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More and more scientific code is being written in higher level languages than the tra-
ditional choice of Fortran. Such languages are more accessible to less computer science
minded people and bring with them large libraries, geared towards solving mathemat-
ical problems. MATLAB is such a language and allows the rapid development of high
performance codes. In this thesis, we describe the problems associated with the creation
of high performance code for mathematical computations. We discuss the advantages
and disadvantages of using a high level language like MATLAB and then propose partial
evaluation as a way of lessening the disadvantages at little cost. Partial Evaluation is a
program transformation technique, which propagates constants and performs static com-
putations, resulting in faster residual programs. We present our approach to partially
evaluate MATLAB programs using the online methodology, whereby decisions about
static or dynamic values are made at specialisation time rather than as a pre-process.
We also describe an implementation called MPE (MATLAB Partial Evaluator). As
well as propagating static values to produce fast residual programs, MPE uses exten-
sive shape and type inferencing to extract static information from otherwise dynamic
contexts. Partially evaluated programs frequently contained redundant code, necessi-
tating a post-processing phase to prevent irrelevent computations at run-time and also
to reduce the amount of code produced. The post-processor is able to remove much of
this redundancy by a combination of dead code elimination using ud-chains and dupli-
cate function detection, using structural equivalency. To ascertain the efficacy of our
approach, we obtained empirical results for a variety of real MATLAB programs. These
results showed performance increases in various programs, from the relatively simple
Chebyshev approximation and Lagrange Interpolation codes (with speed-ups of up to
100%) to the several different Ordinary Differential Equations solvers (speed-ups range
from 57% to 568%) to a Computational Fluid Dynamics solver, which was sped up by
92%. Since these results were produced with a minimal of manual interference, we sug-
gest that partial evaluation is a viable automated technique for use by those actually

coding scientific codes.
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Chapter 1

Introduction

Scientific computing can be described as the use of computers to solve scientific problems.
As computers have become cheaper and faster, it has become possible to model ever more
complicated phenomena with ever more accuracy. Rarely is any large engineering effort
undertaken today, without some model first being built, which can be tested to find

flaws before anything real has been constructed.

1.1 The Problems of Scientific Computing

Problems range in complexity from calculating the amount of thrust required to put a
satellite into a desired orbit to calculating the effects of “greenhouse gases” on the tem-
perature of the earth over a hundred years. Even medicine is benefiting from advances in
computing, as biologists can now model how proteins “fold” using large scale distributed
computing efforts and then use the information to find out what causes diseases such as
Alzheimer’s and BSE [22].

At the core of much of this work is the production of new algorithms to solve previously
insoluble problems. Doubling the clock speed of a processor can at best double the speed
of a model. Models are however rarely linear and so doubling the size of a model will
often have a far larger effect on the time taken to compute it. Replacing an algorithm
with cubic time complexity by one with quadratic time complexity can greatly increase

the size of problems that are manageable.

To this end, the barriers to the construction of algorithms need to be broken down so
that scientists do not struggle with problems that need not concern them. If algorithms
exist to perform linear algebra operations and which fully take advantage of the hard-
ware available, then those algorithms should be made readily available in the form of

environments which make them integral.



Chapter 1 Introduction 2

Unforgiving environments, designed for ease of implementation by compiler writers in
mind, can rarely offer users the flexibility and the ease of use desired by users without
computer science backgrounds since their focus is necessarily different. Learning an
arcane syntax which does not easily map to their other scientific experiences should be

avoided.

Scientific computing is moving away from hand-coded, hand-optimised codes, written in
low to medium level languages like FORTRAN, towards general codes written in high-
level domain specific programming languages or using problem solving environments,
e.g. MATLAB [75], Maple [46] MATHEMATICA [47]. This trend is also apparent
in general purpose computing, where languages like Python are now being adopted for
projects traditionally written in C/C++, since the large standard library includes string
processing and network communications in a way that saves users knowing the specific

architectural features of the computer or operating system [27].

With the current diversity of computer architectures (due to differences in cache con-
figurations, speeds and memory bandwidths as well as processor types), it is becoming
increasingly difficult to produce near optimal code without expending excessive time.
Even then the code ties the developer to one architecture, which is no longer ideal in an
era of heterogeneous systems. With high-level languages and integrated problem solving
environments, these details are both solved and yet hidden from the user, greatly easing

their work.

1.2 MATLAB as a Solution

The use of high level languages allows rapid prototyping to ease development, while
hiding the complex implementation details from the user, who is only interested in
getting fast (both in execution and implementation) and accurate results. Users will
happily sacrifice some execution speed in the initial development period, if it means
they can quickly produce a working solution. This applies not just to the choice of
platform but the development methodology, where general solutions are sought which
can be applied to a wide variety of problems albeit slowly due to their generality. The
approach results in programs which can contain redundant and irrelevant computations,
thus causing significant reductions in performance. Later, once the prototype has been
verified, serious optimisation efforts can be made, often by rewriting the program in a
language like FORTRAN, which offers low level control.

MATLAB easily fills this hole in the development model. It closely maps to mathemat-
ical notation and treats matrices and multi-dimensional arrays as “first-class citizens”,
so that they can be manipulated with the ease of scalars in more traditional languages.

It relies on highly optimised libraries such as ATLAS [80] for linear algebra routines and
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FFTW [23] for Fast Fourier Transforms, so that users never have to worry about the

hand-coding of such fundamental operations.

Programs in MATLAB tend to be very general and multi-purpose, using input param-
eters to determine and configure which particular method is to be used in a particular
invocation. A familiar example of this might be a general purpose numerical library,
where selection and configuration of an eigenvalue solver is done at run time by setting
some parameter values. However, it also happens in full-scale engineering calculations —
a particular example arises in the process of design search and optimisation, in which the
performance of a device, system, or component is systematically improved by a series
of computational simulations. At the heart of this process is a device and the compu-
tational experiment needed to analyse its performance, which is described by a large
number of variable parameters, which can each be modified to change some aspect of
either the device itself (e.g. its size/material/topology) or the analysis process (resolu-
tion of simulation, number of iterations, etc.). The design process consists of a number
of studies, in each of which the code is executed a number of times with a (different)
large subset of the parameters fixed while the remaining ones are varied at run-time. In
each of these cases, we believe that partial evaluation could offer performance benefits

to users.

1.3 Partial Evaluation

Partial evaluation is the process of transforming programs by the early specification
of some of the program parameters. The resulting programs contain the precomputed
results of calculations that depended only on the pre-specified parameters; since the new
program does not need to perform these calculations itself, it is usually faster than the
original program. Optimisations such as loop unrolling, previously impossible due to

lack of information, become possible.

With component-based software engineering, programmers are encouraged to create
general code which can be reused, thus saving later development time. The trade-off
is that performance can suffer. With access to an effective partial evaluator, software
engineers can produce the general code that will ultimately lower their production costs

and yet often achieve the performance of a bespoke system.

High level code optimisation and partial evaluation techniques are quite different from
the low level optimisation done, for instance, on the assembly language produced by C
compilers. High level languages often provide special functionality not provided in low
or medium level languages which needs to be exploited to get maximum performance:
e.g. vectorisation in MATLAB and also FORTRAN 90. However unlike in low level
languages, there are few opportunities to influence the exact details of basic operations

like arithmetic operations. Indeed in a typical well written MATLAB program, most of
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the computation is done inside the run-time libraries, which we cannot influence. Since
these libraries are very general, they must cater to many eventualities including invalid
or incompatible parameters, in which case checks must be performed first regardless of
whether we can infer that they are redundant. Recent efforts involving Just-In-Time
compilation seem to offer a solution to this problem, but there are often static aspects
of programs which, if found before execution, can be dealt with effectively using partial

evaluation.

More commonly partial evaluation has been applied to the more academic side of com-
puter science. The focus of most research has been on functional and declarative lan-
guages, like Scheme [37] and Prolog [45], although partial evaluators do exist for C [5]
and Java [64]. While there has been research on numerical applications for Fortran
[41], this work has not been continued recently, and certainly has not been updated for
languages like MATLAB and Maple.

1.4 Thesis Aims and Qutline

The aim of this project is to address these issues by taking general programs written
(or produced by other programs) in high level languages such as MATLAB and produc-
ing code that executes more quickly using partial evaluation and other high level code

optimisations.

The main contribution of this work is an online partial evaluator for MATLAB called
MPE (MATLAB Partial Evaluator). This is a program transformation tool, which takes
a MATLAB program and produces a new one specialised according to some specified
static data. This transformation is guided by our extensive abstract interpretation
system, which allows information about the dynamic types of MATLAB to be captured.
The tool is firmly grounded in practicality and so eschews some of the more theoretical
decisions taken to achieve results such as self-application as this is superfluous to our

goal of speeding up mathematical codes.

In combination with our partial evaluation techniques, we also demonstrate an effective
post-processing phase, which combines dead code removal using ud-chains and function

duplication elimination via structural equivalency detection.

This work demonstrates that program specialisation can effectively improve the perfor-
mance of MATLAB programs without placing too much burden on the end-user. Typical
results for non-trivial systems such as the solution of ordinary differential equations us-
ing the generic solver provided as part of MATLAB show that partial evaluation can give
100% increases in speed. When the MATLAB compiler is used, speed-ups are retained
mostly intact and in some cases compilation in combination with partial evaluation gives

much larger performance increases.
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In Chapter 2, we examine the MATLAB programming language, looking at its structure
and performance issues as well as examining previous work on increasing execution speed
using techniques like parallelisation and compilation. In Chapter 3, we examine existing
work in the field of partial evaluation. Chapter 4 presents a formal analysis of the type
system used in MPE. The loading and parsing of a MATLAB program including all of
the supporting functions is described in Chapter 5. The core partial evaluation details
are given in Chapter 6. Chapter 7 describes how we remove dead code and perform
other post-processing optimisations. In Chapter 8, we demonstrate the effectiveness of
automatic partial evaluation by applying our tool to several test programs and comparing
timings. Future work that could enable further improvements is described in Chapter 9
and our final conclusions are presented in Chapter 10. Some of the early work of Chapters
4, 6, 7 and 8 appeared in [20].



Chapter 2

Overview of MATLAB

MATLAB is a problem solving environment sold by The Mathworks [75], whose users
world-wide have grown in number from 400,000 in 2000 [72], to around 1,000,000 today
[71].

The Mathworks sells MATLAB to a variety of industries, from the aerospace and defence
industry, to communication equipment manufacturers, to semi-conductor suppliers [73].
In the Aerospace and Defence industries, MATLAB and its related tools are used to
“provide a flexible software environment for designing multidomain systems simulating
high fidelity behavioral dynamics, testing and generating safety-critical flight computer
code”. Semi-conductor engineers use it in their design process from “algorithm develop-
ment and the creation of specifications, to system-level simulation, testing, and verifica-
tion”. As communications equipment manufacturers strive to improve “the transmission
of voice, music, data, and video”, they have found that the MATLAB family of tools
“accelerate[s] tasks such as data analysis, algorithm development, large-scale system
simulation, performance analysis, hardware and software verification, and automatic

code generation for prototyping and deployment”.

The MATLAB environment enables these applications through its large mathematical
libraries and the ready mapping from traditional notation to implementation by its con-
trolling language, also known as MATLAB. From now on when we refer to MATLAB,
we are referring to the language unless otherwise stated. The main characteristics are
that it is a dynamically typed imperative language which is normally interpreted. Vari-
ables do not need to be declared and can change type. Matrices and arrays are not of
fixed size but are reshaped when assignments are made to subscripts outside the current
bounds. Function calls are always call-by-value, (although a copy-on-write approach is
taken internally) and it is not possible for data structures to share values. As such this

means that there are none of the aliasing problems that exist in languages like C [52].
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For the purposes of this project we intend only to look at a subset of MATLAB. This
subset includes most MATLAB features and is large enough to handle non-trivial pro-
grams without modification. This subset has grown significantly since [20] as wider
testing revealed further desirable features. In this chapter the structure of MATLAB
will be discussed in order to give a better understanding of the later chapters. Sections
2.1 to 2.3 describe the features we include in the subset, while Section 2.4 outlines the
main features that we have chosen to exclude. A mostly complete EBNF! will be given
to show this structure. This description is not intended to be complete; in particular,
the use of whitespace to delimit matrix columns and rows is not discussed. A fuller if
slightly outdated discussion on parsing MATLAB can be found in [36].

2.1 M-files

MATLAB code is always stored in a file with a .m extension, called an m-file. An
m-file is either a script or a function, depending on whether the file starts with the
function keyword. Scripts are executed within the current scope whereas functions
execute within their own scope. For simplicity we deal only with functions as their

scoping rules are simpler.

Functions are declared using the function keyword. This must come at the start of the
file (excluding whitespace and comments), although additional local function definitions

can appear later in the same file.

Functions can return zero or more values and take zero or more parameters. Whatever
values are stored in the output variables at the end of the execution of the function are
returned. E.g.

function [a,b] = f(x,y)

It is also possible to declare functions that take a variable number of parameters by
adding a final parameter called varargin. Functions can return any number of outputs

by making the last output varargout. The EBNF of functions is given in Figure 2.1.

MATLAB statements are either separated by new lines, semi-colons or commas. Using a
comma to delimit a statement is equivalent to using a new line and so from now on only
new lines will be mentioned. All the legal MATLAB statements are shown in Figure 2.1
using EBNF.

!Extended Backus Naur Form
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m_file = script_£file
| function_file ;

script_file = { statement } ;

function_file = function { function } ;

function = func_pream { global } block ;

func_pream = "function" [ ret_vars "=" ] identifier [ params ] ;

ret_vars = identifier
| "[" { identifier "," } identifier "1" ;

params = ( "(" { identifier "," } identifier ")" ) ;
global = "global" identifier { identifier } ;
blOCk = { Statement ( ll\nll | ||;u | u’u ) }

FicUre 2.1: EBNF for MATLAB functions

2.2 Statements

In the following pages we will now describe the effect of each of the MATLAB statements

given in Figure 2.1.

Expressions. MATLAB is in many ways like a calculator and can be used just to
evaluate expressions. If an expression is terminated by a new line, the result is printed
to the screen. If it is terminated by a semi-colon, the result is computed but not
displayed. The result would normally be stored in a special variable called ans but
we will require explicit assignments, as the use of ans is mostly employed only in the
interactive environment, where MATLAB is being used as a calculator. The make-up of

expressions will be discussed in more detail later in this section.

As some functions do not return anything, it is possible for an expression to have no
value. Such a function cannot be used anywhere where a value is required, which means
that it can only appear as an expression statement (but not part of a binary expression).
When these functions are executed, no output value is displayed even if the semi-colon
is omitted. Such functions would merit their own case distinct from expressions, except
that determining that a function returns nothing is not trivial since the presence of
return variables in a function declaration only means that it can return values if these
variables are defined when the function exits. E.g.

1+ a » [2 3]”
disp(’hello )
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statement = expression
special_func
assignment
for_loop
while_loop
if_statement
switch
try_catch

control_flow_change ;

= ( target "=" expression )
| SUbSCI'ipt [T} [] 1 )
| ¢ "[" { target "," } target "]" = func_call ) ;

assignment

N N

special-func identifier { string } ;
for_loop = ( "for" variable "=" expression block "end" )

while_loop = ( "while" expression block "end" )

if_statement = ( "if" expression block else_block ) ;

else_block = "end"

| "else" block "end"

| "elseif" expression block else_block ;
switch = "switch" expression

{ "case" choice block }
[ otherwise block ]
n end n ;

choice = expression
(¢ "{" { expression "," } expression "}" ) ;

try_catch = "try" block "catch" block "end" ;

= "return"
| "break"
| "continue" ;

control_flow_change

FIGURE 2.2: EBNF for MATLAB statements
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Assignments. There are three kinds of assignment, all indicated by the = operator.
The most common is an assignment from an expression to a variable or to within a
variable using indices. In addition multiple variables can be assigned if the right hand
side is a function call. The final kind of assignment is the delete assignment, indicated
by an assignment from the empty matrix [J to a subscript of a variable. This can be
used to delete elements from arrays. If no semi-colon is present, then the values of all
assigned variables are displayed. E.g.

a =1
a(2) =1
[a,b] = size(c)

a(5) = []

if statements. if statements check the value of an expression before executing a
list of statements. There is also an optional else clause with elseif being “syntactic
sugar” for a nested if statement inside an else block. The final list of commands is
terminated by an end on its own. Usually the expression will be a scalar, in which case
if it is non-zero the first set of commands will be executed. In the case of arrays, every

value must be non-zero. E.g.

if a == 1 % every element of a must be 1
n = 20

elseif a % every element of a must be non-zero
n = 30

else
n =0

end

Logical operators are evaluated differently inside if statements. Normally neither |
nor & shortcuts (skips evaluation of the second operand when the evaluation of the first
predetermines the final result), but it does in if statements. When no shortcut occurs,
the semantics revert to the normal behaviour of the logical operators. Unfortunately this
is implemented in a manner likely to cause confusion, with the possibility of incorrect
results.

if [1 01 | [0 1]
disp (1)

else
disp(2)

end

if [1 0] | ([0 1) & [0 11)
disp (1)

else
disp (2)

end

The above examples were run in MATLAB 6.1 and 6.5, and both printed 1 and then 2

on the screen, when most likely the expected result would be 1 and 1 or 2 and 2. In the
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first example [1 0] is evaluated and found to be false, no shortcut occurs and so it is
logically ORed with [0 1] which produces the result [1 1], which is true.

In the second example, [1 0] is evaluated and found to be false, then [0 1] is evaluated
and also found to be false and so the result is logically ORed with [0 1], which gives
[0 1]. Instead of then logically ORing [1 0] with [0 1] and getting true, it actually
logically ORs 0 with [0 1] and so evaluates to false causing 2 to be printed. This
behaviour is ultimately the result of the ambiguous semantics obtained by combining

shortcuts with an element-wise logical operator.

MATLAB 6.5 introduces &% and || as shortcut operators but does not remove the
shortcut semantics from & and |. The new shortcut operators can only be used with
scalar operands, and so it is not possible to write a || b == ¢ when either a, b or ¢
are non-scalar. A better implementation would implicitly convert operands to logical
scalar values. We do not fully support MATLAB 6.5 (including these new operators),

although we plan to shift to a newer version in future.

for loops. These execute a series of statements multiple times, while varying a loop
variable on each iteration. The loop variable takes its values from a list, which in most
cases is an arithmetic progression, although any list is allowed. The end of the loop is
marked by the end keyword. In the example below, 1:10 expandsto [1 2 3 4 5 6 7
8 9 10], although the interpreter and compiler can frequently optimise loops like this.
E.g.

for a = 1:10
b =Db + c(a)
end

while loops. These statements repeatedly evaluate the value of an expression, check-
ing its value for zero (in the same way as with if statements) before executing a series
of statements. The end of the loop is marked by the end keyword. E.g.

while a > 0
b =b + c(a)

a - 1

a

end

As with if statements, logical operators in while loops have shortcut semantics.

switch statements. These evaluate an expression which must be either a scalar or a
string and check the value against a series of case clauses, executing the appropriate
code if it matches before control flows to the end of the switch block. There can also
be an otherwise clause which is executed if no other clauses match. The final list of

commands is terminated by the end keyword. E.g.
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switch a
case 1
n=mn+1
case {2, 3, 4}
n =20
othervise
n =1
end

return, break and continue statements. Normally functions finish executing when
control passes off the textual end of the function. However return can be used to
explicitly end the function at any point, with the current values of the return variables

immediately returned.

break causes the execution of the innermost loop to terminate and control to flow to
the end of it. If a break appears outside of a loop, it terminates the function in the same
way as return. continue causes the execution of the current iteration of the innermost
loop to terminate and control to be passed back to the beginning of the loop; it can only

appear inside loops.

2.3 Expressions

MATLAB allows the creation of complex expressions in a very intuitive way using the
syntax described in Figure 2.3. The basic construct is the matrix, of which vectors and
scalars are special cases. Matrices are created by enclosing the elements in square brack-
ets ([...]). Apart from standard matrices which are two dimensional, MATLAB also
has n-dimensional arrays. No syntax exists to create n-dimensional arrays directly, but
they can be created using built-in functions and through indexed assignments. Arrays
are laid out in memory in rows first, then columns and then any further dimensions.
Arrays have a class associated with them as well as some type traits, which are some-
what independant of class. Type traits indicate whether arrays are real, complex or
logical. The combination of traits and class makes up the intrinsic type of an array.
Logical arrays are returned from boolean operators and built-in functions like isreal
and isinf. While generally they will have the values 0 or 1, they can have any real
value. Strings are arrays of class ‘char’, which contain only integer values (which use 2
bytes of storage). Arrays always have the same number of elements in each row, column
or further dimension. The intrinsic type of an array applies to every element within it.

[1 23; 456; 7 8 9]

4
v
Y

n

>> b = a > 4



Chapter 2 Overview of MATLAB

13

expression = ( expression bin_op expression )
| ( un_prefix_op expression )
| ( expression un_postfix_op )
| ( "(" expression ")" )
| ( expression ":" expression )
| ( expression ":" expression ":" expression )
| ( u[u { TOW n;u } TOW n]u )
| ( nin string nwan )
| ( "@" identifier )
| target
| number
| complex_number
| matrix
| func_call
| u:n
| "end" ;
target = indexable
{ ( indexable "(" { expression "," } expression ")" ) ;
indexable = variable
| ( indexable "{" { expression "," } expression "}" )
| ( indexable "." identifier ) ;
variable = jdentifier ;
func_call = identifier
| ( identifier "(" { expression "," } expressiomn ")" ) ;
bin_op = Nhgn | n_n | oy W | n/n | n\n | Hon | nln | u&n
ngn | nyn | Ll | n_/n | n_\n | noan | ==t
n~_=n | Ny =t I ng=n ;
un_prefix_op = n=n | fn_n | ngn
un_postfix_op = nsn | woom :
general_number = number [ "e" [ "+" | "-" ] digitx ] ;

complex_number

= general_number "i" ;

number = ( [ digits ] "." digits ) | ( digits [ "." 1) ;
digits = digit { digit } ;

digit = "0..9" ;

row = expression | ( { expression "," } expression ) ;

Ficure 2.3: EBNF for MATLAB expressions
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b =
0 0 0
0 1
1 1 1
>> ¢ = ’a string’

c =

a string

>> d = a + b * j

1.0000 2.0000 3.0000
4.0000 5.0000 + 1.00001 6.0000 + 1.00001i
7.0000 + 1.00001 8.0000 + 1.00001 9.0000 + 1.00001i1

Nearly all binary operators in MATLAB are array operators. This means they are
element-wise and require that both operands have the same shape. The shape of an
array is described by the sizes of its dimensions. Array operators perform a computation
for each pair of elements in the two operands with equivalent positions and return an
array with an identical shape. For instance, using the + operator on the two vectors
[1 3] and [4.5 0] gives us [5.5 3]. If one of the operands is a scalar (and therefore
has 2 dimensions, both of size 1), then the result will have the same shape as the other
operand and the result will be the result of applying the operator to the scalar and each

of the elements in the non-scalar. If both are scalars, the result is also a scalar.

The exceptions to this are matrix operators like *, \, / and ~. Given one or more scalar
operands, these behave exactly like array operators. To achieve the same for non-scalar
operands, the array forms must be used: .*, .\, ./ and .. Each of the matrix forms

has different operand requirements although all require operands be 2-dimensional:

e * requires the number of columns in the first operand be the same as the number

of rows in the second.

e \ requires the second operand to have as many rows as the first operand. The
result will have as many rows as the first has columns and as many columns as the

second has columns.

e / requires the second operand to have as many columns as the first operand. The
result will have as many rows as the first has rows and as many columns as the

second has rows.

e ~ requires that one of the operands be a scalar and the other a square matrix. The

result will have the same shape as the matrix operand.

One consequence of allowing * to be used both as an array and a matrix operator in
different circumstances is that it is no longer truly associative. Array multiplication
and true matrix multiplication are both associative but the combination that MATLAB

presents in the * operator is not. For instance:
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> a = [1 2; 4 58]; b= [12 3]; ¢ = [3; 2; 1]1;
>> a * (b * ¢)
ans =
10 20
40 50
>> a * b * ¢
??? Error using ==> =x

Inner matrix dimensions must agree.

This has consequences for bracketing when printing MATLAB code as we cannot remove
what would appear to be redundant brackets without first checking whether it is safe
to do so. In practice, we do not perform this check and so never rebracket, which also
means that our partial evaluator will not change the order of execution, which in some

cases can lead to a change in complexity (see Section 9.3).

Ordinary arrays and matrices can only store values of the same type and each of these
values must be a scalar. While cell arrays must be regularly shaped, each element can
have any type including cell arrays themselves. Cell arrays are created by enclosing the
elements in braces ({...}).

> a = {12 3; 45 6; 7 8 9}
a =

[1] [2] [3]
4] [5] [61
(7] £:3] (9l

>> b = {a, ’hi’; 5 + j, 10}

{3x3 cell} *hi?
[5.0000+ 1.00001i] [10]

Structures consist of a number of fields each containing a value. The fields are strings,
while the value can be any MATLAB array including cell arrays and other structures.
Fields can be added to a structure at any time and there is no concept of named struc-

tures as in C. Structures can either be created incrementally by assigning to each of the

fields in turn (using the ‘.’ operator) or by using the struct built-in. Fields can be

¢

accessed using the ‘.’ operator or the getfield function and can be deleted using the

function rmfield.

>> a = [];
>> a.fieldl = 5
a =
fieldl: 5
>> a.anotherfield = {’hello’, [1, 2]}
a =
fieldl: 5
anotherfield: {’hello’ [1 2]}
>> b = struct(’fieldl’, 5, ’anotherfield’, {{’hello’ [1, 2]}})
b =
fieldl: 5
anotherfield: {’hello’ [1 2]}
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Indexing into matrices is done using round brackets, as in a(3). MATLAB allows more
than just scalars as indices. An appropriately sized matrix is also a valid index. In
particular, ranges can be used to extract parts of matrices. Indices start at 1 and
end can be used to get the last element. Finally, if an index is logical it predicates which
part of the matrix should be extracted. E.g.

>> a = [1, 2, 3; 4, 5, 6; 7, 8, 9];

ans =

1 2 3
4 5
7
>> a(1,:)
ans =
1 2 3

>> a(2,2:end)
ans =
5 6

>> ala > 4)
ans =
5 6 7 8 9

It is possible to index into a matrix using more dimensions than the matrix has, as long
as the extra indices are all equal to 1. If fewer dimensions are used then the dimensions
that are not explicitly specified are flattened, so that the final index can be used to access
all of them. For example, matrices can be indexed linearly (remembering of course that
the values are stored in row-column order).

>> a = {1, 2; 3, 4];
>> a(2, 2, 1, 1, 1)
ans =

4

>> a(:)

ans =

™ W

Indexing into cell arrays using round brackets produces a cell array as the result and
so it is not suitable for extracting the elements themselves. Instead braces need to be
used as in a{1}. As this extracts the elements themselves and not a subset of the cell
array, the behaviour is very different when the indices are not scalars. In this case such
an expression would evaluate to more than one value and so it only makes sense in a
context that allows comma separated expressions (like a function call invocation or in
the construction of a matrix). This is of special importance for functions which have
the varargin parameter. This parameter will be a cell array containing all the extra
parameters passed into the function. In order to pass all of these extra parameters onto

a second function, they must be expanded in the function invocation.
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function y = f(varargin)

y = g(varargin{:}) + 10;

Cell array expansion using braces, can be used in any place where comma-separated lists

are accepted. This includes function call parameter lists, index lists and matrices.

Another important type is the function handle. These are like pointers to functions
in C. They are created by prefixing a function name with @ and also by using certain
functions. The built-in feval is used to invoke the function represented by the function
handle. These are used by many general numerical solvers like quad which evaluates
integrals using adaptive Simpson quadrature and ode45 which solves non-stiff differential

equations using a medium order method.

The description of matrices given in Figure 2.3 is incomplete as the use of white space to
denote column and row separators is not given, as it is just “syntactic sugar” for the form
given. It is also an ambiguous grammar as there is nothing to distinguish a function
call from an array access. This is because it is impossible to make this distinction
using a context-free grammar and the method for performing this disambiguation will
be described in Section 5.4.

2.4 Unhandled Constructs

In order to simplify, there are several MATLAB features that we do not consider:

try-catch statements. This construct is used to handle exceptions and is mostly of
interest when dealing with I/O. While we do not attempt to do any partial evaluation
of this construct, our parser does recognise it. This allows partial evaluation of func-
tions to go ahead when functions use the construct but the statement appears on an
execution path not taken by the partial evaluator. Partial evaluation of this construct
is especially difficult as control could theoretically flow from any point in the try block

to the catch block making data flow analysis difficult.

Struct arrays. By creating a cell array of structs, it is not possible to constrain the
fields that each struct must have. Indeed it is not even possible to assure that each
element is even a struct. An alternative is the struct array, which is a generalisation of
the struct as described earlier. In addition it can stores more than one element. We
ignore it as it is rarely used and complicates parsing. As a result we require that the

size function always returns [1 1] for a struct.
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Classes. Classes allow the definition of user defined objects which can have methods
executed on them polymorphically. While we support some features of classes we do not
support the creation of user defined classes or any class which is not directly built into
MATLAB.

When MATLAB is to execute a function call, the function that MATLAB invokes is
dependent on the class of the first parameter in the invocation. If the parameters is of
class A, MATLAB searches for directories called @A containing a matching function. If

no such function is found then the default function is called instead.

It would not be difficult to handle polymorphic function calls when the class can be
statically determined, but when the class is unknown any number of functions could
be invoked, thus complicating any analysis. One could abstractly interpret or partially
evaluate each possible function, but this could be expensive. Currently we completely
ignore the existence of functions contained in class directories, which could lead to

incorrect code generation even for built-in classes.

Global and persistent variables. Global variables are declared on lines prefixed
with global. Globals can be declared at any point of a program, including after a
variable has been used as a local variable. To simplify matters, we required that global
variable declarations come immediately after the function declaration and that they
cannot appear anywhere else. This explicitly makes illegal declaring a variable as a
global after it has already been used. We also require that global variables do not
shadow function parameters, which means a function cannot declare that it takes a

parameter and also use a global variable with the same name.

Persistent variables are like static local variables in C. They retain their values between
function invocations, but are not available outside of the function in which they were
declared. They are declared just like global variables but using the persistent keyword.

For now these are treated as if they were ordinary global variables.

It is necessary for a partial evaluator to parse global declarations since they can occur in
the main MATLAB libraries, but beyond this we largely ignore them. We do not store
any information about them since they could be overwritten by other functions. It is
rare that global variables are used in MATLAB programs in ways that partial evaluation

could help. Any code that does can often be written to avoid using globals.

Recursive functions. Recursive functions with dynamic control cannot be handled
as cycles are not detected by the polyvariant specialisation. This means that recursive
functions which would normally terminate can be infinitely specialised leading to non-
termination of the partial evaluator. This could be handled by marking the function

call signature as currently being specialised and immediately return control to the caller.
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This would not help with recursive functions which statically altered their parameters,

but use of the widen annotation described in Section 6.1.7 could help.

If the recursion is completely static, as with a recursive power function where the expo-
nent is static, then the partial evaluator will terminate but will produce a new function
for each recursive call, which may or may not be desired. In combination with inlining

it could reduce the simple recursive power function into a single line function.

Special functions. Certain functions can have unpredictable effects on the execution
of MATLAB programs. These include functions like clear and assignin which ma-
nipulate variables. The clear function is mostly used interactively and it is uncommon

2 The function deletes a variable and makes it undefined.

to see it used in functions.
If it is used with static input, it might be possible to correctly handle it. However if
the variable to be cleared cannot be determined statically at partial evaluation time, to
ensure correctness we would have to throw away everything we know about all variables

from that point on as any one of them might have been affected.

Multiple outputs through cell array subscripts. As previously stated, functions
can return a variable number of outputs. Through the use of cell array subscripts it is
possible to make a program, in which the number of outputs to a function cannot be
statically determined.

fa{b}] = f(x)

If the size of b is not known, then the value of nargout will be unknown in f£. Also if
the size of b is known then the only way to split the assignments if the result of £ (x) is
static, is as follows (where b has 3 elements):

a{b(1)}
a{b(2)}
a{b(3)}

Ideally, this transformation should occur before the function call is partially evaluated
as follows:

fa{b(1)} a{bv(2)} a{b(3)}] = £f(x)

Unfortunately this transformation produces a reduction in performance, and even if some
of the outputs are static, it is unlikely that speed-ups will be possible as assignments will
have to be inserted which are unlikely to be removed by post-processing as the dynamic

outputs will mark the whole of a as dynamic.

2clear is often seen in scripts which operate in the caller scope and need to clear variables to avoid
conflicts.
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Ultimately our partial evaluator assumes that each entry in the output list requires one
and only one output and so in the original example, b will be assumed to be scalar and

nargout for £ will be 1.

In addition, we also require that the outputs do not contain any conflicts. I.e. two
outputs cannot be to the same variable and a variable cannot be written to if it is used

as an index in another output.

By limiting the set of MATLAB features that we can handle we limit the number of
MATLAB programs with which we can initially work. However we have to make a prag-
matic decision to ignore certain features that are not critical to testing our hypothesis
that partial evaluation is a viable technique for the optimisation of MATLAB programs.

In the future, it is hoped that these features could also be added to our tool.

2.5 Optimising MATLAB — Current Technologies Review

The Mathworks provides a compiler called MCC [74], which translates MATLAB into
C. This C code is then compiled by the native compiler to produce an executable which
can be executed without a full MATLAB installation. The C code produced is portable
but, since it requires the MATLAB runtime libraries, is tied to the platforms that
MATLAB supports. The code produced consists mostly of function calls and very little
attempt is made to use native C types. This is due to the dynamic typing which means
that a variable could contain anything from a matrix to a function handle. Because
the MATLAB base libraries call optimised routines in libraries such as ATLAS [80],
LAPACK [44] and FFTW [23], these function calls are executed very quickly but have

to inspect the parameters to determine the type of function to call.

Another compiler is FALCON, which produces Fortran 90 code [57]. This uses extensive
type inferencing at compile time to produce code which does very little type checking.
Using user defined types (encompassed by existing MATLAB types), [26] describes how
to make FALCON take advantage of structural information such as diagonal or upper
triangular matrices, to improve results. Initial results showed FALCON outperforming
MCC, but there have been improvements to the Mathworks compiler recently and so it
is not clear which would perform better now as the FALCON source code was not made

available and no recent comparisons have been reported by its authors.

Following on from FALCON, Almssi has developed MaJIC, a MATLAB Just-In-Time
compiler described as “an interactive front-end that looks like MATLAB and com-
piles/optimises code behind the scenes in real time, employing a combination of just-in-
time and speculative ahead-of-time compilation”. [3] Because MaJIC compiles code in
an interpreted environment, it has information about the parameters used to call func-

tions and attempts to produce more appropriate code. When compiling Just-In-Time
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it eschews most optimisations in favour of fast compilation times and so cannot easily
perform the types of aggressive optimisation seen in offline compilers and partial eval-
uators. MATLAB 6.5 also introduced Just-In-Time compilation as part of its normal
operation and this often gives better results and is reported to be much improved in the
recently released MATLAB 7.

Other approaches to speeding up MATLAB execution have involved parallelisation.
Mostly this involves adding parallel extensions to the language, like MultiMATLAB
[50] or the DP toolbox [53]. However Otter is an attempt to translate MATLAB scripts
into C programs targeting parallel computers supporting ScaLAPACK [54]. This ap-
proach produces varying results depending on the sizes of matrices and the complexity

of the operations performed on them.

In [48] and [49], the authors discuss source-level optimisations that would be appropriate
for MATLAB. These include vectorisation of loop operations to take advantage of the
more efficient MATLAB libraries, preallocation of arrays to prevent repeated resizing
and expression optimisation through reordering. Many of these issues would already be
apparent to MATLAB programmers, who would seek to avoid these pitfalls. However
other automatic source level transformations, including partial evaluation, may yield

opportunities to perform these optimisations.

In [35], the authors use a static shape analysis to try and optimise the memory used by
MATLAB programs. This results in quite significant speed increases as cache utilisation
is improved. The shape analysis is described in more detail in [32]. This shape analysis
is capable of determining that the shapes of two arrays must be the same, even when

the shape itself is unknown, leading to fewer run-time checks.

Type inferencing [1, 30] has been examined for other dynamically typed languages, like
Scheme, since it is enables early detection of errors due to type mismatches as well as
enabling many optimisations, such as replacing general arithmetic operators with integer

specific operators.

2.6 Summary

In this chapter we have seen the structure of the MATLAB language, including some of
its idiosyncrasies. The language was clearly designed to try and minimise the distance
from the mathematical description of a problem to its solution. In doing so, many of the
methods used to implement languages in the past have been ignored, since they serve
only to distract from the immediate problem. In ignoring these methods, the developers
of MATLAB have created a different set of problems, which must be solved to achieve

satisfactory performance.
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MATLAB was developed outside academic computer science and is a niche-language
since it is not readily applicable for general computation. It is however an important
niche growing in size as computers become fast enough to allow realistic models to be
built before any concrete engineering is even contemplated. To allow it to grow even
further, more methods from the academic world need to be introduced. Approaches like

compilation have served to give better performance, and indeed such work is ongoing.

The common theme to MATLAB usage, is the flexibility and the easing of traditionally
complex tasks. Engineers can focus on solving the problem at hand rather than the
reinvention of existing technology for each new application. This culture of reuse and
componentisation can gain significantly from processes which seek to solve its associated

problems.

We will, in the next chapter, introduce one such process which could improve the produc-
tivity achievable with MATLAB, both through execution time reductions and reduced
development effort. Partial evaluation has more often been applied to traditionally aca-
demic languages, like Scheme and Prolog, and very mainstream languages like C and
Java. In this work, we seek to expand its domain to MATLAB.
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Partial Evaluation

Partial evaluation is a technique to partially execute a program, when only

some of its input data are available. [51]

The above statement means to take a program, for which some of the inputs are known
prior to full execution, and execute as much of the program as possible. In cases where
programs are executed many times with only a few parameters changing, dramatic
savings can be made as many calculations can be performed during the partial evaluation
and thus only once. Partial evaluators can also perform aggressive optimisations like
loop unrolling and inlining which, while also possible in traditional compilers, are less
easy to control or see the effects of when the transformation is not source to source. A

program generated by partial evaluation is called a residual program.

3.1 Review

The most complete description of partial evaluation can be found in [37]. A similar

technique known as supercompilation is described in [77].

Traditionally partial evaluation has been mostly applied to declarative languages, like
Scheme [37] or Prolog [45]. But there are also partial evaluators for C [5], Java [64]
and Fortran [41]. Frequently the work on partial evaluation of languages like Scheme
and Prolog has focussed on efficient self-application [15, 38]. While it is possible to
compile programs, by specialising interpreters with respect to a static source program, by
specialising the partial evaluator with respect to the interpreter, it is possible to produce
a compiler [25]. This compiler can be much faster than specialising the interpreter and

so self-applicable partial evaluators are often desirable.

There are two main forms of partial evaluation, online and offline. In offline partial

evaluation, a Binding-Time Analysis (BTA) is performed first which given a source

23
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program and a division for the initial input, determines which parts of the program are
static and which parts are dynamic. This data is then embedded in the source file in the
form of annotations which are used by the partial evaluator to produce the final result.

This final process is sometimes called reduction.

In online partial evaluation, there is no binding-time analysis step but instead decisions
about static vs. dynamic expressions are made as late as possible, and it is thus, in
principle, more precise. In general, offline partial evaluators can be made more efficient
and predictable. On the other hand, online partial evaluators are typically slower but
can detect and thus evaluate more static expressions.

%# x size [STATIC DYNAMIC]
%# c STATIC

if size(x, c) == 1
else

end

In the example above, x is a matrix for which the number of rows is declared static but
the number of columns is dynamic. This code checks to see if the size of the dimension
indicated by c is equal to 1. Even though c is static, offline partial evaluation will not
easily allow us to remove the if-statement if ¢ turns out to be 1 (or greater than 2).
With online partial evaluation, the expression is only examined when we know the value

of ¢ and so the if-statement can be removed.

The advantage of offline partial evaluators is that they are simpler to build and as the
binding-time analysis is separate from the specialisation phase, it can be done just once
while the specialiser is then called multiple times for different parameters. The binding-
time analysis can also be manually adjusted in cases where the automatic analysis is
imperfect. Offline partial evaluators are currently the only way to effectively handle

self-application.

One approach to offline partial evaluation is not to generate a full program directly
from the annotated source (after binding-time analysis), but to generate a program
which takes as input the static inputs. This program then outputs the final program.
This program is called a generating ertension and the approach is known as the cogen

approach.

Most offline partial evaluators use a monovariant BTA. This means that each expression
at each program point has at most one binding type. The BTA will normally determine
this to be the binding that works given the binding division of the input variables.
This means that a function called with dynamic parameters at one program point and
static parameters at another, will only be residualised based on the most conservative
set of bindings, i.e. the most dynamic ones. A polyvariant BTA could produce two

different sets of bindings for the function and so could produce more suited residual
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code. Polyvariance can be achieved by function cloning, where every time a different
binding is required, the called function is cloned and the BTA is performed on the new
function [76]. Polyvariant binding time analysis need not work at the function level, but
instead program points can have multiple binding types associated with them, where the
most appropriate one is selected at specialisation time. This allows the code fragment
given earlier to be specialised by an offline partial evaluator in the same way as an online

one would.

Monovariant specialisation produces, for every function in the source program, at most
one function in the residual program. Polyvariant specialisation produces more than one
function if required. A maximally polyvariant specialiser would produce a new function
for every residualised function call, although more generally duplicate function signatures
are combined so that functions can be shared. Polyvariant specialisers are more prone
to termination issues as they can potentially produce infinitely many functions in cases
where a static parameter grows under dynamic control in a recursive function. The

process of detecting and eliminating this problem is called generalisation.

There has been some work on hybrid online/offline partial evaluators, including [69],
which is essentially an online specialiser which produces generating extensions, where
some offline decisions have already been made in order to speed up the final speciali-
sation. Sperber [66] produced an “online” specialiser which could be realistically self-
applied, but this was effectively an offline partial evaluator which could defer some
binding-time decisions to specialisation time. Christensen and Gliick [12] have also
demonstrated that offline partial evaluation can be as accurate as online using a max-
imally polyvariant BTA, although as effective generalisation is not possible. In [28],
Gliick showed that offline partial evaluators in conjunction with binding-time improve-

ments can always achieve as efficient residual programs as online partial evaluators.

For the online partial evaluator FUSE, the authors use fix-point analysis to find the types
of return values from functions [61]. This is required because the value of a recursive
function is itself dependent on its own type, making repeated iteration necessary. This
approach can be generalised to the non-recursive structured loops present in imperative
languages. They also introduced the idea of producing a graph of the suspended compu-
tation rather than directly producing code [78]. This makes detecting and removing code
duplication, due to expanding variables to expressions, much simpler. While most spe-
cialisers will recognise when a function is invoked with a signature that has already been
specialised, and reuse the earlier specialisation, it is more difficult to recognise when sig-
natures are only slightly different and will lead to the same specialisation. FUSE tackles
this [59] by storing information about what properties of the parameters led the function
to be specialised in the way that it was. This allows a looser signature to be constructed
which would result in the same specialisation. If a signature is then encountered which
falls inclusively between the two signatures, the specialisation can be reused safely with

no chance of missing optimisation opportunities.
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Instead of writing partial evaluators directly, it is possible to produce partial evaluators
using an interpreter and an existing self-applicable partial evaluator written in the same
language [67]. This requires a specially written interpreter, which divides inputs to the
source program into dynamic and static parts. The partial evaluator is then partially
evaluated with respect to the interpreter. The result will be a program, which given
a source program and the static input, will produce a residual program written in the
source language of the interpreter. This program will be a partial evaluator, although
its output will not be the same language as its input. This does, however, demonstrate

an automatic way of producing a partial evaluator.

Alternatively, source code can be compiled to a language, for which a partial evaluator
already exists. For instance, the main MATLAB compiler produces C code, which could
then be partially evaluated using cmix [5]. Brief experimentation showed that cmix is
not capable of parsing the raw output of the MATLAB compiler, although this could no
doubt be worked around. Even then, such partial evaluation would be unlikely to ever
take advantage of type information that could be statically inferred for dynamic arrays

as the array structure is opaque to everything except the run-time libraries.

Tempo [13] is a partial evaluator for C, which can generate residual programs which
perform run-time specialisation, using optimised binary code templates, as well as per-
forming standard partial evaluation. This system has been deployed in various fields,
with notable work on operating systems software including Sun RPC and the BSD packet
filter.

Psyco [56] is an implementation of the Python language, which performs just-in-time
specialisation to remove the overheads introduced by the highly dynamic nature of the

Python type system.

A particular problem in languages with complex types, is the concept of lifting. This
occurs when a static value is required in a dynamic context. For simple types such as
integers this is easily achieved by inserting a textual representation into the residual
program. For more complex types, this may not be possible. Pointers, for instance,
cannot be lifted as their value at the time of partial evaluation is meaningless when the
residual program runs. Structured types can often incur a cost to build, or may not

even be possible to construct within a single line.

In many cases, the requirement to lift a variable with a complex type, leads to the
variable being made dynamic in all cases, thus reducing the number of possible static
computations. Hornof et al [31] use an analysis of the uses of a variable to avoid mak-
ing variables completely dynamic in the Tempo specialiser for C. This problem is also

addressed by Asai [6] for functional languages.

Aside from program specialisation, another technique first introduced by [8], which uses

early computation to reduce final execution time, is Data Specialisation. This technique
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precomputes static computations and stores them in a cache. A residual program is then
created which loads the static data from the cache and uses it to perform the work of
the original program. The advantage of this method over program specialisation, is that
the residual program does not grow with the size of the input data. The disadvantage
is that it is only effective if the cached computations are sufficiently expensive to justify
the time and space for storing and accessing them. Knoblock and Ruf [42], demonstrate
an automatic system to perform data specialisation for C, especially with regard to
improving shader performance. The route taken by Chirokoff and Consel [11] seems
promising, in that they combined program and data specialisation in the Tempo partial
evaluator. By using both approaches code size does not increase as quickly as with
normal program specialisation, and yet performance does not differ by much. This
allows much larger data sets to specialised than with partial evaluation alone, where the

residual program can become so large that performance is affected adversely.

Reps and Turnidge [55] use a technique know as program slicing to specialise programs.
This technique extracts a slice of the program that produces a specified result. For
instance a program that produces two outputs can be specialised to produce only one,
in which case computations which do not contribute to this single output can be removed
from the residual program. This technique holds an advantage over partial evaluation,
in that the slice is not determined by the program parameters and so can be based on

a parameterisation not originally envisioned by the program author.

Berlin and Surati [9, 70] used partial evaluation to expose parallelism in large scale
numerical applications. This is possible because partial evaluation can remove many
conditional checks based on structure sizes, resulting in a program which contains largely

only numerical calculations.

Specialisation of Fortran [7] has yielded impressive results for numerical applications,
showing that the Fast Fourier Transformation can see a between 3 and 4-fold speed-up
by specialising with respect to the number of data points to be returned. Cubic spline
interpolation specialised with respect to range conditions, the number of values and the
distance between consecutive values is 4 times faster in general and 6 times faster for

periodical range conditions.

Continuing in the vein of partial evaluation for high performance computing, there
have also been attempts at improving partial evaluation using the high performance
computing technique of distributed computing. Sperber [68] describes a client-server
system for processing function specialisation requests and gains speed-ups of up to 3

times using up to 6 processors.
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3.2 Summary

This chapter has given an overview of the previous work on partial evaluation and related
techniques. We have seen that offline partial evaluation can offer efficient specialisation,
but requires conservative approximations which can sacrifice some performance in the
residual program. On the other hand, online specialisation can produce faster residual
programs, but is less predictable and often slower. Offline partial evaluation can be
carefully guided to produce the desired result, but this requires expert knowledge from
the user. Online partial evaluation, on the contrary, is largely an automatic process

possibly making it accessible to more users.

Several functions exist in MATLAB which discover information about the characteristics
of MATLAB values. While the values themselves will often change rapidly, the intrinsic
type and shape of arrays will often be constant. Successful type inferences can often
allow us to replace calls to type-query functions with constants, frequently enabling the
unrolling of loops dependent on array shapes and the removal of conditionals that verify

parameter types.

To this end, a formalisation of the MATLAB type system is given in the next chapter,
which captures information about both the intrinsic type of arrays, which is comprised
of its class and certain traits which are common to all classes, and the shape of arrays,

made up from a number of dimension sizes.
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Abstract Domains

In this chapter, we describe lattices and then use them to formalise the abstract domains
our partial evaluator uses to capture information about arrays, for when concrete values
are not available. We also give equations for deriving types of arrays resulting from using
operators, calling functions and indexing into arrays. The notation and methodology is
mostly based on [3] and [14].

4.1 Partially Ordered Sets, Lattices and Fixpoints

This chapter uses partially ordered sets (posets) and lattices extensively as the basis for

our symbolic execution system.

Definition 4.1. A poset, (S,C), is a set for which a partial order (C) is defined. This
ordering is an antisymmetric relation, such that Vz,y € S: 2 CyAyCz = z = y.
If an ordering exists between all elements (Vz,y € S: 2 C yVy C z) then it is a total

ordering.

Definition 4.2. An upper bound of X C S is an element u € S, such that Vz € X,z C
u. The least upper bound is an upper bound, which is ordered lower than all of the
other upper bounds. Put formally, the least upper bound of X € S is [ € S, where
Ve e X,z C !l and Vu € S, such that Vr € X,z C u = [ C u. If the least upper
bound exists, it is unique and is written UX. Lower bounds and greatest lower bounds
are defined in the same way using the reverse ordering (J). The greatest lower bound
is written MX.

Definition 4.3. A lattice (L,C, L, T,U,M) is a poset (L,C), for which VX C L,3NX A
JUX. The supremum of L is T = UL and the infimum is L = ML. The least upper
bound of the set, {z,y|Vz,y € L} is z Uy and the greatest lower bound is z My.

29
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In terms of the approximations we use in our symbolic execution, if £ is an ordering
based on accuracy, i.e. z T y means that x is more accurate than y, then z Uy is an
approximation that best fits both x and y. When we say the approximation best fits =
and y, we mean that it is the least conservative approximation possible, which is valid
for both x and y. If x and y are sufficiently different then the result will be T, which
encompasses all possible values. In addition = My is the least precise approximation
which is included in both z and y. If no approximation fits at all then the result will be
1. Since we will use more than one lattice, each with their own infimums, supremums

and partial orders, we will add subscripts to these to distinguish them.

Definition 4.4. A function f : X — X is monotone (with respect to the ordering), if
zCy = f(z)C f(y). This means that application of f maintains the ordering.

Definition 4.5. A fixpoint of a function f: X — X is a z € X such that f(z) =z. It
follows that if X is finite and f is monotone, repeated application of f will always result
in a fixpoint and therefore iteration will never be infinite. We will later use this to show
under what circumstances our analysis terminates. For a more detailed explanation of

lattices and their use, see [14].

4.2 Abstract Type System

MATLAB has a complicated type system which has evolved over time from just repre-
senting two dimensional matrices to N-dimensional arrays, cell arrays, structures, strings
and function handles. In essence expressions evaluate to arrays. Each array has a class,
which can be retrieved using the class built-in function. In addition, each array has two
properties which are returned by the boolean functions, isreal and islogical. These
functions are overloaded for all classes and for instance can be used for both full matrices

and sparse matrices. A more thorough description is given in the previous chapter.

The main aim in producing a type system is to capture information about dynamic
expressions. As in [1], we require that types be comparable. This means that we can
detect the equivalence of two types and also whether one type is a subtype of another.
As such, one can imagine a type system as defining the sets of values that can have each
type. If two sets are equivalent, they describe the same type. The operators U and 1
would then be analogous to the set operators U and N, while the relation C is analogous
to C. The supremum, T, is like the full set of values, while the infimum is like the empty
set, .

4.2.1 Class Information

Definition 4.6. MATLAB classes (shown in Table 4.1), are modelled using the lattice
(K, Eka—kHTkakH‘—lk)a where K is defined in (41) and Vky, ko € K — {Tk,lk}, k Ty
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Class Description
double Real and complex numbers (scalars, vectors, matrices and
N-dimensional arrays
char Strings (single line, multi-line and N-dimensional)
cell Cell arrays that can store any other type of array
struct Stores elements in named fields
sparse Sparse version of double
single Like double but single precision
int8, int16, int32 Signed integers of various sizes
uint&, uint16, uint32 | Unsigned integers of various sizes
function handle Similar to pointers to functions in C

TABLE 4.1: MATLAB classes
ky <—= ki=koand VEke K, kCy Lp Ak T Tg.

K = {1k, double, char, cell, struct, sparse, single, int8,

intl6,int32, wint8, uint16, uint32, function, T} (4.1)

The concrete elements of K, (i.e. K — {Tg, Lx}) are equivalent to the values returned
by the MATLAB function class.

4.2.2 Type Trait Information

In addition to classes, there are type traits. The two traits we deal with are real and
logical. An array can be either real, complex or logical; although logical arrays are
also real. In MATLAB, the built-in functions, isreal and islogical, can determine
whether an array has a specific trait. An array of type real is made up from double
precision floats. Complex arrays use twice the memory of real ones, in order to store the
real and imaginary components. Logical arrays are identical to real arrays except for a
flag indicating that they are logical. The only functional difference occurs when logical
arrays are used as indices. Used as an index, a logical array acts like a filter, where
non-zero elements indicate that a value should be retained and zero elements indicate it
should be skipped.

Many mathematical operators and functions return complex numbers in MATLAB. This
happens automatically when the parameters dictate the result is not real, although it is
also possible to create a complex array even when the imaginary component is 0 using the
complex built-in function. In many cases, there is no way of predicting whether the result
of a computation will be complex just based on the presence or absence of the complex
trait as for instance the addition and multiplication of two complex conjugates produces

a real result. Examples of arrays with the various traits can be seen in Figure 4.1.
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>> [isreal ([-1 2 pil), islogical ([-1 2 pil)]

ans =
1 0
>> [isreal(3 == 2), islogical(3 == 2)]
ans =
1 1

>> [isreal (23 + 3i), islogical (23 + 3i)]
ans =
0 0

FIGURE 4.1: Examining MATLAB traits (Non-zero values indicate true)

Definition 4.7. B = {Ty, true, false, L} is the extended boolean type. The lattice
(B, Cp, Tp, Lo, Up, Mp), is such that L, Cp false Cp Ty and Ly Ty true Ty Ty This will
be used to describe true or false values, where T, indicates that the value is unknown

and 1, indicates an invalid value.

Type traits can be modelled using the extended boolean type given above, with one for
the real flag and one for the logical flag. While in theory this would allow 42 possible
combinations, in practice the value of one flag often dictates the value of the other
flag, as for instance a logical array cannot be complex. There are in fact only 7 valid

combinations including invalid, which are listed in Table 4.2.

real logical
Ts Ty
Tp false
false false
true Ty
true false
true true
Lo Lo

TABLE 4.2: Valid type trait combinations

Definition 4.8. To describe type traits, we define the lattice (T, Cy, Ty, Ly, U, My),
where T C B x B is the set of all valid tuples and is given in (4.2). The partial order
C, associated with T is given by (z,y) C; (z',y) <= z Cp 2’ Ay 5, ¢’ and is depicted
in Figure 4.2.

T = {(Tb, To), (Te, false), (false, false), (true, Tp),
(true, false), (true, true), (Lp, Lp)} (4.2)

Using Figure 4.1 as an example, [-1 2 pi] has traits ¢; = (true, false), 3 == 2 has
traits to = (true, true) and 23 + 3i has traits t3 = (false, false). The approximation
which best fits t; and t5 is ¢ L to = (true, Tp), while the intersection of the two trait
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T O

Ly, Ls

FIGURE 4.2: Visualisation of the type traits lattice, where each line indicates a covering
from top to bottom

tuples, t2 and t3 is tp My t3 = (Lp, Lp). The significance of these results will be explained

later.

4.2.3 Combining Classes and Traits

The class and type traits of an array are not entirely independent, as not all combinations
are legal. Specifically character arrays can only be real and cannot be logical, while cell
arrays, structures and function handles all return false to both isreal and islogical.
Additionally it makes little sense to have invalid traits with a valid class or valid traits

with an invalid class, so if either is invalid, the other must be as well.

Definition 4.9. The type of an array can now be described using the lattice, (T,Cr
, Tr, Ly, Up, M), where T is defined in (4.3), Ty = (T, T¢) and Ly = (L, L), If
Ty = (ky,t1) and Tp = (kg,to), then Th C Tp < ki C koVity Ctpand TH U T, =
(k1 Ukg, t Utsy).

T = T-{L)
K' = K — {cell, struct, function, char, Ly}
T = {(kt) |keK, teT}U
{{k, (false, false)) | k € {cell, struct, function}} U
{{char, (true, false)), (Lk, L;)} (4.3)

The following arrays have 7 = <cell, (false,false)> and Ty = <double, (false,false)>.

{10, [3 4j], ’abc’}
5 + j
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The best approximation which fits both Ty and Ty is T1Ur Ty = (T, (false, false) ), while
no array could have a type approximated by both T} and Ty and so T1 M7 T» = L. The
second result indicates that if the two types are both fully specified. (i.e. there are no T

terms), the meet of two types will always be L1 unless the two types are identical.

Ours appears to be the first approach to MATLAB, that considers the intrinsic type
(made up from the class and its type traits) and attempts to preserve it exactly as it
appears in MATLAB. All the compilers mentioned [58, 54, 2] have used a simplified type
system whereby types form a single increasing chain from L through boolean through
integer through real up to complex. This is also the case for the recent work by Joisha
[34, 32] which, while it goes further than previously and recognises multi-dimensional
arrays, ignores classes, instead continuing with the simplistic approach of others. All
of these works use lattices to find the least complex representation for variables which
means that memory utilisation can be minimised (since complex numbers require twice
as much memory as real numbers) and so that simpler instructions can be used (for
instance replacing floating point instructions with integer instructions). We have no
control over the actual types used but just wish to pre-evaluate calls that are directly

dependant on the types.

These compilers can take this approach because they are not producing MATLAB code
as output. Since MATLAB as produced by The Mathworks is the authoritative imple-
mentation, we choose to mimic their behaviour, although it could be argued that slavish
adherence to this standard sacrifices many optimisation opportunities. This does allow
us to use features of MATLAB like function handles and sparse arrays, which are not

available to these other compilers.

4.2.4 Dimension Information

The above abstract domain captures the types of arrays. As matrix manipulations are
the backbone of MATLAB, to enable many optimisations, we need to capture abstract
information about the shape of matrices. The shape of an array describes the size of
its dimensions. As loops are frequently controlled by the size of a matrix dimension,

knowledge of array shapes can enable loop unrolling.

Arrays have a number of dimensions, which is always greater than or equal to 2 and is
returned by the ndims function. Each dimension then has a size greater than or equal to
0. The size function is used to get the dimension sizes. Requesting a dimension beyond
the number of dimensions always returns 1. The shape of an array is defined initially in
Definition 4.12 and Definition 4.13. Figure 4.3 is an example showing two arrays, a and
b, along with some of the functions used to ascertain information about their shapes.
The indexed assignment to b creates a 1-by-2-by-3 element array consisting of all zeros

apart from a 1 at the indexed element.
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1 2 3
>> b(1,2,3) =1
b(:,:,1) =

0 0
b(:,:,2) =

0 0
b(:,:,3) =

0 1

>> ndims (a)

ans =
2
>> size(a)
ans =
1 3
>> size(a, 3)
ans =

1

>> ndims (b)
ans =

3
>> size(b)
ans =
1 2 3
>> size(b, 3)
ans =
3

FicURE 4.3: Examples of creating and examining arrays with different shapes

Definition 4.10. We define the extended set of non-negative integers N* = NU {w}.
We extend the ordering < on N¥ by stating Vn € N n < w and also w < n=n =w.

Definition 4.11. A range is a tuple (l,u), where [ € Nyu € N¥ and [ < u. Ranges
represent all the numbers between two inclusive bounds, which is to say (I, u) is a valid
approximation of z, if [ < 2 < w. The most constrained approximation to z would
be (z,z). We define the set R to contain all possible ranges with the addition of the
L1, element to indicate an invalid range (R = {{l,u)|l € Nyu € N¥,[ < u} U {L,}).
The supremum is the least constrained range possible, ie. T, = (0,w). We define
two functions: low({l,u)) = | and up({l,u)) = u. We also define join (L) and (M)

operations on this set.

ze€(l,uy < z>IAz<u, wherez € N¥
(hyur) G (l,ue) <= L 2>bAu Su
(li,u1) Ur (loyug) = (min(ly, o), max(ug, ug))
) M Gy us) = { (maxlty,lz) minfus,a)) 4 S va il S

L. otherwise

Throughout this chapter we use ranges to represent the possible values, shape charac-
teristics can have. Note that while the lower bound must be finite, the upper bound can
be w. This makes the range unbounded, which is useful in the case where little or no

information is available.
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Definition 4.12. The number of dimensions of an array is a range as defined in Defini-
tion 4.11, except that the lower bound is always at least 2, as MATLAB arrays always
have at least 2 dimensions. This is given by the set, N = R—{(1, ) [ 7 € {0,1},j € N}
The top element in N is T,, = (2,w). The partial ordering C,, and operations M, and

L, are equivalent to C,, M, and L, respectively.

Definition 4.13. To represent the list of dimension sizes for an array, we introduce the
,Tn) € R* and the
invalid list L4. We also define two functions low(i,d) = low(r;) and up(t,d) = up(r:),

set, D = R* U L4. This includes all sequences of ranges, (ry,ro,...

which return lower and upper bounds from a list of dimensions, d. The length of a
list, d, is given by |d|. Below the operators are defined using d = (ry,72,...7,) and

d = (ry,7h,...7m1,), although Uy, My and Ty are only defined for n = m.

dCyd <« VieZ%,i<|d, rC,r
dUgd = (riUpry, .o, rp Up )
dngd = (riNpry,...,rp07))

d-d = (T1,72, o oy Ty T1 Ty ey T

Definition 4.14. The function in (4.4), given ¢ € Z*, n € N and d € D, gives the
range representing the size of the ith dimension. This function combines the information
present in the elements of N and D and is the basis for our later creation of a canonical
form for the shape. The function is comprised as follows: if the desired dimension is in
the list of dimensions then the value is the ith range in the list of dimensions; else if the
dimension number is less than the number of dimensions, the dimension size is unknown
so the value is T,; otherwise the dimension is beyond the number of dimensions and
therefore its size is 1. Not all values of n and d give meaningful values for Definition 4.4

and we will describe constraints in Section 4.2.6.

1, ifn=1,vd=ly
dim(i,n, d) = (low(i,d), up(i,d)) if i <|d] (4.4)
(0,w) if |d] < < up(n)
(1,1) otherwise

4.2.5 Definedness

We also need to consider the possibility that a variable may not be defined. When a
function is called, it does not need to be passed as many parameters as there are in
the function signature, resulting in some of the function parameters being undefined.
Variables can also be undefined if they are only set on one branch of a conditional
statement or in the body of a loop that may never be executed. In this case, it would be
unknown whether the variable was defined, since we do not what branch will be taken.

This is not a problem for a MATLAB interpreter, since the decision about whether
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the variable is defined is taken only after the branch has been chosen. Although it is
quite possible to write code like this and have it run without error (assuming the right
branches are always taken), it can be difficult to determine this statically and it is almost
always an indication of programmer error. The defined flag is § € B. It is an error to
use an undefined variable, but the built-in function exist can take a variable name as

a string and returns whether a variable with that name is defined.

Storing information about definedness allows us to remove calls to exist at partial
evaluation time, which can often lead to the removal of conditional statements. In

addition some uses of undefined variables can be caught earlier.

4.2.6 Putting it all together

We have now developed all the components of our type system, which allows us to
describe many different attributes of MATLAB arrays when information about their
values is not available. The full type of a MATLAB array could now be described by
T x N x D x B, but this is insufficient as the individual components of the type are not
entirely independent. It is possible to produce many n € N, d € D which give the same

values of dim(7,n,d) for all ¢ € Z™, for instance:

ni = (2,2), di = {(1,1),(1,1))

ne = (3,3), do = {((1,1),(1,1),(1,1))

ny = (2,3), dz = ((510),(2,2))

ng = (2,3), da = {((510),(2,2),(0,w))

ns = (2,3), ds = {((5,10),(2,2),(0,w), (1,1),(1,1))

In the above examples, (n1,d;) and (ng, d) represent the same shape. However MAT-
LAB would return 2 as the value of ndims and so the value of ng is wrong. The same
values of dim would also be given for (ng,ds), (n4,ds) and (ns, ds) so clearly redundant
information is present in ds and ds. Finally if n = (2,2) and d = ((1,1),(1,1),(2,2)),
then clearly n and d contradict each other, as there are 3 dimensions. In order to do
comparisons of types, there needs to be a concrete description of each type with no
ambiguity. In addition if a variable is undefined, it is meaningless for it to have shape or
intrinsic type. If its definedness is unknown, it can still have shape and type as might
be the case when a variable is defined in only one branch of a conditional statement.

The constraints on the type are thus given below:

1. If an array, with full type (¢,n,d,d), is undefined, e.g. & = false, then the values
of £, n and d can only be Lp, 1,, and 1, respectively.

2. The shape must be in the canonical form described in Definition 4.15.
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Definition 4.15. The canonical form (n',d’) of (n,d), where n,n’ € N and d,d’ € D,
is calculated as follows with | = low(n), v = up(n), and d; as the ith range in d. We

also define 1 = (1,1) and co = (0, w).

)

1. fn=1,0rd= 1y, thenn = 1, and d' = 1, otherwise go to step 2

2. If Vj € Z*+,dim(j,n,d) = 1, then choose I’ = v’ = 2 and go to step 5, otherwise go
to step 3.

3. Choose u’ such that v’ = max(2,z), where dim(z,n,d) # 1 and Vi > z,
dim(i,n,d) = 1.

4. Choose !’ such that I’ = max(2, y), where dim(y, ([, u'),d) M, 1= L, and
Vi >y, dim(j, {,v'),d) Ir 1.

. Choose n' = (I',4'), and d’ such d' = trunc(d,i),! where dim(i,n’,d) # oo and

Vk,i < k <, dim(k,n’,d) = c0.

(@2

The canonical form produces the correct values for the MATLAB function ndims and is
the most compact form possible. Without a canonical form, two identical shapes could
have different values of (n,d), whereas with the canonical form, these values must be
identical. This reduces the problem of comparing shapes to checking for equality. The
function canon(n,d) gives (n',d'), where n’ and d’ are the canonical forms of n and d.
Using the examples from the previous page, we see that canon(ni,d;) = canon(ng,dz) =

(n1,d1) and that canon(ns,ds) = canon(ng, ds) = canon(ns,ds) = (ns, ds).

Theorem 4.16. The canonical form (n,d) of (n',d’) is the most compact form, for
which dim(i,n,d) = dim(i,n’,d'), Vi € Z*.

Proof. To see that the canonical form is the most compact form possible, it is necessary
to try to remove elements from the list of dimension sizes. If it is possible to do this

without loss of information then it is not the most compact.

If the canonical form (n,d) is not the most compact, then (n, trunc(d, |d| — 1)) must be
an equally valid form. Validity is determined by whether the same values are calculated

by the function dim. If it is valid then:

dim(|d|,n,d)) = dim(|d],n,trunc(d,|d| — 1))

= X
But by step 5 in Definition 4.15, d was chosen so that dim(|d|,n,d) # oo. Thus removing
one element must entail a loss of information and so the canonical form is the most

compact. 0

! tmnc((al,az,...,am,..‘,an),m) = (a1,az2,...,am}, where m < n.
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Joisha [33, 32] also describes canonical shapes and coins the term selective rank demotion
to describe how excess 1 elements can be removed from the end of dimension lists with
no loss of information. Since their work is for a compiler, it has a different focus as with
the intrinsic types. One of the key aims is to determine if two arrays have the same
shape even when this shape information is unavailable. This allows run-time checks for
shape equality to be removed. This information is less likely to be useful at partial

evaluation time.

Definition 4.17. While the canonical form is the most compact, it is difficult to work
with as the two components must be kept synchronised. It is often easier to convert the
list of dimensions to an infinite list, manipulate the list and then convert it back, as the
infinite list is conceptually simpler. To this end, we give the definition of canon : R® —
N x D.

1. If 34,d; = L, then s = (L, L4) otherwise go to step 2.

2. If Vj € Z*,d; = 1, then choose I’ = v/ = 2 and go to step 5, otherwise go to step
3.

3. Choose v/ = max(2, z), where d; # 1 and Vi > z,d; = 1.
4. Choose l' = max(2,y), where dy, M, 1= 1, and Vj > y,d; 3, 1.

5. Choose d' = trunc(d, max(2,17)), where d; # oo and Vk,7 < k < v/,dy = o0, and

n’ = (I';,4). Choose s = (n',d').

From this definition, it can be seen that there are some d € R®, for which no canonical
form exists, since the canonical form must be finite. An infinite list consisting solely of
(1,w) cannot be canonicalised, which means there is no way to represent the shapes of

all non-empty arrays.

Definition 4.18. We define a function pad(d, u, m), whered € D,u € N¥,m € N, which
gives a list of dimensions of size m, padding out any missing elements with oo and 1 as
appropriate. This function is necessary as the operators defined in Definition 4.13 can
only be used with lists of equal length. Note z = min(u,m) — |d| and y = m — z.

pad(d,u,m) = d-{co...00)-(1...1)

—— ——
x y
Definition 4.19. We now define the shape to be S € N x D with the restriction
that S must always be in the canonical form described in Definition 4.15. So in fact
S = canon*. We now define the lattice (S, Cg, Ty, L, Us, M), with T4 = <(2,w>, (>> and

1s = (L, 1g). The partial order and join and meet operations are now defined with
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51,82 € 8,81 = (n1,d1), 82 = (na, dy)

dy = pad(di, up(n1), max(|dy|,|dz))

5 = pad(dy, up(nq), max(|ds], |d2|))
s1Us8y = canon(ni U, ng, dj Ug d5)
s1Mssy = canon(ny My ng,d) Mg db)

515580 <= miLCuneAdi Cgdo

We can describe many shapes using our canonical form, but in one area it is deficient:
It cannot be used to specify a minimum value that would be returned by ndims without
also specifying the size of some dimensions. Since an array has 3 dimensions if the third
dimension has size 0 or greater than 1, there is no way to specify this without also

including 1, which gives the possibility that the array might only have 2 dimensions.

Definition 4.20. The full abstract type can now be represented by C C T x S x B.
The full type lattice is thus £, = (C,C¢, T, Lo, U, Me) with To = (T, Ts, Tp) and
1. =(Llp, Ls, 1p). Given cg,c2 € C, where ¢; = (t1,51,61) and c2 = (t2, s2,82), with
t1,t0 € T, ny,no € N, dy,dr € D and 61,62 € B.

c1Cecy &= tiCrtaAsiCgsaNd Tpdo
cilUcea = (t1Upta, 51 Ug s2,01 Lp d2)

c1leea = (tiMrta, 1M 2,0 M do)

In later chapters we will use £, extensively in our data flow analysis, to show how type
information is propagated as a program is executed. The join operation for the full type
(W) is of great importance as it can be used to merge the types of variables emerging
from two different paths of a conditional statement. The meet operation for shapes (M)
is of use with operators where the operands must have the same shape. In which case
the meet of the two shapes will be L1, if the shapes are incompatible. The functions,
shape : C — S and type : C — T can be used to extract the shape and type components
from a full abstract type tuple.

4.3 Full Type System

In the previous section, we defined the abstract type system. This is used to capture
information about dynamic data in programs when the actual value is unknown. On the
other hand, full static information is frequently available and is vital to the effectiveness

of any partial evaluator.

When the value of a variable or expression is known statically, the value is stored in the
MATLAB library type, mxarray. This is the structure which is passed to all MATLAB
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library function calls and is capable of expressing all the MATLAB types available to
the libraries.

Definition 4.21. We define the set, M, to contain all possible mxarray structures.

Definition 4.22. Combining C, from Definition 4.20, with M, from Definition 4.21,
gives us all the expressiveness required for the symbolic execution method used by MPE.

Below we define the set of tagged values, A, used by our execution engine.

AY = {(dynamic,c)|c € C} (4.5)
A® = {(static,m)|m € M} (4.6)
A = AfUA (4.7)

Definition 4.23. Often static arrays need to be made dynamic, as in the case of op-
erators where one operand is static and the other is dynamic. For this we define the
abstraction function, o : A — C. We also define a concretisation function, v : A — PM,
which gives us the set of all arrays that fit the abstraction. For a € A® ~v(a) is a set
with only one value. The function v/ : A — M, is only defined when |y(a)| = 1 (when
there is only one concrete value associated with an abstraction) and is equal to that
one static value. It is however still defined for some a € A, since a fully specified class
and traits, along with a completely specified but empty shape, has only one valid static

array which could represent it.

The following code demonstrates the information that is extracted from the static array

to get the dynamic array representation.

n = ndims(a);

dims = size(a);

defined = 1;

isreal = isreal(a);
islogical = islogical (a);

k = class(a);

Each of these values is then converted into the form used by the abstract representation.
For instance ndims returns a positive integer, which is converted into a range using the
following equation.

convert_to_range(n) = (n,n) (4.8)

The list of dimensions, returned by size, is a list of positive integers, which is converted

into a equivalently sized list of ranges.

convert_to_ranges({(di,...dn)) = {((di,d1),...(dn,dn)) (4.9)
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The type properties returned by isreal and islogical are integers which need to be
converted to concrete boolean values.

t ifb=1
convert_to_exbool(b) = { rue (4.10)

false otherwise

The class function returns a string representation of the class which maps directly to

a member of K as in (4.1).

We now define a partial order over A (a1,as € A), with supremum, T, = (dynamic, T,):

a1 Coay <= (a3 € AYAafar) Ty afaz)) Vi(ar € A" Aay = an) (4.11)

With this definition, static values are never looser than dynamic values. The most
accurate abstraction of the value of a variable is the value itself. The join operator is

defined as follows:

(4.12)

g a; ifa, e A’ Aap = as
a) ax =
¢ (dynamic, a(a)) Ue a(az)) otherwise

This operator is fundamental to merging the states from the branches of conditional
statements. If a variable is assigned the same static value on both branches, the state
will contain this same value after the conditional. On the other hand, if each branch
sets it to a static but different value, the value will be abstracted and an approximation

to the type will be recorded in the environment instead.

In the following subsections, we will derive equations for calculating various pieces of
type information required for the symbolic execution. In Sections 4.3.1 and 4.3.2, we
give equations for calculating the shape resulting from each of the binary and unary
operators. In Section 4.3.4, we give the equations for determining the shape resulting
from the various forms of array indexing. Section 4.3.5 gives equations for finding the
class resulting from using the various operators, while Section 4.3.6 does the same for
traits. Section 4.3.7 then brings together the previous sections with regard to calculating

full type information for operators.

4.3.1 Shape Equations For Binary Operators

Most binary operators in MATLAB are called element-wise binary operators, including
+, .* and ==. These either operate on two arrays with equal dimensions, one non-scalar
and a scalar or two scalars. They always result in an array of the same shape as the
non-scalar operand (or a scalar in the case of two scalars). In this section, we will derive
equations for calculating the shape resulting from a binary operator given the shapes
of its operands. Joisha [33], also derives equations for the shape resulting from binary

operators, using his type formalisation.
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Assuming a binary expression a @ b, where a and b have shapes s,,5, € S and s, is the

shape of a scalar, then the two scalars case is represented by:

s1 = (Sa Mg Ss) Ms (Sb M Ss)
= 84 M 5p M s, (4.13)

The case where both are non-scalars is given by:
S9 = 84058y (4.14)
When the first operand is a scalar and the second an array, we have:
s3 = 1nc(sq,Ss) Mg Sp (4.15)
Similarly, when the second is a scalar we have:
s4 = 1inc(sy,Ss)Ms sq (4.16)

The function, inc : S x 8 — S, is defined to be T, when the first shape also includes

the second and L, otherwise:

inc(a,b) = 4 ¢ Hadsb (4.17)
1s otherwise

The resulting shape, binop,(sq, Sp), is given by the combination of (4.13), (4.14), (4.15)
and (4.16):

binop(sa,sp) = 81 Us 89U s3Us sS4
= (8 Ms SpMss) Us (8 Ms 8p) Us (inc(sq, Ss) Ms sp) Us (inc(sp, s5) Ms Sa)

= (8q Ms 8p) Us (1nc(sq, Ss) Ms 8p) Us (inc(sp, s5) Ms Sa) (4.18)

If binop,(sqa, sp) is Lg, it implies that applying an array binary operator will result in an

error as the shapes are incompatible.

The matrix multiply operator, *, is the same as the array multiply operator, .*, except
when neither operand is a scalar. In this case both operands must be matrices with

matching inner dimensions, the equation for which is given below, with s;; = dim(s;, j):

S5 = ((2, 2), (Sa1, sb2}> Ms eq(Sa2, Sb1) Ms matriz(sq) Mg matriz(sy) (4.19)
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The functions, eg : R xR — S, neg : R x R — S and matriz : S — S, are defined as

follows (neq is not used here, but is required later in this chapter):

1y ifdinNdy =1,
eq(dy, dz) = { s ha@ (4.20)

Ts otherwise

Ts if di £ dy
neq(di, d = 4.21
9(d, dz) { 1, otherwise ( )
matriz(s) = T, if ndims(s) 3, (2,2) (4.22)
15 otherwise .

The shape resulting from matrix multiplication, multiply,(sg, ss), is then given by the
join of (4.13), (4.15), (4.16) and (4.19):

multiply(sq,Sp) = 81 L83 LU 84U 85
= (84 M spMss) Us (inc(sq, Ss) Ms Sp) Ls
(inc(sp, 8s) Ms 8q) Ls (<(2, 2), (Sa1, Sbg>> Ms

eq(Sa2, 5p1) Ms Mmatriz(sq) Ms matriz(sp)) (4.23)

Left matrix division (a \ b), works like array division when the first operand is a scalar,
but otherwise requires two matrices, each with the same number of rows. The result will
have as many rows as the first had columns and as many columns as the second matrix,

since it computes a~!b.

mldivides(sq, sp) = (inc(sq, ss) Ms 8p) Ls (matm’:c(sa) Ms matriz(sy) M

eq(sa1, 551) Ms ((2,2), (Sa2, $62))) (4.24)

Right matrix division (a / b), works like array division when the second operand is a
scalar, but otherwise requires two matrices, each with the same number of columns. The
result will have as many columns as the first had rows and as many rows as the second

matrix.

mrdivides(sq, 8p) = (inc(sp, ss) Ms 8q) Ls (matm’r(sa) Ms matriz(sy) M

eq(sa2, sv2) Ms ((2,2), (51, 501))) (4.25)

The final binary operator is matrix power (a ~ b), which requires one operand to be a
scalar, while the other must be a square matrix. The result has the same shape as the

matrix.

mpower (Sq, Sp) = (inc(sa,ss) M <(2, 2), (sp1 Ms Sp2, Sb1 s sb2)>) Lls
('mc(sbv ss) Ms <<27 2), (841 Ms 8a2, 8a1 Ms 3a2>>) (4.26)
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4.3.2 Shape Equations For Unary Operators

There are only 4 unary operators in MATLAB: unary plus and minus as well as two
types of transpose. The transpose operators, ’ and .’, both require a matrix operand

and result in a matrix with the number of rows and columns swapped.
transps(s) = canon({ndims(s) M, (2,2), (dim(s,2), dim(s, 1)) (4.27)

If the operand is not a matrix (i.e. it has more than two dimensions), ndims(s) M, (2,2)

will be L,, indicating an error.

The other two unary operators, - and +, produce a result with an identical shape to the

operand.

4.3.3 Shape Equations For Built-in Functions

In this section, we will give shape equations for the results of executing built-in functions.
We only demonstrate a few of these, since there are at least 300 built-in functions in
MATLAB 6.1. This seems a lot, but many of these do not return values or return
values with trivial shapes such as scalars. In addition many functions share the same
shape characteristics. Our interest here is only to demonstrate functions, which return
values whose shapes can be determined by examining the shapes of the parameters. The
functions examined in this section are size, horzcat, vertcat and cat. We also look

at numel which returns a scalar and is useful in other equations.

The size function, when invoked with one parameter and one output, returns a row
vector containing the size of each of its dimensions. This vector always has at least two
elements as arrays always have at least two dimensions. Even when an array is dynamic,
this function can be fully evaluated, when the dimension information itself is static. If

it is not static, we can infer the shape of the size vector itself.

size(s) = ((2,2), (1, ndims(s))) (4.28)

The function numel gives the total number of elements in an array. This is given by the
product of the sizes of all the dimensions. The number of elements in an array is given

by the function, numel : S — R.

numel(s) = H dim(s, 1) (4.29)
i€zt
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Multiplication over R. is defined as follows:

(0,0) if up =0Vuy=0
(L, ur).(lo, ug) = (.12, w) fu=wvVu =w (4.30)

(I3.l2,u1.us) otherwise

Clearly if numel(s) = (z,z), the result is static and the function call can be removed
and replaced with a constant value. While (4.29) requires iteration over an infinite set,

it is not difficult to rework this for our canonical form:

H1§i§|d| ds if |df =u

<D’ (Hlﬁiﬁhﬂ up(di)) .w> otherwise (4.31)

numel ({{l,u),d)) =

Another important function is horzcat, which concatenates two arrays horizontally.
This function is used implicitly in the construction of matrices as [2 2] is equivalent to
horzcat(2,2). Vertical concatenation is done using vertcat, which is used implicitly
in expressions like [1; 2]. Concatenation along any dimension is possible using cat

with the dimension number as the first parameter.

If concatenation is along dimension 4, then all dimensions except for 2 must be the same
size or an error will result. The resulting shape will have all of these dimensions the
same size, while dimension ¢ will be the sum of the sizes of dimension 7 in the parameter
arrays. The one exception is if one of the arrays is the empty matrix, [1, which has
shape ((2,2), ({0,0), (0,0))). Concatenating [] with z or z with [], results in z. Other
empty arrays, (e.g. zeros(10, 0)), do not have this property. We define two auxiliary

functions empty and notempty, which give T, if the shape could possess the requisite

property.

) Tsif s 36 ((2,2),((0,0),(0,0)))
empty(s) = { 1s otherwise (432)
notempty(s) = { IS ioft;:réwiii’ 2),(10,0),{0.0))) (4.33)

We now derive an equation giving the shape resulting from the function call cat(n, a, b),
where a and b have shapes, s, and s, and n € Z is the value of n. Below are the two

cases where either of the two arrays to be concatenated could be empty.

s1 = empty(sy) M sp (4.34)
sp = empty(sy) Mg Sq (4.35)

To do concatenation of non-empty arrays, we define a function setdim : S x Z x D — S,

which, given a shape, is equal to it, but for a specified dimension set to a new size. We
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also define a function plus : R x R — R, which gives the sum of two ranges.

replacedim((dy,...,dp),i,d) = (di,...,di_1,d,diyq,...,dn) (4.36)
setdim({(l,u),ds),i,d) = canon(replacedim (pad(ds,u,c0),i,d)) (4.37)

L, ifry=1,vra= 1,

(low(r1) + low(ry), up(r1) + up(re)) otherwise (4.38)

plus(ri,m) = {
The shape produced by concatenating two non-empty arrays along a dimension, 1, is

given be s3:

s3 = notempty(sy) Mg notempty(sy) Mg

setdim(setdim(sg, 1, 00) My setdim(sy, i, 00),%, plus(Sqi, Spi)) (4.39)

The function concat : S x S x N — S gives the shape produced by concatenation along
a specific dimension and is the combination of (4.34), (4.35) and (4.39).

concat(sq, Sp,1) = 81 Ug s9 L s3
= (empty(sa) Ms 5p) s (empty(sb) Ms Sq)Us
(notempty(sq) Ms notempty(sy)Ms

setdim(setdim(sq, 1, 00) My setdim(sy, 1, 00), 1, plus(sq, sbi)))
(4.40)

4.3.4 Shape Equations For Array Indexing

The shape resulting from array indexing is dependent on both the shape of the array
being indexed and the index. In addition logical indexes have a different behaviour
to non-logical indexes. Indexing using normal parentheses (a(1:3)) is also different to

using braces (a{1:3}).

Indexing using braces is used for extracting elements from cell arrays and produces shape
results which cannot be inferred from the shape of the cell array. As no information
is stored about the contents of cell arrays, we cannot say anything except to recognise
when an index is out of bounds. As such, this is an example where we do not want to
immediately abstract all of the values involved if one of them is dynamic. For instance,
a(1==0), is always [], regardless of the contents of a, so long as it is defined. This is

true whenever the index is logical and contains only 0Os.

In the following subsections we will derive shape equations for the result of an ordinary
(using normal parentheses) array index. The four types of array indexing described

are: indexing with a single non-logical value, indexing with multiple non-logical values,
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indexing with a single logical value and finally indexing with multiple indices where the

final one is logical.

4.3.4.1 Single index non-logical subscripts

We will first consider subscripts with only one index. If the index is not logical, then
the result will normally have the same shape as the index. Unfortunately it is not quite
that simple, in that MATLAB considers vectors to be special cases and gives different
behaviours for them. In the case of indices, a vector is an array with 2 dimensions and
either only one row or column of non-unit length. The array being indexed is considered

a vector if all but one of its dimensions has unit length.

When both the array and the index are vectors by the definitions above, the result will
be a vector, along the non-unit-length dimension of the array, with the same size as the
index. Consider the array access p(q), where p has size [a b] and g has size [c d],
then p(q) will have size [e f]. Normally e = ¢ and £ = d, but Table 4.3 below gives
the exceptions caused by the vector behaviour. For array accesses on multi-dimensional
vectors, the result will also be a multi-dimensional vector, although this is not shown

in the table. Here we define the function array_vector : S — PZ*, which gives the

P = ]
== O = O
H OO = = = Ol
B O = = = O|lo
== H OO~

— =38 oo —lo

TABLE 4.3: Non-regular matrix accesses using a single index

dimensions which could be of non-unit length when all the others could be unit length.
In addition indez_vector : S — R, gives a range approximating the length of the index

if it is a vector.

array-vector(s) = (it € NA | neg(s;,1) M, |_| (eq(sj, 1)) | = T, p (4.41)
jEN=-{i}

indez_vector(s) = |_| s; Mr neg(si, 1) My |_| (eq(sj,l)) (4.42)
i€{1,2} jEN—{i}

Using these two functions, we can develop a flawed equation for the list of dimensions

produced by indexing into an array.

d= |_| (1...1).(indez_vector(sp)).(1...1) (4.43)

i€array._vector(sa) ;7 0o
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This equation is fine for all cases where the upper limit of the number of dimensions in
Sq 1s finite. Unfortunately if it is w and the value of index_vector(sy) is not 1 or oo then
there will be no canonical form of the shape, as the size of ithe dimensions list will be

infinite.

Our solution is to sacrifice some accuracy when the list of dimensions is not complete
(because it has been padded out with oo). This is not a great problem, as lack of
information about the number of dimensions usually indicates that not all that much
was known in the first place. To do this, we define a function, vector : S X R — S,
which given the shape of the indexed array and a range which will be the length of any

new vector, returns the shape describing all the possible vectors.

vector(s,r) = s Us canon(d') (4.44)
indices = array-vector(s) N {i € NJz < |dims(s)|} (4.45)
s = 1...D).({r.(1...1 4.46
U ot DL ) (4.4
i€indices i—1 0o
( L. L, if up(ndims(s)) = |dims(s)|
[o o]
1...0)({T,...T, if up(ndims(s)) =w
Y (1 10T Ty p(ndims(s)) )
|dims(s)| o0
(1...1)( Tr...Ts ).(1...1) otherwise
S N——— N —
|dims(s)|  up(ndims(s))—|dims(s)| o0

No accuracy is lost if up(ndims(s)) = |dims(s)|. Using canon from Definition 4.17, the

final result for a single index subscript involving vectors is:
vecsubscript(sq, Sp) = vector(s,, indez_vector(sy)) (4.48)

Now it is necessary to bring in the standard case where either the array or index is not

a vector (notvec : S x S — S).

Ts if _vect = @V indez._vect =1
notvec(sa; 5) = s 1 ar'ray. vector(sg) indez _vector(sy) . (4.49)
1ls otherwise
The final equation is therefore (subscript : S x S — S):
subscript(sq, Sp) = (notvec(s,, sp) Ms Sp) L vecsubscript(sq, Sp) (4.50)

4.3.4.2 Multiple index non-logical subscripts

Indexing into an array with multiple indices, none of which are logical, is very simple

to understand. Each of the indices is flattened so that all its elements form a vector.
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Its length is the product of the sizes of all of its dimensions. This is the value that
is returned by the numel built-in function, for which an equation was given in (4.31).
The resulting array will have as many rows as the first index has elements and as many
columns as the second index has elements and so on for further indices. If the indexed
array has more dimensions than there are indices then the extra dimensions are flattened

into the final one.

The equation for array indexing with multiple indices is therefore (subscript : S x 8* —
S):
subscript(sa, (S1. .. sn)) = canon ((numel(sy), ... numel(s,)).(1...1)) (4.51)

——
[

4.3.4.3 Single logical subscripts

A single logical index acts like a filter, where non-zero elements select elements in the
array to extract. The extracted elements are placed in a vector. The vector can have
as many elements as the index has, but could also be empty. This number is given as a

range by Inumel : S — R.
Inumel(s) = (0, up(numel(s))) (4.52)

As with non-logical single index subscripts, when vectors are involved, the analysis
becomes complicated. When the indexed array is a vector (along any dimension), the
result will also be a vector along that dimension. When the indexed array is not a vector
then the type of the vector produced depends on whether the index has more than one

row. If it does the result will be a row vector, otherwise it will be a column vector.

The index can be larger than the array into which it is indexing, but an error will occur
if a non-zero element occurs in a place which would retrieve a non-existent element. For
the purposes of this analysis we will ignore this error case and assume that only valid

elements are accessed.

The vector case is covered by:
s = vector(sq, Inumel(sp)) (4.53)
The non-vector case is covered by (negq is given in (4.21)):

s" = ((2,2), (neg(sp1,1) My (Inumel(sy), 1)) s (eg(sp1, 1) Mg (1, Inumel(sy))))  (4.54)
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class(a) | class(b) | class(c)
double | double | double

double | sparse | double
double char double
sparse | sparse | Sparse

sparse char double

char char double

TABLE 4.4: Class table for addition like binary operators. (Only valid classes are shown
- all other classes would produce an error).

The final shape equation for single logical subscripts is:

subscript;(sq, 85) = &' Ugs”
= wvector(s,, Inumel(sp)) Us
(nonvec(sq) Ms {(2,2), (neg(sp1, 1) Mg (Inumel(sp), 1)) Us
(eq(se1,1) Mg (1, Inumel(sy))))) (4.55)

4.3.4.4 Multiple indices with a final logical index

With multiple indices, only the final index can be logical or an error will occur. The final
logical index filters over the remaining dimensions, which are all flattened into one. Like
the non-logical case, the size of each index gives the size of the corresponding dimension
in the result. The dimension corresponding to the logical index has a size between 0
and the maximum number of elements of the logical index (as would be given by the

function numel). The function subscript : S x S* x S — S, gives the resulting shape.

subscript(sq, (S1 ... Sn), Sp) = canon(<numel(sl), ... numel(sy ), Inumel(sy), 1>)

~ (4.56)

4.3.5 Class Equations For Operators

The class of an array produced by operators is often predictable. For instance adding
two real double arrays will produce a real double array. Adding two real sparse arrays
will produce a real sparse array, but adding a real double array to a real sparse array
will produce a real double array. On the other hand array multiplication of a sparse

array by a double array produces a sparse array.

Table 4.4 and Table 4.5 show the resulting class for addition and array multiplication.
Since these operators are symmetric, redundant entries have been removed. Table 4.6
shows the class table for the non-symmetric operator, array right division. Left division

will be equivalent to swapping the operands. Since only double, sparse or char classes are
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class(a) | class(b) | class(c)
double | double | double
double | sparse | sparse
double char double
sparse | sparse | sparse
sparse char sparse

char char double

TABLE 4.5: Class table for array multiplication like binary operators.
classes are shown — all other classes would produce an error).

class(a) | class(b) | class(c)
double | double | double
double | sparse | double
sparse | double | sparse
double char double

char double | double
sparse | sparse | sparse
sparse char sparse

char sparse | double

char char double

class(a) | class(b) | class(c)
double | double | double
double | sparse | sparse
double char double
sparse | sparse | sparse
sparse char sparse
char char double
single * uint8
int8 * uint8
int16 * uint8
int32 * uint8
uint8 * uint8
uint16 * uint8
uint32 * uint8

the table).

(Only valid

TABLE 4.6: Class table for right array division. (Only valid classes are shown — all
other classes would produce an error).

TABLE 4.7: Class table for logical binary operators. (* indicates includes any class in
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defined for arithmetic operations, we define the function, arith, : K — K, to determine

whether an operand is valid:

Tk if ¢ € {double, sparse, char, T}

i (4.57)
Ly otherwise

arithg(c) = {

Using the previous tables, we can easily derive the following function:, plus, : K x K —
K, multiply,, : K x K — K, rdivide, : K x K — K and ldivide;, : K x K — K. These

functions all use the operand classes to determine the class of the result.

plusi(ci,c2) = (c1 My double Ny arith(c2)) Uk (c2 Mg double My, arithy(c1)) Uk
(eq(c1, char) My double My arithi(ca)) Uk
(eq(cz2, char) My double Ny arithg(c1)) Uk (c1 My c2 My sparse)(4.58)

multiply(c1,c2) = (c1 Mk sparse Ny arithi(ce)) Uk (c2 Mk sparse My arithy(c1)) Uk
((eq(cl, double) Uy eq(c1, char)) Mg
(eq(ca, double) Uy eq(co, char)) My double) (4.59)
rdivideg(c1,¢c2) = ((c1 Mk double) Uy (cq My sparse) Uk
(eq(cy, char) Mg double)) My, arithi(c2) (4.60)
ldivideg(c1,c2) = ((co Mg double) Uy (c2 Mk sparse) Uy
(eq(ca, char) My double)) My arithg(c1) (4.61)

The types of the matrix operators, *, / and \, are more complicated than the array
binary operators. If the operator is used as a pure matrix operator then the result is
different to when one of the operands is a scalar and an array operation takes place.
Since this is dependent on knowing the dimensions of the operands as well as their types,
the full type equation is deferred to later. Assuming the true matrix operation semantics
are being used, then matrix multiplication and left and right division have an equivalent

class equation to addition.

Table 4.7 shows the classes produced by logical operators such as equals, greater than
and logical and. These operators are all symmetric and produce a valid output for all but

the cell array, struct and function handle classes. This is modelled using the function,
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lbinop, : K x K — K.

K., = {single,int8,int16,int32, uint8, wint16,uint32}  (4.62)
Kiny = {cell, struct, function, 1} (4.63)
1 if ¢c1 € Kiny Vo € Kipo
uint8 if et € KyVege Ky,
lbinop,(c1,c2) = T =T Ve=T, (4.64)

sparse if c1 = sparse V ¢y = sparse

| double otherwise

4.3.6 Trait Equations For Operators

All the operators in MATLAB can accept both logical or complex operands. Logical
arrays only differ in behaviour when used as indices and so are equivalent to non-logical
arrays in this context. The main problem with arithmetic operators comes from complex
arrays. It cannot be determined statically whether the result of adding two complex
arrays will be complex as well. In addition, complex arrays with no imaginary component
can be created, meaning that a complex array added to a real array is not necessarily
complex. The only certainty exists when both operands are real, in which case the result

will also be real. The function, binop; : T X T — T models this:

binop; ((r1, 1), (ra,l2)) = (true, false) if r; | Tue Ao TUe (4.65)
(T, false)  otherwise
For unary minus, we have umin; : T — T:
uming((ry1)) = (Teedebse) AT = true (4.66)
(T, false)  otherwise

The transpose operators retain the logical trait from the operand and so we have,

transpy, : T — T:

(true,l) if r = true

4.67
(Tp,1) otherwise ( )

transp; ({(r, 1)) = {

4.3.7 Full Type Equations For Operators

In this section, we bring together the equations from the previous sections, to give full

type equations encompassing both binding, shape, class and type trait information.

The full equation for unary minus, umin : A — A, is a simple case. If the operand

is static, then apply the operator to the concrete representation, otherwise an abstract
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representation is found:

umin((b,v)) = (static, mtlerp_u_.op(umin, v)) if b= static (4.68)
(dynamic, uming (a(v))) otherwise
uming((k, t),5,6)) = ((uming(k), umini(t)), s, true) (4.69)

The full equation for transpose, transp : A — A, is as follows:

tatic. intern.. T :

transp((b,v)) = (static, interp_u_op(transpose,v)) if b statlc(4.70)
(dynamic, transp ,(a(v))) otherwise

transp, ((k,1),5,8)) = ((transpx(k), transp;(t)), transp ,(s), true) (4.71)

Addition has the function, plus : A x A — A.

(static, interp_b_op(plus,vi,vo)) if by = static A by = static
(dynamic, plus, (a(v1), a(v2)))  otherwise

plus((b1,v1), (b2, v2))) = {
(4.72)

plus,((k1,t1),51,61), (k1,t1), s1,01)) = ({binopk(k1, ka), binop(t1,t2)), binop,(s1, s2), true)
(4.73)

All arithmetic array binary operators, like subtract, multiply and power, have very

similar equations, differing only in which concrete function is called. Logical and is an

example of a logical binary operator like equals and greater than.

(static, interp_b_op(and, v1,v2)) if by = static A by = static

and((b1,v1), (b2, v2))) = {

(dynamic, ands(a(v1), a(ve))) otherwise
(4.74)

anda(<<klat1>a S1, 61>7 <<k21t2>a 52, 62>) = <<lbln0pk(k17 k?)a (tmev tme>>7 biTLOpS(Sl, 32)7 tme>
(4.75)

The full equations for matrix multiply, divide and power are very similar to the equations

already given here but with the functions changes appropriately.

4.4 Concrete and Symbolic Execution

The main work of MPE is performed by two interpreters: a concrete interpreter, which
takes fully static data and produces a fully static result and a symbolic interpreter,

which takes possibly static or dynamic data and produces a static or dynamic result.
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The symbolic interpreter examines expressions and determines from their sub-terms,
whether the result will be static or dynamic, while it symbolically interprets statements.
If an expression contains only fully static terms, then the result will generally be fully
static. In fact the symbolic interpreter invokes, for static expressions, the same library
calls as the concrete interpreter. If an expression is not sufficiently static, the result
will be dynamic, but an attempt is made to infer some information about the result
even if the value cannot be found. For each operator, an equation like the ones given
in the previous section is used to find the abstract interpretation of the result, given its

operands.

The concrete interpreter is reasonably fast (hence why it is used instead of the symbolic
interpreter where possible), but it is not as fast as MATLAB. While it uses MATLAB
library calls to calculate its results, it uses a method now deprecated by Mathworks.
This method puts the onus on us to keep track of deleting temporary arrays once they
have been used, which is both slower and more complicated to code, unlike the method
favoured by Mathworks which automatically deletes temporary arrays used as parame-
ters to library functions. But unfortunately the new technique causes crashes in some
circumstances and although this bug is noted on the MATLAB website, it has not been
fixed. Using the newer method of managing arrays greatly speeds up interpretation,
but this will have to wait until the bugs are eliminated. An alternative method would
be to replace the concrete interpreter with one which directly invokes the MATLAB
interpreter allowing any advances in the MATLAB engine to speed up our partial eval-
uator. This may be problematic given the amount of data that would have to be passed
between the MATLAB interpreter and the partial evaluator.

In MPE, symbolic execution is always a forwards iterative process. Information inferred
about function parameters or operator operands is not used to update the parameters
or operands themselves. E.g.

%# b size [2 UNKNOWN]
c =b * b;

In the above example b is declared to have 2 rows but an unknown number of columns.
In the following statement b is multiplied by itself. From (4.23), the shape of c is
determined to be <(2, 2), ((2, 2),99>>. Because information was only passed forwards,
it was not inferred that since the inner dimensions must match, that b also must have
2 columns for the expression to be valid, in which case ¢ would also have 2 columns.
To do backward shape inferencing would require a far more complicated infrastructure

than is present in MPE.

In Section 6, we will describe how this symbolic execution framework is actually used.
Section 6.1 describes how each statement is partially evaluated and it refers heavily to
the abstract domains defined in this chapter. Section 6.1.5 contains a description of

the fixed point algorithm used for computing the least upper bound of the entry point
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to loops. This is later revised in Section 6.3 to work with loops containing break and

continue statements.

4.5 Precision

The abstract domains contained in this chapter will later be used to approximate the
types of concrete values. This approximation clearly loses all information about ac-
tual values when a concrete value is abstracted, but this is not unexpected. Possible
shortcomings however can arise when combining type information following conditional
blocks.

If the class of a variable on exit from each branch of a conditional is fixed but different,
all class information will be discarded. This insures that the class lattice has only
n + 2 elements, where n is the possible number of classes, but is perhaps unnecessarily
restrictive. Knowing that an array could be either of class double or char would allow
us to infer that arithmetic operations on it were allowed. If the array was either a cell
array or struct, then we could immediately infer that any arithmetic operation would
always fail. This could be modelled by a bit-vector of size n, which flagged every class
that might be possible, leading to a lattice with 2" elements. Clearly such an approach

would become expensive for a system with an unbounded number of classes.

However the main way of extracting further static type information from the class of
a dynamic array is through the class built-in function, which returns the class as a
string. Clearly if this string was compared with certain other static values then it might
be possible to remove the comparison. However since no information about values is

currently retained,

4.6 Summary

This chapter has seen the creation of a full type system for MATLARB, capturing in-
formation about arrays that will later be used to make specialisation decisions. Since
MATLAB is a dynamically typed language, to provide input validation, functions must
check their parameters types at run-time. While in C, passing an integer (instead of a
string) as the first argument to the printf function will be spotted at compile time, this
will not happen in MATLAB. If we can maintain accurate information about the types
of dynamic variables, we should be able to remove these checks without producing an

unreliable program.

This chapter contains a formalisation of the MATLAB type system, which is we believe

more complete than any other work on MATLAB, particularly since it supports classes.
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Details are given for deriving types for all MATLAB operators, including matrix multi-
plication and array addition. We have described how to infer the shapes for several key

built-in functions as well as the many forms of array indexing.

In the following chapter, we will lay the foundations for a partial evaluator by describing
details related to loading and parsing MATLAB programs, particularly with regard to

differentiating between function calls and variables.
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Handling full MATLAB programs

We have produced an online partial evaluator because many of the problems that offline
partial evaluation helps alleviate are less likely to occur in MATLAB. With online partial
evaluation, we can easily handle function handles. In addition we wish to perform
optimisations based on the characteristics of arrays such as shape and type. For example,
while the exact value of a matrix may be unknown, its shape and whether it is real or
complex could well be known. In this case built-in functions which try to determine
these properties can be replaced by the actual values, which might lead to speed-ups
due to loop unrolling and the removal of conditionals. This is less likely to be possible
using offline partial evaluation since the static/dynamic divide must be declared before

specialisation and must be conservative in cases where it could go either way.

While offline partial evaluators are generally more efficient and predictable, we have
different motives in our use of MATLAB. Theoretical results such as self-application are
mostly irrelevant to us, as MATLAB would be an unlikely choice for writing interpreters.
The language does not use recursion extensively since it is imperative, meaning termi-
nation issues that can cause problems in online partial evaluators of heavily recursive

languages are unlikely to cause problems.

The complexity of the information that we wish to store about expressions means that
using MATLAB to create the partial evaluator itself would be cumbersome. One reason
is that MATLAB has no tools for parsing programs, such as lez and yacc. While this
step could be performed elsewhere, MATLAB has many other deficiencies which makes
string handling difficult and complex data structures complicated. The lack of call-by-
reference semantics and sharing of data would also likely make the partial evaluator very

inefficient.

Since MATLAB was not an option itself for the implementation language, we were re-
stricted to either C, C++ or Fortran, since these are the languages for which Mathworks
provided libraries. Our MATLAB partial evaluator (MPE) was written for GNU /Linux

o9



Chapter 5 Handling full MATLAB programs 60

systems in C++, and should be portable to any system with a good C++ compiler and
which has MATLAB support.

In this section we describe the steps taken to load in full MATLAB programs and parse
them as MATLAB itself would do. While the parser is not perfect, we believe it to be
current up to MATLAB 6.1! and able to handle the majority of MATLAB codes.

A program, as recognised by our system, consists of one or more m-files situated in one
or more directories. Files are not explicitly included in a program but are implicitly

included by calling the functions present within them.

MATLAB provides many functions in m-files, which can be called by user programs.
While some of these are self-contained, others can call many other functions, themselves
contained in m-files. This can greatly increase the time to load and parse a MATLAB
program as well as the memory usage, especially since the presence of a function call in
an m-file does not mean that it will definitely be called. Since partial evaluation will
often determine that a function will not be called, we can use this property to avoid

parsing unnecessary files. To this end, MPE only loads functions when they are called.

5.1 Overview

Below we give an overview of the stages of the partial evaluator.

1. Parse source file to be partially evaluated (Section 5.2) producing an Abstract
Syntax Tree (AST).

2. Insert static values at beginning of AST (Section 5.3).
3. Convert placeholders in the AST (Section 5.4).

4. Partially evaluate the function obtaining a new AST (Chapter 6). This stage
requires the partial evaluation of further functions. In each case the process is

started from stage 1.
5. Post-process the new tree, removing dead code (Chapter 7).

6. When the original m-file has been completed, traverse new main function AST,

marking any functions that are called.

7. Write out all called functions as MATLAB source code.

Each of these stages will be described in more detail in the following sections.

We do not handle the explicit short-cut logical operators of MATLAB 6.5, && and | |.
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MPE is invoked from the command line and produces a single m-file as output. This
file contains all the specialised functions. Since all the functions are placed in a single
file, there is a chance that two identically named functions could be produced and then
one of them would be inaccessible. This could only happen if an additional function in
an m-file (accessible only in that m-file) shared the same name with another function.
This could be corrected by renaming conflicting functions, but has not proven to be a

problem in any of our tests.

5.2 Lexical Analysis and Parsing

MATLAB was designed more to allow mathematicians to read it than for simple parsing.
This leads to ambiguous constructs that are fairly simple for a human to understand as
they can more easily make contextual judgements, but a lot harder for a lexical analyser.
Problems occur because in matrices, spaces can be column delimiters or white space.
Outside matrices new lines are treated as an end of command indicator, but inside
they are treated as row separators. Fortunately flex [21] can be made stateful thus
avoiding the need for a hand-written lexical analyser. Joisha et al describe how to parse
MATLAB in [36], although since that publication many of the problems, to which they
refer, have disappeared as MATLAB was made more “compiler-friendly”. This section
will not attempt a full description of parsing, but will highlight some areas where our

implementation differs from [36].

Due to difficulties in disambiguating variables and function calls, identifiers that could
represent either are stored initially as placeholders. In the following stage, these will be
replaced with either variables or function calls in the case of identifiers not followed by
parentheses or by subscripts or function calls for identifiers followed by parentheses and

a list of indices or parameters.

Other problems arise because the MATLAB grammar is not fully documented. There are
some (admittedly contrived and probably due to bugs) circumstances in which MATLAB
interprets the input in seemingly unpredictable ways. This has improved in recent
MATLAB versions as The Mathworks have themselves introduced compiling technology
for MATLAB and MATLAB 6.5 has largely eliminated these problems.

There is one quirk of MATLAB functions, that we choose to ignore because dealing with
it would require a more complicated lexical analyser for little benefit. The problem is
due to MATLAB allowing the calling of functions without parentheses. E.g.

shading gouraud

clear a b ¢

These examples are equivalent to shading(’gouraud’) and clear(’a’, ’b’, ’c’).

Unfortunately when MATLAB sees a function not followed by parentheses it assumes
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the function will be of this form even if the function takes no parameters. So if f is a
function then £ * 10 will be interpreted as £(’*’, 210’). Trying to use lex to handle
this would be difficult, as it would need context to realise that £ was a function and
that everything following it should be interpreted as strings. Function calls are only
parsed like this when they begin a line and not as part of an assignment or part of
another statement. We call such statements directives and only partially consider them.
noting that they traditionally cause side-effects and need to be retained in the residual
program. MPE will not recognise £ * 10 correctly if f is a function but will instead
create a binary expression, but we do not see this causing problems as such code would
be unlikely except due to programmer error. When Joisha [36] parses these function
calls, he requires that the function arguments be enclosed in quotes. We do not take
this approach since this would cause many library functions to fail to parse (although

this form is also acceptable to our parser).

The only notable problem that actually arose in the MATLAB libraries is the use of
keywords after a function, e.g. dbstop if error. Since if is a keyword, this will cause
a parse error and abort MPE. This can be avoided by wrapping parameters with inverted

commas, e.g. dbstop ’if’ error.

This stage is performed on m-files and produces an m-file object containing a repre-
sentation of each of the functions found in that m-file. Functions are represented as
a list of input parameters, output variables and an AST. Assignment and expression
statements have a flag, which indicates whether they are terminated with semi-colons
and therefore should be silent. Statements can be either expressions, assignments
(normal assignments, multi-output assignments and delete assignments), for loops,
while loops, if statements, switch statements, control-flow-change statements (return,

continue and break), directives or annotations.

5.3 Handling command line definitions

To specify the values of parameters to the main function, the user will give a command
line flag (-d) along with an assignment from some variable to a static value. These
assignments are inserted at the start of the AST which will contain the residual program.
The expression is parsed just like any other MATLAB code and so can be a matrix or
any other valid MATLAB expression. Additionally a file, containing a list of assignments

and annotations, can be specified using the -a flag.

The function declaration is then modified to remove any parameters that were specified
at the command line. E.g.

function z = f(x,y)
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After partial evaluation by mpe -d x 1 f.m, this becomes:

function z = f(x)

This approach was chosen purely due to its simplicity. By adding assignments no special
code needs to be generated to ensure that the values are propagated through the program
as this occurs in the normal course of partial evaluation. It also avoids the problems of

indexed assignments which assume the variable is already in existence.

5.4 Converting placeholders

This stage is necessary because the distinction between variables and functions is not
immediately determinable unlike in C. This stage also appears in most of the literature on
MATLAB compilers including [58] and [2], where it is called disambiguation. Variables
do not have to be declared but are created as required by assignments. Variables can also
shadow the names of both built-in and ordinary functions. This means that an identifier
could be used to indicate a function call at one point in a function and then later be used
to access a variable if there is assignment to the variable in between. Variables can also
be deleted using functions such as clear, which, if they shadow a function name, means
that the function can again be called using that identifier. We choose to ignore the
clear function as its results are quite unpredictable especially when used with dynamic
input. As a result of this ambiguity when the parser encounters a symbol, it inserts a

placeholder into the AST for later conversion.

Our criteria for determining whether a placeholder represents a function call or a vari-
able access are similar to those of De Rose, although ours is more extensive than that
described in [57], as MATLAB has evolved since it was written. An identifier that has

been previously used as a variable will always be a variable. Otherwise a function with

that name is sought in the following places with descending precedence?:

1. Built-in Functions
2. Functions in current file
3. M-files in current directory called function-name.m

4. M-files in a subdirectory, private, of the directory of the current m-file, called

function-name.m

5. M-files in the path called function-name.m

2this order ignores @class directories which MPE does not support.
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If no function is found, then the identifier is assumed to represent a variable allowing
code like the (extremely contrived) following code to work:

for n = 1:10

if n > 1
a = [a n];
else
a = 1;
end
end

A particularly confusing and yet possibly valid statement is x(x) = x(x), where x is a
function and has not been used previously as a variable. This problem is discussed by
De Rose [57]; in particular he discusses how conditional statements can affect whether
an identifier is seen as a variable or function. We take the same approach and assume
identifiers which have no visibly defined function are variables as we cannot defer the

decision unlike an interpreter.

If an appropriately named file is found for a previously unseen identifier, the placeholder
is converted to a function call. The file is not however parsed until the call is partially
evaluated (or abstractly interpreted). With many programs this prevents memory being
wasted on functions which will never be called and can sometimes allow partial evaluation

of programs which contain features we do not support.

The end result of this stage is one parse tree where all placeholders have been replaced
with either variable, subscript or function call identifiers, for each function in all m-files

in the system.

5.5 Summary

This chapter first described our motivation in using online partial evaluation. It then
listed the stages that make up our partial evaluator and then described the early stages,
by giving a brief description of the problems associated with parsing large MATLAB
programs and them disambiguating variable and function symbols. This is not presented

as unique research, since it is documented elsewhere, but is presented for completeness.

Having parsed an m-file and produced the Abstract Syntax Tree for it, it is now possible
to partially evaluate it. In the next chapter, we will describe the core of a partial
evaluator. This includes a description of how to handle every kind of statement as well
as whole functions. It is this work which accounts for the bulk of the partial evaluation

time.
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Partial Evaluator Core

Functionality

In this chapter we describe the core of the partial evaluator and how the abstract domains

and equations from Chapter 4 are used.

The initial input is the first function in the m-file specified on the command line along
with a list of parameter values. Each value is from the set A, defined in Definition 4.22,
and so can be completely static, dynamic with some shape information, or perhaps
undefined. Since the number of parameters and outputs can themselves be dynamic, the
list of parameters is also supplemented by two additional parameters, nargin, nargout €

R, whose values are ranges from Definition 4.11.

For non-varargin functions, which can only take a certain number of parameters, nargin
is capped to this maximum (nargin’ = nargin N, (0,n)). The same is done to nar-
gout for non-varargout functions. For warargin functions, the excess parameters are
directly mapped into a cell array. If any of these parameters is dynamic, then so will the
varargin variable. The size of this parameter list is now definitely finite even if nargin

is unbounded.

The environment is a hash-table mapping symbols to values (sym — A). This environ-
ment has several extra fields: nargin, nargout and current-mfile. The current-mfile field
is used when determining where to look for functions. This is not necessary for functions
found by the converting placeholders stage from Chapter 5, but for calls to feval as

will be described later.

We use hierarchical environments to reduce copying at points where execution branches.
Each table has a parent field. When partial evaluation starts for a function, this field is
NULL. On partially evaluating a conditional with two branches, two empty environments
will be created, each with the current environment as their parent. If searching for a

symbol fails in the current environment, the parent is searched recursively until there

65
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are no more parents or the symbol is found. Updates to the environment only affect
the most recent environment so as not to affect the state of alternate branches. On
completing both branches, the two environments will only contain symbols which were

altered and so only these need to be examined.

The initial environment is then populated with the parameter symbols and their values
and partial evaluation can now commence. The function is partially evaluated statement

by statement, updating the environment as it goes.

6.1 Partially evaluating statements

For each of the statements discussed in Chapter 2, we will now describe how it is partially

evaluated.

6.1.1 Expressions

In MATLAB, when an expression appears on a line on its own, it is evaluated and
the answer displayed (assuming a semi-colon is omitted), as in a calculator, but more
frequently expressions are found in other statements such as assignments. The rules for
evaluating expressions as described here apply in all cases, although other statements

use the expression values in different ways.

Binary expressions are stored in a binary tree. Our implementation performs a depth
first traversal of the tree evaluating wherever possible. The nature of the tree has an
effect on the amount of evaluation that is possible. For instance 2 + x + 4 and x +
2 + 4 will not be reduced to 6 + x because the tree stores them as (2 + z) + 4 and
(z +2) + 4. Either a strategy would have to be developed to propagate the addition

across the inner binary expression or N-ary expressions with reordering could be used.

Any strategy that used expression reordering based on associativity or commutativ-
ity would have to be very careful about causing an adverse change in execution time.
Menon and Pingali [49] discuss how we can use the semantic properties of operations
in conjunction with type information to realise previously infeasible operations. For
instance in evaluating A * B = z, if A and B are matrices and z is a vector, the
time complexity is O(n?) evaluating from right to left, but O(n?®) if we evaluate from
left to right. It is also possible to introduce rounding errors by reordering expres-
sions, as 1 + le-16 + le-16 - 1 is evaluated as exactly 0 by MATLAB, where as
1 + (le-16 + 1le-16) - 1 produces ~ 2 x 10716,

Other problems can arise from the dynamic typing of MATLAB. For instance it is not

possible to assume that multiplication is commutative as matrix multiplication is not.
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(Commutativity can be assumed if . * is used). A =0 is not necessarily 0 but could be a

matrix of Us or a sparse empty matrix.

Each node in an expression has two pieces of information associated with it. Its Value
(v € A) and the code which produces it. These two pieces of information are returned
by the expression partial evaluator. In the case of static values (v € A”), the code to
reproduce it not actually created until the function is written out. This means that little
time is wasted on the static values of sub-expressions which are immediately consumed
by another static expression. Instead the code generated for static values, is just an
instruction to lift the value when code is actually required. For dynamic values (v € A’i),
the code is immediately created. We assume the availability of functions which call the
concrete interpreter on static parameters, like apply.op, : Op x M x M — M, which

applies an operator concretely to two operands.

We will now describe how the various types of expressions are handled, starting with
the binary expression binop(op, e1, e2), where peval(e;, E) = (€}, v1) and peval(eq, E) =

(€5, v2), with environment E:

((static, apply_op.,(op,7'(v1), 7' (v2))), lift)
if v1,v9 € AP
{(dynamic, apply-opa(op, a(vy), a(v:))), binop(op, €} 4))
otherwise

peval(binop(op, e1, e2), E) =

(6.1)

As described here, only fully static binary expressions produce a static result, even in
the case of expressions like x * 0. Such transformations are ignored, as they are not
often applicable and can also produce changes in the semantics of a program. Where the
expression component is ‘lift’, this is a short hand for the expression obtained by lifting
the value component. We assume the existence of a function apply_op, : Opx A x A —

A, which selects the correct type determination function based on the operator.

For the unary expression, represented by unop(op, €), where peval(e, E) = (¢/,v), partial

evaluation proceeds as follows:

I(unop(op, e), E) ((static, apply_op.,(op, 7/ (v))), lift) if e AP

eval(unop(op, e), E) = .

’ o {(dynamic, apply-op,{op, a(v))), unop(op,e’)) otherwise
(6.2)

A constant, represented by const(c) in the AST, with value, ¢ € M (Definition 4.21) is

handled as follows:
peval(const(c)) = ((static, c), lift) (6.3)
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Variables for which there is a static value in the environment are replaced with the static

value:

(E(sym), lift) if E(sym) e A°

6.4
(E(sym),var(sym)) otherwise 64

peval(var(sym), E) = {

An expression Subscript(sym, format, {e1 ... e,)) is an indexed variable access, like a{3}
or v.field(2). The format describes where the indices are placed and takes the form
{?} and .field(?) for the examples respectively. Subscripts are handled by first par-
tially evaluating the indices. Since the indices are in the form of a comma-separated list,
there is a chance that more or even fewer than n elements will be produced by partially
evaluating the list. This is because one of the indices might be a cell array subscript
itself. Such a subscript can expand to ény number of values. This can happen anywhere

that comma-separated lists are expected, e.g. function parameters.

The function, peval_list : Exp* x Fnv x Exp* x A* x R — Exp* x A* x R, is used
to partially evaluate a comma-separated list of expressions. It produces a new list of

expressions, a list of values as well as a range for the size of the list. Where applicable,
e vl (I, u')) = peval_in_list(e1, E) and n/ = (', ).
S S

peval_list({e1 ... en), E, €, v5,n) = peval_list({ez...e,), E, es.€s,vs05,n+ {I',1'))
peval_list({e1 ...en), E, €5, v5,n) = peval list2({es...en), E,€,.€h vsvi,n+n)
peval list({), E, e, vs,n) = {es vs,n) (6.5)

The second part of peval_list above, matches the case where n’ is not a constant, but a
range of values. In this case there is no point continuing to build the list of values as it
is not known where they will fit. Instead, the rest of the expression list is built up by
peval_list2, which just passes through vs. Anything which uses v, will also have n and

will therefore know that this list is incomplete.

peval_list2({e1 ... e), E, es,vs,n) = pevallist2({es...en), E, €,.€5,vs,n + 1)
peval list2({), E, e, vs,n) = (e}, vs,n) (6.6)

Similar to peval_list is peval_index _list, which has an additional parameter, format,
which it returns updated to take account of any expressions that were expanded. For
instance in the case of b(a{[1 2]}), format = ‘(?)’ for the indices of the subscript to
b, but if a is static, it will be expanded and so format’ = ‘(?,?)’. If a was not static, it

would not have been expanded and format’ would be the same as format.

Bach of the individual expressions that make up the list are partially evaluated using
the function peval_in_list : Exp x EFnv — Exp* x A* x R. If ¢ is a cell subscript, such

that ¢ = subscript(sym, format, (e} . ..e)), where format € CellSubscript (the set of all
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format strings, which represent cell accesses) then:
peval_in_list(c, E) = ((v],...v}), (€e},...e),n") (6.7)
where the components are defined below, given that:

peval_index _list((e1, ... e;), format, E) = ((e],e!,), (v],...v}), n, format”)

1. If V4,0 € A® A low(n) = up(n) A E(sym) € AP, the result is static, p = ¢ and
3

using a function cell_subscript., : A’ x Format x A™ x N — A

(vy,...vp) = cell_subscript, (v (E(sym)), format’, (v (v7), ... 7' (vy)), low(n))
(€1,...epy = (lift...lift)
: P
n = (pp)

2. Otherwise the result will be dynamic and the subscript needs to be constructed.

o0 ~ otherwise

- { 1, s numel(shape(v!)) if low(n) = up(n)

Since no information is known about the contents of a dynamic cell array, the list of
values just consists of unspecified but defined values. The subscript expands to the
product of the number of elements within all the indices. This is calculated using
a combination of numel from (4.31) and the fact that if the number of elements,
to which the indices expand is unknown, then we have no information about how
many elements the outer subscript will expand to. Consequently we only store the

maximum number that it definitely expands to and so p = low(n):
Vi,1 <i<pv; = (T, Ts, true)
The subscript has not been expanded so ¢ = 1 and:

e; = Subscript(sym, (e, ... €.}, format’)

Returning to partially evaluating the elements in a list. Any expression that is not a
cell subscript will evaluate to a list of size 1 and is handled by the following equation.

(This equation uses . to concatenate arbitrary tuples).

peval_in_list(e, E) = (peval(e, E).(1)) (6.8)
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Subscripts in non-list positions like operands to binary expressions, must evaluate to a

single value or an error will occur. Given the definition of s as above:
peval(s, E) = <ela Ul) (69>

where peval_in_list(s, E) = ({e1), (v1), 1).

In the following example, a is a 4-by-4-by-2 static real double array, b is 5, c is a dynamic
2-by-1 non-logical array and d is a dynamic cell array with unknown shape information.

a(b, b + ¢, d{c})

To partially evaluate this expression, first the indices to the subscript to a would be
partially evaluated. The first index is b, so the E(b) is checked (6.4) and found to
be static with a value of 5, so the result is <<static,5),lift>. The second index is a
binary expression, b + c. As before b is static, but ¢ is not and so from (6.1), we get
{(dynamic, az), binop(+, const(5), var(c))), where (with 2 = (2,2))

ag = <<<Tb,false), Tk>, <2, (2, l)>, tme>

The final index is a cell array and so its index need to be partially evaluated. Doing so
gives <<dynamic,a2),var(c)>. Since numel(shape(vy)) = mmiel(@, (2, l)>) = 2, the sub-
script to d will expand to two elements, but as d is dynamic, we can infer no information
about their types or values. Consequently we will get as final code: a(5, 5 + ¢, d{c}),
when the inferred shape is the result of indexing with a scalar, a 2-by-1 non-logical array
and two unknown elements. From this we can infer (using the shape equations for index-
ing from Chapter 4) that the shape of the final result has between 2 and 4 dimensions,
the first two of which have sizes 1 and 2 respectively. The other 2 dimensions have
unknown size. The type will be the same as a, which means it will also be a real double

array.

Built-in functions that have static parameters can usually be executed directly via the
MATLAB runtime libraries. There are however some built-in functions which cannot
be executed directly as they require context or produce side-effects. Examples include
exist, which can be used to determine the existence of variables as well as files and
functions; I/O functions like disp, fopen, fprintf and fclose; graphing functions like

plot and plot3; and timing functions like cputime and clock.

Some built-in functions like exist can be evaluated indirectly by examining the envi-
ronment. It does, however, make little sense to evaluate timing functions while partially
evaluating, as it is more likely it was intended that the timing actually take place when
the residual program is executed. This is an area where offline partial evaluation gives
the user explicit control of which functions to execute early and which to leave to the

residual program.



Chapter 6 Partial Evaluator Core Functionality 71

No I/O operations are performed while specialising, but are always inserted into the
residual program. This does limit the amount of static data that MPE can see as static
data files are never read. It would not be too onerous to remove this limitation through

explicit user annotations, if it was later deemed useful.

Built-in functions that cannot be evaluated directly, due to lack of static parameters or
side-effects, are handled by the partial evaluator internally. For each built-in function
we extract as much information as possible about the return values based on the input
passed to it. In the case of functions like size and ndims which examine the shapes of
matrices, we can sometimes fully evaluate them provided we have that information. If
insufficient information is available to fully evaluate the function, we instead return an
entry describing the shape and type of the returned value in so far as we can determine

it.

When a non-built-in function call appears in an expression, there are two main ways of
handling it. If all the parameters are static, the call can be fully evaluated and then the
result is either embedded in the residual program or is used as part of some other static
computation. Alternatively if the parameters are not entirely static, the function call
needs to be specialised. Function specialisation is described in Section 6.4, but for now
we will assume that the result is a new function name (constructed from the old name

and a variant number) and a list of return values, v; € A.

If it is a built-in function, a list of special functions is checked. If the function is on that
list, it will never be concretely interpreted even if the parameters are completely static.
Functions which cannot be directly executed either because they are not completely
static or because they are on the special function list, are instead handled internally by
the partial evaluator. In either case the result will be a list of return values, v; € A.
(For side-effecting built-in functions, which are always spectal, v; will never contain static

clements, i.e. Vi,v; € At).

The equations for built-in functions are not given here, but essentially most require fully
static parameters to produce a static result, otherwise they will produce a dynamic re-
sult. The exceptions to this are the shape accessor functions like size, length, isempty
and numel; and type accessor functions isreal, islogical and class. These functions
can examine the components of a dynamic type and extract a static result if it exists,

which means that the function call is replaced by a constant in the residual program.

Given a non-built-in function call, f = Function(sym, (e; ...e,)), where

peval_list((e1, ... e,), E) = ((v],...vp), (€],...€,),n)

then the equation for partially evaluating the function is:

(Function(sym’, (¢} ...€,)),v}) if v € A

6.10
(lift, ) otherwise (6.10)

peval(f, E) = {
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where v7 is the result of evaluating that function with the parameters (vy,...v;) and
nargin, n. This evaluation procedure will not return vy € A® unless the function sym
has no possible side-effect for that call. If the call does not return a static result then a
new function sym’ will be produced. The function call will be replaced by one that calls

the new specialised function.

Currently if a call to feval is passed a dynamic function handle or string, no attempt
is made to infer information about the return value of the function or even to specialise
it. This means opportunities are lost, but since we do not attempt to find all the
possible function handles that could reach a feval call, there is no way to infer anything.
Ruf and Weise [60] use control flow analysis in their partial evaluator, FUSE, to find
lambda expressions that can reach a dynamic application. A generalised argument list
is found which fits each of these lambda expressions by examining every place where the
expression could be applied. This is all done in a pass after the initial specialisation is
complete and requires a specialisation method, which allows for code to be iteratively
improved. All of this is far more important for FUSE, because it partially evaluates

Scheme, where recursion and higher-order functions are much more common.

If the call to feval uses a static function, then the call to feval is replaced with a
direct call to the function. This transformed function call is then partially evaluated as

normal.

Arrays containing only constants are constructed at parse time to avoid the cost of re-
construction, every time an expression is encountered while partially evaluating. Arrays
that cannot be fully constructed at parse time, such as ones including expressions, are
built by applying the appropriate horzcat and vertcat functions repeatedly. For fully
static values, this will produce a fully static array. If any of the elements that make up
an array are dynamic, the whole array becomes dynamic and so the shape determining
functions are used. This allows expressions such as [2, x; 4, y] to be inferred as a

2-by-2 matrix when x or y is known to have only one column.

6.1.2 Assignments

Simple assignments discard the old value of the target variable and are relatively easy
to handle. In a single value assignment, we partially evaluate the right hand side as
described above, and create a new assignment with this new expression. The value,
(v € A) of the expression is then stored in the environment for non-indexed assignments
(E = E(sym — v)). For indexed assignments, the value in the environment is updated
if it is static and the indices are static with a new static value. If the indices or the right
hand side are not static then the environment is updated with a value inferred from

shape analysis.
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With multiple output assignments, the right hand side can only be a function. In
which case it is evaluated as for function call expressions and the multiple outputs are
distributed to assigned variables. Ideally the outputs will be completely static and so
the statement can be replaced with one new assignment with a static value for each
output.

[a,b] = size(c);

If the shape of c is known then assignments to a and b are substituted. E.g. If c is a

matrix with 4 rows and 2 columns, this will become:

a = 4;
b = 2;

But if only the number of columns is known then we would have to use a function call.
E.g.

a

size(c,1);
b = 2;

This is more expensive than the original as there are two assignments and a function
call, but post-processing could completely eliminate the assignment to b. It is easy
to transform the size function into multiple assignments as above, but most built-in
function calls are not so simple and so we do not perform this kind of transformation

when there is a mix of dynamic and static return values.

For functions provided in m-files, moving the static assignment from the called function
to the calling function provides more opportunities for dead code removal by dead code
removal. E.g.

function y = f(x)
[a, b] = g(x, 6);
y = a * b;

function [a, bl = g(x, ¥y)
a = x *x 2

b=y =*y;

If static outputs are not removed from the function call then the following code will be
produced:

function y = f__1(x)

[a, bl = g__1(x);

y = a * 36;

function [a, bl = g__1(x)
a = x * 2;
b = 36;

The value of b is known and so it can be propagated later in the function meaning that

b is never required in the residual code, and any dead code elimination system which
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works locally on a function will not be able to remove any code from this example. If

the static output is removed then the following code is produced.

function y = f__1(x)
a = g__1(x);

b = 36;

y = a * 36;

function a = g__1(x)
a = x * 2;

b = 36;

While this code is not really any shorter, the redundant assignments to b in £__1 and
g__1 can easily be removed in post-processing producing a shorter faster program (and

in fact inlining will later be shown capable of completely removing the function g__1).

6.1.3 if statements

If the value of the condition expression is static (v € A), the conditional statement is
removed and replaced with an appropriate set of commands. To do this the condition
expression is partially evaluated and if found to be static and non-zero, the first set of
commands are partially evaluated and inserted into the residual code directly. If the
condition expression is static and evaluates to zero and there is an else clause, those
commands are partially evaluated; otherwise the if statement is removed and no code

is inserted in the residual function.

If the condition expression is dynamic, then both sets of commands need to be partially
evaluated with the same initial conditions and the resulting environments merged. This
means that if both sets of commands set a variable to the same value, it will have that
value after the loop. If the value is different, but the type or size of the array are the

same, then this information is retained instead. For instance:

a = 5;
if a > x
a=a+ 1
else
a =20

In the above code, if x is static and has the value 1, then the condition expression is

static as a is static as well and so the conditional is replaced with the following code:

)

If x were unknown then the following code would be produced instead:

a = 5;
if 5 > x
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The environment would then be updated with the a equal to a dynamic real non-logical

double scalar.

6.1.4 switch statements

As with if statements, if it is possible to predetermine the switch value along with the
case values, the switch statement can be removed completely and replaced with the
appropriate statements. Because the case values do not need to be constants and the
cases are checked in order, it is important not to remove a switch statement when a
case matches if there are one or more dynamic cases before it. In this case, the preceding
cases need to be left in place while the matching case is replaced by an otherwise clause,
thus removing the need for a comparison. Cases that can never match can be removed
thus eliminating redundant comparisons. If as the result of eliminating comparisons
only one comparison would ever be carried out, then it may be better to substitute an

if statement as they are faster to execute.

One proviso here is that an error would be thrown if the switch value was neither a
scalar or a string. By replacing the switch statement with an if statement, the program
semantics change slightly, unless the switch value can be inferred to be a scalar or string.
In addition, the equality operator == requires that both of its operands have the same
shape for this optimisation to produce equivalent code. The function, isequal, would

be a valid substitute but it brings with it the overhead of a function call.

As with if statements, if the exact control flow cannot be determined, each branch
of the switch statement needs to be partially evaluated in parallel and the resulting

environments then merged. Clearly branches that will never be reached can be skipped.

In the following example, there are several possible specialisation opportunities:

switch a
case ’'foo’
disp (’Monday ’)
case ’foobar’
disp (’Friday ’)
otherwise
disp(’Another time’)

~ end

If a is completely static and has the value ’foobar’ then the code produced is:

disp(’Friday’)

On the other hand if a is dynamic, but it is known to have a length of less than 4, then

the following would be produced:
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switch a
case ’foo’
disp(’Monday’)
otherwise
disp(’Another time’)

end

If the length was exactly 3, then this would be optimised to the following:

if a == ’foo’
disp(’Monday’)

else
disp(’ Another time’)

end

6.1.5 for loops

The number of iterations for a for loop is fixed from the moment that loop execution
commences {unlike in languages like C where the loop constraints are re-evaluated after
every iteration) and so determining whether to unroll requires no data flow analysis on
the loop body. If the loop constraints are static then the loop will be automatically

unrolled unless there is an annotation prohibiting it (as described later).

To unroll a loop, the body of the loop is partially evaluated once for each iteration. For
each iteration, the loop variable is set to the appropriate static value, although generally
an assignment will not be generated for this. The exception to this, is if the loop contains
an assignment to the loop variable. In this case, omitting the assignment at the start
of the iteration could produce invalid code if the assignment inside the loop is under

dynamic control.

At the end of the loop, an assignment will be required to ensure the final value of the
loop variable is available to the rest of the program following the loop. This assignment
is only required if no assignments to the loop variable were inserted at the start of each
iteration. Inserting assignments for the loop variable will often produce redundant code,

but in these cases post-processing will remove it at a later stage.

When the loop constraints would mean that the body of the loop is never executed,
(e.g. a:b, where b < a), then this is a special case of unrolling with no iterations in
which case the entire loop is skipped. MATLAB does reset the loop variable to [] and
so an assignment needs to be inserted for this, which will in most cases be removed by

post-processing.

When the loop constraints are dynamic, the loop is retained. More complicated loop
unrolling could be performed, including partial unrolling but for simplicity this is ignored
here. Care now needs to be taken with variables inside the loop. Naively partially

evaluating the loop, using the state before the loop was reached, would result in a loop
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that might only execute correctly for the first iteration. Instead information about the

state after each iteration needs to be combined with the initial state.

This is achieved using iterative data-flow analysis. The body of the loop is iterated over
using our abstract interpretation method which computes, for each variable, either an
abstract value or a concrete value (z € A) storing the result in the environment. Algo-
rithm 1 requires an initial environment, the list of commands comprising the loop body,
a flag indicating whether we know if the loop always iterates at least once as well the
identifier for the loop variable along with the abstract description of its value, (a € A¥).
It gives us two environments, one with which to partially evaluate the loop and another
giving the state after the loop has been executed. The following algorithm assumes the
existence of a function fru; which takes an environment and a list of commands and

returns the environment that would be obtained by running those commands.

Algorithm 1 Calculate the fixpoint state for the loop

Require: eyig € (Ident — Value), comms € Block, always_iterates € Boolean,
loop_var_id € Ident, loop_var_val € Value
Ensure: ejnput, einal € (Ident — Value)
€ < Corig
repeat
einput — €[loop_var_id — loop_var_val]
€output < frun(commsa einput)
€ — eoutput [loop_var_id — loop_var_val] U ejppyy
until e = ejppyt
if always_iterates then
€final *— €output
else
€final < €output U eorig[loop—var—id - []]
end if

If it cannot be determined that the loop will ever execute even once, the final state
environment of the loop is merged with the environment that would be obtained if the
loop never executed. In some cases this could result in a lot of information being lost,
and so it is important to examine the loop constraints first in case this merge can be

skipped. For example:

a = 0;
for n = 1:5

a=a+n " b;
end

This loop can be fully unrolled, resulting in a sequence of assignments. (Notethat1 ~ b

is not identified as equivalent to 1, as this does not hold true if b is not a scalar).

[ U A U
n
P O O
PO
B W e
1
o o oo



Chapter 6 Partial Evaluator Core Functionality 78

a+ 5 7 b;

n = 5;

In the following example, the loop cannot be unrolled when x is unknown.

a = 0;

b = 2;

for n = 1:x
a=a+mn " b;

end

In fact the only optimisation possible is the propagation of the value of b which can be

determined not to change, when the least upper bound is found.

a = 0;

b = 2;

for n = 1:x
a=a+mn "~ 2;

end

The following is an example of code where the loop assignments must be generated to
insure equivalent behaviour.

a = 0;

for n=1:4
n(2) = x;
a = a + n;

end

The assignments to n must be written out as there is an indexed assignment to n inside

the loop.

a = 0;

n =1
n(2) = x;
a =0 + n;
n = 2;
n(2) = x
a = a+n
n = 3;
n(2) = x;
a = a +n
n = 4;
n(2) = x;
a =a+n

While we have not implemented such a transformation, it may be possible to then convert

the two assignments to n for each iteration above to a single one of the form: n = [1 x].

There is never a risk that unrolling for loops will causes the partial evaluator to loop
infinitely as the maximum number of iterations is always bounded. These loops can

terminate earlier if break or return statements are present.
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6.1.6 while loops

Unlike for loops, while loops cannot be so easily determined as unrollable. There are
two approaches to unrolling such loops: one method is optimistic and unrolls the loop
until the loop condition indicates that it has terminated or the loop condition becomes
dynamic. The second method uses a binding time analysis (BTA) to determine if the

loop condition will be static on every iteration.

Using the optimistic approach, there are no problems if the loop is found to terminate
without the loop conditions becoming dynamic. However if the loop conditions become
dynamic then unrolling cannot continue and the loop must be inserted into the residual
code. The body of the loop and the loop condition are partially evaluated with respect

to the least upper bound of the state after any unrolling that was successful.

Using this method, the following loop has the initial iteration unrolled, but then the
loop must be inserted as y becomes dynamic.

%# x size [1 10]

y = 0;
a = 0;
wvhile y < length(x)
a =a+ x(y);
y =y o+ oa;
end

Using an optimistic approach to unrolling, this becomes:

%# x size [1 10]

y =1
a = 0;
a =0+ x(1);
y =1+ aj;
while y < 10
a =a + x(y);
y =yt a;
end

One way of performing the BTA, would be to abstractly interpret the loop to see if it
terminated or if the loop condition became dynamic. If it terminates during abstract
interpretation, then the loop is static and can be unrolled. The problem with this
approach is that involves doing most of the work of unrolling the loop without generating
any code. Once it has been determined that the loop can be unrolled, much of this work
must be repeated. If the loop cannot be unrolled then a fixpoint iteration to find the
least upper bound would also still be required in the same way as after the optimistic

unrolling.

Another approach to determining whether to unroll is to find a conservative approxima-
tion of the staticness of the loop condition using a simple abstract interpretation model

for which variables have three states, dynamic, static and undef. Our more complicated
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environment maps directly to this without difficulty. We then perform a fixpoint itera-
tion on the loop maintaining a table of bindings for each variable. The reason for the
undef binding is that the binding table is nested in the same way as the main symbol
table. If a variable is undef in one table, its parents are checked for a non-undef binding.
If no static/dynamic value can be found in any ancestor table then undef is returned
by the lookup function. This fixpoint iteration will be considerably faster than the one

used to find the least upper bound of the state as no computation is performed.

For each expression we calculate the binding as follows:

e Constants are static.

e Variables are static if they are not dynamic in the environment.
e Binary expressions are static if both operands are static.

e Unary expressions are static if both the operand is static.

e Function calls are static if all the parameters are static, the function exists and

does not have side-effects.

e Array accesses are static if the variable is not dynamic in the environment and the

indices are all static.

For assignments, the binding is stored in the symbol table. In the case of assignments
to subscripts, a static binding is only recorded if the existing binding is static or undef

and if the indices are also static.

For conditional statements, if the condition is static, each branch is determined in par-
allel and the results merged using nested tables. If the condition is dynamic then any
assignments appearing inside it mark their variables as dynamic. Static loops are de-
termined by performing a nested fixpoint iteration. Dynamic loops require that all

assignments inside the loop mark their variables as dynamic.

This approach can do nothing with the previous example, as the simple approximation
would make x dynamic and therefore length(x) would be dynamic. The code could
be rewritten to avoid this by calculating the value of length(x) before the loop and
storing it in a variable which would then be static for the duration of the loop. This
would be both a binding-time improvement and an optimisation to the original code
since the length of x does not change. The advantage of performing a simple BTA step
first, is that it almost always guarantees that the loop can be fully unrolled and it does

this fairly quickly.

Before attempting the BTA, the loop condition is abstractly interpreted once. If it
is static and false, then the loop can be immediately deleted. Otherwise the BTA is
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performed and if it is determined that the loop condition is static it is unrolled by
partially evaluating the body of the loop for each iteration. At the end of each iteration
the loop condition is checked and if still ¢rue, the unrolling is continued. If, at the end of
an iteration, the loop condition has become dynamic then the partial evaluator aborts
(or alternatively the loop could be inserted at this point). Reasons why this might occur
are discussed in 6.1.7. Another way of dealing with the loop condition becoming dynamic
during unrolling is to insert the original loop at that point as with the other method
of unrolling. In practice, very few codes produced different results, presumably because
loops which depend on the shapes of parameters are for loops which can already be

unrolled.

If the loop cannot be unrolled, a while loop is then inserted with the loop condition
and body partially evaluated with respect to the least upper bound for the loop starting

state.

Algorithm 1 can be reused for finding the fixpoint for while loops by removing all the

references to loop_var_id and loop_var_val.

Unrolling while loops can cause infinite looping. If the loop would never terminate when
the program was run normally, then the loop will be unrolled infinitely. One problem
is that if the loop would not normally terminate but its execution only occurs when
a dynamic condition is met, the partial evaluator will execute both paths. Hence the
partial evaluator will always loop infinitely where the original program would only loop
infinitely in some cases. Cases like this are not common but are not always contrived:

if x <y + w
y = 10;
else
wvhile x "=y

x = x - 1;

end

end

If x and y are static and w is dynamic then both branches of the if statement will be
partially evaluated leading to the second loop being unrolled. If there is an assumption
that w is always positive then normally the loop would never be executed if x was less
than y and (assuming x and y differ by an integral amount) the code would always
terminate. Since the partial evaluator always unrolls the loop, it will loop infinitely if x
is less than y. In this case the code would need to be rewritten to avoid this problem,

possibly by replacing ~= with >.

Listing 6.1 shows an implementation of a sprintf-like function in MATLAB using a
while loop. This relies on two functions, int2str and num2str, which are provided as
part of MATLAB in m-files.

function output = strprintf (format_string, varargin)
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output = ;
count = 1;
pos = 1;
length = length(format_string);
while pos <= length
if format_string(pos) == '}’
code = format_string(pos + 1);

switch code

case ’d’
output = [output int2str (varargin{count})];
count = count + 1;
case ’f’
output = [output num2str (varargin{count})];
count = count + 1;
case ’s’
output = [output varargin{count}];
count = count + 1;
case %’
output = [output ’%4'];

end
pos = pos + 2;
else
output = [output format_string(pos)];
pos = pos + 1;
end

end

LISTING 6.1: A simple implementation of sprintf

If we partially evaluate this function with the following format string:

’My name is %s, and I am %d years old’

We get the output shown in Listing 6.2. (In fact this is the result after the post-process
phase of the next chapter is applied, but the original was considerably longer and could
have obscured our result). This new program has no control flow as the while loop has

been unrolled and the conditional statements have all been determined as static.

function output = strprintf__1(varargin)
output = [’My name is ’ varargin{1}];
cutput = [output ’,’];

output = [output ’ ’];

output = [output ’a’];

output = [output ’'n’];

output = [output ’d’];

output = [output °* ’];

output = [output ’'I’];

output = [output ’ ’];

output = [output ’a’];

output = [output ’'m’];

output = [output ’ ’];

output = [output int2str__1(varargin{2})];
output = [output ’ ’];

output = [output ’y’];

output = [output ’e’];

output = [output ’a’];

output = [output ’'r’l;

output = [output ’'s’];
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output = [output ’ '};
output = [output ’o0’];
output = [output ’1°];
output = [output ’d’];

LISTING 6.2: A test function for our strprintf function

6.1.7 Annotations

In addition to standard MATLAB language constructs, our tool recognises annotations
which guide the partial evaluation. These always begin with %# and are ignored by
MATLAB as comments. Annotations are just copied directly into the final code, but
they do modify the symbol table.

There are two types of annotations: variable annotations and general annotations. Vari-
able annotations describe variables, specifying the type, shape and definedness. This is
useful for dealing with function parameters and also for preventing a variable identifier
from being treated as if it was a function.

% Declare that x is a scalar
%% x size [1 1]

% Declare that x is complex
%# x complex

% Declare that y is undefined
%# y undefined

For convenience we define two extra annotations: realdouble indicates that the variable
is of class double and is real and not logical. In addition, realscalar is the same as

realdouble but also indicates that the variable is a scalar.

Function annotations describe how the function has been called. They specify the val-
ues returned by built-in functions like nargin and nargout, which return the number
of parameters used to call the function and the number of return values requested re-
spectively.

% Declare that the function is called with 2 parameters
%# nargin 2

% Declare that the function is called with 1 output

%# nargout 1

Currently MPE can loop infinitely on input containing loops which steadily widen shape
values. Consider the following code:

function y = f(x)

y = 1;
for n=2:x
y = [y nl;

end
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This function returns a vector of values from 1 to x with increment 1. The current
implementation of MPE will iterate over the loop trying to find the shape of y. It can
easily determine that it is a two dimensional matrix with 1 row. However each successive
iteration will increase the number of columns by 1. Since iteration only ceases when
stabilisation of shape information is achieved, the iteration will be infinite. To prevent
this problem, the number of columns needs to be widened. If the number of columns is

set to (1,w), no further iteration would be required.

To this end, ideally we would develop heuristics to determine when there is a possibility
of infinite iteration. For now the widen annotation can be used:

function y = f(x)
y = 1
for n=2:x
%# y widen 2
y = [y nl;
end

In this case, the second dimension of y has been widened, which means that iteration
will not be infinite. Currently MPE limits the number of iterations for finding the least
upper bound. When the limit is exceeded, it aborts, printing the variables that have
not stabilised along with the information for the last two iterations allowing the user to
determine which variables need to be widened.

Printing differences for function f

el : (ndims : 2) (size : 1 1-20) (type : real) (value : unknown)
e2 : (ndims : 2) (size : 1 1-21) (type : real) (value : unknown)

By default MPE will always unroll a for loop when the loop range is static. In addition
if the loop condition of a while loop can be inferred to be static then it too will be
unrolled. Sometimes this will cause an excessive increase in code size; this can be
stopped by inserting a nounroll annotation in front of the loop. In addition the simple
BTA may sometimes determine a loop to be unrollable when it is in fact not. This
occurs when functions are called which are not static even when called with fully static
parameters. Examples are nargin and nargout called with no parameters, which may or
may not be dynamic. These could be treated as special cases by storing whether nargin
and nargout are static or dynamic in the binding table. However other functions cannot
be dealt with so easily without making the analysis much more complicated. In cases
where this mistake is made, a nounroll annotation is required to prevent the partial
evaluator aborting. Alternatively the optimistic loop unrolling approach can be used,

which just inserts a loop after unrolling becomes no longer possible.

Loops which contain break or continue statements will never be unrolled by default. If
the user knows that the loop conditions are static and that the control flow around these
statements is also static, then an unroll annotation can be added before the loop to

force unrolling. For while loops, the unrolling test is very conservative and will classify
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loops as not unrollable when the loop condition depends on dynamic data for which size
or type information exists, when using the simple BTA method. If during unrolling, it

is found that the conditions were not static then partial evaluation will abort.

Whenever MPE is generating code and it comes across a non-built-in function which
cannot be executed directly, it will attempt to generate a specialised version of the
function regardless of whether specialisation will actually be useful. It will also specialise
MATLAB library calls for which MATLAB code can be found. This is sometimes
undesirable and so the preserve annotation can be inserted to declare that a function
should never be specialised. If the function has fully static data, it can still be directly

executed and the call removed from the residual program.

Sometimes functions are called with fully static data, for which it is undesirable to
execute directly at partial evaluation time. This might be because the function calls
other functions which have side-effects, which would then not be present in the residual
code. One approach would be to detect any functions which might have side-effects and
bar them from being directly interpreted, but this might bar functions which only have
side-effects with certain parameters which are not used in the code to be specialised.
To allow specialisation here, we introduce the nointerpret annotation which forces
the function to be abstractly interpreted even if it has fully static parameters. If a
function is directly interpreted and during this interpretation calls a side-effecting built-
in then partial evaluation will abort citing the function which called the built-in. In
addition directly interpreting a function which calls a function which cannot be directly

interpreted because of annotations will cause a similar error.

6.2 Control Flow Change statements

Control Flow Change statements cause the current control flow to jump to another point,
such as the end of a function. We also include statements which cause the program
to end such as errors and exit statements. For all the possible control flow statements
described in the following subsections, abstract interpretation is not described explicitly.
Since abstract interpretation has the same effect on the environment as when generating

code, the only difference is that code is not generated.

6.2.1 return statements

Until now it has been assumed that the only way that a function can exit, is if control
reaches the end of the function. However if control reaches a return statement then the
function immediately terminates and returns the current values of the return variables.
To handle this an extra environment is added, which stores the values to be returned

from the function.
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Its value is calculated by:
bresult = tend U |__| t (611)

i=l.n
Where t,.g is the final environment for the function, teng is the environment when
control reaches the end of function (its value is L if control never reaches the textual
end of the function) and ¢; are the environment values at each of the n return statements

in the function (which are equal to L if control never reaches them).

This is calculated in the partial evaluator by updating t,esu;, whenever the partial eval-
uator generates a return statement or when it reaches the end of the function. Since
these statements prevent control flowing further in the function, they immediately cause
the partial evaluator to stop working on the current block. If the current block is the
top level block, then the partial evaluator would have finished with the whole function.
If the statement is contained in a dynamic conditional then the other branches still need

to be partially evaluated.

To handle this, the block partial evaluator returns a value, denoting how the block ended.
If the block ended normally, it returns CFC_NONE and if it was ended by a return, it
returns CFC_RETURN. The full set of values is given in Table 6.1. This set of values allows

CFC_NONE 1
CFC_RETURN 2
CFC_BREAK 4
CFC_CONTINUE 8
CFC_EXIT 16

TABLE 6.1: Exit values returned by the block partial evaluator

blocks to terminate in several other ways, which will be described later. Each of the
values corresponds to a single bit being set, which means that we combine and then
test the values using the binary operators, OR and AND. The set CFC contains all the
possible combinations, where at least one flag is present, e.g. CFC = {z € N|1 < z < 31}.

If one branch of an if statement ends with a return, and one ended normally, the exit
value would be CFC_NONE | CFC_RETURN. The partial evaluator would then discard the
environment generated by the return block when calculating the environment after the

if statement. Consider the following code:

if a ==

b = 2;

return
else

b = 4;
end

In this example, both branches set the value of b. However, any code after this condi-

tional will see a static value of 4 for b since the other branches contributes a value only
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to the final value of the function. If both branches had ended with return, the block

containing the if statement would itself terminate.

6.2.2 Dbreak statements

In normal execution, if one of these statements appears outside of a loop, it behaves
exactly like a return statement. If it appears inside a loop, it causes the loop to

terminate and for control to continue from after the loop.

To handle this, we create a new environment when partially evaluating a loop which
contains the state when the loop terminates. On reaching a break statement, this
environment is updated in the same way as the environment for return statements. In
addition the block partial evaluator returns CFC_BREAK, which is propagated back in the

same manner as CFC_RETURN.

6.2.3 continue statements

These statements are only allowed to appear inside loop, or an error will be generated.
If it appears inside a loop, it ends the current iteration of the loop and passed control to
the start of the loop causing the loop condition to be re-evaluated (as well as updating

the loop variant if necessary).

To handle this, we create a new environment when partially evaluating a loop which con-
tains the state when the current loop iteration terminates. On reaching a continue state-
ment, this environment is updated in the same way as the environment for break and
return statements. In addition the block partial evaluator returns CFC_CONTINUE, which
is propagated back in the same manner as CFC_RETURN.

6.2.4 Errors

When an error occurs during partial evaluation, the partial evaluator does not terminate,
but continues generating code. This is because much of the control in a program will be
dynamic, and so there will be dynamic conditionals which produce errors on one branch
and not on the other.

function y = f(x, y)
if nargin < 2
error (’This function requires 2 inputs’).

end

Since the partial evaluator does not know which branch will be taken it evaluates both,

encountering the error on one branch. When this occurs, the partial evaluator recognises
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that one branch results in an error and so reproduces that error in the residual code.
It then ignores that branch when generating the rest of the function. When the block

partial evaluator encounters an error it returns CFC_EXIT.

In the example given here, after the if statement, execution can only continue if nargin
is at least 2. If this is the case then y must be defined. The environment can then be
updated with information. This is an example of positive context propagation, which

will be discussed in Section 9.6.

Errors are also caught in expressions when operators are used with incompatible operands.
In this case, the statement containing the error will be removed and replaced with a state-
ment that reports the error that would be generated by executing the code as normal.
Doing it this way, ensures that the residual code clearly shows that the input as given to
the partial evaluator is responsible for the error (or that the program would produce the
error given any input). For expressions with at least one dynamic operand, errors raised
by trying to infer the shape of the resulting expression are also detected and flagged as

above.

For errors that occur in functions being executed by the concrete interpreter, an ex-
ception is raised, which is passed through all the calling functions until it reaches one
generating code or abstractly interpreting. In the former case, the exception in the
form of an error statement is then inserted into the code instead of the statement which
called the original function. This statement also includes the stack trace to help the
programmer trace the error. If the called function came from code being abstractly
interpreted, then an error is raised at that point, as if it occurred in the current block

and the abstract interpretation continues as normal for this case.

6.3 Block Partial Evaluator

We now describe the block partial evaluator in more detail. The block partial evaluator
takes a block of statements and partially evaluates them with respect to an environment,
in the process producing an updated environment and a new block. A block is a group of
consecutive statements, which appear at the same indentation level in a well formatted
program. Compound statements like if statements and for loops also comprise the

statements which appear within them.

In Listing 6.3, there are 4 blocks. Block 1 consists of the all the top level statements.
Block 2 consists of the error statement. Block 3 contains the statements inside the
while loop and block 4 is the assignment inside the second if statement. There are
nominally 2 extra branches which represent the empty else branches of the if state-
ments.

function z = pow(x, n)
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if n < 0
error (’pow can only handle values of n >= 07’);

end

z = 1;
while n > 0
if mod(mn, 2)
zZ =z * X;

end

floor(n / 2);

X = X * Xx;

n

end

LISTING 6.3: Power function

Each of these blocks is partially evaluated at one point. When block 1 is partially
evaluated, it partially evaluates both branches of the first 1f statement. The first branch
(block 2) contains the error function call which causes the block partial evaluator to
recreate the command in the residual program and return CFC_EXIT, while the second
branch is empty and so causes it to return CFC_NONE. At this point, the two exit values
are combined as CFC_EXIT | CFC_NONE, but the CFC_EXIT component is discarded as it
contributes no information if combined with a value which allows execution to continue.

All other blocks complete with an exit value of CFC_NONE.

function y = product (x)

y = 1;
for n=1:1length(x)
if x(n) ==
y = 03
break
else
y =y * x(n);
end
end

LISTING 6.4: Product function

In Listing 6.4, there is a simple function for computing the product of a vector. If any

element in the vector is 0, then the function loop stops and 0 is returned.!

When partially evaluating the if statement, one branch terminates with a static value
of 0 for y and an exit value of CFC_BREAK. The other branch ends with a dynamic
scalar value for y and an exit value of CFC_NONE. The break branch updates the loop
end environment, while the environment from the other branch is used to continue the

partial evaluation.

The least upper bound is computed only using the second branch as taking the other

branch would cease iteration. Once the least upper bound is found, the state after the

!This function would work just as well if return was used instead of break.
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loop is the join of the normal loop end state and the break end state. Thus, the state
after the loop has y as a dynamic scalar.
function y = nzproduct (x)
y = 1
for n=1:1length(x)
if x(n) ==
continue
end

y =y * x(n);
end

LISTING 6.5: Non-zero Product function

In Listing 6.5, there is a function which computes the product of a vector while skipping
0s.2 This time the two branches of the if statement end with CFC_CONTINUE and
CFC_NONE. The loop iteration end environment is updated with the environment after
the continue, and when the iteration is completed, this environment is merged with the

main environment in order to compute the least upper bound.

Algorithm 2 gives an updated version of Algorithm 1 for computing the fixpoint state
for a for loop. This new algorithm takes both the current state, eqrg, and the current
return state, €return- It then produces new states, egutput, which is the state after the
loop has executed; einput, which is the state that should be used to partially evaluate the
loop body (which will in turn reproduce eoutput); and ereturn, Which is the accumulated
state from all return statements so far. If while iterating, it is determined that no
iteration of the loop will ever complete normally or due to a continue statement, the
iteration is immediately stopped as the loop can never iterate more than once. In reality,
if this determination is to be made, it will only happen on completing the first iteration.
The ezit value is also returned, with the CFC_BREAK or CFC_CONTINUE flags reset and
converted to CFC_NONE if necessary.

6.4 Function Specialisation

A conservative approach to function specialisation would be monovariant and would
create only one residual version of any function appearing in the source program. To do
this, the least upper bound of all function signatures (including any information about
parameters, the number of parameters and the number of outputs) would have to be
found. This is likely to discard static data in the case of functions which are called many

times in a program.

Polyvariant specialisation can more effectively specialise programs, as it can produce

multiple versions of functions. Naively one could produce a new version of each function

2This function could easily be rewritten without the continue, but a non-trivial example would be
much longer.
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Algorithm 2 Calculate the fixpoint state for the loop while handling control flow change

statements
Require: eqrig, €return € Ident — Value, comms € Block, always_iterates € Boolean,

loop_var_id € Ident, loop_var_val € Value
Ensure: e put, €output; €return € Ident — Value, exit € CFC

€ < Eorig
repeat
einput +— e[loop_var_id — loop_var_val]
<eoutputa €break> €continue; elretum, emit) — frun(commsa einput)
€output *— €output ! Econtinue
e < €output [l00p_var_id — loop_var_val] U einput
until e = ejnput V (test_flag(exit, CFC_CONTINUE) A test_flag(ezit, CFC_NONE))
if always_iterates then
€output “— E€output L Ebreak
else
€output *— Eoutput L €break U eorig[loop_var_id - []]
end if
Ereturn = €return L ei‘eturn
if test_flag(exit, CFC_CONTINUE) V test_flag(ezit, CFC_BREAK) then
exit «— set_flag(exit, CFC_NONE)
exit «— clear_flag(ezit, CFC_CONTINUE)
exit «— clear_flag(ezit, CFC_BREAK)
end if

whenever it is called in the residual code. Each function would be specialised for its

parameters hopefully reducing the execution time of the function.

To reduce the number of functions produced, we memoize each residual function along
with its call signature. When a function is to be specialised, the memo table is first
checked for a matching signature and if one is found the memoized function is returned

instead.

Often a loop might be unrolled where the loop variable is used as a parameter to a
function. This function would then be specialised for every iteration of the loop, pos-
sibly causing massive code explosion and increase in partial evaluation time. We do
not currently check for this although annotations can be used to homogenise parame-
ters. Unfortunately these annotations only act on the current environment and so the
changes would affect any later use of the variables and also they can only be used on
dynamic variables. These limitations are fairly arbitrary and could be lifted without

much difficulty.

Once a function is specialised, the function is added to the list of specialised functions
for the original function hashed using the call signature (consisting of the number of
parameters, their values and the number of outputs). The outputs of the function
(both static and dynamic) are also saved so that re-evaluation is not required for later

invocations. As this is all saved after the function has been specialised it cannot handle
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recursion (where the termination conditions cannot be determined statically) and this

is likely to lead to infinite specialisation.

In Listing 6.3, there is an example of a power function (using integer bases) which
exploits the fact that 2" = z"z™, with an example function which invokes power using
two different bases in Listing 6.6.

function y = testpower (x)

y = x + pow(x, 3) + pow(x, 4);

LISTING 6.6: Power test function

If we partially evaluate testpower without fixing anything, then the code in Listing
6.7 is produced. Note that no post-processing is performed yet and so there are many
redundant assignments.

function y = testpower__1(x)

y = x + pow__1(x) + pow__2(x);

function z = pow__1(x)
n = 3;

z = 1;

z =1 % x;

n =1

X = X * X;

zZ = z * X;

n =0

X = X * X;

function z = pow__2(x)
n = 4;

z = 1;

n = 2;

X = X * X3

n = 1;

X = x * X

z =1 * x;

n = 0;

X = X * X;

LISTING 6.7: Specialised version of testpower

Once functions are specialised, the call signature is checked and any completely static
parameters are removed from the list of parameters to the residual call, in a process
known as reparameterisation [63]. Since static parameters are initially inserted into the
function by assignments, there is no danger that a parameter may later be accessed
when it is undefined, if it would not normally be. Static parameters include undefined
parameters, which occur when functions are called with fewer than the maximum number

of parameters.

Varargin functions are those which have a final (or only) parameter called varargin.

Such functions can be called with any number of parameters, with the excess values put
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in varargin in the form of a row-vector cell array. The problem with this approach, is
that if any of the excess parameters are dynamic, then varargin becomes dynamic and
all of the other static parameters are lost. One way of dealing with this, would be to
split out the static excess parameters into conventional parameters as in arity raising
[29].

function y = f(varargin}

y = varargin{1} + varargin{2};

For instance this code could become:

function y = f(a, b}
y = a + b;

This would likely lead to a speed-up, but unfortunately it is unlikely that such code
would exist.- It is more common to see varargin accessed inside a loop using a loop
counter as an index. If the loop is dynamic, then there would never be any hope of
performing such a transformation. If it was static, it would have to be deferred until
after the loop was unrolled, in which case it would require re-evaluation of the code to

insert previously unknown static values and propagate them through the function.

Rather than performing this operation, it would probably be simpler (although require
a large development effort) to introduce partially stétic cell arrays (and perhaps struc-
tures). For now, no attempt is made to preserve static excess parameters, but we have
found in many cases, that either all of the excess parameters are static or they are all

dynamic.

The call signature of a varargin function has all the excess parameters stored in a cell
array, which if dynamic retains only information about its size. This means that if x
is dynamic, £(x, 1) and f£(x, 2) have the same call signature, although f(x, 1, 2)

would have a different signature.

Static outputs (including unrequested outputs) are also removed from the function.
For single output functions, this means that unless the function has side-effects, the
call can be replaced with the returned value. For multiple output function calls, the
dynamic outputs will be retained in the function call, while the static outputs will be
inserted via assignments in the calling residual code. This means that our later dead
code elimination will be more effective. For multiple output function calls for which all
the outputs become static, the function call will be completely removed unless it has

side-effects.

Function calls which produce fully static outputs cannot always be removed, as the
call may have side effects. In this case the function call needs to be retained, but its
outputs can be removed as above, allowing more effective post-processing. This presents
problems in the form of side-effect reordering. To prevent this we require that any

function with side-effects called with nargout equal to 1, must retain its single output.
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This means that function calls that are embedded in expressions will not be moved and
so the side effects will remain in order. This requirement is probably unnecessary as
users who rely on the order of function call execution are generally relying on undefined

behaviour.

6.5 Inlining

In most partial evaluators, simple functions are unfolded inside the calling function.
This unfolding performs a similar role to our loop unrolling for recursive functions.
Since recursion is not so important, we do not unfold functions, but always specialise
them. Once the function has been specialised, we then make a decision about whether
to inline the specialised function in the calling function. Our main strategy for inlining

is very simple.

e The function to be inlined must be a single line function containing one assignment.
The assignment must be to a simple variable and not a subscript.
e Each of the parameters must be used only once.
e The function must not have a varargin parameter.
This strategy means no additional variables need be created and that the overhead of

calling functions is reduced, without any expressions being executed more than once.

For instance:

a =b *x f(10 * ¢, d + e * g(x));

function z = f(x, y)
z = 25 + x * h(y);

is transformed into:

a=b* (25 + 10 * ¢ * h(d + e * g(x)));

The second rule is rather restrictive as it always bars the inlining in cases like this:

a = f(a, g(b));

a = f(ga), b);
function z = f(x, y)
Z = X * X + y;

If the first invocation was inlined as above it would result ina = a * a + g(b), which

would cause no problems. The reason for the second rule is the second invocation, which
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would be transformed into a = g(a) * g(a) + b, which leads to g being invoked twice

when it was only invoked once in the original program.

The general solution to this would be to create a variable to store g(a) and use that.
The first reason for not doing this is simplicity: we are creating a partial evaluator
not an optimising compiler. The second reason is that MATLAB has no intra-function
scoping, so once the variable was created it would not be destroyed until the end of the
function, assuming we created unique variables for each inlined function. This problem
could be reduced by reusing the variables we use for inlining. It would not be a problem
if used with better compilers and interpreters, which detected that a variable was never
used again or which provided common sub-expression elimination as then no temporary

variables would be required.

An alternative solution maintaining our goal of simplicity, is to allow inlining when the
parameter is a simple variable access. This would inline the first example above but not
the second. One convenient exception is that subscripts of parameters count as multiple

accesses of a parameter.

= rand (3);

a

b = rand(3);

c = fCa(ft 1 11,:), b);
c = f(a, b([1 1 11,:));
function z = £(x, y)

z = x(f[1 2 3], [3 2 1]) + y;

This exception means that the first invocation of £ would not be inlined but the second
one would be. This prevents the creation of the following invalid MATLAB code :
a(lt 1 1],:)(I[1 2 3], [3 2 1]).

The only reason for excluding varargin parameters is that it more complicated to
map cell array accesses to the calling parameters. This functionality could certainly be
added later, although a stepping stone would be the conversion of varargin functions
to ordinary functions, by arity raising, in the case where the number of parameters is
known in advance. Once this transformation is done, our inlining strategy could be used

if applicable.

Given the restrictions on how inlining is applied in our partial evaluator, it is unlikely
that functions produced as described in the previous section would ever be inlined due
to redundant assignments. The next chapter describes how the these functions are

post-processed to remove most of this redundant code.
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6.6 Least Upper Bound Caching

To partially evaluate a loop which cannot be unrolled requires the least upper bound
of the initial loop state to be computed. If the loop itself contains a loop which also
cannot be unrolled, its least upper bound must be found in order to find the least upper
bound of the outer loop. In fact the inner least upper bound must be computed for
each iteration of the outer loop computation. Nesting loops (including loops appearing

in functions called inside loops) leads to an exponential increase in specialisation time.

In addition, while the least upper bound is being computed, no code is being generated.
Once it is found, one final traversal of the loop is required which generates the code.
In our original partial evaluator, on encountering an inner loop, its least upper bound
would be recomputed again. Since this final traversal of the outer loop will use all of the
same values that were used on the final iteration of the least upper bound calculation,
the extra least upper bound calculation on encountering the inner loop while generating

code will produce exactly the same result.

As a result, significant time can be saved by caching least upper bounds once they are
calculated. The approach we take is to speculatively store a least upper bound for each
loop once it is computed. If a least upper bound calculation needs to be redone because
of a change in the outer least upper bound calculation, then the cached result is deleted

and replaced with the new result.

The least upper bound cache is actually just a list containing the least upper bound
states as they are encountered during the computation. When a loop is encountered,
the current size of the cache is increased by 1 and the final position is reserved. Once
the calculation is completed, its result will be stored in this position. This makes the
cache like a queue where instead of adding directly to the back, a place is reserved which
can be filled later.

At the start of each iteration of each least upper bound calculation, the cache after the
current position is cleared as the following states are to be recalculated. For a program
consisting of only unnested loops, the cache will always be empty. The first interesting
program would be like the following:

for m = 1:x

for m = 1:y

end

end

Here we have the n-loop and the m-loop, with the m-loop nested within the n-loop. The
least upper bound of the n-loop is calculated before its body can be partially evaluated.
During the first iteration, the m-loop is encountered and position 0 is reserved in the

cache which now has size 1. Since this loop is not nested, the cache will not have been
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altered when the calculation is completed. The computed state will then be stored at

position 0 and then the first iteration of the outer loop calculation will end.

At this point, the environment will be examined to see if a fixpoint has been reached
and if not iteration will continue. This causes the cache from position 0 (i.e. the whole
cache) to be cleared. The inner least upper bound will be recomputed and again stored
at position 0. Once the outer least upper bound calculation is complete, the result will
be a cache containing one element. The body of the outer loop will then be partially
evaluated, at which point the inner loop will be encountered. Since the cache is not
empty, its least upper bound will not be computed, but the front of the cache will be
popped and used to partially evaluate the body of the inner loop.

a = 1;
for n = 1:x

for m = 1:y

1
]
-

if a

(n,m)

[+
]

end

a f(m,n)

end

end

function y = f(x,y)

for o = 1:x

end

The above example is more complicated since it contains a nested loop at the top level
which contains two calls to the function £ which itself contains a loop that cannot be
unrolled. In addition, during the first iteration the first function call will not be examined
as a is static and equal to 1. On subsequent iterations, assuming f cannot be statically

determined to return 1, the function will be called twice.

At the end of the first iteration of the outer least upper bound calculation, the cache
will contain 2 states and it will be filled as follows:

L0 o] 0o[1] |01
—
L) sl Lem s

On the second iteration the cache will have size 3 and it will be filled as follows:

0] [oJ1i] Jo[1] Jo]1]2 0]17]2 0]1]2
—’—’ S s A A s A A A NS Y A NS R IO R B

N - 1% N -~ 1% | % Sm | So

Note that none of the cached values on the second iteration are related to the cached

values from the first iteration even though we have reused the symbols. If any further
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iterations are required then, the cache will be filled out in the same manner as the second

iteration.

Once the least upper bounds are found, their order in the table will be identical to the
order in which the loops will be encountered while partially evaluating, in which case
the states can be popped from the cache as required. In doing so 5 repeated calculations
(s} once and s} and sZ twice each), are avoided. The downside is that the current state
needs to be copied for each least upper bound and only the final cached value is actually
used. The memory usage of the partial evaluator is thus raised as is the total number
of allocated MATLAB arrays. Since the speed, with which MATLAB runtime library
operations run, is slowed as more are created, this creates scalability problems which

are beyond our control.

One problem that can occur using this approach is that a function containing loops
that cannot be unrolled will be called twice with the same signature inside a loop.
If the function has not been specialised before, no return information is available for
the function and so it must be abstractly interpreted and the least upper bound of
the internal loop calculated and stored in the cache. When the second function call
is encountered, exactly the same will happen, resulting in another table being added
to the table. However, later when the code is being generated, the first function call
will be specialised, and the cache will be popped once. The return values will then be
stored in the function call signature table, so that when the second call is reached, no
specialisation is required and the specialised function can be reused. Unfortunately the
cache is now out of sync. If the function is not specialised, the cache will contain an entry
that is not used. If there are further loops to be specialised, they will attempt to use
this cache entry even though it is not applicable, resulting in incorrect code generation.
for n = 1:x
%&;);
f(n + 1)
f, 2);
end

function f(x, y)

for n = 1:x

end

To solve this, before specialising a function, we note the number of loops left intact
so far. This is subtracted from the number of loops left intact after specialising the
function, giving n, the number of loops left intact in the function and the functions it
calls. On encountering a function specification for which a specialisation already exists,

while inside an intact loop, the first n entries are removed from the cache.
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# x realscalar
f(x, 1);

for n = 1:x
£, D
%&; +1, 1);
ta, 2);
end

function f(x, y)

for n = 1:x

end

Above, outside the loop there is previous specialisation of £ which due to the annotation,
will have the same signature as the two calls inside the loop. When computing the least
upper bound of the loop, there is no need to re-evaluate f for these two calls as the
return values are already know. However, the work-around for the previous example
does not recognise whether functions were actually specialised during the current loop,
and so it will try and remove one entry from the cache for each function call. Since there
will be only one entry as created by the third call to £, the partial evaluator will fail.
This is solved by inserting as many dummy entries into the cache as would be removed

later.

6.7 Summary

Within this chapter, we have given a full description of majority of the partial evaluator
inner workings. We have demonstrated how MATLAB statements are evaluated and how
the decision is made to reduce or to residualise. Using the type system from Chapter 4,
we have demonstrated what part abstract interpretation plays both while generating
code and also when computing the least upper bound of the loop state using a fixpoint

iteration.

Having introduced control flow change statements such as break and continue, we
have refined our fixpoint iteration to correctly handle these constructs. Since computing
the least upper bound can account for a large part of the partial evaluation time, we
demonstrate a strategy for caching least upper bounds in nested loops, even when they

are nested within other functions.

The polyvariant specialisation strategy is outlined including how we reuse functions

which share call signatures, made up from the parameters values and types. We also
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describe a simple but safe inlining strategy which is applied after function specialisation

and so can take advantage of the caching strategy just mentioned.

In the next chapter, we will describe a post-processing phase designed to tackle the
specific problems that this partial evaluation strategy introduces. Assignments are gen-
erated even when the right-hand side is static, without checking if it will be required.
This means that much code is generated that is entirely redundant, increasing both the

residual program size and the time to execute.

Additionally, while specialised functions are cached in a table indexed by the function
call signature, many functions can be specialised identically for different signatures.
These identical functions increase program size and can hurt cache performance and so

a post-processing phase that eliminates them is essential.



Chapter 7
Post-processing

The purpose of this phase is to reduce the size of the code produced by the partial
evaluation. It does this by removing dead statements. Dead statements are ones which
do not have any effect on the result of the current function, do not modify global variables

and do not produce any side-effects.

We initially used the following simple approach: assume all variables in a function are
dead except for the variables returned by the function. Any assignment to a dead
variable is redundant and so can be removed. For any statement which is not dead,
mark all the variables referenced in it as live. For if statements and switch statements,
perform the above algorithm for each branch in parallel and then merge the list of live
variables, so that any variable that is live on at least one branch, is also live before the
conditional. For loops, it is necessary first to find the loop dependencies. These are
variables that are referenced in the loop without first being assigned in the loop. These
loop dependencies are then to be added to the list of live variables before applying the
original algorithm. This needs to repeated as removal of dead statements may change

the loop dependencies, exposing more dead statements.

This algorithm is sufficient for the majority of codes, but it has several problems. It
cannot remove assignments inside loops which create values, only consumed on other
iterations of the loop. This is because the assigned variables become loop dependencies.
E.g.

function y = factorial (x)
a = 1;
y = 1
for n = 1:x
y =y *n;
a=a+ 1;
end

In this example, if the loop cannot be unrolled, the previous algorithm will not be able

to remove any statements, even though a contributes nothing to the final result.

101
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In addition this initial algorithm was developed when our subset of MATLAB excluded
return, break and continue statements. These statements complicate the control flow

and extending the algorithm to deal with them would not be easy.

As a result we replaced the dead code removal algorithm with one using ud-chains (Use-
Definition). Ud-chains link a use of a variable to all the places where it could be defined.
The dual of ud-chains are du-chains (Definition-Use), which link a definition of a variable
to all the places where it might be used. These can be created by solving the reaching
definitions problem. Using ud-chains means that irregular control flow using break,
continue and return is possible and it is also more effective at removing dead code.
While we do not require the du-chains for our algorithm, we can use these for further

optimisations along with the ud-chains.

To create the ud- and du-chains, we need to solve the Reaching Definitions problem.
This “finds which definitions of a variable may reach each use of the variable”. [52] It is
a forward data flow algorithm that uses a lattice of bit vectors, where each bit represents
a variable definition. In general, it is used to find the definitions which reach each basic

block of a procedure rather than individual statements.

7.1 Dividing into Basic Blocks

This data flow problem is normally performed on low-level or intermediate-level code
and not on the high level parse tree that our partial evaluator produces. This creates
some small problems, as high-level representations are not so easy to partition into basic
blocks. One approach would be to convert the parse tree form into a low level form and
then perform the reaching definitions analysis and dead code removal. This could be

problematic as the conversion back to the high level form is not likely to be simple.

In order to use the high level form, a method of partitioning into basic blocks must be
devised. For most cases we define a basic block using an existing block! and two integers,
which give the start and end of the basic block. We also have two special blocks which
do not contain any commands: the entry point and exit point blocks. All exits from a

function, which allow execution to continue, flow through the exit point.

The function shown in Listing 7.1 would be represented by the parse tree given in
Figure 7.1. This function is made up of 6 basic blocks including the start and exit
blocks. Figure 7.2 gives a directed graph of the basic blocks showing how control can

flow from the start of the function to the end. Basic blocks are subdivided as follows:

e Simple statements which do not affect the control flow, like expressions and all

types of assignment are just appended to the end of the current basic block.

'A block could be the list of top level commands in a function or the list of commands in the body
of a loop or conditional statement
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Block2 @

1 |2 1 2

a=2; b=1; b=5%*x; y=-1;

FIGURE 7.1: Parse tree for 7.1

h=1;
y =1;
if x ==

PARY

=2; b =15 *x;
1; y =-1;

N/

y=a*y+b;

FIGURE 7.2: Graph of basic blocks for 7.1
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function y = f(x)

a

=1;
= 1;

y
if x == 1
a = 2;
b =1;
else
b =5 * x;
y = -1
end
y =a=*y+ b;

LisTING 7.1: Example Code

The conditional part of an if statement is appended to the current basic block.
The first set of statements starts a new basic block and so does the else set. A

new basic block is created to which two branches point. See Figure 7.3(a).

The while statement starts and ends its own basic block. This block points to
a basic block created from the body of the loop. At the end of the loop body,
the final basic block points back to the while basic block. This then points to an
empty basic block to indicate the loop exit. See Figure 7.3(b).

switch statements require a new type of basic block to encapsulate the case test.
This is a basic block which just contains the case and its expression. This is
required because case is not a valid statement as it can only happen inside a
switch. The switch statement itself is appended to the last basic block, as with
if statements. It then points to the first case basic block. This will then point
to a basic block with the associated commands and also to the next case which
will also point to two basic blocks. This is done for all the cases until the last one
which points to a basic block for the otherwise statements. At the end of the
statements for each case and the otherwise clause is a pointer to an empty basic
block indicating the end of the switch. See Figure 7.3(c).

for loops are more complicated than while loops as the loop range is only eval-
uated once while the loop variant is updated on every iteration. As a result, we
have two new kinds of basic block: one contains a for loop and indicates that it is
the preamble and only evaluates the loop range. The other contains a for loop and
indicates that it updates the wvariant. The loop then is comprised of a preamble
basic block which points directly to a variant basic block. The variant then points
to the body of the loop as well as an empty block at the end (used for loops, where
the body never executes). At the end of loop body basic blocks, control flows both
to the variant block and the exit block. See Figure 7.3(d).

break causes the current basic block to flow to the exit block of the current loop.
See Figure 7.4(a).

continue causes the current basic block to flow to the header block of the current
loop. See Figure 7.4(b).
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e return causes the current basic block to flow to the exit block of the function. See
Figure 7.4(c).

¢ In addition the built-in function error causes a change in the control flow as it
causes execution of the program to stop. As a result control does not flow at all

from a basic block ending with error. See Figure 7.4(d).

In the Figure 7.3 and Figure 7.4, solid lines indicate that flow goes directly from one
block to the one pointed to by the arrow. If the line is dotted, then there may be other

blocks in between, for instance if a for loop is nested inside a while loop.

For each basic block, ¢, there exists a set Pred(¢) which contains all the basic blocks

from which control can flow to 3.

7.2 Calculating ud- and du-chains

Once the function has been divided up into basic blocks, the ud- and du-chains need to
be calculated. A ud-chain is made up from a Use and a list of Definitions, whereas a
du-chain is made up from a Definition and a list of Uses. A Use comprises a variable
and the location of the statement where it is used. A Definition is made up from a

variable and the location of the statement that writes to it.

We first calculate the reaching definitions using the method outlined in [52]. This in-
volves creating kill(z) and gen(i) vectors for each basic block, 7, indicating which defi-
nitions are killed and which are created respectively. To do this we traverse the whole
function creating a list of definitions; the position of a definition in this list indicates the

position of the relevant bit in the bit vectors.

Each basic block is then traversed and for each assignment, the relevant definition in
the gen(i) bit vector is marked set if it is the last assignment to that variable in the
block. All other definitions for that variable are then marked in the kill(¢) bit vector.
In addition the gen bit vector for the entry node has the definitions for the function

parameters marked.

Two additional bit vectors are then created for each basic block: RCHin(z) gives the
definitions that can reach the start of a block, 7, and RCHout(z) gives the definitions

that can reach the end of that block. These can be calculated from:

RCHout(i) = gen(i) VvV (RCHin(z) A not(kill(1)))Vi (7.1)

RCHin(s) \/  RCHout(j)Vi (7.2)
F€ Pred(1)
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while ...

(a) if

switch ...

case ...

AN

HAN

(b) while

for...=exp

case ...

/

for var = ...

(c) switch

(d) for

FIGURE 7.3: Basic blocks for conditionals and loops.

We now perform a fixed point iteration using equations 7.1 and 7.2. This gives us
RCHin(t) and RCHout(i) for each basic block, ¢, which can be used to create the ud-

and du-chains.

Each basic block is examined, one statement at a time to find uses. Each use is recorded

along with the current live definitions. The current live definitions are taken from RCHin

initially, but assignments in the current block cause the current definition to be replaced.

The exit block of the function is considered to use the output variables of the function.

Indexed assignments and deletion assignments are both wuses and definitions as they
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while ...

while ...

i
\ 53

continue

break

(a) break (b) continue

while ...

while ...

’ L

Y A

enc;;(...)

(c) return (d) error

FIGURE 7.4: Basic blocks for the control flow change statements (inside a while loop)
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both use the old value and assign a new value. Technically any uses of a variable after
such an assignment also use any old definitions, but we can ignore this as it just makes

the chains longer and has no effect on the result of our algorithm.

7.3 Dead Code Elimination

The Dead Code Elimination occurs in two parts: the first part marks as live the state-
ments directly required to compute the result of the function, while the second part

marks all the control flow statements that are required.

Initially all statements are unmarked. We then mark live those statements which produce
a side-effect. This includes all statements including calls to functions (both m-files and
built-in functions inferred to produce a side-effect) and expressions and assignments
which are not terminated by a semi-colon and so would print the result. In addition we
also mark live all the control flow change statements (return, continue and break) as

working out whether they are redundant is beyond the scope of this work.

As with [52], we use a work-list which we initialise with the set of essential statements
as well as the exit point. One by one, we remove statements from the list and examine
the uses. For each use, we add to the work-list every currently unmarked statement
that creates a definition by examining the appropriate ud-chain as well as marking the
statement as live. This process is continued until the work-list is empty at which point,
every statement that directly contributes to the result of the function will be marked

live.

However conditionals or loops, containing live statements, may not be marked live, so
the second stage scans the function for marked statements and marks all the control flow
statements that contain them. For instance, if a marked assignment is inside a for loop

then that for loop will be marked live and added to the work-list for the previous stage.

Once the second stage is completed, the first stage is repeated. If no changes were made
in the second stage then the work-list will be empty and so it will immediately cease. If
the first stage makes no changes then the iteration ceases and the dead code elimination

is completed.

If at any point, a statement with side-effects is marked live then the function itself is

marked as having side-effects, thus enabling its callers to treat their calls accordingly.
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7.4 Duplicate Function Elimination

While using a type system which provides information about dynamic parameters en-
ables more specialisation opportunities, it also has the side-effect that two functions
could be produced which are identical even though they have different call signatures.

function z = f(x, y)
if x > 5

z =y + 10;
else

z =y + 5;

end

For instance, if the function above is specialised with static y = 4 and dynamic x, we
get:

function z = f__1(x)
if x > 5

z = 14;
else

z = 9;

end

However, there are lots of ways of specifying x to produce the above residual code. So
long as x is not specified as something which cannot be used in an inequality test, the
above code will be produced. This means x includes but not exhaustively sparse arrays,
single precision arrays, sparse real arrays, real double precision arrays and even real
logical double precision arrays. While the possible classes and traits are finite, there are

infinitely many shape specifications which would all produce the same code.

These redundant specialisations are bad for two reasons: they increase the size of the
residual program (thus hurting cache performance) and they require redundant com-
putation at specialisation time. Unlike [59], we do not attempt to detect these before
creating them, but after specialising a function we compare it against all previously
specialised versions of that function. This comparison checks for structural equality of
the abstract syntax trees of each of the functions. The variable names must be identical
at each point as well as the names of any called functions. This will therefore not catch
two functions which are identical but for variable names, but since such functions are
unlikely to appear as a result of two specialisations of the same function, this is not a
problem. Since called functions must have the same name in each function to be con-
sidered identical, it will only mark a function as a duplicate if the called functions were

specialised and marked as duplicates.

Debois [16] uses bisimulation equivalence to detect duplicate specialisations for a flow
chart language. The target there is however more fine-grained than ours as we are
only checking for functions, while Debois is looking for duplicate sets of basic blocks

leading up to the end of a function. Since we have an AST at this point, a side-by-side
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comparison of two ASTs is relatively simple, which is not the case in the unstructured

flow-chart language.

As with Ruf and Weise [59], we maintain information about the return values of each
function. This information is stored in the function call signature, which then links
to the specialised function. In the case of duplicates, this return information is still
calculated since the function was specialised before the duplication was detected. The
function call signature of the duplicate is modified to point to the original specialisation

and the extra one is deleted.

A better solution may be to try and avoid creating these specialisations in the first
place. However as Ruf and Weise showed, the order of function specialisation can effect
whether duplicates are detected prior to specialisation. If there are two specialisations
which produce the same result, but one specialisation has a looser specification that
includes the other one (s; C s3), then performing the specialisation with the tighter
specification (s;) first will allow the second specialisation (with specification s3) to be
avoided. Reversing the order however requires both specialisations to be performed.
An approach which attempted to calculate a further specification, s, which was the
most precise specification (given the limits of the type system) which led to the same
specialisation, in conjunction with the least precise specification s;, might be feasible.

The specialisation can then be reused safely and optimally if s,, C s C s;.

Exactly calculating s, and s; would not be possible but an approximation could be
achieved, which could prevent a significant number of redundant specialisations. Whether

or not the cost is justified would have to be examined.

Even with our late function duplication detection, the specialisation time can often be
reduced. This is because deleting functions causes the constants stored in the abstract
syntax trees to be deleted. Since these use the MATLAB library type mxarray, and
due to the poor performance of the libraries given large scale array allocation, the larger
programs become the slower the partial evaluator becomes. The cost of detecting and
deleting functions can then be outweighed by the speed-up achieved by using fewer

arrays.

7.5 Summary

In this chapter, we have seen two main methods for reducing the size of the residual code
produced by a partial evaluator. Firstly a method for removing all code which neither
contributes to the returned values of a function or its side-effects was proposed using
ud-chains. Secondly a structural equivalency check was introduced for newly specialised
functions, which detects and removes identical functions produced from different call

signatures. The need for these methods comes from the partial evaluation technique,
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which is skewed towards generating more code than necessary, since elimination at a

later stage is simpler.

As noted by Knoop [43], it is possible that removing dead assignments or expressions
could change the semantics of a program as the dead code could generate a run-time
error. Division by zero is not a problem in MATLAB as it evaluates to plus or minus
infinity or “Not A Number”, all three of which are valid values in MATLAB. However
multiplying two matrices with incompatible dimensions will halt execution as will raising
a matrix to the power of another matrix. We do not consider this to be an important

problem but note it for completeness and discuss it further in Section 9.1.

Another way the semantics of a program could be modified by our dead code elimination
algorithm, is if a loop is removed which would never terminate. E.g.

function.y = f(x)
while x > 1

x = x + 1;
end
y = 10;

In the above example, the function f(x) will never terminate unless the initial value
of x is less than or equal to 1. But our strategy only considers loops which contain
statements contributing to the final return value, which this loop does not. As a result
the assignment x = x + 1is not marked live and consequently neither is the while loop,
making the resulting function:

function y = f(x)
y = 10;

Using the assumption that we are only dealing with programs that have been thoroughly
tested and work, we will assume that such loops will not feature in the input to our partial

evaluator.

With the core partial evaluator functionality built and with an effective post-processor,
it is now possible to examine real functions and programs. In the next chapter, we
will examine empirically the efficacy of the partial evaluator with and without the post-
processor. QOur examples range in complexity from the relatively simple functions like
Chebyshev approximation and Lagrange interpolation to a large optimisation program

used to model aero-engine inlets.
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Results

In this chapter we will evaluate the effectiveness of our partial evaluator on several pro-
grams. The code for these tests is a mixture of code developed inside the Computational
Engineering and Design research group at the University of Southampton!, code from

partners at other universities and code found in repositories on the Internet.

8.1 Single Function Experiments

These first experiments show the results of applying partial evaluation to small functions,

with clear specifications for the parameters.

8.1.1 Chebyshev Series Approximation

The first code tested was a function for the generation of Chebyshev polynomials [24],
which, like power series, are used to approximate functions by summing terms. As with
power series, using more terms leads to better approximations. This function has two
parameters, a m-by-n matrix, ¢, of coeflicients for calculating m functions with n terms
and a vector, x, as input to the functions. Table 8.1 shows the relative timings for the
chebyshev function (iterated 5000 times to get measurable results). Timings are shown
where the function has been partially evaluated where just n is fixed, c is fixed and
lastly where c is fixed along with the size of x. The timings are further subdivided
according to whether post-processing was used. The results show a steady increase in
performance as more information is fixed, with the final function running in half the
time of the original, when post-processing is used. Listing 8.1 is the implementation of

the Chebyshev series approximation algorithm.

! http://www.ses.soton.ac.uk/projects/Comp_Eng Des/comp_eng_des.html
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Orig n fixed ¢ fixed ¢ and size of x fixed
size(c,2) No p.p. | With p.p. | No p.p. | With p.p. | No p.p. | With p.p.
2 1.00 0.90 0.89 0.81 0.77 0.60 0.48
4 1.00 0.94 0.92 0.84 0.81 0.59 0.50
6 1.00 0.94 0.93 0.85 0.82 0.58 0.51
8 1.00 0.94 0.94 0.85 0.83 0.57 0.52
10 1.00 0.95 0.95 0.86 0.84 0.57 0.52

TABLE 8.1: Relative timings for the Chebyshev functions with m = 3 and p = 3,
relative to original function (p.p. is post-processing).

function y = chebseries (c,x)
m = size(c,1);
p = size(x,2);
a = zeros{(m,p);
b = a;
xx = ones{m,1) * x;
f = 2 * xx;
for k = size(c,2):-1:1
d = b;
b = a;
a = c(:,k) * ones(1,p) + b .* £ - d;

y =a - (b .* xx);

LisTING 8.1: A simple implementation of Chebyshev series approximation

Listing 8.2 shows the Chebyshev function partially evaluated with size(c,2) set to 4.
The only difference post-processing makes in this case is the removal of the assignment
to k.

function y = chebseries__1(c, x)

m = size(c, 1);

p = size(x, 2);

a = zeros(m, pJl;

b = a;

xx = ones{m, 1) * x;

f = 2 * xx;

d = b;

b = a;

a = c(:, 4) * ones{(1, p) + b .*x £ - d;
d = b;

b = a;

a = c(:, 3) = ones(1, p) + b .* f - d;
d = b;

b = a;

a = c(:, 2) * ones(1, p) +b .*x f - d;
d = b;

b = a;

a = c(:, 1) * ones(1, p) + b .*x £ - d;
k = 1;

y =a-b .*x xx;

LisTING 8.2: The Chebyshev series approximation code partially evaluated with
size(c,2) fixed
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Listing 8.3 shows the Chebyshev function partially evaluated with c set to a 5-by-4

matrix. Here post-processing would remove the assignments to c, m and k.

function y = chebseries__1(x)

¢ = [0.950129 0.7620987 0.615432 0.405706;
0.231139 0.456468 0.791937 0.93547;
0.606843 0.0185036 0.921813 0.916904;
0.485982 0.821407 0.738207 0.41027;
0.891299 0.444703 0.176266 0.89365];

m 5;

p = size(x, 2);

a = zeros(5, p);

b = a;

xx = [1; 1; 1; 1; 1] =* x;

f = 2 * xx;
d = b;
b = a;
a = [0.405706; 0.93547; 0.916904; 0.41027; 0.89365] =*
ones(1, p) + b .*» f - d;
d = b;
b = a;
= [0.615432; 0.791937; 0.921813; 0.738207; 0.176266] =*
ones(1, p) + b .*» f - d;
d = b;
= a;
a = [0.762097; 0.456468; 0.0185036; 0.821407; 0.444703] =*
ones(1, p) + b .*» f - d;
d = b;
= a;
= [0.950129; 0.231139; 0.606843; 0.485982; 0.891299] =*
ones(1, p) + b . £ - d;
k = 1;

a - b .* xx;

LisTING 8.3: The Chebyshev series approximation code partiaily evaluated with ¢
fixed

Listing 8.4 shows the Chebyshev function partially with ¢ set to a 5-by-4 matrix and
size(x,2) set to 5. We show here, the post-processed version of the code. While this
code runs in only half the time of the original function, it is immediately evident that
further improvements could be made. The first assignment to a is effectively a = a + 0
* £ — 0. If the expression was reordered, the subtraction would have been performed
but a better solution would be to identify binary operations where one operand is all

zeros or all ones or the identity matrix and perform the appropriate constant folding.

function y = chebseries__1(x)
xx = [1; 1; 1; 1; 1] * x;
f =2 * xx;

a = [0.405706 0.405706 0.405706 0.405706 0.405706;
0.93547 0.93547 0.93547 0.93547 0.93547;
0.916904 0.916904 0.916904 0.916904 0.916904;
0.41027 0.41027 0.41027 0.41027 0.41027;
0.89365 0.89365 0.89365 0.89365 0.89365] +
[0 0O0OO0O0;, 0O00COO0O; 0OOOOO; 00O0O0O0; OOOOO] .*
f -[0000O0; 000O0O; 00O0O0O; 00O0O0O0; 00O0O0 0];

b = a;
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a = [0.615432 0.615432 0.615432 0.615432 0.615432;
0.791937 0.791937 0.791937 0.791937 0.791937;
0.921813 0.921813 0.921813 0.921813 0.921813;
0.738207 0.738207 0.738207 0.738207 0.738207;
0.176266 0.176266 0.176266 0.176266 0.176266] + b .* ...
f -[00000; 0O00O0O0; 000O0O0; 000O0O0O; 000O0O0 0];
= b;
b = a;

a = [0.762097 0.762097 0.762097 0.762097 0.762097;

.456468 0.456468 0.456468 0.456468 0.456468;

.0185036 0.0185036 0.0185036 0.0185036 0.0185036;

.821407 0.821407 0.821407 0.821407 0.821407;

. 444703 0.444703 0.444703 0.444703 0.444703] + b .» £ - d;

.950129
.231139

.950129
.231139
.606843
.485982
.891299

.950129
.231139
.606843
.485982
.891299

.950129;
.231139;
.606843;
.485982;
.891299] + b .*x f - d;

a = [0.950129

0.231139
.606843 0.606843
0.485982 0.485982
0.891299 0.891299

y = a - b .*x xx;

o
O O O O
O O O O O
O O O O o
o O O O O

LisTING 8.4: The Chebyshev series approximation code partially evaluated with c
fixed and size(x,2) fixed. Post-processing has also been used

The assignments to d and b before each assignment to a could also be removed. This
could be achieved by using copy propagation and variable renaming, but doing this
ought to be a compiler optimisation and it is certainly beyond the scope of a partial

evaluator.

8.1.2 Lagrange Interpolation

The second test function (Listing B.1), when given a set of points from a function,
computes the Lagrange interpolating polynomial [79] that passes through them and
returns a set of points on the curve. The MATLAB code is comprised of two nested
loops both dependent on the number of points to interpolate followed by a third loop
also dependent on the number of points. We specialised this function by first fixing the
number of points, n, (and thus the number of z and y coordinates) resulting in all of the
loops being unrolled and then further specialised it by fixing the z coordinates. Again,
timings were taken with and without post-processing. Table 8.2 shows the improvements
we achieved including at least 50% speed increases when the x coordinates are completely
fixed.

8.1.3 Solving a Gaussian Hypergeometric Differential Equation

The next example function (Listing B.2) solves the Gaussian Hypergeometric differential
equation, z(1 — a:)% +c—(a+b+ 1)3:%% — aby = 0, using a series expansion [19]. The
main work is done by a single for loop which calculates the series terms. To get more
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n fixed z-coordinates fixed
n | Original | No postproc | Postproc | No postproc | Postproc
2 1.00 0.73 0.67 0.67 0.58
4 1.00 0.82 0.79 0.68 0.64
6 1.00 0.85 0.83 0.67 0.65
8 1.00 0.86 0.84 0.68 0.66
10 1.00 0.87 0.86 0.68 0.66

TABLE 8.2: Relative timings for the Lagrange functions with values of n

n | Original | Partially Evaluated | Post-processed
4 1.17 0.85 (0.73) 0.72 (0.62)
6 1.47 1.07 (0.73) 0.94 (0.64)
8 1.77 1.30 (0.73) 1.17 (0.66)
10 2.08 1.54 (0.74) 1.40 (0.67)

TABLE 8.3: Timings in seconds for the Gaussian Hypergeometric differential equation
solver (iterated 8000 times). (Relative times are given in brackets).

accurate results, higher order series terms are required and thus more iterations. The
number of terms is the parameter that we have chosen to specialise. As can be seen
from Table 8.3, partial evaluation with post-processing is very effective at speeding up

the function, showing a 49-62% performance increase over the original function.

8.2 Ordinary Differential Equation Solvers

A common numerical application for which MATLAB is used is the integration of ordi-
nary differential equations (ODEs). MATLAB provides several ordinary ODE solvers,
like ode4b, which uses a combined 4th and 5th order Runge-Kutta method to solve

non-stiff differential equations.

[t,y] = oded45(odefun,tspan,y0) with tspan [t0 tfinal]

[t,y] = oded45(odefun,tspan,y0) with tspan = [t0 t1 t2 ... tfinal]
[t,y] = oded45(odefun,tspan,y0,options)

[t,y]l] = ode45(odefun,tspan,y0,options ,pl,p2...)

[t,y.te,ye,ie] = oded45(odefun,tspan,y0,options...)

sol = oded45(odefun,[t0 tfinall,y0...)

There are numerous ways of invoking the highly parameterised function, ode45, ranging
from simple invocations which use the default options to the more complicated use of

output functions, event functions, extra parameters and so on. We can find a numerical

solution to the equation Ccii—:tp = k(T — Ty,), which gives Newton's Law of Cooling using
ode45. This requires a way of expressing the right hand side of the equation (RHS).
E.g.

function dTdt = newton(t, T)

dTdt = k * (T - Tm);
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This function can either be passed to ode45 using a function handle or as a string. The
function is then invoked by calling the built-in function feval on the function handle or
string. This will be slower than invoking the function directly but allows the solver to
be general. Clearly if partial evaluation would just replace the calls to feval with calls
to newton, we would achieve a performance increase. In fact we can do much better
due to the high level of parameterisation of ode45. When ode45 is invoked it checks its
parameters to see how it was called. Assuming it was invoked with a function handle, it
checks if tspan and y0 were supplied otherwise it gives an error. It then checks whether
tspan has 2 or more elements or it throws an error. It checks whether the differential
function returns a column vector. There are too many checks to list here, but it suffices

to say that many of these can be precalculated during specialisation.

For instance specialisation of ode45 in its simplest form with respect to the function,
newton is given by this (note k and Tm have been hard-coded into the RHS function
with the values of -0.0253178 and 100 respectively):

function [x, y] = specialise_ode45(xspan, yO0)
%% xspan realdouble

%# xspan size [1 2]

%# y0 realscalar

[x, y] = ode45(@newton, xspan, y0);

function dTdt = newton(t, T)

% k = -0.0253178;

% Tm = 100;

dTdt = -0.0253178 * (T - 100);

Specialising this with post-processing and inlining enabled gives us a total of 124 lines
of code of which 97 lines give the ode45 function and the rest is comprised of the
additional non-built-in functions called by ode45. This contrasts with 410 lines for the

ode45 function alone (with comments and blank lines stripped).

A second use of ode45 allows us to have one newton function for all values of k and Tm
by passing them as parameters.

function [x, y] = specialise_ode45(xspan, y0)
%# xspan realdouble

%# xspan size [1 2]

%# y0 realscalar

k = log(39/40);

To = 100;

[x, y] = ode45(@newton, xspan, yO, [1, k, Tm);

function dTdt = newton{(t, T, k, Tm)
dTdt = k * (T - Tm);

Specialisation here produces exactly the same code as before as the values of k and Tn
are propagated to exactly the same places as before, with post-processing leaving no

traces in the residual program.
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function [t,y] = odeEuler(diffeq, tn, h, y0, varargin)

(0:h:tn)’;
length(t);
y0 * omnes(n, 1);

t

y

for j = 2:n
y(j) = y(j-1) + h *= feval(diffeq, t(j - 1), y(j - 1), varargin{:});
end )
LisTiNG 8.6: Implementation of Euler’s method for solving ordinary differential equa-
tions

function [t,y] = odeRK4(diffeq, tn, h, y0, varargin)

t = (0:h:tn)’;

n = length(t);

y = y0 * omnes(n, 1);
h2 = h/2;

h3 = h/3;

hé = h/6;

for j = 2:n

k1 = feval(diffeq, t(j - 1), y(j - 1), varargin{:});

k2 = feval(diffeq, t(j - 1) + h2, y(j - 1) + h2 * k1, varargin{:});
k3 = feval(diffeq, t(j - 1) + h2, y(j - 1) + h2 * k2, varargin{:});
k4 = feval(diffeq, t(j - 1) + h, y(j - 1) + h = k3, varargin{:});

y(j) = y(j-1) + h6 * (k1 + k4) + h3 =* (k2 + k3);
end

Listing 8.7: Implementation of the 4th Order Runga-Kutta method for solving
ordinary differential equations

Due to inlining the function newton does not exist at all in the specialised code, but for
a more complicated RHS function like logistic (given in Listing 8.5), inlining is not
always possible as it uses one of its parameters more than once. Since ode45 sometimes
passes array subscripts to the RHS function, these calls cannot be inlined. A better
inlining strategy would be required to handle this, either by deciding that the number
of repeated array accesses is outweighed in cost by the benefit of inlining or by creating
temporary variables to store results. In this area, MPE would benefit greatly by being
combined with an effective optimising compiler that could make inlining decisions itself.

function dPdt = logistic(t, P, optionms, a, b)

dPdt = P * (a - b * P);

function dydx = normal(x, y)

dydx = -2 * x * y;

LisTiNG 8.5: Sample RHS Functions for ODE Solvers

We also demonstrate two other ordinary differential equation solvers, odeEuler (Listing
8.6) and odeRK4 (Listing 8.7), which use the Euler and 4th order Runge-Kutta method
respectively. These are simple non-adaptive solvers, which are described in [40]. Both
of these can pass in additional parameters to RHS functions (useful for specifying con-

stants) but are otherwise unconfigurable.
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Original mpe mpe -p mpe -pi
normal 21.23 | 12.50 (70%) |12.50 (70%) | 5.14 (313%)
logistic|  8.40 | 4.84 (73%) 433 (94%) 4.3 (94%)
newton 8.34 | 4.74 (75%) | 4.19 (99%) | 1.50 (456%)

TABLE 8.4: Timings (in seconds) for odeEuler with three different RHS functions

Original mpe mpe -p mpe -pi
normal 8.16 [4.76 (71%) | 4.76 (71%) | 1.80 (353%)
logistic 3.25 | 1.85 (76%) | 1.64 (98%) | 1.64 (98%)
newton 6.41 |3.62 (77%) | 3.18 (102%) | 0.96 (568%)

TABLE 8.5: Timings (in seconds) for odeRK4 with three different RHS functions

Original mpe mpe -p mpe -pi
normal 1.30 [1.07 (21%) | 0.96 (35%) | 0.74 (76%)
logistic 1.02 |0.81 (26%) |0.68 (50%) | 0.65 (57%)
newton 1.02 | 0.81 (26%) | 0.67 (52%) | 0.50 (104%)

TABLE 8.6: Timings (in seconds) for ode45 with three different RHS functions

Table 8.4 and Table 8.5 show the results of specialising odeEuler and odeRK4. We can
see that partial evaluation alone produces code that on average runs 70-75% faster, for
each of the equations with odeEuler and 71-77% faster for odeRK4. These examples also
illustrate where post-processing and inlining can have an effect. For instance normal
(given in Listing 8.5) benefits negligibly from post-processing but as the RHS function
is very simple, it can be inlined leading to very large speed ups. On the other hand,
logistic benefits from post-processing as the constants propagated to the RHS function
are assigned to variables that are never referenced (as they expand to their constant
values) but it cannot be inlined as it references its parameters more than once. The
newton function has both constants and can be inlined leading to the largest speed
ups. Berlin and Weise [10] also partially evaluated problems involving Runge-Kutta
integration of ODEs. They achieved much larger speed-ups than have been achieved
here, but our use of MATLAB means that many of the specialisation opportunities they

see are likely hidden inside libraries.

In all cases, MPE took about 0.19 seconds to produce the residual code. In each case the
function was executed 100 times to get the timings shown here, although longer running

times could also be achieved using longer time intervals for the solvers.

Table 8.6 shows the results of specialisation for the ode45 function provided with MAT-
LAB. The main function is around 400 lines long and it can call many other functions,
making this a very complex function. Specialising using the examples from earlier, we
only want to use a very limited subset of the ode45 functionality, as we do not require

event functions, mass matrices or execution statistics. The residual code produced by
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odemassexplicit odearguments

(a) newton (b) logistic

FIGURE 8.2: Function dependency graph for ode45 specialised for different RHS func-
tions

specialising with respect to normal using inlining and post-processing is only 125 lines
long and that includes all the functions produced by the specialisation. This speciali-
sation takes around 0.39 seconds and 0.43 seconds with post-processing as well. With
the other solvers, execution of the RHS function dominates the computation time and
80 specialisation gives enormous speed ups. Since ode45 is more complex, the execution
of the RHS functions has less of an impact on the performance. However, speed ups of
around 50-100% are still significant.

A visual demonstration of the complexity of oded5 is given in Figure 8.1, which shows
the main function dependencies (not including any function introduced through function
handles).? Figure 8.2 shows the dependency graph when ode45 was specialised with
respect to newton and logistic. Clearly specialisation can yield much simpler residual

programs.

The final results for the ODE solvers come from applying the MATLAB compiler, MCC,

to the original code and the residual programs. Tables 8.7 and 8.8, show the timings from

2These graphs were produced using a special mode of MPE
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the MATLAB interpreter as given before as well timings from the compiled code from
the odeEuler and odeRK4 solvers. Figures 8.3 and 8.4 show the effect of partial eval-
uation and compilation against the original program. In every case with these solvers,
compilation more than doubles the performance increase from partial evaluation. With
the ode45 solver, the results in Table 8.9, while not as impressive as the other solvers,
show that the performance increases are retained through compilation. The ode45 re-
sults need to be considered carefully, since the MATLAB compiler did not compile the
ode45 solver when it was not partially evaluated. Instead a pre-compiled version, which
is part of the run-time libraries, was used. There is no way of knowing whether this ver-
sion was originally compiled directly from the MATLAB version or whether it has been
optimised in some way. Given that compilation does not produce much faster code,
in this example, it seems likely that optimisation, if any, was applied sparingly. The
performance chart in Figure 8.5 clearly demonstrates how the combination of partial
evaluation and compilation can be effective especially given that while the solver is very

general, it is a production solver and has no doubt been fairly carefully optimised.

Original mpe mpe -p mpe -pi
Interpreted | normal 21.23 | 12.50 (70%) | 12.50 (70%) | 5.14 (313%)
Compiled | normal 6.39 |2.23 (187%) | 2.23 (187%) | 0.80 (699%)
Interpreted | logistic 8.40 | 4.84 (73%) | 4.33 (94%) | 4.33 (94%)
Compiled |logistic 2.96 | 1.12 (164%) 0.78 (279%) | 0.76 (289%)
Interpreted | newton 8.34 | 4.74 (75%) | 4.19 (99%) | 1.50 (456%)
Compiled |newton 2.92 |1.11 (163%) |0.74 (295%) | 0.22 (1227%)

TABLE 8.7: Compilation vs. Interpreter Timings (in seconds) for odeEuler with dif-

ferent RHS functions

Original mpe mpe -p mpe -pi
Interpreted | normal 8.16 | 4.76 (71%) | 4.76 (71%) | 1.80 (353%)
Compiled |normal 2.53 | 0.89 (184%) |0.89 (184%) | 0.30 (743%)
Interpreted | logistic 3.25 | 1.85 (76%) | 1.64 (98%) 1.64 (98%)
Compiled |logistic 1.16 | 0.44 (163%) |0.30 (281%) | 0.30 (281%)
Interpreted | newton 6.41 | 3.62 (77%) | 3.18 (102%) | 0.96 (568%)
Compiled |newton 2.32 [0.87 (167%) | 0.58 (300%) |0.15 (1447%)

TABLE 8.8: Compilation vs. Interpreter Timings (in seconds) for odeRK4 with different
RHS functions
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Original mpe mpe -p mpe -pi
Interpreted | normal 1.30 | 1.07 (21%) [ 0.96 (35%) | 0.74 (76%)
Compiled |normal 0.80 1 0.65 (23%) |0.50 (60%) | 0.46 (72%)
Interpreted | logistic 1.02 | 0.81 (26%) [0.68 (50%) | 0.65 (57%)
Compiled |logistic|  0.69 |0.54 (28%) |0.39 (77%) | 0.38 (82%)
Interpreted | newton 1.02 | 0.81 (26%) | 0.67 (52%) | 0.50 (104%)
Compiled |newton 0.69 | 0.54 (29%) | 0.39 (78%) | 0.36 (92%)

TaBLE 8.9: Compilation vs. Interpreter Timings (in seconds) for ode45 with different
RHS functions

[ interpreted
[ compiled
[ peval intlerpreted
[T peval compiled

0.8

0.6

04

0.2

Performance relative to original (lower is better)

normal logical newlon

RHS Function

FIGURE 8.5: Relative timings for ode45. Results normalised with respect to original
interpreted program

8.3 Dust Erosion of Probes Entering the Martian Atmo-

sphere

This code is an example of where MATLAB really excels. It was written by an acro/astro
engineering student at the University of Southampton as a final ycar project. Since the
student has little computer science knowledge, it would not be expected that he could
effectively optimise his code himself. With little modification (in the form of widen
annotations in the ODE solver), the code can be partially evaluated giving a substantial

performance boost.

This code investigates what happens to a conical probe using an Acrobraking Manoeuvre

to slow down within the Martian atmosphere. One possibility of damage to the coue
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comes from dust particles hitting the cone while it travels at supersonic speeds. A cone-
shaped object travelling at supersonic speeds would create a shock wave in front of it
and particles entering this wave would be deflected until they either hit the cone or were
travelling parallel to the cone angle (at which point they cannot hit the cone). This
code finds the critical height above the cone tip at which particles do not hit the cone

with parameters, cone angle and mach speed.

To do this two ordinary differential equations need to be solved. This code (given in
Listings B.3 — B.9) extensively uses ode45, which was examined in Section 8.2. However
the differential equations here are more complicated since they use event functions to
terminate the calculation early when no further computation is required. In addition the
RHS function of one actually calls ode45 itself. In Table 8.10, we see the results from
partially evaluating this function. For each residual code as well as the original program,
two timings were taken. The first run was the time taken to run in a completely clean
environment. The intention in this test is to show how much parse time is a factor
in executing the code. The second run is identical except now MATLAB should have
parsed the function and therefore it should be faster. The difference between the two
times is an approximation to the overhead of parsing. Here the time taken to parse the
residual code, where no post-processing is used, is very close to the original if slightly
lower. However any increase in parse time is clearly outweighed by the overall reduction

in time. When post-processing is used, the parse time is actually faster for the residual

program.
Original mpe mpe -p mpe -pi ‘

Partial Evaluation - 5.1 5.2 5.2

First run 22.7 | 20.6 (9%) |18.2 (25%) | 15.2 (49%)

Second run 92.4 |20.3 (10%) | 18.0 (25%) | 15.0 (49%)

TABLE 8.10: Timings (in seconds) for length_crit

Since this program uses nested loops so extensively, it clearly illustrates the effects of
caching least upper bounds as described in Section 6.6. Some timings, without least
upper bound caching, are shown in Table 8.11. These are considerably longer than the
times taken with caching, and are in fact more than we expected. We believe this is
an artefact of the bad scaling of the MATLAB libraries in the presence of many arrays.
Since the caching reduces the number of calculations at a point when more arrays have

been allocated (when code is being generated), the benefits are slightly exaggerated.

mpe |mpe -p |mpe -pi
Without caching | 14.0 13.3 13.5
With caching 5.1 5.2 5.2

TABLE 8.11: Partial Evaluation Timings (in seconds) for length_crit with and with-
out least upper bound caching
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This is an example, where the time taken to run the partial evaluator and the residual
code once is less than the time to execute the original code. This example shows how
partial evaluation combined with post-processing and inlining can be very effective.
While the speed-up produced is around 50%, no static data was specified initially. The
original program, from which length_crit is taken, calls it many times, which means

that the cost of partial evaluation will be easily eclipsed.

In this example, attempts to give the partial evaluator more information by specifying
that all three input parameters are real scalars, produced exactly the same code, but
it took 2 seconds longer to produce it. This is presumably because duplicate functions
were produced for subtly different call signatures. These were then removed in post-

processing, resulting in an identical residual program.

As with the earlier solvers, this program was compiled, producing the results given in
Table 8.12. Again the benefits of partial evaluation are retained through the compilation

process, although the effect of inlining is less important in the compiled code.

Original mpe mpe -p mpe -pi
Interpreted | 22.4 20.3 (10%) | 18.0 (25%) | 15.0 (49%)
Compiled |134 12.0 (12%) | 10.7 (25%) | 10.1 (33%)

TABLE 8.12: Compilation vs. Interpreter Timings (in seconds) for length crit

8.4 Arcadia CFD Solver

The ‘Arcadia’ code is a new type of aeroacoustic Computational Fluid Dynamics (CFD)
solver, particularly aimed at the problem of re-designing aero-engine inlets to reduce
radiated fan noise [17, 18]. It is particularly targeted for use in an optimisation loop since
it returns not only results pertaining to the analysis of a design, but also information

about how sensitive the results might be to small changes in the design.

This is an example of an early iteration of a complex system. It has not been fully
optimised and so benefits from the constant propagation that is integral to partial eval-

uation.

This code originally used global variables to store most of the parameters. These global
variables are initialised by the calling function and are not altered during execution.
Since we have largely ignored global variables, it was necessary to produce a version of
this program, which does not use global variables, by passing all of the parameters into
the main function and modifying any calls to functions which require global variables
to instead take extra parameters. A partial evaluator which handled global variables,
used as in this program, would not be too difficult to implement as the global variables

remain static throughout the execution of the program.
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This code was specialised in two different ways. Firstly the shapes and types of all
the parameters were fixed, leading to the results in Table 8.13, which show that partial
evaluation was very quick and produced a program that ran in just over half the time
of the original program. As with the code from Section 8.3, two timings were taken so
that the time taken to load the code could be estimated. No timings were taken with

inlining enabled as this program offers no opportunities for this optimisation.

The second specialisation fixed nearly all of the initial parameters, apart from the opti-
misation point parameter. This is a realistic specialisation since generally the objective
function would be run many times with just the optimisation point changing. The re-
sults of this are shown in Table 8.14. Specialisation has taken significantly longer and
annotations had to be added to prevent a large nested loop being completely unrolled,
which would have produced a huge residual program. There is improvement in execution
times over Table 8.13, but this difference is not very large. There is also a significant
increase in the time taken to parse the residual code, with the second specialisation
initially taking longer to execute than the first. This is not surprising given that the
first specialisation is 420 lines long and the second is 7203 lines long. This large increase

in program size may well have hurt the performance.

Original ~ mpe mpe -p ‘
Partial Evaluation - 0.41 0.45
First run 64.8 | 45.0 (44%) | 35.1 (85%)
Second run 65.0 | 44.7 (45%) | 35.0 (86%)

TaBLE 8.13: Timings (in seconds) for arcadia with parameter types fixed but not
their values

Original mpe mpe -p
Partial Evaluation - 16.7 13.1
First run 64.7 | 46.4 (39%) | 36.1 (79%)
Second run 64.8 | 43.4 (49%) | 33.7 (92%)

TABLE 8.14: Timings (in seconds) for arcadia with most parameter values fixed

The performance improvements for post-processing given in Tables 8.13 and 8.14 are
very large and on examination of the residual code, it emerged that arcadia performed
many computations which did not contribute towards the final returned result. These
calculations were a leftover from a previous iteration of the code, and were no longer
required. While this does demonstrate that dead-code elimination using ud-chains is very
effective at discovering redundancy, it would be fairer to assess the partial evaluator in

relation to a version of the code with the redundancy removed first, called newarcadia.

As above, newarcadia was specialised twice and the results are shown in Tables 8.15
and 8.16. Unsurprisingly, the performance of the partial evaluator has improved since

it no longer has to examine these redundant computations. The execution time of the
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unspecialised program has been reduced by 15 seconds, while the time for the residual
code without post-processing is about 8 seconds less. The post-processed version is
identical in both cases. Using newarcadia, partial evaluation produces around a 50%

increase in speed.

Original mpe mpe -p
Partial Evaluation - 0.33 0.36
First run 49.8 136.2 (38%) | 35.1 (41%)
Second run 50.2 | 36.1 (40%) |35.0 (43%)

TABLE 8.15: Timings (in seconds) for newarcadia with parameter types fixed but not
their values

Original mpe mpe -p
Partial Evaluation - 13.6 11.5
First run 49.8 137.9 (31%) | 36.1 (38%)
Second run 50.2 | 35.0 (43%) | 33.8 (49%)

TABLE 8.16: Timings (in seconds) for newarcadia with most parameter values fixed

As with the Mars Lander code, least upper bound caching gives large improvements
here. Table 8.17 shows how caching can give a small improvement for programs which
already partially evaluate quickly as in the case where only the shapes and types of the
parameters were fixed. However when the values of some of the parameters are fixed,
more computations are performed inside nested loops and so least upper bound caching

saves around 20-25% off the specialisation time.

mpe |mpe -p
Types fixed with caching 0.33 0.36
Types fixed without caching |0.37 0.39
Values fixed with caching 13.6 11.5
Values fixed without caching | 16.4 15.4

TABLE 8.17: Partial Evaluation Timings (in seconds) for newarcadia with and without
least upper bound caching

Compiling arcadia and newarcadia caused some problems, when trying to generate a
residual program where most of the parameter values are fixed. With residual MATLAB
code of 7203 lines, the C code produced by the compiler was about 10 times as long
again. When we tried to compile it, it took around 30 minutes, whereas all the other
examples have taken less than 10 seconds. The resulting executable was actually slower
than the compiled version of the residual code generated with a much looser specification.
This is likely because the executable was 10 times the size (around 2MB). This clearly
demonstrates that unrolling needs to be kept in check so that executables do not grow

excessively.
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[ interpreted
[ compiled

[ peval interpreted | —
peval compiled

Performance relative to original (lower is belter)

specl spec2

Specialisation

FI1GURE 8.6: Relative timings for newarcadia, showing effects of partial evaluation and
compilation on two specialisations

In Table 8.18 are the results of compiling the less specified residual code generated
from both arcadia and newarcadia. In this example, the benefit of partial evaluation
is lessened by compilation. However, since the MATLAB compiler does not perform
many traditional optimisations and generates code, which likely hinders the C compiler
from optimising itself, this comparison is perhaps unfair. With a better optimising

compiler, it is quite likely that partial evaluation would expose many more optimisation

opportunities.
Program Original mpe mpe
Interpreted | arcadia 65.0 44 7 (45%) | 35.0 (86%)
Compiled |arcadia 49.4 | 38.7 (28%) | 30.6 (61%)
Interpreted |newarcadia 50.2 | 36.1 (40%) | 35.0 (43%)
Compiled |newarcadia 39.4 [31.6 (25%) |30.6 (29%)

TABLE 8.18: Compilation vs. Interpreter Timings (in scconds) for arcadia and
newarcadia with parameter types fixed but not their values

The results for newarcadia are illustrated in Figure 8.6. Since compiling the second
specialisation took unfeasibly long, compilation and partial evaluation arce omitted for
the second specialisation. One thing to draw from this chart is that specialisation using

limited specification produced faster results than ordinary compilation, in a faster time.
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8.5 Result Accuracy

While partial evaluation has achieved performance increases for the code tested here.
this has come at the cost of a small loss in accuracy. This occurs due to the textual
representation of numbers.

function s = p(n)

s = 0;

for n = 1:n

s =s + 1/ 3;

end

In this example, the only effect of partial evaluation is to substitute 0.333333 for 1/3.
The partial evaluator has truncated the number after the sixth decimal place as this is
its default behaviour. The command line option --precision can be used to specify
the number of significant figures displayed but this can cause a large increase in the
size of the residual program if there are large matrices of numbers. This problem is not
easily soluble as we cannot output a binary representation of constants which is exactly

equivalent to that which would be stored in memory.?

One approach would be to avoid folding operations which lead to constants requiring
truncation. In the above example, 1/3 would be retained in the residual code, which
would not be detrimental to the performance in either the compiler or interpreter.? As
the MATLAB compilers produce C code, they too must truncate floating point numbers.
In this case it stores the result to 17 significant figures which is the most storeable in a
double.

Since the MATLAB compilers perform no constant propagation, they will produce fewer
constants than our partial evaluator and so the code will not be unduly bloated. In
addition the code is compiled to the machine code where constants will be stored as 8

byte doubles, regardless of the accuracy used.

Going back to the residual code in Listing 8.4 and recreating it by specifying that
the output use 17 significant figures produces a program, which is 82% longer, but
executes no slower. This is not unduly worrying since the program is an extreme example
where the residual program consists almost entirely of matrices. The input values were
generated randomly and so any early precision cut-off would have truncated the matrices
produced. Most programs would not have grown quite so dramatically given more

reasonable input.

3This is complicated even more by the fact that floating point registers frequently use a higher
precision than can be stored in memory.

1Strangely MATLAB 6.5 seems to interpret 1/3 slightly slower than 0.333333, while 6.1 is not
affected.
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8.6 Summary

This chapter has demonstrated several applications of partial evaluation with respect
to MATLAB code. MPE can be applied both to small functions, with relatively fast
execution times, to fine tune the performance of a larger system, as was done with
the chebyshev series function from Section 8.1.1, or it can be applied to much larger
functions like the Mars Lander code or Arcadia, where the functions involved perform

much more intensive calculations.

The smaller functions benefited more from unrolling than many of the larger examples.
The unrolling exposed static data within loops thus allowing some pre-computation as
well as removing the overhead of checking the loop condition. This generally led to
larger programs, which scaled with the size of the data or the accuracy required in the

output.

The larger examples gained their benefits from their highly parametric nature. Large
complicated functions that could be used in many ways were transformed into highly
specialised functions, no longer carrying the overhead of genericity. These programs
were often much smaller than the original programs (when assessing all the functions
called in the MATLAB libraries).

The results from compilation show that partial evaluation is never a performance hin-
drance and indeed sometimes works even better with compilation, although some results
show less improvement when specialised and compiled over the original compiled pro-
gram. This is unsurprising since partial evaluation often simplifies programs which
means that one of its benefits is the reduction in time handling control structures such
as loops, which are usually much better handled by compilation. Since MATLAB 7
reportedly has a much better Just-In-Time compiler, it may well be that some of these
improvements will be made even less visible. While MATLAB 6.5 also has a Just-In-
Time compiler, this was not assessed as light testing has shown it to perform very well
for some programs (> 10x improvement), but then modifying those same programs in
seemingly inconsequential ways then dropped the performance levels down to that of
MATLAB 6.1. This is presumably because it was in a relatively early stage of develop-
ment. Further work needs to be done to see how partial evaluation can work to bring

out the best in Just-In-Time compilation.
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Future Work

While we have seen definite performance gains due to partial evaluation, there is un-
doubtedly room for improvement. The framework is in place to perform many additional
optimisations, which are currently not performed. In this chapter we will outline areas

where further work can be done.

9.1 Asserting assumptions

In many places, assumptions are made about parameters and the results of functions
and operations that cannot be fully evaluated. For instance with a + b, if a is known
not to be a scalar and b is known not to be a scalar, it is assumed that both a and b
have the same shape. If this is not the case, a run-time error would be produced.

%# a size [3 UNKNOWN]
%# b size [UNKNOWN 4]
y = size(a + b);

In the above code, the shape of a + b will be assumed to be [3 4]. The call to size can
be fully evaluated as the shape of the expression is known and so the original operation
can be removed. In the case where a and b do not have the same shape, an error would

not be produced as the add operation would never be carried out.

In most cases it would be better to assume that errors like this were not made. After all
partial evaluation is an optimisation step, usually occurring after testing where it could

be assumed that most programmer error had been eliminated.

Mandatory assumption checking would certainly hurt performance, but if assertions
could be inserted optionally, for instance when debugging, it would aid both the users

and ourselves as it could quickly determine where we make false assumptions.
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9.2 Automatic Widening

Currently MPE can loop infinitely on input containing loops which steadily widen shape
values. Consider the following code:

function y = f(x)

y =1

for n = 2:x
y = [y nl;

end

This function returns a vector of values from 1 to x with increment 1. The current
implementation of MPE will iterate over the loop trying to find the shape of y. It can
easily determine that it is a two dimensional matrix with 1 row. However each successive
iteration will give it a higher value for the number of columns. Since iteration only
ceases when stabilisation of shape information is achieved, the iteration will be infinite.
To prevent this problem, the number of columns needs to be widened. If the number
of columns is set to (1,w), no further iteration would be required. This is currently

possible using the widen annotation but this needs to be determined automatically.

To this end, we need to develop heuristics to determine when there is a possibility of
infinite iteration. This would likely be based on looking for incremental shape changes
inside loops. This problem is a common one in partial evaluators where recursion is used
for all loops. In that case, there is often a counter which is either incremented or decre-
mented and then compared with a dynamic variable. This can lead to the generation of
infinitely many functions all specialised with regard to a different counter value, or to
the function being unfolded infinitely many times. Ruf [62] describes several heuristics
used to detect when recursion will be bounded and when it will be infinite. This includes
detecting an induction variable which is reduced on every iteration towards a bound, at
which it terminates. Katz and Weise [39] describes a method where increasing parame-
ters which are not actually used at specialisation time (other than in generating further
values of the counter) are detected by lazy use-analysis. A similar technique may prove
useful to us, since when shape growth is unbounded, the shape itself is generally not

used at specialisation time.

9.3 Restructuring expressions for performance benefits

Currently all optimisations on expressions retain the order of expressions. Expressions
like a +1+b+2—a are parsed as (((a + 1) + b) + 2) — a. Evaluating strictly using the
parse tree form gives no chance for simplification and so the ideal form of b+ 3 cannot
be achieved. Addition is a commutative operation for all kinds of matrices and scalars
and so the expression could be reordered to (a — a) + b+ (1 + 2), at which point our

current scheme can reduce the expression to (a — a) + b+ 3. Reducing a — a is not so
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simple; it is not necessarily 0, as a might not be a scalar. In fact it is always equal to
zeros(size(a)), which is 0 in the case of a scalar and a matrix with the same shape
as a if a is a matrix. Unless a is a scalar, the expression can only be reduced if b is
has the same shape. If b has a different shape and is not a scalar then a runtime error
will occur. If it cannot be determined that b has the same shape as a, then we could
assume the absence of programmer error or perhaps generate assertions as described in
Section 9.1.

Identity relations like MI = IM = M, where T is the identity matrix with the same
shape as M, need to be recognised and dealt with. These kinds of expressions can often
occur after unrolling. For example:

function z = power(x, y)
z = eye(size(x));
for n = 1:y

Z =z * Xx;

end

If power is partially evaluated with y set to 3, then the residual program would currently
be:

function z = power(x)
z = eye(size(x));

zZ =z * Xx;

zZ =z % X;

zZ = 2z % X;

However recognising that z is initially the identity matrix would mean that the function

can be reduced to:

function z = power (x)
z = Xx;

zZ =z * X;

z = z * X;

With further assignment amalgamation the function just becomes:

function z = power (x)

Z = X * X * X;

As mentioned by Menon and Pengali [49], it is possible to reorder the evaluation of
expressions to realise some performance increases. When evaluating A x B * z, (where
A and B are matrices and z is a scalar), a right to left evaluation would take O(n?)
operations while a left to right evaluation would take O(n?) operations. Since the natural
order of evaluation in MATLAB is left to right, brackets would need to be inserted for
efficient evaluation. Clearly in cases where it is unknown whether the operands are

matrices or scalars then no such optimisation is possible.
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9.4 1I/0 operations

As mentioned in Section 6.1.1, we currently do not support loading in data with I/0O
commands like fopen, fscanf and fclose. Unfortunately, problems can easily arise
when trying to eliminate I/O operations and embed data directly in the function files.
One problem is that data stored externally can often be often be stored more efficiently
than as a list of MATLAB assignments. Unless data files are small, this can result in

large increases in the residual code size.

It is also problematic because I/O operations must be completed. If a file is opened by
fopen and the file descriptor returned to a variable, it is not useful to replace this with
an assignment to a constant value as file descriptors only have meaning if the fopen
function is actually called. If all I/O operations have static parameters and can be fully
evaluated, this is not a problem. All references to the file handle would be removed
during partial evaluation as the calls to I/O functions would evaluate to the values
stored in the file.

However if for some reason an I/O operation cannot be evaluated because it is dependent
on some dynamic input, then the I/O operation would be left in the code with a file
handle that was no longer valid. Even worse, partial evaluation could continue onto
another I/O operation that appeared to be fully executable. In the course of normal
execution, the file seek pointer would already have moved on, but because we could
not execute the previous commands it would be in the old position and the wrong data

would be read.

Work needs to be done to assess whether all I/O operations relating to a file handle
can be evaluated, so that we can then evaluate them. In some cases we might have to
evaluate an I/O operation before we can determine whether further operations can be

evaluated, which could mean that we have to backtrack.

9.5 Better Inlining

In Section 6.5, we described a simple strategy for inlining. While its simplicity made its

implementation easy, its restrictions greatly limited its applicability.

The restrictions were mostly made to prevent ever creating temporary variables. Part
of the reason for this, is that since there is no way of creating a separate scope within a
function, the variable will be not be deleted until the function returns or the variable is
overwritten. In this way, a naive strategy of creating a new temporary variable for every
inlined instance of a function could dramatically increase the memory used by a function.
Variables can be explicitly deleted using the clear function, but this involves function

calls that could hurt performance. Another strategy would be to use a pool of temporary
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variables which are reused, so that a minimum number of temporary variables would
be created. One could still imagine a situation where an inlined function caused the
creation of a very large matrix which was not destroyed until the function terminated,

as no other inlined functions were called subsequently.

9.6 Context Propagation

When a branch of a conditional is taken, there is implied information, which we currently
ignore.

A# x ndims 2
if isempty (x)

for n = x

end
else

end

In the above code, if the positive branch is taken, it is implicit that x has no dimensions
with size 0. This means that the for loop will always iterate at least once and therefore
when computing the state after the loop, the least upper bound does not need to be

combined with the result for if the loop had not iterated even once.

The difficulty in context propagation is inferring what the condition expression says
about its variables. In the above case, x has only 2 dimensions and so since it is not
empty it must have a shape of <(2, 2), <(1,w>, (1,w>>>. Inferring this requires inverting
the isempty function, which would probably require writing code for each function to
determine what its context propagation properties were. It is likely that not many func-

tions would provide any useful context information, but this would have to be examined.

9.7 Full Class and Polymorphism Support

Currently functions residing in class directories (e.g. @inline), are ignored by MPE.
As a first step towards full class support, these directories would have to be searched for
m-files. Since the class of an expression is not known at parse time, the loading of the
right function file will have to be deferred until the expression is abstractly interpreted.
If the expression is static or if the class is known, then the exact function can be found
without difficulty, in which case it can be renamed so that there is no ambiguity, which
means it no longer has to be in a class-specific directory. If the class is unknown, then

there are two options.

Firstly we could choose not to specialise the polymorphic function at all. This is not as

simple as it seems: if one of the polymorphic functions are in a private directory then
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they will not be visible to the residual program (unless the residual program is put in
the directory above the private directory). We therefore need to ensure that all files
that might be called are also callable by the residual function, by if necessary copying

m-files.

The second strategy is to speculatively partially evaluate all functions that could be
selected. All class-specific functions would need to be stored in separate directories,
which would mean they could only call the top-level function of our system, since the
output is currently only put in one file. To solve this, every function which is callable

by functions in other files need to be stored in a separate file.

Specialising every possible function that could be called, could also cause a performance
reduction. This performance reduction might be acceptable if an expression could gen-
uinely have many different classes and fast code is desired for all possibilities, but often
the problem will be that the class is really static but it cannot be inferred or that there
are only two possible classes. Class annotations could be manually inserted to prevent
too much specialisation, but currently a class can either be known completely or not
known at all. A way of restricting the set of classes to specialise for would be desirable

in this case.

Clearly the work of Schultz et al [65, 64] on Java is relevant here, even though their
work uses offline partial evaluation, since they have to tackle similar problems. Re-
cently Andersen and Schultz [4] used a declarative language, called Pesto, to control
the specialisation process. This can be used to constrain the possible classes, for which
a function can be specialised. Since our reasons for using online specialisation were to
save users from requiring a deep understanding of the process, this method may not be

readily applicable.

9.8 Extending Types

We have previously stated that our type system can encapsulate more shape informa-
tion than that of Joisha [32], however much of this information is not directly useable.
Knowing that an array has between 2 and 3 columns can rarely translate into any ad-
vantage at partial evaluation time using our current system. It is useful to know that
there is more than 1 column as certain other shape inference rules can now apply, but
the specific information about there being between 2 and 3 columns is no more useful

than knowing that there are between 2 and 4 columns.

One use is that if a matrix with between 2 and 3 columns is added to a matrix with
between 3 and 4 columns, we can infer that the result if not an error will have exactly 3
columns. With exact information, functions like size can be fully evaluated. However.

this kind of inference is very unlikely to occur in practice.
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The problem arises because when size is called and the information is not totally exact,
all the information is discarded. This is because our type does not store information
about the actual value. If the type was extended to store an interval, in which the
actual value was bounded, certain realistic expressions such as inequality tests could be
evaluated. E.g.

function f(a, b, varargin)
if nargin < 2
error (’Not enough parameters to f’)

end

If nargin is at least 2 ((2,w)), with the current partial evaluator, the conditional cannot
be checked, since nargin will evaluate to a dynamic scalar. However if this dynamic
scalar also contained the interval [2, co], the binary expression could be checked and the

conditional statement removed.

Preliminary work on implementing interval bounds for values known to be scalars has
shown encouraging results, but by extending the type in this way, we exacerbate the
problem posed by infinitely widening shape components. If bounds are to be realistically
introduced, then detection of infinite widening is a must as well as a strategy for test-
ing whether functions signatures differ inconsequentially. The risk here is that adding
bounds will cause further redundant specialisations of functions, when the bounds have

no impact, causing a large slow down of the partial evaluation process.
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Conclusions

10.1 Review

Chapter 8 showed some impressive results, which demonstrate that partial evaluation can
be very effective at improving MATLAB performance. This performance was seen in the
small examples as well as large programs such as the Arcadia CFD solver. Performance
increases were sometimes due to interprocedural propagation of static values, leading
to early computation taking the burden off the residual code, but also due to dynamic
values having static properties inferred. While inferring the shape of an array does not
yield the same performance benefits as knowing its contents, it can enable some minor
precomputations, which can enable loop unrolling, leading to some useful performance

boosts as was shown in Section 8.1.

The benefits of compilation were also retained through compilation using the MATLAB
compiler, MCC. Especially with the simple ODE solvers, partial evaluation and compi-
lation proved to be a very successful way of boosting performance. Since these solvers
were so simple, the use of higher order functions had a very significant effect on the
time to execute. Once partially evaluated with respect to fixed RHS functions, this cost
was eliminated, and the compiler was able to take advantage of this even more than the

interpreter with one example running nearly 15 times faster.

The nature of many MATLAB library functions also makes them candidates for special-
isation. Highly parameterised functions which can perform their role in many different
ways are prevalent in MATLAB. While their flexibility is enabling and gives users many
options, it is also a source of performance loss. MPE is able to produce specialised
solvers, with only the minimal of user intervention, giving users the best of both worlds.
It is the lack of manual interference by the user that make MPE most attractive to
MATLAB users. Often these are users who just want to solve a problem and are not

interested in learning any more about their development environments than necessary.
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Once programs have been written and tested, it is convenient to leave in place many of
the assertion checks that were used during the initial development period as they prove
useful later when there is further development. Partial evaluation can statically remove
many of these assertions, like the guards on most of the library functions which check
that the correct number of parameters were used, allowing the programmer to maintain
only one source program for both development and deployment. This is in many ways
like C, where assert is normally defined as a macro which can be disabled by specifying
command line flags to the C compiler. However the compiler will remove all those checks
without verifying that they are satisfied statically. It may be that with the assertions
still intact, the compiler could optimise away some of them but this would be rarer since

most compilers do not propagate information interprocedurally.

Due to the high level of the MATLAB language, traditional areas of partial evaluation
gains are not so susceptible to it. This includes unrolling of tight inner loops based on
knowledge about the size of arrays. Standard operators like addition are much faster
than using loops to iterate over vectors and so unless unrolling exposed a large number of
static computations, leaving vectorised operations intact will nearly always be preferable.
Since these built-in functions and operators cannot be specialised for particular sized
parameters, the inferencing mechanisms often produce data that is not used. However
since the partial evaluator has inferred this information, it would be helpful to make it
available to tools that can use it. Compilers for other dynamic languages, like Python,
can benefit greatly by specifying types. For instance in [56], the Pyrex compiler, with
types specified, can create code that runs over 100 times faster. While the MATLAB
compilers do try to infer types themselves, adding them to the source code may allow

users to tune them where the inference is insufficiently accurate.

Duplication of code and redundant computations both cause performance penalties and
unfortunately our partial evaluation technique creates both. It was imperative then that
an effective strategy for detecting and removing these barriers was developed. Applying
traditional compiler-based techniques such as dead-code elimination using ud-chains
allows us to eliminate all code which does not contribute to the final result of a function

or to side-effects.

Since our partial evaluator was written in C+4++, it had to contain an interpreter for
MATLAB within it. While much of the complexity of building an interpreter was side-
stepped by using the MATLAB run-time libraries, there were still some features which
could not be implemented using them and so the interpreter was non-trivial. This
introduces scope for bugs in the interpreter leading to imperfect code generation. If a
generating extension approach had been taken, the partial evaluator could have been
written in C++4 but produced MATLAB generating extensions, removing the need for a
MATLAB interpreter in the partial evaluator. However, for generating extensions to be
useful, they must have many offline decisions taken otherwise the generating extension

could have all the complexity of an online partial evaluator built into it. This would
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ultimately lead to a two-stage approach using binding time analysis, which would move
away from our stated aim of producing automated tools that are accessible to non-

technical users, since many offline techniques require manual intervention.

Our contributions have been:

e An online partial evaluator for a non-trivial imperative language (MATLAB).

e We have defined abstract domains, which capture useful information about MAT-
LAB arrays, such as their class, type traits and shape characteristics. This used
a more complete view of MATLAB types than has been seen in other work on
MATLAB.

¢ We have produced an extensive scheme for inferring type information based on the

properties of many built-in functions, operators and array indexing.

e Loops that cannot be unrolled are maintained by calculating the least upper bound
of the state on entering the loop. This procedure is recursive and repeated for all
nested loops. To avoid repeated computation, we cache least upper bounds for

nested loops, even when inside other functions.

e We have produced a post-processing phase which perfbrms dead-code elimination
on Abstract Syntax Trees, using ud-chains as well as duplicate function removal

by employing structural equivalency detection.

e We have demonstrated the viability of partial evaluation for MATLAB, achieving

speed-ups for a variety of codes, with various specifications for the inputs.

10.2 Summary

Progress in computational science and engineering requires a judicious combination of
application expertise, algorithm selection and mapping to computational infrastructure.
A key underlying technology is the tooling available to computational scientists. High-
level languages and advanced problem solving environments have proved to be powerful
tools to facilitate rapid and flexible prototyping of new codes in a wide range of appli-

cation areas.

At their heart of these tools lies the ability to leverage and build upon previously con-
structed general components and libraries, from which new functionality is composed.
In this thesis we have demonstrated how such general components or libraries may be
specialised and optimised when used in the context of a particular application or with
particular inputs, by exploiting information which is often known in advance but is not

usually brought into play. We have shown how to take advantage of this information to
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deliver improvements in performance. Furthermore this can be done in a way that is

transparent and automated from a user’s perspective.

We believe that techniques such as partial evaluation and just-in-time compilation/spe-
cialisation will allow future generations of computational scientists and engineers to
benefit from the productivity gains associated with using high-level generic libraries in
advanced problem solving environments, whilst at the same time obtaining high perfor-

mance.



Appendix A

This appendix describes how to use the MATLAB partial evaluator, MPE. First we give

the command line options.

Usage: mpe [-a] [-b file] [-c] [-d variable value] [-D] [-f] [-g]
[-o file] [-p] [-s] file
mpe -h

mpe -V

If the filename given is ‘=’ then the main source function is read from standard input.

Option | Ezplanation

-a This option when followed by a filename allows the user to specify a file
containing annotations and assignments which will be prepended to the

source file before annotation.

-b This option allows the user to specify a file containing the list of builtins

that mpe recognises. If this option is not used the default list is used.

-c This option suppresses the printing comments describing the attributes

of expressions in the output code.

-d This option causes an assignment to be inserted at the beginning of the

initial source file so that parameter values can be specified.

-D This option causes debug information to printed to standard output.
-f This option prints a list of functions called by the main function.
-g This option writes out a file that can be processed by dot to draw a

graph of the strongly connected components in the function dependency

graph.
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Option Ezplanation

-h This option prints out help text.

-0 Specifies a file to which to write the partially evaluated function. With-
out this option the function is written to standard output.

-p Causes the function to be post-processed before writing it out.

-s This prints out a list of variables used by each function.

-v This prints out the version number of MPE and then exits.

—--precision | Sets the precision to output floating point numbers.

Now we describe the annotations that can be given to mpe. Annotations always start

on a new line and start with ‘%#’, which is a MATLAB comment.

There are two types of annotations, ones that are associated with a particular variable

and those that relate to the general invocation of a function without being directly tied

to a variable. All variable annotations exception for undefined automatically set the
state of the variable to defined.

The variable annotations are of the form var instruction [value] and are described

in the following table:

Instruction

Value | Ezplanation

size

ndims

widen

real

logical

Matrix | This annotation sets the shape of the variable in the sym-
bol table. The value field is parsed as an ordinary matrix
where the first element gives the number of rows, the sec-
ond element gives the number of columns and subsequent
elements gives the size of any extra dimensions. If any
element is UNKNOWN then the size of that dimension is left

unset.

Scalar | This sets the maximum number of dimensions for a vari-
able.

Scalar | This makes the dimension specified by the scalar argu-

ment have an unknown value.

String | If the value string can either be yes’ or ’no’ and con-

trols whether the variable is real or complex.

String | If the value string can either be *yes’ or ’no’ and con-

trols whether the variable is logical or not.
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Instruction | Value | Ezplanation

class String | This declares that the class of a variable. It can be
double, char, cell, struct, sparse, single, int8,

intl16, int32, uint8, uint16, uint32 or function.

realdouble - Shorthand way of declaring a variable is real and is of the

class double.

realscalar - Same as realdouble but declares the shape to be scalar
as well.
defined - This declares that a variable definitely exists.
undefined - This declares that a variable definitely does not exist.

The variable annotations are of the form instruction value and are described in the

following table:

Instruction Value | Ezplanation

nargin Scalar | Sets the value returned by the nargin function.
nargout Scalar | Sets the value returned by the nargout function.
unroll - This forces a loop to be unrolled even if it cannot be

determined to be possible.

nounroll - This prevents a loop from being unrolled even if it has

been determined to be possible.

preserve String | This prevents the named function from being partially

evaluated, but retains it intact in the residual program.

nointerpret | String | This prevents the function from being directly inter-
preted, which is useful for function which produce side-

effects.
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This appendix gives the source code to some of the functions test in Chapter 8.

function y=lagrange (x,pointx,pointy)
%
ZLAGRANGE approx a point-defined function using the Lagrange polynomial

% interpolation

A

% LAGRANGE (X,POINTX ,POINTY) approx the function defined by the points:
% P1=(POINTX (1) ,POINTY (1)),

% P2=(POINTX (2),POINTY (2)),

% R

% PN(POINTX(N),POINTY (N))

% and calculate it in each elements of X

y .

A If POINTX and POINTY have different number of elements the function
% will return the NaN value

%

% function wrote by: Calzino

% 7-0ct-2001

%

n=size(pointx ,2);

L=ones(n,size(x,2));

if (size(pointx ,2) =size(pointy ,2))
fprintf (1,’POINTX and POINTY must have the same number of elements\n’);
y=NaN;

else

for i=1:n

for j=1:mn
if (i7=3)
L(i,:)=L(i,:).*(x-pointx(j))/(pointx(i)-pointx(j));
end
end
end
y=0;

for i=1:n
y=y+pointy (i)*L(i,:);
end
end

LisTING B.1: Langrange Interpolation Code
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function z=hypergeometric2fi(a,b,c,x,n)
% HYPERGEOMETRIC2F1 Computes the hypergeometric function

% using a series expansion:

% f(a,b;c;x)=

%4

% 1 + [ab/1!clx + [a(a+1)b(b+1)/2'c(c+1)]x"2 +
% [a(a+1)(a+2)b(b+1)(b+2)/3!1c(c+1)(c+2)]x"3 +

% The series is expanded to n terms
% This function solves the Gaussian Hypergeometric Differential Equation:
% x(1-x)y’? + {c-(a+b+1)x}y’ - aby = 0

% The Hypergeometric function converges only for:
A Ixl <1
% c t=0, -1, -2, -3,

% Comments to:

% Diego Garcia - d.garcia@ieee .org
% Chuck Mongiovi - mongiovi@fast.net
% June 14, 2002

if npargin "= b
error(’Usage: hypergeometric2fl --> Wrong number of arguments’)
end
if (n <= 0 | n "= floor(m))
error{(’Usage: hypergeometric2fl --> n has to be a positive integer ’)
end

if (abs(x) > 1)

error (’Usage: hypergeometric2fl --> |x| has to be less tham 1’)
end
if (c <= 0 & ¢ == floor(c))
error (’Usage: hypergeometric2fl --> ¢ !'= 0, -1, -2, -3, ...")
end
delta = 1;
z = 1;
m = 0;
for m = 1:n-1
delta = delta .* x .x (a + (m - 1)) .* (b + (n-1)) ./ m ./ (c + (m-1));
z = z + delta;
end

LisTING B.2: Hypergeometric Gaussian Differential Equation Solver Code
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function clength = length_crit (B, M1, betacrit)

% %# Beta realscalar
% %% M1 realscalar
% %# betacrit realscalar

% Specific heat ratio
G = 1.3;
[c_angle, vrprime_final, VrPrime, dVrPrime] = cone_angle (B, M1);

% Flow properties at surface
TO_T=1+((G-1)/2)*M172;
TO=TO_T=*147.5;

clength = calc_crit_length(B, M1, c_angle, VrPrime, dVrPrime,
G, TO, betacrit, 0.00000001);

Li1sTING B.3: Main Function for Mars Lander Code
function [theta, s, VrPrime, dVrPrime] = cone_angle (B,M1)

G = 1.3;

MN1 = Mi*sin(B);

MN2 sqrt ((MN1°2+(2/(G-1)))/((2*G/(G-1))*MN1-2-1));

Delta = atan(2*cot (B)*((M1°2*(sin(B))"2-1)/(M1-2*(G+cos (2*B))+2)));
M2 = MN2/sin(B-Delta);

VPrime = ((2/((G-1)*M2-2))+1)"(-1/2);

VrPrime = VPrime=*cos(B-Delta);

dVrPrime = -VPrime*sin(B-Delta);

thetaspan = [B,pi/180]°;

options = odeset(’Events’, Qeventsfun);
[theta, s] = ode45(@rhs, thetaspan, [VrPrime, dVrPrime], options);

theta = theta(end);
s = s(end, 1);

LisTING B.4: Auxillary Function for Mars Lander Code (1)
function F = rhs(theta, s)

F(1,1) = s(2);
gamma = 1.3;
A = (gamma - 1) / 2;

F(2,1) = (s(2)"2 » s(1) * (1 + 2 = A) +
s(2) * (s(2)°2 = A * cot(theta) - A * cot(theta)) +
s(1) = ( 2 * A *» s(1)72 - 2 * A + A * s(1) * s(2) * cot(theta)))
/ (A - A *» s(1)72 - A * s(2)°2 - s(2)°2);

LisTING B.5: Auxillary Function for Mars Lander Code (2)
function [value, isterminal, direction] = eventsfun (theta, s)

value = s(2);
isterminal = 1;

direction = 0;

LI1STING B.6: Auxillary Function for Mars Lander Code (3)
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function clength = calc_crit_length(B, M1, theta, VrPrime, dVrPrime, G,
TO, Beta, threshold)

M1*((G*191%147.5)°0.5)/((2*860*T0)~0.5);
vy0 = 0;

vx0

rybegin = 10°(-6);
t_span = [0 10];

ryl = rybegin;
vyl = vx0;

vxl = vx0;

ry0 = 5*sin(B);
options = odeset(’Events’, Qeventsfun3);

rxl = ryl / tan(B);
[t, dfdt] = ode45(@rhs2, t_span, [rxl1 ryl vxl vyl], options, B, theta,
VrPrime , dVrPrime, Beta);

rxbegin = dfdt(:,1);
dfdt (:,2);

rybegin
old_clength = ryl;

iterations = 0;
while 1
fprintf (. )
iterations = iteratiomns + 1;
rx0 = ry0 / tan(B);
[t, dfdt] = ode45(@rhs2, t_span, [rx0 ry0 vx0 vy0l, options, B, theta,
VrPrime , dVrPrime, Beta);

dfdt (:,1);
ry = dfdt(:,2);

rXx

lhit = rx(end) = tan(theta);
lhitbegin = rxbegin(end) #* tan(theta);
hl = ry(end) - 1lhit;

h2 = lhitbegin - rybegin(end);

clength = ry0 - (ry0 - ryl) / (hl + h2) * hil;
if abs(clength - old_clength) < threshold

break
end
ryl = ryo0;

ry0 = clength;

rxbegin = rx;

rybegin = ry;

old_clength = clength;
end

fprintf (’\n’)

iterations

L1sTING B.7: Auxillary Function for Mars Lander Code (4)
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function [dfdt] = rhs2(t,f, B, cone_angle, VrPrime, dVrPrime, Beta)

rx = £(1);
ry = £(2);
vx = £(3);
vy = £(4);

t = atan{(ry / rx);

if B > t + eps
[theta, s] = ode45(@rhs, linspace(B, t)’, [VrPrime dVrPrimel);

vrprime = s(end, 1);
vtprime = s(end, 2);
else
vrprime = VrPrime;
vitprime = dVrPrime;
end
ux = vrprime #* cos(t) + vtprime * sin(t);
uy = vrprime #* sin(t) + vtprime #* cos(t);
rxprime = vx;
ryprime = vy;
vxprime = -Beta*(vx-ux);
vyprime = -Beta*(vy-uy);

dfdt(1,1) = rxprime;
dfdt (2,1) = ryprime;
dfdt(3,1) = vxprime;
dfdt (4,1) = vyprime;

LisTiNG B.8: Auxillary Function for Mars Lander Code (5)

function [value, isterminal, direction] = eventsfun3(t, f, B, theta,

VrPrime, dVrPrime, Beta)

value = (£f(4)/£(3)) - tan(theta-1e-6);
isterminal = [1];

direction = [0];

LisTING B.9: Auxillary Function for Mars Lander Code (6)
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