the if statement would itself terminate. 

6.2.2 break statements 

In normal execution, if one of these statements appears outside of a loop, it behaves 

exactly like a return statement. If it appears inside a loop, it causes the loop to 

terminate and for control to continue from after the loop. 

To handle this, we create a new environment when partially evaluating a loop which 

contains the state when the loop terminates. On reaching a break statement, this 

environment is updated in the same way as the environment for return statements. In 

addition the. block partial evaluator returns CFC_BREAK, which is propagated back in the 

same manner as CFC_RETURN. 

6.2.3 continue statements 

These statements are only allowed to appear inside loop, or an error will be generated. 

If it appears inside a loop, it ends the current iteration of the loop and passed control to 

the start of the loop causing the loop condition to be re-evaluated (as well as updating 

the loop variant if necessary). 

To handle this, we create a new environment when partially evaluating a loop which con­

tains the state when the current loop iteration terminates. On reaching a continue state­

ment, this environment is updated in the same way as the environment for break and 

return statements. In addition the block partial evaluator returns CFC_CONTINUE, which 

is propagated back in the same manner as CFC_RETURN. 

6.2.4 Errors 

When an error occurs during partial evaluation, the partial evaluator does not terminate, 

but continues generating code. This is because much of the control in a program will be 

dynamic, and so there will be dynamic conditionals which produce errors on one branch 

and not on the other. 

function y = f (x. y) 

if nargin < 2 

error (' This function requires 2 inputs'). 

end 

Since the partial evaluator does not know which branch will be taken it evaluates both, 

encountering the error on one branch. When this occurs, the partial evaluator recognises 
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that one branch results in an error and so reproduces that error in the residual code. 

It then ignores that branch when generating the rest of the function. When the block 

partial evaluator encounters an error it returns CFC_EXIT. 

In the example given here, after the if statement, execution can only continue if nargin 

is at least 2. If this is the case then y must be defined. The environment can then be 

updated with information. This is an example of positive context propagation, which 

will be discussed in Section 9.6. 

Errors are also caught in expressions when operators are used with incompatible operands. 

In this case, the statement containing the error will be removed and replaced with a state­

ment that reports the error that would be generated by executing the code as normal. 

Doing it this way, ensures that the residual code clearly shows that the input as given to 

the partial evaluator is responsible for the error (or that the program would produce the 

error given any input). For expressions with at least one dynamic operand, errors raised 

by trying to infer the shape of the resulting expression are also detected and flagged as 

above. 

For errors that occur in functions being executed by the concrete interpreter, an ex­

ception is raised, which is passed through all the calling functions until it reaches one 

generating code or abstractly interpreting. In the former case, the exception in the 

form of an error statement is then inserted into the code instead of the statement which 

called the original function. This statement also includes the stack trace to help the 

programmer trace the error. If the called function came from code being abstractly 

interpreted, then an error is raised at that point, as if it occurred in the current block 

and the abstract interpretation continues as normal for this case. 

6.3 Block Partial Evaluator 

We now describe the block partial evaluator in more detail. The block partial evaluator 

takes a block of statements and partially evaluates them with respect to an environment, 

in the process producing an updated environment and a new block. A block is a group of 

consecutive statements, which appear at the same indentation level in a well formatted 

program. Compound statements like if statements and for loops also comprise the 

statements which appear within them. 

In Listing 6.3, there are 4 blocks. Block 1 consists of the all the top level statements. 

Block 2 consists of the error statement. Block 3 contains the statements inside the 

while loop and block 4 is the assignment inside the second if statement. There are 

nominally 2 extra branches which represent the empty else branches of the if state­

ments. 

function z = pow (x, n) 
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if n < 0 

error('pow can only handle values of n >= 0'); 

end 

z = 1; 

while n > 0 

if moden, 2) 

z = z * x; 
end 

n = floor(n / 2); 

x :;;; x * x; 

end 

LISTING 6.3: Power function 
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Each of these blocks is partially evaluated at one point. When block 1 is partially 

evaluated, it partially evaluates both branches of the first if statement. The first branch 

(block 2) contains the error function call which causes the block partial evaluator to 

recreate the command in the residual program and return CFC_EXIT, while the second 

branch is empty and so causes it to return CFC_NONE. At this point, the two exit values 

are combined as CFC_EXIT I CFC_NONE, but the CFC_EXIT component is discarded as it 

contributes no information if combined with a value which allows execution to continue. 

All other blocks complete with an exit value of CFC_NONE. 

function y = product(x) 

y = 1; 

for n=l:length(x) 

if x(n) == 0 

y = 0; 

break 

else 

end 

end 

LISTING 6.4: Product function 

In Listing 6.4, there is a simple function for computing the product of a vector. If any 

element in the vector is 0, then the function loop stops and 0 is returned. l 

When partially evaluating the if statement, one branch terminates with a static value 

of 0 for y and an exit value of CFC_BREAK. The other branch ends with a dynamic 

scalar value for y and an exit value of CFCNONE. The break branch updates the loop 

end environment, while the environment from the other branch is used to continue the 

partial evaluation. 

The least upper bound is computed only using the second branch as taking the other 

branch would cease iteration. Once the least upper bound is found, the state after the 

lThis function would work just as well if return was used instead of break. 
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loop is the join of the normal loop end state and the break end state. Thus, the state 

after the loop has y as a dynamic scalar. 

function y = nzproduct(x) 

y = 1; 

for n=1:1ength(x) 
if x(n) == 0 

end 

continue 

end 
y=y*x(n); 

LISTING 6.5: Non-zero Product function 

In Listing 6.5, there is a function which computes the product of a vector while skipping 

Os.2 This time the two branches of the if statement end with CFC_CONTINUE and 

CFC_NONE. The loop iteration end environment is updated with the environment after 

the continue, and when the iteration is completed, this environment is merged with the 

main environment in order to compute the least upper bound. 

Algorithm 2 gives an updated version of Algorithm 1 for computing the fixpoint state 

for a for loop. This new algorithm takes both the current state, eorig, and the current 

return state, ereturn. It then produces new states, eoutput, which is the state after the 

loop has executed; einput, which is the state that should be used to partially evaluate the 

loop body (which will in turn reproduce eoutput); and ereturn, which is the accumulated 

state from all return statements so far. If while iterating, it is determined that no 

iteration of the loop will ever complete normally or due to a continue statement, the 

iteration is immediately stopped as the loop can never iterate more than once. In reality, 

if this determination is to be made, it will only happen on completing the first iteration. 

The exit value is also returned, with the CFC_BREAK or CFC_CONTINUE flags reset and 

converted to CFC_NONE if necessary. 

6.4 Function Specialisation 

A conservative approach to function specialisation would be mono variant and would 

create only one residual version of any function appearing in the source program. To do 

this, the least upper bound of all function signatures (including any information about 

parameters, the number of parameters and the number of outputs) would have to be 

found. This is likely to discard static data in the case of functions which are called many 

times in a program. 

Polyvariant specialisation can more effectively specialise programs, as it can produce 

multiple versions of functions. Naively one could produce a new version of each function 

2This function could easily be rewritten without the continue, but a non-trivial example would be 
much longer. 
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Algorithm 2 Calculate the fixpoint state for the loop while handling control flow change 
statements 
Require: eorig, ereturn E Ident ---t Value, comms E Block, always_iterates E Boolean, 

loop_var _id E Ident, loop_vaLval E Value 
Ensure: einput, eoutput, ereturn E Ident ---t Value, exit E CFC 

e +--- eorig 

repeat 
einput +--- e[loop_var _id ---t loop_var _val] 

(eoutput, ebreak, econtinue, e~eturn' exit) +--- frun ( comms, einput) 

eoutput +--- eoutput U econtinue 

e +--- eoutputlloop_var _id ---t loop_var _val] U einput 

until e = einput V (tesLflag ( exit, CFC_CONTINUE) /\ tesLflag ( exit, CFC.JWNE)) 
if always_iterates then 

eoutput +--- eoutput U ebreak 

else 
eoutput +--- eoutput U ebreak U eOrig [loop_ var _id ---t [J] 

end if 
ereturn = ereturn U e~eturn 
if tesLflag ( exit, CFC_CONTINUE) V tesLflag ( exit, CFC-.BREAK) then 

exit +--- seLflag ( exit, CFC.JJONE) 
exit +--- clear -flag ( exit, CFC_CONTINUE) 
exit +--- clear -flag ( exit, CFC-.BREAK) 

end if 

whenever it is called in the residual code. Each function would be specialised for its 

parameters hopefully reducing the execution time of the function. 

To reduce the number of functions produced, we memoize each residual function along 

with its call signature. When a function is to be specialised, the memo table is first 

checked for a matching signature and if one is found the memoized function is returned 

instead. 

Often a loop might be unrolled where the loop variable is used as a parameter to a 

function. This function would then be specialised for every iteration of the loop, pos­

sibly causing massive code explosion and increase in partial evaluation time. We do 

not currently check for this although annotations can be used to homogenise parame­

ters. Unfortunately these annotations only act on the current environment and so the 

changes would affect any later use of the variables and also they can only be used on 

dynamic variables. These limitations are fairly arbitrary and could be lifted without 

much difficulty. 

Once a function is specialised, the function is added to the list of specialised functions 

for the original function hashed using the call signature (consisting of the number of 

parameters, their values and the number of outputs). The outputs of the function 

(both static and dynamic) are also saved so that re-evaluation is not required for later 

invocations. As this is all saved after the function has been specialised it cannot handle 
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recursion (where the termination conditions cannot be determined statically) and this 

is likely to lead to infinite specialisation. 

In Listing 6.3, there is an example of a power function (using integer bases) which 

exploits the fact that x2n = xnxn , with an example function which invokes power using 

two different bases in Listing 6.6. 

function y = testpower(x) 

y = x + pow(x, 3) + pow(x, 4); 

LISTING 6.6: Power test function 

If we partially evaluate testpower without fixing anything, then the code in Listing 

6.7 is produced. Note that no post-processing is performed yet and so there are many 

redundant assignments. 

function y = testpower __ 1(x) 
y = x + pow __ 1(x) + pow __ 2(x); 

function z = pow __ 1(x) 

n = 3; 

z = 1 ; 

z = 1 * x; 

n = l' 

x = x * x; 

z = z * x; 
n = 0; 

x = x * x; 

function z = pow __ 2(x) 

n = 4; 

z = 1 ; 

n = 2; 

x = x * x; 

n = 1 ; 

x = x * x; 

z = 1 * x; 

n = 0; 

x = x * x; 

LISTING 6.7: Specialised version of testpower 

Once functions are specialised, the call signature is checked and any completely static 

parameters are removed from the list of parameters to the residual call, in a process 

known as repammeterisation [63]. Since static parameters are initially inserted into the 

function by assignments, there is no danger that a parameter may later be accessed 

when it is undefined, if it would not normally be. Static parameters include undefined 

parameters, which occur when functions are called with fewer than the maximum number 

of parameters. 

Vamrgin functions are those which have a final (or only) parameter called varargin. 

Such functions can be called with any number of parameters, with the excess values put 
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in varargin in the form of a row-vector cell array. The problem with this approach, is 

that if any of the excess parameters are dynamic, then varargin becomes dynamic and 

all of the other static parameters are lost. One way of dealing with this, would be to 

split out the static excess parameters into conventional parameters as in arity raising 

[29]. 

function y = f(varargin} 

y = varargin{l} + varargin{2}; 

For instance this code could become: 

function y = f(a, b} 

y = a + b; 

This would likely lead to a speed-up, but unfortunately it is unlikely that such code 

would exist.· It is more common to see varargin accessed inside a loop using a loop 

counter as an index. If the loop is dynamic, then there would never be any hope of 

performing such a transformation. If it was static, it would have to be deferred until 

after the loop was unrolled, in which case it would require re-evaluation of the code to 

insert previously unknown static values and propagate them through the function. 

Rather than performing this operation, it would probably be simpler (although require 

a large development effort) to introduce partially static cell arrays (and perhaps struc­

tures). For now, no attempt is made to preserve static excess parameters, but we have 

found in many cases, that either all of the excess parameters are static or they are all 

dynamic. 

The call signature of a varargin function has all the excess parameters stored in a cell 

array, which if dynamic retains only information about its size. This means that if x 

is dynamic, fCx, 1) and fCx, 2) have the same call signature, although fCx, 1, 2) 

would have a different signature. 

Static outputs (including unrequested outputs) are also removed from the function. 

For single output functions, this means that unless the function has side-effects, the 

call can be replaced with the returned value. For multiple output function calls, the 

dynamic outputs will be retained in the function call, while the static outputs will be 

inserted via assignments in the calling residual code. This means that our later dead 

code elimination will be more effective. For multiple output function calls for which all 

the outputs become static, the function call will be completely removed unless it has 

side-effects. 

Function calls which produce fully static outputs cannot always be removed, as the 

call may have side effects. In this case the function call needs to be retained, but its 

outputs can be removed as above, allowing more effective post-processing. This presents 

problems in the form of side-effect reordering. To prevent this we require that any 

function with side-effects called with nargout equal to 1, must retain its single output. 
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This means that function calls that are embedded in expressions will not be moved and 

so the side effects will remain in order. This requirement is probably unnecessary as 

users who rely on the order of function call execution are generally relying on undefined 

behaviour. 

6.5 Inlining 

In most partial evaluators, simple functions are unfolded inside the calling function. 

This unfolding performs a similar role to our loop unrolling for recursive functions. 

Since recursion is not so important, we do not unfold functions, but always specialise 

them. Once the function has been specialised, we then make a decision about whether 

to inline the specialised function in the calling function. Our main strategy for inlining 

is very simple. 

• The function to be inlined must be a single line function containing one assignment. 

The assignment must be to a simple variable and not a subscript. 

• Each of the parameters must be used only once. 

• The function must not have a varargin parameter. 

This strategy means no additional variables need be created and that the overhead of 

calling functions is reduced, without any expressions being executed more than once. 

For instance: 

a = b * f(lO * c, d + e * g(x»; 

function z = f(x, y) 

z = 25 + x * hey); 

is transformed into: 

a = b * (25 + 10 * c * h(d + e * g(x»); 

The second rule is rather restrictive as it always bars the inlining in cases like this: 

a = f(a, g(b»; 
a = f(g(a), b); 

function z = f (x, y) 

z = x * x + y; 

If the first invocation was inlined as above it would result in a = a * a + g (b), which 

would cause no problems. The reason for the second rule is the second invocation, which 
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would be transformed into a = g(a) * g(a) + b, which leads to g being invoked twice 

when it was only invoked once in the original program. 

The general solution to this would be to create a variable to store g (a) and use that. 

The first reason for not doing this is simplicity: we are creating a partial evaluator 

not an optimising compiler. The second reason is that MATLAB has no intra-function 

scoping, so once the variable was created it would not be destroyed until the end of the 

function, assuming we created unique variables for each inlined function. This problem 

could be reduced by reusing the variables we use for inlining. It would not be a problem 

if used with better compilers and interpreters, which detected that a variable was never 

used again or which provided common sub-expression elimination as then no temporary 

variables would be required. 

An alternative solution maintaining our goal of simplicity, is to allow inlining when the 

parameter is a simple variable access. This would inline the first example above but not 

the second. One convenient exception is that subscripts of parameters count as multiple 

accesses of a parameter. 

a = rand (3) ; 

b rand(3); 

c = f(a([l 1 1],:), b); 

c = f(a, b([1 1 1],:)); 

function z = f(x, y) 

z = x ( [1 2 3J, [3 2 1]) + y; 

This exception means that the first invocation of f would not be inlined but the second 

one would be. This prevents the creation of the following invalid MATLAB code: 

a([111J,:)([1 2 3J, [321]). 

The only reason for excluding varargin parameters is that it more complicated to 

map cell array accesses to the calling parameters. This functionality could certainly be 

added later, although a stepping stone would be the conversion of varargin functions 

to ordinary functions, by arity raising, in the case where the number of parameters is 

known in advance. Once this transformation is done, our inlining strategy could be used 

if applicable. 

Given the restrictions on how inlining is applied in our partial evaluator, it is unlikely 

that functions produced as described in the previous section would ever be inlined due 

to redundant assignments. The next chapter describes how the these functions are 

post-processed to remove most of this redundant code. 
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6.6 Least Upper Bound Caching 

To partially evaluate a loop which cannot be unrolled requires the least upper bound 

of the initial loop state to be computed. If the loop itself contains a loop which also 

cannot be unrolled, its least upper bound must be found in order to find the least upper 

bound of the outer loop. In fact the inner least upper bound must be computed for 

each iteration of the outer loop computation. Nesting loops (including loops appearing 

in functions called inside loops) leads to an exponential increase in specialisation time. 

In addition, while the least upper bound is being computed, no code is being generated. 

Once it is found, one final traversal of the loop is required which generates the code. 

In our original partial evaluator, on encountering an inner loop, its least upper bound 

would be recomputed again. Since this final traversal of the outer loop will use all of the 

same values that were used on the final iteration of the least upper bound calculation, 

the extra least upper bound calculation on encountering the inner loop while generating 

code will produce exactly the same result. 

As a result, significant time can be saved by caching least upper bounds once they are 

calculated. The approach we take is to speculatively store a least upper bound for each 

loop once it is computed. If a least upper bound calculation needs to be redone because 

of a change in the outer least upper bound calculation, then the cached result is deleted 

and replaced with the new result. 

The least upper bound cache is actually just a list containing the least upper bound 

states as they are encountered during the computation. When a loop is encountered, 

the current size of the cache is increased by 1 and the final position is reserved. Once 

the calculation is completed, its result will be stored in this position. This makes the 

cache like a queue where instead of adding directly to the back, a place is reserved which 

can be filled later. 

At the start of each iteration of each least upper bound calculation, the cache after the 

current position is cleared as the following states are to be recalculated. For a program 

consisting of only unnested loops, the cache will always be empty. The first interesting 

program would be like the following: 

for n = l:x 

for m = l:y 

end 

end 

Here we have the n-loop and the m-loop, with the m-loop nested within the n-loop. The 

least upper bound of the n-loop is calculated before its body can be partially evaluated. 

During the first iteration, the m-loop is encountered and position 0 is reserved in the 

cache which now has size 1. Since this loop is not nested, the cache will not have been 
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altered when the calculation is completed. The computed state will then be stored at 

position 0 and then the first iteration of the outer loop calculation will end. 

At this point, the environment will be examined to see if a fixpoint has been reached 

and if not iteration will continue. This causes the cache from position 0 (i.e. the whole 

cache) to be cleared. The inner least upper bound will be recomputed and again stored 

at position O. Once the outer least upper bound calculation is complete, the result will 

be a cache containing one element. The body of the outer loop will then be partially 

evaluated, at which point the inner loop will be encountered. Since the cache is not 

empty, its least upper bound will not be computed, but the front of the cache will be 

popped and used to partially evaluate the body of the inner loop. 

a = 1 ; 

for n = 1: x 

for m = 1:y 

if a -= 1 

a = (n,m) 

end 

a = f(m,n) 

end 

end 

function y = f(x,y) 

for a = 1:x 

end 

The above example is more complicated since it contains a nested loop at the top level 

which contains two calls to the function f which itself contains a loop that cannot be 

unrolled. In addition, during the first iteration the first function call will not be examined 

as a is static and equal to 1. On subsequent iterations, assuming f cannot be statically 

determined to return 1, the function will be called twice. 

At the end of the first iteration of the outer least upper bound calculation, the cache 

will contain 2 states and it will be filled as follows: 

On the second iteration the cache will have size 3 and it will be filled as follows: 

Note that none of the cached values on the second iteration are related to the cached 

values from the first iteration even though we have reused the symbols. If any further 
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iterations are required then, the cache will be filled out in the same manner as the second 

iteration. 

Once the least upper bounds are found, their order in the table will be identical to the 

order in which the loops will be encountered while partially evaluating, in which case 

the states can be popped from the cache as required. In doing so 5 repeated calculations 

(s~ once and s~ and s; twice each), are avoided. The downside is that the current state 

needs to be copied for each least upper bound and only the final cached value is actually 

used. The memory usage of the partial evaluator is thus raised as is the total number 

of allocated MATLAB arrays. Since the speed, with which MATLAB runtime library 

operations run, is slowed as more are created, this creates scalability problems which 

are beyond our control. 

One problem that can occur using this approach is that a function containing loops 

that cannot be unrolled will be called twice with the same signature inside a loop. 

If the function has not been specialised before, no return information is available for 

the function and so it must be abstractly interpreted and the least upper bound of 

the internal loop calculated and stored in the cache. When the second function call 

is encountered, exactly the same will happen, resulting in another table being added 

to the table. However, later when the code is being generated, the first function call 

will be specialised, and the cache will be popped once. The return values will then be 

stored in the function call signature table, so that when the second call is reached, no 

specialisation is required and the specialised function can be reused. Unfortunately the 

cache is now out of sync. If the function is not specialised, the cache will contain an entry 

that is not used. If there are further loops to be specialised, they will attempt to use 

this cache entry even though it is not applicable, resulting in incorrect code generation. 

for n = l:x 

fen) ; 

fen + 1); 

fen, 2) ; 

end 

function f ex, y) 

for n = 1: x 

end 

To solve this, before specialising a function, we note the number of loops left intact 

so far. This is subtracted from the number of loops left intact after specialising the 

function, giving n, the number of loops left intact in the function and the functions it 

calls. On encountering a function specification for which a specialisation already exists, 

while inside an intact loop, the first n entries are removed from the cache. 
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1.# x realscalar 

f(x, 1) ; 

for n = l:x 

fen, 1) ; 

fen + 1, 1) ; 

fen, 2) ; 

end 

function f(x, y) 

for n = l:x 

end 

Above, outside the loop there is previous specialisation of f which due to the annotation, 

will have the same signature as the two calls inside the loop. When computing the least 

upper bound of the loop, there is no need to re-evaluate f for these two calls as the 

return values are already know. However, the work-around for the previous example 

does not recognise whether functions were actually specialised during the current loop, 

and so it will try and remove one entry from the cache for each function call. Since there 

will be only one entry as created by the third call to f, the partial evaluator will fail. 

This is solved by inserting as many dummy entries into the cache as would be removed 

later. 

6.7 Summary 

Within this chapter, we have given a full description of majority of the partial evaluator 

inner workings. We have demonstrated how MATLAB statements are evaluated and how 

the decision is made to reduce or to residualise. Using the type system from Chapter 4, 

we have demonstrated what part abstract interpretation plays both while generating 

code and also when computing the least upper bound of the loop state using a fixpoint 

iteration. 

Having introduced control flow change statements such as break and continue, we 

have refined our fixpoint iteration to correctly handle these constructs. Since computing 

the least upper bound can account for a large part of the partial evaluation time, we 

demonstrate a strategy for caching least upper bounds in nested loops, even when they 

are nested within other functions. 

The polyvariant specialisation strategy is outlined including how we reuse functions 

which share call signatures, made up from the parameters values and types. We also 
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describe a simple but safe inlining strategy which is applied after function specialisation 

and so can take advantage of the caching strategy just mentioned. 

In the next chapter, we will describe a post-processing phase designed to tackle the 

specific problems that this partial evaluation strategy introduces. Assignments are gen­

erated even when the right-hand side is static, without checking if it will be required. 

This means that much code is generated that is entirely redundant, increasing both the 

residual program size and the time to execute. 

Additionally, while specialised functions are cached in a table indexed by the function 

call signature, many functions can be specialised identically for different signatures. 

These identical functions increase program size and can hurt cache performance and so 

a post-processing phase that eliminates them is essential. 



Chapter 7 

Post-processing 

The purpose of this phase is to reduce the size of the code produced by the partial 

evaluation. It does this by removing dead statements. Dead statements are ones which 

do not have any effect on the result of the current function, do not modify global variables 

and do not produce any side-effects. 

We initially used the following simple approach: assume all variables in a function are 

dead except for the variables returned by the function. Any assignment to a dead 

variable is redundant and so can be removed. For any statement which is not dead, 

mark all the variables referenced in it as live. For if statements and switch statements, 

perform the above algorithm for each branch in parallel and then merge the list of live 

variables, so that any variable that is live on at least one branch, is also live before the 

conditional. For loops, it is necessary first to find the loop dependencies. These are 

variables that are referenced in the loop without first being assigned in the loop. These 

loop dependencies are then to be added to the list of live variables before applying the 

original algorithm. This needs to repeated as removal of dead statements may change 

the loop dependencies, exposing more dead statements. 

This algorithm is sufficient for the majority of codes, but it has several problems. It 

cannot remove assignments inside loops which create values, only consumed on other 

iterations of the loop. This is because the assigned variables become loop dependencies. 

E.g. 

function y factorial ex) 

a = 1; 

y = 1· 

for n 1: x 

end 

y y * n; 
a = a + 1; 

In this example, if the loop cannot be unrolled, the previous algorithm will not be able 

to remove any statements, even though a contributes nothing to the final result. 

101 
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In addition this initial algorithm was developed when our subset of MATLAB excluded 

return, break and continue statements. These statements complicate the control flow 

and extending the algorithm to deal with them would not be easy. 

As a result we replaced the dead code removal algorithm with one using ud-chains (Use­

Definition). Ud-chains link a use of a variable to all the places where it could be defined. 

The dual of ud-chains are du-chains (Definition-Use), which link a definition of a variable 

to all the places where it might be used. These can be created by solving the reaching 

definitions problem. Using ud-chains means that irregular control flow using break, 

continue and return is possible and it is also more effective at removing dead code. 

While we do not require the du-chains for our algorithm, we can use these for further 

optimisations along with the ud-chains. 

To create the ud- and du-chains, we need to solve the Reaching Definitions problem. 

This "finds which definitions of a variable may reach each use of the variable". [52] It is 

a forward data flow algorithm that uses a lattice of bit vectors, where each bit represents 

a variable definition. In general, it is used to find the definitions which reach each basic 

block of a procedure rather than individual statements. 

7.1 Dividing into Basic Blocks 

This data flow problem is normally performed on low-level or intermediate-level code 

and not on the high level parse tree that our partial evaluator produces. This creates 

some small problems, as high-level representations are not so easy to partition into basic 

blocks. One approach would be to convert the parse tree form into a low level form and 

then perform the reaching definitions analysis and dead code removal. This could be 

problematic as the conversion back to the high level form is not likely to be simple. 

In order to use the high level form, a method of partitioning into basic blocks must be 

devised. For most cases we define a basic block using an existing block l and two integers, 

which give the start and end of the basic block. We also have two special blocks which 

do not contain any commands: the entry point and exit point blocks. All exits from a 

function, which allow execution to continue, flow through the exit point. 

The function shown in Listing 7.1 would be represented by the parse tree gIven m 

Figure 7.1. This function is made up of 6 basic blocks including the start and exit 

blocks. Figure 7.2 gives a directed graph of the basic blocks showing how control can 

flow from the start of the function to the end. Basic blocks are subdivided as follows: 

• Simple statements which do not affect the control flow, like expressions and all 

types of assignment are just appended to the end of the current basic block. 

1 A block could be the list of top level commands in a function or the list of commands in the body 
of a loop or conditional statement 
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a= 1; y = 1; if x == 1 

a=2; b = 1; b = 5 * x; 

FIGURE 7.1: Parse tree for 7.1 

a=2; 
b = 1; 

Entry point 

= a * y + b; 

y = a * y + b; 

2 

y = -1; 

FIGURE 7.2: Graph of basic blocks for 7.1 
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function y f(x) 
a = 1 ; 

Y = 1 . 

if x -- 1 

a = 2; 
b 1 ; 

else 
b 5 * x; 
y -1 ; 

end 
y = a * y + b; 

LISTING 7.1: Example Code 

• The conditional part of an if statement is appended to the current basic block. 

The first set of statements starts a new basic block and so does the else set. A 

new basic block is created to which two branches point. See Figure 7.3(a). 

• The while statement starts and ends its own basic block. This block points to 

a basic block created from the body of the loop. At the end of the loop body, 

the final basic block points back to the while basic block. This then points to an 

empty basic block to indicate the loop exit. See Figure 7.3(b). 

• switch statements require a new type of basic block to encapsulate the case test. 

This is a basic block which just contains the case and its expression. This is 

required because case is not a valid statement as it can only happen inside a 

swi tch. The switch statement itself is appended to the last basic block, as with 

if statements. It then points to the first case basic block. This will then point 

to a basic block with the associated commands and also to the next case which 

will also point to two basic blocks. This is done for all the cases until the last one 

which points to a basic block for the otherwise statements. At the end of the 

statements for each case and the otherwise clause is a pointer to an empty basic 

block indicating the end of the switch. See Figure 7.3(c). 

• for loops are more complicated than while loops as the loop range is only eval­

uated once while the loop variant is updated on every iteration. As a result, we 

have two new kinds of basic block: one contains a f or loop and indicates that it is 

the preamble and only evaluates the loop range. The other contains a for loop and 

indicates that it updates the variant. The loop then is comprised of a preamble 

basic block which points directly to a variant basic block. The variant then points 

to the body of the loop as well as an empty block at the end (used for loops, where 

the body never executes). At the end of loop body basic blocks, control flows both 

to the variant block and the exit block. See Figure 7.3(d). 

• break causes the current basic block to flow to the exit block of the current loop. 

See Figure 7.4(a). 

• continue causes the current basic block to flow to the header block of the current 

loop. See Figure 7.4(b). 
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• return causes the current basic block to flow to the exit block of the function. See 

Figure 7.4( c) . 

• In addition the built-in function error causes a change in the control flow as it 

causes execution of the program to stop. As a result control does not flow at all 

from a basic block ending with error. See Figure 7.4(d). 

In the Figure 7.3 and Figure 7.4, solid lines indicate that flow goes directly from one 

block to the one pointed to by the arrow. If the line is dotted, then there may be other 

blocks in between, for instance if a for loop is nested inside a while loop. 

For each basic block, i, there exists a set Pred (i) which contains all the basic blocks 

from which control can flow to i. 

7.2 Calculating ud- and du-chains 

Once the function has been divided up into basic blocks, the ud- and du-chains need to 

be calculated. A ud-chain is made up from a Use and a list of Definitions, whereas a 

du-chain is made up from a Definition and a list of Uses. A Use comprises a variable 

and the location of the statement where it is used. A Definition is made up from a 

variable and the location of the statement that writes to it. 

We first calculate the reaching definitions using the method outlined in [52]. This in­

volves creating kill (i) and gen(i) vectors for each basic block, i, indicating which defi­

nitions are killed and which are created respectively. To do this we traverse the whole 

function creating a list of definitions; the position of a definition in this list indicates the 

position of the relevant bit in the bit vectors. 

Each basic block is then traversed and for each assignment, the relevant definition in 

the gen (i) bit vector is mar ked set if it is the last assignment to that variable in the 

block. All other definitions for that variable are then marked in the kill(i) bit vector. 

In addition the gen bit vector for the entry node has the definitions for the function 

parameters marked. 

Two additional bit vectors are then created for each basic block: RCHin( i) gives the 

definitions that can reach the start of a block, i, and RCHout(i) gives the definitions 

that can reach the end of that block. These can be calculated from: 

RCHout(i) 

RCHin(i) 

gen(i) V (RCHin(i) 1\ not(kill(i)))Vi 

V RCHout(j)Vi 
jEPred(i) 

(7.1 ) 

(7.2) 
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if ... 

while ... 

(a) if (b) while 

case ... for ... = exp 

case ... for var = ... 

(c) switch (d) for 

FIGURE 7.3: Basic blocks for conditionals and loops. 

We now perform a fixed point iteration using equations 7.1 and 7.2. This gives us 

RCHin(i) and RCHout(i) for each basic block, i, which can be used to create the ud­

and du-chains. 

Each basic block is examined, one statement at a time to find uses. Each use is recorded 

along with the current live definitions. The current live definitions are taken from RCHin 

initially, but assignments in the current block cause the current definition to be replaced. 

The exit block of the function is considered to use the output variables of the function. 

Indexed assignments and deletion assignments are both uses and definitions as they 
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while ... 

break 

(a) break 

while ... 

return 

(c) return 

continue 

while ... 

(b) continue 

while ... 

.~ 

~ 
(d) error 

FIGURE 7.4: Basic blocks for the control flow change statements (inside a while loop) 
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both use the old value and assign a new value. Technically any uses of a variable after 

such an assignment also use any old definitions, but we can ignore this as it just makes 

the chains longer and has no effect on the result of our algorithm. 

7.3 Dead Code Elimination 

The Dead Code Elimination occurs in two parts: the first part marks as live the state­

ments directly required to compute the result of the function, while the second part 

marks all the control flow statements that are required. 

Initially all statements are unmarked. We then mark live those statements which produce 

a side-effect. This includes all statements including calls to functions (both m-files and 

built-in functions inferred to produce aside-effect) and expressions and assignments 

which are not terminated by a semi-colon and so would print the result. In addition we 

also mark live all the control flow change statements (return, continue and break) as 

working out whether they are redundant is beyond the scope of this work. 

As with [52], we use a work-list which we initialise with the set of essential statements 

as well as the exit point. One by one, we remove statements from the list and examine 

the uses. For each use, we add to the work-list every currently unmarked statement 

that creates a definition by examining the appropriate ud-chain as well as marking the 

statement as live. This process is continued until the work-list is empty at which point, 

every statement that directly contributes to the result of the function will be marked 

live. 

However conditionals or loops, containing live statements, may not be marked live, so 

the second stage scans the function for marked statements and marks all the control flow 

statements that contain them. For instance, if a marked assignment is inside a for loop 

then that for loop will be marked live and added to the work-list for the previous stage. 

Once the second stage is completed, the first stage is repeated. If no changes were made 

in the second stage then the work-list will be empty and so it will immediately cease. If 

the first stage makes no changes then the iteration ceases and the dead code elimination 

is completed. 

If at any point, a statement with side-effects is marked live then the function itself is 

marked as having side-effects, thus enabling its callers to treat their calls accordingly. 
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7.4 Duplicate Function Elimination 

While using a type system which provides information about dynamic parameters en­

ables more specialisation opportunities, it also has the side-effect that two functions 

could be produced which are identical even though they have different call signatures. 

function z = f (x, y) 

if x > 5 

z = Y + 10; 
else 

z = y + 5; 

end 

For instance, if the function above is specialised with static y 

get: 

function z = C_1 (x) 

if x > 5 

z = 14; 

else 

z = 9; 

end 

4 and dynamic x, we 

However, there are lots of ways of specifying x to produce the above residual code. So 

long as x is not specified as something which cannot be used in an inequality test, the 

above code will be produced. This means x includes but not exhaustively sparse arrays, 

single precision arrays, sparse real arrays, real double precision arrays and even real 

logical double precision arrays. While the possible classes and traits are finite, there are 

infinitely many shape specifications which would all produce the same code. 

These redundant specialisations are bad for two reasons: they increase the size of the 

residual program (thus hurting cache performance) and they require redundant com­

putation at specialisation time. Unlike [59], we do not attempt to detect these before 

creating them, but after specialising a function we compare it against all previously 

specialised versions of that function. This comparison checks for structural equality of 

the abstract syntax trees of each of the functions. The variable names must be identical 

at each point as well as the names of any called functions. This will therefore not catch 

two functions which are identical but for variable names, but since such functions are 

unlikely to appear as a result of two specialisations of the same function, this is not a 

problem. Since called functions must have the same name in each function to be con­

sidered identical, it will only mark a function as a duplicate if the called functions were 

specialised and marked as duplicates. 

Debois [16] uses bisimulation equivalence to detect duplicate specialisations for a flow 

chart language. The target there is however more fine-grained than ours as we are 

only checking for functions, while Debois is looking for duplicate sets of basic blocks 

leading up to the end of a function. Since we have an AST at this point, a side-by-side 
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comparison of two ASTs is relatively simple, which is not the case in the unstructured 

flow-chart language. 

As with Ruf and Weise [59], we maintain information about the return values of each 

function. This information is stored in the function call signature, which then links 

to the specialised function. In the case of duplicates, this return information is still 

calculated since the function was specialised before the duplication was detected. The 

function call signature of the duplicate is modified to point to the original specialisation 

and the extra one is deleted. 

A better solution may be to try and avoid creating these specialisations in the first 

place. However as Ruf and Weise showed, the order of function specialisation can effect 

whether duplicates are detected prior to specialisation. If there are two specialisations 

which produce the same result, but one specialisation has a looser specification that 

includes the other one (Sl !;:;; S2), then performing the specialisation with the tighter 

specification (sd first will allow the second specialisation (with specification S2) to be 

avoided. Reversing the order however requires both specialisations to be performed. 

An approach which attempted to calculate a further specification, Sm, which was the 

most precise specification (given the limits of the type system) which led to the same 

specialisation, in conjunction with the least precise specification SI, might be feasible. 

The specialisation can then be reused safely and optimally if Sm !;:;; S !;:;; SI. 

Exactly calculating Sm and SI would not be possible but an approximation could be 

achieved, which could prevent a significant number of redundant specialisations. Whether 

or not the cost is justified would have to be examined. 

Even with our late function duplication detection, the specialisation time can often be 

reduced. This is because deleting functions causes the constants stored in the abstract 

syntax trees to be deleted. Since these use the MATLAB library type mxarray, and 

due to the poor performance of the libraries given large scale array allocation, the larger 

programs become the slower the partial evaluator becomes. The cost of detecting and 

deleting functions can then be outweighed by the speed-up achieved by using fewer 

arrays. 

7.5 Summary 

In this chapter, we have seen two main methods for reducing the size of the residual code 

produced by a partial evaluator. Firstly a method for removing all code which neither 

contributes to the returned values of a function or its side-effects was proposed using 

ud-chains. Secondly a structural equivalency check was introduced for newly specialised 

functions, which detects and removes identical functions produced from different call 

signatures. The need for these methods comes from the partial evaluation technique, 
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which is skewed towards generating more code than necessary, since elimination at a 

later stage is simpler. 

As noted by Knoop [43], it is possible that removing dead assignments or expressions 

could change the semantics of a program as the dead code could generate a run-time 

error. Division by zero is not a problem in MATLAB as it evaluates to plus or minus 

infinity or "Not A Number", all three of which are valid values in MATLAB. However 

multiplying two matrices with incompatible dimensions will halt execution as will raising 

a matrix to the power of another matrix. We do not consider this to be an important 

problem but note it for completeness and discuss it further in Section 9.1. 

Another way the semantics of a program could be modified by our dead code elimination 

algorithm, is if a loop is removed which would never terminate. E.g. 

function. y = f(x) 

while x > 1 

x = x + 1; 

end 

y = 10; 

In the above example, the function f ex) will never terminate unless the initial value 

of x is less than or equal to 1. But our strategy only considers loops which contain 

statements contributing to the final return value, which this loop does not. As a result 

the assignment x = x + 1 is not marked live and consequently neither is the while loop, 

making the resulting function: 

function y = f(x) 

y = 10; 

Using the assumption that we are only dealing with programs that have been thoroughly 

tested and work, we will assume that such loops will not feature in the input to our partial 

evaluator. 

With the core partial evaluator functionality built and with an effective post-processor, 

it is now possible to examine real functions and programs. In the next chapter, we 

will examine empirically the efficacy of the partial evaluator with and without the post­

processor. Our examples range in complexity from the relatively simple functions like 

Chebyshev approximation and Lagrange interpolation to a large optimisation program 

used to model aero-engine inlets. 
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Results 

In this chapter we will evaluate the effectiveness of our partial evaluator on several pro­

grams. The code for these tests is a mixture of code developed inside the Computational 

Engineering and Design research group at the University of Southampton\ code from 

partners at other universities and code found in repositories on the Internet. 

8.1 Single Function Experiments 

These first experiments show the results of applying partial evaluation to small functions, 

with clear specifications for the parameters. 

8.1.1 Chebyshev Series Approximation 

The first code tested was a function for the generation of Chebyshev polynomials [24], 

which, like power series, are used to approximate functions by summing terms. As with 

power series, using more terms leads to better approximations. This function has two 

parameters, a m-by-n matrix, c, of coefficients for calculating m functions with n terms 

and a vector, x, as input to the functions. Table 8.1 shows the relative timings for the 

chebyshev function (iterated 5000 times to get measurable results). Timings are shown 

where the function has been partially evaluated where just n is fixed, c is fixed and 

lastly where c is fixed along with the size of x. The timings are further subdivided 

according to whether post-processing was used. The results show a steady increase in 

performance as more information is fixed, with the final function running in half the 

time of the original, when post-processing is used. Listing 8.1 is the implementation of 

the Chebyshev series approximation algorithm. 

1 http://wwv.ses.soton.ac.uk/projects/Comp_Eng~es/comp_eng_des.html 
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Orig n fixed c fixed c and size of x fixed 
size(c,2) No p.p. With p.p. No p.p. With p.p. No p.p. With p.p. 

2 1.00 0.90 0.89 0.81 0.77 0.60 
4 1.00 0.94 0.92 0.84 0.81 0.59 
6 1.00 0.94 0.93 0.85 0.82 0.58 
8 1.00 0.94 0.94 0.85 0.83 0.57 
10 1.00 0.95 0.95 0.86 0.84 0.57 

TABLE 8.1: Relative timings for the Chebyshev functions with m = 3 and p 
relative to original function (p.p. is post-processing). 

function y = chebseries(c,x) 

m = size(c,1); 

p size(x,2); 

a = zeros(m,p); 

b a; 

xx = ones(m,1) * x; 

f = 2 * xx; 
for k = size(c,2):-1:1 

d b; 

b a; 

a = c(: ,k) * ones(1,p) + b .* f - d; 

end 

y = a - (b .* xx); 

LISTING 8.1: A simple implementation of Chebyshev series approximation 

0.48 
0.50 
0.51 
0.52 
0.52 

3, 

Listing 8.2 shows the Chebyshev function partially evaluated with size (c, 2) set to 4. 

The only difference post-processing makes in this case is the removal of the assignment 

to k. 

function y = chebseries __ 1(c, x) 

m = size(c, 1); 

p size(x, 2); 

a = zeros(m, p); 

b a; 

xx = ones(m, 1) * x; 

f 2 * xx; 

d b; 

b a· 

a = c ( : , 4) * ones(1, p) + b · * 
d b; 

b a; 

a = c ( : , 3) * ones(1, p) + b · * 
d b; 

b a; 

a = c ( : , 2) * ones(1, p) + b · * 
d b· 

b a; 

a = c (: , 1) * ones(1, p) + b · * 
k 1 ; 

Y a - b .* xx; 

f - d; 

f - d; 

f - d; 

f - d; 

LISTING 8.2: The Chebyshev series approximation code partially evaluated with 

size(c,2) fixed 
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Listing 8.3 shows the Chebyshev function partially evaluated with c set to a 5-by-4 

matrix. Here post-processing would remove the assignments to c, m and k. 

function y = chebseries __ 1(x) 

c = [0.950129 0.762097 0.6154320.405706; 

0.231139 0.456468 

0.606843 0.0185036 

0.485982 0.821407 

0.891299 0.444703 

m = 5 ; 

P size(x, 2) ; 

a = zeros(5, p) ; 

b a· 

xx = [1; 1; 1; 1; 1] * x; 

f 2 * xx; 

d b· 

b a; 

0.791937 

0.921813 

0.738207 

0.176266 

0.93547; 

0.916904; 

0.41027; 

0.89365]; 

a = [0.405706; 0.93547; 0.916904; 0.41027; 0.89365] * ... 
ones(l, p) + b .* f - d; 

d b; 

b a; 

a = [0.615432; 0.791937; 0.921813; 0.738207; 0.176266] * 
ones(l, p) + b .* f - d; 

d b; 

b a· 

a = [0.762097; 0.456468; 0.0185036; 0.821407; 0.444703] * 
ones(l, p) + b .* f - d; 

d b; 

b a· 

a = [0.950129; 0.231139; 0.606843; 0.485982; 0.891299] * 
ones(1, p) + b .* f - d; 

k 1; 

Y a - b .* xx; 

LISTING 8.3: The Chebyshev series approximation code partially evaluated with c 

fixed 

Listing 8.4 shows the Chebyshev function partially with c set to a 5-by-4 matrix and 

size ex, 2) set to 5. We show here, the post-processed version of the code. While this 

code runs in only half the time of the original function, it is immediately evident that 

further improvements could be made. The first assignment to a is effectively a = a + 0 

* f - o. If the expression was reordered, the subtraction would have been performed 

but a better solution would be to identify binary operations where one operand is all 

zeros or all ones or the identity matrix and perform the appropriate constant folding. 

function y = chebseries __ 1(x) 

xx = [1; 1; 1; 1; 1] * x· 

f 2 * xx; 

a = [0.405706 0.405706 0.405706 0.405706 0.405706; 

0.93547 0.93547 0.93547 0.93547 0.93547; 

0.916904 0.916904 0.916904 0.916904 0.916904; 

0.41027 0.41027 0.41027 0.41027 0.41027; 

0.89365 0.89365 0.89365 0.89365 0.89365] + ... 

[0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0] . * ... 
f - [0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0]; 

b a· 
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a = [0.615432 0.615432 0.615432 0.615432 0.615432; 

0.791937 0.791937 0.791937 0.791937 0.791937; 

0.921813 0.921813 0.921813 0.921813 0.921813; 

0.738207 0.738207 0.738207 0.738207 0.738207; 

0.176266 0.176266 0.176266 0.176266 0.176266] + b . * 
f - [0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 O' 0 0 0 0 0]; 

d b; 

b a; 

a = [0.762097 0.762097 0.762097 0.762097 0.762097; 

0.456468 0.456468 0.456468 0.456468 0.456468; 

0.0185036 0.0185036 0.0185036 0.0185036 0.0185036; 

0.821407 0.821407 0.821407 0.821407 0.821407; 

0.444703 0.444703 0.444703 0.444703 0.444703] + b .* f - d; 

d b; 

b a; 

a = [0.950129 0.950129 0.950129 0.950129 0.950129; 

0.231139 0.231139 0.231139 0.231139 0.231139; 

0.606843 0.606843 0.606843 0.606843 0.606843; 

0.485982 0.485982 0.485982 0.485982 0.485982; 

0.891299 0.891299 0.891299 0.891299 0.891299] + b .* f - d; 

Y = a - b .* xx; 

LISTING 8.4: The Chebyshev series approximation code partially evaluated with c 

fixed and size ex, 2) fixed. Post-processing has also been used 

ll5 

The assignments to d and b before each assignment to a could also be removed. This 

could be achieved by using copy propagation and variable renaming, but doing this 

ought to be a compiler optimisation and it is certainly beyond the scope of a partial 

evaluator. 

8.1.2 Lagrange Interpolation 

The second test function (Listing B.l), when given a set of points from a function, 

computes the Lagrange interpolating polynomial [79J that passes through them and 

returns a set of points on the curve. The MATLAB code is comprised of two nested 

loops both dependent on the number of points to interpolate followed by a third loop 

also dependent on the number of points. We specialised this function by first fixing the 

number of points, n, (and thus the number of x and y coordinates) resulting in all of the 

loops being unrolled and then further specialised it by fixing the x coordinates. Again, 

timings were taken with and without post-processing. Table 8.2 shows the improvements 

we achieved including at least 50% speed increases when the x coordinates are completely 

fixed. 

8.1.3 Solving a Gaussian Hypergeometric Differential Equation 

The next example function (Listing B.2) solves the Gaussian Hypergeometric differential 

equation, x(1 - x)~ + c - (a + b + l)x~ - aby = 0, using a series expansion [19]. The 

main work is done by a single for loop which calculates the series terms. To get more 
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n fixed x-coordinates fixed 
n Original No postproc Postproc No postproc Postproc 
2 1.00 0.73 0.67 0.67 0.58 
4 1.00 0.82 0.79 0.68 0.64 
6 1.00 0.85 0.83 0.67 0.65 
8 1.00 0.86 0.84 0.68 0.66 
10 1.00 0.87 0.86 0.68 0.66 

TABLE 8.2: Relative timings for the Lagrange functions with values of n 

n Original Partially Evaluated Post-processed 
4 1.17 0.85 (0.73) 0.72 (0.62) 
6 1.47 1.07 (0.73) 0.94 (0.64) 
8 1.77 1.30 (0.73) 1.17 (0.66) 
10 2.08 1.54 (0.74) 1.40 (0.67) 

TABLE 8.3: Timings in seconds for the Gaussian Hypergeometric differential equation 
solver (iterated 8000 times). (Relative times are given in brackets). 
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accurate results, higher order series terms are required and thus more iterations. The 

number of terms is the parameter that we have chosen to specialise. As can be seen 

from Table 8.3, partial evaluation with post-processing is very effective at speeding up 

the function, showing a 49-62% performance increase over the original function. 

8.2 Ordinary Differential Equation Solvers 

A common numerical application for which MATLAB is used is the integration of ordi­

nary differential equations (ODEs). MATLAB provides several ordinary ODE solvers, 

like ode45, which uses a combined 4th and 5th order Runge-Kutta method to solve 

non-stiff differential equations. 

[t ,y] 

[t ,y] 

ode45(odefun ,tspan,yO) yith tspan 

ode45 (odefun ,tspan,yO) yith tspan 

[t,y] ode45(odefun,tspan,yO,options) 

[to tfinalJ 

[to t1 t2 ... tfinalJ 

[t,y] ode45(odefun,tspan,yO,options ,p1,p2 ... ) 

[t,y,te,ye,ie] ~ ode45(odefun ,tspan,yO,options ... ) 

sol ~ ode45(odefun, [to tfinal] ,yO ... ) 

There are numerous ways of invoking the highly parameterised function, ode45, ranging 

from simple invocations which use the default options to the more complicated use of 

output functions, event functions, extra parameters and so on. We can find a numerical 

solution to the equation ~I = k(T - Tm ), which gives Newton's Law of Cooling using 

ode45. This requires a way of expressing the right hand side of the equation (RHS). 

E.g. 

function dTdt neyton(t, T) 

dTdt ~ k * (T - Tm); 



Chapter 8 Results 117 

This function can either be passed to ode45 using a function handle or as a string. The 

function is then invoked by calling the built-in function feval on the function handle or 

string. This will be slower than invoking the function directly but allows the solver to 

be general. Clearly if partial evaluation would just replace the calls to feval with calls 

to newton, we would achieve a performance increase. In fact we can do much better 

due to the high level of parameterisation of ode45. When ode45 is invoked it checks its 

parameters to see how it was called. Assuming it was invoked with a function handle, it 

checks if tspan and yO were supplied otherwise it gives an error. It then checks whether 

tspan has 2 or more elements or it throws an error. It checks whether the differential 

function returns a column vector. There are too many checks to list here, but it suffices 

to say that many of these can be precalculated during specialisation. 

For instance specialisation of ode45 in its simplest form with respect to the function, 

newton is given by this (note k and Tm have been hard-coded into the RHS function 

with the values of -0.0253178 and 100 respectively): 

function [x, y] = specialise_ode45 (xspan, yO) 

'l.# xspan realdouble 

'l.# xspan size [1 2] 

'l.# yO realscalar 

[x, yJ = ode45 (@newton, xspan, yO); 

function dTdt = newton(t, T) 

'l. k = -0.0253178; 

'l. Tm 100; 

dTdt = -0.0253178 * (T - 100); 

Specialising this with post-processing and inlining enabled gives us a total of 124 lines 

of code of which 97 lines give the ode45 function and the rest is comprised of the 

additional non-built-in functions called by ode45. This contrasts with 410 lines for the 

ode45 function alone (with comments and blank lines stripped). 

A second use of ode45 allows us to have one newton function for all values of k and Tm 

by passing them as parameters. 

function [x, y] = specialise_ode45 (xspan, yO) 

'l.# xspan realdouble 

'l.# xspan size [1 2] 

'l.# yO realscalar 

k = log(39/40); 

Tm = 100; 

[x, yJ = ode45 (@newton, xspan, yO, [], k, Tm); 

function dTdt newton(t, T, k, Tm) 

dTdt = k * (T - Tm); 

Specialisation here produces exactly the same code as before as the values of k and Tn 

are propagated to exactly the same places as before, with post-processing leaving no 

traces in the residual program. 
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function [t, yJ 

t (O:h:tn)'; 
n = length(t); 

odeEuler (diffeq, tn, h, yO, varargin) 

y yO * ones (n, 1); 

for j = 2:n 
y(j) = y(j-1) + h * feval(diffeq, t(j - 1), y(j - 1), varargin{:}); 

end 

LISTING 8.6: Implementation of Euler's method for solving ordinary differential equa­
tions 

function [t,y] odeRK4 (diff eq, tn, h, yO, varargin) 

t = (O:h:tn)'; 
n = length(t); 
y yO * ones(n, 1); 

h2 h/2; 
h3 h/3; 
h6 h/6; 

for j = 2:n 
k1 feval(diffeq, t(j - 1), y(j - 1), varargin{:}); 
k2 feval(diffeq, t(j - 1) + h2, y(j - 1) + h2 * k1, varargin{:}); 
k3 = feval(diffeq, t(j - 1) + h2, y(j - 1) + h2 * k2, varargin{:}); 
k4 = feval(diffeq, t(j - 1) + h, y(j - 1) + h * k3, varargin{:}); 
y(j) = y(j-1) + h6 * (k1 + k4) + h3 * (k2 + k3); 

end 

LISTING 8.7: Implementation of the 4th Order Runga-Kutta method for solving 
ordinary differential equations 
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Due to inlining the function newton does not exist at all in the specialised code, but for 

a more complicated RHS function like logistic (given in Listing 8.5), inlining is not 

always possible as it uses one of its parameters more than once. Since ode45 sometimes 

passes array subscripts to the RHS function, these calls cannot be inlined. A better 

inlining strategy would be required to handle this, either by deciding that the number 

of repeated array accesses is outweighed in cost by the benefit of inlining or by creating 

temporary variables to store results. In this area, MPE would benefit greatly by being 

combined with an effective optimising compiler that could make inlining decisions itself. 

function dPdt logistic (t, P, options, a, b) 

dPdt = P * (a - b * P); 

function dydx normal(x, y) 

dydx = -2 * x * y; 

LISTING 8.5: Sample RHS Functions for ODE Solvers 

We also demonstrate two other ordinary differential equation solvers, odeEuler (Listing 

8.6) and odeRK4 (Listing 8.7), which use the Euler and 4th order Runge-Kutta method 

respectively. These are simple non-adaptive solvers, which are described in [40]. Both 

of these can pass in additional parameters to RHS functions (useful for specifying con­

stants) but are otherwise unconfigurable. 
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Original mpe mpe -p mpe -pi 
normal 21.23 12.50 (70%) 12.50 (70%) 5.14 (313%) 
logistic 8.40 4.84 (73%) 4.33 (94%) 4.33 (94%) 
newton 8.34 4.74 (75%) 4.19 (99%) 1.50 (456%) 

TABLE 8.4: Timings (in seconds) for odeEuler with three different RHS functions 

Original mpe mpe -p mpe -pi 
normal 8.16 4.76 (71%) 4.76 (71%) 1.80 (353%) 
logistic 3.25 1.85 (76%) 1.64 (98%) 1.64 (98%) 
newton 6.41 3.62 (77%) 3.18 (102%) 0.96 (568%) 

TABLE 8.5: Timings (in seconds) for odeRK4 with three different RHS functions 

Original mpe mpe -p mpe -pi 
normal 1.30 1.07(21%) 0.96 (35%) 0.74 (76%) 
logistic 1.02 0.81 (26%) 0.68 (50%) 0.65 (57%) 
newton 1.02 0.81 (26%) 0.67 (52%) 0.50 (104%) 

TABLE 8.6: Timings (in seconds) for ode45 with three different RHS functions 

Table 8.4 and Table 8.5 show the results of specialising odeEuler and odeRK4. We can 

see that partial evaluation alone produces code that on average runs 70-75% faster, for 

each of the equations with odeEuler and 71-77% faster for odeRK4. These examples also 

illustrate where post-processing and in lining can have an effect. For instance normal 

(given in Listing 8.5) benefits negligibly from post-processing but as the RHS function 

is very simple, it can be inlined leading to very large speed ups. On the other hand, 

logistic benefits from post-processing as the constants propagated to the RHS function 

are assigned to variables that are never referenced (as they expand to their constant 

values) but it cannot be inlined as it references its parameters more than once. The 

newton function has both constants and can be inlined leading to the largest speed 

ups. Berlin and Weise [10] also partially evaluated problems involving Runge-Kutta 

integration of ODEs. They achieved much larger speed-ups than have been achieved 

here, but our use of MATLAB means that many of the specialisation opportunities they 

see are likely hidden inside libraries. 

In all cases, MPE took about 0.19 seconds to produce the residual code. In each case the 

function was executed 100 times to get the timings shown here, although longer running 

times could also be achieved using longer time intervals for the solvers. 

Table 8.6 shows the results of specialisation for the ode45 function provided with MAT­

LAB. The main function is around 400 lines long and it can call many other functions, 

making this a very complex function. Specialising using the examples from earlier, we 

only want to use a very limited subset of the ode45 functionality, as we do not require 

event functions, mass matrices or execution statistics. The residual code produced by 
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FIGURE 8.1: Function dependency graph for ode45, showing 23 unique functions 

(a) newton (b) logistic 

FIGURE 8.2: Function dependency graph for ode45 specialised for different RES func­
tions 
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specialising with respect to normal using inlining and post-processing is only 125 lines 

long and that includes all the functions produced by the specialisation. This speciali­

sation takes around 0.39 seconds and 0.43 seconds with post-processing as well. With 

the other solvers, execution of the RHS function dominates the computation time and 

so specialisation gives enormous speed ups. Since ode45 is more complex, the execution 

of the RHS functions has less of an impact on the performance. However, speed ups of 

around 50-100% are still significant. 

A visual demonstration of the complexity of ode45 is given in Figure 8.1, which shows 

the main function dependencies (not including any function introduced through function 

handles).2 Figure 8.2 shows the dependency graph when ode45 was specialised with 

respect to newton and logistic. Clearly specialisation can yield much simpler residual 

programs. 

The final results for the ODE solvers come from applying the MATLAB compiler, MCC, 

to the original code and the residual programs. Tables 8.7 and 8.8, show the timings from 

2These graphs were produced using a special mode of MPE 
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the MATLAB interpreter as given before as well timings from the compiled code from 

the odeEuler and odeRK4 solvers. Figures 8.3 and 8.4 show the effect of partial eval­

uation and compilation against the original program. In every case with these solvers, 

compilation more than doubles the performance increase from partial evaluation. With 

the ode45 solver, the results in Table 8.9, while not as impressive as the other solvers, 

show that the performance increases are retained through compilation. The ode45 re­

sults need to be considered carefully, since the MATLAB compiler did not compile the 

ode45 solver when it was not partially evaluated. Instead a pre-compiled version, which 

is part of the run-time libraries, was used. There is no way of knowing whether this ver­

sion was originally compiled directly from the MATLAB version or whether it has been 

optimised in some way. Given that compilation does not produce much faster code, 

in this example, it seems likely that optimisation, if any, was applied sparingly. The 

performance chart in Figure 8.5 clearly demonstrates how the combination of partial 

evaluation and compilation can be effective especially given that while the solver is very 

general, it is a production solver and has no doubt been fairly carefully optimised. 

Original mpe mpe -p mpe -pi 
Interpreted normal 21.23 12.50 (70%) 12.50 (70%) 5.14 (313%) 
Compiled normal 6.39 2.23 (187%) 2.23 (187%) 0.80 (699%) 
Interpreted logistic 8.40 4.84 (73%) 4.33 (94%) 4.33 (94%) 
Compiled logistic 2.96 1.12 (164%) 0.78 (279%) 0.76 (289%) 
Interpreted newton 8.34 4.74 (75%) 4.19 (99%) 1.50 (456%) 
Compiled newton 2.92 1.11 (163%) 0.74 (295%) 0.22 (1227%) 

TABLE 8.7: Compilation vs. Interpreter Timings (in seconds) for odeEuler with dif­
ferent RHS functions 

Original mpe mpe -p mpe -pi 
Interpreted normal 8.16 4.76 (71%) 4.76 (71%) 1.80 (353%) 
Compiled normal 2.53 0.89 (184%) 0.89 (184%) 0.30 (743%) 
Interpreted logistic 3.25 1.85 (76%) 1.64 (98%) 1.64 (98%) 
Compiled logistic 1.16 0.44 (163%) 0.30 (281 %) 0.30 (281%) 
Interpreted newton 6.41 3.62 (77%) 3.18 (102%) 0.96 (568%) 
Compiled newton 2.32 0.87 (167%) 0.58 (300%) 0.15 (1447%) 

TABLE 8.8: Compilation vs. Interpreter Timings (in seconds) for odeRK4 with different 
RHS functions 
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FIGURE 8.3: Relative timings for odeEuler. Results normalised with respect to original 
interpreted program 
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Original mpe mpe -p mpe -pi 
Interpreted normal 1.30 1.07 (21%) 0.96 (35%) 0.74 (76%) 
Compiled normal 0.80 0.65 (23%) 0.50 (60%) 0.46 (72%) 
Interpreted l ogi stic 1.02 0.81 (26%) 0.68 (50%) 0.65 (57%) 
Compiled l ogistic 0.69 0.54 (28%) 0.39 (77%) 0.38 (82%) 
Interpreted newton 1.02 0.81 (26%) 0.67 (52%) 0.50 (104%) 
Compiled newton 0.69 0.54 (29%) 0.39 (78%) 0.36 (92%) 

TABLE 8.9: Compilation vs . Interpreter Timings (in seconds) for ode45 with different 
RHS functions 
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FIGURE 8.5: Relative timings for ode45. Results normalised with respect to original 
interpreted program 
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8.3 Dust Erosion of Probes Entering the Martian Atmo­

sphere 

This code is an example of where MATLAB really excels . It was written by an aero/astro 

engineering student at the University of Southampton as a fin al year project. Since the 

student has li ttle computer science knowledge, it would not be expected that he could 

effectively optimise his code himself. With litt le modification (in the form of widen 

annotations in the ODE solver), the code can be partially evaluated giving a substantia l 

performance boost. 

This code investigates what happens to a conical probe using an Aerobraking Manoeuvre 

to slow down within the Martian atmosphere. One possibi li ty of damage to the cone 
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comes from dust particles hitting the cone while it travels at supersonic speeds. A cone­

shaped object travelling at supersonic speeds would create a shock wave in front of it 

and particles entering this wave would be deflected until they either hit the cone or were 

travelling parallel to the cone angle (at which point they cannot hit the cone). This 

code finds the critical height above the cone tip at which particles do not hit the cone 

with parameters, cone angle and mach speed. 

To do this two ordinary differential equations need to be solved. This code (given in 

Listings B.3 - B.9) extensively uses ode45, which was examined in Section 8.2. However 

the differential equations here are more complicated since they use event functions to 

terminate the calculation early when no further computation is required. In addition the 

RHS function of one actually calls ode45 itself. In Table 8.10, we see the results from 

partially evaluating this function. For each residual code as well as the original program, 

two timings were taken. The first run was the time taken to run in a completely clean 

environment. The intention in this test is to show how much parse time is a factor 

in executing the code. The second run is identical except now MATLAB should have 

parsed the function and therefore it should be faster. The difference between the two 

times is an approximation to the overhead of parsing. Here the time taken to parse the 

residual code, where no post-processing is used, is very close to the original if slightly 

lower. However any increase in parse time is clearly outweighed by the overall reduction 

in time. When post-processing is used, the parse time is actually faster for the residual 

program. 

Original mpe mpe -p mpe -pi 
Partial Evaluation - 5.1 5.2 5.2 
First run 22.7 20.6 (9%) 18.2 (25%) 15.2 (49%) 
Second run 22.4 20.3 (10%) 18.0 (25%) 15.0 (49%) 

TABLE 8.10: Timings (in seconds) for length_crit 

Since this program uses nested loops so extensively, it clearly illustrates the effects of 

caching least upper bounds as described in Section 6.6. Some timings, without least 

upper bound caching, are shown in Table 8.11. These are considerably longer than the 

times taken with caching, and are in fact more than we expected. We believe this is 

an artefact of the bad scaling of the MATLAB libraries in the presence of many arrays. 

Since the caching reduces the number of calculations at a point when more arrays have 

been allocated (when code is being generated), the benefits are slightly exaggerated. 

mpe mpe -p mpe -pi 
Without caching 14.0 13.3 13.5 
With caching 5.1 5.2 5.2 

TABLE 8.11: Partial Evaluation Timings (in seconds) for length_crit with and with­
out least upper bound caching 
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This is an example, where the time taken to run the partial evaluator and the residual 

code once is less than the time to execute the original code. This example shows how 

partial evaluation combined with post-processing and inlining can be very effective. 

While the speed-up produced is around 50%, no static data was specified initially. The 

original program, from which length_cri t is taken, calls it many times, which means 

that the cost of partial evaluation will be easily eclipsed. 

In this example, attempts to give the partial evaluator more information by specifying 

that all three input parameters are real scalars, produced exactly the same code, but 

it took 2 seconds longer to produce it. This is presumably because duplicate functions 

were produced for subtly different call signatures. These were then removed in post­

processing, resulting in an identical resIdual program. 

As with the earlier solvers, this program was compiled, producing the results given in 

Table 8.12. Again the benefits of partial evaluation are retained through the compilation 

process, although the effect of inlining is less important in the compiled code. 

Original mpe mpe -p mpe -pi 
Interpreted 22.4 20.3 (10%) 18.0 (25%) 15.0 (49%) 
Compiled 13.4 12.0 (12%) 10.7 (25%) 10.1 (33%) 

TABLE 8.12: Compilation vs. Interpreter Timings (in seconds) for length_crit 

8.4 Arcadia CFD Solver 

The 'Arcadia' code is a new type of aeroacoustic Computational Fluid Dynamics (CFD) 

solver, particularly aimed at the problem of re-designing aero-engine inlets to reduce 

radiated fan noise [17, 18J. It is particularly targeted for use in an optimisation loop since 

it returns not only results pertaining to the analysis of a design, but also information 

about how sensitive the results might be to small changes in the design. 

This is an example of an early iteration of a complex system. It has not been fully 

optimised and so benefits from the constant propagation that is integral to partial eval­

uation. 

This code originally used global variables to store most of the parameters. These global 

variables are initialised by the calling function and are not altered during execution. 

Since we have largely ignored global variables, it was necessary to produce a version of 

this program, which does not use global variables, by passing all of the parameters into 

the main function and modifying any calls to functions which require global variables 

to instead take extra parameters. A partial evaluator which handled global variables, 

used as in this program, would not be too difficult to implement as the global variables 

remain static throughout the execution of the program. 
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This code was specialised in two different ways. Firstly the shapes and types of all 

the parameters were fixed, leading to the results in Table 8.13, which show that partial 

evaluation was very quick and produced a program that ran in just over half the time 

of the original program. As with the code from Section 8.3, two timings were taken so 

that the time taken to load the code could be estimated. No timings were taken with 

inlining enabled as this program offers no opportunities for this optimisation. 

The second specialisation fixed nearly all of the initial parameters, apart from the opti­

misation point parameter. This is a realistic specialisation since generally the objective 

function would be run many times with just the optimisation point changing. The re­

sults of this are shown in Table 8.14. Specialisation has taken significantly longer and 

annotations had to be added to prevent a large nested loop being completely unrolled, 

which would have produced a huge residual program. There is improvement in execution 

times over Table 8.13, but this difference is not very large. There is also a significant 

increase in the time taken to parse the residual code, with the second specialisation 

initially taking longer to execute than the first. This is not surprising given that the 

first specialisation is 420 lines long and the second is 7203 lines long. This large increase 

in program size may well have hurt the performance. 

Original mpe mpe -p 

Partial Evaluation - 0.41 0.45 
First run 64.8 45.0 (44%) 35.1 (85%) 
Second run 65.0 44.7 (45%) 35.0 (86%) 

TABLE 8.13: Timings (in seconds) for arcadia with parameter types fixed but not 
their values 

Original mpe mpe -p 

Partial Evaluation - 16.7 13.1 
First run 64.7 46.4 (39%) 36.1 (79%) 
Second run 64.8 43.4 (49%) 33.7 (92%) 

TABLE 8.14: Timings (in seconds) for arcadia with most parameter values fixed 

The performance improvements for post-processing given in Tables 8.13 and 8.14 are 

very large and on examination of the residual code, it emerged that arcadia performed 

many computations which did not contribute towards the final returned result. These 

calculations were a leftover from a previous iteration of the code, and were no longer 

required. While this does demonstrate that dead-code elimination using ud-chains is very 

effective at discovering redundancy, it would be fairer to assess the partial evaluator in 

relation to a version of the code with the redundancy removed first, called newarcadia. 

As above, newarcadia was specialised twice and the results are shown in Tables 8.15 

and 8.16. Unsurprisingly, the performance of the partial evaluator has improved since 

it no longer has to examine these redundant computations. The execution time of the 
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unspecialised program has been reduced by 15 seconds, while the time for the residual 

code without post-processing is about 8 seconds less. The post-processed version is 

identical in both cases. Using newarcadia, partial evaluation produces around a 50% 

increase in speed. 

Original mpe mpe -p 
Partial Evaluation - 0.33 0.36 
First run 49.8 36.2 (38%) 35.1 (41%) 
Second run 50.2 36.1 (40%) 35.0 (43%) 

TABLE 8.15: Timings (in seconds) for newarcadia with parameter types fixed but not 
their values 

Original mpe mpe -p 
Partial Evaluation - 13.6 11.5 
First run 49.8 37.9 (31%) 36.1 (38%) 
Second run 50.2 35.0 (43%) 33.8 (49%) 

TABLE 8.16: Timings (in seconds) for newarcadia with most parameter values fixed 

As with the Mars Lander code, least upper bound caching gives large improvements 

here. Table 8.17 shows how caching can give a small improvement for programs which 

already partially evaluate quickly as in the case where only the shapes and types of the 

parameters were fixed. However when the values of some of the parameters are fixed, 

more computations are performed inside nested loops and so least upper bound caching 

saves around 20-25% off the specialisation time. 

mpe mpe -p 

Types fixed with caching 0.33 0.36 
Types fixed without caching 0.37 0.39 
Values fixed with caching 13.6 11.5 
Values fixed without caching 16.4 15.4 

TABLE 8.17: Partial Evaluation Timings (in seconds) for newarcadia with and without 
least upper bound caching 

Compiling arcadia and newarcadia caused some problems, when trying to generate a 

residual program where most of the parameter values are fixed. With residual MATLAB 

code of 7203 lines, the C code produced by the compiler was about 10 times as long 

again. When we tried to compile it, it took around 30 minutes, whereas all the other 

examples have taken less than 10 seconds. The resulting executable was actually slower 

than the compiled version of the residual code generated with a much looser specification. 

This is likely because the executable was 10 times the size (around 2MB). This clearly 

demonstrates that unrolling needs to be kept in check so that executables do not grow 

excessively. 
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In Table 8.18 are the results of compiling t he less specified residual code generated 

from both arcadia and newarcadia. In this example, the benefit of part ial evaluat ion 

is lessened by compilation . However , since the MATLAB compiler does not perform 

many tradi t ional opt imisations and generates code, which likely hinders the C compiler 

from opt imising itself, t his comparison is perhaps unfair. W ith a better optimising 

compiler , it is quite likely t hat part ial evaluat ion would expose many more optimisation 

opportunities . 

Program Original mpe mpe -p 

Interpreted arcadia 65.0 44.7 (45%) 35.0 (86%) 
Compiled arcadia 49.4 38 .7 (28%) 30.6 (6 1%) 
Interpreted newarcadia 50.2 36. 1 (40%) 35 .0 (43%) 
Compiled newarcadia 39.4 31.6 (25%) 30.6 (29%) 

TABLE 8. 18: Compila tion vs . Interpreter Timings (in seconds) fo r arcadia and 
newarcadia with parameter types fixed bu t not t heir values 

The results for newarcadia are illustrated in F igure 8.6. Since compiling the second 

specialisation took unfeasibly long, compilat ion and partial evaluation are omitted for 

the second specialisation . One thing to draw from this chart is that specialisation us ing 

limited specification produced faster resul ts than ordinary compilation , in a faster t ime. 
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8.5 Result Accuracy 

While partial evaluation has achieved performance increases for the code tested here, 

this has come at the cost of a small loss in accuracy, This occurs due to the textual 

representation of numbers, 

function s = pen) 

s = 0; 

for n l:n 

s = s + 1 / 3; 

end 

In this example, the only effect of partial evaluation is to substitute 0,333333 for 1/3, 

The partial evaluator has truncated the number after the sixth decimal place as this is 

its default behaviour. The command line option --precision can be used to specify 

the number of significant figures displayed but this can cause a large increase in the 

size of the residual program if there are large matrices of numbers. This problem is not 

easily soluble as we cannot output a binary representation of constants which is exactly 

equivalent to that which would be stored in memory.3 

One approach would be to avoid folding operations which lead to constants requiring 

truncation. In the above example, 1/3 would be retained in the residual code, which 

would not be detrimental to the performance in either the compiler or interpreter.4 As 

the MATLAB compilers produce C code, they too must truncate floating point numbers. 

In this case it stores the result to 17 significant figures which is the most storeable in a 

double. 

Since the MATLAB compilers perform no constant propagation, they will produce fewer 

constants than our partial evaluator and so the code will not be unduly bloated. In 

addition the code is compiled to the machine code where constants will be stored as 8 

byte doubles, regardless of the accuracy used. 

Going back to the residual code in Listing 8.4 and recreating it by specifying that 

the output use 17 significant figures produces a program, which is 82% longer, but 

executes no slower. This is not unduly worrying since the program is an extreme example 

where the residual program consists almost entirely of matrices. The input values were 

generated randomly and so any early precision cut-off would have truncated the matrices 

produced. Most programs would not have grown quite so dramatically given more 

reasonable input. 

3This is complicated even more by the fact that floating point registers frequently use a higher 
precision than can be stored in memory. 

4Strangely MATLAB 6.5 seems to interpret 1/3 slightly slower than 0.333333, while 6.1 is not 
affected. 
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8.6 Summary 

This chapter has demonstrated several applications of partial evaluation with respect 

to MATLAB code. MPE can be applied both to small functions, with relatively fast 

execution times, to fine tune the performance of a larger system, as was done with 

the chebyshev series function from Section 8.1.1, or it can be applied to much larger 

functions like the Mars Lander code or Arcadia, where the functions involved perform 

much more intensive calculations. 

The smaller functions benefited more from unrolling than many of the larger examples. 

The unrolling exposed static data within loops thus allowing some pre-computation as 

well as removing the overhead of checking the loop condition. This generally led to 

larger programs, which scaled with the size of the data or the accuracy required in the 

output. 

The larger examples gained their benefits from their highly parametric nature. Large 

complicated functions that could be used in many ways were transformed into highly 

specialised functions, no longer carrying the overhead of genericity. These programs 

were often much smaller than the original programs (when assessing all the functions 

called in the MATLAB libraries). 

The results from compilation show that partial evaluation is never a performance hin­

drance and indeed sometimes works even better with compilation, although some results 

show less improvement when specialised and compiled over the original compiled pro­

gram. This is unsurprising since partial evaluation often simplifies programs which 

means that one of its benefits is the reduction in time handling control structures such 

as loops, which are usually much better handled by compilation. Since MATLAB 7 

reportedly has a much better Just-In-Time compiler, it may well be that some of these 

improvements will be made even less visible. While MATLAB 6.5 also has a Just-In­

Time compiler, this was not assessed as light testing has shown it to perform very well 

for some programs (> lOx improvement), but then modifying those same programs in 

seemingly inconsequential ways then dropped the performance levels down to that of 

MAT LAB 6.1. This is presumably because it was in a relatively early stage of develop­

ment. Further work needs to be done to see how partial evaluation can work to bring 

out the best in Just-In-Time compilation. 
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Future Work 

While we have seen definite performance gains due to partial evaluation, there is un­

doubtedly room for improvement. The framework is in place to perform many additional 

optimisations, which are currently not performed. In this chapter we will outline areas 

where further work can be done. 

9.1 Asserting assumptions 

In many places, assumptions are made about parameters and the results of functions 

and operations that cannot be fully evaluated. For instance with a + b, if a is known 

not to be a scalar and b is known not to be a scalar, it is assumed that both a and b 

have the same shape. If this is not the case, a run-time error would be produced. 

1.# a size [3 UNKNOWNJ 

1.# b size [UNKNOWN 4J 

Y = size(a + b); 

In the above code, the shape of a + b will be assumed to be [3 4J. The call to size can 

be fully evaluated as the shape of the expression is known and so the original operation 

can be removed. In the case where a and b do not have the same shape, an error would 

not be produced as the add operation would never be carried out. 

In most cases it would be better to assume that errors like this were not made. After all 

partial evaluation is an optimisation step, usually occurring after testing where it could 

be assumed that most programmer error had been eliminated. 

Mandatory assumption checking would certainly hurt performance, but if assertions 

could be inserted optionally, for instance when debugging, it would aid both the users 

and ourselves as it could quickly determine where we make false assumptions. 

131 
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9.2 Automatic Widening 

Currently MPE can loop infinitely on input containing loops which steadily widen shape 

values. Consider the following code: 

function y = f(x) 

y = l' 

for n = 2:x 

y = [y nJ; 

end 

This function returns a vector of values from 1 to x with increment 1. The current 

implementation of MPE will iterate over the loop trying to find the shape of y. It can 

easily determine that it is a two dimensional matrix with 1 row. However each successive 

iteration will give it a higher value for the number of columns. Since iteration only 

ceases when stabilisation of shape information is achieved, the iteration will be infinite. 

To prevent this problem, the number of columns needs to be widened. If the number 

of columns is set to (l,w), no further iteration would be required. This is currently 

possible using the widen annotation but this needs to be determined automatically. 

To this end, we need to develop heuristics to determine when there is a possibility of 

infinite iteration. This would likely be based on looking for incremental shape changes 

inside loops. This problem is a common one in partial evaluators where recursion is used 

for all loops. In that case, there is often a counter which is either incremented or decre­

mented and then compared with a dynamic variable. This can lead to the generation of 

infinitely many functions all specialised with regard to a different counter value, or to 

the function being unfolded infinitely many times. Ruf [62] describes several heuristics 

used to detect when recursion will be bounded and when it will be infinite. This includes 

detecting an induction variable which is reduced on every iteration towards a bound, at 

which it terminates. Katz and Weise [39] describes a method where increasing parame­

ters which are not actually used at specialisation time (other than in generating further 

values of the counter) are detected by lazy use-analysis. A similar technique may prove 

useful to us, since when shape growth is unbounded, the shape itself is generally not 

used at specialisation time. 

9.3 Restructuring expressions for performance benefits 

Currently all optimisations on expressions retain the order of expressions. Expressions 

like a + 1 + b + 2 - a are parsed as (((a + 1) + b) + 2) - a. Evaluating strictly using the 

parse tree form gives no chance for simplification and so the ideal form of b + 3 cannot 

be achieved. Addition is a commutative operation for all kinds of matrices and scalars 

and so the expression could be reordered to (a - a) + b + (1 + 2), at which point our 

current scheme can reduce the expression to (a - a) + b + 3. Reducing a - a is not so 
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simple; it is not necessarily 0, as a might not be a scalar. In fact it is always equal to 

zeros (size (a)), which is 0 in the case of a scalar and a matrix with the same shape 

as a if a is a matrix. Unless a is a scalar, the expression can only be reduced if b is 

has the same shape. If b has a different shape and is not a scalar then a runtime error 

will occur. If it cannot be determined that b has the same shape as a, then we could 

assume the absence of programmer error or perhaps generate assertions as described in 

Section 9.1. 

Identity relations like M I = 1M = M, where I is the identity matrix with the same 

shape as M, need to be recognised and dealt with. These kinds of expressions can often 

occur after unrolling. For example: 

function z = power(x, y) 

z = eye(size(x)); 

for n =.1: y 

z = z * x; 
end 

If power is partially evaluated with y set to 3, then the residual program would currently 

be: 

function z = power(x) 

z = eye(size(x)); 

z = z * x; 

z = z * x; 

z = z * x; 

However recognising that z is initially the identity matrix would mean that the function 

can be reduced to: 

function z = power(x) 

z = x; 

z = z * x; 
z = z * x; 

With further assignment amalgamation the function just becomes: 

function z = power(x) 

z = x * x * x; 

As mentioned by Menon and Pengali [49], it is possible to reorder the evaluation of 

expressions to realise some performance increases. When evaluating A * B * x, (where 

A and B are matrices and x is a scalar), a right to left evaluation would take O(n2 ) 

operations while a left to right evaluation would take O(n3 ) operations. Since the natural 

order of evaluation in MATLAB is left to right, brackets would need to be inserted for 

efficient evaluation. Clearly in cases where it is unknown whether the operands are 

matrices or scalars then no such optimisation is possible. 
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9.4 I/O operations 

As mentioned in Section 6.1.1, we currently do not support loading in data with I/O 

commands like fopen, fscanf and fclose. Unfortunately, problems can easily arise 

when trying to eliminate I/O operations and embed data directly in the function files. 

One problem is that data stored externally can often be often be stored more efficiently 

than as a list of MATLAB assignments. Unless data files are small, this can result in 

large increases in the residual code size. 

It is also problematic because I/O operations must be completed. If a file is opened by 

fopen and the file descriptor returned to a variable, it is not useful to replace this with 

an assignment to a constant value as file descriptors only have meaning if the fopen 

function is actually called. If all I/O operations have static parameters and can be fully 

evaluated, this is not a problem. All references to the file handle would be removed 

during partial evaluation as the calls to I/O functions would evaluate to the values 

stored in the file. 

However if for some reason an I/O operation cannot be evaluated because it is dependent 

on some dynamic input, then the I/O operation would be left in the code with a file 

handle that was no longer valid. Even worse, partial evaluation could continue onto 

another I/O operation that appeared to be fully executable. In the course of normal 

execution, the file seek pointer would already have moved on, but because we could 

not execute the previous commands it would be in the old position and the wrong data 

would be read. 

Work needs to be done to assess whether all I/O operations relating to a file handle 

can be evaluated, so that we can then evaluate them. In some cases we might have to 

evaluate an I/O operation before we can determine whether further operations can be 

evaluated, which could mean that we have to backtrack. 

9.5 Better Inlining 

In Section 6.5, we described a simple strategy for inlining. While its simplicity made its 

implementation easy, its restrictions greatly limited its applicability. 

The restrictions were mostly made to prevent ever creating temporary variables. Part 

of the reason for this, is that since there is no way of creating a separate scope within a 

function, the variable will be not be deleted until the function returns or the variable is 

overwritten. In this way, a naive strategy of creating a new temporary variable for every 

inlined instance of a function could dramatically increase the memory used by a function. 

Variables can be explicitly deleted using the clear function, but this involves function 

calls that could hurt performance. Another strategy would be to use a pool of temporary 
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variables which are reused, so that a minimum number of temporary variables would 

be created. One could still imagine a situation where an inlined function caused the 

creation of a very large matrix which was not destroyed until the function terminated, 

as no other inlined functions were called subsequently. 

9.6 Context Propagation 

When a branch of a conditional is taken, there is implied information, which we currently 

ignore. 

%# x ndims 2 

if isempty (x) 

for n = x 

end 

else 

end 

In the above code, if the positive branch is taken, it is implicit that x has no dimensions 

with size O. This means that the for loop will always iterate at least once and therefore 

when computing the state after the loop, the least upper bound does not need to be 

combined with the result for if the loop had not iterated even once. 

The difficulty in context propagation is inferring what the condition expression says 

about its variables. In the above case, x has only 2 dimensions and so since it is not 

empty it must have a shape of ( (2,2), ( (1, w), (1, w) ) ). Inferring this requires inverting 

the isempty function, which would probably require writing code for each function to 

determine what its context propagation properties were. It is likely that not many func­

tions would provide any useful context information, but this would have to be examined. 

9.7 Full Class and Polymorphism Support 

Currently functions residing in class directories (e.g. @inline), are ignored by MPE. 

As a first step towards full class support, these directories would have to be searched for 

m-files. Since the class of an expression is not known at parse time, the loading of the 

right function file will have to be deferred until the expression is abstractly interpreted. 

If the expression is static or if the class is known, then the exact function can be found 

without difficulty, in which case it can be renamed so that there is no ambiguity, which 

means it no longer has to be in a class-specific directory. If the class is unknown, then 

there are two options. 

Firstly we could choose not to specialise the polymorphic function at all. This is not as 

simple as it seems: if one of the polymorphic functions are in a private directory then 



Chapter 9 Future Work 136 

they will not be visible to the residual program (unless the residual program is put in 

the directory above the private directory). We therefore need to ensure that all files 

that might be called are also callable by the residual function, by if necessary copying 

m-files. 

The second strategy is to speculatively partially evaluate all functions that could be 

selected. All class-specific functions would need to be stored in separate directories, 

which would mean they could only call the top-level function of our system, since the 

output is currently only put in one file. To solve this, every function which is callable 

by functions in other files need to be stored in a separate file. 

Specialising every possible function that could be called, could also cause a performance 

reduction. This performance reduction might be acceptable if an expression could gen­

uinely have many different classes and fast code is desired for all possibilities, but often 

the problem will be that the class is really static but it cannot be inferred or that there 

are only two possible classes. Class annotations could be manually inserted to prevent 

too much specialisation, but currently a class can either be known completely or not 

known at all. A way of restricting the set of classes to specialise for would be desirable 

in this case. 

Clearly the work of Schultz et al [65, 64] on Java is relevant here, even though their 

work uses offline partial evaluation, since they have to tackle similar problems. Re­

cently Andersen and Schultz [4] used a declarative language, called Pesto, to control 

the specialisation process. This can be used to constrain the possible classes, for which 

a function can be specialised. Since our reasons for using online specialisation were to 

save users from requiring a deep understanding of the process, this method may not be 

readily applicable. 

9.8 Extending Types 

We have previously stated that our type system can encapsulate more shape informa­

tion than that of Joisha [32], however much of this information is not directly useable. 

Knowing that an array has between 2 and 3 columns can rarely translate into any ad­

vantage at partial evaluation time using our current system. It is useful to know that 

there is more than 1 column as certain other shape inference rules can now apply, but 

the specific information about there being between 2 and 3 columns is no more useful 

than knowing that there are between 2 and 4 columns. 

One use is that if a matrix with between 2 and 3 columns is added to a matrix with 

between 3 and 4 columns, we can infer that the result if not an error will have exactly 3 

columns. With exact information, functions like size can be fully evaluated. However. 

this kind of inference is very unlikely to occur in practice. 
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The problem arises because when size is called and the information is not totally exact, 

all the information is discarded. This is because our type does not store information 

about the actual value. If the type was extended to store an interval, in which the 

actual value was bounded, certain realistic expressions such as inequality tests could be 

evaluated. E.g. 

function f(a, b, varargin) 

if nargin < 2 

error ( 'Not enough parameters to f') 

end 

If nargin is at least 2 ((2, w)), with the current partial evaluator, the conditional cannot 

be checked, since nargin will evaluate to a dynamic scalar. However if this dynamic 

scalar also contained the interval [2,00]' the binary expression could be checked and the 

conditional statement removed. 

Preliminary work on implementing interval bounds for values known to be scalars has 

shown encouraging results, but by extending the type in this way, we exacerbate the 

problem posed by infinitely widening shape components. If bounds are to be realistically 

introduced, then detection of infinite widening is a must as well as a strategy for test­

ing whether functions signatures differ inconsequentially. The risk here is that adding 

bounds will cause further redundant specialisations of functions, when the bounds have 

no impact, causing a large slow down of the partial evaluation process. 



Chapter 10 

Conclusions 

10.1 Review 

Chapter 8 showed some impressive results, which demonstrate that partial evaluation can 

be very effective at improving MATLAB performance. This performance was seen in the 

small examples as well as large programs such as the Arcadia CFD solver. Performance 

increases were sometimes due to interprocedural propagation of static values, leading 

to early computation taking the burden off the residual code, but also due to dynamic 

values having static properties inferred. While inferring the shape of an array does not 

yield the same performance benefits as knowing its contents, it can enable some minor 

precomputations, which can enable loop unrolling, leading to some useful performance 

boosts as was shown in Section 8.1. 

The benefits of compilation were also retained through compilation using the MATLAB 

compiler, MCC. Especially with the simple ODE solvers, partial evaluation and compi­

lation proved to be a very successful way of boosting performance. Since these solvers 

were so simple, the use of higher order functions had a very significant effect on the 

time to execute. Once partially evaluated with respect to fixed RHS functions, this cost 

was eliminated, and the compiler was able to take advantage of this even more than the 

interpreter with one example running nearly 15 times faster. 

The nature of many MATLAB library functions also makes them candidates for special­

isation. Highly parameterised functions which can perform their role in many different 

ways are prevalent in MATLAB. While their flexibility is enabling and gives users many 

options, it is also a source of performance loss. MPE is able to produce specialised 

solvers, with only the minimal of user intervention, giving users the best of both worlds. 

It is the lack of manual interference by the user that make MPE most attractive to 

MATLAB users. Often these are users who just want to solve a problem and are not 

interested in learning any more about their development environments than necessary. 
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Once programs have been written and tested, it is convenient to leave in place many of 

the assertion checks that were used during the initial development period as they prove 

useful later when there is further development. Partial evaluation can statically remove 

many of these assertions, like the guards on most of the library functions which check 

that the correct number of parameters were used, allowing the programmer to maintain 

only one source program for both development and deployment. This is in many ways 

like C, where assert is normally defined as a macro which can be disabled by specifying 

command line flags to the C compiler. However the compiler will remove all those checks 

without verifying that they are satisfied statically. It may be that with the assertions 

still intact, the compiler could optimise away some of them but this would be rarer since 

most compilers do not propagate information interprocedurally. 

Due to the high level of the MATLAB language, traditional areas of partial evaluation 

gains are not so susceptible to it. This includes unrolling of tight inner loops based on 

knowledge about the size of arrays. Standard operators like addition are much faster 

than using loops to iterate over vectors and so unless unrolling exposed a large number of 

static computations, leaving vectorised operations intact will nearly always be preferable. 

Since these built-in functions and operators cannot be specialised for particular sized 

parameters, the inferencing mechanisms often produce data that is not used. However 

since the partial evaluator has inferred this information, it would be helpful to make it 

available to tools that can use it. Compilers for other dynamic languages, like Python, 

can benefit greatly by specifying types. For instance in [56], the Pyrex compiler, with 

types specified, can create code that runs over 100 times faster. While the MATLAB 

compilers do try to infer types themselves, adding them to the source code may allow 

users to tune them where the inference is insufficiently accurate. 

Duplication of code and redundant computations both cause performance penalties and 

unfortunately our partial evaluation technique creates both. It was imperative then that 

an effective strategy for detecting and removing these barriers was developed. Applying 

traditional compiler-based techniques such as dead-code elimination using ud-chains 

allows us to eliminate all code which does not contribute to the final result of a function 

or to side-effects. 

Since our partial evaluator was written in C++, it had to contain an interpreter for 

MATLAB within it. While much of the complexity of building an interpreter was side­

stepped by using the MATLAB run-time libraries, there were still some features which 

could not be implemented using them and so the interpreter was non-trivial. This 

introduces scope for bugs in the interpreter leading to imperfect code generation. If a 

generating extension approach had been taken, the partial evaluator could have been 

written in C++ but produced MATLAB generating extensions, removing the need for a 

MATLAB interpreter in the partial evaluator. However, for generating extensions to be 

useful, they must have many offline decisions taken otherwise the generating extension 

could have all the complexity of an online partial evaluator built into it. This would 
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ultimately lead to a two-stage approach using binding time analysis, which would move 

away from our stated aim of producing automated tools that are accessible to non­

technical users, since many offiine techniques require manual intervention. 

Our contributions have been: 

• An online partial evaluator for a non-trivial imperative language (MATLAB). 

• We have defined abstract domains, which capture useful information about MAT­

LAB arrays, such as their class, type traits and shape characteristics. This used 

a more complete view of MATLAB types than has been seen in other work on 

MATLAB. 

• We have produced an extensive scheme for inferring type information based on the 

properties of many built-in functions, operators and array indexing. 

• Loops that cannot be unrolled are maintained by calculating the least upper bound 

of the state on entering the loop. This procedure is recursive and repeated for all 

nested loops. To avoid repeated computation, we cache least upper bounds for 

nested loops, even when inside other functions. 

• We have produced a post-processing phase which performs dead-code elimination 

on Abstract Syntax Trees, using ud-chains as well as duplicate function removal 

by employing structural equivalency detection. 

• We have demonstrated the viability of partial evaluation for MATLAB, achieving 

speed-ups for a variety of codes, with various specifications for the inputs. 

10.2 Summary 

Progress in computational science and engineering requires a judicious combination of 

application expertise, algorithm selection and mapping to computational infrastructure. 

A key underlying technology is the tooling available to computational scientists. High­

level languages and advanced problem solving environments have proved to be powerful 

tools to facilitate rapid and flexible prototyping of new codes in a wide range of appli­

cation areas. 

At their heart of these tools lies the ability to leverage and build upon previously con­

structed general components and libraries, from which new functionality is composed. 

In this thesis we have demonstrated how such general components or libraries may be 

specialised and optimised when used in the context of a particular application or with 

particular inputs, by exploiting information which is often known in advance but is not 

usually brought into play. We have shown how to take advantage of this information to 
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deliver improvements in performance. Furthermore this can be done in a way that is 

transparent and automated from a user's perspective. 

We believe that techniques such as partial evaluation and just-in-time compilation/spe­

cialisation will allow future generations of computational scientists and engineers to 

benefit from the productivity gains associated with using high-level generic libraries in 

advanced problem solving environments, whilst at the same time obtaining high perfor-

mance. 



Appendix A 

This appendix describes how to use the MAT LAB partial evaluator, MPE. First we give 

the command line options. 

Usage: mpe [-a] [-b file] [-c] [-d variable value] [-D] [-f] [-g] 

[-0 file] [-p] [-s] file 

mpe -h 

mpe -v 

If the filename given is '-' then the main source function is read from standard input. 

Option Explanation 

-a This option when followed by a filename allows the user to specify a file 

containing annotations and assignments which will be prep ended to the 

source file before annotation. 

-b This option allows the user to specify a file containing the list of builtins 

that mpe recognises. If this option is not used the default list is used. 

-c This option suppresses the printing comments describing the attributes 

of expressions in the output code. 

-d This option causes an assignment to be inserted at the beginning of the 

initial source file so that parameter values can be specified. 

-D This option causes debug information to printed to standard output. 

-f This option prints a list of functions called by the main function. 

-g This option writes out a file that can be processed by dot to draw a 

graph of the strongly connected components in the function dependency 

graph. 
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Option Explanation 

-h This option prints out help text. 

-0 Specifies a file to which to write the partially evaluated function. With-

out this option the function is written to standard output. 

-p Causes the function to be post-processed before writing it out. 

-s This prints out a list of variables used by each function. 

-v This prints out the version number of MPE and then exits. 

--precision Sets the precision to output floating point numbers. 

Now we describe the annotations that can be given to mpe. Annotations always start 

on a new line and start with '%#', which is a MATLAB comment. 

There are two types of annotations, ones that are associated with a particular variable 

and those that relate to the general invocation of a function without being directly tied 

to a variable. All variable annotations exception for undefined automatically set the 

state of the variable to defined. 

The variable annotations are of the form var instruction [value] and are described 

in the following table: 

Instruction Value Explanation 

size Matrix This annotation sets the shape of the variable in the sym-

ndims 

widen 

bol table. The value field is parsed as an ordinary matrix 

where the first element gives the number of rows, the sec­

ond element gives the number of columns and subsequent 

elements gives the size of any extra dimensions. If any 

element is UNKNOWN then the size of that dimension is left 

unset. 

Scalar This sets the maximum number of dimensions for a vari­

able. 

Scalar This makes the dimension specified by the scalar argu­

ment have an unknown value. 

real String If the value string can either be 'yes' or 'no' and con-

logical 

trols whether the variable is real or complex. 

String If the value string can either be 'yes' or 'no' and con­

trols whether the variable is logical or not. 
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Instruction 

class 

realdouble 

realscalar 

defined 

undefined 

Value Explanation 

String This declares that the class of a variable. It can be 

double, char, cell, struct, sparse, single, int8, 

int16, int32, uint8, uint16, uint32 or function. 

Shorthand way of declaring a variable is real and is of the 

class double. 

Same as realdouble but declares the shape to be scalar 

as well. 

This declares that a variable definitely exists. 

This declares that a variable definitely does not exist. 
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The variable annotations are of the form instruction value and are described in the 

following table: 

Instruction 

nargin 

nargout 

unroll 

nounroll 

preserve 

Value 

Scalar 

Scalar 

Explanation 

Sets the value returned by the nargin function. 

Sets the value returned by the nargout function. 

This forces a loop to be unrolled even if it cannot be 

determined to be possible. 

This prevents a loop from being unrolled even if it has 

been determined to be possible. 

String This prevents the named function from being partially 

evaluated, but retains it intact in the residual program. 

no interpret String This prevents the function from being directly inter­

preted, which is useful for function which produce side­

effects. 
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This appendix gives the source code to some of the functions test in Chapter 8. 

function y=lagrange(x,pointx,pointy) 

% 
%LAGRANGE 

% 
% 

approx a point-defined function using the Lagrange polynomial 

interpolation 

!. LAGRANGE(X,POINTX,POINTY) approx the function defined by the points: 
% Pl=(POINTX (1) , POINTY (1» , 

% P2=(POINTX(2),POINTY(2», 

% PN(POINTX(N),POINTY(N» 

% and calculate it in each elements of X 

% 
% If POINTX and POINTY have different number of elements the function 

% will return the NaN value 

% function wrote by: Calzino 

% 7-oct -2001 

% 
n=size (pointx ,2); 

L=ones(n,size(x,2»; 

if (size(pointx ,2)-=size(pointy ,2» 

fprintf(l, 'POINTX and POINTY must have the same number of elements\n'); 

y=NaN; 

else 

end 

for i=l:n 

for j=l:n 

if (i-=j) 

L(i,:)=L(i,:).*(x-pointx(j»/(pointx(i)-pointx(j»; 

end 

end 

y=O; 

end 

for i=l:n 

y=y+pointy(i)*L(i,:); 

end 

LISTING B.l: Langrange Interpolation Code 
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function z~hypergeometric2f1(a,b,c,x,n) 

% HYPERGEOMETRIC2F1 Computes the hypergeometric function 

% using a series expansion: 

% 
% f(a,b;c;x)~ 

% 
% 1 + [ab f 1 ! c] x + [a (a + 1) b (b + 1) f 2 ! c (c + 1) ] x - 2 + 

% [a(a+1) (a+2)b(b+i) (b+2)f3! c(c+1) (c+2)] x-3 + ... 

% 
% The series is expanded to n terms 

% 
% This function solves the Gaussian Hypergeometric Differential Equation: 

% 
% x(l-x)y" + {c-(a+b+1)x}y' - aby ~ 0 

% 
% The Hypergeometric function converges only for: 

% I x I < 1 
% c !~ 0, -1, -2, -3, 

% 

% 
% Comments to: 

% Diego Garcia - d.garcia~ieee .org 

'l. Chuck Mongiovi - mongiovi~fast.net 

% June 14, 2002 

if nargin -~ 5 

error (' Usage: hypergeometric2f 1 --> Wrong number .of arguments') 

end 

if (n <~ 0 I n -~ floor(n» 

error('Usage: hypergeometric2f1 --> n has to be a positive integer ') 

end 

if (abs(x) > 1) 

error (' Usage: hypergeometric2f 1 --> I x I has to be less than 1') 

end 

if (c <~ 0 & c ~~ floor(c» 

error('Usage: hypergeometric2f1 --> c !~ 0, -1, -2, -3, ... ') 

end 

delta 1; 

z ~ 1; 

m = 0; 

for m = 1: n-1 

delta delta .* x .* (a + (m - 1» .* (b + (m-i) .f m .f (c + (m-i); 

z=z+delta; 

end 

LISTING B.2: Hypergeometric Gaussian Differential Equation Solver Code 
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function clength = length_crit (B, Ml, betacrit) 

% %# Beta realscalar 

% %# M1 realscalar 

% %# betacrit realscalar 

% Specific heat ratio 

G = 1.3; 

[c_angle, vrprime_final, VrPrime, dVrPrime] 

% Flow properties at surface 

TO_T=1+«G-1)/2)*Ml-2; 

TO=TO_T*147.5; 

cone_angle(B, M1); 

clength = calc_crit_length(B, M1, c_angle, VrPrime, dVrPrime, 

G, TO, betacrit, 0.00000001); 

LISTING B.3: Main Function for Mars Lander Code 

function [theta, s, VrPrime, dVrPrime] = cone_angle (B, M1) 

G = 1.3; 

MN1 Mhsin(B); 

MN2 = sqrt«MNl-2+(2/(G-1)))/«2*G/(G-1))*MNl-2-1)); 

Delta = atan(2*cot(B)*«Ml-2*(sin(B))-2-1)/(Ml-2*(G+cos(2*B))+2))); 

M2 = MN2/sin(B-Delta); 

VPrime = «2/«G-l)*M2-2))+1)-(-1/2); 

VrPrime = VPrime*cos(B-Delta); 

dVrPrime = -VPrime*sin(B-Delta); 

thetaspan = [B,pi/180]'; 

options odeset (' Events', @eventsfun); 

[theta, s] = ode45 (@rhs, thetaspan, [VrPrime, dVrPrime], options); 

theta = theta(end); 

s = s ( end, 1); 

LISTING B.4: Auxillary Function for Mars Lander Code (1) 

function F = rhs(theta, s) 

F(l,l) = s(2); 

gamma = 1.3; 

A = (gamma - 1) / 2; 

F(2,1) = (s(2)-2 * sO) * 0 + 2 * A) + ... 

s(2) * (s(2)-2 * A * cot(theta) - A * cot(theta)) + 

sO) * ( 2 * A * s(1)-2 - 2 * A + A * sO) * s(2) * cot(theta))) 
/ (A - A * s(1)-2 - A * s(2)-2 - s(2)-2); 

LISTING B.5: Auxillary Function for Mars Lander Code (2) 

function [value, isterminal, direction] = eventsfun (theta, s) 

value = s(2); 

isterminal = 1; 

direction = 0; 

LISTING B.6: Auxillary Function for Mars Lander Code (3) 
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function clength calc_cri t_length (B, M1, theta, VrPrime, dVrPrime, G, 

TO, Beta, threshold) 

vxO = M1*((G*191*147.5)-0.5)/((2*860*TO)-0.5); 

vyO = 0; 

rybegin = 10-(-6); 

t_span = [0 10J; 

ry1 rybegin; 

vy1 vxO; 

vx1 vxO; 

ryO = 5*sin(B); 

options = odeset (' Events', lQeventsfun3); 

rx1 = ry1 / tan(B); 

[t, dfdtJ ode45(IQrhs2, t_span, [rxl ry1 vx1 vy1J, options, B, theta, 

VrPrime, dVrPrime, Beta); 

rxbegin 

rybegin 

dfdt(:,1); 

dfdt(: ,2); 

old_clength = ry1; 

iterations = 0; 

while 1 

fprintf ('. ') 

iterations = iterations + 1; 

rxO = ryO / tan(B); 

[t, dfdtJ = ode45 (~rhs2, t_span, [rxO ryO vxO vyOJ, options, B, theta, 

VrPrime, dVrPrime, Beta); 

rx dfdt(:,1); 

ry df d t ( : ,2) ; 

lhit = rx(end) * tan(theta); 

lhitbegin = rxbegin(end) * tan(theta); 

h1 ry(end) - lhit; 

h2 = lhitbegin - rybegin(end); 

clength = ryO - (ryO - ry1) / (h1 + h2) * h1; 

if abs(clength - old_clength) < threshold 

break 

end 

ry1 = ryO; 

ryO = clength; 

rxbegin = rx; 

rybegin = ry; 

old_clength clength; 

end 

fprintf ( '\n') 

iterations 

LISTING B.7: Auxiliary Function for Mars Lander Code (4) 
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function [dfdt] rhs2 (t, f, B, cone_angle, VrPrime, dVrPrime, Beta) 

rx f (1) ; 

ry f(2); 

vx f(3); 

vy f (4) ; 

t ; atan(ry / rx); 

if B > t + eps 

[theta, sJ; ode45(~rhs, linspace(B, t)', [VrPrime dVrPrimeJ); 

vrprime s(end,l); 

vtprime s(end, 2); 

else 

vrprime 

vtprime 

end 

VrPrime; 

dVrPrime; 

ux vrprime * cos(t) + vtprime * sin(t); 

uy vrprime * sin(t) + vtprime * cos(t); 

rxprime vx; 

ryprime vy; 

vxprime -Beta*(vx-ux); 

vyprime -Beta*(vy-uy); 

dfdt(l.l) rxprime; 

dfdt(2,1) ryprime; 

dfdt(3,1) vxprime; 

dfdt(4,1) vyprime; 

LISTING B.8: Auxillary Function for Mars Lander Code (5) 

function [value, isterminal, directionJ eventsfun3(t, f, B, theta, 
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VrPrime, dVrPrime, Beta) 

value; (f(4)/f(3)) - tan(theta-1e-6); 

isterminal ; [1]; 

direction; [OJ; 

LISTING B.9: Auxillary Function for Mars Lander Code (6) 
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