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ABSTRACT 
 

Whilst there is a considerable body of work in the literature on the theory of acoustic 

propagation in marine sediment, the incorporation of gas bubbles into such theories is 

done with the inclusion of assumptions which severely limit the applicability of those 

models to practical gas-laden marine sediments.  

 

Section 2 develops a theory appropriate for predicting the acoustically-driven 

dynamics of a single spherical gas bubble embedded in an incompressible lossy 

elastic solid. Use of this theory to calculate propagation parameters requires 

calculation of the gas pressure component of section 2, and the options are outlined in 

section 3. The incorporation of radiation losses is discussed in section 4. Section 5 

discusses how the entire scheme can be incorporated into a nonlinear, time-dependent 

propagation model. 
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LIST OF SYMBOLS 
 

c the sound speed in the solid for compressional waves of 

infinitesimal amplitude. 

Cp  the specific heat of the gas at constant pressure 

gK  the thermal conductivity of the gas within the bubble 

p the sum of all steady and unsteady pressures outside the bubble 

wall 

ip  the sum of all steady and unsteady pressures in the gas 

vp  vapour pressure 

p0 the static pressure in the liquid just outside the bubble wall  

( )p t∞  the value of p very far from the bubble 

R(t) bubble radius 

0R  equilibrium bubble radius 

Rε  the radial displacement of the bubble wall 

T Gas temperature 

rrT , Tθθ  and Tφφ  the components of the stress tensor in the solid 

u
v

 the liquid particle velocity. 

guv  radial velocity in the gas 

  

γ  ratio of specific heats for the gas 

rrε  the component of the strain tensor in the radial direction 



 vi

sλ  and sG  Lamé constants 

ρ  liquid density 

ρg density in the gas  

σ   the surface tension 

η  shear viscosity of the liquid 

Bη  bulk viscosity of the liquid 

sη   shear viscosity of the solid 

∑ extF
v

 the vector summation of all body forces 
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1 Introduction 
 

Whilst there is a considerable body of work in the literature on the theory of acoustic 

propagation in marine sediment, the incorporation of gas bubbles into such theories is 

done with the inclusion of assumptions which severely limit the applicability of those 

models to practical gas-laden marine sediments.  

 

The assumption of quasi-static gas dynamics limits the applicability of the resulting 

theory to cases where the frequency of insonification is very much less than the 

resonances of any bubbles present. It also eliminates from the model all bubble 

resonance effects, which often of are overwhelming practical importance when 

marine bubble populations are insonified. This limitation becomes more severe as 

gas-laden marine sediments are probed with ever-increasing frequencies.  

 

The assumption of monochromatic steady-state bubble dynamics, where the bubbles 

pulsate in steady state, is inconsistent with the use of short acoustic pulses to obtain 

range resolution. 

 

The assumption of monodisperse bubble populations is inconsistent with the wide 

range of bubble sizes that are found in marine sediments. 

 

The ubiquitous assumption of linear bubble pulsations becomes increasingly 

questionable as acoustic fields of increasing amplitudes are used to overcome the high 

attenuations, and the resulting poor-signal-to-noise ratios (SNRs), often encountered 

in marine sediments. 

 

This report outlines a theory which does not require the above assumptions. Some 

assumptions are still maintained, notably that the bubbles in question interact with the 

sound field through volumetric pulsation. Whilst this does not necessarily mean that 

the bubbles should be spherical at all times, it is through this assumption that the 

theory encompasses the volumetric pulsations. It is well-known that there are classes 

of bubbles in sediment which do not behave in this way (e.g. those which bear a 
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closer resemblance of ‘slabs of gas’ and ‘gas-filled cracks’, than they do to gas-filled 

spheres).  

 

In this first analysis the assumption is also maintained that the sediment outside of 

each individual bubble may be treated as incompressible. Whilst this greatly eases the 

analysis, the extent to which it is correct will depend on the characteristics of the 

sediment. The result of this assumption is that acoustic radiation damping is 

neglected. Furthermore the sediment outside of the bubble is assumed to be a lossy 

elastic solid, and no bubble-bubble interactions are assumed to occur. 

 

It should be noted that this analysis is also relevant to acoustic propagation through 

tissue, provided that the latter can be treated as an incompressible lossy elastic solid.  

 

Section 2 will develop formulation appropriate for predicting the acoustically-driven 

dynamics of a single spherical gas bubble embedded in an incompressible lossy 

elastic solid. Section 3 will outline the options for evaluating the gas pressure 

component of section 2, and section 4 discusses the incorporation ofpropagation 

losses. Section 5 discusses how the entire scheme can be incorporated into a 

propagation model. 

 

 

2 Theory for the dynamics of a single gas bubble in an 

incompressible lossy elastic solid 
 

In the following derivation, the use of the dot notation in this, and the subsequent 

equations of motion, indicates the use of the material derivative [1§2.2.2], i.e.: 

 

( )D u
Dt t

∂
= + ⋅∇
∂

v v

 

   (1)

 
where u

v
 is the liquid particle velocity. For the discussion of the pulsation of a single 

bubble whose centre remains fixed in space, as occurs in this report, the convective 

term (the second term on the right) is zero. Before applying the equations of this 
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theory, critical evaluation should be made of their applicability, given this restriction. 

Models of translating bubbles need careful evaluation. Even where bubbles are 

assumed to pulsate only, if they exist in a dense cloud then the convective term may 

be significant [2].  
 

The following derivation relies assumes that the material outside the gas bubble wall 

is incompressible,  and assumes that spatially uniform conditions are assumed to exist 

within the bubble.  

 

When these assumptions are applied for the case of a gas bubble in a liquid, the 

equations for the conservation of energy within the liquid can be coupled to that of the 

diffusion of dissolved gas within it, and to the equation for conservation of mass in 

the liquid:   

 

1 0

( ) 0

D u
Dt

u
t

ρ
ρ

ρ ρ

+∇⋅ =

∂
⇒ +∇⋅ =

∂

vv

vv

 
 

 

 

. 

 (2)

This is the well-known equation of continuity, where u
v

 is the liquid particle velocity 

and ρ  is the liquid density; and to an equation for conservation of momentum in the 

liquid, specifically the Navier Stokes equation:  

 

4( ) ( )
3ext B

Du u u u F p u u
Dt t

ηρ ρ ρ η η
⎛ ⎞∂ ⎛ ⎞= + ⋅∇ = −∇ + + ∇ ∇⋅ − ∇×∇×⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎝ ⎠

∑
v v

v v v vv v v v v v v
 

(3)

where p represents the sum of all steady and unsteady pressures.  

 

Equation (3) simplifies in a number of ways for limits which are often appropriate to 

gas bubbles in water [1§2.3.2]. The term uη∇×∇×
vv v

 encompasses the dissipation of 

acoustic energy associated with, amongst other things, vorticity, and hence is zero in 

conditions of irrotational flow (required for the definition of a velocity potential). The 

term ( )4 / 3 ( )B uη η+ ∇ ∇⋅
vv v

 represents the product of viscous effects (through the shear 

η and bulk Bη viscosities of the liquid), with the gradient of u∇⋅
vv

 (which, from (2), 
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represents in turn the liquid compressibility). As an interaction term, it is generally 

small. Note that setting it to zero does not imply that all viscous effects are neglected, 

but simply that they appear only through the boundary condition. Lastly, the term 

∑ extF
v

represents the vector summation of all body forces which are neglected in the 

formulations of this report. If it is then assumed that the bubble remains spherical at 

all times and pulsates in an infinite body of liquid, then because of spherical 

symmetry, the particle velocity in the liquid u
v

 is always radial and of magnitude 

u(r,t), and equations (2) and (3) reduce, respectively, to:  

 
2

2

1 ( ) 0r u
t r r
ρ ρ∂ ∂

+ =
∂ ∂

 
   (4)

 

and 

   

1 0u u pu
t r rρ

∂ ∂ ∂
+ + =

∂ ∂ ∂
.  (Euler’s equation)  (5)

  

The situation is somewhat different for a single gas bubble in an incompressible lossy 

elastic solid. The bubble radius ( )R t oscillates about some equilibrium radius 0R  with 

bubble wall velocity ( )R t& . Euler’s equation for liquids must be modified for solids as 

follows 

 

( )2s s
s s 2

1
rr

T Tu u pu r T
t r r r r r

θθ φφρ
+∂ ∂ ∂ ∂⎛ ⎞+ = − + −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 
  (6)

  

where sρ  is the bulk density of the solid material outside of the bubble wall, su   is the 

particle velocity in the elastic solid and rrT , Tθθ  and Tφφ  are the components of the 

stress tensor. Note that because the trace of the stress tensor is zero in elastic solids 

(as it also is in Newtonian liquids), the following relationship will be assumed valid 

[3]: 

 

( )rrT T Tθθ φφ= − + .    (7)
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Equation (6) will now be integrated through the solid (from R to r = ∞ ), using the 

assumption of liquid incompressibility, which implies that: 

 
2

s 2
( )( , ) ( )
( )

R tu r t R t
r t

= &  
   (8)

 

where the bubble has radius R(t) and wall velocity ( )R t& . The integration process can 

be divided into a series of smaller integrals: 

 
2 2 2

s s
s s2 2

2 2
2

s s

( ( ) ( )) 2d d d

2 ( 2 ).

R R R

R

u R t R t R R R Rr r r
t r t r

R R R R R R R
r

ρρ ρ

ρ ρ

∞ ∞ ∞

∞

⎛ ⎞∂ ∂ +
= = ⎜ ⎟∂ ∂ ⎝ ⎠

⎡ ⎤− −
= = +⎢ ⎥

⎣ ⎦

∫ ∫ ∫
& && &

&& &
&& &

 

 

 (9)

 

( )
2 2

2 2s s s s s
s s s sd d ( , ) ( , )

2 2 2R R

u u Ru r r u r t u R t
r r

ρ ρ ρρ
∞ ∞∂ ∂

= = = ∞ − = −
∂ ∂∫ ∫

&
. 

 (10)

 
2 2 2

2 2 2
1 ( ) d d d

2 2d d ( , ) ( , ) d

rr rr rr

R R R

rr rr rr
rr rr

R R R

r T r T T rr r r
r r r r r r

T T Tr r T r t T R t r
r r r

∞ ∞ ∞

∞ ∞ ∞

∂ ∂ ∂
= +

∂ ∂ ∂

∂
= + = = ∞ − +

∂

∫ ∫ ∫

∫ ∫ ∫
 

 (11)

 

( )
d drr

R R

T T Tr r
r r

θθ φφ
∞ ∞+

− =∫ ∫  
 (12)

 

Combining these subsidiary integrals allows the integration of (6) to be undertaken 

from across the solid and liquid phases (i.e. from R to r = ∞ ): 
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2
s s s

3 ( , ) ( ) ( , ) ( , ) 3 d
2

rr
rr rr

R

TRR R p R t p t T r t T R t r
r

ρ ρ
∞

∞+ = − + = ∞ − + ∫&& &  
 (13)

 

noting that for this case, ( , )rrT r t= ∞  can be taken to equal zero, giving 

 

( )2
s s s

3 ( , ) ( , ) ( ) 3 d
2

rr
rr

R

TRR R p R t T R t p t r
r

ρ ρ
∞

∞+ = − − + ∫&& &  
 (14)

 

The bracketed term on the right of equation (14) can readily be found using the 

boundary condition at the bubble wall (r=R): 

 

s g
2( , ) ( , )rrp R t T R t p
R R
σ σ∂

− = − −
∂

  (15)

 

where σ  is the surface tension, and / Rσ∂ ∂ represents a radial force which results 

from the variation in the concentration of surface active molecules on the bubble wall 

as the bubble pulsates, although this is normally assumed to be zero [3]. 

 

Substitution of (15) into (13) gives: 

 

2
g

s

3 1 2 ( ) 3 d
2

rr

R

TRR R p p t r
R R r
σ σ

ρ

∞

∞

⎛ ⎞∂
+ = − − − +⎜ ⎟⎜ ⎟∂⎝ ⎠

∫&& &  

 

 (16)

 

which can be readily evaluated to form time histories of the bubble response using the 

techniques familiar for gas bubbles in liquids, provided that it is possible to determine 

rrT , the radial component of the stress tensor in the sediment.  

 

The radial component of the stress tensor in the dissipative elastic solid consists of 

two parts, encompassing respectively the elastic and dissipative characteristics of the 

solid. The elastic constituent [4] can be expressed in terms of the Lamé constants sλ  

and sG (the latter also being known as the modulus of rigidity): 
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s s s( 2 ) 2rr rr
rrT G

r r
ε ελ λ∂

= + +
∂

  (17)

 

where rrε  is the component of the strain tensor in the radial direction which, for small 

displacements, is given by: 

 
2

rr
R R
r εε ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. 

 (18)

 

where Rε  is the radial displacement of the bubble wall [3]. Note that this solid has 

been assumed to be incompressible (equation (8)), and for such solids the Lamé 

coefficient sλ  becomes so large as to be undefined. However, as will be shown later, 

this does not cause problems in the current calculation. 

 

The second constituent of the radial component of the stress tensor in the dissipative 

elastic solid s,rrT  reflects the losses associated with the internal friction within it. If 

the velocity gradient is small, the higher order terms can be neglected, and the 

damping becomes proportional to the first derivative of the velocity [5], s2 ( / )u rη ∂ ∂ , 

where sη  is the shear viscosity of the solid. Church [3] notes that this is equivalent to 

assuming that the dilational viscosity is negligible [6]. The extent to which this is 

valid in gas-laden sediment will depend on the specific case. 

 

Taking both the elastic and lossy characteristics of the solid together, the radial 

component of the stress tensor is: 

 
2

s s3
4 ( )rr

RT G R R
r ε η= − + &  

 (19)

 

The assumption of solid incompressibility has caused terms involving the Lamé 

coefficient sλ  to cancel out, avoiding the problems which could have been caused by 
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its undefined valued for an incompressible solid. The integral for the solid in equation 

(16) can now be evaluated: 

 

s s
3 4d ( )rr

R

T r G R R
r R ε η

∞

= − +∫ &  
 (20)

 

Equation (16) can now be expressed with the integrals evaluated using (20): 

 

2
g s s

s

3 1 2 4( ) ( )
2

RR R p p t G R R
R R R ε
σ σ η

ρ ∞

⎛ ⎞∂
+ = − − − − +⎜ ⎟∂⎝ ⎠

&& & & . 
 (21)

 

Equation (21) forms the basis of predicting the dynamics of a single bubble in a lossy 

elastic solid. Section 3 will outline the options for evaluating the gas pressure 

component of this, and Section 4 discusses how the entire scheme can be incorporated 

into a propagation model.  

 

3 Methods for calculating the gas pressure and the effect on 

thermal damping 
 
By far the most common way of calculating pg (required for evaluation of (20)) is to 

appeal to a polytropic law). This involves calculating the pressure in the gas at a given 

bubble size by comparing it with the pressure at equilibrium. The latter is equal to the 

sum of the static pressure in the liquid just outside the bubble wall (p0), plus the 

Laplace pressure at equilibrium 2σ/R0 (where σ is the surface tension [1§2.1]), minus 

that component due to vapour ( vp ). Hence when the bubble has radius R the pressure 

in the gas will be:  

 
κσ 3

0
v

0
0g

2
⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

R
Rp

R
pp

 

(22)

 

This adjusts the relationship between bubble volume and gas pressure (effectively, the 

‘spring constant’ of the bubble) to account for heat flow across the bubble wall, but 
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crucially it ignores net thermal losses from the bubble (see below). Therefore if (21) is 

evaluated using a polytropic law, the result would, without correction, ignore two of 

the major sources of dissipation: net thermal losses and, through the incompressible 

assumption, radiation losses.  Approximate corrections, which artificially enhance the 

viscosity to account for thermal and radiation damping, are available through use of 

enhancements to the viscosity [3], although these are only partially effective. These 

enhancements are based on the same physics as the ‘linear’ damping coefficients  

 

A more accurate option, which would keep the nonlinear character of (21) 

uncompromised, would be obtained by combining the continuity and energy relations 

for a perfect gas with spatially uniform pressure (pi) to provide an exact expression 

for the velocity field in terms of the temperature gradient. This reduces the problem to 

an ordinary differential equation for the internal pressure, with a nonlinear partial 

differential equation for the temperature field, for a bubble which is spherical at all 

times. Furthermore, if it is assumed that vapour effects are negligible, and that the 

bubble wall temperature does not change (an assumption which can be justified by 

estimating temperature changes when the heat flux from the thermal boundary layer in 

the gas is equated to that entering the boundary layer just beyond the bubble wall), 

then these two assumptions effectively make consideration of the effect of thermal 

dissipation on pg  primarily an issue of the gas dynamics. For most common cases, it 

is acceptable to assume a constant meniscus temperature equal to the undisturbed 

liquid temperature, with T(r,t) representing the time-varying temperature field within 

the bubble [9].  If the density and radial velocity in the gas are ρg and guv  respectively 

(there are no tangential velocity components), then, the continuity equation for the gas 

is:  

 

g
g g 0

D
u

Dt
ρ

ρ+ ∇ ⋅ =
v v

 
(23)

 

 and the equation for the conservation of energy is  
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g i
g p g

g

( )
p

DT T DpC K T
Dt t Dt

ρ
ρ

ρ
∂

+ = ∇ ⋅ ∇
∂

v v

 

(24)

 

where viscous heating in the gas in neglected; where Cp is the specific heat of the gas 

at constant pressure, which in this derivation is assumed to be constant1;  and where 

the thermal conductivity of the gas within the bubble, Kg, is a function of the gas 

temperature [7, 8]:  

 

[ ] [ ]
0.74

g 42.6526 10
/

K T
WK m K

−= ×  
(25)

  

Recall that only a single value pi(t) is required to describe completely the spatially 

uniform pressure in the bubble, and that the notation indicates use of the convective 

derivative. Applying a perfect gas law having constant specific heat at constant 

pressure  

 

1
i

pg −
=
γ
γρ pTC

 

(26)

 

TT p

gg ρρ
−=

∂
∂

 
(27)

 

to the combination of the two conservation laws ((23),(24)), integration of the 

spherically symmetric system gives the radial velocity field in the gas:  

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

−=
3

11 i
g

i
g

pr
r
TK

p
u

&
γ

γ  

 (28)

 

in terms of the temperature gradient and the convective derivative of the pressure. By 

applying the boundary condition that ug must equal the velocity of the bubble wall at 

                                                 
1 In most studies of non-inertial cavitation it has been enough to assume that the specific heat of the gas is 

constant. If the gas temperature changes become great, the temperature dependence needs to be included. 
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the location of the wall, (28) can be recast to give a differential equation for the 

spatially uniform pressure within the bubble    

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

−= Rp
r
TK

R
p

R

&& igi 13 γγ
 

 (29)

 

Clearly the temperature gradient needs to be evaluated if (29) is to be of used in a 

bubble equation of motion. There is flexibility in the route now taken, using for 

example the equation of continuity coupled with the equation of state of a perfect gas. 

Alternatively one can use the enthalpy equation in nonconservation form, and by 

doing so Prosperetti et al. [9] obtained (30) from (24):   

 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=∇⋅∇=−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

− r
TrK

rr
TKp

T
p

r
Tu

t
T 2

g2gi
i

g
1)(

1
vv

&
γ
γ

 

 (30)

 

Evaluation of (30) requires the radial velocity field from 3(28), and allowance for the 

dependence on gas thermal conductivity Kg on temperature during the oscillation (25). 

With these, the pressure within the bubble is calculated, which can be used to resolve 

the dependency on pg of the various equations of motion.  Of the options for 

numerical integration of this scheme, Prosperetti et al. [9] chose a finite-difference, 

second order predictor-corrector method. Unless an extremely small time step was 

used, the accumulated error prevented integration over too many cycles. Kamath and 

Prosperetti [10] describe a collocation method, the Galerkin method with a fixed 

number of terms, and an adaptive Galerkin method with a variable number of terms 

(an adaptive Galerkin-Chebyshev spectral method), the latter proving to be the most 

precise and efficient. The accuracy of the pseudospectral method can be assessed by 

using the computed temperature field and pressure to calculate the total mass of gas 

within the bubble [10, 11].  

 

However despite the severe problems associated with the alternative route (i.e. the 

polytropic one, see above) few workers calculate of pg using these formulations. This 

is perhaps because, unlike the polytropic model, the alternative described above does 

not provide a simple equation for gas pressure. Instead they give a set of equations to 
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determine average temperature, and then using the perfect gas law to obtain the 

spatially-averaged pressure. By far the more common route has been to appeal to a 

polytropic law. This approach will give an answer, but this will contain a degree of 

inaccuracy (see above) that is rarely quantified.  

 

4 The options for incorporating radiation losses 
 

The analysis of section 2 included the assumption that the solid outside of the bubble 

wall was incompressible. This assumption eliminates acoustic radiation damping from 

the formulation, unless it is added back in using an ad hoc approach such as through 

the augmentation of the viscosity to compensate [12, 13].  

A more proper approach would be to include into the equation of motion for a bubble 

a term ( , ) /Rp R t c& , where s ( , )p R t  is the sum of all steady and unsteady pressure just 

outside the bubble wall, and c is sound speed in the solid for compressional waves of 

infinitesimal amplitude [14, 15]: 

2 s
g s s

s

3 1 2 ( , ) 4( ) ( )
2

Rp R tRR R p p t G R R
R R c R ε
σ σ η

ρ ∞

⎛ ⎞∂
+ = − − + − − +⎜ ⎟∂⎝ ⎠

&&& & & . 
 (31)

where, from (15),   

s g
2( , ) ( , )rrp R t p T R t
R R
σ σ∂

= − + +
∂

. 

 

 (32)

This is one of several possible approaches [16- 1 1 120]. 

 

5  Incorporating this formulation into an acoustic propagation 

simulation 

 

Once (21) or (31) has been used to obtain radius time history data for bubbles, an 

acoustic propagation simulation can be constructed which incorporates nonlinear 

time-dependent bubble oscillations. Key to evaluation of (21) and (31) is the choice of 
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the method for calculating the gas pressure (section 3) and selection of sG  and sη  for 

the gassy sediment in question. Whilst estimates of these might be obtained from the 

literature, it is vitally important to appreciate the assumptions inherent in their 

calculation, so as to avoid compromising (21) and (31) (for example by inserting 

values of sG  and sη  which have been calculated for a sediment under assumption of 

quasi-static bubble dynamics, which compromises the efforts to avoid having to make 

such an assumption through section 2).  

Having through (21) or (31) evaluated radius/time histories, the bubble population can 

be divided into appropriate size bins, and a representative bubble size allocated for 

each bin. For each representative bubble, volume/pressure plots can be derived in the 

manner outlined by Leighton et al. [21]. Summation of the volumes of these provides 

the attenuation, which can be calculated for the steady-state or for short pulses, and 

the sound speed through use of the spines of these loop. 

In calculating the attenuation, it is important to appreciate that if the polytropic law of 

section 3 is used, thermal losses will not be included (unless a ‘thermal viscosity’ is 

calculated). Furthermore, the assumption of incompressibility in the solid precludes 

the inclusion of acoustic radiation losses from (21)  (unless an ‘acoustic viscosity’ is 

calculated).  

Therefore if (21) on its own is used, the only losses associated with the bubble motion 

are viscous losses at the bubble wall. If the gas pressure is calculated through use of 

(28) to (30), then thermal losses are also included. If, instead of (21), equation (31) is 

used as the equation of motion for the bubble, then acoustic radiation losses will also 

be included. 
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