
UNIVERSITY OF SOUTHAMPTON

Partially Evaluating MATLAB

by

Daniel R. Elphick

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

June 2005

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND· COMPUTER SCIENCE

Doctor .Qf Philos9Phy

by Daniel R. Elphick

More and more scientific code is being written in higher level languages than the tra­

ditional choice of Fortran. Such languages are more accessible to less computer science

minded people and bring with them large libraries, geared towards solving mathemat­

ical problems. MATLAB is such a language and allows the rapid development of high

performance codes. In this thesis, we describe the problems associated with the creation

of high performance code for mathematical computations. We discuss the advantages

and disadvantages of using a high level language like MATLAB and then propose partial

evaluation as a way of lessening the disadvantages at little cost. Partial Evaluation is a

program transformation technique, which propagates constants and performs static com­

putations, resulting in faster residual programs. We present our approach to partially

evaluate MATLAB programs using the online methodology, whereby decisions about

static or dynamic values are made at specialisation time rather than as a pre-process.

We also describe an implementation called MPE (MATLAB Partial Evaluator). As

well as propagating static values to produce fast residual programs, MPE uses exten­

sive shape and type inferencing to extract static information from otherwise dynamic

contexts. Partially evaluated programs frequently contained redundant code, necessi­

tating a post-processing phase to prevent irrelevent computations at run-time and also

to reduce the amount of code produced. The post-processor is able to remove much of

this redundancy by a combination of dead code elimination using ud-chains and dupli­

cate function detection, using structural equivalency. To ascertain the efficacy of our

approach, we obtained empirical results for a variety of real MATLAB programs. These

results showed performance increases in various programs, from the relatively simple

Chebyshev approximation and Lagrange Interpolation codes (with speed-ups of up to

100%) to the several different Ordinary Differential Equations solvers (speed-ups range

from 57% to 568%) to a Computational Fluid Dynamics solver, which was sped up by

92%. Since these results were produced with a minimal of manual interference, we sug­

gest that partial evaluation is a viable automated technique for use by those actually

coding scientific codes.

Contents

Listings

Nomenclature

Acknowledgements

1 Introduction
1.1 The Problems of Scientific Computing

1.2 MATLAB as a Solution .

1.3 Partial Evaluation

1.4 Thesis Aims and Outline.

2 Overview of MATLAB
2.1 M-files ...

2.2 Statements

2.3 Expressions

2.4 U nhandled Constructs

2.5 Optimising MATLAB - Current Technologies Review

2.6 Summary ...

3 Partial Evaluation
3.1 Review ..

3.2 Summary ...

4 Abstract Domains
4.1 Partially Ordered Sets, Lattices and Fixpoints .

4.2 Abstract Type System

4.2.1 Class Information

4.2.2 Type Trait Information

4.2.3 Combining Classes and Traits.

4.2.4 Dimension Information.

4.2.5 Definedness......

4.2.6 Putting it all together .
4.3 Full Type System

4.3.1 Shape Equations For Binary Operators

4.3.2 Shape Equations For Unary Operators .

4.3.3 Shape Equations For Built-in Functions

4.3.4 Shape Equations For Array Indexing .

11

v

vi

vii

1

1
2

3
4

6
7

8
12

17

20
21

23

23

28

29

29
30
30
31

33
34

36
37
40
42

45

45
47

CONTENTS

4.3.4.1
4.3.4.2
4.3.4.3
4.3.4.4

Single index non-logical subscripts ..

Multiple index non-logical subscripts
Single logical subscripts
Multiple indices with a final logical index

4.3.5 Class Equations For Operators .. .
4.3.6 Trait Equations For Operators .. .
4.3.7 Full Type Equations For Operators.

4.4 Concrete and Symbolic Execution.
4.5 Precision.
4.6 Summary

5 Handling full MATLAB programs
5.1 Overview
5.2 Lexical Analysis and Parsing .. .
5.3 Handling command line definitions
5.4 Converting placeholders
5.5 Summary

6 Partial Evaluator Core Functionality
6.1 Partially evaluating statements

6.1.1 Expressions ..
6.1.2 Assignments
6.1.3 if statements.
6.1.4
6.1.5
6.1.6

swi t ch statements
for loops ..
while loops

6.1.7 Annotations
6.2 Control Flow Change statements

6.2.1 return statements ..
6.2.2 break statements . . .
6.2.3 continue statements.
6.2.4 Errors......

6.3 Block Partial Evaluator
6.4 Function Specialisation.
6.5 Inlining
6.6 Least Upper Bound Caching.
6.7 Summary ..

7 Post-processing
7.1 Dividing into Basic Blocks.
7.2 Calculating ud- and du-chains .
7.3 Dead Code Elimination
7.4 Duplicate Function Elimination
7.5 Summary

8 Results
8.1 Single Function Experiments

8.1.1 Chebyshev Series Approximation

1lI

48
49
50
51
51
54
54
55
57
57

59

60
61
62
63
64

65
66
66
72
74
75
76
79

83
85
85
87
87
87
88
90
94
96
99

101

· 102
· 105
· 108
.109

· 110

112
.112

.112

CONTENTS IV

8.1.2 Lagrange Interpolation. 115

8.1.3 Solving a Gaussian Hypergeometric Differential Equation . 115
8.2 Ordinary Differential Equation Solvers 116

8.3 Dust Erosion of Probes Entering the Martian Atmosphere . 123
8.4 Arcadia CFD Solver . 125
8.5 Result Accuracy . 129

8.6 Summary . 130

9 Future Work
9.1 Asserting assumptions
9.2 Automatic Widening
9.3 Restructuring expressions for performance benefits
9.4 I/O operations .. .
9.5 Better Inlining
9.6 Context Propagation
9.7 Full Class and Polymorphism Support
9.8 Extending Types

10 Conclusions
10.1 Review.
10.2 Summary

Appendix A

Appendix B

Bibliography

131

· 131
· 132
· 132
.134
.134

· 135
· 135
· 136

138

· 138
.140

142

145

150

Listings

6.1 A simple implementation of sprintf 81
6.2 A test function for our strprintf function 82
6.3 Power function 88
6.4 Product function . . 89
6.5 Product function . . 90
6.6 Power test function . 92
6.7 Specialised version of testpower 92
7.1 Example Code 104
8.1 Chebyshev Series Approximation . 113
8.2 Chebyshev Series Approximation (Partially evaluated) . 113
8.3 Chebyshev Series Approximation (Partially evaluated further) . . 114
8.4 Chebyshev Series Approximation (Partially evaluated even further) . 114
8.6 Euler Method for ODE solving 118
8.7 4th Order Runga-Kutta Method for ODE solving . 118
8.5 Sample RHS Functions for ODE Solvers 118
B.1 Langrange Interpolation Code

B.2 Hypergeometric Gaussian Differential Equation Solver Code.
B.3 Main Function for Mars Lander Code
B.4 Auxillary Function for Mars Lander Code (1)
B.5 Auxillary Function for Mars Lander Code (2)
B.6 Auxillary Function for Mars Lander Code (3)
B.7 A uxillary Function for Mars Lander Code (4)
B.8 Auxillary Function for Mars Lander Code (5)
B.9 Auxillary Function for Mars Lander Code (6)

v

· 145
· 146
.147
.147
.147
.147
.148

· 149
.149

Nomenclature

N The set of positive integers including O.

Z+ The set of positive integers excluding O.

MdlXd2X ... xdn The set of matrices with n dimensions and dimension lengths d1 ··· dn

composed of elements from M.

VI

Acknow ledgements

I am very grateful to my two supervisors Professor Michael Leuschel and Professor Simon

Cox for allowing me the opportunity to do this research and for their help and direction

in reaching this final milestone.

I would also like to thank Dan Underwood, who provided the Mars Lander experiment

code, which proved to be a very useful benchmark and testing platform, and Professor

Mike Giles at Oxford University, who provided the Arcadia CFD code.

Finally, I could never have gotten this far without the help of my parents, who have

supported me both financially and emotionally throughout.

Vll

Chapter 1

Introduction

Scientific computing can be described as the use of computers to solve scientific problems.

As computers have become cheaper and faster, it has become possible to model ever more

complicated phenomena with ever more accuracy. Rarely is any large engineering effort

undertaken today, without some model first being built, which can be tested to find

flaws before anything real has been constructed.

1.1 The Problems of Scientific Computing

Problems range in complexity from calculating the amount of thrust required to put a

satellite into a desired orbit to calculating the effects of "greenhouse gases" on the tem­

perature of the earth over a hundred years. Even medicine is benefiting from advances in

computing, as biologists can now model how proteins "fold" using large scale distributed

computing efforts and then use the information to find out what causes diseases such as

Alzheimer's and BSE [22].

At the core of much of this work is the production of new algorithms to solve previously

insoluble problems. Doubling the clock speed of a processor can at best double the speed

of a model. Models are however rarely linear and so doubling the size of a model will

often have a far larger effect on the time taken to compute it. Replacing an algorithm

with cubic time complexity by one with quadratic time complexity can greatly increase

the size of problems that are manageable.

To this end, the barriers to the construction of algorithms need to be broken down so

that scientists do not struggle with problems that need not concern them. If algorithms

exist to perform linear algebra operations and which fully take advantage of the hard­

ware available, then those algorithms should be made readily available in the form of

environments which make them integral.

1

Chapter 1 Introduction 2

Unforgiving environments, designed for ease of implementation by compiler writers in

mind, can rarely offer users the flexibility and the ease of use desired by users without

computer science backgrounds since their focus is necessarily different. Learning an

arcane syntax which does not easily map to their other scientific experiences should be

avoided.

Scientific computing is moving away from hand-coded, hand-optimised codes, written in

low to medium level languages like FORTRAN, towards general codes written in high­

level domain specific programming languages or using problem solving environments,

e.g. MATLAB [75], Maple [46] MATHEMATICA [47]. This trend is also apparent

in general purpose computing, where languages like Python are now being adopted for

projects traditionally written in CjC++, since the large standard library includes string

processing and network communications in a way that saves users knowing the specific

architectural features of the computer or operating system [27].

With the current diversity of computer architectures (due to differences in cache con­

figurations, speeds and memory bandwidths as well as processor types), it is becoming

increasingly difficult to produce near optimal code without expending excessive time.

Even then the code ties the developer to one architecture, which is no longer ideal in an

era of heterogeneous systems. With high-level languages and integrated problem solving

environments, these details are both solved and yet hidden from the user, greatly easing

their work.

1. 2 MATLAB as a Solution

The use of high level languages allows rapid prototyping to ease development, while

hiding the complex implementation details from the user, who is only interested in

getting fast (both in execution and implementation) and accurate results. Users will

happily sacrifice some execution speed in the initial development period, if it means

they can quickly produce a working solution. This applies not just to the choice of

platform but the development methodology, where general solutions are sought which

can be applied to a wide variety of problems albeit slowly due to their generality. The

approach results in programs which can contain redundant and irrelevant computations,

thus causing significant reductions in performance. Later, once the prototype has been

verified, serious optimisation efforts can be made, often by rewriting the program in a

language like FORTRAN, which offers low level control.

MATLAB easily fills this hole in the development model. It closely maps to mathemat­

ical notation and treats matrices and multi-dimensional arrays as "first-class citizens",

so that they can be manipulated with the ease of scalars in more traditional languages.

It relies on highly optimised libraries such as ATLAS [80] for linear algebra routines and

Chapter 1 Introduction 3

FFTW [23] for Fast Fourier Transforms, so that users never have to worry about the

hand-coding of such fundamental operations.

Programs in MATLAB tend to be very general and multi-purpose, using input param­

eters to determine and configure which particular method is to be used in a particular

invocation. A familiar example of this might be a general purpose numerical library,

where selection and configuration of an eigenvalue solver is done at run time by setting

some parameter values. However, it also happens in full-scale engineering calculations -

a particular example arises in the process of design search and optimisation, in which the

performance of a device, system, or component is systematically improved by a series

of computational simulations. At the heart of this process is a device and the compu­

tational experiment needed to analyse its performance, which is described by a large

number of variable parameters, which can each be modified to change some aspect of

either the device itself (e.g. its size/material/topology) or the analysis process (resolu­

tion of simulation, number of iterations, etc.). The design process consists of a number

of studies, in each of which the code is executed a number of times with a (different)

large subset of the parameters fixed while the remaining ones are varied at run-time. In

each of these cases, we believe that partial evaluation could offer performance benefits

to users.

1.3 Partial Evaluation

Partial evaluation is the process of transforming programs by the early specification

of some of the program parameters. The resulting programs contain the precomputed

results of calculations that depended only on the pre-specified parameters; since the new

program does not need to perform these calculations itself, it is usually faster than the

original program. Optimisations such as loop unrolling, previously impossible due to

lack of information, become possible.

With component-based software engineering, programmers are encouraged to create

general code which can be reused, thus saving later development time. The trade-off

is that performance can suffer. With access to an effective partial evaluator, software

engineers can produce the general code that will ultimately lower their production costs

and yet often achieve the performance of a bespoke system.

High level code optimisation and partial evaluation techniques are quite different from

the low level optimisation done, for instance, on the assembly language produced by C

compilers. High level languages often provide special functionality not provided in low

or medium level languages which needs to be exploited to get maximum performance:

e.g. vectorisation in MATLAB and also FORTRAN 90. However unlike in low level

languages, there are few opportunities to influence the exact details of basic operations

like arithmetic operations. Indeed in a typical well written MATLAB program, most of

Chapter 1 Introduction 4

the computation is done inside the run-time libraries, which we cannot influence. Since

these libraries are very general, they must cater to many eventualities including invalid

or incompatible parameters, in which case checks must be performed first regardless of

whether we can infer that they are redundant. Recent efforts involving Just-In- Time

compilation seem to offer a solution to this problem, but there are often static aspects

of programs which, if found before execution, can be dealt with effectively using partial

evaluation.

More commonly partial evaluation has been applied to the more academic side of com­

puter science. The focus of most research has been on functional and declarative lan­

guages, like Scheme [37] and Prolog [45], although partial evaluators do exist for C [5]

and Java [64]. While there has been· research on numerical applications for Fortran

[41], this work has not been continued recently, and certainly has not been updated for

languages like MATLAB and Maple.

1.4 Thesis Aims and Outline

The aim of this project is to address these issues by taking general programs written

(or produced by other programs) in high level languages such as MATLAB and produc­

ing code that executes more quickly using partial evaluation and other high level code

optimisations.

The main contribution of this work is an online partial evaluator for MATLAB called

MPE (MATLAB Partial Evaluator). This is a program transformation tool, which takes

a MATLAB program and produces a new one specialised according to some specified

static data. This transformation is guided by our extensive abstract interpretation

system, which allows information about the dynamic types of MATLAB to be captured.

The tool is firmly grounded in practicality and so eschews some of the more theoretical

decisions taken to achieve results such as self-application as this is superfluous to our

goal of speeding up mathematical codes.

In combination with our partial evaluation techniques, we also demonstrate an effective

post-processing phase, which combines dead code removal using ud-chains and function

duplication elimination via structural equivalency detection.

This work demonstrates that program specialisation can effectively improve the perfor­

mance of MATLAB programs without placing too much burden on the end-user. Typical

results for non-trivial systems such as the solution of ordinary differential equations us­

ing the generic solver provided as part of MATLAB show that partial evaluation can give

100% increases in speed. When the MATLAB compiler is used, speed-ups are retained

mostly intact and in some cases compilation in combination with partial evaluation gives

much larger performance increases.

Chapter 1 Introduction 5

In Chapter 2, we examine the MATLAB programming language, looking at its structure

and performance issues as well as examining previous work on increasing execution speed

using techniques like parallelisation and compilation. In Chapter 3, we examine existing

work in the field of partial evaluation. Chapter 4 presents a formal analysis of the type

system used in MPE. The loading and parsing of a MATLAB program including all of

the supporting functions is described in Chapter 5. The core partial evaluation details

are given in Chapter 6. Chapter 7 describes how we remove dead code and perform

other post-processing optimisations. In Chapter 8, we demonstrate the effectiveness of

automatic partial evaluation by applying our tool to several test programs and comparing

timings. Future work that could enable further improvements is described in Chapter 9

and our final conclusions are presented in Chapter 10. Some of the early work of Chapters

4, 6, 7 and 8 appeared in [20].

Chapter 2

Overview of MATLAB

MATLAB is a problem solving environment sold by The Mathworks [75], whose users

world-wide have grown in number from 400,000 in 2000 [72], to around 1,000,000 today

[71].

The Mathworks sells MATLAB to a variety of industries, from the aerospace and defence

industry, to communication equipment manufacturers, to semi-conductor suppliers [73].

In the Aerospace and Defence industries, MATLAB and its related tools are used to

"provide a flexible software environment for designing multidomain systems simulating

high fidelity behavioral dynamics, testing and generating safety-critical flight computer

code". Semi-conductor engineers use it in their design process from "algorithm develop­

ment and the creation of specifications, to system-level simulation, testing, and verifica­

tion". As communications equipment manufacturers strive to improve "the transmission

of voice, music, data, and video", they have found that the MATLAB family of tools

"accelerate[s] tasks such as data analysis, algorithm development, large-scale system

simulation, performance analysis, hardware and software verification, and automatic

code generation for prototyping and deployment".

The MATLAB environment enables these applications through its large mathematical

libraries and the ready mapping from traditional notation to implementation by its con­

trolling language, also known as MATLAB. From now on when we refer to MATLAB,

we are referring to the language unless otherwise stated. The main characteristics are

that it is a dynamically typed imperative language which is normally interpreted. Vari­

ables do not need to be declared and can change type. Matrices and arrays are not of

fixed size but are reshaped when assignments are made to subscripts outside the current

bounds. Function calls are always call-by-value, (although a copy-on-write approach is

taken internally) and it is not possible for data structures to share values. As such this

means that there are none of the aliasing problems that exist in languages like C [52].

6

Chapter 2 Overview of MATLAB 7

For the purposes of this project we intend only to look at a subset of MATLAB. This

subset includes most MATLAB features and is large enough to handle non-trivial pro­

grams without modification. This subset has grown significantly since [20] as wider

testing revealed further desirable features. In this chapter the structure of MATLAB

will be discussed in order to give a better understanding of the later chapters. Sections

2.1 to 2.3 describe the features we include in the subset, while Section 2.4 outlines the

main features that we have chosen to exclude. A mostly complete EBNFl will be given

to show this structure. This description is not intended to be complete; in particular,

the use of whitespace to delimit matrix columns and rows is not discussed. A fuller if

slightly outdated discussion on parsing MATLAB can be found in [36].

2.1 M-files

MATLAB code is always stored in a file with a .m extension, called an m-file. An

m-file is either a script or a function, depending on whether the file starts with the

function keyword. Scripts are executed within the current scope whereas functions

execute within their own scope. For simplicity we deal only with functions as their

scoping rules are simpler.

Functions are declared using the function keyword. This must come at the start of the

file (excluding whitespace and comments), although additional local function definitions

can appear later in the same file.

Functions can return zero or more values and take zero or more parameters. Whatever

values are stored in the output variables at the end of the execution of the function are

returned. E.g.

function [a,b] ; f(x,y)

It is also possible to declare functions that take a variable number of parameters by

adding a final parameter called varargin. Functions can return any number of outputs

by making the last output varargout. The EBNF of functions is given in Figure 2.1.

MATLAB statements are either separated by new lines, semi-colons or commas. Using a

comma to delimit a statement is equivalent to using a new line and so from now on only

new lines will be mentioned. All the legal MATLAB statements are shown in Figure 2.1

using EBNF.

lExtended Backus Naur Form

Chapter 2 Overview of MATLAB

m file script_file
function file

script_file = { statement } ;

function file function { function } ;

function = func_pream { global } block

func_pream = "function" [ret vars "="] identifier [params]

ret vars identifier
"[" { identifier

params C "C" { identifier

II II ,

II II

} identifier IIJ 11

} identifier ")")

global = "global" identifier { identifier}

block { statement C "\n" I II. II
" II) }

FIGURE 2.1: EBNF for MATLAB functions

2.2 Statements

8

In the following pages we will now describe the effect of each of the MATLAB statements

gi ven in Figure 2.1.

Expressions. MATLAB is in many ways like a calculator and can be used just to

evaluate expressions. If an expression is terminated by a new line, the result is printed

to the screen. If it is terminated by a semi-colon, the result is computed but not

displayed. The result would normally be stored in a special variable called ans but

we will require explicit assignments, as the use of ans is mostly employed only in the

interactive environment, where MATLAB is being used as a calculator. The make-up of

expressions will be discussed in more detail later in this section.

As some functions do not return anything, it is possible for an expression to have no

value. Such a function cannot be used anywhere where a value is required, which means

that it can only appear as an expression statement (but not part of a binary expression).

When these functions are executed, no output value is displayed even if the semi-colon

is omitted. Such functions would merit their own case distinct from expressions, except

that determining that a function returns nothing is not trivial since the presence of

return variables in a function declaration only means that it can return values if these

variables are defined when the function exits. E.g.

1 + a * [2 3J'

disp (' hello')

Chapter 2 Overview of MATLAB

statement expression
special_func
assignment
for_loop
while_loop
if_statement
switch
try_catch
control_flow_change

assignment (target "=" expression)
I (subscript "=" "[J")
I ("[" { target "," } target "J"

special-func = identifier { string} ;

func call)

for_loop = ("for" variable "=" expression block "end")

while_loop = ("while" expression block "end") ;

if statement = ("if" expression block else block)

else block "end"

switch

choice

"else" block "end"
"elseif" expression block else block

"switch" expression
{ "case" choice block}
[otherwise block J
"end" ;

expression
("{" { expression II 11 } expression "}")

try_catch = "try" block "catch" block "end"

"return"
"break"
"continue"

FIGURE 2.2: EBNF for MATLAB statements

9

Chapter 2 Overview of MATLAB 10

Assignments. There are three kinds of assignment, all indicated by the = operator.

The most common is an assignment from an expression to a variable or to within a

variable using indices. In addition multiple variables can be assigned if the right hand

side is a function call. The final kind of assignment is the delete assignment, indicated

by an assignment from the empty matrix [J to a subscript of a variable. This can be

used to delete elements from arrays. If no semi-colon is present, then the values of all

assigned variables are displayed. E.g.

a = 1

a(2) = 1

[a,b] = size(c)

a(5) = []

if statements. if statements check the value of an expression before executing a

list of statements. There is also an optional else clause with elseif being "syntactic

sugar" for a nested if statement inside an else block. The final list of commands is

terminated by an end on its own. Usually the expression will be a scalar, in which case

if it is non-zero the first set of commands will be executed. In the case of arrays, every

value must be non-zero. E.g.

if a == 1

n = 20

else if a

n = 30

else

n = 0

end

I. every element of a must be 1

I. every element of a must be non-zero

Logical operators are evaluated differently inside if statements. Normally neither I

nor & shortcuts (skips evaluation of the second operand when the evaluation of the first

predetermines the final result), but it does in if statements. When no shortcut occurs,

the semantics revert to the normal behaviour of the logical operators. Unfortunately this

is implemented in a manner likely to cause confusion, with the possibility of incorrect

results.

if [1 0] I [0 1]

dispel)

else

disp(2)

end

if [1 0] I ([0 1] Be [0 1])

disp (1)

else

disp (2)

end

The above examples were run in MATLAB 6.1 and 6.5, and both printed 1 and then 2

on the screen, when most likely the expected result would be 1 and 1 or 2 and 2. In the

Chapter 2 Overview of MATLAB 11

first example [1 OJ is evaluated and found to be false, no shortcut occurs and so it is

logically ORed with [0 1J which produces the result [1 1J, which is true.

In the second example, [1 OJ is evaluated and found to be false, then [0 1J is evaluated

and also found to be false and so the result is logically ORed with [0 1] 1 which gives

[0 1]. Instead of then logically ~Ring [1 OJ with [0 1J and getting true, it actually

logically ORs 0 with [0 1] and so evaluates to false causing 2 to be printed. This

behaviour is ultimately the result of the ambiguous semantics obtained by combining

shortcuts with an element-wise logical operator.

MATLAB 6.5 introduces && and II as shortcut operators but does not remove the

shortcut semantics from & and I. The new shortcut operators can only be used with

scalar operands, and so it is not possible to write a I I b == c when either a, b or c

are non-scalar. A better implementation would implicitly convert operands to logical

scalar values. We do not fully support MATLAB 6.5 (including these new operators),

although we plan to shift to a newer version in future.

for loops. These execute a series of statements multiple times, while varying a loop

variable on each iteration. The loop variable takes its values from a list, which in most

cases is an arithmetic progression, although any list is allowed. The end of the loop is

marked by the end keyword. In the example below, 1: 10 expands to [1 2 3 4 5 6 7

8 9 10J, although the interpreter and compiler can frequently optimise loops like this.

E.g.

for a = 1:10

b b+c(a)

end

while loops. These statements repeatedly evaluate the value of an expression, check­

ing its value for zero (in the same way as with if statements) before executing a series

of statements. The end of the loop is marked by the end keyword. E.g.

while a > 0

b b+c(a)

a = a - 1

end

As with if statements, logical operators in while loops have shortcut semantics.

swi tch statements. These evaluate an expression which must be either a scalar or a

string and check the value against a series of case clauses, executing the appropriate

code if it matches before control flows to the end of the switch block. There can also

be an otherwise clause which is executed if no other clauses match. The final list of

commands is terminated by the end keyword. E.g.

Chapter 2 Overview of MATLAB

switch a

case 1

end

n = n + 1

case {2, 3, 4}

n = 0

otherwise

n = 1

12

return, break and continue statements. Normally functions finish executing when

control passes off the textual end of the function. However return can be used to

explicitly end the function at any point, with the current values of the return variables

immediately returned.

break causes the execution of the innermost loop to terminate and control to flow to

the end of it. If a break appears outside of a loop, it terminates the function in the same

way as return. continue causes the execution of the current iteration of the innermost

loop to terminate and control to be passed back to the beginning of the loop; it can only

appear inside loops.

2.3 Expressions

MATLAB allows the creation of complex expressions in a very intuitive way using the

syntax described in Figure 2.3. The basic construct is the matrix, of which vectors and

scalars are special cases. Matrices are created by enclosing the elements in square brack­

ets ([. ..]). Apart from standard matrices which are two dimensional, MATLAB also

has n-dimensional arrays. No syntax exists to create n-dimensional arrays directly, but

they can be created using built-in functions and through indexed assignments. Arrays

are laid out in memory in rows first, then columns and then any further dimensions.

Arrays have a class associated with them as well as some type traits, which are some­

what independant of class. Type traits indicate whether arrays are real, complex or

logical. The combination of traits and class makes up the intrinsic type of an array.

Logical arrays are returned from boolean operators and built-in functions like isreal

and isinf. While generally they will have the values 0 or 1, they can have any real

value. Strings are arrays of class 'char', which contain only integer values (which use 2

bytes of storage). Arrays always have the same number of elements in each row, column

or further dimension. The intrinsic type of an array applies to every element within it.

» a [1 2 3; 4 5 6; 7 8 9J

a =

2 3

4 5 6

7 8 9

» b a > 4

Chapter 2 Overview of MATLAB

expression

target

(expression bin_op expression)
(Ull_prefix_op expression)
(expression Ull_postfix_op)
("(" expression ")")
(expression ":" expression)
(expression ":" expression "." expression)
("[" {row";" } row "J")
(",,, string ",,,)
("@" identifier)
target
number
complex_number
matrix
fUllc_call
II. "

"end" ;

indexable
(indexable "(" { expression II II } expression ")")

indexable variable
(indexable
(indexable

"{" { expression
identifier)

II " } expression "}")
II "

variable identifier

fUllC call identifier
(identifier "(" { expression II " } expression ")")

"+" I II_II I "*11 I "/" I 11\" I II I " I" I "&" I
"<" I ">" I " .*11 I " ./11 I ".\11 I " -II 11==11

11-=" I ">=" "<="

Ull_prefix_op = "-,, I "-" I "+"

Ull_postfix_op = ",,, I ".'" ;

general_number number ["e" ["+" I "-" J digit* J

complex_number = general_number "i" ;

number = ([digits J "." digits) (digits [II " J)

digits = digit { digit}

digit "0 .. 9"

row expression ({ expression II " } expression)

FIGURE 2.3: EBNF for MATLAB expressions

13

Chapter 2 Overview of MATLAB

b

o
o

o
1

1

»C 'a string'

C ;

a string

» d ; a + b * j

d

1.0000

4.0000

o
1

1

7.0000 + 1.0000i

2.0000

5.0000 + 1.0000i

8.0000 + 1. 0000 i

3.0000

6.0000 + 1. 0000 i

9.0000 + 1.0000i

14

Nearly all binary operators in MATLAB are array operators. This means they are

element-wise and require that both operands have the same shape. The shape of an

array is described by the sizes of its dimensions. Array operators perform a computation

for each pair of elements in the two operands with equivalent positions and return an

array with an identical shape. For instance, using the + operator on the two vectors

[1 3J and [4.5 OJ gives us [5.5 3J. If one of the operands is a scalar (and therefore

has 2 dimensions, both of size I), then the result will have the same shape as the other

operand and the result will be the result of applying the operator to the scalar and each

of the elements in the non-scalar. If both are scalars, the result is also a scalar.

The exceptions to this are matrix operators like *, \, / and -. Given one or more scalar

operands, these behave exactly like array operators. To achieve the same for non-scalar

operands, the array forms must be used: . *, . \, . / and. -. Each of the matrix forms

has different operand requirements although all require operands be 2-dimensional:

• * requires the number of columns in the first operand be the same as the number

of rows in the second.

• \ requires the second operand to have as many rows as the first operand. The

result will have as many rows as the first has columns and as many columns as the

second has columns.

• / requires the second operand to have as many columns as the first operand. The

result will have as many rows as the first has rows and as many columns as the

second has rows.

• - requires that one of the operands be a scalar and the other a square matrix. The

result will have the same shape as the matrix operand.

One consequence of allowing * to be used both as an array and a matrix operator in

different circumstances is that it is no longer truly associative. Array multiplication

and true matrix multiplication are both associative but the combination that MATLAB

presents in the * operator is not. For instance:

Chapter 2 Overview of MATLAB 15

» a = [1 2; 4 5] ; b [1 2 3] ; c [3 ; 2; 1];

» a * (b * c)

ans

10 20

40 50

» a * b * c

??? Error using ==> *
Inner matrix dimensions must agree.

This has consequences for bracketing when printing MATLAB code as we cannot remove

what would appear to be redundant brackets without first checking whether it is safe

to do so. In practice, we do not perform this check and so never reb racket , which also

means that our partial evaluator will not change the order of execution, which in some

cases can lead to a change in complexity (see Section 9.3).

Ordinary arrays and matrices can only store values of the same type and each of these

values must be a scalar. While cell arrays must be regularly shaped, each element can

have any type including cell arrays themselves. Cell arrays are created by enclosing the

elements in braces ({ ... }).

» a = {1 2 3; 4 5 6; 7 8 9}

a =

[1]

[4]

[7]

[2]

[5]

[8]

[3]

[6]

[9]

» b = {a, 'hi'; 5 + j, 10}

b =

{3x3 cell} 'hi'

[5.0000+ 1.0000 iJ [10]

Structures consist of a number of fields each containing a value. The fields are strings,

while the value can be any MATLAB array including cell arrays and other structures.

Fields can be added to a structure at any time and there is no concept of named struc­

tures as in C. Structures can either be created incrementally by assigning to each of the

fields in turn (using the' .' operator) or by using the struct built-in. Fields can be

accessed using the' .' operator or the getfield function and can be deleted using the

function rmfield.

» a = [];

»a.fieldl 5

a =

fieldl: 5

» a.anotherfield

a =

fieldl: 5

{'hello', [1, 2]}

anotherfield: {'hello' [1 2]}

»b struct('fieldl', 5, 'anotherfield', {{'hello' [1, 2]}})

b =

fieldl: 5

anotherfield: {'hello' [1 2]}

Chapter 2 Overview of MATLAB 16

Indexing into matrices is done using round brackets, as in a(3). MATLAB allows more

than just scalars as indices. An appropriately sized matrix is also a valid index. In

particular, ranges can be used to extract parts of matrices. Indices start at 1 and

end can be used to get the last element. Finally, if an index is logical it predicates which

part of the matrix should be extracted. E.g.

» a ~ [1 , 2, 3; 4, 5, 6; 7, 8, 9] ;

ans

1 2 3

4 5 6

7 8 9

» aCl,:)

ans

2 3

» a(2,2:end)

ans

5 6

» a(a > 4)

ans

5 6 7 8 9

It is possible to index into a matrix using more dimensions than the matrix has, as long

as the extra indices are all equal to 1. If fewer dimensions are used then the dimensions

that are not explicitly specified are flattened, so that the final index can be used to access

all of them. For example, matrices can be indexed linearly (remembering of course that

the values are stored in row-column order).

» a ~ [1, 2; 3, 4];

» a(2, 2, 1, 1, 1)

ans

4

» a (:)

ans

1

3

2

4

Indexing into cell arrays using round brackets produces a cell array as the result and

so it is not suitable for extracting the elements themselves. Instead braces need to be

used as in a{1}. As this extracts the elements themselves and not a subset of the cell

array, the behaviour is very different when the indices are not scalars. In this case such

an expression would evaluate to more than one value and so it only makes sense in a

context that allows comma separated expressions (like a function call invocation or in

the construction of a matrix). This is of special importance for functions which have

the varargin parameter. This parameter will be a cell array containing all the extra

parameters passed into the function. In order to pass all of these extra parameters onto

a second function, they must be expanded in the function invocation.

Chapter 2 Overview of MATLAB

function y ; f(varargin)

y ; g(varargin{:}) + 10;

17

Cell array expansion using braces, can be used in any place where comma-separated lists

are accepted. This includes function call parameter lists, index lists and matrices.

Another important type is the function handle. These are like pointers to functions

in C. They are created by prefixing a function name with © and also by using certain

functions. The built-in feval is used to invoke the function represented by the function

handle. These are used by many general numerical solvers like quad which evaluates

integrals using adaptive Simpson quadrature and ode45 which solves non-stiff differential

equations using a medium order method.

The description of matrices given in Figure 2.3 is incomplete as the use of white space to

denote column and row separators is not given, as it is just "syntactic sugar" for the form

given. It is also an ambiguous grammar as there is nothing to distinguish a function

call from an array access. This is because it is impossible to make this distinction

using a context-free grammar and the method for performing this disambiguation will

be described in Section 5.4.

2.4 U nhandled Constructs

In order to simplify, there are several MATLAB features that we do not consider:

try-catch statements. This construct is used to handle exceptions and is mostly of

interest when dealing with I/O. While we do not attempt to do any partial evaluation

of this construct, our parser does recognise it. This allows partial evaluation of func­

tions to go ahead when functions use the construct but the statement appears on an

execution path not taken by the partial evaluator. Partial evaluation of this construct

is especially difficult as control could theoretically flow from any point in the try block

to the catch block making data flow analysis difficult.

Struct arrays. By creating a cell array of structs, it is not possible to constrain the

fields that each struct must have. Indeed it is not even possible to assure that each

element is even a struct. An alternative is the struct array, which is a generalisation of

the struct as described earlier. In addition it can stores more than one element. We

ignore it as it is rarely used and complicates parsing. As a result we require that the

size function always returns [1 1J for a struct.

Chapter 2 Overview of MATLAB 18

Classes. Classes allow the definition of user defined objects which can have methods

executed on them polymorphically. While we support some features of classes we do not

support the creation of user defined classes or any class which is not directly built into

MATLAB.

When MATLAB is to execute a function call, the function that MATLAB invokes is

dependent on the class of the first parameter in the invocation. If the parameters is of

class A, MATLAB searches for directories called @A containing a matching function. If

no such function is found then the default function is called instead.

It would not be difficult to handle polymorphic function calls when the class can be

statically determined, but when the class is unknown any number of functions could

be invoked, thus complicating any analysis. One could abstractly interpret or partially

evaluate each possible function, but this could be expensive. Currently we completely

ignore the existence of functions contained in class directories, which could lead to

incorrect code generation even for built-in classes.

Global and persistent variables. Global variables are declared on lines prefixed

with global. Globals can be declared at any point of a program, including after a

variable has been used as a local variable. To simplify matters, we required that global

variable declarations come immediately after the function declaration and that they

cannot appear anywhere else. This explicitly makes illegal declaring a variable as a

global after it has already been used. We also require that global variables do not

shadow function parameters, which means a function cannot declare that it takes a

parameter and also use a global variable with the same name.

Persistent variables are like static local variables in C. They retain their values between

function invocations, but are not available outside of the function in which they were

declared. They are declared just like global variables but using the persistent keyword.

For now these are treated as if they were ordinary global variables.

It is necessary for a partial evaluator to parse global declarations since they can occur in

the main MATLAB libraries, but beyond this we largely ignore them. We do not store

any information about them since they could be overwritten by other functions. It is

rare that global variables are used in MATLAB programs in ways that partial evaluation

could help. Any code that does can often be written to avoid using globals.

Recursive functions. Recursive functions with dynamic control cannot be handled

as cycles are not detected by the polyvariant specialisation. This means that recursive

functions which would normally terminate can be infinitely specialised leading to non­

termination of the partial evaluator. This could be handled by marking the function

call signature as currently being specialised and immediately return control to the caller.

Chapter 2 Overview of MATLAB 19

This would not help with recursive functions which statically altered their parameters,

but use of the widen annotation described in Section 6.1.7 could help.

If the recursion is completely static, as with a recursive power function where the expo­

nent is static, then the partial evaluator will terminate but will produce a new function

for each recursive call, which mayor may not be desired. In combination with inlining

it could reduce the simple recursive power function into a single line function.

Special functions. Certain functions can have unpredictable effects on the execution

of MATLAB programs. These include functions like clear and assignin which ma­

nipulate variables. The clear function is mostly used interactively and it is uncommon

to see it used in functions. 2 The function deletes a variable and makes it undefined.

If it is used with static input, it might be possible to correctly handle it. However if

the variable to be cleared cannot be determined statically at partial evaluation time, to

ensure correctness we would have to throwaway everything we know about all variables

from that point on as anyone of them might have been affected.

Multiple outputs through cell array subscripts. As previously stated, functions

can return a variable number of outputs. Through the use of cell array subscripts it is

possible to make a program, in which the number of outputs to a function cannot be

statically determined.

[a{b}] = f (x)

If the size of b is not known, then the value of nargout will be unknown in f. Also if

the size of b is known then the only way to split the assignments if the result of f (x) is

static, is as follows (where b has 3 elements):

a{b O)}

a{b (2)}

a{b(3)}

Ideally, this transformation should occur before the function call is partially evaluated

as follows:

[a{bO)} a{b(2)} a{b(3)}] f(x)

Unfortunately this transformation produces a reduction in performance, and even if some

of the outputs are static, it is unlikely that speed-ups will be possible as assignments will

have to be inserted which are unlikely to be removed by post-processing as the dynamic

outputs will mark the whole of a as dynamic.

2clear is often seen in scripts which operate in the caller scope and need to clear variables to avoid
conflicts.

Chapter 2 Overview of MATLAB 20

Ultimately our partial evaluator assumes that each entry in the output list requires one

and only one output and so in the original example, b will be assumed to be scalar and

nargout for f will be 1.

In addition, we also require that the outputs do not contain any conflicts. I.e. two

outputs cannot be to the same variable and a variable cannot be written to if it is used

as an index in another output.

By limiting the set of MATLAB features that we can handle we limit the number of

MATLAB programs with which we can initially work. However we have to make a prag­

matic decision to ignore certain features that are not critical to testing our hypothesis

that partial evaluation is a viable technique for the optimisation of MATLAB programs.

In the future, it is hoped that these features could also be added to our tool.

2.5 Optimising MATLAB - Current Technologies Review

The Mathworks provides a compiler called MCC [74], which translates MATLAB into

C. This C code is then compiled by the native compiler to produce an executable which

can be executed without a full MATLAB installation. The C code produced is portable

but, since it requires the MATLAB runtime libraries, is tied to the platforms that

MAT LAB supports. The code produced consists mostly of function calls and very little

attempt is made to use native C types. This is due to the dynamic typing which means

that a variable could contain anything from a matrix to a function handle. Because

the MATLAB base libraries call optimised routines in libraries such as ATLAS [80],

LAPACK [44] and FFTW [23], these function calls are executed very quickly but have

to inspect the parameters to determine the type of function to call.

Another compiler is FALCON, which produces Fortran 90 code [57]. This uses extensive

type inferencing at compile time to produce code which does very little type checking.

Using user defined types (encompassed by existing MATLAB types), [26] describes how

to make FALCON take advantage of structural information such as diagonal or upper

triangular matrices, to improve results. Initial results showed FALCON outperforming

MCC, but there have been improvements to the Mathworks compiler recently and so it

is not clear which would perform better now as the FALCON source code was not made

available and no recent comparisons have been reported by its authors.

Following on from FALCON, Almasi has developed MaJIC, a MATLAB Just-In-Time

compiler described as "an interactive front-end that looks like MATLAB and com­

piles/optimises code behind the scenes in real time, employing a combination of just-in­

time and speculative ahead-of-time compilation". [3] Because MaJIC compiles code in

an interpreted environment, it has information about the parameters used to call func­

tions and attempts to produce more appropriate code. When compiling Just-In- Time

Chapter 2 Overview of MATLAB 21

it eschews most optimisations in favour of fast compilation times and so cannot easily

perform the types of aggressive optimisation seen in offline compilers and partial eval­

uators. MATLAB 6.5 also introduced Just-In-Time compilation as part of its normal

operation and this often gives better results and is reported to be much improved in the

recently released MATLAB 7.

Other approaches to speeding up MATLAB execution have involved parallelisation.

Mostly this involves adding parallel extensions to the language, like MultiMATLAB

[50] or the DP toolbox [53]. However Otter is an attempt to translate MATLAB scripts

into C programs targeting parallel computers supporting ScaLAPACK [54]. This ap­

proach produces varying results depending on the sizes of matrices and the complexity

of the operations performed on them.

In [48] and [49], the authors discuss source-level optimisations that would be appropriate

for MATLAB. These include vectorisation of loop operations to take advantage of the

more efficient MATLAB libraries, preallocation of arrays to prevent repeated resizing

and expression optimisation through reordering. Many of these issues would already be

apparent to MATLAB programmers, who would seek to avoid these pitfalls. However

other automatic source level transformations, including partial evaluation, may yield

opportunities to perform these optimisations.

In [35], the authors use a static shape analysis to try and optimise the memory used by

MATLAB programs. This results in quite significant speed increases as cache utilisation

is improved. The shape analysis is described in more detail in [32]. This shape analysis

is capable of determining that the shapes of two arrays must be the same, even when

the shape itself is unknown, leading to fewer run-time checks.

Type inferencing [1, 30] has been examined for other dynamically typed languages, like

Scheme, since it is enables early detection of errors due to type mismatches as well as

enabling many optimisations, such as replacing general arithmetic operators with integer

specific operators.

2.6 Summary

In this chapter we have seen the structure of the MATLAB language, including some of

its idiosyncrasies. The language was clearly designed to try and minimise the distance

from the mathematical description of a problem to its solution. In doing so, many of the

methods used to implement languages in the past have been ignored, since they serve

only to distract from the immediate problem. In ignoring these methods, the developers

of MATLAB have created a different set of problems, which must be solved to achieve

satisfactory performance.

Chapter 2 Overview of MATLAB 22

MATLAB was developed outside academic computer science and is a niche-language

since it is not readily applicable for general computation. It is however an important

niche growing in size as computers become fast enough to allow realistic models to be

built before any concrete engineering is even contemplated. To allow it to grow even

further, more methods from the academic world need to be introduced. Approaches like

compilation have served to give better performance, and indeed such work is ongoing.

The common theme to MATLAB usage, is the flexibility and the easing of traditionally

complex tasks. Engineers can focus on solving the problem at hand rather than the

reinvention of existing technology for each new application. This culture of reuse and

componentisation can gain significantly from processes which seek to solve its associated

problems.

We will, in the next chapter, introduce one such process which could improve the produc­

tivity achievable with MATLAB, both through execution time reductions and reduced

development effort. Partial evaluation has more often been applied to traditionally aca­

demic languages, like Scheme and Prolog, and very mainstream languages like C and

Java. In this work, we seek to expand its domain to MATLAB.

Chapter 3

Partial Evaluation

Partial evaluation is a technique to partially execute a program, when only

some of its input data are available. [51]

The above statement means to take a program, for which some of the inputs are known

prior to full execution, and execute as much of the program as possible. In cases where

programs are executed many times with only a few parameters changing, dramatic

savings can be made as many calculations can be performed during the partial evaluation

and thus only once. Partial evaluators can also perform aggressive optimisations like

loop unrolling and inlining which, while also possible in traditional compilers, are less

easy to control or see the effects of when the transformation is not source to source. A

program generated by partial evaluation is called a residual program.

3.1 Review

The most complete description of partial evaluation can be found in [37]. A similar

technique known as supercompilation is described in [77].

Traditionally partial evaluation has been mostly applied to declarative languages, like

Scheme [37] or Prolog [45]. But there are also partial evaluators for C [5], Java [64]

and Fortran [41]. Frequently the work on partial evaluation of languages like Scheme

and Prolog has focussed on efficient self-application [15, 38]. While it is possible to

compile programs, by specialising interpreters with respect to a static source program, by

specialising the partial evaluator with respect to the interpreter, it is possible to produce

a compiler [25]. This compiler can be much faster than specialising the interpreter and

so self-applicable partial evaluators are often desirable.

There are two main forms of partial evaluation, online and offline. In offline partial

evaluation, a Binding-Time Analysis (BTA) is performed first which given a source

23

Chapter 3 Partial Evaluation 24

program and a division for the initial input, determines which parts of the program are

static and which parts are dynamic. This data is then embedded in the source file in the

form of annotations which are used by the partial evaluator to produce the final result.

This final process is sometimes called reduction.

In online partial evaluation, there is no binding-time analysis step but instead decisions

about static vs. dynamic expressions are made as late as possible, and it is thus, in

principle, more precise. In general, offline partial evaluators can be made more efficient

and predictable. On the other hand, online partial evaluators are typically slower but

can detect and thus evaluate more static expressions.

1.# x size [STATIC DYNAMIC]

1.# c STATIC

if size (x, c) == 1

else

end

In the example above, x is a matrix for which the number of rows is declared static but

the number of columns is dynamic. This code checks to see if the size of the dimension

indicated by c is equal to 1. Even though c is static, offline partial evaluation will not

easily allow us to remove the if-statement if c turns out to be 1 (or greater than 2).

With online partial evaluation, the expression is only examined when we know the value

of c and so the if-statement can be removed.

The advantage of offline partial evaluators is that they are simpler to build and as the

binding-time analysis is separate from the specialisation phase, it can be done just once

while the specialiser is then called multiple times for different parameters. The binding­

time analysis can also be manually adjusted in cases where the automatic analysis is

imperfect. Offline partial evaluators are currently the only way to effectively handle

self-application.

One approach to offline partial evaluation is not to generate a full program directly

from the annotated source (after binding-time analysis), but to generate a program

which takes as input the static inputs. This program then outputs the final program.

This program is called a generating extension and the approach is known as the cogen

approach.

Most offline partial evaluators use a monovaT"iant BTA. This means that each expression

at each program point has at most one binding type. The BTA will normally determine

this to be the binding that works given the binding division of the input variables.

This means that a function called with dynamic parameters at OIle program point and

static parameters at another, will only be residualised based on the most conservative

set of bindings, i.e. the most dynamic ones. A polyvariant BTA could produce two

different sets of bindings for the fUIlction and so could produce more suited residual

Chapter 3 Partial Evaluation 25

code. Polyvariance can be achieved by function cloning, where every time a different

binding is required, the called function is cloned and the BTA is performed on the new

function [76]. Polyvariant binding time analysis need not work at the function level, but

instead program points can have multiple binding types associated with them, where the

most appropriate one is selected at specialisation time. This allows the code fragment

given earlier to be specialised by an offline partial evaluator in the same way as an online

one would.

Monovariant specialisation produces, for every function in the source program, at most

one function in the residual program. Polyvariant specialisation produces more than one

function if required. A maximally polyvariant specialiser would produce a new function

for every residualised function call, although more generally duplicate function signatures

are combined so that functions can be shared. Polyvariant specialisers are more prone

to termination issues as they can potentially produce infinitely many functions in cases

where a static parameter grows under dynamic control in a recursive function. The

process of detecting and eliminating this problem is called generalisation.

There has been some work on hybrid online/offline partial evaluators, including [69],

which is essentially an online specialiser which produces generating extensions, where

some offline decisions have already been made in order to speed up the final speciali­

sation. Sperber [66] produced an "online" specialiser which could be realistically self­

applied, but this was effectively an offline partial evaluator which could defer some

binding-time decisions to specialisation time. Christensen and Gluck [12] have also

demonstrated that offline partial evaluation can be as accurate as online using a max­

imally polyvariant BTA, although as effective generalisation is not possible. In [28],

Gluck showed that offline partial evaluators in conjunction with binding-time improve­

ments can always achieve as efficient residual programs as online partial evaluators.

For the online partial evaluator FUSE, the authors use fix-point analysis to find the types

of return values from functions [61]. This is required because the value of a recursive

function is itself dependent on its own type, making repeated iteration necessary. This

approach can be generalised to the non-recursive structured loops present in imperative

languages. They also introduced the idea of producing a graph of the suspended compu­

tation rather than directly producing code [78]. This makes detecting and removing code

duplication, due to expanding variables to expressions, much simpler. While most spe­

cialisers will recognise when a function is invoked with a signature that has already been

specialised, and reuse the earlier specialisation, it is more difficult to recognise when sig­

natures are only slightly different and will lead to the same specialisation. FUSE tackles

this [59] by storing information about what properties of the parameters led the function

to be specialised in the way that it was. This allows a looser signature to be constructed

which would result in the same specialisation. If a signature is then encountered which

falls inclusively between the two signatures, the specialisation can be reused safely with

no chance of missing optimisation opportunities.

Chapter 3 Partial Evaluation 26

Instead of writing partial evaluators directly, it is possible to produce partial evaluators

using an interpreter and an existing self-applicable partial evaluator written in the same

language [67]. This requires a specially written interpreter, which divides inputs to the

source program into dynamic and static parts. The partial evaluator is then partially

evaluated with respect to the interpreter. The result will be a program, which given

a source program and the static input, will produce a residual program written in the

source language of the interpreter. This program will be a partial evaluator, although

its output will not be the same language as its input. This does, however, demonstrate

an automatic way of producing a partial evaluator.

Alternatively, source code can be compiled to a language, for which a partial evaluator

already exists. For instance, the main MATLAB compiler produces C code, which could

then be partially evaluated using cmix [5]. Brief experimentation showed that cmix is

not capable of parsing the raw output of the MATLAB compiler, although this could no

doubt be worked around. Even then, such partial evaluation would be unlikely to ever

take advantage of type information that could be statically inferred for dynamic arrays

as the array structure is opaque to everything except the run-time libraries.

Tempo [13] is a partial evaluator for C, which can generate residual programs which

perform run-time specialisation, using optimised binary code templates, as well as per­

forming standard partial evaluation. This system has been deployed in various fields,

with notable work on operating systems software including Sun RPC and the BSD packet

filter.

Psyco [56] is an implementation of the Python language, which performs just-in-time

specialisation to remove the overheads introduced by the highly dynamic nature of the

Python type system.

A particular problem in languages with complex types, is the concept of lifting. This

occurs when a static value is required in a dynamic context. For simple types such as

integers this is easily achieved by inserting a textual representation into the residual

program. For more complex types, this may not be possible. Pointers, for instance,

cannot be lifted as their value at the time of partial evaluation is meaningless when the

residual program runs. Structured types can often incur a cost to build, or may not

even be possible to construct within a single line.

In many cases, the requirement to lift a variable with a complex type, leads to the

variable being made dynamic in all cases, thus reducing the number of possible static

computations. Hornof et al [31] use an analysis of the uses of a variable to avoid mak­

ing variables completely dynamic in the Tempo specialiser for C. This problem is also

addressed by Asai [6] for functional languages.

Aside from program specialisation, another technique first introduced by [8], which uses

early computation to reduce final execution time, is Data Specialisation. This technique

Chapter 3 Partial Evaluation 27

precomputes static computations and stores them in a cache. A residual program is then

created which loads the static data from the cache and uses it to perform the work of

the original program. The advantage of this method over program specialisation, is that

the residual program does not grow with the size of the input data. The disadvantage

is that it is only effective if the cached computations are sufficiently expensive to justify

the time and space for storing and accessing them. Knoblock and Ruf [42], demonstrate

an automatic system to perform data specialisation for C, especially with regard to

improving shader performance. The route taken by Chirokoff and Consel [11] seems

promising, in that they combined program and data specialisation in the Tempo partial

evaluator. By using both approaches code size does not increase as quickly as with

normal program specialisation, and yet performance does not differ by much. This

allows much larger data sets to specialised than with partial evaluation alone, where the

residual program can become so large that performance is affected adversely.

Reps and Turnidge [55] use a technique know as program slicing to specialise programs.

This technique extracts a slice of the program that produces a specified result. For

instance a program that produces two outputs can be specialised to produce only one,

in which case computations which do not contribute to this single output can be removed

from the residual program. This technique holds an advantage over partial evaluation,

in that the slice is not determined by the program parameters and so can be based on

a parameterisation not originally envisioned by the program author.

Berlin and Surati [9, 70] used partial evaluation to expose parallelism m large scale

numerical applications. This is possible because partial evaluation can remove many

conditional checks based on structure sizes, resulting in a program which contains largely

only numerical calculations.

Specialisation of Fortran [7] has yielded impressive results for numerical applications,

showing that the Fast Fourier Transformation can see a between 3 and 4--fold speed-up

by specialising with respect to the number of data points to be returned. Cubic spline

interpolation specialised with respect to range conditions, the number of values and the

distance between consecutive values is 4 times faster in general and 6 times faster for

periodical range conditions.

Continuing in the vein of partial evaluation for high performance computing, there

have also been attempts at improving partial evaluation using the high performance

computing technique of distributed computing. Sperber [68] describes a client-server

system for processing function specialisation requests and gains speed-ups of up to 3

times using up to 6 processors.

Chapter 3 Partial Evaluation 28

3.2 Summary

This chapter has given an overview of the previous work on partial evaluation and related

techniques. We have seen that offline partial evaluation can offer efficient specialisation,

but requires conservative approximations which can sacrifice some performance in the

residual program. On the other hand, online specialisation can produce faster residual

programs, but is less predictable and often slower. Offline partial evaluation can be

carefully guided to produce the desired result, but this requires expert knowledge from

the user. Online partial evaluation, on the contrary, is largely an automatic process

possibly making it accessible to more users.

Several functions exist in MATLAB which discover information about the characteristics

of MATLAB values. While the values themselves will often change rapidly, the intrinsic

type and shape of arrays will often be constant. Successful type inferences can often

allow us to replace calls to type-query functions with constants, frequently enabling the

unrolling of loops dependent on array shapes and the removal of conditionals that verify

parameter types.

To this end, a formalisation of the MATLAB type system is given in the next chapter,

which captures information about both the intrinsic type of arrays, which is comprised

of its class and certain traits which are common to all classes, and the shape of arrays,

made up from a number of dimension sizes.

Chapter 4

Abstract Domains

In this chapter, we describe lattices and then use them to formalise the abstract domains

our partial evaluator uses to capture information about arrays, for when concrete values

are not available. We also give equations for deriving types of arrays resulting from using

operators, calling functions and indexing into arrays. The notation and methodology is

mostly based on [3] and [14].

4.1 Partially Ordered Sets, Lattices and Fixpoints

This chapter uses partially ordered sets (posets) and lattices extensively as the basis for

our symbolic execution system.

Definition 4.1. A poset, (5, ~), is a set for which a partial order (~) is defined. This

ordering is an antisymmetric relation, such that "Ix, y E 5 : x ~ y 1\ Y ~ x :::::} x = y.

If an ordering exists between all elements ("Ix, y E 5 : x ~ y V Y ~ x) then it is a total

ordering.

Definition 4.2. An upper bound of X <:;;: 5 is an element'll. E 5, such that "Ix E X, x ~

'11.. The least upper bound is an upper bound, which is ordered lower than all of the

other upper bounds. Put formally, the least upper bound of X <:;;: 5 is l E 5, where

"Ix E X, x ~ l and V'll. E 5, such that "Ix E X, x ~ '11. =:::::} I ~ '11.. If the least upper

bound exists, it is unique and is written uX. Lower bounds and greatest lower bounds

are defined in the same way using the reverse ordering G:l). The greatest lower bound

is written nX.

Definition 4.3. A lattice (L,~, -.l, T, u, n) is a poset (L, ~), for which "IX <:;;: L,:J nx 1\

::1 uX. The supremum of L is T = uL and the infimum is -.l = nL. The least upper

bound of the set, {x, ylVx, y E L} is xU y and the greatest lower bound is x n y.

29

Chapter 4 Abstract Domains 30

In terms of the approximations we use in our symbolic execution, if I;;;; is an ordering

based on accuracy, i.e. x I;;;; y means that x is more accurate than y, then x U y is an

approximation that best fits both x and y. When we say the approximation best fits x

and y, we mean that it is the least conservative approximation possible, which is valid

for both x and y. If x and yare sufficiently different then the result will be T, which

encompasses all possible values. In addition x n y is the least precise approximation

which is included in both x and y. If no approximation fits at all then the result will be

1... Since we will use more than one lattice, each with their own infimums, supremums

and partial orders, we will add subscripts to these to distinguish them.

Definition 4.4. A function f : X -----t X is monotone (with respect to the ordering), if

x);;;; y ===? f(x) I;;;; f(y)· This means that application of f maintains the ordering.

Definition 4.5. A fixpoint of a function f : X -----t X is a x E X such that f(x) = x. It

follows that if X is finite and f is monotone, repeated application of f will always result

in a fixpoint and therefore iteration will never be infinite. We will later use this to show

under what circumstances our analysis terminates. For a more detailed explanation of

lattices and their use, see [14].

4.2 Abstract Type System

MATLAB has a complicated type system which has evolved over time from just repre­

senting two dimensional matrices to N-dimensional arrays, cell arrays, structures, strings

and function handles. In essence expressions evaluate to arrays. Each array has a class,

which can be retrieved using the class built-in function. In addition, each array has two

properties which are returned by the boolean functions, isreal and islogical. These

functions are overloaded for all classes and for instance can be used for both full matrices

and sparse matrices. A more thorough description is given in the previous chapter.

The main aim in producing a type system is to capture information about dynamic

expressions. As in [1], we require that types be comparable. This means that we can

detect the equivalence of two types and also whether one type is a subtype of another.

As such, one can imagine a type system as defining the sets of values that can have each

type. If two sets are equivalent, they describe the same type. The operators U and n
would then be analogous to the set operators U and n, while the relation I;;;; is analogous

to t::;;. The supremum, T, is like the full set of values, while the infimum is like the empty

set, 0.

4.2.1 Class Information

Definition 4.6. MATLAB classes (shown in Table 4.1), are modelled using the lattice

(K, I;;;;k, 1.. k , T k, Uk, nk), where K is defined in (4.1) and Vk1, k2 E K - {T k, 1..d, kl I;;;;k

Chapter 4 Abstract Domains 31

Class Description
double Real and complex numbers (scalars, vectors, matrices and

N-dimensional arrays
char Strings (single line, multi-line and N-dimensional)
cell Cell arrays that can store any other type of array

struct Stores elements in named fields
sparse Sparse version of double
single Like double but single precision

int8, int16, int32 Signed integers of various sizes
uint8, uint16, uint32 Unsigned integers of various sizes

function handle Similar to pointers to functions in C

TABLE 4.1: MATLAB classes

K = {..lk' double, char, cell, struct, sparse, single, int8,

int16, int32 , uint8, uint16, uint32 , junction, T d (4.1)

The concrete elements of K, (i.e. K - {T k,..ld) are equivalent to the values returned

by the MATLAB function class.

4.2.2 Type Trait Information

In addition to classes, there are type traits. The two traits we deal with are real and

logical. An array can be either real, complex or logical; although logical arrays are

also real. In MATLAB, the built-in functions, isreal and islogical, can determine

whether an array has a specific trait. An array of type real is made up from double

precision floats. Complex arrays use twice the memory of real ones, in order to store the

real and imaginary components. Logical arrays are identical to real arrays except for a

flag indicating that they are logical. The only functional difference occurs when logical

arrays are used as indices. Used as an index, a logical array acts like a filter, where

non-zero elements indicate that a value should be retained and zero elements indicate it

should be skipped.

Many mathematical operators and functions return complex numbers in MATLAB. This

happens automatically when the parameters dictate the result is not real, although it is

also possible to create a complex array even when the imaginary component is 0 using the

complex built-in function. In many cases, there is no way of predicting whether the result

of a computation will be complex just based on the presence or absence of the complex

trait as for instance the addition and multiplication of two complex conjugates produces

a real result. Examples of arrays with the various traits can be seen in Figure 4.1.

Chapter 4 Abstract Domains 32

» [isreal([-l 2 pi]), islogical([-l 2 pi])]

ans
o

» [isreal (3 2), islogical (3 2)]
ans =

1 1

» [isreal (23 + 3i), islogical (23 + 3i)]
ans

o 0

FIGURE 4.1: Examining MATLAB traits (Non-zero values indicate true)

Definition 4.1. B = {T b, true, false, l..b} is the extended boolean type. The lattice

(B, ~b, T b, l..b, Ub, nb), is such that l..b ~b false ~b T band l..b ~b true ~b T b. This will

be used to describe true or false values, where T b indicates that the value is unknown

and l..b indicates an invalid value.

Type traits can be modelled using the extended boolean type given above, with one for

the real flag and one for the logical flag. While in theory this would allow 42 possible

combinations, in practice the value of one flag often dictates the value of the other

flag, as for instance a logical array cannot be complex. There are in fact only 7 valid

combinations including invalid, which are listed in Table 4.2.

real logical

Tb Tb
Tb false

false false
true Tb
true false
true true
l..b l..b

TABLE 4.2: Valid type trait combinations

Definition 4.8. To describe type traits, we define the lattice (T, ~t, T t, l..t, Ut, n t),

where T c B x B is the set of all valid tuples and is given in (4.2). The partial order

~t associated with T is given by (x, y) ~t (x/, y/) <===? x ~b x/ 1\ Y ~b y/ and is depicted

in Figure 4.2.

T {(Tb, T b), (Tb,false) , (jalse,false) , (true, T b),

(true,false) , (true, true), (l..b, l..b)} (4.2)

Using Figure 4.1 as an example, [-1 2 pi] has traits tl = (true, false), 3 == 2 has

traits t2 = (true, true) and 23 + 3i has traits t3 = (jalse, false). The approximation

which best fits tl and t2 is tl Ut t2 = (true, T b), while the intersection of the two trait

Chapter 4 Abstract Domains

FIGURE 4.2: Visualisation ofthe type traits lattice, where each line indicates a covering
from top to bottom

33

tuples, t2 and t3 is t2 nt t3 = (l-b, ..ib). The significance of these results will be explained

later.

4.2.3 Combining Classes and Traits

The class and type traits of an array are not entirely independent, as not all combinations

are legal. Specifically character arrays can only be real and cannot be logical, while cell

arrays, structures and function handles all return false to both isreal and islogical.

Additionally it makes little sense to have invalid traits with a valid class or valid traits

with an invalid class, so if either is invalid, the other must be as well.

Definition 4.9. The type of an array can now be described using the lattice, (11', [;;;T

,TT,..iT,UT,nT), where 11' is defined in (4.3), TT = (Tk,Tt) and..iT = (..ik,..i t). If

Tl = (kl' tl) and T2 = (k2' t2), then Tl [;;; T2 ¢::::::? kl [;;; k2 V tl [;;; t2 and Tl U T2 =

(k1 U k2, tl U t2).

T' T - {..id

K' K - {cell, struct, function, char, ..id

11' {(k, t) IkE K', t E T'} U

{\k, (false,false)) IkE {cell, struct, function} } U

{ \ char, (true, false)), (..ik' ..it) } (4.3)

The following arrays have Tl = \ cell, (false ,false)) and T2 = \ double, (false ,false)).

{lO, [3 4jJ, 'abc '}

5 + j

Chapter 4 A bstract Domains 34

The best approximation which fits both Tl and T2 is T 1UTT2 = (Tk' (false, false)), while

no array could have a type approximated by both Tl and T2 and so Tl nT T2 = -LT. The

second result indicates that if the two types are both fully specified, (i.e. there are no T

terms), the meet of two types will always be -LT unless the two types are identical.

Ours appears to be the first approach to MATLAB, that considers the intrinsic type

(made up from the class and its type traits) and attempts to preserve it exactly as it

appears in MATLAB. All the compilers mentioned [58, 54, 2] have used a simplified type

system whereby types form a single increasing chain from ..1 through boolean through

integer through real up to complex. This is also the case for the recent work by Joisha

[34, 32] which, while it goes further than previously and recognises multi-dimensional

arrays, ignores classes, instead continuing with the simplistic approach of others. All

of these works use lattices to find the least complex representation for variables which

means that memory utilisation can be minimised (since complex numbers require twice

as much memory as real numbers) and so that simpler instructions can be used (for

instance replacing floating point instructions with integer instructions). We have no

control over the actual types used but just wish to pre-evaluate calls that are directly

dependant on the types.

These compilers can take this approach because they are not producing MATLAB code

as output. Since MATLAB as produced by The Mathworks is the authoritative imple­

mentation, we choose to mimic their behaviour, although it could be argued that slavish

adherence to this standard sacrifices many optimisation opportunities. This does allow

us to use features of MATLAB like function handles and sparse arrays, which are not

available to these other compilers.

4.2.4 Dimension Information

The above abstract domain captures the types of arrays. As matrix manipulations are

the backbone of MATLAB, to enable many optimisations, we need to capture abstract

information about the shape of matrices. The shape of an array describes the size of

its dimensions. As loops are frequently controlled by the size of a matrix dimension,

knowledge of array shapes can enable loop unrolling.

Arrays have a number of dimensions, which is always greater than or equal to 2 and is

returned by the ndims function. Each dimension then has a size greater than or equal to

O. The size function is used to get the dimension sizes. Requesting a dimension beyond

the number of dimensions always returns 1. The shape of an array is defined initially in

Definition 4.12 and Definition 4.13. Figure 4.3 is an example showing two arrays, a and

b, along with some of the functions used to ascertain information about their shapes.

The indexed assignment to b creates a 1-by-2-by-3 element array consisting of all zeros

apart from a 1 at the indexed element.

Chapter 4 Abstract Domains 35

» a = [1 , 2, 3] ;
a =

2 3
» b(1,2,3) = 1
b (: , : ,1)

0 0
b (: , : ,2)

0 0
b (: , : ,3)

0 1

» ndims (a)
ans =

2
» size(a)
ans =

3
» size(a, 3)
ans =

1

» ndims(b)
ans =

3
» size(b)
ans =

1 2 3
» size(b, 3)
ans

3

FIGURE 4.3: Examples of creating and examining arrays with different shapes

Definition 4.10. We define the extended set of non-negative integers NW = N u {w}.

We extend the ordering < on NW by stating Vn E NW, n ::; wand also w ::; n ::::} n = w.

Definition 4.11. A range is a tuple (l, u), where lEN, u E NW and l ::; u. Ranges

represent all the numbers between two inclusive bounds, which is to say (l, u) is a valid

approximation of x, if l ::; x ::; u. The most constrained approximation to x would

be (x, x). We define the set R to contain all possible ranges with the addition of the

1-r element to indicate an invalid range (R = {(l,u)ll E N,u E NW,l ::; u} U {1-r}).

The supremum is the least constrained range possible, i.e. T r = (0, w). We define

two functions: low((l,u)) = land up((l,u)) = u. We also define join (Ur) and (nr)

operations on this set.

x E (l, u) -¢:::=:} x::::: l/\ x ::; u, where x E NW

(ll' Ul) ~r (l2' U2) -¢:::=:} ll::::: l2 /\ Ul ::; U2

(min(ll, l2), max(ul' U2))

{
(max(ll,l2),min(ul,u2))

1-r

if II ::; U2/\ l2::; Ul

otherwise

Throughout this chapter we use ranges to represent the possible values, shape charac­

teristics can have. Note that while the lower bound must be finite, the upper bound can

be w. This makes the range unbounded, which is useful in the case where little or no

information is available.

Chapter 4 Abstract Domains 36

Definition 4.12. The number of dimensions of an array is a range as defined in Defini­

tion 4.11, except that the lower bound is always at least 2, as MATLAB arrays always

have at least 2 dimensions. This is given by the set, N = R - { (i, j) liE {O, I}, j E NW}.
The top element in N is Tn = (2, w). The partial ordering r;:n and operations nn and

Un are equivalent to r;:r, nr and Ur respectively.

Definition 4.13. To represent the list of dimension sizes for an array, we introduce the

set, D = R* U ..Ld. This includes all sequences of ranges, (TI' T2,' .. ,Tn) E R* and the

invalid list ..Ld. We also define two functions low(i, d) = lOW(Ti) and up(i, d) = Up(Ti),

which return lower and upper bounds from a list of dimensions, d. The length of a

list, d, is given by Idl. Below the operators are defined using d = (TI' T2," . Tn) and

d' = (T~, T~, ... T:n), although Ud, nd and r;:d are only defined for n = m.

(TI Ur T~, ... , Tn Ur T~)

(TI nr T~, ... , Tn n T~)

Definition 4.14. The function in (4.4), given i E Z+, n E Nand d E D, gives the

range representing the size of the ith dimension. This function combines the information

present in the elements of Nand D and is the basis for our later creation of a canonical

form for the shape. The function is comprised as follows: if the desired dimension is in

the list of dimensions then the value is the ith range in the list of dimensions; else if the

dimension number is less than the number of dimensions, the dimension size is unknown

so the value is T r; otherwise the dimension is beyond the number of dimensions and

therefore its size is 1. Not all values of nand d give meaningful values for Definition 4.4

and we will describe constraints in Section 4.2.6.

dim(i, n, d) =

4.2.5 Definedness

..L r

(low(i, d), up(i, d))

(0, w)

(1, 1)

if n = ..Ln V d = ..Ld

if i S; Idl
if Idl < i S; up(n)

otherwise

(4.4)

We also need to consider the possibility that a variable may not be defined. When a

function is called, it does not need to be passed as many parameters as there are in

the function signature, resulting in some of the function parameters being undefined.

Variables can also be undefined if they are only set on one branch of a conditional

statement or in the body of a loop that may never be executed. In this case, it would be

unknown whether the variable was defined, since we do not what branch will be taken.

This is not a problem for a MATLAB interpreter, since the decision about whether

Chapter 4 Abstract Domains 37

the variable is defined is taken only after the branch has been chosen. Although it is

quite possible to write code like this and have it run without error (assuming the right

branches are always taken), it can be difficult to determine this statically and it is almost

always an indication of programmer error. The defined flag is 0 E B. It is an error to

use an undefined variable, but the built-in function exist can take a variable name as

a string and returns whether a variable with that name is defined.

Storing information about definedness allows us to remove calls to exist at partial

evaluation time, which can often lead to the removal of conditional statements. In

addition some uses of undefined variables can be caught earlier.

4.2.6 Putting it all together

We have now developed all the components of our type system, which allows us to

describe many different attributes of MATLAB arrays when information about their

values is not available. The full type of a MATLAB array could now be described by

1I' x N x D x B, but this is insufficient as the individual components of the type are not

entirely independent. It is possible to produce many n E N, dE D which give the same

values of dim(i, n, d) for all i E Z+, for instance:

(2,2), dl

(3,3), d2

(2,3), d3

(2,3), d4

(2,3), d5

((1, I), (1,1))

((1, I), (I, I), (I, 1))

((5,10), (2,2))

((5,10), (2,2), (0, w))

((5,10), (2,2), (0, w), (I, I), (I, 1))

In the above examples, (nl' dl) and (n2' d2) represent the same shape. However MAT­

LAB would return 2 as the value of ndims and so the value of n2 is wrong. The same

values of dim would also be given for (n3, d3), (n4' d4) and (n5, d5) so clearly redundant

information is present in d4 and d5. Finally if n = (2,2) and d = ((I, I), (I, I), (2,2)),

then clearly nand d contradict each other, as there are 3 dimensions. In order to do

comparisons of types, there needs to be a concrete description of each type with no

ambiguity. In addition if a variable is undefined, it is meaningless for it to have shape or

intrinsic type. If its definedness is unknown, it can still have shape and type as might

be the case when a variable is defined in only one branch of a conditional statement.

The constraints on the type are thus given below:

1. If an array, with full type (t, n, d, 0), is undefined, e.g. 0 = false, then the values

of t, nand d can only be ..iT, ..in and ..id respectively.

2. The shape must be in the canonical form described in Definition 4.15.

Chapter 4 Abstract Domains 38

Definition 4.15. The canonical form (n', d') of (n, d), where n, n' E Nand d, d' E D,

is calculated as follows with l = low(n), u = up(n), and di as the ith range in d. We

also define 1 = (1,1) and 00 = (O,w).

1. If n = -.In or d = -.ld, then n' = -.In and d' = -.ld, otherwise go to step 2

2. If Vj E Z+, dim(j, n, d) = 1, then choose l' = u' = 2 and go to step 5, otherwise go

to step 3.

3. Choose u' such that u' = max(2, x), where dim(x, n, d) =j: 1 and Vi > x,

dim(i, n, d) = 1·

4. Choose l' such that l' = max(2, y), where dim(y, (l, u'), d) nr 1 = -.lr and

Vj > y, dim(j, (l, u'), d) ~r 1·

5. Choose n' = (l',u'), and d' such d' = trunc(d,i),1 where dim(i,n',d) =j: 00 and

Vk, i < k:::; u', dim(k, n', d) = 00.

The canonical form produces the correct values for the MATLAB function ndims and is

the most compact form possible. Without a canonical form, two identical shapes could

have different values of (n, d), whereas with the canonical form, these values must be

identical. This reduces the problem of comparing shapes to checking for equality. The

function canon(n, d) gives (n', d'), where n' and d' are the canonical forms of nand d.

Using the examples from the previous page, we see that canon(nl, dl) = canon(n2' d2) =

(nl' dl) and that canon(n3, d3) = canon(n4, d4) = canon(n5, d5) = (n3, d3).

Theorem 4.16. The canonical form (n, d) of (n', d') is the most compact form, for

which dim(i,n,d) = dim(i,n',d'), Vi E Z+.

Proof. To see that the canonical form is the most compact form possible, it is necessary

to try to remove elements from the list of dimension sizes. If it is possible to do this

without loss of information then it is not the most compact.

If the canonical form (n, d) is not the most compact, then (n, trunc(d, Idl - 1)) must be

an equally valid form. Validity is determined by whether the same values are calculated

by the function dim. If it is valid then:

dim(ldl, n, d)) dim(ldl, n, trunc(d, Idl - 1))

But by step 5 in Definition 4.15, d was chosen so that dim(ldl, n, d) =j: 00. Thus removing

one element must entail a loss of information and so the canonical form is the most

compact. o

Chapter 4 Abstract Domains 39

Joisha [33, 32] also describes canonical shapes and coins the term selective rank demotion

to describe how excess 1 elements can be removed from the end of dimension lists with

no loss of information. Since their work is for a compiler, it has a different focus as with

the intrinsic types. One of the key aims is to determine if two arrays have the same

shape even when this shape information is unavailable. This allows run-time checks for

shape equality to be removed. This information is less likely to be useful at partial

evaluation time.

Definition 4.17. While the canonical form is the most compact, it is difficult to work

with as the two components must be kept synchronised. It is often easier to convert the

list of dimensions to an infinite list, manipulate the list and then convert it back, as the

infinite list is conceptually simpler. To this end, we give the definition of canon: Roo ->

NxD.

1. If ::Ii, di = ..Lr , then s = (..L r , ..Ld) otherwise go to step 2.

2. If Vj E Z+, dj = 1, then choose l' = u' = 2 and go to step 5, otherwise go to step

3.

3. Choose u' = max(2, x), where dx i-1 and Vi > x, di = 1.

4. Choose l' = max(2, y), where dy nr 1 = ..Lr and Vj > y, dj ;;;;ir 1-

5. Choose d' = trunc(d, max(2, i)), where di i- 00 and Vk, i < k :::; u' , dk = 00, and

n' = ([I, u/). Choose s = (n', d').

From this definition, it can be seen that there are some d E Roo, for which no canonical

form exists, since the canonical form must be finite. An infinite list consisting solely of

(1, w) cannot be canonicalised, which means there is no way to represent the shapes of

all non-empty arrays.

Definition 4.18. We define a function pad (d, u, m), where d ED, u E NW
, mEN, which

gives a list of dimensions of size m, padding out any missing elements with 00 and 1 as

appropriate. This function is necessary as the operators defined in Definition 4.13 can

only be used with lists of equal length. Note x = min(u, m) - Idl and y = m - x.

pad(d, u, m) d . (00 ... (0) . (1· .. 1)
'---v--' "-v-'

x y

Definition 4.19. We now define the shape to be SeN x D with the restriction

that S must always be in the canonical form described in Definition 4.15. So in fact

S = canon*. We now define the lattice (S, ~s, T s, ..L s, Us, ns), with Ts = ((2,w), 0) and

..Ls = (..L n , ..Ld)· The partial order and join and meet operations are now defined with

Chapter 4 Abstract Domains

d' 1

d' 2

51 Us 52

51 ns 52

pad(d1, up(nd, max(ld1 1, Id21))

pad (d2, up(n2), max(ld1 1, Id21))

canon(n1 Un n2, d'l Ud d;)

canon(n1 nn n2, d~ nd d;)

40

We can describe many shapes using our canonical form, but in one area it is deficient:

It cannot be used to specify a minimum value that would be returned by ndims without

also specifying the size of some dimensions. Since an array has 3 dimensions if the third

dimension has size 0 or greater than 1, there is no way to specify this without also

including 1, which gives the possibility that the array might only have 2 dimensions.

Definition 4.20. The full abstract type can now be represented by C c ']f x S x B.

The full type lattice is thus £e = (C, ~e, T e, -.ie, Ue, ne) with T e = (T T, T s, T b) and

-.ie = (-.iT, -.is, -.ib). Given C1, C2 E C, where C1 = (t1' 51, (1) and C2 = (t2' 52, (2), with

t 1, t2 E ']f, n1, n2 EN, d1, d2 ED and 61,62 E B.

(t1 UT t2, 51 Us 52,61 Ub (2)

(t1 nT i2, 51 ns 52,61 nb (2)

In later chapters we will use £e extensively in our data flow analysis, to show how type

information is propagated as a program is executed. The join operation for the full type

(Ue) is of great importance as it can be used to merge the types of variables emerging

from two different paths of a conditional statement. The meet operation for shapes (ns)

is of use with operators where the operands must have the same shape. In which case

the meet of the two shapes will be -.is if the shapes are incompatible. The functions,

shape : C -t S and type: C -t ']f can be used to extract the shape and type components

from a full abstract type tuple.

4.3 Full Type System

In the previous section, we defined the abstract type system. This is used to capture

information about dynamic data in programs when the actual value is unknown. On the

other hand, full static information is frequently available and is vital to the effectiveness

of any partial evaluator.

When the value of a variable or expression is known statically, the value is stored in the

MATLAB library type, mxarray. This is the structure which is passed to all MATLAB

Chapter 4 Abstract Domains 41

library function calls and is capable of expressing all the MATLAB types available to

the libraries.

Definition 4.21. We define the set, M, to contain all possible mxarray structures.

Definition 4.22. Combining C, from Definition 4.20, with M, from Definition 4.21,

gives us all the expressiveness required for the symbolic execution method used by MPE.

Below we define the set of tagged values, A, used by our execution engine.

{(dynamic,c)lc E C}

{(static,m)lm E M}

A~ UAb

(4.5)

(4.6)

(4.7)

Definition 4.23. Often static arrays need to be made dynamic, as in the case of op­

erators where one operand is static and the other is dynamic. For this we define the

abstraction function, a : A ---T C. We also define a concretisation function, , : A ---T PM,

which gives us the set of all arrays that fit the abstraction. For a E A b, ,(a) is a set

with only one value. The function " : A ---T M, is only defined when b(a)1 = 1 (when

there is only one concrete value associated with an abstraction) and is equal to that

one static value. It is however still defined for some a E A~, since a fully specified class

and traits, along with a completely specified but empty shape, has only one valid static

array which could represent it.

The following code demonstrates the information that is extracted from the static array

to get the dynamic array representation.

n = ndims(a);

dims = size(a);

defined = 1;

isreal = isreal(a);

islogical = islogical(a);

k = class (a);

Each of these values is then converted into the form used by the abstract representation.

For instance ndims returns a positive integer, which is converted into a range using the

following equation.

convert_to_range (n) (n, n) (4.8)

The list of dimensions, returned by size, is a list of positive integers, which is converted

into a equivalently sized list of ranges.

(4.9)

Chapter 4 Abstract Domains 42

The type properties returned by isreal and islogical are integers which need to be

converted to concrete boolean values.

converLto_exbool (b)
{

true if b = 1

false otherwise
(4.10)

The class function returns a string representation of the class which maps directly to

a member of K as in (4.1).

We now define a partial order over A (aI, a2 E A), with supremum, Ta = (dynamic, Tc):

(4.11)

With this definition, static values are never looser than dynamic values. The most

accurate abstraction of the value of a variable is the value itself. The join operator is

defined as follows:

if al E Ab 1\ al = a2

otherwise
(4.12)

This operator is fundamental to merging the states from the branches of conditional

statements. If a variable is assigned the same static value on both branches, the state

will contain this same value after the conditional. On the other hand, if each branch

sets it to a static but different value, the value will be abstracted and an approximation

to the type will be recorded in the environment instead.

In the following subsections, we will derive equations for calculating various pieces of

type information required for the symbolic execution. In Sections 4.3.1 and 4.3.2, we

give equations for calculating the shape resulting from each of the binary and unary

operators. In Section 4.3.4, we give the equations for determining the shape resulting

from the various forms of array indexing. Section 4.3.5 gives equations for finding the

class resulting from using the various operators, while Section 4.3.6 does the same for

traits. Section 4.3.7 then brings together the previous sections with regard to calculating

full type information for operators.

4.3.1 Shape Equations For Binary Operators

Most binary operators in MATLAB are called element-wise binary operators, including

+, . * and ==. These either operate on two arrays with equal dimensions, one non-scalar

and a scalar or two scalars. They always result in an array of the same shape as the

non-scalar operand (or a scalar in the case of two scalars). In this section, we will derive

equations for calculating the shape resulting from a binary operator given the shapes

of its operands. Joisha [33], also derives equations for the shape resulting from binary

operators, using his type formalisation.

Chapter 4 Abstract Domains 43

Assuming a binary expression a EEl b, where a and b have shapes Sa, Sb E Sand Ss is the

shape of a scalar, then the two scalars case is represented by:

(4.13)

The case where both are non-scalars is given by:

(4.14)

When the first operand is a scalar and the second an array, we have:

(4.15)

Similarly, when the second is a scalar we have:

(4.16)

The function, inc: S x S --+ S, is defined to be T s, when the first shape also includes

the second and ...Ls otherwise:

inc (a, b)
{

Ts if a ~s b

...Ls otherwise
(4.17)

The resulting shape, binoPs(sa, Sb), is given by the combination of (4.13), (4.14), (4.15)

and (4.16):

Sl Us S2 US S3 US S4

(sa ns Sb n Ss) Us (Sa ns Sb) Us (inc(sa, Ss) ns Sb) Us (inC(Sb' Ss) ns Sa)

(4.18)

If binoPs(sa, Sb) is ...Ls, it implies that applying an array binary operator will result in an

error as the shapes are incompatible.

The matrix multiply operator, *, is the same as the array multiply operator, . *, except

when neither operand is a scalar. In this case both operands must be matrices with

matching inner dimensions, the equation for which is given below, with Sij = dim(si,j):

(4.19)

Chapter 4 Abstract Domains 44

The functions, eq : R x R -; S, neq : R x R -; S and matrix: S -; S, are defined as

follows (neq is not used here, but is required later in this chapter):

eq(dl , d2) { -.ls if dIn d2 = -.lr
(4.20)

Ts otherwise

neq(dl , d2) { Ts if d l =1= d2
(4.21)

-.ls otherwise

matrix(s) { Ts if ndims(s) ~r (2,2)
(4.22)

-.ls otherwise

The shape resulting from matrix mult~plication, multiplYs(sa, Sb), is then given by the

join of (4.13), (4.15), (4.16) and (4.19):

= (sa ns Sb n ss) Us (inc(sa, Ss) ns Sb) Us

(inC(Sb' ss) ns sa) Us (((2,2), (Sal, Sb2)) ns

eq(Sa2' Sbl) ns matriX(Sa) ns matrix (Sb)) (4.23)

Left matrix division (a \ b), works like array division when the first operand is a scalar,

but otherwise requires two matrices, each with the same number of rows. The result will

have as many rows as the first had columns and as many columns as the second matrix,

since it computes a-lb.

(inc(sa, ss) ns Sb) Us (matrix (sa) ns matrix(sb) ns

eq(Sal' Sbl) ns ((2,2), (Sa2' Sb2))) (4.24)

Right matrix division (a / b), works like array division when the second operand is a

scalar, but otherwise requires two matrices, each with the same number of columns. The

result will have as many columns as the first had rows and as many rows as the second

matrix.

(inC(Sb, ss) ns sa) Us (matrix(sa) ns matrix(sb) ns

eq(Sa2' Sb2) ns ((2,2), (Sal, Sbl))) (4.25)

The final binary operator is matrix power (a - b), which requires one operand to be a

scalar, while the other must be a square matrix. The result has the same shape as the

matrix.

(inc(Sa, ss) ns ((2,2), (Sbl ns Sb2, Sbl ns Sb2))) Us

(inc(sb, ss) ns ((2,2), (Sal ns Sa2, Sal ns Sa2))) (4.26)

Chapter 4 Abstract Domains 45

4.3.2 Shape Equations For Unary Operators

There are only 4 unary operators in MATLAB: unary plus and minus as well as two

types of transpose. The transpose operators, ' and .', both require a matrix operand

and result in a matrix with the number of rows and columns swapped.

canon ((ndims(s) nn (2,2), (dim(s, 2), dim(s, 1)))) (4.27)

If the operand is not a matrix (i.e. it has more than two dimensions), ndims(s) nn (2,2)

will be ..Lr , indicating an error.

The other two unary operators, - and +, produce a result with an identical shape to the

operand.

4.3.3 Shape Equations For Built-in Functions

In this section, we will give shape equations for the results of executing built-in functions.

We only demonstrate a few of these, since there are at least 300 built-in functions in

MATLAB 6.1. This seems a lot, but many of these do not return values or return

values with trivial shapes such as scalars. In addition many functions share the same

shape characteristics. Our interest here is only to demonstrate functions, which return

values whose shapes can be determined by examining the shapes of the parameters. The

functions examined in this section are size, horzcat, vertcat and cat. We also look

at numel which returns a scalar and is useful in other equations.

The size function, when invoked with one parameter and one output, returns a row

vector containing the size of each of its dimensions. This vector always has at least two

elements as arrays always have at least two dimensions. Even when an array is dynamic,

this function can be fully evaluated, when the dimension information itself is static. If

it is not static, we can infer the shape of the size vector itself.

size (s) ((2,2), (1, ndims(s))) (4.28)

The function numel gives the total number of elements in an array. This is given by the

product of the sizes of all the dimensions. The number of elements in an array is given

by the function, numel : S ~ R:

numel(s) = II dim(s,i)
iE2+

(4.29)

Chapter 4 Abstract Domains 46

Multiplication over R is defined as follows:

{

(0,0) if Ul = 0 V U2 = 0

(ll' ul).(l2, U2) = (ll.l2,W) if Ul = W V U2 = W

(h·l2, Ul.U2) otherwise

(4.30)

Clearly if numel(s) = (x,x), the result is static and the function call can be removed

and replaced with a constant value. While (4.29) requires iteration over an infinite set,

it is not difficult to rework this for our canonical form:

if Idl = U
(4.31)

otherwise

Another important function is horzcat, which concatenates two arrays horizontally.

This function is used implicitly in the construction of matrices as [2 2J is equivalent to

horzcat (2,2). Vertical concatenation is done using vertcat, which is used implicitly

in expressions like [1; 2J. Concatenation along any dimension is possible using cat

with the dimension number as the first parameter.

If concatenation is along dimension i, then all dimensions except for i must be the same

size or an error will result. The resulting shape will have all of these dimensions the

same size, while dimension i will be the sum of the sizes of dimension i in the parameter

arrays. The one exception is if one of the arrays is the empty matrix, [J, which has

shape \ (2,2), ((0,0), (0,0))). Concatenating [J with x or x with [J, results in x. Other

empty arrays, (e.g. zeros 00, 0)), do not have this property. We define two auxiliary

functions empty and notempty, which give T s if the shape could possess the requisite

property.

empty(s) { Ts if s ~s \ (2,2), ((0,0), (0,0)))
(4.32)

..is otherwise

notempty(s) { Ts if s i= \ (2,2), ((0,0), (0,0)))
(4.33)

..is otherwise

We now derive an equation giving the shape resulting from the function call cat (n, a, b),

where a and b have shapes, Sa and Sb, and n E Z is the value of n. Below are the two

cases where either of the two arrays to be concatenated could be empty.

empty(sa) ns Sb

empty(sb) ns Sa

(4.34)

(4.35)

To do concatenation of non-empty arrays, we define a function setdim : S x Z x D ---t S,

which, given a shape, is equal to it, but for a specified dimension set to a new size. We

Chapter 4 Abstract Domains 47

also define a function plus: R x R -+ R, which gives the Sum of two ranges.

replacedim((d 1, . .. ,dn), i, d)

setdim(((l,u), ds),i,d)

(d1, ... , di- 1, d, di+1, ... , dn) (4.36)

canon (replacedim (pad (ds, u, (0), i, d)) (4.37)

if r1 = ..iT V r2 = ..iT

otherwise
(4.38)

The shape produced by concatenating two non-empty arrays along a dimension, i, is

given be S3:

S3 notempty(sa) ns notempty(sb) ns

setdim(setdim(Sa, i, (0) ns setdim(Sb, i, (0), i, plus(Sai, Sbi)) (4.39)

The function con cat : S x S x N -+ S gives the shape produced by concatenation along

a specific dimension and is the combination of (4.34), (4.35) and (4.39).

Sl Us S2 US S3

(empty(sa) ns Sb) Us (empty(Sb) ns sa)Us

(notemptY(Sa) ns notemptY(Sb)ns

setdim(setdim(Sa, i, (0) ns setdim(Sb, i, (0), i, plus (Sai' Sbi)))
(4.40)

4.3.4 Shape Equations For Array Indexing

The shape resulting from array indexing is dependent on both the shape of the array

being indexed and the index. In addition logical indexes have a different behaviour

to non-logical indexes. Indexing using normal parentheses (a (1 : 3)) is also different to

using braces (a{1:3}).

Indexing using braces is used for extracting elements from cell arrays and produces shape

results which cannot be inferred from the shape of the cell array. As no information

is stored about the contents of cell arrays, we cannot say anything except to recognise

when an index is out of bounds. As such, this is an example where we do not want to

immediately abstract all of the values involved if one of them is dynamic. For instance,

a(1==O), is always [J, regardless of the contents of a, so long as it is defined. This is

true whenever the index is logical and contains only Os.

In the following subsections we will derive shape equations for the result of an ordinary

(using normal parentheses) array index. The four types of array indexing described

are: indexing with a single non-logical value, indexing with multiple non-logical values,

Chapter 4 Abstract Domains 48

indexing with a single logical value and finally indexing with multiple indices where the

final one is logical.

4.3.4.1 Single index non-logical subscripts

We will first consider subscripts with only one index. If the index is not logical, then

the result will normally have the same shape as the index. Unfortunately it is not quite

that simple, in that MATLAB considers vectors to be special cases and gives different

behaviours for them. In the case of indices, a vector is an array with 2 dimensions and

either only one row or column of non-unit length. The array being indexed is considered

a vector if all but one of its dimensions has unit length.

When both the array and the index are vectors by the definitions above, the result will

be a vector, along the non-unit-Iength dimension of the array, with the same size as the

index. Consider the array access p (q), where p has size [a bJ and q has size [c dJ,

then p (q) will have size [e fJ. Normally e = c and f = d, but Table 4.3 below gives

the exceptions caused by the vector behaviour. For array accesses on multi-dimensional

vectors, the result will also be a multi-dimensional vector, although this is not shown

in the table. Here we define the function array_vector: S --t P;;Z+, which gives the

a b c d e f
0 1 1 0 0 1
1 0 0 1 1 0
1 y 0 1 1 0
1 y m 1 1 m
x 1 1 0 0 1
x 1 1 n n 1

TABLE 4.3: Non-regular matrix accesses using a single index

dimensions which could be of non-unit length when all the others could be unit length.

In addition indeLvector : S --t R, gives a range approximating the length of the index

if it is a vector.

array_vector (s)
{ iii E N 1\ (neQ(Si, l) nr . n. (eQ(Sj,l))) = Tr} (4.41)

JEN-{t}

U (si nr neQ(Si,l)nr n (eQ(Sj,l))) (4.42)
iE{I,2} jEN-{i}

indeLvector(s)

Using these two functions, we can develop a flawed equation for the list of dimensions

produced by indexing into an array.

d = U (1· .. 1). (indeLvector(Sb)). (1 .. ·1)
'-..,-' '-..,-'

iEarmy_vector(sa) i-I 00

(4.43)

Chapter 4 Abstract Domains 49

This equation is fine for all cases where the upper limit of the number of dimensions in

Sa is finite. Unfortunately if it is wand the value of indeLvector(sb) is not lor 00 then

there will be no canonical form of the shape, as the size of ithe dimensions list will be

infinite.

Our solution is to sacrifice some accuracy when the list of dimensions is not complete

(because it has been padded out with (0). This is not a great problem, as lack of

information about the number of dimensions usually indicates that not all that much

was known in the first place. To do this, we define a function, vector: S x R ----+ S,

which given the shape of the indexed array and a range which will be the length of any

new vector, returns the shape describing all the possible vectors.

d' =

s/ Us canon(d') vector(s, r)

indices

s/

array_vector(s) n {i E filii S Idims(s)l}

U canon((l···l).(r).(l .. ·l))
'-v-" '-v-"

iEindices i-l 00

if up(ndims(s)) = Idims(s)1

00

(U).~ if up(ndims(s)) = W

Idims(s)1 00

(1· . ·1). (T r ... T r) . (1 .. ·1) otherwise
'-v-" '-v-' '-v-"
Idims(s)1 up(ndims(s))-ldims(s)1 CXJ

(4.44)

(4.45)

(4.46)

(4.47)

No accuracy is lost if up(ndims(s)) = Idims(s)l. Using canon from Definition 4.17, the

final result for a single index subscript involving vectors is:

vecsubscript(sa, Sb) = vector(sa, indeLvector(sb)) (4.48)

Now it is necessary to bring in the standard case where either the array or index is not

a vector (notvec : S x S ----+ S).

()
{

T s if array_vector(sa) = 0 V indeLvector(sb) = ..ir
notvec sa, Sb =

..is otherwise
(4.49)

The final equation is therefore (subscript : S x S ----+ S):

(4.50)

4.3.4.2 Multiple index non-logical subscripts

Indexing into an array with multiple indices, none of which are logical, is very simple

to understand. Each of the indices is flattened so that all its elements form a vector.

Chapter 4 Abstract Domains 50

Its length is the product of the sizes of all of its dimensions. This is the value that

is returned by the numel built-in function, for which an equation was given in (4.31).

The resulting array will have as many rows as the first index has elements and as many

columns as the second index has elements and so on for further indices. If the indexed

array has more dimensions than there are indices then the extra dimensions are flattened

into the final one.

The equation for array indexing with multiple indices is therefore (subscript: S x S* ~

S):

subscript(Sa, (Sl ... sn)) = canon ((numel(sd, ... numel(sn))· (1 ... 1))
'-v--"

(Xl

4.3.4.3 Single logical subscripts

(4.51)

A single logical index acts like a filter, where non-zero elements select elements in the

array to extract. The extracted elements are placed in a vector. The vector can have

as many elements as the index has, but could also be empty. This number is given as a

range by lnumel : S ~ R.

lnumel(s) = (0, up(numel(s))) (4.52)

As with non-logical single index subscripts, when vectors are involved, the analysis

becomes complicated. When the indexed array is a vector (along any dimension), the

result will also be a vector along that dimension. When the indexed array is not a vector

then the type of the vector produced depends on whether the index has more than one

row. If it does the result will be a row vector, otherwise it will be a column vector.

The index can be larger than the array into which it is indexing, but an error will occur

if a non-zero element occurs in a place which would retrieve a non-existent element. For

the purposes of this analysis we will ignore this error case and assume that only valid

elements are accessed.

The vector case is covered by:

Sf = vector(Sa, lnumel(sb)) (4.53)

The non-vector case is covered by (neq is given in (4.21)):

Chapter 4 Abstract Domains

class (a) class(b) class (c)
double double double
double sparse double
double char double
sparse sparse sparse
sparse char double
char char double

TABLE 4.4: Class table for addition like binary operators. (Only valid classes are shown
- all other classes would produce an error).

The final shape equation for single logical subscripts is:

S' Us s"

vector(Sa, lnumel(Sb)) Us

51

(nonvec(Sa) ns ((2,2), (neq(sb1' 1) nd (lnumel(sb), 1)) Us

(eq(sb1,1) nd (1, lnumel(sb))))) (4.55)

4.3.4.4 Multiple indices with a final logical index

With multiple indices, only the final index can be logical or an error will occur. The final

logical index filters over the remaining dimensions, which are all flattened into one. Like

the non-logical case, the size of each index gives the size of the corresponding dimension

in the result. The dimension corresponding to the logical index has a size between 0

and the maximum number of elements of the logical index (as would be given by the

function numel). The function subscript: S x S* x S ---t S, gives the resulting shape.

5ubscript(Sa, (51 ... Sn), 5b) = canon ((numel(sd, ... numel(Sn), lnumel (Sb), 1· .. 1))
'-..-'

00

(4.56)

4.3.5 Class Equations For Operators

The class of an array produced by operators is often predictable. For instance adding

two real double arrays will produce a real double array. Adding two real sparse arrays

will produce a real sparse array, but adding a real double array to a real sparse array

will produce a real double array. On the other hand array multiplication of a sparse

array by a double array produces a sparse array.

Table 4.4 and Table 4.5 show the resulting class for addition and array multiplication.

Since these operators are symmetric, redundant entries have been removed. Table 4.6

shows the class table for the non-symmetric operator, array right division. Left division

will be equivalent to swapping the operands. Since only double, sparse or char classes are

Chapter 4 Abstract Domains

class(a) class(b) class (c)
double double double
double sparse sparse
double char double
sparse sparse sparse
sparse char sparse
char char double

TABLE 4.5: Class table for array multiplication like binary operators. (Only valid
classes are shown - all other classes would produce an error).

class (a) class(b) class (c)
double double double
double sparse double
sparse double sparse
double char double

char double double
sparse sparse sparse
sparse char sparse
char sparse double
char char double

TABLE 4.6: Class table for right array division. (Only valid classes are shown - all
other classes would produce an error).

class (a) class(b) class (c)
double double double
double sparse sparse
double char double
sparse sparse sparse
sparse char sparse
char char double

single * uint8
int8 * uint8

int16 * uint8
int32 * uint8
uint8 * uint8
uint16 * uint8
uint32 * uint8

TABLE 4.7: Class table for logical binary operators. (* indicates includes any class in
the table).

52

Chapter 4 Abstract Domains 53

defined for arithmetic operations, we define the function, arithk : K --t K, to determine

whether an operand is valid:

{
T k if c E {double, sparse, char, T k}

-.lk otherwise
(4.57)

Using the previous tables, we can easily derive the following function:, plusk : K x K --t

K, multiplYk : K x K --t K, rdividek : K x K --t K and ldividek : K x K --t K. These

functions all use the operand classes to determine the class of the result.

plUSk(C1, C2) = (C1 nk double nk arithk(c2)) Uk (C2 nk double nk arithk(cd) Uk

(eq(c1' char) nk double nk arithk(c2)) Uk

(eq(c2' char) nk double nk arithk(C1)) Uk (C1 nk c2 nk sparse) (4.58)

(C1 nk sparse nk arithk(C2)) Uk (C2 nk sparse nk arithk (C1)) Uk

((eq(C1' double) Uk eq(c1' char)) nk

(eq(c2' double) Uk eq(c2' char)) nk double)

((C1 nk double) Uk (C1 nk sparse) Uk

(eq(c1' char) nk double)) nk arithk(c2)

((C2 nk double) Uk (C2 nk sparse) Uk

(eq(c2' char) nk double)) nk arithk(cd

(4.59)

(4.60)

(4.61)

The types of the matrix operators, *, / and \, are more complicated than the array

binary operators. If the operator is used as a pure matrix operator then the result is

different to when one of the operands is a scalar and an array operation takes place.

Since this is dependent on knowing the dimensions of the operands as well as their types,

the full type equation is deferred to later. Assuming the true matrix operation semantics

are being used, then matrix multiplication and left and right division have an equivalent

class equation to addition.

Table 4.7 shows the classes produced by logical operators such as equals, greater than

and logical and. These operators are all symmetric and produce a valid output for all but

the cell array, struct and function handle classes. This is modelled using the function,

Chapter 4 Abstract Domains

lbinoPk : K x K ---+ K.

{single, int8, int16, int32 , uint8, uint16, uint32}

{cell, struct, junction, .ld

.lk if Cl E Kinv V C2 E K inv

uint8 if C1 E Ku V C2 E Ku

T k if C1 = T k V C2 = T k

sparse if C1 = sparse V C2 = sparse

double otherwise

4.3.6 Trait Equations For Operators

54

(4.62)

(4.63)

(4.64)

All the operators in MATLAB can accept both logical or complex operands. Logical

arrays only differ in behaviour when used as indices and so are equivalent to non-logical

arrays in this context. The main problem with arithmetic operators comes from complex

arrays. It cannot be determined statically whether the result of adding two complex

arrays will be complex as well. In addition, complex arrays with no imaginary component

can be created, meaning that a complex array added to a real array is not necessarily

complex. The only certainty exists when both operands are real, in which case the result

will also be real. The function, binoPt : TxT ---+ T models this:

{
(true,jalse)

(T b,jalse)

For unary minus, we have umint : T ---+ T:

if r1 = true 1\ r2 = true

otherwise

{
(true,jalse)

(T b, jalse)

if r = true

otherwise

(4.65)

(4.66)

The transpose operators retain the logical trait from the operand and so we have,

tmnspt : T ---+ T:

tmnspt ((r, l)) {
(true,l)

(T b, l)

4.3.7 Full Type Equations For Operators

if r = true

otherwise
(4.67)

In this section, we bring together the equations from the previous sections, to give full

type equations encompassing both binding, shape, class and type trait information.

The full equation for unary minus, umin : A ---+ A, is a simple case. If the operand

is static, then apply the operator to the concrete representation, otherwise an abstract

Chapter 4 Abstract Domains

representation is found:

umin((b, v))

umina.((k, t), s, 6))

{
(static, interp_u_op(UlIlin, v))

(dynamic, umina. (cx(v)))

((umink(k), umint(t)), s, true}

if b = static

otherwise

55

(4.68)

(4.69)

The full equation for transpose, transp : A -7 A, is as follows:

transp ((b, v))

tra nsp a. ((k, t) , s, 6))

{
(static, interp_u_op(transpose, v)) if b = static (

4.70)
(dynamic, transpa.(cx(v))) otherwise

((transPk(k), transPt(t)), transps(s) , true} (4.71)

Addition has the function, plus: A x A -7 A.

if b1 == static A b2 == static

otherwise

(4.72)

plusa.((k1' t1), sl, 61), (k1' t 1), Sl, 61)) == ((binoPk(k1, k2), binoPt(t1, t2)), binoPs(sl, S2), true}

(4.73)

All arithmetic array binary operators, like subtract, multiply and power, have very

similar equations, differing only in which concrete function is called. Logical and is an

example of a logical binary operator like equals and greater than.

anda.(((k1' t1), Sl, 61}, ((k2' t2), s2, 62}) = ((lbinoPk(k 1 , k2), (true, true)), binoPs(sl, S2), true)

(4.75)

The full equations for matrix multiply, divide and power are very similar to the equations

already given here but with the functions changes appropriately.

4.4 Concrete and Symbolic Execution

The main work of MPE is performed by two interpreters: a concrete interpreter, which

takes fully static data and produces a fully static result and a symbolic interpreter,

which takes possibly static or dynamic data and produces a static or dynamic result.

Chapter 4 Abstract Domains 56

The symbolic interpreter examines expressions and determines from their sub-terms,

whether the result will be static or dynamic, while it symbolically interprets statements.

If an expression contains only fully static terms, then the result will generally be fully

static. In fact the symbolic interpreter invokes, for static expressions, the same library

calls as the concrete interpreter. If an expression is not sufficiently static, the result

will be dynamic, but an attempt is made to infer some information about the result

even if the value cannot be found. For each operator, an equation like the ones given

in the previous section is used to find the abstract interpretation of the result, given its

operands.

The concrete interpreter is reasonably fast (hence why it is used instead of the symbolic

interpreter where possible), but it is not as fast as MATLAB. While it uses MATLAB

library calls to calculate its results, it uses a method now deprecated by Mathworks.

This method puts the onus on us to keep track of deleting temporary arrays once they

have been used, which is both slower and more complicated to code, unlike the method

favoured by Mathworks which automatically deletes temporary arrays used as parame­

ters to library functions. But unfortunately the new technique causes crashes in some

circumstances and although this bug is noted on the MATLAB website, it has not been

fixed. Using the newer method of managing arrays greatly speeds up interpretation,

but this will have to wait until the bugs are eliminated. An alternative method would

be to replace the concrete interpreter with one which directly invokes the MATLAB

interpreter allowing any advances in the MATLAB engine to speed up our partial eval­

uator. This may be problematic given the amount of data that would have to be passed

between the MATLAB interpreter and the partial evaluator.

In MPE, symbolic execution is always a forwards iterative process. Information inferred

about function parameters or operator operands is not used to update the parameters

or operands themselves. Kg.

1.# b size [2 UNKNOWN]

c = b * b;

In the above example b is declared to have 2 rows but an unknown number of columns.

In the following statement b is multiplied by itself. From (4.23), the shape of c is

determined to be ((2,2), ((2, 2), 00)). Because information was only passed forwards,

it was not inferred that since the inner dimensions must match, that b also must have

2 columns for the expression to be valid, in which case c would also have 2 columns.

To do backward shape inferencing would require a far more complicated infrastructure

than is present in MPK

In Section 6, we will describe how this symbolic execution framework is actually used.

Section 6.1 describes how each statement is partially evaluated and it refers heavily to

the abstract domains defined in this chapter. Section 6.1.5 contains a description of

the fixed point algorithm used for computing the least upper bound of the entry point

Chapter 4 Abstract Domains 57

to loops. This is later revised in Section 6.3 to work with loops containing break and

continue statements.

4.5 Precision

The abstract domains contained in this chapter will later be used to approximate the

types of concrete values. This approximation clearly loses all information about ac­

tual values when a concrete value is abstracted, but this is not unexpected. Possible

shortcomings however can arise when combining type information following conditional

blocks.

If the class of a variable on exit from each branch of a conditional is fixed but different,

all class information will be discarded. This insures that the class lattice has only

n + 2 elements, where n is the possible number of classes, but is perhaps unnecessarily

restrictive. Knowing that an array could be either of class double or char would allow

us to infer that arithmetic operations on it were allowed. If the array was either a cell

array or struct, then we could immediately infer that any arithmetic operation would

always fail. This could be modelled by a bit-vector of size n, which flagged every class

that might be possible, leading to a lattice with 2n elements. Clearly such an approach

would become expensive for a system with an unbounded number of classes.

However the main way of extracting further static type information from the class of

a dynamic array is through the class built-in function, which returns the class as a

string. Clearly if this string was compared with certain other static values then it might

be possible to remove the comparison. However since no information about values is

currently retained,

4.6 Summary

This chapter has seen the creation of a full type system for MATLAB, capturing in­

formation about arrays that will later be used to make specialisation decisions. Since

MATLAB is a dynamically typed language, to provide input validation, functions must

check their parameters types at run-time. While in C, passing an integer (instead of a

string) as the first argument to the printf function will be spotted at compile time, this

will not happen in MATLAB. If we can maintain accurate information about the types

of dynamic variables, we should be able to remove these checks without producing an

unreliable program.

This chapter contains a formalisation of the MATLAB type system, which is we believe

more complete than any other work on MATLAB, particularly since it supports classes.

Chapter 4 Abstract Domains 58

Details are given for deriving types for all MATLAB operators, including matrix multi­

plication and array addition. We have described how to infer the shapes for several key

built-in functions as well as the many forms of array indexing.

In the following chapter, we will lay the foundations for a partial evaluator by describing

details related to loading and parsing MATLAB programs, particularly with regard to

differentiating between function calls and variables.

Chapter 5

Handling full MATLAB programs

We have produced an online partial evaluator because many of the problems that offline

partial evaluation helps alleviate are less likely to occur in MATLAB. With online partial

evaluation, we can easily handle function handles. In addition we wish to perform

optimisations based on the characteristics of arrays such as shape and type. For example,

while the exact value of a matrix may be unknown, its shape and whether it is real or

complex could well be known. In this case built-in functions which try to determine

these properties can be replaced by the actual values, which might lead to speed-ups

due to loop unrolling and the removal of conditionals. This is less likely to be possible

using offline partial evaluation since the static/dynamic divide must be declared before

specialisation and must be conservative in cases where it could go either way.

While offline partial evaluators are generally more efficient and predictable, we have

different motives in our use of MATLAB. Theoretical results such as self-application are

mostly irrelevant to us, as MATLAB would be an unlikely choice for writing interpreters.

The language does not use recursion extensively since it is imperative, meaning termi­

nation issues that can cause problems in online partial evaluators of heavily recursive

languages are unlikely to cause problems.

The complexity of the information that we wish to store about expressions means that

using MATLAB to create the partial evaluator itself would be cumbersome. One reason

is that MATLAB has no tools for parsing programs, such as lex and yacc. While this

step could be performed elsewhere, MATLAB has many other deficiencies which makes

string handling difficult and complex data structures complicated. The lack of call-by­

reference semantics and sharing of data would also likely make the partial evaluator very

inefficient.

Since MATLAB was not an option itself for the implementation language, we were re­

stricted to either C, C++ or Fortran, since these are the languages for which Mathworks

provided libraries. Our MATLAB partial evaluator (MPE) was written for GNU /Linux

59

Chapter 5 Handling full MATLAB programs 60

systems in C++, and should be portable to any system with a good C++ compiler and

which has MATLAB support.

In this section we describe the steps taken to load in full MATLAB programs and parse

them as MATLAB itself would do. While the parser is not perfect, we believe it to be

current up to MATLAB 6.11 and able to handle the majority of MATLAB codes.

A program, as recognised by our system, consists of one or more m-files situated in one

or more directories. Files are not explicitly included in a program but are implicitly

included by calling the functions present within them.

MATLAB provides many functions in m-files, which can be called by user programs.

While some of these are self-contained, others can call many other functions, themselves

contained in m-files. This can greatly increase the time to load and parse a MATLAB

program as well as the memory usage, especially since the presence of a function call in

an m-file does not mean that it will definitely be called. Since partial evaluation will

often determine that a function will not be called, we can use this property to avoid

parsing unnecessary files. To this end, MPE only loads functions when they are called.

5.1 Overview

Below we give an overview of the stages of the partial evaluator.

1. Parse source file to be partially evaluated (Section 5.2) producing an Abstract

Syntax Tree (AST).

2. Insert static values at beginning of AST (Section 5.3).

3. Convert placeholders in the AST (Section 5.4).

4. Partially evaluate the function obtaining a new AST (Chapter 6). This stage

requires the partial evaluation of further functions. In each case the process is

started from stage 1.

5. Post-process the new tree, removing dead code (Chapter 7).

6. When the original m-file has been completed, traverse new main function AST,

marking any functions that are called.

7. Write out all called functions as MATLAB source code.

Each of these stages will be described in more detail in the following sections.

lWe do not handle the explicit short-cut logical operators of MATLAB 6.5, && and II.

Chapter 5 Handling full MATLAB programs 61

MPE is invoked from the command line and produces a single m-file as output. This

file contains all the specialised functions. Since all the functions are placed in a single

file, there is a chance that two identically named functions could be produced and then

one of them would be inaccessible. This could only happen if an additional function in

an m-file (accessible only in that m-file) shared the same name with another function.

This could be corrected by renaming conflicting functions, but has not proven to be a

problem in any of our tests.

5.2 Lexical Analysis and Parsing

MATLAB was designed more to allow mathematicians to read it than for simple parsing.

This leads to ambiguous constructs that are fairly simple for a human to understand as

they can more easily make contextual judgements, but a lot harder for a lexical analyser.

Problems occur because in matrices, spaces can be column delimiters or white space.

Outside matrices new lines are treated as an end of command indicator, but inside

they are treated as row separators. Fortunately flex [21] can be made stateful thus

avoiding the need for a hand-written lexical analyser. Joisha et al describe how to parse

MATLAB in [36], although since that publication many of the problems, to which they

refer, have disappeared as MATLAB was made more "compiler-friendly". This section

will not attempt a full description of parsing, but will highlight some areas where our

implementation differs from [36].

Due to difficulties in disambiguating variables and function calls, identifiers that could

represent either are stored initially as placeholders. In the following stage, these will be

replaced with either variables or function calls in the case of identifiers not followed by

parentheses or by subscripts or function calls for identifiers followed by parentheses and

a list of indices or parameters.

Other problems arise because the MATLAB grammar is not fully documented. There are

some (admittedly contrived and probably due to bugs) circumstances in which MATLAB

interprets the input in seemingly unpredictable ways. This has improved in recent

MATLAB versions as The Mathworks have themselves introduced compiling technology

for MATLAB and MATLAB 6.5 has largely eliminated these problems.

There is one quirk of MATLAB functions, that we choose to ignore because dealing with

it would require a more complicated lexical analyser for little benefit. The problem is

due to MATLAB allowing the calling of functions without parentheses. E.g.

shading gouraud

clear abc

These examples are equivalent to shading (J gouraud J) and clear (J a J, J b J, J C J).

Unfortunately when MATLAB sees a function not followed by parentheses it assumes

Chapter 5 Handling full MATLAB programs 62

the function will be of this form even if the function takes no parameters. So if f is a

function then f * 10 will be interpreted as f (' *', '10'). Trying to use lex to handle

this would be difficult, as it would need context to realise that f was a function and

that everything following it should be interpreted as strings. Function calls are only

parsed like this when they begin a line and not as part of an assignment or part of

another statement. We call such statements directives and only partially consider them,

noting that they traditionally cause side-effects and need to be retained in the residual

program. MPE will not recognise f * 10 correctly if f is a function but will instead

create a binary expression, but we do not see this causing problems as such code would

be unlikely except due to programmer error. When Joisha [36] parses these function

calls, he requires that the function arguments be enclosed in quotes. We do not take

this approach since this would cause many library functions to fail to parse (although

this form is also acceptable to our parser).

The only notable problem that actually arose in the MATLAB libraries is the use of

keywords after a function, e.g. dbstop if error. Since if is a keyword, this will cause

a parse error and abort MPE. This can be avoided by wrapping parameters with inverted

commas, e.g. dbstop 'if' error.

This stage is performed on m-files and produces an m-file object containing a repre­

sentation of each of the functions found in that m-file. Functions are represented as

a list of input parameters, output variables and an AST. Assignment and expression

statements have a flag, which indicates whether they are terminated with semi-colons

and therefore should be silent. Statements can be either expressions, assignments

(normal assignments, multi-output assignments and delete assignments), for loops,

while loops, if statements, switch statements, control-flow-change statements (return,

continue and break), directives or annotations.

5.3 Handling command line definitions

To specify the values of parameters to the main function, the user will give a command

line flag (-d) along with an assignment from some variable to a static value. These

assignments are inserted at the start of the AST which will contain the residual program.

The expression is parsed just like any other MATLAB code and so can be a matrix or

any other valid MATLAB expression. Additionally a file, containing a list of assignments

and annotations, can be specified using the -a flag.

The function declaration is then modified to remove any parameters that were specified

at the command line. E.g.

function z = f(x,y)

Chapter 5 Handling full MATLAB programs 63

After partial evaluation by illpe -d x 1 f. ill, this becomes:

function z ~ f(x)

This approach was chosen purely due to its simplicity. By adding assignments no special

code needs to be generated to ensure that the values are propagated through the program

as this occurs in the normal course of partial evaluation. It also avoids the problems of

indexed assignments which assume the variable is already in existence.

5.4 Converting placeholders

This stage is necessary because the distinction between variables and functions is not

immediately determinable unlike in C. This stage also appears in most of the literature on

MATLAB compilers including [58] and [2], where it is called disambiguation. Variables

do not have to be declared but are created as required by assignments. Variables can also

shadow the names of both built-in and ordinary functions. This means that an identifier

could be used to indicate a function call at one point in a function and then later be used

to access a variable if there is assignment to the variable in between. Variables can also

be deleted using functions such as clear, which, if they shadow a function name, means

that the function can again be called using that identifier. We choose to ignore the

clear function as its results are quite unpredictable especially when used with dynamic

input. As a result of this ambiguity when the parser encounters a symbol, it inserts a

placeholder into the AST for later conversion.

Our criteria for determining whether a placeholder represents a function call or a vari­

able access are similar to those of De Rose, although ours is more extensive than that

described in [57], as MATLAB has evolved since it was written. An identifier that has

been previously used as a variable will always be a variable. Otherwise a function with

that name is sought in the following places with descending precedence2 :

1. Built-in Functions

2. Functions in current file

3. M-files in current directory called function-name. ill

4. M-files in a subdirectory, private, of the directory of the current m-file, called

function-name.ill

5. M-files in the path called function-name. ill

2this order ignores «Iclass directories which MPE does not support.

Chapter 5 Handling full MATLAB programs 64

If no function is found, then the identifier is assumed to represent a variable allowing

code like the (extremely contrived) following code to work:

for n = 1:10

if n > 1

a = [a nJ;

else

a = 1;

end

end

A particularly confusing and yet possibly valid statement is x ex) = x eX), where x is a

function and has not been used previously as a variable. This problem is discussed by

De Rose [57]; in particular he discusses how conditional statements can affect whether

an identifier is seen as a variable or function. We take the same approach and assume

identifiers which have no visibly defined function are variables as we cannot defer the

decision unlike an interpreter.

If an appropriately named file is found for a previously unseen identifier, the placeholder

is converted to a function call. The file is not however parsed until the call is partially

evaluated (or abstractly interpreted). With many programs this prevents memory being

wasted on functions which will never be called and can sometimes allow partial evaluation

of programs which contain features we do not support.

The end result of this stage is one parse tree where all placeholders have been replaced

with either variable, subscript or function call identifiers, for each function in all m-files

in the system.

5.5 Summary

This chapter first described our motivation in using online partial evaluation. It then

listed the stages that make up our partial evaluator and then described the early stages,

by giving a brief description of the problems associated with parsing large MATLAB

programs and them disambiguating variable and function symbols. This is not presented

as unique research, since it is documented elsewhere, but is presented for completeness.

Having parsed an m-file and produced the Abstract Syntax Tree for it, it is now possible

to partially evaluate it. In the next chapter, we will describe the core of a partial

evaluator. This includes a description of how to handle every kind of statement as well

as whole functions. It is this work which accounts for the bulk of the partial evaluation

time.

Chapter 6

Partial Evaluator Core

Functionality

In this chapter we describe the core of the partial evaluator and how the abstract domains

and equations from Chapter 4 are used.

The initial input is the first function in the m-file specified on the command line along

with a list of parameter values. Each value is from the set A, defined in Definition 4.22,

and so can be completely static, dynamic with some shape information, or perhaps

undefined. Since the number of parameters and outputs can themselves be dynamic, the

list of parameters is also supplemented by two additional parameters, nargin, nargout E

R, whose values are ranges from Definition 4.11.

For non-vamrgin functions, which can only take a certain number of parameters, nargin

is capped to this maximum (nargin' = nargin nr (0, n)). The same is done to nar­

gout for non-varargout functions. For varargin functions, the excess parameters are

directly mapped into a cell array. If any of these parameters is dynamic, then so will the

varargin variable. The size of this parameter list is now definitely finite even if nargin

is unbounded.

The environment is a hash-table mapping symbols to values (sym ---t A). This environ­

ment has several extra fields: nargin, nargout and current-mfile. The current-mfile field

is used when determining where to look for functions. This is not necessary for functions

found by the converting placeholders stage from Chapter 5, but for calls to feval as

will be described later.

We use hierarchical environments to reduce copying at points where execution branches.

Each table has a parent field. When partial evaluation starts for a function, this field is

NULL. On partially evaluating a conditional with two branches, two empty environments

will be created, each with the current environment as their parent. If searching for a

symbol fails in the current environment, the parent is searched recursively until there

65

Chapter 6 Partial Evaluator Core Functionality 66

are no more parents or the symbol is found. Updates to the environment only affect

the most recent environment so as not to affect the state of alternate branches. On

completing both branches, the two environments will only contain symbols which were

altered and so only these need to be examined.

The initial environment is then populated with the parameter symbols and their values

and partial evaluation can now commence. The function is partially evaluated statement

by statement, updating the environment as it goes.

6.1 Partially evaluating statements

For each of the statements discussed in Chapter 2, we will now describe how it is partially

evaluated.

6.1.1 Expressions

In MATLAB, when an expression appears on a line on its own, it is evaluated and

the answer displayed (assuming a semi-colon is omitted), as in a calculator, but more

frequently expressions are found in other statements such as assignments. The rules for

evaluating expressions as described here apply in all cases, although other statements

use the expression values in different ways.

Binary expressions are stored in a binary tree. Our implementation performs a depth

first traversal of the tree evaluating wherever possible. The nature of the tree has an

effect on the amount of evaluation that is possible. For instance 2 + x + 4 and x +

2 + 4 will not be reduced to 6 + x because the tree stores them as (2 + x) + 4 and

(x + 2) + 4. Either a strategy would have to be developed to propagate the addition

across the inner binary expression or N-ary expressions with reordering could be used.

Any strategy that used expression reordering based on associativity or commutativ­

ity would have to be very careful about causing an adverse change in execution time.

Menon and Pingali [49] discuss how we can use the semantic properties of operations

in conjunction with type information to realise previously infeasible operations. For

instance in evaluating A * B * x, if A and B are matrices and x is a vector, the

time complexity is O(n2) evaluating from right to left, but O(n3) if we evaluate from

left to right. It is also possible to introduce rounding errors by reordering expres­

sions, as 1 + 1e-16 + 1e-16 - 1 is evaluated as exactly 0 by MATLAB, where as

1 + Oe-16 + 1e-16) - 1 produces rv 2 X 10- 16 .

Other problems can arise from the dynamic typing of MATLAB. For instance it is not

possible to assume that multiplication is commutative as matrix multiplication is not.

Chapter 6 Partial Evaluator Core Functionality 67

(Commutativity can be assumed if . * is used). A * 0 is not necessarily 0 but could be a

matrix of Os or a sparse empty matrix.

Each node in an expression has two pieces of information associated with it. Its Value

(v E A) and the code which produces it. These two pieces of information are returned

by the expression partial evaluator. In the case of static values (v E Ab), the code to

reproduce it not actually created until the function is written out. This means that little

time is wasted on the static values of sub-expressions which are immediately consumed

by another static expression. Instead the code generated for static values, is just an

instruction to lift the value when code is actually required. For dynamic values (v E Ati),

the code is immediately created. We assume the availability of functions which call the

concrete interpreter on static parameters, like apply_op, : Op X M x M ~ M, which

applies an operator concretely to two operands.

We will now describe how the various types of expressions are handled, starting with

the binary expression binop(op, el, e2), where peval(el, E) = (e~, VI) and peval(e2' E) =

(e~, V2), with environment E:

peval (binop(op, el, e2), E) =

((static, apply_op,(op, " (VI), " (V2))), lift)

if VI, V2 E Ab

((dynamic, apply_opo (op, 0:(vd, 0:(V2))), binop(op, e~, e~))

otherwise

(6.1)

As described here, only fully static binary expressions produce a static result, even in

the case of expressions like x * o. Such transformations are ignored, as they are not

often applicable and can also produce changes in the semantics of a program. Where the

expression component is 'lift', this is a short hand for the expression obtained by lifting

the value component. We assume the existence of a function apply_opo : Op X A x A ~

A, which selects the correct type determination function based on the operator.

For the unary expression, represented by unop(op, e), where peval(e, E) = (e', v), partial

evaluation proceeds as follows:

(())
{

((static, apply_op,(op,,'(v))),lift)
peval unop op, e ,E = ,

((dynamic, apply_opo(op, 0:(v))), unop(op, e))

if v E Ab

otherwise

(6.2)

A constant, represented by const(c) in the AST, with value, c E M (Definition 4.21) is

handled as follows:

peval(const(c)) = ((static, c), lift) (6.3)

Chapter 6 Partial Evaluator Core Functionality 68

Variables for which there is a static value in the environment are replaced with the static

value:

(() E)
{

(E(sym), lift) if E(sym) E Ab
peval var sym, =

(E(sym), var(sym)) otherwise
(6.4)

An expression Subscript(sym, format, (el ... en)) is an indexed variable access, like a {3}

or v. field(2). The format describes where the indices are placed and takes the form

{?} and. field(?) for the examples respectively. Subscripts are handled by first par­

tially evaluating the indices. Since the indices are in the form of a comma-separated list,

there is a chance that more or even fewer than n elements will be produced by partially

evaluating the list. This is because one of the indices might be a cell array subscript

itself. Such a subscript can expand to any number of values. This can happen anywhere

that comma-separated lists are expected, e.g. function parameters.

The function, pevaLlist : Exp* x Env x Exp* x A * x R -t Exp* x A * x R, is used

to partially evaluate a comma-separated list of expressions. It produces a new list of

expressions, a list of values as well as a range for the size of the list. Where applicable,

(e~,v~, (l',u')) = pevaLin_list(el' E) and n' = (l',u').

pevaUist((el ... en), E, e~, vs, n) pevaUist((e2 ... en), E, e~ .e~, vs.v:, n + (l', l'))
pevaUist((el ... en), E, e~, VS, n) pevaUist2 ((e2 ... en), E, e~.e~, vs.v:, n + n')

pevaUist (0 , E, e~ , V s, n) (6.5)

The second part of pevaLlist above, matches the case where n' is not a constant, but a

range of values. In this case there is no point continuing to build the list of values as it

is not known where they will fit. Instead, the rest of the expression list is built up by

pevaUist2, which just passes through VS' Anything which uses vs, will also have nand

will therefore know that this list is incomplete.

pevaUist2 ((el ... en), E, e:, vs, n)

pevaUist2(0, E, e~, vs, n)

pevaUist2((e2 ... en), E, e~.e~, Vs, n + n')

(6.6)

Similar to pevaUist is pevaLindex-list, which has an additional parameter, format,

which it returns updated to take account of any expressions that were expanded. For

instance in the case of b (a{ [1 2J}), format = '(?)' for the indices of the subscript to

b, but if a is static, it will be expanded and so format' = '(?,?) '. If a was not static, it

would not have been expanded and format' would be the same as format.

Each of the individual expressions that make up the list are partially evaluated using

the function pevaLin_list : Exp x Env -t Exp* x A * x R. If c is a cell subscript, such

that c = subscript(sym,format, (el" .et)), where format E CellSubscript (the set of all

Chapter 6 Partial Evaluator Core Functionality 69

format strings, which represent cell accesses) then:

pevaLin_list(c, E) = \ (v~, ... v~), (e~, ... e~), n') (6.7)

where the components are defined below, given that:

pevaLindeLlist((el' ... et), format, E) = \ (e~, e:,), (v~, ... v~), n,format')

1. If Vi,v? E AD!\ low(n) = up(n)!\ E(sym) E AD, the result is static, p = q and

using a function celLsubscripty : AD x Format x A D* x N --t AD*:

(, .I) vl' ... vp

(el, ... ep)

celLsubscripLky'(E(sym)),format', (r'(vn, ... 'Y'(v~)),low(n))

(lift ... lift)
'-v-'

p

n (p,p)

2. Otherwise the result will be dynamic and the subscript needs to be constructed.

n = { fh .. 8 numel(shape(v~')) if low(n) = up(n)
00 otherwise

Since no information is known about the contents of a dynamic cell array, the list of

values just consists of unspecified but defined values. The subscript expands to the

product of the number of elements within all the indices. This is calculated using

a combination of numel from (4.31) and the fact that if the number of elements,

to which the indices expand is unknown, then we have no information about how

many elements the outer subscript will expand to. Consequently we only store the

maximum number that it definitely expands to and so p = low(n):

Vi, 1 :::; i :::; p, v~ = (T T, T 8, true)

The subscript has not been expanded so q = 1 and:

el = Subscript(sym, (e~, ... e:) ,format')

Returning to partially evaluating the elements in a list. Any expression that is not a

cell subscript will evaluate to a list of size 1 and is handled by the following equation.

(This equation uses. to concatenate arbitrary tuples).

pevaLin_list(e, E) = \peval(e, E).(l)) (6.8)

Chapter 6 Partial Evaluator Core Functionality 70

Subscripts in non-list positions like operands to binary expressions, must evaluate to a

single value or an error will occur. Given the definition of s as above:

(6.9)

In the following example, a is a 4-by-4-by-2 static real double array, b is 5, c is a dynamic

2-by-1 non-logical array and d is a dynamic cell array with unknown shape information.

a(b, b + c, d{c})

To partially evaluate this expression, first the indices to the subscript to a would be

partially evaluated. The first index is b, so the E(b) is checked (6.4) and found to

be static with a value of 5, so the result is ((static, 5), lift). The second index is a

binary expression, b + c. As before b is static, but c is not and so from (6.1), we get

((dynamic,a2),binop(+,const(5),var(c))), where (with.2.= (2,2))

The final index is a cell array and so its index need to be partially evaluated. Doing so

gives ((dynamic, a2), var(c)). Since numel(shape(v~)) = numel((.2., (.2.,1))) = .2., the sub­

script to d will expand to two elements, but as d is dynamic, we can infer no information

about their types or values. Consequently we will get as final code: a(5, 5 + c, d{c}) ,

when the inferred shape is the result of indexing with a scalar, a 2-by-1 non-logical array

and two unknown elements. From this we can infer (using the shape equations for index­

ing from Chapter 4) that the shape of the final result has between 2 and 4 dimensions,

the first two of which have sizes 1 and 2 respectively. The other 2 dimensions have

unknown size. The type will be the same as a, which means it will also be a real double

array.

Built-in functions that have static parameters can usually be executed directly via the

MATLAB runtime libraries. There are however some built-in functions which cannot

be executed directly as they require context or produce side-effects. Examples include

exist, which can be used to determine the existence of variables as well as files and

functions; I/O functions like disp, fopen, fprintf and fclose; graphing functions like

plot and plot3; and timing functions like cputime and clock.

Some built-in functions like exist can be evaluated indirectly by examining the envi­

ronment. It does, however, make little sense to evaluate timing functions while partially

evaluating, as it is more likely it was intended that the timing actually take place when

the residual program is executed. This is an area where offiine partial evaluation gives

the user explicit control of which functions to execute early and which to leave to the

residual program.

Chapter 6 Partial Evaluator Core Functionality 71

No I/O operations are performed while specialising, but are always inserted into the

residual program. This does limit the amount of static data that MPE can see as static

data files are never read. It would not be too onerous to remove this limitation through

explicit user annotations, if it was later deemed useful.

Built-in functions that cannot be evaluated directly, due to lack of static parameters or

side-effects, are handled by the partial evaluator internally. For each built-in function

we extract as much information as possible about the return values based on the input

passed to it. In the case of functions like size and ndims which examine the shapes of

matrices, we can sometimes fully evaluate them provided we have that information. If

insufficient information is available to fully evaluate the function, we instead return an

entry describing the shape and type of the returned value in so far as we can determine

it.

When a non-built-in function call appears in an expression, there are two main ways of

handling it. If all the parameters are static, the call can be fully evaluated and then the

result is either embedded in the residual program or is used as part of some other static

computation. Alternatively if the parameters are not entirely static, the function call

needs to be specialised. Function specialisation is described in Section 6.4, but for now

we will assume that the result is a new function name (constructed from the old name

and a variant number) and a list of return values, Vi E A.

If it is a built-in function, a list of special functions is checked. If the function is on that

list, it will never be concretely interpreted even if the parameters are completely static.

Functions which cannot be directly executed either because they are not completely

static or because they are on the special function list, are instead handled internally by

the partial evaluator. In either case the result will be a list of return values, Vi E A.

(For side-effecting built-in functions, which are always special, Vi will never contain static

elements, i.e. Vi, Vi E AU).

The equations for built-in functions are not given here, but essentially most require fully

static parameters to produce a static result, otherwise they will produce a dynamic re­

sult. The exceptions to this are the shape accessor functions like size, length, isempty

and numel; and type accessor functions isreal, islogical and class. These functions

can examine the components of a dynamic type and extract a static result if it exists,

which means that the function call is replaced by a constant in the residual program.

Given a non-built-in function call, f = Function(sym, (el ... en)), where

peval_list ((e 1, ... en), E) = ((V~, ... Vp), (e~ , ... e~) , n)

then the equation for partially evaluating the function is:

{
(Function(sym', (e~ ... e~)), vD

peval (j, E) =
(lift, vn

if v~ E A~

otherwise
(6.10)

Chapter 6 Partial Evaluator Core Functionality 72

where v~ is the result of evaluating that function with the parameters (v~, ... v~) and

nargin, n. This evaluation procedure will not return v~ E AD, unless the function sym

has no possible side-effect for that call. If the call does not return a static result then a

new function sym' will be produced. The function call will be replaced by one that calls

the new specialised function.

Currently if a call to feval is passed a dynamic function handle or string, no attempt

is made to infer information about the return value of the function or even to specialise

it. This means opportunities are lost, but since we do not attempt to find all the

possible function handles that could reach a feval call, there is no way to infer anything.

Ruf and Weise [60] use control flow analysis in their partial evaluator, FUSE, to find

lambda expressions that can reach a dynamic application. A generalised argument list

is found which fits each of these lambda expressions by examining every place where the

expression could be applied. This is all done in a pass after the initial specialisation is

complete and requires a specialisation method, which allows for code to be iteratively

improved. All of this is far more important for FUSE, because it partially evaluates

Scheme, where recursion and higher-order functions are much more common.

If the call to feval uses a static function, then the call to feval is replaced with a

direct call to the function. This transformed function call is then partially evaluated as

normal.

Arrays containing only constants are constructed at parse time to avoid the cost of re­

construction, every time an expression is encountered while partially evaluating. Arrays

that cannot be fully constructed at parse time, such as ones including expressions, are

built by applying the appropriate horzcat and vencat functions repeatedly. For fully

static values, this will produce a fully static array. If any of the elements that make up

an array are dynamic, the whole array becomes dynamic and so the shape determining

functions are used. This allows expressions such as [2, x; 4, yJ to be inferred as a

2-by-2 matrix when x or y is known to have only one column.

6.1.2 Assignments

Simple assignments discard the old value of the target variable and are relatively easy

to handle. In a single value assignment, we partially evaluate the right hand side as

described above, and create a new assignment with this new expression. The value,

(v E A) of the expression is then stored in the environment for non-indexed assignments

(E = E(sym -+ v)). For indexed assignments, the value in the environment is updated

if it is static and the indices are static with a new static value. If the indices or the right

hand side are not static then the environment is updated with a value inferred from

shape analysis.

Chapter 6 Partial Evaluator Core Functionality 73

With multiple output assignments, the right hand side can only be a function. In

which case it is evaluated as for function call expressions and the multiple outputs are

distributed to assigned variables. Ideally the outputs will be completely static and so

the statement can be replaced with one new assignment with a static value for each

output.

[a,b] size(c);

If the shape of c is known then assignments to a and b are substituted. E.g. If c is a

matrix with 4 rows and 2 columns, this will become:

a 4·

b = 2;

But if only the number of columns is known then we would have to use a function call.

E.g.

a = size(c,1);

b 2;

This is more expensive than the original as there are two assignments and a function

call, but post-processing could completely eliminate the assignment to b. It is easy

to transform the size function into multiple assignments as above, but most built-in

function calls are not so simple and so we do not perform this kind of transformation

when there is a mix of dynamic and static return values.

For functions provided in m-files, moving the static assignment from the called function

to the calling function provides more opportunities for dead code removal by dead code

removal. E.g.

function y = f(x)

[a, b] = g(x, 6);

y = a * b;

function [a, b]

a = x * 2·

b = Y * y;

g(x, y)

If static outputs are not removed from the function call then the following code will be

produced:

function y = f __ l(x)

[a, b] = g __ l (x);

y = a * 36;

function [a, b]

a = x * 2;

b = 36;

The value of b is known and so it can be propagated later in the function meaning that

b is never required in the residual code, and any dead code elimination system which

Chapter 6 Partial Evaluator Core Functionality 74

works locally on a function will not be able to remove any code from this example. If

the static output is removed then the following code is produced.

function y = f __ 1(x)

a = g __ l(x);

b 36;

y a * 36;

function a g __ l(x)

a = x * 2·

b = 36;

While this code is not really any shorter, the redundant assignments to b in C_l and

g __ l can easily be removed in post-pr<?cessing producing a shorter faster program (and

in fact inlining will later be shown capable of completely removing the function g __ l).

6.1.3 if statements

If the value of the condition expression is static (v E AD), the conditional statement is

removed and replaced with an appropriate set of commands. To do this the condition

expression is partially evaluated and if found to be static and non-zero, the first set of

commands are partially evaluated and inserted into the residual code directly. If the

condition expression is static and evaluates to zero and there is an else clause, those

commands are partially evaluated; otherwise the if statement is removed and no code

is inserted in the residual function.

If the condition expression is dynamic, then both sets of commands need to be partially

evaluated with the same initial conditions and the resulting environments merged. This

means that if both sets of commands set a variable to the same value, it will have that

value after the loop. If the value is different, but the type or size of the array are the

same, then this information is retained instead. For instance:

a = 5;

if a > x

a = a + 1;

else

a = 0

end

In the above code, if x is static and has the value 1, then the condition expression is

static as a is static as well and so the conditional is replaced with the following code:

a = 5;

a = 6;

If x were unknown then the following code would be produced instead:

a = 5;

if 5 > x

a = 6;

Chapter 6 Partial Evaluator Core Functionality 75

else

a = 0

end

The environment would then be updated with the a equal to a dynamic real non-logical

double scalar.

6.1.4 swi teh statements

As with if statements, if it is possible to predetermine the switch value along with the

case values, the switch statement can be removed completely and replaced with the

appropriate statements. Because the case values do not need to be constants and the

cases are checked in order, it is important not to remove a switch statement when a

case matches if there are one or more dynamic cases before it. In this case, the preceding

cases need to be left in place while the matching case is replaced by an otherwise clause,

thus removing the need for a comparison. Cases that can never match can be removed

thus eliminating redundant comparisons. If as the result of eliminating comparisons

only one comparison would ever be carried out, then it may be better to substitute an

if statement as they are faster to execute.

One proviso here is that an error would be thrown if the switch value was neither a

scalar or a string. By replacing the switch statement with an if statement, the program

semantics change slightly, unless the switch value can be inferred to be a scalar or string.

In addition, the equality operator == requires that both of its operands have the same

shape for this optimisation to produce equivalent code. The function, isequal, would

be a valid substitute but it brings with it the overhead of a function call.

As with if statements, if the exact control flow cannot be determined, each branch

of the switch statement needs to be partially evaluated in parallel and the resulting

environments then merged. Clearly branches that will never be reached can be skipped.

In the following example, there are several possible specialisation opportunities:

switch a

_ end

case 'foo'

disp (' Monday')

case 'foobar'

disp (' Friday')

otherwise

disp('Another time')

If a is completely static and has the value 'foobar' then the code produced is:

disp (' Friday')

On the other hand if a is dynamic, but it is known to have a length of less than 4, then

the following would be produced:

Chapter 6 Partial Evaluator Core Functionality

switch a

end

case J foo)

disp (, Monday')

otherwise

disp('Another time')

If the length was exactly 3, then this would be optimised to the following:

if a;; 'foo'

disp (' Monday')

else

disp('Another time')

end

6.1.5 for loops

76

The number of iterations for a for loop is fixed from the moment that loop execution

commences (unlike in languages like C where the loop constraints are re-evaluated after

every iteration) and so determining whether to unroll requires no data flow analysis on

the loop body. If the loop constraints are static then the loop will be automatically

unrolled unless there is an annotation prohibiting it (as described later).

To unroll a loop, the body of the loop is partially evaluated once for each iteration. For

each iteration, the loop variable is set to the appropriate static value, although generally

an assignment will not be generated for this. The exception to this, is if the loop contains

an assignment to the loop variable. In this case, omitting the assignment at the start

of the iteration could produce invalid code if the assignment inside the loop is under

dynamic control.

At the end of the loop, an assignment will be required to ensure the final value of the

loop variable is available to the rest of the program following the loop. This assignment

is only required if no assignments to the loop variable were inserted at the start of each

iteration. Inserting assignments for the loop variable will often produce redundant code,

but in these cases post-processing will remove it at a later stage.

When the loop constraints would mean that the body of the loop is never executed,

(e.g. a: b, where b < a), then this is a special case of unrolling with no iterations in

which case the entire loop is skipped. MATLAB does reset the loop variable to [J and

so an assignment needs to be inserted for this, which will in most cases be removed by

post-processing.

When the loop constraints are dynamic, the loop is retained. More complicated loop

unrolling could be performed, including partial unrolling but for simplicity this is ignored

here. Care now needs to be taken with variables inside the loop. Naively partially

evaluating the loop, using the state before the loop was reached, would result in a loop

Chapter 6 Partial Evaluator Core Functionality 77

that might only execute correctly for the first iteration. Instead information about the

state after each iteration needs to be combined with the initial state.

This is achieved using iterative data-flow analysis. The body of the loop is iterated over

using our abstract interpretation method which computes, for each variable, either an

abstract value or a concrete value (x E A) storing the result in the environment. Algo­

rithm 1 requires an initial environment, the list of commands comprising the loop body,

a flag indicating whether we know if the loop always iterates at least once as well the

identifier for the loop variable along with the abstract description of its value, (a E A~).

It gives us two environments, one with which to partially evaluate the loop and another

giving the state after the loop has been executed. The following algorithm assumes the

existence of a function frun which takes an environment and a list of commands and

returns the environment that would be obtained by running those commands.

Algorithm 1 Calculate the fixpoint state for the loop
Require: eorig E (Ident --t Value), comms E Block, always_iterates E Boolean,

loop_var _id E Ident, loop_var _val E Value
Ensure: einput, efinal E (Ident --t Value)

e f- eorig

repeat
einput f- e[loop_vaLid --t loop_var_val]
eoutput f- frun (comms, einput)

e f- eoutpudloop_var _id --t loop_vaLval] U einput

until e = einput

if always_iterates then
efinal f- eoutput

else
efinal f- eoutput U eorig[loop_var _id --t [J]

end if

If it cannot be determined that the loop will ever execute even once, the final state

environment of the loop is merged with the environment that would be obtained if the

loop never executed. In some cases this could result in a lot of information being lost,

and so it is important to examine the loop constraints first in case this merge can be

skipped. For example:

a = 0;

for n = 1:5

a = a + n - b·

end

This loop can be fully unrolled, resulting in a sequence of assignments. (Note that 1 - b

is not identified as equivalent to 1, as this does not hold true if b is not a scalar).

a = o·
a = 0 + 1 - b;

a = a + 2 - b;

a = a + 3 - b;

a = a + 4 - b;

Chapter 6 Partial Evaluator Core Functionality 78

a = a + 5 - b;

n 5;

In the following example, the loop cannot be unrolled when x is unknown.

a = 0;

b = 2·

for n 1: x

a = a + n - b;

end

In fact the only optimisation possible is the propagation of the value of b which can be

determined not to change, when the least upper bound is found.

a = 0;

b = 2·

for n = l:x

a = a + n - 2;

end

The following is an example of code where the loop assignments must be generated to

insure equivalent behaviour.

a = 0;

for n=1:4

n(2) = x;

a = a + n;

end

The assignments to n must be written out as there is an indexed assignment to n inside

the loop.

a = 0;

n = 1;

n(2) = x;

a = 0 + n;

n = 2;

n(2) = x;

a = a + n;

n = 3;

n(2) = x;

a = a + n;

n = 4;

n(2) = x;

a = a + n;

While we have not implemented such a transformation, it may be possible to then convert

the two assignments to n for each iteration above to a single one of the form: n = [1 xJ.

There is never a risk that unrolling for loops will causes the partial evaluator to loop

infinitely as the maximum number of iterations is always bounded. These loops can

terminate earlier if break or return statements are present.

Chapter 6 Partial Evaluator Core Functionality 79

6.1.6 while loops

Unlike for loops, while loops cannot be so easily determined as unrollable. There are

two approaches to unrolling such loops: one method is optimistic and unrolls the loop

until the loop condition indicates that it has terminated or the loop condition becomes

dynamic. The second method uses a binding time analysis (BTA) to determine if the

loop condition will be static on every iteration.

Using the optimistic approach, there are no problems if the loop is found to terminate

without the loop conditions becoming dynamic. However if the loop conditions become

dynamic then unrolling cannot continue and the loop must be inserted into the residual

code. The body of the loop and the loop condition are partially evaluated with respect

to the least upper bound of the state after any unrolling that was successful.

Using this method, the following loop has the initial iteration unrolled, but then the

loop must be inserted as y becomes dynamic.

'l.# x size [1 10]

Y = 0;

a = 0;

while y < length(x)

a = a + x(y);

y y + a;

end

Using an optimistic approach to unrolling, this becomes:

'l.# x size [1 10]

Y 1;

a = 0;

a=O+x(1);

y 1 + a;

while y < 10

end

a = a + x(y);

y y + a;

One way of performing the BTA, would be to abstractly interpret the loop to see if it

terminated or if the loop condition became dynamic. If it terminates during abstract

interpretation, then the loop is static and can be unrolled. The problem with this

approach is that involves doing most of the work of unrolling the loop without generating

any code. Once it has been determined that the loop can be unrolled, much of this work

must be repeated. If the loop cannot be unrolled then a fixpoint iteration to find the

least upper bound would also still be required in the same way as after the optimistic

unrolling.

Another approach to determining whether to unroll is to find a conservative approxima­

tion of the staticness of the loop condition using a simple abstract interpretation model

for which variables have three states, dynamic, static and undef. Our more complicated

Chapter 6 Partial Evaluator Core Functionality 80

environment maps directly to this without difficulty. ¥ie then perform a fixpoint itera­

tion on the loop maintaining a table of bindings for each variable. The reason for the

undef binding is that the binding table is nested in the same way as the main symbol

table. If a variable is undef in one table, its parents are checked for a non-undef binding.

If no static/dynamic value can be found in any ancestor table then undef is returned

by the lookup function. This fixpoint iteration will be considerably faster than the one

used to find the least upper bound of the state as no computation is performed.

For each expression we calculate the binding as follows:

• Constants are static.

• Variables are static if they are not dynamic in the environment.

• Binary expressions are static if both operands are static.

• Unary expressions are static if both the operand is static.

• Function calls are static if all the parameters are static, the function exists and

does not have side-effects.

• Array accesses are static if the variable is not dynamic in the environment and the

indices are all static.

For assignments, the binding is stored in the symbol table. In the case of assignments

to subscripts, a static binding is only recorded if the existing binding is static or undef

and if the indices are also static.

For conditional statements, if the condition is static, each branch is determined in par­

allel and the results merged using nested tables. If the condition is dynamic then any

assignments appearing inside it mark their variables as dynamic. Static loops are de­

termined by performing a nested fixpoint iteration. Dynamic loops require that all

assignments inside the loop mark their variables as dynamic.

This approach can do nothing with the previous example, as the simple approximation

would make x dynamic and therefore length (x) would be dynamic. The code could

be rewritten to avoid this by calculating the value of length (x) before the loop and

storing it in a variable which would then be static for the duration of the loop. This

would be both a binding-time improvement and an optimisation to the original code

since the length of x does not change. The advantage of performing a simple BTA step

first, is that it almost always guarantees that the loop can be fully unrolled and it does

this fairly quickly.

Before attempting the BTA, the loop condition is abstractly interpreted once. If it

is static and false, then the loop can be immediately deleted. Otherwise the BTA is

Chapter 6 Partial Evaluator Core Functionality 81

performed and if it is determined that the loop condition is static it is unrolled by

partially evaluating the body of the loop for each iteration. At the end of each iteration

the loop condition is checked and if still true, the unrolling is continued. If, at the end of

an iteration, the loop condition has become dynamic then the partial evaluator aborts

(or alternatively the loop could be inserted at this point). Reasons why this might occur

are discussed in 6.1.7. Another way of dealing with the loop condition becoming dynamic

during unrolling is to insert the original loop at that point as with the other method

of unrolling. In practice, very few codes produced different results, presumably because

loops which depend on the shapes of parameters are for loops which can already be

unrolled.

If the loop cannot be unrolled, a while loop is then inserted with the loop condition

and body partially evaluated with respect to the least upper bound for the loop starting

state.

Algorithm 1 can be reused for finding the fixpoint for while loops by removing all the

references to loop_var _id and loop_var _val.

Unrolling while loops can cause infinite looping. If the loop would never terminate when

the program was run normally, then the loop will be unrolled infinitely. One problem

is that if the loop would not normally terminate but its execution only occurs when

a dynamic condition is met, the partial evaluator will execute both paths. Hence the

partial evaluator will always loop infinitely where the original program would only loop

infinitely in some cases. Cases like this are not common but are not always contrived:

if x < y + w

y = 10;

else

while x - y

x = x - 1;

end

end

If X and yare static and w is dynamic then both branches of the if statement will be

partially evaluated leading to the second loop being unrolled. If there is an assumption

that w is always positive then normally the loop would never be executed if x was less

than y and (assuming x and y differ by an integral amount) the code would always

terminate. Since the partial evaluator always unrolls the loop, it will loop infinitely if x

is less than y. In this case the code would need to be rewritten to avoid this problem,

possibly by replacing -= with >.

Listing 6.1 shows an implementation of a sprintJ-like function in MATLAB using a

while loop. This relies on two functions, int2str and num2str, which are provided as

part of MATLAB in m-files.

function output = strprintf (format_string. varargin)

Chapter 6 Partial Evaluator Core Functionality

output =)';

count = 1;

pos = 1;

length = length(format_string);

while pos <= length

end

if format_string(pos) == 'Yo'

else

end

code = format_string(pos + 1);

switch code

end

case 'd'

output = [output int2str(varargin{count})];

count = count + 1;

case 'f'

output = [output num2str(varargin{count})];

count = count + 1;

case's'

output = [output varargin{count}];

count = count + 1;

case 'I.'
output = [output 'I. '];

pos pos + 2;

output = [output format_string(pos)];

pos = pos + 1;

LISTING 6.1: A simple implementation ofsprintf

If we partially evaluate this function with the following format string:

'My name is I.S, and I am I.d years old'

82

We get the output shown in Listing 6.2. (In fact this is the result after the post-process

phase of the next chapter is applied, but the original was considerably longer and could

have obscured our result). This new program has no control flow as the while loop has

been unrolled and the conditional statements have all been determined as static.

function output = strprintf __ 1(varargin)

output [' My name is , varargin{1}] ;

output [output ' , J] ;

output [output , '] ;

output [output 'a'] ;

output [output 'n'] ;

output [output 'd 'J;

output [output , '] ;

output [output 'I '] ;

output [output , '] ;

output [output J a'] ;

output [output 'm'] ;

output [output , '] ;

output [output int2str __ 1 (varargin{2})];

output [output , '] ;

output [output 'y '] ;

output [output 'e '] ;

output [output 'a)] ;

output [output 'r'] ;

output [output 's)] ;

Chapter 6 Partial Evaluator Core Functionality

output

output

output

output

[output , 'J ;
[output '0'] ;

[output '1' J;

[output 'd 'J;

LISTING 6.2: A test function for our strprintf function

6.1.7 Annotations

83

In addition to standard MATLAB language constructs, our tool recognises annotations

which guide the partial evaluation. These always begin with %# and are ignored by

MATLAB as comments. Annotations are just copied directly into the final code, but

they do modify the symbol table.

There are two types of annotations: variable annotations and general annotations. Vari­

able annotations describe variables, specifying the type, shape and definedness. This is

useful for dealing with function parameters and also for preventing a variable identifier

from being treated as if it was a function.

% Declare that x is a scalar

%# x size [1 1J

% Declare that x is complex

%# x complex

% Declare that y is undefined

%# y undefined

For convenience we define two extra annotations: realdouble indicates that the variable

is of class double and is real and not logical. In addition, realscalar is the same as

realdouble but also indicates that the variable is a scalar.

Function annotations describe how the function has been called. They specify the val­

ues returned by built-in functions like nargin and nargout, which return the number

of parameters used to call the function and the number of return values requested re­

spectively.

% Declare that the function is called with 2 parameters

%# nargin 2

% Declare that the function is called with 1 output

%# nargout 1

Currently MPE can loop infinitely on input containing loops which steadily widen shape

values. Consider the following code:

function y = f(x)

y = 1;

for n=2:x

y = [y nJ;

end

Chapter 6 Partial Evaluator Core Functionality 84

This function returns a vector of values from 1 to x with increment 1. The current

implementation of MPE will iterate over the loop trying to find the shape of y. It can

easily determine that it is a two dimensional matrix with 1 row. However each successive

iteration will increase the number of columns by 1. Since iteration only ceases when

stabilisation of shape information is achieved, the iteration will be infinite. To prevent

this problem, the number of columns needs to be widened. If the number of columns is

set to (1, w), no further iteration would be required.

To this end, ideally we would develop heuristics to determine when there is a possibility

of infinite iteration. For now the widen annotation can be used:

function y = f(x)

y = 1;
for n=2:x

end

'l.# y widen 2

y = [y n];

In this case, the second dimension of y has been widened, which means that iteration

will not be infinite. Currently MPE limits the number of iterations for finding the least

upper bound. When the limit is exceeded, it aborts, printing the variables that have

not stabilised along with the information for the last two iterations allowing the user to

determine which variables need to be widened.

Printing differences for function f

y ---------------

e1 (ndims 2) (size

e2 : (ndims : 2) (size

1 1-20) (type

1 1-21) (type

real) (value

real) (value

unknown)

unknown)

By default MPE will always unroll a for loop when the loop range is static. In addition

if the loop condition of a while loop can be inferred to be static then it too will be

unrolled. Sometimes this will cause an excessive increase in code size; this can be

stopped by inserting a nounroll annotation in front of the loop. In addition the simple

BTA may sometimes determine a loop to be unroll able when it is in fact not. This

occurs when functions are called which are not static even when called with fully static

parameters. Examples are nargin and nargout called with no parameters, which mayor

may not be dynamic. These could be treated as special cases by storing whether nargin

and nargout are static or dynamic in the binding table. However other functions cannot

be dealt with so easily without making the analysis much more complicated. In cases

where this mistake is made, a nounroll annotation is required to prevent the partial

evaluator aborting. Alternatively the optimistic loop unrolling approach can be used,

which just inserts a loop after unrolling becomes no longer possible.

Loops which contain break or continue statements will never be unrolled by default. If

the user knows that the loop conditions are static and that the control flow around these

statements is also static, then an unroll annotation can be added before the loop to

force unrolling. For while loops, the unrolling test is very conservative and will classify

Chapter 6 Partial Evaluator Core Functionality 85

loops as not unrollable when the loop condition depends on dynamic data for which size

or type information exists, when using the simple BTA method. If during unrolling, it

is found that the conditions were not static then partial evaluation will abort.

Whenever MPE is generating code and it comes across a non-built-in function which

cannot be executed directly, it will attempt to generate a specialised version of the

function regardless of whether specialisation will actually be useful. It will also specialise

MATLAB library calls for which MATLAB code can be found. This is sometimes

undesirable and so the preserve annotation can be inserted to declare that a function

should never be specialised. If the function has fully static data, it can still be directly

executed and the call removed from the residual program.

Sometimes functions are called with fully static data, for which it is undesirable to

execute directly at partial evaluation time. This might be because the function calls

other functions which have side-effects, which would then not be present in the residual

code. One approach would be to detect any functions which might have side-effects and

bar them from being directly interpreted, but this might bar functions which only have

side-effects with certain parameters which are not used in the code to be specialised.

To allow specialisation here, we introduce the nointerpret annotation which forces

the function to be abstractly interpreted even if it has fully static parameters. If a

function is directly interpreted and during this interpretation calls a side-effecting built­

in then partial evaluation will abort citing the function which called the built-in. In

addition directly interpreting a function which calls a function which cannot be directly

interpreted because of annotations will cause a similar error.

6.2 Control Flow Change statements

Control Flow Change statements cause the current control flow to jump to another point,

such as the end of a function. We also include statements which cause the program

to end such as errors and exit statements. For all the possible control flow statements

described in the following subsections, abstract interpretation is not described explicitly.

Since abstract interpretation has the same effect on the environment as when generating

code, the only difference is that code is not generated.

6.2.1 return statements

Until now it has been assumed that the only way that a function can exit, is if control

reaches the end of the function. However if control reaches a return statement then the

function immediately terminates and returns the current values of the return variables.

To handle this an extra environment is added, which stores the values to be returned

from the function.

Chapter 6 Partial Evaluator Core Functionality

Its value is calculated by:

tresult = tend U U ti
i=l...n

86

(6.11)

Where tresult is the final environment for the function, tend is the environment when

control reaches the end of function (its value is ..1 if control never reaches the textual

end of the function) and ti are the environment values at each of the n return statements

in the function (which are equal to ..1 if control never reaches them).

This is calculated in the partial evaluator by updating tresultJ whenever the partial eval­

uator generates a return statement or when it reaches the end of the function. Since

these statements prevent control flowing further in the function, they immediately cause

the partial evaluator to stop working on the current block. If the current block is the

top level block, then the partial evaluator would have finished with the whole function.

If the statement is contained in a dynamic conditional then the other branches still need

to be partially evaluated.

To handle this, the block partial evaluator returns a value, denoting how the block ended.

If the block ended normally, it returns CFC_NONE and if it was ended by a return, it

returns CFC_RETURN. The full set of values is given in Table 6.1. This set of values allows

CFC_NONE 1
CFCRETURN 2
CFC_BREAK 4
CFCCONTINUE 8
CFC_EXIT 16

TABLE 6.1: Exit values returned by the block partial evaluator

blocks to terminate in several other ways, which will be described later. Each of the

values corresponds to a single bit being set, which means that we combine and then

test the values using the binary operators, OR and AND. The set CFC contains all the

possible combinations, where at least one flag is present, e.g. CFC = {x E Nil::; x ::; 31}.

If one branch of an if statement ends with a return, and one ended normally, the exit

value would be CFC_NONE I CFC_RETURN. The partial evaluator would then discard the

environment generated by the return block when calculating the environment after the

if statement. Consider the following code:

if a == 1

b = 2;

return

else

b = 4;

end

In this example, both branches set the value of b. However, any code after this condi­

tional will see a static value of 4 for b since the other branches contributes a value only

Chapter 6 Partial Evaluator Core Functionality 87

to the final value of the function. If both branches had ended with return, the block

containing the if statement would itself terminate.

6.2.2 break statements

In normal execution, if one of these statements appears outside of a loop, it behaves

exactly like a return statement. If it appears inside a loop, it causes the loop to

terminate and for control to continue from after the loop.

To handle this, we create a new environment when partially evaluating a loop which

contains the state when the loop terminates. On reaching a break statement, this

environment is updated in the same way as the environment for return statements. In

addition the. block partial evaluator returns CFC_BREAK, which is propagated back in the

same manner as CFC_RETURN.

6.2.3 continue statements

These statements are only allowed to appear inside loop, or an error will be generated.

If it appears inside a loop, it ends the current iteration of the loop and passed control to

the start of the loop causing the loop condition to be re-evaluated (as well as updating

the loop variant if necessary).

To handle this, we create a new environment when partially evaluating a loop which con­

tains the state when the current loop iteration terminates. On reaching a continue state­

ment, this environment is updated in the same way as the environment for break and

return statements. In addition the block partial evaluator returns CFC_CONTINUE, which

is propagated back in the same manner as CFC_RETURN.

6.2.4 Errors

When an error occurs during partial evaluation, the partial evaluator does not terminate,

but continues generating code. This is because much of the control in a program will be

dynamic, and so there will be dynamic conditionals which produce errors on one branch

and not on the other.

function y = f (x. y)

if nargin < 2

error (' This function requires 2 inputs').

end

Since the partial evaluator does not know which branch will be taken it evaluates both,

encountering the error on one branch. When this occurs, the partial evaluator recognises

Chapter 6 Partial Evaluator Core Functionality 88

that one branch results in an error and so reproduces that error in the residual code.

It then ignores that branch when generating the rest of the function. When the block

partial evaluator encounters an error it returns CFC_EXIT.

In the example given here, after the if statement, execution can only continue if nargin

is at least 2. If this is the case then y must be defined. The environment can then be

updated with information. This is an example of positive context propagation, which

will be discussed in Section 9.6.

Errors are also caught in expressions when operators are used with incompatible operands.

In this case, the statement containing the error will be removed and replaced with a state­

ment that reports the error that would be generated by executing the code as normal.

Doing it this way, ensures that the residual code clearly shows that the input as given to

the partial evaluator is responsible for the error (or that the program would produce the

error given any input). For expressions with at least one dynamic operand, errors raised

by trying to infer the shape of the resulting expression are also detected and flagged as

above.

For errors that occur in functions being executed by the concrete interpreter, an ex­

ception is raised, which is passed through all the calling functions until it reaches one

generating code or abstractly interpreting. In the former case, the exception in the

form of an error statement is then inserted into the code instead of the statement which

called the original function. This statement also includes the stack trace to help the

programmer trace the error. If the called function came from code being abstractly

interpreted, then an error is raised at that point, as if it occurred in the current block

and the abstract interpretation continues as normal for this case.

6.3 Block Partial Evaluator

We now describe the block partial evaluator in more detail. The block partial evaluator

takes a block of statements and partially evaluates them with respect to an environment,

in the process producing an updated environment and a new block. A block is a group of

consecutive statements, which appear at the same indentation level in a well formatted

program. Compound statements like if statements and for loops also comprise the

statements which appear within them.

In Listing 6.3, there are 4 blocks. Block 1 consists of the all the top level statements.

Block 2 consists of the error statement. Block 3 contains the statements inside the

while loop and block 4 is the assignment inside the second if statement. There are

nominally 2 extra branches which represent the empty else branches of the if state­

ments.

function z = pow (x, n)

Chapter 6 Partial Evaluator Core Functionality

if n < 0

error('pow can only handle values of n >= 0');

end

z = 1;

while n > 0

if moden, 2)

z = z * x;
end

n = floor(n / 2);

x :;;; x * x;

end

LISTING 6.3: Power function

89

Each of these blocks is partially evaluated at one point. When block 1 is partially

evaluated, it partially evaluates both branches of the first if statement. The first branch

(block 2) contains the error function call which causes the block partial evaluator to

recreate the command in the residual program and return CFC_EXIT, while the second

branch is empty and so causes it to return CFC_NONE. At this point, the two exit values

are combined as CFC_EXIT I CFC_NONE, but the CFC_EXIT component is discarded as it

contributes no information if combined with a value which allows execution to continue.

All other blocks complete with an exit value of CFC_NONE.

function y = product(x)

y = 1;

for n=l:length(x)

if x(n) == 0

y = 0;

break

else

end

end

LISTING 6.4: Product function

In Listing 6.4, there is a simple function for computing the product of a vector. If any

element in the vector is 0, then the function loop stops and 0 is returned. l

When partially evaluating the if statement, one branch terminates with a static value

of 0 for y and an exit value of CFC_BREAK. The other branch ends with a dynamic

scalar value for y and an exit value of CFCNONE. The break branch updates the loop

end environment, while the environment from the other branch is used to continue the

partial evaluation.

The least upper bound is computed only using the second branch as taking the other

branch would cease iteration. Once the least upper bound is found, the state after the

lThis function would work just as well if return was used instead of break.

Chapter 6 Partial Evaluator Core Functionality 90

loop is the join of the normal loop end state and the break end state. Thus, the state

after the loop has y as a dynamic scalar.

function y = nzproduct(x)

y = 1;

for n=1:1ength(x)
if x(n) == 0

end

continue

end
y=y*x(n);

LISTING 6.5: Non-zero Product function

In Listing 6.5, there is a function which computes the product of a vector while skipping

Os.2 This time the two branches of the if statement end with CFC_CONTINUE and

CFC_NONE. The loop iteration end environment is updated with the environment after

the continue, and when the iteration is completed, this environment is merged with the

main environment in order to compute the least upper bound.

Algorithm 2 gives an updated version of Algorithm 1 for computing the fixpoint state

for a for loop. This new algorithm takes both the current state, eorig, and the current

return state, ereturn. It then produces new states, eoutput, which is the state after the

loop has executed; einput, which is the state that should be used to partially evaluate the

loop body (which will in turn reproduce eoutput); and ereturn, which is the accumulated

state from all return statements so far. If while iterating, it is determined that no

iteration of the loop will ever complete normally or due to a continue statement, the

iteration is immediately stopped as the loop can never iterate more than once. In reality,

if this determination is to be made, it will only happen on completing the first iteration.

The exit value is also returned, with the CFC_BREAK or CFC_CONTINUE flags reset and

converted to CFC_NONE if necessary.

6.4 Function Specialisation

A conservative approach to function specialisation would be mono variant and would

create only one residual version of any function appearing in the source program. To do

this, the least upper bound of all function signatures (including any information about

parameters, the number of parameters and the number of outputs) would have to be

found. This is likely to discard static data in the case of functions which are called many

times in a program.

Polyvariant specialisation can more effectively specialise programs, as it can produce

multiple versions of functions. Naively one could produce a new version of each function

2This function could easily be rewritten without the continue, but a non-trivial example would be
much longer.

Chapter 6 Partial Evaluator Core Functionality 91

Algorithm 2 Calculate the fixpoint state for the loop while handling control flow change
statements
Require: eorig, ereturn E Ident ---t Value, comms E Block, always_iterates E Boolean,

loop_var _id E Ident, loop_vaLval E Value
Ensure: einput, eoutput, ereturn E Ident ---t Value, exit E CFC

e +--- eorig

repeat
einput +--- e[loop_var _id ---t loop_var _val]

(eoutput, ebreak, econtinue, e~eturn' exit) +--- frun (comms, einput)

eoutput +--- eoutput U econtinue

e +--- eoutputlloop_var _id ---t loop_var _val] U einput

until e = einput V (tesLflag (exit, CFC_CONTINUE) /\ tesLflag (exit, CFC.JWNE))
if always_iterates then

eoutput +--- eoutput U ebreak

else
eoutput +--- eoutput U ebreak U eOrig [loop_ var _id ---t [J]

end if
ereturn = ereturn U e~eturn
if tesLflag (exit, CFC_CONTINUE) V tesLflag (exit, CFC-.BREAK) then

exit +--- seLflag (exit, CFC.JJONE)
exit +--- clear -flag (exit, CFC_CONTINUE)
exit +--- clear -flag (exit, CFC-.BREAK)

end if

whenever it is called in the residual code. Each function would be specialised for its

parameters hopefully reducing the execution time of the function.

To reduce the number of functions produced, we memoize each residual function along

with its call signature. When a function is to be specialised, the memo table is first

checked for a matching signature and if one is found the memoized function is returned

instead.

Often a loop might be unrolled where the loop variable is used as a parameter to a

function. This function would then be specialised for every iteration of the loop, pos­

sibly causing massive code explosion and increase in partial evaluation time. We do

not currently check for this although annotations can be used to homogenise parame­

ters. Unfortunately these annotations only act on the current environment and so the

changes would affect any later use of the variables and also they can only be used on

dynamic variables. These limitations are fairly arbitrary and could be lifted without

much difficulty.

Once a function is specialised, the function is added to the list of specialised functions

for the original function hashed using the call signature (consisting of the number of

parameters, their values and the number of outputs). The outputs of the function

(both static and dynamic) are also saved so that re-evaluation is not required for later

invocations. As this is all saved after the function has been specialised it cannot handle

Chapter 6 Partial Evaluator Core Functionality 92

recursion (where the termination conditions cannot be determined statically) and this

is likely to lead to infinite specialisation.

In Listing 6.3, there is an example of a power function (using integer bases) which

exploits the fact that x2n = xnxn , with an example function which invokes power using

two different bases in Listing 6.6.

function y = testpower(x)

y = x + pow(x, 3) + pow(x, 4);

LISTING 6.6: Power test function

If we partially evaluate testpower without fixing anything, then the code in Listing

6.7 is produced. Note that no post-processing is performed yet and so there are many

redundant assignments.

function y = testpower __ 1(x)
y = x + pow __ 1(x) + pow __ 2(x);

function z = pow __ 1(x)

n = 3;

z = 1 ;

z = 1 * x;

n = l'

x = x * x;

z = z * x;
n = 0;

x = x * x;

function z = pow __ 2(x)

n = 4;

z = 1 ;

n = 2;

x = x * x;

n = 1 ;

x = x * x;

z = 1 * x;

n = 0;

x = x * x;

LISTING 6.7: Specialised version of testpower

Once functions are specialised, the call signature is checked and any completely static

parameters are removed from the list of parameters to the residual call, in a process

known as repammeterisation [63]. Since static parameters are initially inserted into the

function by assignments, there is no danger that a parameter may later be accessed

when it is undefined, if it would not normally be. Static parameters include undefined

parameters, which occur when functions are called with fewer than the maximum number

of parameters.

Vamrgin functions are those which have a final (or only) parameter called varargin.

Such functions can be called with any number of parameters, with the excess values put

Chapter 6 Partial Evaluator Core Functionality 93

in varargin in the form of a row-vector cell array. The problem with this approach, is

that if any of the excess parameters are dynamic, then varargin becomes dynamic and

all of the other static parameters are lost. One way of dealing with this, would be to

split out the static excess parameters into conventional parameters as in arity raising

[29].

function y = f(varargin}

y = varargin{l} + varargin{2};

For instance this code could become:

function y = f(a, b}

y = a + b;

This would likely lead to a speed-up, but unfortunately it is unlikely that such code

would exist.· It is more common to see varargin accessed inside a loop using a loop

counter as an index. If the loop is dynamic, then there would never be any hope of

performing such a transformation. If it was static, it would have to be deferred until

after the loop was unrolled, in which case it would require re-evaluation of the code to

insert previously unknown static values and propagate them through the function.

Rather than performing this operation, it would probably be simpler (although require

a large development effort) to introduce partially static cell arrays (and perhaps struc­

tures). For now, no attempt is made to preserve static excess parameters, but we have

found in many cases, that either all of the excess parameters are static or they are all

dynamic.

The call signature of a varargin function has all the excess parameters stored in a cell

array, which if dynamic retains only information about its size. This means that if x

is dynamic, fCx, 1) and fCx, 2) have the same call signature, although fCx, 1, 2)

would have a different signature.

Static outputs (including unrequested outputs) are also removed from the function.

For single output functions, this means that unless the function has side-effects, the

call can be replaced with the returned value. For multiple output function calls, the

dynamic outputs will be retained in the function call, while the static outputs will be

inserted via assignments in the calling residual code. This means that our later dead

code elimination will be more effective. For multiple output function calls for which all

the outputs become static, the function call will be completely removed unless it has

side-effects.

Function calls which produce fully static outputs cannot always be removed, as the

call may have side effects. In this case the function call needs to be retained, but its

outputs can be removed as above, allowing more effective post-processing. This presents

problems in the form of side-effect reordering. To prevent this we require that any

function with side-effects called with nargout equal to 1, must retain its single output.

Chapter 6 Partial Evaluator Core Functionality 94

This means that function calls that are embedded in expressions will not be moved and

so the side effects will remain in order. This requirement is probably unnecessary as

users who rely on the order of function call execution are generally relying on undefined

behaviour.

6.5 Inlining

In most partial evaluators, simple functions are unfolded inside the calling function.

This unfolding performs a similar role to our loop unrolling for recursive functions.

Since recursion is not so important, we do not unfold functions, but always specialise

them. Once the function has been specialised, we then make a decision about whether

to inline the specialised function in the calling function. Our main strategy for inlining

is very simple.

• The function to be inlined must be a single line function containing one assignment.

The assignment must be to a simple variable and not a subscript.

• Each of the parameters must be used only once.

• The function must not have a varargin parameter.

This strategy means no additional variables need be created and that the overhead of

calling functions is reduced, without any expressions being executed more than once.

For instance:

a = b * f(lO * c, d + e * g(x»;

function z = f(x, y)

z = 25 + x * hey);

is transformed into:

a = b * (25 + 10 * c * h(d + e * g(x»);

The second rule is rather restrictive as it always bars the inlining in cases like this:

a = f(a, g(b»;
a = f(g(a), b);

function z = f (x, y)

z = x * x + y;

If the first invocation was inlined as above it would result in a = a * a + g (b), which

would cause no problems. The reason for the second rule is the second invocation, which

Chapter 6 Partial Evaluator Core Functionality 95

would be transformed into a = g(a) * g(a) + b, which leads to g being invoked twice

when it was only invoked once in the original program.

The general solution to this would be to create a variable to store g (a) and use that.

The first reason for not doing this is simplicity: we are creating a partial evaluator

not an optimising compiler. The second reason is that MATLAB has no intra-function

scoping, so once the variable was created it would not be destroyed until the end of the

function, assuming we created unique variables for each inlined function. This problem

could be reduced by reusing the variables we use for inlining. It would not be a problem

if used with better compilers and interpreters, which detected that a variable was never

used again or which provided common sub-expression elimination as then no temporary

variables would be required.

An alternative solution maintaining our goal of simplicity, is to allow inlining when the

parameter is a simple variable access. This would inline the first example above but not

the second. One convenient exception is that subscripts of parameters count as multiple

accesses of a parameter.

a = rand (3) ;

b rand(3);

c = f(a([l 1 1],:), b);

c = f(a, b([1 1 1],:));

function z = f(x, y)

z = x ([1 2 3J, [3 2 1]) + y;

This exception means that the first invocation of f would not be inlined but the second

one would be. This prevents the creation of the following invalid MATLAB code:

a([111J,:)([1 2 3J, [321]).

The only reason for excluding varargin parameters is that it more complicated to

map cell array accesses to the calling parameters. This functionality could certainly be

added later, although a stepping stone would be the conversion of varargin functions

to ordinary functions, by arity raising, in the case where the number of parameters is

known in advance. Once this transformation is done, our inlining strategy could be used

if applicable.

Given the restrictions on how inlining is applied in our partial evaluator, it is unlikely

that functions produced as described in the previous section would ever be inlined due

to redundant assignments. The next chapter describes how the these functions are

post-processed to remove most of this redundant code.

Chapter 6 Partial Evaluator Core Functionality 96

6.6 Least Upper Bound Caching

To partially evaluate a loop which cannot be unrolled requires the least upper bound

of the initial loop state to be computed. If the loop itself contains a loop which also

cannot be unrolled, its least upper bound must be found in order to find the least upper

bound of the outer loop. In fact the inner least upper bound must be computed for

each iteration of the outer loop computation. Nesting loops (including loops appearing

in functions called inside loops) leads to an exponential increase in specialisation time.

In addition, while the least upper bound is being computed, no code is being generated.

Once it is found, one final traversal of the loop is required which generates the code.

In our original partial evaluator, on encountering an inner loop, its least upper bound

would be recomputed again. Since this final traversal of the outer loop will use all of the

same values that were used on the final iteration of the least upper bound calculation,

the extra least upper bound calculation on encountering the inner loop while generating

code will produce exactly the same result.

As a result, significant time can be saved by caching least upper bounds once they are

calculated. The approach we take is to speculatively store a least upper bound for each

loop once it is computed. If a least upper bound calculation needs to be redone because

of a change in the outer least upper bound calculation, then the cached result is deleted

and replaced with the new result.

The least upper bound cache is actually just a list containing the least upper bound

states as they are encountered during the computation. When a loop is encountered,

the current size of the cache is increased by 1 and the final position is reserved. Once

the calculation is completed, its result will be stored in this position. This makes the

cache like a queue where instead of adding directly to the back, a place is reserved which

can be filled later.

At the start of each iteration of each least upper bound calculation, the cache after the

current position is cleared as the following states are to be recalculated. For a program

consisting of only unnested loops, the cache will always be empty. The first interesting

program would be like the following:

for n = l:x

for m = l:y

end

end

Here we have the n-loop and the m-loop, with the m-loop nested within the n-loop. The

least upper bound of the n-loop is calculated before its body can be partially evaluated.

During the first iteration, the m-loop is encountered and position 0 is reserved in the

cache which now has size 1. Since this loop is not nested, the cache will not have been

Chapter 6 Partial Evaluator Core Functionality 97

altered when the calculation is completed. The computed state will then be stored at

position 0 and then the first iteration of the outer loop calculation will end.

At this point, the environment will be examined to see if a fixpoint has been reached

and if not iteration will continue. This causes the cache from position 0 (i.e. the whole

cache) to be cleared. The inner least upper bound will be recomputed and again stored

at position O. Once the outer least upper bound calculation is complete, the result will

be a cache containing one element. The body of the outer loop will then be partially

evaluated, at which point the inner loop will be encountered. Since the cache is not

empty, its least upper bound will not be computed, but the front of the cache will be

popped and used to partially evaluate the body of the inner loop.

a = 1 ;

for n = 1: x

for m = 1:y

if a -= 1

a = (n,m)

end

a = f(m,n)

end

end

function y = f(x,y)

for a = 1:x

end

The above example is more complicated since it contains a nested loop at the top level

which contains two calls to the function f which itself contains a loop that cannot be

unrolled. In addition, during the first iteration the first function call will not be examined

as a is static and equal to 1. On subsequent iterations, assuming f cannot be statically

determined to return 1, the function will be called twice.

At the end of the first iteration of the outer least upper bound calculation, the cache

will contain 2 states and it will be filled as follows:

On the second iteration the cache will have size 3 and it will be filled as follows:

Note that none of the cached values on the second iteration are related to the cached

values from the first iteration even though we have reused the symbols. If any further

Chapter 6 Partial Evaluator Core Functionality 98

iterations are required then, the cache will be filled out in the same manner as the second

iteration.

Once the least upper bounds are found, their order in the table will be identical to the

order in which the loops will be encountered while partially evaluating, in which case

the states can be popped from the cache as required. In doing so 5 repeated calculations

(s~ once and s~ and s; twice each), are avoided. The downside is that the current state

needs to be copied for each least upper bound and only the final cached value is actually

used. The memory usage of the partial evaluator is thus raised as is the total number

of allocated MATLAB arrays. Since the speed, with which MATLAB runtime library

operations run, is slowed as more are created, this creates scalability problems which

are beyond our control.

One problem that can occur using this approach is that a function containing loops

that cannot be unrolled will be called twice with the same signature inside a loop.

If the function has not been specialised before, no return information is available for

the function and so it must be abstractly interpreted and the least upper bound of

the internal loop calculated and stored in the cache. When the second function call

is encountered, exactly the same will happen, resulting in another table being added

to the table. However, later when the code is being generated, the first function call

will be specialised, and the cache will be popped once. The return values will then be

stored in the function call signature table, so that when the second call is reached, no

specialisation is required and the specialised function can be reused. Unfortunately the

cache is now out of sync. If the function is not specialised, the cache will contain an entry

that is not used. If there are further loops to be specialised, they will attempt to use

this cache entry even though it is not applicable, resulting in incorrect code generation.

for n = l:x

fen) ;

fen + 1);

fen, 2) ;

end

function f ex, y)

for n = 1: x

end

To solve this, before specialising a function, we note the number of loops left intact

so far. This is subtracted from the number of loops left intact after specialising the

function, giving n, the number of loops left intact in the function and the functions it

calls. On encountering a function specification for which a specialisation already exists,

while inside an intact loop, the first n entries are removed from the cache.

Chapter 6 Partial Evaluator Core Functionality 99

1.# x realscalar

f(x, 1) ;

for n = l:x

fen, 1) ;

fen + 1, 1) ;

fen, 2) ;

end

function f(x, y)

for n = l:x

end

Above, outside the loop there is previous specialisation of f which due to the annotation,

will have the same signature as the two calls inside the loop. When computing the least

upper bound of the loop, there is no need to re-evaluate f for these two calls as the

return values are already know. However, the work-around for the previous example

does not recognise whether functions were actually specialised during the current loop,

and so it will try and remove one entry from the cache for each function call. Since there

will be only one entry as created by the third call to f, the partial evaluator will fail.

This is solved by inserting as many dummy entries into the cache as would be removed

later.

6.7 Summary

Within this chapter, we have given a full description of majority of the partial evaluator

inner workings. We have demonstrated how MATLAB statements are evaluated and how

the decision is made to reduce or to residualise. Using the type system from Chapter 4,

we have demonstrated what part abstract interpretation plays both while generating

code and also when computing the least upper bound of the loop state using a fixpoint

iteration.

Having introduced control flow change statements such as break and continue, we

have refined our fixpoint iteration to correctly handle these constructs. Since computing

the least upper bound can account for a large part of the partial evaluation time, we

demonstrate a strategy for caching least upper bounds in nested loops, even when they

are nested within other functions.

The polyvariant specialisation strategy is outlined including how we reuse functions

which share call signatures, made up from the parameters values and types. We also

Chapter 6 Partial Evaluator Core Functionality 100

describe a simple but safe inlining strategy which is applied after function specialisation

and so can take advantage of the caching strategy just mentioned.

In the next chapter, we will describe a post-processing phase designed to tackle the

specific problems that this partial evaluation strategy introduces. Assignments are gen­

erated even when the right-hand side is static, without checking if it will be required.

This means that much code is generated that is entirely redundant, increasing both the

residual program size and the time to execute.

Additionally, while specialised functions are cached in a table indexed by the function

call signature, many functions can be specialised identically for different signatures.

These identical functions increase program size and can hurt cache performance and so

a post-processing phase that eliminates them is essential.

Chapter 7

Post-processing

The purpose of this phase is to reduce the size of the code produced by the partial

evaluation. It does this by removing dead statements. Dead statements are ones which

do not have any effect on the result of the current function, do not modify global variables

and do not produce any side-effects.

We initially used the following simple approach: assume all variables in a function are

dead except for the variables returned by the function. Any assignment to a dead

variable is redundant and so can be removed. For any statement which is not dead,

mark all the variables referenced in it as live. For if statements and switch statements,

perform the above algorithm for each branch in parallel and then merge the list of live

variables, so that any variable that is live on at least one branch, is also live before the

conditional. For loops, it is necessary first to find the loop dependencies. These are

variables that are referenced in the loop without first being assigned in the loop. These

loop dependencies are then to be added to the list of live variables before applying the

original algorithm. This needs to repeated as removal of dead statements may change

the loop dependencies, exposing more dead statements.

This algorithm is sufficient for the majority of codes, but it has several problems. It

cannot remove assignments inside loops which create values, only consumed on other

iterations of the loop. This is because the assigned variables become loop dependencies.

E.g.

function y factorial ex)

a = 1;

y = 1·

for n 1: x

end

y y * n;
a = a + 1;

In this example, if the loop cannot be unrolled, the previous algorithm will not be able

to remove any statements, even though a contributes nothing to the final result.

101

Chapter 7 Post-processing 102

In addition this initial algorithm was developed when our subset of MATLAB excluded

return, break and continue statements. These statements complicate the control flow

and extending the algorithm to deal with them would not be easy.

As a result we replaced the dead code removal algorithm with one using ud-chains (Use­

Definition). Ud-chains link a use of a variable to all the places where it could be defined.

The dual of ud-chains are du-chains (Definition-Use), which link a definition of a variable

to all the places where it might be used. These can be created by solving the reaching

definitions problem. Using ud-chains means that irregular control flow using break,

continue and return is possible and it is also more effective at removing dead code.

While we do not require the du-chains for our algorithm, we can use these for further

optimisations along with the ud-chains.

To create the ud- and du-chains, we need to solve the Reaching Definitions problem.

This "finds which definitions of a variable may reach each use of the variable". [52] It is

a forward data flow algorithm that uses a lattice of bit vectors, where each bit represents

a variable definition. In general, it is used to find the definitions which reach each basic

block of a procedure rather than individual statements.

7.1 Dividing into Basic Blocks

This data flow problem is normally performed on low-level or intermediate-level code

and not on the high level parse tree that our partial evaluator produces. This creates

some small problems, as high-level representations are not so easy to partition into basic

blocks. One approach would be to convert the parse tree form into a low level form and

then perform the reaching definitions analysis and dead code removal. This could be

problematic as the conversion back to the high level form is not likely to be simple.

In order to use the high level form, a method of partitioning into basic blocks must be

devised. For most cases we define a basic block using an existing block l and two integers,

which give the start and end of the basic block. We also have two special blocks which

do not contain any commands: the entry point and exit point blocks. All exits from a

function, which allow execution to continue, flow through the exit point.

The function shown in Listing 7.1 would be represented by the parse tree gIven m

Figure 7.1. This function is made up of 6 basic blocks including the start and exit

blocks. Figure 7.2 gives a directed graph of the basic blocks showing how control can

flow from the start of the function to the end. Basic blocks are subdivided as follows:

• Simple statements which do not affect the control flow, like expressions and all

types of assignment are just appended to the end of the current basic block.

1 A block could be the list of top level commands in a function or the list of commands in the body
of a loop or conditional statement

Chapter 7 Post-processing

a= 1; y = 1; if x == 1

a=2; b = 1; b = 5 * x;

FIGURE 7.1: Parse tree for 7.1

a=2;
b = 1;

Entry point

= a * y + b;

y = a * y + b;

2

y = -1;

FIGURE 7.2: Graph of basic blocks for 7.1

103

Chapter 7 Post-processing 104

function y f(x)
a = 1 ;

Y = 1 .

if x -- 1

a = 2;
b 1 ;

else
b 5 * x;
y -1 ;

end
y = a * y + b;

LISTING 7.1: Example Code

• The conditional part of an if statement is appended to the current basic block.

The first set of statements starts a new basic block and so does the else set. A

new basic block is created to which two branches point. See Figure 7.3(a).

• The while statement starts and ends its own basic block. This block points to

a basic block created from the body of the loop. At the end of the loop body,

the final basic block points back to the while basic block. This then points to an

empty basic block to indicate the loop exit. See Figure 7.3(b).

• switch statements require a new type of basic block to encapsulate the case test.

This is a basic block which just contains the case and its expression. This is

required because case is not a valid statement as it can only happen inside a

swi tch. The switch statement itself is appended to the last basic block, as with

if statements. It then points to the first case basic block. This will then point

to a basic block with the associated commands and also to the next case which

will also point to two basic blocks. This is done for all the cases until the last one

which points to a basic block for the otherwise statements. At the end of the

statements for each case and the otherwise clause is a pointer to an empty basic

block indicating the end of the switch. See Figure 7.3(c).

• for loops are more complicated than while loops as the loop range is only eval­

uated once while the loop variant is updated on every iteration. As a result, we

have two new kinds of basic block: one contains a f or loop and indicates that it is

the preamble and only evaluates the loop range. The other contains a for loop and

indicates that it updates the variant. The loop then is comprised of a preamble

basic block which points directly to a variant basic block. The variant then points

to the body of the loop as well as an empty block at the end (used for loops, where

the body never executes). At the end of loop body basic blocks, control flows both

to the variant block and the exit block. See Figure 7.3(d).

• break causes the current basic block to flow to the exit block of the current loop.

See Figure 7.4(a).

• continue causes the current basic block to flow to the header block of the current

loop. See Figure 7.4(b).

Chapter 7 Post-processing 105

• return causes the current basic block to flow to the exit block of the function. See

Figure 7.4(c) .

• In addition the built-in function error causes a change in the control flow as it

causes execution of the program to stop. As a result control does not flow at all

from a basic block ending with error. See Figure 7.4(d).

In the Figure 7.3 and Figure 7.4, solid lines indicate that flow goes directly from one

block to the one pointed to by the arrow. If the line is dotted, then there may be other

blocks in between, for instance if a for loop is nested inside a while loop.

For each basic block, i, there exists a set Pred (i) which contains all the basic blocks

from which control can flow to i.

7.2 Calculating ud- and du-chains

Once the function has been divided up into basic blocks, the ud- and du-chains need to

be calculated. A ud-chain is made up from a Use and a list of Definitions, whereas a

du-chain is made up from a Definition and a list of Uses. A Use comprises a variable

and the location of the statement where it is used. A Definition is made up from a

variable and the location of the statement that writes to it.

We first calculate the reaching definitions using the method outlined in [52]. This in­

volves creating kill (i) and gen(i) vectors for each basic block, i, indicating which defi­

nitions are killed and which are created respectively. To do this we traverse the whole

function creating a list of definitions; the position of a definition in this list indicates the

position of the relevant bit in the bit vectors.

Each basic block is then traversed and for each assignment, the relevant definition in

the gen (i) bit vector is mar ked set if it is the last assignment to that variable in the

block. All other definitions for that variable are then marked in the kill(i) bit vector.

In addition the gen bit vector for the entry node has the definitions for the function

parameters marked.

Two additional bit vectors are then created for each basic block: RCHin(i) gives the

definitions that can reach the start of a block, i, and RCHout(i) gives the definitions

that can reach the end of that block. These can be calculated from:

RCHout(i)

RCHin(i)

gen(i) V (RCHin(i) 1\ not(kill(i)))Vi

V RCHout(j)Vi
jEPred(i)

(7.1)

(7.2)

Chapter 7 Post-processing 106

if ...

while ...

(a) if (b) while

case ... for ... = exp

case ... for var = ...

(c) switch (d) for

FIGURE 7.3: Basic blocks for conditionals and loops.

We now perform a fixed point iteration using equations 7.1 and 7.2. This gives us

RCHin(i) and RCHout(i) for each basic block, i, which can be used to create the ud­

and du-chains.

Each basic block is examined, one statement at a time to find uses. Each use is recorded

along with the current live definitions. The current live definitions are taken from RCHin

initially, but assignments in the current block cause the current definition to be replaced.

The exit block of the function is considered to use the output variables of the function.

Indexed assignments and deletion assignments are both uses and definitions as they

Chapter 7 Post-processing

while ...

break

(a) break

while ...

return

(c) return

continue

while ...

(b) continue

while ...

.~

~
(d) error

FIGURE 7.4: Basic blocks for the control flow change statements (inside a while loop)

107

Chapter 7 Post-processing 108

both use the old value and assign a new value. Technically any uses of a variable after

such an assignment also use any old definitions, but we can ignore this as it just makes

the chains longer and has no effect on the result of our algorithm.

7.3 Dead Code Elimination

The Dead Code Elimination occurs in two parts: the first part marks as live the state­

ments directly required to compute the result of the function, while the second part

marks all the control flow statements that are required.

Initially all statements are unmarked. We then mark live those statements which produce

a side-effect. This includes all statements including calls to functions (both m-files and

built-in functions inferred to produce aside-effect) and expressions and assignments

which are not terminated by a semi-colon and so would print the result. In addition we

also mark live all the control flow change statements (return, continue and break) as

working out whether they are redundant is beyond the scope of this work.

As with [52], we use a work-list which we initialise with the set of essential statements

as well as the exit point. One by one, we remove statements from the list and examine

the uses. For each use, we add to the work-list every currently unmarked statement

that creates a definition by examining the appropriate ud-chain as well as marking the

statement as live. This process is continued until the work-list is empty at which point,

every statement that directly contributes to the result of the function will be marked

live.

However conditionals or loops, containing live statements, may not be marked live, so

the second stage scans the function for marked statements and marks all the control flow

statements that contain them. For instance, if a marked assignment is inside a for loop

then that for loop will be marked live and added to the work-list for the previous stage.

Once the second stage is completed, the first stage is repeated. If no changes were made

in the second stage then the work-list will be empty and so it will immediately cease. If

the first stage makes no changes then the iteration ceases and the dead code elimination

is completed.

If at any point, a statement with side-effects is marked live then the function itself is

marked as having side-effects, thus enabling its callers to treat their calls accordingly.

Chapter 7 Post-processing 109

7.4 Duplicate Function Elimination

While using a type system which provides information about dynamic parameters en­

ables more specialisation opportunities, it also has the side-effect that two functions

could be produced which are identical even though they have different call signatures.

function z = f (x, y)

if x > 5

z = Y + 10;
else

z = y + 5;

end

For instance, if the function above is specialised with static y

get:

function z = C_1 (x)

if x > 5

z = 14;

else

z = 9;

end

4 and dynamic x, we

However, there are lots of ways of specifying x to produce the above residual code. So

long as x is not specified as something which cannot be used in an inequality test, the

above code will be produced. This means x includes but not exhaustively sparse arrays,

single precision arrays, sparse real arrays, real double precision arrays and even real

logical double precision arrays. While the possible classes and traits are finite, there are

infinitely many shape specifications which would all produce the same code.

These redundant specialisations are bad for two reasons: they increase the size of the

residual program (thus hurting cache performance) and they require redundant com­

putation at specialisation time. Unlike [59], we do not attempt to detect these before

creating them, but after specialising a function we compare it against all previously

specialised versions of that function. This comparison checks for structural equality of

the abstract syntax trees of each of the functions. The variable names must be identical

at each point as well as the names of any called functions. This will therefore not catch

two functions which are identical but for variable names, but since such functions are

unlikely to appear as a result of two specialisations of the same function, this is not a

problem. Since called functions must have the same name in each function to be con­

sidered identical, it will only mark a function as a duplicate if the called functions were

specialised and marked as duplicates.

Debois [16] uses bisimulation equivalence to detect duplicate specialisations for a flow

chart language. The target there is however more fine-grained than ours as we are

only checking for functions, while Debois is looking for duplicate sets of basic blocks

leading up to the end of a function. Since we have an AST at this point, a side-by-side

Chapter 7 Post-processing 110

comparison of two ASTs is relatively simple, which is not the case in the unstructured

flow-chart language.

As with Ruf and Weise [59], we maintain information about the return values of each

function. This information is stored in the function call signature, which then links

to the specialised function. In the case of duplicates, this return information is still

calculated since the function was specialised before the duplication was detected. The

function call signature of the duplicate is modified to point to the original specialisation

and the extra one is deleted.

A better solution may be to try and avoid creating these specialisations in the first

place. However as Ruf and Weise showed, the order of function specialisation can effect

whether duplicates are detected prior to specialisation. If there are two specialisations

which produce the same result, but one specialisation has a looser specification that

includes the other one (Sl !;:;; S2), then performing the specialisation with the tighter

specification (sd first will allow the second specialisation (with specification S2) to be

avoided. Reversing the order however requires both specialisations to be performed.

An approach which attempted to calculate a further specification, Sm, which was the

most precise specification (given the limits of the type system) which led to the same

specialisation, in conjunction with the least precise specification SI, might be feasible.

The specialisation can then be reused safely and optimally if Sm !;:;; S !;:;; SI.

Exactly calculating Sm and SI would not be possible but an approximation could be

achieved, which could prevent a significant number of redundant specialisations. Whether

or not the cost is justified would have to be examined.

Even with our late function duplication detection, the specialisation time can often be

reduced. This is because deleting functions causes the constants stored in the abstract

syntax trees to be deleted. Since these use the MATLAB library type mxarray, and

due to the poor performance of the libraries given large scale array allocation, the larger

programs become the slower the partial evaluator becomes. The cost of detecting and

deleting functions can then be outweighed by the speed-up achieved by using fewer

arrays.

7.5 Summary

In this chapter, we have seen two main methods for reducing the size of the residual code

produced by a partial evaluator. Firstly a method for removing all code which neither

contributes to the returned values of a function or its side-effects was proposed using

ud-chains. Secondly a structural equivalency check was introduced for newly specialised

functions, which detects and removes identical functions produced from different call

signatures. The need for these methods comes from the partial evaluation technique,

Chapter 7 Post-processing 111

which is skewed towards generating more code than necessary, since elimination at a

later stage is simpler.

As noted by Knoop [43], it is possible that removing dead assignments or expressions

could change the semantics of a program as the dead code could generate a run-time

error. Division by zero is not a problem in MATLAB as it evaluates to plus or minus

infinity or "Not A Number", all three of which are valid values in MATLAB. However

multiplying two matrices with incompatible dimensions will halt execution as will raising

a matrix to the power of another matrix. We do not consider this to be an important

problem but note it for completeness and discuss it further in Section 9.1.

Another way the semantics of a program could be modified by our dead code elimination

algorithm, is if a loop is removed which would never terminate. E.g.

function. y = f(x)

while x > 1

x = x + 1;

end

y = 10;

In the above example, the function f ex) will never terminate unless the initial value

of x is less than or equal to 1. But our strategy only considers loops which contain

statements contributing to the final return value, which this loop does not. As a result

the assignment x = x + 1 is not marked live and consequently neither is the while loop,

making the resulting function:

function y = f(x)

y = 10;

Using the assumption that we are only dealing with programs that have been thoroughly

tested and work, we will assume that such loops will not feature in the input to our partial

evaluator.

With the core partial evaluator functionality built and with an effective post-processor,

it is now possible to examine real functions and programs. In the next chapter, we

will examine empirically the efficacy of the partial evaluator with and without the post­

processor. Our examples range in complexity from the relatively simple functions like

Chebyshev approximation and Lagrange interpolation to a large optimisation program

used to model aero-engine inlets.

Chapter 8

Results

In this chapter we will evaluate the effectiveness of our partial evaluator on several pro­

grams. The code for these tests is a mixture of code developed inside the Computational

Engineering and Design research group at the University of Southampton\ code from

partners at other universities and code found in repositories on the Internet.

8.1 Single Function Experiments

These first experiments show the results of applying partial evaluation to small functions,

with clear specifications for the parameters.

8.1.1 Chebyshev Series Approximation

The first code tested was a function for the generation of Chebyshev polynomials [24],

which, like power series, are used to approximate functions by summing terms. As with

power series, using more terms leads to better approximations. This function has two

parameters, a m-by-n matrix, c, of coefficients for calculating m functions with n terms

and a vector, x, as input to the functions. Table 8.1 shows the relative timings for the

chebyshev function (iterated 5000 times to get measurable results). Timings are shown

where the function has been partially evaluated where just n is fixed, c is fixed and

lastly where c is fixed along with the size of x. The timings are further subdivided

according to whether post-processing was used. The results show a steady increase in

performance as more information is fixed, with the final function running in half the

time of the original, when post-processing is used. Listing 8.1 is the implementation of

the Chebyshev series approximation algorithm.

1 http://wwv.ses.soton.ac.uk/projects/Comp_Eng~es/comp_eng_des.html

112

Chapter 8 Results 113

Orig n fixed c fixed c and size of x fixed
size(c,2) No p.p. With p.p. No p.p. With p.p. No p.p. With p.p.

2 1.00 0.90 0.89 0.81 0.77 0.60
4 1.00 0.94 0.92 0.84 0.81 0.59
6 1.00 0.94 0.93 0.85 0.82 0.58
8 1.00 0.94 0.94 0.85 0.83 0.57
10 1.00 0.95 0.95 0.86 0.84 0.57

TABLE 8.1: Relative timings for the Chebyshev functions with m = 3 and p
relative to original function (p.p. is post-processing).

function y = chebseries(c,x)

m = size(c,1);

p size(x,2);

a = zeros(m,p);

b a;

xx = ones(m,1) * x;

f = 2 * xx;
for k = size(c,2):-1:1

d b;

b a;

a = c(: ,k) * ones(1,p) + b .* f - d;

end

y = a - (b .* xx);

LISTING 8.1: A simple implementation of Chebyshev series approximation

0.48
0.50
0.51
0.52
0.52

3,

Listing 8.2 shows the Chebyshev function partially evaluated with size (c, 2) set to 4.

The only difference post-processing makes in this case is the removal of the assignment

to k.

function y = chebseries __ 1(c, x)

m = size(c, 1);

p size(x, 2);

a = zeros(m, p);

b a;

xx = ones(m, 1) * x;

f 2 * xx;

d b;

b a·

a = c (: , 4) * ones(1, p) + b · *
d b;

b a;

a = c (: , 3) * ones(1, p) + b · *
d b;

b a;

a = c (: , 2) * ones(1, p) + b · *
d b·

b a;

a = c (: , 1) * ones(1, p) + b · *
k 1 ;

Y a - b .* xx;

f - d;

f - d;

f - d;

f - d;

LISTING 8.2: The Chebyshev series approximation code partially evaluated with

size(c,2) fixed

Chapter 8 Results 114

Listing 8.3 shows the Chebyshev function partially evaluated with c set to a 5-by-4

matrix. Here post-processing would remove the assignments to c, m and k.

function y = chebseries __ 1(x)

c = [0.950129 0.762097 0.6154320.405706;

0.231139 0.456468

0.606843 0.0185036

0.485982 0.821407

0.891299 0.444703

m = 5 ;

P size(x, 2) ;

a = zeros(5, p) ;

b a·

xx = [1; 1; 1; 1; 1] * x;

f 2 * xx;

d b·

b a;

0.791937

0.921813

0.738207

0.176266

0.93547;

0.916904;

0.41027;

0.89365];

a = [0.405706; 0.93547; 0.916904; 0.41027; 0.89365] * ...
ones(l, p) + b .* f - d;

d b;

b a;

a = [0.615432; 0.791937; 0.921813; 0.738207; 0.176266] *
ones(l, p) + b .* f - d;

d b;

b a·

a = [0.762097; 0.456468; 0.0185036; 0.821407; 0.444703] *
ones(l, p) + b .* f - d;

d b;

b a·

a = [0.950129; 0.231139; 0.606843; 0.485982; 0.891299] *
ones(1, p) + b .* f - d;

k 1;

Y a - b .* xx;

LISTING 8.3: The Chebyshev series approximation code partially evaluated with c

fixed

Listing 8.4 shows the Chebyshev function partially with c set to a 5-by-4 matrix and

size ex, 2) set to 5. We show here, the post-processed version of the code. While this

code runs in only half the time of the original function, it is immediately evident that

further improvements could be made. The first assignment to a is effectively a = a + 0

* f - o. If the expression was reordered, the subtraction would have been performed

but a better solution would be to identify binary operations where one operand is all

zeros or all ones or the identity matrix and perform the appropriate constant folding.

function y = chebseries __ 1(x)

xx = [1; 1; 1; 1; 1] * x·

f 2 * xx;

a = [0.405706 0.405706 0.405706 0.405706 0.405706;

0.93547 0.93547 0.93547 0.93547 0.93547;

0.916904 0.916904 0.916904 0.916904 0.916904;

0.41027 0.41027 0.41027 0.41027 0.41027;

0.89365 0.89365 0.89365 0.89365 0.89365] + ...

[0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0] . * ...
f - [0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0];

b a·

Chapter 8 Results

a = [0.615432 0.615432 0.615432 0.615432 0.615432;

0.791937 0.791937 0.791937 0.791937 0.791937;

0.921813 0.921813 0.921813 0.921813 0.921813;

0.738207 0.738207 0.738207 0.738207 0.738207;

0.176266 0.176266 0.176266 0.176266 0.176266] + b . *
f - [0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 O' 0 0 0 0 0];

d b;

b a;

a = [0.762097 0.762097 0.762097 0.762097 0.762097;

0.456468 0.456468 0.456468 0.456468 0.456468;

0.0185036 0.0185036 0.0185036 0.0185036 0.0185036;

0.821407 0.821407 0.821407 0.821407 0.821407;

0.444703 0.444703 0.444703 0.444703 0.444703] + b .* f - d;

d b;

b a;

a = [0.950129 0.950129 0.950129 0.950129 0.950129;

0.231139 0.231139 0.231139 0.231139 0.231139;

0.606843 0.606843 0.606843 0.606843 0.606843;

0.485982 0.485982 0.485982 0.485982 0.485982;

0.891299 0.891299 0.891299 0.891299 0.891299] + b .* f - d;

Y = a - b .* xx;

LISTING 8.4: The Chebyshev series approximation code partially evaluated with c

fixed and size ex, 2) fixed. Post-processing has also been used

ll5

The assignments to d and b before each assignment to a could also be removed. This

could be achieved by using copy propagation and variable renaming, but doing this

ought to be a compiler optimisation and it is certainly beyond the scope of a partial

evaluator.

8.1.2 Lagrange Interpolation

The second test function (Listing B.l), when given a set of points from a function,

computes the Lagrange interpolating polynomial [79J that passes through them and

returns a set of points on the curve. The MATLAB code is comprised of two nested

loops both dependent on the number of points to interpolate followed by a third loop

also dependent on the number of points. We specialised this function by first fixing the

number of points, n, (and thus the number of x and y coordinates) resulting in all of the

loops being unrolled and then further specialised it by fixing the x coordinates. Again,

timings were taken with and without post-processing. Table 8.2 shows the improvements

we achieved including at least 50% speed increases when the x coordinates are completely

fixed.

8.1.3 Solving a Gaussian Hypergeometric Differential Equation

The next example function (Listing B.2) solves the Gaussian Hypergeometric differential

equation, x(1 - x)~ + c - (a + b + l)x~ - aby = 0, using a series expansion [19]. The

main work is done by a single for loop which calculates the series terms. To get more

Chapter 8 Results

n fixed x-coordinates fixed
n Original No postproc Postproc No postproc Postproc
2 1.00 0.73 0.67 0.67 0.58
4 1.00 0.82 0.79 0.68 0.64
6 1.00 0.85 0.83 0.67 0.65
8 1.00 0.86 0.84 0.68 0.66
10 1.00 0.87 0.86 0.68 0.66

TABLE 8.2: Relative timings for the Lagrange functions with values of n

n Original Partially Evaluated Post-processed
4 1.17 0.85 (0.73) 0.72 (0.62)
6 1.47 1.07 (0.73) 0.94 (0.64)
8 1.77 1.30 (0.73) 1.17 (0.66)
10 2.08 1.54 (0.74) 1.40 (0.67)

TABLE 8.3: Timings in seconds for the Gaussian Hypergeometric differential equation
solver (iterated 8000 times). (Relative times are given in brackets).

116

accurate results, higher order series terms are required and thus more iterations. The

number of terms is the parameter that we have chosen to specialise. As can be seen

from Table 8.3, partial evaluation with post-processing is very effective at speeding up

the function, showing a 49-62% performance increase over the original function.

8.2 Ordinary Differential Equation Solvers

A common numerical application for which MATLAB is used is the integration of ordi­

nary differential equations (ODEs). MATLAB provides several ordinary ODE solvers,

like ode45, which uses a combined 4th and 5th order Runge-Kutta method to solve

non-stiff differential equations.

[t ,y]

[t ,y]

ode45(odefun ,tspan,yO) yith tspan

ode45 (odefun ,tspan,yO) yith tspan

[t,y] ode45(odefun,tspan,yO,options)

[to tfinalJ

[to t1 t2 ... tfinalJ

[t,y] ode45(odefun,tspan,yO,options ,p1,p2 ...)

[t,y,te,ye,ie] ~ ode45(odefun ,tspan,yO,options ...)

sol ~ ode45(odefun, [to tfinal] ,yO ...)

There are numerous ways of invoking the highly parameterised function, ode45, ranging

from simple invocations which use the default options to the more complicated use of

output functions, event functions, extra parameters and so on. We can find a numerical

solution to the equation ~I = k(T - Tm), which gives Newton's Law of Cooling using

ode45. This requires a way of expressing the right hand side of the equation (RHS).

E.g.

function dTdt neyton(t, T)

dTdt ~ k * (T - Tm);

Chapter 8 Results 117

This function can either be passed to ode45 using a function handle or as a string. The

function is then invoked by calling the built-in function feval on the function handle or

string. This will be slower than invoking the function directly but allows the solver to

be general. Clearly if partial evaluation would just replace the calls to feval with calls

to newton, we would achieve a performance increase. In fact we can do much better

due to the high level of parameterisation of ode45. When ode45 is invoked it checks its

parameters to see how it was called. Assuming it was invoked with a function handle, it

checks if tspan and yO were supplied otherwise it gives an error. It then checks whether

tspan has 2 or more elements or it throws an error. It checks whether the differential

function returns a column vector. There are too many checks to list here, but it suffices

to say that many of these can be precalculated during specialisation.

For instance specialisation of ode45 in its simplest form with respect to the function,

newton is given by this (note k and Tm have been hard-coded into the RHS function

with the values of -0.0253178 and 100 respectively):

function [x, y] = specialise_ode45 (xspan, yO)

'l.# xspan realdouble

'l.# xspan size [1 2]

'l.# yO realscalar

[x, yJ = ode45 (@newton, xspan, yO);

function dTdt = newton(t, T)

'l. k = -0.0253178;

'l. Tm 100;

dTdt = -0.0253178 * (T - 100);

Specialising this with post-processing and inlining enabled gives us a total of 124 lines

of code of which 97 lines give the ode45 function and the rest is comprised of the

additional non-built-in functions called by ode45. This contrasts with 410 lines for the

ode45 function alone (with comments and blank lines stripped).

A second use of ode45 allows us to have one newton function for all values of k and Tm

by passing them as parameters.

function [x, y] = specialise_ode45 (xspan, yO)

'l.# xspan realdouble

'l.# xspan size [1 2]

'l.# yO realscalar

k = log(39/40);

Tm = 100;

[x, yJ = ode45 (@newton, xspan, yO, [], k, Tm);

function dTdt newton(t, T, k, Tm)

dTdt = k * (T - Tm);

Specialisation here produces exactly the same code as before as the values of k and Tn

are propagated to exactly the same places as before, with post-processing leaving no

traces in the residual program.

Chapter 8 Results

function [t, yJ

t (O:h:tn)';
n = length(t);

odeEuler (diffeq, tn, h, yO, varargin)

y yO * ones (n, 1);

for j = 2:n
y(j) = y(j-1) + h * feval(diffeq, t(j - 1), y(j - 1), varargin{:});

end

LISTING 8.6: Implementation of Euler's method for solving ordinary differential equa­
tions

function [t,y] odeRK4 (diff eq, tn, h, yO, varargin)

t = (O:h:tn)';
n = length(t);
y yO * ones(n, 1);

h2 h/2;
h3 h/3;
h6 h/6;

for j = 2:n
k1 feval(diffeq, t(j - 1), y(j - 1), varargin{:});
k2 feval(diffeq, t(j - 1) + h2, y(j - 1) + h2 * k1, varargin{:});
k3 = feval(diffeq, t(j - 1) + h2, y(j - 1) + h2 * k2, varargin{:});
k4 = feval(diffeq, t(j - 1) + h, y(j - 1) + h * k3, varargin{:});
y(j) = y(j-1) + h6 * (k1 + k4) + h3 * (k2 + k3);

end

LISTING 8.7: Implementation of the 4th Order Runga-Kutta method for solving
ordinary differential equations

118

Due to inlining the function newton does not exist at all in the specialised code, but for

a more complicated RHS function like logistic (given in Listing 8.5), inlining is not

always possible as it uses one of its parameters more than once. Since ode45 sometimes

passes array subscripts to the RHS function, these calls cannot be inlined. A better

inlining strategy would be required to handle this, either by deciding that the number

of repeated array accesses is outweighed in cost by the benefit of inlining or by creating

temporary variables to store results. In this area, MPE would benefit greatly by being

combined with an effective optimising compiler that could make inlining decisions itself.

function dPdt logistic (t, P, options, a, b)

dPdt = P * (a - b * P);

function dydx normal(x, y)

dydx = -2 * x * y;

LISTING 8.5: Sample RHS Functions for ODE Solvers

We also demonstrate two other ordinary differential equation solvers, odeEuler (Listing

8.6) and odeRK4 (Listing 8.7), which use the Euler and 4th order Runge-Kutta method

respectively. These are simple non-adaptive solvers, which are described in [40]. Both

of these can pass in additional parameters to RHS functions (useful for specifying con­

stants) but are otherwise unconfigurable.

Chapter 8 Results 119

Original mpe mpe -p mpe -pi
normal 21.23 12.50 (70%) 12.50 (70%) 5.14 (313%)
logistic 8.40 4.84 (73%) 4.33 (94%) 4.33 (94%)
newton 8.34 4.74 (75%) 4.19 (99%) 1.50 (456%)

TABLE 8.4: Timings (in seconds) for odeEuler with three different RHS functions

Original mpe mpe -p mpe -pi
normal 8.16 4.76 (71%) 4.76 (71%) 1.80 (353%)
logistic 3.25 1.85 (76%) 1.64 (98%) 1.64 (98%)
newton 6.41 3.62 (77%) 3.18 (102%) 0.96 (568%)

TABLE 8.5: Timings (in seconds) for odeRK4 with three different RHS functions

Original mpe mpe -p mpe -pi
normal 1.30 1.07(21%) 0.96 (35%) 0.74 (76%)
logistic 1.02 0.81 (26%) 0.68 (50%) 0.65 (57%)
newton 1.02 0.81 (26%) 0.67 (52%) 0.50 (104%)

TABLE 8.6: Timings (in seconds) for ode45 with three different RHS functions

Table 8.4 and Table 8.5 show the results of specialising odeEuler and odeRK4. We can

see that partial evaluation alone produces code that on average runs 70-75% faster, for

each of the equations with odeEuler and 71-77% faster for odeRK4. These examples also

illustrate where post-processing and in lining can have an effect. For instance normal

(given in Listing 8.5) benefits negligibly from post-processing but as the RHS function

is very simple, it can be inlined leading to very large speed ups. On the other hand,

logistic benefits from post-processing as the constants propagated to the RHS function

are assigned to variables that are never referenced (as they expand to their constant

values) but it cannot be inlined as it references its parameters more than once. The

newton function has both constants and can be inlined leading to the largest speed

ups. Berlin and Weise [10] also partially evaluated problems involving Runge-Kutta

integration of ODEs. They achieved much larger speed-ups than have been achieved

here, but our use of MATLAB means that many of the specialisation opportunities they

see are likely hidden inside libraries.

In all cases, MPE took about 0.19 seconds to produce the residual code. In each case the

function was executed 100 times to get the timings shown here, although longer running

times could also be achieved using longer time intervals for the solvers.

Table 8.6 shows the results of specialisation for the ode45 function provided with MAT­

LAB. The main function is around 400 lines long and it can call many other functions,

making this a very complex function. Specialising using the examples from earlier, we

only want to use a very limited subset of the ode45 functionality, as we do not require

event functions, mass matrices or execution statistics. The residual code produced by

Chapter 8 Results

FIGURE 8.1: Function dependency graph for ode45, showing 23 unique functions

(a) newton (b) logistic

FIGURE 8.2: Function dependency graph for ode45 specialised for different RES func­
tions

120

specialising with respect to normal using inlining and post-processing is only 125 lines

long and that includes all the functions produced by the specialisation. This speciali­

sation takes around 0.39 seconds and 0.43 seconds with post-processing as well. With

the other solvers, execution of the RHS function dominates the computation time and

so specialisation gives enormous speed ups. Since ode45 is more complex, the execution

of the RHS functions has less of an impact on the performance. However, speed ups of

around 50-100% are still significant.

A visual demonstration of the complexity of ode45 is given in Figure 8.1, which shows

the main function dependencies (not including any function introduced through function

handles).2 Figure 8.2 shows the dependency graph when ode45 was specialised with

respect to newton and logistic. Clearly specialisation can yield much simpler residual

programs.

The final results for the ODE solvers come from applying the MATLAB compiler, MCC,

to the original code and the residual programs. Tables 8.7 and 8.8, show the timings from

2These graphs were produced using a special mode of MPE

Chapter 8 Results 121

the MATLAB interpreter as given before as well timings from the compiled code from

the odeEuler and odeRK4 solvers. Figures 8.3 and 8.4 show the effect of partial eval­

uation and compilation against the original program. In every case with these solvers,

compilation more than doubles the performance increase from partial evaluation. With

the ode45 solver, the results in Table 8.9, while not as impressive as the other solvers,

show that the performance increases are retained through compilation. The ode45 re­

sults need to be considered carefully, since the MATLAB compiler did not compile the

ode45 solver when it was not partially evaluated. Instead a pre-compiled version, which

is part of the run-time libraries, was used. There is no way of knowing whether this ver­

sion was originally compiled directly from the MATLAB version or whether it has been

optimised in some way. Given that compilation does not produce much faster code,

in this example, it seems likely that optimisation, if any, was applied sparingly. The

performance chart in Figure 8.5 clearly demonstrates how the combination of partial

evaluation and compilation can be effective especially given that while the solver is very

general, it is a production solver and has no doubt been fairly carefully optimised.

Original mpe mpe -p mpe -pi
Interpreted normal 21.23 12.50 (70%) 12.50 (70%) 5.14 (313%)
Compiled normal 6.39 2.23 (187%) 2.23 (187%) 0.80 (699%)
Interpreted logistic 8.40 4.84 (73%) 4.33 (94%) 4.33 (94%)
Compiled logistic 2.96 1.12 (164%) 0.78 (279%) 0.76 (289%)
Interpreted newton 8.34 4.74 (75%) 4.19 (99%) 1.50 (456%)
Compiled newton 2.92 1.11 (163%) 0.74 (295%) 0.22 (1227%)

TABLE 8.7: Compilation vs. Interpreter Timings (in seconds) for odeEuler with dif­
ferent RHS functions

Original mpe mpe -p mpe -pi
Interpreted normal 8.16 4.76 (71%) 4.76 (71%) 1.80 (353%)
Compiled normal 2.53 0.89 (184%) 0.89 (184%) 0.30 (743%)
Interpreted logistic 3.25 1.85 (76%) 1.64 (98%) 1.64 (98%)
Compiled logistic 1.16 0.44 (163%) 0.30 (281 %) 0.30 (281%)
Interpreted newton 6.41 3.62 (77%) 3.18 (102%) 0.96 (568%)
Compiled newton 2.32 0.87 (167%) 0.58 (300%) 0.15 (1447%)

TABLE 8.8: Compilation vs. Interpreter Timings (in seconds) for odeRK4 with different
RHS functions

Chapter 8 Results

'i:'
Q)

~ 0.8 .D
.~
1-0
Q)

~
g
g 0.6
'bh
·c
o
.9
Q)
>

.~ 0.4

"E
Q)
u a
§
.g
~

0.2

normal logical

RHS Function

newton

interpreted
compiled
peval interpreted

I peval compiled

FIGURE 8.3: Relative timings for odeEuler. Results normalised with respect to original
interpreted program

'i:'
~
Q)

0.8 .D
.~

1-0
Q)

~
g
g 0.6
'bh
·c
o
.9
Q)

>
.~ 0.4

"E
Q)
u
r::
'" §
.g
~

0.2

normal logical

RHS Function

newton

interpreted
compiled
peval interpreted

I peval compiled

FIGURE 8.4: Relative timings for odeRK4. Results normalised wit h respect to original
interpreted program

122

Chapter 8 Results

Original mpe mpe -p mpe -pi
Interpreted normal 1.30 1.07 (21%) 0.96 (35%) 0.74 (76%)
Compiled normal 0.80 0.65 (23%) 0.50 (60%) 0.46 (72%)
Interpreted l ogi stic 1.02 0.81 (26%) 0.68 (50%) 0.65 (57%)
Compiled l ogistic 0.69 0.54 (28%) 0.39 (77%) 0.38 (82%)
Interpreted newton 1.02 0.81 (26%) 0.67 (52%) 0.50 (104%)
Compiled newton 0.69 0.54 (29%) 0.39 (78%) 0.36 (92%)

TABLE 8.9: Compilation vs . Interpreter Timings (in seconds) for ode45 with different
RHS functions

....
~

] 0.8
.~
....
'" ~ g
~ 0.6
On
·c
o
8

'" >
.~ 0.4

~
'" u
" OJ

E .2 0.2
i:l

0..

normal logical newton

RHS Function

interpreted

compi led

peval interpreted

I peval compiled

FIGURE 8.5: Relative timings for ode45. Results normalised with respect to original
interpreted program

123

8.3 Dust Erosion of Probes Entering the Martian Atmo­

sphere

This code is an example of where MATLAB really excels . It was written by an aero/astro

engineering student at the University of Southampton as a fin al year project. Since the

student has li ttle computer science knowledge, it would not be expected that he could

effectively optimise his code himself. With litt le modification (in the form of widen

annotations in the ODE solver), the code can be partially evaluated giving a substantia l

performance boost.

This code investigates what happens to a conical probe using an Aerobraking Manoeuvre

to slow down within the Martian atmosphere. One possibi li ty of damage to the cone

Chapter 8 Results 124

comes from dust particles hitting the cone while it travels at supersonic speeds. A cone­

shaped object travelling at supersonic speeds would create a shock wave in front of it

and particles entering this wave would be deflected until they either hit the cone or were

travelling parallel to the cone angle (at which point they cannot hit the cone). This

code finds the critical height above the cone tip at which particles do not hit the cone

with parameters, cone angle and mach speed.

To do this two ordinary differential equations need to be solved. This code (given in

Listings B.3 - B.9) extensively uses ode45, which was examined in Section 8.2. However

the differential equations here are more complicated since they use event functions to

terminate the calculation early when no further computation is required. In addition the

RHS function of one actually calls ode45 itself. In Table 8.10, we see the results from

partially evaluating this function. For each residual code as well as the original program,

two timings were taken. The first run was the time taken to run in a completely clean

environment. The intention in this test is to show how much parse time is a factor

in executing the code. The second run is identical except now MATLAB should have

parsed the function and therefore it should be faster. The difference between the two

times is an approximation to the overhead of parsing. Here the time taken to parse the

residual code, where no post-processing is used, is very close to the original if slightly

lower. However any increase in parse time is clearly outweighed by the overall reduction

in time. When post-processing is used, the parse time is actually faster for the residual

program.

Original mpe mpe -p mpe -pi
Partial Evaluation - 5.1 5.2 5.2
First run 22.7 20.6 (9%) 18.2 (25%) 15.2 (49%)
Second run 22.4 20.3 (10%) 18.0 (25%) 15.0 (49%)

TABLE 8.10: Timings (in seconds) for length_crit

Since this program uses nested loops so extensively, it clearly illustrates the effects of

caching least upper bounds as described in Section 6.6. Some timings, without least

upper bound caching, are shown in Table 8.11. These are considerably longer than the

times taken with caching, and are in fact more than we expected. We believe this is

an artefact of the bad scaling of the MATLAB libraries in the presence of many arrays.

Since the caching reduces the number of calculations at a point when more arrays have

been allocated (when code is being generated), the benefits are slightly exaggerated.

mpe mpe -p mpe -pi
Without caching 14.0 13.3 13.5
With caching 5.1 5.2 5.2

TABLE 8.11: Partial Evaluation Timings (in seconds) for length_crit with and with­
out least upper bound caching

Chapter 8 Results 125

This is an example, where the time taken to run the partial evaluator and the residual

code once is less than the time to execute the original code. This example shows how

partial evaluation combined with post-processing and inlining can be very effective.

While the speed-up produced is around 50%, no static data was specified initially. The

original program, from which length_cri t is taken, calls it many times, which means

that the cost of partial evaluation will be easily eclipsed.

In this example, attempts to give the partial evaluator more information by specifying

that all three input parameters are real scalars, produced exactly the same code, but

it took 2 seconds longer to produce it. This is presumably because duplicate functions

were produced for subtly different call signatures. These were then removed in post­

processing, resulting in an identical resIdual program.

As with the earlier solvers, this program was compiled, producing the results given in

Table 8.12. Again the benefits of partial evaluation are retained through the compilation

process, although the effect of inlining is less important in the compiled code.

Original mpe mpe -p mpe -pi
Interpreted 22.4 20.3 (10%) 18.0 (25%) 15.0 (49%)
Compiled 13.4 12.0 (12%) 10.7 (25%) 10.1 (33%)

TABLE 8.12: Compilation vs. Interpreter Timings (in seconds) for length_crit

8.4 Arcadia CFD Solver

The 'Arcadia' code is a new type of aeroacoustic Computational Fluid Dynamics (CFD)

solver, particularly aimed at the problem of re-designing aero-engine inlets to reduce

radiated fan noise [17, 18J. It is particularly targeted for use in an optimisation loop since

it returns not only results pertaining to the analysis of a design, but also information

about how sensitive the results might be to small changes in the design.

This is an example of an early iteration of a complex system. It has not been fully

optimised and so benefits from the constant propagation that is integral to partial eval­

uation.

This code originally used global variables to store most of the parameters. These global

variables are initialised by the calling function and are not altered during execution.

Since we have largely ignored global variables, it was necessary to produce a version of

this program, which does not use global variables, by passing all of the parameters into

the main function and modifying any calls to functions which require global variables

to instead take extra parameters. A partial evaluator which handled global variables,

used as in this program, would not be too difficult to implement as the global variables

remain static throughout the execution of the program.

Chapter 8 Results 126

This code was specialised in two different ways. Firstly the shapes and types of all

the parameters were fixed, leading to the results in Table 8.13, which show that partial

evaluation was very quick and produced a program that ran in just over half the time

of the original program. As with the code from Section 8.3, two timings were taken so

that the time taken to load the code could be estimated. No timings were taken with

inlining enabled as this program offers no opportunities for this optimisation.

The second specialisation fixed nearly all of the initial parameters, apart from the opti­

misation point parameter. This is a realistic specialisation since generally the objective

function would be run many times with just the optimisation point changing. The re­

sults of this are shown in Table 8.14. Specialisation has taken significantly longer and

annotations had to be added to prevent a large nested loop being completely unrolled,

which would have produced a huge residual program. There is improvement in execution

times over Table 8.13, but this difference is not very large. There is also a significant

increase in the time taken to parse the residual code, with the second specialisation

initially taking longer to execute than the first. This is not surprising given that the

first specialisation is 420 lines long and the second is 7203 lines long. This large increase

in program size may well have hurt the performance.

Original mpe mpe -p

Partial Evaluation - 0.41 0.45
First run 64.8 45.0 (44%) 35.1 (85%)
Second run 65.0 44.7 (45%) 35.0 (86%)

TABLE 8.13: Timings (in seconds) for arcadia with parameter types fixed but not
their values

Original mpe mpe -p

Partial Evaluation - 16.7 13.1
First run 64.7 46.4 (39%) 36.1 (79%)
Second run 64.8 43.4 (49%) 33.7 (92%)

TABLE 8.14: Timings (in seconds) for arcadia with most parameter values fixed

The performance improvements for post-processing given in Tables 8.13 and 8.14 are

very large and on examination of the residual code, it emerged that arcadia performed

many computations which did not contribute towards the final returned result. These

calculations were a leftover from a previous iteration of the code, and were no longer

required. While this does demonstrate that dead-code elimination using ud-chains is very

effective at discovering redundancy, it would be fairer to assess the partial evaluator in

relation to a version of the code with the redundancy removed first, called newarcadia.

As above, newarcadia was specialised twice and the results are shown in Tables 8.15

and 8.16. Unsurprisingly, the performance of the partial evaluator has improved since

it no longer has to examine these redundant computations. The execution time of the

Chapter 8 Results 127

unspecialised program has been reduced by 15 seconds, while the time for the residual

code without post-processing is about 8 seconds less. The post-processed version is

identical in both cases. Using newarcadia, partial evaluation produces around a 50%

increase in speed.

Original mpe mpe -p
Partial Evaluation - 0.33 0.36
First run 49.8 36.2 (38%) 35.1 (41%)
Second run 50.2 36.1 (40%) 35.0 (43%)

TABLE 8.15: Timings (in seconds) for newarcadia with parameter types fixed but not
their values

Original mpe mpe -p
Partial Evaluation - 13.6 11.5
First run 49.8 37.9 (31%) 36.1 (38%)
Second run 50.2 35.0 (43%) 33.8 (49%)

TABLE 8.16: Timings (in seconds) for newarcadia with most parameter values fixed

As with the Mars Lander code, least upper bound caching gives large improvements

here. Table 8.17 shows how caching can give a small improvement for programs which

already partially evaluate quickly as in the case where only the shapes and types of the

parameters were fixed. However when the values of some of the parameters are fixed,

more computations are performed inside nested loops and so least upper bound caching

saves around 20-25% off the specialisation time.

mpe mpe -p

Types fixed with caching 0.33 0.36
Types fixed without caching 0.37 0.39
Values fixed with caching 13.6 11.5
Values fixed without caching 16.4 15.4

TABLE 8.17: Partial Evaluation Timings (in seconds) for newarcadia with and without
least upper bound caching

Compiling arcadia and newarcadia caused some problems, when trying to generate a

residual program where most of the parameter values are fixed. With residual MATLAB

code of 7203 lines, the C code produced by the compiler was about 10 times as long

again. When we tried to compile it, it took around 30 minutes, whereas all the other

examples have taken less than 10 seconds. The resulting executable was actually slower

than the compiled version of the residual code generated with a much looser specification.

This is likely because the executable was 10 times the size (around 2MB). This clearly

demonstrates that unrolling needs to be kept in check so that executables do not grow

excessively.

Chapter 8 R esults

....
~

] 0.8
. ~
....
<l.J
~
.2

~ 0.6
·M
. t:
o
3
<l.J
>
.~ 0.4

~
<l.J
U
t:

'" E ..g 0. 2
<l.J

0...

spec I spec2

Speciali sati on

interpreted
compiled
peval interpreted

I peval compiled

FIG URE 8 .6: Relative t imings for newarcadia, showing effects of par tial evaluation and
compilation on two specialisations

128

In Table 8.18 are the results of compiling t he less specified residual code generated

from both arcadia and newarcadia. In this example, the benefit of part ial evaluat ion

is lessened by compilation . However , since the MATLAB compiler does not perform

many tradi t ional opt imisations and generates code, which likely hinders the C compiler

from opt imising itself, t his comparison is perhaps unfair. W ith a better optimising

compiler , it is quite likely t hat part ial evaluat ion would expose many more optimisation

opportunities .

Program Original mpe mpe -p

Interpreted arcadia 65.0 44.7 (45%) 35.0 (86%)
Compiled arcadia 49.4 38 .7 (28%) 30.6 (6 1%)
Interpreted newarcadia 50.2 36. 1 (40%) 35 .0 (43%)
Compiled newarcadia 39.4 31.6 (25%) 30.6 (29%)

TABLE 8. 18: Compila tion vs . Interpreter Timings (in seconds) fo r arcadia and
newarcadia with parameter types fixed bu t not t heir values

The results for newarcadia are illustrated in F igure 8.6. Since compiling the second

specialisation took unfeasibly long, compilat ion and partial evaluation are omitted for

the second specialisation . One thing to draw from this chart is that specialisation us ing

limited specification produced faster resul ts than ordinary compilation , in a faster t ime.

Chapter 8 Results 129

8.5 Result Accuracy

While partial evaluation has achieved performance increases for the code tested here,

this has come at the cost of a small loss in accuracy, This occurs due to the textual

representation of numbers,

function s = pen)

s = 0;

for n l:n

s = s + 1 / 3;

end

In this example, the only effect of partial evaluation is to substitute 0,333333 for 1/3,

The partial evaluator has truncated the number after the sixth decimal place as this is

its default behaviour. The command line option --precision can be used to specify

the number of significant figures displayed but this can cause a large increase in the

size of the residual program if there are large matrices of numbers. This problem is not

easily soluble as we cannot output a binary representation of constants which is exactly

equivalent to that which would be stored in memory.3

One approach would be to avoid folding operations which lead to constants requiring

truncation. In the above example, 1/3 would be retained in the residual code, which

would not be detrimental to the performance in either the compiler or interpreter.4 As

the MATLAB compilers produce C code, they too must truncate floating point numbers.

In this case it stores the result to 17 significant figures which is the most storeable in a

double.

Since the MATLAB compilers perform no constant propagation, they will produce fewer

constants than our partial evaluator and so the code will not be unduly bloated. In

addition the code is compiled to the machine code where constants will be stored as 8

byte doubles, regardless of the accuracy used.

Going back to the residual code in Listing 8.4 and recreating it by specifying that

the output use 17 significant figures produces a program, which is 82% longer, but

executes no slower. This is not unduly worrying since the program is an extreme example

where the residual program consists almost entirely of matrices. The input values were

generated randomly and so any early precision cut-off would have truncated the matrices

produced. Most programs would not have grown quite so dramatically given more

reasonable input.

3This is complicated even more by the fact that floating point registers frequently use a higher
precision than can be stored in memory.

4Strangely MATLAB 6.5 seems to interpret 1/3 slightly slower than 0.333333, while 6.1 is not
affected.

Chapter 8 Results 130

8.6 Summary

This chapter has demonstrated several applications of partial evaluation with respect

to MATLAB code. MPE can be applied both to small functions, with relatively fast

execution times, to fine tune the performance of a larger system, as was done with

the chebyshev series function from Section 8.1.1, or it can be applied to much larger

functions like the Mars Lander code or Arcadia, where the functions involved perform

much more intensive calculations.

The smaller functions benefited more from unrolling than many of the larger examples.

The unrolling exposed static data within loops thus allowing some pre-computation as

well as removing the overhead of checking the loop condition. This generally led to

larger programs, which scaled with the size of the data or the accuracy required in the

output.

The larger examples gained their benefits from their highly parametric nature. Large

complicated functions that could be used in many ways were transformed into highly

specialised functions, no longer carrying the overhead of genericity. These programs

were often much smaller than the original programs (when assessing all the functions

called in the MATLAB libraries).

The results from compilation show that partial evaluation is never a performance hin­

drance and indeed sometimes works even better with compilation, although some results

show less improvement when specialised and compiled over the original compiled pro­

gram. This is unsurprising since partial evaluation often simplifies programs which

means that one of its benefits is the reduction in time handling control structures such

as loops, which are usually much better handled by compilation. Since MATLAB 7

reportedly has a much better Just-In-Time compiler, it may well be that some of these

improvements will be made even less visible. While MATLAB 6.5 also has a Just-In­

Time compiler, this was not assessed as light testing has shown it to perform very well

for some programs (> lOx improvement), but then modifying those same programs in

seemingly inconsequential ways then dropped the performance levels down to that of

MAT LAB 6.1. This is presumably because it was in a relatively early stage of develop­

ment. Further work needs to be done to see how partial evaluation can work to bring

out the best in Just-In-Time compilation.

Chapter 9

Future Work

While we have seen definite performance gains due to partial evaluation, there is un­

doubtedly room for improvement. The framework is in place to perform many additional

optimisations, which are currently not performed. In this chapter we will outline areas

where further work can be done.

9.1 Asserting assumptions

In many places, assumptions are made about parameters and the results of functions

and operations that cannot be fully evaluated. For instance with a + b, if a is known

not to be a scalar and b is known not to be a scalar, it is assumed that both a and b

have the same shape. If this is not the case, a run-time error would be produced.

1.# a size [3 UNKNOWNJ

1.# b size [UNKNOWN 4J

Y = size(a + b);

In the above code, the shape of a + b will be assumed to be [3 4J. The call to size can

be fully evaluated as the shape of the expression is known and so the original operation

can be removed. In the case where a and b do not have the same shape, an error would

not be produced as the add operation would never be carried out.

In most cases it would be better to assume that errors like this were not made. After all

partial evaluation is an optimisation step, usually occurring after testing where it could

be assumed that most programmer error had been eliminated.

Mandatory assumption checking would certainly hurt performance, but if assertions

could be inserted optionally, for instance when debugging, it would aid both the users

and ourselves as it could quickly determine where we make false assumptions.

131

Chapter 9 Future Work 132

9.2 Automatic Widening

Currently MPE can loop infinitely on input containing loops which steadily widen shape

values. Consider the following code:

function y = f(x)

y = l'

for n = 2:x

y = [y nJ;

end

This function returns a vector of values from 1 to x with increment 1. The current

implementation of MPE will iterate over the loop trying to find the shape of y. It can

easily determine that it is a two dimensional matrix with 1 row. However each successive

iteration will give it a higher value for the number of columns. Since iteration only

ceases when stabilisation of shape information is achieved, the iteration will be infinite.

To prevent this problem, the number of columns needs to be widened. If the number

of columns is set to (l,w), no further iteration would be required. This is currently

possible using the widen annotation but this needs to be determined automatically.

To this end, we need to develop heuristics to determine when there is a possibility of

infinite iteration. This would likely be based on looking for incremental shape changes

inside loops. This problem is a common one in partial evaluators where recursion is used

for all loops. In that case, there is often a counter which is either incremented or decre­

mented and then compared with a dynamic variable. This can lead to the generation of

infinitely many functions all specialised with regard to a different counter value, or to

the function being unfolded infinitely many times. Ruf [62] describes several heuristics

used to detect when recursion will be bounded and when it will be infinite. This includes

detecting an induction variable which is reduced on every iteration towards a bound, at

which it terminates. Katz and Weise [39] describes a method where increasing parame­

ters which are not actually used at specialisation time (other than in generating further

values of the counter) are detected by lazy use-analysis. A similar technique may prove

useful to us, since when shape growth is unbounded, the shape itself is generally not

used at specialisation time.

9.3 Restructuring expressions for performance benefits

Currently all optimisations on expressions retain the order of expressions. Expressions

like a + 1 + b + 2 - a are parsed as (((a + 1) + b) + 2) - a. Evaluating strictly using the

parse tree form gives no chance for simplification and so the ideal form of b + 3 cannot

be achieved. Addition is a commutative operation for all kinds of matrices and scalars

and so the expression could be reordered to (a - a) + b + (1 + 2), at which point our

current scheme can reduce the expression to (a - a) + b + 3. Reducing a - a is not so

Chapter 9 Future Work 133

simple; it is not necessarily 0, as a might not be a scalar. In fact it is always equal to

zeros (size (a)), which is 0 in the case of a scalar and a matrix with the same shape

as a if a is a matrix. Unless a is a scalar, the expression can only be reduced if b is

has the same shape. If b has a different shape and is not a scalar then a runtime error

will occur. If it cannot be determined that b has the same shape as a, then we could

assume the absence of programmer error or perhaps generate assertions as described in

Section 9.1.

Identity relations like M I = 1M = M, where I is the identity matrix with the same

shape as M, need to be recognised and dealt with. These kinds of expressions can often

occur after unrolling. For example:

function z = power(x, y)

z = eye(size(x));

for n =.1: y

z = z * x;
end

If power is partially evaluated with y set to 3, then the residual program would currently

be:

function z = power(x)

z = eye(size(x));

z = z * x;

z = z * x;

z = z * x;

However recognising that z is initially the identity matrix would mean that the function

can be reduced to:

function z = power(x)

z = x;

z = z * x;
z = z * x;

With further assignment amalgamation the function just becomes:

function z = power(x)

z = x * x * x;

As mentioned by Menon and Pengali [49], it is possible to reorder the evaluation of

expressions to realise some performance increases. When evaluating A * B * x, (where

A and B are matrices and x is a scalar), a right to left evaluation would take O(n2)

operations while a left to right evaluation would take O(n3) operations. Since the natural

order of evaluation in MATLAB is left to right, brackets would need to be inserted for

efficient evaluation. Clearly in cases where it is unknown whether the operands are

matrices or scalars then no such optimisation is possible.

Chapter 9 Future Work 134

9.4 I/O operations

As mentioned in Section 6.1.1, we currently do not support loading in data with I/O

commands like fopen, fscanf and fclose. Unfortunately, problems can easily arise

when trying to eliminate I/O operations and embed data directly in the function files.

One problem is that data stored externally can often be often be stored more efficiently

than as a list of MATLAB assignments. Unless data files are small, this can result in

large increases in the residual code size.

It is also problematic because I/O operations must be completed. If a file is opened by

fopen and the file descriptor returned to a variable, it is not useful to replace this with

an assignment to a constant value as file descriptors only have meaning if the fopen

function is actually called. If all I/O operations have static parameters and can be fully

evaluated, this is not a problem. All references to the file handle would be removed

during partial evaluation as the calls to I/O functions would evaluate to the values

stored in the file.

However if for some reason an I/O operation cannot be evaluated because it is dependent

on some dynamic input, then the I/O operation would be left in the code with a file

handle that was no longer valid. Even worse, partial evaluation could continue onto

another I/O operation that appeared to be fully executable. In the course of normal

execution, the file seek pointer would already have moved on, but because we could

not execute the previous commands it would be in the old position and the wrong data

would be read.

Work needs to be done to assess whether all I/O operations relating to a file handle

can be evaluated, so that we can then evaluate them. In some cases we might have to

evaluate an I/O operation before we can determine whether further operations can be

evaluated, which could mean that we have to backtrack.

9.5 Better Inlining

In Section 6.5, we described a simple strategy for inlining. While its simplicity made its

implementation easy, its restrictions greatly limited its applicability.

The restrictions were mostly made to prevent ever creating temporary variables. Part

of the reason for this, is that since there is no way of creating a separate scope within a

function, the variable will be not be deleted until the function returns or the variable is

overwritten. In this way, a naive strategy of creating a new temporary variable for every

inlined instance of a function could dramatically increase the memory used by a function.

Variables can be explicitly deleted using the clear function, but this involves function

calls that could hurt performance. Another strategy would be to use a pool of temporary

Chapter 9 Future Work 135

variables which are reused, so that a minimum number of temporary variables would

be created. One could still imagine a situation where an inlined function caused the

creation of a very large matrix which was not destroyed until the function terminated,

as no other inlined functions were called subsequently.

9.6 Context Propagation

When a branch of a conditional is taken, there is implied information, which we currently

ignore.

%# x ndims 2

if isempty (x)

for n = x

end

else

end

In the above code, if the positive branch is taken, it is implicit that x has no dimensions

with size O. This means that the for loop will always iterate at least once and therefore

when computing the state after the loop, the least upper bound does not need to be

combined with the result for if the loop had not iterated even once.

The difficulty in context propagation is inferring what the condition expression says

about its variables. In the above case, x has only 2 dimensions and so since it is not

empty it must have a shape of ((2,2), ((1, w), (1, w))). Inferring this requires inverting

the isempty function, which would probably require writing code for each function to

determine what its context propagation properties were. It is likely that not many func­

tions would provide any useful context information, but this would have to be examined.

9.7 Full Class and Polymorphism Support

Currently functions residing in class directories (e.g. @inline), are ignored by MPE.

As a first step towards full class support, these directories would have to be searched for

m-files. Since the class of an expression is not known at parse time, the loading of the

right function file will have to be deferred until the expression is abstractly interpreted.

If the expression is static or if the class is known, then the exact function can be found

without difficulty, in which case it can be renamed so that there is no ambiguity, which

means it no longer has to be in a class-specific directory. If the class is unknown, then

there are two options.

Firstly we could choose not to specialise the polymorphic function at all. This is not as

simple as it seems: if one of the polymorphic functions are in a private directory then

Chapter 9 Future Work 136

they will not be visible to the residual program (unless the residual program is put in

the directory above the private directory). We therefore need to ensure that all files

that might be called are also callable by the residual function, by if necessary copying

m-files.

The second strategy is to speculatively partially evaluate all functions that could be

selected. All class-specific functions would need to be stored in separate directories,

which would mean they could only call the top-level function of our system, since the

output is currently only put in one file. To solve this, every function which is callable

by functions in other files need to be stored in a separate file.

Specialising every possible function that could be called, could also cause a performance

reduction. This performance reduction might be acceptable if an expression could gen­

uinely have many different classes and fast code is desired for all possibilities, but often

the problem will be that the class is really static but it cannot be inferred or that there

are only two possible classes. Class annotations could be manually inserted to prevent

too much specialisation, but currently a class can either be known completely or not

known at all. A way of restricting the set of classes to specialise for would be desirable

in this case.

Clearly the work of Schultz et al [65, 64] on Java is relevant here, even though their

work uses offline partial evaluation, since they have to tackle similar problems. Re­

cently Andersen and Schultz [4] used a declarative language, called Pesto, to control

the specialisation process. This can be used to constrain the possible classes, for which

a function can be specialised. Since our reasons for using online specialisation were to

save users from requiring a deep understanding of the process, this method may not be

readily applicable.

9.8 Extending Types

We have previously stated that our type system can encapsulate more shape informa­

tion than that of Joisha [32], however much of this information is not directly useable.

Knowing that an array has between 2 and 3 columns can rarely translate into any ad­

vantage at partial evaluation time using our current system. It is useful to know that

there is more than 1 column as certain other shape inference rules can now apply, but

the specific information about there being between 2 and 3 columns is no more useful

than knowing that there are between 2 and 4 columns.

One use is that if a matrix with between 2 and 3 columns is added to a matrix with

between 3 and 4 columns, we can infer that the result if not an error will have exactly 3

columns. With exact information, functions like size can be fully evaluated. However.

this kind of inference is very unlikely to occur in practice.

Chapter 9 Future Work 137

The problem arises because when size is called and the information is not totally exact,

all the information is discarded. This is because our type does not store information

about the actual value. If the type was extended to store an interval, in which the

actual value was bounded, certain realistic expressions such as inequality tests could be

evaluated. E.g.

function f(a, b, varargin)

if nargin < 2

error ('Not enough parameters to f')

end

If nargin is at least 2 ((2, w)), with the current partial evaluator, the conditional cannot

be checked, since nargin will evaluate to a dynamic scalar. However if this dynamic

scalar also contained the interval [2,00]' the binary expression could be checked and the

conditional statement removed.

Preliminary work on implementing interval bounds for values known to be scalars has

shown encouraging results, but by extending the type in this way, we exacerbate the

problem posed by infinitely widening shape components. If bounds are to be realistically

introduced, then detection of infinite widening is a must as well as a strategy for test­

ing whether functions signatures differ inconsequentially. The risk here is that adding

bounds will cause further redundant specialisations of functions, when the bounds have

no impact, causing a large slow down of the partial evaluation process.

Chapter 10

Conclusions

10.1 Review

Chapter 8 showed some impressive results, which demonstrate that partial evaluation can

be very effective at improving MATLAB performance. This performance was seen in the

small examples as well as large programs such as the Arcadia CFD solver. Performance

increases were sometimes due to interprocedural propagation of static values, leading

to early computation taking the burden off the residual code, but also due to dynamic

values having static properties inferred. While inferring the shape of an array does not

yield the same performance benefits as knowing its contents, it can enable some minor

precomputations, which can enable loop unrolling, leading to some useful performance

boosts as was shown in Section 8.1.

The benefits of compilation were also retained through compilation using the MATLAB

compiler, MCC. Especially with the simple ODE solvers, partial evaluation and compi­

lation proved to be a very successful way of boosting performance. Since these solvers

were so simple, the use of higher order functions had a very significant effect on the

time to execute. Once partially evaluated with respect to fixed RHS functions, this cost

was eliminated, and the compiler was able to take advantage of this even more than the

interpreter with one example running nearly 15 times faster.

The nature of many MATLAB library functions also makes them candidates for special­

isation. Highly parameterised functions which can perform their role in many different

ways are prevalent in MATLAB. While their flexibility is enabling and gives users many

options, it is also a source of performance loss. MPE is able to produce specialised

solvers, with only the minimal of user intervention, giving users the best of both worlds.

It is the lack of manual interference by the user that make MPE most attractive to

MATLAB users. Often these are users who just want to solve a problem and are not

interested in learning any more about their development environments than necessary.

138

Chapter 10 Conclusions 139

Once programs have been written and tested, it is convenient to leave in place many of

the assertion checks that were used during the initial development period as they prove

useful later when there is further development. Partial evaluation can statically remove

many of these assertions, like the guards on most of the library functions which check

that the correct number of parameters were used, allowing the programmer to maintain

only one source program for both development and deployment. This is in many ways

like C, where assert is normally defined as a macro which can be disabled by specifying

command line flags to the C compiler. However the compiler will remove all those checks

without verifying that they are satisfied statically. It may be that with the assertions

still intact, the compiler could optimise away some of them but this would be rarer since

most compilers do not propagate information interprocedurally.

Due to the high level of the MATLAB language, traditional areas of partial evaluation

gains are not so susceptible to it. This includes unrolling of tight inner loops based on

knowledge about the size of arrays. Standard operators like addition are much faster

than using loops to iterate over vectors and so unless unrolling exposed a large number of

static computations, leaving vectorised operations intact will nearly always be preferable.

Since these built-in functions and operators cannot be specialised for particular sized

parameters, the inferencing mechanisms often produce data that is not used. However

since the partial evaluator has inferred this information, it would be helpful to make it

available to tools that can use it. Compilers for other dynamic languages, like Python,

can benefit greatly by specifying types. For instance in [56], the Pyrex compiler, with

types specified, can create code that runs over 100 times faster. While the MATLAB

compilers do try to infer types themselves, adding them to the source code may allow

users to tune them where the inference is insufficiently accurate.

Duplication of code and redundant computations both cause performance penalties and

unfortunately our partial evaluation technique creates both. It was imperative then that

an effective strategy for detecting and removing these barriers was developed. Applying

traditional compiler-based techniques such as dead-code elimination using ud-chains

allows us to eliminate all code which does not contribute to the final result of a function

or to side-effects.

Since our partial evaluator was written in C++, it had to contain an interpreter for

MATLAB within it. While much of the complexity of building an interpreter was side­

stepped by using the MATLAB run-time libraries, there were still some features which

could not be implemented using them and so the interpreter was non-trivial. This

introduces scope for bugs in the interpreter leading to imperfect code generation. If a

generating extension approach had been taken, the partial evaluator could have been

written in C++ but produced MATLAB generating extensions, removing the need for a

MATLAB interpreter in the partial evaluator. However, for generating extensions to be

useful, they must have many offline decisions taken otherwise the generating extension

could have all the complexity of an online partial evaluator built into it. This would

Chapter 10 Conclusions 140

ultimately lead to a two-stage approach using binding time analysis, which would move

away from our stated aim of producing automated tools that are accessible to non­

technical users, since many offiine techniques require manual intervention.

Our contributions have been:

• An online partial evaluator for a non-trivial imperative language (MATLAB).

• We have defined abstract domains, which capture useful information about MAT­

LAB arrays, such as their class, type traits and shape characteristics. This used

a more complete view of MATLAB types than has been seen in other work on

MATLAB.

• We have produced an extensive scheme for inferring type information based on the

properties of many built-in functions, operators and array indexing.

• Loops that cannot be unrolled are maintained by calculating the least upper bound

of the state on entering the loop. This procedure is recursive and repeated for all

nested loops. To avoid repeated computation, we cache least upper bounds for

nested loops, even when inside other functions.

• We have produced a post-processing phase which performs dead-code elimination

on Abstract Syntax Trees, using ud-chains as well as duplicate function removal

by employing structural equivalency detection.

• We have demonstrated the viability of partial evaluation for MATLAB, achieving

speed-ups for a variety of codes, with various specifications for the inputs.

10.2 Summary

Progress in computational science and engineering requires a judicious combination of

application expertise, algorithm selection and mapping to computational infrastructure.

A key underlying technology is the tooling available to computational scientists. High­

level languages and advanced problem solving environments have proved to be powerful

tools to facilitate rapid and flexible prototyping of new codes in a wide range of appli­

cation areas.

At their heart of these tools lies the ability to leverage and build upon previously con­

structed general components and libraries, from which new functionality is composed.

In this thesis we have demonstrated how such general components or libraries may be

specialised and optimised when used in the context of a particular application or with

particular inputs, by exploiting information which is often known in advance but is not

usually brought into play. We have shown how to take advantage of this information to

Chapter 10 Conclusions 141

deliver improvements in performance. Furthermore this can be done in a way that is

transparent and automated from a user's perspective.

We believe that techniques such as partial evaluation and just-in-time compilation/spe­

cialisation will allow future generations of computational scientists and engineers to

benefit from the productivity gains associated with using high-level generic libraries in

advanced problem solving environments, whilst at the same time obtaining high perfor-

mance.

Appendix A

This appendix describes how to use the MAT LAB partial evaluator, MPE. First we give

the command line options.

Usage: mpe [-a] [-b file] [-c] [-d variable value] [-D] [-f] [-g]

[-0 file] [-p] [-s] file

mpe -h

mpe -v

If the filename given is '-' then the main source function is read from standard input.

Option Explanation

-a This option when followed by a filename allows the user to specify a file

containing annotations and assignments which will be prep ended to the

source file before annotation.

-b This option allows the user to specify a file containing the list of builtins

that mpe recognises. If this option is not used the default list is used.

-c This option suppresses the printing comments describing the attributes

of expressions in the output code.

-d This option causes an assignment to be inserted at the beginning of the

initial source file so that parameter values can be specified.

-D This option causes debug information to printed to standard output.

-f This option prints a list of functions called by the main function.

-g This option writes out a file that can be processed by dot to draw a

graph of the strongly connected components in the function dependency

graph.

142

Appendix A 143

Option Explanation

-h This option prints out help text.

-0 Specifies a file to which to write the partially evaluated function. With-

out this option the function is written to standard output.

-p Causes the function to be post-processed before writing it out.

-s This prints out a list of variables used by each function.

-v This prints out the version number of MPE and then exits.

--precision Sets the precision to output floating point numbers.

Now we describe the annotations that can be given to mpe. Annotations always start

on a new line and start with '%#', which is a MATLAB comment.

There are two types of annotations, ones that are associated with a particular variable

and those that relate to the general invocation of a function without being directly tied

to a variable. All variable annotations exception for undefined automatically set the

state of the variable to defined.

The variable annotations are of the form var instruction [value] and are described

in the following table:

Instruction Value Explanation

size Matrix This annotation sets the shape of the variable in the sym-

ndims

widen

bol table. The value field is parsed as an ordinary matrix

where the first element gives the number of rows, the sec­

ond element gives the number of columns and subsequent

elements gives the size of any extra dimensions. If any

element is UNKNOWN then the size of that dimension is left

unset.

Scalar This sets the maximum number of dimensions for a vari­

able.

Scalar This makes the dimension specified by the scalar argu­

ment have an unknown value.

real String If the value string can either be 'yes' or 'no' and con-

logical

trols whether the variable is real or complex.

String If the value string can either be 'yes' or 'no' and con­

trols whether the variable is logical or not.

Appendix A

Instruction

class

realdouble

realscalar

defined

undefined

Value Explanation

String This declares that the class of a variable. It can be

double, char, cell, struct, sparse, single, int8,

int16, int32, uint8, uint16, uint32 or function.

Shorthand way of declaring a variable is real and is of the

class double.

Same as realdouble but declares the shape to be scalar

as well.

This declares that a variable definitely exists.

This declares that a variable definitely does not exist.

144

The variable annotations are of the form instruction value and are described in the

following table:

Instruction

nargin

nargout

unroll

nounroll

preserve

Value

Scalar

Scalar

Explanation

Sets the value returned by the nargin function.

Sets the value returned by the nargout function.

This forces a loop to be unrolled even if it cannot be

determined to be possible.

This prevents a loop from being unrolled even if it has

been determined to be possible.

String This prevents the named function from being partially

evaluated, but retains it intact in the residual program.

no interpret String This prevents the function from being directly inter­

preted, which is useful for function which produce side­

effects.

Appendix B

This appendix gives the source code to some of the functions test in Chapter 8.

function y=lagrange(x,pointx,pointy)

%
%LAGRANGE

%
%

approx a point-defined function using the Lagrange polynomial

interpolation

!. LAGRANGE(X,POINTX,POINTY) approx the function defined by the points:
% Pl=(POINTX (1) , POINTY (1» ,

% P2=(POINTX(2),POINTY(2»,

% PN(POINTX(N),POINTY(N»

% and calculate it in each elements of X

%
% If POINTX and POINTY have different number of elements the function

% will return the NaN value

% function wrote by: Calzino

% 7-oct -2001

%
n=size (pointx ,2);

L=ones(n,size(x,2»;

if (size(pointx ,2)-=size(pointy ,2»

fprintf(l, 'POINTX and POINTY must have the same number of elements\n');

y=NaN;

else

end

for i=l:n

for j=l:n

if (i-=j)

L(i,:)=L(i,:).*(x-pointx(j»/(pointx(i)-pointx(j»;

end

end

y=O;

end

for i=l:n

y=y+pointy(i)*L(i,:);

end

LISTING B.l: Langrange Interpolation Code

145

Appendix B 146

function z~hypergeometric2f1(a,b,c,x,n)

% HYPERGEOMETRIC2F1 Computes the hypergeometric function

% using a series expansion:

%
% f(a,b;c;x)~

%
% 1 + [ab f 1 ! c] x + [a (a + 1) b (b + 1) f 2 ! c (c + 1)] x - 2 +

% [a(a+1) (a+2)b(b+i) (b+2)f3! c(c+1) (c+2)] x-3 + ...

%
% The series is expanded to n terms

%
% This function solves the Gaussian Hypergeometric Differential Equation:

%
% x(l-x)y" + {c-(a+b+1)x}y' - aby ~ 0

%
% The Hypergeometric function converges only for:

% I x I < 1
% c !~ 0, -1, -2, -3,

%

%
% Comments to:

% Diego Garcia - d.garcia~ieee .org

'l. Chuck Mongiovi - mongiovi~fast.net

% June 14, 2002

if nargin -~ 5

error (' Usage: hypergeometric2f 1 --> Wrong number .of arguments')

end

if (n <~ 0 I n -~ floor(n»

error('Usage: hypergeometric2f1 --> n has to be a positive integer ')

end

if (abs(x) > 1)

error (' Usage: hypergeometric2f 1 --> I x I has to be less than 1')

end

if (c <~ 0 & c ~~ floor(c»

error('Usage: hypergeometric2f1 --> c !~ 0, -1, -2, -3, ... ')

end

delta 1;

z ~ 1;

m = 0;

for m = 1: n-1

delta delta .* x .* (a + (m - 1» .* (b + (m-i) .f m .f (c + (m-i);

z=z+delta;

end

LISTING B.2: Hypergeometric Gaussian Differential Equation Solver Code

Appendix B

function clength = length_crit (B, Ml, betacrit)

% %# Beta realscalar

% %# M1 realscalar

% %# betacrit realscalar

% Specific heat ratio

G = 1.3;

[c_angle, vrprime_final, VrPrime, dVrPrime]

% Flow properties at surface

TO_T=1+«G-1)/2)*Ml-2;

TO=TO_T*147.5;

cone_angle(B, M1);

clength = calc_crit_length(B, M1, c_angle, VrPrime, dVrPrime,

G, TO, betacrit, 0.00000001);

LISTING B.3: Main Function for Mars Lander Code

function [theta, s, VrPrime, dVrPrime] = cone_angle (B, M1)

G = 1.3;

MN1 Mhsin(B);

MN2 = sqrt«MNl-2+(2/(G-1)))/«2*G/(G-1))*MNl-2-1));

Delta = atan(2*cot(B)*«Ml-2*(sin(B))-2-1)/(Ml-2*(G+cos(2*B))+2)));

M2 = MN2/sin(B-Delta);

VPrime = «2/«G-l)*M2-2))+1)-(-1/2);

VrPrime = VPrime*cos(B-Delta);

dVrPrime = -VPrime*sin(B-Delta);

thetaspan = [B,pi/180]';

options odeset (' Events', @eventsfun);

[theta, s] = ode45 (@rhs, thetaspan, [VrPrime, dVrPrime], options);

theta = theta(end);

s = s (end, 1);

LISTING B.4: Auxillary Function for Mars Lander Code (1)

function F = rhs(theta, s)

F(l,l) = s(2);

gamma = 1.3;

A = (gamma - 1) / 2;

F(2,1) = (s(2)-2 * sO) * 0 + 2 * A) + ...

s(2) * (s(2)-2 * A * cot(theta) - A * cot(theta)) +

sO) * (2 * A * s(1)-2 - 2 * A + A * sO) * s(2) * cot(theta)))
/ (A - A * s(1)-2 - A * s(2)-2 - s(2)-2);

LISTING B.5: Auxillary Function for Mars Lander Code (2)

function [value, isterminal, direction] = eventsfun (theta, s)

value = s(2);

isterminal = 1;

direction = 0;

LISTING B.6: Auxillary Function for Mars Lander Code (3)

147

Appendix B

function clength calc_cri t_length (B, M1, theta, VrPrime, dVrPrime, G,

TO, Beta, threshold)

vxO = M1*((G*191*147.5)-0.5)/((2*860*TO)-0.5);

vyO = 0;

rybegin = 10-(-6);

t_span = [0 10J;

ry1 rybegin;

vy1 vxO;

vx1 vxO;

ryO = 5*sin(B);

options = odeset (' Events', lQeventsfun3);

rx1 = ry1 / tan(B);

[t, dfdtJ ode45(IQrhs2, t_span, [rxl ry1 vx1 vy1J, options, B, theta,

VrPrime, dVrPrime, Beta);

rxbegin

rybegin

dfdt(:,1);

dfdt(: ,2);

old_clength = ry1;

iterations = 0;

while 1

fprintf ('. ')

iterations = iterations + 1;

rxO = ryO / tan(B);

[t, dfdtJ = ode45 (~rhs2, t_span, [rxO ryO vxO vyOJ, options, B, theta,

VrPrime, dVrPrime, Beta);

rx dfdt(:,1);

ry df d t (: ,2) ;

lhit = rx(end) * tan(theta);

lhitbegin = rxbegin(end) * tan(theta);

h1 ry(end) - lhit;

h2 = lhitbegin - rybegin(end);

clength = ryO - (ryO - ry1) / (h1 + h2) * h1;

if abs(clength - old_clength) < threshold

break

end

ry1 = ryO;

ryO = clength;

rxbegin = rx;

rybegin = ry;

old_clength clength;

end

fprintf ('\n')

iterations

LISTING B.7: Auxiliary Function for Mars Lander Code (4)

148

Appendix B

function [dfdt] rhs2 (t, f, B, cone_angle, VrPrime, dVrPrime, Beta)

rx f (1) ;

ry f(2);

vx f(3);

vy f (4) ;

t ; atan(ry / rx);

if B > t + eps

[theta, sJ; ode45(~rhs, linspace(B, t)', [VrPrime dVrPrimeJ);

vrprime s(end,l);

vtprime s(end, 2);

else

vrprime

vtprime

end

VrPrime;

dVrPrime;

ux vrprime * cos(t) + vtprime * sin(t);

uy vrprime * sin(t) + vtprime * cos(t);

rxprime vx;

ryprime vy;

vxprime -Beta*(vx-ux);

vyprime -Beta*(vy-uy);

dfdt(l.l) rxprime;

dfdt(2,1) ryprime;

dfdt(3,1) vxprime;

dfdt(4,1) vyprime;

LISTING B.8: Auxillary Function for Mars Lander Code (5)

function [value, isterminal, directionJ eventsfun3(t, f, B, theta,

149

VrPrime, dVrPrime, Beta)

value; (f(4)/f(3)) - tan(theta-1e-6);

isterminal ; [1];

direction; [OJ;

LISTING B.9: Auxillary Function for Mars Lander Code (6)

Bibliography

[1] Alex Aiken and Brian Murphy. Static type inference in a dynamically typed lan­

guage. In Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Princi­

ples of programming languages, pages 279-290. ACM Press, 1991.

[2] George Almasi and David Padua. MaJIC: compiling MATLAB for speed and re­

sponsiveness. In Proceeding of the ACM SIGPLAN 2002 Conference on Program­

ming language design and implementation, pages 294-303, New York, NY, USA,

2002. ACM Press.

[3] Gheorghe Almasi. MaJIC.· A MATLAB Just-In-Time Compiler. PhD thesis, Uni­

versity of Illinois at Urbana-Champaign, 2001.

[4] Helle Markmann Andersen and Ulrik Pagh Schultz. Declarative specialization for

object-oriented-program specialization. In Proceedings of the 2004 A CM SIGP LAN

symposium on Partial evaluation and semantics-based program manipulation, pages

27-38. ACM Press, 2004.

[5] Lars Ole Andersen. Program Analysis and Specialization for the C Programming

Language. PhD thesis, DIKU, University of Copenhagen, 1994.

[6] Kenichi Asai. Binding-time analysis for both static and dynamic expressions. In

Static Analysis Symposium, pages 117-133. Springer-Verlag, 1999.

[7] R. Baier, R. Gliick, and R. Zochling. Partial evaluation of numerical programs

in Fortran. In Partial Evaluation and Semantics-Based Program Manipulation,

Orlando, Florida, June 1994 (Technical Report 94/9, Department of Computer

Science, University of Melbourne), pages 119-132, 1994.

[8] Guntis J. Barzdins and Mikhail A. Bulyonkov. Mixed computation and translation:

Linearisation and decomposition of compilers, 1988. Preprint 791 from Computing

Centre of Siberian divison of USSR Academy of Sciences.

[9] Andrew A. Berlin and Rajeev J. Surati. Partial evaluation for scientific computing:

The supercomputer toolkit experience. In Partial Evaluation and Semantics-Based

Program Manipulation, Orlando, Florida, June 1994 (Technical Report 94/9, De­

partment of Computer Science, University of Melbourne), pages 133-141, 1994.

150

BIBLIOGRAPHY 151

[10] Andrew A. Berlin and Daniel Weise. Compiling scientific code using partial evalu­

ation. IEEE Computer, 23(12):25-37, 1990.

[11] S. Chirokoff, C. Consel, and R. Marlet. Combining program and data specialization.

Higher-Order and Symbolic Computation, 12(4):309-335, December 1999.

[12] Niels H. Christensen and Robert Gluck. Offline partial evaluation can be as accurate

as online partial evaluation. ACM Trans. Program. Lang. Syst., 26(1):191-220,

2004.

[13] Charles Consel, Luke Hornof, Fran<;ois Noel, Jacques Noye, and Nicolae Volanschi.

A uniform approach for compile-time and run-time specialization. In Partial Evalu­

ation. International Seminar, pages 54-72, Dagstuhl Castle, Germany, 12-16 1996.

Springer-Verlag, Berlin, Germany.

[14] Patrick Cousot and Rahida Cousot. Abstract interpretation and application to logic

programs. Journal of Logic Programming, 13(2-3):103-179, 1992.

[15] Stephen-John Craig and Michael Leuschel. LIX: an effective self-applicable par­

tial evaluator for Prolog. In Yukiyoshi Kameyama and Peter J. Stuckey, editors,

Functional and Logic Programming: 7th International Symposium, pages 85-99.

Springer-Verlag Heidelberg, 2004.

[16] Soren Debois. Imperative program optimization by partial evaluation. In Proceed­

ings of the 2004 ACM SIGPLAN symposium on Partial evaluation and semantics­

based program manipulation, pages 113-122. ACM Press, 2004.

[17] M.C Duta, M.S Campobasso, M. B Giles, and L.B Lapworth. Adjoint harmonic

sensitivities for forced response minimization. In Proceedings of the ASME Inter­

national Gas Turbine 8 Aeroengine Technical Congres, 16-19 June 2003, Atlanta,

Georgia, 2003.

[18] M.C Duta, M. B. Giles, and L. Lafronza. Adjoint sensitivity analysis for aeroacous­

tic applications. In Proceedings of the 9th AIAAjCEAS Aeroacoustics Conference

and Exhibit 12-14 May, 2003, Hilton Head, South Carolina, 2003.

[19] eFunda: Hypergeometric Function.

http://www.efunda.com/math/hypergeometric/hypergeometric.cfm.

[20] Daniel Elphick, Michael Leuschel, and Simon Cox. Partial evaluation of MATLAB.

In Proceedings of the second international conference on Generative Programming

and Component Engineering, pages 344-363. Springer-Verlag New York, Inc., 2003.

[21] Flex - GNU Project. http://www . gnu. org/software/flex/flex .html.

[22] Folding@Home Distributed Computing. http://folding . stanford. edu/.

BIBLIOGRAPHY 152

[23] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architecture for

the FFT. In Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing,

volume 3, pages 1381-1384, Seattle, WA, May 1998.

[24] Carl-Erik Froberg. Introduction to Numerical Analysis. Adison-Wesley, 1965.

[25] Yoshihko Futamura. Partial evaluation of computation process - an approach to a

compiler-compiler. Systems, Computers, Controls, 2(5):45-50, 1971.

[26] K. Gallivan, B. Marsolf, and E. Gallopoulos. The use of algebraic and structural

information in a library prototyping and development environment. In 15th IMA CS

World Congress on Scientific Computation, Modelling and Applied Mathematics,

volume 4, pages 565-570, 1997.

[27] General Python FAQ. http://www .python. org/doc/faq/general.html.

[28] Robert Gluck. Jones optimality, binding-time improvements, and the strength of

program specializers. In Proceedings of the ASIAN symposium on Partial evaluation

and semantics-based program manipulation, pages 9-19. ACM Press, 2002.

[29] John Hannan and Patrick Hicks. Higher-order arity raising. In Proceedings of the

third ACM SIGPLAN international conference on Functional programming, pages

27-38. ACM Press, 1998.

[30] Fritz Henglein. Global tagging optimization by type inference. In Proceedings of the

1992 ACM conference on LISP and functional programming, pages 205-215. ACM

Press, 1992.

[31] L. Hornof, J. Noye, and C. Consel. Effective specialization of realistic programs via

use sensitivity. In P. Van Hentenryck, editor, Proceedings of the Fourth International

Symposium on Static Analysis, SAS'97, volume 1302 of Lecture Notes in Computer

Science, pages 293-314, Paris, France, September 1997. Springer-Verlag.

[32] Pramod G. Joisha. A Type Inference System for MATLAB with Applications to

Code Optimization. PhD thesis, Electrical and Computer Engineering Department,

Northwestern University, 2003.

[33] Pramod G. Joisha and Prithviraj Banerjee. Computing array shapes in MATLAB.

In Proceedings of the International Workshop on Languages and Compilers for Par­

allel Computing (LCPC), pages 395 - 410. Springer-Verlag, 2001.

[34] Pramod G. Joisha and Prithviraj Banerjee. Correctly detecting intrinsic type errors

in typeless languages such as MATLAB. In Proceedings of the 2001 conference on

APL, pages 7-21. ACM Press, 2001.

[35] Pramod G. Joisha and Prithviraj Banerjee. Static array storage optimization in

MATLAB. In Proceedings of the ACM SIGPLAN 2003 conference on Programming

language design and implementation, pages 258-268. ACM Press, 2003.

BIBLIOGRAPHY 153

[36] Pramod G. Joisha, Abhay Kanhere, Prithviraj Banerjee, U. Nagaraj Shenoy, and

Alok Choudhary. Handling context-sensitive syntactic issues in the design of a

front-end for a MATLAB compiler. In Proceedings of the ACM SIGAPL Interna­

tional Conference on Array Processing Languages (APL), Berlin, Germany, 2000.

Technischen Universitat.

[37] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and

Automatic Program Generation. Prentice Hall, 1993.

[38] Jesper Jorgensen. Similix: A self-applicable partial evaluator for scheme. In Partial

Evaluation - Practice and Theory, DIKU 1998 International Summer School, pages

83-107. Springer-Verlag, 1999.

[39] Morry Katz and Daniel Weise. Towards a new perspective on partial evaluation. In

Proceedings of the Workshop on Partial Evaluation and Semantics-Based Program

Manipulation '92, pages 29-36, 1992.

[40] David Kincaid and Ward Cheney. Numerical Analysis. Brooks/Cole Publishing

Company, 1996.

[41] Paul Kleinrubatscher, Albert Kriegshaber, Robert Zochling, and Robert GlUck. For­

tran program specialization. In Gregor Snelting and Uwe Meyer, editors, Seman­

tikgestiitzte Analyse, Entwicklung und Generierung von Programmen. GI Workshop,

pages 45-54, Schloss Rauischholzhausen, Germany, 1994. Justus-Liebig-Universitat

Giessen.

[42] Todd B. Knoblock and Erik Ruf. Data specialization. In Proceedings of the A CM

SIGPLAN 1996 conference on Programming language design and implementation,

pages 215-225. ACM Press, 1996.

[43] Jens Knoop, Oliver Ruthing, and Bernhard Steffen. Partial dead code elimination.

In SIGPLAN Conference on Programming Language Design and Implementation,

pages 147-158, 1994.

[44] LAPACK - Linear Alegbra PACKage. http://wvw.netlib.org/lapack/.

[45] Michael Leuschel and Maurice Bruynooghe. Logic program specialisation through

partial deduction: Control issues. Theory and Practice of Logic Programming, 2(4

& 5):461-515, July & September 2002.

[46] Maple Home - Adept Scientific plc.

http://wvw.adeptscience.com/products/mathsim/maple/.

[47] Mathematica: The Way the World Calculates.

http://wvw.wolfram.com/products/mathematica/index.html.

[48] Vijay Menon and Keshav Pingali. A case for source-level transformations in MAT­

LAB. In Domain-Specific Languages, pages 53-65, 1999.

BIBLIOGRAPHY 154

[49] Vijay Menon and Keshav Pingali. High-level semantic optimization of numerical

codes. In International Conference on Supercomputing, pages 434-443, 1999.

[50] Vijay Menon and Anne E. Trefethen. MultiMATLAB: Integrating Matlab with

high performance parallel computing. In Supercomputing '97 ACM SIGARCH and

IEEE Computer Society, pages 1-18, 1997.

[51] Torben lE. Mogensen and Peter Sestoft. Partial evaluation. In Allen Kent and

James G. Williams, editors, Encyclopedia of Computer Science and Technology,

volume 37, pages 247-279. Marcel Dekker, 270 Madison Avenue, New York, New

York 10016, 1997.

[52] Steven Muchnick. Advanced Compiler Design fj Implementation. Morgan Kauf­

mann Publishers, 1997.

[53] S. Pawletta, T. Pawletta, W. Drewelow, P. Duenow, and M. Suesse. A MATLAB

toolbox for distributed and parallel processing. In Moler C. and S. Little, editors,

Proc. of the Matlab Conference 95, Cambridge, MA. MathWorks Inc., October

1995.

[54] M. Quinn, A. Malishevsky, N. Seelam, and Y. Zhao. Preliminary results from a

parallel MATLAB compiler. In International Parallel Processing Symposium, pages

81-87. IEEE CS Press, 1998.

[55] Thomas W. Reps and Todd Turnidge. Program specialization via program slicing.

In Selected Papers from the International Seminar on Partial Evaluation, pages

409-429. Springer-Verlag, 1996.

[56] Armin Rigo. Representation-based just-in-time specialization and the Psyco proto­

type for Python. In Proceedings of the 2004 ACM SIGPLAN symposium on Partial

evaluation and semantics-based program manipulation, pages 15-26. ACM Press,

2004.

[57] Luiz De Rose. Compiler techniques for MATLAB programs. Technical Report

UIUCDCS-R-96-1956, University of Illinois at Urbana-Champaign, 1996.

[58] Luiz De Rose, Kyle Gallivan, Efstratios Gallopoulos, Bret A. Marsolf, and David A.

Padua. FALCON: A MATLAB interactive restructuring compiler. In Languages

and Compilers for Parallel Computing, pages 269-288. Springer, 1995.

[59] Erik Ruf and Daniel Weise. Using types to avoid redundant specialization. In

Proceedings of the 1991 ACM SIGPLAN symposium on Partial evaluation and

semantics-based program manipulation, pages 321-333. ACM Press, 1991.

[60] Erik Ruf and Daniel Weise. Improving the accuracy of higher-order specialization

using control flow analysis. In ACM SIGPLAN Workshop on Partial Evaluation

and Semantics-Directed Program Manipulation, pages 67-74, 1992.

BIBLIOGRAPHY 155

[61] Erik Ruf and Daniel Weise. Preserving information during online partial evaluation.

Technical report, Stanford Computer Science Laboratory, 1992. CSL-TR-92-516.

[62] Erik Steven Ruf. Topics in online partial evaluation. PhD thesis, Stanford Univer­

sity, 1993.

[63] D. Sahlin. An Automatic Partial Evaluator for Full Prolog. PhD thesis, The Royal

Institute of Technology (KTH) Stockholm, Sweden, 1991.

[64] Ulrik P. Schultz, Julia L. Lawall, and Charles Conse!. Automatic program special­

ization for Java. ACM Trans. Program. Lang. Syst., 25(4):452-499, 2003.

[65] Ulrik P. Schultz, Julia L. Lawall, Charles Consel, and Gilles Muller. Towards

automatic specialization of Java programs. In European Conference on Object­

oriented Programming, volume 1628 of Lecture Notes in Computer Science, pages

367-390, 1999.

[66] Michael Sperber. Self-applicable online partial evaluation. In Selected Papers from

the Internaltional Seminar on Partial Evaluation, pages 465-480. Springer-Verlag,

1996.

[67] Michael Sperber, Robert Gliick, and Peter Thiemann. Bootstrapping higher-order

program transformers from interpreters. In Proceedings of the 1996 A CM sympo­

sium on Applied Computing, pages 408-413. ACM Press, 1996.

[68] Michael Sperber, Peter Thiemann, and Hervert Klaeren. Distributed partial eval­

uation. In Proceedings of the second international symposium on Parallel symbolic

computation, pages 80-87. ACM Press, 1997.

[69] Eijiro Sumii and Naoki Kobayashi. A hybrid approach to online and offline partial

evaluation. Higher Order Symbol. Comput., 14(2-3):101-142, 2001.

[70] Rajeev J. Surati and Andrew A. Berlin. Exploiting the parallelism exposed by

partial evaluation. In IFIP PACT, pages 181-192, 1994.

[71] The MathWorks - About the MathWorks.

http://www.mathworks.com/company/aboutus/index.html.

[72] The Math Works - About Us.

http://web.archive.org/web/20000815202330/www.mathworks.com/company/

aboutus . shtml.

[73] The Mathworks - Industries.

http://www.mathworks.com/industries/.

[74] The Mathworks - MATLAB Compiler.

http://www.mathworks.com/products/compiler/.

BIBLIOGRAPHY 156

[75] The MathWorks, Inc. http://wvw.mathworks.com/.

[76] Peter Thiemann and Michael Sperber. Polyvariant expansion and compiler gener­

ators. In Proceedings of the Second International Andrei Ershov Memorial Confer­

ence on Perspectives of System Informatics, pages 285-296. Springer-Verlag, 1996.

[77] Valentin F. Turchin. The concept of a supercompiler. A CM Trans. Program. Lang.

Syst., 8(3):292-325, 1986.

[78] Daniel Weise, Roland Conybeare, Erik Ruf, and Scott Seligman. Automatic on­

line partial evaluation. In Proceedings of the 5th A CM conference on Functional

programming languages and computer architecture, pages 165-191. Springer-Verlag

New York, Inc., 1991.

[79] Eric W. Weisstein. Lagrange Interpolating Polynomial. From Math World-A Wol­

fram Web Resource.

http://mathworld.wolfram.com/LagrangelnterpolatingPolynomial.html.

[80] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical

optimizations of software and the ATLAS project. Parallel Computing, 27(1-2):3-

35, January 2001.

