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Statistical analysis methods are developed for determining fatigue time to failure for nonlinear structures
when subjected to random loading. The change in the response, as structures progress from a linear regime
to a large amplitude nonlinear regime, is studied in both the time and frequency domains. The analyses in
the two domains are shown to compliment each other, allowing keen understanding of the physical

fundamentals of the problem.

Analysis of experimental random vibration data, obtained at Wright Patterson Air Force Base, is included
to illustrate the challenge for a real, multi-mode, nonlinear structure. The reverse path frequency response
identification method was used with the displacement and strain response to estimate nonlinear frequency
response functions. The coherence functions of these estimates provided insight into nonlinear models of
the system. Time domain analysis of the nonlinear data showed how the displacement and strain departed
from a normal distribution. Inverse distribution function methods were used to develop functions that
related the linear to the nonlinear response of the structure. These linear to the nonlinear functions were

subsequently used to estimate probability density functions that agreed well with measured histograms.

Numerical simulations of a nonlinear single degree of freedom system were produced to study other
aspects of the large deflection structural response. Very large sample size data sets of displacement,
velocity, acceleration and stress were used to quantify the rate of convergence of several random response
statistics. The inverse distribution function method was also applied to the simulation results to estimate
normal and peak linear to nonlinear functions. These functions were shown to be useful for probability

density function estimates and for estimating rates of response zero crossings.

Fatigue analysis was performed on the experimental and simulated linear and nonlinear data. The time to
failure estimates for the nonlinear results was shown to increase dramatically when compared to the linear
results. The nonlinear stresses have significant positive mean values due to membrane effects, that when
used with fatigue equations that account for mean stresses, show reductions in time to failure. Further

studies of the nonlinear increase in the frequency of stress response are included in the fatigue analysis.
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1 INTRODUCTION AND LITERATURE REVIEW

The main motivation for this research is the need to predict fatigue lives for structures
that exhibit nonlinear response to random loading. A nonlinear response is indicated by
a change in response that is not proportional to a change in the input load. It can be
observed in the time domain or the frequency domain; the latter can show that the
response spectrum contains frequencies that were not present in the excitation. Fatigue
life estimates based on linear theory may be either very conservative or, for some
nonlinear structures, very optimistic. Rigorous analysis techniques need to be developed
to either take advantages of the longer lives or to ensure that premature failures do not
occur. Random loading dictates an analysis technique that includes the probabilistic
nature of the random response. Nonlinear random response cannot be assumed to be
Gaussian even if Gaussian loading can be assumed. The non-Gaussian response requires

a further level of analysis sophistication.

Common examples of nonlinear random response are lightweight aerospace structures
subjected to acoustic pressure loadings. Very high levels of acoustic pressures can be
generated near rocket or jet engines. When applied to lightweight panels, either curved
or flat, these acoustic excitations can induce geometric nonlinear behavior when the
deflection is large enough in proportion to the geometry. Membrane forces in panels
tend to increase the stiffness of a structure and can add tensile mean stresses. Curved
panels can have further nonlinearities that may result in asymmetric response levels and
in extreme cases “snap through” behavior. Elevated temperatures from exhaust or from
supersonic flow at space re-entry can further complicate the nonlinear response analysis

by introducing the need to consider nonlinear material properties.

This thesis will discuss methods to estimate the response statistics, with an emphasis on
the resulting fatigue life, for nonlinear structures subjected to random loading.
Examples of predicted and measured nonlinear response due to large deflections of
beams will be used extensively throughout this thesis. Data from clamped-clamped
experiments will be used to illustrate frequency and time domain analysis techniques
that have been shown to be useful for identifying and quantifying the nonlinear

behavior. Additional numerical simulations will be used to further the analysis and




investigation of the nonlinear response. Fatigue life estimates, based on the nonlinear
strain response, are compared to baseline linear response estimates. The times to failure
for this class of stress stiffening nonlinear structure are shown to be longer than those

based on linear estimates.

Cyclic fatigue is considered in this thesis to be the ultimate failure mode of the
structural material when subjected to large numbers of stress cycles. The random
loading can lead to large deflections and high peak stresses, and repeated loading that
accumulate damage resulting in fatigue failure. Aerospace structures typically are
subjected to short periods of intense loading mixed with longer periods of reduced
loading. Take-off and landing events are typically where the loads are the greatest.
Supersonic events or brief bursts of gunfire vibration are other high load conditions. The
combined effects of all the accumulated cycles need to be included in the fatigue
analysis to help ensure satisfactory service life. Economic factors that lead to the desire
for continued service from older equipment, or the desire to have reusable vehicles are

additional reasons for requiring long times to fatigue failures.

1.1 Nonlinear structural analysis

There are many reasons why structures can exhibit nonlinear and/or non-Gaussian
random responses. This section will review the various parameters that can lead to
nonlinear system response and discuss methods to identify and predict the nonlinear

response.

1.1.1 Nonlinear system parameters

Physical systems often can be described by linear system parameters, but often some
nonlinear terms can have a significant impact on the total response. These nonlinear

terms are grouped into categories and discussed in the following sections.

1.1.1.1 Mechanical system with nonlinear restoring force

The physical geometry of systems comprised of linear materials can lead to system

properties that result in nonlinear response. The classic example of this is when the

2



1.1.1.1 Mechanical system with nonlinear restoring force

The physical geometry of systems comprised of linear materials can lead to system
properties that result in nonlinear response. The classic example of this is when the
structural change in shape results in modifications to the system restoring force. This

case is often known as the large deflection problem.

A very common example of a nonlinear large deflection problem is a simple pendulum,
oscillating under the force of gravity (see for example [1]). The free vibration equation

of motion 1s
9’+§sin9=o (1.1)

A power series expansion of the sin function, keeping the first two terms is
.. &}
6+&lo-2|=0 (1.2)
/ 6

where g is the gravitational acceleration, / is the length and £is the angle from vertical.

The resonance frequency of the pendulum tends to decrease as the angle increases.

Another basic large deflection case is the vibration of a tensioned string (or wire) with
central mass m, fixed between two points; as the mass deflects a distance x from its
nominal position, the length of the string has to increase, thereby increasing the
restoring force. This change in length and restoring force is a nonlinear relationship of

the change in lateral position (see for example [1])

x* 2x
mi+|S+AEf— ——=0 1.3
[ 212]\/12+x2 (1)

where S is the initial tension, 4 is the cross-sectional area, and F is the elastic modulus
of the string (wire). The simplified free vibration equation of this system for moderate
lateral displacements is

28x 3

mx+T+AE;‘—3:0 (1.4)



The nonlinear stiffness increase in this case tends to increase the resonance frequency of

the string. These two approximate equations can be generalized by the Duffing equation

[2]
¥tax+ px*+yx’ =0 (1.5)

The pendulum approximate solution has =0 and y <0, while the string mass system

approximation has #= 0 and y> 0.

The natural extension of the large deflection string problem is when the material
dimensions increase enough to require the addition of bending stiffness terms; the string
becomes a beam. If the boundary conditions are fixed at both ends, the lateral
displacement again leads to a change in length that causes a tensile axial force. The
stiffness of the fixed-fixed beam system is a nonlinear combination of bending and axial
terms (see [3-7]). The large deflection beam stiffness non-linearity can be assumed to
act like a Duffing oscillator (see for example [8, 9]). A review article [10] summarizes

the status of analysis techniques as of 2000.

Curved beam geometry under large deflections can also result in non-symmetric
stiffness (i.e. lateral deflections toward the center of curvature tend to have reduced
stiffness, while deflections away from the center of curvature tend to increase stiffness).
The curved beam approximate Duffing solution will have f# 0. Very large deflections
of curved beams can lead to an unstable “snap through” condition. One example of a

curved beam used in engineering applications is the coiled wire rope isolator.

As the beam material dimensions increase, additional in-plane terms are added as the
beam becomes a plate or shell. The shell is a natural extension of the string problem
where the axial force translates to a membrane force. The large deflection plate problem
will include nonlinear bending and membrane effects. Curved plates have nonlinear

properties similar to curved beams [11, 12].

Further examples of nonlinear restoring force under large deflections can be described
with bi-linear stiffness due to additional materials coming into contact as gaps close [1].
A physical example of this is a spring or isolator that has a snubber (additional stiffness)

mounted to it to limit large deflections.



1.1.1.2 Mechanical system with nonlinear damping

Another category of nonlinear system parameter is nonlinear damping. The classic

example of this is the nonlinear damped van der Pol oscillator [13]
J'c'+y(1—x2)5c+x=0 (1.6)
The periodic forced response van der Pol equation
J'c'+,u(1—x2)5c+x=asin(27rvr) (1.7)

can lead to highly nonlinear results, the study of which has opened up several areas of
research (see, for example [14, 15]). Damping for structural models can take various
forms (e.g. viscous, hysteretic, etc.), and in this research project, the issue of nonlinear

damping is not of concern compared to nonlinear stiffness.

1.1.1.3 Mechanical system with nonlinear stress

Linear structures are often assumed to have stress and strains that are linear functions of
displacement. Large deflection cases often have nonlinear displacement to strain
relationships. One example that will be discussed in detail in this thesis is the nonlinear
displacement to strain function for beams and plates that involves a combination of
bending and membrane terms. These are often discussed for static loading conditions

[3]. One approximation of the displacement to strain (or stress) function is [16]

e=Cy+C,y* (1.8)
where y is the nonlinear displacement, and C; and C; are constants. Note: this is a
nonlinear instantaneous relationship, not a nonlinear differential equation.

1.1.1.4 Nonlinear materials

Materials can often have basic properties that are nonlinear functions of displacement,
temperature or strain rate. Elastomer materials (e.g. rubber) are common examples that

exhibit nonlinear load deflection responses as bulk materials. Plastic and elastomeric



materials often have a complex shear modulus (or complex modulus) that changes with
temperature and loading frequency. The experimental methods for determining complex

modulus are well-established [17].

1.1.1.5 Non Gaussian loads

Many random noise sources in nature and engineering applications can be considered
Gaussian as a first approximation. There are however, some random loading conditions
that have been shown to be non-Gaussian. Non-Gaussian environmental loads that are
of concem in the field of civil engineering are due to wind [18, 19] and waves [20-27].
Additional non-Gaussian loads that are of concern for acrospace engineers are due to
turbulent boundary flow [28, 29], supersonic flow [30] and thermal acoustic conditions
[31, 32]. Non-stationary random loads from different types of road or ground surfaces
over the life of a vehicle can also be considered as non-Gaussian operating loads [33,
34]. The response of linear systems to non-Gaussian inputs have been documented [35-
37]. Methods to generate non-Gaussian loads time histories may be of interest to the

reader [38-42]).

1.1.2 Analysis methods for nonlinear response prediction

The study of solutions to nonlinear differential equations has been active since the early
1900’s. Work by Kelvin [43], Duffing [2], van der Pol [13], Hamel [44] and others (see
summary articles [14, 45]) have laid the foundation for the mathematical theory. This
section will review the analytic and approximate methods developed to analyze

nonlinear and non-Gaussian responses.

1.1.2.1 Analytic solutions

Recent work in the area of general nonlinear differential solutions can be found in many
references [46-55]. Additional work in the area of non-stationary random process can be

found in [56-58]. Chaos theory has also been applied to engineering problems [59, 60].

Of particular interest to this thesis is the study of level crossings and extreme values.

The seminal work by Rice [61] was followed by the early study of nonlinear statistics



by Lin [16] Crandall [62] and others [63-65]. Recent work in the area with particular
interest to nonlinear, non-Gaussian responses has continued to advance the theory [66-
73]. Level crossings and extremes based on time domain moments have been
developed, most notably by Winterstein and associates [74-76]. Probability distributions
based on Non-Gaussian variables have also been developed [26, 69, 77-83].

1.1.2.2 Equivalent & stochastic linearization

Approximate methods to solving systems of nonlinear differential equations have been
proposed since the first work to solve them. A method known as equivalent linearization
has been researched and applied to random vibration problems for more than 40 years
[5, 84-94]. An equivalent linearization technique solves for equivalent linear model
stiffnesses for a given magnitude of load, with the goal of minimizing the error in the
system response standard deviation. This method has been shown to also produce good
estimates of the change in system modal frequencies, but it cannot estimate changes in
response probability density functions or harmonic distortion of the resonances. The
equivalent linearization method has been extended to higher order powers of the
response in an effort to estimate extremes of the nonlinear response [95]. Another
alternative to the equivalent linearization method, the probabilistic linearization
technique, has been proposed whereby the error in a approximate probability density
function of the response is minimized with respect to the nonlinear probability density
function [96, 97]. Challenges to the standard linearization method are well-documented

(see [98, 99)).

Linear and nonlinear analysis methods based on stochastic moments and cumulants
have been proposed as an alternative to solving the nonlinear Fokker-Planck equations
[100, 101]. Other methods to predict nonlinear response are based on linear systems
with stochastic system properties. Several methods have been proposed to estimate the
power spectral density (PSD) of the nonlinear response by treating the system natural
frequency [102, 103] and other system parameters [104, 105] as random variables.
Modal methods have also been proposed as methods to estimate PSDs of nonlinear

systems [106-108].



1.1.2.3 Reduced order nonlinear differential equations

The need to develop larger and more detailed models of engineering structures has led
to efficient techniques to reduce the order of the models for subsequent dynamic
simulations. Modal analysis methods have proven to be a very effective way to predict
the time and frequency domain behavior of linear systems. Recently modal methods
have been applied as a technique to reduce the order of nonlinear systems [109-114].
The basic idea is to first find the linear reduced order modal properties of the system,
and then to use them to develop a nonlinear ordinary differential equation (ODE) model
of the system. Once the reduced order nonlinear ODE has been solved numerically, the
full model results can be estimated by expanding back from modal coordinates to
physical coordinates. Since this method solves the nonlinear ODE in the time domain, it
has the benefit of allowing estimation of time domain statistical parameters, in
particular probability density functions of the response. The reduced order nonlinear
models also allow inclusion of nonlinear physical behavior such as membrane stiffness.
Similar methods have been employed using nonlinear modal representations of

substructures of larger system [115].

1.1.2.4 Nonlinear Laplace and Fourier transforms

The related field of communication theory has several applications of nonlinear
functions, particularly in the area of detectors for receivers. The behavior of signals and
background noise in nonlinear communication systems has been documented in classic
books by Middleton [116] and Davenport and Root [117]. These texts should be
consulted for a through development of nonlinear Laplace and Fourier transforms as

well as advanced developments of the statistical behavior of nonlinear systems.

1.1.3 Nonlinear frequency domain identification

Advances in experimental signal processing and analysis have led to methods that can
be used to estimate nonlinear properties of systems. This has been a very active area of
research in the last 10 years [118-140]. Nonparametric models, that require no
knowledge of the system or excitation, have been developed [141, 142]. The “reverse

path” technique [125, 143], where the response is transformed into nonlinear functions
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and used as the input to a muliti conditioned input spectral analysis, will be presented

and used extensively in the rest of this thesis.

1.2 Fatigue and damage analysis

Cyclic fatigue is one of the most important failure modes for structures that are required
to withstand repeated applications of dynamic loads. This section will give a review of
fatigue theory, with emphasis on random, non-Gaussian stress cases (e.g. sonic fatigue).
The following sections will give a brief review of early fatigue work, but will also
concentrate on recent theoretical developments. Fatigue equations and notation will be

introduced in chapter 2.

1.2.1 Sinusoidal fatigue

The study of fatigue in materials can be traced to Wéhler [144] in the late 1800’s.
Research in the early 1900’s led to an exponential relationship between stress amplitude
and life by Basquin [145] and a secondary effect on life due to mean stresses by
Goodman [146]. A recent paper by Dowling [147] reviews sinusoidal fatigue equations,
comparing the predictions of various equations that include mean stress to experimental
data. Another recent paper [148) discusses bi-linear fatigue models (attributed to
discrete changes in the slope of S-N curves, and total strain life models (see also [147]))
that attempt to more accurately predict the sinusoidal fatigue life of materials. Mean
stress effects for fatigue in welds [149] due to sinusoidal and random loading have also

been documented.

Some engineering materials, most notably rubber, exhibit highly nonlinear elastic
isotropic behavior with incompressibility. Sinusoidal fatigue analysis methods for
rubber, based on strain and strain energy, have shown to match experimental results

well [150].

1.2.2 Variable amplitude fatigue

Many situations in engineering fatigue problems cannot be considered as constant

amplitude sinusoidal loading. A simple example is a machine that operates at different
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speeds, with different structural forces at each speed, whilst complex examples include
transient and random loading. Methods that have been developed to determine the time-

to-failure or damage for variable amplitude loading will be discussed next.

1.2.2.1 Linear cumulative damage

The founding theory of variable amplitude loading is attributed to Palmgren [151] and
later Miner [152] will be described in this thesis as a linear cumulative damage rule. It
simply states that damage is cumulative, and that each stress cycle contributes to
damage as a function of the number of cycles to failure for that cycle amplitude. Linear
cumulative damage neglects any sequence effects (e.g. low amplitude followed by high

amplitude vs. high amplitude followed by low amplitude) that may change fatigue life.

1.2.2.2 Narrowband random fatigue

The Palmgren-Miner linear damage rule was extended to narrow band random fatigue
by Miles [153] in the mid 1950’s. Miles extended the linear summation of damage to an
integral of stress peaks scaled by the probability density function of stress peaks, which,
for a narrowband random system, was known to be a Rayleigh distribution. The
resulting damage equation was a function of the sinusoidal stress versus number of
cycles to failure (SN curve) fatigue properties and the standard deviation of stress.
Similar derivations with reference to Miles work can be found in [4, 154, 155]. The
same derivation was developed independently again later by Lambert [156], who
extended the development to include statistical properties of the stress-probability
density function (PDF) integrand as well as equations for random fatigue life with

variable stress or strength.

Seminal work with nonlinear response probability density functions and their effect on
fatigue can be traced to two papers in 1963 by Lin [16] and Crandall [62]. Lin
developed relationships for nonlinear stress PDFs based on a quadratic displacement to
stress equation, with the additional assumption that the displacement PDF was also
nonlinear. The number of peaks and troughs were developed, with attention to the
formation of negative stress peaks in the nonlinear structure. Lin’s concluding remarks

still apply today: “...analytically determined distribution of stress peaks in a nonlinear

10



structure shows marked differences from that in a linear structure, especially in the
regions of negative stress peaks...”. In particular for this thesis, “...it is suggested that
further research be carried out with special attention to nonlinear response”. Crandall
developed equations for the rates of zero crossings for nonlinear, non-Gaussian systems,
plus peak PDFs for nonlinear Duffing “hardening spring” oscillators and other systems
with nonlinear restoring forces. Recent derivations of random fatigue due to nonlinear

stress peak PDFs have been developed [157-160].

1.2.2.3 Wideband random fatigue

The special case of narrowband random loading was extended to arbitrary stress cycles
in the 1960’s, using cycle versus amplitude counting methods. The de-facto standard
that emerged was called the Rainflow cycle method, attributed to Matsuishi and Endo
[161]. Research showed that the Rainflow cycle method combined with the linear
damage model gave the most accurate estimates of fatigue life [162]. The rainflow
counting technique was later redefined in more mathematical terms by Rychlik [163-
165] and Bishop [166, 167]. It should be stated here that rainflow cycle counting is a

time domain method that is computationally intensive.

Parallel work with multimode responses was published based on probability theory.
Lambert extended his narrow band theories to multi-degree of freedom random damage
functions [168] based on published one and two degree of freedom experimental data.
Other methods have also been proposed to fit a rainflow range PDF [169-173].

The difficulties with the computation of rainflow cycles distributions from time domain
data has led to the development of frequency domain techniques. The seminal work by
Rice [61] and research since has shown that the PDF of peak response can be
determined from moments of the frequency domain response power spectral density
(PSD) (also called spectral moments), and that the peak PDF is a combination of a
Gaussian and a Rayleigh PDF. Dirlik [174] developed an empirical equation for a
rainflow PDF by performing numerical experiments. This method was applied to
engineering problems (see for example [175]). A review of the spectral moment
technique theory and applications of it to random fatigue problems can be found in

several recent papers [176-179]. Reviews of the Dirlik equation and other published
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rainflow PDF empirical equations [180] have been published by several authors [181,
182]. Alternative methods of estimating the rainflow PDF using spectral moments have

recently been proposed [183, 184].

A second aspect of wideband random fatigue is that stress cycles can have mean values
that are not zero (compared to the ideal narrowband case). Sinusoidal testing has shown
for over 100 years that the addition of a tensile mean stress can reduce the fatigue life. It
is therefore theoretically advantageous to extend the rainflow cycle amplitude PDF to a
multi-dimensional PDF. Two multi-dimensional rainflow cycle PDF formats have been
proposed: 2D PDF of amplitude (or range) and mean values [185-187], and 2D PDF of

minimum (or trough) and maximum (or peak) values [34, 165, 188, 189].

A slightly different approach to the cycle counting methods using Markov chain models
has been proposed [188, 190-192]. This Markov chain method is especially useful for

including sequence effects in damage models.

A natural extension to the uni-axial cycle counting methods has been proposed to
include multiaxial states of stress (see [193] for a summary review as of 1998). Recent
papers that operate in the time [194] and frequency domain [195-197] are also of

interest.

1.2.2.4 Non-Gaussian random fatigue

The area of research for this thesis is the specific topic of non-Gaussian random fatigue.
One of best examples of engineering problems in this area is the study of acoustic
fatigue. Summary reports [198, 199] review the state of acoustic fatigue in 1987 and
1994, and propose plans for future theoretical and experimental work. One of the prime
motivations for the research documented in this thesis was earlier theoretical work by
the author for the US Air Force, under a Small Business Independent Research (SBIR)
contract F33615-02-M-3236, titled Rapid Fatigue Life Prediction for Nonlinear Loading
and Structures. Other research in this area can be found in [34, 189, 200-209].

Sarkani et al. [158] developed a nonlinear transformation of the narrowband Rayleigh
distribution and used this to estimate fatigue damage for various nonlinear exponents

(and their resulting kurtosis values) and material SN fatigue exponents.
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1.2.2.5 Nonlinear cumulative damage

Although this thesis assumes the linear Palmgren-Miner damage rule, as stated above
and detailed in the following chapters, there are challenges to the linear theory that
should be noted. Experimental and in service failures in the 1950°s gave rise to the field
of fracture mechanics which concentrates on crack growth rather than overall structural
fatigue (see the summary article [210]). One of the basic findings of fracture mechanics
is that the crack growth rate is a nonlinear function of the current crack length, the
surrounding material geometry and the applied load. Recent work on fracture mechanics
with application to random loads may be of interest for future research [211-218].
Fracture mechanics analysis has in some ways replaced more classic fatigue analysis,
but the nonlinear sequence effect of stress on life is difficult to treat stochastically in

closed form.

Parallel work with multi level fatigue testing also challenges linear Palmgren-Miner
damage theory. A comprehensive review of the linear and nonlinear cumulative damage
theories was published in 1998 [219]. Additional publications since then may be of
interest [220-227]. Comments by one author [226] in the introduction of his article
summarize the situation well. In short, the linear theory “...is the most often used due to
its simplicity.” “Moreover, the final mathematical expressions of many (nonlinear)
prediction rules are so complex that they are simply not suitable for random loading
applications, especially in analytical form.” There is clearly a need for more research

and practical engineering approaches to the problem.

1.2.3 Reliability due to fatigue

The field of reliability has a strong link to the study of fatigue. The famous author
Weibull began his work by developing a statistical theory for the static strength of
materials [228], and then extended it to the fatigue strength of materials [229].
Reliability analysis has branched out into many fields of applications, but the
underlying physics of the problems often has material fatigue as its root. Later work by
Weibull [230] addressed the joint effect of cyclic and random peak loading, noting that

the data did not follow the linear Palmgren-Miner damage rule.
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Work by other researchers is of interest. Lambert [231] developed a random fatigue
failure model based on a simultaneous variance of strength and stress. Random service
loading, with the inherent scatter and uncertainty in limited measurements, has been
studied by several authors [33, 232-235]. Practical discussions of reliability predictions
for mechanical structures are a topic of continued interest [236-239]. Structural fatigue
life with system uncertainty is another area of recent work [240, 241]. Recently,
methods to model complex, large-size stochastic mechanics problems have been

developed [242-246]).

1.3 Summary

This introductory chapter has presented a review of the nonlinear random vibration
literature and the response failure criteria of cyclic fatigue. The field of nonlinear
random vibration has many important applications in modern engineering problems and
is an active area of research and practical development. The field of random fatigue is
also an active area of research. Methods for fatigue analysis based on extensions to
sinusoidal linear damage fatigue theory have been presented, whilst still other methods,
based on more recent nonlinear damage theory (e.g. fracture mechanics), have been

cited.

1.4 Thesis objectives and overview of the content

The thesis topic, “Random Vibration Response Statistics for Fatigue Analysis of
Nonlinear Structures”, will be explored in the following chapters using a combination of
experimental test and numerical simulation results. The goal of this work will be to
introduce analysis techniques that will show by example how the resulting fatigue life
estimates of one important case of nonlinear structures changes as more nonlinear terms
are included. The findings of this work are applicable to improving the time-to-failure

estimates for modern engineering structures.

This thesis will continue in chapter 2 by briefly introducing equations and techniques
for random linear and nonlinear signal analysis. The topic of probability density and

distribution functions will be stressed, and the use of the inverse distribution function
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method to estimate linear to nonlinear functions will be presented. Frequency domain
analysis techniques such as spectral moments and the reverse path nonlinear frequency
response function identification technique will be introduced. Additional sections on

random fatigue equations for use with non-Gaussian response will be presented.

The thesis will then explore the nonlinear random vibration problem using experimental
results from a clamped-clamped beam experiment performed at Wright Patterson Air
Force Base (WPAFB) [7]. Frequency and time domain methods will be used to identify
some of the nonlinear properties of the experiment. Strain data from the experiments
will also be used to estimate fatigue life using a baseline alternating stress equation and
several damage equations that include mean stress terms. This experimental study is

presented in chapter 3.

Additional linear and nonlinear differential equation numerical simulations are
presented in chapter 4. This chapter will explore additional statistical analysis of the
Duffing style nonlinear problem. The models are based on the nonlinear identification
of the parameters from the WPAFB experiments. The numerical simulations allow for
additional insight into the velocity and acceleration response states for various damping

levels over very long time periods.

Nonlinear strain and stress estimates, based on nonlinear displacements determined
numerically from nonlinear differential equations, will be presented in chapter 5. The
nonlinear strain displacement parameters used in this analysis are derived from the
results presented in chapter 3. Time domain cycle counting method results will be
compared to nonlinear stress PDFs determined using PDF transforms. The time to
failure estimates based on linear and nonlinear results are presented to show the

importance of each nonlinear term.

The final chapter 6 will summarize the thesis, highlighting the original and novel
contributions, and suggest areas for future research. References used in this thesis will

be given at the end.
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2 RANDOM DATA, NONLINEAR ANALYSIS, AND
FATIGUE REVIEW

This chapter will briefly introduce relationships and techniques for random linear and
nonlinear signal analysis. Time and frequency domain techniques are given here as a
way to introduce the notation and to familiarize the reader with the methods that are
used extensively throughout the rest of the thesis. Fatigue theory for sinusoidal and

random loading will complete the review.

Probability density and distribution functions will be stressed, and the use of the novel
inverse distribution function method to estimate linear to nonlinear functions is
presented. The probability density function (PDF) transform method is introduced as a
method to estimate the PDF of a related signal given a function relationship between the
two signals. This PDF transform method is used extensively throughout the rest of the

thesis to estimate nonlinear PDFs for displacement and stress response.

Frequency domain analysis techniques are reviewed with special attention to spectral
moments. The spectral moments introduced here will be used later in this thesis to
estimate rates of zero crossings and peaks and to also estimate peak PDFs of Gaussian
signals. The reverse-path nonlinear frequency response function identification technique
introduced in this chapter will be used in the following chapter to estimate nonlinear

parameters from clamped-clamped beam experiments.

The final section of this chapter reviews basic sinusoidal fatigue equations and their
extension to random fatigue, based on the Palmgren-Miner linear damage theory.
Equations that estimate fatigue life with the addition of nonzero mean stress will be

presented.

2.1 Time domain analysis

Time domain methods for analysis of random signals are the preferred method for

estimating basis statistics, such as expected values and moments of the data. This
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section will also briefly review PDFs, distribution functions, inverse distribution

functions, and the PDF transform method.

2.1.1 Expected values and moments

The mean value (expected value) u of x is given for a continuous function by

,ux=E[x]= J:xp(x)dx (2.1)

where p(x) is the PDF of x (see, for example, (2.18) for the PDF of a Gaussian signal).
This equation can be thought of as the first moment of the PDF. For a discrete signal,

the estimated mean value is calculated by
1 N
7 = — X. 22
. [N j; ! 22

where x; are discrete values and N is the number of data points in the signal. The higher-

order ny, expected values (or PDF moments) of x are defined by
7 =E[x"]: J:x"p(x)dx (2.3)

or for a discrete signal

N

An 1 n
For example, the mean squared value of a discrete signal x is
1),
g o= — X. 25
v, [ N] Z , (2.5)
The second central moment (variance) about the mean is defined by

o2 =E|(x-p) |= [ (x- 1) p(x)ax (2.6)

or for a discrete signal
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N

6= )2 (s -n) e

J=1

The variance can be expanded to yield a relationship with the mean values
oL =y, ~ U (2.8)

The standard deviation o (RMS for a zero mean) is
o, =0 (2.9)

X X

For higher-order central moments, it is convenient to work with the standard variable z,

defined as

7= (2.10)

Two named higher central moments (in terms of the standardized variable z) are of

interest. The third central moment, skew ¢, is defined as
1=E[2’]|= [ 2 p(z)dz 2.11)
or for a discrete signal
I=|— z; 2.12
b e

A symmetric PDF (e.g., a Gaussian), will have skew equal to zero. A non-symmetric

PDF will have positive or negative skew. The fourth central moment, kurtosis xis

K=E[z4]= E°z4p(z)dz (2:13)

or for a discrete signal
1 N
,g{ﬂzz; (2.14)
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For Gaussian random signals, kurtosis is equal to three. For non-Gaussian systems,
kurtosis can take on positive values less or greater than three.
2.1.2 Distribution and probability density functions

The distribution function of x (or F(x)) (also referred to as the cumulative distribution
function (CDF)) is defined as the probability of occurrence p of the variable x taking a

value less than or equal to a
F(x)=Prob[xSa]=p (2.15)

The distribution function monotonically increases from F(—)=0 to F(»)=1. The

probability density function is defined as

Prob| x <x, <x+Ax
p(x)=ggr{ [ . ]} (2.16)
The distribution function is related to the PDF by
F(x)=[ p(a)da 2.17)

Two common PDFs are the Gaussian (or normal) PDF (for zero mean)

2

1 —-Xx
= : (2.18
Prorm (%) x Y CXP[Z xzj (2.18)

where exp(x) is the value e raised to the power x, and the Rayleigh PDF

x ~x’
Doy (%)= a_jexp[Zsz (2.19)
The Rayleigh function is useful for studying the peak response of narrowband Gaussian
signals. Also of interest is the generalized peak function, defined here for the
standardized variable z, which gives the peak PDF for any normal random signal [247,
248]
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e (2,0) = [\/];_ﬂj exp [%} +wzexp { _52 ]{1 -0, [kiﬂ (2.20)

where @ is the ratio of the rates of zero crossings to peaks (defined in Section 2.1.4).

The additional terms %, and Q, are functions of the ratio @ (which has values 0 <@ < 1)

1 z
R=1-a* k =k Z | = Zerf 221
1 (4 2 1/w inkn] 26 C{kn\/i] ( )

where erfc is the complimentary error function [249]

erfe(x) = % r exp (—v2 ) dv (2.22)
72- X

Note that the generalized peak PDF equation (2.20) is a weighted sum of a Gaussian and
Rayleigh PDF; at the limits

Ppeat (:0)= Do (2)s Prei (2,1) = P, (2) (2.23)

The generalized peak PDFs for various values of the ratio @ are shown in Figure 2.1.

Common distribution functions are also useful. The normal distribution function is

[249]

1 x
F__(x)= =|1+erf 2.24
norm ( ) 2 |: [O’ \/’i]:| ( )
where erf is the error function [249]
2 2
erf (x) = N -Eexp(——v )dv (2.25)
T

The error function and complimentary error function are related [249]
erfe(x) =1-erf (x) (2.26)

The Rayleigh distribution function is [248]
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F,,(x)= 1-exp(——12-[i] J (227)
O-x

The generalized peak distribution function is [248]

Frou(z@)=1-0, [kiJ —@exp (—53 {1 -0, {kiﬂ (2.28)

2.1.3 Inverse distribution function

The inverse distribution function (IDF) or F~'( p) determines the corresponding x

value of a distribution function given a value of probability of occurrence [42, 250]
F'(p)=F"(F(x))=x (2.29)
The IDF for a normal distribution can be determined explicitly from equation (2.24) as

Fron(p)=0ovV2erf"(2p-1)=x (2.30)

norm

where erf ™' is the inverse error function x = erf™ (), which satisfies y = erf (x) for
~1<y<1 and ~0<x <o [251]. The IDF for a Rayleigh distribution is determined
from (2.27) as

Fo(p)=oy-2In(1- p) =x (2.31)

The IDF will be used extensively in the following chapters to determine functional
relationships between linear and nonlinear data sets. A simple example of the IDF
method is shown in Figure 2.2. In this example a distribution function (or CDF) from a
nonlinear response is compared to the CDF of a linear normal distribution. For this
example, two values of the probability of occurrence p= 0.75, 0.97 are shown with their

corresponding linear and nonlinear response data points x, y.

21



2.1.4 Response rates

The rates of zero crossings and peaks are very important for peak response and fatigue
analysis. They can be estimated (for linear or nonlinear random data) by sampling the
time domain data. The rate of positive zero crossings can be interpreted as the apparent
or dominant frequency of the data record, while the rates of peaks can help one
understand the frequency of the highest periodic component of the data. Narrowband
data is characterized by having one periodic component that has equal rates of peaks
and zero crossings. Wideband data has many periodic components which mean that the

rates of peaks will be much higher than the rates of zero crossings.

Realizing that there can be both positive and negative slope level crossings, the rates of

positive slope zero crossings @ [O*] is assumed to be one half of the total number of

ZEero crossings

1. N
®[0"]= 21;1; (2.32)

where Ny is the number of level (level = 0) crossings and T, 1 the length of the

analysis time block. The rates of positive peaks @ [P*] can be determined by finding

the total number of positive peaks N, i.e.,

o[ P = TN" (2.33)

block

The ratio of zeros to peaks @ (also know as the statistical irregularity) is

o] (2.34)

One method of determining response rates for Gaussian data, based on spectral

moments, is discussed later in Section 2.2.2.
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2.1.5 Probability density function transforms

The PDF p(x), of a data set x, can be transformed to p(y) of a different data set y using
the PDF transform [125, 250]

p(¥)= —‘:;(/2| (2.35)

where there is a one-to-one monotonic relationship between x and y, and where
y = g(x) (2.36)

which will be referred to as a right hand side (RHS) function. The PDF transform can

also be expressed for a left hand side (LHS) monotonic function

h(y) =x (2.37)

p(y)=|dx/dy|p(x)=|K ()| p(1(»)) (2.38)

As an example, determine the normal PDF for a zero mean standardized variable (see

equation (2.10))

z=g(x)= (2.39)

The normal PDF, in terms of the standardized variable z, using equations (2.18), (2.35),
and (2.39) is

_ pnorm (Zo-x) _

o, —(zo;c)2 1 _2

The PDF transform will be used extensively in the next chapters to transform PDFs of

linear data to PDFs of nonlinear data. The method is especially useful for predicting the
PDF of a nonlinear system when there is some knowledge of the linear to nonlinear

functions (see equations (2.36) and (2.37)). The IDF method, from section 2.1.3, is
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throughout the rest of this thesis to predict these linear to nonlinear functions for use

with PDF transforms.

An example is a nonlinear Rayleigh PDF transform for a LHS function equation (2.37)
using equation (2.19) and (2.38)

Purey () =[1 ()

The PDF transform method can also be used successively to perform multiple

transforms, as will be shown in Chapter 5.

2.2 Frequency domain analysis

Frequency domain analysis techniques are often used to characterize periodic and
Gaussian random signals. This section will give a brief overview of techniques that will
be applied later. The reverse-path nonlinear frequency response function estimation

technique will also be introduced.

2.2.1 Fourier transform, auto-spectrum and power spectral density

The Fourier transform F is defined as

X(f)= [x(r)e™ dr =F(x(r)) (2.42)

and the inverse Fourier transform F! is

o0

x(t)= [X(f)e™df =F" (X (f)) (2.43)

—o0

The autocorrelation function that defines how a signal is correlated with itself, with a

time separation r1is

R (r)= i[x(t)x(t+r)dt=E[x(t)x(t+r)] (2.44)
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The autocorrelation and auto-spectrum Sx«( f) (or power spectral density (PSD))

functions are related by the Fourier transform pair

S.(f)= ijﬂ (z)e’"dr (2.45)

R, (7)= szn( fle™dw (2.46)

The one-sided PSD Gyx( f), defined for 0 < f< o, is

G, (f)=25.(f) (2.47)

At f= 0, Gy and Sy« are equal to the mean value of the data.

2.2.2 Spectral moments and expected rates

A review of spectral moment and derivative process calculation is given briefly below.
For a full treatment of the subject, see [248] and [177-179]. Spectral moments are
calculated from the one-sided PSD G( f) (in units of Hertz) or the two-sided PSD S(w)

(where @ = 2zf1n units of radians) using

m, = ["G()df (2.48)
My = u]-a)"S(a))da) =m,(27)" (2.49)

It is important to note that 1, and x5 are zero, but m; and ms are not. Remember that
My 1s calculated by integrating from - and +e0, and m ,, is calculated by integrating
from 0 to +w. Typically, the moments mq, m;, ms, and m4 are calculated. The spectral
moments can be used to estimate the rates of response of Gaussian random signals [248]
and [177-179]. The expected rate of positive (or negative) slope zero crossings for this

type of signal is
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/2
E[0]= [ﬁ} (2.50)

1/2
E[P] {ﬁ} 2.51)
m,
12
E[PI]= {ﬂ} (2.52)
m4

A useful relationship for estimating the ratio of rates of zero crossings to peaks @,rm

for a normally distributed signal is

E[0] _ m,
wnorm = =
E[P] \/m0m4

(2.53)

This ratio can be used in the generalized peak PDF (2.20) or distribution function (2.28)

equations.

2.2.3 Random time history from PSD using IFT

Often when working in test or analysis conditions, it is useful to generate random time
histories with a prescribed PSD. Starting with the definition of a finite time auto spectral

density function

S.(f.T) =%X‘ (/. T)X(f.T) (2.54)

where:
T

X(£,T)= [x(t)e™"dt =F(x(1,T)) (2.55)

0
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and T = 1/Af. The finite Fourier transform is defined from —f,, < f < f,,, Where the
Nyquist frequency is determined by f,,, = 1/(2 Af). Determine the magnitude of the
Fourier transform for each value of f'based on the prescribed PSD S, by

X (f.7)|=\TS.(f.7) (2.56)

At each positive frequency, determine a uniformly distributed random-phase angle @,

€[0,27) such that

X(f.T)=A4,(f.T)+iB,(f.,T) (2.57)

and tan Oy = By/ Az At negative frequencies assign X (f,T)=4,(-f,T)-iB,(-f,T).

The time domain signal, with normally distributed magnitude and prescribed PSD, is

determined using the inverse Fourier transform

fnyq

x(6,T)= [ X(f.)e™df =F' (X (£.T)) (2.58)

=S
where the limits of integration of the inverse Fourier transform are the Nyquist

frequency determined by f,,, = 1/(2 Af).

2.2.4 Frequency response and coherence functions

The single input x, single output y relationships for a linear system 4, in terms of Fourier

transforms, are

Y(f)=H,(/)X(f) (2.59)

or in terms of their spectral and cross-spectral densities

S, ()=, (1) Sa(f)

(2.60)
So (f)=Ho(f)Sa(f)

or also in terms of the one sided PSDs
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G, (/) =|H, (/)] G.(1)

(2.61)
G, (f)=H,(f)G.(/)

These equations can be used to estimate the linear frequency response function

G, G
H,(f)= =G (2.62)

More general equations relating multi-input, multi-output systems can also be

developed (see for example [143, 248]).

The coherence function between the ideal single input and output,

|2

}/jy (f) _ |GXy (f)| _ !Sx,v (f)

" G.(G, (1) S.(NS, () 2.63)

1s a real valued function that ranges between 0 and 1. A coherence value of 1 indicates
that the output is completely determined by a linear function of the input. Coherence
values less than 1 indicate the presence of noise or other contributions to the output

(e.g., nonlinear response terms).

2.2.5 Multi-input single-output frequency response function estimation

The single-input single-output frequency response function estimation method described
above can be extended to multi-input single-output (MISO) problems [143, 248]. The
MISO frequency response function method will be used extensively later in this thesis
for estimating nonlinear frequency response functions (see Section 2.2.6). The basic
MISO frequency domain formula for determining the response Y for multiple inputs .X;

(excluding noise sources) is
Y(f)=in(f)Xi(f) (2.64)

This equation is shown in block diagram form in Figure 2.3(a). When one wants to

estimate the frequency response functions H,, it is very desirable to have the multiple
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inputs JX; uncorrelated. If the inputs are uncorrelated, then the frequency response

functions can be estimated as before by

H,/(f)= (2.65)

If the inputs are correlated, then the recommended technique is to precondition the data

to form new inputs U, that are uncorrelated.

In [143] there is a development (see Chapters 8 and 10) of a general MISO technique
that determines multiple frequency response functions based on a method using
conditioned (i.e., mutually uncorrelated) inputs (see Figure 2.3(b) based on Figure 10.2
of [143]). This general MISO technique is based on removing that part of the second
input that is correlated with the first input (with notation X5.1). The third conditioned
input, is formed by removing that part which is correlated with the first two inputs (with
notation X3.1), and so on. Once the uncorrelated inputs are determined, linear frequency
response functions for each path can be found using simple frequency domain
calculations. Next, recursive relationships are presented that allow the originally

correlated input problem to be related to the transformed uncorrelated input problem.

For purposes of illustration (and later use), consider a triple input X; single output ¥
model of a system shown in Figure 2.3(a). The transformed uncorrelated equivalent to
this model is shown in Figure 2.3(b) where the second and third inputs are now
uncorrelated with the first two, and the frequency response functions H;, are replaced

with related frequency response functions L.

Frequency domain formula for determining these frequency response functions are
detailed in Chapters 8 and 10 of [143], and are given here for the illustrated problem.
The first frequency response function L1y, between the Fourier transform of the first

input X; = Ui, and the Fourier transform of output Y, is given by the ratio of spectra

G,
I = (2.66)
Gll

1y
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shown using the one-sided form G. The frequency response function L between the first
two correlated inputs is
G,

L. =12 2.67
e (2.67)

and the coherence function between these two inputs is

GI‘Z Gl 2

(2.68)
G11G22

2 —_—
Y2 =

Note that in equations (2.67) and (2.68) as well as the equations that follow, the
subscript 2 refers to the original input X5. The uncorrelated input U, (i.e., the input

determined by removing the part of input X, correlated to the input X7) is found by
U,=X, =X, -L,X, (2.69)
The frequency response function between the uncorrelated input U, and the output Y is

L2 - Guzy :L — GZy:I _ G2y _[’]yGZI

G e Gy, B G,, (1"7’122)

(2.70)

The right hand side of equation (2.70) can be determined from the original inputs. The

uncorrelated input Us is found by
Uy=X,p =Xy - LpX, =X, - L, X, - LU, (2.71)
and

G“s)’
Ly, == (2.72)

Uylly

A flow diagram of this process of determining the uncorrelated inputs U; is shown in
Figure 2.4(a). The frequency response functions A of the original nonlinear model are

recursively related to frequency response functions L by
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H3y =L3y
H2y =L2y—L23H3y (2.73)
H]y =Lly _leHz,v "'LlaHay

This recursive process of determining the frequency response functions Hj, is shown in
Figure 2.4(b). The coherence functions between the Fourier transforms of the

uncorrelated inputs U; and the output Y are calculated by

2

G

4y

G“i“i GY}’

(2.74)

2
}/":‘}’_‘

This brief illustration is given full development in the text [143, 248] and should be
studied in detail. The text goes into great detail to develop the methodology for
determining the MISO frequency response functions and spectra for general models

with any number of inputs.

2.2.6 Nonlinear frequency response functions

Methods to determine frequency response functions for nonlinear systems have recently
been developed [118-140] and offer many options for modeling the nonlinear behavior
of the system. One method [125, 143], which uses a “reverse-path,” model will be
discussed here and applied in later chapters. The input to the model is in the form of a
combined linear and nonlinear MISO problem with the standard inputs and outputs
being reversed (see Figure 2.5(a) based on Figure 13.15 of [143]). Here the linear or
nonlinear dynamic response is used as a “mathematical input” to a MISO problem
where the “mathematical output” is the known and specified force. Examples in Chapter
13 of [143] are given for a Duffing SDOF nonlinear system as well as other nonlinear

SDOF and MDOF systems.

There are two main parts to the reverse-path nonlinear model system identification
technique. The first is to define an equivalent nonlinear model that has nonlinear
operators in series with linear frequency response functions. The second is to estimate

the frequency response functions for each path of the model.
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Bendat [125, 143] proposes an equivalent nonlinear system (to that shown in

Figure 2.5(a)), based on a straightforward squaring and cubing of the mathematical
input. In general, arbitrary nonlinear functions could be used, but for some systems,
including the Duffing system, it is known a priori that the nonlinear response contains
higher order powers such as cubic terms. The nonlinear model (see Figure 2.5(b) based
on Figure 13.5 of [143]) now has three paths: a linear path with a linear frequency
response function Hv( /) and two nonlinear paths. The nonlinear paths have a
nonlinear function in series with the linear frequency response functions: one path
squares the input first then multiplies it by a linear frequency response function Hyv( f),
the other path cubes the input before multiplying by a linear frequency response
function H3v( /). The authors also point out that this realization of the nonlinear model
is general and convenient but not unique, i.e., other nonlinear operators can be used on

the mathematical input (see for example [138]).

The next step in the method is to realize that this model can now be considered a MISO

problem where, for this illustration, the frequency domain inputs are

X, (f)=F(x(1))
X,(f)=F((2)) (2.75)
X, (F)=F(x(2))

This representation is shown in Figure 2.5(b) (based on Figure 13.10 of [143]). Note:
the square and cubic transformations are normally performed in the time domain before
Fourier transforming them to the frequency domain. Unfortunately, the inputs can, in
general, be correlated. The method to transform the problem to one with uncorrelated
inputs is discussed in the previous section, which can then be used to form a system as
shown in Figure 2.3(b). Equations (2.67) through (2.72) are therefore used to find the
frequency response functions L, for each path. The original correlated input frequency
response functions H; are determined using equation (2.73). These nonlinear frequency

response methods will be used extensively in the next chapters.
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2.3 Statistical errors in basic estimates of linear random processes

Much of this thesis is devoted to estimating statistical measures of linear and nonlinear
response data. An important part of this estimation process is to quantify the statistical
errors (or uncertainties) for a given experimental or simulation time period. This section
will briefly review equations used to estimate the errors for normal (Gaussian) random
signals that will serve as a baseline for non-Gaussian random signals. Most of the
material in this section is taken from Bendat and Piersol [248] Chapter 8, and will be

presented with a minimum of discussion.

To begin, for a statistical measure ¢, the estimate of the measure will be shown as 4.

The normalized random error (standard deviation) of the estimate is (from [248],

equation 8.9a)

&

r

ol \/E ¢ |—E*| ¢

_o[d]_FFTF] .
¢ ¢

and the normalized bias error of the estimate is ([248], equation &8.9b)

_olé]_£[d] | -

£ =———==——=—

¢ ¢

The combined RMS error is

REanRG(Gel -
¢ ¢

The errors in estimates of standard deviations and PDFs are given below based on a
number of samples N, the data record time period 7, and the signal bandwidth B.
Numerical simulations in Chapter 4 were run multiple times to develop large sample

size estimates of the statistical measures that are important for fatigue and damage.
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2.3.1 Estimates of standard deviation

The normalized random error for the estimate of standard deviation of a normal random
signal is ([248], equation 8.65)
R 1
g[8, ]=—— (2.79)

2</BT

The time and number of data points required for a specified random error & is

h= 4B.&’ N = 2¢? (2.80)

sor r

where the statistical bandwidth (B;) of the data is ([248], equation 8.52)

o] [pore

0

(2.81)

5 © T w 4
[Gi(nar  H @

0 0

2.3.2 Estimates of probability distribution and density functions

The estimates of probability distribution and density functions begin by estimating the
probability that some variable x takes on a value between x—(#/2) and x+(W/2) of a
number of samples ¥, i.e., ([248], equation 8.66)

P[x,W]="Prob Kx —%] <x; < (x +%ﬂ (2.82)

where W is the sampling bin width. This probability is commonly estimated using

histograms such that

Plx,w]=-1 (2.83)

= | =

34



where N, is the number of sample values in each bin j, and N is the total number of
samples. The distribution function is estimated at each bin from the cumulative sum of a

histogram by
Flx]==3N, (2.84)

The distribution function estimate is unbiased when evaluated at the positive bin edge

G +H(W72)).

The probability density function can also be estimated from histograms ([248], equation
8.69) by

N, P[x,W]
NW W

(2.85)

Unfortunately, the numerical estimate of probability density functions can have
significant bias errors. A first-order approximation (based on a Taylor series expansion)
for the normalized bias error term is a function of the “shape” of the PDF ([248],

equation 8.82)

W2pr/ (x)
&l plx) | ——= 2.86
where p”(x) is the second derivative of p(x) with respect to x. The normalized
random error in PDF estimates is a function of the bandwidth B and duration of the
sample T
C2
2 p(x)] = (2.87)

" 2BTWp(x)

where c is a constant that is dependant on the sampling of the signal; in [248], ¢ is
assigned a value of approximately 0.3 based on experimental studies. The bias (2.86)
and random (2.87) errors can be combined to estimate the RMS error ¢ of the PDF

([248], equation 8.88)
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2

&[p(x)]=57 +W{p "(X)T (2.89)

=2BTWp(x) 576 p(x)

Both error estimates are a function of W; the bias error has W in the numerator and the

random error has W in the denominator. This apparent conflict is usually solved by first
setting W to a conservative amount (typically <0.2 o) and then determining the time T
required to reach a target random error with an assumed value of p(x). This relationship
gives additional insight into the importance of large data records (long sample periods)

for determining quality estimates of PDFs.

2.4 Fatigue analysis

There are several failure methods for systems that vibrate, but fatigue is considered the
most catastrophic. The theory of cyclic fatigue was developed first based on cyclic
loading (of constant amplitude), but it has been extended to account for a summation of
loads at different levels. The discussion of fatigue in this chapter will present the
evolution of equations starting with sinusoidal fatigue and ending with fatigue of

wideband random responses.

2.4.1 Sinusoidal fatigue

The standard sinusoidal stress life power law fatigue model is

' b b
c,=0,(2N,) = AN} (259
A=c,2

where o, is the fully reversed alternating stress amplitude, and Ny is the median cycles

to failure. The power law slope b (fatigue strength exponent) and the stress intercept ¢,
at one reversal (fatigue strength coefficient), or 4 at one cycle, are determined
experimentally. The symbol o (bold, not italic) is used here to denote stress instead of o
(italic, not bold), which is used to denote the standard deviation. The life (number of
cycles to failure) Ny that is expected for a given alternating stress under zero mean stress

is
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- 16
Ny = [7] (2.90)

Note, the number of cycles to failure is also a random variable, and the value predicted
with these equations is assumed to be a median value based on a curve fit of
experimental results. Recent work of interest by Lutes et al. [252, 253] present theory
for optimal experimental design for determining the material fatigue properties if the

measured life is considered a random variable.

2.4.2 Sinusoidal fatigue life with mean stress

A recent review paper by Dowling [147] describes several methods that have been
developed over the past century to determine fatigue life for alternating stresses

combined with mean stresses. This section summarizes the currently accepted methods.

The Morrow equation for the number of cycles to failure with mean stress oy is

N i {Ga/A{ —G—PJ] 2.91)
Oy

For nonferrous materials, a modification using the true stress at fracture 6, is

N s {o,,/ A[ —&H (2.92)
O

The Walker equation is
/b

N, = {%[%ﬂ (2.93)

where yis a fitting exponent and R is the ratio of minimum and maximum stress (G,

Omax) Values at the minima and maxima of the cycle, defined by

- 0-min
R=Cin// (2.94)

max
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The fully reversed zero mean case is when R = —1. Note, equation (2.93) reduces to
(2.90) when the exponent = 1.0. The special case of the Walker equation for y= 0.5
gives the Smith-Watson-Topper [254] equation:

-\ -r "
c - c -
I swt |: A [ 2 j il |: A 2 j| ( )

A modified version of the Walker equation is used in MMPDS-01 [255], (the

replacement for MIL-HDBK-5), based on the stress ratio R and an equivalent stress o,

where:

log(N )= 4,+ 4,log(c,, — 4,)
G, =G, (1-R)"

eq

(2.96)

The term A4 represents the fatigue limit stress or endurance limit. Section 9.6.1.4 from
[255] gives a thorough discussion of equation (2.96).
2.4.3 Palmgren-Miner linear cumulative damage rule

The Palmgren-Miner, [151] and [152] respectively, linear cumulative damage rule is
S
D=Y) % (2.97)
2w,

where D is the summation of damage, »; are the number of cycles for load case &, and
Ny are the number of cycles to failure for case k. D =1 indicates a probability of failure
of 0.5 (i.e., half of a population is expected to have failed). As stated in Chapter 1, the
linear cumulative damage model neglects any sequence effects that may change fatigue

life.

2.4.4 Random fatigue and damage

The number of cycles to failure for a narrowband random process Ny, (see [4, 153, 155,

156]) is
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o]

Ny, = [(0./4)" p(o,)do, (2.98)

0

where p(c,) is the PDF of stress peaks. For a narrowband response, p(o,) is assumed to

be Rayleigh. It has been shown [4, 153, 155, 156] that (2.98) reduces to

) \/50'0 1/b )
v 2] fr(1-3) 299

where oy is the standard deviation of stress, and I is the gamma function [249]. This

equation can be solved for g5 to give a narrowband random fatigue equation (similar to

sinusoidal fatigue equation (2.89))

b
o, = %{Nmr {1 —%bj} ~CN,, (2.100)

where the narrowband random fatigue strength coefficient C [156] is

C=%[r[1—2ibﬂb :%[21‘(1—%}}1) 2.101)

When one considers a narrowband Gaussian random process, the expected value of

damage for a given random load case reduces to

o 1/b
E[D,,1=E0]T [(5,/4) ™ p(o,)do, = E[0] T(?C—J (2.102)

where E[0] is the expected rate of zero crossings (see equation (2.50)), and T'is the
duration of the load.
2.4.5 Wideband random fatigue

A wideband random process is more interesting; the distribution of peak amplitudes
diverges from the Rayleigh PDF, and the response will include maxima with negative

values (see [248] and cited references) and minima with positive values. The de-facto

39



method for evaluating wideband random fatigue is the time domain rainflow cycle

(RFC) counting method [161, 162].

The RFC is defined as follows [163, 165] (see Figure 2.6 from [256]): From a time
history, find each local maxima M;. Consider data less than M; in the domain backward
(left) or forward (right) of M;. The minima m; with the smallest downward excursion
sets the range of the rainflow cycle. A rainflow cycle is defined in this thesis to have
stress minima and maxima (G, Omax) OT, €quivalently, stress amplitude and mean
(04, 00). A rainflow stress range Ao is defined here to be two times (2%) the stress

amplitude with no associated mean.

The damage equation based on rainflow cycles in terms of stress minima and maxima is

@0 D

E[D,,)=E[P]T [ [g(0m/ Apss)

—0 0

-1/b

p(cmin’cma.x)dcmindcmax (2103)

or in terms of amplitude and mean stress

E[D,,]=E[P]T Tjg (0.,0/4,,) " p(,,0,)do,da, (2.104)
- 0

where p(o,, 00) is the joint PDF of stress amplitude and mean rainflow cycles, and
g(o /4) is a function based on the chosen nonzero mean stress fatigue method (see, for
example, equations (2.91) through (2.96) [189]). The problem is that there is no known
closed form for the joint rainflow cycle PDF, although there are a number of
approximations [34, 183, 208, 209, 257]. The joint probability density function can be
estimated numerically as a histogram with cycle counting algorithms (see, for example,

the rainflow matrix functions developed by the WAFO group [258]).

It is common to simplify the joint-stress PDF, working instead with the one-dimensional
rainflow range PDF p(Ac). The wideband damage equation given the rainflow range

p(AG) is

E[D,,]1= E[P] ij(Ac/zA)“l/ ’ p(AG)d A (2.105)
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One approximation for p(Ac) is given by Dirlik’s expression [174].

2.4.6 Rainflow matrix

The 2-D histogram of rainflow cycles calculated by WAFO functions is called a
rainflow matrix (RFM). A RFM is a convenient numerical estimate of the joint PDF
[189]. The RFM has minimum and maximum stress axes that can easily be related to
amplitude and mean stress dimensions. Only half of the RFM is used because the
minimum stress can never be greater than the maximum stress. The WAFO group has
chosen to display the RFM as shown in Figure 2.7 with the minimum stress on the x-
axis and maximum stress on the y-axis. The figure also has lines drawn along constant
values of the stress ratio R. Constant amplitude conditions are found along diagonals of
positive slope, and constant mean stress ranges are found along diagonals of negative

slope.

The RFM can also be used to calculate one-dimensional histograms of peak values. The
histogram of maxima is found by summing the bins in a row of the RFM; the histogram
of minima can be found by summing columns. Amplitude and mean value histograms

can be found by summing positive and negative diagonals respectively.

2.4.6.1 Fatigue damage from rainflow matrix [189]

The random fatigue damage equation based on the RFM 2D histogram estimate of the
joint PDF is

D= ZZ O nin> O ) (2.106)

Omin Omax (Gmm > Gma.x )

where REM(Gmin, Omin) are the number of counts in the RFM bin with value of 6,,, and
Omin. The denominator of (2.106) is determined based on a choice of fatigue equations.

The estimate using the alternating stress equation (2.90) (with no mean stress effects) is

RFM (o,,,6,.. b
-y y il )5S REM (0,0, )(0,/4) " @.107)

fﬂ (Ga ) Omin Tmax
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The alternating stress o, =(0,,,, — / }/2 varies over the RFM and is calculated for

max m"l

each histogram bin. The estimate using the Morrow equation (2.91) is

D,; =22 RFM(o,,, m)[ca/A[ —(’."H-w (2.108)

Orin Omax G,

The mean stress 6, =(6,,4, + O, ) / 2 also varies over the RFM and is calculated for

each histogram bin. An alternate form of the Morrow equation (2.92) follows this form

with G, substituted for o’,. The damage estimate using the Walker equation (2.93) is

/b
D, ZZRFM G,in»C m)[ y [1 f” (2.109)

The R value is calculated for each histogram bin using equation (2.94). The Smith-
Watson-Topper equation (2.95) follows this form with the exponent y =1 . The damage

estimate using the modified Walker equation and the equivalent stress equation (2.96)

from [255] is

( mtn’cmax)
b= %%10{,4 + 4, log(o,, AH 2119

A set of functions has been developed to estimate damage given a RFM and a choice of

fatigue equations (2.107) through (2.110).

2.4.7 Time to failure

The damage equation (2.97) can also be written in terms of time
% T
D=> -t (2.111)
=t

where T} are the periods and T times to failure for load case & This equation can be

used to estimate the time to failure
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T :% (2.112)

where the damage D, determined from equations (2.107) through (2.110), includes the
integrated effects of all the cycles in the RFM for a load case of time 7. Time to failure
estimates include the effects of the shift in natural frequency, and are useful because

they allow comparison of data sets with different analysis time periods.

2.5 Summary

This chapter has served as a brief review of the time and frequency domain equations
that will be used throughout the remainder of this thesis to develop random response

statistic relationships. Fatigue and damage equations have also been reviewed.

Probability functions have been presented, and the relationships between them have
been illustrated. Probability density functions of peak stress response will be used later
in this thesis to determine time to failure based on linear and nonlinear fatigue damage
equations. The inverse distribution function method to determine a functional value
given a predicted probability was introduced and will be used extensively to estimate
linear to nonlinear functions from tabulated response histograms. These linear to
nonlinear functions will be used with the PDF transform method to predict useful

nonlinear PDFs of displacement and stress.

Nonlinear frequency response function estimation techniques, using the reverse-path
method, have been introduced. The reverse-path method is general and will be used in
novel ways to study the nonlinear displacement and strain response of experimental data

in Chapter 3.
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2.6 Chapter 2 figures

Positive peak PDF vs. ratio of zeros to peaks (w)
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Figure 2.1. Generalized peak PDF shown for various ratios of zeros to peaks @.
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Figure 2.2. Example cumulative distribution functions showing mapping between linear
and nonlinear responses with equal probability.
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Figure 2.3. MISO system models: (a) system with possibly correlated inputs X; and
frequency response functions H;y, (b) system with conditioned uncorrelated inputs U;
and frequency response functions L;y.
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Figure 2.4. MISO system analysis flow diagrams: (a) method to condition inputs X;
forming uncorrelated inputs U; using frequency response functions L;; and (b) method to
calculate frequency response functions H;, given frequency response functions L;y.
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Figure 2.5. Reverse-path dynamic model: (a) Nonlinear response as “mathematical”
input to MISO system, (b) nonlinear model with linear, squared, and cubed inputs.
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Figure 2.6. Rainflow cycle maximum (A/;) and minima (m;) for a random time signal.
The smaller of the two minima with value less than the maxima determines the range of
the rainflow cycle. (From [256] Figure 1.13, derived from [165] Figure 1).
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Figure 2.7 The WAFO convention for RFM with special stress ratio cases shown.
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3 NONLINEAR EXPERIMENTAL SYSTEM ANALYSIS

This chapter discusses the analysis of experiments performed at Wright Patterson Air
Force Base (WPAFB), USA. The experiments are discussed in several papers [7, 110],

but it is worth briefly describing the experiments and available data here.

The experiments were designed to produce nonlinear responses for a simple physical
system “to generate high-quality random response data for comparison with
predictions”. The original intent was to allow for validation of recent low-order
nonlinear modal models, but the data has been extremely useful for this study, as a basis
for examining the changes as the system response progresses from mildly to strongly
nonlinear. The experiment comprised a clamped-clamped steel beam, with length =
229 mm, width = 12.7 mm and thickness = 0.79 mm. The measured time domain data
included the test base shake acceleration input (g), plus displacement (in), and strain
(ne) responses at the center of the beam. Strain gages were mounted to the top and
bottom surfaces of the beam. The data record length was 88 s with a sample rate of
4096 Hz. The base shake input was a flat acceleration PSD from 20 to 500 Hz with
RMS values of 0.5, 1, 2, 4, 8 g. Figure 3.1 shows a picture of the experimental setup.

The nonlinear responses are studied here in both the frequency and time domains. The
reverse path identification method [125] is used three different ways to determine linear
and nonlinear frequency response functions. The nonlinear frequency response
functions, and especially their coherence functions, provided a keen insight into a model
that could best describe the response of the system in terms of the displacement and
strain states. The linear frequency response functions allowed for estimates of the
variance for the linear part of the random response. This proved to be useful as a basis

for establishing the linear portion of the linear to nonlinear PDF transforms.

The time domain analysis concentrates on determining basic statistics (mean, variance,
skew and kurtosis) plus the underlying probability density and distribution functions.
The full data sets were processed to determine histograms of the input and response,

which were reduced further to PDFs and CDFs. A second set of time domain analysis

47



concentrated on sampling the data to determine peak distributions. The peak

distributions formed the basis for subsequent fatigue analysis.

Given estimates of the linear response and measured data for the nonlinear response,
linear to nonlinear functions were determined using the Inverse Distribution Function
(IDF) method. The linear to nonlinear functions were used with the PDF transform
method to estimate nonlinear PDFs of nominal and peak response. The wideband
experimental data required understanding of the interaction between rates of zero
crossings and peaks and their implications to the resulting distribution functions. Work
with the PDFs and histograms resulted in an expression to estimate the number of zero
crossings and the ratio of zeros to peaks @. Additional equations were derived to

determine the value of the peak distribution function at the point of zero peak response.

The nonlinear frequency response functions were used to reconstruct time domain strain
responses from the nonlinear displacement data. The linear, squared and cubic nonlinear
parts of the time response helped to show their interaction as the response alternated
between positive and negative cycles. Low-pass filtering of the data below the second
response mode helped to further illustrate the contributions of the linear, squared and
cubic terms. Polynomial coefficients were fit to the filtered data for use in ODE

simulations, which are discussed in later chapters.

Fatigue life predictions were grouped into wideband and narrowband estimates. The
wideband estimates used the raw data for comparison to estimates made by using linear
and nonlinear frequency response functions. Narrowband fatigue estimates used the
filtered data for comparison to polynomial and PDF transform estimates from the
displacement data. In each case, three different fatigue life models (a baseline model
and two models that included mean stress effects) were used to explore the sensitivity of

the nonlinear membrane effects on life estimates.

3.1 Frequency domain analysis of wideband system

The frequency domain analysis of the WPAFB data is presented before the time domain
analysis, because the majority of the nonlinear aspects of the system response are easily

shown and determined in the frequency domain. The basic PSD measurements of the
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response are shown first to illustrate the shift and broadening of the response. Next,
much emphasis is devoted to the application of the reverse path identification technique
to the test data. Several nonlinear frequency response functions help to explain the
underlying nature of the nonlinear system. These frequency response functions are used

later in Section 3.3.1 to estimate the strain response from nonlinear displacement inputs.

3.1.1 PSD of displacement and strain response

The PSD for the beam center displacement response is shown in Figure 3.2. Note how
the response in the frequency regions of the first and second modes becomes much
broader. Also note how the second and third harmonics of the natural frequencies are

evident at even the lowest input level.

The PSD of average strain (average of the top and bottom strain) response is shown in
Figure 3.2(a). Note the similarities and differences to the displacement PSD; the second
harmonic is now much stronger, and the relative magnitude of the second strain
response mode is much greater than the displacement mode, as shown in Figure 3.2(b).
It is also apparent that the third harmonic of the fundamental becomes obscured by the
response of the second mode at inputs above 2 g. These observations will be discussed

further in the next sections.

3.1.2 Nonlinear system identification

The reverse path nonlinear system identification method proved to be useful for
determining the displacement to force relationships for the WPAFB data. This is the
“textbook” [125, 143] use where the nonlinear displacement and the squared and cubed
version of it are used as multiple “mathematical inputs” to a system with force
“mathematical response”. The force was presumed to be proportional to the measured

base acceleration, using a mass of 18 grams (see Section 4.1).

The reverse path identification method (introduced in Section 2.2.6) estimates the parts

of the response that are correlated to the linear, squared and cubed displacement input.
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The estimated linear (see Figure 3.3) and cubic (see Figure 3.4(b)) displacement to force
frequency response functions (FRFs) show consistent results for all test levels, while the
squared displacement FRFs (see Figure 3.4(a)) exhibit markedly different, yet stable (in
the low-frequency range), results at each level. The coherence functions show that the
nonlinear model was able to account for most of the response at the low 0.5 g input
level (see Figure 3.5(a)), but, this nonlinear model did not fair as well at the higher input
levels (see Figure 3.5(b)). It is interesting to see that at the higher level, the cubic
displacement term accounted for the majority of the coherent response over the range
between the first and second observed peaks in the system response. The coherence
plots show that the squared terms were noticeable at the low level (perhaps caused by a

“pre-buckled” condition), but they were insignificant at the highest level.

The WPAFB top surface strain gage response data was also used with the reverse path
identification method to estimate strain to force FRFs. These results were not as
encouraging. The FRFs for linear (Figure 3.6), squared (Figure 3.7(a)) and cubed strains
(Figure 3.7(b)) are not as “clean” as the displacement to force data. The squared and
cubic strain FRFs are especially noisy. A telling indication of the quality of these
nonlinear FRF estimates can be seen in the coherence plots. The lowest level strain
input case (shown in Figure 3.8(a)) produced respectable FRFs (and corresponding
coherence estimates), but the higher levels (shown in Figure 3.8(b)) yielded poor

results.

The reverse path method was then applied to the data to determine nonlinear top surface
displacement to strain FRFs, where the displacement is the “mathematical input” and
the strain is the response. The linear FRFs (see Figure 3.9) showed a very consistent set
of results throughout the frequency range. The general “upturn’ in the strain response,
as displacement increased, will be discussed further in the next section. The squared
(see Figure 3.10(a)) and cubed (see Figure 3.10(b)) displacement to strain FRFs show
consistent trends over the entire frequency range and the coherence functions (see
Figure 3.11) show that the nonlinear model can account for most of the measured
response. This nonlinear displacement to strain model is arguably better than the
displacement to force model (compare the coherence results in Figure 3.5 and

Figure 3.11). These FRF estimates were used to establish some of the parameters for

PDF transforms and the SDOF ODE models discussed in the next two chapters.
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3.1.3 Linear frequency response function parameter estimation

One important outcome of this nonlinear FRF estimation process is a method to
estimate the linear response of the system. The linear FRFs of displacement to force and
strain to force were used to estimate the linear random response standard deviation of
each input level. At first, an attempt was made to use the FRFs in their raw numerical
format. This proved to be undesirable because small changes in the numerical values of
the FRF estimates produced vastly different results. A parameter estimation of the multi

degree of freedom (MDOF) transfer function proved to be more stable and informative.

The first step of this MDOF parameter estimation was to determine the force to
displacement (and later force to strain) FRF. These were simply the reciprocal of the
displacement to force FRF. The Laplace domain numerator and denominator
polynomial representations of the transfer function were estimated and then converted
into their equivalent roots (or poles) format. The modal roots are, assuming a viscous

model for the modal damping,

A =, (—é’iiwfé’f—l):—a)i{i +ima1-¢7 (3.1)

This was useful for determining the modal parameters of the FRF

w, = \[—[real(li)z —imag(li)z}

¢ =-real(4)/ o,

(3.2)

It was encouraging to find that the estimated parameters were comparatively consistent
among the runs, as given in Table 3.1. There are two outliers: the 2 g (low {1) and 8 g
(large &1 and higher f,;) estimates. The average 1 g linear displacement response
estimate oy, determined from the other three estimates, was 0.4293 mm. This was used

as the linear response baseline for linear distribution function estimates (see Section

3.2.3).

Example FRFs and transfer function estimates are shown in Figure 3.12(a). The
parameter estimates improved when the FFT frequency spacing was reduced to 0.25 Hz

with a corresponding number of averages of 22. This was an interesting tradeoff; the
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smaller number of averages yielded a more variable point-to-point FRF estimate, but the
larger number of points and the finer frequency spacing allowed for better estimates of

the modal parameters.

A typical numerical example of the force input to displacement output transfer function
for the 1 g input is
415 -2.0x10%s +4.7x10° m

X
H. == — 33
O F ' 4258 +7.1x10°s> +1.5x107s+1.7x102 N (33)

The force input to strain output modal parameters were estimated in a similar fashion.
The eigenvalue (modal frequency and damping) estimates (see Table 3.2) are similar to
those estimated from the force input to displacement output FRFs. The force to strain
graphs show strong similarities to the force to displacement graphs (compare

Figure 3.12(a) and Figure 3.12(b)). Note that the second-mode strain response is
proportionately higher than the displacement response. It is also interesting to note that
the first-mode damping estimates based on strain tend to be about twice as large as that
of the displacement estimates, while the second-mode estimates are much closer in
value (see Table 3.2). A typical numerical example of the force input to strain output
transfer function for the 1 g input is

4.4x10%s% +4.7x10"°s-7.2x10" UE

E
H, === = 3.4
oo F st 42587 +7.1x10°2 +3.0x107s+1.7x10? N (34)

Note the similarity in the denominators of this function and the displacement transfer

function given in equation (3.3).

MDOF parameter estimates were then made with the displacement to strain FRFs (see
for example, Figure 3.13(a)). A typical numerical example of this displacement input to

strain output transfer function for the data from the 1 g input case is

_1.6x10°s* +7.5x10%s-1.7x10” pe
s* +115s+1.1x10’ m

Ex

H =%
X

At first this is not informative, but considering that the ratio of transfer function

equations (3.4) and (3.3) (assuming that the denominators are equal) is
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&_&F _44x10°%"+4.7x10°5-7.2x10" g

x Fx 415*-2.0x10°s+4.7x10° m (3.6)
£ _11x10°s* +1.1x10°s-1.7x 10" ug
X s2—4935+1.1x10’ m

one can recognize the similarity to equation (3.5). A plot of this transfer function
estimate and the raw FRF from the reverse identification method are shown in

Figure 3.13(b).

3.1.4 Flow diagrams of nonlinear strain and displacement models

The nonlinear transfer function estimation results suggest two methods for representing
the nonlinear force to strain model: one based on a series connection of nonlinear
displacement and strain FRFs, and a second based on a parallel connection of modal

models.

The first model (see Figure 3.14) is based on the two most successful nonlinear system
identification models from the previous section, namely, the displacement to force and
displacement to strain nonlinear FRFs. The second model is an attempt to show how the
modal models (labeled oscl and osc2 in Figure 3.15) are linked to both the
displacement and strain responses. It may be possible to refine this modal model further
to allow more of the nonlinear combination of terms to be described in the “modal

domain.”

3.2 Time domain analysis of wideband system

The following sections cover the time domain analysis of the WPAFB data using the

methods introduced in Chapter 2.

3.2.1 Basis statistics

The first step in the time domain analysis was to determine the basic and central
statistical moments of the test data. The results given in Table 3.3 agree with the

published values [7]. The input random acceleration statistics (subscript @) help to
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confirm that it was normally distributed with near-zero mean and skew values, and

kurtosis approximately equal to 3 (see Table 3.3).

The displacement data (subscript y) show indications of the nonlinear behavior of the
system (as indicated by a kurtosis value less than 3), with additional nonzero mean and
skew that will need explanation. The top and bottom strain gage data sets (subscripts zop
& bot respectively) (see Table 3.4) are even more complicated. If the test item were
truly symmetric, as designed, the response statistics would be equal in magnitude with
an opposite sign for the odd measures (mean and skew). The authors [7] discussed the
results from three sets of experiments noting that an unfortunate outcome of the
clamped-clamped design is its sensitivity to temperature-induced preloads. It was
assumed that this data set had no preload, but the skew and nonzero mean strain
measures tend to indicate that there may have been a small amount of compressive
preload. The low-level tests (0.5 and 1 g inputs) showed compressive mean strains on
the bottom strain gage 14, and slightly positive mean values on the top strain gage .
This may be an indication of a small amount of static buckling as a result of a

compressive preload.

The standard deviation of strain response was also different for the top and bottom
strain gages. The top strain o;,, was always greater that the bottom strain oo, This may

be explained by differences in strain gage placement or instrumentation gain factors.

3.2.2 Histograms and response PDFs from data

The experimental data was processed further to determine histograms, PDFs, and CDFs.
To begin, PDFs of the acceleration input were determined from histograms, as shown in
Figure 3.16(a). This figure shows that the input appears normally distributed as
intended. Displacement response PDFs (see Figure 3.16(b)) show non-normal behavior
with the addition of some asymmetry that may be caused by the hypothesized pre-
buckled state of the beam.

The strain response PDFs are even more non-normal. The strain response at the top
surface of the beam (Figure 3.17(a)) shows nearly normal behavior at the lowest input

level, while the bottom surface strain (Figure 3.17(b)) shows a highly skewed response
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for the same input. It is interesting to observe that the large amplitude response points at
this lowest input level tend to return to the normal PDF values. As the input increases,
both the top and bottom strains tend to skew away from a normal PDF, which is due to

the addition of tensile membrane effects.

The strain data was further processed to separate the bending and membrane strains.

Ideally, the top and bottom strains would be symmetric such that

gtop = gbend +é&

memb

(3.7)
gbol = _gbend + gmemb
The addition of instrument gain (k) and bias (b) errors give measured values &€
étop = klgtop + bl = kl (gbend + gmemb) + bl (3 8)
Eror =hyEpp + b, =k, (_gbend + gmemb) +b,
Also, assume further that
o =
Emp Ebor (3 '9)
Eiop = IO'EMP; Epor _kzo-fbaz = 2o-“ftap
and, if the first gain &} =1
= (3.10)
5 .
élup
étop = gbend + gmemb + bl
or &y ébotaéw (3.11)
= — 2 =(—g,_,+E +b
kz O'ébm ( bend memb ) 3
subtracting the two equations gives
'é“boto-.@,,J
gtap - = 2gbend + (bl - b3)
‘ébal
) (3.12)
1

&0 ;
o (hi-b)

gbend =7 gtop
2 £
bot
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Presuming that the bias errors are constant and that the bending strain has zero mean,

the unbiased bending strain can be estimated by

1 ébot O-é, ébot O,
— jad op A top
8bend — N 8top - -E gtop - (3 1 3)
2 o o

é‘l’:al ébat
The two equations in (3.11) can be added to form an estimate of the membrane strain.

A Epot O-é,op

=2¢,.,+(b-b,)

Ebor

R (3.14)
1 A 8boto-é,ap
8mem = 5[810}7 L (bl - b3):|

o}

Ebor

Unfortunately, the membrane strain does not have zero mean, so the combined bias
errors are not easily determined. Fortunately, the membrane strain should always be

positive, allowing a graphical estimation of the combined bias errors.

Comparison of these results (Table 3.5) with the other results is of interest. The kurtosis
of the bending strain estimates is nearly the same as the kurtosis of displacement (see
Table 3.3). This link between the bending strain and displacement is expected and will
be investigated more in the next sections. The skew of the bending strains is larger than
expected (especially at low-input levels) and is thought to be due to a compressive

preload-induced buckling of the beam.

The bending and membrane strain estimates were then used to determine PDFs. The
bending strain PDFs (Figure 3.18(a)) are now “enforced” to be nearly symmetric, yet
non-normal, while the membrane strain PDFs (Figure 3.18(b)) are almost completely
positive. For comparison, a chi-squared PDF (the theoretical result for a squared normal

random signal [125]) is shown with the membrane strain PDFs.

3.2.3 Linear to nonlinear function estimation using IDF method

The response PDF estimates of the nonlinear displacement determined above can be
used to determine linear to nonlinear functions, using the inverse distribution function

(IDF) method (see Section 2.1.3). When working with nonlinear data, it is convenient to
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start with the nonlinear estimates of the distribution function determined from a

histogram of the measured data. The histogram H of displacement y is (see also Section

2.1.2)

H[y,W]=CountKy—E2K]Sy(z)s(y+%ﬂ (3.15)

Note that y is the bin center and W is the bin width. The estimate of the distribution

function F (»;) from the binned data is

Zi:H[yﬂW]

F(J’i)z = =

~ , (3.16)

>

where N is the total number of counts in all bins, and p; is the cumulative probability at
bin i. Note that it is important to define the estimate of the distribution function at the
upper bound of the histogram bins:

§i=yi+% (3.17)

It should be stated that ' (5,) is an unbiased estimate of F(y) at .

Then, having estimated the nonlinear (non-normal) distribution function, at each value

of p,, find the linear distribution function F7;, with equal probability

Eul(yi):pi:}:;in(xi) (3.18)
The corresponding linear (normal) function value x;, is determined using the IDF
X = F;;u] (Fnl (i)) (3.19)

If the linear distribution function is presumed normal, then the linear function value x
can be estimated by using the inverse distribution function for a normal distribution (see

equation 2.30)
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Fron(p)=oN2erf"(2p-1)=x (3.20)

1 . . . . .
where erf is the inverse error function, or, in terms of the estimated nonlinear

distribution function by
x, =0 ~N2ef ™ (2F,(5,)-1) (3.21)

An example nonlinear (non-normal) distribution function (CDF) determined from the
8 g displacement PDF is shown in Figure 3.19(a) overlaid with a linear (normal) CDF.
The IDF method can be traced graphically on Figure 3.19(b), which shows the positive
response portion of the linear and nonlinear CDFs. For example, given a nonlinear
normalized displacement of 0.8 ¢, what linear displacement will have the same CDEF?
By inspection, the corresponding linear displacement is approximately 0.7 o;. Another
example is 1.8 oy, nonlinear mapping to 2.0 o linear. The linear displacement response
o= 0.429 mm for a base acceleration input o= 1 g was estimated from the linear
transfer function of displacement response for the Gaussian random input (see Section
3.1.3). The linear displacement response o for each test input case was determined by
scaling the 1 g o, by the corresponding input acceleration level. Nonlinear displacement

responses are given in Table 3.3.

The IDF method can be repeated at every nonlinear response CDF value. The resulting
x and y pairs are shown in Figure 3.20(a). The positive pairs are shown again in Figure
3.20(b) with a log-log scale. Note that the results from each input level form a set of

unique curves.

3.2.3.1 Curve fitting the linear to nonlinear functions

In previous attempts [160] a piecewise power-law was used to curve fit the RMS stress
linear to nonlinear functions. Research with similar nonlinear functions [259] suggests
that a polynomial function of the nonlinear response is the preferred method to curve fit

“stress stiffening” data

h(y)zx

, . (3.22)
cy+tey +te Yy =x

58



where y and x are the nonlinear and linear displacement levels respectively. Note that
the polynomial is now on the left hand side of the equation (see Section 2.1.5). A third
order polynomial proved to be a good fit of the linear to nonlinear response function
data. These linear to nonlinear polynomial functions are used extensively in this thesis
as part of the PDF transform method to predict nonlinear PDFs (see Section 2.1.5) and
subsequent estimates of o;, kurtosis, rates of zero crossings (see Section 4.2.12) and

fatigue life.

3.2.4 Response rates

The response rates (see Section 2.1.4) of the displacement and strain results were
calculated using WAFO MATLAB functions [258] (which determine level crossings
and response peaks). An interesting observation is that the bending strain rates of zero
crossings and peaks are significantly lower than the displacement rates (see Table 3.6).
Also, the ratio @is not as constant for each input level. The rates for bending strain are
similar to the rates of top and bottom strain (see Table 3.7), except for the highest input
of 8 g. At the highest input level, the addition of the membrane strain has shifted the
ratio @ up significantly for the top and bottom strains, while the bending strain has not

increased proportionately.

3.2.5 Peak PDFs from data

Normalized peak displacement PDFs, determined from displacement RFMs (see also
Section 2.4.6), are shown in Figure 3.21(a) for three of the input levels, with a linear
peak PDF (determined at a ratio @ = 0.967) for comparison. The data shows strong
nonlinear behavior, with increasing probability for negative-valued maxima. The peak
displacement RFM for the highest input level (8 g) is also shown (Figure 3.21(b)) for
comparison to other peak RFM, which will be presented later.

One major observation from the data is that the ratio @ was not constant for each input
data set, as given in Table 3.6. This change in the ratio @ with the input level (and
degree of nonlinearity) required a decision regarding the manner in which one proceeds

with the IDF method discussed above in Section 3.2.3. The logical choices were to use
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one linear CDF, based on the linear ratio @, or to allow the ratio @ to change and,
therefore, determine a corresponding linear peak CDF for each input level. Figure 3.22
shows the normalized linear and nonlinear CDFs for the data. Notice that the CDF for
the nonlinear data at the highest input of 8 g crosses the zero displacement level at a
cumulative probability of approximately 0.8, while the CDF for the lowest level input of
0.5 g crosses the zero displacement level at approximately 0.2. The linear peak CDFs,

based on variable ratios @, cross at about the same level as the nonlinear data.

A more compelling argument for a variable ratio @ comes when one inspects the linear
to nonlinear functions determined using the IDF method. Figure 3.23(a) shows the
linear to nonlinear function, based on a fixed linear peak CDF, while Figure 3.23(b)
shows the function based on a variable linear peak CDF. Log-log plots of these
functions are shown in Figure 3.24. In both cases the data does not all fall along one
common curve. The data for the variable linear-peak CDF functions does tend to cross
the zero-zero point, which is considered to be desirable when curve fitting. One could
attempt to develop a family of curve-fit parameters for each input level using the fixed
linear peak CDF data, but this would require that an additional constant coefficient ¢, be
added to the polynomial function in equation (3.22). Instead, a single curve fit of the
linear to nonlinear function data, through only the most extreme positive peak values

(those above about 2 o) from all of the input levels, was used.
ay+e,y ey =x (3.23)

The set of points used, and the polynomial curve fit of the data, are shown in
Figure 3.24. It is promising to note that a polynomial curve fit of the same set of data
points, determined from the fixed linear peak CDF, yield similar coefficients, as given

in Table 3.8.

3.2.5.1 Nonlinear peak PDFs estimated with PDF transform

Using the PDF transform method (introduced in section 2.1.5), nonlinear peak PDFs
were determined using this single set of coefficients. To review, the peak PDF

transform for this LHS function is:
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pnlpeak (y>w)= h,(y)~ppeak (h(y)ﬁw) (324)

Where h(y) 1s from equation (3.22) and ppeq is from equation (2.20). The PDF transform
method was attempted two ways: the first using a fixed linear peak PDF based on a
fixed ratio @ calculated using equations (2.61) and (2.53) with the 0.5 g linear transfer
function estimate (see Section 3.1.3), and the second using a variable linear peak PDF
based on the variable ratio @ (given in Table 3.6) determined for each set of test data. A
goodness-of-fit test of these transformed PDFs was performed, with the results given in
Table 3.9. The results are encouraging, especially for the variable linear peak PDF
cases. Observe that both methods yield good fit tests at the lower input level, but, as the
input increases, the transformed PDFs based on the variable linear peak PDFs continue

to show good fit test values.

Comparisons of the PDF transforms are shown in Figure 3.25 for the highest test input.
Notice that the nonlinear peak PDF estimate made using the fixed linear peak PDF is in
error in both the low-amplitude and mid-amplitude regions. In the high-amplitude
range, the estimate tends to be conservatively high, which may prove to be acceptable

when determining fatigue damage.

3.2.5.2 Peak histogram relationships

An interesting finding occurs when estimating the histogram of peaks for use in the chi-
squared test. When using the variable PDF transform based on the ratio of zeros to
peaks @y, where k 1s an index for a particular input level, the histogram of peaks at that

input level is simply (see also equation (3.15))
H[x,W],, =N W py(x.@,) (3.25)

When the estimate of the nonlinear peak PDF is made based on a PDF determined by an
assumed @, that is different than the @y for this input level (e.g., @, = 1 for a linear

Rayleigh PDF), the histogram of peaks can be approximated as

@, | 0]
A (i) - x
Hnl:k = Np:k {w_k}anlza = Hp:a [ - l: :IJanka (326)

®,[0;]

a
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Figure 3.26(a) shows peak histogram estimates when this correction is made for the
WPAFB data at the 8 g input level. Note how well the agreement is in the high-

amplitude regions where fatigue damage is most important.

This leads to an interesting observation: Given a generalized zero-mean normal random
response, the generalized histogram of positive maxima is equal to the Rayleigh
histogram of maxima plus the generalized histogram of negative maxima in reverse

order. An example of this relationship is shown in Figure 3.26(b).

An outcome of this observation is a method for estimating the number of zero crossings
from a general peak response histogram. Let N, be the total number of positive peaks

(or maxima) determined from a data set histogram by

N .=

P

H, EN4 (3.27)

N

I

and the subset of these peaks that occur at negative values are

0
N .= Z H . [xW] (3.28)

X,

From the discussion above, the number of maxima with positive values

N, .= H [xW] (3.29)

x>0

is equal to the number of zero crossings (determined from a Rayleigh histogram (due to
the fact that narrow band system has an equal number of peaks and zero crossings)) plus

the number of negative value maxima

N, . =N,+N__ (3.30)

+p
Relating these to the total number of peaks from equation (3.27)

N.=N .+N . (3.31)
P -p

+p
yields an interesting relationship

62



Ny=N_-2N_, (3.32)

and an equation for the ratio of zeros to peaks

=0 =] (3.33)

An intuitive check for this relationship can be made for the two limiting cases of a peak
distribution. When the response is ideally narrowband, the number of negative-value

maxima is zero, therefore

@,, 220 (3.34)

When the response is ideally wideband, the number of negative-value maxima is the
same as the number positive-value maxima, therefore
2N, 2N,
o,=1-—2—=1-—F__ =90 (3.39)
N . +N N . +N .
-P +p -P -P
These two results agree with the definitions of @ for narrowband and wideband

responses.

Further, this relationship has been found to be useful for estimating the value at which a
peak distribution function crosses zero. Starting with the generalized peak distribution
function (equation (2.28))

2

Fpeak(ziw) =1—-Q1 (Z)_wexp(_%][l_Qz (Z):'

Qn(z>=§erfc[knzﬁ]

(3.36)

at z = 0, this reduces to
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Fru (0.) =1-0,(0)-@[1-0,(0)]
0. (0)——erf<{k (\)/5}% (3.37)

l o l-ow
Fpeak (O,ZU')=1—5——2—=‘—_‘2

The intuitive check is, again, informative. When the response is ideally narrowband,

o=1

l-@, 1-1

F,(0,1)= > :-2—=0 (3.38)
When the response is ideally wideband, @ =0
l-@ 1-0 1
0,0 v = 3.39
norm ( ) 2 2 2 ( )

These two results agree with the values of Rayleigh and normal distribution functions at
zero. One last substitution of equations is of interest. Observe that the distribution

function at 0 can be estimated from cumulative histograms by

0, : i W) A 3.40
o)~ — x,W|= :
peak ( N = [ i Np,, ( )
substituting equation (3.33) into equation (3.37) gives
2N_ . 2N .
1-| 1-—== —r
F,.(0 Ny Np Ny 3.41
,ZU' = = = .
peak ( ) 2 2 Np,, ( )

which completes the discussion of the findings.

3.2.6 RFMs and peak PDFs of strain response

The bending strain data was also sampled to determine peak strain RFMs and PDFs.
The RFM for this bending strain data (see for example, the 8 g input data in
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Figure 3.27(a)) has many more mid-amplitude cycles distributed off the main diagonal.

Peak PDFs of the bending strain are shown in Figure 3.27(b).

A typical RFM of membrane strain is shown in Figure 3.28(a) for the 2 g input case.
This figure shows that the strain instrumentation bias estimate, based on equation (3.14)
, may have been slightly in error. Ideally, the median minimum peak strain value would
have been zero. In this case, the RFM of the data suggests that the median minimum
peak strain is one bin off. Peak membrane strain PDFs determined from the RFMs are
shown in Figure 3.28(b). Here, the results are compared to a linear Rayleigh PDF.
Theoretically, the peak membrane strain PDF for a squared response would be infinite
at zero strain. This is not strictly the case for this data, perhaps as a result of the errors in
bias estimation or perhaps because of the errors based on assuming the simple model of

total strain (see equation (3.7)).

The peak top and bottom strain RFMs are some of the most interesting yet investigated.
The progression from a mildly to strongly nonlinear peak strain response is best studied
as a series of RFMs. The top strain RFMs are shown in Figure 3.29 through

Figure 3.30(b) for three input levels.

The first major observation is that the main diagonal of the RFM is bent toward the
positive strain ranges. Another interesting observation is that there seems to be a
minimum “mean’ strain value that limits the response in the negative values of strain.
One explanation of the minimum mean strain value is due to the higher frequency strain
responses riding on top of a lower frequency strain response, which is limited to some

minimum value (see discussion in Section and 3.3.1.2 and Figure 3.45(b)).

PDF transforms based on strain functions are discussed in Section 3.3.2.

3.3 Response estimates

The nonlinear functions estimated in the previous sections will be used next to

investigate some interesting aspects of the WPAFB experimental results.
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3.3.1 Time domain strain estimates from displacements using FRF's

The nonlinear FRFs estimated using the reverse MISO method can be used to estimate
time domain responses with simple forward and inverse Fourier transforms, as shown in
Figure 3.31. The measured nonlinear displacement time domain data is squared and
cubed to form the other two inputs (after being Fourier transformed) for the three
nonlinear displacement to strain FRFs. The nonlinear strain component estimates are
then converted back to the time domain, using inverse Fourier transforms. The strain
components are then summed (with the appropriate sign) to estimate the total strain

response at the top and bottom surfaces.

Note: The Fourier transform FRF method was used here for simplicity; a digital filtering
method based on the Laplace domain form of the estimated transfer functions could be
used as well. This digital filtering method may be useful when working with purely

theoretical data (e.g. from finite element models).

The nonlinear strain estimation method is demonstrated here with two cases: a full

frequency range case and a filtered frequency range case.

3.3.1.1 Strain response estimates from nonlinear FRFs

The first method uses the raw point-by-point numerical estimates for the three FRFs of
displacement to strain over the full frequency range. This set of estimates includes the
effects of the second, higher frequency mode (see the linear and cubic FRFs,

Figure 3.32 and Figure 3.33(b), respectively) and low-frequency variations below the
bandwidth of the input (see both the squared and cubic FRFs in Figure 3.33). The real
and imaginary parts of the FRFs are shown so that one can gain an understanding of the

sign of each FRF.

The resulting sum of the three estimated time domain strain components compare very
well with the raw top and bottom strains, as shown in Figure 3.34 for a high amplitude
range, and Figure 3.35 for a low amplitude range of response. There are several
interesting observations to be made from these results. Over the range of time periods
where the response is greatest, the response appears to be dominated by the first mode,

with some higher frequency components visible at the minima and maxima. Even more
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interesting is the interaction between the squared (labeled p&-x*) and cubic (labeled
pne-x’) components of the nonlinear strain. Near the maxima, the two nonlinear terms
tend to cancel each other, while near the minima the two terms add, and therefore, affect
the sum greatly. Also interesting is that the cubic term is out of phase with the linear
term. This was not expected and has not been discussed in the literature. Over the low-
amplitude range of response, the higher frequency strain is very evident, and it tends to
be superimposed on the lower frequency mode. Note too that the squared and cubic
nonlinear terms have much less variation, and they have a localized bias effect on the
summation. These bias shifts are thought to be due to the very low frequency response
of this nonlinear system below the lower cutoff frequency of the input (20 Hz). Both
sets of figures also show that the top and bottom strains are clearly out of phase with

each other.

As a check of the nonlinear strain theory developed here, the bottom strains were
estimated from the top strain FRFs. This check used the top strain squared estimates
with the negative of the linear and cubic top strain estimates for comparison to the raw

bottom strain data:

Eop = Elin T € + & e

top Square
(3.42)
Ebot = Elin t Esquare ~ €,

Square cube

Figure 3.36(a) shows the estimates over a region of high-amplitude response. The
estimates are very good for the maxima, but they consistently have larger negative
amplitudes for the minima. This is also the case for the low-amplitude response range
shown in Figure 3.36(b). One explanation for this is illustrated in Figure 3.37(a).
Compared to the bottom strain FRF shown in Figure 3.33(b), this figure shows that,
over the frequency range of 20 to 500 Hz (the input acceleration range), the top and
bottom FRFs have very similar magnitudes but with a difference in sign, as expected.
The low-frequency range (1 to 10 Hz) shows similar magnitudes but with the same sign;
this is unexpected and may be another indication of a pre-buckled condition or of
instrumentation bias errors. Another explanation could be that this range has very poor

coherence and any estimates of the frequency response functions are suspect.
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The questions about the low frequency contribution of the FRF estimates to the time
domain strain were investigated by forming a signed average of the top and bottom FRF
estimates. These estimates were edited to give the low-frequency real and imaginary
values a nominal constant value, determined from the higher frequency values of the
FRFs, resulting in the functions shown in Figure 3.37(b) through Figure 3.38(b).
Compare these to the raw estimated FRFs in Figure 3.32 through Figure 3.33. The time
domain estimates of strain based on the averaged FRFs are shown in Figure 3.39. These
figures now show membrane strain (squared strain data labeled pg—xz) with near-zero
minimum and cubic strain (labeled p&-x’) with near-zero mean. Compare these time
domain estimates of strain to those based on raw estimated FRFs in Figure 3.34 and
Figure 3.35; the differences in these results give an indication of the bias errors

discussed in Section 3.2.1.

The averaged FRFs, which have a frequency spacing of 0.25 Hz determined from
overlapped and averaged 4 s data blocks, were used recursively (22 times) over the full
88 s of displacement data to estimate time domain strain responses and, ultimately,
rainflow matrices. These RFM results are shown in Figure 3.40 through Figure 3.43.
The time domain strain estimation process based on nonlinear FRFs allows one to look
at the different individual or summed components of the strain. It is encouraging to
compare the bending RFM that is calculated from the time domain strain data using
(3.13) in Figure 3.27 with Figure 3.43. The comparison helps to modify the
understanding; what was previously described as a bending strain can more accurately
be thought of as a symmetric strain. The concept of bending strain is more closely tied
to a linear strain (see, for example, Figure 3.42), while the concept of a symmetric strain
can include the higher-order odd harmonics that have been demonstrated to be
important in the decomposition of the total nonlinear strain response. The membrane
strain estimates using the averaged and edited nonlinear FRFs (see, for example,
Figure 3.40(b)) compare well to the time domain estimates using (3.14) shown in

Figure 3.28(a). One can argue that the estimate made from the FRF is “cleaner.”
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3.3.1.2 Strain response estimates from filtered nonlinear FRF's

A final set of time domain strain estimates were calculated using filtered nonlinear
displacement data. This case first used a band pass filter from 20 to 120 Hz on the
“input” nonlinear displacement data. As before, this time domain filtered data was
squared and cubed. The linear, squared, and cubic strain FRFs were band limited to 120,
240, and 360 Hz, respectively. These frequencies were chosen based on the coherence

functions for this input level, as shown in Figure 3.44(a).

The simulated responses, based on the band pass filtered nonlinear displacement inputs,
show good agreement with the filtered strain response data, as shown in Figure 3.44(b)
and Figure 3.45(a). The simulated response data is shown with the raw top strain data in
Figure 3.45(b). This shows how the higher frequency strain from the second mode can
add to the lower frequency mode, as theorized above based on observations of the
rainflow matrix, which indicate a limiting minimum mean stress. The simulated
response RFM in Figure 3.41(b) and Figure 3.43(b) show this minimum mean stress

behavior as well.

In a manner similar to the development in Section 3.2.2, the filtered response data was
used to estimate a time domain polynomial relationship between the filtered nonlinear

displacement y and the filtered top and bottom strains. The polynomial model is

=y +ey ey (3.43)

Ebot =—ey+ 62y2 - 3y3
The addition of instrument gain (k) and bias (b) errors give

étop = ktopgtop + btop (3 ) 4 4)

gbot = kbotgbot + bbot

and, if the top gain ki,p = 1 and the bottom gain is

O,
k,, = —= (3.45)
o
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Subtracting the top and bottom strain equations gives an equation for the symmetric

strain terms

Chot O-é,ap

Egr = Eip — = e, + Z(ely + e3y3) (3.46)

Ebar

while summing them gives an equation for the squared term
—2 =e_  +2e,y’ (3.47)

A least-squares polynomial fit of the filtered nonlinear displacement y to the sum and
difference filtered strain data at each input level was performed with the results given in

Table 3.10. The polynomial coefficients were then used to estimate the bias terms

top top gtop (3 4 8 )

by = Epot T kbotgbot

Note that the polynomial coefficients are quite similar at the lower input levels, but
some shift in the results is noticeable at the higher input levels. This shift is most
noticeable in the cubic coefficient. These coefficients will be used as a basis for
estimating stress from nonlinear displacements determined from ODE simulations that

will be discussed in the next chapter.

This concludes the time and frequency domain analysis of the displacement to strain
frequency response functions. The next section explores the relationship based on their

PDFs.

3.3.2 Estimates of strain PDF from displacement PDF using IDF method

The success with estimating the response strain from an “input” displacement from
frequency response functions suggests a similar method based on the IDF method. Can
one estimate a displacement to strain function based on distribution functions of the
unfiltered data? This section describes the attempts based on peak displacement to peak

bending strain and peak displacement to peak membrane strain.
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Compared to the peak displacement PDFs (see Figure 3.21(a)), the peak bending strain
PDFs are shifted more toward a normal distribution (see Figure 3.27(b)). Also
remember that the ratio @wis very different for the measured displacement and bending
strain (see Table 3.6). The true ramification of these issues are seen when one tries to
estimate nonlinear displacement to nonlinear bending strain functions using the IDF
method. The resulting data (see Figure 3.46(a)) does not show a clear trend toward one
common function. Especially interesting are the data points that would imply positive
peak displacements for negative bending strain maxima. Figure 3.46(b) shows the data
again on a log-log plot with a single best-fit linear function through the higher
amplitude peak data points. This linear function was used with the PDF transform
method to estimate peak bending strain PDFs from peak displacement PDFs.

Figure 3.47 shows a typical peak bending strain PDF estimate. Note how poorly the
estimate matches the experimental data over the whole range of response, except at the
few highest response levels (in the 200 to 250 perange), which correspond to the best-
fit linear function.

An explanation of these poor results is based on the difference in the ratio @ for the
displacement and strain data. The frequency response functions of displacement input to
strain output showed that the relationship between the two was not constant (see, for
example, Figure 3.13). Filtering the data, so that only the fist mode was observed,
allowed a time domain polynomial relationship to be determined between displacement
and strain (see equation (3.43)). This single degree of freedom time domain relationship
will be used in Chapter 5 to predict strain based on nonlinear simulation displacement

results.

The IDF method was also used to estimate the peak membrane strain PDF. A ratio @
was assumed to be 1, based on the standard assumption that the membrane strain is
always positive, and therefore has no negative valued maxima. The nonlinear peak
displacement was used as the basis for comparison to the nonlinear peak membrane
strain. The peak displacement to peak membrane strain function (see Figure 3.48(a))
shows that there is a trend in the data, but as in other examples, the 8 g data does not
follow the others. Given this apparent shortcoming, a squared function was fit to the

data (see Figure 3.48(b)) and was used to estimate the peak membrane strain PDF.
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The process of estimating the membrane strain PDF from the nonlinear displacement
PDF presented two options: transform the raw peak displacement PDF data or transform
the estimated peak displacement PDF. Examples of both options are shown in

Figure 3.49(a) and Figure 3.49(b). Both methods show good agreement with the PDFs

estimated from the measurements.

3.4 Fatigue analysis of experimental data

The fatigue analysis of the WPAFB data is separated into two sections. The first is
based on the raw measured strain while the second is based on the filtered strain. These
sections include estimated nonlinear responses and a baseline linear response derived
from the linear transfer function estimates. Comparison of the time to failure for

different fatigue life models is included (see section 2.4.7).

The material SAE 1015 (a low-carbon steel) was used for the fatigue analysis because
fatigue property data for the different fatigue models (given in Table 3.11) was available
(Dowling [147]). The baseline alternating stress equation assumed no mean stress
effects, while the Morrow (with true fracture strength) and Walker equations included

mean stress effects.

The measured and estimated strains were converted to stress by multiplying by the
elastic modulus £ = 204 GPa (assuming no Poison effect of the unmeasured

perpendicular strain). The stress results are in units of MPa.

3.4.1 Wideband analysis of WPAFB data

The raw top and bottom strain data from the WPAFB experiments is compared with
estimates using nonlinear frequency response functions and a baseline case using a
linear frequency response function. These cases include the effects of the second

response mode.

72



3.4.1.1 Rainflow range matrices and life estimates of raw data

The raw top and bottom strain data measurements were converted to rainflow matrices
(RFMs), see Figure 3.29 and Figure 3.30. These RFMs were used to calculate rainflow
damage (RFD) matrices using the three damage models (see Section 2.4.6.1). A total of

85 s of the raw data files were used to estimate the time to failure (see equation (2.112)).

For all of the raw data file cases, the time to failure was shorter for the top strain (see
Table 3.12) than the bottom strain data (see Table 3.13). This is consistent with the
findings in previous sections, which pointed out that the standard deviation of the
bottom strain was about 0.9 times that of the top strain. The bottom strain could be
scaled by this amount as an attempt to show better agreement between the top and

bottom strains.

Example of rainflow damage matrices for these raw strain results are shown in

Figure 3.50 through Figure 3.51.

3.4.1.2 Estimates from averaged nonlinear frequency response functions

The averaged nonlinear frequency response functions from Section 3.3.1 were used to
estimate the total stress at the top surface of the beam. The nonlinear FRF estimates
were based on averaged auto and cross spectra for 4 s data blocks. The RFMs for this
example were determined by summing the resulting rainflow cycles from 22 nonlinear
input displacement blocks, each with 3.75 s of valid data, for a total of 82.5 s. As
expected, the results in Table 3.14 show that the time to failure estimates fall between
the results from the raw top and bottom stresses. Typical damage matrices are shown in

Figure 3.52.

The nonlinear FRF method could also allow comparison of combinations of linear and
nonlinear FRFSs, e.g., a linear displacement to strain FRF applied to nonlinear

displacements. These are left for future research.
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3.4.1.3 Baseline linear estimates

Another set of wideband damage estimates were developed based on the linear
estimates of the transfer function between input acceleration and linear response top
surface strain. In this case, the transfer function estimates from the 1 g data files (as
described in Section 3.1.3) were used to estimate the top surface response strain. The
Laplace domain polynomial representation of the transfer function allowed for a larger
time record estimate of a single block of input acceleration data (64 s, in this case).
Rainflow damage matrices are shown in Figure 3.53 for the minimum and maximum
input level. The damage matrices (and their RFM precursors) have nearly identical
shapes as one would expect for linear models; one is approximately a scaled version of

the other.

Several observations are worth noting with this example. First, note that the estimates of
time to failure are almost equal for the baseline and Morrow damage models at the
lowest input levels (see Table 3.15). This is due to the symmetric nature of the RFM for
the linear model (near-zero mean stress). This should be compared to the nonlinear
results given in the previous sections. Next, note that the lowest 0.5 g input-level top
surface nonlinear time to failure results (see Table 3.12) are close to the low-level linear
estimates calculated here, but that the high-level linear life estimates are approximately
four to five orders of magnitude shorter than the nonlinear life estimates. This is very
strong motivation for performing the nonlinear analysis. Another interesting point is that
the peak stresses from the highest input case are approximately at the ultimate strength
limit of the material. From a pure strength standpoint, this would indicate almost certain

failure.

3.5 Nonlinear wideband analysis summary

The WPAFB experiments yielded a wealth of data that was analyzed in the frequency
and time domains. The reverse path nonlinear technique was shown to be very effective
in identifying nonlinear models for measured data. The identified frequency response
and coherence functions gave keen insight into models for both the force to nonlinear
displacement response and the displacement to nonlinear strain response. Modal models

of the nonlinear system response were proposed.
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Time domain analysis of the data showed strong nonlinear behavior. PDFs of
displacement and strain responses were developed and used with the Inverse
Distribution Function (IDF) method to estimate linear to nonlinear functions.
Investigations of the change in peak PDFs, as the ratio of the rates of zeros to peaks
changed, yielded observations of importance. The peak PDF and the peak histogram of
a generalized response (i.e., any response from narrowband to completely wideband)
were shown to be composed of the sum of narrowband and wideband parts. Equations
to estimate the ratio of zeros to peaks @, based on the number of negative value
maxima, were developed. An equation to determine the value of the distribution

function at a peak value of zero, as a function of @, was also developed.

Estimated nonlinear strain response based on linear, squared and cubic displacement to
strain FRFs allowed clear visualization of the interactions between the linear and

nonlinear terms.

Time to failure was estimated based on the raw strain measurements and several
estimates of linear and nonlinear response. The time to failure estimates showed that the
nonlinear results were significantly longer than the linear results, especially at the
highest input level. The life estimates were also made with two damage models that

included nonzero mean stresses.

Numerical simulations, performed on a nonlinear single degree of freedom system, are
discussed in the next chapter. Nonlinear ordinary differential equation (ODE)
simulations are used to study parameters not available from the WPAFB experimental
results (i.e. velocity and acceleration response states). The effects of damping level on
the nonlinear response are also investigated. Long time duration simulations are used to

study the rate of convergence of basic response statistics.
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3.6 Chapter 3 Tables

Table 3.1. Multi-mode linear displacement response for force input parameter
estimation from WPAFB data.

Run fal & Jn2 & Est Linear | Est Linear
Hz Hz o, mm lg o, mm
05¢g 78.9 0.23% 416. 0.52% 0.213 0.429
lg 78.3 0.14% 416. 0.46% 0.447 0.452
2g 78.4 0.064% 420. 0.38% 0.927 0.472
4¢ 79.0 0.26% 438. 0.076% 1.582 0.404
8g 83.9 0.51% 443. 0.031% 2.469 0312

Table 3.2. Multi-mode linear top surface strain response for force input parameter
estimation from WPAFB data.

Run Ja1 & o2 & Est Linear | Est Linear
Hz Hz Oe (1L€) lg o: (Lg)
05¢g 79.2 0.42% 416. 0.49% 23.8 48.1
lg 78.3 0.37% 416. 0.41% 48.9 49.5
2g 78.0 0.16% 417. 0.28% 150 76.4
4g 100 0.91% 430. 0.027% 241 61.8
8g 108 2.8% 442. 0.078% 420 53.6

Table 3.3. Input acceleration and displacement response statistics from WPAFB data.

Input o.g | Usmg Iy Ky o, mm | (4, um L el
0.5g | 0.495 1.9 0.2% 3.0 0.183 | -0.12 10% 2.9
lg 0.989 15 5% 2.9 0.292 | 0.005 11% 2.8

2g 1.97 5.7 1% 3.0 0.488 | -0.025 8% 2.5

4g 3.91 5.4 1% 2.9 0.777 | —0.001 4% 2.2

8g 7.85 4.1 2% 3.1 1.087 | —0.064 | 3% 2.1
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Table 3.4. Top and bottom surface strain response statistics from WPAFB data.

Input | iy UE | fhop LE | Uop Kiop | Obot WE | Mbot LE | oot Kot
05g | 266 1 27% 2.8 23.0 | -6.8 | —45% | 2.6
lg 42.8 1.2 36% 2.8 377 | -3.0 | 31% 2.9
2g 70.5 4.6 64% 2.7 64.3 7.1 94% 3.1
4¢g 111 18 103% | 2.9 104 27 130% | 3.2
8g 157 45 129% | 3.3 148 56 | 145% | 3.4

Table 3.5. Bending and membrane strain response statistics from WPAFB data.

Input | Gpend | Mbend Lbend Kbend Omem | Mmem Lmem Kinem
ne ne ne e

05g | 265 | 0.021 | -13% | 2.8 2.04 202 | 211% | 5.9

lg 425 | —0.002 | -14% | 2.7 5.00 416 | 239% | 7.4

2g 69.4 | 0.004 | -9% 2.4 12.4 11.6 | 214% | 5.7

4g 107 | 0.002 | —4% 2.1 28.7 28.0 | 198% | 4.7

8¢g 148 | 0.011 | —2% 2.2 50.8 45.0 | 198% | 4.7

Table 3.6. Rates of displacement and bending strain zero crossing and peaks for

WPAFB data.
Input 1 @f0;] | ®[F] | @ | ®[0,,]| P AL.]| Tew
Hz Hz Hz Hz
05¢g 81.4 84.2 0.967 103 218 0.471
lg 83.8 87.2 0.961 110 258 0.428
2g 92.0 102 0.903 137 318 0.431
4g 109 122 0.890 165 367 0.450
8g 132 152 0.865 209 430 0.485
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Table 3.7. Rates of top and bottom surface strain response zero crossing and peaks for

WPAFB data.
Input | @0y, ] | ®[E,] | Fo | @0 ] | ®B] | T
Hz Hz Hz Hz

05¢g 98.5 203 0.484 96.6 236 0.408
lg 106 244 0.433 111 274 0.406
2g 133 311 0.426 141 328 0.430
4¢ 165 360 0.457 179 369 0.485
8g 250 421 0.591 270 425 0.634

Table 3.8. Polynomial coefficients for linear to nonlinear curve fit of WPAFB peak
displacement data.

¢ mm/mm 2 mm/mm? C3 mm/mm’
Fixed @, CDF 0.90 0.51 0.29
Variable @, CDF 0.95 0.36 0.33

Table 3.9. Goodness-of-fit peak PDF comparison for WPAFB data.

Input Bin Center Range DOF PDF: X*

05¢g -0.17 < 0<3.18 30 Fixed PDF: 126.
lg -0.17 < 0<3.25 30 Fixed PDF: 457
2g -0.15< 0<2.86 30 Fixed PDF: 1255
4¢ —0.13<0<2.53 30 Fixed PDF: 1507
8g —0.13<0<2.44 30 Fixed PDF: 3309

05¢g —0.17<0<3.18 30 Variable PDF: 121
lg —0.17 < 0<3.25 30 Variable PDF: 423
2g —0.15<0<2.86 30 Variable PDF: 295
4g —-0.13< <253 30 Variable PDF: 186
8g -0.13<0<2.44 30 Variable PDF: 389
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Table 3.10. Filtered strain response parameter estimation from WPAFB data.

Input | fu Hz el e e biop boor ks
pemm | pgmm’ | pgmm’ ne ne
05¢g 100 —143 41.5 15.5 —0.36 -9.29 0.856
lg 110 ~144 42.9 15.4 —2.48 -7.12 0.877
2g 120 —-143 41.7 14.8 —4.66 —2.45 0.901
4¢g 160 —141 40.0 12.0 —5.82 5.10 0.934
8g 220 —-137 36.7 9.4 1.57 15.6 0.944

Table 3.11. Material properties for nonlinear total stress damage evaluation.

Material Properties (MPa)
o, =801,6=-0.113

Fatigue Equation

Baseline Alternating Stress

Morrow, reduced fracture strength c'f =801, 6 B = 726,b=-0.113

Walker o, =799,y=0.713,b=-0.114

Table 3.12. Time to failure estimates for raw top strain measurements from WPAFB

data.
Run Baseline (s) Morrow (s) Walker (s)
05g 1.55 x 10" 1.52 x 10" 8.93 x 10"
lg 2.27 x 10" 2.17 x 10" 1.20 x 10"
2g 3.77 x 10" 3.42 x 10" 1.73 x 10"
4¢g 1.40 x 10° 8.64 x 10° 414 x 108
8g 1.86 x 10 1.28 x 10’ 7.18 x 10°
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Table 3.13. Time to failure estimates for raw bottom strain measurements from WPAFB

data.
Run Baseline (s) Morrow (s) Walker (s)
05g 5.21 x 10" 5.17 x 10 330 x 10
lg 5.91 x 10" 5.62 x 10" 2.81 x 10"
2g 7.63 x 10'° 6.78 x 10'° 3.03 x 10"°
4¢g 1.87 x 10° 1.52 x 10° 6.61 x 10
8g 2.90 x 10’ 1.96 x 10’ 1.40 x 10’

Table 3.14. Time to failure estimates for averaged nonlinear frequency response

functions of WPAFB data.
Run Baseline (s) Morrow (s) Walker (s)
05¢g 3.17 x 10" 3.11 x 10" 1.72 x 10"
lg 3.78 x 10" 3.59 x 10" 1.82 x 10"
2g 5.56 x 10" 4.96 x 10'° 2.29 x 10
4g 1.32 x 10° 1.11 x 10° 5.27 x 108
8g 1.89 x 10’ 1.38 x 10’ 8.06 x 10°

Table 3.15. Time to failure estimates for linear top strain response from input
acceleration WPAFB data.

Run Baseline (s) Morrow (s) Walker (s)
05g | 1.1683x10" 1.1680 x 10" 8.44el3
lg 6.4175 x 10" 6.4168 x 10" 4.84 x 10"
2¢ 1.644 x 10° 1.642 x 10° 1.30 x 10°
4¢g 5.48 x 10° 5.47 x 10° 4.70 x 10°
8g 5.82 x 10° 5.74 x 10° 531 x 107
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3.7 Chapter 3 Figures

Figure 3.1. Vibration experiment at WPAFB, showing clamped-clamped beam, fixture,
strain gages, differential variable reluctance displacement transducer, base input
accelerometer, thermocouples and electrodynamic shaker (from [7], Figure 1).
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Figure 3.2. PSD responses determined from WPAFB input = (0.5, 1, 2, 4, 8) g data: (a)
averaged (top and bottom) strain and (b) displacement.
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Figure 3.3. Displacement input to force output frequency response functions determined
from WPAFB input = (0.5, 1, 2, 4, 8) g data: (a) uncorrelated displacement input to
force output and (b) correlated displacement input to force output.
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Figure 3.4. Nonlinear displacement input to force output frequency response functions
determined from WPAFB input = (0.5, 1, 2, 4, 8) g data: (a) uncorrelated squared
displacement input and (b) uncorrelated cubed displacement input.
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Figure 3.5. Coherence functions for displacement input to force output frequency
response functions determined from WPAFB data: (a) input = 0.5 g and (b) input =8 g.
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Figure 3.6. Top surface strain input to force output frequency response functions
determined from WPAFB input = (0.5, 1, 2, 4, 8) g data: (a) uncorrelated top surface
strain input to force output and (b) correlated top surface strain input to force output.
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Figure 3.7. Nonlinear top surface strain input to force output frequency response
functions determined from WPAFB input = (0.5, 1, 2, 4, 8) g data: (a) squared top
surface strain input and (b) cubed top surface strain input.
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Figure 3.8. Coherence functions for top surface strain input to force output frequency
response functions determined from WPAFB data: (a) input = 0.5 g and (b) input =8 g.
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Figure 3.9. Displacement input to top surface strain output frequency response functions
determined from WPAFB input = (0.5, 1, 2, 4, 8) g data: (a) uncorrelated displacement
input and (b) correlated displacement input.
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Figure 3.10. Nonlinear displacement input to force output frequency response functions
determined from WPAFB input = (0.5, 1, 2, 4, 8) g data: (a) squared displacement input
and (b) cubed displacement input.
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Figure 3.11. Coherence functions for displacement input to top surface strain output
frequency response functions determined from WPAFB data: (a) input =0.5 g and (b)
input =8 g.
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Figure 3.12. Estimated force input transfer functions from WPAFB input = 1 g data: (a)
linear displacement response and (b) linear top surface strain response.
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Figure 3.13. Estimated displacement input, linear top strain output transfer functions for
WPAFB input = 1 g data: (a) MDOF parameter estimate from raw strain to

displacement data and (b) estimate from product of strain to force and force to
displacement transfer functions.
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Figure 3.14. Flow diagram of nonlinear clamped-clamped beam model with series
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Figure 3.15. Flow diagram of nonlinear clamped-clamped beam model with modal
superposition for displacement and strain functions.
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Figure 3.16. Normalized PDFs from WPAFB input = (0.5, 2, 8) g data: (a) input
acceleration: o, = (0.495, 1.97, 7.85) g and (b) beam center displacement response:
o, =(0.183, 0.488, 1.087) mm.
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Figure 3.17. Normalized PDFs from WPAFB input = (0.5, 2, 8) g strain response data at
center of beam: (a) top surface: i, = (26.6, 70.5, 157) |Le and (b) bottom surface:
Ohor = (23.0, 64.3, 148) e
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1.087) mm.
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Figure 3.23. Linear to nonlinear peak displacement functions for WPAFB input = (0.5,
2, 8) g data: (a) Fixed ratio linear peak CDF and (b) variable ratio linear peak CDF.
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Figure 3.26. Nonlinear peak displacement histogram estimates: (a) histogram from
variable and fixed PDF transform methods from WPAFB input = 8 g data and (b)
Rayleigh and peak response histograms for linear system, &= 0.8.
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Figure 3.28. Normalized peak membrane strain results from WPAFB data: (a)
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Figure 3.32. Linear estimate of displacement to bottom strain frequency response
function determined from WPAFB input =2 g data.
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Figure 3.33. Estimates of displacement to bottom strain frequency response function
determined from WPAFB input = 2 g data: (a) displacement squared input and (b)
displacement cubed input.
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Figure 3.34. High amplitude time domain strain response estimates from full frequency
range FRFs and raw strain WPAFB input = 2 g data: (a) top strain response estimates

and (b) bottom strain response estimates.
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Figure 3.35. Low amplitude time domain strain response estimates from full frequency
range FRFs and raw strain WPAFB input = 2 g data: (a) top strain response estimates

and (b) bottom strain response estimates.
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Figure 3.36. Time domain bottom strain response estimates from full frequency range
top strain FRFs and raw bottom strain WPAFB input =2 g data: (a) high amplitude
bottom strain estimates and (b) low amplitude bottom strain estimates.
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Figure 3.37. Displacement to top strain frequency response function determined from
WPAFB input = 2 g data: (a) raw strain to displacement cubed input FRF and (b)
averaged strain to linear displacement functions with constant low frequency values.
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Figure 3.38. Displacement to strain averaged frequency response functions with
constant low frequency values determined from WPAFB input = 2 g data: (a) strain to
displacement squared functions and (b) strain to displacement cubed functions.
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Figure 3.39. Time domain bottom strain response estimates from averaged frequency

response functions of top strain and raw strain WPAFB input = 2 g data: (a) high
amplitude top strain estimates and (b) low amplitude top strain estimates.
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Figure 3.40. Normalized top surface REM estimates from averaged frequency response
functions for WPAFB input = 2 g data: (a) linear strain RFM estimates, g, = 71.8 ue
and (b) membrane strain RFM estimates, Gyem = 11.5 LLE.
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Figure 3.41. Normalized top surface REFM estimates from averaged frequency response
functions for WPAFB input = 2 g data: (a) linear plus cubic strain RFM estimates,
Olin+cube = 06.4 L€, and (b) total strain RFM estimates, Gym = 66.9 LLE.
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Figure 3.42. Normalized top surface RFM estimates from averaged frequency response
functions for WPAFB input = 8 g data: (a) linear strain RFM estimates, oy, = 151 ne
and (b) membrane strain REM estimates, Gy = 45.3 LLE
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Figure 3.43. Normalized top surface RFM estimates from averaged frequency response
functions for WPAFB input = 8 g data: (a) linear plus cubic strain RFM estimates,
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Figure 3.44 Surface strain results from WPAFB input = 2 g data: (a) Coherence

functions for displacement input to top strain output frequency response functions and
(b) high amplitude top strain time domain response estimates from filtered and averaged
frequency response functions, compared to filtered strain data.
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Figure 3.46. Nonlinear peak displacement to nonlinear peak bending strain functions
from WPAFB input = (0.5, 1, 2, 4, 8) g data. (a) Linear plot of function and (b) log-log
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Figure 3.48. Nonlinear peak displacement to nonlinear peak membrane strain functions
from WPAFB input = (0.5, 1, 2, 4, 8) g data. (a) Linear plot of function and (b) log-log
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Figure 3.50. Rainflow damage matrices for raw top surface stress estimates from

WPAFB input = 0.5 g data: (a) damage for baseline equation and (b) damage for
Walker equation.
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Figure 3.51. Rainflow damage matrices for raw top surface stress estimates from
WPAFB data: (a) damage for baseline equation from input =2 g data and (b) damage
for Walker equation from input = 8 g data.

106



(2) (b)

== 150 FH—HHH—T : e
B
H } :
mas ¥ " =
== ? ®
100
i T
I"I°E Hi } |
. i 3 H *
H F BT P T
g % 50 i
£ & [H i 1
14 jma " 1 T
8 10H=H @ e man:
% 3 H H H 3 BH= i BaEE HHEH
2 :é' =
Op— —
.. o
0H HF
20f S 3nan
128 Se b ba A 2w
e X i B i
-30 Hr— + H—H t + T
SEERE T T —HH—HH H t 1
-30 -20 10 0 10 20 30 40 50 -50 ] 50 100 150
min Stress (MPa) min Stress (MPa)

Figure 3.52. Rainflow damage matrices for top surface stress estimates using averaged
frequency response functions from WPAFB data: (a) damage for baseline equation from
input = 2 g data and (b) damage for baseline equation from input = 8 g data.

(2) (b)

WPAFB Linear Top Stress RFD input = 0.5 g: Baseline Model WPAFB Linear Top Stress RFD input = 8 g: Baselne Mode!
T T T T

T I I

T

200 400 P HE— T
E i1 b BwEs T 1 1 T
T T
t T
15 : T t 300 +
! H S anada) ;
} :
: : B e
10 1 t 200 E T T T 5
i i H I =1
1 : s || 1
: I =
- §HT u SESSSSSSEES = sEsS = sssssssses npR STee = 1007~
£ 1o S has & X
2 H H
- -
] $ 0
a &
= =
] ]
Z Z 100

yes n i

T it et =T :
-10 -5 0 5 10 15 20 -400  -300  -200 -100 0 100 200 300 400
min Stress (MPa) min Stress (MPa)
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4 TIME & FREQUENCY DOMAIN ANALYSIS OF
NONLINEAR NARROWBAND SIMULATIONS

This chapter will describe the ordinary differential equation (ODE) simulations that
were performed on baseline linear and nonlinear single degree of freedom models, and
the subsequent time and frequency domain post processing of these results. The ODE
models developed in this chapter are based on the WPAFB experiments discussed in the
previous chapter. The ODE simulations were performed so that large samples of
nonlinear random data could be generated with various model input arguments and
output states. Each simulation run yielded 256 s of response data and the simulations

were repeated 20 times with different random input files.

The simulation outputs represented displacement and velocity response states for
Gaussian broadband input. Further processing of these states yielded the acceleration
response. Basic statistical estimates of the responses were determined for each
simulation run and cumulatively over the set of 20 simulations. The results showed that
the nonlinear displacement had a kurtosis less than 3, the velocity had a kurtosis
approximately equal to 3 and the acceleration had a kurtosis greater than 3. The rate of
convergence for the linear and nonlinear models was studied as well as the random

errors in each statistical estimate.

Histograms and subsequent PDFs of the response data were generated to investigate the
change in the functions as the results progressed from normal to nonlinear. Linear to
nonlinear functions were estimated using the Inverse Distribution Function (IDF)
method. The linear to nonlinear functions were then used to estimate the nonlinear PDFs
using the PDF transform method. A chi-squared Goodness-of-fit test of the resulting
PDFs was used to quantitatively evaluate the transformed PDFs. The test showed that
the velocity response could be considered “nearly” normal. This resuit and the nonlinear
response functions were used to develop an expression for the nonlinear change in the

expected rate of zero crossings.

Peak histograms and PDFs were determined by sampling the data to find the minima

and maxima. The peak PDFs were then used with the IDF method to estimate linear to
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nonlinear peak response functions. Estimates of the nonlinear peak PDFs were then
generated using the PDF transform method. The nonlinear peak displacement PDFs will
be used in chapter 5, with further nonlinear PDF transforms, to study the change in

fatigue life as the system progresses from linear to nonlinear.

A flow diagram of the overall simulation process is shown in Figure 4.1. The diagram
shows the section numbers where each part of the flow will be described in further

detail.

4.1 Differential equation simulation method

The nonlinear ODE models are based on the classic Duffing oscillator [2] with cubic
stiffness and linear system parameters based on a lumped parameter model of the
clamped-clamped geometry that was tested at WPAFB (see chapter 3). Once the
displacement and velocity results were determined, the state derivatives (namely
velocity and acceleration) were calculated. Linear models were also run to determine

baseline results to compare with the nonlinear data.

The simulations were run for five different base shake input acceleration levels (0.5, 1,
2, 4 and 8 g RMS to match the WPAFB experiments) and three different viscous
damping values ({=0.01, 0.003, and 0.001) which span the range of first mode
damping values estimated in Chapter 3 (see Table 3.1). The results for each time

domain input simulation were saved for further time and frequency domain analysis.

4.1.1.1 Random Time Domain Input

The ODE simulations required calculation of random time domain input data for use by
each of the models. A flat random base shake acceleration input from 20 to 500 Hz was
used, consistent with the WPAFB experiments. The input data were created by
determining an equivalent Fourier Transform of the PSD spectrum magnitude with
random phase angles for each frequency point (see section 2.2.3). The Fourier
Transform was zero padded above the maximum input frequency to 32 768 Hz
(approximately 64 times the maximum input frequency of 500 Hz) to ensure a smooth

time history that could be linearly interpolated while running the ODE. A 256 s time
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record, with a corresponding 0.004 Hz frequency spacing was used. The Inverse Fourier
Transform of this spectrum yielded time domain records, with 8.4 million data points.

This process was repeated 20 times with a new seed for the random number generator.

4.1.1.2 Nonlinear state space model

The model parameters were determined based on static properties of the clamped-

clamped beam

I=bW/12 A=bh m=pld

(4.1
k =384EI/I* k, =10EA/l )

where width b = 12.7 mm, thickness 2 = 0.79 mm, length / = 229 mm, elastic modulus
E =204.8 GPaand density p= 7867 kg/m>. The stiffness &, is evaluated at the center of
an ideal clamped-clamped beam, and the cubic stiffness k3 is from equation (1.4) with
an additional calibration factor of 10. Note, these values yield a natural frequency

fa=69.21 Hz, which is slightly less than that estimated in Section 3.1.3.

The second order ODE simulations were based on the Duffing equation including

viscous damping
mi+cx+kx+kx =F(t)=F (4.2)
this was reduced to a standard first order two state ODE

Z,=X,Z, =X

22=).C;Z.2=).C.=F—czz+klzl+k3zl3 (4.3)

m

This SDOF system can also be written in mass normalized modal form

Z,=Xx32, =X

4.4

z,=%;z,=k=a-2{wz, -0z, - @}z *+4)
F ’k k

where a=—;2¢w, :i; o, =,L0,=,]-* (4.5)
m m m m
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and where o can be thought of as an inertial load, or the base acceleration. The
differential equations can also be written using the state space (SS) form. The basic

form of the continuous time SS equations is
z=Az+Bu (4.6)

where the vectors u are inputs and z are states. The linear SS model based on equation

(4.4) above (withu = a = F/m) is
My
+  |u (4.7)
z, 1

z| |0 1]
5] |~e! 2w,

A simple extension of the SS form includes the addition of cubic states such that

z=Az+ A7’ + Bu (4.8)

where

0 0 z3
A = 23 = ! 49
i [—a)f, Oil L;] @2

The Matlab ODE45 solver was used to determine the response states (displacement and
velocity) based on numerical integration. Once the response states are estimated, the
response rates (or state derivatives), namely the velocity and acceleration, can be

determined by simple matrix algebra using equation (4.8).

4.1.1.3 Differential equation solver parameters

An output sample rate of 4096 Hz (with a Nyquist frequency of 2048 Hz) was used to
capture third order harmonic response of the system where the input was limited to

500 Hz. Investigations described below (section 4.2.1.2) showed that the default ODE
solver parameters needed to be modified for the simulations with the least damping
(¢=10.001). The default value for relative tolerance needed to be improved from 1x107

to 1x10™ to give acceptable convergent results.
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It should be stated that the solutions of the Duffing differential equations are not unique
(i.e. two response conditions can be stable near resonance [1]). The method of using
random input tends to “average” the non-unique solution (e.g. as opposed to a
sinusoidal sweep that would experience a response “jump” near resonance). The
problem with the random excitation is that small changes in the simulation solver
parameters can yield different response results especially as the simulation times
become longer. At first investigation these differences were of concern, but once they
were understood, they were accepted as an underlying characteristic of the non-unique
nonlinear response. The solution to this problem was to run multiple simulations with
different random input vectors, followed by post processing to average the results. The
assumption is that although there are differences between individual simulation

responses one can still obtain convergence on the underlying statistical quantities.

4.1.2 Linear baseline simulations

Baseline linear results were determined for each time domain input and for each of the
model damping values. A check was performed on the ODE solver over the 5 input
levels to confirm that the solver returned consistent results at each input level for the
linear model. Subsequent simulations were run with a 1 g RMS forcing function; the

linear response was scaled by the 5 input values for comparison to the nonlinear results.

4.2 Time domain analysis of narrow band simulations

The next step in the analysis was to determine time domain statistics of the data. These
statistics were then subsequently used to estimate PDFs, CDFs and IDFs for each family
of simulations. Curve fits of the nonlinear functions were used with the PDF transform

method to estimate PDFs for nonlinear displacement and acceleration.

4.2.1 Initial transient response

Differential equation solutions always contain a transient and a steady state solution.
This nonlinear ODE simulation is no different and requires additional time (as described

below) for the initial “start up” transient to decay.
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4.2.1.1 Logarithmic decrement

The Logarithmic Decrement was used to estimate the time period required for an
unknown ODE solution to reach a stable solution. The Logarithmic Decrement §[260,
261] is defined for a viscously damped linear SDOF system as

S=ni=¢wT (4.10)

%)
where xjand x; are the values of the maxima for successive cycles.

The time period T, required for a free vibration transient response x to decay by a

factor of g is

Inp  Ing

*= o, = Conf (4.11)

For example, if it is desired to have the transient response decay by a factor ¢ equal to

1000, for a system with = 0.01 and f, =70 Hz

B In (1000) 1575
907 (0.01)22(70)
For the same system with = 0.001
In (1000) 1575

T =
% (0.001)27(70)

4.2.1.2 Nonlinear free decay

To inspect the decay times, nonlinear ODE simulations were run for each of the
damping values for a range of initial conditions. Zero initial displacement and various
initial positive velocities were investigated. Figure 4.2(a) shows an example of the first
few cycles of the nonlinear transient response for an initial velocity of 10 m/s and

{=0.003.
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Decay curves were produced by finding the maximum response (and time of
occurrence) for each cycle. Another method using Hilbert transforms was also
investigated, but it tended to produce decay curves with more noise (especially for
strongly nonlinear responses), see Figure 4.2(b). Further investigation revealed that
reducing the default ODE relative tolerance from 1x107 to 1x10™ improved the
behavior of the ODE solver for the lightly damped cases.

Typical plots of the decay of the system using {'= 0.001 are shown in Figure 4.3(a) and
(b) for displacement and velocity. The plots were normalized so that time on the x axis
is divided by T700 and response on the y axis is divided by the peak value from the first
cycle. (Note: this normalization was chosen instead of the initial conditions because the
initial displacement is zero). If one sets a transient decay criterion to 1/1000 of the

initial response then these plots show that one would need to wait approximately

1.2x T 000

4.2.2 Statistical errors in basic estimates of nonlinear results

Section 2.3 gives the time and number of samples required for estimating basic
statistical properties (with a given level of uncertainty (for both bias and random
errors)) for linear systems subjected to normal Gaussian inputs. This system is not
linear; the following sections will describe the investigation into how the estimated

results and their errors vary as the sampled time increases.

A function determined the basic and running sum statistics for each model damping
value. The minimum and maximum results were also determined for subsequent

histogram determination as discussed in section 4.2.3.

Applying the notation from section 2.1.1, i.e. gz; is an estimate of @, 4 is the mean
value of ¢, o, is the standard deviation of ¢ and &[¢] is the normalized RMS error of
¢ . The ODE simulation results were analyzed for each 256 s file (with initial transient

decay time removed) producing estimates qz?k for each file and as a running sum ék of

each estimate. The running sum technique used the formula
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~ k-1
A=

. 1~
Qk_1+z¢k,23k<” (4.12)

to determine the best estimate after & blocks of data. Where no closed form estimate for

@ exists, ¢ = ézo will be assumed.

4.2.2.1 Mean

The results of the simulations are expected to have zero mean values for the

displacement, velocity and acceleration, i.e.
/‘llet‘lv__-#azo (4'13)

The normalized bias error estimate of the mean has been modified for this case to be

) [/Alo]: - = (4.14)

where &, is the estimate of o determined from the total simulated time history.

Figure 4.4(a) shows the normalized bias error estimates of the mean displacement and
velocity for = 0.01 for the linear model. Estimates of the hogmalized bias error for the
nonlinear simulations tended to be larger than the errors from ‘t‘he\linear model (as
shown for example in Figure 4.4(b) for {=0.01). This is a prelimiﬁé;ry indication of the

nonlinear effects on the rate of convergence of results.

4.2.2.2 Standard deviation

The standard deviation estimates for the ODE simulations are given in Table 4.1 for the
linear model and Table 4.3 for the nonlinear models after averaging 20 blocks of data.
As a check, the standard deviation values were calculated (see Table 4.2) based on the

theoretical estimate for a SDOF system with a flat spectral input [154]
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o? = S (a)n) _ S gy (a)n)

ke 2ma)
S S
o2 == F;Ew") = ”2 ;;EZ) (4.15)
0_2 — ﬂ'Gaa (.f;z )-fn
a 44/

where Sy (a)n) is the two-sided spectrum of force (with units N*/(rad/s)) at the natural
frequency @, and G,, ( fn) is the one-sided spectrum of acceleration (with units g%/Hz)

at the natural frequency f, . The check is the best for displacements and for the lightest

damping cases.

The normalized standard deviation of each of the block estimates of o for the sample of
20 blocks are given in Table 4.4 for the linear models and in Table 4.5 for the nonlinear

models based on

(4.16)

The results show that the linear models produce a common RMS error for each response
state for a given value of damping, but in each case the RMS error in the nonlinear
response estimates is increased for the derivative responses. Also interesting is that the
RMS errors for displacement and velocity tend to decrease as the input increases for the
¢ =0.001 model. This is an unexpected result and may be due to the increase in the
statistical bandwidth B; of the nonlinear response (see equation (2.81)). The PSD of the
linear and nonlinear results are given later (Section 4.3.1), but the bandwidth B, given
in Table 4.6 and Table 4.7, will be used to estimate the RMS error of the o estimates

here.

The statistical bandwidth is used as a parameter in a relationship for the normalized

random error of ¢ as a function of the sample time (see [248] equation (8.47))

1
2{B.T

§

£ [8]= 4.17)
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The normalized random error estimate of o for the first k& blocks of the 20 data blocks is

defined to be

6, [6,] == (4.18)

Typical plots of normalized random error for the linear model are shown in

Figure 4.5(a) and Figure 4.5(b). Both examples show that equation (4.17) gives a good
estimate of the upper bound of the random error, and that the models with more
damping (¢ = 0.01) tend to have less variation in the estimates than the models with less

damping (= 0.001).

The random error estimates of o are shown for the nonlinear model in Figure 4.6(a) and
(b) for {=0.01 and {'= 0.001 respectively. At the lowest input level, when {= 0.01, the
random error estimates of o, tend to be near the linear estimates, but as the model
becomes more nonlinear, the random error of o tends to increase. Also, the theoretical
random error based on the statistical bandwidth given in equation (4.17) clearly
underestimates the measured random error. The random error estimates of nonlinear

acceleration o, are much worse than expected.

These observations reinforce the need for very large sample sizes for producing basic
statistical estimates of the nonlinear response. The use of the statistical bandwidth
estimated from nonlinear PSDs is not advised as a method to estimate the random errors
in o calculations. Inspection of Table 4.6 shows that B, determined from the linear
response tends to decrease as the damping decreases and increases for derivative
responses. Table 4.7 also shows that B; increases for the nonlinear derivative responses,
but B, decreases and then increases as the damping decreases. It is hypothesized that the
harmonic distortions, seen in the high frequencies of the nonlinear response,
significantly affect these calculations. Other researchers have also identified the need

for large sample sizes when working with nonlinear random data [262].
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4.2.3 Histograms and PDFs from ODE data

Another function was used to determine histograms, PDFs and central moments of the
PDFs. The number of histogram bins was chosen to be 128 (64 for the positive values
and 64 for the negative) with minimum and maximum limits determined from the
complete set of 20 data files. The maximum response measured was typically around
4 o ; This yielded bin spacing (W) of approximately o716 which is considered an
acceptable comprise for minimizing both bias and random errors in the PDF estimates

(See section 2.3.2).

The resulting PDFs presented were determined based on the full set of data for each of
the damping and input levels. The PDF estimates for a typical baseline linear model
(= 0.001) are shown in Figure 4.7(a); the response PDFs appear normal for all linear

models.

A Chi-Squared Goodness-of-Fit test of the PDFs was used to test the normality of the

results using

X2 = 2(—f‘TF)i (4.19)

i

where f; is the observed frequency of the simulation histogram and F; is the expected
frequency of a histogram based on a normal PDF. X is the degree of freedom for the
Goodness-of-Fit test; for these results a conservative value of K = 120 was used based

on a number of histogram bins of 128. The region of acceptance of the one-sided test is

X<, (4.20)

where the value of Zf;a is available from standard statistical tables (e.g. Table A.3 from

[248]) for an acceptance region of 1-a. For example, if one desired an acceptance
region of 90% (i.e. stating a hypothesis that a histogram or PDF from a normal

distribution would have a goodness-of-fit test value less than y.,, for 90% of the trials)

for K =120, yp0, = 140.23. Table 4.8 gives the results of the goodness-of-fit test for
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the linear models. The hypothesis test of normality can easily be accepted at the 90% (

a=0.1) level of significance for the displacement and velocity results.

Figure 4.7(b) shows typical displacement response PDFs estimated from the = 0.001
nonlinear simulations. These clearly show the non-normal response behavior for the

nonlinear displacement, especially as the input increases and the damping is reduced.

Figure 4.8(a) shows a set of velocity response PDFs estimated from the nonlinear
simulations. Unlike the nonlinear displacement, this data seems to follow the Normal
PDF in most regions, except for a slight increase around zero velocity, especially for the
¢'=10.001 model at high input levels. The Chi-Squared Goodness-of-Fit test on the

nonlinear velocity response PDFs shows that data from the two lower levels would pass

a 90 % acceptance normality test at ,1/1220;0.1 =140.23, while a larger 99 % acceptance test

at X000 = 158.95 would allow the 8 g response data to pass the normality hypothesis

as well.

Figure 4.8(b) shows a typical set of acceleration response PDFs estimated from the
¢ =0.01 nonlinear simulations. Unlike the nonlinear displacement results, this

acceleration data shows response PDFs with increased tails and center values.

4.2.3.1 Moments of the response PDFs

As described in section 2.1.1, the standard deviation, skew and kurtosis can be
determined by calculating the higher order moments of a PDF. As a check, standard
deviation results calculated from the second moment of the PDFs determined above
were compared with the results determined in Section 4.2.2.2. The comparison had
normalized bias differences on the order of -1x10™*. The kurtosis results presented here

were calculated based on the fourth moment of the PDFs.

As with the other statistical measures of the linear model response, the linear kurtosis
estimates were virtually identical for the displacement and velocity response
calculations for a given value of damping (see Table 4.10). Figure 4.9 shows typical
kurtosis results for the { = 0.001 linear model, which are all close to the theoretical

value of 3.
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The displacement kurtosis for the nonlinear {'= 0.01 model is shown in Figure 4.10(a).
The velocity kurtosis is shown in Figure 4.10(b) for { = 0.01. These plots show that the
velocity kurtosis seems to converge in both cases to a value of approximately 3, but the
nonlinear displacement results have kurtosis values less than 3. The kurtosis estimates
from the nonlinear model responses are given in Table 4.11. The acceleration kurtosis is
much greater than 3, especially at the highest input levels. It is also interesting to note
that the normalized random error in the kurtosis estimates is highest for the acceleration

results.

4.2.4 Peak response matrices and PDF from data

Peak response estimates for the response data were generated using Rain Flow Matrices
(RFM) (as discussed in Section 2.4.6). A typical normalized displacement RFM is
shown in Figure 4.11(a). Figure 4.11(b) shows the normalized minimum and maximum
peak displacement histograms for this REM. Note that the two histograms are almost
mirror images of each other. The histogram of minima can be averaged with the
histogram of maxima to form a single estimate of the peak PDF, when the functions can

be presumed symmetric.

4.2.5 Response zero crossing and peak rates

The rates of zero crossings and peaks are very important for peak response and fatigue
analysis (see Section 2.1.4). Table 4.12 gives the rates of positive slope zero
displacement and velocity crossings as well as the rates of positive displacement peaks
(maxima) for the nonlinear simulations. Also tabulated are the ratios of displacement
zeros to peaks @, One observation from the results is that the ratio @, tends to decrease
as the system becomes more nonlinear. This trend was also noted with the WPAFB data

(see Table 3.6).

The corresponding rates of zero crossings and peaks were also determined for the
acceleration (see Table 4.13). These results show some trends that were not observed
with the peak displacement results. Table 4.13 shows that like the displacement results,
the rates of zero crossings tends to increase as the input increases, but the change in the

rate of peaks is not as clearly defined. The lower damping model shows that the rate of
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peaks actually decreases as the input increases. An explanation of this can be
hypothesized with the aid of Figure 4.26 which shows the acceleration PSD. At the
lowest input level of 0.5 g, there is a significant “plateau” of acceleration response
(from about 100 to 500 Hz) that tends to generate a large number of peaks. As the input
level increases, the system becomes stiffer thereby reducing the “plateau” relative to the
fixed upper frequency of 500 Hz. It is interesting to see that the = 0.001 model results
show a decrease in the rate of acceleration peaks for the first two input levels, but then

the trend reverses and the rates of peaks starts to increase again.

The ratio of acceleration zeros to peaks shows a clear decrease for all conditions. The
reversal in the trend of peaks for the (= 0.001 model is countered by the continual rise

in rates of zero crossings to yield rate ratios @, that always increase.

Perhaps an even more convincing argument comes from examination of the time
domain data. The strong nonlinearity in the acceleration at high inputs tends to make the
peaks very pointed (see Figure 4.12(b)) masking the effect of the higher frequency
response that can “ride on top” of fundamental response cycles of the linear acceleration
at low inputs (see Figure 4.12(a)). The strongly nonlinear response looks very “narrow

band” in the time domain as the values of @, indicate.

4.2.6 Displacement response peak PDFs

The peak displacement PDFs were calculated from displacement RFM. Figure 4.13(a)
shows a comparison of a PDF determined for the linear (= 0.001 model and a Rayleigh
PDF. Note that the ratio of zero to peaks for this model was 1 to four significant digits.
Figure 4.13(b) shows a comparison of a PDF determined from the (= 0.01 data, with
the Rayleigh and generalized peak PDFs. The ratio of zero to peaks for this model was
0.993. Modified goodness-of-fit tests,

X? =i(i}i)— (4.21)

H

where f; is the observed frequency of the simulation histogram and F; is the expected

frequency of the histogram (based on a Rayleigh and the generalized Peak PDF), were
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computed. The observed frequency f; was used here to avoid a division by zero for
negative amplitude bins when performing the test with the Rayleigh PDF. The results
are given in Table 4.14 for various bin center ranges. Although the data in

Figure 4.13(a) looks to closely match the Rayleigh PDF, this hypothesis cannot be
accepted based on a Chi-Squared criterion at the lowest o level of significance (see

Table 4.15) for either bin center range calculated.

The data from Figure 4.13(b) requires a bit more discussion. This data begins to show
the existence of maxima at negative values (even at a ratio of zeros to peaks of 0.993).
The Rayleigh PDF has a value of zero for negative maxima. The goodness-of-fit test
was modified to allow the calculation of test statistic for both the Rayleigh and
generalized peak PDF as given in Table 4.14. Over the wide range of bins that included
negative maxima, both tests yield results that will reject the hypothesis, although the
peak PDF result is much closer to being accepted. The hypothesis can be accepted at the
o. = 0.10 level of significance for the peak PDF and at the o = 0.01 level for a Rayleigh
PDF over the higher amplitude positive bin range. Based on these findings, a Rayleigh
PDF will only be assumed for the lowest damping SDOF cases while the generalized
peak PDF will be used for all other calculations. The peak displacement PDFs were then
determined for the nonlinear results. Figure 4.14(a) and (b) show the corresponding
peak displacement PDFs determined for = 0.001 and {'= 0.01 respectively. Again it is

interesting to note the negative maxima for the { = 0.01 model.

4.2.7 Response velocity peak PDFs

Given that the response velocity was nearly normal, the peak velocity is assumed to
follow the peak response predicted for a Gaussian (normal) signal (i.e. a generalized

peak PDF); Figure 4.15(a) shows that this is a reasonable assumption.

4.2.8 Response acceleration peak PDFs

An example nonlinear acceleration peak PDFs is shown in Figure 4.15(b). Here the
peak PDFs show negative maxima at the lowest input levels, but only positive maxima

at the highest input. Note the increase in the normalized value of the acceleration
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response tails that reach a value of approximately 10 o. Again, time domain data shown

in Figure 4.12 helps to explain the peak PDF results.

4.2.9 Linear to nonlinear functions based on inverse distribution function

The inverse distribution function (IDF) method was used in Chapter 3 to estimate linear
to nonlinear functions for the wideband experimental data. The linear to nonlinear
functions generated for displacement response (based on the assumed Gaussian
distribution) resulted in a unique set of functions for each input level. On the other hand,
the peak displacement linear to nonlinear functions, for the wideband data, tended to fall
along one common curve at the large amplitude response. This trend was especially
noticeable when one assumed a linear peak distribution with the same ratio @as the
measured nonlinear peak data (see Section 3.2.5). The behavior of the linear to

nonlinear functions for the SDOF Duffing model is presented next.

4.2.9.1 Linear to nonlinear function of displacement response

Histograms of the nonlinear displacement (see Section 4.2.3) were used to generate

linear to nonlinear functions as described in Section 3.2.3, fit with polynomial functions
di,1y+di,2y2 +di,3y3 =X (4.22)

where d;; are the displacement coefficients for the input i and the polynomial power j
(see Table 4.16). The linear to nonlinear functions from this nonlinear model are similar
to those from Chapter 3 (compare Figure 3.19(b) with Figure 4.17(b)). This polynomial
model will be used in Section 4.2.12 to estimate rates of zero crossings of nonlinear
displacement. One additional observation here is that the standard deviation results from
the linear and nonlinear simulations (see Table 4.1 and Table 4.3) fall just below the

corresponding response curve (see Figure 4.16(b)).

4.2.9.2 Linear to nonlinear function of peak displacement

The findings from Section 3.2.5 suggest an IDF method for determining the linear to

nonlinear function peak displacement based on a variable ratio @; linear peak PDF. The
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nonlinear displacement data again shows a change in the ratio @, with input level and
damping (see Table 4.12). For these reasons, the linear to nonlinear peak functions

determined here will use the variable ratio peak PDFs with the IDF method.

Figure 4.17 shows two sets of data points for the linear to nonlinear peak functions for
the SDOF simulations. This data now shows one common trend for all input levels. In
fact, when the data from the models with damping are plotted on one graph (see
Figure 4.18(a)), it suggests that the underlying relationship is based on the Duffing

parameters « and y from Equation (1.5) and not the damping level £

As before, a polynomial curve fit, of the form
cy+c,yi+ey =x (4.23)

was used to determine peak displacement coefficients (see Table 4.17). It is interesting
to compare these coefficients with the normal displacement function results in
Table 4.16. The displacement d;; linear slope term is increasing as the input increases

and the d; ; term for the highest input level is approaching the peak c; term.

Given that these linear to nonlinear peak functions are so consistent across the inputs
and damping values, it is worth comparing them to the results obtained for the normal
displacement IDF problem from Section 4.2.9.1. Figure 4.18(b) shows the normal
displacement data again, but now with the linear to nonlinear peak displacement
function polynomial fit shown for comparison. It is worth observing that the peak
displacement function seems to be a limiting function for the normal displacement
functions. This is due to the fact that the peak response and the peak value of the data
are the same at high amplitudes. Hence the normal displacement function is tangent to

the peak displacement function in these regions.

4.2.9.3 Linear to nonlinear function of peak acceleration

The IDF method was applied to the acceleration results yielding typical linear to
nonlinear peak acceleration functions as shown in Figure 4.19. These curves are
different than the linear to nonlinear peak displacement functions in that they show a

nonlinear increase as the linear response increases. This behavior is hypothesized to be
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due to a balancing of the differential equation which describes the relationship between
the various states of the response, i.e., if the input force is normal, the summation of the
displacement, velocity and acceleration terms need to be also normal. It has been shown
that the velocity is nearly normal, and that the displacement shows a nonlinear decrease
in response as the linear response increases (see, for example, Figure 4.18). The
acceleration is therefore hypothesized to show a nonlinear increase in response to

balance the displacement decrease.

This increasing nonlinear response lends itself to a “right hand” nonlinear polynomial

model like

a=g(a)

(4.24)
a=ka+K,a’ ++Ka

n

where « is the nonlinear acceleration. As before, the positive peak values (maxima)
were used to produce the cubic polynomial curve fit coefficients. Figure 4.19 also
shows the third order polynomial curve fit determined from each data set. The peak
acceleration linear to nonlinear functions show a few more data points that do not
follow one main trend (compared to the peak displacement functions (see Figure 4.18)).
This is similar to what was observed with the experimental peak displacement data (see

Figure 3.23(b)).

4.2.10 Nonlinear peak displacement PDFs from PDF transforms

The PDF transfer function for the linear to nonlinear peak displacement polynomial

function determined from the IDF method is

pnlpeak (y,ZD') :| dx/dy'ppeak (.X,ZU) (425)

Instead of trying to solve this equation in closed form, the numerical result can be easily

determined by first estimating the linear peak “bin center” values using

E=cqy+cy’ +ey’ (4.26)
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where now, the y values should be based on the nonlinear histo gram bin centers. The

derivative of equation (4.23) for the third order polynomial is
dx/dy = ¢, +2c,y + 3¢y’ (4.27)
Substituting equations (4.27), and (4.26) into (4.25) yields
Potpeas (7:3) = |6, +26,9+3¢,3°| P s (%, @) (4.28)

The generalized peak PDF pp.. is given in equation (2.20). In use, one would evaluate
the generalized peak PDF at the estimated linear peak bin center values (from equation
(4.26)) and then simply multiply by the derivative (using equation (4.27)) to estimate
the nonlinear peak PDF given in equation (4.28). Results from two peak displacement

PDF transforms are shown in Figure 4.20.

Having estimated the nonlinear peak PDF, the goodness-of-fit of these transforms can
be evaluated as before. The results of this evaluation are given in Table 4.18 and
Table 4.19 for the transformed Rayleigh and general peak PDFs respectively. The
magnitude of the test results shows that a strict statistical hypothesis statement cannot

be made, but the results can still be used to make some observations.

First, the PDF transforms for the ¢ = 0.01 model results are a better fit to the simulation
data than the transforms for the {'= 0.001 model. Secondly, the PDF transforms tend to
be best at the lowest and highest levels of response. Remember that these were the data
cases that were used to estimate the polynomial coefficients for the linear to nonlinear

peak displacement functions.

4.2.11 Nonlinear peak acceleration PDFs from PDF transforms

Nonlinear PDF estimates based on the linear to nonlinear acceleration response
functions use the PDF transform equation based on the right hand side linear to

nonlinear function given in equation (4.24)

ppeak (a’ ZU)

e/ (4.29)

pnlpeak (a,ZU) =
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Here again, the ratio @, is determined at each input level and used with the linear peak
PDF. Figure 4.21(a) and (b) shows typical peak PDF transform for the {= 0.01 and
¢'=0.001 models compared with the PDF determined from the min and max histograms
calculated from a peak acceleration RFM. These results are not as good as those
determined for transformed displacement functions, but, they are still encouraging,
especially in the high PDF, low response amplitude regions. Figure 4.22 shows the
same data as Figure 4.21, but this time with a logarithmic PDF; these results show very

good agreement in the low PDF, high response amplitude regions.

4.2.12 Estimating rates of zero crossings from nonlinear amplitude PDF's

Section 5.5.1 of [248] derives the expected number of zero crossings per unit time for
stationary random data with any joint probability density function. This derivation will
be used here to estimate the rates of zero crossings for the nonlinear displacement

results.

Letp,, (x, v)represent the joint probability density function of displacement and

velocity when x(¢)=x, v(¢) = %(¢) = v. The number of zero up and down crossings per

unit time is given by

E[o,]= [ I

Pr (0,7) dv (4.30)

Assume also that the displacement and velocity are statistically independent, i.e.
P, (x,v)=p,(x) p,(v) [4,248]. From the findings in Section 4.2.3, the velocity PDF

is assumed to be “nearly”’ normal

2

Prorm (V) = L exp{_v ] (4.31)
o N2

20?

and the nonlinear displacement PDF is estimated using a PDF transform [125, 160, 263]
by
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d,, +2d,,x+3d,,x —(d, x+d, 7 +d, )
Prinorm (x)—( . i/_ﬂ )exp ( - 27202 & )

X

(4.32)

where the coefficients d;; were determined for each input level i (see equation (4.22)).

Atx=0,

(0)=—2% 433)
pnlnarm - O'x\/g -
and
E, E|v| exp dv = 4019, (4.34)
27[0' o, 7o, '

If one would prefer only the number of up crossings (or positive slope zero crossings),

then:

£,[0:]= ‘;; (4.35)

The nonlinear estimates of E, [0:] for the (0.5, 2, 8) g input levels using equation

(4.35) and the d;; coefficients are given in Table 4.20. Although these results slightly

underestimate the expected rates determined by counting the raw displacement zero

level crossings (repeated from Table 4.12 column labeled @ [O:]), they validate the

usefulness of equation (4.35).

4.3 Frequency domain analysis of narrow band simulations

The frequency domain analysis of the linear baseline and nonlinear results is presented
to augment the extensive time domain analysis present in the previous section and to
form a basis for comparison. Also presented are reverse path nonlinear identification

results.
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4.3.1 PSD and expected rates

Figure 4.23(a) and (b) show the PSD of displacement and velocity respectively from the
linear model. The sample size chosen for these PSD estimates was 16 s which resulted
in a frequency resolution Af of 0.0625 Hz. The PSD estimates were made using a
Hamming window, 50% overlap and a sample rate of 4096 Hz resulting in 65 536
points for the FFT and 32 769 frequency domain points (including /= 0 and f = f,,,).
The Af of 0.0625 Hz was chosen as a compromise between number of averages and
frequency resolution (see Section 2.5 for further discussion of errors in basic estimates
of random processes).. The standard deviations and expected response rates determined

from these baseline PSDs (see section 2.2.2) for the linear models are given in

Table 4.21.

Figure 4.24(a) through Figure 4.25(b) show the PSD of displacement and velocity
respectively from the nonlinear models. The standard deviations and expected response
rates determined from the PSDs (and the assumption that the underlying data is
Gaussian) for the nonlinear models are given in Table 4.22. Compared to the rates
calculated by level crossings given in Table 4.12, it is clear that the standard spectral
moment method of determining response rates is in error for nonlinear systems. On the
other hand, the estimates of o (or the zero moment of the PSD) differ by approximately
0.1%.

4.3.2 Reverse path nonlinear system identification

The reverse path identification method was used in Chapter 3 to identify nonlinear
frequency domain trends in the experimental data. The technique is used again here as
an additional illustration which shows how the system parameters from equation (4.2)

can be determined.

The first set of frequency response functions presented are L, and H;, (see

Figure 4.27(a) and (b) for {=0.01, and Figure 4.30(a) and (b) for {=0.001). These
functions are the reciprocal of the normal displacement / force frequency response
functions, but as described in the text [125], they can be used to estimate the modal
parameters. The value of Hy, at f= 0 Hz equals the static stiffness k; (approximately 3.5
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kN/m) and the frequency where |H,,| is a minimum is approximately equal to the natural
frequency. Inspection of the plots (for both damping levels) shows that this is the case.
Note that while Hj, stays constant for each input level (the curves of these overlay each
other quite well), L, diverges from the “linear” result as the model becomes more

nonlinear.

The frequency response functions of Hs, are shown in Figure 4.28(b) for {= 0.01, and
Figure 4.31(b) for {'=0.001. These functions should theoretically equal the nonlinear
stiffness parameter ks that operates on the cubic power of the response at all
frequencies. Inspection of the results shows very good agreement with the original
model value (approximately 1.8 GN/m’) and that the estimates become better as the
problem becomes more nonlinear. It is believed that this is true as the difference
between H),, and L, becomes greater (allowing better numerical resolution between

small values).

A distinguishing measure of the nonlinearity of the mathematical input displacements
are the coherence functions between the uncorrelated inputs U; and the mathematical
output force. Figure 4.29(a) and (b) show the coherence functions for the 0.5 and 8 g
simulations with {'= 0.01, while Figure 4.32(a) and (b) show the same when (= 0.001.
In each plot the coherence functions are labeled following the notation from equation
(2.74). Figure 4.29(a) shows that the response is almost completely correlated with only
U; whilst at the other extreme, Figure 4.32(b) shows that the response is strongly
correlated with the cubic term Us over most of the frequency range. It is also reassuring
that the four plots of the total summed coherence X, are nearly 1 over the whole

frequency range.

4.4 Nonlinear simulation summary

The linear and nonlinear Duffing simulations, based on the clamped-clamped beam
experiments from WPAFB, were run so that large data sets could be used to show trends

in the nonlinear response. The major findings of this chapter can be summarized as:

The standard deviation and kurtosis for the nonlinear random response converge much

more slowly than the corresponding linear random response quantities. The response
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displacement kurtosis tended to be less than 3 and the response acceleration kurtosis
tended to be greater than 3, whilst the response velocity kurtosis tended to equal 3 for
the Duffing model studied. The distribution for the velocity response tended to be

normal for the nonlinear models.

Random errors in nonlinear standard deviation estimates, based on the statistical
bandwidth of the frequency domain PSD response, are much greater than what would be
estimated with linear random theory. The harmonic distortion of the displacement,
velocity and acceleration response states can be significant enough to cause an estimate

of the statistical bandwidth to be even greater than the bandwidth of the input load.

Linear to nonlinear displacement functions determined from the ODE results, using the
inverse distribution function method, appear similar to those estimated from the
WPAFB displacement data. The linear peak to nonlinear peak functions all tended to
follow one main trend, even over wide ranges of input amplitude and damping values.
The linear to nonlinear peak functions determined using an assumed generalized linear
peak distribution function, with a ratio of zeros to peaks determined from the nonlinear
data, produced the best goodness-of-fit agreements. The linear to nonlinear peak
displacement response functions appear to form an upper bound (or limiting case) of the
linear to nonlinear normal displacement response functions. A novel use of the linear to
nonlinear normal displacement function was developed to estimate the rate of zero
crossings for the nonlinear response. The estimated rates agree well with those

determined by counting level crossings.

The reverse path identification process was used again in this chapter to demonstrate its
behavior with simulated nonlinear Duffing model data. The method accurately

estimated the Duffing model linear and nonlinear parameters.
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4.5 Chapter 4 Tables

Table 4.1. Linear ODE baseline standard deviation results after averaging 20 blocks of

data.
Input, Damping o, mm o, m/s 0,8 Thlock
(a/9.81 m/s?)
1g =0.01 0.1742 0.0755 3.512 250
1g =0.003 0.3183 0.1384 6.222 245
1 g, {=0.001 0.5512 0.2397 10.68 235

Table 4.2. Linear model standard deviation estimates from closed form equations.

Input, Damping o, mm o, m/s 0,8
(a/9.81 m/s?)

1g,{=0.01 0.1746 0.0759 3.365

1g ¢=0.003 0.3187 0.1386 6.144

1g ¢=0.001 0.5512 0.2401 10.64

Table 4.3. Nonlinear ODE standard deviation results after averaging 20 blocks of data.

Input, Damping o, mm o, m/s c,8
(a/9.81 mv/s?)
0.5g,¢=0.01 0.0866 0.0379 1.764
2g, {=0.01 0.3256 0.1519 7.534
8g ¢=0.01 0.9582 0.6081 42.50
0.5g, {=0.003 0.1562 0.0692 3.164
2 g {=0.003 0.5390 0.2758 14.81
8 g, ¢=0.003 1.405 1.114 99.06
0.5g, {=0.001 0.2668 0.1219 5.714
2 g, ¢=0.001 0.8244 0.4881 30.95
8 g, {=0.001 1.939 1.946 223.5
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Table 4.4. Normalized standard deviation estimates of block oresults from 20 blocks of
linear ODE simulation data.

Damping od,] olé,] o[é,]
o o, c,
¢=0.01 0.2 % 0.2 % 0.2 %
¢=0.003 0.4 % 0.4 % 0.4 %
¢=0.001 0.8 % 0.8 % 0.8 %

Table 4.5. Normalized standard deviation estimates of block oresults from 20 blocks of
nonlinear ODE simulation data.

Input, Damping M a[8,] olé,]
o, o, O
0.5g,¢=0.01 0.3 % 0.3 % 0.3%
2g,(=0.01 1.1% 1.2% 1.3%
8 g, ¢=0.01 1.1% 1.6 % 2.1%
0.5g,{=0.003 2.0% 2.1% 2.1%
2 g, ¢=0.003 2.2% 3.0% 3.8%
8 g, {=0.003 2.2% 3.6% 52%
0.5g,=0.001 4.5% 4.8 % 52%
2 g, (=0.001 33% 4.5 % 5.8%
8 g, ¢=0.001 31 % 3.9% 6.3%

Table 4.6. Statistical bandwidth estimates from 20 blocks of linear ODE simulation

data.
Damping B, Hz B, Hz B_ Hz
£=0.01 68.8 69.1 81.9
£=10.003 21.2 21.2 223
£=10.001 7.21 721 7.34
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Table 4.7. Statistical bandwidth estimates from 20 blocks of nonlinear ODE simulation

data.
Input, Damping B, Hz B, Hz B, Hz
0.5g,(=0.01 71.4 71.7 84.9
2g,{=0.01 190 196 234
8g,(=0.01 820 853 1011
0.5g,{=0.003 51.1 51.6 54.9
2 g, {=0.003 358 380 425
8 g, {=10.003 1278 1285 1461
0.5 g, {=0.001 110 114 120
2 g,{=0.001 662 696 769
8g,(=0.001 1811 1780 2059

Table 4.8. Linear ODE baseline chi-square goodness-of-fit test results for displacement
and velocity response normality

Damping X? X?
{=0.01 19.02 | 19.67
{=0.001 39.03 | 39.09

Table 4.9. Nonlinear ODE chi-square goodness-of-fit test results for velocity response

normality

Input, Damping sz
0.5g,{=0.01 25.69
2g, ¢=0.01 16.29
8 g ¢=0.01 36.84
0.5 g, {=0.001 102.57
2g,{=0.001 137.45
8 g, {=0.001 154.51
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Table 4.10. Kurtosis and normalized random error estimates of kurtosis for results from
20 blocks of linear ODE simulation data.

Input, Damping | « K olg,] | o[&]

X v

K K

X v

lg ¢=0.01 2997 | 299 | 21% | 2.1%
1g, ¢=0.003 3.017 | 3.017 | 43% | 43 %
1g {=0.001 3015 | 3014 | 51% | 51 %

Table 4.11. Kurtosis and normalized random error estimates of kurtosis for results from
20 blocks of nonlinear ODE simulation data.

y v a

Input, Damping K K K a[féy] o [12 v] o [ Aa]

K K
Ky v

0.5g, ¢=0.01 2.97 2.98 3.04 1.8 % 1.4 % 1.4 %
2g,¢=0.01 2.80 3.01 3.81 1.3 % 20% 35%
8 g, (=0.01 2.44 3.02 7.27 0.8% 1.9 % 5.4%
0.5 g, {=0.003 2.93 2.99 3.20 2.7% 29% 33%
2g,¢=0.003 2.62 2.98 5.07 22% 3.4% 72 %
8 g, =0.003 2.34 3.00 8.78 1.2% 3.6% 9.5%
0.5 g, ¢=0.001 2.85 3.00 3.60 3.6% 4.3 % 6.2 %
2g,¢=0.001 249 3.02 6.86 3.8% 73 % 14.4 %
8 g, (=0.001 2.28 2.98 9.44 2.9% 7.1% 13.0 %
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Table 4.12. Rates and ratios of positive zero level crossings and peaks for displacement
and velocity results from 20 blocks of data.

Input, Damping =~ @ [o;] Hz | ®[0]|Hz | @ [P;] Hz @,
0.5g, =0.01 69.5 72.4 69.9 0.9949
2g £=0.01 72.0 75.0 725 0.9931
8 g, (=0.01 89.5 93.0 91.5 0.9899
0.5 g, C=0.003 69.9 70.8 69.9 0.9996
2 g, {=0.003 76.3 77.3 76.4 0.9989
8 g, £ =0.003 107.8 109.1 108.1 0.9976
0.5g, =0.001 71.1 71.4 71.0 1.0000
2 g £=0.001 84.7 85.0 84.8 0.9999
8 g, ¢=0.001 133.2 133.7 133.3 0.9994

Table 4.13. Rates and ratios of positive zero level crossings and peaks for acceleration
results from 20 blocks of data.

Input, Damping | @[ 0; | Hz @[ P | Hz @,
0.5g, C=0.01 110 242 0.46
2g ¢=0.01 113 217 0.53
8 g, =0.01 132 155 0.84
0.5 g, {=0.003 71 151 0.47
2 g ¢=0.003 77 122 0.63
8 g, {=0.003 109 128 0.85
0.5 g, ¢=0.001 77 96 0.79
1g, ¢=0.001 81 91 0.89
2 g, ¢=0.001 91 95 0.96
4 g ¢=0.001 110 110 0.99
8 g, £ =0.001 141 141 1.00
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Table 4.14. Goodness-of-fit peak PDF comparison for linear ODE simulation results.

Damping Bin Center Range | DOF PDF: X*
¢=0.001 0.08 < o< 4.55 27 Ray: 70.8
¢=10.001 1.16 < o< 4.55 20 Ray: 48.7
£=0.01 -041 < 0<4.81 30 Ray: 1023, Peak: 72.9
¢=0.01 1.22 < 0<4.81 20 Ray: 33.3, Peak: 26.6

Table 4.15. Chi-square percentage points used for goodness-of-fit testing.

DOF a=0.10 a=0.01 a=0.005
20 28.41 37.57 40.00
27 36.74 46.96 49.64
30 40.26 50.89 53.67

Table 4.16. Displacement response polynomial coefficients d;; (input i and polynomial
power j) for linear to nonlinear function determined using inverse distribution method.

Input, Damping | d;; mm/mm diomm/mm’ | d;; mm/mm’
0.5g, (=0.01 0.9927 0.1357 -0.1990
2g, ¢=0.01 1.0341 0.0224 0.0842
8g (=0.01 1.2742 0.0374 0.0559
0.5 g, =0.001 1.0331 -0.1094 0.2155
2 g, ¢=0.001 1.1982 0.0213 0.0648
8 g, =0.001 1.9023 0.0111 0.0385

Table 4.17. Peak displacement polynomial coefficients for linear to nonlinear function
determined using inverse distribution method.

Damping ) mm/mm ¢, mm/mm’ ¢; mm/mm’
¢=10.01 0.9628 0.1010 0.0565
¢=0.003 0.9668 0.1213 0.0497
¢=0.001 0.9328 0.1563 0.0405
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Table 4.18. Goodness-of-fit results for transformed Rayleigh PDF for nonlinear ODE
simulation peak displacement results.

Input, Damping | Bin Center Range | DOF Transformed
Rayleigh PDF: X°
0.5g,(=0.001 | 0.066<0c<388 | 27 1102
1 g, {=0.001 0.063 < < 3.69 27 1470
2g,¢=0.001 0.055 < 0<3.23 27 1270
4 g, C=0.001 0.051< 0<3.03 | 27 409
8 g, ¢=0.001 0.050 < 0<2.97 27 720

Table 4.19. Goodness-of-fit results for transformed general peak PDF for nonlinear
ODE simulation peak displacement results.

Input, Damping | Bin Center Range | DOF | Transformed General
Peak PDF: X°
0.5 g, {=0.01 0.40< o< 4.67 30 118
1g ¢=0.01 -0.39< o< 4.54 30 184
2g,(=0.01 -0.34 < 5<4.03 30 560
4g =001 032<0<3.74 30 466
8 g, ¢=0.01 -0.31< 0<3.59 30 492

Table 4.20. Rates of positive zero displacement level crossings based on PDF
transforms £ [O:] and simulations @ [O: ] .

Input, Damping E[O:] Hz CD[O:] Hz
0.5g,(=0.01 69.1 69.5
2g, (=0.01 71.9 72.0
8g, (=0.01 89.3 89.5
0.5 g, =0.001 71.1 71.1
2 g, {=0.001 83.6 84.7
8 g,{=0.001 132.8 133.2
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Table 4.21. Response displacement standard deviation and rate results from baseline

linear ODE simulations determined from PSD estimates.

Input, Damping | o, mm | £[0;] Hz | E[ P | Hz | E[0; |/E[ P/ ]
1g,{=001 | 0176 | 69.29 72.39 0.9571
1g,¢=0.001 | 0550 | 69.23 69.73 0.9927

Table 4.22. Response displacement standard deviation and rate results from nonlinear

ODE simulations determined from PSD estimates.

Input, Damping | o, mm | E[0}] Hz | E[ P/ | Hz | E[0;]/E[ P! ]
0.5g (=001 | 0.0869 | 69.68 72.80 0.9571
2g,(=001 | 0.326 74.28 77.53 0.9580
8g,{=0.01 | 0958 | 100.99 109.12 0.9255

0.5g, ¢=0.001 | 0267 | 72.70 73.34 0.9912
2g,(=0.001 | 0.824 | 94.31 99.11 0.9516
8g,(=0001 | 1939 | 159.73 179.32 0.8908
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4.6 Chapter 4 Figures
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Figure 4.1. Simulation and analysis flow diagram for nonlinear ODE models
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Figure 4.2. Initial free decay response for nonlinear Duffing {'= 0.001 model, initial
velocity = 10 m/ s. (a) Normalized initial displacement and velocity for 1 linear
response period and (b) nonlinear free vibration velocity decay computed with WAFO
turning points and Hilbert Transform methods.
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Figure 4.3. Normalized nonlinear free vibration decay for initial velocities (0.1, 1
10) m/ s and {=0.001 model with ODE relative error = 1x10™: (a) displacement and

(b) velocity.
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Figure 4.4. Normalized bias error estimate of: (a) displacement and velocity mean from
baseline linear { = 0.01 model input = 1 g data, and (b) displacement mean for nonlinear
¢ =10.01 model input = (0.5, 2, 8) g data. Legend: Ravg = running average of
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Figure 4.5. Normalized random error estimates of standard deviation from linear model
input = 1 g data: (a) {=0.01 model displacement data, o; = 0.174 mm, and (b) (= 0.001
model acceleration data, o, =10.7 g.

142



(b)

(a)
. Nomnalized Displacement STD Enor for Zeta=0.01 CDE Sim Dala 0 Hommaiized Acceteration STD Envor for Zeta=0.001 ODE Sim Data
10 - T 5 10" ; T
3 i &
¢ r:
L g P
c g
10°- 4 107 ~— # Y 4
3 r— (=
[ L s i
5 e 3
§ g .
E 10 E 107 h o
h-] b=
2 Z -
§ e §
z . f-lg 2
a4t r
o -
10 2
‘I 2 05gResp
2.0 gResp

80gResp

1 05gResp

20gResp

80gResp 1 f
Linear Resp Est — Linear Resp Est

—— NLOSgEst — NLO5SgEst
: NL 8 g Est
10" 10° 10° 10*
Time (s)

NL 8 g Est |
107 10°
Time (s)
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Figure 4.8. Normalized response PDFs determined from nonlinear ODE simulation
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kurtosis for = 0.001 model and (b) velocity kurtosis for = 0.01 model.
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Figure 4.12. Acceleration response from nonlinear ODE simulations: (a) {= 0.01
model, input = 0.5 g and (b) model = 0.001, input =8 g.

(a) (b)

Lirear Peak Disp PDF3 for Input = 1.0 g, Zeta = 0.001 Linear Peak Orsp PDF s for Inpt = 1 0 g, Zeta = 0.01
T u T T T

07 0.7
3 ODE Resuls | 3 ODE Resuis
Rayleigh J Peak PDF
Rayleigh
08~ o - 0.6 N -
c n I’ i \
f L
05+~ . E . - 05 }- / \ -
¥ [ L]
J ! A
/ \
0.4 0.4 f &
5 K §
o ] o =
P 8 \
E o L
0t 3 - 03k \ 4
y
o - 2 \
| \
0.2 - 02r Y -
] | \
© | f 5
i 5
0.1 % 0.1} d L
B g ]
o i o
=g | J B
ol ) s n il TS L ol = M
0 05 1 15 2 25 3 35 4 45 s -1 [ 1 2 3 4 5
Normakized Peak Disp Nommalized Peak Disp

Figure 4.13. Normalized peak displacement PDFs for linear ODE simulations for
input = 1 g: (a) raw peak PDF for {= 0.001 model (o; = 0.551 mm) and Rayleigh PDF
and (b) raw peak PDF for {=0.01 model (o; = 0.174 mm), Rayleigh PDF and Peak
PDF.

146



(b)

Moniinear Peak Disp PDFs for ODE Data. Zeta=0.01
: =
2.0 g Peak POF
8.0 g Peak PDF
— Linear Peak POF |*

0.8 T

(a)
Noniinear Peak Drsp PDFs for ODE Data, Zeta=0.001
08 T T T T T
e 0 0.5 g Pesk PDF
2 2.0 g Peak PDF
o7 o = Uncarreskpor | 07
06l L 4 a5k Crd P .
/ / \\‘_ o ) [ _3"§
05 h Q ‘._ 4 05~ Z h & -
. / kS n / e
004 / \ 4 004- it A -
a F \\ o \\
// \\'\ ,:J 2 5\ 2
0.3F i 03- "
? ] e \‘i
f 2 h E ! ,; & L Jd
02 f’ ) \?\ 02 /. \:.\_.
o1k i ?\'t‘ 4 01- ?"; ‘L.\" -
o P . L AR ! g i e )
-1 0 1 2 3 4 5 1 Q il 3 4 5
Nomakzed Pesk Olsp Normalized Peak Disp
Figure 4.14. Normalized peak displacement PDFs from nonlinear ODE simulation
input = (0.5, 2, 8) g data: (a) { = 0.001 model, ¢, =(0.267, 0.824, 1.94) mm and (b)
£=0.01 model, o, = (0.087, 0.326, 0.958) mm.

Nonlinear Peak Accel PDF's for 2 = 0.001
- = L
= 0.5gPeak POF
2.0 g Peak POF

8.0 g Peak PDF
Linear Peak PDF |

(a)
Nonlinear Peak Velocity PDF for zeta = 0.003
: ] : o7
3 8.0 g Peak PDF
| —— General Peak POF .
06} o | 06

osk g 5 i .
; 3 R

04 _I \\\ 04- "/ TI

Ié f \\\ E _-'J : J.'-I

03 | ﬁ\ . 03- 4 B -
i “\\ 5
02 K 02- o _‘ . 4
o J "\“:\ | ’;‘) 'L\ " |
% / S
=] ? i T .,{: \.":\:."- it gk
WLy 1 2 S 5 0% 0 2 o i ] 10
Nomalzed Peak Veloaity Normaized Peak Accel (aso )
Figure 4.15. Normalized peak PDFs from nonlinear ODE simulations: (a) peak velocity
(0v=1.11 m/s) for {=0.003 model input = 8 g data and (b) peak acceleration
(0.=(1.76, 7.53, 42.5) g) for {=0.001 model input = (0.5, 2, 8) g data.

147



(a)

Lin to Nonn Displacement Response Functions for Zeta =0.001 ODE Data
; T T T T

(b)

Lin to Nonin Displacement Response Functions for Zeta =0.001 ODE Data

‘ , = =
3 Fx
g2l $ wd E‘d :
£ £ g |
a a
B ;
-3 ©
g 5
EO £
8 s
9 g
s 3
2 2 . :
[~ PN 810 ; .
B 8 =]
ki 8 a
< =
g-z- = é u
- r
3k o8 SR | 0.5 g input
o 05ginpul o 2.0 ginput
A 2.0 ginput 8.0 glnpue
A 2 80ginput . Standard Dewviation
el 1 L L L ] 100 e i
-10 -8 ) -4 2 [} 2 4 & 8 10 107 10° 100

Uineer Displecemenl Response (mm)

Figure 4.16. Linear to nonlinear normal displacement functions from ¢ = 0.001 model

Linear Displacement Response (mm)

input = (0.5, 2, 8) g data: (a) linear graph over positive and negative ranges and (b)
logarithmic graph over positive ranges, with standard deviation points displayed.

(a)

Linear to Nontinear Peak Disp Functions for ODE Data. Zeta=0.01

(b)

Linear to Nonlinear Peak Disp Functions for ODE Data, Zeta=0.001

10’

=1¢° t 210 -
Rl 3 ER A 7 1
< 1 e 1 = ".'
5 | § i
x | - x ‘
a \ad a s
& e &
] ]
8 g
c =
H i 5
210" -J Z40 =
|
| +
059!rpu | - 0.5ginput |+
},Ogmpa | © 1.0ginput
2.0 ginput | - 2.0ginput
;gglrvu | - 40ginpu
. . 80ginput | : . 8.0ginput
107 L. — 107 L
10° 10 ¢ 10 10* 10° 10° 10

Linear Peak Disp (mm)

Linear Peak Dvsp (mm)

Figure 4.17. Linear to nonlinear peak displacement functions from input = (0.5, 1, 2, 4,

8) g data: (a) for {=0.01 model and (b) {=0.001 model.

148



(2) (b)

Lin to Nonn Peak Disp Functions for ODE Dala Lin to Nonan Displacement Response Functions for Zeta =0.001 CDE Data

10' £ ; ; 10' - r
e it
el .
Jcr"";‘ .
2t E
at £
g L
£ & i g [
8 & F e
a 5 ! = |
2‘ ,'l“";I 1 5
F o | 7 |
2 o &
3 g
240’ - $10'
] E
= ! ] z |
4 = e [
. ~ 05ginput, =001 | | T Osgmpd |
| g Input
= 8.0ginput, 5= 0.01 } 2.0 ginput
i 0.5ginput, 2= 0.001 E.Ogmpu«
< 8.0 ginput, 2= 0001 . | — Peak Disp Fit
10° I . ey 107 . e
10° 10' 10" 10° 10° 10 10’ 10'
Unear Peak Disp (mm) Lineer Dispigcement Response (mm)

Figure 4.18. Linear and nonlinear displacement functions: (a) peak functions from
¢=0.01 and {=0.001 models input = (0.5, 8) g data and (b) displacement response and
peak functions from ¢ = 0.001 model input = (0.5, 2, 8) g data.

(a) (b)

Uinear to Noniinear Peak Accel Functions for £ =001 Linear 1o Nonlinear Peak Acced Functions for ¢ = 0.001

10
10';
Loy %
5 E.
= =10'- -
© 8 4
g §
x =
] 3
] $
Qa a
- H
£ £
3 5
=z z 1
! 10°- %
10' - = 3
o 05ginput o 05ginput
2.0 g input 2.0 g input
= 8.0ginput -~ B8.0ginpt |
— Peak Accel Fit ’ — Peak Accel Fit |
10 . - e 10' L =
10" 10' 10° 10 10 10° 10
Lineer Peak Accel (mis?) Linear Peak Accel (m/s?)

Figure 4.19. Linear to nonlinear peak acceleration functions from input = (0.5, 2,8) g
data: (a) for {=0.01 model and (b) {=0.001 model.

149



(a)

Nonlinear Peak Disp PDFs for ODE Data. Input = 8 g, Zeta=0.01

(b)

Nonlinear Peak Disp PDFs for ODE Data, Input = 8 g. Zeta=0.001
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Figure 4.26 Acceleration PSDs from nonlinear ODE simulations for input = (0.5, 1, 2,
4, 8) g data: (a) {=0.01 model and (b) {=0.001 model.
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cubed displacement input.
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Figure 4.30 Displacement input to force output frequency response functions
determined from 88 s of nonlinear ODE simulation results, = 0.001 model

input = (0.5, 1, 2, 4, 8) g data: (a) correlated displacement input and (b) uncorrelated
displacement input.
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Figure 4.31 Nonlinear displacement input to force output frequency response functions
determined from 88 s of nonlinear ODE simulation results, = 0.001 model
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uncorrelated cubed displacement input.
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S FATIGUE ANALYSIS OF NONLINEAR NARROWBAND
SIMULATIONS

This chapter will discuss stress and fatigue damage analysis of the linear and nonlinear
ODE model results. The goal of this chapter is to demonstrate that time to failure
estimates based on peak stress response probability density functions can be determined

with novel and efficient PDF transforms.

Displacement time history files (discussed in Chapter 4) are processed with linear first-
order and cubic third-order displacement to strain relationships to show how the
nonlinearities affect the results. The properties of the linear and nonlinear displacement
to strain equations were determined from measured values from the WPAFB
experiments (discussed in Chapter 3). Once the strains were determined, the stress was

estimated based on a simple stress strain relationship with the elastic modulus.

The stress time histories were sampled to determine peak stresses, which resulted in
Rainflow Matrices (RFM). The RFM were processed to determine fatigue damage and
time to failure, assuming the use of a steel SAE1015 material (as in Chapter 3). The
damage calculations were performed for a baseline damage equation with no mean
stress effects and with two additional equations that included mean stress effects have

been considered.

First, baseline linear ODE models are used for comparison to the subsequent nonlinear
model damage calculations. Next, an intermediate set of calculations was performed on
the nonlinear displacement results using just the linear part of the displacement to strain
relationship. A final set of calculations was performed on the total nonlinear stress
matrices. Histograms were calculated for the minimum and maximum peak stress values

to be used for comparison to the PDF transform results.

The time domain stress response simulations were augmented with estimates of the
rainflow matrices determined with the PDF transform method. The PDF transforms
started with the peak displacement PDFs and estimated the peak stress PDFs based on
the linear and nonlinear displacement to strain relationships. The nonlinear PDF

transform expression yielded a complication, which was due to the addition of a second
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mapping of displacement to strain that occurs with the addition of the squared
membrane stress term. The nonlinear peak stress PDFs were converted to histograms for
use in damage calculations. These time to failure results compared well to the time

domain simulations and the measured data from the WPAFB experiments.

5.1 Stress response calculation

Several authors [16, 206] suggest that the bending, membrane, and total strain stress
response can be estimated with a simple quadratic function of the nonlinear

displacement y (see equation (1.8)) with the form

gbend = Cly
e, =Cy (5.1)

memb

o-total = E (gbend + gmemb)

This equation captures the simple relationship between bending and membrane strain
and stress, and introduces local minima in the displacement to total strain function, as

shown in Figure 5.1, which adds a second mapping of strain to nonlinear displacement.

The results from the WPAFB experiments (see Chapter 3) suggest a more complex form

of the function

gsquare = Hy2g (f y2
gcube = Hy3£ (f) y3

o-total = E (glin + gsquare + gcube)

(5.2)

where H,1,, Hy,, and Hy;, are the multi-mode frequency response functions of the linear,
squared, and cubic nonlinear displacement input to strain response. The filtered input
and response analysis in Chapter 3 determined a set of constants for these functions.
These constants (e;, ez, and e3) were simplified and modified slightly for use in this

chapter (see Table 5.1). The strain relationship for this cubic system is now

e=ey+ey +ey’ (5.3)

158



The addition of the cubed term requires further care with regard to estimating nonlinear
strain (and stress). The new cubic equation has the possibility of local maxima that are
not considered real and must be avoided in the simulations. The parameter e; is chosen
to ensure that the local maxima did not occur within the range of data from the ODE
simulation. The local minimum and maximum values for the cubic equation occur when

the derivative equals zero, i.e.
del/dy =e +2e,y+3e,y° =0 : (5.4

This has two solutions

—e, T e ~3e,e, (5.5)

g

y:

Substituting theses roots into equation (5.3) gives the value of strain at the minimum
and maximum. The numerical values for the roots are given in Table 5.2. Figure 5.1(b)
shows an example cubic function that will be used in the following analysis. To
illustrate their interaction, typical time domain plots of the linear, squared, cubic, and
total strains are shown in Figure 5.2. Note that the total strain reaches a minimum at
approximately -100 pig; this corresponds to the minima of the cubic displacement to
strain function shown in Figure 5.1(b). For comparison, the same function with the
cubic term omitted is shown in Figure 5.1(a); the addition of the cubic term tends to
make the positive displacement region more linear and the negative displacement region

more nonlinear.

Stress responses were determined using equation (5.6) (which includes a stress
concentration factor K = 1.1, that is used to increase the stress locally to compare with

fatigue calculations in Chapter 3) for the entire set of model results.
o-ode = Kclotal (56)

The analysis of the linear and nonlinear stresses from the ODE simulations is discussed
next. The results from the {'= 0.003 model will be used because it is closest to the

measured damping from the WPAFB experiments. The SAE 1015 steel material with
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elastic modulus £ = 204 GPa, and the three sets of fatigue parameters are used again in

this chapter.

5.1.1 Linear ODE baseline model rainflow matrix and damage

The normalized RFM for 4900 s of the baseline linear = 0.003 model is shown in
Figure 5.3. The plot shows that the main response is along the R=-1 (zero mean)
diagonal of the RFM. The RFM can then be integrated or summed along the minimum
and maximum stress axes to form histograms, as shown in Figure 5.4(a). Both
histograms show a classic Rayleigh shape. Note that the histogram of minima is a
“mirror image” of the histogram of maxima. Figure 5.4(b) shows that the peak PDF
determined from the histogram of maxima is in excellent agreement with a Rayleigh

distribution.

The stress standard deviation oy and time to failure results for the linear ODE baseline
model are given in Table 3.15. Note that at the highest 8 g input level, the predicted
times to failure are less than the total of 4900 s of data used to generate the RFM and
RFD results. This would imply a high probability of fatigue failure if the linear
assumption were true. A typical RFD matrix for the scaled linear baseline ODE results

is shown in Figure 5.5(a).

One important observation from this plot is that there are a few stress cycles that occur
at stresses above the ultimate strength of 415 MPa for this material. This would indicate
that the material could also fail as a result of a peak stress at some time within the

4900 s of simulation. There are also many cycles that occur above the yield strength of

228 MPa. These observations require further investigation.

5.1.2 Nonlinear ODE model linear rainflow matrix and damage

A preliminary step toward the total nonlinear fatigue analysis is to analyze the fatigue
damage for the linear part of stress, which is determined from the nonlinear
displacement. This set of results includes the nonlinear change in the peak displacement

PDF, the nonlinear change in the stress standard deviation and the shift in the rate of
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zero crossings and peaks. This linear model does not include any effects of the

membrane or cubic displacement to stress terms.

The stress standard deviation and time to failure results for the nonlinear displacement
with linear stress model are given in Table 5.4. Compare this with the linear results in
Table 3.15; the estimated time to failure increases dramatically as the system response
becomes more nonlinear. At the maximum input, the nonlinear estimate is

approximately four orders of magnitude longer than the linear estimate.

An important observation from these linear stress model results is that the time to failure
is about the same for the three damage equations. This is an expected result; the baseline

damage model has a zero mean stress assumption.

5.1.3 Nonlinear ODE model membrane stress rainflow matrix

An example of the quadratic membrane stress RFM, determined from the nonlinear
ODE results, is shown in Figure 5.6(a) for the 2 g input load. The figure is normalized
by the standard deviation of the membrane stress. It shows that membrane stress is
always positive with all stress cycles (except for two outliers) having a minimum stress

of zero.

5.1.4 Nonlinear ODE model total stress rainflow matrix and damage

The total stress RFM shows the truly nonlinear nature of the predicted stress response.
This model now includes all of the nonlinear effects that are assumed to be present in
this analysis. Figure 5.6(b) through Figure 5.7(b) show the normalized total stress RFM
for the nonlinear inodel from the lowest 0.5 g input through to the highest 8 g input. The
addition of the squared and cubic displacement to strain terms causes the RFM to curve
away from the main RFM diagonal. This indicates the existence of a significant mean
stress term in the rainflow cycles. The RFM above 2 g shows the increase in the number

of rainflow cycles that have a minimum stress of approximately -20 MPa.

Normalized histograms of stress peak minima and maxima are shown for each input

level in Figure 5.8(a) through Figure 5.9(b). These histograms were normalized by the
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absolute value of the minimum stress at each level (see Table 5.2) to clarify the
asymptotic nature of the peak response. At the lowest input level, the shape of the
histograms of minima and maxima appear approximately Rayleigh, but as the input
increases and the response becomes more nonlinear, the shapes change dramatically. It
is also interesting to observe that at the relatively low 1 g input level, some positive
stress maxima start to appear Near Gpeqx / |Omin] = -1 (see Figure 5.8(b)). As the input
level increases, the number of stress minima near Gpeax / |Gmis| = -1 increases
dramatically. The vertical scale in these graphs is linear to illustrate the dramatic

increase in low amplitude cycles.

The normalized nonlinear bending stress damage results presented in this section show
the departure of the nonlinear damage from the linear cases presented in the previous

sections. Figure 5.10(a) through

Figure 5.11 show the RFD matrices for the total stress model using the Morrow damage
equation. One important observation is that the damage is concentrated near the high
stress cycles with very little contribution from the plentiful low-amplitude cycles near

the minimum peak stress asymptote.

Another important observation is that the time to failure estimates (see Table 5.5) now
show a marked reduction when using the Morrow and Walker damage equations, which
include mean stresses. These examples help to illustrate the importance of using a
fatigue model that includes mean stress effects when working with structures that

exhibit nonlinear stress responses.

5.2 Nonlinear PDFs and life estimates

This section extends the PDF transforms of nonlinear displacement to strain that was
introduced for use with the raw multi degree of freedom WPAFB data in section 3.3.2.
The work in this section is based on single degree of freedom models that now have the

same rates of displacements and bending strains.
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5.2.1 PDF estimate for nonlinear total stress

The PDF transform method is used to estimate the nonlinear peak total stress PDF from
nonlinear peak displacement PDFs. In this case, the nonlinear peak displacement to
peak total stress function was determined based on single mode nonlinear parameter

estimates of the WPAFB data (discussed in Section 3.3.1.2)

c=g(»)

) , (5.7
0'=KE(ely+ezy +ey )

where o is the nonlinear peak total stress and y is the nonlinear peak displacement. The

parameters K, FE, and the coefficients e; are given in Section 5.1. This is the standard

form of the nonlinear function with the polynomial on the right hand side of the

equation.

The PDF transfer function for this nonlinear peak displacement to peak stress function

1S

pnlpeak (y)
pnlpeak( ) |d0'/dy| ( )
Where pu pear are the nonlinear PDFs of peak stress and displacement. The absolute
value of the derivative of (5.7) is
|do/dy| = |e1 +2e,y+3e,y° (5.9)

The denivative has two roots

—e, T Je; —3e,e, (5.10)

2
2
el

y:

The range of results was limited such that only one root (the minimum) was observed

(see discussion in Section 5.1).

The second step in this development was to make a further assumption that each

positive displacement peak is followed immediately by a negative displacement
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minimum with the same magnitude. Another way of thinking of this is that each point
on a positive peak displacement PDF maps to a complete cycle with amplitude equal to
the positive peak value. This is considered fair, based on the standard assumption that a
narrowband response (single degree of freedom model) has one positive peak for each
positive zero crossing (see Figure 5.2 for example time data). The displacement cycle
assumption now lets one calculate the PDF for min and max stresses based on the total
stress in equation (5.7). Theories that extend this single mode stress model to multi

mode stress models [170, 172] may be useful for further research.

At this point, it is helpful to observe how the displacement maps to total stress with an
example. Figure 5.12(a) shows six cycles of an increasing displacement function, and
Figure 5.12(b) shows the corresponding total stress based on equation (5.7). The first
three cycles behave “normally,” but the final three cycles show that the stress function
now contains two cycles for one displacement cycle. First, define a primary cycle that
has a stress maxima mapping to the positive displacement maxima, and a stress minima
mapping to the displacement minima. This one-to-one mapping works for displacement
cycles up to the value determined by equation (5.10). Note that the standard PDF
transfer function (4.29) is asymptotic at this point. The primary cycles have a minimum
at the zero slope of the total stress function. Also, define a secondary cycle that has a
minimum stress at this same minimum and a maximum stress at the point mapping to

the negative minimum of the displacement cycle.

The total stress PDF can be determined numerically as follows. First, define a range of

nonlinear peak displacement values y at a convenient spacing

—40,<y<40,

5.11
dy=0.0lo, S

corresponding to the positive peak displacement range observed in the nonlinear ODE

simulation. Determine the PDF of nonlinear positive displacement peaks p,, .. (»)

based on a PDF transform

Pripeak (y)=|dx/dy|ppeak (x) (5.12)
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of linear peak displacement PDF (pp.. (x)) with the values of x and the derivative dx/dy
of the nonlinear functions (see Chapter 4, Section 4.2.9.2)

x=h(y),ye[0,0)
x=cy+e,y +¢)’ (5.13)
dx/dy =c, +2¢,y +3c,y’

determined numerically from the positive values of y chosen above from equation
(5.11). Also, determine a second nonlinear displacement PDF of negative minima using

the same PDF, but now assigned at the negative values of y

x=h(y), ye (~=,0)
x=cy—c,y +¢y’ (5.14)
dx/dy =c,-2c,y +3c,y’

Figure 5.13 is an example of this process for data from the 8 g simulation, {= 0.003.
Now, given the PDFs of nonlinear peak displacement from equation (5.12), numerically
evaluate the PDF transfer function in equation (4.29) using the derivative from equation
(5.9) and the values of y from equation (5.8) to yield the nonlinear peak stress PDF. At
the lower levels of input, the mapping of displacement to stress is one to one, as shown
in Figure 5.14(a). At higher input levels, the secondary cycles start to occur, resulting in
additional cycles. There are now two possibilities for generating stress maxima and
minima. Figure 5.14(b) gives an example of this result. Note that the total stress PDF
has an asymptote at —19.67 MPa.

Figure 5.14(b), shows a PDF of primary maxima and secondary maxima. These
functions can be plotted in a form like the WAFO RFM as shown in Figure 5.15. A
visual comparison of the PDF transform results (see Figure 5.15(a)), and the RFM of
the ODE data (see Figure 5.15(b)) is very encouraging.

These functions are not strictly PDFs anymore, because the “one-to-two” mapping of
stress results in an integrated area greater than one. The correct peak total stress PDF
has to be normalized by the sum of the primary and secondary contributions. The

normalization can be determined as discussed below.
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One complication of this numerical PDF transform method is that the total stress
functions determined from equation (5.7) have uneven spacing. The resulting nonlinear,
unevenly spaced PDFs of primary and secondary stress cycles can be interpolated at
evenly spaced points and normalized by the sum of the two functions. Another method
is to generate histograms of the primary and secondary cycles and simply sum the two
to get an overall histogram of total cycles. This method was used to generate histograms
for comparison to those determined from the ODE simulations of total stress (see

Section 5.1.4).

Peak stress histograms of minima and maxima are shown in Figure 5.16. Note that the
histograms are shown on a logarithmic scale in order to allow for better observation of
the results near the tails of the histograms. These figures show that the histogram results
determined by PDF transform compare very well with the rainflow histograms
determined from the time domain data of total stress. An intermediate result of this
work is the estimation of the number of stress peak cycles for the 4900 s of simulated
data (see Table 5.6). An alternative way to present this could be to estimate the rates of

primary, secondary and total peaks.

5.2.2 Damage estimates for PDF transform method

Having estimated the PDFs and histograms of nonlinear peak total stress, the next step
in the analysis is to determine time to failure for the transformed displacement results.
In this case, damage estimates were determined directly from the primary and secondary
histograms of peak total stress minima and maxima (the RFM were not calculated).
Damage calculations were also made using only the primary histograms of peak total
stress minima and maxima. The calculations based on only the primary cycles were
equal to the combined damage of primary and secondary cycles up to the fifth
significant digit or more. The primary cycle results are given in Table 5.7. These
compare very favorably with the time to failure results from the ODE stress simulations

in Table 5.5.
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5.3 Nonlinear narrowband simulation summary

This chapter was devoted to the fatigue analysis of the narrowband ODE simulations
discussed in Chapter 4. Linear baseline and nonlinear time domain stress responses
were processed to determine rainflow matrices of stress peaks. Time to failure estimates

were made with three damage equations.

A method to estimate nonlinear peak total stress PDFs was developed. The PDFs were
determined by first estimating the nonlinear peak displacement PDFs (from linear peak
PDFs) and then by determining the nonlinear peak total stress PDFs (from the nonlinear
peak displacement PDFs). The PDF transform results were used to estimate time to
failure, which compared well to the time domain cycle counting estimates. Primary

stress cycles were shown to account for the bulk of the fatigue damage.

The change in time to failure, based on each fatigue equation assumption, is illustrated
in Figure 5.17 for the assumed SAE1015 material and the results tabulated in this
chapter. The graphs show that the linear model can estimate lives over 100 times shorter
at the maximum input level, while the nonlinear model without mean stress effects can

estimate lives about 10 times longer.

When one considers nonlinear structural effects, the ODE simulations have
demonstrated that there can be a potential improvement in the fatigue lives of structures
(compared to linear estimates), but there are potential simplifications that could
overestimate the improvement. It is highly recommended to use fatigue equations that
include mean stress effects (e.g. the Walker or Morrow equations) when working with

nonlinear structures.

This chapter has demonstrated that the PDF transform method can be successfully used
to estimate peak stress joint PDFs for single degree of freedom systems. The added
complication of the one-to-two mapping of displacement cycles to stress cycles has

been included in a straightforward and efficient solution technique.
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5.4 Chapter 5 Tables

Table 5.1. Nonlinear displacement to bottom strain parameters for ODE simulations.

Input e1 ue/mm ez uf:/mm2 e3 ue/mm’
05¢g 141.7 40.3 -15.26
lg 141.7 40.3 -15.26
2g 141.7 40.3 -14.65
4¢ 141.7 40.3 -10.37
8¢g 141.7 40.3 -6.10

Table 5.2. Nonlinear displacement to bottom strain and stress minimum and maximum
for ODE simulations.

Input Ymin TIM Vmax M Emin HE Omin MPa
05¢g -1.087 2.848 -86.85 -19.49
lg -1.087 2.848 -86.85 -19.49
2g -1.100 2.934 -87.65 -19.67
4¢g -1.201 3.791 -94.12 -21.12
8¢g -1.347 5.749 -102.9 -23.09

Table 5.3. Time to failure estimates for linear ODE baseline model data.

Input o, MPa | G mixMPa | Baseline (s) Morrow (s) Walker (s)
0.5g 5.06 26.63 1.9452x10™ | 1.9450x10' | 1.4058x10"
lg 10.12 53.25 4.217x10" 4.216x10" 3.216x10"
2g 20.24 106.5 9.141x10® 9.138x10® 7.357x10%
4g 40.24 213.0 1.982x10° 1.980x10° 1.683%10°
8g 80.96 426.0 4.296x10° 4.285x10° 3.850%10°
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Table 5.4. Time to failure estimates for nonlinear ODE displacement, linear stress

model data.
Input | o (MPa) | Oma MPa Baseline (5s) Morrow (s) Walker (s)
05g 4.97 23.15 6.55x10" 6.55x10" 4.69%10"
lg 9.59 41.67 1.12x10" 1.12x10" 8.49x10"?
2g 17.14 66.84 2.38x10"! 2.38x10"! 1.85%x10"!
4¢g 28.74 102.9 1.90%10° 1.90x10° 1.54x10°
8 g 44.67 149.5 2.43x10’ 2.43x10’ 2.03x107

Table 5.5. Time to failure estimates for nonlinear ODE displacement, total nonlinear
stress model data.

Input | o MPa | 6 o MPa | Gpe MPa | Baseline (s) | Morrow (s) Walker (s)

05g | 4.94 0.22 26.62 | 3.45x10™ | 3.36x10" 1.78x10"

lg 9.40 0.82 4950 | 2.02x10" | 1.86x10% 8.41x10"

2g 16.17 2.63 76.28 | 3.97x10"° | 3.28x10" 1.24x10"

4g 26.24 7.39 118.7 6.75x10° | 4.52x10° 1.65x10°

8 g 41.71 17.84 207.1 7.27x10% | 3.20x10° 1.51x10°

Table 5.6. Number of stress cycles from transformed nonlinear displacement PDF
compared to stress model ODE data.

Input Primary cycles Secondary Total cycles ODE Stress
cycles cycles
05¢g 342 492 0 342 492 342 550
lg 350811 135 350 946 350977
2g 374 394 50992 425 386 393 897
4g 429 342 231359 660 701 590 007
8g 529 485 431 135 960 620 890 603
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Table 5.7. Time to failure estimates for transformed nonlinear displacement PDF
primary cycle data.

Input | Baseline (s) Morrow (s) Walker (s)
0.5g 3.72x10" 3.63x10" 1.93x10"
lg 2.40x10" 2.23x10" 1.02x10"
2g 4.11x10" 3.40x10'° 1.28x10'"
4g 6.80x10® 4.54x10° 1.67x10°
8g 7.03x10° 3.09%10° 1.46x10°
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Figure 5.1. Nonlinear displacement to nonlinear strain functions: (a) quadratic function
and (b) cubic function for 8 g parameters.
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Figure 5.3. Normalized bending stress rainflow matrix for linear ODE simulation:
¢'=0.003 model, input = 1.0 g data, o,=10.12 MPa.
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Figure 5.5. Rainflow damage matrices for ODE simulations, ¢'= 0.003 model
input = 8 g. (a) Linear displacement transformed with linear stress function,
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o, = 44.67 MPa.
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Figure 5.7. Total stress rainflow matrix for nonlinear ODE simulation ¢'= 0.003 model:
(a) input=2.0 g, o,=16.17 MPa and (b) input =8.0 g, o,=41.71 MPa.
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Figure 5.9. Total stress rainflow minima and maxima histograms for nonlinear ODE
simulation ¢'= 0.003 model: (a) input = 2.0 g, Gmir = 19.67 MPa, 05 = 16.17 MPa and
(b) input =4.0 g, Gpmin = 21.12 MPa, 05 = 26.24 MPa.
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Figure 5.11. Total stress rainflow damage matrix for nonlinear ODE simulation:
¢'=0.003 model, input = 8.0 g, o,=41.71 MPa, morrow damage equation.
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Nonlinear Peak Min & Max Disp PDF for Input = 8 g, Zeta=0.003
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Figure 5.13. Nonlinear positive maxima and negative minima displacement PDFs for
¢'=0.003 model, input = 8 g simulation.
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Fatigue Life for Clamped-Clamped Beam with SAE1015 Material
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6 CONCLUSIONS

6.1 Summary

The primary focus of this thesis has been to develop original approaches to assist in the
estimation of time to fatigue failure for nonlinear structures when subjected to random
loading. Experimental data from a set of nonlinear random vibration tests has been
analyzed in the time and frequency domains, yielding useful observations about the
measured displacement and strain responses. Additional complementary numerical
simulations were performed to augment the experimental findings. Throughout this
thesis, straightforward and accepted engineering analysis methods were used to identify
trends in the data and to help explain the physics of the problem. Graphical
representations and tabulated results from the analysis have lead to improved
understanding of the nature of the nonlinear random fatigue problem. Specific
contributions in the area of the experimental and analytical studies are now briefly

described.

6.1.1 Experimental studies

The WPAFB experimental data yielded a wealth of nonlinear random multi-mode
response data that was analyzed in both the frequency and time domains. The reverse
path nonlinear transfer function method was shown to be very effective in identifying
nonlinear models for measured data. Transfer functions for both the force to nonlinear
displacement response and the displacement to nonlinear strain response were shown to
be consistent even though the raw displacement and strain data showed strong nonlinear
responses that changed over the five input level. Multi path nonlinear frequency domain
transfer functions were also shown to be useful for reconstructing the linear, squared
and cubic parts of the time domain strain response. The linear transfer function
estimates were subsequently used to approximate linear random displacement and strain
responses. Modal models of the nonlinear system response were proposed based on the

identified transfer and coherence functions.
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6.1.2 Numerical studies

The linear and nonlinear Duffing simulations, based on the clamped-clamped beam
experiments, were developed and executed so that large data sets could be used to show
trends in the nonlinear response. The major findings of this work can be summarized as

follows:

The standard deviation and kurtosis for the nonlinear random response converge much
more slowly than the corresponding linear random response quantities. The response
displacement kurtosis tended to be less than 3 and the response acceleration kurtosis
tended to be greater than 3, whilst the response velocity kurtosis tended to equal 3 for
the Duffing model studied. The velocity response distribution tended to be normal for

the nonlinear models.

Random errors in nonlinear standard deviation estimates, based on the statistical
bandwidth of the frequency domain PSD response, are much greater than what would be
estimated with linear random theory. The harmonic distortion of the displacement,
velocity and acceleration response states can be significant enough to cause an estimate

of the statistical bandwidth to be even greater than the bandwidth of the input spectrum.

Linear to nonlinear displacement functions determined from the ODE results, using the
inverse distribution function method, appear similar to those estimated directly from the
experimental displacement data. The linear peak to nonlinear peak functions all tended
to follow one main trend, even over wide ranges of input amplitude and damping
values. The linear to nonlinear peak functions determined using an assumed generalized
linear peak distribution function, with a ratio of zeros to peaks determined from the
nonlinear data, produced the best goodness-of-fit agreements. The linear to nonlinear
peak displacement response functions appear to form an upper bound (or limiting case)
of the linear to nonlinear normal displacement response functions. A novel use of the
linear to nonlinear normal displacement function was developed to estimate the rate of
zero crossings for the nonlinear response. The estimated rates agree well with those

determined by counting level crossings.
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The reverse path identification process was used again to demonstrate its potential with
simulated nonlinear Duffing model data. The method accurately estimated the Duffing

model linear and nonlinear frequency domain parameters.

6.1.3 Major fatigue findings

Time to failure was estimated based on the raw strain measurements and several
estimates of linear and nonlinear strain response based on the estimated nonlinear
frequency response functions. The time to failure estimates, using rainflow matrices of
stress peaks, showed that the nonlinear results were significantly longer than the linear
results, especially at the highest input level. The life estimates were also made with two

damage models that included nonzero mean stresses.

A method to estimate nonlinear peak total stress PDFs was developed. The PDFs were
determined by first estimating the nonlinear peak displacement PDFs (from linear peak
PDFs) and then by determining the nonlinear peak total stress PDFs (from the nonlinear
peak displacement PDFs). The added complication of the one-to-two mapping of
displacement cycles to stress cycles has been included in a straightforward and efficient
solution technique. The PDF transform results were used to estimate time to failure,
which compared well to the time domain cycle counting estimates. Primary stress cycles

were shown to account for the bulk of the fatigue damage.

When one considers nonlinear structural effects, there can be a potential improvement
in the fatigue lives of structures (compared to linear estimates), but there are potential
simplifications that could overestimate the improvement. It is highly recommended to
use fatigue equations that include mean stress effects (e.g. the Walker or Morrow

equations) when working with nonlinear structures.
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Several significant observations can be summarized for the major changes in fatigue life

for a nonlinear stiffening structure:

An increase in response rate produces a linear increase in damage.

The addition of nonlinear tensile membrane stress can yield an increase in damage.
The change in the peak response PDF shape can result in a decrease in damage.

The decrease in the response standard deviation yields an exponential decrease in

damage.

6.1.4 Intermediate results of interest

Time domain analysis of the experimental data showed strong nonlinear behavior. PDFs
of displacement and strain responses were determined for use with the Inverse
Distribution Function (IDF) method to estimate linear to nonlinear random functions.

These random functions are a unique way to show trends in the nonlinear response.

The random functions also formed the basis for nonlinear PDF transforms. Basic
polynomial curve fits of the linear to nonlinear functions were used to estimate normal

random and peak random PDFs of the nonlinear displacement, acceleration and strain.

Investigations of the change in peak PDFs, as the ratio of the rates of zeros to peaks
changed, yielded observations of importance. The peak PDF and the peak histogram of
a generalized response (i.e., any response from narrowband to completely wideband)
were shown to be composed of the sum of narrowband and wideband parts. Equations
to estimate the ratio of zeros to peaks @, based on the number of negative value
maxima, were developed. An equation to determine the value of the distribution

function at a peak value of zero, as a function of @, was also developed.

6.2 Areas for future research

This study has developed and introduced numerous analysis techniques that, when used

together, have helped to explain the behavior of nonlinear structures. Whilst performing
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this work, some additional avenues of research have been identified that may be of

interest. They can be divided into experimental and theoretical research investigations.

6.2.1 Experimental studies

The predicted time to failure for nonlinear random responses has been based on
established sinusoidal fatigue and cumulative damage principles. Although some
experimental studies of random fatigue have been performed, it would be very
interesting to study the basic problem of linear random fatigue more thoroughly.
Additional random fatigue tests with controlled positive and negative mean stresses,
which could build from the baseline linear random tests, would be a useful exercise.
Full nonlinear random fatigue tests for stress stiffening and stress softening systems

would help illuminate the underlying physical and stochastic nature of this topic.

Baseline linear random fatigue tests, under controlled conditions, would be a very
interesting research project. The standard assumption of linear cumulative damage
could be validated or challenged. Ideally, these baseline linear random fatigue tests
would induce narrow band stresses that could be used for comparison to random fatigue
equations based on a Rayleigh stress peak distribution. Additional attention to the high
and low cycle regions would be of further interest. In the low cycle region, the
probability of occurrence of peak loads above the elastic limit of the material might
point to a revised random fatigue model that would include elastic and plastic terms. On
the other hand, the high cycle region could be used to study the existence of a random
endurance limit as compared to a sinusoidal endurance limit. This high cycle random
fatigue study would be of interest to engineers working with high frequency
mechanisms (e.g. MEMS) or structures that require very long service lives. Further
basic research into the change in the random response as the test item nears failure
would be of interest to those working in the area of structural safety monitoring.
Perhaps a change in the response probability density function might be an indicator of

the onset of failure.

An extension of these basic linear random fatigue experiments would be to add tensile
and compressive stresses. Tensile mean stresses are known to reduce fatigue life while

compressive stresses have been shown to increase life in metallic materials. Controlled
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experiments with various magnitudes of positive and negative mean stress would help to
validate the extension of sinusoidal mean stress equations for random fatigue. This
research could be applied to a range on engineering problems, notably civil engineering
applications that have preload due to gravity or pre-stress (e.g. pre-stressed concrete
structures, subjected to random wave loads). The random mean stress fatigue problem is
also a concern in aerospace applications where thermal loads can cause expansion or

contraction resulting in significant mean stresses.

Multimode linear random fatigue tests would be another logical extension of the
baseline linear narrowband fatigue tests. Further validation of rainflow cycle methods
for random fatigue would be useful. A combined investigation that also included

validated mean stress random fatigue models would be ideal.

Ultimately, combining basic linear random fatigue testing with nonlinear random
fatigue testing would allow validation of the theories developed herein. Flat beam or
plate fatigue tests, like the clamped-clamped beam experiments at WPAFB, could be
run long enough to induce fatigue failure. Careful control of the test fixture and
environment should be used to limit (or enhance) the effects of thermally induced
preload. An alternate configuration with curved geometry would be useful for studying
the stress softening response case where times to failure are expected to be less than
predicted by linear theory. The curvature experiments may be less sensitive to thermal

effects which would cause change in geometry but not significant change in preload.

All of these experimental tests could benefit from careful specimen design, additional
instrumentation and large sample sizes. Adding holes or reduced section areas can yield
higher strains and stresses that should allow fatigue failure at reasonable test durations
and input levels. These stress concentrations could be strategically placed to study
single and multimode fatigue response. Strain gage instrumentation around these high
stress locations would be useful for further numerical post processing. Additional
displacement and acceleration transducers would assist correlation of the time and
frequency domain analysis of the test results. Temperature sensors for tests with
nonlinear structures would help identify possible temperature induced loads. Simple
sample designs that could be inexpensively fabricated would allow affordable tests of

larger sample sizes. A common design that could be used for linear, mean stress, multi
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mode and nonlinear test variations would help the researchers focus on the basic physics

of the problem.

6.2.2 Theoretical research

Continued theoretical work in the area of linear and nonlinear random structural
response is recommended. Ideally this theoretical research could be combined with

experimental data to further the understanding of the physical problem.

Further research into the link between multi degree of freedom linear frequency domain
response models (i.e. modal or frequency response function models) and the two-
dimensional rainflow matrix would help validate the empirical models that have been
developed to date. A rainflow model based on the physics of a linear structure and the

nature of the random load would be a great advance.

This thesis concentrated on simple one-dimensional probability functions of
displacement and strain. An interesting extension of this was the nonlinear PDF
transformation of nonlinear displacement to nonlinear strain. The resulting total strain
distributions were best shown as skewed results on a rainflow matrix. More complicated
two-dimensional nonlinear PDF transforms of multi degree of freedom rainflow

matrices could be an important extension of the methods presented herein.

Nonlinear reduced order “modal” domain analysis methods are being developed to help
reduce the computationally expensive cost of analyzing practical engineering structures.
Further research with the reverse path nonlinear frequency domain identification
methods may help scientists develop more accurate nonlinear modal models. Although
the “three path” linear, square and cubic reverse path method used in this thesis was
successful, other nonlinear basis functions may have more physical meaning. The
nonlinear models of force to displacement to strain developed in this thesis are a logical
starting point for continued nonlinear modal research. The nonlinear frequency domain
displacement to strain relationships are particularly novel and may help with the

development of improved nonlinear modal models.

The link between PDFs of displacement, velocity and acceleration for nonlinear

response may also help with nonlinear vibration analysis techniques. This study
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demonstrated that the change in the displacement and acceleration PDFs were related,;
as the system became more nonlinear, the displacement PDF became skewed such that
the kurtosis became less than 3, whilst the acceleration PDF was skewed in an opposite
fashion such that the kurtosis became greater than 3. A through understanding of this
interaction may be helpful for a reverse path simulation using Fourier transforms of

simulated time domain responses.

6.3 Closing remarks

Overall there is still much to be done, but it is believed that the work presented is a
significant step in improving the understanding and development of techniques suitable
for the fatigue and random response analysis of structures in their nonlinear response

regime.
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