
UNIVERSITY OF SOUTHAMPTON

Biologically Inspired Control Techniques

for Compliant Reaching

by

R. M. Sunderland

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

March 2006

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by R.M. Sunderland

This research aims to add to the understanding of manipulation and actuator control

with the objective of facilitating the future development of fully autonomous manipulat

ing agents. As a first stage along this path, the work presents a simulated implementation

of two techniques designed to control a two degree of freedom arm, equipped with six

compliant actuators.

After preliminary modelling with a static arm, the first technique, inspired by a biological

motor theory called convergent force field control, seeks to use a multi-Iayer-perceptron

(MLP) to steer a custom built dynamic simulation of the arm towards predefined targets

within the workspace. The MLP is trained iteratively using mutation hill climbing. The

work demonstrates that this approach is capable of creating arm responses that move

towards a fixed target from any location within the workspace. That said, the learning

approach is not reliable and often gets stuck in local minima. The section concludes by

demonstrating the blending of two controllers, to create a smooth range of intermediate

results.

The second technique combines convergent force field control with another related bio

logical control theory, called equilibrium trajectory control. Key to the success of this

technique is the assumption that smooth natural movements of the tip of the arm can

be generated by constant rate movement of the arm's equilibrium point, with respect

to the workspace. The model proposed uses a form of convergent force field control to

guide an internal representation of the equilibrium point towards a target at a constant

rate. Various implementation options are considered with particular attention paid to

the way the equilibrium point is encoded internally. Initial development of the trajectory

generator and length encoder indicate that, for reasonable sizes of MLP, shoulder centred

polar encoding is the most computationally efficient scheme.

It is hoped that the work presented here will provide a foundation for techniques that will

bridge the gap between behaviour based control and low level coordination of complex

compliant articulated systems.

Contents

Acknowledgements

1 Context
1.1 Justification of Approach
1.2 Importance of the Problem
1.3 Autonomous Agent Approach and Context
1.4 Manipulation Cycle.
1.5 Dexterous End-Effectors
1.6 Workspace.
1.7 Grasp Types
1.8 Planar Reaching
1.9 Structure of the Thesis.

2 Artificial Manipulation
2.1 From Action to Actuation
2.2 Conventional Approach

2.2.1 Inverse kinematics and dynamics
2.2.2 Grasp metrics

2.3 Behaviour-Based Robotics ..

2.4

2.3.1 Embodied intelligence
2.3.2 The value of learning.
Conclusion

3 Biological Perspective
3.1 Neurological Context
3.2 Muscles

3.2.1 Motor units ..
3.2.2 Renshaw cell inhibition
3.2.3 Spindle and Golgi feedback

3.3 Control Models
3.3.1 Equilibrium control
3.3.2
3.3.3

Force control
Convergent force field control

3.4 Conclusion

4 Static Modelling of Convergent Force Field Control
4.1 System Model
4.2 Selecting Target Positions and Test Poses

ii

v

1

1
2
3
4

6
8
8
9

11

12
12
14
14
17
18
18
19
20

21
21
23

23

24
24
26
26
29
29
31

32
32

34

CONTENTS

4.3 Calculating Ideal Field Vectors
4.4 Learning Arm Activations . . .
4.5 Arm Model Retuning
4.6 Training Single Field Controllers
4.7 Results...
4.8 Conclusion

5 Dynamic Arm Modelling
5.1 Selection of Link Lengths
5.2 Selection of Joint Parameters
5.3 Redundancy...
5.4 Implementation.
5.5 Conclusion ...

6 Convergent Force Field Control Experimentation
6.1 Physical Modelling Environment
6.2 Actuator Models . .
6.3 Link Parameters ..
6.4 Feedback Encoding.
6.5 Method
6.6 Fitness Function ..
6.7 Mutation Algorithm
6.8 Trial Run
6.9 Selection of Mutation Rate
6.10 Selection of Network Capacity.
6.11 Blending Network Outputs
6.12 Discussion

7 Convergent Equilibrium Trajectory Control Model
7.1 Local Actuator Driver
7.2 Length Encoder
7.3 Trajectory Generator.
7.4 Gain Encoder
7.5 Control Signal Encoding

8 Trajectory Generation
8.1 Definition of Ideal Trajectories

8.1.1 Direction of movement.
8.1.2 Ensuring reachability ..
8.1.3 Target substitution ...
8.1.4 Joint deflection and clamping
8.1.5 Update generation summary

8.2 Trajectory Generator Implementation
8.3 Selection of Equilibrium Point Encoding
8.4 Comparison of Network Capacities
8.5 Model Free Update Normalisation
8.6 Conclusion

III

34
35
36
37
37
39

40
40
41
44
45
46

47
47
49
51
51
51
52
53
54
57
57
59
61

65
66
66
67
68
69

71

71
71

73
74
77
78

82
84
89
92
93

CONTENTS

9 Length Encoder
9.1 Procedure.
9.2 Results ...
9.3 Conclusion

10 Discussion and Conclusion

A Manipulation Simulation Client
A.l Simulation Configuration Files
A.2 Example Configuration File
A.3 Socket Interface . .
A.4 Further Comments

B Software Catalogue
B.l Manipulation Simulation Client
B.2 MATLAB to MaSC Link

C Spring Tower Force Calculations

References

IV

94

94
97

97

98

105

· 106

· 107
.110

· 111

112
.112
.114

115

120

Acknowledgements

My wife, Catherine, for her loving support, encouragement and proof-reading.

My supervisors, Richard Crowder and Bob Damper for their guidance, support and

considerate criticism.

Nigel Shadbolt, for his help in focusing the project.

Richard Watson, for his thoughtful questions and patient listening.

v

Chapter 1

Context

This research aims to add to the understanding of manipulation and actuator control

with the objective of facilitating the future development of artificial manipulators that

can work in a broader range of environments. Inspiration will be drawn from biological

and engineering studies, but although cross fertilisation will be likely, the overriding

objective will be the development of real-world artifacts.

The study of manipulation has been approached from several angles, including such

diverse fields as infant motor development, primate tool use, stroke rehabilitation and

industrial equipment design (Paul, 1981; Craig, 1986; Van der Meer et al., 1995; van

Schaik et al., 1999; Stevens and Stoykov, 2003). Due to its cross disciplinary nature,

the terminology associated with manipulation can be somewhat confusing. This chapter

explores the motivation for studying the subject and then outlines the basic manipulation

phases, while introducing the key terms.

1.1 J llstification of Approach

The goal of this work is to demonstrate that techniques inspired by biological studies of

movement may be usefully applied to the control of autonomous robotic manipulation.

There are various advantages envisioned for this approach that include robustness to

environmental disturbance, improved coordination of complex actuator configurations

and increased computational efficiency.

Conventional robotic manipulators are normally constructed to minimise the coupling

between actuators, such that each joint may be considered separately. This approach

is effective when using conventional motors or actuators, but may be less desirable

when building systems using 'soft actuators' such as electro-active polymers (Bar-Cohen,

2002), series-elastic actuators (Pratt and Williamson, 1995), deformable air muscles

(Tuffield and Elias, 2003; Boblan et al., 2004) and coiled shape memory alloys (Otsuka

1

1 Context 2

and Ren, 1999). For complex systems, including robotic arms and hands, to be developed

using such technologies, effective coordination of actuators is essential. At some stage

a desired action must be converted into appropriate actuator activation signals. This

conversion will generally require a complicated chain of transformations and processing,

all of which must be carefully considered when designing a complete manipulating agent.

Although this work will not attempt to analyse all the stages in this chain, they will be

considered when defining the interfaces for each stage.

It is tempting to ignore computational requirements, and assume that Moore's law will

soon supply the required processing power. While this is to some extent reasonable, it

should be remembered that mobile robots must manage their power budget carefully.

This means that, as processing power costs battery life, computational requirements

must be taken seriously from the design stage.

1.2 Importance of the Problem

The development of industrial tools which are capable of manipulating objects has

produced useful results; an excellent example of this is the automation of car production.

Although such systems rely on sensor-actuator coupling at a low level (servo-control)

they are not usually capable of autonomous behavioural flexibility. Within an industrial

setting this does not pose a problem, as each manipulator has a predefined task and is

presented with only a very limited range of environmental variation. There are, however,

several valuable tasks that require interaction with less well structured, more dynamic

environments, where a manipulator will have to cope with a dramatically wider range

of input variation. Remote exploration, toxic material handling and ordinance disposal

are exemplars of such tasks. The dynamics of delicate manipulation tasks typically have

short time constants; tactile feedback is therefore normally used to improve stability.

For the tasks considered, signal delay would render a remote operator incapable of

using tactile feedback stably (Goldberg, 2000) and it would be too costly or dangerous

to employ a human locally. If we are to create machines that can perform remote

manipulation, the low-level control of the interacting surfaces must be performed locally,

by the machine. Such devices should then be considered at least semi-autonomous. The

question then arises, 'How can a machine's controller interact with the world, through

its body, to achieve skillful manipulation?' The animal world is replete with examples

of systems which have answered exactly that question very successfully, so it seems

wise to turn to them for inspiration. Although the human may have very advanced

manipulation capabilities, many animals routinely complete difficult manipulation tasks;

from warren excavation to nest building, they all are managing materials to improve their

environment.

Chapter 1 Context 3

It has been argued that the opposable thumb, or more precisely the manipulation

capabilities it affords, played a pivotal role in the development of primate intelligence

(Bicchi, 2000). There are two immediate ways in which dexterous manipulation may aid

the development of intelligence. Firstly, it facilitates inspection of objects, allowing for

more detailed exploration of the environment. Secondly, it permits detailed modification

of objects, giving us finer control over our environment. To exploit these advantages, the

brain had to learn to connect this range of sensations to the range of available actions

in a useful way. It is probable that the brain and the hand developed in tandem, one

providing increased sense-act options and the other learning to exploit them. With this

in mind, it seems reasonable to think that the development of advanced manipulation

capabilities may playa central role in the study of more natural artificial intelligence.

From a more general engineering perspective, the design of manipulating agents is

challenging and likely to contribute indirectly to other fields. Manipulation tasks require

interrelating multiple control signals, in different reference frames, to coordinate the

activities of a high-dimensional system with a range of shifting apparent inertias and

time constants.

1.3 Autonomous Agent Approach and Context

Having decided that natural style manipulation is a valuable topic, from both a cognitive

science and an engineering perspective, the next step is to clarify what is meant by

manipulation. The Oxford English Dictionary defines the verb manipulate as "To

handle, especially with skill or dexterity; to turn, reposition, reshape, etc., manually

or by means of a tool or machine". Within the robotics literature, a manipulator is

taken to mean the body, and specifically the arm, of an articulated robot. Within the

context of this research manipulator will be given the more general definition of 'an

autonomous agent that is capable of modifying its physical environment usefully.'

The term agent is somewhat ambiguous, and is here considered to mean a system

that operates independently, contained within a shell, or 'body', which mediates its

interactions with the outside world. The exact interpretation of what constitutes a

body is context dependant. For an animal, or a robot, the body is a collective term

for its material components, whereas for a symbolic software agent it is the methods

through which it can sense and modify the rest of its environment. Although there

are interesting parallels between the two, physical agents typically have to deal with

significantly more complicated and tightly time-bound environmental interactions.

If a manipulation task requires a human operator, the mechanical and computational

components are seen as a tool, or extension, of the human and the whole considered as

a manipulator. This more holistic definition results from a desire to see the body and

controller as part of a unified whole, rather than as systems that should be assessed and

Chapter 1 Context

Manipulator
Applications

-------:==~==-------
to improve state

Manipulation
Research
Platforms

of the art in

(
Real

Valued

Manipulator
Simulations

I
I

implement .control
teclmi4ues
i!Jspfred by

FIGURE 1.1: A partial agent taxonomy, showing the context for the simulation work
presented. Solid lines show refinement of a class definition. Dashed lines show the

motivation.

4

developed separately. For more detail on the essential qualities of an agent, see Pfeifer

(1996, Chap. 4).

Figure 1.1 shows a partial agent taxonomy, highlighting the context for this work, in

terms of both technology and motivation. The work presented in this thesis involves the

implementation of real-valued virtual agents, that are designed to test the suitability of

control techniques inspired by vertebrate studies for use in both industrial and research

robots. In this context, real-valued is taken to imply that no symbolic logic is performed

by the agent, and that the state of this system is continuously variable (rather than

discrete). The work presented here uses virtual agents, rather than physical ones, so

care has been taken to restrict the information exchanged between the controller and

the environment/body to ensure authenticity. As well as considering the amount of

information available to a controller, it is also important to consider the quality of the

information. Physical agents must normally contend with sensor and actuator noise; for

those using analogue controllers, processing noise must also be considered.

1.4 Manipulation Cycle

Most manipulation tasks can be considered as a series of 'cycles' through four behavioural

phases: Approach, Closure, Modification and Release (Fig. 1.2). The objectives of each

Chapter 1 Context

rClosure\
Approach Modification

L Release~
---..... ~ Constrained
............. Unconstrained

FIGURE l.2: The stages of the constrained and unconstrained manipulation cycles.

phase are quite distinct and are discussed below.

5

Approach: The object of the approach phase is to reconfigure the manipulator so that

a graspable portion of the target object lies within the end-effector's working space.

There are two main components to this phase: reaching and pre-shaping. Reaching

describes the movement of the end-effector from its current position toward the target.

Pre-shaping describes the process of arranging the end-effector to allow close approach

without premature collision of the target and the digits.

Closure: During the closure phase, the manipulator attempts to reconfigure the end

effector to create a series of contacts between it and the target object. The force and

location of these contacts will depend on the nature of the modification required, but

generally should not damage the manipulator or the target.

Modification: The actual work of the manipulation task is performed during the

penultimate stage: modification. This could be as simple as a rotary or translational

repositioning, or as complex as reshaping clay. Most of the force exerted during this

phase is provided by the relatively small, finely controlled, actuators of the end-effector,

but where this is insufficient the more powerful arm actuators may be recruited, for

example when opening a door or pulling a rope. This recruitment process allows

the manipulator to trade precision for power, in order to optimise task performance.

As robotic manipulators must also handle tasks with differing power and precision

requirements, it seems likely that similar behavioural tactics will be beneficial.

Chapter 1 Context

.4'
x

z
A

Arm

Torso

End Effector

FIGURE 1.3: The components of an abstract manipulator: torso, arm and end-effector.

6

Release: Once the required modification has been achieved, the end-effector must

usually disengage from the target object without disturbing it inadvertently. It may be

desirable for the object to be left in a stable configuration, or it could be released during

a high speed movement (i.e., thrown). In either case, the coordinated, timely release of

contact points is important.

A significant subset of manipulation tasks do not require a closure phase (for example

spinning a pen on a desk, pushing a large box or punching something). Without a

closure phase, it is not possible for the end-effector to exert any pulling forces. There

are several reasons why an unconstrained manipulation cycle may be preferred. Firstly,

it may offer favourable system dynamics; only a non-constrained pen will keep spinning

between flicks. Secondly, it may be faster as the closure phase will take time, for example

deflecting a missile. Lastly it may be selected as a second best because no hand holds

are available.

1.5 Dexterous End-Effectors

Manipulation is often assumed to require some form of dexterous end-effector, such as a

hand or a robotic gripper; this is, however, not always the case. Observe a human trying

to retrieve their car keys from a trouser pocket while carrying a large pile of books and

papers and you may see chins, arm-to-torso pins and even teeth in use. If we consider

an octopus' tentacle, it does not have an end-effector as such, but is certainly capable of

manipulation tasks. We should therefore recognise the potential for many different parts

of a body to perform useful manipulation and resist the rush to categorise rigidly each

component. That said, many animals and robots have specialised end-effectors, that

are equipped with relatively small, high resolution actuators and their accompanying

sensors. Typically, they are not suitable for moving the body itself, and are restricted

to manipulating objects that are an order of magnitude smaller than the body. Figure

1.3 shows an abstract manipulator, with an end-effector.

Chapter 1 Context

FIGURE 1.4: Robonaut Hand, taken from Robonaut Website (2005). The robot is
shown screwing a nut onto a bolt under telerobotic control.

7

Development of dexterous end-effectors was initially inspired by work on prosthetic

hands and then by the need to handle objects in hazardous environments. Generally,

end-effectors designed for use as prosthetic hands have a very low load carrying capacity

and would only be suitable for a small range of manipulation tasks (Dubey, 1997).

There have been a number of significantly successful research robotic hands, including

the Stanford/ JPL hand, Utah/MIT hand and Belgrade/USC hand. The Stanford/ JPL

hand (Salisbury, 1982; Mason and Salisbury, 1985) has three fingers and is driven by

twelve DC motors, via tension cables. The use of tendons allows the hand itself to be

lighter but adds to overall drive complexity and weight. The Utah/MIT hand (Jacobsen

et al., 1984) has three fingers and an opposable thumb, each with four degrees offreedom.

It is equipped with optical and capacitive touch sensors. The Belgrade/USC hand (Bekey

et al., 1990) has the most fingers (four and an opposable thumb) but the simplest drive

system, relying on only four motors. These are built directly into the wrist, so the entire

end-effector is self-contained. This reduces its dexterity, but would make integration

with commercial robotic arms easier. Recent work by NASA (Lovchik and Diftler,

1999), focused on developing robots capable of extra vehicular activity (space walks), has

produced a very advanced self-contained hand, with near human dimensions (Fig. 1.4).

For a review of the development of robotic hands, including a discussion of key terms,

see Bicchi (2000).

Chapter 1 Context

Work Space

Torso
Shoulder

FIGURE 1.5: Section through a manipulator's workspace. The area of most dexterity is
shown in white, with an arrow indicating the gradual reduction in dexterity toward the
workspace perimeter. The workspace configuration will depend on the manipulator's

physical and control characteristics.

1.6 Workspace

8

The volume that a manipulator can reach, without moving its body, is referred to as

its workspace. A manipulator will not be able to reach its entire workspace with equal

dexterity, so we must consider the quality of any given location. Complex tasks that

require fine control must be performed near the optimal workspace location, whereas

simple tasks like pick-and-place can be performed over a large range of locations. Fig

ure 1.5 shows a section through a manipulator's torso and workspace. Robotics literature

presents a formal definition of workspace volume, based on robotic structure (Craig,

1986, p.102), but this does not give any measure of the varying quality of the space.

Many industrial robots are rigidly anchored, which means that world-coordinate space

and body-coordinate space are locked together. It is, however, worth noting that the

workspace is defined in body-coordinates and mobile manipulators are capable of moving

their bodies to align their optimum manipulation location to be near the target object.

1.7 Grasp Types

A review by Bicchi and Kumar (2000) defines the standard grasp types. Initial studies in

this field were driven by the requirement to build jigs that clamped work pieces securely.

Reuleaux (1875) defined form closure, the condition under which a positive combination

of the contact forces and moments acting on an object, without assuming any friction,

can resist any disturbing force. Further analysis determined the minimum number of

1 Context 9

contacts required to restrain planar and spatial bodies (Somoff, 1897; Markenscoff and

Papadimitriou, 1989; Markenscoff et al., 1990).

An alternative grasp type, called force closure, is achieved if and only if any arbitrary

external force or torque acting on the object can be balanced by pressing the finger tips

against the object at the selected grip points (Mishra et al., 1987). It is usually possible

to achieve force closure with fewer contact points than form closure. This means it can

be achieved with fewer fingers (assuming one contact per finger) and therefore a simpler

and cheaper end-effector can be used.

There are two broad categories of force closure, pinch grip and enveloping grip. With a

pinch grip, the only contact between the object and the end-effector occurs at the tips

of the fingers, while an enveloping grip (sometimes referred to as a power grip) also uses

the inside surface of the palm and fingers. An enveloping grip may be achieved with

even fewer actuators, but this is generally at the expense of dexterity.

1.8 Planar Reaching

As discussed, the approach phase of the manipulation cycle has two distinct components:

reaching and pre-shaping. The work contained in this thesis focuses on control of

reaching behaviours for compliant arms with two degrees of freedom. This aspect

of manipulation was chosen for four reasons. Firstly, reaching is commonly used by

researchers studying animal motor control, so there will be literature available for

inspiration and assessment of results. Secondly, it allows a physical model to be built

with a manageable number of configuration parameters. Thirdly, constraining the

movement to two dimensions dramatically simplifies the graphing, and therefore analysis,

of results. Lastly, a reaching phase is required for nearly all manipulation tasks, and as

such should not be overlooked.

Figure 1.6 shows photographs of two research robots that are capable of compliant

reaching. The Mohl (1997) arm used series elastic actuators to control a simple two

degree of freedom reaching arm. In contrast Zar 5 (Boblan et al., 2003), uses FESTO

fluidic muscles (deformable air muscles) with pulse width modulated switching valves.

Both these robots would provide interesting platforms on which to develop compliant

reaching techniques. Within the time scale of a single PhD it is not possible to build

robotic machinery of a similar complexity to Zar 5, but its existence is worth noting

as evidence that the control techniques explored in this thesis will have real-world

applications in the medium term.

Chapter 1 Context

(a)

(c)

Motor des
zweiten Armes

Positionsmotor
des ersten Arms

Positionsmotor des zweiten Arms

Federn zur elastischen
Kopplung des Antriebes

-- Motordes
ersten Armes

(b)

FIGURE 1.6: (a) and (b), Compliant arm driven by antagonistic series elastic actuators.
SOURCE: Der bionische Roboterarm of Technische UniversiUit Darmstadt Website
(2005). (c) Zar5 robot driven by FESTO fluidic actuators. The actuators' pressures
are continually adjusted using pulse width modulated values. The hand control signals
are generated remotely using a data glove. SOURCE: Humanoider Muskelroboter ZAR

of Technischen Universitat Berlin Website (2005).

10

Chapter 1 Context 11

1.9 Structure of the Thesis

The following chapters explore the topic of manipulation, first from a robotics perspec

tive and then a biological one. A preliminary modelling experiment is then presented.

Chapter 5 then introduces a more complicated arm model and justifies its parameters.

The subsequent chapter presents a dynamic simulation of the arm model that is used to

train a series of independent field controllers.

Chapter 7 introduces a more advanced controller model and details some potential

configuration options. Finally, chapters 8 and 9 present an implementation of two key

controller modules.

The work reported in this thesis contributed to the following papers:

• An approach to the simulation of robotic systems using XML-based configuration

files. (Sunderland et al., 2004a) Proceedings of DETC'04, Design Engineering

Technical Conferences, Salt Lake City, UT.

• Flexible XML-based configuration of physical simulations. (Sunderland et al.,

2004b) Software Practice and Experience.

• A framework for biologically-inspired control of reaching motions. (Sunderland

et al., 2005) Proceedings of 3rd International Symposium on Adaptive Motion in

Animals and Machines (AMAM 2005).

Chapter 2

Artificial Manipulation

The development of artificial manipulators serves two purposes: deepening our un

derstanding of manipulation theory and creating machines that can do useful work.

From a research perspective the former is more attractive because, although it will take

longer to produce commercially-exploitable results, proper development of manipulation

theory may eventually allow the construction of autonomous artificial systems capable

of robust manipulation behaviours. This would pave the way for more physically

interactive independent robots that would further our understanding of intelligent action

and perform useful work.

2.1 From Action to Actuation

For a manipulator to achieve useful work, a 'task' must be converted into a series

of actions, which in turn must lead to timely activation of the actuators. It is not

essential for the manipulation system to perform all these stages simultaneously, usually

tasks are converted into a series of Cartesian or joint coordinates prior to manipulation.

Such prior calculation may be appropriate where a manipulator frequently repeats the

same task. However, where the tasks must be continuously modified to compensate for

environmental variation these calculations must be performed before each action, and

should therefore be considered part of the main manipulation process.

There are several approaches to decomposing a task into separate actions. However, this

work will focus on the conversion of actions into actuator activations. If we let A be

the space of all possible actions and M be the space of all possible actuator activations

(both spaces may be continuous or discrete) we can define the mapping function, tam,

from A to M:

tam : a -t Tn for a E A and Tn E M (2.1)

12

Chapter 2 Artificial Manipulation 13

The actuators are connected to the body, and so it is usually possible to define a mapping,

tmb, from M to body configuration B. This mapping is environmentally sensitive, (i.e.,

depends on v, a member of V; the space of environmental configurations.)

tmb : m, v -+ b for b E B and v E V

For navigational robots, surface slip may affect tmb. Equally for manipulation systems,

interaction with the environment (sustained contact or collision) will also affect tmb·

The final transform (tbv), a property of the environment rather than the robot, defines

how the world will change as a result of the body movements, bringing the goal of the

manipulation nearer to, or possibly further from, completion.

The mapping tam is very simple for navigational robots (consider steer-hard-left or drive

straight) compared to manipulation robots (consider grasp-fragile-object or turn-object

clockwise-in-body-frame). This results from three factors; three-dimensionality, actuator

coupling and frame-transformations, which we will consider in turn.

Three-dimensionality increases the number of degrees of freedom a rigid body may

possess. For a rigid body in a system, the move from two to three dimensions adds

a further three degrees of freedom. The description of a vehicle driving on a surface

requires only three coordinates, whereas a three dimensional, six element manipulator

requires (before other constraints are applied) 36 coordinates. The situation is further

complicated if one considers deformable surfaces, whose configuration cannot be fully

described by a reference frame.

Manipulation systems are generally very reliant on actuator coupling; the final movement

of the end-effector is the net result of all the actuators in the supporting kinematic chain.

This coupling results in a non-linear mapping between joint velocities and end-effector

velocity (Paul, 1981).

Finally, manipulation tasks are further complicated by the number of coordinate ref

erence frames that must be considered. These do not relate directly to any physical

quantity, but are intrinsic to most mathematical descriptions. From a design point of

view, the mapping between frames is possible, assuming that we have good information

about the system configuration. In the absence of such information, the mapping

becomes very difficult. It is therefore very important to consider 'in what frame' a

sensor reading originates. This can be more easily appreciated when we consider two

pressure-sensing digits of a mechanical hand touching each other. The controller may

want to know if the fingers are touching each other, or if they are pinching some

intermediate free-moving relatively light body (Fig 2.1). The forces experienced are

Chapter 2 Artificial Manipulation 14

FIGURE 2.1: Two fingered hand, closed and gripping a light object

similar in both cases, assuming that the system is static and no other forces are acting

on the body. The solution requires transforming the contact point for each finger into

a shared reference frame, probably the palm's, and testing for their proximity. In a

system where the mapping from the digit contact points to a palm frame is not fully

determined (consider deformable contacts controlled by low-resolution-sensed compliant

actuators), this approach becomes impossible. It may be that there are other approaches

that would create similar results to a palm frame remapping with more approximate,

or joint related information, but as yet they are under-developed. The same kind of

frame-translation problems are encountered in all of the manipulation phases.

2.2 Conventional Approach

When considering 'robotic arms' most people imagine the devices used for welding and

assembly by automated factories. This class of robots, normally termed industrial ma

nipulators, has been commercially successful and contributed significantly to the current

flexibility and quality of the manufacturing industry. They were developed from a blend

of two technologies: second world war teleoperation devices for handling radioactive

materials and numerically-controlled machine tools (Paul, 1981). Initially, they were

taught directly using joint coordinates, either computed by hand or captured from an

initial human-controlled run through. The first systems were not equipped with any

form of sensor, and this lack of task-related information limited their performance. The

addition of touch sensors improved things a little. However, these were soon surpassed

by camera-based systems which could describe the relationship between objects using

homogeneous transforms (Wichman, 1967). For this approach to work, a process called

inverse kinematics, which was capable of translating homogeneous transforms into joint

control values, was developed.

2.2.1 Inverse kinematics and dynamics

Denavit and Hartenberg (1955) proposed a system that could describe a rigid robotic

arm as a series of homogeneous transforms. Each homogeneous transform is a four by

Chapter 2 Artificial Manipulation 15

four matrix which allows for arbitrary rotational and translational mapping between two

Cartesian coordinate frames:

where

Xa Xb UI VI WI PI

Ya Yb bH U2 V2 W2 P2
Va Vb = a

Za Zb U3 V3 W3 P3

1 1 0 0 0 1

where Va is a mapping of vector Vb. The equation can perform two roles, either to

describe the relationship between two points in the same space, or to define the same

point as it occurs in two different spaces.

For each joint it is possible to define a transform that maps between its reference frame

and the next: ~+I R. So for a conventional industrial arm with six degrees of freedom it

is possible to write a series of transforms that map from the base all the way to the tool

interface (i.e., the point of connection between the end-effector and the arm):

(2.2)

This defines the forward-kinematic chain, i.e., for any set of joint-angles we can cal

culate 8R. For an industrial manipulator many elements of the intermediate trans

formations will be trivial and so it is possible to write the components of 8R using

simpler equations than those derived from directly expanding Equation (2.2). For

simple manipulators it is often possible to describe their workspace using a subset of

the homogeneous transform, Rw. This workspace description can then be used to select

target poses for the end-effector. It is then possible to equate the components of Rw with

8R and solve for joint angles. These inverse-kinematic equations allow us to determine

the correct joint angles to achieve a given end-effector location.

There are, however, a few complications. It is possible that the location specified by Rw

does not lie within the workspace of the manipulator, in which case the inverse-kinematic

equations will be insoluble. It is therefore normal to test certain parts of the equations

to show that a solution is possible. When two joint axes align, the manipulator is said

to be in a singular position. Mathematically this means there are an infinite number

of possible joint combinations that would lead to the same end-effector configuration.

Such configurations are generally avoided by applying constraints at the task planning

stage. The final problem occurs when several discrete solutions exist (Fig. 2.2), i.e., a

Chapter 2 Artificial Manipulation

© I

~@

FIGUR.E 2.2: Plan view ofreaching poses, where two discrete solutions (A and B) exist,
but where intermediate solutions fail (e.g., point C).

16

given limb can be in configuration A or B, but intermediate solutions would be invalid

(e.g., C in this case). In such situations, it is normal either to artificially constrain the

robot's movement to being non-redundant or to use the 'nearest' solution to the current

position, with a weighting to prefer movement of the smaller joints.

As computational power has increased, a numerically based solution for a general robotic

manipulator (no closed form solution need exist) was developed (Goldenberg et al., 1985).

This approach also suffered from instability around singular configurations.

For some tasks it is only necessary to complete point to point movements without

considering intermediate stages. However, many tasks require more advanced 'trajectory

management' or 'contouring'. This allows for smooth acceleration and deceleration

of the end-effector, which is essential for tasks such as painting and welding. For a

simple kinematic chain, it was possible to calculate a Jacobian matrix; one that maps

an infinitesimal movement in joint space to an infinitesimal movement of the end

effector. To execute smooth trajectory control, the movement can be expressed as a

series of splines in time and global coordinate space. At each instant, the Jacobian is

calculated and then used to convert the desired end-effector velocity into appropriate

joint velocities. This form of control is also sensitive to a second form of singularity, with

joint-speed demand tending toward infinity as the manipulator approaches the edge of

the workspace.

A separate Jacobian must be calculated for every point of interest, which means that

the analysis of a pinch grip is significantly simpler than that of an enyeloping grip,

Chapter 2 Artificial Manipulation 17

where a separate Jacobian would have to be calculated for each finger joint. Jacobian

matrices can also be used to calculate the effect of a static force being transmitted down

a kinematic chain (Craig, 1986, p. 175).

2.2.2 Grasp metrics

Given an accurate model of an end-effector and a target object, it is possible to calculate

the wrench (i.e., combination of orthogonal and torsional forces) applied at each contact

point. The wrenches can be analysed to produce various descriptions of the grasp.

Although there are many metrics defined, Shimoga (1996) showed that they could all

be considered as combinations of four basic properties:

1. Dexterity: defined as the ability of a grasp to achieve sub-objectives while holding

the object.

2. Equilibrium: a measure of how well the forces and torques acting on the object

are balanced.

3. Stability: a measure of how disturbance-induced errors in applied force and torque

decay with time.

4. Dynamic-behaviour: a measure of how the fingers interact with the object in

terms of their natural frequencies and damping ratios.

A classical approach to grasp planning would be to generate a range of potential end

effector configurations and use a combination of grasp metrics to select the optimal one.

This can be a computationally intensive task and grasp metrics have to be efficiently

designed. For more details about conventional approaches to manipulation, see the

overview by Okamura et al. (2000).

These metrics are entirely reliant on values derived from an abstract geometric model of

the grasp, rather than on measurements of an actual grasping process. As such, it would

not be possible to use them to assess the performance of a real robot directly. Although

reaching behaviours are significantly simpler than those used for grasp management,

stability and dynamic behaviour are essential to both. To facilitate future comparison,

alternative model-free metrics should be developed that are suitable for both simulated

and real robots.

Chapter 2 Artificial Manipulation 18

2.3 Behaviour-Based Robotics

The traditional approach can be seen as a variant of the sense-model-plan-act (SMPA)

framework for intelligent action that has been proposed by classical AI theory. Unfor

tunately, such approaches must assume access to accurate geometric descriptions of the

manipulator body and its environment, something that is much harder in practice than

in theory. SMPA works well when the transformation from sensing to model building

is trivial and the world does not change much during an SMPA cycle. However true

this may be for a game of chess, it does not hold when dealing with the washing-up.

The success of SMPA based manipulators is largely due to reliance on pre-calculation of

their body and environment models. This unfortunately limits them to applications

where such pre-calculation is possible, and does not need significant updating, for

example a laboratory or production line. For such a system to work in an unstructured

environment, it must be capable of selectively disregarding and rebuilding its model

as the world around it changes. Referred to as the frame problem, this process is

computationally intractable (Dennett, 1984). Even if a system maintains a reasonable

approximation of the environment, it will always contain errors. The system must be

able to deal with this misalignment.

Brooks (1991a,b) proposed an alternative approach to developing systems capable of

intelligent action. His approach discards the SMPA framework and replaces it with a sys

tem comprised of many parallel independent 'behaviours'. Each behaviour maps directly

from sensor readings to actuator activations, with only very limited 'message-passing'

interaction between them. Although this approach seems unnecessarily restrictive, it

has been very successful in producing robust mobile robotic behaviours that respond in

a sensible and timely way to their environment. Such systems, by their very nature,

perform no planning, and have minimal internal state, but instead perform complex

procedures by responding only to their current sensor state. For an introduction to the

field, see Arkin (1998).

2.3.1 Embodied intelligence

Although Brooks helped formalise behaviour-based robotics, he was building on a tra

dition that dates back to Grey Walter (1950, 1951, 1963) who developed a series of

small mobile 'tortoise' robots. Even though these tortoises were controlled by simple,

two valve, analogue circuits, they were capable of displaying complex 'behaviours'. One

tortoise, dubbed 'Machina Speculatrix', performed phototaxis (i.e., following lights) but

was averse to very bright lights until its battery began to run low. Since a strong light

source was placed inside its recharge station (or 'hutch'), it would return there only as

required. Speculatrix demonstrates two concepts: emergent behaviour and ecological

niches. Its behaviour is considered emergent because it results from the interaction

Chapter 2 Artificial Manipulation 19

between the robot's electronics, mechanics and environment, and would be sensitive to

significant changes in any of them. This contrasts with the traditional view of intelligence

as being 'seated' in the brain, with the body merely being a convenient way of interacting

with the world. For more detail about Grey Walter's work see Holland (1996, 2003).

A robot's 'ecological niche' defines the range of environments within which it can operate

successfully. For Machina Speculatrix, this was a room with a flat floor and a recharge

station. From a manipulation perspective, we often glibly talk about 'general purpose'

end-effectors something that in the strictest sense will never exist. The human hand

itself is very far from the ideal of a general-purpose manipulator. It can function in

only a limited range of temperatures, air-pressure, acidity and radiation levels. It only

functions sensibly with a limited range of object sizes (try picking up a water melon

single-handed or fixing a clockwork watch without a pair of tweezers). Equally the

hand has a limited range of forces that it can apply and that it can withstand. These

limitations combine to form the hand's environmental niche. A robotic hand may be

designed for the same niche as its human counterpart, but equally may be designed

for demolition work, satellite maintenance or even Martian environments. Pfeifer and

Scheier (1999) cover the foundational concepts and the important design considerations

for embodied intelligence.

2.3.2 The value of learning

Often characterised as advocating absolutely no representations of the world within

a behaviour-based robot, Brooks (1991) counters that "individual layers extract only

those aspects of the world which they find relevant-projections of a representation into

a simple subspace". He is however determinedly against traditional AI schemas and

explicate representations of goals. So how can these representations be learnt?

Generally 'learning' can happen in two ways: per species (evolution) or per individual.

Within this research, learning will be used to refer solely to individual-level improvement.

Although evolutionary development is demonstrated by all animals, individual learning

is also present to varying degrees, usually correlated to complexity of animal behaviour.

There are at least four classes of things that a behaviour based robot can learn (Brooks,

1991):

1. representations of the world that help in some task;

2. aspects of instances of sensors and actuators (sometimes called calibration);

3. the ways in which individual behaviours should interact;

4. new behavioural modules.

Chapter 2 Artificial Manipulation 20

Behaviour based robots have demonstrated many of the above (with the exception of 4).

As discussed, for manipulating robots, the challenge of converting a desired action into

appropriate actuator activations is far from trivial. Although traditional techniques may

be appropriate for rigid robots that work in highly structured environments, the real

world will require a more robust and flexible approach. Reduced reliance on internal

model construction, if possible, will go some way to meeting this need, but it seems

likely that some form of automatic learning of the mapping between desired action

and actuator activation will be necessary. Within the above groupings, this would be

considered a form of calibration, but it is significantly more complicated than that

classification implies.

As well as having to learn to handle the abstract transformations involved, a robot would

have to deal with the idiosyncrasies of its own particular sensors and actuators. Elliott

and Shadbolt (2001) proposed a neurologically-justifiable model that allows a system to

compensate for such variation which may prove a useful foundation for this part of the

learning process.

2.4 ConcI usion

Robotic systems that perform articulated manipulation using compliant actuators cur

rently lack a satisfactory motor control methodology. Such controllers need to be com

putationally efficient, robust to environmental disturbance and capable of integration

with other control architectures. It is possible that behaviour-based and biologically

inspired techniques may have a role to play in the development of such controllers.

The following chapter explores four biological motor control theories, with particular

reference to reaching behaviours.

Chapter 3

Biological Perspective

When considering biological systems as inspiration for artificial control systems, one

must carefully consider the differences between the natural and artificial morphologies,

e.g., overall physical structure, actuator dynamics, transducer characteristics and con

troller substrate. Where possible one should distinguish those properties that the system

is able to exploit from those for which it must compensate. Naturally, there will be some

overlap, but it is important to avoid seeing imitation as the objective, without trying

to understand the role of the various properties. To establish the context for future

discussions of control techniques, this chapter begins by describing first the overall

neurological context and then the mechanical context for mammalian motor control.

It concludes by presenting two control techniques which may be suitable for adaptation

to autonomous robots. As this is an engineering thesis, the treatment of this material

will naturally be somewhat simplified.

3.1 Neurological Context

The mammalian central nervous system (CNS) can be divided into four distinct portions;

the cerebrum, the cerebellum, the brain stem and the spinal cord, as shown in Figure 3.1.

The cerebrum is a large soft area at the front of the brain which is divided into two

hemispheres. It is particularly developed in primates and is thought to control higher

order processing tasks. The cerebellum is a denser portion located at the base of the

cerebrum. It is primarily a movement control unit and is well connected to the spine and

cerebrum. Both the cerebrum and the cerebellum are mounted on the brain stem, which

performs two main functions; communication to and from the spine, and maintenance

of basic systems like breathing and body temperature. The spinal cord provides a link

between the CNS and the peripheral nervous system (Bear et al., 2001).

The peripheral nervous system (PNS) extends from the dorsal (back) and ventral (front)

roots in the spinal column. The PNS can be considered to comprise two parallel

21

Chapter 3 Biological Perspective

Hemispheres

Brain Stem

FIGURE 3.1: Cross section of the human brain, showing the arrangement of the
cerebrum, cerebellum, brain stem and spinal cord.

LEVEL

High
Middle
Low

FUNCTION

Strategy
Tactics
Execution

STRUCTURES

Association areas of neocortex, basal ganglia
Motor cortex, cerebellum
Brain stem, spinal cord

TABLE 3.1: The hierarchy of biological motor control, from Bear et al. (2001).

22

systems; the somatic PNS, which controls voluntary movement, and the autonomic

nervous system, which maintains involuntary systems, including blood vessel dilation

and internal organ operation.

The central motor system is organised into a hierarchy of control layers as shown in

Table 3.1. Although this hierarchy will not necessarily relate directly to an appropriate

control structure for an artificial manipulator, it does suggest that this approach is

worth considering. Although this may first appear to be a horizontal SMPA framework,

it can be viewed as a more vertical sense-act framework if each layer is considered to

be a separate behaviour unit. Where this diverges from a Brooksian model is in the

amount of inter-behavioural communication and the amount of feed-forward control. If

we consider the cerebellum, although it does receive commands for voluntary movement

(vertical input), it integrates this with direct sensor information (horizontal input) to

maintain balance. Manipulation tasks sometimes require ballistic movements (i.e., a

movement that must be planned and subsequently enacted without time for significant

in-process feedback and correction). The learning for ballistic processes must happen

after the event and therefore requires a mechanism for working out which parts of the

movement contributed to, and which detracted from, the action's overall success. This

Chapter 3 Biological Perspective 23

type of system has been studied formally and is usually managed using a process called

reinforcement learning (Sutton and Barto, 1998).

3.2 Muscles

One of the most exciting things about biological motor control is the distinctive nature

of the actuators used, namely muscles. Traditional robot drives are stiff (i.e., contain

very limited compliance) and relatively dense, with a low power to weight ratio. This

has led to many manipulators being designed with a rigid base, so that heavier parts of

the system can be removed from the arm itself.

In contrast, the human arm is substantially self contained, with the exception of a few

shoulder muscles, power supply and main control centre. Also, rather than being heavy

and stiff, the arm itself is light and has mechanically variable compliance (as opposed to

some advanced robotic drives, which can use feedback to simulate variable compliance).

This mechanical compliance has natural advantages both in terms of protecting the

manipulator and its environment as well as the potential to conserve energy.

So it would appear that natural style body mechanics may have advantages over tradi

tional drives when it comes to designing autonomous robots, but are they achievable?

Sadly current actuation technology lags significantly behind that achieved by nature,

as the meagre performance of the robotic contenders in the first round of Yoseph Bar

Cohen's Arm-wrestling Match of EAP Robotic Arm against Human so aptly demon

strated (AMERAH Website, 2005). That said, there is significant research activity

focused on the development of novel actuation methods, and it is the author's hope that

this will yield practical results in the next few years.

3.2.1 Motor units

A muscle contraction is the result of the action of many motor units, each of which

contains a single control neuron (termed an alpha motor neuron) and a bundle of muscle

fibres which it activates. The collection of alpha neurons that controls a single muscle

is termed a motor neuron pool (Fig. 3.2).

There are two mechanisms through which the central nervous system controls the amount

of muscle contraction. The first is to vary the firing rate of the alpha neurons and the

second is to recruit muscle units according to size. Some muscle units have up to 1000

fibres per alpha neuron (in the leg for example), while some have as few as three (e.g.,

finger or eye rotation muscles). Within any muscle, small units are selected first, with

the larger units only being recruited as the amount of force required increases. This

naturally leads to a system that is capable of great precision at low loads, yet is still

capable of generating large forces, albeit at a lower accuracy.

Chapter 3 Biological Perspective

/

I

- -

(a) Motor pool

fibres

I\~
; ,/
~

(b) Motor unit

Alpha
motor neuron

(in spine)

FIGURE 3.2: (a) skeletal muscle is made from many parallel motor units. A group of
alpha neurons that control a single muscle is termed a motor pool and is located in
the spine. (b) each motor unit has an alpha motor neuron and a bundle of between
approximately three and a thousand motor fibres. SOURCE: Bear et al. (2001 , Fig 13.6,

p.442)

3.2.2 Renshaw cell inhibition

24

Work by Akasawa and Kato (1990) and Uchiyama and Akazawa (1998) developed a

neural network that demonstrated that muscle unit recruitment could be controlled by

feedback mediated via a series of Renshaw cells. This would allow the eNS to use

only one control signal per muscle (rather than a different one per alpha neuron), a

configuration referred to as the common drive hypothesis (DeLuca et al., 1982). In their

model, Renshaw cells are activated from the same signals as the alpha neurons, but

act to inhibit other local motor neurons (including the original alpha neurons). This

creates a multi-loop negative feedback system that serves to linearise the lumped muscle

response.

From an engineering perspective, this kind of network will only have application in

configurations where actuators are composed of many independent strands. The work

presented in this thesis assumes that any actuators are either naturally homogeneous,

with a single control input, or have been configured so that they may be treated as such.

3.2.3 Spindle and Golgi feedback

Skeletal muscles contain specialised sensory structures called muscle spindles. Each

spindle runs the entire length of the muscle and has a group of high speed sensory axons

wrapped around the fibres in the middle of the spindle, that give feedback about changes

in the muscle's length. The feedback from the spindle is connected to virtually every

Chapter 3 Biological Perspective

600

reflexive muscle

areflexive muscle

o L-______ ~ ______ ~L_ ______ _L ________ ~ __ __

o 500 1000 1500 2000

Operating Force (g)

FIGURE 3.3: Comparison of the stiffness (in grams per millimetre) to operating force
(in grams) of a reflexive and areflexive muscle (cat soleus), from Hoffer and Andreassen

(1978).

25

alpha motor neuron in the muscle's control pool. This feedback plays an important role

in the myotatic reflex (my a from the Greek for 'muscle', and tatic from the Greek for

'stretch'), which is generally considered important for maintaining muscle tone (co

activation of antagonistic muscle groups). To maintain spindle tension, and hence

feedback signal, over a range of muscle lengths, a set of intrafusal fibres is used to

contract/relax the ends of the spindle. These intrafusal fibres are controlled by a second

class of motor neuron (gamma motor neurons). Varying the amount of spindle tension

will affect the behaviour of the myotatic reflex, and could be seen as leading to a variation

in the rest length of the muscle.

A second form of muscle feedback is provided by Golgi tendon organs, which measure the

amount of tension developed by the muscle. Although less thoroughly connected than

the spindle, the Golgi sensor axons inhibit some of the muscle alpha neurons, creating

the reverse-myotatic reflex, which protects the muscles during heavy loads, and fragile

objects during manipulation.

Using work by Hoffer and Andreassen (1978, 1981), which explores the stiffness/force

characteristic of reflexive (i.e., with spindle and Golgi feedback) and areflexive muscles,

Shadmehr and Arbib (1992) demonstrates that reflexive muscles are best modelled as

non-linear springs with variable rest length, rather than as non-linear springs with vari

able stiffness. Figure 3.3 shows a comparison of the stiffness of reflexive and areflexive

muscles plotted against operating force. For a reflexive muscle stretched to length A,

Chapter 3 Biological Perspective

the stiffness developed, ~f, can be approximated as follows;

drp
- = k(l - exp(-arp))
d)"

26

(3.1)

The model has two constant parameters, k and a. It can be solved to give the force

developed, rp, in terms of).. and an integration constant (3, giving:

1
rp = -In(exp(ak()'' - (3)) + 1)

a
(3.2)

For any given length, the only way to change the force developed is to vary (3, which

can therefore be thought of as a controllable parameter (Shadmehr and Arbib, 1992).

3.3 Control Models

It has been argued that it is unlikely that our brain solves the precise equations used

by traditional inverse kinematics to control our limbs (Alexander and Crutcher, 1990).

So what are the alternatives? As previously discussed, biology presents many systems

that have learnt to control articulated structures (i.e., vertebrates). In this work we

will focus on mammals as this class contains many of the species which are capable of

complex manipulation.

3.3.1 Equilibrium control

Originally proposed by Feldman (1966, 1986), equilibrium point control (EPC) suggests

that rather than driving the muscles directly, the control of animal reaching movements

is mediated via the selection of an equilibrium point (EP) to which the end-effector

travels (Bizzi et al., 1991, 1992). Initially, this seems very similar to differential po

sition control, and indeed has been approximated as such (Hsiao et al., 2003). Such

approximations, however, used non-elastic actuators and traditional inverse kinematics

to translate between world and joint coordinates and as such suffer from their inherent

problems. There are two main models of equilibrium control: a-model and)..-model.

These two alternative models make different assumptions about the control signals sent

to the muscles. The a-model assumes that the control signals do not change during a

reaching motion, i.e., when a target point is selected the muscle's rest-lengths are set

once and the rest of the motion is entirely the result of the combined muscle dynamics.

It is clear that if such an approach worked, it would significantly reduce the amount of

processing the brain would have to do during a motion.

Chapter 3 Biological Perspective 27

The role of a-model EPC in animal motor control is supported by clinical trials that

studied the forearm movement in normal and deafferenated (surgery that lesions the

proprioceptive feedback at the base of the neck) rhesus monkeys conducted by Polit and

Bizzi (1978). The monkeys sat in a primate chair with their right forearm fastened to

an apparatus that permitted flexation and extension in the horizontal plane. During the

trials the monkeys, whose view of their arm had been obstructed, were trained to point

toward a light (one of several arranged in a semicircle at 5° intervals) and maintain that

posture to receive a reward. A motor was attached in series with the elbow clamp and

was used to apply randomised disturbing forces in some trials.

Monkeys performed the test well, even after surgery, which implies that the correction

to the disturbing forces was performed at a spinal level. However, the normal monkeys

were able to adapt far more successfully when the elbow fixing was moved with respect to

their body. This suggests that the short and long proprioceptive loops are not required

for learnt pointing tasks but are necessary for adaptation to significant changes in the

task dynamics.

The alternative A-model assumes that the control signals vary continuously during the

arm movement. It suggests a compromise between direct velocity control of the arm

and the a-model's complete reliance on arm mechanics. Rather than altering the rest

lengths of the muscles to move the arm's equilibrium point directly to the target location,

the rest-lengths are changed smoothly, so that the arm's equilibrium point moves with

constant rate in body space, hence the A-model is sometimes referred to as equilibrium

trajectory control (ETC). Equilibrium trajectory control still relies on the mechanics of

the muscles, but only to convert a constant-rate equilibrium point movement into the

smooth bell-shaped velocity movements typical of vertebrate reaching motions.

If we return to our formalisations for a moment, ETC suggests the mapping from

action to actuation, tam (Eqn. 2.1), may be mediated by continuous redefinition of

an equilibrium point. If we define the space of potential equilibrium points as [, we can

then express this mapping:

tae : a ---t e tem: e ---t m for e E [;

Work by Flash (1987) attempted to use ETC to model human reaching behaviours.

A series of reaching tasks was performed by three human subjects whose view of their

arm had been obstructed and who were not given any feedback during the trial. It had

previously been observed that the kinematic features of unconstrained planar point

to-point movements are not sensitive to workspace region, being roughly straight with

a bell shaped velocity profile (Morasso, 1981; Abend et al., 1982). Although the hand

movement was straight, to achieve this the arm joint velocities must follow a significantly

more complex path. Flash's research showed that the hand trajectories contained

Chapter 3 Biological Perspective 28

distinct curvatures, depending on workspace region. She then developed an ETC model

of human reaching that incorporated previously measured static human arm stiffness

readings. The model's results accurately predicted many of the features measured by

the human trial, including the characteristic deviations from straight-line movement for

each workspace region.

Neither EPC nor ETC are universally accepted explanations of the neurological control

of reaching movements. Two key objections are raised by Lackner and Dizio (1994) and

Gomi and Kawato (1996).

The first objection is based on studies that involve reaching movements performed in a

slowly revolving room (the rotation of which the subject was unaware). Results from this

trial suggest that subjects use real time feedback to adjust their reaching movements,

which runs against the conclusions drawn from the deafferenated monkeys. It can be

argued that a spinning room is not the right context in which to study the movement

control of primates as they evolved in an environment substantially devoid of Coriolis

forces. However, it is possible that this unusual context reveals control that would never

be visible in a normal environment. Studies involving a force feedback manupendulum

(that also creates velocity dependant forces) have shown similar results (Shadmehr and

Mussa-Ivaldi, 1994).

The second objection comes from studying human arm stiffness during reaching move

ments. Reaching tasks were performed whilst grasping a low-friction low-inertia, yet

stiff, air-bearing manupendulum. During some movements, the arm was disturbed and

its deviation measured. The amount of deviation could then be used to measure the

level of stiffness developed during the movement. This is important because as stiffness

increases ETC tends toward conventional position feedback. These studies have shown

results that do not fit with some ETC models and hence undermine it as an explanation

of motor control. It has been countered that the muscle models considered were overly

simplified and the results would align with ETC predictions if more authentic muscle

models were used (Gribble et al., 1998).

Both these objections point toward a more centrally planned approach that uses real time

feedback to correct for deviations. The following section outlines a common formulation

of this approach.

Although ETC may playa significant role in the management of redundant systems, it

should be noted that most of the experiments to date have involved constrained limb

movements that have been artificially made non-redundant. This simplifies the mathe

matics involved but may be hiding a weakness in the approach. Typically two types of

reaching task are considered: point-to-point and primitive-shape-drawing. These both

present significant challenges, but are trivial compared to many basic manipulation

tasks.

Chapter 3 Biological Perspective 29

3.3.2 Force control

Work within the cybernetics field has more recently been focused on an internal rep

resentation approach, sometimes called the force control hypothesis. Originating more

than 20 years ago (Hollerbach, 1982), this approach assumes that inverse dynamics plays

an explicit role in neuromuscular control. More recently, the theory has been extended

to use forward models to assist in predictive control (Conditt et al., 1997). Control is

assumed to follow a three stage process:

1. Motion is planned kinematically and required forces are specified centrally.

2. Actuator activations are calculated using inverse dynamics.

3. Forward and inverse kinematics models are used for predictive control.

Such approaches do not normally suggest neurological details, but use behavioural

studies of reaching in unusual environments to support the notion that such models

exist and are re-trainable. Critics from the equilibrium point community have refuted

the viability of this approach suggesting that it does not explain certain reflex responses

satisfactorily and, furthermore, is not the only explanation of the data presented (Ostry

and Feldman, 2003).

It is interesting to note how closely the stages outlined above align with conventional

robotic control approaches. This closeness has lead some to criticise the more recent

integration of biological and engineering research endeavours, suggesting that insights

from the robotics fields are at best distracting and at worst misleading when applied to

the understanding of biological systems (Balasubramaniam and Feldman, 2001; Latash

and Feldman, 2004).

From the point of view of this work, force control does not present much useful insight,

as it draws heavily from conventional control theory and does not readily suggest any low

level implementation strategies. That said, some force control literature does suggest

that A-model control could be used to simplify the control task, with some form of force

control being used to compensate for the dynamics of the manipulated objects (Mah

and Mussa-Ivaldi, 2002). It is hard to see how these conflicting approaches could be

combined, but the combination may yield useful results in the future.

3.3.3 Convergent force field control

A review of this topic is presented by Bizzi et al. (1991), Flash and Sejnowski (2001)

and Mussa-Ivaldi and Bizzi (2000). Studies based on deafferenated frogs show that it is

still possible to elicit coordinated muscle movements by direct stimulation of the spine

Chapter 3 Biological Perspective 30

(Giszter et al., 1993). This implies that the spine is actively involved in this coordination,

rather than just being a relay for signals from the brain stem. By varying the region

of the spine stimulated, distinct force fields of muscle activation were observed in the

leg muscle. That is to say, if the stimulation of the spine remained constant, whenever

the leg was moved to a given location, it would always exert the same force with the

same direction. A range of force fields was analysed, and through a variant of principal

component analysis, it was discovered that 94% of the fields could be constructed from

the vector superposition of just five 'basis' fields (d'Avella and Bizzi, 1998). Given the

right control system, this could allow for just five neurons to control the gross actuation

of the entire leg. In terms of our previous analysis, this means that the leg is not being

controlled in equilibrium point space, £, but rather in field space, g, where 9 is a vector

of the gains for each of the basis fields:

tag : a --+ 9 tgm: 9 --+ m

Irrespective of whether convergent force field control (CFFC) accurately describes the

vertebrate reaching control process, before attempting to use it in an engineering context

it is important to consider what potential benefits it may offer.

CFFC allows the actuators of the manipulator and end-effector to be treated as a whole

and imposes limitations on the ways in which they can be controlled. This may help mask

the problems presented by redundant configurations, effectively creating preferences of

pose at a very low level.

If we assume that the function mapping the force field gains to the actuator activa

tions (tgm) is well designed, it removes the potential for an action to be expressed in

a way that is outside the mechanical range of the manipulator. It is, however, quite

possible for the field space to express a force demand that is beyond the capabilities of

the actuators. Effectively field gain space is automatically bounded to be within the

working volume of the robot. This removes the requirement to test that the incoming

demand is within the arm's workspace, and the requirement to have a default policy to

implement when it is not.

It may be possible to increase the orthogonality of 9 with respect to actions, so rather

than treating it as smooth, 9 would generally have only a small number of non-zero

components. For example a pose could be comprised from a close-hand and extend

index-finger field. The first would affect all the fingers and second would counteract

the action of the first for only the index finger. This may result in an action-orientated

meaning for each element of the control vector.

As the mechanical and sensor performance of the system changes over time it may

be possible to adjust the fields to compensate. This would allow higher level control

behaviours to be used without continuous modification. There have been studies on

Chapter 3 Biological Perspective 31

human adaptation to different reaching environments which suggest a similar process is

happening (Shadmehr and Mussa-Ivaldi, 1994). Lastly, if the purpose of each field can

be determined, there is a small possibility that a behaviour could be shared between

robots with different mechanical configurations but similar basis fields.

3.4 Conclusion

There has been, and will continue to be, much debate within the cybernetics community

as to which of the competing models best describes the reaching control process used by

vertebrates. The currently available models all have data supporting and contradicting

them.

From an engineering perspective the study of this kind of literature has more value as

inspiration than for use in making hard and fast conclusions. Even if an accurate model

of vertebrate reaching is developed, there is no reason to assume that such a model would

be in any way optimal. It would, however, be at least worth detailed consideration. The

following chapters explore two of the techniques outlined (CFFC and ETC) and present

simulations of them using simplified actuator models.

Chapter 4

Static Modelling of Convergent

Force Field Control

This chapter presents a static implementation of convergent force field control (CFFC).

The arm model presented is significantly simpler than that commonly used in cybernetic

modelling studies (Hogan, 1985; Lukashin et al., 1996a,b), but does model the variation

of the actuator's moment arms. This is a feature that is normally overlooked but that

may have important implications for stability (Shadmehr and Arbib, 1992). A schematic

of the simplified arm is presented in Figure 4.1.

To explore the static model, experiments were performed which compared three pro

prioceptive configurations in terms of computational efficiency. The objective was to

train an MLP to convert the proprioceptive information into actuator activations that

would create forces at the tip of the arm that changed smoothly across the workspace.

To train the MLP, a set of training input and output vectors was required, which were

generated by a two stage process. The first stage used a mutation hill climbing algorithm

to calculate the actuator activations that would best align the force at the tip of the

arm with the desired field pattern at each point. The second stage used these learnt

actuator activations to train a range of neural networks. The following sections explain

the procedure in more detail, and a summary of the process is given in Figure 4.2a.

4.1 System Model

The simplified arm model used in this initial modelling work has four actuators and

is built from two symmetrical stages. The configuration presented was considered the

simplest form of compliant actuator driven articulated structure that was capable of two

dimensional movement, and was therefore chosen for this initial study. The approach

used to calculate the force at the tip of the arm is presented in Appendix C. The

32

Chapter 4 Static Modelling of Convergent Force Field Control

FIGURE 4.1: Simplified arm model. The springs shown represent series-elastic
actuators, (springs with a motor driven base offset, allowing them to exert a range of
forces at any given length). The structure comprises 3 T-frames, but as the base frame
is rigidly clamped, there are only 6 moving components (2 T-frames and 4 actuators).
The simulation process aims to control the force exerted at the tip of the arm, f ext.

33

equations are developed in a way that would allow them to be extended to systems with

more stages.

As previously discussed, the non-linear nature of muscles has been demonstrated to have

important effects on system stability (Shadmehr and Arbib, 1992). In order to maintain

the potential for real-world implementation, the actuators have been modelled as linear

springs with constant stiffness (k) and variable rest length (d):

f = k(lext - d) (4.1)

This more closely matches the characteristics of a series-elastic actuator, while providing

the possibility that the final system could achieve similar performance to biological

systems by using non-linear feedback. The model is constrained only to generate forces

when extended and not when compressed.

In this chapter, the field controller is implemented using a fully connected MLP, with

sigmoid activation of the hidden layer and linear activation of the output nodes. The

feedback from the arm model is normalised and the MLP output is scaled up to match

the input ranges of the actuator models.

Chapter 4 Static Modelling of Convergent Force Field Control

Select arm model parameters

For each pose
define three
pose vectors

Train a range of MLPs using pose vectors as inputs
and ann activations as targets

(a) Simulation work-flow

x· .
•• >:: ••• x

.>t. • • • .x
.~;:"". X : x °0 •• 1

x •x. :". -,:,x .. "." •
• ° 0 • ~ ••• x x ••

x x .~: .x x. oX

•• ,x ¥ ••• ~.x •••
.:,1': .: .• : x ••

XX

(b) Targets and test points

..

FIGURE 4.2: (a) summary of the simulation process undertaken. (b) arm's workspace
showing the 40 randomly chosen targets (crosses) and 150 test pose endpoints (dots).
Note that the workspace is not symmetric because the joint rest positions are not

aligned with the arm links.

4.2 Selecting Target Positions and Test Poses

34

A range of target positions and initial test poses was selected randomly from within

the workspace of the arm. These were chosen uniformly with respect to Cartesian

workspace coordinates, and then rejected if they fell outside the workspace of the arm.

The joints were restricted to lie within ±1.45 radians of their rest positions. This

reduced the likelihood that the selection of target points or test poses would bias the

learning stages. Figure 4.2b shows the selected targets and test poses. For the test poses,

only the location of the end point is plotted, even though the entire pose was actually

defined. For each pose, the joint angles required were calculated using conventional

inverse kinematics.

4.3 Calculating Ideal Field Vectors

A field controller is responsible for generating a single target field, which must therefore

be selected before training can begin. The literature shows that these can be quite

varied (Bizzi et al., 1991), but for this work, a simpler sub-set of fields was used. The

fields were chosen such that, at each point, the field vector should be directed towards

a single target point with a magnitude proportional to the distance from the point:

f = G(e - 0) (4.2)

where 0 is the location of the target point, G is a scaling constant and f is the ideal

field vector at test point e. Figure 4.3 shows two examples of ideal fields. At this

Chapter 4 Static Modelling of Convergent Force Field Control

50

40 o

30
", ,',

-80 -60 -40 -20 o 20 40 60 -80 -60 -40 -20 o 20 40 60

x

FIGURE 4.3: Two example sets of ideal field vectors. The circles mark the target point
for the respective fields. Each arrow represents the ideal field vector at that test point.

35

x

point it is worth saying a few words abouts the units used in this simulation. In the

actuator equation (Eqn. 4.1), there are two fundamental units (length and force) and

one composite unit (stiffness). The same fundamental would naturally be used in the

field equation (Eqn. 4.2). As these equations, taken alongside a geometrical description

of the arm, describe the complete system, there need be no physical grounding to their

values. The value of actuator stiffness is therefore only meaningful with respect to the

value of G, which is held constant throughout.

4.4 Learning Arm Activations

For each of the test points a variant of mutation hill climbing method was used to

find the actuator activations that generated a force at the arm tip that was best

aligned with the ideal field vector. While searching for sources of error in the training

data, a clear limitation of the hill climbing method was exposed. The static arm

model used in this work was significantly more sensitive to cross-activation of muscle

pairs than to co-activation. This meant that there was little training pressure on co

activation, effectively leaving two unconstrained variables in the training process, which

were randomly disturbed by the hill climber. As the actuator activations were going to

be used to train the MLP controller later, it was important that the random variation

was removed. This was achieved by imposing an extra constraint on the hill climbing

process that ensured constant co-activation throughout the workspace.

Chapter 4 Static Modelling of Convergent Force Field Control

C/)
"-
0 -()
(l)
>
cu
::::l

:Q
C/)
(l)
"--0

.r:: -OJ
c
(l)

(l)
> . .;::;
cu
E
E
::::l
0

2000

1800

1600

1400

1200

1000

800

600

400

200

0
0 50 100 150 200

n=3%

n=2%

n=1%

n=O%
250 300 350 400

Actuator stiffness, k

FIGURE 4.4: Sensitivity to actuator demand noise, n, of the arm models, configured
with a range of actuator stiffnesses, k. The same stiffness is used for all actuators in
the arm model. Due to the nature of the model the stiffness units are non-dimensional.

4.5 Arm Model Retuning

36

During early attempts at training the MLP field controller, structured errors were

detected in the generated field that were many orders of magnitude greater than the

error between the target actuator activations and those generated by the MLP. To

determine how sensitive the actuator activations were to errors, a set of trained actuator

activations was disturbed by various amounts of noise, and the error measured in the

resultant field. The noise was a uniform disturbance of the actuator activations by a

percentage of mean activation levels. Repeating this process while altering several of

the arm model's parameters showed that in the region above approximately 100 stiffness

units, the sensitivity to actuator noise was roughly proportional to actuator stiffness.

Figure 4.4 shows the results for a range of stiffnesses. The proportional nature of the

noise sensitivity has been confirmed over a larger range, but these have been excluded

from the graph for clarity.

From this graph it becomes clear that when there is no additional noise, actuator stiffness

does not have a significant effect on overall error. In contrast, when actuator noise is

present, there is a strong correlation between stiffness and overall error. When k is

approximately equal to 100, the overall error is lowest. If k falls much below this value,

the arm becomes too weak to generate the require responses, and above it the arm

becomes increasingly sensitive to actuator input noise.

Chapter 4 Static Modelling of Convergent Force Field Control 37

4.6 Training Single Field Controllers

Once the optimal activation levels had been ascertained for each location, a standard

backpropagation method (Haykin, 1998) was used to train the single field controller's

MLP, using a proprioceptive encoding of the location as the input vector and the optimal

activation level as a desired output vector. The location encoding was performed in three

different ways, namely;

1. actuator lengths (4 vector);

2. arm joint angles (2 vector);

3. actuator lengths and arm joint angles (6 vector).

A separate MLP was trained for each combination of target point and proprioceptive

configuration. The performance of each MLP was measured by calculating the absolute

error between the learnt actuator activations and those generated by the MLP.

To remove the possibility that the MLP was merely learning sampling errors in the

training data, ten-fold cross-validation was used. In this process, the training data is

randomly divided into ten separate subsets. The network is trained ten times, each time

using a different subset to evaluate the performance. The subset used to evaluate the

performance is omitted from the data used to train the MLP, thus ensuring that the

MLP was not trained using the evaluation data. The overall performance of the MLP

is measured as the mean error across all ten evaluations.

4.7 Results

To compare the effectiveness of the proprioceptive configurations, the score across all 40

target points was averaged and plotted against network capacity (Fig. 4.5). As expected,

the mean error decreases as the number of hidden nodes increases. The rate at which the

results improve also declines, appearing to asymptote to a value of approximately 2.6.

Given enough hidden nodes, an MLP is able to store any arbitrary smooth mapping.

We might therefore expect the errors to tend towards zero as the number of hidden

nodes is increased. Unfortunately, even though it is theoretically possible for the MLP

to store a 'perfect' mapping, the learning process is constrained by the finite amount of

information available from the training data. It is likely that lower final scores would be

achieved if more training data was used.

The objective of the MLP was to map proprioceptive information into appropriate

actuator lengths. The errors presented here therefore show the difference between the

previously learnt actuator activations and those generated by the MLP, rather than the

Chapter 4 Static Modelling of Convergent Force Field Control

5

4.5

..
4

e ..
w
c 3.5
ro
OJ
~ .. A.

A. ..
3

III .. • •
A. A.

III

2.5
III

III III III

III
III

2L---~ ____ ~ ____ -l ____ -L ____ ~ ____ ~ ____ L-____ ~ ____ L-__ ~ ___

o 2 4 6 8 10 12 14 16 18 20
Number of hidden nodes

FIGURE 4.5: Comparison of three proprioceptive options; joint-angles (circles), actua
tor lengths (triangles) and both (squares). The results shown are the mean error for
data collected from ten-fold cross validation of 150 test poses and 40 target points. The
error is expressed as a percentage of the full actuator length range. There is a average

standard deviation of 0.76 on each point.

38

difference between the ideal field vectors and those that would be generated if the MLP's

actuator activations were applied to the arm.

Although using all six inputs (i.e., both joint and length values) gave a comparatively

better result, it is not a dramatic difference. Due to the limited size of the training

data, for each MLP the scores of each of the ten folds were quite varied, having mean

standard deviations of 1.68% for joint angles, 1.84% for actuator lengths and 1.58% for

both. When interpreted in this light the relative scores presented in Figure 4.5 seem less

compelling.

A further constraint on the performance of the system is the amount of noise in the

training data. As the data had been generated by an earlier learning process, a certain

amount of training noise was unavoidable. If the initial learning process was replaced by

an analytical analysis of the arm it would be possible to remove this noise. As this was a

preliminary study, with a highly simplified arm model, this analysis was not performed

as other factors would still have limited the strength of any resulting conclusions.

Chapter 4 Static Modelling of Convergent Force Field Control 39

4.8 Conclusion

This chapter presented an initial static modelling exercise that showed that relatively

simple neural networks are capable of generating the distinctive activation patterns typi

cal of convergent force field control. No compelling difference between the proprioceptive

configurations tested was demonstrated, although there is qualified support for the idea

that more information is better than less.

The following chapters extend this work by applying a similar approach to the control

of a full dynamic arm simulation.

Chapter 5

Dynamic Arm Modelling

This chapter describes the arm model used in the work discussed in the subsequent

chapters, detailing its dimensions and workspace. The basic structure of the arm is

derived from previous work in cybernetics (Hogan, 1985; Lukashin et al., 1996a,b), which

in turn is modelled on the configuration of the primate arm. A schematic of the arm is

shown in Figure 5.1. The main structure of the arm is a double pendulum chain (SE,

ET), pivoted at S and hinged at E. Both the pivot and the hinge are assumed to

be frictionless within their working range. The model has three pairs of antagonistic

muscles. The first pair, shoulder extensor and flexor, connect rigid anchors (Se and Sf

respectively) to a single point on the upper-arm, MI. The second pair, elbow extensor

and flexor, run from two attachment points (Ee and Ef) to a second point on the upper

arm, M 2 . The attachment points are constrained to lie at a fixed distance from the

elbow, E, and at a fixed angle to the forearm, ET. The last pair, the two joint extensor

and flexor, run between the respective attachment points for the the shoulder extensor

and flexor (Se and Sf) and the elbow extensor and flexor (Ee and E f).

5.1 Selection of Link Lengths

Table 5.1 shows the parameters used to define the arm. The values used for link

lengths (lI and l2) and the actuator moments (Sf, Se, ef and ee) are taken from Gribble

et al. (1998). All the implementations of this model will preserve the relative component

lengths but not necessarily their absolute values; the absolute values given are therefore

expressed in arbitrary units. For clarity all the graphs presented in this thesis will be

scaled to be consistent with the absolute lengths presented in this section. It should be

noted that in Gribble et al. 's work the extensor moments are assumed to be constant,

and only the flexor moments vary with arm pose, whereas in the work presented here,

flexors and extensors are treated identically. It can be argued that, as the extensors

40

Chapter 5 Dynamic Arm Mode11ing

T

Sf S Se

E
CIl

~
0
u..

E
(ij
....
Q)
0.
0.

:::>

Tip

Elbow

Shoulder

FIGURE 5.1: Six actuator arm. Solid lines show links, dotted lines show actuator
locations. Angles 81 and 82 are variable, within limits. Nodes Sf, Sand Se are rigidly

fixed.

41

wrap around the elbow joint, Gribble et aI's model is a more authentic representation

of the biological configuration.

Unfortunately it was not possible to implement a similar configuration in the dynamic

simulation environment without significantly increasing its complexity and, therefore,

development time. There have been several experimental approaches that have used

disturbance of a limb, either during a movement (Gomi and Kawato, 1996) or at rest

(Tsuji et al., 1994), to estimate the stiffness of the arm at the end effector. Once an

effective arm controller is developed, it would then be possible to implement a similar

process with this arm model. These results could then be used to compare the dynamic

characteristics of the arm model and its biological counterparts. As the controller would

be responsible for generating the background, or tonic, level of actuator co-activation

there would be no meaningful way of testing the arm model's dynamics in isolation.

5.2 Selection of Joint Parameters

There are several parameter values that could not be directly obtained from the literature

and the following paragraphs present the values used in this work and their justification.

For simplicity, the limits for e2 were selected to ensure that there was a one to one

Chapter 5 Dynamic Arm Modelling 42

Label Start End Length

h E S 4.6
l2 T E 3.4

8f Sf S 0.5
8 e Se S 0.4

ef Ef E 0.5
ee Ee E 0.2

m1 M1 S 1.5
m2 M2 S 3.0

TABLE 5.1: Table of model parameter values, using the nodes defined in Figure 5.1;
lengths are given in arbitrary units, but their relative values are preserved in all

im plementations

mapping between joint angle and actuator length. With this in mind, the elbow moment

angles (01 and O2) have a significant effect on the arm's workspace. If we assume that

the elbow moment angles are constrained to ensure that the line between Ef and Ee

passes through E (i.e., 0 1 + O2 = 'if) then Figure 5.2 shows the arm's workspace for

different values of O2 .

It should be noted that the workspace in Figure 5.2a is not symmetrical because the

flexors and extensors have different moment arms, and this is taken into consideration

when calculating the joint limits. It is clear that for this arm, using O2 = 180° gives the

largest workspace. However, it does this at the expense of maximum forward (y-axis)

reach. In order to maximise the workspace area and ensure that full straightening of the

arm was possible, O2 was further constrained so that when the arm was fully extended,

Ee lay on a line between Se and E (Fig 5.3a).

From these constraints we can calculate appropriate values for 0 1 and O2 .

1 (8 e
) 'if - tan- z; (5.1)

175.0° (5.2)

'if - O2 (5.3)

5.0° (5.4)

To complete the structural definition of the arm we need to specify the limits for the

joints, 81 and 82 . To preserve a large workspace, but minimise problems associated with

extreme positions, joint one was arbitrarily constrained such that -80° < 81 < 80°.

From our selection of 0 1 and O2 it follows that joint two cannot bend past vertical in

the clockwise direction, which in turn implies that:

(5.5)

Chapter 5 Dynamic Arm Modelling 43

8, 8,

i

4" 4r
i

0,

-4'-_1 , ------

-8 -4 4 8 -8 -4 4

81

I

4~ 4~

0' o!

-4:
-8 -4 o 8 -4

(c) 02 = 150 0

FIGURE 5.2: The workspace of the six actuator arm shown in the xy plane, for a range
of O2 values, where O2 + 0 1 = Jr.

The lower limit of (h was chosen such that E f never passed the line between Sf and E

(Fig 5.3b). If we assume clockwise rotation to be positive, then we can show:

(5.6)

(5.7)

The angle parameters are summarised in Table 5.2. To give the reader an indication of

how the arm structure changes over its workspace, Figure 5.4 shows the arm, plotted

to scale, in a set of extreme poses. It is clear that in some of these poses the actuators

have very small moments of attachment and as such will have limited ability to generate

torques.

Chapter 5 Dynamic Arm Modelling

T

T

s s

(a) fully extended (b) fully flexed

FIGURE 5.3: (a) Arm at full extension, as used to determine values for Dl and D2 .

(b) arm with joint two flexed, as used to determine maximum value for 82 .

Label Value

D1 5.0°
D2 175.0°

mIn max
(h -80° 80°
O2 -168.8° 0°

TABLE 5.2: Summary of the angle parameters used in the arm model, as shown in
Fig. 5.l. Values are given in degrees, clockwise is assumed positive, with zero degrees

being vertical (i.e., aligned with the y-axis).

5.3 Redundancy

44

The arm model, as it is presented, contains only limited redundancy. That implies that,

while there is a one to one mapping between tip location, T, and the joint angles, 01

and O2 , there will be multiple ways to excite the actuators to achieve the same force

at the tip. This clearly simplifies the control task - but is it a reasonable thing to do?

Primate arms have more actuators per joint and have more degrees of freedom in some

of the joints. This naturally leads to systems that are capable of achieving the same end

effect with a range of pose configurations. Contemporary robotic designers minimise the

number of actuators used, as this reduces weight, cost and complexity, while increasing

robustness. With this in mind, when analysing arms with a view to long-term physical

implementation, one should prefer simpler systems with low degrees of freedom and few

actuators. Control of redundant manipulators should only be considered when the extra

control complexity incurred is balanced by appropriate increases in task performance.

Chapter 5 Dynamic Arm Modelling

2 0-----

(g) 81 = 80° 82 = -168.8°

FIGURE 5.4: Arm in set of extreme poses. (h set to -80°, 0° or +80° and (h set to
168.8°, -84.8° or 0°. In the most extreme poses (a, c, g and i) the actuators have

relatively small attachment moments, which may lead to performance limitations in
these regions. The tip of the arm is marked with a filled circle.

5.4 Implementation

45

A static model of the arm has been implemented using MATLAB scripts. This model has

been used to generate several of the figures in this chapter and is used in later chapters

to generate training and testing data. A second, dynamic, model has been implemented

using a custom simulation package based on the Vortex Simulation Libaries (2002), as

discussed in Appendix A.

The physical model required several other parameters to be defined (e.g., masses, friction,

actuator models etc.), the selection of which is discussed in the following chapter.

Figure 5.5 shows a screen shot taken from the dynamic simulation. There are two

physical components (upper arm and forearm links) and several massless components

Chapter 5 Dynamic Arm Modelling

FIGURE 5.5: Screen shot taken from dynamic arm simulation environment. The
prominent balls at the front of the picture are the two shoulder attachment points.
Between them is the shoulder point where the upper arm is pivoted. The upper arm is
shown in light grey and is aligned vertically with respect to the window. The forearm
can be seen lying at 90° to the upper arm, pointing to the left of the window. Thin

lines, representing the actuators, can be seen attached between the components.

46

(actuators, attachment points and sensors). Underneath the arm is a ground plane that

has been marked with a regular grid and some radial lines to assist in the qualitative

assessment of arm movements.

5.5 Conclusion

This chapter has outlined a simple geometric arm model and defined its parameters.

Although, due to numerical constraints, the model does not use standard metric units,

the ratios of the various components, and the angular ranges of the joints have, where

possible, been chosen to reflect those found in nature.

Chapter 6

Convergent Force Field Control

Experimentation

This chapter details the development of an arm control technique inspired by convergent

force field control. An online learning algorithm (single mutation hill climbing) is used

to train an artificial neural network to control the movements of the dynamic arm

simulation.

Initially, only a single field controller was trained. This controller is responsible for

moving the arm towards a single fixed target, using the available proprioceptive infor

mation. Once a selection of such single networks were been trained, further testing was

performed to see if was possible to combine them to create a controller that can steer

the arm towards intermediate positions.

The single field controller was implemented using an MLP with a logistic hidden layer

and linear output layer, as shown in Figure 6.1. Feedback signals are taken from the

physical simulation. Various combinations were tested, but work presented here uses the

length of each of the actuators and the rate of change of length of each of the actuators.

The six actuators are connected to the Newtonian arm model and simulated using

the custom built manipulation simulation client (see Appendix A). The multi-layer

perceptron is implemented using the publicly available NETLAB neural network toolbox

for MATLAB.

6.1 Physical Modelling Environment

As mentioned, the Vortex Simulation Libaries (2002) were used as a foundation for the

physical simulation environment. These libraries model the world using an assortment

of rigid bodies. Although the libraries themselves are capable of using a wide variety

47

Chapter 6 Convergent Force Field Control Experimentation 48

Single Field Controller Arm Model

FIGURE 6.1: Network diagram for the single component controller.

of component descriptions (convex-mesh, primitive shapes and height fields), the work

presented here only used primitive shapes (i.e., cuboids, spheres and cylinders), because

they were the most computationally efficient and accurate.

Vortex models joints as constraints, which create the required reaction forces to resist

any undesired movements. These have the potential to create relatively large forces

within the simulation, which in turn can lead to instability if not managed correctly.

In comparison, an analytical model of the arm movement would assume that many of

the reaction forces would be perfectly balanced and as such they could be factored out

of the mathematics. Model instability can be caused by stiff force-models, and this is

of particular concern when adding novel actuator models to the simulation (as is done

here) because they have the potential to introduce energy to the system. In contrast,

Vortex's own force-models are designed such that numerical errors tend to drain energy.

Care must therefore to taken to limit the amount of force introduced to the simulation.

This has various implications, like the avoidance of 'whip' like structures as these can

Chapter 6 Convergent Force Field Control Experimentation 49

propagate energy along the length in such a way as to result in movements of the end

point that are too fast for the simulation.

Clearly a custom designed analytical model of the arm dynamics would have simpler

parameters, and be capable of running much faster. So why has this route not been

taken? Partly for historical reasons (the simulation environment was already substan

tially finished before the arm model was finalised) but also there are a few key advantages

to a Vortex based approach. Firstly, Vortex is a tried and tested set of simulation tools,

so there is less likelihood of fundamental errors going undetected. Secondly, Vortex

(and other rigid body simulators) provide a very flexible set of tools and as such would

permit future researchers to rapidly integrate and assess the arm's interaction with other

environmental features (e.g., fixed or movable objects). The simulation application has

been specifically designed in a strongly modular way to facilitate this rapid extension

and modification.

6.2 Actuator Models

The actuators used in this simulation are modelled as a linear spring damper system.

The spring has variable stiffness and creates no reaction to compression. For an actuator

oflength In, previous length In-I, rest-length r, damping coefficient d and stiffness gain k,

the following equations define the force generated, J, for an input demand CYn:

Jdamp d(ln -In-I) (6.1)

{ In - ~ In > r
(6.2) s

In < r

Jdrive = CYnks (6.3)

J Jdrive + Jdamp (6.4)

Figure 6.2 represents the components of the actuator model. For each of the six actuators

we must therefore determine a suitable value for d, k and r. Rather than trying to find

a justifiable value for each of these 18 parameters individually, some basic constraints

were first applied. The objective of these constraints was to give each actuator roughly

equivalent performance while taking into account its geometrical configuration. Firstly,

the rest-length for each actuator was set be equal to its minimum length, as determined

by the joint limits. This would mean that the actuators never entered their slack,

zero-force producing, phase. But it does provide a sensible value that would scale

appropriately between actuators. Secondly, the stiffness gain, k, for each actuator was

Chapter 6 Convergent Force Field Control Experimentation

d

FIGURE 6.2: Components of the actuator model, showing current length In, rest
length r, damping coefficient d, stiffness gain k and input demand an. Note that

the spring does not create any force if In < r.

50

constrained to be a common value, k, divided by the range of lengths the actuator could

achieve.

k = k
lmax -lmin

(6.5)

This would mean that, for the same input signal, (x, all the actuators could generate

equal force at full extension. Damping was kept to a minimum as the objective was to

train the controller to produce smooth movements, rather than mechanically constrain

the system to enforce this effect. In a real world system, the effective dissipation of

unwanted kinetic energy would present a significant technical challenge in its own right.

Damping could either occur in the joints, or in the actuators themselves. Further studies

are required to compare the effectiveness of these two alternatives with respect to system

stability, efficiency and behavioural flexibility.

Once the system's geometry had been implemented, a manual trial and improvement

process was used to determine a value for k and the damping coefficients that allowed

the controller to generate rapid accelerations of the arm without becoming unstable.

A value of k = 1000, with damping of 500 units per single joint actuator and 100 per

two joint muscle, produced responsive and stable dynamics. Table 6.1 details how this

breaks down into individual actuator parameters.

The dynamic arm model's underlying simulation application scales lengths and masses

internally to reduce numerical integration error and therefore improve simulation sta

bility and accuracy. This has the unfortunate side effect of making it difficult to put

meaningful real-world units on the arm's parameters.

Chapter 6 Convergent Force Field Control Experimentation

Actuator k r d
Shoulder flexor 1017.2 1.0445 500

Shoulder extensor 1270.7 1.1415 500
Elbow flexor 1005.8 1.0377 500

Elbow extensor 1256.1 1.1354 500
Two joint flexor 505.0 3.6107 100

Two joint extensor 631.4 3.8077 100

TABLE 6.1: Actuator model parameters. Stiffness, lengths and damping coefficients
are given in terms of simulation units.

6.3 Link Parameters

51

The links are modelled as solid cubiods, with constant density. The upper link is assumed

to have twice the density of the lower link, in order to represent the extra mass created

by the actuators. They are modelled as having a square cross sectional area of width

0.8. Appropriate polar inertias are calculated using a Vortex function.

6.4 Feedback Encoding

To reduce the potential for bias, the feedback presented to the MLP was normalised.

In total twelve inputs were presented. The first six were derived from the length of the

actuators, as reported by the physical simulation. These were rescaled to lie between -1

and 1 using information gained from the MATLAB model of the arm. The remaining

six inputs represented the rate of change of the actuators. These were approximated in

MATLAB as the difference between the previously reported and the current actuator

lengths. As these inputs had a large dynamic range any linear scaling that guaranteed

a -1 to 1 range would have resulted in very small signals for most conditions. Instead

a hyperbolic tan function was applied to the rate signals before they were presented to

the network. This ensured that, while the complete range of the signals was preserved,

small movements still resulted in reasonable response of the network input signal.

6.5 Method

It was not possible to use standard techniques like backpropagation to train the MLP as

there was no reasonable way to generate appropriate training data. Instead mutation hill

climbing was employed. This technique involves creating a randomly initialised network

and attempting to improve it incrementally. At each stage a child network is created by

mutating the existing one. The relative performance of the networks is then measured

according to some reasonable test of fitness. If the child network performs better, it is

Chapter 6 Convergent Force Field Control Experimentation 52

adopted as the new network; if not it is rejected and the existing network reinstated.

This technique should usually be tested before more advanced learning algorithms. As

only a single solution is explored, rather than a population of solutions, it will often be

the most efficient technique, in terms of number of evaluations of the fitness test.

As with any learning algorithm, there are a number of parameters to specify. In this

case we must select the capacity of the neural network (i.e., how many hidden nodes it

will have), and the mutation rate. It will also be necessary to determine sensible values

for the parameters of the fitness function.

6.6 Fitness Function

The role of the fitness function is to compare the performance of two competing con

trollers and determine which should be retained, and which rejected. There are two

conflicting demands on this function; it should be fair and it should be efficient. If the

system does not reliably select the better of the two controllers the learning algorithm will

either converge to an inappropriate solution, or not converge at all. With this in mind

the fitness function must test both controllers thoroughly, ensuring that a representative

subset of its responses is evoked. If a poor selection of responses is selected then the

controllers produced may not perform well in the regions that were not covered. It is

also important that the fitness function does not waste time further analysing controllers

that are clearly inferior.

The fitness function presented in this chapter takes the following steps:

1. Select a range of start poses.

2. For each start pose, initialise the arm simulation and connect the controller.

3. Run the combined arm and controller for a fixed number of steps.

4. The score for each run is the mean distance between the end of the arm and the

target point.

5. The score for the controller is the mean of the run scores.

Clearly a lower score indicates a better fitness. There are two parameters in the

process which must be carefully chosen to strike the balance between thoroughness and

processing time. Firstly, we must determine how many steps should the simulation be

run for. Secondly we must decide which start poses should be used.

The simulation should be run for at least enough steps to allow an effective controller

to bring the arm to rest near the target point from any start pose within the workspace.

Chapter 6 Convergent Force Field Control Experimentation

8

4

o

-4L-~ ________ ~ ________ ~ ________ -L ________ ~ __

-8 -4 o
x

4 8

FIGURE 6.3: Initial start poses, marked with black dots, are arranged in a five by five
grid with respect to joint angle.

53

The optimal value for this was hard to determine, but it was found that 500 steps was

generally long enough.

There are two alternative approaches to the selection of start poses. The method least

likely to introduce unfair biases into the result is to select the start poses at random

from within the workspace. Unfortunately, to ensure fairness, this technique requires

that the current controller is evaluated at every iteration (rather than just the mutation

currently being evaluated), as some sets of start poses may be more likely to produce

good scores than others. A second approach would be to select a fixed set of start

points, and use these for all the trials. As the current controller would not then need

retesting each time, this would decrease the overall computational burden at minimal

cost to thoroughness. The second approach was used throughout the following work.

In order to ensure good coverage of the workspace, the start points were arranged in a

grid, evenly by joint angle. In the following work a five by five grid of start poses was

used throughout (Fig 6.3).

6.7 Mutation Algorithm

For mutation hill climbing to work it must be possible to express the configuration of

the controller in such a way that small changes can be performed in a randomised way.

Ideally these changes should lead to small alterations in the behaviour of the controller,

which can then be accepted or rejected by the fitness function. The configuration of an

Chapter 6 Convergent Force Field Control Experimentation 54

MLP can be fully expressed as a list of floating point values (representing the weights

and biases of the network). This list could either be mutated at the bit level or at the

real number level. As we know that this data encodes real numbers, it makes sense to

work at the real number level, as it makes selection of mutation rate more intuitive.

The mutation algorithm used was as follows:

1. Use NETLAB's mlppak to convert the MLP weights and biases into a row vector.

2. Select a single component pseudo-randomly.

3. Disturb the component by a value chosen from a scaled normal distribution.

4. Use NETLAB's mlpupak to rebuild the network from the modified row vector.

6.8 Trial Run

To test that the system was working and capable of converging towards a target, an

initial trial run was performed. A 15 hidden node MLP was randomly initialised and

then trained for 500 testing cycles. A target was selected in the middle of the workspace,

(-2,4), to ensure that the network performed real feedback control, and could not

succeed by merely driving the arm into an extreme position.

Figure 6.4 shows the mean error for the network plotted against training cycles. Several

unsuccessful runs were observed (i.e., where the training process did not converge),

before this run was recorded. As the network improves, the scores of the unsuccessful

tests start to fall further away from the current best score. This means small changes

in the network parameters are resulting in larger changes in the fitness function score.

A more advanced training technique would reduce the size of the mutation rate as the

system converged. This would improve the quality of the mutations tested and therefore

increase the learning rate towards the end of the trial.

To demonstrate how the errors presented in Figure 6.4 relate to actual movements of

the simulated arm, Figure 6.5 presents plots of the arm movements used by the fitness

function taken at five evenly spaced intervals during the training process. Each subfigure

shows the results of a single evaluation of the fitness function. A separate line is plotted

for each of the 25 start poses. Each run starts in one of the initial poses, arranged evenly

within the workspace. Time, in simulation steps, is plotted on the vertical axis, with the

workspace coordinates of the tip of the arm plotted in the horizontal plane. A vertical

dashed line on each subfigure indicates the location of the target point.

The initially randomised network (Fig. 6.5a) demonstrates strong, stable oscillatory

motion. The arm movement converges towards the same limit-cycle irrespective of its

Chapter 6 Convergent Force Field Control Experimentation

3.5··

3

-~2.5
ro
I-
0 - 2 " ... '
Q)
()
c
ro -.~ 1.5 0
c ro
Q)

~ 1

'

0.5

0
0 100 200 300 400 500

Test Cycles

FIGURE 6.4: Trial run scores. The mean error (vertical axis) is taken to be the mean
euclidean distance between the tip of the arm and the target point over 25 trials, each
with 1000 simulation steps. The points marked above the line indicate the scores of

unsuccessful mutations.

55

initial workspace position. After the first 100 training cycles (Fig 6.5(b)) the oscillatory

behaviour has been replaced by a stable, single rest point, response. The next four

subfigures (Fig 6.5(c-f)) show the gradual movement of the rest position towards the

target. Interestingly, this is sometimes achieved at the expense of controlling all the

runs. Figure 6.5(e) in particular shows a stage where a slight improvement in average

distance from the target has resulted in one run heading in entirely the wrong direction.

It would be possible to design the fitness function to be very sensitive to such outliers.

This could be achieved by using the maximum, rather than the mean, distance from the

target. Such an approach would, however, ignore any improvements to runs that were

not the worst, and might therefore make the fitness landscape less smooth.

To demonstrate the interaction between the arm model and the network controller,

Figure 6.6 plots the network inputs and outputs for a single run, taken from a fully

trained controller. The run started with the tip of the arm at (4,4) and moved towards

the target at (4, -2). The top two plots show the two sets of six signals used as

network inputs; normalised actuator lengths and hyperbolic tan encoded actuator length

velocities. The third graph, network demand, shows the output of the network after it

has been shifted to be positive. This was required because the actuator models required

a scalar input. The fourth graph, actuator forces, shows the force developed by the

Chapter 6 Convergent Force Field Control Experimentation

1000

soo

700

600

500

4DO

300

200

100

o
10

1000

800

700

600

4D0

200

100

o
10

800

700

600

500

4D0

300

200

100

o
10

1000

900

SOO

700

600

SOO

400

300

200

100

0
10

10

-5 _5

-5 -10 -5 _10

(a) n 1 (b) n = 100

1000

SOO

700

600

500

400

200

100

0
10

10

_5
-5 _10 _5 _10

(e) n = 200 (d)n=300

900

700

6<J0

500

400

300

200

100

0
10

10

-5 -10

(e) n = 400 (f) n = 500

FIGURE 6.5: Trial run demonstrating convergence of the arm response towards the
target point. The vertical axis represents time, expressed as simulation steps, while the
remaining axes represent workspace coordinates. On each figure a vertical dotted line
indicates the location of the target point, which was constant throughout. The figures
are all drawn from the same training process, with the number of training steps, n,

labelled underneath.

56

10

10

Chapter 6 Convergent Force Field Control Experimentation 57

actuators. This is not a direct scaling of the network demand because the force developed

is also a function of the current actuator extensions. The last two figures show how joint

angles and arm tip location varied throughout the run.

6.9 Selection of Mutation Rate

Having demonstrated a working system, the next stage was to select the optimal mu

tation rate. Figure 6.7 shows the fitness function scores of seven randomly initialised

networks, as trained at four different mutation rates. On average setting m = 0.001

produced the greatest improvement, but the results are far from conclusive. There are

two ways of interpreting the results: either the system is not very sensitive to mutation

rate or the mutation rates tested are all a long way from ideal. Although we can not

be certain that the second of these is not true, as a reasonable range was covered (three

orders of magnitude), we have some confidence that m = 0.001 is a reasonable value to

use.

6.10 Selection of Network Capacity

A much longer experiment was then performed to compare the effectiveness of various

network sizes. Five network configurations were tested with 5, 10, 15, 20 and 25 hidden

nodes, respectively. For each configuration, six networks were randomly initialised and

trained for 1000 cycles. The mean distance between the tip of the arm and the target,

(-2,4), is plotted against training cycles in Figure 6.8.

For nearly all the network configurations there are several runs where no significant

improvements are found; the training process gets stuck in local minima. In several

cases, while there is some improvement, the hill climbing process fails to do better than

would be achieved by random reinitialisation.

That said, it would appear that the networks with 20 hidden nodes seemed to train

more reliably than any other of the tested capacities. At this stage it is not possible

to determine whether this was solely a feature of the training process, or of the system

being trained.

So, from the data presented, we can conclude that although mutation hill climbing is

capable of producing networks that move the arms towards the desired target, it is

not capable of doing so reliably. Further modifications to the training technique, like

selective random restart, would be required to improve reliability.

Chapter 6 Convergent Force Field Control Experimentation

Ul
..c 0.5 x= OJ
c
Q)

0 -l

cj
<l: -0.5 t /-____

-1 r--v---

~
"1:5 0.5 0
(j)
> 0
cj
<l: -0.5

"0
c
m
E
Q)

0
.:£. a
?;

CD z

Ul
Q)
()

-1

2 I\,

1.5

0.5

0

/~ -
rt I~ -----=
~~
\8~

~ 1000

a -
"@

~ 500 \X

o~~~~/~~==::============================~

c
o

'';::;

'w
o

D..
0..
i=

4,--,
'-

/ '-----
2 J ----------------------------

o

-2~--~

o

-2~--~--~ __ ~ __ ====~==~======~==~==d

58

o 50 100 150 200 250 300 350 400 450 500
Simulation Steps

FIGURE 6.6: Network inputs (actuator length and actuator velocity) and outputs
(network demand) for a single run of the fully trained controller. Actuator forces
are given in simulator force units. The joint angles are in radians (solid: 81 , dashed:

82). Tip position is given in workspace coordinates (solid: x, dashed: y).

Chapter 6 Convergent Force Field Control Experimentation

7 7

s "---
6

~ 5

"-' 6

5

4 4

3 .~ 3 .~

~ ---....
2

-
2

o 10 20 30 40 50 0 10 20 30 40

(a) m = 0.001 (b) m = 0.01

7 7

~ \..--...
6 6 "
5 .~
'~

5

4

3

2

o

4

3

2 -----'--

10 20 30 40 50 0 10 20 30 40

(c) m=O.l (d) m=1.0

FIGURE 6.7: CFFC control with ten hidden nodes trained with a range of mutation
rates, m. Each graph shows training cycles (horizontally) against mean error for
25 evenly spaced starting poses (vertically). Although m = 0.001 seems to do the
best overall, it is clear that some initial conditions are not amenable to improvement,
irrespective of the mutation rate. The initial error value is not a function of the mutation

rate.

6.11 Blending Network Outputs

59

50

50

In order to investigate the potential for several controllers to be used in parallel, a second

network was trained with a different target, (-5,0). This was less successful than the

first (see Figure 6.9 for training errors), but did create a network that was capable of

moving the arm approximately towards the alternative target.

Figure 6.10 shows a comparison of the fully trained output for two networks, one trained

toward (-2,4) and the other toward (-5,0). The arm response is shown both in a three

dimensional time plot, and from a top view of the workspace. It is clear that the

networks move the arm toward different locations. The last two subfigures (e and f)

show the response of the arm when it is controlled by a blending of both networks. The

Chapter 6 Convergent ~Force Field Control Experimentation 60

5

4~ __ ~-===============~

5

4

200 400 600 800 200 400 600 800 1000

(c) n = 15 (d) n = 20

5

200 400 600 800 1000

(e) n = 25

FIGURE 6.8: Mean error (vertical axis) plotted against training cycles (horizontal axis)
for five different network sizes (n is the number of hidden nodes, all other network
parameters were identical throughout). Error is calculated as the mean euclidean
distance between the tip of the arm and the target point, over 25 runs of 500 simulation
steps. The runs used a range of starting poses which were spaced evenly with respect
to joint angle within the workspace of the arm. The experiment took 225 hours to run.

Chapter 6 Convergent Force Field Control Experimentation

3

2

200 400 600 800 1000

FIGURE 6.9: Training history for an alternative target point (-5,0). Horizontal axis
shows training cycles, vertical axis is the mean distance between the tip of the arm and

the target point.

61

blended outputs were calculated as the mean of the two individual network outputs. The

resulting blended network creates a response that moves the arm to a position roughly

halfway between the two target points, which are plotted as black dots in subfigure (f).

To determine how the outputs of the networks combined, a series of weighted blendings

were performed. In each blending the outputs of a single field network were multiplied

by a scaling factor before being combined. The sum of the two scaling factors was

always 1.0. Figure 6.11(a-i) shows a top view of nine different blended networks. The

two target points are shown as black dots. As the blending ratio moves from favouring

one network to favouring the other, a smooth range of intermediate responses are elicited.

Figure 6.11 (j) shows the mean position of the tip of the arm for the second half of each

simulation, i.e., the period when the arm is substantially at rest. These positions move

smoothly from one target to the other, but not quite in a straight line, or with even step

sizes. The size of the ellipse is proportional to the mean of the standard deviations of

the tip position, and gives an indication of the arm's steadiness.

6.12 Discussion

This initial investigation must be considered a mixed success. Firstly, given enough

training cycles, the controller was capable of learning how to move the arm towards the

target from any position within the workspace. Secondly, basic mixing of the network

outputs was demonstrated to create reasonable intermediate responses. This holds open

the possibility that the arm could be controlled by a set of independent component

controllers, whose output is mixed to create a complete range of convergent trajectories.

Unfortunately the experimentation did not demonstrate the capability of generating the

straight trajectories with the bell shaped velocity curves typical of human reaching.

Chapter 6 Convergent Force Field Control Experimentation

500

450

400

300

250

-2

-5
-4 -4L-_8~--~---_4~--_~2----~--~--~--~--~~

(a) target (-2,4) (b) target = (-2,4) (top view)

500

450

400

-2

-4L-~--_~6----_4~--_~2----~--~----C---~----CC--

(c) target (-5,0) (d) target (-5,0) (top view)

500

450

400 , ,
, ,

300 , ,
250

, , ,
, , ,

-2

-4L-_~8---_~6----_4~--~_2~--~--~--~--~~--~ -2
-4

(e) mixed 50:50 (f) mixed 50:50(top view)

FIGURE 6.10: Comparison of the best network achieved with 20 hidden nodes for two
different targets. (e-f) show the output of a blended network that used output signals

from both the above networks.

62

Chapter 6 Convergent Force Field Control Experimentation

(a) Blending ratio 10:90 (b) Blending ratio = 20:80 (e) Blending ratio 30:70

8

(d) Blending ratio 40:60 (e) Blending ratio 50:50 (f) Blending ratio 60:40

8

(g) Blending ratio 70:30 (b) Blending ratio = 80:20 (i) Blending ratio = 90:10

4.5

4 o

3.5

3

2.5

2

1.5

0.5

o c::::>

-~~.~5-----~4~----~3.~5-----~3----~-2~.5~----~2------~1.5

(j) movement of end point

FIGURE 6.11: (a)-(i) shows the top view of a range of mixes of the controlling networks.
(j) shows the mean position of the end point for the above graphs. Ellipses are centred
on the mean position of the final 250 simulation steps for each of the 25 runs. The
ellipse on the top right is the field one response and the ellipse on the bottom left is
the field two response. The intermediate ellipses show blended responses created using
an evenly spaced range of mixing ratios. Ellipse width and height are proportional to
the mean of the standard deviations for each of the 25 start poses over the same range

of simulation steps, plotted at three times the axis scale.

63

Chapter 6 Convergent Force Field Control Experimentation 64

There are several potential reasons for this failure: a limitation of the model mechanics,

controller capacity or of the training approach.

Classical control approaches could be used to design an optimised controller for this

simplified compliant arm, and thus demonstrate whether smooth straight line trajecto

ries are possible with the dynamic arm model. Unfortunately, the time it would take

to design such a controller was not justifiable at present. A second approach could

be to implement a learning system that performed mutation hill climbing on a vector

that contained both the arm's mechanical parameters and the MLP's weights and biases.

This would allow the technique to tune these in parallel and should demonstrate whether

it is possible to control the arm in the way envisioned. This would present an interesting

research challenge in itself but is, of course, a different problem to the one tackled in

this work, which focused on whether the learning technique could exploit the predefined

mechanical system.

Mechanical restrictions aside, it is likely that the direct control approach outlined in

this chapter will not be able to produce human-like reaching motions. The following

chapters outline a more complicated, novel controller that borrows from equilibrium

point control, as well as convergent force field control. This controller has some limited

internal state, the encoding of which is explored and analysed.

Chapter 7

Convergent EquilibriuITl

Trajectory Control Model

This chapter outlines a novel framework that combines equilibrium trajectory control

and convergent force field control (Fig 7.1). It is hoped that it will provide a useful

foundation for the development of robust autonomous robotic reaching behaviours. As

it is envisioned, convergent equilibrium trajectory control (CETC) could be extended to

control more complicated articulated structures, including artificial hands. Each stage

in this framework can be seen as a mapping that modifies the apparent dynamics of

the following stages; the modification should be advantageous to the proceeding stages

by reducing dimensionality, redundancy or mapping-complexity. With this in mind, the

following sections describe the various stages of the model, working from the actuators

back up to the top level input.

r

gain g - trajectory e length f3 '---- local
ex. p - arm

actuator r--
encoder generator encoder

driver
dynamics

FIGURE 7.1: Proposed framework. The target pose (t), is encoded in terms of the
gains of the component force-fields (g). These gains are used to drive the internal
representation of the equilibrium point (e) towards the target defined by 9 at the drift
rate (r). A set of equilibrium muscle lengths (13) is derived from e. The final stage
combines 13 with proprioceptive feedback (p) to generate actuator drive signals (a).

65

Chapter 7 Convergent Equilibrium Trajectory Control Model 66

7.1 Local Actuator Driver

In the proposed framework the local actuator driver takes the place of the local feedback

loops present in muscles (i.e., Renshaw cell, spindle, and Golgi feedback, as discussed

in section 3.2). This feedback should provide the preceding stages of the controller with

appropriate arm and actuator dynamics for equilibrium trajectory control. Central to

the success of this approach is the assertion that constant rate movement of the arm

equilibrium point will result in smooth acceleration and deceleration of the arm's end

point (Gribble et al., 1998).

For a given time step, n, and actuator, i, the local actuator driver combines the required

rest length, (3in and the available proprioceptive information, Pin to calculate the optimal

actuator input signal, CYin+1' Although there is an independent input signal for each

actuator, the feedback depends on the dynamics of the whole arm model and is therefore

a function of all the actuator inputs.

(7.1)

The exact parameters of the transfer function, di , will depend on the properties of the

individual actuator being controlled, but some commonality is likely. The separation of

the transfer functions assumes that the feedback from one actuator should not influence

the input of another. If this was found to be overly restrictive, the parallel mapping

functions di could be replaced by a single mapping with access to all the actuators'

feedbacks.

(7.2)

Although this would be a more flexible mapping, it would come at the cost of more free

parameters, and would therefore be harder to train. It is therefore important to decide

whether this cross-feedback is required.

7.2 Length Encoder

The local actuator driver must be supplied with appropriate rest-length information, (3,

so that it can re-tune the actuators to align the arm's mechanical equilibrium point with

the desired equilibrium point, e, demanded by the preceding stages of the controller.

(3 = b(e) (7.3)

Chapter 7 Convergent Equilibrium Trajectory Control Model 67

In conventional robotics, inverse kinematics would be used to calculate the required joint

parameters, and then an abstract geometric model of the arm would be used to translate

this into appropriate actuator rest-lengths. This framework aims to avoid such direct

calculations for two reasons.

Firstly, we do not want to assume access to an accurate abstract geometric model of

the arm because this would make the mapping unsuitable for learning. Such a system

would therefore have to be preprogrammed and would have limited potential to respond

to changes in the mechanics of the system - something that will become increasingly

important as articulated robots become more complicated.

Secondly, it is important that the system is capable of developing appropriate amounts

of co-activation (i.e., tightening opposing actuators) so as to increase the overall stiffness,

or tone, of the arm. People often use more stiffness when attempting novel tasks, where

they are less likely to be able to predict changes in loading and disturbance. Clearly,

over-using co-activation incurs energy costs and possibly reduces responsiveness, while

under using co-activation can lead to disturbances impairing task performance. This

therefore implies that the length encoder mapping, b, will be to some extent dependant

on the novelty of the current task.

7.3 Trajectory Generator

For simple point to point reaching the trajectory generator is responsible for moving

the equilibrium point, e, at a constant rate towards the target point and ensuring that

it comes to rest immediately on arrival (i.e., no overshoot or oscillation). This sort of

motion is possible with the equilibrium point because it is purely an internal state of

the controller, and therefore has no inertia. The equilibrium point discussed here is the

ideal equilibrium point which is assumed to be always identical to the equilibrium point

achieved by the arm itself. In any real implementation there will be some mechanically

induced constraints (both in terms oflag and range) that must be accounted for, but for

simplicity this has not been included in the current model. If we consider time step n,

the trajectory generator is responsible for calculating the next equilibrium point, en+ll

from the current equilibrium point, en, the current field gain mixture vector, g, and the

drift-rate, r.

(7.4)

As we are currently only considering point to point reaching, it is tempting to assume

that u could be replaced by a reasonably simple direct algebraic expression. However

it is important to remember that we are developing a general framework that will be

required to produce more complicated behaviours in future, potentially including cyclic

Chapter 7 Convergent Equilibrium Trajectory Control Model 68

r e r
g U g

e
r--4 e

U U
b

n

r- a r-

e
n-} Z-l

e
n-J Z-l r---

(a) Direct (b) Indirect

FIGURE 7.2: Two alternative trajectory generators. (a) a single mapping creates the
next equilibrium point encoding directly from its previous value. (b) calculates an

intermediate representation, e6., of the step to be taken.

motion. We should, therefore, be careful to balance simplicity against flexibility and not

rush to constrain the system prematurely.

The direct mapping, u, requires that the network provides an output which is nearly

the same as one of the inputs (en) but that has been changed by a small amount. To

maintain a high enough refresh rate for the arm, the change required is in the region of

10-100 times smaller than the magnitude of en. It may therefore be advantageous to

split the trajectory generator into two parts: a movement direction generator, U a , which

calculates the required change, e,6" and an integrator, Ub which updates the value of e

accordingly. So for a given instant in time, n, we have:

(7.5)

(7.6)

Figure 7.2 contrasts direct and indirect trajectory generation. Indirect updating would

allow Ub to be replaced with direct vector summation if en£',. is encoded in the same way

as en, but allows different encodings to be employed if required.

7.4 Gain Encoder

The gain encoder in Figure 7.1 is responsible for generating a mixture of gains, g, such

that the resulting movement of the arm meets the demands of the top-level controller,

expressed as t.

g = f(t) (7.7)

Chapter 7 Convergent Equilibrium Trajectory Control Model 69

The gain vector can be seen as a simple type of population encoding of target position.

Population encodings have been observed within the motor cortex of monkeys perform

ing reaching tasks and are thought to store the desired direction prior to movement

(Georgopoulos et al., 1988, 1992; Georgopoulos, 1995).

There are two, fairly distinct ways this could be achieved. The first option is for the

top-level controller to specify an end point in some convenient coordinate system, like

head-centred polar, which the gain encoder can map directly to a gain encoding. The

problem with this approach is that all tasks then have to be converted into a series

of point-to-point reaching movements. This would require the top-level controller to

perform complex task decomposition, which may not always be desirable.

The second approach is to encode t in a more application orientated action-parameter

space, where different locations represent different useful responses, e.g., move-arm-in

to-protect-body, move-arm-firmly-outward-to-repel, move-arm-left-to-pin-object, etc. It

would be significantly more challenging to develop a method for training the second

approach, but it may lead to a system that is of more value to behaviour based robotics

developers.

7.5 Control Signal Encoding

The framework described above outlined the various mappings required to build the

controller. It did not, however, define how the control signals were to be encoded. In

a system where all the parameters are accurately known, precise selection of encoding

is not essential as long as the complete system is fully defined, as any information not

directly communicated can be inferred. In the framework proposed, each stage only has

access to the signals directly communicated to it, and must gain all other information

by learning (either online or offline). It is therefore important that signals are encoded

such that learning the appropriate mapping is as easy as possible. This section outlines

some of the potential encoding options for the equilibrium point, e.

Cartesian : The most direct way to encode would be in some Cartesian frame, that

was fixed with respect to the body frame. It would be necessary to define an origin, a

rotation and a scale factor. For this work it is assumed that there is no rotation of the

Cartesian frame, and it is scaled such that the entire workspace lies within ±1 on each

axis.

Shoulder Centred Polar : An alternative, and equally abstract, way of representing

the equilibrium point is in shoulder centred polar coordinates. As the origin is already

defined, we need only define any rotation with respect to the workspace, and any scaling.

Zero degrees was taken to lie on the line between the shoulder and a point in the middle

of the workspace, and all angles and distances were rescaled to lie between ±l.

Chapter 7 Convergent Equilibrium Trajectory Control Model 70

Joint Angle Encoding: Encoding the equilibrium point using joint angles may make

the calculation of appropriate f3 easier, but would make moving at a constant rate

in body space significantly harder. This would be pose encoding, rather than point

encoding, which would make a difference if one was controlling a redundant arm, as it

would avoid the need to build a length encoder that could select the ideal solution from

the possible alternatives.

Relaxed f3 Encoding : An alternative pose encoding would use the actuator rest

lengths. As already mentioned, the length controller should manage the amount of

co-activation in the arm, but if one considers the case where there is no co-activation,

there is a one-to-one mapping from valid configurations of e to f3. This may allow e to

be represented as a set of muscle rest lengths. However, this is likely to make learning

the trajectory generator harder. If this is possible though, it would represent the most

elegant solution as it means there would be no need for a separate length encoder stage,

significantly simplifying the proposed framework.

Chapter 8 explores the trajectory generator stage, and demonstrates an initial imple

mentation. Chapter 9 briefly presents an implementation of the the length encoder stage

and compares its results with those obtained for the trajectory generator.

Chapter 8

Trajectory Generation

The trajectory generator is responsible for moving an internal representation of the

equilibrium point towards a target specified by the gain vector (see Fig. 7.1). This

chapter details work which first defines the behaviour of an ideal trajectory generator

and then implements it using an MLP.

8.1 Definition of Ideal Trajectories

This section outlines a procedure that was used to create an ideal trajectory generator.

The objective here is to calculate a small, fixed length step, in a direction specified by

the gain vector. The movement should be along the shortest path between the current

equilibrium point and the target point that does not pass outside the workspace.

8.1.1 Direction of movement

As the purpose of the ideal trajectory generator is to generate training and testing

data for the MLP implementation, the procedure outlined is not necessarily suited for

deployment in a real controller. In particular it uses an abstract geometric model of the

arm extensively, something that we would not wish to rely on in the final implementation.

The input to the trajectory generator, g, serves a very similar role to the gain vector

used in CFFC; i.e., to control how several component force fields are mixed. In this case

the force fields control the movement of the internal equilibrium point, e, rather than

the end point of the arm. Each of the component fields moves e towards a different

71

Chapter 8 Trajectory Generation 72

location within the workspace. As we are only interested in the relative component field

gains, the incoming gain vector is first normalised:

(8.1)

The Ll norm (the sum of all the components) is used in the normalisation, rather than

the more common L2 norm (the length of the vector in Euclidean space). This means

that the sum of the components of 9 is always constant.

The normalisation does introduce some redundancy into the input space, such that

several values of 9 result in the same value of g. This redundancy might assist in the

coordination of higher level behaviours, effectively allowing the controller to respond to

the relative balance of demands between two competing higher level behaviours, rather

than responding to their actual levels.

When all the components of 9 are zero, Equation 8.1 does not have a finite answer. In

such cases the components of 9 are all set to 11m, where m is the number of elements

in g. This ensures that the behaviour of 9 does not contain any discontinuities as 9

approaches zero.

Each of the component fields must move the equilibrium point to a different workspace

location, and combinations of component fields should move towards stable intermediate

locations. The most direct way to achieve this would be to use a weighted sum of unit

vectors pointing towards several different carefully selected target locations (tl' t2 ... tc)·

This could then be scaled by the rate at which the equilibrium point should move, the

drift rate, r n , and used to update the equilibrium point, e. So for time step, n, gain

vector gn, and equilibrium point en we can calculate the next equilibrium point, en+l:

(8.2)

where c is the number of component fields, t J is the target location for field f and 9n j is

the fth component of 9w

This approach is unfortunately flawed as, although it works fine when only one com

ponent is active (i.e., 9n has only one non zero component), it does not produce good

results when several components are blended. In order to preserve proper blending the

weighted sum must be applied after the rescaling, thus:

c

~n L9nj(tJ - en) (8.3)
J=l

~n (8.4) en+1 en + rn I~nb

Chapter 8 Trajectory Generation

component x y
1 7.80 1.65
2 1.20 1.60
3 -0.95 -1.65
4 -7.90 0.40
5 -2.00 7.50

TABLE 8.1: Locations ofthe five component targets that the trajectory generator uses,
as shown in Figure 8.1.

10

8 5

6

4

2

0 4

-2

-4
-8 -6 -4 -2 0 2 4 6 8

FIGURE 8.1: Workspace of the arm model with the five component targets that the
trajectory generator will use.

73

Using this formulation, it is not possible to specify an intermediate target location that

lies outside the perimeter of a region bounded by the defined component target locations.

The component target locations should therefore be selected toward the edge of the arm's

workspace. For the work presented in the following sections, a trajectory generator with

five component fields was modelled with minima positioned as defined in Table 8.1 and

shown in Figure 8.1. Unless otherwise stated, the drift rate, r n , was kept equal to 0.1

throughout.

8.1.2 Ensuring reachability

For most situations, Equations 8.3 and 8.4 produce sensible updates for e . Unfortu

nately, this breaks down towards the edge of the workspace. In these situations, it is

quite possible for the update generated to attempt to move e to a location that the

arm cannot reach. There are two distinct ways in which this can happen; either it is

Chapter 8 Trajectory Generation 74

physically beyond the reach of the arm at maximum extension or it would require the

joint angles to move outside their permitted range. These cases will be dealt with in

turn.

The main difficulty with points beyond the reach of the arm is that there is no method

to determine appropriate joint angles (they simply do not exist). As later stages require

that the joint angles are known, such movements need to be adjusted so that they

lie within the range of the arm. The most direct approach would be simply to move

the point towards the shoulder until it was within the reach of the arm. This would

unfortunately have the side effect of reducing the distance between the old e and the

new one. Although this will not cause a problem in most cases, there is the potential for

this to create a dead end, such that e comes towards the edge of the workspace and stops

moving. This is unacceptable as it means that e will never reach the target location.

A procedure was therefore used to ensure that the updated e lay inside the reach of

the arm while maintaining the same step length. This was achieved by finding the

intersection(s) of a circle, Cstep, centred on en, with radius equal to drift rate Tstep, and

a circle, Carm ' centred on the shoulder with radius equal to maximum reach of the arm,

T arm . There are four types of solution to such a system:

1. No real points of intersection.

2. One point of intersection, i.e., the centres are Tstep + Tarm apart.

3. Two points of intersection.

4. Infinite points, i.e., the circles have identical radii and centres.

We can assume the initial equilibrium point, en is reachable, and therefore inside Carm.

If we only attempt to adjust the position of the updated point, en+l, when it is outside

(not on, or inside) Carm then we need not consider answers of type one or two. For

any reasonable configuration we can assume that Tstep « Tarm , so we need not consider

answers of type four.

We therefore need only consider solutions of type three, where there are two points of

intersection. We therefore must consider which of the two solutions, e~+ 1 and e~+!, to

use as a replacement for the original en+l (Fig. 8.2). To maintain as much of the sense

of the update as possible, the best choice is the solution nearest to en+!.

8.1.3 Target substitution

The arm workspace is not convex. Specifically there are two regions within the max

imum boundary that cannot be reached due to joint limits, as shown in Figure 8.3.

Chapter 8 Trajectory Generation

Accessible
Region

FIGURE 8.2: Updates are modified to ensure they are reachable. When e n +l is not
reachable, two points e~H and e:~+l are calculated that are just reachable and the
same distance from en as en+l. The closest of these two to enH is then used as a

substitute point.

_4L-__ ~ ____ -L ____ ~ __ ~ ____ -L ____ ~ ____ ~ __ ~

-8 -6 -4 -2

FIGURE 8.3: There are two regions, labelled one and two are within the overall
perimeter of the workspace, but that cannot be reached due to joint constraints.

75

Their boundaries are circular and can be calculated directly from the arm configuration

parameters.

This leads to situations where the shortest path between two points within the workspace

is not necessarily straight (Fig. 8.4). So what are the implications of this for a trajectory

generator that takes any point in the workspace and moves it slightly nearer a target

Chapter 8 Trajectory Generation

(a) (b)

FIGURE 8.4: (a) the ideal trajectory when it is not possible to move directly from point
A to B because the path passes through a region that is outside the workspace of the
arm. (b) the ideal solution needs planning, i.e., even though Band C are in the same

direction, the ideal initial movements are not identical.

76

location? It means a small movement along the shortest path within the workspace can

not be calculated without predicting, and correcting for, boundary collisions.

We must therefore be able to predict collisions between these two circular regions and

the planned trajectory. This can be solved if we consider a circle, centred on point c, and

a line segment running from a given point, s, to a target point, t. Using the parametric

line equation, we can define point m,

m s+u(t-s) (8.5)

We want to calculate the value of u that will make point Tn closest to the centre of

the circle. This happens when the line between the centre of the circle and m is

perpendicular to the line between sand t. When these lines are perpendicular they

will have a dot product of zero:

(c - m) . (t - s) = 0 (8.6)

Once this is substituted back into the parametric line equation, we can solve for u:

u (8.7)

If u < 0.0 or u > 1.0 then the closest point on the line to the circle does not lie between

sand t. In all other situations we can use Equation 8.5 to calculate the coordinates of

the nearest point and then test to see if it lies within the radius of the circle.

Once we know that a trajectory would intersect with an unreachable region, we must

calculate a virtual target location, tf, to use as a substitute. As we are only going to

take a fixed length step towards the target location, it does not matter if we vary the

Chapter 8 Trajectory Generation

A

(a) two alternative substitute targets for B. (b) using relative bearing to select substitute

FIGURE 8.5: The selection of which substitute target to use is dependant on the relative
bearings of the start point, A, and the target location B, with respect to the centre of
the unreachable region, shown here in grey. If point A is in the region marked - in
(b), B' should be used. Conversely, if A is in the region marked + the alternative, B",

should be used.

77

apparent distance between the current equilibrium point and the target. The substituted

target will lie on the circumference of the unreachable region, at a point where the

tangent intersects with the current equilibrium point. The two solutions can be readily

calculated and are depicted in Figure 8.5a.

The only remaining challenge is to select which of the two solutions to use. For the

current arm model, the choice of solution depends on the relative bearings of the current

equilibrium point and target location with respect to the centre of the unreachable

region. When the equilibrium point has a higher bearing than that of the target location,

the clockwise substitute point should be used. Otherwise, the anticlockwise substitute

point should be used (Fig. 8.5b).

8.1.4 Joint deflection and clamping

Once the new target had been generated and an initial direction calculated, the next

stage was to ensure that the arm's joint limits were not exceeded. This was done using

a two stage process: deflecting and then clamping. The deflecting stage attempted to

twist the update so that the step length remained the same, but was now within the

workspace. Note that for efficiency reasons these tests were applied in the joint-angle

space, so it was the length of the change in joint angles (not Cartesian space) that was

maintained. Once all four joint limits (i.e., high and low on both axes) were deflected,

any remaining overshoot was clamped without regard to axis interdependence.

Chapter 8 Trajectory Generation 78

8.1.5 Update generation summary

In outline we perform the following stages for every update:

1. Normalise gain vector

2. Calculate target point

3. Test for path passing outside workspace

4. Substitute target if required

5. Calculate step towards target

6. Test for step being outside reach of arm

7. Modify step to make it reachable if required

8. Calculate change in joint angles

9. Deflect step if it crosses joint limits

10. Clamp joint angles if required

This is not a simple process, and does require access to an accurate model of the arm.

Figure 8.6 shows the output of this process for six different gain vectors. Figure 8.6a

demonstrates target substitution effectively. Even though the final target location is at

the end of a very narrow part of the workspace, the ideal trajectory generator is capable

of getting there by the shortest route from anywhere within the workspace of the arm.

Figure 8.6f demonstrates an intermediate response, with two component fields active.

Figure 8.7 shows the same output, but this time plotted as movements in joint-space.

The horizontal axis represents a normalised value for e1 , and the vertical axis represents

a normalised value for e2 . The same set of gain vectors are used as in Figure 8.6. Unsur

prisingly, encoded as joint angles the movements appear significantly more complicated.

Figure 8.8 shows the same set of responses, but this time plotted using normalised

shoulder centred polar coordinates. Even though this is an arbitrary encoding (i.e.,

does not require a geometric arm model for update calculation) the response appears

strikingly similar to that of the joint encoding.

Chapter 8 Trajectory Generation 79

8 8

4 4

o o

-4~ ______ ~ ______ ~ ______ ~ ____ ~ __ -4~ ______ ~ ______ ~ ______ ~ ____ ~ __
-8 -4 0 4 8 -8 -4 0 4 8

(a) 9 [1 0 0 0 0] (b) 9 = [0 1 0 0 0]

8 8

4 4

o o

-4~~ ____ ~ ______ ~ ______ -L ______ ~_ -4~ ______ ~ ______ ~~ ____ ~ ______ ~_
-8 -4 0 4 8 -8 -4 0 4 8

(c)g=[00100] (d)g [00010]

8 8

4 4

o o

-4L-~ ____ ~ ______ ~ ______ ~ ______ ~_ -4L-~ ____ ~ ________ ~ ______ ~ ____ ~ __
-8 -4 0 4 8 -8 -4 o 4

(e)g [00001] (f) 9 [0 1 0 0 1]

FIGURE 8.6: Output of the ideal trajectory generator plotted in workspace coordinates.
The faint grid shows the workspace of the arm, with the dark lines showing the path of
the equilibrium point as it converges towards a target. Under each is shown the value

of the gain vector, g, which was held constant for each trial.

8

Chapter 8 Trajectory Generation

-1 o
(a) 9 = [1 0 0 0 0 J

-1 0

-1

(c) 9 [0 0 1 0 0 J

o
(e)g=[OOOOlJ

-1

-1

-1 o
(b) 9 = [0 1 0 0 0 J

-1 0

(d)g [00010J

-1 o
(f) 9 = [0 1 0 0 1 J

FIGURE 8.7: Graph of the same data as Figure 8.6 but plotted in joint angle space.
The horizontal axis shows 81 and the vertical axis shows 82 , both are plotted in radians.

80

Chapter 8 Trajectory Generation

o

-0.5

-1

-1

of

-0.5

-1

-1

o

-0.5

-1

-1

-0.5 0

(a) 9 = [1 o 0 0 0 J

o
(c)g [00100J

o
(e)g=[OOOOIJ

o

-0.5

-1

0.5 -1 -0.5 0

(b) 9 = [0 1 0 0 0 J

0

-0.5

-1

0.5 -1

(d) 9 = [0 0 0 1 0 J

o

-0.5

-1

0.5 -1

(f) 9 = [0 1 0 0 1 J

FIGURE 8.8: Graph of the same data as Figure 8.6 but plotted in normalised polar
coordinates. The horizontal axis shows angle and the vertical axis shows distance.

81

0.5

0.5

0.5

Chapter 8 Thajectory Generation

T +
x

+ --------------~
v 0

FIGURE 8.9: One-dimensional control to produce constant rate movement toward a
fixed target

8.2 Trajectory Generator Implementation

82

Having decided on the output that the trajectory generator should produce, the next

step is to determine how it should be implemented. Before we attempt this, some

consideration should be given to the underlying structure of the system. One ideal

of CFFC is that the resultant field should be a combination of several independent

component fields. From an engineering perspective this distributed structure is likely to

have significant advantages, both in required controller complexity and training time.

The most direct way of implementing this distributed structure would be to train a

separate component controller for each target point. Each component controller would

then be responsible for moving e toward its target at the drift rate, r. The output ofthese

controllers could then be combined using the normalised gain vector. Unfortunately

this approach will not work. To demonstrate this clearly, let us consider a trivial one

dimensional tracking problem. In this example the objective is to move e toward a target

point on the line at constant rate, r. If we assume that there is only one target, then

the correct movement of e is defined by a step function that changes sign as e passes

the target (Fig. 8.9).

However, this will not work as a component function because when added it will lead to

regions that are non-responsive. To demonstrate this let us consider the same number

line, but this time with two target locations, TI and T2. If we combine their independent

response functions, VI and V2, to create to create a response function, Vtot, it does not

drive e to a intermediate target location halfway between Tl and T2 . In fact it does not

drive e at all in the region between Tl and T2 (Fig. 8.10).

The desired response can be created if the process is divided into two stages. The

individual component functions should respond linearly to the distance between their

target point and e. These components can then be combined using the normalised gain

vector. The combined output can then be rescaled to maintain constant rate movement.

Using this process it is possible to create intermediate responses that move e to any

point between TI and T2 by varying the gain vector (Fig. 8.11). So what implications

does it have for two-dimensional control of e?

Chapter 8 Trajectory Generation

T2 + x

+ ------------------~
vI 0

+ ------~
v2 0----+----------

+---~
VtotO ___ --1. _______ ,--___ _

FIGURE 8.10: One-dimensional control to produce constant rate movement. Half the
response of two targets, 'VI and 'V2, is summed to create 'Vtot. It is clear that 'Vtat will

not move e to a point on the line halfway between Tl and T2

T2 +
x

VI ~ ~-=====:::::::~~--o;;;;;;;;;;;;;;;;;;::::::=
+

V2 O-=~~--=;;;::::::::=======
+

VtotO -==::::::::~ --....... ;;;;;;;;;;::::::::===
+ ---------~

Vnorm 0 --------t--------

FIGURE 8.11: One-dimensional control to produce constant rate movement. The
response of two targets, 'VI and 'V2, is summed to create Vtot. In this example the
result is usable, and only needs to be thresholded to create the ideal combined response

function, 'Vnarm •

83

To create a set of two-dimensional component responses that will combine to create a

full range of intermediate responses, the output of the ideal trajectory generator needs

to be scaled. Specifically, the relative size of the response at each location needs to

be proportional to the distance from the target location. When these are combined

it is unlikely that they will produce exactly the same results as those that would be

generated by the ideal trajectory generator, particularly as when a target point has

been substituted the route to the target is longer than the distance between the location

and the target point.

Figure 8.12(a)-(e) shows the new, scaled, ideal component fields for each of the five

target locations. Subfigures (f)-(h) show various intermediate responses, created by

Chapter 8 Trajectory Generation 84

direct blending of two of the five component fields. It should be stressed that these

blends have been created by mixing the component fields, rather than re-running the

ideal trajectory generator. The intermediate fields have a qualitatively similar structure

to that of the component fields.

There are, however, some differences between the way this process, and the ideal tra

jectory generator, creates intermediate responses. Figure 8.12(h) shows the situation

where responses (b) and (c) have been evenly mixed. The ideal trajectory generator

would create a response that attempted to move e to a point half way between the

target locations 2 and 3, which in this case would be outside the workspace of the

arm. The net result is that, although the response attempts to converge towards a

single point, as that point is outside the workspace, it is bound to fail. In contrast the

response created by blending, as shown in (h), does converge towards a sensible point

within the workspace. In this way the blending approach creates a more useful response

than the 'ideal' trajectory generator.

So does this process work if the equilibrium point is encoded in a different way? Fig

ures 8.13 and 8.14 show a similar set of graphs using polar and joint encodings re

spectively. In both these cases the five components are generated by calculating the

scaled ideal component fields in Cartesian coordinates and then converting them into

the alternative equilibrium point encodings. The intermediate fields are calculated by

direct mixing of these alternative encodings of the component fields, and do not use

any conversion back into Cartesian coordinates. Careful inspection of these figures will

reveal that, even though the shape of these fields is more complicated than the Cartesian

ones, they can still be mixed successfully to create a smooth range of intermediate fields.

8.3 Selection of Equilibrium Point Encoding

Having established that the component addition can be performed using any of the

equilibrium point encoding schemes, the next stage was to implement a component field

controller. A component field controller is responsible for updating the equilibrium point

so that it moves towards a single target point from any location with the workspace of

the arm. A 15 hidden node MLP, with a sigmoidal hidden layer activation function and

a linear output layer activation function, was used. The objective was to determine if

any of the encoding schemes had an advantage in terms of training time and overall

performance.

To this end the following trial was performed. A set of scaled ideal field components,

similar to those previously presented, was calculated for each encoding scheme. Each

set contained 341 training points, spread evenly through the workspace of the arm,

with respect to Cartesian coordinates. To improve accuracy, for each encoding scheme

two controllers were trained for each of the five component fields. For each controller

Chapter 8 Trajectory Generation

8

4

0

-8 -4 0 4 8 -8 -4 o 4 8

(a) (b)

8

4

0

-8 -4 0 4 8 -8 -4 0 4 8

(c) (d)

8 8 A;;:;;!::>'l?'~~~"
,4;c:«,¥'\;\.l(K(.,~

'i ~~'\,JfY~';'
!i;'s.~i.~~;/ ,/": ./ .. ,o! ~'\

4 4 A ?~#~'W~~<~'> ' •. ".' \~\
i~ ,/,-1" \ ~.'v/\ "'f6t:tN/ \ ,,'" ~" '"'

0 0
(\':,<i~\ ',, · . ' .. ,/~ \

\'<~> ', .. ::" ,:~: , \\ :;(J
,, 'o. " \ ', ---,

~ l • . _ 1 _ _ \ " "

-8 -4 0 4 8 -8 -4 0 4 8

(e) (f) (b) + (e) / 2

8 8

~~r~ /1/ ~ >~

.~\ 4 4
II,' , V \
;i. ! ' I ,~ / ,X.71: '
lit '/" d~a.~ ~ .. -:o. ' ,

0 0 \ , I f ;oo~' ... l -:,,~
\'~l' 1 ,,~rt, 1

" v -'

-8 -4 0 4 8 -8 -4 0 4 8

(g) (a) + (c) / 2 (h) (b) + (c) / 2

FIGURE 8.12: Ideal component fields . (a)-(e) are generated directly by scaling the
output of the ideal trajectory generator, but (f)-(h) are calculated by combining two
of (a)-(e) as labelled. It is clear that although the lengths of the updates diverges from

the ideal, the components of this derived field have the correct orientation

85

Chapter 8 Trajectory Generation

-0.4 -0.2

(a)

(c)

0.2 0.4

-0.4 -0.2 0 0.2 0.4

(e)

-0.4 -0.2 0 0.2 0.4

(g) (a) + (c) / 2

-0.4 -0.2 0 0.2 0.4

(b)

-0.4 -0.2 0 0.2 0.4

(d)

°f~\ ~~~:J\t't ij.jjj~
\\'\'~~J.J.J.jI.j.j if';/

\, .I ./ ,/ #.
-0.5 _',., "_ '" ,/:,///1

, . - --- /~~/
-1 ~ t ' - ----I

!' t " - __ ---

-0.4 -0.2 0 0.2 0.4

(f) (b) + (e) / 2

-0.4 -0.2 0 0.2 0.4

(h) (b) + (c) /2

FIGURE 8.13: The ideal component fields expressed in shoulder centred polar
coordinates, with combination performed after conversion. Horizontal axis shows

normalised angle and vertical axis shows normalised distance.

86

Chapter 8 Trajectory Generation

(a) (b)

(g) (a) + (c) / 2 (h) (b) + (c) /2

FIGURE 8.14: The ideal component fields expressed in joint angle coordinates, with
combination performed after conversion. Horizontal axis shows the normalised joint

one angle and the vertical axis shows the normalised joint two angle.

87

Chapter 8 Trajectory Generation

0.5,-:----,------,----,-----F====jl

0.45
I

0.4:
I

~ 0.35 \
o
~ I

W 0.3 "
E \
B ".
W 0.25 "

0..

§ 0.2
OJ

::2:
0.15

0.1

0.05

........
........

.'

1000 2000 3000
Testing Cycles

- cart
polar
joint

4000 5000

FIGURE 8.15: Mean error expressed as a percentage of mean training output value
for three different encodings; Cartesian, polar and joint. Each testing cycle (x-axis)

contained 20 training cycle.

88

a set of 500 randomly chosen test points was generated, along with appropriate ideal

responses. Each controller was trained for 20 cycles of backpropagation and then had its

performance assessed using its collection of test points. This process was then repeated

5000 times. The backpropagation routine was performed by the NETLAB toolbox,

with the termination criteria disabled to ensure that each controller was trained for the

same number of cycles. The backpropagation routine used scaled conjugate gradient

optimisation.

Figure 8.15 shows the testing error for each of the encoding schemes plotted against

testing cycles. The error is expressed as a percentage of the mean length of the testing

output values. Figure 8.16 shows the mean of the standard deviation of the testing

errors, again expressed as a percentage of the mean length of the ideal testing output.

All three equilibrium point encoding schemes were capable of creating effective trajectory

generators with this capacity of MLP. That said, there are some observable differences.

In the early stages (less than approximately 1000 training cycles), the Cartesian encoding

outperforms the others. Despite this advantage it appears to plateau at around 0.2%,

while joint and polar encodings continue to improve asymptotically.

Although we cannot be certain as to the cause of this difference, it is possible to speculate.

For the greater part of the workspace, the Cartesian encoding is merely required to

produce a response linearly proportional to the distance from a fixed point. In contrast

the other two encodings have more complicated, curved, trajectories to generate. This

may help explain the Cartesian encodings' initial strong performance. So why does

Chapter 8 Trajectory Generation

~

e
W
c
(j)

~

1 h

I ,
\ (j)

0.. \
0,

- cart
polar
joint

Cf) 0.5 V~=-=---====~====:.:..:.:..:.:..d

1000 2000 3000 4000 5000
Testing Cycles

FIGURE 8.16: Mean standard deviation (SD) error expressed as a percentage of mean
training output value.

89

it fall behind? There are several regions of the workspace where target substitution

has a strong effect. These regions may be easier to detect in polar centred shoulder

or joint angle encoded spaces. If this was the case, this would allow these alternative

encodings to respond better to the region specific mapping variations. This hypothesis

is supported by Figure 8.16, which shows the standard deviation of the error. This gives

us a indication of how the error was spread throughout the workspace. The standard

deviation for Cartesian encoding decreases rapidly toward a minimum value at around

100 testing cycles. After this point it worsens. In contrast the standard deviation of the

joint and polar encodings improve monotonically. The standard deviation gives some

indication of how consistently the trajectory generators performed throughout across

the workspace; the lower the standard division, the more consistent the performance. It

is possible that the Cartesian encoding system initially learns the correct response for

the majority of the workspace (hence the initial rapid reduction in the SD) but is not

good at extending this towards the peripheries.

To reduce simulation time, the work presented in the remainder of this chapter was

restricted to a single encoding scheme. Polar encoding was selected as it appears to be

the most effective in terms of mean percentage error.

8.4 Comparison of Network Capacities

The next stage was to determine the relationship between a controller's capacity and

its ability to learn the component fields. To this end, seven MLPs were trained with

Chapter 8 Trajectory Generation

0.9

0.8

~ 0.7
e
W 0.6
C
Q)

~ 0.5
Q)

CL

§ 0.4
Q)

~
0.3

0.2

0.1

•

2

•

•
• • • •

4 6 8 10 12 14
Hidden Nodes

FIGURE 8.17: Trajectory generator, with polar encoding. Mean error expressed as a
percentage of mean training output value for a range of MLPs with different hidden

nodes counts, after 5000 training cycles.

90

different numbers of hidden nodes (2, 4, 6, 8, 10, 12 and 14). The same training process

was used as for the comparison of equilibrium encoding schemes. Figure 8.17 shows

the mean testing error after 5000 training cycles, plotted against the number of hidden

nodes.

As expected, performance improves as the number of hidden nodes increases. However,

the rate of performance increase drops off significantly after 8 hidden nodes. That said,

all the MLPs tested produced very accurate results (less than 0.8% error) and it may be

that only two hidden nodes are needed to create effective component controllers. This

means that there would be only 12 parameters to train per component controller.

Figure 8.18 shows how the error varies across the workspace. The error is calculated as

the mean length of the vector error between the ideal update and the update generated

by the MLP, across all five component fields. Linear interpolation was used to reformat

this data into a mesh for plotting. The two hidden node MLP, shown in subfigure

(a), scores relatively well in the middle of the workspace, but its performance rapidly

deteriorates towards the edges. The eight hidden node MLP, shown in subfigure (d),

performs consistently throughout the workspace.

Chapter 8 Trajectory Generation

0.04

0.03

0.02

0.01

o
-1.5

a

0.03

0.02

0.01

o
-1.5

p p

(a) 2 hidden nodes (b) 4 hidden nodes

om o.~

0.01 0.01

91

a

-0.4 -0.4
o 0

-1.5 -1.5

0.03

0.02

0.01

o
-1.5

o a
p

(c) 6 hidden nodes

a

p

(e) 10 hidden nodes

0.02

0.01

o
-1.5

a
p

(d) 8 hidden nodes

a
p

(f) 12 hidden nodes

FIGURE 8.18: Error distribution throughout the workspace of the arm for six different
MLP controllers that used shoulder centred polar coordinates. The 0; axis shows
normalised angle, the p axis shows normalised radius and the vertical axis shows the
length of the vector error between the ideal update and the one generated by the MLP.
Linear interpolation was used to reformat these data into a mesh for plotting. The

same axis scales are used for all the subfigures.

Chapter 8 Trajectory Generation 92

8.5 Model Free Update Normalisation

The distributed trajectory generator does not so far perform any normalisation of the

generated update. For Cartesian encoding, this process is trivial and requires only access

to the incremental update (i.e., the difference between the previous e and the next one

to be generated). As this is exactly the output of the trajectory generator, this would

be easy to implement.

There is no direct way of normalising an update expressed in polar coordinates. To

achieve the appropriate rescaling, access to the previous e is required, and a method of

converting between the polar coordinates and their Cartesian equivalent. The following

procedure could then be used.

Firstly, calculate the equilibrium point, e-n , that would be generated if the output of the

the trajectory generator, eL';, was directly added to the previous equilibrium point, en-I:

(8.8)

Then use a mapping function, p, to convert both en-I and en into Cartesian coordinates,

here denoted using c.

Cn-I (8.9)
(8.10)

Then calculate the difference between these two Cartesian coordinates, normalised so

that it has a length equal to the drift rate, 7'.

Cn - Cn-I

en - Cn-I!2
(8.11)

We can then add the normalised update, CL';, to the previous equilibrium encoding, Cn-I

to calculate the new, correctly scaled encoding, Cn. This can then be converted back

into shoulder centred polar coordinates using the inverse of p.

(8.12)

So although this process is complicated, it does not require access to a geometric model

of the arm. Naturally, this would not be possible for joint angle encoding. It may be

possible to use an MLP to learn the mapping from current encoding and update, to next

encoding, that would perform the appropriate scaling, but this is left for future work.

Chapter 8 Trajectory Generation 93

8.6 ConcI usion

This chapter has presented a method for generating idealised updates that are capable of

determining the increment that will move an equilibrium point towards a target location,

along the shortest path that avoids unreachable areas of the workspace. The system

presented also handles collisions with the workspace perimeter in a graceful manner

that sought to preserve step length.

The chapter then demonstrated how a similar effect could be achieved by mixing the out

put of five separate component generators. An MLP implementation of the component

controllers was demonstrated to produce similar results. It was found that, although all

three encoding schemes tested were capable of producing reasonable results, shoulder

centred polar encoding was the most effective.

For the system considered, networks of between two and eight hidden nodes were demon

strated to produce low errors, with the behaviour of the 8 hidden node network being

consistent throughout the workspace. The following chapter looks at how the equilibrium

points created by the trajectory generator could be converted into appropriate actuator

rest lengths.

Chapter 9

Length Encoder

This chapter details an implementation of the length encoder, which aligns the me

chanical equilibrium point of the arm model with the equilibrium points created by the

trajectory generator by adjusting the actuator rest lengths appropriately. In this chapter

we compare the three previously considered equilibrium encodings in terms of resultant

error for various MLP capacities. A set of 1000 randomly selected poses was encoded

using each scheme. An inverse kinematic model was used to calculate the lengths of the

actuators that align the arm's equilibrium point with each of the selected poses. These

lengths were taken to be the ideal rest lengths that the system should try to generate.

This procedure assumes that the arm has no actuator co-activation.

9.1 Procedure

A number of MLPs were trained to learn the mappings between the equilibrium point en

co dings and the ideal rest-lengths. Each network had a sigmoidal hidden-layer activation

function and a linear output-layer activation function. They were implemented using the

NETLAB neural network toolbox for MATLAB. Five different network configurations

were assessed, with varying numbers of hidden nodes (2, 4, 6, 8 and 10). The networks

were trained for 500 cycles, with each cycle containing 10 standard backpropagation up

dates. A second set of 1000 randomly generated poses was used to test the performance

of the MLP at the end of each cycle. The entire process was repeated ten times for each

equilibrium point encoding method to reduce the effect of the random initialisation. The

results of this process are shown in Figure 9.1.

94

Chapter 9 Length Encoder

8) \

7) ~-----------------

6

" 3 : 1
1

".':0:- - - - -- ---------------------------
2 "

95

8

7

6

- -
.... ---- - -- - -- - -- -- -- - - - -- -- --- _ ..

8

7

6

5

100 200 300 400

(a) 2 hidden neurons

8

7

6

5

4

... _-- - -- ---
.1

" : ,

100

"'---

200 300 400 500

(b) 4 hidden neurons

.... -- - - - -- -- -- - - - -- -- ---
""",.",,,,,,,,,,,, ..

"""',." ,',",." ,' ". ", ,., ",',." ,'
100 200 300 400 100 200 300

(c) 6 hidden neurons (d) 8 hidden neurons

8

7

6

5

4

,
" , \

... _---
-------- ------------------

.............. ,"""'" , ,,,.,", ,, ","", ,"",.,
100 200 300 400 500

(e) 10 hidden neurons

400

FIGURE 9.1: Comparison of multi-layer perceptron approximations of length encoder
mapping function, b, using three different equilibrium point encodings: Cartesian
(solid), polar (dashed) and joint (dotted). The y-axis shows the mean absolute actuator
length error, expressed as a percentage of total working range, averaged over all 6

actuators, and 10 separate runs.

500

Chapter 9 Length Encoder

....... x
W
"-
<D

"'0
:::J
o

.I::
Cf)

X
<D

u..
3: o
.0
W

+-'
X
w
3: o
.0
W

X
<D

u..
+-'
C

o,
o

~

x
w
.......
c
·0,
o
3:
I-

FIGURE 9.2: Normalised actuator rest length plotted as a function of normalised
equilibrium point encoding. Each subfigure shows how the ideal rest length of a single
actuator varies with respect to equilibrium point encoding. Each column represents
a different encoding scheme and each row represents a different actuator. White
represents maximum extension and black represents minimum extension. As nearest
neighbour interpolation was used, actuator length values are propagated outside the

arm's workspace.

96

Chapter 9 Length Encoder 97

9.2 Results

The Cartesian workspace encoding consistently performed worse than the other encoding

schemes. This is not surprising if we consider the mappings that must be performed

(Fig 9.2). Each subfigure shows how the rest-length of a single actuator varies with

respect to the equilibrium point encoding. As all three encoding schemes are two

dimensional, this relationship can be plotted as a surface, with grey level representing

actuator rest-length and position representing the equilibrium point encoding. Eighteen

subfigures are presented, one for each combination of actuator and equilibrium point

encoding scheme. Actuator names are defined at the beginning of Chapter 5. The

subfigures are rectangular and therefore include regions that are outside the workspace

of the arm. As nearest neighbour interpolation was used to generate these figures,

actuator rest-lengths are propagated into these unreachable regions.

This figure shows that the mapping from joint angles to actuator lengths is very simple

and shows how the shoulder flexors and extensors can be controlled independently of

joint two and the elbow flexors and extensors can be controlled independently of joint

one. Even the response of the two joint flexors and extensors is contained entirely within

a plane.

In comparison, the mapping between the Cartesian encoding and the actuator rest

lengths is significantly more complicated, and so it is unsurprising that it is the hardest

for the MLP to learn. The performance of the MLPs trained to use polar centred shoulder

coordinates is reasonably close to that of the MLPs using joint coordinates. Comparison

of the appropriate mappings in Figure 9.2 shows that there are strong parallels between

the polar and joint mappings.

9.3 Conclusion

This chapter has demonstrated that all the encoding schemes are capable of learning an

approximation to rest length encoding. That said, noticeable differences in their relative

performance has been shown and justified in terms of the complexity of the mapping

they must perform.

Shoulder centred polar coordinates was the most effective encoding scheme for trajectory

generation, and is a close second for length encoding. It should therefore be considered

a strong candidate for building future CETC implementations.

Chapter 10

Discussion and Conclusion

This thesis has explored the ideas and terminology surrounding manipulation first from

a robotics perspective and then from a biological one. Two main pieces of work were

undertaken. The first piece of work explores the potential of convergent force field

control for simple compliant arm structures as a precursor to real engineering application.

The experimentation undertaken involved using mutation hill climbing to train the

dynamics of a physical compliant arm simulation coupled with a multi-layer-perceptron.

The second piece of work combined two techniques inspired by neurological studies

(convergent force field control and equilibrium trajectory control), to create a novel

framework for compliant limb control (convergent equilibrium trajectory control). Two

key components of this framework were then implemented using multi-layer-perceptrons.

This chapter will review these two main pieces of work, and then close with a justification

of the approach taken.

As it stands, the version of convergent force field control implemented here will only

be suitable for very simple manipulating robots. It is possible with further work that

it may become suitable for a broader range of applications. The following paragraphs

discuss some of the limitations of the current approach and suggest some appropriate

responses.

As only a limited number of target points were used, the current implementation does

not conclusively demonstrate that all regions of the workspace are equally amenable to

control by this approach. To rectify this a larger range of targets should be used, with a

wider variety of initial conditions (specifically arm component velocities). If successful

this would build confidence in the arm model, and provide a useful set of trained

component field controllers for later work. The robustness of the control approach

should also be assessed by introducing a variety of disturbing forces and measuring their

effect on the arm's trajectory.

The learning technique used in this work was deliberately very simple. It was shown

that for the arm model and the range of training parameters considered, mutation hill

98

Chapter 10 Discussion and Conclusion 99

climbing is not a reliable way of developing single component force field controllers, i.e.,

the fitness landscape is not smooth and contains significant local minima. For most of

the network configurations tested, the hill climbing process produced results that were

no more effective than random search. That said, the training process used did show

that networks with around 20 hidden nodes were capable of controlling the simulated

arm to bring it towards a predefined target pose within the workspace. They were not,

however, shown to be capable of moving the arm directly towards the target, instead

long looping paths were taken.

There are more advanced learning approaches, like simulated annealing and genetic

algorithm based methods, that are more tolerant to local minima, albeit at the expense

of more fitness function evaluations. These training approaches should be compared in

an attempt to ascertain whether the arm model and controller are capable of producing

smooth point to point motions, and to develop a better understanding of the fitness

landscape.

Blending of two component force field controllers was demonstrated to create a smooth

range of intermediate responses, with the resultant rest location being an approximate

interpolation of the two controllers' rest locations. Once a wider range of targets have

been trained it should be possible to start analysing a variety of higher dimensional

gain mixtures and potentially demonstrate controlled movement over the arm's entire

workspace. This would then permit initial investigations into gain-space based control

and behavioural composition.

The current work assumes access to fictional 'global axis' sensors, which report their

location with respect to an imaginary fixed coordinate scheme. Although they are not

used for controller feedback, they are extensively used for performance measurement, an

essential part of any learning system. If the techniques developed in this thesis are to be

implemented in hardware a viable alternative must be sought. A reasonable option would

be a fixed camera, whose field of view included the whole of the arm's workspace. The

location of the arm's end point, and possibly elbow, could then be detected (maybe by

colour markings), and returned as a pair of iris-centred yaw and elevation values. Similar

values could be obtained from the simulation environment described. Using simulated

yaw and elevation angles would therefore be a sensible first step towards future camera

integration.

An interesting project would involve evolving the arm parameters (relative masses,

lengths, joint angles, etc.), in parallel with the controller. With this sort of approach

there would be a danger that the arm parameters would become very task focused, in

this case sacrificing behavioural flexibility for small gains in reaching performance. This

could be combated by either increasing the thoroughness of the fitness function to include

all the required dynamics or, if that proved too computationally expensive, introducing

Chapter 10 Discussion and Conclusion 100

restrictions on the permitted range of arm parameter values so as to maintain a basic

level of behavioural flexibility.

The novel combination of convergent force field control and equilibrium trajectory con

trol (convergent equilibrium trajectory control) presented here provides a tool that could

be used to integrate a compliant manipulator with a neurally controlled autonomous

robot, assuming that the correct actuator dynamics could be achieved artificially. The

trajectory generator removes the requirement for the top level controller to have an

internal representation of the arm workspace, or having to perform calculations to avoid

its inaccessible regions.

The modelling and training work presented has shown that very small networks, with

in the region of two to eight hidden nodes (which equates to between 12 and 42 network

parameters), are capable of updating the equilibrium point smoothly and reliably. It

was further shown that, for the equilibrium point encodings considered, it was possible

to calculate appropriate equilibrium rest lengths using relatively small networks (in the

order of six to ten hidden nodes).

When the error induced by the trajectory generation and the length encoding is taken

together, for the model considered, it was shown the shoulder centred polar encoding

was the most effective in terms of network capacity, and therefore computational cost.

It would appear that, although at first glance shoulder centred polar encoding is just as

arbitrary as Cartesian encoding, its performance and mappings are significantly closer to

those of joint angle encoding. It is therefore a strong candidate for future implementation

of convergent equilibrium trajectory control.

There are several ways in which the training methods used in this work, could and

should be improved if pursued further. In the simulation work presented, the location

of each of the component field targets was chosen arbitrarily. This is not ideal as it is

likely that ideal component fields will depend on the arm's mechanical configurations

and the agent's environments/tasks. Work needs to be done to develop a system that

automatically aligns the component fields configuration with the arm mechanics and

allows them to be updated in response to the arm's usage.

To fully evaluate the effectiveness of CETC the trajectory generator and length encoder

modules developed in this thesis should be combined with an arm model capable of

equilibrium trajectory control. Once the entire chain is in place, the work can move

beyond offline module training and start using proprioceptive feedback to perform online

learning. This will open the door to studying the controllers potential to adapt to

incremental changes in the bodies dynamics.

Although only touched on lightly before, it is important to emphasise that in animals

the forelimbs commonly playa dual role; that of environmental manipulation and loco

motion. Legged robots are capable of negotiating a more varied range of environments

Chapter 10 Discussion and Conclusion 101

than their wheeled counterparts, and are therefore being actively developed for search

and rescue applications. Being able to use the forelimbs in a dual role may increase

the behavioural flexibility of the robot at limited extra cost in terms of weight and

complexity.

If the techniques outlined in this thesis are to be suitable for integration into legged

manipulating robots, the limb controllers must be capable of supporting both these

activities. Locomotion presents specific challenges which should also be considered when

designing a front limb controller. These include postural stability, rhythmic stability in

the presence of disturbance and phase coupling between limbs. Training of these dual

purpose trajectory generators presents specific challenges, foremost of which is the design

of a suitable fitness function. Clearly, trying to train to an oscillating target directly

would not work, as any phase delay would introduce large, and potentially misleading,

errors. An alternative approach would be to define a vector field for the work space, much

as was done for the ideal trajectory generator. The field would, of course, now contain

a certain amount of curl and movement within it would therefore converge towards a

limit cycle, rather than a point. An online learning technique could use the length of

the vector difference between the current movement and that specified by the ideal field

at that point. Care would have to taken to ensure that all appropriate regions of the

limb's state space were explored and trained.

The long term value of the biologically inspired methods can only be demonstrated

if they provide measurable advantages when compared with traditional approaches.

These advantages are unlikely to be in the areas that are conventionally used to assess

traditional approaches (e.g., accuracy, repeatability, and band-width) but instead focus

on more nebulous qualities like unsupervised calibration, tolerance of mechanical wear

and tear and robustness to changes in environmental dynamics. There is much work to

be done in both developing robots that perform well on these non-traditional qualities

and on the development of testing procedures to assess them. Until both are in place

there will be much, justified, resistance to these novel approaches.

The length encoder developed in this thesis does not actively manage the level of co

activation of antagonistic muscles. It should be extended to include an input that

would allow for varying levels of co-activation in the arm. Initial work should develop

an analytical inverse dynamic model of the arm and use that to generate the ideal

rest length for any given equilibrium point and level of co-activation, which could then

be used to train an MLP. If this is successful an attempt should be made to replace

the analytical inverse dynamics with an online learning method. This would hold the

potential for the system to adapt to gradual changes in the arm's mechanics or the task

dynamics.

In drawing together the work that has been presented in this thesis, two key questions

must be addressed; does the area investigated warrant engineering attention, and is

Chapter 10 Discussion and Conclusion 102

the work presented a justified response? In answering these questions it is important

to reconsider what we understand by evolution, the driving force behind all biological

systems. Engineers often assume that it is equivalent to an incremental optimisation

process. This is unfortunately a misleading assumption.

Biological evolution provides nothing more, nor less, than a continual drive to give a

germ line a competitive reproductive advantage. With this in mind, every stage of the

process must be justifiable in its own right, without reference to any abstract, long term

goals. Powered flight is a good example of this. The morphological differences between

flying creatures and their land bound counter parts are dramatic. We must therefore

look at intermediate behaviours that could be improved with some, but not all of the

flight adaptations. These may include passive flight, assisted jumping, or wing assisted

incline running, a process where wings are used to generate increased down force and

therefore increase the incline up which an animal can run (Dial, 2003). For powered flight

to develop, the successful performance of these intermediate behaviours must result in

competitive reproductive success. That said, development that improves the success of

these behaviours may introduce changes that are detrimental to the later performance

of powered flight.

We must, therefore, consider the process not as an optimisation toward a single objective

but as a series of optimisations toward a range of intermediate objectives, each of which

must be individually justified. What implications does this have for the morphology

and behavioural responses of the resulting animals? The current state of both these

characteristics will be determined by past as well as current evolutionary objectives. In

point of fact, many parts of the system may well be highly suboptimal or even disad

vantageous in the current context of the animal. Distinguishing currently useful from

historically useful characteristics is perhaps the greatest challenge faced by engineers

who look to nature for inspiration.

So what tools are available to help make this distinction? One strong clue is convergent

evolution. There are some characteristics that have evolved in more than one strand of

the evolutionary hierarchy. The strongest factor linking them is the fundamental physics

of the environment. These physical realities must also be confronted and exploited by

artificial systems, and it is through this link that we can justify seeking inspiration

from natural systems. Only to the extent that it can be demonstrated that the natural

and artificial systems are attempting to solve the same problem can any imitation be

justified.

So are there reasonable parallels between biological reaching and artificial reaching?

The answer is, predictably, yes and no. At higher levels there are some strong parallels.

Foremost of these is the requirement to integrate visual and proprioceptive information

into a unified, manageable, body space. Although this is effectively about internal

representation, rather than real-world physics, the complexity of such systems is a direct

Chapter 10 Discussion and Conclusion 103

result of the body and the environments natural geometry. These are problems common

to both artificial and biological articulated manipulators. Such encodings have been the

main focus of this research and are therefore justifiable.

At implementation level, the parallels between artificial and biological systems seem

somewhat weaker. There is a fundamental difference between the physical and neuro

logical morphology; parallelism vs lumping. Natural systems typically rely on many,

poor quality, independent actuators, processors and sensors. This parallelism allows

the system performance to degrade gradually, allowing it to continue to work in the

presence of wear and tear. In contrast engineering systems tend to rely on high quality

'lumped' actuators, processors and sensors. This reduces the system complexity and

wiring requirements significantly, but unfortunately means that the system is prone to

catastrophic, rather than gradual, failure.

So are techniques inspired by the extremely parallel biological approaches suited for

implementation in a lumped engineering context? To some extent the worlds are not as

dissimilar as the previous paragraph presented them. As mentioned in the discussion

of muscles, it is possible that Renshaw cell inhibition may be capable of allowing one

input signal to control the activation of an entire muscle. If this is the case, then it is an

example of a natural system creating a lumped interface to a parallel system. It may be

possible for an engineering system to work at this level even though the actuators are

implemented using different mechanical substrates.

Equally, engineering systems are learning to cope with less than reliable hardware.

A modern super computer will, for example, happily run with a reasonable percentage

of its processing nodes broken or disabled. As engineering continues to explore the

possibilities of micro- and nano-robotics it will have to adapt to and exploit imperfect

hardware, and it is possible that imitating the parallelism prevalent in nature may be one

way of achieving this. It seems likely that as biologists and engineers continue to share

ideas and insight, there will be strong growth in the availability of actuators, sensors

and processing units with more natural characteristics.

Of particular importance to this work is the availability of compliant actuators that are

suitable for mobile robotic applications. Compliance, both in structural members and

actuators, is extremely common in naturally occurring systems. Where advantageous,

animals have developed stiff materials, bones and tendons being the exemplars. Yet,

even for vertebrates, these stiff structures are connected with a wide range of compliant

components, typically cartilage and muscle. This creates an overall system whose

rich dynamics are the result of the complex interplay between compliant and rigid

components. It would be unwise therefore to assume that the compliance found so

universally in biological actuators is merely the result of poor raw materials. If it were,

then we would eventually expect to see some classes of animals developing alternatives.

Chapter 10 Discussion and Conclusion 104

There are several potential benefits to compliant actuation, which include improved

manipulation dynamics, simplified control requirements, improved energy efficiency and

a reduction in the damage caused by environmental interaction. As robotic systems

move away from structured environments, into more natural ones, it is likely that

compliant construction and actuation will begin to confer similar advantages. There is

currently significant engineering interest in the development of more compliant actuator

technologies such as series-elastic actuators, electro-active polymers, deformable air

muscles and coiled shape-memory alloys. Currently none of these artificial actuators

provide the required performance characteristics, but some may do better than others.

An important piece of future work would be to assess the range of currently available

actuators and catalogue their transfer functions, from an equilibrium trajectory control

perspective. It is unlikely that this work will yield immediate results, but for those

interested in bio-robotics this is probably one of the most important restricting factors.

It is therefore essential that a good dialogue is fostered between the materials developers,

robotic engineers and biologists.

As these technologies mature they will present novel control challenges, and it therefore

seems reasonable to turn to nature for inspiration. Although this thesis does not present

a complete simulation of the convergent equilibrium trajectory control, when considered

alongside other modelling work (Gribble et al., 1998), it presents a framework that

deserves further study. It holds the promise of a flexible and trainable system that

could be used to equip autonomous robots with compliant reaching control; an essential

precursor to dexterous manipulation in an uncertain environment. In this context, the

work presented here will provide a useful foundation for exploring exciting new control

problems and it is hoped that this will eventually result in improved manipulating robots.

Appendix A

Manipulation Simulation Client

The content presented in this appendix is largely drawn from Sunder land et al. (2004a, b).

For this research, it was necessary to simulate the accurate, real-time dynamics of

physical hardware (a manipulator), with a requirement for flexible and intelligent control

actions. Also, to decrease development time, we wanted to minimise the amount of

bespoke code by exploiting proprietary, commercial software. We therefore needed a

framework that could couple together the different proprietary software components.

Figure A.l shows a block diagram of the overall simulation environment. Two commer

cial packages were used - Vortex Simulation Libaries (2002) and MATLAB (1984) -

together with a bespoke C++ object hierarchy that mirrors the manipulator structure,

with Python (2003) used for scripting. Vortex is a very capable package for modelling

physical dynamics and collisions between solid objects. It is supplied with a lightweight

Matlab Python

I Control Test I .. ' .. ,

Generation Software

• r...
t

I Mex Function r·
I

Results J
Interface Processing

File: : ! ;. XMLTest + ..

Description
~ :

C++
Simulation Objects !

Vortex
Control

I Scenery I Patch Box I &

~ Viewer Logging
Hand Arm

! 1
I Collision & Dynamics (Vortex Engine)

FIGURE A.1: The simulation environment combines several different software compo
nents.

105

Appendix A Manipulation Simulation Client 106

OpenGL/DirectX viewer that was adequate for this work (Fig. A.2). Vortex has ex

tensive documentation, and is easily integrated with other libraries to create powerful

simulation programs. MATLAB is the industry standard package for rapid mathematical

algorithm prototyping, especially for control applications.

A.I Simulation Configuration Files

As discussed in Chapter 2, robotic control has largely been based on Denavit-Hartenberg

parameters. These are highly compact and quite flexible. However, they are not

a description of a 'real' robot in that they do not contain information about motor

specification, physical link shape and dynamics, and sensor placement. They also have

a very limited structure: basically a list of joint-link pairs, with four parameters apiece.

This description has several properties that facilitate mathematical analysis, but since

we are doing fully-featured physical simulation, these properties are not especially useful

in this work.

A MATLAB robotic toolbox (Corke, 1996) is already available that will handle joint

link based simulations directly. However, it does not perform collision detection and is

therefore unsuitable for simulation of manipulators in their environment. It was used

when proving the mathematics behind some of the simulation transformations. A more

versatile alternative is provided by Vortex itself, which provides a way to load and store

simulation objects directly from XML files. However, Vortex's XML files do not allow

any structuring or labelling information (e.g., joint names like 'wrist') to be stored and

made available to other system components (like MATLAB) which use them.

There are a variety of other robotic simulation environments available. However, these

are either tailored toward mobile robotics and path-finding, making them unsuitable

for simulation of manipulation tasks (Gazebo, 2004; DynaMechs, 2004), or are in the

early stages of development (OpenSim, 2004). Where real-time rigid body simulation is

performed by these systems, the Open Dynamics Engine (ODE) (Engine, 2004) is used

instead of the Vortex simulation libraries (Vortex Simulation Libaries, 2002).

At configuration time, a family of C++ objects parse an XML file using libxm12 and

store the results using standard template library container classes. Using libxm12

reduces coding and debugging time and will benefit from future releases. At the same

time, XML allows us to exploit standard tools to write, modify and verify the simulation

description files, which can be used easily by all stages of the system. There may come a

point where the simulation requires large amounts of binary data (height fields or vertex

meshes), in which case external files should be referenced rather than included directly

(in much the same way as an image in HTML).

Appendix A Manipulation Simulation Client

FIGURE A.2: Screen shots taken from MaSC simulation of a Selective Compliance
Assembly Robot Arm (SCARA).

A.2 Example Configuration File

107

Configuration files used by the simulator are generated using a multi-step process. In

stage one, a MATLAB script converts the contents of a struct, which defines the arm

and poses parameters, into a simple XML file. The pose will be used to determine the

initial location of the arm and the arm parameters will be used to build a Vortex model

that aligns with the MATLAB model. This helps ensure that the two models are kept

synchronised, and therefore reduces the chance of experimental error. A sample of this

XML file is included here:

<params>
<param name="basepos_x" value=IO" />
<param name="basepos_y" value=IO.05" />
<param name="lenl" value=1460" />
<param name=llen2" value=1340" />
<param name="ml" value=1153 .333333333333" />
<param name=lm2" value=1306.666666666667" />
<param name=ljClo" value=I-1.39626340159546" />
<param name="jl_hi" value=11.39626340159546" />
<param name=lj2_1o" value=I-2.75756004091423" />
<param name=lj2_hi" value=IO.167491430954648" />
<param name="sa_f" value=150" />
<param name=" sa_e " value=140" />
<param name=" el en_f" value=150" />

Appendix A Manipulation Simulation Client

<param name="elen_e" value="20" />
<param name="eang_f" value="-O.275762021815104" />
<param name="eang_e" value="2.86583063177469" />
<param name="pose_ang_s" value="-O.121565211822889" />
<param name="pose_ang_e" value="-2.70343593199608" />
<param name="pose_elbow_x" value="-O.55782367281063" />
<param name="pose_elbow_y" value="4.61605220623375" />
<param name="pose_tip_x" value="-O.55782367281063" />
<param name="pose_tip_y" value="4.61605220623375" />

</params>

108

Some of the included parameters are redundant and are not currently used by the

following stages. They are, however, useful for testing purposes and have therefore

been maintained. A second XML file is also used, which contains the extra parameters

that are only required by the Vortex arm model:

<params>
<param name="width_1" value="20" />
<param name="width_2" value="20" />
<param name="density_1" value="1" />
<param name="density_2" value="1" />
<param name="joint_damping" value="30000" />
<param name="joint_stiffness" value="1000" />
<param name="max_force" value="10000" />
<param name="min_force" value="-1000" />

</params>

A python script (genarm. py) is then used to convert the two configuration files into a

single XML document that contains the structure of the arm model, including sensors

and actuators. It also generates a patchbox element which controls the order in which

the sensors and demands are written to, and read from, the control socket.

<sim-world lin_unit="mm" rot_unit=" rads ll
)

<patchbox>
<in name="SH_FLEX"/>
<in name="SH_EXT"/>
<in name="EB_FLEX"/>
<in name="EB_EXT"/>
<in name="TJ_FLEX"/>
<in name="TJ_EXT"/>
<out name="ANG_1"/>
<out name="ANG_2"/>
<out name="ANG_1_VEL"/>
<out name="ANG_2_VEL"/>
<out name="SH_FLEX_LEN"/>
<out name="SH_EXT_LEN"/>
<out name="EB_FLEX_LEN"/>
<out name="EB_EXT_LEN"/>
<out name="TJ_FLEX_LEN"/>
<out name="TJ_EXT_LEN"/>
<out name="SH_FLEX_FRC"/>
<out name="SH_EXT_FRC"/>
<out name="EB_FLEX_FRC"/>
<out name="EB_EXT_FRC"/>
<out name="TJ_FLEX_FRC"/>
<out name="TJ_EXT_FRC"/>
<out name="EB_X"/>
<out name="EB_Z"/>
<out name="TIP_X"/>

Appendix A Manipulation Simulation Client

<out name="TIP _Zoo />
</patchbox>
<floor height="-50" size="1500"/>
<anchor fixed="true">

<box depth="10.0" length="10.0" TNidth="10.0"/>
<acti ve-spring-base linear _enc="SH_FLEX_LEN" max-force=" 10000" min-force="-1000"

response_enc="SH_FLEX_FRC" sink_id="SH_FLEX">
<attached-at>

<position x="-50.000000" y="O.OOOOOO" z="O.OOOOOO"/>
</attached-at>

</active-spring-base>
<active-spring-base linear_enc="SH_EXT_LEN" max-force="10000" min-force="-1000"

response_enc="SH_EXT_FRC" sink_id="SH_EXT">
<attached-at>

<position x="40.000000" y="O.OOOOOO" z="O.OOOOOO"/>
</attached-at>

</active-spring-base>
<acti ve-spring-base linear _enc="TJ _FLEX_LEN" max-force=" 10000"

min-force="-1000" response_enc="TJ_FLEX_FRC" sink_id="TJ_FLEX">
<attached-at>

<position x="-50.000000" y="O.OOOOOO" z="O.OOOOOO"/>
</attached-at>

</active-spring-base>
<acti ve-spring-base linear _enc="TJ _EXT_LEN" max-force=" 10000"

min-force="-1000" response_enc="TJ_EXT_FRC" sink_id="TJ_EXT">
<attached-at>

<position x="40.000000" y="O.OOOOOO" z="O.OOOOOO"/>
</attached-at>

</active-spring-base>

109

<j oint-link axis="y" densi ty=" 1 . 000" ini t_offset="-O. 122" pes_enc=" ANG_l" vel_enc=" ANG_l_ VEL">
<upper-limit damping="30000" range="1.39626340159546" stiffness="1000" />
<loTNer-limit damping="30000" range="-1.39626340159546" stiffness="1000" />
<box depth="20.0" length="460.0" TNidth="20.0"/>
<attached-at>

<position x="O.OOOOOO" y="O.OOOOOO" z="O.OOOOOO"/>
</attached-at>
<locally-attached-at>

<position x="O.OOOOOO" y="O.OOOOOO" z="-230.000000"/>
</locally-attached-at>
<global-axis-sensor axis="x" src_id="EB_X">

<attached-at>
<position x="O.OOOOOO" y="O.OOOOOO" z="230.000000"/>

</attached-at>
</global-axis-sensor>
<global-axis-sensor axis="z" src_id="EB_Z">

<attached-at>
<position x="O.OOOOOO" y="O.OOOOOO" z="230.000000"/>

</attached-at>
</global-axis-sensor>
<active-spring-tip label="SH_FLEX">

<attached-at>
<position x="O.OOOOOO" y="O.OOOOOO" z="-76.666667"/>

</attached-at>
</active-spring-tip>
<active-spring-tip label="SH_EXT">

<attached-at>
<position x="O.OOOOOO" y="O.OOOOOO" z="-76.666667"/>

</attached-at>
</active-spring-tip>
<active-spring-base linear_enc="EB_FLEX_LEN" max-force="10000" min-force="-1000"

response_enc="EB_FLEX_FRC" sink_id="EB_FLEX">
<attached-at>

<position x="O. 000000" y="O. 000000" z="76. 666667" />
</attached-at>

</active-spring-base>
<active-spring-base linear_enc="EB_EXT_LEN" max-force="10000"

min-force="-1000" response_enc="EB_EXT_FRC" sink_id="EB_EXT">
<attached-at>

<position x="O.OOOOOO" y="O.OOOOOO" z="76.666667"/>
</attached-at>

</active-spring-base>

Appendix A Manipulation Simulation Client 110

<j oint-link axis="y" densi ty=" 1 . 000" ini t_offset="-2. 703" pos_enc=" ANG_2" vel_enc=" ANG_2_ VEL">
<upper-limit damping="30000" range="2.75756004091423" stiffness="1000"/>
<lower-limit damping="30000" range="-0.167491430954648" stiffness="1000"/>
<box depth="20.0" length="340.0" width="20.0"/>
<attached-at>

<position x="O.OOOOOO" y="O.OOOOOO" z="230.000000"/>
</attached-at>
<locally-attached-at>

<position x="O.OOOOOO" y="O.OOOOOO" z="-170.000000"/>
</locally-attached-at>
<active-spring-tip label="TJ_FLEX">

<attached-at>
<position x="-13.614012" y="O.OOOOOO" z="-121.889100"/>

</attached-at>
</active-spring-tip>
<active-spring-tip label="TJ_EXT">

<attached-at>
<posi tion x="5. 445605" y="O. 000000" z="-189. 244360" />

</attached-at>
</active-spring-tip>
<active-spring-tip label="EB_FLEX">

<attached-at>
<position x="-13.614012" y="O.OOOOOO" z="-121.889100"/>

</attached-at>
</active-spring-tip>
<active-spring-tip label="EB_EXT">

<attached-at>
<position x="5.445605" y="O.OOOOOO" z="-189.244360"/>

</attached-at>
</active-spring-tip>
<global-axis-sensor axis="x" src_id="TIP_X">

<attached-at>
<position x="O.OOOOOO" y="O.OOOOOO" z="170.000000"/>

</attached-at>
</global-axis-sensor>
<global-axis-sensor axis="z" src_id="TIP_Z">

<attached-at>
<position x="O.OOOOOO" y="O.OOOOOO" z="170.000000"/>

</attached-at>
</global-axis-sensor>

</joint-link>
</joint-link>

</anchor>
</sim-world>

It is clear that the final configuration file contains many parameters and complex

structural information. Careful examination will reveal that the intrinsically tree-like

structure of the arm model is reflected in the nesting of the XML configuration. This

allows all the parameters that control the behaviour of a modelling component to be

defined in a context that indicates their locations within the model. This removes

the necessity for there to be a separate table of information defining how the various

components interconnect.

A.3 Socket Interface

A Vortex-based client (MaSC) was developed that would execute the physical simulation

while interacting with a MATLAB-driven controller, via a UNIX-socket. MATLAB

Appendix A Manipulation Simulation Client 111

provides a direct C-interface, via late linked pre-compiled binary files (so called MEX

files). These files have access to the MATLAB workspace, and share its file descriptors.

Note that the file descriptor numbers provided within MATLAB do not map directly

to the operating system ones (here Linux), and so care must be taken when sharing

descriptors between MEX-files and standard MATLAB M-files. Each MEX-file is loaded,

run and then removed from memory, so any state information required must be read

from the MATLAB workspace and then stored before termination.

The link provided by the socket contains a stop byte followed by a block of floating

point values (either actuator or transducer signals, depending on direction). Although

this limits the communication options available, it has the advantage of ensuring that

the controller is only presented with information that it could reasonably gain from a

real robot. The test configuration file provides the option to label each actuator and

transducer. It also includes a PatchBox element, which contains a list of input and

output labels. After loading a test configuration, the simulation environment scans

through the PatchBox, looking for matches between the labels specified there and those

in the rest of the file. It then presents and receives the information in the order given in

the PatchBox, and forwards the information appropriately. This gives the test designer

complete control over which inputs/outputs are transmitted over the socket and over

the order of transmission.

AA Further Comments

Further notes and comments are provided directly in the code itself and are written such

that the doxygen documentation package can automatically extract them to create a

manual in either HTML or texinfo formats. This is research code and there has therefore

been limited time invested in ensuring portability or providing install and maintenance

scripts. That said, all submitted C++ code uses the same coding conventions and is

written to be as clear and reusable as the task permitted. It is hoped that it will provide

a useful research tool for future work in this field.

Appendix B

Software Catalogue

This appendix catalogues some of the software engmeermg effort that has gone into

producing the results presented in this thesis. It is intended to give a flavour of the

work, rather than a detailed breakdown, and is naturally therefore fairly terse. For

more detail, the interested reader is advised to explore the source code directly.

B.l Manipulation Simulation Client

Header Source(s) Notes

main.cpp Initialises drivers and registers parsers. Catches

top level errors and reports them to cerr.

makefile Modified version of standard Vortex makefile.

ActiveSpring.h ActiveSpring.cpp Model spring actuator response function - cur-

rently bypassed to allow MATLAB to contain

actuator model.

BodyTree.h BodyTree.cpp Defines three key base classes; Platform, Attach-

ment and Parser. An object that is to be attached

to a model must derive from Platform and/or

Attachment. This allows for proper configuration

and running. Any such object must also define

a custom parser which registers with a static

function of Platform. This parser is responsible

for recognising appropriate XML definition and

creating a new instance from that. In this way

each object type (jointlink, sensor, actuator etc)

can be defined in an entirely independent manner.

Camera.h Camera.cpp Defines a CameraTarget object which can be at-

tached to a model. If such an object is included in

a model the camera orientation will be continually

updated to track it.

CollisionReader.h CollisionReader.cpp Provides access to simulation libraries list of

current collisions (or near collisions) . This is

an essential utility class for any sensor which is

designed to measure contact.

CommunicationsCenter.h CommunicationsCenter.cpp Convenience class that combines a PatchBox with

a ScriptReader.

112

Appendix B Software Catalogue 113

Driver.h Driver.cpp Reads command line arguments and configures

and initialises the simulation libraries appropri-

ately. Contains the main update loop as a static

function.

Error.h Error.cpp Defines base Error class with basic functions for

overloading.

Geometry.h Jacobian.cpp Utils for calculating and updating orientation us-

ing Jacobians.

Frame.cpp C++ wrapper for Homogeneous transforms.

Makes difference between handling own memory

(InternaIFrame) and handling a matrix created by

another class/function (ExternaIFrame) explicit.

ImagePath.h Defines location of required textures

ImpulseGenerator.h ImpulseGenerator.cpp An attachment that responds to script events by

adding an impulse force to the object to which it

is attached.

JointLink.h JointLink.cpp Creates a shape and attaches it to a parent via

a joint which is optionally motorised. Contains

definition for joint angle encoder and joint velocity

encoder sensors.

Limit.h Limit.cpp Defines the mechanical properties of a limit for

either an angular or linear joint. This includes

limit stiffness and damping.

LinearActuator.h LinearActuator.cpp Contains two classes, derived from Attachment;

BaseUnit and Tip. These model a linear actuator

running from one to another. The BaseUnit pro-

vides all the wiring connections (for both sensing

and actuation). Class must be further derived to

define how the force generated will be related to

the input demand signal (see ActiveSpring).

LocalSocket.h LocalSocket.cpp Creates a socket for communicating with the

controller. Either uses a local unix file socket

or a TCP lIP socket depending on command line

options.

LogWriter.h LogWriter.cpp A singleton class that controls log indentation and

printing.

Model. h Model.cpp Base class for all physical objects. Contains

derived classes, StaticModel and DynamicModel,

which should be further derived. Contains infor-

mation about Shape and initial location.

Motor.h Motor.cpp Contains the wiring and motor parameters for a

joint, if it is motorised.

Recordable.h Recordable.cpp Contains a base class for those objects which wish

to dump details to record.

Recorder.h Recorder.cpp Framework to capture entire state of simulation on

a frame by frame basis not currently in use.

RoboSim.h Top level definition of RoboSim namespace - no

real content.

Script.h Script.cpp Contains classes required to allow scripted events

in simulation (Actor, Event, Parser, EventFrame,

Reader). Provides extensible framework, as each

event type can handle its own parsing, data storage

and physical model independently.

Appendix B Software Catalogue 114

Sensor.h Sensor.cpp Defines some of the sensors that can be attached

to the model, specifically; CollisionSensor, Prox-

imitySensor, SlipSensor, Accelerometer and Glob-

alAxisSensor. The last of these is not physically

authentic, but has proved useful.

Shape.h Box.cpp Defines graphics, collision, and inertial models for

primitive shapes.

CompositeShapeBase.cpp

Cylinder.cpp

Sphere.cpp

Shape.cpp A wrapper class that may represent any shape,

contains a ShapeBase.

ShapeBase.cpp A base class for all the types of shape.

SimWorld.h SimWorld.cpp

Anchor.cpp Fixed body that can collide, but never move.

FreeBody.cpp Free body that can collide and move.

Floor.cpp Fixed plane that can collide, but never move.

VortexBase.h VortexBase.cpp Base class of all simulation objects. Contains

static pointers to important parts of underlying

simulation libraries.

Wiring.h Wiring.cpp Contains the classes required to correctly connect

actuators and transducers to the LocalSocket,

giving complete control over ordering.

XmlInterface.h XmlLogable. cpp Base class for any object which wishes to write to

the log.

XmlCursor.cpp Wraps libxml calls in C++ and provides a single

location for unit conversions.

B.2 MATLAB to MaSe Link

I Source Notes

connection.h Defines struct to contain connection details and prototypes public functions.

connection.c Allocates buffers and contains reading/writing functions.

controller_test~ain.c Non matlab test stub for connection functions.

linkutil.h Prototypes function to convert configuration information between MATLAB

arrays and connection struct. Also includes wrapper to call MATLAB error

function.

linkutil.c Implementation of above.

launchchild. c Stand alone mex function that allows MATLAB to fork a child and set its

command line parameters. Used to launch the MaSC from within MATLAB

linkclose.c Uses config struct information to close the connection.

linkopen.c Attempts to open connection, return config struct on success, else failure

struct.

linkupdate.c Reads transducers values and sends actuator demands.

Makefile Builds mex files for MATLAB to use.

Appendix C

Spring Tower Force Calculations

This appendix describes the mathematical steps required to calculate the force that

would be required to balance that exerted by the tip of a fully specified spring tower

(Fig. C.l). Table C.l defines the terms used in this analysis.

J
S
D1...J

e1...5

CY1...5

C1...J

m1...J

I nl...J

I ext

Is
Ie
t

I ext

ibl... J

N umber of joint frames
N umber of spring pairs (J l)
Separation between cross-bar hinges
Rotation between each cross-bar
Rotation between each cross-bar its vertical-link
Hinge points for each cross-bar
End cross-bar parameters (2 by S)
The net force on the base of each frame
Balancing force required at the tip
The force developed by an actuator starting on this frame
The force developed by an actuator starting on the previous frame
Torque developed around the base of a frame
Balancing force required at the tip
Force along each vertical-link

TABLE C.l: Table of symbols

We define each cross-bar as a parametric line, whose parameter, t, passes through zero

at the point where its vertical-link connects it to the next cross-bar. Note that x, m

and c are two dimensional column vectors:

(C.l)

Let us define m1, C1 and CY1 so that that first cross-bar is aligned with the x-axis, passing

through the origin when p = 0, and the first vertical-link is aligned with the y-axis. To

115

Appendix C Spring Tower Force Calculations 116

FIGURE C.1: Spring tower. The springs shown represent series-elastic actuators,
(springs with a motor driven base offset, allowing them to exert a range of forces
at any given length). The structure comprises 3 T-frames, but as the base frame is

rigidly clamped, there are only 6 moving components (2 T-frames and 4 actuators).

define completely the structure of a J cross-bar system, we must define angles fh ... J-l

angles and separations D1...J.

Vj

Uj

Wj

[cos a,
-smaj

7r
al =--

2

sinaj 1 mj cosaj

[~ -1 1 m· o J

[~ -1 1 V· o J

Appropriate values for m and c can then be found by the following iteration:

(C.2a)

(C.2b)

(C.2c)

(C.2d)

(C.3a)

(C.3b)

Appendix C Spring Tower Force Calculations 117

-

V
J,a

.~ . m.
j.a

-.
FIGURE C.2: The location of the ends of the acutator is defined using two parametric

coordinates, p and q.

Since the geometry is fixed, it is possible to calculate the position of the actuators

and, therefore, their current length. From this, we can calculate the forces and torques

that they exert on their attachment points (in this case the cross beams). These forces

(f Sj,a and I ej.J and torques (tSj,a and tej ,J can be calculated for actuator a attached

between cross-bars j and j + 1 using following equations (Fig. C.2):

tj,a (Qj,a m j+I + CHI) - (Pj,amj + Cj) (C.4a)

{k (It I n)~ Itj,al > nj,a
I Sj,a

o),a),a -),a Itj,a I (C.4b)
Itj,a I ::; nj,a

I ej,a - I Sj,a (C.4c)

tSj ,a p' uri),a) Sj ,a (C.4d)

t ej,a qj,au]+d ej,a (C.4e)

Note that nj,a, kj,a, Pj,a and qj,a are elements of arrays N , K, P and Q respectively. In

this case we are considering long actuators that do not resist compression; hence, no

force is generated when the displacement between the end points is less than the 'rest

length' of the acutators (Eqn. C.4b).

Appendix C Spring Tower Force Calculations 118

The torque created at each cross-bar must be balanced by a moment at the end of its

vertical-link. For the base of cross-bar j:

1 spring)

1 twistj

1 strutj

1 ext)

1 net)

le_11 +le_12 +ls 1 +IS2 J, J, J, J,

(tej _ 2 ,1 + te)_2,2 + t S)_l,l + t S)_1,2)Dj _ 1mj-l

bjvj

1 spring) + 1 twist) + 1 strutj f strutj -1 + 1 ext)

1 spring) + It wist) + bjVj - bj - 1 Vj-l + ejWj

a

(C.5a)

(C.5b)

(C.5c)

(C.5d)

(C.5e)

(C.5f)

The ground will create a reaction force that will balance the component of 1 net 3 that is

aligned with the second vertical-link, V2.

If we substitute Equation. C.6 into Equation. C.5f yeilding:

1 net3 Ispring3 + Itwist3 + b3V 3 + e3 W 3 -

VfUspring3 + Itwist3 + b3V 3 + e3 w 3)v2

(C.6)

(C.7)

This can be simplified by noting that Vj and Wj are perpendicular which implies:

This means that Equation. C.7 can be reduced as follows:

i net3

i net3

v§(WfUspring3 + Itwist3 + b3V 3 + ej W 3)w2)V3

wf(V§Uspring3 + ItwistJ V 3)W2 + bV3 + ejW 3)w2)V3

(C.8)

(C.g)

(C.lO)

(C.11)

We now have enough information to iterate the net force up the tower to the tip.

The equations presented allow for the analysis of any static configuration, but do not

include dynamic terms (inertia and damping) and would not therefore permit frame-by

frame simulation. The equations will not be extended to include these terms as they

Appendix C Spring Tower Force Calculations 119

would further complicate matters and such simulation is better performed by a generic

Newtonian simulator.

References

W. Abend, E. Bizzi, and P. Morasso. Human arm trajectory formation. Brain, 105:

331-348, 1982.

K. Akasawa and K. Kato. Neural network model for control of muscle force based on

the size principle of motor unit. Proceedings of the IEEE, 78(9):1531-1535, 1990.

G. E. Alexander and M. D. Crutcher. Parallel processing within motor areas of cerebral

cortex and basal ganglia in the monkey. In International Joint Conference on Neural

Networks, volume 2, pages 711-716, 1990.

AMERAH Website. Arm wrestling Match of EAP Robotic Arm against Human http:

//ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-armwrestling.htm, date ac

cessed 13th Sept. 2005, 2005.

R. C. Arkin. Behavior-Based Robotics. MIT Press, Cambridge, MA, 1998.

R. Balasubramaniam and A. G. Feldman. Some robotic imitations of biological

movements can be counterproductive. Behavioural and Brain Sciences, 24:1050-1051,

2001.

Y. Bar-Cohen. Electroactive polymers as artificial muscles: A reVIew. Journal of

Spacecraft and Rockets, 39(6):822-827, 2002.

M. F. Bear, B. W. Connors, and M. A. Paradiso. Neuroscience: Exploring the Brain.

Lippincoot, Williams and Wilkins, Baltimore, MD, 2001.

G. A. Bekey, R. Tomovic, and 1. Zeljkovic. Control architecture for the Belgrade/UCS

Hand. In S. T. Venkataraman and T. Iberall, editors, Dexterous Robot Hands, pages

136-149. Springer-Verlag, 1990.

A. Bicchi. Hands for dexterous manipulation and robust grasping: A difficult road

toward simplicity. IEEE Transactions on Robotics and Automation, 16(6):652-662,

2000.

A. Bicchi and V. Kumar. Robotic grasping and contact: A review. In IEEE International

Conference on Robotics and Automation, pages 348-353, San Francisco, CA, 2000.

120

REFERENCES 121

E. Bizzi, N. Hogan, F. A. Mussa-Ivaldi, and S. Giszter. Does the nervous system use

equilibrium-point control to guide single and multiple joint movements. Behavioral

and Brain Sciences, 15:603-613, 1992.

E. Bizzi, F. Mussa-Ivaldi, and S. Giszter. Computations underlying the execution of

movement: A biological perspective. Science, 253:287-291, 1991.

I. Boblan, R. Bannasch, H. Schwenk, F. Prietzel L. Miertsch, and A .Schulz. A human

like robot hand and arm with fluidic muscles: Biologically inspired construction and

functionality. Embodied Artificial Intelligence, 3139:160~ 179, 2004.

I. Boblan, R. Bannasch, H. Schwenk, L. Miertsch, and A. Schulz. A human like

robot hand and arm with fluidic muscles: Biologically inspired construction and

functionality. In Embodied Artificial Intelligence, Dagstuhl Event 03281, pages 160-

179. Springer, 2003.

R. A. Brooks. Intelligence without reason. In J. Myopoulos and R. Reiter, editors, 12th

International Joint Conference on Artificial Intelligence (IJCAI-91), pages 569-595,

Sydney, Australia, 1991. Morgan Kaufmann: San Mateo, CA.

M. A. Conditt, F. Gandolfo, and F. A. Mussa-Ivaldi. The motor system does not

learn the dynamics of the arm by rote memorization of past experience. Journal of

Neurophysiology., 78:554-560, 1997.

P. I. Corke. A robotics toolbox for MATLAB. IEEE Robotics and Automation Magazine,

3(1):24-32, 1996.

J. J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley, Reading

MA,1986.

A. d'Avella and E. Bizzi. Low dimensionality of supraspinally induced force fields.

Proceedings of the National Academy of Science of the United States of America, 95

(13):7711-7714, 1998.

C. J. DeLuca, R. S. LeFever, M. P. McCue, and A. P. Xenakis. Control scheme governing

concurrently active human motor units during voluntary contraction. Journal of

Physiology, 329:129-142, 1982.

J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based

on matrices. Applied Mechanics, 77:215-221, 1955.

D. C. Dennett. Cognitive wheels: The frame problem of AI. In C. Hookway, editor,

Minds, Machines and Evolution, pages 129-151. Cambridge University Press, 1984.

Der bionische Roboterarm of Technische Universitiit Darmstadt Website. http://www .

sim. informatik. tu-darmstadt .de/res/bmbf/biorob/ (Visited 29/11/05), 2005.

REFERENCES 122

K. Dial. Wing-assisted incline running and the evolution of flight. Science, 299:402-404,

2003.

V. N. Dubey. Sensing and Control within a Robotic End Effector. PhD thesis, University

of Southampton, UK, 1997.

DynaMechs. Multibody dynamic simulation library, http://dynamechs . sourceforge.

net/ (Visited 29/11/05), 2004.

T. Elliott and N. R. Shadbolt. Growth and repair: Instantiating a biologically-inspired

model of neuronal development on the Khepera robot. Robotics and Autonomous

Systems, 36:149-169, 2001.

Open Dynamics Engine. http://www . ode. org/ (Visited 29/11/05), 2004.

A. G. Feldman. Functional turning of nervous system with control of movement or

maintenance of a steady posture. controllable parameters of the muscle. Biophysics,

11:565-578, 1966.

A. G. Feldman. Once more on the equilibrium-point hypothesis (A-model) for motor

control. Journal of Motor Behavior, 18(1):17-54, 1986.

T. Flash. The control of hand equilibrium trajectories in multijoint arm movements.

Biological Cybernetics, 57:257-274, 1987.

T. Flash and T. J. Sejnowski. Computational approaches to motor control. Current

Opinion in Neurobiology, 11:655-662, 2001.

Gazebo. Client/server multi-robot simulator for outdoor environments, http: / /

playerstage. sourceforge .net/ (Visited 28/11/05), 2004.

A. P. Georgopoulos. Current issues in directional motor control. Trends In Neuroscience,

18(11), 1995.

A. P. Georgopoulos, J. Ashe, N. Smyrnis, and M. Taira. The motor cortex and the

coding of force. Science, New Series, 256(5064):1692-1695, 1992.

A. P. Georgopoulos, R. E. Ketter, and A. B. Schwartz. Primate motor cortex and free

arm movements to visual targets in three-dimensional space. II. Coding of direction

of the movement by a neuronal population. Journal of Neuroscience, 8(8):2928-2937,

August 1988.

S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi. Convergent force fields organized in the

frog's spinal cord. Journal of Neuroscience, 13:467-491, 1993.

K. Goldberg, editor. The Robot in the Garden: Telerobotics and Telepistemology in the

Age of the Internet. MIT Press, Cambridge, MA, 2000.

REFERENCES 123

A. A. Goldenberg, B. Benhabib, and R. G. Fenton. A complete generalized solution to

the inverse kinematics of robots. International Journal of Robotics Research, 1(1):

14-20, 1985.

H. Gomi and M. Kawato. Equilibrium-point control hypothesis examined by measured

arm stiffness during multijoint movement. Science, New Series, 272(5258):117-120,

1996.

P. L. Gribble, D. J. Ostry, V. Sanguineti, and R. Laboissiere. Are complex control signals

required for human arm movement? Journal of Neurophysiology, 79:1409-1424, 1998.

S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle

River, NJ, 1998.

J. A. Hoffer and S. Andreassen. Factors affecting the gain of the stretch reflex and soleus

stiffness in premammillary cats. Society of Neuroscience (abstracts), 4:935, 1978.

J. A. Hoffer and S. Andreassen. Regulation of soleus muscle stiffness in premammillary

cats: intrinsic and reflex components. Journal of Neuroscience, 45:267-285, 1981.

N. Hogan. The mechanics of multi-joint posture and movement control. Biological

Cybernetics, 53:315-331, 1985.

O. Holland. Grey Walter: The pioneer of real artificial life. In C. G. Langton and

K. Shimohara, editors, Artificial Life V, pages 34-41. MIT Press, Cambridge, MA,

1996.

O. Holland. Exploration and high adventure: the legacy of Grey Walter. Philosophical

Transactions of the Royal Society: Mathematical, Physical and Engineering Sciences,

361(1811):2085-2121, 2003.

J. M. Hollerbach. Computers, brains and the control of movement. Trends in

Neurosciences, 5:189-192, 1982.

K. Hsiao, N. Mavridis, and D. Roy. Coupling perception and simulation: Steps towards

conversational robots. In International Conference on Intelligent Robots and Systems,

Las Vegas, NV, 2003.

Humanoider Muskelroboter ZAR of Technischen Universitat Berlin Website. http:

//www.zar-x.de/(visited 28/11/05),2005.

S. C. Jacobsen, J. E. Wood, D. F. Knutti, and K. B. Biggers. The Utah/MIT dexterous

hand: Work in progress. International Journal of Robotics Research, 3(4):21-50, 1984.

J. R. Lackner and P. Dizio. Rapid adaptation to Coriolis-force perturbations of arm

trajectory. Journal of Neurophysiology, 72(1):299-313, 1994.

REFERENCES 124

M. L. Latash and A. G. Feldman. Computational ideas developed within the control

theory have limited relevance to control processes in living systems. Behavioural and

Brain Sciences, 27:409, 2004.

C. S. Lovchik and M. A. Diftler. The robonaut hand: A dexterous robot hand for space.

In Proceedings of the IEEE International Conference on Robotics and Automation,

volume 2, pages 907~912, Detroit, MI, May 1999.

A. V. Lukashin, B. R. Amirikian, and A. P. Georgopoulos. Neural computations

underlying the exertion of force: a model. Neuroreport, 7:2597~2601, 1996a.

A. V. Lukashin, B. R. Amirikian, and A. P. Georgopoulos. A stimulated actuator driven

by motor cortical signals. Neuroreport, 7:2597~2601, 1996b.

C. D. Mah and F. A. Mussa-Ivaldi. Evidence for a specific internal representation of

motion-force relationships during during object manipulation. Biological Cybernetics,

88:60~72, 2002.

X. Markenscoff, L. Ni, and C. H. Papadimitriou. The geometry of grasping. International

Journal of Robotics Research, 9(1):61~74, 1990.

X. Markenscoff and C. H. Papadimitriou. Optimum grip of a polygon. International

Journal of Robotics Research, 8(2):17~29, 1989.

M. T. Mason and J. K. Salisbury. Robot Hands and the Mechanics of Manipulation.

MIT Press, Cambridge, MA, 1985.

MATLAB. The Mathworks, http://www.mathworks.com/(Visited 28/11/05), 1984.

B. Mishra, J. T. Schwartz, and M. Sharir. On the existence and synthesis of multifinger

positive grips. Algorithmica, 2:541~558, 1987.

B. M6hl. Two jointed robot arm with elastic drives and active oscillation damping.

workshop. In Bio-Mechatronic Systems, IEEE-RSJ International Conference on

Intelligent Robots and Systems (IROS), Grenoble, 1997.

P. Morasso. Spatial control of arm movements. Experimental Brain Research, 42:223~

227, 1981.

F. A. Mussa-Ivaldi and E. Bizzi. Motor learning through the combination of primitives.

Philosophical Transactions of the Royal Society of London, Series B~Biological

Sciences, 355(1404):1755~1769, 2000.

A. M. Okamura, N. Smaby, and M. R. Cutkosky. An overview of dexterous manipulators.

In IEEE International Conference on Robotics and Automation, volume 1, pages 171 ~

180, San Francisco, CA, 2000.

OpenSim. 3D robot simulator, http://opensimulator . sourceforge .netl (Visited

29/11/05), 2004.

REFERENCES 125

D. J. Ostry and A. G. Feldman. A critical evaluation of the force control hypothesis in

motor control. Experimental Brain Research, 153:275-288, 2003.

K. Otsuka and X. Ren. Recent developments in the research of shape memory alloys.

Intermetallics, 7(5):511-528, 1999.

Oxford English Dictionary. Online version, 2000. New edition: draft entry Sept. 2000,

http://dictionary . oed. com (Visted 28/11/05).

R. P. Paul. Robot Manipulators: Mathematics, Programming and Control. MIT Press,

Cambridge MA, 1981.

R. Pfeifer. Building fungus eaters: Design principles of autonomous agents. In From

Animals to Animats, Fourth International Conference on Simulation of Adaptive

Behavior, volume 4, pages 3-12. MIT Press/Bradford Books, Cambridge, MA, 1996.

R. Pfeifer and C. Scheier. Understanding Intelligence. MIT Press, Cambridge MA, 1999.

A. Polit and E. Bizzi. Processes controlling arm movements in monkeys. Science, New

Series, 201(4362):1235-1237, 1978.

G. Pratt and M. Williamson. Series elastic actuators. In IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS-95), volume 1, pages 399-406,

Pittsburg, PA, 1995.

Python. Documentation http://www . python. org/doc/ (Visted 28/11/05), 2003.

F. Reuleaux. Theoretische Kinematic. Translated as Kinematics of Machinery. NY:

Dover, 1875.

Robonaut Website.

28/11/05), 2005.

http://robonaut . j sc . nasa. gOY /robonaut . html (Visted

J. K. Salisbury. Kinematic and force analysis of articulated hands. PhD thesis,

Department of Mechanical Engineering, Stanford University, Palo Alto, CA, 1982.

R. Shadmehr and M. A. Arbib. A mathematical analysis of the force-stiffness

characteristics of muscles in control of a single joint system. Biological Cybernetics,

66:463-477, 1992.

R. Shadmehr and F. A. Mussa-Ivaldi. Geometric structure of the adaptive controller of

the human arm, MIT AI Memo 1437, MIT, Cambridge, MA, 1994.

K. B. Shimoga. Robotic grasp synthesis algorithms: A survey. International Journal of

Robotics Research, 15(3):230-266, 1996.

P. Somoff. Uber Schraubengeschwindigkeiten eines festen Korpers bei Vershiedener Zahl

von Stiitzfiachen. Zeitschrift fur Mathematick und Physik, 42:133-153, 1897.

REFERENCES 126

J. A. Stevens and M. E. P. Stoykov. Using motor imagery in the rehabilitation of

hemiparesis. Archives of Physical Medicine and Rehabilitation, 84(7): 1090-1092, July

2003.

R. Sunderland, R. Damper, and R. Crowder. An approach to the simulation of robotic

systems using XML-based configuration files. In Proceedings of DETC'04, Design

Engineering Technical Conferences, pages no pagination-eD-ROM, Salt Lake City,

UT.,2004a.

R. Sunderland, R. Damper, and R. Crowder. A framework for biologically-inspired

control of reaching motions. In Proceedings of 3rd International Symposium on

Adaptive Motion in Animals and Machines (AMAM 2005), pages no pagination-CD

ROM, Ilmenau, Germany, 2005.

R. M. Sunderland, R. 1. Damper, and R. M. Crowder. Flexible XML-based configuration

of physical simulations. Software Practice and Experience., 34(12) :1149-1155, 2004b.

R. S. Sutton and A. G. Barto. Reinforcement Learning. Bradford Books, 1998.

T. Tsuji, K. Goto, M. Moritani, M. Kaneko, and P. Morasso. Spatial characteristics

of human hand impedance in multi-joint arm movements. In IEEE/RSJ/GI

International Conference on Intelligent Robots and Systems, volume 1, pages 423-

430, 1994.

P. Tuffield and H. Elias. The shadow robot mimics human actions. Industrial Robot, 30

(1):56-60, 2003.

T. Uchiyama and K. Akazawa. Neural network model for muscle force control based

on the size principle and inhibition by Renshaw cells. Proceedings of the 20th Annual

International Conference on the IEEE Engineering in Medicine and Biology Society,

20(3):1430-1433, 1998.

A. L. H. Van der Meer, F. R. Van der Weel, and D. N. Lee. The functional significance

of arm movements in neonates. Science, 267(5198):693-695, 1995.

C. P. van Schaik, R. D. Deaner, and M. Y. Merrill. The conditions for tool use in

primates: implications for the evolution of material culture. Journal of Human

Evolution, 36:719-741, 1999.

Vortex Simulation Libaries. Version 2.0.1 http://www . em-labs. eom (Visited 28/11/05),

2002.

W. G. Walter. An imitation of life. Scientific American, 184(8):42-45, 1950.

W. G. Walter. A machine that learns. Scientific American, 182(5):60-63, 1951.

W. G. Walter. The Living Brain. W. W. Norton, NY, 1963.

REFERENCES 127

M. W. Wichman. The use of optical feedback in computer control of an arm, Stanford

Artifical Intelligence Memo 56, Stanford University, Palo Alto, CA, 1967.

