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This research aims to add to the understanding of manipulation and actuator control 

with the objective of facilitating the future development of fully autonomous manipulat

ing agents. As a first stage along this path, the work presents a simulated implementation 

of two techniques designed to control a two degree of freedom arm, equipped with six 

compliant actuators. 

After preliminary modelling with a static arm, the first technique, inspired by a biological 

motor theory called convergent force field control, seeks to use a multi-Iayer-perceptron 

(MLP) to steer a custom built dynamic simulation of the arm towards predefined targets 

within the workspace. The MLP is trained iteratively using mutation hill climbing. The 

work demonstrates that this approach is capable of creating arm responses that move 

towards a fixed target from any location within the workspace. That said, the learning 

approach is not reliable and often gets stuck in local minima. The section concludes by 

demonstrating the blending of two controllers, to create a smooth range of intermediate 

results. 

The second technique combines convergent force field control with another related bio

logical control theory, called equilibrium trajectory control. Key to the success of this 

technique is the assumption that smooth natural movements of the tip of the arm can 

be generated by constant rate movement of the arm's equilibrium point, with respect 

to the workspace. The model proposed uses a form of convergent force field control to 

guide an internal representation of the equilibrium point towards a target at a constant 

rate. Various implementation options are considered with particular attention paid to 

the way the equilibrium point is encoded internally. Initial development of the trajectory 

generator and length encoder indicate that, for reasonable sizes of MLP, shoulder centred 

polar encoding is the most computationally efficient scheme. 

It is hoped that the work presented here will provide a foundation for techniques that will 

bridge the gap between behaviour based control and low level coordination of complex 

compliant articulated systems. 
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Chapter 1 

Context 

This research aims to add to the understanding of manipulation and actuator control 

with the objective of facilitating the future development of artificial manipulators that 

can work in a broader range of environments. Inspiration will be drawn from biological 

and engineering studies, but although cross fertilisation will be likely, the overriding 

objective will be the development of real-world artifacts. 

The study of manipulation has been approached from several angles, including such 

diverse fields as infant motor development, primate tool use, stroke rehabilitation and 

industrial equipment design (Paul, 1981; Craig, 1986; Van der Meer et al., 1995; van 

Schaik et al., 1999; Stevens and Stoykov, 2003). Due to its cross disciplinary nature, 

the terminology associated with manipulation can be somewhat confusing. This chapter 

explores the motivation for studying the subject and then outlines the basic manipulation 

phases, while introducing the key terms. 

1.1 J llstification of Approach 

The goal of this work is to demonstrate that techniques inspired by biological studies of 

movement may be usefully applied to the control of autonomous robotic manipulation. 

There are various advantages envisioned for this approach that include robustness to 

environmental disturbance, improved coordination of complex actuator configurations 

and increased computational efficiency. 

Conventional robotic manipulators are normally constructed to minimise the coupling 

between actuators, such that each joint may be considered separately. This approach 

is effective when using conventional motors or actuators, but may be less desirable 

when building systems using 'soft actuators' such as electro-active polymers (Bar-Cohen, 

2002), series-elastic actuators (Pratt and Williamson, 1995), deformable air muscles 

(Tuffield and Elias, 2003; Boblan et al., 2004) and coiled shape memory alloys (Otsuka 

1 



1 Context 2 

and Ren, 1999). For complex systems, including robotic arms and hands, to be developed 

using such technologies, effective coordination of actuators is essential. At some stage 

a desired action must be converted into appropriate actuator activation signals. This 

conversion will generally require a complicated chain of transformations and processing, 

all of which must be carefully considered when designing a complete manipulating agent. 

Although this work will not attempt to analyse all the stages in this chain, they will be 

considered when defining the interfaces for each stage. 

It is tempting to ignore computational requirements, and assume that Moore's law will 

soon supply the required processing power. While this is to some extent reasonable, it 

should be remembered that mobile robots must manage their power budget carefully. 

This means that, as processing power costs battery life, computational requirements 

must be taken seriously from the design stage. 

1.2 Importance of the Problem 

The development of industrial tools which are capable of manipulating objects has 

produced useful results; an excellent example of this is the automation of car production. 

Although such systems rely on sensor-actuator coupling at a low level (servo-control) 

they are not usually capable of autonomous behavioural flexibility. Within an industrial 

setting this does not pose a problem, as each manipulator has a predefined task and is 

presented with only a very limited range of environmental variation. There are, however, 

several valuable tasks that require interaction with less well structured, more dynamic 

environments, where a manipulator will have to cope with a dramatically wider range 

of input variation. Remote exploration, toxic material handling and ordinance disposal 

are exemplars of such tasks. The dynamics of delicate manipulation tasks typically have 

short time constants; tactile feedback is therefore normally used to improve stability. 

For the tasks considered, signal delay would render a remote operator incapable of 

using tactile feedback stably (Goldberg, 2000) and it would be too costly or dangerous 

to employ a human locally. If we are to create machines that can perform remote 

manipulation, the low-level control of the interacting surfaces must be performed locally, 

by the machine. Such devices should then be considered at least semi-autonomous. The 

question then arises, 'How can a machine's controller interact with the world, through 

its body, to achieve skillful manipulation?' The animal world is replete with examples 

of systems which have answered exactly that question very successfully, so it seems 

wise to turn to them for inspiration. Although the human may have very advanced 

manipulation capabilities, many animals routinely complete difficult manipulation tasks; 

from warren excavation to nest building, they all are managing materials to improve their 

environment. 
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It has been argued that the opposable thumb, or more precisely the manipulation 

capabilities it affords, played a pivotal role in the development of primate intelligence 

(Bicchi, 2000). There are two immediate ways in which dexterous manipulation may aid 

the development of intelligence. Firstly, it facilitates inspection of objects, allowing for 

more detailed exploration of the environment. Secondly, it permits detailed modification 

of objects, giving us finer control over our environment. To exploit these advantages, the 

brain had to learn to connect this range of sensations to the range of available actions 

in a useful way. It is probable that the brain and the hand developed in tandem, one 

providing increased sense-act options and the other learning to exploit them. With this 

in mind, it seems reasonable to think that the development of advanced manipulation 

capabilities may playa central role in the study of more natural artificial intelligence. 

From a more general engineering perspective, the design of manipulating agents is 

challenging and likely to contribute indirectly to other fields. Manipulation tasks require 

interrelating multiple control signals, in different reference frames, to coordinate the 

activities of a high-dimensional system with a range of shifting apparent inertias and 

time constants. 

1.3 Autonomous Agent Approach and Context 

Having decided that natural style manipulation is a valuable topic, from both a cognitive 

science and an engineering perspective, the next step is to clarify what is meant by 

manipulation. The Oxford English Dictionary defines the verb manipulate as "To 

handle, especially with skill or dexterity; to turn, reposition, reshape, etc., manually 

or by means of a tool or machine". Within the robotics literature, a manipulator is 

taken to mean the body, and specifically the arm, of an articulated robot. Within the 

context of this research manipulator will be given the more general definition of 'an 

autonomous agent that is capable of modifying its physical environment usefully.' 

The term agent is somewhat ambiguous, and is here considered to mean a system 

that operates independently, contained within a shell, or 'body', which mediates its 

interactions with the outside world. The exact interpretation of what constitutes a 

body is context dependant. For an animal, or a robot, the body is a collective term 

for its material components, whereas for a symbolic software agent it is the methods 

through which it can sense and modify the rest of its environment. Although there 

are interesting parallels between the two, physical agents typically have to deal with 

significantly more complicated and tightly time-bound environmental interactions. 

If a manipulation task requires a human operator, the mechanical and computational 

components are seen as a tool, or extension, of the human and the whole considered as 

a manipulator. This more holistic definition results from a desire to see the body and 

controller as part of a unified whole, rather than as systems that should be assessed and 
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FIGURE 1.1: A partial agent taxonomy, showing the context for the simulation work 
presented. Solid lines show refinement of a class definition. Dashed lines show the 

motivation. 
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developed separately. For more detail on the essential qualities of an agent, see Pfeifer 

(1996, Chap. 4). 

Figure 1.1 shows a partial agent taxonomy, highlighting the context for this work, in 

terms of both technology and motivation. The work presented in this thesis involves the 

implementation of real-valued virtual agents, that are designed to test the suitability of 

control techniques inspired by vertebrate studies for use in both industrial and research 

robots. In this context, real-valued is taken to imply that no symbolic logic is performed 

by the agent, and that the state of this system is continuously variable (rather than 

discrete). The work presented here uses virtual agents, rather than physical ones, so 

care has been taken to restrict the information exchanged between the controller and 

the environment/body to ensure authenticity. As well as considering the amount of 

information available to a controller, it is also important to consider the quality of the 

information. Physical agents must normally contend with sensor and actuator noise; for 

those using analogue controllers, processing noise must also be considered. 

1.4 Manipulation Cycle 

Most manipulation tasks can be considered as a series of 'cycles' through four behavioural 

phases: Approach, Closure, Modification and Release (Fig. 1.2). The objectives of each 
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FIGURE l.2: The stages of the constrained and unconstrained manipulation cycles. 

phase are quite distinct and are discussed below. 
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Approach: The object of the approach phase is to reconfigure the manipulator so that 

a graspable portion of the target object lies within the end-effector's working space. 

There are two main components to this phase: reaching and pre-shaping. Reaching 

describes the movement of the end-effector from its current position toward the target. 

Pre-shaping describes the process of arranging the end-effector to allow close approach 

without premature collision of the target and the digits. 

Closure: During the closure phase, the manipulator attempts to reconfigure the end

effector to create a series of contacts between it and the target object. The force and 

location of these contacts will depend on the nature of the modification required, but 

generally should not damage the manipulator or the target. 

Modification: The actual work of the manipulation task is performed during the 

penultimate stage: modification. This could be as simple as a rotary or translational 

repositioning, or as complex as reshaping clay. Most of the force exerted during this 

phase is provided by the relatively small, finely controlled, actuators of the end-effector, 

but where this is insufficient the more powerful arm actuators may be recruited, for 

example when opening a door or pulling a rope. This recruitment process allows 

the manipulator to trade precision for power, in order to optimise task performance. 

As robotic manipulators must also handle tasks with differing power and precision 

requirements, it seems likely that similar behavioural tactics will be beneficial. 
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FIGURE 1.3: The components of an abstract manipulator: torso, arm and end-effector. 
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Release: Once the required modification has been achieved, the end-effector must 

usually disengage from the target object without disturbing it inadvertently. It may be 

desirable for the object to be left in a stable configuration, or it could be released during 

a high speed movement (i.e., thrown). In either case, the coordinated, timely release of 

contact points is important. 

A significant subset of manipulation tasks do not require a closure phase (for example 

spinning a pen on a desk, pushing a large box or punching something). Without a 

closure phase, it is not possible for the end-effector to exert any pulling forces. There 

are several reasons why an unconstrained manipulation cycle may be preferred. Firstly, 

it may offer favourable system dynamics; only a non-constrained pen will keep spinning 

between flicks. Secondly, it may be faster as the closure phase will take time, for example 

deflecting a missile. Lastly it may be selected as a second best because no hand holds 

are available. 

1.5 Dexterous End-Effectors 

Manipulation is often assumed to require some form of dexterous end-effector, such as a 

hand or a robotic gripper; this is, however, not always the case. Observe a human trying 

to retrieve their car keys from a trouser pocket while carrying a large pile of books and 

papers and you may see chins, arm-to-torso pins and even teeth in use. If we consider 

an octopus' tentacle, it does not have an end-effector as such, but is certainly capable of 

manipulation tasks. We should therefore recognise the potential for many different parts 

of a body to perform useful manipulation and resist the rush to categorise rigidly each 

component. That said, many animals and robots have specialised end-effectors, that 

are equipped with relatively small, high resolution actuators and their accompanying 

sensors. Typically, they are not suitable for moving the body itself, and are restricted 

to manipulating objects that are an order of magnitude smaller than the body. Figure 

1.3 shows an abstract manipulator, with an end-effector. 
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FIGURE 1.4: Robonaut Hand, taken from Robonaut Website (2005). The robot is 
shown screwing a nut onto a bolt under telerobotic control. 
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Development of dexterous end-effectors was initially inspired by work on prosthetic 

hands and then by the need to handle objects in hazardous environments. Generally, 

end-effectors designed for use as prosthetic hands have a very low load carrying capacity 

and would only be suitable for a small range of manipulation tasks (Dubey, 1997). 

There have been a number of significantly successful research robotic hands, including 

the Stanford/ JPL hand, Utah/MIT hand and Belgrade/USC hand. The Stanford/ JPL 

hand (Salisbury, 1982; Mason and Salisbury, 1985) has three fingers and is driven by 

twelve DC motors, via tension cables. The use of tendons allows the hand itself to be 

lighter but adds to overall drive complexity and weight. The Utah/MIT hand (Jacobsen 

et al., 1984) has three fingers and an opposable thumb, each with four degrees offreedom. 

It is equipped with optical and capacitive touch sensors. The Belgrade/USC hand (Bekey 

et al., 1990) has the most fingers (four and an opposable thumb) but the simplest drive 

system, relying on only four motors. These are built directly into the wrist, so the entire 

end-effector is self-contained. This reduces its dexterity, but would make integration 

with commercial robotic arms easier. Recent work by NASA (Lovchik and Diftler, 

1999), focused on developing robots capable of extra vehicular activity (space walks), has 

produced a very advanced self-contained hand, with near human dimensions (Fig. 1.4). 

For a review of the development of robotic hands, including a discussion of key terms, 

see Bicchi (2000). 
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FIGURE 1.5: Section through a manipulator's workspace. The area of most dexterity is 
shown in white, with an arrow indicating the gradual reduction in dexterity toward the 
workspace perimeter. The workspace configuration will depend on the manipulator's 

physical and control characteristics. 

1.6 Workspace 
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The volume that a manipulator can reach, without moving its body, is referred to as 

its workspace. A manipulator will not be able to reach its entire workspace with equal 

dexterity, so we must consider the quality of any given location. Complex tasks that 

require fine control must be performed near the optimal workspace location, whereas 

simple tasks like pick-and-place can be performed over a large range of locations. Fig

ure 1.5 shows a section through a manipulator's torso and workspace. Robotics literature 

presents a formal definition of workspace volume, based on robotic structure (Craig, 

1986, p.102), but this does not give any measure of the varying quality of the space. 

Many industrial robots are rigidly anchored, which means that world-coordinate space 

and body-coordinate space are locked together. It is, however, worth noting that the 

workspace is defined in body-coordinates and mobile manipulators are capable of moving 

their bodies to align their optimum manipulation location to be near the target object. 

1.7 Grasp Types 

A review by Bicchi and Kumar (2000) defines the standard grasp types. Initial studies in 

this field were driven by the requirement to build jigs that clamped work pieces securely. 

Reuleaux (1875) defined form closure, the condition under which a positive combination 

of the contact forces and moments acting on an object, without assuming any friction, 

can resist any disturbing force. Further analysis determined the minimum number of 
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contacts required to restrain planar and spatial bodies (Somoff, 1897; Markenscoff and 

Papadimitriou, 1989; Markenscoff et al., 1990). 

An alternative grasp type, called force closure, is achieved if and only if any arbitrary 

external force or torque acting on the object can be balanced by pressing the finger tips 

against the object at the selected grip points (Mishra et al., 1987). It is usually possible 

to achieve force closure with fewer contact points than form closure. This means it can 

be achieved with fewer fingers (assuming one contact per finger) and therefore a simpler 

and cheaper end-effector can be used. 

There are two broad categories of force closure, pinch grip and enveloping grip. With a 

pinch grip, the only contact between the object and the end-effector occurs at the tips 

of the fingers, while an enveloping grip (sometimes referred to as a power grip) also uses 

the inside surface of the palm and fingers. An enveloping grip may be achieved with 

even fewer actuators, but this is generally at the expense of dexterity. 

1.8 Planar Reaching 

As discussed, the approach phase of the manipulation cycle has two distinct components: 

reaching and pre-shaping. The work contained in this thesis focuses on control of 

reaching behaviours for compliant arms with two degrees of freedom. This aspect 

of manipulation was chosen for four reasons. Firstly, reaching is commonly used by 

researchers studying animal motor control, so there will be literature available for 

inspiration and assessment of results. Secondly, it allows a physical model to be built 

with a manageable number of configuration parameters. Thirdly, constraining the 

movement to two dimensions dramatically simplifies the graphing, and therefore analysis, 

of results. Lastly, a reaching phase is required for nearly all manipulation tasks, and as 

such should not be overlooked. 

Figure 1.6 shows photographs of two research robots that are capable of compliant 

reaching. The Mohl (1997) arm used series elastic actuators to control a simple two 

degree of freedom reaching arm. In contrast Zar 5 (Boblan et al., 2003), uses FESTO 

fluidic muscles (deformable air muscles) with pulse width modulated switching valves. 

Both these robots would provide interesting platforms on which to develop compliant 

reaching techniques. Within the time scale of a single PhD it is not possible to build 

robotic machinery of a similar complexity to Zar 5, but its existence is worth noting 

as evidence that the control techniques explored in this thesis will have real-world 

applications in the medium term. 
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(a) 

(c) 

Motor des 
zweiten Armes 

Positionsmotor 
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(b) 

FIGURE 1.6: (a) and (b), Compliant arm driven by antagonistic series elastic actuators. 
SOURCE: Der bionische Roboterarm of Technische UniversiUit Darmstadt Website 
(2005). (c) Zar5 robot driven by FESTO fluidic actuators. The actuators' pressures 
are continually adjusted using pulse width modulated values. The hand control signals 
are generated remotely using a data glove. SOURCE: Humanoider Muskelroboter ZAR 

of Technischen Universitat Berlin Website (2005). 
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1.9 Structure of the Thesis 

The following chapters explore the topic of manipulation, first from a robotics perspec

tive and then a biological one. A preliminary modelling experiment is then presented. 

Chapter 5 then introduces a more complicated arm model and justifies its parameters. 

The subsequent chapter presents a dynamic simulation of the arm model that is used to 

train a series of independent field controllers. 

Chapter 7 introduces a more advanced controller model and details some potential 

configuration options. Finally, chapters 8 and 9 present an implementation of two key 

controller modules. 

The work reported in this thesis contributed to the following papers: 

• An approach to the simulation of robotic systems using XML-based configuration 

files. (Sunderland et al., 2004a) Proceedings of DETC'04, Design Engineering 

Technical Conferences, Salt Lake City, UT. 

• Flexible XML-based configuration of physical simulations. (Sunderland et al., 

2004b) Software Practice and Experience. 

• A framework for biologically-inspired control of reaching motions. (Sunderland 

et al., 2005) Proceedings of 3rd International Symposium on Adaptive Motion in 

Animals and Machines (AMAM 2005). 



Chapter 2 

Artificial Manipulation 

The development of artificial manipulators serves two purposes: deepening our un

derstanding of manipulation theory and creating machines that can do useful work. 

From a research perspective the former is more attractive because, although it will take 

longer to produce commercially-exploitable results, proper development of manipulation 

theory may eventually allow the construction of autonomous artificial systems capable 

of robust manipulation behaviours. This would pave the way for more physically 

interactive independent robots that would further our understanding of intelligent action 

and perform useful work. 

2.1 From Action to Actuation 

For a manipulator to achieve useful work, a 'task' must be converted into a series 

of actions, which in turn must lead to timely activation of the actuators. It is not 

essential for the manipulation system to perform all these stages simultaneously, usually 

tasks are converted into a series of Cartesian or joint coordinates prior to manipulation. 

Such prior calculation may be appropriate where a manipulator frequently repeats the 

same task. However, where the tasks must be continuously modified to compensate for 

environmental variation these calculations must be performed before each action, and 

should therefore be considered part of the main manipulation process. 

There are several approaches to decomposing a task into separate actions. However, this 

work will focus on the conversion of actions into actuator activations. If we let A be 

the space of all possible actions and M be the space of all possible actuator activations 

(both spaces may be continuous or discrete) we can define the mapping function, tam, 

from A to M: 

tam : a -t Tn for a E A and Tn E M (2.1) 

12 
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The actuators are connected to the body, and so it is usually possible to define a mapping, 

tmb, from M to body configuration B. This mapping is environmentally sensitive, (i.e., 

depends on v, a member of V; the space of environmental configurations.) 

tmb : m, v -+ b for b E B and v E V 

For navigational robots, surface slip may affect tmb. Equally for manipulation systems, 

interaction with the environment (sustained contact or collision) will also affect tmb· 

The final transform (tbv), a property of the environment rather than the robot, defines 

how the world will change as a result of the body movements, bringing the goal of the 

manipulation nearer to, or possibly further from, completion. 

The mapping tam is very simple for navigational robots (consider steer-hard-left or drive

straight) compared to manipulation robots (consider grasp-fragile-object or turn-object

clockwise-in-body-frame). This results from three factors; three-dimensionality, actuator 

coupling and frame-transformations, which we will consider in turn. 

Three-dimensionality increases the number of degrees of freedom a rigid body may 

possess. For a rigid body in a system, the move from two to three dimensions adds 

a further three degrees of freedom. The description of a vehicle driving on a surface 

requires only three coordinates, whereas a three dimensional, six element manipulator 

requires (before other constraints are applied) 36 coordinates. The situation is further 

complicated if one considers deformable surfaces, whose configuration cannot be fully 

described by a reference frame. 

Manipulation systems are generally very reliant on actuator coupling; the final movement 

of the end-effector is the net result of all the actuators in the supporting kinematic chain. 

This coupling results in a non-linear mapping between joint velocities and end-effector 

velocity (Paul, 1981). 

Finally, manipulation tasks are further complicated by the number of coordinate ref

erence frames that must be considered. These do not relate directly to any physical 

quantity, but are intrinsic to most mathematical descriptions. From a design point of 

view, the mapping between frames is possible, assuming that we have good information 

about the system configuration. In the absence of such information, the mapping 

becomes very difficult. It is therefore very important to consider 'in what frame' a 

sensor reading originates. This can be more easily appreciated when we consider two 

pressure-sensing digits of a mechanical hand touching each other. The controller may 

want to know if the fingers are touching each other, or if they are pinching some 

intermediate free-moving relatively light body (Fig 2.1). The forces experienced are 
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FIGURE 2.1: Two fingered hand, closed and gripping a light object 

similar in both cases, assuming that the system is static and no other forces are acting 

on the body. The solution requires transforming the contact point for each finger into 

a shared reference frame, probably the palm's, and testing for their proximity. In a 

system where the mapping from the digit contact points to a palm frame is not fully 

determined (consider deformable contacts controlled by low-resolution-sensed compliant 

actuators), this approach becomes impossible. It may be that there are other approaches 

that would create similar results to a palm frame remapping with more approximate, 

or joint related information, but as yet they are under-developed. The same kind of 

frame-translation problems are encountered in all of the manipulation phases. 

2.2 Conventional Approach 

When considering 'robotic arms' most people imagine the devices used for welding and 

assembly by automated factories. This class of robots, normally termed industrial ma

nipulators, has been commercially successful and contributed significantly to the current 

flexibility and quality of the manufacturing industry. They were developed from a blend 

of two technologies: second world war teleoperation devices for handling radioactive 

materials and numerically-controlled machine tools (Paul, 1981). Initially, they were 

taught directly using joint coordinates, either computed by hand or captured from an 

initial human-controlled run through. The first systems were not equipped with any 

form of sensor, and this lack of task-related information limited their performance. The 

addition of touch sensors improved things a little. However, these were soon surpassed 

by camera-based systems which could describe the relationship between objects using 

homogeneous transforms (Wichman, 1967). For this approach to work, a process called 

inverse kinematics, which was capable of translating homogeneous transforms into joint 

control values, was developed. 

2.2.1 Inverse kinematics and dynamics 

Denavit and Hartenberg (1955) proposed a system that could describe a rigid robotic 

arm as a series of homogeneous transforms. Each homogeneous transform is a four by 
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four matrix which allows for arbitrary rotational and translational mapping between two 

Cartesian coordinate frames: 

where 

Xa Xb UI VI WI PI 

Ya Yb bH U2 V2 W2 P2 
Va Vb = a 

Za Zb U3 V3 W3 P3 

1 1 0 0 0 1 

where Va is a mapping of vector Vb. The equation can perform two roles, either to 

describe the relationship between two points in the same space, or to define the same 

point as it occurs in two different spaces. 

For each joint it is possible to define a transform that maps between its reference frame 

and the next: ~+I R. So for a conventional industrial arm with six degrees of freedom it 

is possible to write a series of transforms that map from the base all the way to the tool 

interface (i.e., the point of connection between the end-effector and the arm): 

(2.2) 

This defines the forward-kinematic chain, i.e., for any set of joint-angles we can cal

culate 8R. For an industrial manipulator many elements of the intermediate trans

formations will be trivial and so it is possible to write the components of 8R using 

simpler equations than those derived from directly expanding Equation (2.2). For 

simple manipulators it is often possible to describe their workspace using a subset of 

the homogeneous transform, Rw. This workspace description can then be used to select 

target poses for the end-effector. It is then possible to equate the components of Rw with 

8R and solve for joint angles. These inverse-kinematic equations allow us to determine 

the correct joint angles to achieve a given end-effector location. 

There are, however, a few complications. It is possible that the location specified by Rw 

does not lie within the workspace of the manipulator, in which case the inverse-kinematic 

equations will be insoluble. It is therefore normal to test certain parts of the equations 

to show that a solution is possible. When two joint axes align, the manipulator is said 

to be in a singular position. Mathematically this means there are an infinite number 

of possible joint combinations that would lead to the same end-effector configuration. 

Such configurations are generally avoided by applying constraints at the task planning 

stage. The final problem occurs when several discrete solutions exist (Fig. 2.2), i.e., a 
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FIGUR.E 2.2: Plan view ofreaching poses, where two discrete solutions (A and B) exist, 
but where intermediate solutions fail (e.g., point C). 
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given limb can be in configuration A or B, but intermediate solutions would be invalid 

(e.g., C in this case). In such situations, it is normal either to artificially constrain the 

robot's movement to being non-redundant or to use the 'nearest' solution to the current 

position, with a weighting to prefer movement of the smaller joints. 

As computational power has increased, a numerically based solution for a general robotic 

manipulator (no closed form solution need exist) was developed (Goldenberg et al., 1985). 

This approach also suffered from instability around singular configurations. 

For some tasks it is only necessary to complete point to point movements without 

considering intermediate stages. However, many tasks require more advanced 'trajectory 

management' or 'contouring'. This allows for smooth acceleration and deceleration 

of the end-effector, which is essential for tasks such as painting and welding. For a 

simple kinematic chain, it was possible to calculate a Jacobian matrix; one that maps 

an infinitesimal movement in joint space to an infinitesimal movement of the end

effector. To execute smooth trajectory control, the movement can be expressed as a 

series of splines in time and global coordinate space. At each instant, the Jacobian is 

calculated and then used to convert the desired end-effector velocity into appropriate 

joint velocities. This form of control is also sensitive to a second form of singularity, with 

joint-speed demand tending toward infinity as the manipulator approaches the edge of 

the workspace. 

A separate Jacobian must be calculated for every point of interest, which means that 

the analysis of a pinch grip is significantly simpler than that of an enyeloping grip, 
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where a separate Jacobian would have to be calculated for each finger joint. Jacobian 

matrices can also be used to calculate the effect of a static force being transmitted down 

a kinematic chain (Craig, 1986, p. 175). 

2.2.2 Grasp metrics 

Given an accurate model of an end-effector and a target object, it is possible to calculate 

the wrench (i.e., combination of orthogonal and torsional forces) applied at each contact 

point. The wrenches can be analysed to produce various descriptions of the grasp. 

Although there are many metrics defined, Shimoga (1996) showed that they could all 

be considered as combinations of four basic properties: 

1. Dexterity: defined as the ability of a grasp to achieve sub-objectives while holding 

the object. 

2. Equilibrium: a measure of how well the forces and torques acting on the object 

are balanced. 

3. Stability: a measure of how disturbance-induced errors in applied force and torque 

decay with time. 

4. Dynamic-behaviour: a measure of how the fingers interact with the object in 

terms of their natural frequencies and damping ratios. 

A classical approach to grasp planning would be to generate a range of potential end

effector configurations and use a combination of grasp metrics to select the optimal one. 

This can be a computationally intensive task and grasp metrics have to be efficiently 

designed. For more details about conventional approaches to manipulation, see the 

overview by Okamura et al. (2000). 

These metrics are entirely reliant on values derived from an abstract geometric model of 

the grasp, rather than on measurements of an actual grasping process. As such, it would 

not be possible to use them to assess the performance of a real robot directly. Although 

reaching behaviours are significantly simpler than those used for grasp management, 

stability and dynamic behaviour are essential to both. To facilitate future comparison, 

alternative model-free metrics should be developed that are suitable for both simulated 

and real robots. 
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2.3 Behaviour-Based Robotics 

The traditional approach can be seen as a variant of the sense-model-plan-act (SMPA) 

framework for intelligent action that has been proposed by classical AI theory. Unfor

tunately, such approaches must assume access to accurate geometric descriptions of the 

manipulator body and its environment, something that is much harder in practice than 

in theory. SMPA works well when the transformation from sensing to model building 

is trivial and the world does not change much during an SMPA cycle. However true 

this may be for a game of chess, it does not hold when dealing with the washing-up. 

The success of SMPA based manipulators is largely due to reliance on pre-calculation of 

their body and environment models. This unfortunately limits them to applications 

where such pre-calculation is possible, and does not need significant updating, for 

example a laboratory or production line. For such a system to work in an unstructured 

environment, it must be capable of selectively disregarding and rebuilding its model 

as the world around it changes. Referred to as the frame problem, this process is 

computationally intractable (Dennett, 1984). Even if a system maintains a reasonable 

approximation of the environment, it will always contain errors. The system must be 

able to deal with this misalignment. 

Brooks (1991a,b) proposed an alternative approach to developing systems capable of 

intelligent action. His approach discards the SMPA framework and replaces it with a sys

tem comprised of many parallel independent 'behaviours'. Each behaviour maps directly 

from sensor readings to actuator activations, with only very limited 'message-passing' 

interaction between them. Although this approach seems unnecessarily restrictive, it 

has been very successful in producing robust mobile robotic behaviours that respond in 

a sensible and timely way to their environment. Such systems, by their very nature, 

perform no planning, and have minimal internal state, but instead perform complex 

procedures by responding only to their current sensor state. For an introduction to the 

field, see Arkin (1998). 

2.3.1 Embodied intelligence 

Although Brooks helped formalise behaviour-based robotics, he was building on a tra

dition that dates back to Grey Walter (1950, 1951, 1963) who developed a series of 

small mobile 'tortoise' robots. Even though these tortoises were controlled by simple, 

two valve, analogue circuits, they were capable of displaying complex 'behaviours'. One 

tortoise, dubbed 'Machina Speculatrix', performed phototaxis (i.e., following lights) but 

was averse to very bright lights until its battery began to run low. Since a strong light 

source was placed inside its recharge station (or 'hutch'), it would return there only as 

required. Speculatrix demonstrates two concepts: emergent behaviour and ecological 

niches. Its behaviour is considered emergent because it results from the interaction 
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between the robot's electronics, mechanics and environment, and would be sensitive to 

significant changes in any of them. This contrasts with the traditional view of intelligence 

as being 'seated' in the brain, with the body merely being a convenient way of interacting 

with the world. For more detail about Grey Walter's work see Holland (1996, 2003). 

A robot's 'ecological niche' defines the range of environments within which it can operate 

successfully. For Machina Speculatrix, this was a room with a flat floor and a recharge 

station. From a manipulation perspective, we often glibly talk about 'general purpose' 

end-effectors something that in the strictest sense will never exist. The human hand 

itself is very far from the ideal of a general-purpose manipulator. It can function in 

only a limited range of temperatures, air-pressure, acidity and radiation levels. It only 

functions sensibly with a limited range of object sizes (try picking up a water melon 

single-handed or fixing a clockwork watch without a pair of tweezers). Equally the 

hand has a limited range of forces that it can apply and that it can withstand. These 

limitations combine to form the hand's environmental niche. A robotic hand may be 

designed for the same niche as its human counterpart, but equally may be designed 

for demolition work, satellite maintenance or even Martian environments. Pfeifer and 

Scheier (1999) cover the foundational concepts and the important design considerations 

for embodied intelligence. 

2.3.2 The value of learning 

Often characterised as advocating absolutely no representations of the world within 

a behaviour-based robot, Brooks (1991) counters that "individual layers extract only 

those aspects of the world which they find relevant-projections of a representation into 

a simple subspace". He is however determinedly against traditional AI schemas and 

explicate representations of goals. So how can these representations be learnt? 

Generally 'learning' can happen in two ways: per species (evolution) or per individual. 

Within this research, learning will be used to refer solely to individual-level improvement. 

Although evolutionary development is demonstrated by all animals, individual learning 

is also present to varying degrees, usually correlated to complexity of animal behaviour. 

There are at least four classes of things that a behaviour based robot can learn (Brooks, 

1991): 

1. representations of the world that help in some task; 

2. aspects of instances of sensors and actuators (sometimes called calibration); 

3. the ways in which individual behaviours should interact; 

4. new behavioural modules. 



Chapter 2 Artificial Manipulation 20 

Behaviour based robots have demonstrated many of the above (with the exception of 4). 

As discussed, for manipulating robots, the challenge of converting a desired action into 

appropriate actuator activations is far from trivial. Although traditional techniques may 

be appropriate for rigid robots that work in highly structured environments, the real 

world will require a more robust and flexible approach. Reduced reliance on internal 

model construction, if possible, will go some way to meeting this need, but it seems 

likely that some form of automatic learning of the mapping between desired action 

and actuator activation will be necessary. Within the above groupings, this would be 

considered a form of calibration, but it is significantly more complicated than that 

classification implies. 

As well as having to learn to handle the abstract transformations involved, a robot would 

have to deal with the idiosyncrasies of its own particular sensors and actuators. Elliott 

and Shadbolt (2001) proposed a neurologically-justifiable model that allows a system to 

compensate for such variation which may prove a useful foundation for this part of the 

learning process. 

2.4 ConcI usion 

Robotic systems that perform articulated manipulation using compliant actuators cur

rently lack a satisfactory motor control methodology. Such controllers need to be com

putationally efficient, robust to environmental disturbance and capable of integration 

with other control architectures. It is possible that behaviour-based and biologically

inspired techniques may have a role to play in the development of such controllers. 

The following chapter explores four biological motor control theories, with particular 

reference to reaching behaviours. 
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Biological Perspective 

When considering biological systems as inspiration for artificial control systems, one 

must carefully consider the differences between the natural and artificial morphologies, 

e.g., overall physical structure, actuator dynamics, transducer characteristics and con

troller substrate. Where possible one should distinguish those properties that the system 

is able to exploit from those for which it must compensate. Naturally, there will be some 

overlap, but it is important to avoid seeing imitation as the objective, without trying 

to understand the role of the various properties. To establish the context for future 

discussions of control techniques, this chapter begins by describing first the overall 

neurological context and then the mechanical context for mammalian motor control. 

It concludes by presenting two control techniques which may be suitable for adaptation 

to autonomous robots. As this is an engineering thesis, the treatment of this material 

will naturally be somewhat simplified. 

3.1 Neurological Context 

The mammalian central nervous system (CNS) can be divided into four distinct portions; 

the cerebrum, the cerebellum, the brain stem and the spinal cord, as shown in Figure 3.1. 

The cerebrum is a large soft area at the front of the brain which is divided into two 

hemispheres. It is particularly developed in primates and is thought to control higher 

order processing tasks. The cerebellum is a denser portion located at the base of the 

cerebrum. It is primarily a movement control unit and is well connected to the spine and 

cerebrum. Both the cerebrum and the cerebellum are mounted on the brain stem, which 

performs two main functions; communication to and from the spine, and maintenance 

of basic systems like breathing and body temperature. The spinal cord provides a link 

between the CNS and the peripheral nervous system (Bear et al., 2001). 

The peripheral nervous system (PNS) extends from the dorsal (back) and ventral (front) 

roots in the spinal column. The PNS can be considered to comprise two parallel 

21 
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Hemispheres 

Brain Stem 

FIGURE 3.1: Cross section of the human brain, showing the arrangement of the 
cerebrum, cerebellum, brain stem and spinal cord. 

LEVEL 

High 
Middle 
Low 

FUNCTION 

Strategy 
Tactics 
Execution 

STRUCTURES 

Association areas of neocortex, basal ganglia 
Motor cortex, cerebellum 
Brain stem, spinal cord 

TABLE 3.1: The hierarchy of biological motor control, from Bear et al. (2001). 
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systems; the somatic PNS, which controls voluntary movement, and the autonomic 

nervous system, which maintains involuntary systems, including blood vessel dilation 

and internal organ operation. 

The central motor system is organised into a hierarchy of control layers as shown in 

Table 3.1. Although this hierarchy will not necessarily relate directly to an appropriate 

control structure for an artificial manipulator, it does suggest that this approach is 

worth considering. Although this may first appear to be a horizontal SMPA framework, 

it can be viewed as a more vertical sense-act framework if each layer is considered to 

be a separate behaviour unit. Where this diverges from a Brooksian model is in the 

amount of inter-behavioural communication and the amount of feed-forward control. If 

we consider the cerebellum, although it does receive commands for voluntary movement 

(vertical input), it integrates this with direct sensor information (horizontal input) to 

maintain balance. Manipulation tasks sometimes require ballistic movements (i.e., a 

movement that must be planned and subsequently enacted without time for significant 

in-process feedback and correction). The learning for ballistic processes must happen 

after the event and therefore requires a mechanism for working out which parts of the 

movement contributed to, and which detracted from, the action's overall success. This 
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type of system has been studied formally and is usually managed using a process called 

reinforcement learning (Sutton and Barto, 1998). 

3.2 Muscles 

One of the most exciting things about biological motor control is the distinctive nature 

of the actuators used, namely muscles. Traditional robot drives are stiff (i.e., contain 

very limited compliance) and relatively dense, with a low power to weight ratio. This 

has led to many manipulators being designed with a rigid base, so that heavier parts of 

the system can be removed from the arm itself. 

In contrast, the human arm is substantially self contained, with the exception of a few 

shoulder muscles, power supply and main control centre. Also, rather than being heavy 

and stiff, the arm itself is light and has mechanically variable compliance (as opposed to 

some advanced robotic drives, which can use feedback to simulate variable compliance). 

This mechanical compliance has natural advantages both in terms of protecting the 

manipulator and its environment as well as the potential to conserve energy. 

So it would appear that natural style body mechanics may have advantages over tradi

tional drives when it comes to designing autonomous robots, but are they achievable? 

Sadly current actuation technology lags significantly behind that achieved by nature, 

as the meagre performance of the robotic contenders in the first round of Yoseph Bar

Cohen's Arm-wrestling Match of EAP Robotic Arm against Human so aptly demon

strated (AMERAH Website, 2005). That said, there is significant research activity 

focused on the development of novel actuation methods, and it is the author's hope that 

this will yield practical results in the next few years. 

3.2.1 Motor units 

A muscle contraction is the result of the action of many motor units, each of which 

contains a single control neuron (termed an alpha motor neuron) and a bundle of muscle 

fibres which it activates. The collection of alpha neurons that controls a single muscle 

is termed a motor neuron pool (Fig. 3.2). 

There are two mechanisms through which the central nervous system controls the amount 

of muscle contraction. The first is to vary the firing rate of the alpha neurons and the 

second is to recruit muscle units according to size. Some muscle units have up to 1000 

fibres per alpha neuron (in the leg for example), while some have as few as three (e.g., 

finger or eye rotation muscles). Within any muscle, small units are selected first, with 

the larger units only being recruited as the amount of force required increases. This 

naturally leads to a system that is capable of great precision at low loads, yet is still 

capable of generating large forces, albeit at a lower accuracy. 
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FIGURE 3.2: (a) skeletal muscle is made from many parallel motor units. A group of 
alpha neurons that control a single muscle is termed a motor pool and is located in 
the spine. (b) each motor unit has an alpha motor neuron and a bundle of between 
approximately three and a thousand motor fibres. SOURCE: Bear et al. (2001 , Fig 13.6, 

p.442) 

3.2.2 Renshaw cell inhibition 
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Work by Akasawa and Kato (1990) and Uchiyama and Akazawa (1998) developed a 

neural network that demonstrated that muscle unit recruitment could be controlled by 

feedback mediated via a series of Renshaw cells. This would allow the eNS to use 

only one control signal per muscle (rather than a different one per alpha neuron), a 

configuration referred to as the common drive hypothesis (DeLuca et al., 1982). In their 

model, Renshaw cells are activated from the same signals as the alpha neurons, but 

act to inhibit other local motor neurons (including the original alpha neurons). This 

creates a multi-loop negative feedback system that serves to linearise the lumped muscle 

response. 

From an engineering perspective, this kind of network will only have application in 

configurations where actuators are composed of many independent strands. The work 

presented in this thesis assumes that any actuators are either naturally homogeneous, 

with a single control input, or have been configured so that they may be treated as such. 

3.2.3 Spindle and Golgi feedback 

Skeletal muscles contain specialised sensory structures called muscle spindles. Each 

spindle runs the entire length of the muscle and has a group of high speed sensory axons 

wrapped around the fibres in the middle of the spindle, that give feedback about changes 

in the muscle's length. The feedback from the spindle is connected to virtually every 
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FIGURE 3.3: Comparison of the stiffness (in grams per millimetre) to operating force 
(in grams) of a reflexive and areflexive muscle (cat soleus), from Hoffer and Andreassen 

(1978). 

25 

alpha motor neuron in the muscle's control pool. This feedback plays an important role 

in the myotatic reflex (my a from the Greek for 'muscle', and tatic from the Greek for 

'stretch'), which is generally considered important for maintaining muscle tone (co

activation of antagonistic muscle groups). To maintain spindle tension, and hence 

feedback signal, over a range of muscle lengths, a set of intrafusal fibres is used to 

contract/relax the ends of the spindle. These intrafusal fibres are controlled by a second 

class of motor neuron (gamma motor neurons). Varying the amount of spindle tension 

will affect the behaviour of the myotatic reflex, and could be seen as leading to a variation 

in the rest length of the muscle. 

A second form of muscle feedback is provided by Golgi tendon organs, which measure the 

amount of tension developed by the muscle. Although less thoroughly connected than 

the spindle, the Golgi sensor axons inhibit some of the muscle alpha neurons, creating 

the reverse-myotatic reflex, which protects the muscles during heavy loads, and fragile 

objects during manipulation. 

Using work by Hoffer and Andreassen (1978, 1981), which explores the stiffness/force 

characteristic of reflexive (i.e., with spindle and Golgi feedback) and areflexive muscles, 

Shadmehr and Arbib (1992) demonstrates that reflexive muscles are best modelled as 

non-linear springs with variable rest length, rather than as non-linear springs with vari

able stiffness. Figure 3.3 shows a comparison of the stiffness of reflexive and areflexive 

muscles plotted against operating force. For a reflexive muscle stretched to length A, 
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the stiffness developed, ~f, can be approximated as follows; 

drp 
- = k(l - exp( -arp)) 
d)" 
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(3.1) 

The model has two constant parameters, k and a. It can be solved to give the force 

developed, rp, in terms of ).. and an integration constant (3, giving: 

1 
rp = -In(exp(ak()'' - (3)) + 1) 

a 
(3.2) 

For any given length, the only way to change the force developed is to vary (3, which 

can therefore be thought of as a controllable parameter (Shadmehr and Arbib, 1992). 

3.3 Control Models 

It has been argued that it is unlikely that our brain solves the precise equations used 

by traditional inverse kinematics to control our limbs (Alexander and Crutcher, 1990). 

So what are the alternatives? As previously discussed, biology presents many systems 

that have learnt to control articulated structures (i.e., vertebrates). In this work we 

will focus on mammals as this class contains many of the species which are capable of 

complex manipulation. 

3.3.1 Equilibrium control 

Originally proposed by Feldman (1966, 1986), equilibrium point control (EPC) suggests 

that rather than driving the muscles directly, the control of animal reaching movements 

is mediated via the selection of an equilibrium point (EP) to which the end-effector 

travels (Bizzi et al., 1991, 1992). Initially, this seems very similar to differential po

sition control, and indeed has been approximated as such (Hsiao et al., 2003). Such 

approximations, however, used non-elastic actuators and traditional inverse kinematics 

to translate between world and joint coordinates and as such suffer from their inherent 

problems. There are two main models of equilibrium control: a-model and )..-model. 

These two alternative models make different assumptions about the control signals sent 

to the muscles. The a-model assumes that the control signals do not change during a 

reaching motion, i.e., when a target point is selected the muscle's rest-lengths are set 

once and the rest of the motion is entirely the result of the combined muscle dynamics. 

It is clear that if such an approach worked, it would significantly reduce the amount of 

processing the brain would have to do during a motion. 
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The role of a-model EPC in animal motor control is supported by clinical trials that 

studied the forearm movement in normal and deafferenated (surgery that lesions the 

proprioceptive feedback at the base of the neck) rhesus monkeys conducted by Polit and 

Bizzi (1978). The monkeys sat in a primate chair with their right forearm fastened to 

an apparatus that permitted flexation and extension in the horizontal plane. During the 

trials the monkeys, whose view of their arm had been obstructed, were trained to point 

toward a light (one of several arranged in a semicircle at 5° intervals) and maintain that 

posture to receive a reward. A motor was attached in series with the elbow clamp and 

was used to apply randomised disturbing forces in some trials. 

Monkeys performed the test well, even after surgery, which implies that the correction 

to the disturbing forces was performed at a spinal level. However, the normal monkeys 

were able to adapt far more successfully when the elbow fixing was moved with respect to 

their body. This suggests that the short and long proprioceptive loops are not required 

for learnt pointing tasks but are necessary for adaptation to significant changes in the 

task dynamics. 

The alternative A-model assumes that the control signals vary continuously during the 

arm movement. It suggests a compromise between direct velocity control of the arm 

and the a-model's complete reliance on arm mechanics. Rather than altering the rest

lengths of the muscles to move the arm's equilibrium point directly to the target location, 

the rest-lengths are changed smoothly, so that the arm's equilibrium point moves with 

constant rate in body space, hence the A-model is sometimes referred to as equilibrium 

trajectory control (ETC). Equilibrium trajectory control still relies on the mechanics of 

the muscles, but only to convert a constant-rate equilibrium point movement into the 

smooth bell-shaped velocity movements typical of vertebrate reaching motions. 

If we return to our formalisations for a moment, ETC suggests the mapping from 

action to actuation, tam (Eqn. 2.1), may be mediated by continuous redefinition of 

an equilibrium point. If we define the space of potential equilibrium points as [, we can 

then express this mapping: 

tae : a ---t e tem: e ---t m for e E [; 

Work by Flash (1987) attempted to use ETC to model human reaching behaviours. 

A series of reaching tasks was performed by three human subjects whose view of their 

arm had been obstructed and who were not given any feedback during the trial. It had 

previously been observed that the kinematic features of unconstrained planar point

to-point movements are not sensitive to workspace region, being roughly straight with 

a bell shaped velocity profile (Morasso, 1981; Abend et al., 1982). Although the hand 

movement was straight, to achieve this the arm joint velocities must follow a significantly 

more complex path. Flash's research showed that the hand trajectories contained 
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distinct curvatures, depending on workspace region. She then developed an ETC model 

of human reaching that incorporated previously measured static human arm stiffness 

readings. The model's results accurately predicted many of the features measured by 

the human trial, including the characteristic deviations from straight-line movement for 

each workspace region. 

Neither EPC nor ETC are universally accepted explanations of the neurological control 

of reaching movements. Two key objections are raised by Lackner and Dizio (1994) and 

Gomi and Kawato (1996). 

The first objection is based on studies that involve reaching movements performed in a 

slowly revolving room (the rotation of which the subject was unaware). Results from this 

trial suggest that subjects use real time feedback to adjust their reaching movements, 

which runs against the conclusions drawn from the deafferenated monkeys. It can be 

argued that a spinning room is not the right context in which to study the movement 

control of primates as they evolved in an environment substantially devoid of Coriolis 

forces. However, it is possible that this unusual context reveals control that would never 

be visible in a normal environment. Studies involving a force feedback manupendulum 

(that also creates velocity dependant forces) have shown similar results (Shadmehr and 

Mussa-Ivaldi, 1994). 

The second objection comes from studying human arm stiffness during reaching move

ments. Reaching tasks were performed whilst grasping a low-friction low-inertia, yet 

stiff, air-bearing manupendulum. During some movements, the arm was disturbed and 

its deviation measured. The amount of deviation could then be used to measure the 

level of stiffness developed during the movement. This is important because as stiffness 

increases ETC tends toward conventional position feedback. These studies have shown 

results that do not fit with some ETC models and hence undermine it as an explanation 

of motor control. It has been countered that the muscle models considered were overly 

simplified and the results would align with ETC predictions if more authentic muscle 

models were used (Gribble et al., 1998). 

Both these objections point toward a more centrally planned approach that uses real time 

feedback to correct for deviations. The following section outlines a common formulation 

of this approach. 

Although ETC may playa significant role in the management of redundant systems, it 

should be noted that most of the experiments to date have involved constrained limb 

movements that have been artificially made non-redundant. This simplifies the mathe

matics involved but may be hiding a weakness in the approach. Typically two types of 

reaching task are considered: point-to-point and primitive-shape-drawing. These both 

present significant challenges, but are trivial compared to many basic manipulation 

tasks. 
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3.3.2 Force control 

Work within the cybernetics field has more recently been focused on an internal rep

resentation approach, sometimes called the force control hypothesis. Originating more 

than 20 years ago (Hollerbach, 1982), this approach assumes that inverse dynamics plays 

an explicit role in neuromuscular control. More recently, the theory has been extended 

to use forward models to assist in predictive control (Conditt et al., 1997). Control is 

assumed to follow a three stage process: 

1. Motion is planned kinematically and required forces are specified centrally. 

2. Actuator activations are calculated using inverse dynamics. 

3. Forward and inverse kinematics models are used for predictive control. 

Such approaches do not normally suggest neurological details, but use behavioural 

studies of reaching in unusual environments to support the notion that such models 

exist and are re-trainable. Critics from the equilibrium point community have refuted 

the viability of this approach suggesting that it does not explain certain reflex responses 

satisfactorily and, furthermore, is not the only explanation of the data presented (Ostry 

and Feldman, 2003). 

It is interesting to note how closely the stages outlined above align with conventional 

robotic control approaches. This closeness has lead some to criticise the more recent 

integration of biological and engineering research endeavours, suggesting that insights 

from the robotics fields are at best distracting and at worst misleading when applied to 

the understanding of biological systems (Balasubramaniam and Feldman, 2001; Latash 

and Feldman, 2004). 

From the point of view of this work, force control does not present much useful insight, 

as it draws heavily from conventional control theory and does not readily suggest any low 

level implementation strategies. That said, some force control literature does suggest 

that A-model control could be used to simplify the control task, with some form of force 

control being used to compensate for the dynamics of the manipulated objects (Mah 

and Mussa-Ivaldi, 2002). It is hard to see how these conflicting approaches could be 

combined, but the combination may yield useful results in the future. 

3.3.3 Convergent force field control 

A review of this topic is presented by Bizzi et al. (1991), Flash and Sejnowski (2001) 

and Mussa-Ivaldi and Bizzi (2000). Studies based on deafferenated frogs show that it is 

still possible to elicit coordinated muscle movements by direct stimulation of the spine 
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(Giszter et al., 1993). This implies that the spine is actively involved in this coordination, 

rather than just being a relay for signals from the brain stem. By varying the region 

of the spine stimulated, distinct force fields of muscle activation were observed in the 

leg muscle. That is to say, if the stimulation of the spine remained constant, whenever 

the leg was moved to a given location, it would always exert the same force with the 

same direction. A range of force fields was analysed, and through a variant of principal 

component analysis, it was discovered that 94% of the fields could be constructed from 

the vector superposition of just five 'basis' fields (d'Avella and Bizzi, 1998). Given the 

right control system, this could allow for just five neurons to control the gross actuation 

of the entire leg. In terms of our previous analysis, this means that the leg is not being 

controlled in equilibrium point space, £, but rather in field space, g, where 9 is a vector 

of the gains for each of the basis fields: 

tag : a --+ 9 tgm: 9 --+ m 

Irrespective of whether convergent force field control (CFFC) accurately describes the 

vertebrate reaching control process, before attempting to use it in an engineering context 

it is important to consider what potential benefits it may offer. 

CFFC allows the actuators of the manipulator and end-effector to be treated as a whole 

and imposes limitations on the ways in which they can be controlled. This may help mask 

the problems presented by redundant configurations, effectively creating preferences of 

pose at a very low level. 

If we assume that the function mapping the force field gains to the actuator activa

tions (tgm ) is well designed, it removes the potential for an action to be expressed in 

a way that is outside the mechanical range of the manipulator. It is, however, quite 

possible for the field space to express a force demand that is beyond the capabilities of 

the actuators. Effectively field gain space is automatically bounded to be within the 

working volume of the robot. This removes the requirement to test that the incoming 

demand is within the arm's workspace, and the requirement to have a default policy to 

implement when it is not. 

It may be possible to increase the orthogonality of 9 with respect to actions, so rather 

than treating it as smooth, 9 would generally have only a small number of non-zero 

components. For example a pose could be comprised from a close-hand and extend

index-finger field. The first would affect all the fingers and second would counteract 

the action of the first for only the index finger. This may result in an action-orientated 

meaning for each element of the control vector. 

As the mechanical and sensor performance of the system changes over time it may 

be possible to adjust the fields to compensate. This would allow higher level control 

behaviours to be used without continuous modification. There have been studies on 
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human adaptation to different reaching environments which suggest a similar process is 

happening (Shadmehr and Mussa-Ivaldi, 1994). Lastly, if the purpose of each field can 

be determined, there is a small possibility that a behaviour could be shared between 

robots with different mechanical configurations but similar basis fields. 

3.4 Conclusion 

There has been, and will continue to be, much debate within the cybernetics community 

as to which of the competing models best describes the reaching control process used by 

vertebrates. The currently available models all have data supporting and contradicting 

them. 

From an engineering perspective the study of this kind of literature has more value as 

inspiration than for use in making hard and fast conclusions. Even if an accurate model 

of vertebrate reaching is developed, there is no reason to assume that such a model would 

be in any way optimal. It would, however, be at least worth detailed consideration. The 

following chapters explore two of the techniques outlined (CFFC and ETC) and present 

simulations of them using simplified actuator models. 



Chapter 4 

Static Modelling of Convergent 

Force Field Control 

This chapter presents a static implementation of convergent force field control (CFFC). 

The arm model presented is significantly simpler than that commonly used in cybernetic 

modelling studies (Hogan, 1985; Lukashin et al., 1996a,b), but does model the variation 

of the actuator's moment arms. This is a feature that is normally overlooked but that 

may have important implications for stability (Shadmehr and Arbib, 1992). A schematic 

of the simplified arm is presented in Figure 4.1. 

To explore the static model, experiments were performed which compared three pro

prioceptive configurations in terms of computational efficiency. The objective was to 

train an MLP to convert the proprioceptive information into actuator activations that 

would create forces at the tip of the arm that changed smoothly across the workspace. 

To train the MLP, a set of training input and output vectors was required, which were 

generated by a two stage process. The first stage used a mutation hill climbing algorithm 

to calculate the actuator activations that would best align the force at the tip of the 

arm with the desired field pattern at each point. The second stage used these learnt 

actuator activations to train a range of neural networks. The following sections explain 

the procedure in more detail, and a summary of the process is given in Figure 4.2a. 

4.1 System Model 

The simplified arm model used in this initial modelling work has four actuators and 

is built from two symmetrical stages. The configuration presented was considered the 

simplest form of compliant actuator driven articulated structure that was capable of two 

dimensional movement, and was therefore chosen for this initial study. The approach 

used to calculate the force at the tip of the arm is presented in Appendix C. The 
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FIGURE 4.1: Simplified arm model. The springs shown represent series-elastic 
actuators, (springs with a motor driven base offset, allowing them to exert a range of 
forces at any given length). The structure comprises 3 T-frames, but as the base frame 
is rigidly clamped, there are only 6 moving components (2 T-frames and 4 actuators). 
The simulation process aims to control the force exerted at the tip of the arm, f ext. 
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equations are developed in a way that would allow them to be extended to systems with 

more stages. 

As previously discussed, the non-linear nature of muscles has been demonstrated to have 

important effects on system stability (Shadmehr and Arbib, 1992). In order to maintain 

the potential for real-world implementation, the actuators have been modelled as linear 

springs with constant stiffness (k) and variable rest length (d): 

f = k(lext - d) (4.1) 

This more closely matches the characteristics of a series-elastic actuator, while providing 

the possibility that the final system could achieve similar performance to biological 

systems by using non-linear feedback. The model is constrained only to generate forces 

when extended and not when compressed. 

In this chapter, the field controller is implemented using a fully connected MLP, with 

sigmoid activation of the hidden layer and linear activation of the output nodes. The 

feedback from the arm model is normalised and the MLP output is scaled up to match 

the input ranges of the actuator models. 
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FIGURE 4.2: (a) summary of the simulation process undertaken. (b) arm's workspace 
showing the 40 randomly chosen targets (crosses) and 150 test pose endpoints (dots). 
Note that the workspace is not symmetric because the joint rest positions are not 

aligned with the arm links. 

4.2 Selecting Target Positions and Test Poses 
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A range of target positions and initial test poses was selected randomly from within 

the workspace of the arm. These were chosen uniformly with respect to Cartesian 

workspace coordinates, and then rejected if they fell outside the workspace of the arm. 

The joints were restricted to lie within ±1.45 radians of their rest positions. This 

reduced the likelihood that the selection of target points or test poses would bias the 

learning stages. Figure 4.2b shows the selected targets and test poses. For the test poses, 

only the location of the end point is plotted, even though the entire pose was actually 

defined. For each pose, the joint angles required were calculated using conventional 

inverse kinematics. 

4.3 Calculating Ideal Field Vectors 

A field controller is responsible for generating a single target field, which must therefore 

be selected before training can begin. The literature shows that these can be quite 

varied (Bizzi et al., 1991), but for this work, a simpler sub-set of fields was used. The 

fields were chosen such that, at each point, the field vector should be directed towards 

a single target point with a magnitude proportional to the distance from the point: 

f = G(e - 0) (4.2) 

where 0 is the location of the target point, G is a scaling constant and f is the ideal 

field vector at test point e. Figure 4.3 shows two examples of ideal fields. At this 
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FIGURE 4.3: Two example sets of ideal field vectors. The circles mark the target point 
for the respective fields. Each arrow represents the ideal field vector at that test point. 
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x 

point it is worth saying a few words abouts the units used in this simulation. In the 

actuator equation (Eqn. 4.1), there are two fundamental units (length and force) and 

one composite unit (stiffness). The same fundamental would naturally be used in the 

field equation (Eqn. 4.2). As these equations, taken alongside a geometrical description 

of the arm, describe the complete system, there need be no physical grounding to their 

values. The value of actuator stiffness is therefore only meaningful with respect to the 

value of G, which is held constant throughout. 

4.4 Learning Arm Activations 

For each of the test points a variant of mutation hill climbing method was used to 

find the actuator activations that generated a force at the arm tip that was best 

aligned with the ideal field vector. While searching for sources of error in the training 

data, a clear limitation of the hill climbing method was exposed. The static arm 

model used in this work was significantly more sensitive to cross-activation of muscle 

pairs than to co-activation. This meant that there was little training pressure on co

activation, effectively leaving two unconstrained variables in the training process, which 

were randomly disturbed by the hill climber. As the actuator activations were going to 

be used to train the MLP controller later, it was important that the random variation 

was removed. This was achieved by imposing an extra constraint on the hill climbing 

process that ensured constant co-activation throughout the workspace. 
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FIGURE 4.4: Sensitivity to actuator demand noise, n, of the arm models, configured 
with a range of actuator stiffnesses, k. The same stiffness is used for all actuators in 
the arm model. Due to the nature of the model the stiffness units are non-dimensional. 

4.5 Arm Model Retuning 
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During early attempts at training the MLP field controller, structured errors were 

detected in the generated field that were many orders of magnitude greater than the 

error between the target actuator activations and those generated by the MLP. To 

determine how sensitive the actuator activations were to errors, a set of trained actuator 

activations was disturbed by various amounts of noise, and the error measured in the 

resultant field. The noise was a uniform disturbance of the actuator activations by a 

percentage of mean activation levels. Repeating this process while altering several of 

the arm model's parameters showed that in the region above approximately 100 stiffness 

units, the sensitivity to actuator noise was roughly proportional to actuator stiffness. 

Figure 4.4 shows the results for a range of stiffnesses. The proportional nature of the 

noise sensitivity has been confirmed over a larger range, but these have been excluded 

from the graph for clarity. 

From this graph it becomes clear that when there is no additional noise, actuator stiffness 

does not have a significant effect on overall error. In contrast, when actuator noise is 

present, there is a strong correlation between stiffness and overall error. When k is 

approximately equal to 100, the overall error is lowest. If k falls much below this value, 

the arm becomes too weak to generate the require responses, and above it the arm 

becomes increasingly sensitive to actuator input noise. 
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4.6 Training Single Field Controllers 

Once the optimal activation levels had been ascertained for each location, a standard 

backpropagation method (Haykin, 1998) was used to train the single field controller's 

MLP, using a proprioceptive encoding of the location as the input vector and the optimal 

activation level as a desired output vector. The location encoding was performed in three 

different ways, namely; 

1. actuator lengths (4 vector); 

2. arm joint angles (2 vector); 

3. actuator lengths and arm joint angles (6 vector). 

A separate MLP was trained for each combination of target point and proprioceptive 

configuration. The performance of each MLP was measured by calculating the absolute 

error between the learnt actuator activations and those generated by the MLP. 

To remove the possibility that the MLP was merely learning sampling errors in the 

training data, ten-fold cross-validation was used. In this process, the training data is 

randomly divided into ten separate subsets. The network is trained ten times, each time 

using a different subset to evaluate the performance. The subset used to evaluate the 

performance is omitted from the data used to train the MLP, thus ensuring that the 

MLP was not trained using the evaluation data. The overall performance of the MLP 

is measured as the mean error across all ten evaluations. 

4.7 Results 

To compare the effectiveness of the proprioceptive configurations, the score across all 40 

target points was averaged and plotted against network capacity (Fig. 4.5). As expected, 

the mean error decreases as the number of hidden nodes increases. The rate at which the 

results improve also declines, appearing to asymptote to a value of approximately 2.6. 

Given enough hidden nodes, an MLP is able to store any arbitrary smooth mapping. 

We might therefore expect the errors to tend towards zero as the number of hidden 

nodes is increased. Unfortunately, even though it is theoretically possible for the MLP 

to store a 'perfect' mapping, the learning process is constrained by the finite amount of 

information available from the training data. It is likely that lower final scores would be 

achieved if more training data was used. 

The objective of the MLP was to map proprioceptive information into appropriate 

actuator lengths. The errors presented here therefore show the difference between the 

previously learnt actuator activations and those generated by the MLP, rather than the 
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FIGURE 4.5: Comparison of three proprioceptive options; joint-angles (circles), actua
tor lengths (triangles) and both (squares). The results shown are the mean error for 
data collected from ten-fold cross validation of 150 test poses and 40 target points. The 
error is expressed as a percentage of the full actuator length range. There is a average 

standard deviation of 0.76 on each point. 
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difference between the ideal field vectors and those that would be generated if the MLP's 

actuator activations were applied to the arm. 

Although using all six inputs (i.e., both joint and length values) gave a comparatively 

better result, it is not a dramatic difference. Due to the limited size of the training 

data, for each MLP the scores of each of the ten folds were quite varied, having mean 

standard deviations of 1.68% for joint angles, 1.84% for actuator lengths and 1.58% for 

both. When interpreted in this light the relative scores presented in Figure 4.5 seem less 

compelling. 

A further constraint on the performance of the system is the amount of noise in the 

training data. As the data had been generated by an earlier learning process, a certain 

amount of training noise was unavoidable. If the initial learning process was replaced by 

an analytical analysis of the arm it would be possible to remove this noise. As this was a 

preliminary study, with a highly simplified arm model, this analysis was not performed 

as other factors would still have limited the strength of any resulting conclusions. 
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4.8 Conclusion 

This chapter presented an initial static modelling exercise that showed that relatively 

simple neural networks are capable of generating the distinctive activation patterns typi

cal of convergent force field control. No compelling difference between the proprioceptive 

configurations tested was demonstrated, although there is qualified support for the idea 

that more information is better than less. 

The following chapters extend this work by applying a similar approach to the control 

of a full dynamic arm simulation. 



Chapter 5 

Dynamic Arm Modelling 

This chapter describes the arm model used in the work discussed in the subsequent 

chapters, detailing its dimensions and workspace. The basic structure of the arm is 

derived from previous work in cybernetics (Hogan, 1985; Lukashin et al., 1996a,b), which 

in turn is modelled on the configuration of the primate arm. A schematic of the arm is 

shown in Figure 5.1. The main structure of the arm is a double pendulum chain (SE, 

ET), pivoted at S and hinged at E. Both the pivot and the hinge are assumed to 

be frictionless within their working range. The model has three pairs of antagonistic 

muscles. The first pair, shoulder extensor and flexor, connect rigid anchors (Se and Sf 

respectively) to a single point on the upper-arm, MI. The second pair, elbow extensor 

and flexor, run from two attachment points (Ee and Ef) to a second point on the upper

arm, M 2 . The attachment points are constrained to lie at a fixed distance from the 

elbow, E, and at a fixed angle to the forearm, ET. The last pair, the two joint extensor 

and flexor, run between the respective attachment points for the the shoulder extensor 

and flexor (Se and Sf) and the elbow extensor and flexor (Ee and E f). 

5.1 Selection of Link Lengths 

Table 5.1 shows the parameters used to define the arm. The values used for link 

lengths (lI and l2) and the actuator moments (Sf, Se, ef and ee) are taken from Gribble 

et al. (1998). All the implementations of this model will preserve the relative component 

lengths but not necessarily their absolute values; the absolute values given are therefore 

expressed in arbitrary units. For clarity all the graphs presented in this thesis will be 

scaled to be consistent with the absolute lengths presented in this section. It should be 

noted that in Gribble et al. 's work the extensor moments are assumed to be constant, 

and only the flexor moments vary with arm pose, whereas in the work presented here, 

flexors and extensors are treated identically. It can be argued that, as the extensors 
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FIGURE 5.1: Six actuator arm. Solid lines show links, dotted lines show actuator 
locations. Angles 81 and 82 are variable, within limits. Nodes Sf, Sand Se are rigidly 

fixed. 
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wrap around the elbow joint, Gribble et aI's model is a more authentic representation 

of the biological configuration. 

Unfortunately it was not possible to implement a similar configuration in the dynamic 

simulation environment without significantly increasing its complexity and, therefore, 

development time. There have been several experimental approaches that have used 

disturbance of a limb, either during a movement (Gomi and Kawato, 1996) or at rest 

(Tsuji et al., 1994), to estimate the stiffness of the arm at the end effector. Once an 

effective arm controller is developed, it would then be possible to implement a similar 

process with this arm model. These results could then be used to compare the dynamic 

characteristics of the arm model and its biological counterparts. As the controller would 

be responsible for generating the background, or tonic, level of actuator co-activation 

there would be no meaningful way of testing the arm model's dynamics in isolation. 

5.2 Selection of Joint Parameters 

There are several parameter values that could not be directly obtained from the literature 

and the following paragraphs present the values used in this work and their justification. 

For simplicity, the limits for e2 were selected to ensure that there was a one to one 



Chapter 5 Dynamic Arm Modelling 42 

Label Start End Length 

h E S 4.6 
l2 T E 3.4 

8f Sf S 0.5 
8 e Se S 0.4 

ef Ef E 0.5 
ee Ee E 0.2 

m1 M1 S 1.5 
m2 M2 S 3.0 

TABLE 5.1: Table of model parameter values, using the nodes defined in Figure 5.1; 
lengths are given in arbitrary units, but their relative values are preserved in all 

im plementations 

mapping between joint angle and actuator length. With this in mind, the elbow moment 

angles (01 and O2 ) have a significant effect on the arm's workspace. If we assume that 

the elbow moment angles are constrained to ensure that the line between Ef and Ee 

passes through E (i.e., 0 1 + O2 = 'if) then Figure 5.2 shows the arm's workspace for 

different values of O2 . 

It should be noted that the workspace in Figure 5.2a is not symmetrical because the 

flexors and extensors have different moment arms, and this is taken into consideration 

when calculating the joint limits. It is clear that for this arm, using O2 = 180° gives the 

largest workspace. However, it does this at the expense of maximum forward (y-axis) 

reach. In order to maximise the workspace area and ensure that full straightening of the 

arm was possible, O2 was further constrained so that when the arm was fully extended, 

Ee lay on a line between Se and E (Fig 5.3a). 

From these constraints we can calculate appropriate values for 0 1 and O2 . 

1 (8 e 
) 'if - tan- z; (5.1) 

175.0° (5.2) 

'if - O2 (5.3) 

5.0° (5.4) 

To complete the structural definition of the arm we need to specify the limits for the 

joints, 81 and 82 . To preserve a large workspace, but minimise problems associated with 

extreme positions, joint one was arbitrarily constrained such that -80° < 81 < 80°. 

From our selection of 0 1 and O2 it follows that joint two cannot bend past vertical in 

the clockwise direction, which in turn implies that: 

(5.5) 
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FIGURE 5.2: The workspace of the six actuator arm shown in the xy plane, for a range 
of O2 values, where O2 + 0 1 = Jr. 

The lower limit of (h was chosen such that E f never passed the line between Sf and E 

(Fig 5.3b). If we assume clockwise rotation to be positive, then we can show: 

(5.6) 

(5.7) 

The angle parameters are summarised in Table 5.2. To give the reader an indication of 

how the arm structure changes over its workspace, Figure 5.4 shows the arm, plotted 

to scale, in a set of extreme poses. It is clear that in some of these poses the actuators 

have very small moments of attachment and as such will have limited ability to generate 

torques. 
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FIGURE 5.3: (a) Arm at full extension, as used to determine values for Dl and D2 . 

(b) arm with joint two flexed, as used to determine maximum value for 82 . 

Label Value 

D1 5.0° 
D2 175.0° 

mIn max 
(h -80° 80° 
O2 -168.8° 0° 

TABLE 5.2: Summary of the angle parameters used in the arm model, as shown in 
Fig. 5.l. Values are given in degrees, clockwise is assumed positive, with zero degrees 

being vertical (i.e., aligned with the y-axis). 

5.3 Redundancy 
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The arm model, as it is presented, contains only limited redundancy. That implies that, 

while there is a one to one mapping between tip location, T, and the joint angles, 01 

and O2 , there will be multiple ways to excite the actuators to achieve the same force 

at the tip. This clearly simplifies the control task - but is it a reasonable thing to do? 

Primate arms have more actuators per joint and have more degrees of freedom in some 

of the joints. This naturally leads to systems that are capable of achieving the same end 

effect with a range of pose configurations. Contemporary robotic designers minimise the 

number of actuators used, as this reduces weight, cost and complexity, while increasing 

robustness. With this in mind, when analysing arms with a view to long-term physical 

implementation, one should prefer simpler systems with low degrees of freedom and few 

actuators. Control of redundant manipulators should only be considered when the extra 

control complexity incurred is balanced by appropriate increases in task performance. 
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FIGURE 5.4: Arm in set of extreme poses. (h set to -80°, 0° or +80° and (h set to 
168.8°, -84.8° or 0°. In the most extreme poses (a, c, g and i) the actuators have 

relatively small attachment moments, which may lead to performance limitations in 
these regions. The tip of the arm is marked with a filled circle. 

5.4 Implementation 
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A static model of the arm has been implemented using MATLAB scripts. This model has 

been used to generate several of the figures in this chapter and is used in later chapters 

to generate training and testing data. A second, dynamic, model has been implemented 

using a custom simulation package based on the Vortex Simulation Libaries (2002), as 

discussed in Appendix A. 

The physical model required several other parameters to be defined (e.g., masses, friction, 

actuator models etc.), the selection of which is discussed in the following chapter. 

Figure 5.5 shows a screen shot taken from the dynamic simulation. There are two 

physical components (upper arm and forearm links) and several massless components 
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FIGURE 5.5: Screen shot taken from dynamic arm simulation environment. The 
prominent balls at the front of the picture are the two shoulder attachment points. 
Between them is the shoulder point where the upper arm is pivoted. The upper arm is 
shown in light grey and is aligned vertically with respect to the window. The forearm 
can be seen lying at 90° to the upper arm, pointing to the left of the window. Thin 

lines, representing the actuators, can be seen attached between the components. 
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(actuators, attachment points and sensors). Underneath the arm is a ground plane that 

has been marked with a regular grid and some radial lines to assist in the qualitative 

assessment of arm movements. 

5.5 Conclusion 

This chapter has outlined a simple geometric arm model and defined its parameters. 

Although, due to numerical constraints, the model does not use standard metric units, 

the ratios of the various components, and the angular ranges of the joints have, where 

possible, been chosen to reflect those found in nature. 



Chapter 6 

Convergent Force Field Control 

Experimentation 

This chapter details the development of an arm control technique inspired by convergent 

force field control. An online learning algorithm (single mutation hill climbing) is used 

to train an artificial neural network to control the movements of the dynamic arm 

simulation. 

Initially, only a single field controller was trained. This controller is responsible for 

moving the arm towards a single fixed target, using the available proprioceptive infor

mation. Once a selection of such single networks were been trained, further testing was 

performed to see if was possible to combine them to create a controller that can steer 

the arm towards intermediate positions. 

The single field controller was implemented using an MLP with a logistic hidden layer 

and linear output layer, as shown in Figure 6.1. Feedback signals are taken from the 

physical simulation. Various combinations were tested, but work presented here uses the 

length of each of the actuators and the rate of change of length of each of the actuators. 

The six actuators are connected to the Newtonian arm model and simulated using 

the custom built manipulation simulation client (see Appendix A). The multi-layer 

perceptron is implemented using the publicly available NETLAB neural network toolbox 

for MATLAB. 

6.1 Physical Modelling Environment 

As mentioned, the Vortex Simulation Libaries (2002) were used as a foundation for the 

physical simulation environment. These libraries model the world using an assortment 

of rigid bodies. Although the libraries themselves are capable of using a wide variety 

47 
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Single Field Controller Arm Model 

FIGURE 6.1: Network diagram for the single component controller. 

of component descriptions (convex-mesh, primitive shapes and height fields), the work 

presented here only used primitive shapes (i.e., cuboids, spheres and cylinders), because 

they were the most computationally efficient and accurate. 

Vortex models joints as constraints, which create the required reaction forces to resist 

any undesired movements. These have the potential to create relatively large forces 

within the simulation, which in turn can lead to instability if not managed correctly. 

In comparison, an analytical model of the arm movement would assume that many of 

the reaction forces would be perfectly balanced and as such they could be factored out 

of the mathematics. Model instability can be caused by stiff force-models, and this is 

of particular concern when adding novel actuator models to the simulation (as is done 

here) because they have the potential to introduce energy to the system. In contrast, 

Vortex's own force-models are designed such that numerical errors tend to drain energy. 

Care must therefore to taken to limit the amount of force introduced to the simulation. 

This has various implications, like the avoidance of 'whip' like structures as these can 
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propagate energy along the length in such a way as to result in movements of the end 

point that are too fast for the simulation. 

Clearly a custom designed analytical model of the arm dynamics would have simpler 

parameters, and be capable of running much faster. So why has this route not been 

taken? Partly for historical reasons (the simulation environment was already substan

tially finished before the arm model was finalised) but also there are a few key advantages 

to a Vortex based approach. Firstly, Vortex is a tried and tested set of simulation tools, 

so there is less likelihood of fundamental errors going undetected. Secondly, Vortex 

(and other rigid body simulators) provide a very flexible set of tools and as such would 

permit future researchers to rapidly integrate and assess the arm's interaction with other 

environmental features (e.g., fixed or movable objects). The simulation application has 

been specifically designed in a strongly modular way to facilitate this rapid extension 

and modification. 

6.2 Actuator Models 

The actuators used in this simulation are modelled as a linear spring damper system. 

The spring has variable stiffness and creates no reaction to compression. For an actuator 

oflength In, previous length In-I, rest-length r, damping coefficient d and stiffness gain k, 

the following equations define the force generated, J, for an input demand CYn: 

Jdamp d(ln -In-I) (6.1) 

{ In - ~ In > r 
(6.2) s 

In < r 

Jdrive = CYnks (6.3) 

J Jdrive + Jdamp (6.4) 

Figure 6.2 represents the components of the actuator model. For each of the six actuators 

we must therefore determine a suitable value for d, k and r. Rather than trying to find 

a justifiable value for each of these 18 parameters individually, some basic constraints 

were first applied. The objective of these constraints was to give each actuator roughly 

equivalent performance while taking into account its geometrical configuration. Firstly, 

the rest-length for each actuator was set be equal to its minimum length, as determined 

by the joint limits. This would mean that the actuators never entered their slack, 

zero-force producing, phase. But it does provide a sensible value that would scale 

appropriately between actuators. Secondly, the stiffness gain, k, for each actuator was 
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d 

FIGURE 6.2: Components of the actuator model, showing current length In, rest
length r, damping coefficient d, stiffness gain k and input demand an. Note that 

the spring does not create any force if In < r. 
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constrained to be a common value, k, divided by the range of lengths the actuator could 

achieve. 

k = k 
lmax -lmin 

(6.5) 

This would mean that, for the same input signal, (x, all the actuators could generate 

equal force at full extension. Damping was kept to a minimum as the objective was to 

train the controller to produce smooth movements, rather than mechanically constrain 

the system to enforce this effect. In a real world system, the effective dissipation of 

unwanted kinetic energy would present a significant technical challenge in its own right. 

Damping could either occur in the joints, or in the actuators themselves. Further studies 

are required to compare the effectiveness of these two alternatives with respect to system 

stability, efficiency and behavioural flexibility. 

Once the system's geometry had been implemented, a manual trial and improvement 

process was used to determine a value for k and the damping coefficients that allowed 

the controller to generate rapid accelerations of the arm without becoming unstable. 

A value of k = 1000, with damping of 500 units per single joint actuator and 100 per 

two joint muscle, produced responsive and stable dynamics. Table 6.1 details how this 

breaks down into individual actuator parameters. 

The dynamic arm model's underlying simulation application scales lengths and masses 

internally to reduce numerical integration error and therefore improve simulation sta

bility and accuracy. This has the unfortunate side effect of making it difficult to put 

meaningful real-world units on the arm's parameters. 



Chapter 6 Convergent Force Field Control Experimentation 

Actuator k r d 
Shoulder flexor 1017.2 1.0445 500 

Shoulder extensor 1270.7 1.1415 500 
Elbow flexor 1005.8 1.0377 500 

Elbow extensor 1256.1 1.1354 500 
Two joint flexor 505.0 3.6107 100 

Two joint extensor 631.4 3.8077 100 

TABLE 6.1: Actuator model parameters. Stiffness, lengths and damping coefficients 
are given in terms of simulation units. 

6.3 Link Parameters 
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The links are modelled as solid cubiods, with constant density. The upper link is assumed 

to have twice the density of the lower link, in order to represent the extra mass created 

by the actuators. They are modelled as having a square cross sectional area of width 

0.8. Appropriate polar inertias are calculated using a Vortex function. 

6.4 Feedback Encoding 

To reduce the potential for bias, the feedback presented to the MLP was normalised. 

In total twelve inputs were presented. The first six were derived from the length of the 

actuators, as reported by the physical simulation. These were rescaled to lie between -1 

and 1 using information gained from the MATLAB model of the arm. The remaining 

six inputs represented the rate of change of the actuators. These were approximated in 

MATLAB as the difference between the previously reported and the current actuator 

lengths. As these inputs had a large dynamic range any linear scaling that guaranteed 

a -1 to 1 range would have resulted in very small signals for most conditions. Instead 

a hyperbolic tan function was applied to the rate signals before they were presented to 

the network. This ensured that, while the complete range of the signals was preserved, 

small movements still resulted in reasonable response of the network input signal. 

6.5 Method 

It was not possible to use standard techniques like backpropagation to train the MLP as 

there was no reasonable way to generate appropriate training data. Instead mutation hill 

climbing was employed. This technique involves creating a randomly initialised network 

and attempting to improve it incrementally. At each stage a child network is created by 

mutating the existing one. The relative performance of the networks is then measured 

according to some reasonable test of fitness. If the child network performs better, it is 
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adopted as the new network; if not it is rejected and the existing network reinstated. 

This technique should usually be tested before more advanced learning algorithms. As 

only a single solution is explored, rather than a population of solutions, it will often be 

the most efficient technique, in terms of number of evaluations of the fitness test. 

As with any learning algorithm, there are a number of parameters to specify. In this 

case we must select the capacity of the neural network (i.e., how many hidden nodes it 

will have), and the mutation rate. It will also be necessary to determine sensible values 

for the parameters of the fitness function. 

6.6 Fitness Function 

The role of the fitness function is to compare the performance of two competing con

trollers and determine which should be retained, and which rejected. There are two 

conflicting demands on this function; it should be fair and it should be efficient. If the 

system does not reliably select the better of the two controllers the learning algorithm will 

either converge to an inappropriate solution, or not converge at all. With this in mind 

the fitness function must test both controllers thoroughly, ensuring that a representative 

subset of its responses is evoked. If a poor selection of responses is selected then the 

controllers produced may not perform well in the regions that were not covered. It is 

also important that the fitness function does not waste time further analysing controllers 

that are clearly inferior. 

The fitness function presented in this chapter takes the following steps: 

1. Select a range of start poses. 

2. For each start pose, initialise the arm simulation and connect the controller. 

3. Run the combined arm and controller for a fixed number of steps. 

4. The score for each run is the mean distance between the end of the arm and the 

target point. 

5. The score for the controller is the mean of the run scores. 

Clearly a lower score indicates a better fitness. There are two parameters in the 

process which must be carefully chosen to strike the balance between thoroughness and 

processing time. Firstly, we must determine how many steps should the simulation be 

run for. Secondly we must decide which start poses should be used. 

The simulation should be run for at least enough steps to allow an effective controller 

to bring the arm to rest near the target point from any start pose within the workspace. 
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FIGURE 6.3: Initial start poses, marked with black dots, are arranged in a five by five 
grid with respect to joint angle. 
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The optimal value for this was hard to determine, but it was found that 500 steps was 

generally long enough. 

There are two alternative approaches to the selection of start poses. The method least 

likely to introduce unfair biases into the result is to select the start poses at random 

from within the workspace. Unfortunately, to ensure fairness, this technique requires 

that the current controller is evaluated at every iteration (rather than just the mutation 

currently being evaluated), as some sets of start poses may be more likely to produce 

good scores than others. A second approach would be to select a fixed set of start 

points, and use these for all the trials. As the current controller would not then need 

retesting each time, this would decrease the overall computational burden at minimal 

cost to thoroughness. The second approach was used throughout the following work. 

In order to ensure good coverage of the workspace, the start points were arranged in a 

grid, evenly by joint angle. In the following work a five by five grid of start poses was 

used throughout (Fig 6.3). 

6.7 Mutation Algorithm 

For mutation hill climbing to work it must be possible to express the configuration of 

the controller in such a way that small changes can be performed in a randomised way. 

Ideally these changes should lead to small alterations in the behaviour of the controller, 

which can then be accepted or rejected by the fitness function. The configuration of an 
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MLP can be fully expressed as a list of floating point values (representing the weights 

and biases of the network). This list could either be mutated at the bit level or at the 

real number level. As we know that this data encodes real numbers, it makes sense to 

work at the real number level, as it makes selection of mutation rate more intuitive. 

The mutation algorithm used was as follows: 

1. Use NETLAB's mlppak to convert the MLP weights and biases into a row vector. 

2. Select a single component pseudo-randomly. 

3. Disturb the component by a value chosen from a scaled normal distribution. 

4. Use NETLAB's mlpupak to rebuild the network from the modified row vector. 

6.8 Trial Run 

To test that the system was working and capable of converging towards a target, an 

initial trial run was performed. A 15 hidden node MLP was randomly initialised and 

then trained for 500 testing cycles. A target was selected in the middle of the workspace, 

(-2,4), to ensure that the network performed real feedback control, and could not 

succeed by merely driving the arm into an extreme position. 

Figure 6.4 shows the mean error for the network plotted against training cycles. Several 

unsuccessful runs were observed (i.e., where the training process did not converge), 

before this run was recorded. As the network improves, the scores of the unsuccessful 

tests start to fall further away from the current best score. This means small changes 

in the network parameters are resulting in larger changes in the fitness function score. 

A more advanced training technique would reduce the size of the mutation rate as the 

system converged. This would improve the quality of the mutations tested and therefore 

increase the learning rate towards the end of the trial. 

To demonstrate how the errors presented in Figure 6.4 relate to actual movements of 

the simulated arm, Figure 6.5 presents plots of the arm movements used by the fitness 

function taken at five evenly spaced intervals during the training process. Each subfigure 

shows the results of a single evaluation of the fitness function. A separate line is plotted 

for each of the 25 start poses. Each run starts in one of the initial poses, arranged evenly 

within the workspace. Time, in simulation steps, is plotted on the vertical axis, with the 

workspace coordinates of the tip of the arm plotted in the horizontal plane. A vertical 

dashed line on each subfigure indicates the location of the target point. 

The initially randomised network (Fig. 6.5a) demonstrates strong, stable oscillatory 

motion. The arm movement converges towards the same limit-cycle irrespective of its 
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FIGURE 6.4: Trial run scores. The mean error (vertical axis) is taken to be the mean 
euclidean distance between the tip of the arm and the target point over 25 trials, each 
with 1000 simulation steps. The points marked above the line indicate the scores of 

unsuccessful mutations. 
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initial workspace position. After the first 100 training cycles (Fig 6.5(b)) the oscillatory 

behaviour has been replaced by a stable, single rest point, response. The next four 

subfigures (Fig 6.5( c-f)) show the gradual movement of the rest position towards the 

target. Interestingly, this is sometimes achieved at the expense of controlling all the 

runs. Figure 6.5(e) in particular shows a stage where a slight improvement in average 

distance from the target has resulted in one run heading in entirely the wrong direction. 

It would be possible to design the fitness function to be very sensitive to such outliers. 

This could be achieved by using the maximum, rather than the mean, distance from the 

target. Such an approach would, however, ignore any improvements to runs that were 

not the worst, and might therefore make the fitness landscape less smooth. 

To demonstrate the interaction between the arm model and the network controller, 

Figure 6.6 plots the network inputs and outputs for a single run, taken from a fully 

trained controller. The run started with the tip of the arm at (4,4) and moved towards 

the target at (4, -2). The top two plots show the two sets of six signals used as 

network inputs; normalised actuator lengths and hyperbolic tan encoded actuator length 

velocities. The third graph, network demand, shows the output of the network after it 

has been shifted to be positive. This was required because the actuator models required 

a scalar input. The fourth graph, actuator forces, shows the force developed by the 
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FIGURE 6.5: Trial run demonstrating convergence of the arm response towards the 
target point. The vertical axis represents time, expressed as simulation steps, while the 
remaining axes represent workspace coordinates. On each figure a vertical dotted line 
indicates the location of the target point, which was constant throughout. The figures 
are all drawn from the same training process, with the number of training steps, n, 
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actuators. This is not a direct scaling of the network demand because the force developed 

is also a function of the current actuator extensions. The last two figures show how joint 

angles and arm tip location varied throughout the run. 

6.9 Selection of Mutation Rate 

Having demonstrated a working system, the next stage was to select the optimal mu

tation rate. Figure 6.7 shows the fitness function scores of seven randomly initialised 

networks, as trained at four different mutation rates. On average setting m = 0.001 

produced the greatest improvement, but the results are far from conclusive. There are 

two ways of interpreting the results: either the system is not very sensitive to mutation 

rate or the mutation rates tested are all a long way from ideal. Although we can not 

be certain that the second of these is not true, as a reasonable range was covered (three 

orders of magnitude), we have some confidence that m = 0.001 is a reasonable value to 

use. 

6.10 Selection of Network Capacity 

A much longer experiment was then performed to compare the effectiveness of various 

network sizes. Five network configurations were tested with 5, 10, 15, 20 and 25 hidden 

nodes, respectively. For each configuration, six networks were randomly initialised and 

trained for 1000 cycles. The mean distance between the tip of the arm and the target, 

(-2,4), is plotted against training cycles in Figure 6.8. 

For nearly all the network configurations there are several runs where no significant 

improvements are found; the training process gets stuck in local minima. In several 

cases, while there is some improvement, the hill climbing process fails to do better than 

would be achieved by random reinitialisation. 

That said, it would appear that the networks with 20 hidden nodes seemed to train 

more reliably than any other of the tested capacities. At this stage it is not possible 

to determine whether this was solely a feature of the training process, or of the system 

being trained. 

So, from the data presented, we can conclude that although mutation hill climbing is 

capable of producing networks that move the arms towards the desired target, it is 

not capable of doing so reliably. Further modifications to the training technique, like 

selective random restart, would be required to improve reliability. 
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Simulation Steps 

FIGURE 6.6: Network inputs (actuator length and actuator velocity) and outputs 
(network demand) for a single run of the fully trained controller. Actuator forces 
are given in simulator force units. The joint angles are in radians (solid: 81 , dashed: 

82 ). Tip position is given in workspace coordinates (solid: x, dashed: y). 
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FIGURE 6.7: CFFC control with ten hidden nodes trained with a range of mutation 
rates, m. Each graph shows training cycles (horizontally) against mean error for 
25 evenly spaced starting poses (vertically). Although m = 0.001 seems to do the 
best overall, it is clear that some initial conditions are not amenable to improvement, 
irrespective of the mutation rate. The initial error value is not a function of the mutation 

rate. 

6.11 Blending Network Outputs 
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In order to investigate the potential for several controllers to be used in parallel, a second 

network was trained with a different target, (-5,0). This was less successful than the 

first (see Figure 6.9 for training errors), but did create a network that was capable of 

moving the arm approximately towards the alternative target. 

Figure 6.10 shows a comparison of the fully trained output for two networks, one trained 

toward (-2,4) and the other toward (-5,0). The arm response is shown both in a three 

dimensional time plot, and from a top view of the workspace. It is clear that the 

networks move the arm toward different locations. The last two subfigures (e and f) 

show the response of the arm when it is controlled by a blending of both networks. The 
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FIGURE 6.8: Mean error (vertical axis) plotted against training cycles (horizontal axis) 
for five different network sizes (n is the number of hidden nodes, all other network 
parameters were identical throughout). Error is calculated as the mean euclidean 
distance between the tip of the arm and the target point, over 25 runs of 500 simulation 
steps. The runs used a range of starting poses which were spaced evenly with respect 
to joint angle within the workspace of the arm. The experiment took 225 hours to run. 
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FIGURE 6.9: Training history for an alternative target point (-5,0). Horizontal axis 
shows training cycles, vertical axis is the mean distance between the tip of the arm and 

the target point. 
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blended outputs were calculated as the mean of the two individual network outputs. The 

resulting blended network creates a response that moves the arm to a position roughly 

halfway between the two target points, which are plotted as black dots in subfigure (f). 

To determine how the outputs of the networks combined, a series of weighted blendings 

were performed. In each blending the outputs of a single field network were multiplied 

by a scaling factor before being combined. The sum of the two scaling factors was 

always 1.0. Figure 6.11(a-i) shows a top view of nine different blended networks. The 

two target points are shown as black dots. As the blending ratio moves from favouring 

one network to favouring the other, a smooth range of intermediate responses are elicited. 

Figure 6.11 (j) shows the mean position of the tip of the arm for the second half of each 

simulation, i.e., the period when the arm is substantially at rest. These positions move 

smoothly from one target to the other, but not quite in a straight line, or with even step 

sizes. The size of the ellipse is proportional to the mean of the standard deviations of 

the tip position, and gives an indication of the arm's steadiness. 

6.12 Discussion 

This initial investigation must be considered a mixed success. Firstly, given enough 

training cycles, the controller was capable of learning how to move the arm towards the 

target from any position within the workspace. Secondly, basic mixing of the network 

outputs was demonstrated to create reasonable intermediate responses. This holds open 

the possibility that the arm could be controlled by a set of independent component 

controllers, whose output is mixed to create a complete range of convergent trajectories. 

Unfortunately the experimentation did not demonstrate the capability of generating the 

straight trajectories with the bell shaped velocity curves typical of human reaching. 
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FIGURE 6.10: Comparison of the best network achieved with 20 hidden nodes for two 
different targets. (e-f) show the output of a blended network that used output signals 

from both the above networks. 
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FIGURE 6.11: (a)-(i) shows the top view of a range of mixes of the controlling networks. 
(j) shows the mean position of the end point for the above graphs. Ellipses are centred 
on the mean position of the final 250 simulation steps for each of the 25 runs. The 
ellipse on the top right is the field one response and the ellipse on the bottom left is 
the field two response. The intermediate ellipses show blended responses created using 
an evenly spaced range of mixing ratios. Ellipse width and height are proportional to 
the mean of the standard deviations for each of the 25 start poses over the same range 

of simulation steps, plotted at three times the axis scale. 
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There are several potential reasons for this failure: a limitation of the model mechanics, 

controller capacity or of the training approach. 

Classical control approaches could be used to design an optimised controller for this 

simplified compliant arm, and thus demonstrate whether smooth straight line trajecto

ries are possible with the dynamic arm model. Unfortunately, the time it would take 

to design such a controller was not justifiable at present. A second approach could 

be to implement a learning system that performed mutation hill climbing on a vector 

that contained both the arm's mechanical parameters and the MLP's weights and biases. 

This would allow the technique to tune these in parallel and should demonstrate whether 

it is possible to control the arm in the way envisioned. This would present an interesting 

research challenge in itself but is, of course, a different problem to the one tackled in 

this work, which focused on whether the learning technique could exploit the predefined 

mechanical system. 

Mechanical restrictions aside, it is likely that the direct control approach outlined in 

this chapter will not be able to produce human-like reaching motions. The following 

chapters outline a more complicated, novel controller that borrows from equilibrium 

point control, as well as convergent force field control. This controller has some limited 

internal state, the encoding of which is explored and analysed. 



Chapter 7 

Convergent EquilibriuITl 

Trajectory Control Model 

This chapter outlines a novel framework that combines equilibrium trajectory control 

and convergent force field control (Fig 7.1). It is hoped that it will provide a useful 

foundation for the development of robust autonomous robotic reaching behaviours. As 

it is envisioned, convergent equilibrium trajectory control (CETC) could be extended to 

control more complicated articulated structures, including artificial hands. Each stage 

in this framework can be seen as a mapping that modifies the apparent dynamics of 

the following stages; the modification should be advantageous to the proceeding stages 

by reducing dimensionality, redundancy or mapping-complexity. With this in mind, the 

following sections describe the various stages of the model, working from the actuators 

back up to the top level input. 

r 

gain g - trajectory e length f3 '---- local 
ex. p - arm 

actuator r--
encoder generator encoder 

driver 
dynamics 

FIGURE 7.1: Proposed framework. The target pose (t), is encoded in terms of the 
gains of the component force-fields (g). These gains are used to drive the internal 
representation of the equilibrium point (e) towards the target defined by 9 at the drift
rate (r). A set of equilibrium muscle lengths (13) is derived from e. The final stage 
combines 13 with proprioceptive feedback (p) to generate actuator drive signals (a). 
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7.1 Local Actuator Driver 

In the proposed framework the local actuator driver takes the place of the local feedback 

loops present in muscles (i.e., Renshaw cell, spindle, and Golgi feedback, as discussed 

in section 3.2). This feedback should provide the preceding stages of the controller with 

appropriate arm and actuator dynamics for equilibrium trajectory control. Central to 

the success of this approach is the assertion that constant rate movement of the arm 

equilibrium point will result in smooth acceleration and deceleration of the arm's end 

point (Gribble et al., 1998). 

For a given time step, n, and actuator, i, the local actuator driver combines the required

rest length, (3in and the available proprioceptive information, Pin to calculate the optimal 

actuator input signal, CYin+1' Although there is an independent input signal for each 

actuator, the feedback depends on the dynamics of the whole arm model and is therefore 

a function of all the actuator inputs. 

(7.1 ) 

The exact parameters of the transfer function, di , will depend on the properties of the 

individual actuator being controlled, but some commonality is likely. The separation of 

the transfer functions assumes that the feedback from one actuator should not influence 

the input of another. If this was found to be overly restrictive, the parallel mapping 

functions di could be replaced by a single mapping with access to all the actuators' 

feedbacks. 

(7.2) 

Although this would be a more flexible mapping, it would come at the cost of more free 

parameters, and would therefore be harder to train. It is therefore important to decide 

whether this cross-feedback is required. 

7.2 Length Encoder 

The local actuator driver must be supplied with appropriate rest-length information, (3, 

so that it can re-tune the actuators to align the arm's mechanical equilibrium point with 

the desired equilibrium point, e, demanded by the preceding stages of the controller. 

(3 = b(e) (7.3) 
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In conventional robotics, inverse kinematics would be used to calculate the required joint 

parameters, and then an abstract geometric model of the arm would be used to translate 

this into appropriate actuator rest-lengths. This framework aims to avoid such direct 

calculations for two reasons. 

Firstly, we do not want to assume access to an accurate abstract geometric model of 

the arm because this would make the mapping unsuitable for learning. Such a system 

would therefore have to be preprogrammed and would have limited potential to respond 

to changes in the mechanics of the system - something that will become increasingly 

important as articulated robots become more complicated. 

Secondly, it is important that the system is capable of developing appropriate amounts 

of co-activation (i.e., tightening opposing actuators) so as to increase the overall stiffness, 

or tone, of the arm. People often use more stiffness when attempting novel tasks, where 

they are less likely to be able to predict changes in loading and disturbance. Clearly, 

over-using co-activation incurs energy costs and possibly reduces responsiveness, while 

under using co-activation can lead to disturbances impairing task performance. This 

therefore implies that the length encoder mapping, b, will be to some extent dependant 

on the novelty of the current task. 

7.3 Trajectory Generator 

For simple point to point reaching the trajectory generator is responsible for moving 

the equilibrium point, e, at a constant rate towards the target point and ensuring that 

it comes to rest immediately on arrival (i.e., no overshoot or oscillation). This sort of 

motion is possible with the equilibrium point because it is purely an internal state of 

the controller, and therefore has no inertia. The equilibrium point discussed here is the 

ideal equilibrium point which is assumed to be always identical to the equilibrium point 

achieved by the arm itself. In any real implementation there will be some mechanically 

induced constraints (both in terms oflag and range) that must be accounted for, but for 

simplicity this has not been included in the current model. If we consider time step n, 

the trajectory generator is responsible for calculating the next equilibrium point, en+ll 

from the current equilibrium point, en, the current field gain mixture vector, g, and the 

drift-rate, r. 

(7.4) 

As we are currently only considering point to point reaching, it is tempting to assume 

that u could be replaced by a reasonably simple direct algebraic expression. However 

it is important to remember that we are developing a general framework that will be 

required to produce more complicated behaviours in future, potentially including cyclic 
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FIGURE 7.2: Two alternative trajectory generators. (a) a single mapping creates the 
next equilibrium point encoding directly from its previous value. (b) calculates an 

intermediate representation, e6., of the step to be taken. 

motion. We should, therefore, be careful to balance simplicity against flexibility and not 

rush to constrain the system prematurely. 

The direct mapping, u, requires that the network provides an output which is nearly 

the same as one of the inputs (en) but that has been changed by a small amount. To 

maintain a high enough refresh rate for the arm, the change required is in the region of 

10-100 times smaller than the magnitude of en. It may therefore be advantageous to 

split the trajectory generator into two parts: a movement direction generator, U a , which 

calculates the required change, e,6" and an integrator, Ub which updates the value of e 

accordingly. So for a given instant in time, n, we have: 

(7.5) 

(7.6) 

Figure 7.2 contrasts direct and indirect trajectory generation. Indirect updating would 

allow Ub to be replaced with direct vector summation if en£',. is encoded in the same way 

as en, but allows different encodings to be employed if required. 

7.4 Gain Encoder 

The gain encoder in Figure 7.1 is responsible for generating a mixture of gains, g, such 

that the resulting movement of the arm meets the demands of the top-level controller, 

expressed as t. 

g = f(t) (7.7) 
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The gain vector can be seen as a simple type of population encoding of target position. 

Population encodings have been observed within the motor cortex of monkeys perform

ing reaching tasks and are thought to store the desired direction prior to movement 

(Georgopoulos et al., 1988, 1992; Georgopoulos, 1995). 

There are two, fairly distinct ways this could be achieved. The first option is for the 

top-level controller to specify an end point in some convenient coordinate system, like 

head-centred polar, which the gain encoder can map directly to a gain encoding. The 

problem with this approach is that all tasks then have to be converted into a series 

of point-to-point reaching movements. This would require the top-level controller to 

perform complex task decomposition, which may not always be desirable. 

The second approach is to encode t in a more application orientated action-parameter 

space, where different locations represent different useful responses, e.g., move-arm-in

to-protect-body, move-arm-firmly-outward-to-repel, move-arm-left-to-pin-object, etc. It 

would be significantly more challenging to develop a method for training the second 

approach, but it may lead to a system that is of more value to behaviour based robotics 

developers. 

7.5 Control Signal Encoding 

The framework described above outlined the various mappings required to build the 

controller. It did not, however, define how the control signals were to be encoded. In 

a system where all the parameters are accurately known, precise selection of encoding 

is not essential as long as the complete system is fully defined, as any information not 

directly communicated can be inferred. In the framework proposed, each stage only has 

access to the signals directly communicated to it, and must gain all other information 

by learning (either online or offline). It is therefore important that signals are encoded 

such that learning the appropriate mapping is as easy as possible. This section outlines 

some of the potential encoding options for the equilibrium point, e. 

Cartesian : The most direct way to encode would be in some Cartesian frame, that 

was fixed with respect to the body frame. It would be necessary to define an origin, a 

rotation and a scale factor. For this work it is assumed that there is no rotation of the 

Cartesian frame, and it is scaled such that the entire workspace lies within ±1 on each 

axis. 

Shoulder Centred Polar : An alternative, and equally abstract, way of representing 

the equilibrium point is in shoulder centred polar coordinates. As the origin is already 

defined, we need only define any rotation with respect to the workspace, and any scaling. 

Zero degrees was taken to lie on the line between the shoulder and a point in the middle 

of the workspace, and all angles and distances were rescaled to lie between ±l. 



Chapter 7 Convergent Equilibrium Trajectory Control Model 70 

Joint Angle Encoding: Encoding the equilibrium point using joint angles may make 

the calculation of appropriate f3 easier, but would make moving at a constant rate 

in body space significantly harder. This would be pose encoding, rather than point 

encoding, which would make a difference if one was controlling a redundant arm, as it 

would avoid the need to build a length encoder that could select the ideal solution from 

the possible alternatives. 

Relaxed f3 Encoding : An alternative pose encoding would use the actuator rest

lengths. As already mentioned, the length controller should manage the amount of 

co-activation in the arm, but if one considers the case where there is no co-activation, 

there is a one-to-one mapping from valid configurations of e to f3. This may allow e to 

be represented as a set of muscle rest lengths. However, this is likely to make learning 

the trajectory generator harder. If this is possible though, it would represent the most 

elegant solution as it means there would be no need for a separate length encoder stage, 

significantly simplifying the proposed framework. 

Chapter 8 explores the trajectory generator stage, and demonstrates an initial imple

mentation. Chapter 9 briefly presents an implementation of the the length encoder stage 

and compares its results with those obtained for the trajectory generator. 



Chapter 8 

Trajectory Generation 

The trajectory generator is responsible for moving an internal representation of the 

equilibrium point towards a target specified by the gain vector (see Fig. 7.1). This 

chapter details work which first defines the behaviour of an ideal trajectory generator 

and then implements it using an MLP. 

8.1 Definition of Ideal Trajectories 

This section outlines a procedure that was used to create an ideal trajectory generator. 

The objective here is to calculate a small, fixed length step, in a direction specified by 

the gain vector. The movement should be along the shortest path between the current 

equilibrium point and the target point that does not pass outside the workspace. 

8.1.1 Direction of movement 

As the purpose of the ideal trajectory generator is to generate training and testing 

data for the MLP implementation, the procedure outlined is not necessarily suited for 

deployment in a real controller. In particular it uses an abstract geometric model of the 

arm extensively, something that we would not wish to rely on in the final implementation. 

The input to the trajectory generator, g, serves a very similar role to the gain vector 

used in CFFC; i.e., to control how several component force fields are mixed. In this case 

the force fields control the movement of the internal equilibrium point, e, rather than 

the end point of the arm. Each of the component fields moves e towards a different 
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location within the workspace. As we are only interested in the relative component field 

gains, the incoming gain vector is first normalised: 

(8.1) 

The Ll norm (the sum of all the components) is used in the normalisation, rather than 

the more common L2 norm (the length of the vector in Euclidean space). This means 

that the sum of the components of 9 is always constant. 

The normalisation does introduce some redundancy into the input space, such that 

several values of 9 result in the same value of g. This redundancy might assist in the 

coordination of higher level behaviours, effectively allowing the controller to respond to 

the relative balance of demands between two competing higher level behaviours, rather 

than responding to their actual levels. 

When all the components of 9 are zero, Equation 8.1 does not have a finite answer. In 

such cases the components of 9 are all set to 11m, where m is the number of elements 

in g. This ensures that the behaviour of 9 does not contain any discontinuities as 9 

approaches zero. 

Each of the component fields must move the equilibrium point to a different workspace 

location, and combinations of component fields should move towards stable intermediate 

locations. The most direct way to achieve this would be to use a weighted sum of unit 

vectors pointing towards several different carefully selected target locations (tl' t2 ... tc)· 

This could then be scaled by the rate at which the equilibrium point should move, the 

drift rate, r n , and used to update the equilibrium point, e. So for time step, n, gain 

vector gn, and equilibrium point en we can calculate the next equilibrium point, en+l: 

(8.2) 

where c is the number of component fields, t J is the target location for field f and 9n j is 

the fth component of 9w 

This approach is unfortunately flawed as, although it works fine when only one com

ponent is active (i.e., 9n has only one non zero component), it does not produce good 

results when several components are blended. In order to preserve proper blending the 

weighted sum must be applied after the rescaling, thus: 

c 

~n L9nj(tJ - en) (8.3) 
J=l 

~n (8.4) en+1 en + rn I~nb 
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component x y 
1 7.80 1.65 
2 1.20 1.60 
3 -0.95 -1.65 
4 -7.90 0.40 
5 -2.00 7.50 

TABLE 8.1: Locations ofthe five component targets that the trajectory generator uses, 
as shown in Figure 8.1. 
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FIGURE 8.1: Workspace of the arm model with the five component targets that the 
trajectory generator will use. 
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Using this formulation, it is not possible to specify an intermediate target location that 

lies outside the perimeter of a region bounded by the defined component target locations. 

The component target locations should therefore be selected toward the edge of the arm's 

workspace. For the work presented in the following sections, a trajectory generator with 

five component fields was modelled with minima positioned as defined in Table 8.1 and 

shown in Figure 8.1. Unless otherwise stated, the drift rate, r n , was kept equal to 0.1 

throughout. 

8.1.2 Ensuring reachability 

For most situations, Equations 8.3 and 8.4 produce sensible updates for e . Unfortu

nately, this breaks down towards the edge of the workspace. In these situations, it is 

quite possible for the update generated to attempt to move e to a location that the 

arm cannot reach. There are two distinct ways in which this can happen; either it is 
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physically beyond the reach of the arm at maximum extension or it would require the 

joint angles to move outside their permitted range. These cases will be dealt with in 

turn. 

The main difficulty with points beyond the reach of the arm is that there is no method 

to determine appropriate joint angles (they simply do not exist). As later stages require 

that the joint angles are known, such movements need to be adjusted so that they 

lie within the range of the arm. The most direct approach would be simply to move 

the point towards the shoulder until it was within the reach of the arm. This would 

unfortunately have the side effect of reducing the distance between the old e and the 

new one. Although this will not cause a problem in most cases, there is the potential for 

this to create a dead end, such that e comes towards the edge of the workspace and stops 

moving. This is unacceptable as it means that e will never reach the target location. 

A procedure was therefore used to ensure that the updated e lay inside the reach of 

the arm while maintaining the same step length. This was achieved by finding the 

intersection(s) of a circle, Cstep, centred on en, with radius equal to drift rate Tstep, and 

a circle, Carm ' centred on the shoulder with radius equal to maximum reach of the arm, 

T arm . There are four types of solution to such a system: 

1. No real points of intersection. 

2. One point of intersection, i.e., the centres are Tstep + Tarm apart. 

3. Two points of intersection. 

4. Infinite points, i.e., the circles have identical radii and centres. 

We can assume the initial equilibrium point, en is reachable, and therefore inside Carm. 

If we only attempt to adjust the position of the updated point, en+l, when it is outside 

(not on, or inside) Carm then we need not consider answers of type one or two. For 

any reasonable configuration we can assume that Tstep « Tarm , so we need not consider 

answers of type four. 

We therefore need only consider solutions of type three, where there are two points of 

intersection. We therefore must consider which of the two solutions, e~+ 1 and e~+!, to 

use as a replacement for the original en+l (Fig. 8.2). To maintain as much of the sense 

of the update as possible, the best choice is the solution nearest to en+!. 

8.1.3 Target substitution 

The arm workspace is not convex. Specifically there are two regions within the max

imum boundary that cannot be reached due to joint limits, as shown in Figure 8.3. 
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Accessible 
Region 

FIGURE 8.2: Updates are modified to ensure they are reachable. When e n +l is not 
reachable, two points e~H and e:~+l are calculated that are just reachable and the 
same distance from en as en+l. The closest of these two to enH is then used as a 

substitute point. 

_4L-__ ~ ____ -L ____ ~ __ ~ ____ -L ____ ~ ____ ~ __ ~ 

-8 -6 -4 -2 

FIGURE 8.3: There are two regions, labelled one and two are within the overall 
perimeter of the workspace, but that cannot be reached due to joint constraints. 
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Their boundaries are circular and can be calculated directly from the arm configuration 

parameters. 

This leads to situations where the shortest path between two points within the workspace 

is not necessarily straight (Fig. 8.4). So what are the implications of this for a trajectory 

generator that takes any point in the workspace and moves it slightly nearer a target 
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(a) (b) 

FIGURE 8.4: (a) the ideal trajectory when it is not possible to move directly from point 
A to B because the path passes through a region that is outside the workspace of the 
arm. (b) the ideal solution needs planning, i.e., even though Band C are in the same 

direction, the ideal initial movements are not identical. 
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location? It means a small movement along the shortest path within the workspace can 

not be calculated without predicting, and correcting for, boundary collisions. 

We must therefore be able to predict collisions between these two circular regions and 

the planned trajectory. This can be solved if we consider a circle, centred on point c, and 

a line segment running from a given point, s, to a target point, t. Using the parametric 

line equation, we can define point m, 

m s+u(t-s) (8.5) 

We want to calculate the value of u that will make point Tn closest to the centre of 

the circle. This happens when the line between the centre of the circle and m is 

perpendicular to the line between sand t. When these lines are perpendicular they 

will have a dot product of zero: 

(c - m) . (t - s) = 0 (8.6) 

Once this is substituted back into the parametric line equation, we can solve for u: 

u (8.7) 

If u < 0.0 or u > 1.0 then the closest point on the line to the circle does not lie between 

sand t. In all other situations we can use Equation 8.5 to calculate the coordinates of 

the nearest point and then test to see if it lies within the radius of the circle. 

Once we know that a trajectory would intersect with an unreachable region, we must 

calculate a virtual target location, tf, to use as a substitute. As we are only going to 

take a fixed length step towards the target location, it does not matter if we vary the 
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A 

(a) two alternative substitute targets for B. (b) using relative bearing to select substitute 

FIGURE 8.5: The selection of which substitute target to use is dependant on the relative 
bearings of the start point, A, and the target location B, with respect to the centre of 
the unreachable region, shown here in grey. If point A is in the region marked - in 
(b), B' should be used. Conversely, if A is in the region marked + the alternative, B", 

should be used. 
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apparent distance between the current equilibrium point and the target. The substituted 

target will lie on the circumference of the unreachable region, at a point where the 

tangent intersects with the current equilibrium point. The two solutions can be readily 

calculated and are depicted in Figure 8.5a. 

The only remaining challenge is to select which of the two solutions to use. For the 

current arm model, the choice of solution depends on the relative bearings of the current 

equilibrium point and target location with respect to the centre of the unreachable 

region. When the equilibrium point has a higher bearing than that of the target location, 

the clockwise substitute point should be used. Otherwise, the anticlockwise substitute 

point should be used (Fig. 8.5b). 

8.1.4 Joint deflection and clamping 

Once the new target had been generated and an initial direction calculated, the next 

stage was to ensure that the arm's joint limits were not exceeded. This was done using 

a two stage process: deflecting and then clamping. The deflecting stage attempted to 

twist the update so that the step length remained the same, but was now within the 

workspace. Note that for efficiency reasons these tests were applied in the joint-angle 

space, so it was the length of the change in joint angles (not Cartesian space) that was 

maintained. Once all four joint limits (i.e., high and low on both axes) were deflected, 

any remaining overshoot was clamped without regard to axis interdependence. 
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8.1.5 Update generation summary 

In outline we perform the following stages for every update: 

1. Normalise gain vector 

2. Calculate target point 

3. Test for path passing outside workspace 

4. Substitute target if required 

5. Calculate step towards target 

6. Test for step being outside reach of arm 

7. Modify step to make it reachable if required 

8. Calculate change in joint angles 

9. Deflect step if it crosses joint limits 

10. Clamp joint angles if required 

This is not a simple process, and does require access to an accurate model of the arm. 

Figure 8.6 shows the output of this process for six different gain vectors. Figure 8.6a 

demonstrates target substitution effectively. Even though the final target location is at 

the end of a very narrow part of the workspace, the ideal trajectory generator is capable 

of getting there by the shortest route from anywhere within the workspace of the arm. 

Figure 8.6f demonstrates an intermediate response, with two component fields active. 

Figure 8.7 shows the same output, but this time plotted as movements in joint-space. 

The horizontal axis represents a normalised value for e1 , and the vertical axis represents 

a normalised value for e2 . The same set of gain vectors are used as in Figure 8.6. Unsur

prisingly, encoded as joint angles the movements appear significantly more complicated. 

Figure 8.8 shows the same set of responses, but this time plotted using normalised 

shoulder centred polar coordinates. Even though this is an arbitrary encoding (i.e., 

does not require a geometric arm model for update calculation) the response appears 

strikingly similar to that of the joint encoding. 
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FIGURE 8.6: Output of the ideal trajectory generator plotted in workspace coordinates. 
The faint grid shows the workspace of the arm, with the dark lines showing the path of 
the equilibrium point as it converges towards a target. Under each is shown the value 

of the gain vector, g, which was held constant for each trial. 
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FIGURE 8.7: Graph of the same data as Figure 8.6 but plotted in joint angle space. 
The horizontal axis shows 81 and the vertical axis shows 82 , both are plotted in radians. 
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FIGURE 8.8: Graph of the same data as Figure 8.6 but plotted in normalised polar 
coordinates. The horizontal axis shows angle and the vertical axis shows distance. 
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+ --------------~ 
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FIGURE 8.9: One-dimensional control to produce constant rate movement toward a 
fixed target 

8.2 Trajectory Generator Implementation 
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Having decided on the output that the trajectory generator should produce, the next 

step is to determine how it should be implemented. Before we attempt this, some 

consideration should be given to the underlying structure of the system. One ideal 

of CFFC is that the resultant field should be a combination of several independent 

component fields. From an engineering perspective this distributed structure is likely to 

have significant advantages, both in required controller complexity and training time. 

The most direct way of implementing this distributed structure would be to train a 

separate component controller for each target point. Each component controller would 

then be responsible for moving e toward its target at the drift rate, r. The output ofthese 

controllers could then be combined using the normalised gain vector. Unfortunately 

this approach will not work. To demonstrate this clearly, let us consider a trivial one

dimensional tracking problem. In this example the objective is to move e toward a target 

point on the line at constant rate, r. If we assume that there is only one target, then 

the correct movement of e is defined by a step function that changes sign as e passes 

the target (Fig. 8.9). 

However, this will not work as a component function because when added it will lead to 

regions that are non-responsive. To demonstrate this let us consider the same number 

line, but this time with two target locations, TI and T2. If we combine their independent 

response functions, VI and V2, to create to create a response function, Vtot, it does not 

drive e to a intermediate target location halfway between Tl and T2 . In fact it does not 

drive e at all in the region between Tl and T2 (Fig. 8.10). 

The desired response can be created if the process is divided into two stages. The 

individual component functions should respond linearly to the distance between their 

target point and e. These components can then be combined using the normalised gain 

vector. The combined output can then be rescaled to maintain constant rate movement. 

Using this process it is possible to create intermediate responses that move e to any 

point between TI and T2 by varying the gain vector (Fig. 8.11). So what implications 

does it have for two-dimensional control of e? 
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FIGURE 8.10: One-dimensional control to produce constant rate movement. Half the 
response of two targets, 'VI and 'V2, is summed to create 'Vtot. It is clear that 'Vtat will 

not move e to a point on the line halfway between Tl and T2 

T2 + 
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FIGURE 8.11: One-dimensional control to produce constant rate movement. The 
response of two targets, 'VI and 'V2, is summed to create Vtot. In this example the 
result is usable, and only needs to be thresholded to create the ideal combined response 

function, 'Vnarm • 
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To create a set of two-dimensional component responses that will combine to create a 

full range of intermediate responses, the output of the ideal trajectory generator needs 

to be scaled. Specifically, the relative size of the response at each location needs to 

be proportional to the distance from the target location. When these are combined 

it is unlikely that they will produce exactly the same results as those that would be 

generated by the ideal trajectory generator, particularly as when a target point has 

been substituted the route to the target is longer than the distance between the location 

and the target point. 

Figure 8.12(a)-(e) shows the new, scaled, ideal component fields for each of the five 

target locations. Subfigures (f)-(h) show various intermediate responses, created by 
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direct blending of two of the five component fields. It should be stressed that these 

blends have been created by mixing the component fields, rather than re-running the 

ideal trajectory generator. The intermediate fields have a qualitatively similar structure 

to that of the component fields. 

There are, however, some differences between the way this process, and the ideal tra

jectory generator, creates intermediate responses. Figure 8.12(h) shows the situation 

where responses (b) and (c) have been evenly mixed. The ideal trajectory generator 

would create a response that attempted to move e to a point half way between the 

target locations 2 and 3, which in this case would be outside the workspace of the 

arm. The net result is that, although the response attempts to converge towards a 

single point, as that point is outside the workspace, it is bound to fail. In contrast the 

response created by blending, as shown in (h), does converge towards a sensible point 

within the workspace. In this way the blending approach creates a more useful response 

than the 'ideal' trajectory generator. 

So does this process work if the equilibrium point is encoded in a different way? Fig

ures 8.13 and 8.14 show a similar set of graphs using polar and joint encodings re

spectively. In both these cases the five components are generated by calculating the 

scaled ideal component fields in Cartesian coordinates and then converting them into 

the alternative equilibrium point encodings. The intermediate fields are calculated by 

direct mixing of these alternative encodings of the component fields, and do not use 

any conversion back into Cartesian coordinates. Careful inspection of these figures will 

reveal that, even though the shape of these fields is more complicated than the Cartesian 

ones, they can still be mixed successfully to create a smooth range of intermediate fields. 

8.3 Selection of Equilibrium Point Encoding 

Having established that the component addition can be performed using any of the 

equilibrium point encoding schemes, the next stage was to implement a component field 

controller. A component field controller is responsible for updating the equilibrium point 

so that it moves towards a single target point from any location with the workspace of 

the arm. A 15 hidden node MLP, with a sigmoidal hidden layer activation function and 

a linear output layer activation function, was used. The objective was to determine if 

any of the encoding schemes had an advantage in terms of training time and overall 

performance. 

To this end the following trial was performed. A set of scaled ideal field components, 

similar to those previously presented, was calculated for each encoding scheme. Each 

set contained 341 training points, spread evenly through the workspace of the arm, 

with respect to Cartesian coordinates. To improve accuracy, for each encoding scheme 

two controllers were trained for each of the five component fields. For each controller 
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FIGURE 8.14: The ideal component fields expressed in joint angle coordinates, with 
combination performed after conversion. Horizontal axis shows the normalised joint 

one angle and the vertical axis shows the normalised joint two angle. 
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a set of 500 randomly chosen test points was generated, along with appropriate ideal 

responses. Each controller was trained for 20 cycles of backpropagation and then had its 

performance assessed using its collection of test points. This process was then repeated 

5000 times. The backpropagation routine was performed by the NETLAB toolbox, 

with the termination criteria disabled to ensure that each controller was trained for the 

same number of cycles. The backpropagation routine used scaled conjugate gradient 

optimisation. 

Figure 8.15 shows the testing error for each of the encoding schemes plotted against 

testing cycles. The error is expressed as a percentage of the mean length of the testing 

output values. Figure 8.16 shows the mean of the standard deviation of the testing 

errors, again expressed as a percentage of the mean length of the ideal testing output. 

All three equilibrium point encoding schemes were capable of creating effective trajectory 

generators with this capacity of MLP. That said, there are some observable differences. 

In the early stages (less than approximately 1000 training cycles), the Cartesian encoding 

outperforms the others. Despite this advantage it appears to plateau at around 0.2%, 

while joint and polar encodings continue to improve asymptotically. 

Although we cannot be certain as to the cause of this difference, it is possible to speculate. 

For the greater part of the workspace, the Cartesian encoding is merely required to 

produce a response linearly proportional to the distance from a fixed point. In contrast 

the other two encodings have more complicated, curved, trajectories to generate. This 

may help explain the Cartesian encodings' initial strong performance. So why does 
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it fall behind? There are several regions of the workspace where target substitution 

has a strong effect. These regions may be easier to detect in polar centred shoulder 

or joint angle encoded spaces. If this was the case, this would allow these alternative 

encodings to respond better to the region specific mapping variations. This hypothesis 

is supported by Figure 8.16, which shows the standard deviation of the error. This gives 

us a indication of how the error was spread throughout the workspace. The standard 

deviation for Cartesian encoding decreases rapidly toward a minimum value at around 

100 testing cycles. After this point it worsens. In contrast the standard deviation of the 

joint and polar encodings improve monotonically. The standard deviation gives some 

indication of how consistently the trajectory generators performed throughout across 

the workspace; the lower the standard division, the more consistent the performance. It 

is possible that the Cartesian encoding system initially learns the correct response for 

the majority of the workspace (hence the initial rapid reduction in the SD) but is not 

good at extending this towards the peripheries. 

To reduce simulation time, the work presented in the remainder of this chapter was 

restricted to a single encoding scheme. Polar encoding was selected as it appears to be 

the most effective in terms of mean percentage error. 

8.4 Comparison of Network Capacities 

The next stage was to determine the relationship between a controller's capacity and 

its ability to learn the component fields. To this end, seven MLPs were trained with 
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different numbers of hidden nodes (2, 4, 6, 8, 10, 12 and 14). The same training process 

was used as for the comparison of equilibrium encoding schemes. Figure 8.17 shows 

the mean testing error after 5000 training cycles, plotted against the number of hidden 

nodes. 

As expected, performance improves as the number of hidden nodes increases. However, 

the rate of performance increase drops off significantly after 8 hidden nodes. That said, 

all the MLPs tested produced very accurate results (less than 0.8% error) and it may be 

that only two hidden nodes are needed to create effective component controllers. This 

means that there would be only 12 parameters to train per component controller. 

Figure 8.18 shows how the error varies across the workspace. The error is calculated as 

the mean length of the vector error between the ideal update and the update generated 

by the MLP, across all five component fields. Linear interpolation was used to reformat 

this data into a mesh for plotting. The two hidden node MLP, shown in subfigure 

(a), scores relatively well in the middle of the workspace, but its performance rapidly 

deteriorates towards the edges. The eight hidden node MLP, shown in subfigure (d), 

performs consistently throughout the workspace. 
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FIGURE 8.18: Error distribution throughout the workspace of the arm for six different 
MLP controllers that used shoulder centred polar coordinates. The 0; axis shows 
normalised angle, the p axis shows normalised radius and the vertical axis shows the 
length of the vector error between the ideal update and the one generated by the MLP. 
Linear interpolation was used to reformat these data into a mesh for plotting. The 

same axis scales are used for all the subfigures. 
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8.5 Model Free Update Normalisation 

The distributed trajectory generator does not so far perform any normalisation of the 

generated update. For Cartesian encoding, this process is trivial and requires only access 

to the incremental update (i.e., the difference between the previous e and the next one 

to be generated). As this is exactly the output of the trajectory generator, this would 

be easy to implement. 

There is no direct way of normalising an update expressed in polar coordinates. To 

achieve the appropriate rescaling, access to the previous e is required, and a method of 

converting between the polar coordinates and their Cartesian equivalent. The following 

procedure could then be used. 

Firstly, calculate the equilibrium point, e-n , that would be generated if the output of the 

the trajectory generator, eL';, was directly added to the previous equilibrium point, en-I: 

(8.8) 

Then use a mapping function, p, to convert both en-I and en into Cartesian coordinates, 

here denoted using c. 

Cn-I (8.9) 
(8.10) 

Then calculate the difference between these two Cartesian coordinates, normalised so 

that it has a length equal to the drift rate, 7'. 

Cn - Cn-I 

en - Cn-I!2 
(8.11) 

We can then add the normalised update, CL';, to the previous equilibrium encoding, Cn-I 

to calculate the new, correctly scaled encoding, Cn. This can then be converted back 

into shoulder centred polar coordinates using the inverse of p. 

(8.12) 

So although this process is complicated, it does not require access to a geometric model 

of the arm. Naturally, this would not be possible for joint angle encoding. It may be 

possible to use an MLP to learn the mapping from current encoding and update, to next 

encoding, that would perform the appropriate scaling, but this is left for future work. 
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8.6 ConcI usion 

This chapter has presented a method for generating idealised updates that are capable of 

determining the increment that will move an equilibrium point towards a target location, 

along the shortest path that avoids unreachable areas of the workspace. The system 

presented also handles collisions with the workspace perimeter in a graceful manner 

that sought to preserve step length. 

The chapter then demonstrated how a similar effect could be achieved by mixing the out

put of five separate component generators. An MLP implementation of the component 

controllers was demonstrated to produce similar results. It was found that, although all 

three encoding schemes tested were capable of producing reasonable results, shoulder 

centred polar encoding was the most effective. 

For the system considered, networks of between two and eight hidden nodes were demon

strated to produce low errors, with the behaviour of the 8 hidden node network being 

consistent throughout the workspace. The following chapter looks at how the equilibrium 

points created by the trajectory generator could be converted into appropriate actuator 

rest lengths. 



Chapter 9 

Length Encoder 

This chapter details an implementation of the length encoder, which aligns the me

chanical equilibrium point of the arm model with the equilibrium points created by the 

trajectory generator by adjusting the actuator rest lengths appropriately. In this chapter 

we compare the three previously considered equilibrium encodings in terms of resultant 

error for various MLP capacities. A set of 1000 randomly selected poses was encoded 

using each scheme. An inverse kinematic model was used to calculate the lengths of the 

actuators that align the arm's equilibrium point with each of the selected poses. These 

lengths were taken to be the ideal rest lengths that the system should try to generate. 

This procedure assumes that the arm has no actuator co-activation. 

9.1 Procedure 

A number of MLPs were trained to learn the mappings between the equilibrium point en

co dings and the ideal rest-lengths. Each network had a sigmoidal hidden-layer activation 

function and a linear output-layer activation function. They were implemented using the 

NETLAB neural network toolbox for MATLAB. Five different network configurations 

were assessed, with varying numbers of hidden nodes (2, 4, 6, 8 and 10). The networks 

were trained for 500 cycles, with each cycle containing 10 standard backpropagation up

dates. A second set of 1000 randomly generated poses was used to test the performance 

of the MLP at the end of each cycle. The entire process was repeated ten times for each 

equilibrium point encoding method to reduce the effect of the random initialisation. The 

results of this process are shown in Figure 9.1. 
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9.2 Results 

The Cartesian workspace encoding consistently performed worse than the other encoding 

schemes. This is not surprising if we consider the mappings that must be performed 

(Fig 9.2). Each subfigure shows how the rest-length of a single actuator varies with 

respect to the equilibrium point encoding. As all three encoding schemes are two 

dimensional, this relationship can be plotted as a surface, with grey level representing 

actuator rest-length and position representing the equilibrium point encoding. Eighteen 

subfigures are presented, one for each combination of actuator and equilibrium point 

encoding scheme. Actuator names are defined at the beginning of Chapter 5. The 

subfigures are rectangular and therefore include regions that are outside the workspace 

of the arm. As nearest neighbour interpolation was used to generate these figures, 

actuator rest-lengths are propagated into these unreachable regions. 

This figure shows that the mapping from joint angles to actuator lengths is very simple 

and shows how the shoulder flexors and extensors can be controlled independently of 

joint two and the elbow flexors and extensors can be controlled independently of joint 

one. Even the response of the two joint flexors and extensors is contained entirely within 

a plane. 

In comparison, the mapping between the Cartesian encoding and the actuator rest 

lengths is significantly more complicated, and so it is unsurprising that it is the hardest 

for the MLP to learn. The performance of the MLPs trained to use polar centred shoulder 

coordinates is reasonably close to that of the MLPs using joint coordinates. Comparison 

of the appropriate mappings in Figure 9.2 shows that there are strong parallels between 

the polar and joint mappings. 

9.3 Conclusion 

This chapter has demonstrated that all the encoding schemes are capable of learning an 

approximation to rest length encoding. That said, noticeable differences in their relative 

performance has been shown and justified in terms of the complexity of the mapping 

they must perform. 

Shoulder centred polar coordinates was the most effective encoding scheme for trajectory 

generation, and is a close second for length encoding. It should therefore be considered 

a strong candidate for building future CETC implementations. 



Chapter 10 

Discussion and Conclusion 

This thesis has explored the ideas and terminology surrounding manipulation first from 

a robotics perspective and then from a biological one. Two main pieces of work were 

undertaken. The first piece of work explores the potential of convergent force field 

control for simple compliant arm structures as a precursor to real engineering application. 

The experimentation undertaken involved using mutation hill climbing to train the 

dynamics of a physical compliant arm simulation coupled with a multi-layer-perceptron. 

The second piece of work combined two techniques inspired by neurological studies 

(convergent force field control and equilibrium trajectory control), to create a novel 

framework for compliant limb control (convergent equilibrium trajectory control). Two 

key components of this framework were then implemented using multi-layer-perceptrons. 

This chapter will review these two main pieces of work, and then close with a justification 

of the approach taken. 

As it stands, the version of convergent force field control implemented here will only 

be suitable for very simple manipulating robots. It is possible with further work that 

it may become suitable for a broader range of applications. The following paragraphs 

discuss some of the limitations of the current approach and suggest some appropriate 

responses. 

As only a limited number of target points were used, the current implementation does 

not conclusively demonstrate that all regions of the workspace are equally amenable to 

control by this approach. To rectify this a larger range of targets should be used, with a 

wider variety of initial conditions (specifically arm component velocities). If successful 

this would build confidence in the arm model, and provide a useful set of trained 

component field controllers for later work. The robustness of the control approach 

should also be assessed by introducing a variety of disturbing forces and measuring their 

effect on the arm's trajectory. 

The learning technique used in this work was deliberately very simple. It was shown 

that for the arm model and the range of training parameters considered, mutation hill 
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climbing is not a reliable way of developing single component force field controllers, i.e., 

the fitness landscape is not smooth and contains significant local minima. For most of 

the network configurations tested, the hill climbing process produced results that were 

no more effective than random search. That said, the training process used did show 

that networks with around 20 hidden nodes were capable of controlling the simulated 

arm to bring it towards a predefined target pose within the workspace. They were not, 

however, shown to be capable of moving the arm directly towards the target, instead 

long looping paths were taken. 

There are more advanced learning approaches, like simulated annealing and genetic

algorithm based methods, that are more tolerant to local minima, albeit at the expense 

of more fitness function evaluations. These training approaches should be compared in 

an attempt to ascertain whether the arm model and controller are capable of producing 

smooth point to point motions, and to develop a better understanding of the fitness 

landscape. 

Blending of two component force field controllers was demonstrated to create a smooth 

range of intermediate responses, with the resultant rest location being an approximate 

interpolation of the two controllers' rest locations. Once a wider range of targets have 

been trained it should be possible to start analysing a variety of higher dimensional 

gain mixtures and potentially demonstrate controlled movement over the arm's entire 

workspace. This would then permit initial investigations into gain-space based control 

and behavioural composition. 

The current work assumes access to fictional 'global axis' sensors, which report their 

location with respect to an imaginary fixed coordinate scheme. Although they are not 

used for controller feedback, they are extensively used for performance measurement, an 

essential part of any learning system. If the techniques developed in this thesis are to be 

implemented in hardware a viable alternative must be sought. A reasonable option would 

be a fixed camera, whose field of view included the whole of the arm's workspace. The 

location of the arm's end point, and possibly elbow, could then be detected (maybe by 

colour markings), and returned as a pair of iris-centred yaw and elevation values. Similar 

values could be obtained from the simulation environment described. Using simulated 

yaw and elevation angles would therefore be a sensible first step towards future camera 

integration. 

An interesting project would involve evolving the arm parameters (relative masses, 

lengths, joint angles, etc.), in parallel with the controller. With this sort of approach 

there would be a danger that the arm parameters would become very task focused, in 

this case sacrificing behavioural flexibility for small gains in reaching performance. This 

could be combated by either increasing the thoroughness of the fitness function to include 

all the required dynamics or, if that proved too computationally expensive, introducing 
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restrictions on the permitted range of arm parameter values so as to maintain a basic 

level of behavioural flexibility. 

The novel combination of convergent force field control and equilibrium trajectory con

trol (convergent equilibrium trajectory control) presented here provides a tool that could 

be used to integrate a compliant manipulator with a neurally controlled autonomous 

robot, assuming that the correct actuator dynamics could be achieved artificially. The 

trajectory generator removes the requirement for the top level controller to have an 

internal representation of the arm workspace, or having to perform calculations to avoid 

its inaccessible regions. 

The modelling and training work presented has shown that very small networks, with 

in the region of two to eight hidden nodes (which equates to between 12 and 42 network 

parameters), are capable of updating the equilibrium point smoothly and reliably. It 

was further shown that, for the equilibrium point encodings considered, it was possible 

to calculate appropriate equilibrium rest lengths using relatively small networks (in the 

order of six to ten hidden nodes). 

When the error induced by the trajectory generation and the length encoding is taken 

together, for the model considered, it was shown the shoulder centred polar encoding 

was the most effective in terms of network capacity, and therefore computational cost. 

It would appear that, although at first glance shoulder centred polar encoding is just as 

arbitrary as Cartesian encoding, its performance and mappings are significantly closer to 

those of joint angle encoding. It is therefore a strong candidate for future implementation 

of convergent equilibrium trajectory control. 

There are several ways in which the training methods used in this work, could and 

should be improved if pursued further. In the simulation work presented, the location 

of each of the component field targets was chosen arbitrarily. This is not ideal as it is 

likely that ideal component fields will depend on the arm's mechanical configurations 

and the agent's environments/tasks. Work needs to be done to develop a system that 

automatically aligns the component fields configuration with the arm mechanics and 

allows them to be updated in response to the arm's usage. 

To fully evaluate the effectiveness of CETC the trajectory generator and length encoder 

modules developed in this thesis should be combined with an arm model capable of 

equilibrium trajectory control. Once the entire chain is in place, the work can move 

beyond offline module training and start using proprioceptive feedback to perform online 

learning. This will open the door to studying the controllers potential to adapt to 

incremental changes in the bodies dynamics. 

Although only touched on lightly before, it is important to emphasise that in animals 

the forelimbs commonly playa dual role; that of environmental manipulation and loco

motion. Legged robots are capable of negotiating a more varied range of environments 
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than their wheeled counterparts, and are therefore being actively developed for search 

and rescue applications. Being able to use the forelimbs in a dual role may increase 

the behavioural flexibility of the robot at limited extra cost in terms of weight and 

complexity. 

If the techniques outlined in this thesis are to be suitable for integration into legged 

manipulating robots, the limb controllers must be capable of supporting both these 

activities. Locomotion presents specific challenges which should also be considered when 

designing a front limb controller. These include postural stability, rhythmic stability in 

the presence of disturbance and phase coupling between limbs. Training of these dual 

purpose trajectory generators presents specific challenges, foremost of which is the design 

of a suitable fitness function. Clearly, trying to train to an oscillating target directly 

would not work, as any phase delay would introduce large, and potentially misleading, 

errors. An alternative approach would be to define a vector field for the work space, much 

as was done for the ideal trajectory generator. The field would, of course, now contain 

a certain amount of curl and movement within it would therefore converge towards a 

limit cycle, rather than a point. An online learning technique could use the length of 

the vector difference between the current movement and that specified by the ideal field 

at that point. Care would have to taken to ensure that all appropriate regions of the 

limb's state space were explored and trained. 

The long term value of the biologically inspired methods can only be demonstrated 

if they provide measurable advantages when compared with traditional approaches. 

These advantages are unlikely to be in the areas that are conventionally used to assess 

traditional approaches (e.g., accuracy, repeatability, and band-width) but instead focus 

on more nebulous qualities like unsupervised calibration, tolerance of mechanical wear 

and tear and robustness to changes in environmental dynamics. There is much work to 

be done in both developing robots that perform well on these non-traditional qualities 

and on the development of testing procedures to assess them. Until both are in place 

there will be much, justified, resistance to these novel approaches. 

The length encoder developed in this thesis does not actively manage the level of co

activation of antagonistic muscles. It should be extended to include an input that 

would allow for varying levels of co-activation in the arm. Initial work should develop 

an analytical inverse dynamic model of the arm and use that to generate the ideal 

rest length for any given equilibrium point and level of co-activation, which could then 

be used to train an MLP. If this is successful an attempt should be made to replace 

the analytical inverse dynamics with an online learning method. This would hold the 

potential for the system to adapt to gradual changes in the arm's mechanics or the task 

dynamics. 

In drawing together the work that has been presented in this thesis, two key questions 

must be addressed; does the area investigated warrant engineering attention, and is 
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the work presented a justified response? In answering these questions it is important 

to reconsider what we understand by evolution, the driving force behind all biological 

systems. Engineers often assume that it is equivalent to an incremental optimisation 

process. This is unfortunately a misleading assumption. 

Biological evolution provides nothing more, nor less, than a continual drive to give a 

germ line a competitive reproductive advantage. With this in mind, every stage of the 

process must be justifiable in its own right, without reference to any abstract, long term 

goals. Powered flight is a good example of this. The morphological differences between 

flying creatures and their land bound counter parts are dramatic. We must therefore 

look at intermediate behaviours that could be improved with some, but not all of the 

flight adaptations. These may include passive flight, assisted jumping, or wing assisted 

incline running, a process where wings are used to generate increased down force and 

therefore increase the incline up which an animal can run (Dial, 2003). For powered flight 

to develop, the successful performance of these intermediate behaviours must result in 

competitive reproductive success. That said, development that improves the success of 

these behaviours may introduce changes that are detrimental to the later performance 

of powered flight. 

We must, therefore, consider the process not as an optimisation toward a single objective 

but as a series of optimisations toward a range of intermediate objectives, each of which 

must be individually justified. What implications does this have for the morphology 

and behavioural responses of the resulting animals? The current state of both these 

characteristics will be determined by past as well as current evolutionary objectives. In 

point of fact, many parts of the system may well be highly suboptimal or even disad

vantageous in the current context of the animal. Distinguishing currently useful from 

historically useful characteristics is perhaps the greatest challenge faced by engineers 

who look to nature for inspiration. 

So what tools are available to help make this distinction? One strong clue is convergent 

evolution. There are some characteristics that have evolved in more than one strand of 

the evolutionary hierarchy. The strongest factor linking them is the fundamental physics 

of the environment. These physical realities must also be confronted and exploited by 

artificial systems, and it is through this link that we can justify seeking inspiration 

from natural systems. Only to the extent that it can be demonstrated that the natural 

and artificial systems are attempting to solve the same problem can any imitation be 

justified. 

So are there reasonable parallels between biological reaching and artificial reaching? 

The answer is, predictably, yes and no. At higher levels there are some strong parallels. 

Foremost of these is the requirement to integrate visual and proprioceptive information 

into a unified, manageable, body space. Although this is effectively about internal 

representation, rather than real-world physics, the complexity of such systems is a direct 
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result of the body and the environments natural geometry. These are problems common 

to both artificial and biological articulated manipulators. Such encodings have been the 

main focus of this research and are therefore justifiable. 

At implementation level, the parallels between artificial and biological systems seem 

somewhat weaker. There is a fundamental difference between the physical and neuro

logical morphology; parallelism vs lumping. Natural systems typically rely on many, 

poor quality, independent actuators, processors and sensors. This parallelism allows 

the system performance to degrade gradually, allowing it to continue to work in the 

presence of wear and tear. In contrast engineering systems tend to rely on high quality 

'lumped' actuators, processors and sensors. This reduces the system complexity and 

wiring requirements significantly, but unfortunately means that the system is prone to 

catastrophic, rather than gradual, failure. 

So are techniques inspired by the extremely parallel biological approaches suited for 

implementation in a lumped engineering context? To some extent the worlds are not as 

dissimilar as the previous paragraph presented them. As mentioned in the discussion 

of muscles, it is possible that Renshaw cell inhibition may be capable of allowing one 

input signal to control the activation of an entire muscle. If this is the case, then it is an 

example of a natural system creating a lumped interface to a parallel system. It may be 

possible for an engineering system to work at this level even though the actuators are 

implemented using different mechanical substrates. 

Equally, engineering systems are learning to cope with less than reliable hardware. 

A modern super computer will, for example, happily run with a reasonable percentage 

of its processing nodes broken or disabled. As engineering continues to explore the 

possibilities of micro- and nano-robotics it will have to adapt to and exploit imperfect 

hardware, and it is possible that imitating the parallelism prevalent in nature may be one 

way of achieving this. It seems likely that as biologists and engineers continue to share 

ideas and insight, there will be strong growth in the availability of actuators, sensors 

and processing units with more natural characteristics. 

Of particular importance to this work is the availability of compliant actuators that are 

suitable for mobile robotic applications. Compliance, both in structural members and 

actuators, is extremely common in naturally occurring systems. Where advantageous, 

animals have developed stiff materials, bones and tendons being the exemplars. Yet, 

even for vertebrates, these stiff structures are connected with a wide range of compliant 

components, typically cartilage and muscle. This creates an overall system whose 

rich dynamics are the result of the complex interplay between compliant and rigid 

components. It would be unwise therefore to assume that the compliance found so 

universally in biological actuators is merely the result of poor raw materials. If it were, 

then we would eventually expect to see some classes of animals developing alternatives. 
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There are several potential benefits to compliant actuation, which include improved 

manipulation dynamics, simplified control requirements, improved energy efficiency and 

a reduction in the damage caused by environmental interaction. As robotic systems 

move away from structured environments, into more natural ones, it is likely that 

compliant construction and actuation will begin to confer similar advantages. There is 

currently significant engineering interest in the development of more compliant actuator 

technologies such as series-elastic actuators, electro-active polymers, deformable air

muscles and coiled shape-memory alloys. Currently none of these artificial actuators 

provide the required performance characteristics, but some may do better than others. 

An important piece of future work would be to assess the range of currently available 

actuators and catalogue their transfer functions, from an equilibrium trajectory control 

perspective. It is unlikely that this work will yield immediate results, but for those 

interested in bio-robotics this is probably one of the most important restricting factors. 

It is therefore essential that a good dialogue is fostered between the materials developers, 

robotic engineers and biologists. 

As these technologies mature they will present novel control challenges, and it therefore 

seems reasonable to turn to nature for inspiration. Although this thesis does not present 

a complete simulation of the convergent equilibrium trajectory control, when considered 

alongside other modelling work (Gribble et al., 1998), it presents a framework that 

deserves further study. It holds the promise of a flexible and trainable system that 

could be used to equip autonomous robots with compliant reaching control; an essential 

precursor to dexterous manipulation in an uncertain environment. In this context, the 

work presented here will provide a useful foundation for exploring exciting new control 

problems and it is hoped that this will eventually result in improved manipulating robots. 
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Manipulation Simulation Client 

The content presented in this appendix is largely drawn from Sunder land et al. (2004a, b). 

For this research, it was necessary to simulate the accurate, real-time dynamics of 

physical hardware (a manipulator), with a requirement for flexible and intelligent control 

actions. Also, to decrease development time, we wanted to minimise the amount of 

bespoke code by exploiting proprietary, commercial software. We therefore needed a 

framework that could couple together the different proprietary software components. 

Figure A.l shows a block diagram of the overall simulation environment. Two commer

cial packages were used - Vortex Simulation Libaries (2002) and MATLAB (1984) -

together with a bespoke C++ object hierarchy that mirrors the manipulator structure, 

with Python (2003) used for scripting. Vortex is a very capable package for modelling 

physical dynamics and collisions between solid objects. It is supplied with a lightweight 

Matlab Python 
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FIGURE A.1: The simulation environment combines several different software compo
nents. 
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OpenGL/DirectX viewer that was adequate for this work (Fig. A.2). Vortex has ex

tensive documentation, and is easily integrated with other libraries to create powerful 

simulation programs. MATLAB is the industry standard package for rapid mathematical 

algorithm prototyping, especially for control applications. 

A.I Simulation Configuration Files 

As discussed in Chapter 2, robotic control has largely been based on Denavit-Hartenberg 

parameters. These are highly compact and quite flexible. However, they are not 

a description of a 'real' robot in that they do not contain information about motor 

specification, physical link shape and dynamics, and sensor placement. They also have 

a very limited structure: basically a list of joint-link pairs, with four parameters apiece. 

This description has several properties that facilitate mathematical analysis, but since 

we are doing fully-featured physical simulation, these properties are not especially useful 

in this work. 

A MATLAB robotic toolbox (Corke, 1996) is already available that will handle joint

link based simulations directly. However, it does not perform collision detection and is 

therefore unsuitable for simulation of manipulators in their environment. It was used 

when proving the mathematics behind some of the simulation transformations. A more 

versatile alternative is provided by Vortex itself, which provides a way to load and store 

simulation objects directly from XML files. However, Vortex's XML files do not allow 

any structuring or labelling information (e.g., joint names like 'wrist') to be stored and 

made available to other system components (like MATLAB) which use them. 

There are a variety of other robotic simulation environments available. However, these 

are either tailored toward mobile robotics and path-finding, making them unsuitable 

for simulation of manipulation tasks (Gazebo, 2004; DynaMechs, 2004), or are in the 

early stages of development (OpenSim, 2004). Where real-time rigid body simulation is 

performed by these systems, the Open Dynamics Engine (ODE) (Engine, 2004) is used 

instead of the Vortex simulation libraries (Vortex Simulation Libaries, 2002). 

At configuration time, a family of C++ objects parse an XML file using libxm12 and 

store the results using standard template library container classes. Using libxm12 

reduces coding and debugging time and will benefit from future releases. At the same 

time, XML allows us to exploit standard tools to write, modify and verify the simulation 

description files, which can be used easily by all stages of the system. There may come a 

point where the simulation requires large amounts of binary data (height fields or vertex 

meshes), in which case external files should be referenced rather than included directly 

(in much the same way as an image in HTML). 
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FIGURE A.2: Screen shots taken from MaSC simulation of a Selective Compliance 
Assembly Robot Arm (SCARA). 

A.2 Example Configuration File 
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Configuration files used by the simulator are generated using a multi-step process. In 

stage one, a MATLAB script converts the contents of a struct, which defines the arm 

and poses parameters, into a simple XML file. The pose will be used to determine the 

initial location of the arm and the arm parameters will be used to build a Vortex model 

that aligns with the MATLAB model. This helps ensure that the two models are kept 

synchronised, and therefore reduces the chance of experimental error. A sample of this 

XML file is included here: 

<params> 
<param name="basepos_x" value=IO" /> 
<param name="basepos_y" value=IO.05" /> 
<param name="lenl" value=1460" /> 
<param name=llen2" value=1340" /> 
<param name="ml" value=1153 .333333333333" /> 
<param name=lm2" value=1306.666666666667" /> 
<param name=ljClo" value=I-1.39626340159546" /> 
<param name="jl_hi" value=11.39626340159546" /> 
<param name=lj2_1o" value=I-2.75756004091423" /> 
<param name=lj2_hi" value=IO.167491430954648" /> 
<param name="sa_f" value=150" /> 
<param name=" sa_e " value=140" /> 
<param name=" el en_f" value=150" /> 
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<param name="elen_e" value="20" /> 
<param name="eang_f" value="-O.275762021815104" /> 
<param name="eang_e" value="2.86583063177469" /> 
<param name="pose_ang_s" value="-O.121565211822889" /> 
<param name="pose_ang_e" value="-2.70343593199608" /> 
<param name="pose_elbow_x" value="-O.55782367281063" /> 
<param name="pose_elbow_y" value="4.61605220623375" /> 
<param name="pose_tip_x" value="-O.55782367281063" /> 
<param name="pose_tip_y" value="4.61605220623375" /> 

</params> 
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Some of the included parameters are redundant and are not currently used by the 

following stages. They are, however, useful for testing purposes and have therefore 

been maintained. A second XML file is also used, which contains the extra parameters 

that are only required by the Vortex arm model: 

<params> 
<param name="width_1" value="20" /> 
<param name="width_2" value="20" /> 
<param name="density_1" value="1" /> 
<param name="density_2" value="1" /> 
<param name="joint_damping" value="30000" /> 
<param name="joint_stiffness" value="1000" /> 
<param name="max_force" value="10000" /> 
<param name="min_force" value="-1000" /> 

</params> 

A python script (genarm. py) is then used to convert the two configuration files into a 

single XML document that contains the structure of the arm model, including sensors 

and actuators. It also generates a patchbox element which controls the order in which 

the sensors and demands are written to, and read from, the control socket. 

<sim-world lin_unit="mm" rot_unit=" rads ll
) 

<patchbox> 
<in name="SH_FLEX"/> 
<in name="SH_EXT"/> 
<in name="EB_FLEX"/> 
<in name="EB_EXT"/> 
<in name="TJ_FLEX"/> 
<in name="TJ_EXT"/> 
<out name="ANG_1"/> 
<out name="ANG_2"/> 
<out name="ANG_1_VEL"/> 
<out name="ANG_2_VEL"/> 
<out name="SH_FLEX_LEN"/> 
<out name="SH_EXT_LEN"/> 
<out name="EB_FLEX_LEN"/> 
<out name="EB_EXT_LEN"/> 
<out name="TJ_FLEX_LEN"/> 
<out name="TJ_EXT_LEN"/> 
<out name="SH_FLEX_FRC"/> 
<out name="SH_EXT_FRC"/> 
<out name="EB_FLEX_FRC"/> 
<out name="EB_EXT_FRC"/> 
<out name="TJ_FLEX_FRC"/> 
<out name="TJ_EXT_FRC"/> 
<out name="EB_X"/> 
<out name="EB_Z"/> 
<out name="TIP_X"/> 
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<out name="TIP _Zoo /> 
</patchbox> 
<floor height="-50" size="1500"/> 
<anchor fixed="true"> 

<box depth="10.0" length="10.0" TNidth="10.0"/> 
<acti ve-spring-base linear _enc="SH_FLEX_LEN" max-force=" 10000" min-force="-1000" 

response_enc="SH_FLEX_FRC" sink_id="SH_FLEX"> 
<attached-at> 

<position x="-50.000000" y="O.OOOOOO" z="O.OOOOOO"/> 
</attached-at> 

</active-spring-base> 
<active-spring-base linear_enc="SH_EXT_LEN" max-force="10000" min-force="-1000" 

response_enc="SH_EXT_FRC" sink_id="SH_EXT"> 
<attached-at> 

<position x="40.000000" y="O.OOOOOO" z="O.OOOOOO"/> 
</attached-at> 

</active-spring-base> 
<acti ve-spring-base linear _enc="TJ _FLEX_LEN" max-force=" 10000" 

min-force="-1000" response_enc="TJ_FLEX_FRC" sink_id="TJ_FLEX"> 
<attached-at> 

<position x="-50.000000" y="O.OOOOOO" z="O.OOOOOO"/> 
</attached-at> 

</active-spring-base> 
<acti ve-spring-base linear _enc="TJ _EXT_LEN" max-force=" 10000" 

min-force="-1000" response_enc="TJ_EXT_FRC" sink_id="TJ_EXT"> 
<attached-at> 

<position x="40.000000" y="O.OOOOOO" z="O.OOOOOO"/> 
</attached-at> 

</active-spring-base> 
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<j oint-link axis="y" densi ty=" 1 . 000" ini t_offset="-O. 122" pes_enc=" ANG_l" vel_enc=" ANG_l_ VEL"> 
<upper-limit damping="30000" range="1.39626340159546" stiffness="1000" /> 
<loTNer-limit damping="30000" range="-1.39626340159546" stiffness="1000" /> 
<box depth="20.0" length="460.0" TNidth="20.0"/> 
<attached-at> 

<position x="O.OOOOOO" y="O.OOOOOO" z="O.OOOOOO"/> 
</attached-at> 
<locally-attached-at> 

<position x="O.OOOOOO" y="O.OOOOOO" z="-230.000000"/> 
</locally-attached-at> 
<global-axis-sensor axis="x" src_id="EB_X"> 

<attached-at> 
<position x="O.OOOOOO" y="O.OOOOOO" z="230.000000"/> 

</attached-at> 
</global-axis-sensor> 
<global-axis-sensor axis="z" src_id="EB_Z"> 

<attached-at> 
<position x="O.OOOOOO" y="O.OOOOOO" z="230.000000"/> 

</attached-at> 
</global-axis-sensor> 
<active-spring-tip label="SH_FLEX"> 

<attached-at> 
<position x="O.OOOOOO" y="O.OOOOOO" z="-76.666667"/> 

</attached-at> 
</active-spring-tip> 
<active-spring-tip label="SH_EXT"> 

<attached-at> 
<position x="O.OOOOOO" y="O.OOOOOO" z="-76.666667"/> 

</attached-at> 
</active-spring-tip> 
<active-spring-base linear_enc="EB_FLEX_LEN" max-force="10000" min-force="-1000" 

response_enc="EB_FLEX_FRC" sink_id="EB_FLEX"> 
<attached-at> 

<position x="O. 000000" y="O. 000000" z="76. 666667" /> 
</attached-at> 

</active-spring-base> 
<active-spring-base linear_enc="EB_EXT_LEN" max-force="10000" 

min-force="-1000" response_enc="EB_EXT_FRC" sink_id="EB_EXT"> 
<attached-at> 

<position x="O.OOOOOO" y="O.OOOOOO" z="76.666667"/> 
</attached-at> 

</active-spring-base> 
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<j oint-link axis="y" densi ty=" 1 . 000" ini t_offset="-2. 703" pos_enc=" ANG_2" vel_enc=" ANG_2_ VEL"> 
<upper-limit damping="30000" range="2.75756004091423" stiffness="1000"/> 
<lower-limit damping="30000" range="-0.167491430954648" stiffness="1000"/> 
<box depth="20.0" length="340.0" width="20.0"/> 
<attached-at> 

<position x="O.OOOOOO" y="O.OOOOOO" z="230.000000"/> 
</attached-at> 
<locally-attached-at> 

<position x="O.OOOOOO" y="O.OOOOOO" z="-170.000000"/> 
</locally-attached-at> 
<active-spring-tip label="TJ_FLEX"> 

<attached-at> 
<position x="-13.614012" y="O.OOOOOO" z="-121.889100"/> 

</attached-at> 
</active-spring-tip> 
<active-spring-tip label="TJ_EXT"> 

<attached-at> 
<posi tion x="5. 445605" y="O. 000000" z="-189. 244360" /> 

</attached-at> 
</active-spring-tip> 
<active-spring-tip label="EB_FLEX"> 

<attached-at> 
<position x="-13.614012" y="O.OOOOOO" z="-121.889100"/> 

</attached-at> 
</active-spring-tip> 
<active-spring-tip label="EB_EXT"> 

<attached-at> 
<position x="5.445605" y="O.OOOOOO" z="-189.244360"/> 

</attached-at> 
</active-spring-tip> 
<global-axis-sensor axis="x" src_id="TIP_X"> 

<attached-at> 
<position x="O.OOOOOO" y="O.OOOOOO" z="170.000000"/> 

</attached-at> 
</global-axis-sensor> 
<global-axis-sensor axis="z" src_id="TIP_Z"> 

<attached-at> 
<position x="O.OOOOOO" y="O.OOOOOO" z="170.000000"/> 

</attached-at> 
</global-axis-sensor> 

</joint-link> 
</joint-link> 

</anchor> 
</sim-world> 

It is clear that the final configuration file contains many parameters and complex 

structural information. Careful examination will reveal that the intrinsically tree-like 

structure of the arm model is reflected in the nesting of the XML configuration. This 

allows all the parameters that control the behaviour of a modelling component to be 

defined in a context that indicates their locations within the model. This removes 

the necessity for there to be a separate table of information defining how the various 

components interconnect. 

A.3 Socket Interface 

A Vortex-based client (MaSC) was developed that would execute the physical simulation 

while interacting with a MATLAB-driven controller, via a UNIX-socket. MATLAB 
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provides a direct C-interface, via late linked pre-compiled binary files (so called MEX

files). These files have access to the MATLAB workspace, and share its file descriptors. 

Note that the file descriptor numbers provided within MATLAB do not map directly 

to the operating system ones (here Linux), and so care must be taken when sharing 

descriptors between MEX-files and standard MATLAB M-files. Each MEX-file is loaded, 

run and then removed from memory, so any state information required must be read 

from the MATLAB workspace and then stored before termination. 

The link provided by the socket contains a stop byte followed by a block of floating 

point values (either actuator or transducer signals, depending on direction). Although 

this limits the communication options available, it has the advantage of ensuring that 

the controller is only presented with information that it could reasonably gain from a 

real robot. The test configuration file provides the option to label each actuator and 

transducer. It also includes a PatchBox element, which contains a list of input and 

output labels. After loading a test configuration, the simulation environment scans 

through the PatchBox, looking for matches between the labels specified there and those 

in the rest of the file. It then presents and receives the information in the order given in 

the PatchBox, and forwards the information appropriately. This gives the test designer 

complete control over which inputs/outputs are transmitted over the socket and over 

the order of transmission. 

AA Further Comments 

Further notes and comments are provided directly in the code itself and are written such 

that the doxygen documentation package can automatically extract them to create a 

manual in either HTML or texinfo formats. This is research code and there has therefore 

been limited time invested in ensuring portability or providing install and maintenance 

scripts. That said, all submitted C++ code uses the same coding conventions and is 

written to be as clear and reusable as the task permitted. It is hoped that it will provide 

a useful research tool for future work in this field. 
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Software Catalogue 

This appendix catalogues some of the software engmeermg effort that has gone into 

producing the results presented in this thesis. It is intended to give a flavour of the 

work, rather than a detailed breakdown, and is naturally therefore fairly terse. For 

more detail, the interested reader is advised to explore the source code directly. 

B.l Manipulation Simulation Client 

Header Source(s) Notes 

main.cpp Initialises drivers and registers parsers. Catches 

top level errors and reports them to cerr. 

makefile Modified version of standard Vortex makefile. 

ActiveSpring.h ActiveSpring.cpp Model spring actuator response function - cur-

rently bypassed to allow MATLAB to contain 

actuator model. 

BodyTree.h BodyTree.cpp Defines three key base classes; Platform, Attach-

ment and Parser. An object that is to be attached 

to a model must derive from Platform and/or 

Attachment. This allows for proper configuration 

and running. Any such object must also define 

a custom parser which registers with a static 

function of Platform. This parser is responsible 

for recognising appropriate XML definition and 

creating a new instance from that. In this way 

each object type (jointlink, sensor, actuator etc) 

can be defined in an entirely independent manner. 

Camera.h Camera.cpp Defines a CameraTarget object which can be at-

tached to a model. If such an object is included in 

a model the camera orientation will be continually 

updated to track it. 

CollisionReader.h CollisionReader.cpp Provides access to simulation libraries list of 

current collisions (or near collisions) . This is 

an essential utility class for any sensor which is 

designed to measure contact. 

CommunicationsCenter.h CommunicationsCenter.cpp Convenience class that combines a PatchBox with 

a ScriptReader. 
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Driver.h Driver.cpp Reads command line arguments and configures 

and initialises the simulation libraries appropri-

ately. Contains the main update loop as a static 

function. 

Error.h Error.cpp Defines base Error class with basic functions for 

overloading. 

Geometry.h Jacobian.cpp Utils for calculating and updating orientation us-

ing Jacobians. 

Frame.cpp C++ wrapper for Homogeneous transforms. 

Makes difference between handling own memory 

(InternaIFrame) and handling a matrix created by 

another class/function (ExternaIFrame) explicit. 

ImagePath.h Defines location of required textures 

ImpulseGenerator.h ImpulseGenerator.cpp An attachment that responds to script events by 

adding an impulse force to the object to which it 

is attached. 

JointLink.h JointLink.cpp Creates a shape and attaches it to a parent via 

a joint which is optionally motorised. Contains 

definition for joint angle encoder and joint velocity 

encoder sensors. 

Limit.h Limit.cpp Defines the mechanical properties of a limit for 

either an angular or linear joint. This includes 

limit stiffness and damping. 

LinearActuator.h LinearActuator.cpp Contains two classes, derived from Attachment; 

BaseUnit and Tip. These model a linear actuator 

running from one to another. The BaseUnit pro-

vides all the wiring connections (for both sensing 

and actuation). Class must be further derived to 

define how the force generated will be related to 

the input demand signal (see ActiveSpring). 

LocalSocket.h LocalSocket.cpp Creates a socket for communicating with the 

controller. Either uses a local unix file socket 

or a TCP lIP socket depending on command line 

options. 

LogWriter.h LogWriter.cpp A singleton class that controls log indentation and 

printing. 

Model. h Model.cpp Base class for all physical objects. Contains 

derived classes, StaticModel and DynamicModel, 

which should be further derived. Contains infor-

mation about Shape and initial location. 

Motor.h Motor.cpp Contains the wiring and motor parameters for a 

joint, if it is motorised. 

Recordable.h Recordable.cpp Contains a base class for those objects which wish 

to dump details to record. 

Recorder.h Recorder.cpp Framework to capture entire state of simulation on 

a frame by frame basis not currently in use. 

RoboSim.h Top level definition of RoboSim namespace - no 

real content. 

Script.h Script.cpp Contains classes required to allow scripted events 

in simulation (Actor, Event, Parser, EventFrame, 

Reader). Provides extensible framework, as each 

event type can handle its own parsing, data storage 

and physical model independently. 



Appendix B Software Catalogue 114 

Sensor.h Sensor.cpp Defines some of the sensors that can be attached 

to the model, specifically; CollisionSensor, Prox-

imitySensor, SlipSensor, Accelerometer and Glob-

alAxisSensor. The last of these is not physically 

authentic, but has proved useful. 

Shape.h Box.cpp Defines graphics, collision, and inertial models for 

primitive shapes. 

CompositeShapeBase.cpp 

Cylinder.cpp 

Sphere.cpp 

Shape.cpp A wrapper class that may represent any shape, 

contains a ShapeBase. 

ShapeBase.cpp A base class for all the types of shape. 

SimWorld.h SimWorld.cpp 

Anchor.cpp Fixed body that can collide, but never move. 

FreeBody.cpp Free body that can collide and move. 

Floor.cpp Fixed plane that can collide, but never move. 

VortexBase.h VortexBase.cpp Base class of all simulation objects. Contains 

static pointers to important parts of underlying 

simulation libraries. 

Wiring.h Wiring.cpp Contains the classes required to correctly connect 

actuators and transducers to the LocalSocket, 

giving complete control over ordering. 

XmlInterface.h XmlLogable. cpp Base class for any object which wishes to write to 

the log. 

XmlCursor.cpp Wraps libxml calls in C++ and provides a single 

location for unit conversions. 

B.2 MATLAB to MaSe Link 

I Source Notes 

connection.h Defines struct to contain connection details and prototypes public functions. 

connection.c Allocates buffers and contains reading/writing functions. 

controller_test~ain.c Non matlab test stub for connection functions. 

linkutil.h Prototypes function to convert configuration information between MATLAB 

arrays and connection struct. Also includes wrapper to call MATLAB error 

function. 

linkutil.c Implementation of above. 

launchchild. c Stand alone mex function that allows MATLAB to fork a child and set its 

command line parameters. Used to launch the MaSC from within MATLAB 

linkclose.c Uses config struct information to close the connection. 

linkopen.c Attempts to open connection, return config struct on success, else failure 

struct. 

linkupdate.c Reads transducers values and sends actuator demands. 

Makefile Builds mex files for MATLAB to use. 



Appendix C 

Spring Tower Force Calculations 

This appendix describes the mathematical steps required to calculate the force that 

would be required to balance that exerted by the tip of a fully specified spring tower 

(Fig. C.l). Table C.l defines the terms used in this analysis. 

J 
S 
D1...J 

e1...5 

CY1...5 

C1...J 

m1...J 

I nl...J 

I ext 

Is 
Ie 
t 

I ext 

ibl... J 

N umber of joint frames 
N umber of spring pairs (J l) 
Separation between cross-bar hinges 
Rotation between each cross-bar 
Rotation between each cross-bar its vertical-link 
Hinge points for each cross-bar 
End cross-bar parameters (2 by S) 
The net force on the base of each frame 
Balancing force required at the tip 
The force developed by an actuator starting on this frame 
The force developed by an actuator starting on the previous frame 
Torque developed around the base of a frame 
Balancing force required at the tip 
Force along each vertical-link 

TABLE C.l: Table of symbols 

We define each cross-bar as a parametric line, whose parameter, t, passes through zero 

at the point where its vertical-link connects it to the next cross-bar. Note that x, m 

and c are two dimensional column vectors: 

(C.l) 

Let us define m1, C1 and CY1 so that that first cross-bar is aligned with the x-axis, passing 

through the origin when p = 0, and the first vertical-link is aligned with the y-axis. To 
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FIGURE C.1: Spring tower. The springs shown represent series-elastic actuators, 
(springs with a motor driven base offset, allowing them to exert a range of forces 
at any given length). The structure comprises 3 T-frames, but as the base frame is 

rigidly clamped, there are only 6 moving components (2 T-frames and 4 actuators). 

define completely the structure of a J cross-bar system, we must define angles fh ... J-l 

angles and separations D1...J. 

Vj 

Uj 

Wj 

[ cos a, 
-smaj 

7r 
al =--

2 

sinaj 1 mj cosaj 

[ ~ -1 1 m· o J 

[ ~ -1 1 V· o J 

Appropriate values for m and c can then be found by the following iteration: 

(C.2a) 

(C.2b) 

(C.2c) 

(C.2d) 

(C.3a) 

(C.3b) 
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-

V 
J,a 

.~ . m. 
j.a 

-. 
FIGURE C.2: The location of the ends of the acutator is defined using two parametric 

coordinates, p and q. 

Since the geometry is fixed, it is possible to calculate the position of the actuators 

and, therefore, their current length. From this, we can calculate the forces and torques 

that they exert on their attachment points (in this case the cross beams). These forces 

(f Sj,a and I ej.J and torques (tSj,a and tej ,J can be calculated for actuator a attached 

between cross-bars j and j + 1 using following equations (Fig. C.2): 

tj,a (Qj,a m j+I + CHI) - (Pj,amj + Cj) (C.4a) 

{k (It I n)~ Itj,al > nj,a 
I Sj,a 

o),a ),a - ),a Itj,a I (C.4b) 
Itj,a I ::; nj,a 

I ej,a - I Sj,a (C.4c) 

tSj ,a p' uri ),a ) Sj ,a (C.4d) 

t ej,a qj,au]+d ej,a (C.4e) 

Note that nj,a, kj,a, Pj,a and qj,a are elements of arrays N , K, P and Q respectively. In 

this case we are considering long actuators that do not resist compression; hence, no 

force is generated when the displacement between the end points is less than the 'rest 

length' of the acutators (Eqn. C.4b). 
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The torque created at each cross-bar must be balanced by a moment at the end of its 

vertical-link. For the base of cross-bar j: 

1 spring) 

1 twistj 

1 strutj 

1 ext) 

1 net) 

le_11 +le_12 +ls 1 +IS2 J, J, J, J, 

(tej _ 2 ,1 + te)_2,2 + t S)_l,l + t S)_1,2)Dj _ 1mj-l 

bjvj 

1 spring) + 1 twist) + 1 strutj f strutj -1 + 1 ext) 

1 spring) + It wist) + bjVj - bj - 1 Vj-l + ejWj 

a 

(C.5a) 

(C.5b) 

(C.5c) 

(C.5d) 

(C.5e) 

(C.5f) 

The ground will create a reaction force that will balance the component of 1 net 3 that is 

aligned with the second vertical-link, V2. 

If we substitute Equation. C.6 into Equation. C.5f yeilding: 

1 net3 Ispring3 + Itwist3 + b3V 3 + e3 W 3 -

VfUspring3 + Itwist3 + b3V 3 + e3 w 3)v2 

(C.6) 

(C.7) 

This can be simplified by noting that Vj and Wj are perpendicular which implies: 

This means that Equation. C.7 can be reduced as follows: 

i net3 

i net3 

v§(WfUspring3 + Itwist3 + b3V 3 + ej W 3)w2)V3 

wf(V§Uspring3 + ItwistJ V 3)W2 + bV3 + ejW 3)w2)V3 

(C.8) 

(C.g) 

(C.lO) 

(C.11) 

We now have enough information to iterate the net force up the tower to the tip. 

The equations presented allow for the analysis of any static configuration, but do not 

include dynamic terms (inertia and damping) and would not therefore permit frame-by

frame simulation. The equations will not be extended to include these terms as they 
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would further complicate matters and such simulation is better performed by a generic 

Newtonian simulator. 
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