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Statistical analysis methods are developed for determining fatigue time to failure for nonlinear structures 

when subjected to random loading. The change in the response, as structures progress from a linear regime 

to a large amplitude nonlinear regime, is studied in both the time and frequency domains. The analyses in 

the two domains are shown to compliment each other, allowing keen understanding of the physical 

fundamentals of the problem. 

Analysis of experimental random vibration data, obtained at Wright Patterson Air Force Base, is included 

to illustrate the challenge for a real, multi-mode, nonlinear structure. The reverse path frequency response 

identification method was used with the displacement and strain response to estimate nonlinear frequency 

response functions. The coherence functions of these estimates provided insight into nonlinear models of 

the system. Time domain analysis of the nonlinear data showed how the displacement and strain departed 

from a normal distribution. Inverse distribution function methods were used to develop functions that 

related the linear to the nonlinear response of the structure. These linear to the nonlinear functions were 

subsequently used to estimate probability density functions that agreed well with measured histograms. 

Numerical simulations of a nonlinear single degree of freedom system were produced to study other 

aspects of the large deflection structural response. Very large sample size data sets of displacement, 

velocity, acceleration and stress were used to quantify the rate of convergence of several random response 

statistics. The inverse distribution function method was also applied to the simulation results to estimate 

normal and peak linear to nonlinear functions. These functions were shown to be useful for probability 

density function estimates and for estimating rates ofresponse zero crossings. 

Fatigue analysis was performed on the experimental and simulated linear and nonlinear data. The time to 

failure estimates for the nonlinear results was shown to increase dramatically when compared to the linear 

results. The nonlinear stresses have significant positive mean values due to membrane effects, that when 

used with fatigue equations that account for mean stresses, show reductions in time to failure. Further 

studies of the nonlinear increase in the frequency of stress response are included in the fatigue analysis. 
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H, H(!), H( OJ ) frequency response function 

H(s) transfer function (in Laplace domain) 

I second moment of area; m4 

K stress concentration factor 

chi-squared degrees of freedom 

L, L() frequency response function with uncorrelated inputs 

N number of data points 

P probability of occurrence 
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R stress ratio 

S tensile force; N 

SO two-sided auto spectrum 

T time period; s 

Uo frequency domain variable 

W histogram or PDF bin width 

XO frequency domain variable 

yo frequency domain variable 

Lower case 

a acceleration; m1s2 

b bias 

fatigue strength exponent (slope of stress - life curve) 

c viscous damping constant; N slm 

erf, err!, erfc error function, inverse error function, complementary error function 

exp(x) eX 

f frequency; Hz 

g acceleration due to gravity; approximately 9.806 m1s2 at sea level 

g( ) function, typically on the right hand side of the equal sign 

h() function, typically on the left hand side ofthe equal sign 

h height (thickness); mm 

k instrument gain 

stiffness; N/m 

I length; mm 

In natural logarithm 

m mass; kg 

mn spectral moment; unitlsn 

x 



n number of cycles 

p() probability density function (PDF) 

s complex frequency 

t time; s 

v velocity; mls 

x linear displacement; m 

general variable 

y nonlinear displacement; m 

z standardized variable; (w-Jiw)/O'w 

state vector 

Greek symbols 

Upper case 

11 incremental change in value 

cD[ x] rate of x; Hz 

r gamma function 

Lower case 

a modal force; mls2 

nonlinear acceleration; mls2 

Duffing equation linear response term 

hypothesis acceptance value 

j3 Duffing equation squared response term 

X 2 chi-squared statistic 

5 logarithmic decrement 

/] error 

strain; mlm 

Xl 



Subscripts 

r Walker equation fitting exponent 

Duffing equation cubic response term 

y2 coherence function 

l skew 

rp transient response decay factor 

K kurtosis 

Jl mean value 

van der Pol nonlinear damping term 

f.:ln spectral moment; unitlsn 

p probability of occurrence 

density; kg/m3 

e angle 

(J standard deviation 

cr stress; MPa 

m ratio of zero crossings to peaks 

(j) frequency; radls 

If/ mean squared value 

( viscous damping ratio 

a amplitude 

alt alternating, fully reversed stress 

aO amplitude, mean 

b bias (error) 

bend bending 

Xll 



block data block (record, or file) 

bOI bottom surface value 

cube response cubed 

dif difference 

eq equivalent 

f failure 

i,j integer indices 

lin linear 

max maxImum 

mB Morrow fatigue equation with true fracture (Brickman) stress 

memb membrane 

mi Morrow fatigue equation with SN curve intercept stress 

min mimmum 

mM mimmum, maxImum 

n natural 

nb narrow-band 

nl nonlinear 

nl norm nonlinear transformed normal 

nlpeak 

nl ray 

norm 

nonlinear transformed peak 

nonlinear transformed Rayleigh 

normal 

nyq Nyquist 

ode from Ordinary Differential Equation 

p+, _p+, +p+ positive peaks: negative valued, positive valued 

peak peak distribution 

r random (error) 
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ray Rayleigh distribution 

rfc rainflow cycle 

square response squared 

sum summation 

top top surface value 

total response total; combined result of several effect 

w Walker fatigue equation 

wb wide-band 

xx complex frequency domain variable with respect to itself 

xy complex frequency domain variable of input x with respect to output y 

o mean value of a variable 

1:2 input value 1 that is uncorrelated with input 2 

3:2! input value 3 that is uncorrelated with inputs 2 and 1 (or 2!) 

5 modified Walker fatigue equation from MMPDS-l (replacement for 
MIL-HDBK-5) 
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1 INTRODUCTION AND LITERATURE REVIEW 

The main motivation for this research is the need to predict fatigue lives for structures 

that exhibit nonlinear response to random loading. A nonlinear response is indicated by 

a change in response that is not proportional to a change in the input load. It can be 

observed in the time domain or the frequency domain; the latter can show that the 

response spectrum contains frequencies that were not present in the excitation. Fatigue 

life estimates based on linear theory may be either very conservative or, for some 

nonlinear structures, very optimistic. Rigorous analysis techniques need to be developed 

to either take advantages of the longer lives or to ensure that premature failures do not 

occur. Random loading dictates an analysis technique that includes the probabilistic 

nature of the random response. Nonlinear random response cannot be assumed to be 

Gaussian even if Gaussian loading can be assumed. The non-Gaussian response requires 

a further level of analysis sophistication. 

Common examples of nonlinear random response are lightweight aerospace structures 

subjected to acoustic pressure loadings. Very high levels of acoustic pressures can be 

generated near rocket or jet engines. When applied to lightweight panels, either curved 

or flat, these acoustic excitations can induce geometric nonlinear behavior when the 

deflection is large enough in proportion to the geometry. Membrane forces in panels 

tend to increase the stiffness of a structure and can add tensile mean stresses. Curved 

panels can have further nonlinearities that may result in asymmetric response levels and 

in extreme cases "snap through" behavior. Elevated temperatures from exhaust or from 

supersonic flow at space re-entry can further complicate the nonlinear response analysis 

by introducing the need to consider nonlinear material properties. 

This thesis will discuss methods to estimate the response statistics, with an emphasis on 

the resulting fatigue life, for nonlinear structures subjected to random loading. 

Examples of predicted and measured nonlinear response due to large deflections of 

beams will be used extensively throughout this thesis. Data from clamped-clamped 

experiments will be used to illustrate frequency and time domain analysis techniques 

that have been shown to be useful for identifying and quantifying the nonlinear 

behavior. Additional numerical simulations will be used to further the analysis and 
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investigation ofthe nonlinear response. Fatigue life estimates, based on the nonlinear 

strain response, are compared to baseline linear response estimates. The times to failure 

for this class of stress stiffening nonlinear structure are shown to be longer than those 

based on linear estimates. 

Cyclic fatigue is considered in this thesis to be the ultimate failure mode of the 

structural material when sUbjected to large numbers of stress cycles. The random 

loading can lead to large deflections and high peak stresses, and repeated loading that 

accumulate damage resulting in fatigue failure. Aerospace structures typically are 

SUbjected to short periods of intense loading mixed with longer periods of reduced 

loading. Take-off and landing events are typically where the loads are the greatest. 

Supersonic events or brief bursts of gunfire vibration are other high load conditions. The 

combined effects of all the accumulated cycles need to be included in the fatigue 

analysis to help ensure satisfactory service life. Economic factors that lead to the desire 

for continued service from older equipment, or the desire to have reusable vehicles are 

additional reasons for requiring long times to fatigue failures. 

1.1 Nonlinear structural analysis 

There are many reasons why structures can exhibit nonlinear and/or non-Gaussian 

random responses. This section will review the various parameters that can lead to 

nonlinear system response and discuss methods to identify and predict the nonlinear 

response. 

1.1.1 Nonlinear system parameters 

Physical systems often can be described by linear system parameters, but often some 

nonlinear terms can have a significant impact on the total response. These nonlinear 

terms are grouped into categories and discussed in the following sections. 

1.1.1.1 Mechanical system with nonlinear restoring force 

The physical geometry of systems comprised of linear materials can lead to system 

properties that result in nonlinear response. The classic example of this is when the 
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1.1.1.1 Mechanical system with nonlinear restoring force 

The physical geometry of systems comprised of linear materials can lead to system 

properties that result in nonlinear response. The classic example of this is when the 

structural change in shape results in modifications to the system restoring force. This 

case is often known as the large deflection problem. 

A very cornmon example of a nonlinear large deflection problem is a simple pendulum, 

oscillating under the force of gravity (see for example [1]). The free vibration equation 

of motion is 

(1.1) 

A power series expansion of the sin function, keeping the first two terms is 

(1.2) 

where g is the gravitational acceleration, [ is the length and e is the angle from vertical. 

The resonance frequency of the pendulum tends to decrease as the angle increases. 

Another basic large deflection case is the vibration of a tensioned string (or wire) with 

central mass m, fixed between two points; as the mass deflects a distance x from its 

nominal position, the length of the string has to increase, thereby increasing the 

restoring force. This change in length and restoring force is a nonlinear relationship of 

the change in lateral position (see for example [1]) 

(1.3) 

where S is the initial tension, A is the cross-sectional area, and E is the elastic modulus 

of the string (wire). The simplified free vibration equation of this system for moderate 

lateral displacements is 

.. 2Sx AE X3 0 mx+--+ -= 
[ [3 

3 

(1.4) 



The nonlinear stiffuess increase in this case tends to increase the resonance frequency of 

the string. These two approximate equations can be generalized by the Duffing equation 

[2] 

.. fJ2 30 x+ax+ x +yx = (1.5) 

The pendulum approximate solution has fJ = 0 and y< 0, while the string mass system 

approximation has fJ = 0 and y> o. 

The natural extension of the large deflection string problem is when the material 

dimensions increase enough to require the addition of bending stiffuess terms; the string 

becomes a beam. If the boundary conditions are fixed at both ends, the lateral 

displacement again leads to a change in length that causes a tensile axial force. The 

stiffuess of the fixed-fixed beam system is a nonlinear combination of bending and axial 

terms (see [3-7]). The large deflection beam stiffuess non-linearity can be assumed to 

act like a Duffing oscillator (see for example [8, 9]). A review article [10] summarizes 

the status of analysis techniques as of 2000. 

Curved beam geometry under large deflections can also result in non-symmetric 

stiffuess (i.e. lateral deflections toward the center of curvature tend to have reduced 

stiffuess, while deflections away from the center of curvature tend to increase stiffuess). 

The curved beam approximate Duffing solution will have fJi- O. Very large deflections 

of curved beams can lead to an unstable "snap through" condition. One example of a 

curved beam used in engineering applications is the coiled wire rope isolator. 

As the beam material dimensions increase, additional in-plane terms are added as the 

beam becomes a plate or shell. The shell is a natural extension of the string problem 

where the axial force translates to a membrane force. The large deflection plate problem 

will include nonlinear bending and membrane effects. Curved plates have nonlinear 

properties similar to curved beams [11, 12]. 

Further examples of nonlinear restoring force under large deflections can be described 

with bi-linear stiffuess due to additional materials coming into contact as gaps close [1]. 

A physical example of this is a spring or isolator that has a snubber (additional stiffuess) 

mounted to it to limit large deflections. 
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1.1.1.2 Mechanical system with nonlinear damping 

Another category of nonlinear system parameter is nonlinear damping. The classic 

example of this is the nonlinear damped van der Pol oscillator [13] 

x + Jl ( 1- x 2 
) .x + x = 0 

The periodic forced response van der Pol equation 

x + Jl ( 1- x 2 
) .x + x = a sin (2nvf ) 

(1.6) 

(1.7) 

can lead to highly nonlinear results, the study of which has opened up several areas of 

research (see, for example [14, 15]). Damping for structural models can take various 

forms (e.g. viscous, hysteretic, etc.), and in this research project, the issue of nonlinear 

damping is not of concern compared to nonlinear stiffness. 

1.1.1.3 Mechanical system with nonlinear stress 

Linear structures are often assumed to have stress and strains that are linear functions of 

displacement. Large deflection cases often have nonlinear displacement to strain 

relationships. One example that will be discussed in detail in this thesis is the nonlinear 

displacement to strain function for beams and plates that involves a combination of 

bending and membrane terms. These are often discussed for static loading conditions 

[3]. One approximation of the displacement to strain (or stress) function is [16] 

where y is the nonlinear displacement, and C j and Cz are constants. Note: this is a 

nonlinear instantaneous relationship, not a nonlinear differential equation. 

1.1.1.4 Nonlinear materials 

(1.8) 

Materials can often have basic properties that are nonlinear functions of displacement, 

temperature or strain rate. Elastomer materials (e.g. rubber) are common examples that 

exhibit nonlinear load deflection responses as bulk materials. Plastic and elastomeric 
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materials often have a complex shear modulus (or complex modulus) that changes with 

temperature and loading frequency. The experimental methods for determining complex 

modulus are well-established [17]. 

1.1.1.5 Non Gaussian loads 

Many random noise sources in nature and engineering applications can be considered 

Gaussian as a first approximation. There are however, some random loading conditions 

that have been shown to be non-Gaussian. Non-Gaussian environmental loads that are 

of concern in the field of civil engineering are due to wind [18, 19] and waves [20-27]. 

Additional non-Gaussian loads that are of concern for aerospace engineers are due to 

turbulent boundary flow [28, 29], supersonic flow [30] and thermal acoustic conditions 

[31, 32]. Non-stationary random loads from different types of road or ground surfaces 

over the life of a vehicle can also be considered as non-Gaussian operating loads [33, 

34]. The response oflinear systems to non-Gaussian inputs have been documented [35-

37]. Methods to generate non-Gaussian loads time histories may be of interest to the 

reader [38-42]). 

1.1.2 Analysis methods for nonlinear response prediction 

The study of solutions to nonlinear differential equations has been active since the early 

1900's. Work by Kelvin [43], Duffing [2], van der Pol [13], Hamel [44] and others (see 

summary articles [14,45]) have laid the foundation for the mathematical theory. This 

section will review the analytic and approximate methods developed to analyze 

nonlinear and non-Gaussian responses. 

1.1.2.1 Analytic solutions 

Recent work in the area of general nonlinear differential solutions can be found in many 

references [46-55]. Additional work in the area of non-stationary random process can be 

found in [56-58]. Chaos theory has also been applied to engineering problems [59, 60]. 

Of particular interest to this thesis is the study of level crossings and extreme values. 

The seminal work by Rice [61] was followed by the early study of nonlinear statistics 
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by Lin [16] Crandall [62] and others [63-65]. Recent work in the area with particular 

interest to nonlinear, non-Gaussian responses has continued to advance the theory [66-

73]. Level crossings and extremes based on time domain moments have been 

developed, most notably by Winterstein and associates [74-76]. Probability distributions 

based on Non-Gaussian variables have also been developed [26, 69, 77-83]. 

1.1.2.2 Equivalent & stochastic linearization 

Approximate methods to solving systems of nonlinear differential equations have been 

proposed since the first work to solve them. A method known as equivalent linearization 

has been researched and applied to random vibration problems for more than 40 years 

[5, 84-94]. An equivalent linearization technique solves for equivalent linear model 

stiffnesses for a given magnitude ofload, with the goal of minimizing the error in the 

system response standard deviation. This method has been shown to also produce good 

estimates of the change in system modal frequencies, but it cannot estimate changes in 

response probability density functions or harmonic distortion of the resonances. The 

equivalent linearization method has been extended to higher order powers of the 

response in an effort to estimate extremes of the nonlinear response [95]. Another 

alternative to the equivalent linearization method, the probabilistic linearization 

technique, has been proposed whereby the error in a approximate probability density 

function of the response is minimized with respect to the nonlinear probability density 

function [96, 97]. Challenges to the standard linearization method are well-documented 

(see [98, 99]). 

Linear and nonlinear analysis methods based on stochastic moments and cumulants 

have been proposed as an alternative to solving the nonlinear Fokker-Planck equations 

[100, 101]. Other methods to predict nonlinear response are based on linear systems 

with stochastic system properties. Several methods have been proposed to estimate the 

power spectral density (PSD) of the nonlinear response by treating the system natural 

frequency [102,103] and other system parameters [104, 105] as random variables. 

Modal methods have also been proposed as methods to estimate PSDs of nonlinear 

systems [106-108]. 
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1.1.2.3 Reduced order nonlinear differential equations 

The need to develop larger and more detailed models of engineering structures has led 

to efficient techniques to reduce the order of the models for subsequent dynamic 

simulations. Modal analysis methods have proven to be a very effective way to predict 

the time and frequency domain behavior of linear systems. Recently modal methods 

have been applied as a technique to reduce the order of nonlinear systems [109-114]. 

The basic idea is to first find the linear reduced order modal properties of the system, 

and then to use them to develop a nonlinear ordinary differential equation (ODE) model 

of the system. Once the reduced order nonlinear ODE has been solved numerically, the 

full model results can be estimated by expanding back from modal coordinates to 

physical coordinates. Since this method solves the nonlinear ODE in the time domain, it 

has the benefit of allowing estimation of time domain statistical parameters, in 

particular probability density functions of the response. The reduced order nonlinear 

models also allow inclusion of nonlinear physical behavior such as membrane stiffness. 

Similar methods have been employed using nonlinear modal representations of 

substructures of larger system [115]. 

1.1.2.4 Nonlinear Laplace and Fourier transforms 

The related field of communication theory has several applications of nonlinear 

functions, particularly in the area of detectors for receivers. The behavior of signals and 

background noise in nonlinear communication systems has been documented in classic 

books by Middleton [116] and Davenport and Root [117]. These texts should be 

consulted for a through development of nonlinear Laplace and Fourier transforms as 

well as advanced developments of the statistical behavior of nonlinear systems. 

1.1.3 Nonlinear frequency domain identification 

Advances in experimental signal processing and analysis have led to methods that can 

be used to estimate nonlinear properties of systems. This has been a very active area of 

research in the last 10 years [118-140]. Nonparametric models, that require no 

knowledge of the system or excitation, have been developed [141,142]. The "reverse 

path" technique [125, 143], where the response is transformed into nonlinear functions 
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and used as the input to a multi conditioned input spectral analysis, will be presented 

and used extensively in the rest of this thesis. 

1.2 Fatigue and damage analysis 

Cyclic fatigue is one of the most important failure modes for structures that are required 

to withstand repeated applications of dynamic loads. This section will give a review of 

fatigue theory, with emphasis on random, non-Gaussian stress cases (e.g. sonic fatigue). 

The following sections will give a brief review of early fatigue work, but will also 

concentrate on recent theoretical developments. Fatigue equations and notation will be 

introduced in chapter 2. 

1.2.1 Sinusoidal fatigue 

The study of fatigue in materials can be traced to Wohler [144] in the late 1800's. 

Research in the early 1900's led to an exponential relationship between stress amplitude 

and life by Basquin [145] and a secondary effect on life due to mean stresses by 

Goodman [146]. A recent paper by Dowling [147] reviews sinusoidal fatigue equations, 

comparing the predictions of various equations that include mean stress to experimental 

data. Another recent paper [148] discusses bi-linear fatigue models (attributed to 

discrete changes in the slope ofS-N curves, and total strain life models (see also [147])) 

that attempt to more accurately predict the sinusoidal fatigue life of materials. Mean 

stress effects for fatigue in welds [149] due to sinusoidal and random loading have also 

been documented. 

Some engineering materials, most notably rubber, exhibit highly nonlinear elastic 

isotropic behavior with incompressibility. Sinusoidal fatigue analysis methods for 

rubber, based on strain and strain energy, have shown to match experimental results 

well [150]. 

1.2.2 Variable amplitude fatigue 

Many situations in engineering fatigue problems cannot be considered as constant 

amplitude sinusoidal loading. A simple example is a machine that operates at different 
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speeds, with different structural forces at each speed, whilst complex examples include 

transient and random loading. Methods that have been developed to determine the time­

to-failure or damage for variable amplitude loading will be discussed next. 

1.2.2.1 Linear cumulative damage 

The founding theory of variable amplitude loading is attributed to Palmgren [151] and 

later Miner [152] will be described in this thesis as a linear cumulative damage rule. It 

simply states that damage is cumulative, and that each stress cycle contributes to 

damage as a function of the number of cycles to failure for that cycle amplitude. Linear 

cumulative damage neglects any sequence effects (e.g. low amplitude followed by high 

amplitude vs. high amplitude followed by low amplitude) that may change fatigue life. 

1.2.2.2 Narrowband random fatigue 

The Palmgren-Miner linear damage rule was extended to narrow band random fatigue 

by Miles [153] in the mid 1950's. Miles extended the linear summation of damage to an 

integral of stress peaks scaled by the probability density function of stress peaks, which, 

for a narrowband random system, was known to be a Rayleigh distribution. The 

resulting damage equation was a function of the sinusoidal stress versus number of 

cycles to failure (SN curve) fatigue properties and the standard deviation of stress. 

Similar derivations with reference to Miles work can be found in [4, 154, 155]. The 

same derivation was developed independently again later by Lambert [156], who 

extended the development to include statistical properties of the stress-probability 

density function (PDF) integrand as well as equations for random fatigue life with 

variable stress or strength. 

Seminal work with nonlinear response probability density functions and their effect on 

fatigue can be traced to two papers in 1963 by Lin [16] and Crandall [62]. Lin 

developed relationships for nonlinear stress PDFs based on a quadratic displacement to 

stress equation, with the additional assumption that the displacement PDF was also 

nonlinear. The number of peaks and troughs were developed, with attention to the 

formation of negative stress peaks in the nonlinear structure. Lin's concluding remarks 

still apply today: " ... analytically determined distribution of stress peaks in a nonlinear 
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structure shows marked differences from that in a linear structure, especially in the 

regions of negative stress peaks ... ". In particular for this thesis, " ... it is suggested that 

further research be carried out with special attention to nonlinear response". Crandall 

developed equations for the rates of zero crossings for nonlinear, non-Gaussian systems, 

plus peak PDFs for nonlinear Duffing "hardening spring" oscillators and other systems 

with nonlinear restoring forces. Recent derivations of random fatigue due to nonlinear 

stress peak PDFs have been developed [157-160]. 

1.2.2.3 Wideband random fatigue 

The special case of narrowband random loading was extended to arbitrary stress cycles 

in the 1960's, using cycle versus amplitude counting methods. The de-facto standard 

that emerged was called the Rainflow cycle method, attributed to Matsuishi and Endo 

[161]. Research showed that the Rainflow cycle method combined with the linear 

damage model gave the most accurate estimates of fatigue life [162]. The rainflow 

counting technique was later redefined in more mathematical terms by Rychlik [163-

165] and Bishop [166, 167]. It should be stated here that rainflow cycle counting is a 

time domain method that is computationally intensive. 

Parallel work with multimode responses was published based on probability theory. 

Lambert extended his narrow band theories to multi-degree of freedom random damage 

functions [168] based on published one and two degree of freedom experimental data. 

Other methods have also been proposed to fit a rainflow range PDF [169-173]. 

The difficulties with the computation of rainflow cycles distributions from time domain 

data has led to the development of frequency domain techniques. The seminal work by 

Rice [61] and research since has shown that the PDF of peak response can be 

determined from moments of the frequency domain response power spectral density 

(PSD) (also called spectral moments), and that the peak PDF is a combination of a 

Gaussian and a Rayleigh PDF. Dirlik [174] developed an empirical equation for a 

rainflow PDF by performing numerical experiments. This method was applied to 

engineering problems (see for example [175]). A review of the spectral moment 

technique theory and applications of it to random fatigue problems can be found in 

several recent papers [176-179]. Reviews of the Dirlik equation and other published 
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rainflow PDF empirical equations [180] have been published by several authors [181, 

182]. Alternative methods of estimating the rainflow PDF using spectral moments have 

recently been proposed [183, 184]. 

A second aspect of wide band random fatigue is that stress cycles can have mean values 

that are not zero (compared to the ideal narrowband case). Sinusoidal testing has shown 

for over 100 years that the addition of a tensile mean stress can reduce the fatigue life. It 

is therefore theoretically advantageous to extend the rainflow cycle amplitude PDF to a 

multi-dimensional PDF. Two multi-dimensional rainflow cycle PDF formats have been 

proposed: 2D PDF of amplitude (or range) and mean values [185-187], and 2D PDF of 

minimum (or trough) and maximum (or peak) values [34, 165, 188, 189]. 

A slightly different approach to the cycle counting methods using Markov chain models 

has been proposed [188, 190-192]. This Markov chain method is especially useful for 

including sequence effects in damage models. 

A natural extension to the uni-axial cycle counting methods has been proposed to 

include multiaxial states of stress (see [193] for a summary review as of 1998). Recent 

papers that operate in the time [194] and frequency domain [195-197] are also of 

interest. 

1.2.2.4 Non-Gaussian random fatigue 

The area of research for this thesis is the specific topic of non-Gaussian random fatigue. 

One of best examples of engineering problems in this area is the study of acoustic 

fatigue. Summary reports [198, 199] review the state of acoustic fatigue in 1987 and 

1994, and propose plans for future theoretical and experimental work. One of the prime 

motivations for the research documented in this thesis was earlier theoretical work by 

the author for the US Air Force, under a Small Business Independent Research (SBIR) 

contract F33615-02-M-3236, titled Rapid Fatigue Life Prediction for Nonlinear Loading 

and Structures. Other research in this area can be found in [34, 189,200-209]. 

Sarkani et al. [158] developed a nonlinear transformation of the narrowband Rayleigh 

distribution and used this to estimate fatigue damage for various nonlinear exponents 

(and their resulting kurtosis values) and material SN fatigue exponents. 
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1.2.2.5 Nonlinear cumulative damage 

Although this thesis assumes the linear Palmgren-Miner damage rule, as stated above 

and detailed in the following chapters, there are challenges to the linear theory that 

should be noted. Experimental and in service failures in the 1950's gave rise to the field 

of fracture mechanics which concentrates on crack growth rather than overall structural 

fatigue (see the summary article [210]). One of the basic findings of fracture mechanics 

is that the crack growth rate is a nonlinear function of the current crack length, the 

surrounding material geometry and the applied load. Recent work on fracture mechanics 

with application to random loads may be of interest for future research [211-218]. 

Fracture mechanics analysis has in some ways replaced more classic fatigue analysis, 

but the nonlinear sequence effect of stress on life is difficult to treat stochastically in 

closed form. 

Parallel work with multi level fatigue testing also challenges linear Palmgren-Miner 

damage theory. A comprehensive review of the linear and nonlinear cumulative damage 

theories was published in 1998 [219]. Additional publications since then may be of 

interest [220-227]. Comments by one author [226] in the introduction of his article 

summarize the situation well. In short, the linear theory" .. .is the most often used due to 

its simplicity." "Moreover, the final mathematical expressions of many (nonlinear) 

prediction rules are so complex that they are simply not suitable for random loading 

applications, especially in analytical form." There is clearly a need for more research 

and practical engineering approaches to the problem. 

1.2.3 Reliability due to fatigue 

The field of reliability has a strong link to the study of fatigue. The famous author 

Weibull began his work by developing a statistical theory for the static strength of 

materials [228], and then extended it to the fatigue strength of materials [229]. 

Reliability analysis has branched out into many fields of applications, but the 

underlying physics of the problems often has material fatigue as its root. Later work by 

Weibull [230] addressed the joint effect of cyclic and random peak loading, noting that 

the data did not follow the linear Palmgren-Miner damage rule. 
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Work by other researchers is of interest. Lambert [231] developed a random fatigue 

failure model based on a simultaneous variance of strength and stress. Random service 

loading, with the inherent scatter and uncertainty in limited measurements, has been 

studied by several authors [33, 232-235]. Practical discussions of reliability predictions 

for mechanical structures are a topic of continued interest [236-239]. Structural fatigue 

life with system uncertainty is another area of recent work [240, 241]. Recently, 

methods to model complex, large-size stochastic mechanics problems have been 

developed [242-246]). 

1.3 Summary 

This introductory chapter has presented a review of the nonlinear random vibration 

literature and the response failure criteria of cyclic fatigue. The field of nonlinear 

random vibration has many important applications in modem engineering problems and 

is an active area of research and practical development. The field of random fatigue is 

also an active area of research. Methods for fatigue analysis based on extensions to 

sinusoidal linear damage fatigue theory have been presented, whilst still other methods, 

based on more recent nonlinear damage theory (e.g. fracture mechanics), have been 

cited. 

1.4 Thesis objectives and overview of the content 

The thesis topic, "Random Vibration Response Statistics for Fatigue Analysis of 

Nonlinear Structures", will be explored in the following chapters using a combination of 

experimental test and numerical simulation results. The goal of this work will be to 

introduce analysis techniques that will show by example how the resulting fatigue life 

estimates of one important case of nonlinear structures changes as more nonlinear terms 

are included. The findings of this work are applicable to improving the time-to-failure 

estimates for modem engineering structures. 

This thesis will continue in chapter 2 by briefly introducing equations and techniques 

for random linear and nonlinear signal analysis. The topic of probability density and 

distribution functions will be stressed, and the use of the inverse distribution function 
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method to estimate linear to nonlinear functions will be presented. Frequency domain 

analysis techniques such as spectral moments and the reverse path nonlinear frequency 

response function identification technique will be introduced. Additional sections on 

random fatigue equations for use with non-Gaussian response will be presented. 

The thesis will then explore the nonlinear random vibration problem using experimental 

results from a clamped-clamped beam experiment performed at Wright Patterson Air 

Force Base (WP AFB) [7]. Frequency and time domain methods will be used to identify 

some of the nonlinear properties of the experiment. Strain data from the experiments 

will also be used to estimate fatigue life using a baseline alternating stress equation and 

several damage equations that include mean stress terms. This experimental study is 

presented in chapter 3. 

Additional linear and nonlinear differential equation numerical simulations are 

presented in chapter 4. This chapter will explore additional statistical analysis of the 

Duffing style nonlinear problem. The models are based on the nonlinear identification 

of the parameters from the WP AFB experiments. The numerical simulations allow for 

additional insight into the velocity and acceleration response states for various damping 

levels over very long time periods. 

Nonlinear strain and stress estimates, based on nonlinear displacements determined 

numerically from nonlinear differential equations, will be presented in chapter 5. The 

nonlinear strain displacement parameters used in this analysis are derived from the 

results presented in chapter 3. Time domain cycle counting method results will be 

compared to nonlinear stress PDFs determined using PDF transforms. The time to 

failure estimates based on linear and nonlinear results are presented to show the 

importance of each nonlinear term. 

The final chapter 6 will summarize the thesis, highlighting the original and novel 

contributions, and suggest areas for future research. References used in this thesis will 

be given at the end. 
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2 RANDOM DATA, NONLINEAR ANALYSIS, AND 

FATIGUE REVIEW 

This chapter will briefly introduce relationships and techniques for random linear and 

nonlinear signal analysis. Time and frequency domain techniques are given here as a 

way to introduce the notation and to familiarize the reader with the methods that are 

used extensively throughout the rest of the thesis. Fatigue theory for sinusoidal and 

random loading will complete the review. 

Probability density and distribution functions will be stressed, and the use of the novel 

inverse distribution function method to estimate linear to nonlinear functions is 

presented. The probability density function (PDF) transform method is introduced as a 

method to estimate the PDF of a related signal given a function relationship between the 

two signals. This PDF transform method is used extensively throughout the rest of the 

thesis to estimate nonlinear PDFs for displacement and stress response. 

Frequency domain analysis techniques are reviewed with special attention to spectral 

moments. The spectral moments introduced here will be used later in this thesis to 

estimate rates of zero crossings and peaks and to also estimate peak PDFs of Gaussian 

signals. The reverse-path nonlinear frequency response function identification technique 

introduced in this chapter will be used in the following chapter to estimate nonlinear 

parameters from clamped-clamped beam experiments. 

The final section of this chapter reviews basic sinusoidal fatigue equations and their 

extension to random fatigue, based on the Palmgren-Miner linear damage theory. 

Equations that estimate fatigue life with the addition of nonzero mean stress will be 

presented. 

2.1 Time domain analysis 

Time domain methods for analysis of random signals are the preferred method for 

estimating basis statistics, such as expected values and moments of the data. This 
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section will also briefly review PDPs, distribution functions, inverse distribution 

functions, and the PDP transfonn method. 

2.1.1 Expected values and moments 

The mean value (expected value) f-l of x is given for a continuous function by 

f-lx = E [ x ] = [x p ( x ) dx (2.1) 

where p(x) is the PDP of x (see, for example, (2.18) for the PDP of a Gaussian signal). 

This equation can be thought of as the first moment of the PDP. Por a discrete signal, 

the estimated mean value is calculated by 

(2.2) 

where Xj are discrete values and N is the number of data points in the signal. The higher­

order nth expected values (or PDP moments) ofx are defmed by 

(2.3) 

or for a discrete signal 

(2.4) 

Por example, the mean squared value of a discrete signal x is 

~ (1)~ 2 
'fix = N f;tXj (2.5) 

The second central moment (variance) about the mean is defined by 

(2.6) 

or for a discrete signal 
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(2.7) 

The variance can be expanded to yield a relationship with the mean values 

(2.8) 

The standard deviation o-(RMS for a zero mean) is 

(2.9) 

For higher-order central moments, it is convenient to work with the standard variable z, 

defined as 

(2.10) 

Two named higher central moments (in terms of the standardized variable z) are of 

interest. The third central moment, skew l, is defined as 

(2.11) 

or for a discrete signal 

i =(_1 )fz~ 
N j=! 

(2.12) 

A symmetric PDF (e.g., a Gaussian), will have skew equal to zero. A non-symmetric 

PDF will have positive or negative skew. The fourth central moment, kurtosis Kis 

(2.13) 

or for a discrete signal 

(2.14) 
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For Gaussian random signals, kurtosis is equal to three. For non-Gaussian systems, 

kurtosis can take on positive values less or greater than three. 

2.1.2 Distribution and probability density functions 

The distribution function ofx (or F(x)) (also referred to as the cumulative distribution 

function (CDF)) is defined as the probability of occurrence p of the variable x taking a 

value less than or equal to a 

F ( x ) = Prob [ x :::; a] = p (2.15) 

The distribution function monotonically increases from F ( -00 ) = 0 to F ( 00 ) = 1 . The 

probability density function is defined as 

P x)=lim ( 
. [prob [ x < x j :::; x + & J] 

t.x~o & 
(2.16) 

The distribution function is related to the PDF by 

F(x) = LP(a)da (2.17) 

Two common PDFs are the Gaussian (or normal) PDF (for zero mean) 

(2.18) 

where exp(x) is the value e raised to the power x, and the Rayleigh PDF 

( 
2 J x -x 

Pray (X) = -2 exp --2 
CYx 2CYx 

(2.19) 

The Rayleigh function is useful for studying the peak response of narrowband Gaussian 

signals. Also of interest is the generalized peak function, defined here for the 

standardized variable z, which gives the peak PDF for any normal random signal [247, 

248] 
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(2.20) 

where lUis the ratio of the rates of zero crossings to peaks (defined in Section 2.1.4). 

The additional tenns kn and Qn are functions of the ratio lU (which has values 0 ~lU ~ 1) 

(2.21 ) 

where erfc is the complimentary error function [249] 

(2.22) 

Note that the generalized peak PDF equation (2.20) is a weighted sum of a Gaussian and 

Rayleigh PDF; at the limits 

(2.23) 

The generalized peak PDFs for various values of the ratio lUare shown in Figure 2.1. 

Common distribution functions are also useful. The nonnal distribution function is 

[249] 

(2.24) 

where erf is the error function [249] 

(2.25) 

The error function and complimentary error function are related [249] 

erfc ( x ) = 1- erf ( x ) (2.26) 

The Rayleigh distribution function is [248] 
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(2.27) 

The generalized peak distribution function is [248] 

(2.28) 

2.1.3 Inverse distribution function 

The inverse distribution function (IDF) or F-! (p) determines the corresponding x 

value of a distribution function given a value of probability of occurrence [42, 250] 

F-! (p) = F-! (F(x)) =X (2.29) 

The IDF for a normal distribution can be determined explicitly from equation (2.24) as 

(2.30) 

where erC! is the inverse error function x = erC! (y), which satisfies y = erf (x) for 

-1 S Y S 1 and -00 s x S 00 [251]. The IDF for a Rayleigh distribution is determined 

from (2.27) as 

~:;(p)=a)-2ln(1-p) =X (2.31) 

The IDF will be used extensively in the following chapters to determine functional 

relationships between linear and nonlinear data sets. A simple example of the IDF 

method is shown in Figure 2.2. In this example a distribution function (or CDF) from a 

nonlinear response is compared to the CDF of a linear normal distribution. For this 

example, two values ofthe probability of occurrence p = 0.75, 0.97 are shown with their 

corresponding linear and nonlinear response data points x, y. 
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2.1.4 Response rates 

The rates of zero crossings and peaks are very important for peak response and fatigue 

analysis. They can be estimated (for linear or nonlinear random data) by sampling the 

time domain data. The rate of positive zero crossings can be interpreted as the apparent 

or dominant frequency of the data record, while the rates of peaks can help one 

understand the frequency of the highest periodic component of the data. Narrowband 

data is characterized by having one periodic component that has equal rates of peaks 

and zero crossings. Wideband data has many periodic components which mean that the 

rates of peaks will be much higher than the rates of zero crossings. 

Realizing that there can be both positive and negative slope level crossings, the rates of 

positive slope zero crossings <1:> [ 0+ ] is assumed to be one half of the total number of 

zero crossmgs 

(2.32) 

where No is the number oflevel (level = 0) crossings and Tblock is the length of the 

analysis time block. The rates of positive peaks <1:>[ P+ ] can be determined by finding 

the total number of positive peaks Np , i.e., 

The ratio of zeros to peaks W" (also know as the statistical irregularity) is 

<1:>[ 0+ ] 
W" =---::~::,. 

<1:>[P+ ] 

One method of determining response rates for Gaussian data, based on spectral 

moments, is discussed later in Section 2.2.2. 
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2.1.5 Probability density function transforms 

The PDF p(x), of a data set x, can be transformed to p(y) of a different data set y using 

the PDF transform [125, 250] 

p(x) 
p(y)= Idy/dxl 

where there is a one-to-one monotonic relationship between x and y, and where 

y = g(x) 

(2.35) 

(2.36) 

which will be referred to as a right hand side (RRS) function. The PDF transform can 

also be expressed for a left hand side (LHS) monotonic function 

h(y) =x (2.37) 

by 

p (y) = Idx/dylp(x) = Ih'(y )Ip (h(y)) (2.38) 

As an example, determine the normal PDF for a zero mean standardized variable (see 

equation (2.10)) 

x-o z=g(x)=-
ax 

(2.39) 

The normal PDF, in terms of the standardized variable z, using equations (2.18), (2.35), 

and (2.39) is 

(2.40) 

The PDF transform will be used extensively in the next chapters to transform PDFs of 

linear data to PDFs of nonlinear data. The method is especially useful for predicting the 

PDF of a nonlinear system when there is some knowledge of the linear to nonlinear 

functions (see equations (2.36) and (2.37)). The IDF method, from section 2.1.3, is 
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throughout the rest of this thesis to predict these linear to nonlinear functions for use 

with PDF transforms. 

An example is a nonlinear Rayleigh PDF transform for a LHS function equation (2.37) 

using equation (2.19) and (2.38) 

I , I ( ) I' I h(Y) (_(h(y))2] P nl ray (Y) = h (Y) Pray h (Y) = h (y) -2 exp 2 2 
(Jx (Jx 

The PDF transform method can also be used successively to perform multiple 

transforms, as will be shown in Chapter 5. 

2.2 Frequency domain analysis 

(2.41) 

Frequency domain analysis techniques are often used to characterize periodic and 

Gaussian random signals. This section will give a brief overview of techniques that will 

be applied later. The reverse-path nonlinear frequency response function estimation 

technique will also be introduced. 

2.2.1 Fourier transform, auto-spectrum and power spectral density 

The Fourier transform F is defined as 

00 

X (I) = f x(t )ei21rfl dt = F( x(t)) (2.42) 
-00 

and the inverse Fourier transform p-l is 

00 

x(t) = f X(f)e-i21rfldl = F-1 (X(/)) (2.43) 

The autocorrelation function that defines how a signal is correlated with itself, with a 

time separation r is 

00 

Rxx (1') = f x(t)x(t+1')dt = E[ x(t)x(t+1')] (2.44) 
-00 
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The autocorrelation and auto-spectrum Sxx(f) (or power spectral density (PSD)) 

functions are related by the Fourier transform pair 

co 

Sxx(f)= JRxxCr)eilln-dr 
-co 

co 

Rxx (r) = J Sxx (f) e-illJT dm 
-co 

The one-sided PSD Gxx(f), defined for 0 -:s.f < 00, is 

At f = 0, Gxx and Sxx are equal to the mean value of the data. 

2.2.2 Spectral moments and expected rates 

(2.45) 

(2.46) 

(2.47) 

A review of spectral moment and derivative process calculation is given briefly below. 

For a full treatment of the subject, see [248] and [177-179]. Spectral moments are 

calculated from the one-sided PSD G(f) (in units of Hertz) or the two-sided PSD Sew) 

(where m = 2;ifin units ofradians) using 

(2.48) 

co 

f-ln = Jm n S(aJ)dm=mn(2ffY (2.49) 
-co 

It is important to note that f-li and f-l3 are zero, but mi and m3 are not. Remember that 

f-l n is calculated by integrating from -00 and +00, and m n is calculated by integrating 

from ° to +00. Typically, the moments mo, ml, m2, and m4 are calculated. The spectral 

moments can be used to estimate the rates of response of Gaussian random signals [248] 

and [177-179]. The expected rate of positive (or negative) slope zero crossings for this 

type of signal is 
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[ ]

1/2 

E[O] = :: (2.50) 

and the rates of positive (or negative) peaks, P, and points of inflection, PI are 

[ ]

1/2 

E[P] = :: (2.51) 

[ ]

1/2 

E[PI] = :: (2.52) 

A useful relationship for estimating the ratio of rates of zero crossings to peaks tlJnorm 

for a normally distributed signal is 

(2.53) 

This ratio can be used in the generalized peak PDF (2.20) or distribution function (2.28) 

equations. 

2.2.3 Random time history from PSD using 1FT 

Often when working in test or analysis conditions, it is useful to generate random time 

histories with a prescribed PSD. Starting with the definition of a finite time auto spectral 

density function 

where: 

SXX (J,T) = !X' (J,T)X(J,T) 
T 

T 

X (J,T) = fx(t )e-i27rjt dt = F( x(t,T)) 
o 
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and T= I1!1! The finite Fourier transform is defined from -fnyq S.1S.fnyq where the 

Nyquist frequency is determined by fnyq = 1/(2 M). Determine the magnitude of the 

Fourier transform for each value of/based on the prescribed PSD Sxx by 

(2.56) 

At each positive frequency, determine a uniformly distributed random-phase angle <Df 

E [0, 2;rr) such that 

X(/,T) = Af (/,T)+iBf (/,T) (2.57) 

and tan cDf= Bfl Aj- At negative frequencies assign X(j,T) = Af (-I,T) -iBf (-I,T) . 

The time domain signal, with normally distributed magnitude and prescribed PSD, is 

determined using the inverse Fourier transform 

fnyq 

x(t,T)= f X(/,t)e-i27rftdj =Fl (X(j,T)) 
- f")lq 

where the limits of integration of the inverse Fourier transform are the Nyquist 

frequency determined by fnyq = 1/(2 !1t). 

2.2.4 Frequency response and coherence functions 

(2.58) 

The single input x, single output y relationships for a linear system h, in terms of Fourier 

transforms, are 

or in terms of their spectral and cross-spectral densities 

SW (I) = IH xy (/)1
2 

SXX (I) 
Sxy (I) = H xy (/)Sxx (I) 

or also in terms of the one sided PSDs 
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(2.60) 



Gyy (I) = IH xy (/)1
2 

GXX (I) 

Gxy (I) = Hxy (/)Gxx (I) 

These equations can be used to estimate the linear frequency response function 

More general equations relating multi-input, multi-output systems can also be 

developed (see for example [143, 248]). 

The coherence function between the ideal single input and output, 

(2.61) 

(2.62) 

(2.63) 

is a real valued function that ranges between 0 and 1. A coherence value of 1 indicates 

that the output is completely determined by a linear function of the input. Coherence 

values less than 1 indicate the presence of noise or other contributions to the output 

(e.g., nonlinear response terms). 

2.2.5 Multi-input single-output frequency response function estimation 

The single-input single-output frequency response function estimation method described 

above can be extended to multi-input single-output (MISO) problems [143,248]. The 

MISO frequency response function method will be used extensively later in this thesis 

for estimating nonlinear frequency response functions (see Section 2.2.6). The basic 

MISO frequency domain formula for determining the response Y for multiple inputs Xi 

(excluding noise sources) is 

n 

Y(/)= LHi(/)Xi(/) (2.64) 
i;1 

This equation is shown in block diagram form in Figure 2.3(a). When one wants to 

estimate the frequency response functions Hi, it is very desirable to have the multiple 
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inputs Xi uncorrelated. If the inputs are uncorrelated, then the frequency response 

functions can be estimated as before by 

H. (I) = Giy (I) 
I Gu(/) 

(2.65) 

If the inputs are correlated, then the recommended technique is to precondition the data 

to form new inputs Vi that are uncorrelated. 

In [143] there is a development (see Chapters 8 and 10) ofa general MISO technique 

that determines multiple frequency response functions based on a method using 

conditioned (i.e., mutually uncorrelated) inputs (see Figure 2.3(b) based on Figure 10.2 

of [143]). This general MISO technique is based on removing that part of the second 

input that is correlated with the first input (with notation X2:l). The third conditioned 

input, is formed by removing that part which is correlated with the first two inputs (with 

notation X3:21), and so on. Once the uncorrelated inputs are determined, linear frequency 

response functions for each path can be found using simple frequency domain 

calculations. Next, recursive relationships are presented that allow the originally 

correlated input problem to be related to the transformed uncorrelated input problem. 

For purposes of illustration (and later use), consider a triple input Xi single output Y 

model of a system shown in Figure 2.3(a). The transformed uncorrelated equivalent to 

this model is shown in Figure 2.3(b) where the second and third inputs are now 

uncorrelated with the first two, and the frequency response functions H iy are replaced 

with related frequency response functions L iy . 

Frequency domain formula for determining these frequency response functions are 

detailed in Chapters 8 and 10 of [143], and are given here for the illustrated problem. 

The first frequency response function L ly , between the Fourier transform of the first 

input Xl = Vl, and the Fourier transform of output Y, is given by the ratio of spectra 

(2.66) 
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shown using the one-sided form G. The frequency response function L between the first 

two correlated inputs is 

L = GIZ 

IZ G 
II 

and the coherence function between these two inputs is 

Note that in equations (2.67) and (2.68) as well as the equations that follow, the 

sUbscript 2 refers to the original input X2 . The uncorrelated input U2 (i.e., the input 

determined by removing the part of input X2 correlated to the input Xl) is found by 

(2.67) 

(2.68) 

(2.69) 

The frequency response function between the uncorrelated input U2 and the output Y is 

= 
G2Y:1 

G2Z:1 

= 
GZy -~yG21 

G2Z (1- r122) 
(2.70) 

The right hand side of equation (2.70) can be determined from the original inputs. The 

uncorrelated input U3 is found by 

(2.71) 

and 

(2.72) 

A flow diagram of this process of determining the uncorrelated inputs ~ is shown in 

Figure 2.4(a). The frequency response functions H of the original nonlinear model are 

recursively related to frequency response functions L by 
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H 3y = L3y 

H 2y = L2y - L23 H 3y (2.73) 

H jy = L jy - L j2 H 2y - ~3H3Y 

This recursive process of detennining the frequency response functions H iy is shown in 

Figure 2.4(b). The coherence functions between the Fourier transfonns of the 

uncorrelated inputs U. and the output Yare calculated by 

(2.74) 

This brief illustration is given full development in the text [143, 248] and should be 

studied in detail. The text goes into great detail to develop the methodology for 

detennining the MISO frequency response functions and spectra for general models 

with any number of inputs. 

2.2.6 Nonlinear frequency response functions 

Methods to detennine frequency response functions for nonlinear systems have recently 

been developed [118-140] and offer many options for modeling the nonlinear behavior 

of the system. One method [125, 143], which uses a "reverse-path," model will be 

discussed here and applied in later chapters. The input to the model is in the fonn of a 

combined linear and nonlinear MISO problem with the standard inputs and outputs 

being reversed (see Figure 2.5(a) based on Figure 13.15 of[143]). Here the linear or 

nonlinear dynamic response is used as a "mathematical input" to a MISO problem 

where the "mathematical output" is the known and specified force. Examples in Chapter 

13 of [143] are given for a Duffing SDOF nonlinear system as well as other nonlinear 

SDOF and MDOF systems. 

There are two main parts to the reverse-path nonlinear model system identification 

technique. The first is to define an equivalent nonlinear model that has nonlinear 

operators in series with linear frequency response functions. The second is to estimate 

the frequency response functions for each path of the model. 
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Bendat [125, 143] proposes an equivalent nonlinear system (to that shown in 

Figure 2.5(a)), based on a straightforward squaring and cubing of the mathematical 

input. In general, arbitrary nonlinear functions could be used, but for some systems, 

including the Duffing system, it is known a priori that the nonlinear response contains 

higher order powers such as cubic terms. The nonlinear model (see Figure 2.5(b) based 

on Figure 13.5 of [143]) now has three paths: a linear path with a linear frequency 

response function HI y(f) and two nonlinear paths. The nonlinear paths have a 

nonlinear function in series with the linear frequency response functions: one path 

squares the input first then multiplies it by a linear frequency response function H2y(f), 

the other path cubes the input before multiplying by a linear frequency response 

function H3Y(f). The authors also point out that this realization of the nonlinear model 

is general and convenient but not unique, i.e., other nonlinear operators can be used on 

the mathematical input (see for example [138]). 

The next step in the method is to realize that this model can now be considered a MISO 

problem where, for this illustration, the frequency domain inputs are 

Xl (f) = F( x(t)) 

X2(f)=F(x2(t)) 

X3 (f) = F(x3 (t)) 

(2.75) 

This representation is shown in Figure 2.5(b) (based on Figure 13.10 of[143]). Note: 

the square and cubic transformations are normally performed in the time domain before 

Fourier transforming them to the frequency domain. Unfortunately, the inputs can, in 

general, be correlated. The method to transform the problem to one with uncorrelated 

inputs is discussed in the previous section, which can then be used to form a system as 

shown in Figure 2.3(b). Equations (2.67) through (2.72) are therefore used to find the 

frequency response functions Li for each path. The original correlated input frequency 

response functions Hi are determined using equation (2.73). These nonlinear frequency 

response methods will be used extensively in the next chapters. 
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2.3 Statistical errors in basic estimates of linear random processes 

Much of this thesis is devoted to estimating statistical measures of linear and nonlinear 

response data. An important part of this estimation process is to quantify the statistical 

errors (or uncertainties) for a given experimental or simulation time period. This section 

will briefly review equations used to estimate the errors for normal (Gaussian) random 

signals that will serve as a baseline for non-Gaussian random signals. Most of the 

material in this section is taken from Bendat and Piersol [248] Chapter 8, and will be 

presented with a minimum of discussion. 

To begin, for a statistical measure ¢, the estimate of the measure will be shown as ¢. 

The normalized random error (standard deviation) of the estimate is (from [248], 

equation 8.9a) 

(2.76) 

and the normalized bias error of the estimate is ([248], equation 8.9b) 

(2.77) 

The combined RMS error is 

(2.78) 

The errors in estimates of standard deviations and PDFs are given below based on a 

number of samples N, the data record time period T, and the signal bandwidth B. 

Numerical simulations in Chapter 4 were run multiple times to develop large sample 

size estimates of the statistical measures that are important for fatigue and damage. 
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2.3.1 Estimates of standard deviation 

The normalized random error for the estimate of standard deviation of a normal random 

signal is ([248], equation 8.65) 

[ ~ ] 1 G (J' - ---::= 

r x - 2.JBT (2.79) 

The time and number of data points required for a specified random error Gr is 

1 1 
T=--'N=-

r 4B 2' 2 2 
sGr cr 

(2.80) 

where the statistical bandwidth (Bs) of the data is ([248], equation 8.52) 

B JIGuU)dJJ J~HU)I'dfJ 
s '" 

(2.81) 

fG!(f)df 
o 

2.3.2 Estimates of probability distribution and density functions 

The estimates of probability distribution and density functions begin by estimating the 

probability that some variable x takes on a value between x-( W12) and x+( W12) of a 

number of samples N, i.e., ([248], equation 8.66) 

where W is the sampling bin width. This probability is commonly estimated using 

histograms such that 

~ [ ] N. 
p x,W = /r 
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where Nj is the number of sample values in each bin}, and N is the total number of 

samples. The distribution function is estimated at each bin from the cumulative sum of a 

histogram by 

(2.84) 

The distribution function estimate is unbiased when evaluated at the positive bin edge 

(xj+(W/2)). 

The probability density function can also be estimated from histograms ([248], equation 

8.69) by 

ft(x) = Nj = p[x,W] 
NW W 

(2.85) 

Unfortunately, the numerical estimate of probability density functions can have 

significant bias errors. A first-order approximation (based on a Taylor series expansion) 

for the normalized bias error term is a function of the "shape" of the PDF ([248], 

equation 8.82) 

(2.86) 

where p" ( x) is the second derivative of p ( x) with respect to x. The normalized 

random error in PDF estimates is a function of the bandwidth B and duration of the 

sample T 

2 

8: [ft(x)] = 2BT~P(X) (2.87) 

where c is a constant that is dependant on the sampling of the signal; in [248], cis 

assigned a value of approximately 0.3 based on experimental studies. The bias (2.86) 

and random (2.87) errors can be combined to estimate the RMS error 80fthe PDF 

([248], equation 8.88) 
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(2.88) 

Both error estimates are a function of W; the bias error has W in the numerator and the 

random error has W in the denominator. This apparent conflict is usually solved by first 

setting Wto a conservative amount (typically <0.2 0-) and then detennining the time T 

required to reach a target random error with an assumed value of p(x). This relationship 

gives additional insight into the importance of large data records (long sample periods) 

for detennining quality estimates ofPDFs. 

2.4 Fatigue analysis 

There are several failure methods for systems that vibrate, but fatigue is considered the 

most catastrophic. The theory of cyclic fatigue was developed first based on cyclic 

loading (of constant amplitude), but it has been extended to account for a summation of 

loads at different levels. The discussion of fatigue in this chapter will present the 

evolution of equations starting with sinusoidal fatigue and ending with fatigue of 

wideband random responses. 

2.4.1 Sinusoidal fatigue 

The standard sinusoidal stress life power law fatigue model is 

(2.89) 

where aa is the fully reversed alternating stress amplitude, and Nfis the median cycles 

to failure. The power law slope b (fatigue strength exponent) and the stress intercept aj, 

at one reversal (fatigue strength coefficient), or A at one cycle, are detennined 

experimentally. The symbol a (bold, not italic) is used here to denote stress instead of 0-

(italic, not bold), which is used to denote the standard deviation. The life (number of 

cycles to failure) Nfthat is expected for a given alternating stress under zero mean stress 

IS 
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( ) 

lib 

N falt = ~ (2.90) 

Note, the number of cycles to failure is also a random variable, and the value predicted 

with these equations is assumed to be a median value based on a curve fit of 

experimental results. Recent work of interest by Lutes et al. [252,253] present theory 

for optimal experimental design for determining the material fatigue properties if the 

measured life is considered a random variable. 

2.4.2 Sinusoidal fatigue life with mean stress 

A recent review paper by Dowling [147] describes several methods that have been 

developed over the past century to determine fatigue life for alternating stresses 

combined with mean stresses. This section summarizes the currently accepted methods. 

The Morrow equation for the number of cycles to failure with mean stress 0'0 is 

(2.91 ) 

For nonferrous materials, a modification using the true stress at fracture cr JB is 

(2.92) 

The Walker equation is 

(2.93) 

where ris a fitting exponent and R is the ratio of minimum and maximum stress (O'min, 

O'max) values at the minima and maxima of the cycle, defined by 

(2.94) 
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The fully reversed zero mean case is when R = -1. Note, equation (2.93) reduces to 

(2.90) when the exponent y= 1.0. The special case ofthe Walker equation for y= 0.5 

gives the Smith-Watson-Topper [254] equation: 

[ 
05]1/b [ R ]l/b N = O'max (I-R)' = O'max l-R 

fswt A 2 A 2 
(2.95) 

A modified version of the Walker equation is used in MMPDS-Ol [255], (the 

replacement for MIL-HDBK-5), based on the stress ratio R and an equivalent stress O'eq, 

where: 

log( N f5 ) = Al + ~ log( O'eq - A4) 

0' eq = 0' max (1- R )A3 
(2.96) 

The term A4 represents the fatigue limit stress or endurance limit. Section 9.6.1.4 from 

[255] gives a thorough discussion of equation (2.96). 

2.4.3 Palmgren-Miner linear cumulative damage rule 

The Palmgren-Miner, [151] and [152] respectively, linear cumulative damage rule is 

(2.97) 

where D is the summation of damage, nk are the number of cycles for load case k, and 

Nfk are the number of cycles to failure for case k. D = 1 indicates a probability of failure 

of 0.5 (i.e., half of a population is expected to have failed). As stated in Chapter 1, the 

linear cumulative damage model neglects any sequence effects that may change fatigue 

life. 

2.4.4 Random fatigue and damage 

The number of cycles to failure for a narrowband random process Nfnb (see [4, 153, 155, 

156]) is 
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00 

Nfnb = f( cra/ AY/b p( cra )dcra (2.98) 
o 

where p( cra) is the PDF of stress peaks. For a narrowband response, p( cra) is assumed to 

be Rayleigh. It has been shown [4, 153, 155, 156] that (2.98) reduces to 

N = (.fiO'a J1f
b

/ r (I __ 1 
) 

fnb A 2b (2.99) 

where O'er is the standard deviation of stress, and r is the gamma function [249]. This 

equation can be solved for O'er to give a narrowband random fatigue equation (similar to 

sinusoidal fatigue equation (2.89)) 

(2.100) 

where the narrowband random fatigue strength coefficient C [156] is 

(2.101) 

When one considers a narrowband Gaussian random process, the expected value of 

damage for a given random load case reduces to 

(2.102) 

where E[O] is the expected rate of zero crossings (see equation (2.50)), and T is the 

duration of the load. 

2.4.5 Wideband random fatigue 

A wideband random process is more interesting; the distribution of peak amplitudes 

diverges from the Rayleigh PDF, and the response will include maxima with negative 

values (see [248] and cited references) and minima with positive values. The de-facto 
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method for evaluating wideband random fatigue is the time domain rainflow cycle 

(RFC) counting method [161,162]. 

The RFC is defined as follows [163, 165] (see Figure 2.6 from [256]): From a time 

history, find each local maxima Mi. Consider data less than Mi in the domain backward 

(left) or forward (right) of Mi. The minima mi with the smallest downward excursion 

sets the range ofthe rainflow cycle. A rainflow cycle is defined in this thesis to have 

stress minima and maxima (crmin, crmax) or, equivalently, stress amplitude and mean 

(cra, cro). A rainflow stress range ilcr is defined here to be two times (2x) the stress 

amplitude with no associated mean. 

The damage equation based on rainflow cycles in terms of stress minima and maxima is 

E[ DmM ] = E [P]T 11 g (crmM I AmM rIfb 
p (crmin , crmax ) dcrmindcrmax (2.103) 

-co 0 

or in terms of amplitude and mean stress 

E [Dao] = E[ P]T Ilg( craol Aao rIfb 
p (cra , cro) dcradcro (2.1 04) 

-coo 

where p( cra, cro) is the joint PDF of stress amplitude and mean rainflow cycles, and 

g(cr fA) is a function based on the chosen nonzero mean stress fatigue method (see, for 

example, equations (2.91) through (2.96) [189]). The problem is that there is no known 

closed form for the joint rainflow cycle PDF, although there are a number of 

approximations [34, 183, 208, 209, 257]. The joint probability density function can be 

estimated numerically as a histogram with cycle counting algorithms (see, for example, 

the rainflow matrix functions developed by the W AFO group [258]). 

It is common to simplify the joint-stress PDF, working instead with the one-dimensional 

rainflow range PDF p(ilcr). The wideband damage equation given the rainflow range 

p(ilcr) is 

co 

E[Dwb ] = E[P] T f(ilcr/2AfIfb p(ilcr)dilcr (2.105) 
o 
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One approximation for p(!1a) is given by Dirlik's expression [174]. 

2.4.6 Rainflow matrix 

The 2-D histogram of rain flow cycles calculated by W AFO functions is called a 

rainflow matrix (RPM). A RPM is a convenient numerical estimate of the joint PDF 

[189]. The RPM has minimum and maximum stress axes that can easily be related to 

amplitude and mean stress dimensions. Only half of the RPM is used because the 

minimum stress can never be greater than the maximum stress. The W AFO group has 

chosen to display the RPM as shown in Figure 2.7 with the minimum stress on the x­

axis and maximum stress on the y-axis. The figure also has lines drawn along constant 

values of the stress ratio R. Constant amplitude conditions are found along diagonals of 

positive slope, and constant mean stress ranges are found along diagonals of negative 

slope. 

The RPM can also be used to calculate one-dimensional histograms of peak values. The 

histogram of maxima is found by summing the bins in a row of the RPM; the histogram 

of minima can be found by summing columns. Amplitude and mean value histograms 

can be found by summing positive and negative diagonals respectively. 

2.4.6.1 Fatigue damage from rainflow matrix [189] 

The random fatigue damage equation based on the RPM 2D histogram estimate of the 

joint PDF is 

D = I I RFM( amin,amax) 
Nf (a . a ) 

C'min ermax mm' max 

(2.106) 

where RPM(amin, amin) are the number of counts in the RPM bin with value of am in and 

amino The denominator of (2.106) is determined based on a choice of fatigue equations. 

The estimate using the alternating stress equation (2.90) (with no mean stress effects) is 

D = "" RFM(amin,amax) = "" RFM(a . a )(a /A)-l/b 
all L. L. N (a) L. L. mzn' max a 

O'm;II O'max f a a C'min O'max 

(2.107) 
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The alternating stress cr a = ( cr max - cr min) / 2 varies over the RFM and is calculated for 

each histogram bin. The estimate using the Morrow equation (2.91) is 

(2.108) 

The mean stress cr 0 = ( cr max + cr min) / 2 also varies over the RFM and is calculated for 

each histogram bin. An alternate form of the Morrow equation (2.92) follows this form 

with cr jB substituted for cr~. The damage estimate using the Walker equation (2.93) is 

(2.109) 

The R value is calculated for each histogram bin using equation (2.94). The Smith­

Watson-Topper equation (2.95) follows this form with the exponent r = 1. The damage 

estimate using the modified Walker equation and the equivalent stress equation (2.96) 

from [255] is 

(2.110) 

A set of functions has been developed to estimate damage given a RFM and a choice of 

fatigue equations (2.107) through (2.110). 

2.4.7 Time to failure 

The damage equation (2.97) can also be written in terms of time 

(2.111) 

where Tk are the periods and Tfk times to failure for load case k. This equation can be 

used to estimate the time to failure 
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T -~ jk-
D 

(2.112) 

where the damage D, determined from equations (2.107) through (2.110), includes the 

integrated effects of all the cycles in the RFM for a load case of time Tk• Time to failure 

estimates include the effects of the shift in natural frequency, and are useful because 

they allow comparison of data sets with different analysis time periods. 

2.5 Summary 

This chapter has served as a brief review of the time and frequency domain equations 

that will be used throughout the remainder of this thesis to develop random response 

statistic relationships. Fatigue and damage equations have also been reviewed. 

Probability functions have been presented, and the relationships between them have 

been illustrated. Probability density functions of peak stress response will be used later 

in this thesis to determine time to failure based on linear and nonlinear fatigue damage 

equations. The inverse distribution function method to determine a functional value 

given a predicted probability was introduced and will be used extensively to estimate 

linear to nonlinear functions from tabulated response histograms. These linear to 

nonlinear functions will be used with the PDF transform method to predict useful 

nonlinear PDFs of displacement and stress. 

Nonlinear frequency response function estimation techniques, using the reverse-path 

method, have been introduced. The reverse-path method is general and will be used in 

novel ways to study the nonlinear displacement and strain response of experimental data 

in Chapter 3. 
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2.6 Chapter 2 figures 
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Figure 2.1. Generalized peak PDF shown for various ratios of zeros to peaks 1». 
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(a) (b) 

y y 

Figure 2.3. MISO system models: (a) system with possibly correlated inputs ~ and 
frequency response functions Hiy, (b) system with conditioned uncorrelated inputs Vi 
and frequency response functions L iy. 
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Figure 2.4. MISO system analysis flow diagrams: (a) method to condition inputs ~ 
forming uncorrelated inputs Oz· using frequency response functions Lij and (b) method to 
calculate frequency response functions H iy given frequency response functions L iy. 

Nonlinear 
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Figure 2.5. Reverse-path dynamic model: (a) Nonlinear response as "mathematical" 
input to MISO system, (b) nonlinear model with linear, squared, and cubed inputs. 
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Figure 2.6. Rainflow cycle maximum (MD and minima (mi) for a random time signal. 
The smaller of the two minima with value less than the maxima determines the range of 
the rainflow cycle. (From [256] Figure 1.13, derived from [165] Figure 1). 
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Figure 2.7 The W AFO convention for RFM with special stress ratio cases shown. 
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3 NONLINEAR EXPERIMENTAL SYSTEM ANALYSIS 

This chapter discusses the analysis of experiments performed at Wright Patterson Air 

Force Base (WP AFB), USA. The experiments are discussed in several papers [7, 11 0], 

but it is worth briefly describing the experiments and available data here. 

The experiments were designed to produce nonlinear responses for a simple physical 

system "to generate high-quality random response data for comparison with 

predictions". The original intent was to allow for validation of recent low-order 

nonlinear modal models, but the data has been extremely useful for this study, as a basis 

for examining the changes as the system response progresses from mildly to strongly 

nonlinear. The experiment comprised a clamped-clamped steel beam, with length = 

229 mm, width = 12.7 mm and thickness = 0.79 mm. The measured time domain data 

included the test base shake acceleration input (g), plus displacement (in), and strain 

(~&) responses at the center of the beam. Strain gages were mounted to the top and 

bottom surfaces of the beam. The data record length was 88 s with a sample rate of 

4096 Hz. The base shake input was a flat acceleration PSD from 20 to 500 Hz with 

RMS values of 0.5, 1,2,4, 8 g. Figure 3.1 shows a picture of the experimental setup. 

The nonlinear responses are studied here in both the frequency and time domains. The 

reverse path identification method [125] is used three different ways to determine linear 

and nonlinear frequency response functions. The nonlinear frequency response 

functions, and especially their coherence functions, provided a keen insight into a model 

that could best describe the response of the system in terms of the displacement and 

strain states. The linear frequency response functions allowed for estimates of the 

variance for the linear part of the random response. This proved to be useful as a basis 

for establishing the linear portion of the linear to nonlinear PDF transforms. 

The time domain analysis concentrates on determining basic statistics (mean, variance, 

skew and kurtosis) plus the underlying probability density and distribution functions. 

The full data sets were processed to determine histograms of the input and response, 

which were reduced further to PDFs and CDFs. A second set of time domain analysis 
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concentrated on sampling the data to determine peak distributions. The peak 

distributions formed the basis for subsequent fatigue analysis. 

Given estimates of the linear response and measured data for the nonlinear response, 

linear to nonlinear functions were determined using the Inverse Distribution Function 

(IDF) method. The linear to nonlinear functions were used with the PDF transform 

method to estimate nonlinear PDFs of nominal and peak response. The wideband 

experimental data required understanding of the interaction between rates of zero 

crossings and peaks and their implications to the resulting distribution functions. Work 

with the PDFs and histograms resulted in an expression to estimate the number of zero 

crossings and the ratio of zeros to peaks 'liJ. Additional equations were derived to 

determine the value of the peak distribution function at the point of zero peak response. 

The nonlinear frequency response functions were used to reconstruct time domain strain 

responses from the nonlinear displacement data. The linear, squared and cubic nonlinear 

parts of the time response helped to show their interaction as the response alternated 

between positive and negative cycles. Low-pass filtering of the data below the second 

response mode helped to further illustrate the contributions of the linear, squared and 

cubic terms. Polynomial coefficients were fit to the filtered data for use in ODE 

simulations, which are discussed in later chapters. 

Fatigue life predictions were grouped into wideband and narrowband estimates. The 

wideband estimates used the raw data for comparison to estimates made by using linear 

and nonlinear frequency response functions. Narrowband fatigue estimates used the 

filtered data for comparison to polynomial and PDF transform estimates from the 

displacement data. In each case, three different fatigue life models (a baseline model 

and two models that included mean stress effects) were used to explore the sensitivity of 

the nonlinear membrane effects on life estimates. 

3.1 Frequency domain analysis of wideband system 

The frequency domain analysis of the WP AFB data is presented before the time domain 

analysis, because the majority of the nonlinear aspects of the system response are easily 

shown and determined in the frequency domain. The basic PSD measurements of the 
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response are shown first to illustrate the shift and broadening of the response. Next, 

much emphasis is devoted to the application of the reverse path identification technique 

to the test data. Several nonlinear frequency response functions help to explain the 

underlying nature of the nonlinear system. These frequency response functions are used 

later in Section 3.3.l to estimate the strain response from nonlinear displacement inputs. 

3.1.1 PSD of displacement and strain response 

The PSD for the beam center displacement response is shown in Figure 3.2. Note how 

the response in the frequency regions of the first and second modes becomes much 

broader. Also note how the second and third harmonics of the natural frequencies are 

evident at even the lowest input level. 

The PSD of average strain (average of the top and bottom strain) response is shown in 

Figure 3.2(a). Note the similarities and differences to the displacement PSD; the second 

harmonic is now much stronger, and the relative magnitude of the second strain 

response mode is much greater than the displacement mode, as shown in Figure 3.2(b). 

It is also apparent that the third harmonic of the fundamental becomes obscured by the 

response of the second mode at inputs above 2 g. These observations will be discussed 

further in the next sections. 

3.1.2 Nonlinear system identification 

The reverse path nonlinear system identification method proved to be useful for 

determining the displacement to force relationships for the WP AFB data. This is the 

"textbook" [125, 143] use where the nonlinear displacement and the squared and cubed 

version of it are used as multiple "mathematical inputs" to a system with force 

"mathematical response". The force was presumed to be proportional to the measured 

base acceleration, using a mass of 18 grams (see Section 4.1). 

The reverse path identification method (introduced in Section 2.2.6) estimates the parts 

of the response that are correlated to the linear, squared and cubed displacement input. 
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The estimated linear (see Figure 3.3) and cubic (see Figure 3.4(b)) displacement to force 

frequency response functions (FRFs) show consistent results for all test levels, while the 

squared displacement FRFs (see Figure 3.4(a)) exhibit markedly different, yet stable (in 

the low-frequency range), results at each level. The coherence functions show that the 

nonlinear model was able to account for most of the response at the low 0.5 g input 

level (see Figure 3.5(a)), but, this nonlinear model did not fair as well at the higher input 

levels (see Figure 3.5(b)). It is interesting to see that at the higher level, the cubic 

displacement term accounted for the majority of the coherent response over the range 

between the first and second observed peaks in the system response. The coherence 

plots show that the squared terms were noticeable at the low level (perhaps caused by a 

"pre-buckled" condition), but they were insignificant at the highest level. 

The WP AFB top surface strain gage response data was also used with the reverse path 

identification method to estimate strain to force FRFs. These results were not as 

encouraging. The FRFs for linear (Figure 3.6), squared (Figure 3.7(a)) and cubed strains 

(Figure 3.7(b)) are not as "clean" as the displacement to force data. The squared and 

cubic strain FRFs are especially noisy. A telling indication of the quality of these 

nonlinear FRF estimates can be seen in the coherence plots. The lowest level strain 

input case (shown in Figure 3.8(a)) produced respectable FRFs (and corresponding 

coherence estimates), but the higher levels (shown in Figure 3.8(b)) yielded poor 

results. 

The reverse path method was then applied to the data to determine nonlinear top surface 

displacement to strain FRFs, where the displacement is the "mathematical input" and 

the strain is the response. The linear FRFs (see Figure 3.9) showed a very consistent set 

of results throughout the frequency range. The general "upturn" in the strain response, 

as displacement increased, will be discussed further in the next section. The squared 

(see Figure 3.10(a)) and cubed (see Figure 3.l0(b)) displacement to strain FRFs show 

consistent trends over the entire frequency range and the coherence functions (see 

Figure 3.11) show that the nonlinear model can account for most of the measured 

response. This nonlinear displacement to strain model is arguably better than the 

displacement to force model (compare the coherence results in Figure 3.5 and 

Figure 3.11). These FRF estimates were used to establish some of the parameters for 

PDF transforms and the SDOF ODE models discussed in the next two chapters. 
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3.1.3 Linear frequency response function parameter estimation 

One important outcome of this nonlinear FRF estimation process is a method to 

estimate the linear response of the system. The linear FRFs of displacement to force and 

strain to force were used to estimate the linear random response standard deviation of 

each input level. At first, an attempt was made to use the FRFs in their raw numerical 

format. This proved to be undesirable because small changes in the numerical values of 

the FRF estimates produced vastly different results. A parameter estimation of the multi 

degree of freedom (MDOF) transfer function proved to be more stable and informative. 

The first step of this MDOF parameter estimation was to determine the force to 

displacement (and later force to strain) FRF. These were simply the reciprocal of the 

displacement to force FRF. The Laplace domain numerator and denominator 

polynomial representations of the transfer function were estimated and then converted 

into their equivalent roots (or poles) format. The modal roots are, assuming a viscous 

model for the modal damping, 

This was useful for determining the modal parameters of the FRF 

OJi = ~-[real(AJ2 -imag(AJ
2

] 

(i = -real(Ai)! Wi 

(3.1) 

(3.2) 

It was encouraging to find that the estimated parameters were comparatively consistent 

among the runs, as given in Table 3.1. There are two outliers: the 2 g (low (1) and 8 g 

(large (1 and higherfn1) estimates. The average 1 g linear displacement response 

estimate O"x, determined from the other three estimates, was 0.4293 mm. This was used 

as the linear response baseline for linear distribution function estimates (see Section 

3.2.3). 

Example FRFs and transfer function estimates are shown in Figure 3.12(a). The 

parameter estimates improved when the FFT frequency spacing was reduced to 0.25 Hz 

with a corresponding number of averages of22. This was an interesting tradeoff; the 
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smaller number of averages yielded a more variable point-to-point FRF estimate, but the 

larger number of points and the finer frequency spacing allowed for better estimates of 

the modal parameters. 

A typical numerical example of the force input to displacement output transfer function 

for the 1 g input is 

H =~ 
Fx F 

41s2 -2.0x104s+4.7x108 m 

S4 + 25s3 + 7.lx 106 S2 + 1.5 X 107 s + 1.7x 1012 N 
(3.3) 

The force input to strain output modal parameters were estimated in a similar fashion. 

The eigenvalue (modal frequency and damping) estimates (see Table 3.2) are similar to 

those estimated from the force input to displacement output FRFs. The force to strain 

graphs show strong similarities to the force to displacement graphs (compare 

Figure 3.12(a) and Figure 3.12(b )). Note that the second-mode strain response is 

proportionately higher than the displacement response. It is also interesting to note that 

the first-mode damping estimates based on strain tend to be about twice as large as that 

of the displacement estimates, while the second-mode estimates are much closer in 

value (see Table 3.2). A typical numerical example of the force input to strain output 

transfer function for the 1 g input is 

4.4x 106 S2 + 4.7 X 1010 S -7.2x 1013 
J1B 

S4 +25s3 +7.lxl06 S2 +3.0xl07 s+1.7xlOI2 N 
(3.4) 

Note the similarity in the denominators of this function and the displacement transfer 

function given in equation (3.3). 

MDOF parameter estimates were then made with the displacement to strain FRFs (see 

for example, Figure 3. 13 (a)). A typical numerical example of this displacement input to 

strain output transfer function for the data from the 1 g input case is 

H =c =1.6xl05s2+7.5xl08s-1.7xlOI2 JIB 

ox X S2 +115s+1.1xl07 m 

At first this is not informative, but considering that the ratio of transfer function 

equations (3.4) and (3.3) (assuming that the denominators are equal) is 
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8 8 F 4.4xl06 s 2 +4.7xl01Os-7.2xl013 fl.8 - -- = ------::----.,--------,:---
X F X 41s2 -2.0xl04s+4.7xl0B m 

8 1.1 x 105 S2 + 1.1 x 109 s -1. 7 x 1012 J18 
=------------

X i -493s+1.1xl07 m 

one can recognize the similarity to equation (3.5). A plot of this transfer function 

estimate and the raw FRF from the reverse identification method are shown in 

Figure 3.13(b). 

3.1.4 Flow diagrams of nonlinear strain and displacement models 

(3.6) 

The nonlinear transfer function estimation results suggest two methods for representing 

the nonlinear force to strain model: one based on a series connection of nonlinear 

displacement and strain FRFs, and a second based on a parallel connection of modal 

models. 

The first model (see Figure 3.14) is based on the two most successful nonlinear system 

identification models from the previous section, namely, the displacement to force and 

displacement to strain nonlinear FRFs. The second model is an attempt to show how the 

modal models (labeled osc 1 and osc2 in Figure 3.15) are linked to both the 

displacement and strain responses. It may be possible to refine this modal model further 

to allow more of the nonlinear combination of terms to be described in the "modal 

domain." 

3.2 Time domain analysis of wideband system 

The following sections cover the time domain analysis of the WPAFB data using the 

methods introduced in Chapter 2. 

3.2.1 Basis statistics 

The first step in the time domain analysis was to determine the basic and central 

statistical moments of the test data. The results given in Table 3.3 agree with the 

published values [7]. The input random acceleration statistics (subscript a) help to 
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confinn that it was nonnally distributed with near-zero mean and skew values, and 

kurtosis approximately equal to 3 (see Table 3.3). 

The displacement data (subscripty) show indications ofthe nonlinear behavior of the 

system (as indicated by a kurtosis value less than 3), with additional nonzero mean and 

skew that will need explanation. The top and bottom strain gage data sets (subscripts top 

& bot respectively) (see Table 3.4) are even more complicated. lfthe test item were 

truly symmetric, as designed, the response statistics would be equal in magnitude with 

an opposite sign for the odd measures (mean and skew). The authors [7] discussed the 

results from three sets of experiments noting that an unfortunate outcome of the 

clamped-clamped design is its sensitivity to temperature-induced preloads. It was 

assumed that this data set had no preload, but the skew and nonzero mean strain 

measures tend to indicate that there may have been a small amount of compressive 

preload. The low-level tests (0.5 and 1 g inputs) showed compressive mean strains on 

the bottom strain gage f.1bot and slightly positive mean values on the top strain gage f.1top. 

This may be an indication of a small amount of static buckling as a result of a 

compressive preload. 

The standard deviation of strain response was also different for the top and bottom 

strain gages. The top strain Oiop was always greater that the bottom strain CJ'bot. This may 

be explained by differences in strain gage placement or instrumentation gain factors. 

3.2.2 Histograms and response PDFs from data 

The experimental data was processed further to detennine histograms, PDFs, and CDFs. 

To begin, PDFs of the acceleration input were detennined from histograms, as shown in 

Figure 3.16(a). This figure shows that the input appears nonnally distributed as 

intended. Displacement response PDFs (see Figure 3.16(b)) show non-nonnal behavior 

with the addition of some asymmetry that may be caused by the hypothesized pre­

buckled state of the beam. 

The strain response PDFs are even more non-nonnal. The strain response at the top 

surface of the beam (Figure 3.17(a)) shows nearly nonnal behavior at the lowest input 

level, while the bottom surface strain (Figure 3.17(b)) shows a highly skewed response 
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for the same input. It is interesting to observe that the large amplitude response points at 

this lowest input level tend to return to the normal PDF values. As the input increases, 

both the top and bottom strains tend to skew away from a normal PDF, which is due to 

the addition of tensile membrane effects. 

The strain data was further processed to separate the bending and membrane strains. 

Ideally, the top and bottom strains would be symmetric such that 

The addition of instrument gain (k) and bias (b) errors give measured values £ 

Stop = kIctoP + bI = kI (Cbend + Cmemb) + bI 

Sbot = k 2Cbot + b2 = k2 ( -cbend + Cmemb) + b2 

Also, assume further that 

and, if the first gain kl = 1 

or 

0'. 
k-~ 2 -

0'. 
C'OP 

subtracting the two equations gives 

Sb 0'. 
~ at "lOP 2 (b b) 

c top - = cbend + I - 3 
0'. 

"bol 
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(3.10) 

(3.11 ) 

(3.12) 



Presuming that the bias errors are constant and that the bending strain has zero mean, 

the unbiased bending strain can be estimated by 

(3.13) 

The two equations in (3.11) can be added to form an estimate of the membrane strain. 

&b 0', 
~ ot ElOp - 2 (b b) ctop + - C mem + 1 - 3 

0', 
Cbot 

(3.14) 

Unfortunately, the membrane strain does not have zero mean, so the combined bias 

errors are not easily determined. Fortunately, the membrane strain should always be 

positive, allowing a graphical estimation of the combined bias errors. 

Comparison of these results (Table 3.5) with the other results is of interest. The kurtosis 

of the bending strain estimates is nearly the same as the kurtosis of displacement (see 

Table 3.3). This link between the bending strain and displacement is expected and will 

be investigated more in the next sections. The skew of the bending strains is larger than 

expected (especially at low-input levels) and is thought to be due to a compressive 

preload-induced buckling of the beam. 

The bending and membrane strain estimates were then used to determine PDFs. The 

bending strain PDFs (Figure 3.18(a)) are now "enforced" to be nearly symmetric, yet 

non-normal, while the membrane strain PDFs (Figure 3 .18(b)) are almost completely 

positive. For comparison, a chi-squared PDF (the theoretical result for a squared normal 

random signal [125]) is shown with the membrane strain PDFs. 

3.2.3 Linear to nonlinear function estimation using IDF method 

The response PDF estimates of the nonlinear displacement determined above can be 

used to determine linear to nonlinear functions, using the inverse distribution function 

(IDF) method (see Section 2.1.3). When working with nonlinear data, it is convenient to 
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start with the nonlinear estimates of the distribution function determined from a 

histogram ofthe measured data. The histogram H of displacement y is (see also Section 

2.1.2) 

(3.15) 

Note thaty is the bin center and Wis the bin width. The estimate of the distribution 

function ft (Yi) from the binned data is 

(3.16) 

where N is the total number of counts in all bins, and Pi is the cumulative probability at 

bin i. Note that it is important to define the estimate of the distribution function at the 

upper bound of the histogram bins: 

(3.17) 

It should be stated that ft (Yi) is an unbiased estimate of F (y) at Yi . 

Then, having estimated the nonlinear (non-normal) distribution function, at each value 

of Pi' find the linear distribution function FUn with equal probability 

(3.18) 

The corresponding linear (normal) function value Xi, is determined using the IDF 

(3.19) 

If the linear distribution function is presumed normal, then the linear function value X 

can be estimated by using the inverse distribution function for a normal distribution (see 

equation 2.30) 
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where err l is the inverse error function, or, in tenns of the estimated nonlinear 

distribution function by 

(3.20) 

(3.21 ) 

An example nonlinear (non-nonnal) distribution function (CDF) detennined from the 

8 g displacement PDF is shown in Figure 3.19(a) overlaid with a linear (nonnal) CDF. 

The IDF method can be traced graphically on Figure 3 .19(b), which shows the positive 

response portion of the linear and nonlinear CDFs. For example, given a nonlinear 

nonnalized displacement of 0.8 oy, what linear displacement will have the same CDF? 

By inspection, the corresponding linear displacement is approximately 0.7 O"x. Another 

example is 1.8 oy nonlinear mapping to 2.0 O"x linear. The linear displacement response 

O"x= 0.429 mm for a base acceleration input O"a= 1 g was estimated from the linear 

transfer function of displacement response for the Gaussian random input (see Section 

3.1.3). The linear displacement response O"x for each test input case was determined by 

scaling the 1 g O"x by the corresponding input acceleration level. Nonlinear displacement 

responses are given in Table 3.3. 

The IDP method can be repeated at every nonlinear response CDP value. The resulting 

x andy pairs are shown in Figure 3.20(a). The positive pairs are shown again in Figure 

3.20(b) with a log-log scale. Note that the results from each input level fonn a set of 

umque curves. 

3.2.3.1 Curve fitting the linear to nonlinear functions 

In previous attempts [160] a piecewise power-law was used to curve fit the RMS stress 

linear to nonlinear functions. Research with similar nonlinear functions [259] suggests 

that a polynomial function of the nonlinear response is the preferred method to curve fit 

"stress stiffening" data 

h(y) = x 
(3.22) 
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where y and x are the nonlinear and linear displacement levels respectively. Note that 

the polynomial is now on the left hand side of the equation (see Section 2.1.5). A third 

order polynomial proved to be a good fit of the linear to nonlinear response function 

data. These linear to nonlinear polynomial functions are used extensively in this thesis 

as part of the PDF transform method to predict nonlinear PDFs (see Section 2.1.5) and 

subsequent estimates of oy, kurtosis, rates of zero crossings (see Section 4.2.12) and 

fatigue life. 

3.2.4 Response rates 

The response rates (see Section 2.1.4) of the displacement and strain results were 

calculated using W AFO MATLAB functions [258] (which determine level crossings 

and response peaks). An interesting observation is that the bending strain rates of zero 

crossings and peaks are significantly lower than the displacement rates (see Table 3.6). 

Also, the ratio W'is not as constant for each input level. The rates for bending strain are 

similar to the rates of top and bottom strain (see Table 3.7), except for the highest input 

of 8 g. At the highest input level, the addition of the membrane strain has shifted the 

ratio W'up significantly for the top and bottom strains, while the bending strain has not 

increased proportionately. 

3.2.5 Peak PDFs from data 

Normalized peak displacement PDFs, determined from displacement RFMs (see also 

Section 2.4.6), are shown in Figure 3.21(a) for three of the input levels, with a linear 

peak PDF (determined at a ratio W'= 0.967) for comparison. The data shows strong 

nonlinear behavior, with increasing probability for negative-valued maxima. The peak 

displacement RFM for the highest input level (8 g) is also shown (Figure 3.21(b)) for 

comparison to other peak RFM, which will be presented later. 

One major observation from the data is that the ratio W'was not constant for each input 

data set, as given in Table 3.6. This change in the ratio W'with the input level (and 

degree of nonlinearity) required a decision regarding the manner in which one proceeds 

with the IDF method discussed above in Section 3.2.3. The logical choices were to use 
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one linear CDF, based on the linear ratio [fJ, or to allow the ratio [fJto change and, 

therefore, determine a corresponding linear peak CDF for each input level. Figure 3.22 

shows the normalized linear and nonlinear CDFs for the data. Notice that the CDF for 

the nonlinear data at the highest input of 8 g crosses the zero displacement level at a 

cumulative probability of approximately 0.8, while the CDF for the lowest level input of 

0.5 g crosses the zero displacement level at approximately 0.2. The linear peak CDFs, 

based on variable ratios [fJ, cross at about the same level as the nonlinear data. 

A more compelling argument for a variable ratio [fJ comes when one inspects the linear 

to nonlinear functions determined using the IDF method. Figure 3.23(a) shows the 

linear to nonlinear function, based on a fixed linear peak CDF, while Figure 3 .23 (b) 

shows the function based on a variable linear peak CDF. Log-log plots of these 

functions are shown in Figure 3.24. In both cases the data does not all fall along one 

common curve. The data for the variable linear-peak CDF functions does tend to cross 

the zero-zero point, which is considered to be desirable when curve fitting. One could 

attempt to develop a family of curve-fit parameters for each input level using the fixed 

linear peak CDF data, but this would require that an additional constant coefficient Co be 

added to the polynomial function in equation (3.22). Instead, a single curve fit of the 

linear to nonlinear function data, through only the most extreme positive peak values 

(those above about 2 0') from all of the input levels, was used. 

(3.23) 

The set of points used, and the polynomial curve fit of the data, are shown in 

Figure 3.24. It is promising to note that a polynomial curve fit of the same set of data 

points, determined from the fixed linear peak CDF, yield similar coefficients, as given 

in Table 3.8. 

3.2.5.1 Nonlinear peak PDFs estimated with PDF transform 

Using the PDF transform method (introduced in section 2.1.5), nonlinear peak PDFs 

were determined using this single set of coefficients. To review, the peak PDF 

transform for this LHS function is: 

60 



Pnlpeak (y, ITl) = Ih' (y )IPpeak (h(y ),ITl) (3.24) 

where hey) is from equation (3.22) andppeak is from equation (2.20). The PDF transform 

method was attempted two ways: the first using a fixed linear peak PDF based on a 

fixed ratio ITlcalculated using equations (2.61) and (2.53) with the 0.5 g linear transfer 

function estimate (see Section 3.1.3), and the second using a variable linear peak PDF 

based on the variable ratio ITl (given in Table 3.6) determined for each set of test data. A 

goodness-of-fit test of these transformed PDFs was performed, with the results given in 

Table 3.9. The results are encouraging, especially for the variable linear peak PDF 

cases. Observe that both methods yield good fit tests at the lower input level, but, as the 

input increases, the transformed PDFs based on the variable linear peak PDFs continue 

to show good fit test values. 

Comparisons of the PDF transforms are shown in Figure 3.25 for the highest test input. 

Notice that the nonlinear peak PDF estimate made using the fixed linear peak PDF is in 

error in both the low-amplitude and mid-amplitude regions. In the high-amplitude 

range, the estimate tends to be conservatively high, which may prove to be acceptable 

when determining fatigue damage. 

3.2.5.2 Peak histogram relationships 

An interesting finding occurs when estimating the histogram of peaks for use in the chi­

squared test. When using the variable PDF transform based on the ratio of zeros to 

peaks ITlk, where k is an index for a particular input level, the histogram of peaks at that 

input level is simply (see also equation (3.15)) 

(3.25) 

When the estimate of the nonlinear peak PDF is made based on a PDF determined by an 

assumed ITla that is different than the ITlk for this input level (e.g., ITla = 1 for a linear 

Rayleigh PDF), the histogram of peaks can be approximated as 

(3.26) 
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Figure 3 .26( a) shows peak histogram estimates when this correction is made for the 

WP AFB data at the 8 g input level. Note how well the agreement is in the high­

amplitude regions where fatigue damage is most important. 

This leads to an interesting observation: Given a generalized zero-mean normal random 

response, the generalized histogram of positive maxima is equal to the Rayleigh 

histogram of maxima plus the generalized histogram of negative maxima in reverse 

order. An example of this relationship is shown in Figure 3 .26(b). 

An outcome of this observation is a method for estimating the number of zero crossings 

from a general peak response histogram. Let Np+ be the total number of positive peaks 

(or maxima) determined from a data set histogram by 

~ 

Np+ = I Hp+ [Xi'W] (3.27) 
j=-oo 

and the subset of these peaks that occur at negative values are 

o 

N_p+ I Hp+ [XpW] (3.28) 
Xj=-f:IJ 

From the discussion above, the number of maxima with positive values 

'" 
N+p+ = IHp+ [XpW] (3.29) 

Xj>O 

is equal to the number of zero crossings (determined from a Rayleigh histogram (due to 

the fact that narrow band system has an equal number of peaks and zero crossings)) plus 

the number of negative value maxima 

N +=No+N + +p -p (3.30) 

Relating these to the total number of peaks from equation (3.27) 

N+=N ++N + p -p +p (3.31) 

yields an interesting relationship 

62 



No = N • -2N + 
p -p 

(3.32) 

and an equation for the ratio of zeros to peaks 

N 2N • 
lil=_o-=l- -p 

N • N. 
p p 

(3.33) 

An intuitive check for this relationship can be made for the two limiting cases of a peak 

distribution. When the response is ideally narrowband, the number of negative-value 

maxima is zero, therefore 

lil =1_ 2(0)=1 
nb N • (3.34) 

p 

When the response is ideally wideband, the number of negative-value maxima is the 

same as the number positive-value maxima, therefore 

2N • 2N • 
1 -p = 1- -p = ° lilwb = -

N.+N. N.+N. 
-p +p -p-p 

(3.35) 

These two results agree with the definitions of lil for narrowband and wideband 

responses. 

Further, this relationship has been found to be useful for estimating the value at which a 

peak distribution function crosses zero. Starting with the generalized peak distribution 

function (equation (2.28)) 

F ".,,(z,tilH - Q, (z) - tilexpl -~)[ \- Q, (z) ] 

Q. (z)~~ erfC( k.Fz) 
(3.36) 

at z = 0, this reduces to 
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Fpeak (0, fiJ) = 1- QI (0) - fiJ [1- Q2 (0)] 

1 (0 J 1 Qn ( 0 ) = - erfc r;; = -
2 k ",2 2 

n 

1 fiJ l-fiJ 
F (0 fiJ)=I----=-

peak' 222 

(3.37) 

The intuitive check is, again, infonnative. When the response is ideally narrowband, 

fiJ=1 

F (01) = l-fiJnb = 1-1 = 0 
ray' 2 2 (3.38) 

When the response is ideally wideband, fiJ = 0 

F (0 0) = l-fiJwb = 1- 0 = ~ 
norm' 2 2 2 (3.39) 

These two results agree with the values of Rayleigh and nonnal distribution functions at 

zero. One last substitution of equations is of interest. Observe that the distribution 

function at 0 can be estimated from cumulative histograms by 

(3.40) 

substituting equation (3.33) into equation (3.37) gives 

(3.41) 

which completes the discussion of the findings. 

3.2.6 RFMs and peak PDFs of strain response 

The bending strain data was also sampled to detennine peak strain RFMs and PDFs. 

The RFM for this bending strain data (see for example, the 8 g input data in 
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Figure 3.27(a)) has many more mid-amplitude cycles distributed off the main diagonal. 

Peak PDFs of the bending strain are shown in Figure 3.27(b). 

A typical RFM of membrane strain is shown in Figure 3.28(a) for the 2 g input case. 

This figure shows that the strain instrumentation bias estimate, based on equation (3.14) 

, may have been slightly in error. Ideally, the median minimum peak strain value would 

have been zero. In this case, the RFM of the data suggests that the median minimum 

peak strain is one bin off. Peak membrane strain PDFs determined from the RFMs are 

shown in Figure 3.28(b). Here, the results are compared to a linear Rayleigh PDF. 

Theoretically, the peak membrane strain PDF for a squared response would be infinite 

at zero strain. This is not strictly the case for this data, perhaps as a result of the errors in 

bias estimation or perhaps because of the errors based on assuming the simple model of 

total strain (see equation (3.7)). 

The peak top and bottom strain RFMs are some of the most interesting yet investigated. 

The progression from a mildly to strongly nonlinear peak strain response is best studied 

as a series ofRFMs. The top strain RFMs are shown in Figure 3.29 through 

Figure 3.30(b) for three input levels. 

The first major observation is that the main diagonal of the RFM is bent toward the 

positive strain ranges. Another interesting observation is that there seems to be a 

minimum "mean" strain value that limits the response in the negative values of strain. 

One explanation of the minimum mean strain value is due to the higher frequency strain 

responses riding on top of a lower frequency strain response, which is limited to some 

minimum value (see discussion in Section and 3.3.1.2 and Figure 3,45(b )). 

PDF transforms based on strain functions are discussed in Section 3.3.2. 

3.3 Response estimates 

The nonlinear functions estimated in the previous sections will be used next to 

investigate some interesting aspects of the WPAFB experimental results. 
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3.3.1 Time domain strain estimates from displacements using FRFs 

The nonlinear FRFs estimated using the reverse MISO method can be used to estimate 

time domain responses with simple forward and inverse Fourier transforms, as shown in 

Figure 3.31. The measured nonlinear displacement time domain data is squared and 

cubed to form the other two inputs (after being Fourier transformed) for the three 

nonlinear displacement to strain FRFs. The nonlinear strain component estimates are 

then converted back to the time domain, using inverse Fourier transforms. The strain 

components are then summed (with the appropriate sign) to estimate the total strain 

response at the top and bottom surfaces. 

Note: The Fourier transform FRF method was used here for simplicity; a digital filtering 

method based on the Laplace domain form of the estimated transfer functions could be 

used as well. This digital filtering method may be useful when working with purely 

theoretical data (e.g. from finite element models). 

The nonlinear strain estimation method is demonstrated here with two cases: a full 

frequency range case and a filtered frequency range case. 

3.3.1.1 Strain response estimates from nonlinear FRFs 

The first method uses the raw point-by-point numerical estimates for the three FRFs of 

displacement to strain over the full frequency range. This set of estimates includes the 

effects of the second, higher frequency mode (see the linear and cubic FRFs, 

Figure 3.32 and Figure 3.33(b), respectively) and low-frequency variations below the 

bandwidth of the input (see both the squared and cubic FRFs in Figure 3.33). The real 

and imaginary parts of the FRFs are shown so that one can gain an understanding of the 

sign of each FRF. 

The resulting sum of the three estimated time domain strain components compare very 

well with the raw top and bottom strains, as shown in Figure 3.34 for a high amplitude 

range, and Figure 3.35 for a low amplitude range of response. There are several 

interesting observations to be made from these results. Over the range of time periods 

where the response is greatest, the response appears to be dominated by the first mode, 

with some higher frequency components visible at the minima and maxima. Even more 
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interesting is the interaction between the squared (labeled llc-x2) and cubic (labeled 

llc-X3
) components of the nonlinear strain. Near the maxima, the two nonlinear terms 

tend to cancel each other, while near the minima the two terms add, and therefore, affect 

the sum greatly. Also interesting is that the cubic term is out of phase with the linear 

term. This was not expected and has not been discussed in the literature. Over the low­

amplitude range of response, the higher frequency strain is very evident, and it tends to 

be superimposed on the lower frequency mode. Note too that the squared and cubic 

nonlinear terms have much less variation, and they have a localized bias effect on the 

summation. These bias shifts are thought to be due to the very low frequency response 

of this nonlinear system below the lower cutoff frequency ofthe input (20 Hz). Both 

sets of figures also show that the top and bottom strains are clearly out of phase with 

each other. 

As a check of the nonlinear strain theory developed here, the bottom strains were 

estimated from the top strain FRFs. This check used the top strain squared estimates 

with the negative of the linear and cubic top strain estimates for comparison to the raw 

bottom strain data: 

C top = cUn + Csquare + C cube 

cbot = -cUn + Csquare - ccube 

(3.42) 

Figure 3.36(a) shows the estimates over a region of high-amplitude response. The 

estimates are very good for the maxima, but they consistently have larger negative 

amplitudes for the minima. This is also the case for the low-amplitude response range 

shown in Figure 3.36(b). One explanation for this is illustrated in Figure 3.37(a). 

Compared to the bottom strain FRF shown in Figure 3.33(b), this figure shows that, 

over the frequency range of 20 to 500 Hz (the input acceleration range), the top and 

bottom FRFs have very similar magnitudes but with a difference in sign, as expected. 

The low-frequency range (1 to 10 Hz) shows similar magnitudes but with the same sign; 

this is unexpected and may be another indication of a pre-buckled condition or of 

instrumentation bias errors. Another explanation could be that this range has very poor 

coherence and any estimates of the frequency response functions are suspect. 
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The questions about the low frequency contribution of the FRF estimates to the time 

domain strain were investigated by forming a signed average of the top and bottom FRF 

estimates. These estimates were edited to give the low-frequency real and imaginary 

values a nominal constant value, determined from the higher frequency values of the 

FRFs, resulting in the functions shown in Figure 3.37(b) through Figure 3.38(b). 

Compare these to the raw estimated FRFs in Figure 3.32 through Figure 3.33. The time 

domain estimates of strain based on the averaged FRFs are shown in Figure 3.39. These 

figures now show membrane strain (squared strain data labeled ~E_X2) with near-zero 

minimum and cubic strain (labeled ~E_X3) with near-zero mean. Compare these time 

domain estimates of strain to those based on raw estimated FRFs in Figure 3.34 and 

Figure 3.35; the differences in these results give an indication of the bias errors 

discussed in Section 3.2.1. 

The averaged FRFs, which have a frequency spacing of 0.25 Hz determined from 

overlapped and averaged 4 s data blocks, were used recursively (22 times) over the full 

88 s of displacement data to estimate time domain strain responses and, ultimately, 

rainflow matrices. These RFM results are shown in Figure 3.40 through Figure 3.43. 

The time domain strain estimation process based on nonlinear FRFs allows one to look 

at the different individual or summed components of the strain. It is encouraging to 

compare the bending RFM that is calculated from the time domain strain data using 

(3.13) in Figure 3.27 with Figure 3.43. The comparison helps to modify the 

understanding; what was previously described as a bending strain can more accurately 

be thought of as a symmetric strain. The concept of bending strain is more closely tied 

to a linear strain (see, for example, Figure 3.42), while the concept of a symmetric strain 

can include the higher-order odd harmonics that have been demonstrated to be 

important in the decomposition of the total nonlinear strain response. The membrane 

strain estimates using the averaged and edited nonlinear FRFs (see, for example, 

Figure 3.40(b)) compare well to the time domain estimates using (3.14) shown in 

Figure 3.28(a). One can argue that the estimate made from the FRF is "cleaner." 
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3.3.1.2 Strain response estimates from filtered nonlinear FRFs 

A final set of time domain strain estimates were calculated using filtered nonlinear 

displacement data. This case first used a band pass filter from 20 to 120 Hz on the 

"input" nonlinear displacement data. As before, this time domain filtered data was 

squared and cubed. The linear, squared, and cubic strain FRFs were band limited to 120, 

240, and 360 Hz, respectively. These frequencies were chosen based on the coherence 

functions for this input level, as shown in Figure 3.44(a). 

The simulated responses, based on the band pass filtered nonlinear displacement inputs, 

show good agreement with the filtered strain response data, as shown in Figure 3.44(b) 

and Figure 3.45(a). The simulated response data is shown with the raw top strain data in 

Figure 3.45(b). This shows how the higher frequency strain from the second mode can 

add to the lower frequency mode, as theorized above based on observations of the 

rainflow matrix, which indicate a limiting minimum mean stress. The simulated 

response RFM in Figure 3.41(b) and Figure 3.43(b) show this minimum mean stress 

behavior as well. 

In a manner similar to the development in Section 3.2.2, the filtered response data was 

used to estimate a time domain polynomial relationship between the filtered nonlinear 

displacement Y and the filtered top and bottom strains. The polynomial model is 

~ 2 3 
&top = elY + e2y + e3y 
~ 2· 3 
&bot = -elY + e2 y - e3y 

The addition of instrument gain (k) and bias (b) errors give 

Stop = ktop&top + b top 

Sbot = kbot&bot + bbot 

and, if the top gain ktop = 1 and the bottom gain is 

69 

(3.43) 

(3.44) 

(3.45) 



Subtracting the top and bottom strain equations gives an equation for the symmetric 

strain terms 

(3.46) 

while summing them gives an equation for the squared term 

(3.47) 

A least-squares polynomial fit of the filtered nonlinear displacement y to the sum and 

difference filtered strain data at each input level was performed with the results given in 

Table 3.10. The polynomial coefficients were then used to estimate the bias terms 

b top = Stop - Etop 

bbot = Sbot - kbo/bot 

(3.48) 

Note that the polynomial coefficients are quite similar at the lower input levels, but 

some shift in the results is noticeable at the higher input levels. This shift is most 

noticeable in the cubic coefficient. These coefficients will be used as a basis for 

estimating stress from nonlinear displacements determined from ODE simulations that 

will be discussed in the next chapter. 

This concludes the time and frequency domain analysis of the displacement to strain 

frequency response functions. The next section explores the relationship based on their 

PDFs. 

3.3.2 Estimates of strain PDF from displacement PDF using IDF method 

The success with estimating the response strain from an "input" displacement from 

frequency response functions suggests a similar method based on the IDF method. Can 

one estimate a displacement to strain function based on distribution functions of the 

unfiltered data? This section describes the attempts based on peak: displacement to peak: 

bending strain and peak: displacement to peak: membrane strain. 
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Compared to the peak displacement PDFs (see Figure 3.21(a)), the peak bending strain 

PDFs are shifted more toward a normal distribution (see Figure 3.27(b)). Also 

remember that the ratio '{JJ is very different for the measured displacement and bending 

strain (see Table 3.6). The true ramification of these issues are seen when one tries to 

estimate nonlinear displacement to nonlinear bending strain functions using the IDF 

method. The resulting data (see Figure 3.46(a)) does not show a clear trend toward one 

common function. Especially interesting are the data points that would imply positive 

peak displacements for negative bending strain maxima. Figure 3 .46(b) shows the data 

again on a log-log plot with a single best-fit linear function through the higher 

amplitude peak data points. This linear function was used with the PDF transform 

method to estimate peak bending strain PDFs from peak displacement PDFs. 

Figure 3.47 shows a typical peak bending strain PDF estimate. Note how poorly the 

estimate matches the experimental data over the whole range of response, except at the 

few highest response levels (in the 200 to 250 /-lcrange), which correspond to the best­

fit linear function. 

An explanation of these poor results is based on the difference in the ratio '{JJ for the 

displacement and strain data. The frequency response functions of displacement input to 

strain output showed that the relationship between the two was not constant (see, for 

example, Figure 3.13). Filtering the data, so that only the fist mode was observed, 

allowed a time domain polynomial relationship to be determined between displacement 

and strain (see equation (3.43)). This single degree of freedom time domain relationship 

will be used in Chapter 5 to predict strain based on nonlinear simulation displacement 

results. 

The IDF method was also used to estimate the peak membrane strain PDF. A ratio '{JJ 

was assumed to be 1, based on the standard assumption that the membrane strain is 

always positive, and therefore has no negative valued maxima. The nonlinear peak 

displacement was used as the basis for comparison to the nonlinear peak membrane 

strain. The peak displacement to peak membrane strain function (see Figure 3.48(a)) 

shows that there is a trend in the data, but as in other examples, the 8 g data does not 

follow the others. Given this apparent shortcoming, a squared function was fit to the 

data (see Figure 3.48(b)) and was used to estimate the peak membrane strain PDF. 

71 



The process of estimating the membrane strain PDF from the nonlinear displacement 

PDF presented two options: transform the raw peak displacement PDF data or transform 

the estimated peak displacement PDF. Examples of both options are shown in 

Figure 3.49(a) and Figure 3.49(b). Both methods show good agreement with the PDFs 

estimated from the measurements. 

3.4 Fatigue analysis of experimental data 

The fatigue analysis of the WP AFB data is separated into two sections. The first is 

based on the raw measured strain while the second is based on the filtered strain. These 

sections include estimated nonlinear responses and a baseline linear response derived 

from the linear transfer function estimates. Comparison of the time to failure for 

different fatigue life models is included (see section 2.4.7). 

The material SAE 1015 (a low-carbon steel) was used for the fatigue analysis because 

fatigue property data for the different fatigue models (given in Table 3.11) was available 

(Dowling [147]). The baseline alternating stress equation assumed no mean stress 

effects, while the Morrow (with true fracture strength) and Walker equations included 

mean stress effects. 

The measured and estimated strains were converted to stress by multiplying by the 

elastic modulus E = 204 GPa (assuming no Poison effect of the unmeasured 

perpendicular strain). The stress results are in units ofMPa. 

3.4.1 Wideband analysis of WPAFB data 

The raw top and bottom strain data from the WP AFB experiments is compared with 

estimates using nonlinear frequency response functions and a baseline case using a 

linear frequency response function. These cases include the effects of the second 

response mode. 
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3.4.1.1 Rainflow range matrices and life estimates of raw data 

The raw top and bottom strain data measurements were converted to rainflow matrices 

(RFMs), see Figure 3.29 and Figure 3.30. These RFMs were used to calculate rainflow 

damage (RFD) matrices using the three damage models (see Section 2.4.6.1). A total of 

85 s of the raw data files were used to estimate the time to failure (see equation (2.112». 

For all of the raw data file cases, the time to failure was shorter for the top strain (see 

Table 3.12) than the bottom strain data (see Table 3.13). This is consistent with the 

findings in previous sections, which pointed out that the standard deviation of the 

bottom strain was about 0.9 times that of the top strain. The bottom strain could be 

scaled by this amount as an attempt to show better agreement between the top and 

bottom strains. 

Example of rainflow damage matrices for these raw strain results are shown in 

Figure 3.50 through Figure 3.51. 

3.4.1.2 Estimates from averaged nonlinear frequency response functions 

The averaged nonlinear frequency response functions from Section 3.3.1 were used to 

estimate the total stress at the top surface of the beam. The nonlinear FRF estimates 

were based on averaged auto and cross spectra for 4 s data blocks. The RFMs for this 

example were determined by summing the resulting rainflow cycles from 22 nonlinear 

input displacement blocks, each with 3.75 s of valid data, for a total of 82.5 s. As 

expected, the results in Table 3.14 show that the time to failure estimates fall between 

the results from the raw top and bottom stresses. Typical damage matrices are shown in 

Figure 3.52. 

The nonlinear FRF method could also allow comparison of combinations of linear and 

nonlinear FRFs, e.g., a linear displacement to strain FRF applied to nonlinear 

displacements. These are left for future research. 
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3.4.1.3 Baseline linear estimates 

Another set of wide band damage estimates were developed based on the linear 

estimates of the transfer function between input acceleration and linear response top 

surface strain. In this case, the transfer function estimates from the 1 g data files (as 

described in Section 3.1.3) were used to estimate the top surface response strain. The 

Laplace domain polynomial representation of the transfer function allowed for a larger 

time record estimate ofa single block of input acceleration data (64 s, in this case). 

Rainflow damage matrices are shown in Figure 3.53 for the minimum and maximum 

input level. The damage matrices (and their RFM precursors) have nearly identical 

shapes as one would expect for linear models; one is approximately a scaled version of 

the other. 

Several observations are worth noting with this example. First, note that the estimates of 

time to failure are almost equal for the baseline and Morrow damage models at the 

lowest input levels (see Table 3.15). This is due to the symmetric nature of the RFM for 

the linear model (near-zero mean stress). This should be compared to the nonlinear 

results given in the previous sections. Next, note that the lowest 0.5 g input-level top 

surface nonlinear time to failure results (see Table 3.12) are close to the low-level linear 

estimates calculated here, but that the high-level linear life estimates are approximately 

four to five orders of magnitude shorter than the nonlinear life estimates. This is very 

strong motivation for performing the nonlinear analysis. Another interesting point is that 

the peak stresses from the highest input case are approximately at the ultimate strength 

limit of the material. From a pure strength standpoint, this would indicate almost certain 

failure. 

3.5 Nonlinear wideband analysis summary 

The WP AFB experiments yielded a wealth of data that was analyzed in the frequency 

and time domains. The reverse path nonlinear technique was shown to be very effective 

in identifying nonlinear models for measured data. The identified frequency response 

and coherence functions gave keen insight into models for both the force to nonlinear 

displacement response and the displacement to nonlinear strain response. Modal models 

of the nonlinear system response were proposed. 
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Time domain analysis of the data showed strong nonlinear behavior. PDFs of 

displacement and strain responses were developed and used with the Inverse 

Distribution Function (IDF) method to estimate linear to nonlinear functions. 

Investigations of the change in peak PDFs, as the ratio of the rates of zeros to peaks 

changed, yielded observations of importance. The peak PDF and the peak histogram of 

a generalized response (i.e., any response from narrowband to completely wideband) 

were shown to be composed of the sum of narrowband and wideband parts. Equations 

to estimate the ratio of zeros to peaks w, based on the number of negative value 

maxima, were developed. An equation to determine the value of the distribution 

function at a peak value of zero, as a function of w, was also developed. 

Estimated nonlinear strain response based on linear, squared and cubic displacement to 

strain FRFs allowed clear visualization of the interactions between the linear and 

nonlinear terms. 

Time to failure was estimated based on the raw strain measurements and several 

estimates of linear and nonlinear response. The time to failure estimates showed that the 

nonlinear results were significantly longer than the linear results, especially at the 

highest input level. The life estimates were also made with two damage models that 

included nonzero mean stresses. 

Numerical simulations, performed on a nonlinear single degree of freedom system, are 

discussed in the next chapter. Nonlinear ordinary differential equation (ODE) 

simulations are used to study parameters not available from the WP AFB experimental 

results (i.e. velocity and acceleration response states). The effects of damping level on 

the nonlinear response are also investigated. Long time duration simulations are used to 

study the rate of convergence of basic response statistics. 
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3.6 Chapter 3 Tables 

Table 3.1. Multi-mode linear displacement response for force input parameter 
estimation from WP AFB data. 

Run In! Sl 1n2 (z Est Linear Est Linear 
Hz Hz O'xmm IgO'xmm 

0.5 g 78.9 0.23% 416. 0.52% 0.213 0.429 

1 g 78.3 0.14% 416. 0.46% 0.447 0.452 

2g 78.4 0.064% 420. 0.38% 0.927 0.472 

4g 79.0 0.26% 438. 0.076% 1.582 0.404 

8g 83.9 0.51% 443. 0.031% 2.469 0.312 

Table 3.2. Multi-mode linear top surface strain response for force input parameter 
estimation from WP AFB data. 

Run In! Sl 102 (z Est Linear Est Linear 
Hz Hz O'£(~c) Ig 0'£ (~c) 

0.5 g 79.2 0.42% 416. 0.49% 23.8 48.1 

1 g 78.3 0.37% 416. 0.41% 48.9 49.5 

2g 78.0 0.16% 417. 0.28% 150 76.4 

4g 100 0.91% 430. 0.027% 241 61.8 

8g 108 2.8% 442. 0.078% 420 53.6 

Table 3.3. Input acceleration and displacement response statistics from WPAFB data. 

Input O"a g Jia mg La Ka oymm Jiy ~m Ly IS, 
0.5 g 0.495 1.9 0.2% 3.0 0.183 -0.12 10% 2.9 

1 g 0.989 15 5% 2.9 0.292 0.005 11% 2.8 

2g 1.97 5.7 1% 3.0 0.488 -0.025 8% 2.5 

4g 3.91 5.4 1% 2.9 0.777 -0.001 4% 2.2 

8g 7.85 4.1 2% 3.1 1.087 -0.064 3% 2.1 
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Table 3.4. Top and bottom surface strain response statistics from WPAFB data. 

Input Oiop J.lE /1top J.lE ltop !Crop O'bot J.lE /1bot J.lE lbot Kbot 

0.5 g 26.6 1 27% 2.8 23.0 -6.8 -45% 2.6 

1 g 42.8 1.2 36% 2.8 37.7 -3.0 31% 2.9 

2g 70.5 4.6 64% 2.7 64.3 7.1 94% 3.1 

4g 111 18 103% 2.9 104 27 130% 3.2 

8g 157 45 129% 3.3 148 56 145% 3.4 

Table 3.5. Bending and membrane strain response statistics from WPAFB data. 

Input O'bend /1bend lbend Kbend O'mem /1mem lmem Kmem 

J.lE J.lE J.lE J.lE 

0.5 g 26.5 0.021 -13% 2.8 2.04 2.02 211% 5.9 

1 g 42.5 -0.002 -14% 2.7 5.00 4.16 239% 7.4 

2g 69.4 0.004 -9% 2.4 12.4 11.6 214% 5.7 

4g 107 0.002 -4% 2.1 28.7 28.0 198% 4.7 

8g 148 0.011 -2% 2.2 50.8 45.0 198% 4.7 

Table 3.6. Rates of displacement and bending strain zero crossing and peaks for 
WPAFB data. 

Input <I> [0; ] <I> [~+ ] {jJx <I> [ O;end ] <I> [~:nd ] {jJbend 

Hz Hz Hz Hz 

0.5 g 81.4 84.2 0.967 103 218 0.471 

1 g 83.8 87.2 0.961 110 258 0.428 

2g 92.0 102 0.903 137 318 0.431 

4g 109 122 0.890 165 367 0.450 

8g 132 152 0.865 209 430 0.485 
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Table 3.7. Rates of top and bottom surface strain response zero crossing and peaks for 
WPAFB data. 

Input <I> [O:p ] <1>[ ~:p ] {iJ/oP <I> [0;0/ ] <1>[ ~:/ ] {iJbo/ 

Hz Hz Hz Hz 

0.5 g 98.5 203 0.484 96.6 236 0.408 

1 g 106 244 0.433 111 274 0.406 

2g 133 311 0.426 141 328 0.430 

4g 165 360 0.457 179 369 0.485 

8g 250 421 0.591 270 425 0.634 

Table 3.8. Polynomial coefficients for linear to nonlinear curve fit ofWPAFB peak 
displacement data. 

c} mmlmm c2mmlmm2 C3 mmlmm3 

Fixed U1x CDF 0.90 0.51 0.29 

Variable U1x CDF 0.95 0.36 0.33 

Table 3.9. Goodness-of-fit peak PDF comparison for WPAFB data. 

Input Bin Center Range DOF PDF:X2 

0.5 g -0.17 < 0'< 3.18 30 Fixed PDF: 126. 

1 g -0.17 < 0'< 3.25 30 Fixed PDF: 457 

2g -0.15 < 0'< 2.86 30 Fixed PDF: 1255 

4g -0.13 < 0'< 2.53 30 Fixed PDF: 1507 

8g -0.13 < 0'< 2.44 30 Fixed PDF: 3309 

0.5 g -0.17 < 0'< 3.18 30 Variable PDF: 121 

1 g -0.17 < 0'< 3.25 30 Variable PDF: 423 

2g -0.15 < 0'< 2.86 30 Variable PDF: 295 

4g -0.13 < 0'< 2.53 30 Variable PDF: 186 

8g -0.13 < 0'< 2.44 30 Variable PDF: 389 
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Table 3.10. Filtered strain response parameter estimation from WP AFB data. 

Input jjilt Hz el e2 e3 b top bbot k2 

f .. uimm f..La'mm
2 f..La'mm3 

f..L& f..L& 

0.5 g 100 -143 41.5 15.5 -0.36 -9.29 0.856 

1 g 110 -144 42.9 15.4 -2.48 -7.12 0.877 

2g 120 -143 41.7 14.8 -4.66 -2.45 0.901 

4g 160 -141 40.0 12.0 -5.82 5.10 0.934 

8g 220 -137 36.7 9.4 1.57 15.6 0.944 

Table 3.11. Material properties for nonlinear total stress damage evaluation. 

Fatigue Equation Material Properties (MPa) 

Baseline Alternating Stress cr~ = 801, b = -0.113 

Morrow, reduced fracture strength cr~ = 801, cr jB = 726, b = -0.113 

Walker cr~ =799,y=0.713,b=-0.114 

Table 3.12. Time to failure estimates for raw top strain measurements from WP AFB 
data. 

Run Baseline (s) Morrow (s) Walker (s) 

0.5 g 1.55 x 1014 1.52 X 1014 8.93 X 1013 

1 g 2.27 X 1012 2.17x1012 1.20 X 1012 

2g 3.77 x 1010 3.42 x 1010 1.73 x 1010 

4g 1.40 x 109 8.64 x 108 4.14 x 108 

8g 1.86 x 107 1.28 x 107 7.18 x 106 
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Table 3.13. Time to failure estimates for raw bottom strain measurements from WPAFB 
data. 

Run Baseline (s) Morrow (s) Walker (s) 

0.5 g 5.21 x 1014 5.17x1014 3.30 X 1014 

1 g 5.91 X 1012 5.62 X 1012 2.81 X 1012 

2g 7.63 X 1010 6.78 X 1010 3.03 X 1010 

4g 1.87 x 109 1.52 x 109 6.61 X 108 

8g 2.90 X 107 1.96 X 107 1.40 X 107 

Table 3.14. Time to failure estimates for averaged nonlinear frequency response 
functions of WP AFB data. 

Run Baseline (s) Morrow (s) Walker (s) 

0.5 g 3.17 x 1014 3.11 x 1014 l.72 X 1014 

1 g 3.78 X 1012 3.59 X 1012 1.82 X 1012 

2g 5.56 X 1010 4.96 X 1010 2.29 X 1010 

4g 1.32 X 109 1.11 X 109 5.27 X 108 

8g 1.89 x 107 1.38 X 107 8.06 X 106 

Table 3.15. Time to failure estimates for linear top strain response from input 
acceleration WP AFB data. 

Run Baseline (s) Morrow (s) Walker (s) 

0.5 g 1.1683 x 1014 1.1680 X 1014 8.44e13 

1 g 6.4175 X lOll 6.4168 X 1011 4.84 X lOll 

2g 1.644 X 109 1.642 X 109 1.30 X 109 

4g 5.48 X 105 5.47 X 105 4.70 X 105 

8g 5.82 X 102 5.74 X 102 5.31 X 102 
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3.7 Chapter 3 Figures 

Figure 3.1. Vibration experiment at WPAFB, showing clamped-clamped beam, fixture, 
strain gages, differential variable reluctance displacement transducer, base input 
accelerometer, thermocouples and electrodynamic shaker (from [7], Figure 1). 

81 



(a) 
Average Top to Bottom Strain PSO for WPAFB Dala 

10' r-~~----"-~-~------------, 

10~ 

10' 

10.:.1 

- O.5g i~ 
10" - 1.00 1""" 

- 2.0g ll'lXt 
- 4.0glrw 
- ,.O.''''''J 

Frequency (Hz) 

(b) 
DIsplacement PSQ for WPAFB Data 

'0" '! ----~~-------_~___, 

Frequency (Hz) 

Figure 3.2. PSD responses determined from WPAFB input = (0 .5, 1, 2,4,8) g data: (a) 
averaged (top and bottom) strain and (b) displacement. 
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Figure 3.3. Displacement input to force output frequency response functions determined 
from WPAFB input = (0.5 , 1, 2, 4, 8) g data: (a) uncorrelated displacement input to 
force output and (b) correlated displacement input to force output. 
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Figure 3.4. Nonlinear displacement input to force output frequency response functions 
determined from WPAFB input = (0 .5, 1, 2, 4, 8) g data: (a) uncorrelated squared 
displacement input and (b) uncorrelated cubed displacement input. 
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Figure 3.5. Coherence functions for displacement input to force output frequency 
response functions determined from WPAFB data: (a) input = 0.5 g and (b) input = 8 g. 
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Figure 3.6. Top surface strain input to force output frequency response functions 
determined from WPAFB input = (0.5 , 1, 2, 4, 8) g data: (a) uncorrelated top surface 
strain input to force output and (b) correlated top surface strain input to force output. 
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Figure 3.7. Nonlinear top surface strain input to force output frequency response 
functions determined from WPAFB input = (0.5, 1, 2, 4, 8) g data: (a) squared top 
surface strain input and (b) cubed top surface strain input. 
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Figure 3.8. Coherence functions for top surface strain input to force output frequency 
response functions determined from WPAFB data: (a) input = 0.5 g and (b) input = 8 g. 
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Figure 3.9. Displacement input to top surface strain output frequency response functions 
determined from WPAFB input = (0.5, 1, 2, 4, 8) g data: (a) uncorrelated displacement 
input and (b) correlated displacement input. 
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Figure 3.10. Nonlinear displacement input to force output frequency response functions 
determined from WPAFB input = (0.5, 1,2,4, 8) g data: (a) squared displacement input 
and (b) cubed displacement input. 
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Figure 3.11 . Coherence functions for displacement input to top surface strain output 
frequency response functions determined from WPAFB data: (a) input = 0.5 g and (b) 
input = 8 g. 
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Figure 3.12. Estimated force input transfer functions from WPAFB input = 1 g data: (a) 
linear displacement response and (b) linear top surface strain response. 
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Figure 3.13 . Estimated displacement input, linear top strain output transfer functions for 
WPAFB input = 1 g data: (a) MDOF parameter estimate from raw strain to 
displacement data and (b) estimate from product of strain to force and force to 
displacement transfer functions . 
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Figure 3.14. Flow diagram of nonlinear clamped-clamped beam model with series 
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Figure 3.15. Flow diagram of nonlinear clamped-clamped beam model with modal 
superposition for displacement and strain functions. 
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Figure 3.16. Normalized PDFs from WPAFB input = (0.5,2,8) g data: (a) input 
acceleration: O'a = (0.495, 1.97, 7.85) g and (b) beam center displacement response: 
OJ, = (0.183, 0.488, 1.087) mm. 
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Figure 3.17. Normalized PDFs from WPAFB input = (0.5, 2,8) g strain response data at 
center of beam: (a) top surface: Utop = (26.6,70.5, 157) 11£ and (b) bottom surface: 
Ubol = (23 .0, 64.3, 148) 11£. 
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Figure 3.18. Normalized PDFs from estimated strain at center of beam for WPAFB 
input = (0.5, 2, 8) g data: (a) bending strain: CYbend = (26.5,69.4, 148) 11£ and (b) 
membrane strain CYmem = (2.04, 12.4,50.8) 11£, with chi-squared (DOF = 1) PDF. 
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Figure 3.19 Normalized cumulative distribution functions for WPAFB input = 8 g 
displacement data overlaid with normal CDFs: OJ, = 1.087 mm (a) full data range and 
(b) positive response range showing linear to nonlinear mappings based on IDF method. 
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Figure 3.20. Linear to nonlinear displacement response functions from WPAFB 
input = (0 .5, 2, 8) g data: (a) full range linear to nonlinear displacement functions and 
(b) log-log plot of positive valued linear to nonlinear displacement functions . 
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Figure 3.21. Normalized WPAFB data: (a) normalized nonlinear peak displacement 
PDFs and linear peak PDF: OJ = (0.183 , 0.488, 1.087) mm for input = (0.5 , 2, 8) g, and 
(b) normalized peak displacement RFM for input = 8 g: OJ = 1.087 mm. 
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Figure 3.22. Normalized nonlinear peak displacement CDFs and linear peak CDFs at 
ratio (jJ= 0.967 and 0.865 for WPAFB input = (0.5, 2, 8) g data: oy = (0.183,0.488, 
1.087) mm. 
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Figure 3.23 . Linear to nonlinear peak displacement functions for WPAFB input = (0.5, 
2,8) g data: (a) Fixed ratio linear peak CDF and (b) variable ratio linear peak CDF. 
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Figure 3.24. Log-log plot oflinear to nonlinear peak displacement functions for 
WPAFB input = (0.5, 2, 8) g data: (a) fixed ratio linear peak CDF and (b) variable ratio 
linear peak CD F. 
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Figure 3.25. Nonlinear peak displacement PDF estimates from variable and fixed PDF 
transform methods for WP AFB input = 8 g data. 
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Figure 3.26. Nonlinear peak displacement histogram estimates: (a) histogram from 
variable and fixed PDF transform methods from WP AFB input = 8 g data and (b) 
Rayleigh and peak response histograms for linear system, (jJ= 0.8 . 
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Figure 3.27. Normalized peak bending strain results from WPAFB data: (a) RFM for 
input = 8 g, Obend = 148 ~£ and (b) nonlinear peak bending strain PDFs and linear peak 
PDF with (jJ= 0.471, fYbend = (26.5,69.4, 148) ~£for input = (0.5,2, 8) g. 
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Figure 3.28. Nonnalized peak membrane strain results from WPAFB data: (a) 
nonnalized RFM of membrane strain for input = 2 g, C1'mem = 12.4 !.lE and (b) nonnalized 
peak membrane strain PDFs and Rayleigh PDF, C1'mem = (2.04, 12.4,50.8) !.lEfor 
input = (0.5 , 2, 8) g. 
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Figure 3.29. Nonnalized top surface strain RFM for raw WPAFB input = 0.5 g data, 
C1'rop = 26.6 !.lE. 
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Figure 3.30. Normalized top surface strain RFM for raw WPAFB data: (a) input = 2 g, 
(Ytop = 70.5 IlE and (b) input = 8 g, (Ytop = 157 1lE. 
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Figure 3.31. Flow diagram for estimating top and bottom strains from frequency 
response functions using Fourier and inverse Fourier transforms. 
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Figure 3.32. Linear estimate of displacement to bottom strain frequency response 
function determined from WP AFB input = 2 g data. 
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Figure 3.33. Estimates of displacement to bottom strain frequency response function 
determined from WPAFB input = 2 g data: (a) displacement squared input and (b) 
displacement cubed input. 
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Figure 3,34, High amplitude time domain strain response estimates from full frequency 
range FRFs and raw strain WP AFB input = 2 g data: (a) top strain response estimates 
and (b) bottom strain response estimates. 
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Figure 3.35. Low amplitude time domain strain response estimates from full frequency 
range FRFs and raw strain WPAFB input = 2 g data: (a) top strain response estimates 
and (b) bottom strain response estimates. 
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Figure 3.36. Time domain bottom strain response estimates from full frequency range 
top strain FRFs and raw bottom strain WPAFB input = 2 g data: (a) high amplitude 
bottom strain estimates and (b) low amplitude bottom strain estimates. 
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Figure 3.37. Displacement to top strain frequency response function determined from 
WPAFB input = 2 g data: (a) raw strain to displacement cubed input FRF and (b) 
averaged strain to linear displacement functions with constant low frequency values . 
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Figure 3.38. Displacement to strain averaged frequency response functions with 
constant low frequency values determined from WPAFB input = 2 g data: (a) strain to 
displacement squared functions and (b) strain to displacement cubed functions . 
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Figure 3.39. Time domain bottom strain response estimates from averaged frequency 
response functions of top strain and raw strain WPAFB input = 2 g data: (a) high 
amplitude top strain estimates and (b) low amplitude top strain estimates. 
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Figure 3.40. Normalized top surface RFM estimates from averaged frequency response 
functions for WPAFB input = 2 g data: (a) linear strain RFM estimates, Oiin = 71.8 !lE 
and (b) membrane strain RFM estimates, (J"mem = 11.5 !lEo 
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Figure 3.41. Normalized top surface RFM estimates from averaged frequency response 
functions for WP AFB input = 2 g data: (a) linear plus cubic strain RFM estimates, 
Oiin+cube = 66.4 !lE, and (b) total strain RFM estimates, Oiotal = 66.9 !lEo 
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Figure 3.42. Nonnalized top surface RFM estimates from averaged frequency response 
functions for WPAFB input = 8 g data: (a) linear strain RFM estimates, Oiin = 151 j..lt' 

and (b) membrane strain RFM estimates, CTmem = 45.3 j..lt'. 
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Figure 3.43. Nonnalized top surface RFM estimates from averaged frequency response 
functions for WPAFB input = 8 g data: (a) linear plus cubic strain RFM estimates, 
Oiin+cube = 144 j..lt', and (b) total strain RFM estimates, Oiotal = 150 j..lt'. 
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Figure 3.44 Surface strain results from WPAFB input = 2 g data: (a) Coherence 
functions for displacement input to top strain output frequency response functions and 
(b) high amplitude top strain time domain response estimates from filtered and averaged 
frequency response functions, compared to filtered strain data. 
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Figure 3.45 .Time domain bottom strain low amplitude response estimates from filtered 
and averaged frequency response functions from WPAFB input = 2 g data: (a) top strain 
estimates with filtered strain data, and (b) top strain estimates with raw strain data. 
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Figure 3.46. Nonlinear peak displacement to nonlinear peak bending strain functions 
from WPAFB input = (0.5,1 , 2,4,8) g data. (a) Linear plot of function and (b) log-log 
plot of function. 
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Figure 3.47. Peak bending strain PDF estimated from peak displacement PDF from 
WP AFB input = 4 g data. 
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Figure 3.48. Nonlinear peak displacement to nonlinear peak membrane strain functions 
from WPAFB input = (0.5, 1, 2, 4, 8) g data. (a) Linear plot of function and (b) log-log 
plot of function. 
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Figure 3.49. Peak membrane strain PDF estimate from WPAFB input = 2 g data. (a) 
Estimate from raw peak displacement PDF and (b) estimate from estimate peak 
displacement PDF. 
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Figure 3.50. Rainflow damage matrices for raw top surface stress estimates from 
WPAFB input = 0.5 g data: (a) damage for baseline equation and (b) damage for 
Walker equation. 
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Figure 3.51. Rainflow damage matrices for raw top surface stress estimates from 
WPAFB data: (a) damage for baseline equation from input = 2 g data and (b) damage 
for Walker equation from input = 8 g data. 
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Figure 3.52. Rainflow damage matrices for top surface stress estimates using averaged 
frequency response functions from WPAFB data: (a) damage for baseline equation from 
input = 2 g data and (b) damage for baseline equation from input = 8 g data. 
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Figure 3.53 . Rainflow damage matrices for top surface stress estimates using linear 
frequency response function from WP AFB data: (a) damage for baseline equation from 
input = 0.5 g data and (b) damage for baseline equation from input = 8 g data. 
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4 TIME & FREQUENCY DOMAIN ANALYSIS OF 

NONLINEAR NARROWBAND SIMULATIONS 

This chapter will describe the ordinary differential equation (ODE) simulations that 

were performed on baseline linear and nonlinear single degree of freedom models, and 

the subsequent time and frequency domain post processing of these results. The ODE 

models developed in this chapter are based on the WP AFB experiments discussed in the 

previous chapter. The ODE simulations were performed so that large samples of 

nonlinear random data could be generated with various model input arguments and 

output states. Each simulation run yielded 256 s of response data and the simulations 

were repeated 20 times with different random input files. 

The simulation outputs represented displacement and velocity response states for 

Gaussian broadband input. Further processing of these states yielded the acceleration 

response. Basic statistical estimates of the responses were determined for each 

simulation run and cumulatively over the set of 20 simulations. The results showed that 

the nonlinear displacement had a kurtosis less than 3, the velocity had a kurtosis 

approximately equal to 3 and the acceleration had a kurtosis greater than 3. The rate of 

convergence for the linear and nonlinear models was studied as well as the random 

errors in each statistical estimate. 

Histograms and subsequent PDFs of the response data were generated to investigate the 

change in the functions as the results progressed from normal to nonlinear. Linear to 

nonlinear functions were estimated using the Inverse Distribution Function (IDF) 

method. The linear to nonlinear functions were then used to estimate the nonlinear PDFs 

using the PDF transform method. A chi-squared Goodness-of-fit test of the resulting 

PDFs was used to quantitatively evaluate the transformed PDFs. The test showed that 

the velocity response could be considered "nearly" normal. This result and the nonlinear 

response functions were used to develop an expression for the nonlinear change in the 

expected rate of zero crossings. 

Peak histograms and PDFs were determined by sampling the data to find the minima 

and maxima. The peak PDFs were then used with the IDF method to estimate linear to 
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nonlinear peak response functions. Estimates of the nonlinear peak PDFs were then 

generated using the PDF transform method. The nonlinear peak displacement PDFs will 

be used in chapter 5, with further nonlinear PDF transforms, to study the change in 

fatigue life as the system progresses from linear to nonlinear. 

A flow diagram of the overall simulation process is shown in Figure 4.1. The diagram 

shows the section numbers where each part of the flow will be described in further 

detail. 

4.1 Differential equation simulation method 

The nonlinear ODE models are based on the classic Duffing oscillator [2] with cubic 

stiffness and linear system parameters based on a lumped parameter model of the 

clamped-clamped geometry that was tested at WP AFB (see chapter 3). Once the 

displacement and velocity results were determined, the state derivatives (namely 

velocity and acceleration) were calculated. Linear models were also run to determine 

baseline results to compare with the nonlinear data. 

The simulations were run for five different base shake input acceleration levels (0.5, 1, 

2, 4 and 8 g RMS to match the WP AFB experiments) and three different viscous 

damping values ((= 0.01,0.003, and 0.001) which span the range of first mode 

damping values estimated in Chapter 3 (see Table 3.1). The results for each time 

domain input simulation were saved for further time and frequency domain analysis. 

4.1.1.1 Random Time Domain Input 

The ODE simulations required calculation of random time domain input data for use by 

each of the models. A flat random base shake acceleration input from 20 to 500 Hz was 

used, consistent with the WP AFB experiments. The input data were created by 

determining an equivalent Fourier Transform of the PSD spectrum magnitude with 

random phase angles for each frequency point (see section 2.2.3). The Fourier 

Transform was zero padded above the maximum input frequency to 32 768 Hz 

(approximately 64 times the maximum input frequency of 500 Hz) to ensure a smooth 

time history that could be linearly interpolated while running the ODE. A 256 s time 
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record, with a corresponding 0.004 Hz frequency spacing was used. The Inverse Fourier 

Transfonn of this spectrum yielded time domain records, with 8.4 million data points. 

This process was repeated 20 times with a new seed for the random number generator. 

4.1.1.2 Nonlinear state space model 

The model parameters were detennined based on static properties of the clamped­

clamped beam 

1 = bh3 112 A = bh m = pIA 

kl = 384E1!!3 k3 = 1 OEA !!3 
(4.1) 

where width b = 12.7 mm, thickness h = 0.79 mm, length 1 = 229 mm, elastic modulus 

E = 204.8 GPa and density p = 7867 kg/m3
. The stiffness kJ is evaluated at the center of 

an ideal clamped-clamped beam, and the cubic stiffness k3 is from equation (1.4) with 

an additional calibration factor of 10. Note, these values yield a natural frequency 

In = 69.21 Hz, which is slightly less than that estimated in Section 3.1.3. 

The second order ODE simulations were based on the Duffing equation including 

viscous damping 

this was reduced to a standard first order two state ODE 

Z =x·Z =X 1 '1 

m 

This SDOF system can also be written in mass nonnalized modal fonn 

Z =X-Z =X 1 '1 

where F c Ii ~ a=-·2I""co =_·co = --.l·co = _3 , ':II n 'n 'nl 
m m m m 
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and where a can be thought of as an inertial load, or the base acceleration. The 

differential equations can also be written using the state space (SS) fonn. The basic 

fonn of the continuous time SS equations is 

Z= Az+Bu (4.6) 

where the vectors u are inputs and z are states. The linear SS model based on equation 

(4.4) above (with u = a = Flm) is 

(4.7) 

A simple extension ofthe SS fonn includes the addition of cubic states such that 

Z = Az + ~Z3 + Bu (4.8) 

where 

(4.9) 

The Matlab ODE45 solver was used to detennine the response states (displacement and 

velocity) based on numerical integration. Once the response states are estimated, the 

response rates (or state derivatives), namely the velocity and acceleration, can be 

detennined by simple matrix algebra using equation (4.8). 

4.1.1.3 Differential equation solver parameters 

An output sample rate of 4096 Hz (with a Nyquist frequency of2048 Hz) was used to 

capture third order harmonic response of the system where the input was limited to 

500 Hz. Investigations described below (section 4.2.1.2) showed that the default ODE 

solver parameters needed to be modified for the simulations with the least damping 

(( = 0.001). The default value for relative tolerance needed to be improved from 1 x 10-3 

to 1 xl 0-4 to give acceptable convergent results. 
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It should be stated that the solutions of the Duffing differential equations are not unique 

(i.e. two response conditions can be stable near resonance [1]). The method of using 

random input tends to "average" the non-unique solution (e.g. as opposed to a 

sinusoidal sweep that would experience a response "jump" near resonance). The 

problem with the random excitation is that small changes in the simulation solver 

parameters can yield different response results especially as the simulation times 

become longer. At first investigation these differences were of concern, but once they 

were understood, they were accepted as an underlying characteristic of the non-unique 

nonlinear response. The solution to this problem was to run multiple simulations with 

different random input vectors, followed by post processing to average the results. The 

assumption is that although there are differences between individual simulation 

responses one can still obtain convergence on the underlying statistical quantities. 

4.1.2 Linear baseline simulations 

Baseline linear results were determined for each time domain input and for each of the 

model damping values. A check was performed on the ODE solver over the 5 input 

levels to confirm that the solver returned consistent results at each input level for the 

linear model. Subsequent simulations were run with a 1 g RMS forcing function; the 

linear response was scaled by the 5 input values for comparison to the nonlinear results. 

4.2 Time domain analysis of narrow band simulations 

The next step in the analysis was to determine time domain statistics of the data. These 

statistics were then subsequently used to estimate PDFs, CDFs and IDFs for each family 

of simulations. Curve fits of the nonlinear functions were used with the PDF transform 

method to estimate PDFs for nonlinear displacement and acceleration. 

4.2.1 Initial transient response 

Differential equation solutions always contain a transient and a steady state solution. 

This nonlinear ODE simulation is no different and requires additional time (as described 

below) for the initial "start up" transient to decay. 
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4.2.1.1 Logarithmic decrement 

The Logarithmic Decrement was used to estimate the time period required for an 

unknown ODE solution to reach a stable solution. The Logarithmic Decrement 5 [260, 

261] is defined for a viscously damped linear SDOF system as 

where xl and X2 are the values of the maxima for successive cycles. 

The time period T rp required for a free vibration transient response x to decay by a 

factor of rp is 

(4.10) 

(4.11) 

For example, if it is desired to have the transient response decay by a factor rp equal to 

1000, for a system with C;= 0.01 andfn = 70 Hz 

~ooo = ( ) ( ) = 1.57 s 0.01 27r 70 

1n (1000) 

For the same system with C; = 0.001 

1n(1000) 
T. = =157s 

1000 (0.001)27r(70) . 

4.2.1.2 Nonlinear free decay 

To inspect the decay times, nonlinear ODE simulations were run for each ofthe 

damping values for a range of initial conditions. Zero initial displacement and various 

initial positive velocities were investigated. Figure 4.2(a) shows an example of the first 

few cycles of the nonlinear transient response for an initial velocity of 10 mls and 

(= 0.003. 
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Decay curves were produced by finding the maximum response (and time of 

occurrence) for each cycle. Another method using Hilbert transforms was also 

investigated, but it tended to produce decay curves with more noise (especially for 

strongly nonlinear responses), see Figure 4.2(b). Further investigation revealed that 

reducing the default ODE relative tolerance from 1 x 10-3 to 1 x 10-4 improved the 

behavior of the ODE solver for the lightly damped cases. 

Typical plots of the decay of the system using (= 0.001 are shown in Figure 4.3(a) and 

(b) for displacement and velocity. The plots were normalized so that time on the x axis 

is divided by TIOOO and response on the y axis is divided by the peak value from the first 

cycle. (Note: this normalization was chosen instead of the initial conditions because the 

initial displacement is zero). If one sets a transient decay criterion to 111000 of the 

initial response then these plots show that one would need to wait approximately 

1.2x TIOOO • 

4.2.2 Statistical errors in basic estimates of nonlinear results 

Section 2.3 gives the time and number of samples required for estimating basic 

statistical properties (with a given level of uncertainty (for both bias and random 

errors» for linear systems subjected to normal Gaussian inputs. This system is not 

linear; the following sections will describe the investigation into how the estimated 

results and their errors vary as the sampled time increases. 

A function determined the basic and running sum statistics for each model damping 

value. The minimum and maximum results were also determined for subsequent 

histogram determination as discussed in section 4.2.3. 

Applying the notation from section 2.1.1, i.e. ¢ is an estimate of rjJ, f.1¢ is the mean 

value of rjJ, a¢ is the standard deviation of rjJ and &[rjJ] is the normalized RMS error of 

rjJ. The ODE simulation results were analyzed for each 256 s file (with initial transient 

decay time removed) producing estimates ¢k for each file and as a running sum ik of 

each estimate. The running sum technique used the formula 
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~ k-1 ~ 1 ~ 
(A =--(A-l +-rA,2 ~ k < n 
- k - k 

(4.12) 

to detennine the best estimate after k blocks of data. Where no closed fonn estimate for 

¢ exists, ¢ = ~o will be assumed. 

4.2.2.1 Mean 

The results of the simulations are expected to have zero mean values for the 

displacement, velocity and acceleration, i.e. 

(4.13) 

The nonnalized bias error estimate of the mean has been modified for this case to be 

&b [ito] = E[~o]-O = E~ito] 
~20 ~20 

where a- is the estimate of (j'detennined from the total simulated time history. 
-20 

(4.14) 

Figure 4.4(a) shows the nonnalized bias error estimates of the mean displacement and 
" 

velocity for I; = 0.01 for the linear model. Estimates of the nO'1TI1alized bias error for the 

nonlinear simulations tended to be larger than the errors from the linear model (as 

shown for example in Figure 4.4(b) for 1;= 0.01). This is a preliminary indication of the 

nonlinear effects on the rate of convergence of results. 

4.2.2.2 Standard deviation 

The standard deviation estimates for the ODE simulations are given in Table 4.1 for the 

linear model and Table 4.3 for the nonlinear models after averaging 20 blocks of data. 

As a check, the standard deviation values were calculated (see Table 4.2) based on the 

theoretical estimate for a SDOF system with a flat spectral input [154] 
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(Y2 = ffS FF ({1}n) = ffS FF ({1}n) 
x ke 2( m2 {1}~ 

(Y2 = ffS FF ({1}n) = ffS FF ({1}n) 
v me 2(m2 {1}n (4.15) 

(Y2 = ffGaa (f,,) In 
a 4( 

where SFF ({1}n) is the two-sided spectrum of force (with units N2j(radls)) at the natural 

frequency (1}n and Gaa (In) is the one-sided spectrum of acceleration (with units g2/Hz) 

at the natural frequency f". The check is the best for displacements and for the lightest 

damping cases. 

The normalized standard deviation of each of the block estimates of (Y for the sample of 

20 blocks are given in Table 4.4 for the linear models and in Table 4.5 for the nonlinear 

models based on 

(4.16) 

The results show that the linear models produce a common RMS error for each response 

state for a given value of damping, but in each case the RMS error in the nonlinear 

response estimates is increased for the derivative responses. Also interesting is that the 

RMS errors for displacement and velocity tend to decrease as the input increases for the 

(= 0.001 model. This is an unexpected result and may be due to the increase in the 

statistical bandwidth Bs of the nonlinear response (see equation (2.S1)). The PSD of the 

linear and nonlinear results are given later (Section 4.3.1), but the bandwidth Bs, given 

in Table 4.6 and Table 4.7, will be used to estimate the RMS error of the (Yestimates 

here. 

The statistical bandwidth is used as a parameter in a relationship for the normalized 

random error of (Yas a function ofthe sample time (see [24S] equation (S.47)) 

[ A] 1 & (Y --== 
r - 2~B.T 

(4.17) 
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The nonnalized random error estimate of a for the first k blocks of the 20 data blocks is 

defined to be 

(4.18) 

Typical plots ofnonnalized random error for the linear model are shown in 

Figure 4.5(a) and Figure 4.5(b). Both examples show that equation (4.17) gives a good 

estimate of the upper bound of the random error, and that the models with more 

damping ((= 0.01) tend to have less variation in the estimates than the models with less 

damping ((= 0.001). 

The random error estimates of a are shown for the nonlinear model in Figure 4.6(a) and 

(b) for (= 0.01 and (= 0.001 respectively. At the lowest input level, when (= 0.01, the 

random error estimates of ax tend to be near the linear estimates, but as the model 

becomes more nonlinear, the random error of a tends to increase. Also, the theoretical 

random error based on the statistical bandwidth given in equation (4.17) clearly 

underestimates the measured random error. The random error estimates of nonlinear 

acceleration aa are much worse than expected. 

These observations reinforce the need for very large sample sizes for producing basic 

statistical estimates of the nonlinear response. The use of the statistical bandwidth 

estimated from nonlinear PSDs is not advised as a method to estimate the random errors 

in acalculations. Inspection of Table 4.6 shows that Bs detennined from the linear 

response tends to decrease as the damping decreases and increases for derivative 

responses. Table 4.7 also shows that Bs increases for the nonlinear derivative responses, 

but Bs decreases and then increases as the damping decreases. It is hypothesized that the 

harmonic distortions, seen in the high frequencies of the nonlinear response, 

significantly affect these calculations. Other researchers have also identified the need 

for large sample sizes when working with nonlinear random data [262]. 
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4.2.3 Histograms and PDFs from ODE data 

Another function was used to detennine histograms, PDFs and central moments ofthe 

PDFs. The number of histogram bins was chosen to be 128 (64 for the positive values 

and 64 for the negative) with minimum and maximum limits detennined from the 

complete set of 20 data files. The maximum response measured was typically around 

4 (J; This yielded bin spacing (W) of approximately 07'16 which is considered an 

acceptable comprise for minimizing both bias and random errors in the PDF estimates 

(See section 2.3.2). 

The resulting PDFs presented were detennined based on the full set of data for each of 

the damping and input levels. The PDF estimates for a typical baseline linear model 

((= 0.001) are shown in Figure 4.7(a); the response PDFs appear nonnal for all linear 

models. 

A Chi-Squared Goodness-of-Fit test of the PDFs was used to test the nonnality of the 

results using 

(4.19) 

whereji is the observed frequency of the simulation histogram and Fi is the expected 

frequency of a histogram based on a nonnal PDF. K is the degree of freedom for the 

Goodness-of-Fit test; for these results a conservative value of K = 120 was used based 

on a number of histogram bins of 128. The region of acceptance ofthe one-sided test is 

X 2 < 2 - Xn-a (4.20) 

where the value of X:;a is available from standard statistical tables (e.g. Table A.3 from 

[248]) for an acceptance region of I-a. For example, if one desired an acceptance 

region of 90% (i.e. stating a hypothesis that a histogram or PDF from a nonnal 

distribution would have a goodness-of-fit test value less than X:-o \ for 90% of the trials) 

for K = 120, X\220_0 \ = 140.23. Table 4.8 gives the results of the goodness-of-fit test for 
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the linear models. The hypothesis test of normality can easily be accepted at the 90% ( 

a = 0.1) level of significance for the displacement and velocity results. 

Figure 4.7(b) shows typical displacement response PDFs estimated from the (= 0.001 

nonlinear simulations. These clearly show the non-normal response behavior for the 

nonlinear displacement, especially as the input increases and the damping is reduced. 

Figure 4.8(a) shows a set of velocity response PDFs estimated from the nonlinear 

simulations. Unlike the nonlinear displacement, this data seems to follow the Normal 

PDF in most regions, except for a slight increase around zero velocity, especially for the 

(= 0.001 model at high input levels. The Chi-Squared Goodness-of-Fit test on the 

nonlinear velocity response PDFs shows that data from the two lower levels would pass 

a 90 % acceptance normality test at Xt20.0 \ = 140.23, while a larger 99 % acceptance test 

at X\220;0.0\ = 158.95 would allow the 8 g response data to pass the normality hypothesis 

as well. 

Figure 4.8(b) shows a typical set of acceleration response PDFs estimated from the 

(= 0.0 I nonlinear simulations. Unlike the nonlinear displacement results, this 

acceleration data shows response PDFs with increased tails and center values. 

4.2.3.1 Moments of the response PDFs 

As described in section 2.1.1, the standard deviation, skew and kurtosis can be 

determined by calculating the higher order moments of a PDF. As a check, standard 

deviation results calculated from the second moment of the PDFs determined above 

were compared with the results determined in Section 4.2.2.2. The comparison had 

normalized bias differences on the order of -1 x 10-4. The kurtosis results presented here 

were calculated based on the fourth moment of the PDFs. 

As with the other statistical measures of the linear model response, the linear kurtosis 

estimates were virtually identical for the displacement and velocity response 

calculations for a given value of damping (see Table 4.10). Figure 4.9 shows typical 

kurtosis results for the (= 0.001 linear model, which are all close to the theoretical 

value of3. 
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The displacement kurtosis for the nonlinear 1;= 0.01 model is shown in Figure 4.10(a). 

The velocity kurtosis is shown in Figure 4.1 O(b) for I; = 0.01. These plots show that the 

velocity kurtosis seems to converge in both cases to a value of approximately 3, but the 

nonlinear displacement results have kurtosis values less than 3. The kurtosis estimates 

from the nonlinear model responses are given in Table 4.11. The acceleration kurtosis is 

much greater than 3, especially at the highest input levels. It is also interesting to note 

that the normalized random error in the kurtosis estimates is highest for the acceleration 

results. 

4.2.4 Peak response matrices and PDF from data 

Peak response estimates for the response data were generated using Rain Flow Matrices 

(RFM) (as discussed in Section 2.4.6). A typical normalized displacement RFM is 

shown in Figure 4.11(a). Figure 4.11(b) shows the normalized minimum and maximum 

peak displacement histograms for this RFM. Note that the two histograms are almost 

mirror images of each other. The histo gram of minima can be averaged with the 

histogram of maxima to form a single estimate ofthe peak PDF, when the functions can 

be presumed symmetric. 

4.2.5 Response zero crossing and peak rates 

The rates of zero crossings and peaks are very important for peak response and fatigue 

analysis (see Section 2.1.4). Table 4.12 gives the rates of positive slope zero 

displacement and velocity crossings as well as the rates of positive displacement peaks 

(maxima) for the nonlinear simulations. Also tabulated are the ratios of displacement 

zeros to peaks '(jJX. One observation from the results is that the ratio '(jJx tends to decrease 

as the system becomes more nonlinear. This trend was also noted with the WP AFB data 

(see Table 3.6). 

The corresponding rates of zero crossings and peaks were also determined for the 

acceleration (see Table 4.13). These results show some trends that were not observed 

with the peak displacement results. Table 4.13 shows that like the displacement results, 

the rates of zero crossings tends to increase as the input increases, but the change in the 

rate of peaks is not as clearly defined. The lower damping model shows that the rate of 
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peaks actually decreases as the input increases. An explanation of this can be 

hypothesized with the aid of Figure 4.26 which shows the acceleration PSD. At the 

lowest input level of 0.5 g, there is a significant "plateau" of acceleration response 

(from about 100 to 500 Hz) that tends to generate a large number of peaks. As the input 

level increases, the system becomes stiffer thereby reducing the "plateau" relative to the 

fixed upper frequency of 500 Hz. It is interesting to see that the (= 0.001 model results 

show a decrease in the rate of acceleration peaks for the first two input levels, but then 

the trend reverses and the rates of peaks starts to increase again. 

The ratio of acceleration zeros to peaks shows a clear decrease for all conditions. The 

reversal in the trend of peaks for the (= 0.001 model is countered by the continual rise 

in rates of zero crossings to yield rate ratios lila that always increase. 

Perhaps an even more convincing argument comes from examination of the time 

domain data. The strong nonlinearity in the acceleration at high inputs tends to make the 

peaks very pointed (see Figure 4. 12(b)) masking the effect of the higher frequency 

response that can "ride on top" of fundamental response cycles of the linear acceleration 

at low inputs (see Figure 4.12(a)). The strongly nonlinear response looks very "narrow 

band" in the time domain as the values of lila indicate. 

4.2.6 Displacement response peak PDFs 

The peak displacement PDFs were calculated from displacement RPM. Figure 4. 13 (a) 

shows a comparison of a PDF determined for the linear (= 0.001 model and a Rayleigh 

PDF. Note that the ratio of zero to peaks for this model was 1 to four significant digits. 

Figure 4. 13 (b) shows a comparison of a PDF determined from the (= 0.01 data, with 

the Rayleigh and generalized peak PDFs. The ratio of zero to peaks for this model was 

0.993. Modified goodness-of-fit tests, 

(4.21) 

where.fi is the observed frequency ofthe simulation histogram and Fi is the expected 

frequency of the histogram (based on a Rayleigh and the generalized Peak PDF), were 
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computed. The observed frequency fi was used here to avoid a division by zero for 

negative amplitude bins when performing the test with the Rayleigh PDF. The results 

are given in Table 4.14 for various bin center ranges. Although the data in 

Figure 4. 13 (a) looks to closely match the Rayleigh PDF, this hypothesis cannot be 

accepted based on a Chi-Squared criterion at the lowest a level of significance (see 

Table 4.15) for either bin center range calculated. 

The data from Figure 4. 13 (b) requires a bit more discussion. This data begins to show 

the existence of maxima at negative values (even at a ratio of zeros to peaks of 0.993). 

The Rayleigh PDF has a value of zero for negative maxima. The goodness-of-fit test 

was modified to allow the calculation oftest statistic for both the Rayleigh and 

generalized peak PDF as given in Table 4.14. Over the wide range of bins that included 

negative maxima, both tests yield results that will reject the hypothesis, although the 

peak PDF result is much closer to being accepted. The hypothesis can be accepted at the 

a = 0.10 level of significance for the peak PDF and at the a = 0.01 level for a Rayleigh 

PDF over the higher amplitude positive bin range. Based on these findings, a Rayleigh 

PDF will only be assumed for the lowest damping SDOF cases while the generalized 

peak PDF will be used for all other calculations. The peak displacement PDFs were then 

determined for the nonlinear results. Figure 4.14( a) and (b) show the corresponding 

peak displacement PDFs determined for (= 0.001 and (= 0.01 respectively. Again it is 

interesting to note the negative maxima for the (= 0.01 model. 

4.2.7 Response velocity peak PDFs 

Given that the response velocity was nearly normal, the peak velocity is assumed to 

follow the peak response predicted for a Gaussian (normal) signal (i.e. a generalized 

peak PDF); Figure 4.15(a) shows that this is a reasonable assumption. 

4.2.8 Response acceleration peak PDFs 

An example nonlinear acceleration peak PDFs is shown in Figure 4.15(b). Here the 

peak PDFs show negative maxima at the lowest input levels, but only positive maxima 

at the highest input. Note the increase in the normalized value of the acceleration 
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response tails that reach a value of approximately lOa: Again, time domain data shown 

in Figure 4.12 helps to explain the peak PDF results. 

4.2.9 Linear to nonlinear functions based on inverse distribution function 

The inverse distribution function (IDF) method was used in Chapter 3 to estimate linear 

to nonlinear functions for the wideband experimental data. The linear to nonlinear 

functions generated for displacement response (based on the assumed Gaussian 

distribution) resulted in a unique set of functions for each input level. On the other hand, 

the peak displacement linear to nonlinear functions, for the wideband data, tended to fall 

along one common curve at the large amplitude response. This trend was especially 

noticeable when one assumed a linear peak distribution with the same ratio (jJ as the 

measured nonlinear peak data (see Section 3.2.5). The behavior of the linear to 

nonlinear functions for the SDOF Duffing model is presented next. 

4.2.9.1 Linear to nonlinear function of displacement response 

Histograms of the nonlinear displacement (see Section 4.2.3) were used to generate 

linear to nonlinear functions as described in Section 3.2.3, fit with polynomial functions 

(4.22) 

where di,j are the displacement coefficients for the input i and the polynomial power j 

(see Table 4.16). The linear to nonlinear functions from this nonlinear model are similar 

to those from Chapter 3 (compare Figure 3.19(b) with Figure 4. 17(b)). This polynomial 

model will be used in Section 4.2.12 to estimate rates of zero crossings of nonlinear 

displacement. One additional observation here is that the standard deviation results from 

the linear and nonlinear simulations (see Table 4.1 and Table 4.3) fall just below the 

corresponding response curve (see Figure 4.16(b )). 

4.2.9.2 Linear to nonlinear function of peak displacement 

The findings from Section 3.2.5 suggest an IDF method for determining the linear to 

nonlinear function peak displacement based on a variable ratio rffx linear peak PDF. The 
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nonlinear displacement data again shows a change in the ratio (jJx with input level and 

damping (see Table 4.12). For these reasons, the linear to nonlinear peak functions 

determined here will use the variable ratio peak PDFs with the IDF method. 

Figure 4.17 shows two sets of data points for the linear to nonlinear peak functions for 

the SDOF simulations. This data now shows one common trend for all input levels. In 

fact, when the data from the models with damping are plotted on one graph (see 

Figure 4.18(a)), it suggests that the underlying relationship is based on the Duffing 

parameters a and yfrom Equation (1.5) and not the damping level c;. 

As before, a polynomial curve fit, of the form 

(4.23) 

was used to determine peak displacement coefficients (see Table 4.17). It is interesting 

to compare these coefficients with the normal displacement function results in 

Tab Ie 4.16. The displacement di,l linear slope term is increasing as the input increases 

and the di,3 term for the highest input level is approaching the peak C3 term. 

Given that these linear to nonlinear peak functions are so consistent across the inputs 

and damping values, it is worth comparing them to the results obtained for the normal 

displacement IDF problem from Section 4.2.9.1. Figure 4.18(b) shows the normal 

displacement data again, but now with the linear to nonlinear peak displacement 

function polynomial fit shown for comparison. It is worth observing that the peak 

displacement function seems to be a limiting function for the normal displacement 

functions. This is due to the fact that the peak response and the peak value of the data 

are the same at high amplitudes. Hence the normal displacement function is tangent to 

the peak displacement function in these regions. 

4.2.9.3 Linear to nonlinear function of peak acceleration 

The IDF method was applied to the acceleration results yielding typical linear to 

nonlinear peak acceleration functions as shown in Figure 4.19. These curves are 

different than the linear to nonlinear peak displacement functions in that they show a 

nonlinear increase as the linear response increases. This behavior is hypothesized to be 
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due to a balancing of the differential equation which describes the relationship between 

the various states of the response, i.e., if the input force is normal, the summation of the 

displacement, velocity and acceleration terms need to be also normal. It has been shown 

that the velocity is nearly normal, and that the displacement shows a nonlinear decrease 

in response as the linear response increases (see, for example, Figure 4.18). The 

acceleration is therefore hypothesized to show a nonlinear increase in response to 

balance the displacement decrease. 

This increasing nonlinear response lends itselfto a "right hand" nonlinear polynomial 

model like 

a = g(a) 
(4.24) 

a=Ka+Ka 2 +'''+Kan 
1 2 n 

where a is the nonlinear acceleration. As before, the positive peak values (maxima) 

were used to produce the cubic polynomial curve fit coefficients. Figure 4.19 also 

shows the third order polynomial curve fit determined from each data set. The peak 

acceleration linear to nonlinear functions show a few more data points that do not 

follow one main trend (compared to the peak displacement functions (see Figure 4.18)). 

This is similar to what was observed with the experimental peak displacement data (see 

Figure 3.23(b)). 

4.2.10 Nonlinear peak displacement PDFs from PDF transforms 

The PDF transfer function for the linear to nonlinear peak displacement polynomial 

function determined from the IDF method is 

Pnipeak (y,w) =1 dx/dylPpeak (x,w) (4.25) 

Instead of trying to solve this equation in closed form, the numerical result can be easily 

determined by first estimating the linear peak "bin center" values using 

(4.26) 
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where now, the y values should be based on the nonlinear histogram bin centers. The 

derivative of equation (4.23) for the third order polynomial is 

(4.27) 

Substituting equations (4.27), and (4.26) into (4.25) yields 

(4.28) 

The generalized peak PDF Ppeak is given in equation (2.20). In use, one would evaluate 

the generalized peak PDF at the estimated linear peak bin center values (from equation 

(4.26)) and then simply multiply by the derivative (using equation (4.27)) to estimate 

the nonlinear peak PDF given in equation (4.28). Results from two peak displacement 

PDF transforms are shown in Figure 4.20. 

Having estimated the nonlinear peak PDF, the goodness-of-fit of these transforms can 

be evaluated as before. The results of this evaluation are given in Table 4.18 and 

Table 4.19 for the transformed Rayleigh and general peak PDFs respectively. The 

magnitude of the test results shows that a strict statistical hypothesis statement cannot 

be made, but the results can still be used to make some observations. 

First, the PDF transforms for the (= 0.01 model results are a better fit to the simulation 

data than the transforms for the (= 0.001 model. Secondly, the PDF transforms tend to 

be best at the lowest and highest levels of response. Remember that these were the data 

cases that were used to estimate the polynomial coefficients for the linear to nonlinear 

peak displacement functions. 

4.2.11 Nonlinear peak acceleration PDFs from PDF transforms 

Nonlinear PDF estimates based on the linear to nonlinear acceleration response 

functions use the PDF transform equation based on the right hand side linear to 

nonlinear function given in equation (4.24) 

( ) 
Ppeak(a,lU) 

P nl peak a, lU = Ida / da I 
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Here again, the ratio llTa is determined at each input level and used with the linear peak 

PDF. Figure 4.21(a) and (b) shows typical peak PDF transform for the (= 0.01 and 

(= 0.001 models compared with the PDF determined from the min and max histograms 

calculated from a peak acceleration RFM. These results are not as good as those 

determined for transformed displacement functions, but, they are still encouraging, 

especially in the high PDF, low response amplitude regions. Figure 4.22 shows the 

same data as Figure 4.21, but this time with a logarithmic PDF; these results show very 

good agreement in the low PDF, high response amplitude regions. 

4.2.12 Estimating rates of zero crossings from nonlinear amplitude PDFs 

Section 5.5.1 of [248] derives the expected number of zero crossings per unit time for 

stationary random data with any joint probability density function. This derivation will 

be used here to estimate the rates of zero crossings for the nonlinear displacement 

results. 

Let Px:v (x, v) represent the joint probability density function of displacement and 

velocity when x(t) = x, v(t) = x(t) = v. The number of zero up and down crossings per 

unit time is given by 

(4.30) 

Assume also that the displacement and velocity are statistically independent, i.e. 

Px:v (x, v) = Px (x) Pv (v) [4,248]. From the findings in Section 4.2.3, the velocity PDF 

is assumed to be "nearly" normal 

1 (_V2) 
Pnorm (v) = O'

v
.J2; exp 20'; (4.31 ) 

and the nonlinear displacement PDF is estimated using a PDF transform [125, 160,263] 

by 
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(4.32) 

where the coefficients dij were detennined for each input level i (see equation (4.22)). 

Atx = 0, 

(4.33) 

and 

(4.34) 

If one would prefer only the number of up crossings (or positive slope zero crossings), 

then: 

E [O+J = di,ICYV 
nl x 2 

7rCYx 

(4.35) 

The nonlinear estimates of Enl [0; J for the (0.5, 2, 8) g input levels using equation 

(4.35) and the d i ,] coefficients are given in Table 4.20. Although these results slightly 

underestimate the expected rates detennined by counting the raw displacement zero 

level crossings (repeated from Table 4.12 column labeled cD [ 0; J), they validate the 

usefulness of equation (4.35). 

4.3 Frequency domain analysis of narrow band simulations 

The frequency domain analysis of the linear baseline and nonlinear results is presented 

to augment the extensive time domain analysis present in the previous section and to 

form a basis for comparison. Also presented are reverse path nonlinear identification 

results. 
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4.3.1 PSD and expected rates 

Figure 4.23(a) and (b) show the PSD of displacement and velocity respectively from the 

linear model. The sample size chosen for these PSD estimates was 16 s which resulted 

in a frequency resolution ~f of 0.0625 Hz. The PSD estimates were made using a 

Hamming window, 50% overlap and a sample rate of 4096 Hz resulting in 65 536 

points for the FFT and 32 769 frequency domain points (includingf= 0 andf= fnyq). 

The ~f of 0.0625 Hz was chosen as a compromise between number of averages and 

frequency resolution (see Section 2.5 for further discussion of errors in basic estimates 

of random processes). The standard deviations and expected response rates determined 

from these baseline PSDs (see section 2.2.2) for the linear models are given in 

Table 4.21. 

Figure 4.24(a) through Figure 4.25(b) show the PSD of displacement and velocity 

respectively from the nonlinear models. The standard deviations and expected response 

rates determined from the PSDs (and the assumption that the underlying data is 

Gaussian) for the nonlinear models are given in Table 4.22. Compared to the rates 

calculated by level crossings given in Table 4.12, it is clear that the standard spectral 

moment method of determining response rates is in error for nonlinear systems. On the 

other hand, the estimates of o-(or the zero moment of the PSD) differ by approximately 

0.1%. 

4.3.2 Reverse path nonlinear system identification 

The reverse path identification method was used in Chapter 3 to identify nonlinear 

frequency domain trends in the experimental data. The technique is used again here as 

an additional illustration which shows how the system parameters from equation (4.2) 

can be determined. 

The first set of frequency response functions presented are L 1y and H 1y (see 

Figure 4.27(a) and (b) for (= 0.01, and Figure 4.30(a) and (b) for (= 0.001). These 

functions are the reciprocal of the normal displacement I force frequency response 

functions, but as described in the text [125], they can be used to estimate the modal 

parameters. The value of H 1y atf= 0 Hz equals the static stiffness kl (approximately 3.5 
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kN/m) and the frequency where IHlyl is a minimum is approximately equal to the natural 

frequency. Inspection of the plots (for both damping levels) shows that this is the case. 

Note that while H ly stays constant for each input level (the curves ofthese overlay each 

other quite well), L ly diverges from the "linear" result as the model becomes more 

nonlinear. 

The frequency response functions of H3y are shown in Figure 4.28(b) for (= 0.01, and 

Figure 4.31(b) for (= 0.001. These functions should theoretically equal the nonlinear 

stiffness parameter k3 that operates on the cubic power of the response at all 

frequencies. Inspection of the results shows very good agreement with the original 

model value (approximately 1.8 GN/m3
) and that the estimates become better as the 

problem becomes more nonlinear. It is believed that this is true as the difference 

between H jy and L jy becomes greater (allowing better numerical resolution between 

small values). 

A distinguishing measure of the nonlinearity of the mathematical input displacements 

are the coherence functions between the uncorrelated inputs ~ and the mathematical 

output force. Figure 4.29(a) and (b) show the coherence functions for the 0.5 and 8 g 

simulations with (= 0.01, while Figure 4.32(a) and (b) show the same when (= 0.001. 

In each plot the coherence functions are labeled following the notation from equation 

(2.74). Figure 4.29(a) shows that the response is almost completely correlated with only 

VI whilst at the other extreme, Figure 4.32(b) shows that the response is strongly 

correlated with the cubic term V3 over most of the frequency range. It is also reassuring 

that the four plots of the total summed coherence LYuiy are nearly lover the whole 

frequency range. 

4.4 Nonlinear simulation summary 

The linear and nonlinear Duffing simulations, based on the clamped-clamped beam 

experiments from WP AFB, were run so that large data sets could be used to show trends 

in the nonlinear response. The major findings of this chapter can be summarized as: 

The standard deviation and kurtosis for the nonlinear random response converge much 

more slowly than the corresponding linear random response quantities. The response 
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displacement kurtosis tended to be less than 3 and the response acceleration kurtosis 

tended to be greater than 3, whilst the response velocity kurtosis tended to equal 3 for 

the Duffing model studied. The distribution for the velocity response tended to be 

nonnal for the nonlinear models. 

Random errors in nonlinear standard deviation estimates, based on the statistical 

bandwidth ofthe frequency domain PSD response, are much greater than what would be 

estimated with linear random theory. The hannonic distortion of the displacement, 

velocity and acceleration response states can be significant enough to cause an estimate 

of the statistical bandwidth to be even greater than the bandwidth of the input load. 

Linear to nonlinear displacement functions determined from the ODE results, using the 

inverse distribution function method, appear similar to those estimated from the 

WP AFB displacement data. The linear peak to nonlinear peak functions all tended to 

follow one main trend, even over wide ranges of input amplitude and damping values. 

The linear to nonlinear peak functions determined using an assumed generalized linear 

peak distribution function, with a ratio of zeros to peaks determined from the nonlinear 

data, produced the best goodness-of-fit agreements. The linear to nonlinear peak 

displacement response functions appear to fonn an upper bound (or limiting case) of the 

linear to nonlinear nonnal displacement response functions. A novel use of the linear to 

nonlinear nonnal displacement function was developed to estimate the rate of zero 

crossings for the nonlinear response. The estimated rates agree well with those 

determined by counting level crossings. 

The reverse path identification process was used again in this chapter to demonstrate its 

behavior with simulated nonlinear Duffing model data. The method accurately 

estimated the Duffing model linear and nonlinear parameters. 
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4.5 Chapter 4 Tables 

Table 4.1. Linear ODE baseline standard deviation results after averaging 20 blocks of 
data. 

Input, Damping CYx nun CYymls cyag Tblock s 

(al9.81 mls2) 

1 g, (= 0.01 0.1742 0.0755 3.512 250 

1 g, (= 0.003 0.3183 0.1384 6.222 245 

1 g, (= 0.001 0.5512 0.2397 10.68 235 

Table 4.2. Linear model standard deviation estimates from closed form equations. 

Input, Damping CYx nun CYymls cyag 

(al9.81 mls2) 

1 g, (= 0.01 0.1746 0.0759 3.365 

1 g, (= 0.003 0.3187 0.1386 6.144 

1 g, (= 0.001 0.5512 0.2401 10.64 

Table 4.3. Nonlinear ODE standard deviation results after averaging 20 blocks of data. 

Input, Damping cyynun CYy mls cyag 

(al9.81 mls2) 

0.5 g, (= 0.01 0.0866 0.0379 1.764 

2 g, (= 0.01 0.3256 0.1519 7.534 

8 g, (= 0.01 0.9582 0.6081 42.50 

0.5 g, (= 0.003 0.1562 0.0692 3.164 

2 g, (= 0.003 0.5390 0.2758 14.81 

8 g, (= 0.003 1.405 1.114 99.06 

0.5 g, (= 0.001 0.2668 0.1219 5.714 

2 g, (= 0.001 0.8244 0.4881 30.95 

8 g, (= 0.001 1.939 1.946 223.5 
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Table 4.4. Nonnalized standard deviation estimates of block CTresults from 20 blocks of 
linear ODE simulation data. 

Damping CT[OJ CT[cTv] CT[cTa ] 

CTx CTv CTa 

(= 0.01 0.2% 0.2 % 0.2 % 

(= 0.003 0.4 % 0.4 % 0.4 % 

(= 0.001 0.8% 0.8% 0.8 % 

Table 4.5. Nonnalized standard deviation estimates of block CTresults from 20 blocks of 
nonlinear ODE simulation data. 

Input, Damping CT[cTyJ CT[cTv] CT[cTal 

CTy CTv CTa 

0.5 g, (= 0.01 0.3 % 0.3 % 0.3% 

2 g, (= 0.01 1.1 % 1.2 % 1.3% 

8 g, (= 0.01 1.1 % 1.6 % 2.1% 

0.5 g, (= 0.003 2.0% 2.1% 2.1% 

2 g, (= 0.003 2.2% 3.0% 3.8% 

8 g, (= 0.003 2.2% 3.6% 5.2% 

0.5 g, (= 0.001 4.5% 4.8% 5.2% 

2 g, (= 0.001 3.3 % 4.5% 5.8% 

8 g, (= 0.001 3.1 % 3.9% 6.3% 

Table 4.6. Statistical bandwidth estimates from 20 blocks of linear ODE simulation 
data. 

Damping Bsx Hz Bsv Hz Bsa Hz 

(= 0.01 68.8 69.1 81.9 

(= 0.003 21.2 21.2 22.3 

(= 0.001 7.21 7.21 7.34 
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Table 4.7. Statistical bandwidth estimates from 20 blocks of nonlinear ODE simulation 
data. 

Input, Damping BSY Hz Bsv Hz Bsa Hz 

0.5 g, (= 0.01 71.4 71.7 84.9 

2 g, (= 0.01 190 196 234 

8 g, (= 0.01 820 853 1011 

0.5 g, (= 0.003 51.1 51.6 54.9 

2 g, (= 0.003 358 380 425 

8 g, (= 0.003 1278 1285 1461 

0.5 g, (= 0.001 110 114 120 

2 g, (= 0.001 662 696 769 

8 g, (= 0.001 1811 1780 2059 

Table 4.8. Linear ODE baseline chi-square goodness-of-fit test results for displacement 
and velocity response normality 

Damping X2 
x 

X2 
v 

(= 0.01 19.02 19.67 

(= 0.001 39.03 39.09 

Table 4.9. Nonlinear ODE chi-square goodness-of-fit test results for velocity response 
normality 

Input, Damping X2 
v 

0.5 g, (= 0.01 25.69 

2 g, (= 0.01 16.29 

8 g, (= 0.01 36.84 

0.5 g, (= 0.001 102.57 

2 g, (= 0.001 137.45 

8g,s=0.001 154.51 
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Table 4.10. Kurtosis and nonnalized random error estimates of kurtosis for results from 
20 blocks of linear ODE simulation data. 

Input, Damping Kx Kv 0'[,(\] 0' [Kv] 
Kx Kv 

1 g, (= 0.01 2.997 2.996 2.1 % 2.1 % 

1 g, (= 0.003 3.017 3.017 4.3 % 4.3 % 

1 g, (= 0.001 3.015 3.014 5.1 % 5.1 % 

Table 4.11. Kurtosis and nonnalized random error estimates of kurtosis for results from 
20 blocks of nonlinear ODE simulation data. 

Input, Damping Ky K 
v Ka 0'[ Ky ] 0' [Kv] 0' [Ka ] 

Ky Kv Ka 

0.5 g, (= 0.01 2.97 2.98 3.04 1.8 % 1.4 % 1.4 % 

2 g, (= 0.01 2.80 3.01 3.81 1.3 % 2.0% 3.5 % 

8 g, (= 0.01 2.44 3.02 7.27 0.8% 1.9 % 5.4 % 

0.5 g, (= 0.003 2.93 2.99 3.20 2.7% 2.9% 3.3 % 

2 g, (= 0.003 2.62 2.98 5.07 2.2% 3.4 % 7.2% 

8 g, (= 0.003 2.34 3.00 8.78 1.2 % 3.6% 9.5% 

0.5 g, (= 0.001 2.85 3.00 3.60 3.6% 4.3% 6.2% 

2 g, (= 0.001 2.49 3.02 6.86 3.8 % 7.3% 14.4 % 

8 g, (= 0.001 2.28 2.98 9.44 2.9% 7.1 % 13.0 % 
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Table 4.12. Rates and ratios of positive zero level crossings and peaks for displacement 
and velocity results from 20 blocks of data. 

Input, Damping <1>[ O;J Hz <1>[ 0: J Hz <1> [px+ J Hz lIlx 

0.5 g, (= 0.01 69.5 72.4 69.9 0.9949 

2 g, (= 0.01 72.0 75.0 72.5 0.9931 

8 g, (= 0.01 89.5 93.0 91.5 0.9899 

0.5 g, (= 0.003 69.9 70.8 69.9 0.9996 

2 g, (= 0.003 76.3 77.3 76.4 0.9989 

8 g, (= 0.003 107.8 109.1 108.1 0.9976 

0.5 g, (= 0.001 71.1 71.4 71.0 1.0000 

2 g, (= 0.001 84.7 85.0 84.8 0.9999 

8 g, (= 0.001 133.2 133.7 133.3 0.9994 

Table 4.l3. Rates and ratios of positive zero level crossings and peaks for acceleration 
results from 20 blocks of data. 

Input, Damping <1>[ 0; J Hz <1>[~+ J Hz lIla 

0.5 g, (= 0.01 110 242 0.46 

2 g, (= 0.01 113 217 0.53 

8 g, (= 0.01 132 155 0.84 

0.5 g, (= 0.003 71 151 0.47 

2 g, (= 0.003 77 122 0.63 

8 g, (= 0.003 109 128 0.85 

0.5 g, (= 0.001 77 96 0.79 

1 g, (= 0.001 81 91 0.89 

2 g, (= 0.001 91 95 0.96 

4 g, (= 0.001 110 110 0.99 

8 g, (= 0.001 141 141 1.00 
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Table 4.14. Goodness-of-fit peak PDF comparison for linear ODE simulation results. 

Damping Bin Center Range DOF PDF:X2 

(= 0.001 0.08 < a-< 4.55 27 Ray: 70.8 

(= 0.001 1.16 < a-< 4.55 20 Ray: 48.7 

(= 0.01 -0.41 < a-< 4.81 30 Ray: 1023,Peak: 72.9 

(= 0.01 1.22 < a-< 4.81 20 Ray: 33.3, Peak: 26.6 

Table 4.15. Chi-square percentage points used for goodness-of-fit testing. 

DOF a= 0.10 a= 0.01 a= 0.005 

20 28.41 37.57 40.00 

27 36.74 46.96 49.64 

30 40.26 50.89 53.67 

Table 4.16. Displacement response polynomial coefficients dij (input i and polynomial 
power j) for linear to nonlinear function determined using inverse distribution method. 

Input, Damping di,l mmlmm di2 mm1mm2 do mmlmm3 

0.5 g, (= 0.01 0.9927 0.1357 -0.1990 

2 g, (= 0.01 1.0341 0.0224 0.0842 

8 g, (= 0.01 1.2742 0.0374 0.0559 

0.5 g, (= 0.001 1.0331 -0.1094 0.2155 

2 g, (= 0.001 1.1982 0.0213 0.0648 

8 g, (= 0.001 1.9023 0.0111 0.0385 

Table 4.17. Peak displacement polynomial coefficients for linear to nonlinear function 
determined using inverse distribution method. 

Damping Cl mmlmm c2mm1mm2 C3 mmlmm3 

(= 0.01 0.9628 0.1010 0.0565 

(= 0.003 0.9668 0.1213 0.0497 

(= 0.001 0.9328 0.1563 0.0405 
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Table 4.18. Goodness-of-fit results for transformed Rayleigh PDF for nonlinear ODE 
simulation peak displacement results. 

Input, Damping Bin Center Range DOF Transformed 
Rayleigh PDF: X2 

0.5 g, (= 0.001 0.066 < 0-< 3.88 27 1102 

1 g, (= 0.001 0.063 < (J< 3.69 27 1470 

2 g, (= 0.001 0.055 < (J< 3.23 27 1270 

4 g, (= 0.001 0.051 < 0-< 3.03 27 409 

8 g, (= 0.001 0.050 < 0-< 2.97 27 720 

Table 4.19. Goodness-of-fit results for transformed general peak PDF for nonlinear 
ODE simulation peak displacement results. 

Input, Damping Bin Center Range DOF Transformed General 
PeakPDF:X2 

0.5 g, (= 0.01 -0.40 < 0< 4.67 30 118 

1 g, (= 0.01 -0.39 < (J< 4.54 30 184 

2 g, (= 0.01 -0.34 < 0< 4.03 30 560 

4 g, (= 0.01 -0.32 < (J< 3.74 30 466 

8 g, (= 0.01 -0.31 < (J< 3.59 30 492 

Table 4.20. Rates of positive zero displacement level crossings based on PDF 

transforms E [ 0; J and simulations <1> [ 0; J . 
Input, Damping E[ O;J Hz <1>[ O;J Hz 

0.5 g, (= 0.01 69.1 69.5 

2 g, (= 0.01 71.9 72.0 

8 g, (= 0.01 89.3 89.5 

0.5 g, (= 0.001 71.1 71.1 

2 g, (= 0.001 83.6 84.7 

8 g, (= 0.001 132.8 133.2 

138 



Table 4.21. Response displacement standard deviation and rate results from baseline 
linear ODE simulations determined from PSD estimates. 

Input, Damping CJx mm E[ O;J Hz E[Px+ J Hz E [ 0; J/ E [~+ J 
1 g, (= 0.01 0.176 69.29 72.39 0.9571 

1 g, (= 0.001 0.550 69.23 69.73 0.9927 

Table 4.22. Response displacement standard deviation and rate results from nonlinear 
ODE simulations determined from PSD estimates. 

Input, Damping CJxmm E[ O;J Hz E[Px+ J Hz E[ 0; J/ E[ Px+ J 
0.5 g, (= 0.01 0.0869 69.68 72.80 0.9571 

2 g, (= 0.01 0.326 74.28 77.53 0.9580 

8 g, (= 0.01 0.958 100.99 109.12 0.9255 

0.5 g, (= 0.001 0.267 72.70 73.34 0.9912 

2 g, (= 0.001 0.824 94.31 99.11 0.9516 

8 g, (= 0.001 1.939 159.73 179.32 0.8908 
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Figure 4.21 . Nonlinear peak acceleration PDF estimates and ODE results from 
input = 8 g data: (a) (= 0.01 model and (b) ( = 0.001 model. 
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Figure 4.22. Nonlinear peak acceleration logarithmic PDF estimates and ODE results 
from input = 8 g data: (a) (= 0.01 model and (b) ( = 0.001 model. 
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Figure 4.23. Response PSDs from linear ODE simulations for ( = O.Oland 0.001 model 
input = 1 g data: (a) displacement PSDs and (b) velocity PSDs. 
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Figure 4.24. Displacement PSDs from nonlinear ODE simulations for input = (0.5, 1,2, 
4, 8) g data: (a) (= 0.01 model and (b) ( = 0.001 model. 
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Figure 4.25. Velocity PSDs from nonlinear ODE simulations for input = (0.5, 1, 2, 4, 
8) g data: (a) (= 0.01 model and (b) ( = 0.001 model. 
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Figure 4.26 Acceleration PSDs from nonlinear ODE simulations for input = (0.5, 1,2, 
4, 8) g data: (a) (= 0.01 model and (b) (= 0.001 model. 
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Figure 4.27 Displacement input to force output frequency response functions 
determined from 88 s of nonlinear ODE simulation results, ( = 0.01 model input = (0.5 , 
1,2,4,8) g data: (a) correlated displacement input and (b) uncorrelated displacement 
input. 
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Figure 4.28. Nonlinear displacement input to force output frequency response functions 
determined from 88 s of nonlinear ODE simulation results, ( = 0.01 model input = (0.5, 
1,2, 4, 8) g data: (a) uncorrelated squared displacement input and (b) uncorrelated 
cubed displacement input. 
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Figure 4.29. Displacement input to force output coherence functions determined from 
88 s of nonlinear ODE simulation results, ( = 0.01 model data: (a) input = 0.5 g and (b) 
input = 8 g. Legend: Yul y= coherence of linear uncorrelated displacement to force, ,){,2y = 

coherence of squared uncorrelated displacement to force, Yu3y = coherence of cubed 
uncorrelated displacement to force, LYuiy = summed coherences. 
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Figure 4.30 Displacement input to force output frequency response functions 
determined from 88 s of nonlinear ODE simulatiop. results, (= 0.001 model 
input = (0.5 , 1,2,4,8) g data: (a) correlated displacement input and (b) uncorrelated 
displacement input. 
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Figure 4.31 Nonlinear displacement input to force output frequency response functions 
determined from 88 s of nonlinear ODE simulation results, (= 0.001 model 
input = (0.5, 1,2, 4, 8) g data: (a) uncorrelated squared displacement input and (b) 
uncorrelated cubed displacement input. 
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Figure 4.32 Coherence function functions for 88 s of nonlinear ODE simulation results, 
(= 0.001 model data: (a) input = 0.5 g and (b) input = 8 g. Legend: Yul y= coherence of 
linear uncorrelated displacement to force, Yu2y = coherence of squared uncorrelated 
displacement to force, Yu3y = coherence of cubed uncorrelated displacement to force, 
LYuiy = summed coherences. 
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5 FATIGUE ANALYSIS OF NONLINEAR NARROWBAND 

SIMULATIONS 

This chapter will discuss stress and fatigue damage analysis of the linear and nonlinear 

ODE model results. The goal of this chapter is to demonstrate that time to failure 

estimates based on peak stress response probability density functions can be determined 

with novel and efficient PDF transforms. 

Displacement time history files (discussed in Chapter 4) are processed with linear first­

order and cubic third-order displacement to strain relationships to show how the 

nonlinearities affect the results. The properties of the linear and nonlinear displacement 

to strain equations were determined from measured values from the WP AFB 

experiments (discussed in Chapter 3). Once the strains were determined, the stress was 

estimated based on a simple stress strain relationship with the elastic modulus. 

The stress time histories were sampled to determine peak stresses, which resulted in 

Rainflow Matrices (RPM). The RPM were processed to determine fatigue damage and 

time to failure, assuming the use of a steel SAEI015 material (as in Chapter 3). The 

damage calculations were performed for a baseline damage equation with no mean 

stress effects and with two additional equations that included mean stress effects have 

been considered. 

First, baseline linear ODE models are used for comparison to the subsequent nonlinear 

model damage calculations. Next, an intermediate set of calculations was performed on 

the nonlinear displacement results using just the linear part of the displacement to strain 

relationship. A final set of calculations was performed on the total nonlinear stress 

matrices. Histograms were calculated for the minimum and maximum peak stress values 

to be used for comparison to the PDF transform results. 

The time domain stress response simulations were augmented with estimates of the 

rainflow matrices determined with the PDF transform method. The PDF transforms 

started with the peak displacement PDFs and estimated the peak stress PDFs based on 

the linear and nonlinear displacement to strain relationships. The nonlinear PDF 

transform expression yielded a complication, which was due to the addition of a second 
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mapping of displacement to strain that occurs with the addition of the squared 

membrane stress term. The nonlinear peak stress PDFs were converted to histograms for 

use in damage calculations. These time to failure results compared well to the time 

domain simulations and the measured data from the WP AFB experiments. 

5.1 Stress response calculation 

Several authors [16,206] suggest that the bending, membrane, and total strain stress 

response can be estimated with a simple quadratic function of the nonlinear 

displacement y (see equation (1.8)) with the form 

Gbend = Cly 

Gmemb = C2y
2 

alolal = E (Gbend + Gmemb) 

(5.1) 

This equation captures the simple relationship between bending and membrane strain 

and stress, and introduces local minima in the displacement to total strain function, as 

shown in Figure 5.1, which adds a second mapping of strain to nonlinear displacement. 

The results from the WP AFB experiments (see Chapter 3) suggest a more complex form 

of the function 

GUn = Hyl& (I) Y 

Gsquare = H y2 & (I) y2 

Gcube = HY3/i (I) y3 

alOlal = E ( GUn + Gsquare + Gcube ) 

(5.2) 

where Hyl &, Hy2 & and Hy3& are the multi-mode frequency response functions of the linear, 

squared, and cubic nonlinear displacement input to strain response. The filtered input 

and response analysis in Chapter 3 determined a set of constants for these functions. 

These constants (el' e2, and e3) were simplified and modified slightly for use in this 

chapter (see Table 5.1). The strain relationship for this cubic system is now 

(5.3) 
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The addition ofthe cubed term requires further care with regard to estimating nonlinear 

strain (and stress). The new cubic equation has the possibility oflocal maxima that are 

not considered real and must be avoided in the simulations. The parameter e3 is chosen 

to ensure that the local maxima did not occur within the range of data from the ODE 

simulation. The local minimum and maximum values for the cubic equation occur when 

the derivative equals zero, i.e. 

(5.4) 

This has two solutions 

(5.5) 

Substituting theses roots into equation (5.3) gives the value of strain at the minimum 

and maximum. The numerical values for the roots are given in Table 5.2. Figure 5.1 (b) 

shows an example cubic fimction that will be used in the following analysis. To 

illustrate their interaction, typical time domain plots of the linear, squared, cubic, and 

total strains are shown in Figure 5.2. Note that the total strain reaches a minimum at 

approximately -100 1-l8; this corresponds to the minima of the cubic displacement to 

strain fimction shown in Figure 5.1(b). For comparison, the same fimction with the 

cubic term omitted is shown in Figure 5.1(a); the addition of the cubic term tends to 

make the positive displacement region more linear and the negative displacement region 

more nonlinear. 

Stress responses were determined using equation (5.6) (which includes a stress 

concentration factor K = 1.1, that is used to increase the stress locally to compare with 

fatigue calculations in Chapter 3) for the entire set of model results. 

cr ode = K cr total (5.6) 

The analysis of the linear and nonlinear stresses from the ODE simulations is discussed 

next. The results from the (= 0.003 model will be used because it is closest to the 

measured damping from the WPAFB experiments. The SAE 1015 steel material with 
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elastic modulus E = 204 GPa, and the three sets of fatigue parameters are used again in 

this chapter. 

5.1.1 Linear ODE baseline model rainflow matrix and damage 

The normalized RPM for 4900 s of the baseline linear (= 0.003 model is shown in 

Figure 5.3. The plot shows that the main response is along the R=-l (zero mean) 

diagonal of the RPM. The RPM can then be integrated or summed along the minimum 

and maximum stress axes to form histograms, as shown in Figure 5.4(a). Both 

histograms show a classic Rayleigh shape. Note that the histogram of minima is a 

"mirror image" of the histogram of maxima. Figure 5.4(b) shows that the peak PDF 

determined from the histogram of maxima is in excellent agreement with a Rayleigh 

distribution. 

The stress standard deviation 0"0' and time to failure results for the linear ODE baseline 

model are given in Table 3.15. Note that at the highest 8 g input level, the predicted 

times to failure are less than the total of 4900 s of data used to generate the RPM and 

RPD results. This would imply a high probability of fatigue failure if the linear 

assumption were true. A typical RPD matrix for the scaled linear baseline ODE results 

is shown in Figure 5.5(a). 

One important observation from this plot is that there are a few stress cycles that occur 

at stresses above the ultimate strength of 415 MPa for this material. This would indicate 

that the material could also fail as a result of a peak stress at some time within the 

4900 s of simulation. There are also many cycles that occur above the yield strength of 

228 MPa. These observations require further investigation. 

5.1.2 Nonlinear ODE model linear rain flow matrix and damage 

A preliminary step toward the total nonlinear fatigue analysis is to analyze the fatigue 

damage for the linear part of stress, which is determined from the nonlinear 

displacement. This set of results includes the nonlinear change in the peak displacement 

PDF, the nonlinear change in the stress standard deviation and the shift in the rate of 
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zero crossings and peaks. This linear model does not include any effects of the 

membrane or cubic displacement to stress terms. 

The stress standard deviation and time to failure results for the nonlinear displacement 

with linear stress model are given in Table 5.4. Compare this with the linear results in 

Table 3.15; the estimated time to failure increases dramatically as the system response 

becomes more nonlinear. At the maximum input, the nonlinear estimate is 

approximately four orders of magnitude longer than the linear estimate. 

An important observation from these linear stress model results is that the time to failure 

is about the same for the three damage equations. This is an expected result; the baseline 

damage model has a zero mean stress assumption. 

5.1.3 Nonlinear ODE model membrane stress rainflow matrix 

An example of the quadratic membrane stress RFM, determined from the nonlinear 

ODE results, is shown in Figure 5.6(a) for the 2 g input load. The figure is normalized 

by the standard deviation of the membrane stress. It shows that membrane stress is 

always positive with all stress cycles (except for two outliers) having a minimum stress 

of zero. 

5.1.4 Nonlinear ODE model total stress rainflow matrix and damage 

The total stress RFM shows the truly nonlinear nature of the predicted stress response. 

This model now includes all of the nonlinear effects that are assumed to be present in 

this analysis. Figure 5.6(b) through Figure 5.7(b) show the normalized total stress RFM 

for the nonlinear model from the lowest 0.5 g input through to the highest 8 g input. The 

addition of the squared and cubic displacement to strain terms causes the RFM to curve 

away from the main RFM diagonal. This indicates the existence of a significant mean 

stress term in the rainflow cycles. The RFM above 2 g shows the increase in the number 

of rainflow cycles that have a minimum stress of approximately -20 MPa. 

Normalized histograms of stress peak minima and maxima are shown for each input 

level in Figure 5.8(a) through Figure 5.9(b). These histograms were normalized by the 
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absolute value of the minimum stress at each level (see Table 5.2) to clarify the 

asymptotic nature of the peak response. At the lowest input level, the shape of the 

histograms of minima and maxima appear approximately Rayleigh, but as the input 

increases and the response becomes more nonlinear, the shapes change dramatically. It 

is also interesting to observe that at the relatively low 1 g input level, some positive 

stress maxima start to appear near apeak / [amin[ = -1 (see Figure 5.8(b)). As the input 

level increases, the number of stress minima near apeak / [amin[ = -1 increases 

dramatically. The vertical scale in these graphs is linear to illustrate the dramatic 

increase in low amplitude cycles. 

The normalized nonlinear bending stress damage results presented in this section show 

the departure of the nonlinear damage from the linear cases presented in the previous 

sections. Figure 5.10(a) through 

Figure 5.11 show the RFD matrices for the total stress model using the Morrow damage 

equation. One important observation is that the damage is concentrated near the high 

stress cycles with very little contribution from the plentiful low-amplitude cycles near 

the minimum peak stress asymptote. 

Another important observation is that the time to failure estimates (see Table 5.5) now 

show a marked reduction when using the Morrow and Walker damage equations, which 

include mean stresses. These examples help to illustrate the importance of using a 

fatigue model that includes mean stress effects when working with structures that 

exhibit nonlinear stress responses. 

5.2 Nonlinear PDFs and life estimates 

This section extends the PDF transforms of nonlinear displacement to strain that was 

introduced for use with the raw multi degree of freedom WP AFB data in section 3.3.2. 

The work in this section is based on single degree of freedom models that now have the 

same rates of displacements and bending strains. 
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5.2.1 PDF estimate for nonlinear total stress 

The PDF transfonn method is used to estimate the nonlinear peak total stress PDF from 

nonlinear peak displacement PDFs. In this case, the nonlinear peak displacement to 

peak total stress function was determined based on single mode nonlinear parameter 

estimates of the WP AFB data (discussed in Section 3.3.1.2) 

cr=g(y) 

cr = KE( elY + e2y2 + e3y3) 
(5.7) 

where cr is the nonlinear peak total stress and y is the nonlinear peak displacement. The 

parameters K, E, and the coefficients ej are given in Section 5.1. This is the standard 

fonn of the nonlinear function with the polynomial on the right hand side of the 

equation. 

The PDF transfer function for this nonlinear peak displacement to peak stress function 

IS 

() 
Pnlpeak (y) 

Pnlpeak cr = I dcrldyl 

where Pnlpeak are the nonlinear PDFs of peak stress and displacement. The absolute 

value ofthe derivative of (5.7) is 

The derivative has two roots 

(5.8) 

(5.9) 

-e2 ±~e~ -3e2e3 y = -"----'---'----- (5.10) 
el 

The range of results was limited such that only one root (the minimum) was observed 

(see discussion in Section 5.1). 

The second step in this development was to make a further assumption that each 

positive displacement peak is followed immediately by a negative displacement 

163 



minimum with the same magnitude. Another way of thinking of this is that each point 

on a positive peak displacement PDF maps to a complete cycle with amplitude equal to 

the positive peak value. This is considered fair, based on the standard assumption that a 

narrowband response (single degree of freedom model) has one positive peak for each 

positive zero crossing (see Figure S.2 for example time data). The displacement cycle 

assumption now lets one calculate the PDF for min and max stresses based on the total 

stress in equation (S.7). Theories that extend this single mode stress model to multi 

mode stress models [170, 172] may be useful for further research. 

At this point, it is helpful to observe how the displacement maps to total stress with an 

example. Figure S.12(a) shows six cycles of an increasing displacement function, and 

Figure S.12(b) shows the corresponding total stress based on equation (S.7). The first 

three cycles behave "normally," but the final three cycles show that the stress function 

now contains two cycles for one displacement cycle. First, define a primary cycle that 

has a stress maxima mapping to the positive displacement maxima, and a stress minima 

mapping to the displacement minima. This one-to-one mapping works for displacement 

cycles up to the value determined by equation (S.10). Note that the standard PDF 

transfer function (4.29) is asymptotic at this point. The primary cycles have a minimum 

at the zero slope of the total stress function. Also, defme a secondary cycle that has a 

minimum stress at this same minimum and a maximum stress at the point mapping to 

the negative minimum of the displacement cycle. 

The total stress PDF can be determined numerically as follows. First, defme a range of 

nonlinear peak displacement values y at a convenient spacing 

-40'y ::;; y ::;AO'y 

dy = O.OlO'y 
(S.l1 ) 

corresponding to the positive peak displacement range observed in the nonlinear ODE 

simulation. Determine the PDF of nonlinear positive displacement peaks Pni peak (y) 

based on a PDF transform 

Pnipeak (y) = I dx/ dy IPpeak (x) (5.12) 
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oflinear peak displacement PDF (Ppeak (x)) with the values ofx and the derivative dx/dy 

of the nonlinear functions (see Chapter 4, Section 4.2.9.2) 

x = h (y), Y E [0,00) 
2 3 

X = CIY + C2Y + C3Y (5.13) 

dx/ dy = Cl + 2c2y + 3c3y2 

determined numerically from the positive values of y chosen above from equation 

(5.11). Also, determine a second nonlinear displacement PDF of negative minima using 

the same PDF, but now assigned at the negative values ofy 

x = h(y), yE (-00,0) 
2 3 

X = ClY - c2Y + C3Y (5.14) 

dx/ dy = Cl - 2c2y + 3c3y2 

Figure 5.13 is an example of this process for data from the 8 g simulation, (= 0.003. 

Now, given the PDFs of nonlinear peak displacement from equation (5.12), numerically 

evaluate the PDF transfer function in equation (4.29) using the derivative from equation 

(5.9) and the values ofy from equation (5.8) to yield the nonlinear peak stress PDF. At 

the lower levels of input, the mapping of displacement to stress is one to one, as shown 

in Figure 5.14(a). At higher input levels, the secondary cycles start to occur, resulting in 

additional cycles. There are now two possibilities for generating stress maxima and 

minima. Figure 5.14(b) gives an example of this result. Note that the total stress PDF 

has an asymptote at-19.67 MPa. 

Figure 5.14(b), shows a PDF of primary maxima and secondary maxima. These 

functions can be plotted in a form like the W AFO RFM as shown in Figure 5.15. A 

visual comparison of the PDF transform results (see Figure 5.15(a)), and the RFM of 

the ODE data (see Figure 5.15(b)) is very encouraging. 

These functions are not strictly PDFs anymore, because the "one-to-two" mapping of 

stress results in an integrated area greater than one. The correct peak total stress PDF 

has to be normalized by the sum of the primary and secondary contributions. The 

normalization can be determined as discussed below. 
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One complication of this numerical PDF transform method is that the total stress 

functions determined from equation (5.7) have uneven spacing. The resulting nonlinear, 

unevenly spaced PDFs of primary and secondary stress cycles can be interpolated at 

evenly spaced points and normalized by the sum of the two functions. Another method 

is to generate histograms of the primary and secondary cycles and simply sum the two 

to get an overall histogram of total cycles. This method was used to generate histograms 

for comparison to those determined from the ODE simulations of total stress (see 

Section 5.1.4). 

Peak stress histograms of minima and maxima are shown in Figure 5.16. Note that the 

histograms are shown on a logarithmic scale in order to allow for better observation of 

the results near the tails ofthe histograms. These figures show that the histogram results 

determined by PDF transform compare very well with the rainflow histograms 

determined from the time domain data of total stress. An intermediate result of this 

work is the estimation of the number of stress peak cycles for the 4900 s of simulated 

data (see Table 5.6). An alternative way to present this could be to estimate the rates of 

primary, secondary and total peaks. 

5.2.2 Damage estimates for PDF transform method 

Having estimated the PDFs and histograms of nonlinear peak total stress, the next step 

in the analysis is to determine time to failure for the transformed displacement results. 

In this case, damage estimates were determined directly from the primary and secondary 

histograms of peak total stress minima and maxima (the RFM were not calculated). 

Damage calculations were also made using only the primary histograms of peak total 

stress minima and maxima. The calculations based on only the primary cycles were 

equal to the combined damage of primary and secondary cycles up to the fifth 

significant digit or more. The primary cycle results are given in Table 5.7. These 

compare very favorably with the time to failure results from the ODE stress simulations 

in Table 5.5. 
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5.3 Nonlinear narrowband simulation summary 

This chapter was devoted to the fatigue analysis of the narrowband ODE simulations 

discussed in Chapter 4. Linear baseline and nonlinear time domain stress responses 

were processed to determine rainflow matrices of stress peaks. Time to failure estimates 

were made with three damage equations. 

A method to estimate nonlinear peak total stress PDFs was developed. The PDFs were 

determined by first estimating the nonlinear peak displacement PDFs (from linear peak 

PDFs) and then by determining the nonlinear peak total stress PDFs (from the nonlinear 

peak displacement PDFs). The PDF transform results were used to estimate time to 

failure, which compared well to the time domain cycle counting estimates. Primary 

stress cycles were shown to account for the bulk of the fatigue damage. 

The change in time to failure, based on each fatigue equation assumption, is illustrated 

in Figure 5.17 for the assumed SAE 1015 material and the results tabulated in this 

chapter. The graphs show that the linear model can estimate lives over 100 times shorter 

at the maximum input level, while the nonlinear model without mean stress effects can 

estimate lives about 10 times longer. 

When one considers nonlinear structural effects, the ODE simulations have 

demonstrated that there can be a potential improvement in the fatigue lives of structures 

(compared to linear estimates), but there are potential simplifications that could 

overestimate the improvement. It is highly recommended to use fatigue equations that 

include mean stress effects (e.g. the Walker or Morrow equations) when working with 

nonlinear structures. 

This chapter has demonstrated that the PDF transform method can be successfully used 

to estimate peak stress joint PDFs for single degree of freedom systems. The added 

complication of the one-to-two mapping of displacement cycles to stress cycles has 

been included in a straightforward and efficient solution technique. 
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5.4 Chapter 5 Tables 

Table 5.1. Nonlinear displacement to bottom strain parameters for ODE simulations. 

Input e1 /-LE/mm e2/-LE/mm2 e3/-LE/mm3 

0.5 g 141.7 40.3 -15.26 

1 g 141.7 40.3 -15.26 

2g 141.7 40.3 -14.65 

4g 141.7 40.3 -10.37 

8g 141.7 40.3 -6.10 

Table 5.2. Nonlinear displacement to bottom strain and stress minimum and maximum 
for ODE simulations. 

Input Ymin mm Ymax mm Cmin /-LE crmin 11Pa 

0.5 g -1.087 2.848 -86.85 -19.49 

1 g -1.087 2.848 -86.85 -19.49 

2g -1.100 2.934 -87.65 -19.67 

4g -1.201 3.791 -94.12 -21.12 

8g -1.347 5.749 -102.9 -23.09 

Table 5.3. Time to failure estimates for linear ODE baseline model data. 

Input era 11Pa cr max 11Pa Baseline (s) Morrow (s) Walker (s) 

0.5 g 5.06 26.63 1.9452x 1014 1.9450x 1014 1.4058x1014 

1 g 10.12 53.25 4.217x1011 4.216x lOll 3.216x1011 

2g 20.24 106.5 9.141x108 9.138 x108 7.357x108 

4g 40.24 213.0 1.982x106 1.980x106 1.683x 106 

8g 80.96 426.0 4.296x103 4.285x103 3.850xl03 
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Table 5.4. Time to failure estimates for nonlinear ODE displacement, linear stress 
model data. 

Input CTa (MPa) crmax MPa Baseline (s) Morrow (s) Walker (s) 

0.5 g 4.97 23.15 6.55x1015 6.55x1015 4.69x101S 

1 g 9.59 41.67 1.12x1013 1.12x1013 8.49x1012 

2g 17.14 66.84 2.38x1011 2.38x1011 1.85x1011 

4g 28.74 102.9 1.90x 109 1.90x109 1.54x 109 

8g 44.67 149.5 2.43x107 2.43x107 2.03x 107 

Table 5.5. Time to failure estimates for nonlinear ODE displacement, total nonlinear 
stress model data. 

Input CTa MPa cr 0 MPa crmax MPa Baseline (s) Morrow (s) Walker (s) 

0.5 g 4.94 0.22 26.62 3.45x1014 3.36x1014 1.78x1014 

1 g 9.40 0.82 49.50 2.02x1012 1.86x1012 8.41x1011 

2g 16.17 2.63 76.28 3.97x1010 3.28x1010 1.24x1010 

4g 26.24 7.39 118.7 6.75x108 4.52x108 1.65x108 

8g 41.71 17.84 207.1 7.27x106 3.20x106 1.51x106 

Table 5.6. Number of stress cycles from transformed nonlinear displacement PDF 
compared to stress model ODE data. 

Input Primary cycles Secondary Total cycles ODE Stress 
cycles cycles 

0.5 g 342492 0 342492 342550 

1 g 350811 135 350946 350977 

2g 374394 50992 425386 393 897 

4g 429342 231 359 660701 590007 

8g 529485 431 135 960620 890603 
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Table 5.7. Time to failure estimates for transfonned nonlinear displacement PDP 
primary cycle data. 

Input Baseline (s) Morrow (s) Walker (s) 

0.5 g 3.72xlO14 3.63xlO14 1.93x 1014 

1 g 2.40x1012 2.23x1012 1.02xlOI2 

2g 4.11x10 Io 3.40x101o 1.28x10lo 

4g 6.80x108 4.54x108 1.67x108 

8g 7.03x106 3.09x106 1.46x106 
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5.5 Chapter 5 Figures 

(a) (b) 
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Figure 5.1. Nonlinear displacement to nonlinear strain functions : (a) quadratic function 
and (b) cubic function for 8 g parameters. 
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Figure 5.2. Time domain linear, squared, cubic and total strains for nonlinear ODE 
simulations: S = 0.003 model, input = 8 g. 
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Figure 5.3. Normalized bending stress rainflow matrix for linear ODE simulation: 
(= 0.003 model, input = 1.0 g data, <Ja = 10.12 MPa. 
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Figure 5.6. (a) Normalized membrane stress rainflow matrix for nonlinear ODE 
simulation: S = 0.003 model, input = 2.0 g, O'a = 3.35 MPa. (b) Total stress rainflow 

matrix for nonlinear ODE simulation: S = 0.003 model, input = 0.5 g, O'a = 4.94 MPa. 
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Figure 5.9. Total stress rainflow minima and maxima histograms for nonlinear ODE 
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Figure 5.10. Total stress rainflow damage matrix, morrow damage equation, for 
nonlinear ODE simulation s= 0.003 model: (a) input = 0.5 g, 0"0 = 4.94 MPa and (b) 
input = 2.0 g, 0"0 = 16.17 MPa. 

175 
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Figure 5.11 . Total stress rainflow damage matrix for nonlinear ODE simulation: 
(= 0.003 model, input = 8.0 g, CY(J= 41.71 MPa, morrow damage equation. 
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6 CONCLUSIONS 

6.1 Summary 

The primary focus of this thesis has been to develop original approaches to assist in the 

estimation of time to fatigue failure for nonlinear structures when subjected to random 

loading. Experimental data from a set of nonlinear random vibration tests has been 

analyzed in the time and frequency domains, yielding useful observations about the 

measured displacement and strain responses. Additional complementary numerical 

simulations were performed to augment the experimental findings. Throughout this 

thesis, straightforward and accepted engineering analysis methods were used to identify 

trends in the data and to help explain the physics ofthe problem. Graphical 

representations and tabulated results from the analysis have lead to improved 

understanding of the nature of the nonlinear random fatigue problem. Specific 

contributions in the area of the experimental and analytical studies are now briefly 

described. 

6.1.1 Experimental studies 

The WP AFB experimental data yielded a wealth of nonlinear random multi-mode 

response data that was analyzed in both the frequency and time domains. The reverse 

path nonlinear transfer function method was shown to be very effective in identifying 

nonlinear models for measured data. Transfer functions for both the force to nonlinear 

displacement response and the displacement to nonlinear strain response were shown to 

be consistent even though the raw displacement and strain data showed strong nonlinear 

responses that changed over the five input level. Multi path nonlinear frequency domain 

transfer functions were also shown to be useful for reconstructing the linear, squared 

and cubic parts of the time domain strain response. The linear transfer function 

estimates were subsequently used to approximate linear random displacement and strain 

responses. Modal models of the nonlinear system response were proposed based on the 

identified transfer and coherence functions. 
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6.1.2 Numerical studies 

The linear and nonlinear Duffing simulations, based on the clamped-clamped beam 

experiments, were developed and executed so that large data sets could be used to show 

trends in the nonlinear response. The major findings of this work can be summarized as 

follows: 

The standard deviation and kurtosis for the nonlinear random response converge much 

more slowly than the corresponding linear random response quantities. The response 

displacement kurtosis tended to be less than 3 and the response acceleration kurtosis 

tended to be greater than 3, whilst the response velocity kurtosis tended to equal 3 for 

the Duffing model studied. The velocity response distribution tended to be normal for 

the nonlinear models. 

Random errors in nonlinear standard deviation estimates, based on the statistical 

bandwidth of the frequency domain PSD response, are much greater than what would be 

estimated with linear random theory. The harmonic distortion of the displacement, 

velocity and acceleration response states can be significant enough to cause an estimate 

of the statistical bandwidth to be even greater than the bandwidth of the input spectrum. 

Linear to nonlinear displacement functions determined from the ODE results, using the 

inverse distribution function method, appear similar to those estimated directly from the 

experimental displacement data. The linear peak to nonlinear peak functions all tended 

to follow one main trend, even over wide ranges of input amplitude and damping 

values. The linear to nonlinear peak functions determined using an assumed generalized 

linear peak distribution function, with a ratio of zeros to peaks determined from the 

nonlinear data, produced the best goodness-of-fit agreements. The linear to nonlinear 

peak displacement response functions appear to form an upper bound (or limiting case) 

of the linear to nonlinear normal displacement response functions. A novel use of the 

linear to nonlinear normal displacement function was developed to estimate the rate of 

zero crossings for the nonlinear response. The estimated rates agree well with those 

determined by counting level crossings. 
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The reverse path identification process was used again to demonstrate its potential with 

simulated nonlinear Duffing model data. The method accurately estimated the Duffing 

model linear and nonlinear frequency domain parameters. 

6.1.3 Major fatigue findings 

Time to failure was estimated based on the raw strain measurements and several 

estimates of linear and nonlinear strain response based on the estimated nonlinear 

frequency response functions. The time to failure estimates, using rainflow matrices of 

stress peaks, showed that the nonlinear results were significantly longer than the linear 

results, especially at the highest input level. The life estimates were also made with two 

damage models that included nonzero mean stresses. 

A method to estimate nonlinear peak total stress PDFs was developed. The PDFs were 

determined by first estimating the nonlinear peak displacement PDFs (from linear peak 

PDFs) and then by determining the nonlinear peak total stress PDFs (from the nonlinear 

peak displacement PDFs). The added complication ofthe one-to-two mapping of 

displacement cycles to stress cycles has been included in a straightforward and efficient 

solution technique. The PDF transfonn results were used to estimate time to failure, 

which compared well to the time domain cycle counting estimates. Primary stress cycles 

were shown to account for the bulk of the fatigue damage. 

When one considers nonlinear structural effects, there can be a potential improvement 

in the fatigue lives of structures (compared to linear estimates), but there are potential 

simplifications that could overestimate the improvement. It is highly recommended to 

use fatigue equations that include mean stress effects (e.g. the Walker or Morrow 

equations) when working with nonlinear structures. 

182 



Several significant observations can be summarized for the major changes in fatigue life 

for a nonlinear stiffening structure: 

An increase in response rate produces a linear increase in damage. 

The addition of nonlinear tensile membrane stress can yield an increase in damage. 

The change in the peak response PDF shape can result in a decrease in damage. 

The decrease in the response standard deviation yields an exponential decrease in 

damage. 

6.1.4 Intermediate results of interest 

Time domain analysis of the experimental data showed strong nonlinear behavior. PDFs 

of displacement and strain responses were determined for use with the Inverse 

Distribution Function (IDF) method to estimate linear to nonlinear random functions. 

These random functions are a unique way to show trends in the nonlinear response. 

The random functions also formed the basis for nonlinear PDF transforms. Basic 

polynomial curve fits of the linear to nonlinear functions were used to estimate normal 

random and peak random PDFs of the nonlinear displacement, acceleration and strain. 

Investigations of the change in peak PDFs, as the ratio of the rates of zeros to peaks 

changed, yielded observations of importance. The peak PDF and the peak histogram of 

a generalized response (i.e., any response from narrowband to completely wideband) 

were shown to be composed of the sum of narrowband and wideband parts. Equations 

to estimate the ratio of zeros to peaks (iJ, based on the number of negative value 

maxima, were developed. An equation to determine the value of the distribution 

function at a peak value of zero, as a function of (iJ, was also developed. 

6.2 Areas for future research 

This study has developed and introduced numerous analysis techniques that, when used 

together, have helped to explain the behavior of nonlinear structures. Whilst performing 
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this work, some additional avenues of research have been identified that may be of 

interest. They can be divided into experimental and theoretical research investigations. 

6.2.1 Experimental studies 

The predicted time to failure for nonlinear random responses has been based on 

established sinusoidal fatigue and cumulative damage principles. Although some 

experimental studies of random fatigue have been performed, it would be very 

interesting to study the basic problem of linear random fatigue more thoroughly. 

Additional random fatigue tests with controlled positive and negative mean stresses, 

which could build from the baseline linear random tests, would be a useful exercise. 

Full nonlinear random fatigue tests for stress stiffening and stress softening systems 

would help illuminate the underlying physical and stochastic nature of this topic. 

Baseline linear random fatigue tests, under controlled conditions, would be a very 

interesting research project. The standard assumption of linear cumulative damage 

could be validated or challenged. Ideally, these baseline linear random fatigue tests 

would induce narrow band stresses that could be used for comparison to random fatigue 

equations based on a Rayleigh stress peak distribution. Additional attention to the high 

and low cycle regions would be of further interest. In the low cycle region, the 

probability of occurrence of peak loads above the elastic limit of the material might 

point to a revised random fatigue model that would include elastic and plastic terms. On 

the other hand, the high cycle region could be used to study the existence of a random 

endurance limit as compared to a sinusoidal endurance limit. This high cycle random 

fatigue study would be of interest to engineers working with high frequency 

mechanisms (e.g. MEMS) or structures that require very long service lives. Further 

basic research into the change in the random response as the test item nears failure 

would be of interest to those working in the area of structural safety monitoring. 

Perhaps a change in the response probability density function might be an indicator of 

the onset of failure. 

An extension of these basic linear random fatigue experiments would be to add tensile 

and compressive stresses. Tensile mean stresses are known to reduce fatigue life while 

compressive stresses have been shown to increase life in metallic materials. Controlled 
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experiments with various magnitudes of positive and negative mean stress would help to 

validate the extension of sinusoidal mean stress equations for random fatigue. This 

research could be applied to a range on engineering problems, notably civil engineering 

applications that have preload due to gravity or pre-stress (e.g. pre-stressed concrete 

structures, subjected to random wave loads). The random mean stress fatigue problem is 

also a concern in aerospace applications where thermal loads can cause expansion or 

contraction resulting in significant mean stresses. 

Multimode linear random fatigue tests would be another logical extension of the 

baseline linear narrowband fatigue tests. Further validation of rainflow cycle methods 

for random fatigue would be useful. A combined investigation that also included 

validated mean stress random fatigue models would be ideal. 

Ultimately, combining basic linear random fatigue testing with nonlinear random 

fatigue testing would allow validation of the theories developed herein. Flat beam or 

plate fatigue tests, like the clamped-clamped beam experiments at WP AFB, could be 

run long enough to induce fatigue failure. Careful control of the test fixture and 

environment should be used to limit (or enhance) the effects of thermally induced 

preload. An alternate configuration with curved geometry would be useful for studying 

the stress softening response case where times to failure are expected to be less than 

predicted by linear theory. The curvature experiments may be less sensitive to thermal 

effects which would cause change in geometry but not significant change in preload. 

All of these experimental tests could benefit from careful specimen design, additional 

instrumentation and large sample sizes. Adding holes or reduced section areas can yield 

higher strains and stresses that should allow fatigue failure at reasonable test durations 

and input levels. These stress concentrations could be strategically placed to study 

single and multimode fatigue response. Strain gage instrumentation around these high 

stress locations would be useful for further numerical post processing. Additional 

displacement and acceleration transducers would assist correlation of the time and 

frequency domain analysis of the test results. Temperature sensors for tests with 

nonlinear structures would help identify possible temperature induced loads. Simple 

sample designs that could be inexpensively fabricated would allow affordable tests of 

larger sample sizes. A common design that could be used for linear, mean stress, multi 
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mode and nonlinear test variations would help the researchers focus on the basic physics 

of the problem. 

6.2.2 Theoretical research 

Continued theoretical work in the area of linear and nonlinear random structural 

response is recommended. Ideally this theoretical research could be combined with 

experimental data to further the understanding of the physical problem. 

Further research into the link between multi degree of freedom linear frequency domain 

response models (i.e. modal or frequency response function models) and the two­

dimensional rainflow matrix would help validate the empirical models that have been 

developed to date. A rainflow model based on the physics of a linear structure and the 

nature of the random load would be a great advance. 

This thesis concentrated on simple one-dimensional probability functions of 

displacement and strain. An interesting extension of this was the nonlinear PDF 

transformation of nonlinear displacement to nonlinear strain. The resulting total strain 

distributions were best shown as skewed results on a rainflow matrix. More complicated 

two-dimensional nonlinear PDF transfOlms of multi degree of freedom rainflow 

matrices could be an important extension of the methods presented herein. 

Nonlinear reduced order "modal" domain analysis methods are being developed to help 

reduce the computationally expensive cost of analyzing practical engineering structures. 

Further research with the reverse path nonlinear frequency domain identification 

methods may help scientists develop more accurate nonlinear modal models. Although 

the "three path" linear, square and cubic reverse path method used in this thesis was 

successful, other nonlinear basis functions may have more physical meaning. The 

nonlinear models of force to displacement to strain developed in this thesis are a logical 

starting point for continued nonlinear modal research. The nonlinear frequency domain 

displacement to strain relationships are particularly novel and may help with the 

development of improved nonlinear modal models. 

The link between PDFs of displacement, velocity and acceleration for nonlinear 

response may also help with nonlinear vibration analysis techniques. This study 
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demonstrated that the change in the displacement and acceleration PDFs were related; 

as the system became more nonlinear, the displacement PDF became skewed such that 

the kurtosis became less than 3, whilst the acceleration PDF was skewed in an opposite 

fashion such that the kurtosis became greater than 3. A through understanding of this 

interaction may be helpful for a reverse path simulation using Fourier transforms of 

simulated time domain responses. 

6.3 Closing remarks 

Overall there is still much to be done, but it is believed that the work presented is a 

significant step in improving the understanding and development of techniques suitable 

for the fatigue and random response analysis of structures in their nonlinear response 

regIme. 
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