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ABSTRACT

Whilst there is a considerable body of work in the literature on the theory of acoustic
propagation in marine sediment, the incorporation of gas bubbles into such theories is
done with the inclusion of assumptions which severely limit the applicability of those

models to practical gas-laden marine sediments.

Section 2 develops a theory appropriate for predicting the acoustically-driven
dynamics of a single spherical gas bubble embedded in an incompressible lossy
elastic solid. Use of this theory to calculate propagation parameters requires
calculation of the gas pressure component of section 2, and the options are outlined in
section 3. The incorporation of radiation losses is discussed in section 4. Section 5
discusses how the entire scheme can be incorporated into a nonlinear, time-dependent

propagation model.



LIST OF SYMBOLS

C the sound speed in the solid for compressional waves of

infinitesimal amplitude.

Cp the specific heat of the gas at constant pressure

K, the thermal conductivity of the gas within the bubble

p the sum of all steady and unsteady pressures outside the bubble
wall

P, the sum of all steady and unsteady pressures in the gas

P, vapour pressure

Po the static pressure in the liquid just outside the bubble wall

P, (t) the value of p very far from the bubble

R(t) bubble radius

R, equilibrium bubble radius

R, the radial displacement of the bubble wall

T Gas temperature

T, Ty and T, the components of the stress tensor in the solid

u the liquid particle velocity.

Ug radial velocity in the gas

v ratio of specific heats for the gas

& the component of the strain tensor in the radial direction



A, and G, Lamé constants

P liquid density

Py density in the gas

o the surface tension

n shear viscosity of the liquid

M8 bulk viscosity of the liquid

72 shear viscosity of the solid

> Fext the vector summation of all body forces

Vi



1 Introduction

Whilst there is a considerable body of work in the literature on the theory of acoustic
propagation in marine sediment, the incorporation of gas bubbles into such theories is
done with the inclusion of assumptions which severely limit the applicability of those

models to practical gas-laden marine sediments.

The assumption of quasi-static gas dynamics limits the applicability of the resulting
theory to cases where the frequency of insonification is very much less than the
resonances of any bubbles present. It also eliminates from the model all bubble
resonance effects, which often of are overwhelming practical importance when
marine bubble populations are insonified. This limitation becomes more severe as

gas-laden marine sediments are probed with ever-increasing frequencies.

The assumption of monochromatic steady-state bubble dynamics, where the bubbles
pulsate in steady state, is inconsistent with the use of short acoustic pulses to obtain

range resolution.

The assumption of monodisperse bubble populations is inconsistent with the wide

range of bubble sizes that are found in marine sediments.

The ubiquitous assumption of linear bubble pulsations becomes increasingly
questionable as acoustic fields of increasing amplitudes are used to overcome the high
attenuations, and the resulting poor-signal-to-noise ratios (SNRs), often encountered

in marine sediments.

This report outlines a theory which does not require the above assumptions. Some
assumptions are still maintained, notably that the bubbles in question interact with the
sound field through volumetric pulsation. Whilst this does not necessarily mean that
the bubbles should be spherical at all times, it is through this assumption that the
theory encompasses the volumetric pulsations. It is well-known that there are classes

of bubbles in sediment which do not behave in this way (e.g. those which bear a



closer resemblance of ‘slabs of gas’ and ‘gas-filled cracks’, than they do to gas-filled

spheres).

In this first analysis the assumption is also maintained that the sediment outside of
each individual bubble may be treated as incompressible. Whilst this greatly eases the
analysis, the extent to which it is correct will depend on the characteristics of the
sediment. The result of this assumption is that acoustic radiation damping is
neglected. Furthermore the sediment outside of the bubble is assumed to be a lossy

elastic solid, and no bubble-bubble interactions are assumed to occur.

It should be noted that this analysis is also relevant to acoustic propagation through

tissue, provided that the latter can be treated as an incompressible lossy elastic solid.

Section 2 will develop formulation appropriate for predicting the acoustically-driven
dynamics of a single spherical gas bubble embedded in an incompressible lossy
elastic solid. Section 3 will outline the options for evaluating the gas pressure
component of section 2, and section 4 discusses the incorporation ofpropagation
losses. Section 5 discusses how the entire scheme can be incorporated into a

propagation model.

2 Theory for the dynamics of a single gas bubble in an

incompressible lossy elastic solid

In the following derivation, the use of the dot notation in this, and the subsequent
equations of motion, indicates the use of the material derivative [182.2.2], i.e.:
D o

—=—+(U-V
Dt ot (u-v)

1)

where u is the liquid particle velocity. For the discussion of the pulsation of a single
bubble whose centre remains fixed in space, as occurs in this report, the convective

term (the second term on the right) is zero. Before applying the equations of this



theory, critical evaluation should be made of their applicability, given this restriction.
Models of translating bubbles need careful evaluation. Even where bubbles are
assumed to pulsate only, if they exist in a dense cloud then the convective term may

be significant [2].

The following derivation relies assumes that the material outside the gas bubble wall
is incompressible, and assumes that spatially uniform conditions are assumed to exist
within the bubble.

When these assumptions are applied for the case of a gas bubble in a liquid, the
equations for the conservation of energy within the liquid can be coupled to that of the
diffusion of dissolved gas within it, and to the equation for conservation of mass in
the liquid:

1Dp ¢ )

:>a—+§-(pﬂ)=0

This is the well-known equation of continuity, where u is the liquid particle velocity

and p is the liquid density; and to an equation for conservation of momentum in the
liquid, specifically the Navier Stokes equation:

U U - - L o o (3)
p%z p(i—l:ﬂu -V)u] = pz Fo —Vp+(4—;7+nBjV(V-u)—77Vxqu

where p represents the sum of all steady and unsteady pressures.

Equation (3) simplifies in a number of ways for limits which are often appropriate to
gas bubbles in water [1§2.3.2]. The term 7V xVxu encompasses the dissipation of

acoustic energy associated with, amongst other things, vorticity, and hence is zero in

conditions of irrotational flow (required for the definition of a velocity potential). The

term (4n/3+n,)V(V-u) represents the product of viscous effects (through the shear

nand bulk »g viscosities of the liquid), with the gradient of V-u (which, from (2),



represents in turn the liquid compressibility). As an interaction term, it is generally
small. Note that setting it to zero does not imply that all viscous effects are neglected,
but simply that they appear only through the boundary condition. Lastly, the term
> F,, represents the vector summation of all body forces which are neglected in the
formulations of this report. If it is then assumed that the bubble remains spherical at

all times and pulsates in an infinite body of liquid, then because of spherical

symmetry, the particle velocity in the liquid u is always radial and of magnitude

u(r,t), and equations (2) and (3) reduce, respectively, to:

2
op +izé(r ,ou)=O
ot r or
and
6L+u8_u+£6_p: 0. (Euler’s equation)
ot o por

The situation is somewhat different for a single gas bubble in an incompressible lossy
elastic solid. The bubble radius R(t) oscillates about some equilibrium radius R, with
bubble wall velocity R(t). Euler’s equation for liquids must be modified for solids as

follows

T, +T
ps(aus +us%j:—@+%i(r21’”)_u
ot or or r-or

where p, is the bulk density of the solid material outside of the bubble wall, u is the

particle velocity in the elastic solid and T, T,, and T,, are the components of the

m?
stress tensor. Note that because the trace of the stress tensor is zero in elastic solids

(as it also is in Newtonian liquids), the following relationship will be assumed valid

[3]:

Trr = _(THH +T¢¢) :

(4)

(5)

(6)

(7)



Equation (6) will now be integrated through the solid (from R to r=o0), using the

assumption of liquid incompressibility, which implies that:

R2(t) (8)

r’(t)

uy(r,t) = R(t)

where the bubble has radius R(t) and wall velocity R(t). The integration process can

be divided into a series of smaller integrals:

r =
ot r 2

T ou, T p A(RE(DR(D) 7 R?R + 2R R? ©)
I S—d é“ —ZTdI’:! ps(r—]dr

R
{—RZR—ZR R?
:pS B — e —

} _ (R R4 2R?)
r R

T au t p. ou? Dol s ) p.R? (10)
u—dr=|=—dr==(us(r=o0,t) —Uu (R ,t) ) =——=—.
{pssar lz —rdr =2 (U (r =) - Ui (R 1) = -5
o0 2 0 2 0 2 (11)
I %6(r T”)drzj r—Z%dHI T—"zraLdr
s T or 5 ror s roor
[ Dodre [ Zedr=T,(r=0,)-T,(R )+ | Zerdr
5 or s T -
2 (T, +T “ (12)
I o *T) ¢"’)drzj o gy
R r R r

Combining these subsidiary integrals allows the integration of (6) to be undertaken

from across the solid and liquid phases (i.e. from R to r=x):



. 3 2T (13)
psRR—I—EpsR = ps(th)_ poo(t)+Trr(r Zw’t)_Trr(R’t)+ J.3idr
r

R
noting that for this case, T, (r =oo,t) can be taken to equal zero, giving

. . ° 14
psRR—I_gpstz(ps(R1t)_Trr(R1t))_ poo(t)+J-3%dr ( )
R

The bracketed term on the right of equation (14) can readily be found using the
boundary condition at the bubble wall (r=R):

2 0 15
P.(RO-T,(R)=p,~ "~ (15)

where o is the surface tension, and 0o /0R represents a radial force which results
from the variation in the concentration of surface active molecules on the bubble wall

as the bubble pulsates, although this is normally assumed to be zero [3].
Substitution of (15) into (13) gives:

. 3. o (16)
RE+SRe =L p —Z—G—a—a—pm(t)+j3hdr
2. pl' " R @R Iy

which can be readily evaluated to form time histories of the bubble response using the
techniques familiar for gas bubbles in liquids, provided that it is possible to determine

T,,, the radial component of the stress tensor in the sediment.

The radial component of the stress tensor in the dissipative elastic solid consists of
two parts, encompassing respectively the elastic and dissipative characteristics of the

solid. The elastic constituent [4] can be expressed in terms of the Lamé constants A,

and G (the latter also being known as the modulus of rigidity):



T, = (4 +26,) % 1 gz f (17)
or r
where ¢, is the component of the strain tensor in the radial direction which, for small

displacements, is given by:
2 18
(&) :

where R, is the radial displacement of the bubble wall [3]. Note that this solid has

been assumed to be incompressible (equation (8)), and for such solids the Lamé

coefficient A, becomes so large as to be undefined. However, as will be shown later,

this does not cause problems in the current calculation.

The second constituent of the radial component of the stress tensor in the dissipative

elastic solid T reflects the losses associated with the internal friction within it. If
the velocity gradient is small, the higher order terms can be neglected, and the
damping becomes proportional to the first derivative of the velocity [5], 27,(cu/or),
where 7, is the shear viscosity of the solid. Church [3] notes that this is equivalent to

assuming that the dilational viscosity is negligible [6]. The extent to which this is

valid in gas-laden sediment will depend on the specific case.

Taking both the elastic and lossy characteristics of the solid together, the radial

component of the stress tensor is:

2 _ 19
T, =X GR +1R) ()

T 3
r

The assumption of solid incompressibility has caused terms involving the Lamé

coefficient A, to cancel out, avoiding the problems which could have been caused by



its undefined valued for an incompressible solid. The integral for the solid in equation

(16) can now be evaluated:

, _ (20)
[ Tedr-—2(GR +nR)
s T R
Equation (16) can now be expressed with the integrals evaluated using (20):
. 3., 1 20 0o 4 : (21)
RR+=-R°=—| p,———-——-1p,(t)——(G,R, +n.R) |.
5 ps[pg 5 POz GR )]

Equation (21) forms the basis of predicting the dynamics of a single bubble in a lossy
elastic solid. Section 3 will outline the options for evaluating the gas pressure
component of this, and Section 4 discusses how the entire scheme can be incorporated

into a propagation model.

3 Methods for calculating the gas pressure and the effect on

thermal damping

By far the most common way of calculating py (required for evaluation of (20)) is to
appeal to a polytropic law). This involves calculating the pressure in the gas at a given
bubble size by comparing it with the pressure at equilibrium. The latter is equal to the
sum of the static pressure in the liquid just outside the bubble wall (po), plus the
Laplace pressure at equilibrium 2c6/R, (where o is the surface tension [182.1]), minus

that component due to vapour ( p, ). Hence when the bubble has radius R the pressure

in the gas will be:

o p+2_g_p (&je”‘ (22)
g R, AR

This adjusts the relationship between bubble volume and gas pressure (effectively, the

‘spring constant’ of the bubble) to account for heat flow across the bubble wall, but



crucially it ignores net thermal losses from the bubble (see below). Therefore if (21) is
evaluated using a polytropic law, the result would, without correction, ignore two of
the major sources of dissipation: net thermal losses and, through the incompressible
assumption, radiation losses. Approximate corrections, which artificially enhance the
viscosity to account for thermal and radiation damping, are available through use of
enhancements to the viscosity [3], although these are only partially effective. These

enhancements are based on the same physics as the ‘linear’ damping coefficients

A more accurate option, which would keep the nonlinear character of (21)
uncompromised, would be obtained by combining the continuity and energy relations
for a perfect gas with spatially uniform pressure (p;) to provide an exact expression
for the velocity field in terms of the temperature gradient. This reduces the problem to
an ordinary differential equation for the internal pressure, with a nonlinear partial
differential equation for the temperature field, for a bubble which is spherical at all
times. Furthermore, if it is assumed that vapour effects are negligible, and that the
bubble wall temperature does not change (an assumption which can be justified by
estimating temperature changes when the heat flux from the thermal boundary layer in
the gas is equated to that entering the boundary layer just beyond the bubble wall),
then these two assumptions effectively make consideration of the effect of thermal
dissipation on py primarily an issue of the gas dynamics. For most common cases, it
IS acceptable to assume a constant meniscus temperature equal to the undisturbed
liquid temperature, with T(r,t) representing the time-varying temperature field within

the bubble [9]. If the density and radial velocity in the gas are pq and U, respectively

(there are no tangential velocity components), then, the continuity equation for the gas

is:

Dp = (23)
Dtg +p,V-U,=0

and the equation for the conservation of energy is



,c DT ,9p,| T Dp, (24)

"Dt at| p, Dt

=V-(K,VT)

9

where viscous heating in the gas in neglected; where C, is the specific heat of the gas
at constant pressure, which in this derivation is assumed to be constant!; and where
the thermal conductivity of the gas within the bubble, Ky, is a function of the gas

temperature [7, 8]:

0.74 25
L:2.6526 ><10_4T (29)
WK /] K]

Recall that only a single value pi(t) is required to describe completely the spatially
uniform pressure in the bubble, and that the notation indicates use of the convective

derivative. Applying a perfect gas law having constant specific heat at constant

pressure

ngpT - 7,%:_)'1 (26)
| Py @0
oT A T

to the combination of the two conservation laws ((23),(24)), integration of the

spherically symmetric system gives the radial velocity field in the gas:

(g T @)
o, ((7 s 5 3)

in terms of the temperature gradient and the convective derivative of the pressure. By

applying the boundary condition that uy must equal the velocity of the bubble wall at

1 In most studies of non-inertial cavitation it has been enough to assume that the specific heat of the gas is

constant. If the gas temperature changes become great, the temperature dependence needs to be included.

10



the location of the wall, (28) can be recast to give a differential equation for the

spatially uniform pressure within the bubble

3 oT
5 = 2| (=K. L
o R[(7 ) oo

o8 “

Clearly the temperature gradient needs to be evaluated if (29) is to be of used in a
bubble equation of motion. There is flexibility in the route now taken, using for
example the equation of continuity coupled with the equation of state of a perfect gas.
Alternatively one can use the enthalpy equation in nonconservation form, and by
doing so Prosperetti et al. [9] obtained (30) from (24):

. _ _ 30
L(ﬂ_}_ug G_Tj&_ p; =V~(K9VT) =i2i(Kgr28_T) (30)
y—=1\ ot or)T r-or or

Evaluation of (30) requires the radial velocity field from (28), and allowance for the
dependence on gas thermal conductivity Kq on temperature during the oscillation (25).
With these, the pressure within the bubble is calculated, which can be used to resolve
the dependency on py of the various equations of motion. Of the options for
numerical integration of this scheme, Prosperetti et al. [9] chose a finite-difference,
second order predictor-corrector method. Unless an extremely small time step was
used, the accumulated error prevented integration over too many cycles. Kamath and
Prosperetti [10] describe a collocation method, the Galerkin method with a fixed
number of terms, and an adaptive Galerkin method with a variable number of terms
(an adaptive Galerkin-Chebyshev spectral method), the latter proving to be the most
precise and efficient. The accuracy of the pseudospectral method can be assessed by
using the computed temperature field and pressure to calculate the total mass of gas
within the bubble [10, 11].

However despite the severe problems associated with the alternative route (i.e. the
polytropic one, see above) few workers calculate of py using these formulations. This
is perhaps because, unlike the polytropic model, the alternative described above does

not provide a simple equation for gas pressure. Instead they give a set of equations to

11



determine average temperature, and then using the perfect gas law to obtain the
spatially-averaged pressure. By far the more common route has been to appeal to a
polytropic law. This approach will give an answer, but this will contain a degree of

inaccuracy (see above) that is rarely quantified.

4 The options for incorporating radiation losses

The analysis of section 2 included the assumption that the solid outside of the bubble
wall was incompressible. This assumption eliminates acoustic radiation damping from
the formulation, unless it is added back in using an ad hoc approach such as through

the augmentation of the viscosity to compensate [12, 13].

A more proper approach would be to include into the equation of motion for a bubble

aterm Rp(R,t)/c, where p,(R,t) is the sum of all steady and unsteady pressure just

outside the bubble wall, and c is sound speed in the solid for compressional waves of

infinitesimal amplitude [14, 15]:

. . ’ . 31
RR+§R2:i 9_2_0_8_0+M_pw(t)_i(GngﬂLnsR) _ 31
Ps R OR R
where, from (15),
oo (32)

20
Rit)=p,-T,(Rt) + —+—.
P (R, t) =p, - T, (R,1) =t R

This is one of several possible approaches [16- 20].

5 Incorporating this formulation into an acoustic propagation

simulation

Once (21) or (31) has been used to obtain radius time history data for bubbles, an
acoustic propagation simulation can be constructed which incorporates nonlinear

time-dependent bubble oscillations. Key to evaluation of (21) and (31) is the choice of

12



the method for calculating the gas pressure (section 3) and selection of G, and 7, for

the gassy sediment in question. Whilst estimates of these might be obtained from the
literature, it is vitally important to appreciate the assumptions inherent in their
calculation, so as to avoid compromising (21) and (31) (for example by inserting

values of G, and 7, which have been calculated for a sediment under assumption of

quasi-static bubble dynamics, which compromises the efforts to avoid having to make

such an assumption through section 2).

Having through (21) or (31) evaluated radius/time histories, the bubble population can
be divided into appropriate size bins, and a representative bubble size allocated for
each bin. For each representative bubble, volume/pressure plots can be derived in the
manner outlined by Leighton et al. [21]. Summation of the volumes of these provides
the attenuation, which can be calculated for the steady-state or for short pulses, and

the sound speed through use of the spines of these loop.

In calculating the attenuation, it is important to appreciate that if the polytropic law of
section 3 is used, thermal losses will not be included (unless a ‘thermal viscosity’ is
calculated). Furthermore, the assumption of incompressibility in the solid precludes
the inclusion of acoustic radiation losses from (21) (unless an “acoustic viscosity’ is

calculated).

Therefore if (21) on its own is used, the only losses associated with the bubble motion
are viscous losses at the bubble wall. If the gas pressure is calculated through use of
(28) to (30), then thermal losses are also included. If, instead of (21), equation (31) is
used as the equation of motion for the bubble, then acoustic radiation losses will also

be included.

13
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