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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Yufeng Dong

This work, for the first time, systematically presents a design methodology of the control
system for micromachined inertial sensors with a high-order electromechanical SAM. The
methodology is based on relatively mature design techniques for high-order ¥A ADC.
Different loop topologies, including multi-feedback, multi-feedback with resonators and
feed-forward with resonators, were investigated and the noise levels at different stages of
the high-order ¥AM was analyzed. The behaviour of noise shaping for Brownian noise,
quantization noise and electronic noise was discussed in detail. Monte-Carlo analysis was
performed to investigate the sensitivity to fabrication tolerances of the sensing element
and circuits, which showed that the single loop ZAM had a good immunity to fabrication
tolerances. Using a displacement dependent feedback, a linearization scheme was proposed
to cancel the nonlinear conversion from the voltage to electrostatic feedback force and, as
result the output signal harmonic distortion was considerably suppressed. The mechanical
quality factor Q of the sensing element has a remarkable effect on noise shaping, and phase
lead compensator influences the loop stability. In a high-order electromechanical ZAM,
non-idealities due to dead-zone and idle tones were greatly alleviated compared with a
second-order ZAM. Special issues in continuous-time AM were addressed, including inter-
symbol effects and excess loop delay. Non-idealities in the interface and control circuits were
investigated. Furthermore, the approach was extended to apply to vibratory gyroscopes.
The control system using a high-order bandpass ZAM leads to a much lower oversampling
frequency and more flat signal response. A high performance fully differential accelerometer
is designed with a mechanical noise floor below 1ug/v/Hz. Detailed FEM analysis were
performed using CoventorWare to design key parameters. Two fabrication processes based
on silicon on glass (SOG) and silicon on insulator (SOI) were explored. A preliminary
prototype of a continuous-time fifth-order electromechanical 3AM was built using SMT
components on a six-layer PCB. A SNR of the PCB prototype using fully differential
circuits of about 90dB was achieved in a 1kHz signal band with a sampling frequency
125kHz.
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Chapter 1

Introduction

Micromachined inertial sensors, primarily consisting of accelerometers and gyroscopes, have
been the focus in the Micro Electromechanical Systems (MEMS) research for over two
decades since Roylance et al [1] reported the first prototype of a micromachined accelerom-
eter in 1978. Now micromachined accelerometers are regarded as one of the most successful
commercialized micro sensors ever developed for automotive applications and have the sec-
ond largest market after pressure sensors. On the other hand, micromachined gyroscopes
are a relatively new technology, and there are some devices available, but commercial gy-

roscopes lag behind by about one decade.

Since MEMS utilize modern semiconductor fabrication technology, miniaturized mechanical
structures can be batch-fabricated and even integrated with the interface electronics on the
same silicon chip or same package. The integration has the potential to make the sensors
smart or intelligent. Surface micromachining uses compatible CMOS processes to fabricate
the silicon mechanical structures and can monolithically integrate electronics on the same
chip to reduce parasitic capacitance and series resistance. For bulk micromachining, the
silicon mechanical structures and electronics interface can be fabricated on two separated

dies and packaged together.

The attractive features of micromachined inertial sensors are their potentially low cost,
significantly reduced size and light weight, and low power dissipation. This impact will
also open up new applications by improving the overall performance of systems with large

arrays of devices.

For low to medium performance applications, micromachined accelerometers can be found
in large-volume products, such as automotive airbag and rollover detection system, jit-
ter stabilization in camcorders, Parkinson disease monitoring and shipment monitoring,
etc. However, there is an increasing demand for high performance (ug accuracy) microma-
chined accelerometers that comes from inertial navigation/guidance systems for airplanes

and missiles (e.g. multi-axis accelerometers and gyroscopes on the same chip as a back-up
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for global positioning systems (GPS)), intelligent weapons, space micro-gravity, unmanned

aerial vehicles, and distributed battery-powered seismometers.

High performance inertial sensors usually take the advantages of a closed-loop control strat-
egy to increase the dynamic range, linearity and bandwidth of the sensors. However, purely
analog force feedback closed-loop schemes suffer from electrostatic pull-in problems in which
electrostatic forces can lead the proof mass to latch to one set of electrodes. In the last 15
years, closed-loop force feedback control schemes with sigma-delta modulation have become
very attractive for capacitive micromachined inertial sensors, which can not only preserve
all advantages of closed-loop sensors but also produce digital output in the format of a
pulse density bitstream, which can directly interface to a microprocessor or digital signal

processor (DSP) for further signal processing.

1.1 Motivation

Previous work mainly focused on using the sensing element only to form a second-order
single loop sigma-delta modulator (XAM) [2], [3], [4], [5], [6], [7] and rarely used additional
electronic integrators to form a high-order XAM (8], [9], [10]. In the context of this work,
a high-order AM is considered as a control system with an order greater than two.
For such a control system, high-order also implies that there is one or more electronic
integrators (resonators) in the loop. Kraft et al [11] presented a third-order multi-stage
noise shaping (MASH) electromechanical SAM, but the MASH loop architecture has been
found to be more sensitive to gain variations due to microfabrication tolerance. Recently,
Petkov et al [12] put forward a fourth-order single loop interface for inertial sensors, which
greatly reduce the interaction between the quantization noise and electronic noise, but there
was no detailed design methodology and the loop topology for gyroscopes was based on
a lowpass ©AM. So far, the advantages of high-order single loop electromechanical XAM
have not been fully explored, especially for inertial sensors, which leads to higher signal
to noise ratio (SNR) in a wide signal bandwidth. This thesis presents systematic design,
simulation, fabrication and prototype of a control system for a high-order ¥AM using a high
performance inertial accelerometer. The research work mainly focussed on the following

issues:

¢ Systematic design, analysis and simulation of the electromechanical high-order single
loop £AMs. To investigate the loop stability, the loop coefficients have to be opti-
mized for different topologies. The noise-shaping performance for quantization noise,

electronic noise and signal are analyzed and compared.

¢ The electrostatic force feedback, or one-bit electromechanical DAC is inherently non-
linear, which results in harmonic distortion in bitstream output and therefore consid-
erably reduce signal to noise plus distortion ratio (SNDR). The research proposes an

effective linearization approach which can be easily implemented in circuitry.
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e Application of a high-order bandpass £AM instead of a lowpass AM to microma-

chined vibratory gyroscopes.

e A PCB prototype (not ASIC chip) of a fifth-order electromechanical “AM to demon-
strate the design methodology.

e Design and fabrication of an in-plane accelerometer (micro-g mechanical noise floor,
high sensitivity 10pF'/g and high modal frequencies) with a fully differential structure.

Optimizing coeflicients of the control loop lead to stable closed loop systems with improved
SNR. The single loop high-order ¥AM can accommodate relatively large microfabrication
tolerance from both the mechanical structure and analog circuits. Both simulations and
prototyping show that high-order ¥AM force feedback loops can get better dynamic range
(DR) than a second order loop and tonal behaviour is greatly alleviated. The topologies
investigated are applicable not only to accelerometers, but also to other inertial sensors

such as gyroscopes.

1.2 Thesis Organization

Chapter 2 briefly describes the operating principles of accelerometers and vibratory gyro-
scopes. A mechanical lumped model is described, and several parameters including dynamic
performance, thermal noise equivalent acceleration (TNEA) and the SNR are defined. The
principles of a ¥AM are described with the concept of noise shaping, calculation of SQNR
and linear quantizer model. The performance of different topology, including high-order
single loop £XAM, MASH and multi-bit ©AM are compared. The Chapter also gives the
lowpass to bandpass transformation and the advantages and disadvantages of continuous-
time ¥AM vs discrete-time ZAM. The bitstream output spectrum is the performance
metric of a ZAM. Not only the SQNR can be derived, but also it can be used to check if

the noise shaping has the correct order.

In Chapter 3, a comprehensive backgrounds is given on the closed-loop £A micromachined
capacitive inertial sensors. First, the interface to micromachined capacitive inertial sensors
is analyzed. For present microfabrication techniques, surface micromachining, bulk micro-
machining and LIGA are described. The second-order single loop, MASH and high-order

single loop are reviewed for micromachined capacitive inertial sensors using £AMs.

In Chapter 4, a detailed design methodology and simulation results of a high-order single
loop electromechanical ¥AM are presented. The performance and design with the different
topologies, including multi-feedback loops, multi-feedback loops with resonators, and feed-
forward loops with resonators, are simulated and compared. Noise sources are analyzed
in detail and methods are proposed for suppression of the electronic noise. Monte-Carlo

simulation is used to verify performance variation due to microfabrication tolerance for
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both high-order single loop and second-order loop. Some special phenomena of a high-
order electromechanical £AM are also investigated in detail, including the dead-zone and
idle tones, the effect of the mechanical quality factor on noise shaping, electrostatic force

feedback delay, and non-ideal circuit implementation.

In Chapter 5, an effective force linearization is put forward to reduce the harmonic distortion
in the bitstream of the electromechanical ZAM. The non-linearity coming from the charge

amplifier is also discussed.

In Chapter 6, a control system with a high-order bandpass 3AM is applied to microma-
chined vibratory gyroscopes. The sense mode is described in detail. The oversampling
frequency is greatly reduced compared with a lowpass AM. The low frequency 1/f noise

and drift are removed in the signal band.

In Chapter 7, experimental results are given. A fifth-order lowpass electromechanical CT
YAM is prototyped using a PCB. Front interface circuits are analyzed in detail, including
preamplifier, demodulation and force feedback schemes. Experimental results show the

SNR of the control system is about 90dB using a fully-differential circuits.

In Chapter 8, a high performance micromachining capacitive accelerometer is designed with
a fully differential structure. Key parameters, such as spring stiffness constant, damping
coefficient, modal analysis, cross axis sensitivity, static sensitivity and TNEA are simulated
and calculated. Two practical fabrication processes are outlined and some fabrication

results are shown.

In the final chapter, the major achievements of the resaerch are summarized and further

work for investigation is outlined.



Chapter 2

Fundamental Principles

2.1 The Principles of Micromachined Accelerometers

2.1.1 Mechanical Lumped Model

An accelerometer comprises a proof mass suspended by a spring to a fixed frame and
converts the signal from the mechanical to the electrical domain. A schematic diagram of

a second-order mass-spring-damper system is shown in Figure 2.1.

Top Electrode

Bottom Electrode
relative mass displacement x=y-z

FIGURE 2.1: General capacitive accelerometer structure and its mechanical lumped model.

m is the mass of the proof mass, k is the effective spring stiffiness constant of the suspension
spring and b is the damping factor which affects the dynamic characteristics of the proof
mass. The input acceleration is exerted on the proof mass by the relative motion of the
suspended proof mass to the fixed frame; the suspended spring and the damper dissipate
the energy in the system. The differential equation for the displacement as a function of

external acceleration is:

d*y d(y — 2)
m—2 — _pd %) _ 2.1
A2z dx d?z (2.2)

2= = —me— = —ma=—F
mdt2+ dt-Hc:E mdt2 ma
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where z is the movement of the proof mass, F' is the external force, and a is the external

acceleration.

2.1.2 Dynamic Responses

By applying Laplace transform for Equation 2.2, the transfer function for the sensing ele-

ment is of the form:

z(s) 1 1
H(s) = = = 2.3
=260 2t Bs+ L St GFstwr -

[k
where w, = - is the resonant frequency. @ is the quality factor and is defined as:

< 0.5 overdamped
Q= ——:< =05 critical damped (2.4)
> 0.5 underdamped

In the frequency domain, the transfer function Equation 2.3 of the sensing element is of the

form:
z(w) 1
H(w) = = (2.5)
a(w) (wz _ wz) N j(-U'r(.d
Q@
The response magnitude and phase:
1 .
f r
Zj_g I w K< w
. z(w) 1 .
magnitude : = = % fw=w (2.6)
a(w) \/(wz —w2)2 4 (wfw)z w; "
1 if
Z}—g 1w > we

wrw
phase: & = arctan % (2.7)

. =

From Equation 2.6, it can be seen that, for low frequencies, the response is inversely pro-
portional to the resonant frequency squared. At the resonant frequency, the response is
the quality factor divided by the resonant frequency squared. For frequencies higher than
the resonant frequency, the response is inversely proportional to the acceleration frequency
squared. Figure 2.2 shows the response of an accelerometer: under-damped (black line,
upper), critically damped (blue line, middle) and over-damped (red line, bottom). The
bandwidth of the sensor is determined by the resonant frequency. The resonant frequency
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Bode Diagram
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FIGURE 2.2: Bode diagram of a sensing element with different quality factor Q.

of the mechanical structure can be increased by increasing the spring stiffness constant
and decreasing the proof mass, while the quality factor of the device can be increased by
reducing damping and by increasing proof mass and spring stiffness constant. For maxi-
mum bandwidth, the sensing element should be critically damped, which is determined by
the quality factor @. The static sensitivity of the device can be improved by reducing its
resonant frequency. The static sensitivity (dc gain) of a sensing element is a metric for a
dc input and given by:

m 1
Sstatic = z = (28)

2.1.3 Thermal Noise Equivalent Acceleration

Mechanical noise is normally called Brownian noise, which is a random force generated by
the Brownian motion of ambient molecules surrounding the proof mass and the Brownian

motion of the proof mass suspension or anchors. The power spectral density (PSD) of the

Brownian noise force is given by:

EBN=4KB><T><Z) (2.9)

where Kp=1.38¢-23 Nm/K is Boltzmann constant, and T is the absolute temperature in

Kelvin and b is the damping coefficient. The PSD of the input-referred Brownian noise for



Chapter 2 Fundamental Principles 8

accelerometers is defined as:

- F2BN 4KB xT xb
2pN = = ? 2.1
@BN (m x g)? 0.82 x m2 © /He (2.10)

and the thermal noise equivalent acceleration (TNEA) [13] is defined as:

— V4K xT x b 1 JAKg xT X w
Y s> S B - ZRB 7T R o/ 2.1
TNEA a’pn 08 % 938 p—— (g/VHz) (2.11)

In order to lower the mechanical noise floor, from Equation 2.11 it is desirable to reduce
air damping and increase the sensing element mass. TNEA mainly depends on the struc-
ture of the sensor and also the micromachining fabrication process. The associated noise
response in the bandwidth of interest Af (Hz) referred to the proof mass displacement of

an accelerometer is given by:

lzBN|

_|Fen|  VAKBXxT xbxAf  [4Kg x T x bx Af (2.12)
Tk k - mxQ X w3 ‘

The static proof mass displacement of an accelerometer is given by:

|FSignatl ma ma a
[ signatl k k mw?2 w2 ( )

Equation 2.12 shows that the Brownian noise sets the minimum detectable displacement,
and therefore the minimum detectable acceleration. The SNR of an accelerometer is another
measure of the minimum detectable acceleration, and is defined by the ratio of the signal

power to the noise (only Brownian noise considered) power:

|xsignal|2 2 m X @
SNR=— 2.14
lzBN [ X UK X T X bx wy X Af (2.14)

It can be seen in Equation 2.14 that in order to increase the SNR, the parameters mass
m and quality factor @ should be designed with as large as possible while the parameters

damping b and resonant frequency w, should be designed with as small as possible.



Chapter 2 Fundamental Principles

Parameters Rate Grade | Tactical Grade | Inertial Grade
Angle Random Walk, °/v/h >0.5 0.5-0.05 <0.001
Bias Drift, °/h 10-1000 0.1-10 <0.01
Scale Factor Accuracy, % 0.1-1 0.01-0.1 <0.001
Full Scale Range, (°/sec) 500-1000 >500 >400
Max. Shock in lmsec, g’s 108 103-10% 10°
Bandwidth, Hz > 70 ~100 ~100

TABLE 2.1: Performance requirements for different classes of gyroscopes (Yazdi et al [13]).

2.2 The Principles of MEMS Vibratory (Gyroscopes

A gyroscope is an angular rate sensor and has traditionally been exclusively regarded as
being a core component of navigation system (INS), which can complement GPS. There
are three kinds of gyroscopes: optical gyroscopes (including ring laser gyroscopes and
optical fibre gyroscopes), spinning gyroscopes and vibration gyroscopes. The fundamental
consideration for performance is zero drift rate, which means the smaller the drift the
higher the cost of the gyroscope. For example, the accuracy of a ring laser sensor has a
drift of a rate of 0.01°/h, one of most accurate gyroscopes ever made (cost about $10k) [14].
The applications require different performance sensors and their parameters are shown in
Table 2.1.

However, optical gyros are expensive and optical components are difficult to be miniaturized
and integrated mainly due to the optical path cannot be shrunk. Moreover, spinning-mass
gyros need large inertial mass to increase sensitivity, so they are also not suitable for
microfabrication. In fact, vibratory gyroscopes, which operate due to the Coriolis force,

are the main-stream type so far for MEMS implementation.

2.2.1 Vibratory Gyroscopes

A simplified operating principle for a vibratory gyroscope is shown in Figure 2.3. The me-
chanical system is a mass-damped-spring system in two degrees of freedom. The proof mass
can vibrate in two orthogonal directions: along the z-axis (drive mode) by an electrostatic
actuation force Fype; along the y-axis (sense mode) incurred by the rotation around the

z-axis with an angular velocity to be detected.

In operation, the proof mass is driven into vibration in the z-direction and its displacement

is given by

z = Ag cos(wyt) (2.15)
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.

m
I_ F, drive
F, Cor _l
k2
b2 .
by 12 J_ k y/2 7 driven mode

FIGURE 2.3: Operation principle of a vibratory gyroscope.

where A, is the amplitude and w, the driving frequency of the oscillation, respectively.
Assuming the system is then rotated around the z-axis with an angular velocity Q=06

with respect to an inertial system. a Coriolis force acting upon the proof mass:

FCm‘iolis = 2mV, €y X ﬁ (2.16)

where v, €, is the velocity relative to the reference frame. Taking the Equation 2.15 into

account, the Coriolis force is given by:

FCm‘iolis = —2mAzwzQ, sin(wgt) €, (2.17)

Equation 2.17 indicts that the amplitude of Coriolis force is directly proportional to the
rotation rate and the force is along the y-axis. The proof mass oscillation in the y-axis can

also be described by a second-order linear system:

d?y d; .
m—z + byd—zt/ + kyy = —2mAzw, 2, sin(w,t) (2.18)

The solution of the differential equation, the displacement in the y-axis is given by:

y = —Aysin(wzt — @) (2.19)

where A, is the magnitude:

Ay = 24wl (2.20)

2 2 2
w w
w2 (1—w—3> +462%%

Y Y
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&, damping ratio:

by
and ¢ phase lag:
2
¢ = arctan % (2.22)
Wy — wy

where wy is resonant frequency of the sense mode. Therefore, the displacement in y-axis
Ayis proportional to the angular rate €). Equation 2.20 can be rewritten with the quality

factor in the sense mode (z-axis) Qy = %y—:

242w 0z

Ay = = (2.23)
2 2
w w
wg (1 - ;ﬁ-) + algw
Y ]

For w; equal to wy, the maximum sensitivity is achieved as:

4, = A2 (2.24)
Wy
It can be seen from Equation 2.24 that in order to increase the sensitivity, the drive am-
plitude A; and the sense mode quality factor @, should be as large as possible, while the
vibration frequency of the sense mode wy should be small. However, Equation 2.24 applies
only for a constant angular rotation and if for a open-loop operation (w, should be sepa-
rated from w,)the 3db bandwidth is 0.54(wy —wy) [15], but for a closed-loop operation (w;
can be maintained equal to w, for high sensitivity) electrostatic force feedback is used to
extend the bandwidth. In micromachined gyroscopes, the Coriolis force is usually far less
than the inertial force, so the minimum detectable angular rotation signal is also limited
by the thermo mechanical noise as a micro-accelerometer. Combination of Equation 2.9
and Equation 2.17, the thermal mechanical noise equivalent angular rate signal {2y can be

found by the condition of:

2mA w0y =4Kg X T x b x Af (2.25)

Finally, we have:

KBTUJ Af
Qn =, | 2= ¥ 2.26
N \/ mAZw2Qy ( )
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For example, a typical surfaced micromachined gyroscope packaged in vacuum has the fol-
lowing parameters [16]: Az=0.1um, m=5x10"° Kg, w; = wy = 10°rad/s, Af=100Hz and
©=30000, working at T=300K, the equivalent angular rate signal of the thermo mechanical
noise is derived from Equation 2.26 to be Qn=5.711°/h. This indicates the performance of
a MEMS gyroscope still needs to be considerably improved to meet inertial grade applica-

tions.

The state-of-art designs of micromachined gyroscopes are still far from the theoretical limits

because of the technological constraints and imperfections of microfabrication:

1. misalignment errors of the two orthogonal sense and drive axes.
2. non-uniform etching.

3. parasitic capacitances and series resistances.

1 and 2 will lead to quadrature force errors and mechanical resonant frequency mismatches;
while 3 will considerably degrade the performance of the preamplifier. These issues also
cause temperature-dependance errors and nonlinearity. Furthermore, air damping in micro
structures will result in significant mechanical thermal noise, and can only be reduced by
vacuum packaging. All these problems will considerably reduce the SNR. A closed-loop
control system is a very effective solution to these problems and a more advanced closed-
loop control system based ©AM principle will give further benefits, which will be discussed
in detail in Chapter 6.

In an ideal implementation of a micromachined gyroscope, the sense and drive mode should
be only coupled through the Coriolis force. In practice, the misalignments and non-uniform
etching in the microfabrication process usually cause the mechanical mismatches even
though the mechanical structure is perfectly symmetrically designed. The microfabrication

tolerances produce a coupling force along the sense mode direction as shown in Figure 2.4.

_ 2
Fopa =0ma;x
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: Coriolis — 2 2

F
H" Ls
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sense mode

driven mode

-I ~NNM
N

FIGURE 2.4: Coriolis force and quadrature force due to imperfections of mechanical struc-
ture microfabrication.

This force Fyued. = 9mw2x is referred to as quadrature force due to quadrature (90° out

of phase) with Coriolis force. 6 is the misalignment angle between the orthogonal x-axis
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and y-axis. Since it is proportional to the displacement (x) along the drive direction,
which is much larger than that of along the sense direction, quadrature force is typically
orders of magnitude larger than the Coriolis force. Therefore, it is necessary to separate
the Coriolis force component from the quadrature force using synchronous phase-sensitive

demodulation, otherwise it would overload the interface electronics.

2.3 The Principles of A *AM

2.3.1 Noise Shaping

2 AM has been applied for over 50 years since Inose et al [17] proposed it in 1962, and Plass-
che [18] made the first A Analog-to-Digital converter (ADC) in replacement of traditional
Nyquist-rate ADCs in 1978, but only until the last two decades did the high-density digital
VLSI circuits mature sufficiently to manufacture them as inexpensive monolithic integrated
circuits [19]. A £AM is the combination of a delta modulator and an additional integrator

in the feed-forward (FF) path performing the summation.

A major reason for the popularity of ¥AM architectures lies in their ability to trade
bandwidth for quantization noise. In addition, they have advantages over the traditional
Nyquist-rate analog ADCs: relaxed requirements for anti-aliasing filters, relaxed require-
ments for component matching, and compatibility with digital VLSI technology. The quan-
tization noise property is compared between a Nyquist sampling converter, an oversampling
converter and an oversampling and noise shaping converter. Their schematic spectra are
shown in Figure 2.5. A XA ADC is composed of two basic blocks: a modulator and
a digital signal processing block for filtering and decimation. The shaped noise is then
filtered by an appropriate digital decimation filter. The first-order discrete integrator,
H(z) = 271/(1 — 271) effectively acts as a memory for the modulator, and has a frequency
response that decays by 20dB/dec and a constant phase shift of -90°.

A YAM was originated from the A modulator, shown in Figure 2.6(a), in early digital
communication applications [20]. The output bitstream of the A modulator represents the
sign of the difference between the input and feedback integrator, which acts as a decoder
to approximate the input analog signal. This is where the meaning of Delta or A comes
from. However, a high frequency input signal will overload the feedback integrator. The
solution is to put an additional integrator in the front of the input signal to suppress its
amplitude of high frequencies, which leads to the structure shown in Figure 2.6(b). The
structure results in encoding the integral of the input signal (summation, Sigma or X).
According to classic control theory, the structure of Figure 2.6(b) can be transformed into
the block diagram shown in Figure 2.6(c). Furthermore, the integrator can be modified by
using lowpass analog filters to form a high-order lowpass ©AM, or by using bandpass analog
filters to form a high-order bandpass AM. The analog filters can either be implemented
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FIGURE 2.5: Schematic spectrum comparison between the Nyquist sampling converters,
oversampling converters and noise shaping and oversampling converters.

in continuous-time or discrete-time circuits, and the quantizer can be configured as one-bit

or multi-bit.
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FIGURE 2.6: Structures of a XAM.
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2.3.2 SQNR

The Fourier transform decomposes a function into a continuous spectrum of the frequencies
that comprise that function. In mathematical physics, the Fourier transform of a signal
z(t) can be thought of as that signal in the frequency domain. A Fourier transform to the

frequency domain, f, is given by the function:

+o0o
X(f) = / z(t)e I tay (2.27)

- 00

Jj = +/—1 is the imaginary unit and X (f) = #{z(t)} represents the Fourier transform of
z(t) and f represents the frequency component (in hertz) of z(¢).

The inverse Fourier transform (IFT) is given by:

+o00
2(t) = / X)) df (2.28)

In signal processing, given a signal z(t), the continuous autocorrelation Ry(7) is the con-

tinuous cross-correlation of z(t) with itself, at lag 7, and is defined as:

+00 +oo
Raa(r) = " (~7) ® 2(r) = / 2(t + 7)o" (t)dt = / 2*(8)a(t — 7)dt (2.29)

where z* represents the complex conjugate and ® represents convolution.

The Wiener K hinchin theorem defines that power spectral density (PSD) of a signal z(t)

is the Fourier transform of the corresponding autocorrelation function.

PSD,(f) = / Rue(1)e 2™ dr (2.30)
or,
+oo [ 400
PSDg(f) = / / z(t+ Tz (t)dt | e PN g — Fla(t)} x F{z(t)} (2.31)

The PSD describes the statistic characteristic of the power (or variance) distribution of
a random signal with frequency components. The units of spectral power density are

commonly expressed in watts per hertz (W/Hz).
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e The PSD of f(t) and the autocorrelation of f(t) form a Fourier transform pair. The

spectral density is usually calculated using the Fourier transform.
e PSD is a function of frequency not time.

e PSD is amount of power between frequencies f and f + df divided by df.

The total average power of signal z(n) is represented by its variance:

Ky

o2 = Ellz(n)[2] = % / PSD,(w)dw (2.32)

where E[ | denotes expectation (average) and PSD, denotes the power spectral density
of signal z(n). Integrating the PSD of a random signal over all frequencies yields the total

average power of a random signal.

Parseval’s theorem [21] states that the area under the spectral density curve is equal to the

area under the square of the magnitude of the signal.

+o0 ~+o0
/ PSD,(f)df = / |z (t) P dt (2.33)

Modern interpretation of Parseval’s theorem [22] is actually a statement of a physical prin-
ciple, the conservation of energy: the total energy contained in a waveform z(t) summed
across all of time ¢ is equal to the total energy of the waveform’s Fourier transform X (f)

summed across all of its frequency components f:

+oo +oo
/ ja(8)|2dt = / X(f) 2 (2.34)

Combination Equation 2.33 with Equation 2.34:

+o0 +00
/ PSD,(f)df == / X (f)[2df (2.35)

Equation 2.35 denotes the power can be calculated by the magnitude spectrum of the signal.

For a linear system, which is described by its transfer function H(z), the PSD of output y

in response to input signal z is given by [22]:

. 2
PSD,(f) = /H(emf )\ x PSD,(f) (2.36)
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Equation 2.36 is very useful for understanding the concept of a XAM. The quantization
noise is mostly regarded as white noise, which is uniformly distributed over all frequencies,
however, it can be transformed or shaped by some transfer function H(z), the QNTF of
the ZAM.

The output of a ¥AM is a bitstream in a pulse density format. Supposing the band of
interest is [0, fy], OSR= fs/2fs, wp = 27 fo/ fs, and Y (e?) is the PSD of output bitstream.
X (e7) and E(e¥) are the PSDs of input signal z and quantization noise e in the output
bitstream. The SQNR calculation of a 3>AM for the signal bandwidth can be calculated in

the frequency domain by:

wp . “b .
Powerg; f ’X(ej“’)|2dw f lX(e]‘”)|2dw
SQNR = signal . O = 0 (2.37)

W
Powernoise

0fb|E(efw>|‘"‘dw ;beY(efw>|2 i ;fb|X(ejw>|2 o

The discrete equivalent of Equation 2.37 is given by:

2T M Jwi 2 M Jwk 2
m fe &
SQNR~ f 0 (2.38)
N 2 Y (eBr))T = 30 X (edR)|T ST Y (edwnR)[T = 3o [ X (7))
k=0 k=0 k=0 k=0

where N is the length of y(n), Aw = ZJVW the frequency spacing, M = %ﬁ; = _O%}_? the
bins within the bandwidth of interest, and wi = %{frk the discrete frequency.

Applying the N-bins fast Fourier transform (FFT) for y(n) and z(n),

X(e*) = FFT[z(n)] = X(k) (2.39)
Y(e“*) = FFTly(n)] =Y (k) (2.40)

the SQNR calculation in Equation 2.38 is given by:

SQNR = k=0 (2.41)
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For a sinusoidal single-frequency input signal x(n), there is only one spectral line at w; =

%Efz, which corresponds to the bin: k; = %v—fz and thus:
S S

X (k)? = [Y (kz)|? (2.42)

i]=

Equation 2.41 can be further simplified:

2
sonp= Y0P )

k=
Etky

In practical calculations, N should be long enough and the length a power of 2, and k&,
is chosen as an integer. In order to reduce the spectrum leakage, it is necessary for the
output bitstream to be convolved with a window function before doing FFT, such as Hann

window.

2.3.3 Quantizer Model

Due to the closed-loop control architecture of a AM, stability analysis is necessary, but
the nonlinear behaviour of the quantizer, embedded in forward path, makes the stability
analysis using linear control system theory unapplicable. So far, there are no rigorous
analytical solutions to characterize the behaviour of a SAM [23], [24]. A YAM will be
referred to as stable when for a certain class of input signals, the states of the system are
bounded and the modulator is free of large signal limit cycles. Although several criteria
are applied to examine the stability of a YAM, such as Lee’s rule (the out-of-band gain
of the QNTF should be less than two for zero input [25], [26]), the most popular method
is the describing function method [27], which uses an approximate model to qualitatively
investigate the dynamic behaviour of a YAM. The approximation enables the stability
analysis of a XAM using linear control theory. A quantizer is approximately modeled by
a signal z(n) dependent variable gain and plus an additive white quantization noise source
e(n): y(n) = Az(n) + E(n). Figure 2.7 shows the linearized model of the quantizer block.
A is the variable gain of the quantizer, and the white noise source implies that the error

has statistical probabilities that are independent of the signal.

FIGURE 2.7: A linearized quantizer model of a £AM.
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For uniform quantization, the dynamic range (-E to +E) of the input signal z(n) is equally
divided into N steps, each step is A = 2E/N. The stationary random quantization error

e(n) = &(n) — z(n) is uniformly distributed and its probability density is:

1 < A
PSD(e)={ & €153 (2.44)
0 otherwise

For a not overloaded quantizer, the dc component of the random white noise is represented

by its expectation m, and its average power (subtracting dc) is represented by its variance

2.

leplt

o«

me = Ele(n)] = / ePSD(e)de (2.45)
o2 = E[(e(n) — me)?] = / (e — me)2PSD(e)de (2.46)

Combining Equation 2.44 with Equation 2.45 and Equation 2.46, respectively, yield:

me =0 (2.47)

02 =A%/12= E*/3N? (2.48)

Although the assumption that the noise is independent of the input signal may result in
serious modeling errors in some cases such as first-order or second-order modulators with
low over-sampling ratios, for high-order modulators with high over-sampling ratios this

assumption is a good approximation to determine the properties of TAMs [28].

Figure 2.8 shows a general block diagram for a single loop XAM, comprising a loop filter
block and a nonlinear quantizer [23]. The L = 1/QNTF — 1 is the denominator of QNTF
and is referred to the open-loop filter. The zeros of a loop filter is the poles of the QNTF,
which determines the fundamental characteristic of the stability of a ZAM.



Chapter 2 Fundamental Principles 20

X L~ _SIF
0" QNTF

V _ fr Y
1-QNTF

— QNTF

e el o5

FIGURE 2.8: General block diagram of a single loop ZAM.

First, considering a quantizer with constant gain, assuming A = 1 in Figure 2.8, the output

of the modulator is given by its input X (2) and the quantization error F(z):

V(z) = Lo(2)X (2) + L(2)Y (2) (2.49)
E(z)=Y(z) - V(2) (2.50)
Y(2) = STF(2)X(2) + QNTF (2)E(z) (2.51)

However, if the gain of the quantizer is assumed to be arbitrary and the error F(z) is

regarded as independent of the signal, Equation 2.51 can be re-written as:

Y(z) = STF'(2)X(2) + QNTF'(2)E(2) (2.52)
where ASTF(2) QNTF(2)
STF' =57 (1— NSTF(2)’ QNTF =+~ (1 — NQNTF(z)

An estimation of the quantizer gain A\ can be found from extensive simulations [23], by
taking the ratio of the average quantizer input signal power to its output power. Root locus,
Nyquist plots and Bode diagrams of the loop filter of a ¥AM can be used to determine the
minimal value of the quantizer gain Ann to keep the YAM loop stable (or not overloaded

by the input signal). These methods will be addressed in detail in Chapter 4.
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2.3.4 High-Order Single Loop ¥AM

The transfer function of a theoretical Nth-order EAM is given by [28]:

H(z)=(1-2z"H" (2.53)

The PSD of the quantization noise in the output bitstream is given by:

PSDgn(w) = QNTF(2)QNTF(z )02 = 4(1 — cosw)V o2 = (2sin(%))2N g% (2.54)

; 2m
where z = e¥Ts | = 7[, thus,
§

2N 2
PSDon(f) = (2 sin(;—f)> 2;’6 (2.55)

Equation 2.55 describes the basic concept of a EAM: the uniformly distributed white quan-
2N

tization noise is shaped by (2 sin(%i)) and appears as colored noise at the output. This
§

noise shaping technique lowers the noise power at low frequencies and pushes the noise to

high frequencies. In the signal bandwidth [0, f3], for an oversampling ¥AM, and using the

simplification sin(Ef's—) R %, the total quantization noise power is given by:

fo

Pon(w) = / PSDy(f)df ~
0

OSR?N+1 (2.56)

72N 52 2/ 2N+1_ 72N g2
ON +1\ fs T ON 41

For a one-bit quantizer, the power of the random signal z(n) is 02 = 402, thus the SQNR
of a Nth-order ZAM can be expressed in (dB):

2
52 =6+ 101g(2N +1) + 102N +1)lgOSR— 10N (2.57)
QN

g

SQNRM(dB) = 101g

Equation 2.57 denotes that the SQNR will increase 3(2N + 1)dB for every doubling of the
sampling frequency, equivalent to increase the resolution by (IV 4 0.5) bits. The theoretical
SQNR limit for a one-bit lowpass XAM is shown in Figure 2.9.
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FIGURE 2.9: Theoretical SNR limits for one-bit lowpass LAMs.

Unfortunately, the theoretical value given by Equation 2.57 of a high-order ¥AM is not
achievable in practice due to the nonlinear quantizer in the closed-loop system. Further-
more, it is difficult to keep the loop stable for orders higher than two. For the design of
a high-order £A A /D converters, one of the most successful design procedures is outlined
by Norsworthy et al [28], in which a classic analog filter is prototyped and the only design
parameter is the filter cutoff frequency which can be determined by extensive simulations.
However, high-order one-bit ¥AMs are particularly prone to inétability when the input sig-
nal approaches full-scale (set by the quantizer output voltage). A low-pass high order single
loop ©AM has more integrators in front of the quantizer, and thus a smaller no-overload
input range due to integration function. The no-overload input range reduces as the order
increases. Some techniques are used for avoiding overload instability, such as clipping and

saturation recovery [28].

2.3.5 MASH

A high-order £AM can be designed by cascading independent modulator stages. This
methodology does not adversely affect the stability of the overall modulator, provided the
individual stages are stable. An example of a second-order modulator obtained by cascading

two first-order (1:1) modulators is shown in Figure 2.10.

In this architecture, a primary XAM quantizes the input signal and the associated quanti-
zation error is fed to a second XAM. The outputs of these two stages are combined through
a digital filter to cancel the quantization error of the first stage. For example, in Figure 2.10,

two DAC in feedback loops are ideal one-bit (normalized to unit), the two integrators have
-1 -1

the transfer functions of I;(z) = kllz—_l—, Iy(z) = k21z——T’ respectively, and the dig-
-z -z

ital cancellation network have the transfer functions of Hj(z) = 27!, Ha(2) = (1 — z71),

respectively. The quantization errors of the two quantizers are Fy and Ej, respectively.
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FIGURE 2.10: A MASH YAM.

For the first loop:

_ Il(z) - (y 1 2
Vi(z) 1 +Il(z)Xm( )+ 1 +Il(z)E1( )
B kyz! _ (1—271)
R R wy e s )
and for the second loop:
_ IQ(Z) _ 2 1 2
Va(2) _—1+Ig(z)( By ( ))+—1+12(2)E2( )
. S S el 20 B0

1+ (kg — 1)271 1+ (kg — D)z 1 2

The total output after the digital cancellation network is:

Y(z) =V1(2)H,(2) + Va(2)Ha(2)
_ k1272 (1—271)2
14 (ky —1)271 1+ (ko — 1271

Z—l(l—z—l) kQZ_l(l—z_l)
(1 + (kl - l)z_l N 1+ (k2 _ 1)2_1> El(z)

in(z) + EQ(Z)

(2.58)

(2.59)

(2.60)

In fact, last term of Equation 2.60 shows the gain mismatch of two integrators leads to a
leakage from the previous stage F; to the final output. Only the two loops are perfectly
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matched, and assumed k1 = k2 = 1, Equation 2.60 can be re-written as:

Y(2) = 272 Xin(2) + (1 — 271)2Ey(2) (2.61)

Equation 2.61 denotes that the final output is the original signal with the high pass filtered
replica of the quantization error from the second stage. The two first-order cascaded MASH
loops can ideally achieve second-order quantization noise shaping. For example, for a care-
fully designed MASH, cascading three second-order (2:2:2) AM loops, the quantization
noise shaping can be equivalent to a sixth-order single loop without any stability problems.
However, for an electromechanical XAM, the microfabrication tolerance can be large and

is difficult to predict precisely, therefore, a MASH structure is not very suitable for the

control system.

2.3.6 Multi-Bit ¥AM

A multi-bit XAM, as shown in Figure 2.11, is formed when the one-bit quantizer is replaced
by a multi-bit quantizer, and the feedback DAC also is a multi-bit DAC with the same
resolution as the quantizer. For a n bit quantizer, similar to the derivation of Equation 2.57,
the SQNR is given by:

2
SQNRY(dB) = 101g P‘;eN = 61+ 101g(2N +1) + 102N +1)IgOSR — 10N (2.62)

Q(z)
Input 1
H(z
Electronic | _r,_,_l"_ o
Filter
N-bit
Quantizer
N-bit | Gain:Kq
DAC
Hp ()

FIGURE 2.11: A multi-bit ZAM.

The quantization noise further decreases by 6dB/bit for the quantizer compared with a
one-bit quantizer, so a multi-bit AM has a higher SQNR than a one-bit XAM with the

same OSR. Most of all, the non-overload input signal range of the quantizer is increased
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due to the relatively well defined gain of the quantizer, in contrast to the arbitrary gain of

a one-bit quantizer. The output is given by:

H(2)K, 1

T 1+ H()K Hpac(z) Q(2) (2.63)

Y(2)

1 1
~ e (X(z) e KqQ(Z>>

where H(z) is the TF of the electronic filter (consisting of integrators or resonators), Q(z) is
the quantization noise with an approximated gain K, and Hp ac(2) is the transfer function
of the multi-bit DAC. The equation shows that nonlinearities of the multi-bit DAC will
directly add to the signal and eventually distort the output signal of the loop.

2.3.7 Lowpass to Bandpass Transformation

The design methodology of a high-order bandpass > AM is based on the application of a
lowpass to bandpass transformation on a more commonly used lowpass filter topology. One

of the standard transformations [28] is:

72— —2* (2.64)

A lowpass 2AM of order N can be converted to a bandpass modulator of order 2N with a
center frequency of fo=fs/4 (fs is the sampling frequency of both modulators); it preserves
both the stability characteristics and the noise-shaping properties of the original modulator
[27]. The lowpass SAM has QNTF zeros at or near z = 1 (which corresponds to dc),
whereas the bandpass ©AM has QNTF zeros at or near z = =+j (which corresponds to
fo=fs/4). In a bandpass ©AM, the equivalent of the integrators in the lowpass YAM is

a resonator which has a discrete-time transfer function of:

R(z) = —= (2.65)

For an electromechanical XAM, Equation 2.65 is only applied to the electronic integrators,

but not to the sensing element (such as a gyroscope) as it is already a mechanical resonator.

For illustration, an arbitrary QNTF is generated using the Schreier’s toolbox [29] for a
fourth-order lowpass and a eighth-order bandpass, respectively. These QNTFs have an
OSR of 64 and the maximum out-of-band gain of 1.5. Figure 2.12 shows the pole/zero
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map of for a fourth-order lowpass £AM, while Figure 2.13 shows the pole/zero map of a
eighth-order bandpass ¥AM with the center frequency at f,/4.

Pole-Zero Map
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FIGURE 2.12: Pole/zero map of the quantization noise transfer functions for a fourth-order
lowpass AM with OSR=64.
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FIGURE 2.13: Pole/zero map of the quantization noise transfer functions for a eighth-order
bandpass ZAM with OSR=64.
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2.3.8 Continuous-Time YAM vs Discrete-Time AM

Most £AMs are implemented with a discrete-time (DT) circuits such as switched capacitors
(SC). The reason is that they are easy to map from a mathematical description into a circuit
implementation. In addition, it is not easy to simulate the non-idealities of continuous-time
(CT) £AMs [30]. The difference between an electromechanical ¥AM and an electronic
3AM is that both the sensing element, which behaves as the first physical integrator, and
electrostatic force feedback unit, operate in the CT domain. It is necessary to compare a
CT ZAM with a DT LAM:

1. Oversampling frequency. In a DT £AM, opamps with high unity-gain bandwidth
(typically at least five times the clock frequency) are required to satisfy the settling
accuracy requirements. However, waveforms vary continuously in a CT $AM, and

the restrictions on op-amp bandwidth are relaxed.

2. Switch transients. Large switch glitches appear on op amp virtual ground nodes due
to switching transients in a DT £AM, while op-amp virtual grounds can be kept very
quiet in a CT LAM.

3. Aliasing. In DT domain, signals separated by a multiple of the sampling frequency
are indistinguishable. DT £AMs need a separate anti-aliasing filter before the input.
However, CT £AMs have an inherent anti-aliasing property, because the input signal

is sampled after being filtered through the CT loop filter.

4. Quantizer. In DT ¥ AMs, the sampling accuracy in the front-end is required greater
than the full resolution of the entire modulator. But in CT £AMs, the quantizer is
inside the noise-shaping loop, any sampling errors, are significantly suppressed by the
high gain of the loop filter in the bandwidth of signal.

5. Clock jitter. CT LAMs are more sensitive to clock jitter than DT $AMs [30].

6. Excess loop delay. Excess loop delay is defined as the delay between the quantizer
clock and DAC pulse. For CT circuits, if the excess loop delay is too large, it leads
to not only the SNR degradation, but also loop instability.

7. Simulation tools. For DT $AMs, there is a natural mapping between the mathematics
of the system and its circuit-level implementation. However, in the CT domain,

simulations will consume a huge time with a circuit level simulator such as Spice.

For a CT £AM, DAC pulse errors are fed back all the way to the modulator input, and so
are not noise-shaped by the action of the loop. Therefore, the shape of the DAC pulse is part
of the QNTF expression, the DAC output waveform will affect the noise shaping. The inter-
symbol interference [31] results from the unequal rise and fall times in the DAC switching
controlled by the quantizer output, as illustrated in Figure 2.14(a). The area under the
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pulses is significant due to the pulses are integrated inside the forward modulator loop.
The signal-dependent CT £AM introduces harmonic distortion in their output. Several
methods are suggested to correct this effect. A Return-to-zero (RTZ) DAC scheme is very
effective, which switches according to the quantizer decision for part of the clock cycle
and resets to zero for the rest during each clock cycle as illustrated in Figure 2.14(b). In
this way, no matter the previous quantizer symbol, a new DAC output starts from the
same reset value, including both a rising and a falling edge in the DAC pulse. However,
RTZ DACs change the transfer function of the DAC and will ultimately change the noise
shaping, and in the worst case, it may lead to an instable loop. A RTZ DAC is also more

sensitive to the sampling clock phase jitter than a non-return-to-zero (NRZ) [32].

1
+1 -1 +1
+1 -1 +1
e 4
5 § > £ (s)
5 2
: Nt
o =
g ? Ts Ts Ts
3 g
= =
g § +1 +1 -1
’ . B
-1 > t(s)
(a) DAC waveform with NRZ (b) DAC waveform with RTZ

FIGURE 2.14: Inter-symbol interference of a CT LAM.

A synthesis methodology of transforming a DT ZAM into a CT £AM was defined by [33]:

H(z) = (- 2Dzp {c—l [M} } (2.66)
t=nT,

where £7! denotes the inverse Laplace transform, Z7 the z-transform at sampling period
Ts, while DAC(s) represents the feedback DAC transfer function. The electronic integrators
ina DT £AM and a CT £AM are given by the transformation pair:

Z—l
=

_ zs 2.67
1—2"1 s ( )
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2.4 Performance Metric

The bitstream output spectrum is the performance metric of a TAM. Not only the SQNR
can be derived, but also it can be used to check if the noise shaping has the correct order.
The quantization noise raises outside the signal bandwidth according to the loop order [31].
If the order of the loop is L, the slope of the spectrum outside the signal band should be
(20 x L)dB/decade. This is very important method to know if the LA loop filter works
well, especially when if the spectrum noise floor is higher than expected. In Chapter 7, the
measurement results of a fifth-order electromechanical TAM have relatively higher noise
floor than expected which is limited by the mechanical noise of the sensing element used
and electronic noise of interface circuits. However, the slope of the output spectrum can be
very useful to tell the order of loop filters to make sure the loop works well. For demonstra-
tion, a fifth-order lowpass AM (OSR=64) with optimized N'TF zeros is synthesized using
Schreier Toolbox [29] and is shown in Figure 2.15. It clearly be seen the spectrum slope

outside of signal band is 100dB/decade, which is corresponding to a fifth-order YAM.

dBFS

40l L s

-160
~180
-200

10" 10°
normalized frequency (1 -> fs)

T

g il I
0’ 10"

FIGURE 2.15: Performance metric: output bitstream spectrum of a fifth-order lowpass
YAM.
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Chapter 3

Background: Closed-loop
Micromachined Capacitive Inertial

Sensors

Since K.Petersen et al [34] reported the first micromachined capacitive accelerometer in
1982, this type of sensor has become one of the most commonly used MEMS sensors,
and is also investigated further in this thesis. Micromachined inertial sensors have vast
applications in such as automotive systems and inertial navigation instruments, but the
requirements of the two categories are quite different. Table 3.1 shows typical specifica-
tions of accelerometers for automotive and inertial navigation applications [13]. This kind
of sensors has the combined advantages of high sensitivity, good dc response and noise
performance, low-drift, low-temperature sensitivity, low-power dissipation, and large band-
width. However, a capacitive accelerometer has high output impedance, so it is susceptible

to electromagnetic interference. A high precision circuitry is necessary for capacitive ac-

celerometers.
Parameters Automotive Navigation
Range +50g (airbag); +2g (vehicle stab.) + 1g
Frequency Range dc-400Hz dc-100Hz
Resolution 100mg (airbag); 10mg(vehicle stab.) < 4ug
Off-axis Sensitivity < 5% <0.1%
Nonlineraity < 2% < 0.1%
Max. Shock in 1msec >2000g >10g
Temp. Range -40°C to 85°C -40°C to 80°C
Temp. Coeff. Offset < 60mg/°C < 50u g/°C
Temp. Coeff. Sensitivity < 900ppm/°C < £ 50ppm/°C

TABLE 3.1: Typical specifications of accelerometers for automotive and inertial navigation
applications (Yazdi et al [13]).
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3.1 Interface to Micromachined Capacitive Inertial Sensors

Capacitive accelerometers can be designed in different ways. The most commonly used
configurations are vertical and lateral structures. In the vertical (out-of-plane) structure,
the proof mass is separated by a narrow gap from a fixed plate, forming a parallel plate
sense capacitance. The proof mass moves in a perpendicular direction to its plane and hence
changes the air gap. In a lateral (in-plane) structure, a number of moving sense fingers are
attached to the proof mass, and the sense capacitances are formed between these moving
fingers and parallel fingers fixed to anchors. As a result, the sense direction in a lateral

accelerometer is in the proof-mass plane.

When there is a relative movement of the proof mass to the support frame of the ac-
celerometer, there will be capacitance variation between the mobile electrode and the fixed
electrode. By measuring the capacitance, the displacement, which is proportional to the

acceleration of the body of interest, can be derived by the following equation:

A
€0d0i$ ( )

where C is of the sensing capacitance, €9 the permittivity of free space (8.85><1O_12 F/m),
A the overlapping area, dy the nominal gap distance between the two electrodes, and x the

displacement due to the motion of electrodes.

The displacement of the proof mass can be detected by capacitive sensing, using either
gap variation or overlap area variation between the electrodes. However, the relationship
between the capacitance and the displacement is non-linear. To improve the linearity,
differential capacitive sensors are usually used to cancel the non-linearity error to some

extent.

FIGURE 3.1: A charge amplifier used for capacitive inertial sensors.
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When an inertial sensing element is at rest, the nominal sensing capacitance is given by:

A

When an inertial force is applied to the sensing element, the variation of the sensing ca-

pacitance is:

X
AC_C%$I (3.3)

The capacitance variation is normally detected by a charge amplifier as shown in Figure 3.1.

The interface output voltage is given by:

2AC 2C z
%ut——C—FXVg——C—FXdO:FIXVg (34)

After taking Cr = 2C and assuming a small displacement r compared with the nominal

gap dp, Equation 3.4 can be approximated by:

1%
Vot & —— X T (3.5)
do

Thus, the conversion gain from the displacement (due to an inertial force) to the interface

output voltage is given by:

Vout ~ Vs (36)

)\: ~N —
T do

The gain A can be increased only by either reducing the nominal gap dp or increasing
the amplitude of the excitation carrier voltage Vs. After consideration of the electronic
input referred voltage noise Vi, input-referred current noise i, and the Rp thermal noise
Van = \/Lm in the interface amplifier, their output-referred noise voltage (normalized
to 1Hz bandwidth) can be expressed by:

~ ~ ~ ~ 2C ~ RF ~ 4KBT
Vit = Vs + Vs + Vi = (C—F)2 x V2 + (my x (i3 + R—F) (3.7)
taking Cr = 2C and jwCrRp > 1, Equation 3.7 can be simplified to:
- - - 4KgT
nout Vn + (j“JCF) X (Zn + RF ) ( )

For low-noise CMOS opamps, the input current noise density is in the order of fA/ VHZ.
Using typical values for the carrier frequency w=1MHz, the feedback capacitor Cr=2pF
and resistor Rp=1M {2, the second term in Equation 3.8 is not dominant. Therefore, the
gain from the voltage noise V., to the output-referred voltage noise Viout 18 approximately
unity. In the following analysis, when an electronic voltage noise source is embedded in the
Simulink models, the noise source will be placed just after the pickoff preamplifier for this

reason. The offset and 1/f electronic noise in circuits are usually cancelled by autozeroing,
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correlated double sampling, and chopper stabilization [35], and therefore are not considered
in the following analysis of electronic noise. Usually the noise floor is dominated by the
thermal noise and 1/f coming from the first stage interface, noise reduction should make
effort on the front-end circuits. The prototype discussed in Chapter 7 uses the synchronous
demodulation for the front-end pickoff circuits to remove 1/f noise, and didn’t use the

chopper in subsequent circuits.

3.2 Microfabrication

There are three popular types of micromachining processes to fabricate MEMS capacitive
accelerometers: surface micromachining, bulk micromachining and LIGA. Silicon-based
technology has become the mainstream technology because it is compatible with IC tech-
nology, capable of integrating mechanical structures and processing circuits in a single chip,

and can be fabricated in batches.

3.2.1 Surface Micromachining

In 1980s U. C. Berkeley invented the surface sacrificial layer technology. Surface micro-
machining consists of several process steps, such as silicon oxidization and nitrification,
polycrystalline silicon deposition and etching, and sacrificial etching. The process is above
the silicon substrate, and the substrate is used as a base to build upon and not to implement
the structure of the sensor in it. Figure 3.2 shows a typical surface micromachining pro-
cess [36]). Surface micromachining is compatible with integration of the mechanical sensing

element with the electronics on the same chip.

In 1993, Analog Devices successfully commercialized the first integrated accelerometer
ADXL50 using surface micromachining. The ADXL50 is the first complete acceleration
measurement system on a single monolithic IC. Tts control circuitry used a forced-balance

analog force feedback loop to improve the performance.

However, surface micromachined accelerometers have a small proof mass due to only several
micrometers of the deposition thickness and consequently high mechanical noise unless
the device is vacuum packaged [36], [6]. In addition, the suspension system fabricated
in polycrystalline silicon suffers from elastic hysteresis. Residual stress of polycrystalline
silicon layers inevitably leads to sensitivity drift. Because of fabrication limitations used
in surface micromachining technology, the accuracy of the micromachined accelerometers
is in the mg range, far away from the requirements of ug and sub-ug resolution for inertial

navigation systems.
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FIGURE 3.2: Typical surface micromachining process (Boser [36]).
3.2.2 Bulk Micromachining

Bulk micromachining is designed as a process to remove bulk substrate, and is characterized
by subsequent steps of wafer bonding and deep etching. Using bulk micromachining a thick,
large proof mass with low stress can be obtained, which can reduce the mechanical Brownian

noise floor and consequently improve the resolution of the sensor.

Initially bulk micromachining technology mainly used KOH for wet anisotropic etching
[37], [38]. Since the middle of 1990s, bulk micromachining has advanced to a new stage
by the invention of DRIE (Deep Reactive Ion Etching), especially the ICP (Inductance
Coupling Plasma) technology. Bulk micromachining technologies combine bonding and
DRIE technologies. Consequently, a large proof mass can be fabricated by DRIE and
multiple layers can be combined by bonding, thus very low stress can be achieved by mono-
crystalline bulk silicon [39], [40].

Bulk-micromachined accelerometers usually require wafer bonding, and sensors cannot

monolithically be integrated with the interface and control electronics [41], [42], [43], [44].
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As a result, the electronic interface and control are usually packaged separately to the
mechanical structure, which make them more expensive than those using surface microma-
chining. However, this drawback can turn aside a favorable feature by choosing the most

suitable circuitry in designing high performance accelerometers.

Using SOI wafer is an important development in bulk micromachining. The SiOs layer
between two mono-crystalline silicon layers is very similar to the sacrificial layer in a surface
process. A large proof mass can be obtained directly by DRIE and released by etching the
oxide sacrificial layer [45]. SOI MEMS is also suitable for integration of integrated circuits
and mechanical structures on one chip. The main advantages of a SOI process for MEMS
are that it does not require bonding technique and only needs few process steps and masks.
However, releasing the proof mass after etching the sacrificial layer is still a problem for
SOI MEMS [46], moreover, such sensors have large parasitic capacitance due to the small

oxide-Si spacing and hence reduce the sensitivity of a transducer.

3.2.3 LIGA

LIGA is a technique to produce mould for the fabrication of micromachined components.
It is a high aspect ratio MEMS technology combining IC lithography with electroplating
and moulding to obtain depth. LIGA structures typically have an aspect ratio of greater
than 10:1, very precise geometry, and smooth, vertical sidewalls up to 1000um deep. LIGA
allows the use of materials other than silicon such as metals and plastics, opening the door
for many different types of structures and devices. Some capacitive accelerometers have
been fabricated using LIGA [47], [48], however, LIGA is not widely used technology due to
the high cost of lithography.

3.3 XAM Micromachined Capacitive Inertial Sensors

3.3.1 Analog Closed-Loop Sensors

All accelerometers can be divided into two groups: open-loop and closed-loop [49]. The
difference between the two groups is based on a simple operational characteristic: open-
loop accelerometers have proof masses that are displaced by the inertial force, and that
displacement is measured; The proof mass of a closed-loop accelerometer is maintained at
a fixed position and the force necessary to maintain that position is providing a measure

of the input inertial force.

The open-loop sensitivity of a capacitive accelerometer is proportional to the proof-mass size
and capacitance overlap area, and inversely proportional to the spring constant and air gap
squared. A system, which is formed by a sensing circuit followed by a pickoff preamplifier

and a synchronous demodulator, is an open-loop accelerometer. Open-loop accelerometers



Chapter 3 Background: Closed-loop Micromachined Capacitive Inertial Sensors 36

have limited performance in terms of bandwidth, linearity and dynamic range, and also
suffer from cross-coupling errors, pickoff nonlinearity and the hysteresis of their mechanical
springs [50]. Furthermore, non-linear effects, which are caused by the electrostatic force

and the damping, increase with the deflection of the proof mass.

One method to improve the linearity and the performance of an accelerometer is to incorpo-
rate the sensing element in a closed-loop control system [13]. In a closed-loop accelerometer
system, an electrostatic feedback force is used to keep the proof mass at its rest position
by counterbalancing the acceleration force. Since electrostatic forces are always attractive,
it is difficult to maintain negative feedback. The most common way to provide a negative
feedback is to apply simultaneous two feedback forces on the seismic mass and then the

resultant force provides the negative feedback.

Analog closed-loop accelerometers give good results for small deflections of the proof mass
but for larger deflections the feedback relationship becomes non-linear, and the feedback
gain decreases. Eventually, the feedback force changes sign and the proof mass may be
attracted by one of the electrodes and will latch-up” (or pull-in) [51]. One of the cases,
which can lead to large deflections, is when a shock in acceleration occurs. Because the
response of the closed-loop system has a delay, for the transient time period, it acts like
an open-loop system. After the transient time, the deflection of the proof mass is already
so large that the feedback force acts in the same direction as the displacement causing
latch-up of the proof mass. Another case is when the acceleration applied to the sensor is
larger than the dynamic range of the accelerometer so that, the feedback force applied to
the electrodes is not able to return the proof mass back to the central position. Lastly, at
the instant, when the accelerometer is switched-on, acceleration can act during this time
on the sensor and the initial deflection could be large enough to cause a change of the
sign of the feedback force and latch-up of proof-mass. An effective solution to overcome
the pull-in problem is the digital control strategy which is based on the principle of ¥AM,
which can preserve all advantages of closed-loop and concurrently produce a digital output

in the format of a pulse density modulated bitstream.

3.3.2 Second-Order Electromechanical XAM

In 1990, Henrion et al [2] firstly investigated a digital control strategy for micromachined
accelerometers using the principle of YA modulation. Since 1992, Howe’s group and Boser’s
group at Berkeley have done intensive and extensive research on this digital control strategy
and published numerous experimental results from second-order loops to fourth-order loops
for micromachined capacitive accelerometers and gyroscopes [52], [3], [4], [53], [54], [10].
One representative work was done by Lemkin [53] in 1997. He reported an integrated
three-axis surface micromachined accelerometer with a CMOS position-sense interface and
digital offset-trim electronics. It was based on a second-order X AM using switch-capacitor

circuits. Another representative work was done by Jiang [6] in 2002. He systematically
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investigated the interaction between the quantization noise and electronic noise in a second-
order electromechanical AM. While Najafi’s group at Michigan explored on second-order

control loop [55], [7] for micro-g micromachined accelerometers.

The system level diagram of such a second-order single-bit loop is shown in Figure 3.3.
The transfer function of the mechanical sensing element can be approximated by a second-
order mass-damper-spring system and can be regarded as analogous to the two cascaded
electronic integrators commonly used in second-order electronic AM A/D converters.
The accelerometer has a direct digital output signal in form of a pulse density modulated
bitstream, so that it can be directly interfaced to a digital signal processing system and
has higher noise immunity than an analog closed-loop accelerometer. It also retains the
usual merits of closed-loop control, such as an increase in bandwidth, dynamic range and
linearity, and also reduces cross-coupling errors, pickoff nonlinearity and the hysteresis of

their mechanical springs.
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FI1GURE 3.3: Block diagram of a sensing element embedded in a second-order ZAM.

A major design parameter for such an electromechanical XA is the SNR. The quantization
noise should be made small enough so that it does not limit the minimum detectable
signal of the sensor, i.e. appreciably smaller than other noise sources such as Brownian
noise, electronic thermal noise and noise introduced by interconnects. The systematic noise

analysis of a A capacitive silicon micro accelerometer will be discussed later.

In general, if a system is described by a discrete transfer function, D[z], then, the dc gain
of the system is going to be D(1) = hm D(z). If a system is described by a continuous-time

transfer function, C[s] then, the dc galn of the system is going to be C(0) = lin(l) C(z).
s—

For example, the dc gain of the ideal integrator H(z) = 1—1— is infinite. In practice, the
actual gain is limited by circuit constraints and in particular by the opamp open-loop gain
Ap. The transfer function of the integrator with leakage [56] becomes:

Z_l

H(z) = 1— ozl
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The dc gain becomes therefore:

where
_ Ag—1

=i
Due to the opamp open-loop gain Ay usually has a very large value, @ =~ 1 and thus the
integrator dc gain Hy is nearly infinite. Since the equivalent dc gain of the integrator

functions Equation 2.3 of a mechanical sensing element is determined by

m m
My =lm ——F—=—
de= R ms? 1 bs+ &k
The mass of proof mass m (most less than 10~°kg) is considerably lower due to microfab-
rication and the spring stiffness k is usually between 1 to 1000 N/m; these two mechanical
parameters lead to considerably lower dc gain than their electronic counterparts. Further-

more, the quantization noise transfer function QNTF in the system shown in Figure 3.3 is

given by
1

T 1+ KraM(s)KpC(s) K,

QNTF(s)

where Ky is the equivalent gain of quantizer and other symbols are defined in the diagram.

In the signal band, or in low frequencies:

1 k
NTF,. = lim QNTF(s) ~ =
QNTFqe = lim QNTF(s) KrpKpoC(0) Ky m

It can be seen from this expression that QNT F,, is constant proportional to k/m, the lim-
ited dc gain at low frequencies reduces the attenuation of the quantization noise in the signal
band and consequently result in an increase of the in-band quantization noise.Consequently,
this results in a considerably lower SQNR for the electromechanical SAM compared with

an electronic ZA A/D converter.

The order of an electromechanical ¥AM is defined as the total number of the open-loop
poles in the modulator loop filter. The mechanical structure of the sensor has two poles
and the system without additional integrators is second-order. If the modulator contains L
purely electronic integrators, the modulator order is L+2, however this does not represent
the real order of noise shaping of the electromechanical SAMs, as the mechanical transfer

function is usually far from optimal in signal band as far as noise shaping is concerned.

3.3.3 MASH Electromechanical XAM

The application of MASH to electromechanical loop was first put forward by Kraft et al [11].

The approach is to cascade the electromechanical SAM comprising the capacitive sensing
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element with a purely electronic XAM. This results in a modified 'MASH’ ©AM structure
in which the quantization error of the first ¥AM is fed to a second modulator; this provides
further noise shaping of the quantization noise. A simple 2:1 MASH loop topology is chosen
and shown in Figure 3.4. The two quantizer gain for the first loop is kg; and for the second
loop is unity. Furthermore, for small proof mass deflections the conversion from a proof
mass deflection (z < dp) to a voltage can be represented as a simple gain factor, kp,. The
electrostatic force also can be assumed of constant magnitude, ks,. Di1(2) and Da(z) are

noise cancellation network in digital domain.
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FIGURE 3.4: Linearized block diagram of the micromachined accelerometer incorporated
in a MASH SAM (Kraft et al [11]).

It can be shown that noise of the first loop is shaped by:

ko1 Di(z)
1+ M(Z)kpolekfb

NTFg = ( - lez_ng(z)) N (3.9)

If Di(2) = 271 and Ds(z) = 1/(1 + M (2)kspkpokq1) are chosen, the noise transfer function
NTFp equals to zero and hence the quantization noise of the first loop is totally cancelled.
However, this approach requires the precise knowledge of M (z) and kg1, but this is not
possible in practice. M (z) depends on the absolute values of the spring constant, mass
and damping coeflicient of the sensing element, the former two are subject to considerable
manufacturing tolerances, and the latter is inherently nonlinear due to squeeze film damping
effects. kg1 is the effective gain of the quantizer in the first loop and depends on the

magnitude of its input signal, thus only an average value can be estimated.

The simulation result is presented in Figure 3.5. Using order L=2 and an OSR=64 for a
YA A/D, the theoretical value of SQNR is nearly 80dB. The X AM with the sensing element

only, however, exhibits a nearly 30dB loss in performance. This is due to the low gain of the
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FIGURE 3.5: SQNR with the sensing element incorporated in the MASH $AM compared
with a single loop approach (Kraft et al [11]).

integrators at low frequencies and the overdamped characteristics which lead to a SQNR
typical for a first-order modulator. The modified MASH $AM control system improves
the SQNR ratio by nearly 20dB and makes the noise shaping similar to a second-order LA
A /D converter. This provides considerably better noise shaping compared with a single

loop in which the dynamics of the sensing element mainly determine the noise shaping.

3.3.4 High-Order Single Loop Electromechanical >AM

The first third-order electromechanical YAM with single bit quantization was developed
by T. Smith et al [8]. The system diagram is shown in Figure 3.6. In previously pre-
sented second-order electromechanical S AMs, their dynamics give no noise-shaping at low
frequencies and their SNR is determined by the sensor dc gain and resonant frequency.
The proposed third-order electromechanical XAM accelerometer enhances the SNR by an
additional integrator in the loop. The acceleration sensor is composed of a movable plate
(proof mass) suspended by a flexible bar between two fixed electrodes. The half-bridge is
used for mass position detection and electrostatic force re-balance. During the force phase,
the sensor is disconnected from the measuring interface, and the proof mass is actuated to-
wards the center position. During the position-measuring phase, the capacitive half-bridge
is connected to the interface. Its output signal is then fed to the modulator. The system
is characterized by three poles: two of the overdamped sensor and one of the electronic
integrator, however, the overall electromechanical AM only provides second-order noise
shaping. As the second pole of the sensor (poles at 5Hz and 13kHz) is much higher than
the signal bandwidth, it does not influence the noise shaping in the signal band. The two-
chip sensor system has a noise floor of 10ug/vHz (1Hz bandwidth). The measured static
resolution is 15.3bits at a sampling frequency of 80kHz in a 5Hz bandwidth.
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FIGURE 3.6: System diagram of a third-order electromechanical ZAM (Smith et al [8]).

In parallel with our research which started in Jan. 2003, Petkov et al investigated a high-
order lowpass electromechanical SAM at Berkeley. Most recently, Petkov et al. [12] pub-
lished a interface chip using a fourth-order AM for micromachined gyroscopes, which is
a lowpass X AM with feed-forward topology (shown in Figure 3.7). Figure 3.8 shows the
measured in-band response of the fourth-order gyroscope to an input rotation rate of 25
°/s at 20 Hz. The sinusoidal signal appears amplitude modulated at the drive frequency of
the sensor. The spectral component at the drive frequency is due to offset and quadrature
error. The system operates at a sampling rate of 850 kHz and achieves a noise floor of
1°/s/Hz at atmospheric pressure. However, this is lowpass fourth-order loop and there is

no details given on the design methodology of a high-order electromechanical ©AM.
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FIGURE 3.7: A fourth-order electromechanical ZAM for vibratory gyroscopes (Petkov et
al [12]).

In addition, in this field there is trend [57], [9], [58], [59] to investigate on multi-bit noise
shaping loops. The first third-order electromechanical AM with 3-bit quantization was
developed by Wu et al [60]. The simulation shows that for a 8kHz resonant frequency, 1IMHz
sampling frequency and 2kHz signal bandwidth (OSR=256), a second-order modulator
with 3-bit quantizer provides 76dB peak SNR. However, only the pickoff preamplifier was
verified [61], and so far, there is also no experimental data reported. Tetsuya Kajita et
al [9] demonstrated a third-order noise-shaping accelerometer enhancing the SNR by the

addition of an integrator in the loop. The main feature of the proposed architecture is an



Chapter 3 Background: Closed-loop Micromachined Capacitive Inertial Sensors 42

Offset

10° Signal / |
’(.? ]
9 ]
(=]
@ 1
T 10 J
8
]
o
S .o
E 10 i
o
o

10" : ﬂ : :

5040 5060 5080 5100
Frequency (H2)

FIGURE 3.8: Measured in-band gyroscope response (Petkov et al [12]).

integrator which is used to replace an amplifier at the input stage of the interface chip.
Not only is the noise at low frequencies is shaped, but also the input-referred op-amp
noise is first-order shaped by the input integration. Although the inherent multi-bit DAC
(including multi-bit force feedback) nonlinear characteristic, which is the main drawback of

multi-bit quantizers, can be compensated [62] or further processing in digital domain [63].

3.4 Summary

In this chapter, the state-of-the-art of micromachined capacitive inertial sensors are re-
viewed. Noise analysis was done for the interface circuit. Surface micromachining tech-
nique is compatible with standard IC process, and thus a sensor and circuits can be fully
integrated and fabricated in a batch process. Bulk micromachining technique can produce
a large proof mass, which is beneficial to increase the electrical sensitivity and decrease the
mechanical noise floor. The capacitive sensors using a XAM are one type of closed-loop
sensors. So far, the control system using a second-order AM is a prevailing control tech-
nique of such closed sensors. However, due to the low dc gain of the sensing element, the
quantization noise is the dominant noise component in a control system using a second-
order ZAM. A high-order Z>AM is an effective solution, but it is not well studied, therefore
the control for an inertial sensor using a high-order SAM will be thoroughly addressed in

next chapters.
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Chapter 4

High-Order Single Loop
Electromechanical Y>)AM

It is well known closed-loop control operation of a sensing element can improve its linearity,
bandwidth and dynamic range. However, as discussed in previous chapter, analog force
feedback control systems suffers the electrostatic pull-in problems [51]. A closed-loop digital
control strategy is based on the principle of ¥AM, which can preserve all advantages of
closed-loop sensors and concurrently produce a digital output in the format of a pulse
density bitstream. Previous work mainly focused on using the sensing element only as
a loop filter to form a second-order electromechanical YAM. However, the equivalent dc
gain of the mechanical integrator is very low and leads to a much lower SQNR for an
electromechanical XAM compared with a second-order XA A /D converter. It is desirable
for high performance inertial sensors to have a quantization noise level at least one order
below both the mechanical noise and electronic noise level [64]. Although the SQNR can
be somewhat improved by increasing the sampling frequency, the SNQR improvement has
limitation due to the coupling between electronic noise and quantization noise in a second-
order electromechanical YAM [12]. Furthermore, a second-order electromechanical XAM

was found to be particularly prone to idle tones and dead-zones [4].
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e Kro
F4l
A Output Bitstream
Electrostatic
Force Feedback
Kyp

FIGURE 4.1: Block diagram of a high-order electromechanical AM.
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A block diagram of a high-order electromechanical ¥AM is shown in Figure 4.1, which
employ additional electronic filters to further shape the quantization noise in the signal
band. In following analysis, it can be seen that not only the SQNR is greatly improved,
but also the performance degradation due to micro fabrication tolerances of the inertial
sensors is considerably reduced. In fact, higher SQNR can be achieved with high-order
electromechanical ZAM at lower sampling frequencies. Noise-shaping is determined both
by the sensing element and the electronic filter. Additionally, noise shaping of electronic
noise is possible in some topologies. The system level design and simulation of such control

systems are described in the following.

4.1 Design Methodology of High-Order Electromechanical
YAM

The inertial sensing element is equivalent to a second-order mechanical integrator. For
the design of a high-order electromechanical XAM, the loop cascades additional electronic
integrators to obtain further quantization noise shaping. However, there is no access to
the internal nodes of the sensing element incorporated in the ZAM loop. In addition, the
sensing node, which is at the input of the mechanical integrator, cannot be connected to
subsequent electronic integrators to form feed-forward paths or feed back from the later
electronic integrators to form local resonators. Therefore, the design methodology of high-
order electromechanical XAM is different from conventional ZA A /D converters. However,
as the design of high-order ¥A A/D converters is relatively mature, the design of a high-
order electromechanical ¥AM should take advantage of these techniques. Interpolative
topologies with multi-feedback or feed-forward loops, which have been proven very suc-
cessful approaches to implement high-order XA A/D converters [26], [23], can be modified
and applied to electromechanical ZTAM. For a given performance, a high-order XA A/D
converter is designed using existing methods such as mapping the QNTF to an analog
Butterworth or Inverse-Chebeyshev filter [28]. The design methodology of a high-order
electromechanical ZAM combines the design techniques of high-order ZA A/D converters
and second-order electromechanical ¥AMs. The overall procedure of designing a high-order

electromechanical £AM is depicted in the flow chart of Figure 4.2.

Choosing a practical topology is the first step to design a high-order electromechanical
Y AM. Electronic gain constants have to be optimized for stability and performance. The
main design procedure of such a loop is aimed at finding find the optimal coefficients for
desired lowpass filters. In the same time, a second-order electromechanical YAM is designed
and its stability and performance is verified [5]. For example, a fourth-order lowpass LA

A/D converter is shown in Figure 4.3 with feed-forward and resonator topology [65].

In design of a high-order electromechanical ©AM, this topology can be adopted. The
input of the loop is the mechanical inertial force, which is generated from acceleration
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FIGURE 4.2: Design flow of a high-order electromechanical ZAM.
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FIGURE 4.3: Conversion of a high-order £A ADC into a high-order electromechanical

2 AM with the equivalent topology.

or rotation. In the topology transformation from a high-order ¥A A/D converter to a
high-order electromechanical ¥AM, the paths f; and g; (as indicted in Figure 4.3) should
be removed first. The first electronic integrator is replaced by the continuous-time sensing
element and pickoff preamplifier. The other coefficients of the high-order XA A/D converter

are kept without change.

The DAC in the feedback path in the high-order XA A/D
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converter is replaced by the voltage-to-force converter. An electrostatic feedback force is
generated on the proof mass, by applying a voltage to the electrodes of the sensing element.
For a given sensing element in a closed-loop control system, the dynamic range is determined
by the electrostatic force which can be set by the feedback voltage V. Kjp is the gain
defined by the voltage to electrostatic force conversion on the proof mass in the feedback

path and given by:

(do + sgn(Dyys) - z)?

Ky = sgn(Dout) 5 (4.1)

where £ is the permittivity of free space (8.85x10712 F/m), Ay the area of the feedback
electrode, dp the nominal gap between proof mass and the electrodes to either side, = the
proof mass deflection from its rest position (which is usually negligible compared with the

nominal gap) and D,y the quantizer output bitstream assumed to be +1V.

Similar to the design of high-order £A A /D converters, there is no precise analytic approach
to ascertain the stability of a modulator without resorting to simulation due to a highly
nonlinear element, the quantizer. For the time being, the most reliable method for verifying
stability of a high-order loop is simulation [66]. Throughout this research project, simula-
tion tools developed by P. Malcovati [67], J.M. de la Rosa [68] and R. Schreier [29] were
used in Matlab environment. For subsequent simulation, an input sinusoidal signal with
an amplitude of -6dB relative to full-scale input signal was used to avoid overloading. The
output is measured by its power spectrum density (PSD). The SQNR is calculated using
a Hanning window 128%1024 bins FFT. The simulations only use a second-order lumped
sensing element transfer function, and mechanical high modal responses are omitted and
given the future investigation. The sensing element parameters are adopted from the de-
vice designed in Chapter 8. Because force feedback greatly increases the sensor’s signal
bandwidth (SBW) compared with its resonant frequency, a SBW=1024Hz was assumed.
As well known, both the loop stability and optimal SQNR depend on the loop coefficients.
In fact, if the SQNR drops sharply, it can be regarded as an indication for loop instability.
Therefore, the SQNR is a good criterion for loop stability. Although optimization is an
effective method for designing a filter [69], the choice of a proper cost function is crucial for
convergence. Some sets of coefficients may lead to SQNR with several local maxima, but
coefficients are optimal only when a local maxima is chosen having a good quantity degree
of stability margin to coefficient variations. After deriving the topology and coefficients of
the high-order XA A/D converter, the multi-dimensional optimization problem is simpli-
fied to a two-dimensional optimization problem, i.e. finding the pickoff gain K, and the
zero  of phase lead compensator for the high-order electromechanical ZAM. Furthermore,
Ko and « of this second-order electromechanical ZAM can be chosen as the initial values

for optimization. The essence of the optimization is how to find the relative maximum of
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SQNR in a high-order electromechanical ZAM: maximize{SQN R(Kp,,a)} subjected to

the following constraints:

1. ASQNR(Kpo, ) < 6dB: SQNR fluctuation due to tolerances of microfabrication:

m = mg * (0.95 ~ 1.05)
b= by * (0.8 ~1.2)
k = ko * (0.8 ~ 1.2)

and +2% coefficient mismatch in IC fabrication for electronic integrators. where myg,
by and kg are the nominal values of the mass m, damping coefficient b and spring

stiffness k of the sensing element M (s).

2. |NTF| s gain <1.5 (stability criteria [26]).

Figure 4.4 shows the SQNR distribution of a fifth-order electromechanical ZAM with the
pickoff gain K, and the phase lead compensator c. This fifth-order XAM topology used
for this simulation will be discussed in the next section. The loop shown in Figure 4.3 is
stable and has a maximum SQNR with the compensator only if « is confined to the range
from 0.95 to 1.0. Kjp, has much more freedom than «, and its influence on the loop stability

is less than «.

0.94
0.82
Compensator Zero Alpha

Pickoff Gain Kpo 1004075

FIGURE 4.4: Relationship between the SQNR (dB) vs. K,, and « in a high-order elec-
tromechanical SAM.
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4.2 Loop Topologies and Performance

4.2.1 Multi-Feedback Topology

For a high-order ZAM with a large OSR (usually, >32), a linearized quantizer, modeled by a
white noise source and a variable gain, is a good approximation to determine the properties
of a TAM [28]. A fifth-order electromechanical EAM with multi-feedback (MF) loops is
shown in Figure 4.5. The sensing element has the transfer function M (s). The feedback
electrostatic conversion has the gain of K. Kp, is the gain of the pickoff pramplifier. Kps;
is the boosting gain. The coefficients K1, K7 and K3 are used for integrator output scaling.
A phase lead compensator C, is used to stabilize the loop. The input-referred electronic

noise source locates in the front of the boosting amplifier.

Displacement Cp
M(s) —>E| Phase Lead

m Sensing Element Compensator H1 H2 H3
¢ @20)| e ESy ] =
X z i 1-27) % 1-z7) ¥ 1] =
Kbst K1 K2 K3 Quantizer
Kq
Inpnt
Referred
Electronic
White Nolse

ForceFeedback-
K

FIGURE 4.5: A fifth-order electromechanical AM with multi-feedback loops.

Using standard linear control system theory, the signal transfer function (STF), input-
referred electronic noise transfer function (ENTF) and quantization noise transfer function

(QNTF) of the system shown in Figure 4.5 can be derived as [70]:

mien(2) 11 KiHi(2)/ K
STF(z) = - =1 — (4.2)
1+ K H1 KiHi(z) + Kq Zl [T K;[H;(2)]
1= 1=17=1
3
km(2) [1 KiHi(2)/(K s Mm (2) Kpo)
ENTF(z) = =1 (4.3)

Lt i 1T Kai(2) + K, 32 11 KG1H;(2)]

i=1 i=1 j=i
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1

Lt 1] Kui(2) + Ky 2 [ KL (2)]

=1 i=1j=¢

(4.4)

QNTF(z) =

where Ky = KpM(2)KpoKptCp(2) K, is an effective transfer function comprising the
force feedbacl«i conversion, sensing element, pickoft preamplifier gain and the compensator;
Hi(z) = #1— (=1, 2, 3) is the transfer function (TF) of an electronic integrator. M(z)

represents the mechanical TF of a sensing element in discrete-time z-domain:

(1- afz_l)z_l (4.5)

M) = Kf(l —bsz™1)(1 = cp27)

where Ky, af, by and cs are the gain, zero and two poles of a sensing element, repectively,
and all these values are a function of the sampling frequency and the detailed description

can be found in [71].

For low frequencies (in the signal band) f < f, < fs,

=1 = g=i2nf/fs — cos(%) —jsin(2}rsf) ~ 1 _jQ;Tsf
SEYIPUR U I PO 7 T O S
1= |“/3 fs “’”fb fs _‘”beSR <

where f, is the signal bandwidth, fs the sampling frequency, and OSR= 2f,/fs the over-

sampling ratio. Equation 4.4 can consequently be approximated by:

QNTF(2) ~ (T—z )P+ @2—by—cp)1— 2D+ (1 — ep) (1 —bf)(1—271)3 wo

4
Ko KpoK (1 —ay) [T KK+ (1= ¢f)(1 = by) H2 KK,
1=

i=1
It can be seen from Equation 4.6 that the noise shaping ability of the fifth-order electrome-
chanical ¥AM is dependent on the position of the two poles b and cy. Moreover, Ky is
very low, which leads to weak noise shaping compared with electronic integrators. Equa-
tion 4.6 stimulates the design of a sensing element with ideal second-order integration, i.e.
parameters by=cs=1 and ay=0. Under such a condition, Equation 4.6 can be simplified to:

i (4.7)

QNTF(z) = I
KnKpKiKq [ Ki
i=1
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Equation 4.7 indicates a fifth-order noise shaping ability. However, it requires a sensing
element with both extremely low damping and spring stiffness, which would be impossible
to fabricate and package. For real sensing elements, the real parts of two poles by and ¢y
are less than unity. For good noise shaping, the real parts of the two poles by and ¢y should
be close to unity, but this will inevitably result in very narrow signal bandwidth (SBW)
of the sensor. Therefore, there is a trade-off between SNQR and SBW for the design of

a sensor. For a given sensor, Equation 4.7 also indicates that the in-band noise power
4
degrades with increasing the product of the loop gains K KpoK K, [] Ky, on the other

i=1
hand there is an upper limit for this product due to stability requirements for the YAM
control loop. Figure 4.6 shows the Bode diagram of STF, QNTF and ENTF of the system
shown in Figure 4.5. The quantization noise is considerably shaped and white electronic

noise is also shaped favorably.

Bode Diagram

Magnitude (dB)
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FIGURE 4.6: Bode diagram of STF, QNTF and ENTF of the system shown in Figure 4.5.

A SQNR comparison among different order electromechanical ZAM with the same sensing
element and similar multi-feedback loops is shown in Table 4.1. DR is the output signal
dynamic range, while OL (Overload) is the maximum input signal amplitude for which
the SQNR degrades less than 6dB from the DR. It can be concluded that the higher the
order of LAM control loop, the wider the DR, and the less the OL. The PSD comparison
between a second-order electromechanical ©AM and a fifth-order electromechanical XAM
is shown in Figure 4.7. The DR difference of the two loops is about 60dB. There is a third
harmonic in the fifth-order loop, and limit cycles in the second-order loop. These will be

addressed later.
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Order 2 3 4 5
OSR | DR(dB)/OL | DR(dB)/OL | DR(dB)/OL | DR(dB)/OL
64 49/0.95 69/0.90 79/0.75 87/0.62
128 59/0.93 79/0.85 91/0.70 110/0.57
256 69/0.91 88/0.80 105/0.65 122/0.52

TABLE 4.1: Performance comparison among second-order, third-order, fourth-order and
fifth-order electromechanical ZAM with multi-feedback loops.
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120
140
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-180
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1i| — Fifth-Order

-220

10’ 10 10° 10* 10°
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FIGURE 4.7: Noise shaping comparison: a fifth-order vs. a second-order electromechanical
YAM with OSR=256 and SBW=1024Hz.

4.2.2 Conditional Stability

According to classic control theory [72], a stable system must has all roots within the unit

circle. The open-loop filter transfer function of the system shown in Figure 4.5 is given by:

L=1/QNTF -1 (4.8)

The loop filter root locus is plotted in Figure 4.8. In order to ensure its root locus within
the unit circle, the critically minimum gain of the quantizer is A\ = 0.654. It reveals that
one pair pole moves into the unit circle with increasing quantizer gain A. Moreover, the
Bode diagram of the loop filter is plotted in Figure 4.9 with A = 1. At low frequencies, the
gain is greater than 100dB for frequencies up to 600Hz due to all its poles at or near dc,
but at medium frequencies, the gain decreases with frequency at a slope of -100dB/dec to
allow for a low unity-gain crossover. Before the unity-gain crossover, two pairs of complex

zeros reduce the phase lag to less than 180°.

However, for a frequency range, the Bode amplitude plot has multiple crossover unity-gain
frequencies, and finally the phase lag is above 180° where the gain is greater than unity
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FIGURE 4.8: Root locus of the loop filter of the system shown in Figure 4.5.
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FIGURE 4.9: Bode diagram of the loop filter of the system shown in Figure 4.5.

(above 0dB line). This phenomena contradicts the stability criteria for a system with
single unity-gain crossover and is referred as conditional stability [73], [74], [75]. Typically,
a high-order (> 2) single loop ©AM is a conditionally stable control system, which means
the quantizer gain must stay above a minimum limit. This also means before the input

signal goes into the quantizer, it should not overload each integrator in the forward path
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of a XAM. There are some effective mechanism [76], [77], [78] to prevent the saturation of
integrators caused by transients and start-up conditions. In the plot shown in Figure 4.9,
the stability margins of amplitude and phase are -3.76dB and 15.4°, respectively. It also

indicates a minimum quantizer gain of Apin = 1073-76/20 = (.65 for a stable loop.
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FIGURE 4.10: Full view: Nyquist diagram of the loop filter of the system shown in Fig-

ure 4.5.
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FIGURE 4.11: Zoom on (-1, 0): Nyquist diagram of the loop filter of the system shown in
Figure 4.5.
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The conditional stability can be also verified by the Nyquist diagram as shown in Fig-
ure 4.10. According to classic control theory [72], for a stable system, the net number of
clockwise encirclements of the critical point at(-1, jO) equals the number of zeros (closed-
loop system roots) outside the unit circle, minus the number of the open-loop poles outside
the unit circle. Because there are no poles of this loop filter outside the unit circle, the net
number of encirclements of the critical point at(-1, jO) should be zero. The full view of the
Nyquist diagram (shown in Figure 4.10) and zoom view on (-1, jO) (shown in Figure 4.11)
show the contour clockwise and anticlockwise encircle the critical point twice, respectively,
so the net encirclement is zero. The LAM is expected to be conditionally stable with gain A
margin (-3.76dB, or 0.65). In a practical implementation, the stability criteria provided by
the root locus, Bode and Nyquist diagram, which are based on linear model of a quantizer,
cannot precisely predict the stability of a high-order electromechanical ZAM. However, as
discussed above, quantizer linear model and classic control theory do provide the insights
of characteristic of the nonlinear control system. FEach design step must be verified by

effective and extensive simulations [23].

4.2.3 Topology: Feed-Forward Loops with Resonators

It can be seen from Figure 4.6 that for a MF topology, the total in-band noise is dominantly
determined by the quantization noise at the end of the signal band. Four of five QNTF
zeros are placed at dc (z = 1). This quasi-Butterworth high pass filter severely limits
the maximum obtainable signal bandwidth. It is desirable to spread the zeros inside the
signal bandwidth and further reduce the QNTF’s in-band mean value, thus reducing the
total in-band quantization noise power [31]. Unlike a second-order electromechanical £AM,
a high-order single loop electromechanical £AM may apply more local feedback paths in
the loop filter to shape the end-of-the-band quantization noise [30]. Figure 4.12 shows the
topology of a fifth-order electromechanical ZAM with feed-forward loops and resonators
(FFLR) [79]. The coefficient aj, ag, as and a4 determine the zeros. The coefficient by,
by and bs are used for integrator output scaling. The discrete equivalent transfer function
of the sensing element supplies a pair of complex poles and a negative real zero. The
phase lead compensator Cp(z) creates a dc pole and a zero near unity circle. The local
feedback path g creates a local resonator, or complex pairs of zeros in the QNTF, which
produce some notches [80], [28] to cause faster decay in the stop-band and thus further
suppress the quantization noise presented here. This makes the QNTF turn out to be a

quasi-inverse-Chebyshev high pass filter.

The transfer functions STF, ENTF and QNTF are given by:

STF(z) = mkm(2)[b1H:(2)bo Ha (2) (b3 H3(2)as + a3) + (1 + gHa(2)bsH3(2)) (b H1(2)az + a1)]
L(z) X be

(4.9)
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FIGURE 4.12: A fifth-order electromechanical YAM with feed-forward loops and res-
onators.

I‘Cm(Z)Kq[blHl (Z)bQHQ(Z)(bgHg(Z)(M + 0.3) + (1 + gHg(Z)bsHs(Z))(blHl (Z)GQ + al)]
L(z) x (K g Mm Kpo)

ENTF(z) =
(4.10)

1+ gH2 (z)b3H3 (z)
L(z)

QNTF(z) = (4.11)

where K, (2) = KoM, (2)KpoKpst Cp(2) Ky is an effective transfer function comprising the
force feedback conversion, sensing element, pickoff preamplifier gain, the compensator,

quantizer gain; and

L(z) = 14 &m(2) Zai 1:_[ bjH;(z) + gHa(2)b3H3(2)[1 — (km(2)Kq(a1 + b1 H1(2)az)]

i=1  j=1,>0

Figure 4.13 shows the Bode diagram of STF, QNTF and ENTF of the system shown in
Figure 4.12. In contrast to the MF topology, the electronic noise level in the signal band
is nearly same but at high frequencies the noise is amplified considerably. Moreover, there
are two notches in the QNTF, while one notch in the QNTF of the MF topology. The
first notch frequency is still determined by the poles of the sensing element at fn1=509
Hz. The local resonator formed by g1 H2(2)gaH3(z) contributes a pair of complex poles,

and the second notch frequency is determined by the local resonator (the numerator of

Equation 4.11) at
Wno2 = V/ waw3gbs
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where wy and w3 are the unity-gain frequency of the second and third integrators, respec-
tively. Usually the unity-gain frequency of integrators is chosen as the sampling frequency
fs, and thus fp.2 is at 903Hz.
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FIGURE 4.13: Bode diagram of STF, QNTF and ENTF of the system shown in Figure 4.12.
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FIGURE 4.14: Pole-zero map of the loop filter of the system shown in Figure 4.12.
Figure 4.14 shows the pole-zero map of the open loop filter. Root locus of the open loop

filter of the system shown in Figure 4.12 is plotted in Figure 4.15. The figure indicates that
the quantizer gain should stay between Amin = 0.613 and Apne = 2.69 for stable operation,
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FIGURE 4.15: Root locus of the loop filter of the system shown in Figure 4.12.
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FIGURE 4.16: Bode diagram of the loop filter of the system shown in Figure 4.12.

which can be ensured by avoiding overload instability techniques [81], [82], such as clipping
and saturation recovery. This conditionally stable system is also verified by a Bode diagram
(shown in Figure 4.16) and Nyquist diagram (shown in Figure 4.17). Figure 4.18 shows

the histogram of each integrator output swing. An output bitstream spectrum is shown in
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Figure 4.19 with (a) quantization noise only (SQNR=97.3dB) and (b) quantization noise
and white electronic noise (SNR=95.4dB, 2dB lower than SQNR) in response to a sinusoidal
1g, 128Hz input acceleration. The displacement of the sensing element is 0.1nm, which is

very small compared with a nominal gap of 3um.
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FIGURE 4.17: Nyquist diagram of the loop filter of the system shown in Figure 4.12.
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FIGURE 4.19: Output bitstream spectrum of the system shown in Figure 4.12 with a 1g,
128Hz sinusoidal input signal.

4.2.4 Topology: Multi-Feedback Loops with Resonators

Figure 4.20 shows the topology of a fifth-order electromechanical 3AM with multi-feedback
loops and local resonators (MFLR) [83], in which the coefficients a;, a2 and a3 are used for
integrator output scaling, the coefficients b1, by and b3 determine the poles and loop stability,
and the coefficients g; and g5 create complex pairs of zeros. A phase lead compensator Cp(2)

is used to stabilize the loop.

. QOutput
Displacement £2=0.007
. e
Phase Lead H2 H3 L
Sensing Element Compensator 1 z-1 Quantizen
mass
— 1 D Pt ] B
> ms2th.stk 2 2! 2122028 2322.89
Acc 1.1 P
Input al1=0.34
Input D
Referred 1=0.000
ForceFeedback+ Electronic & 009
f(u) White Nois b1=0.18 b2=0.3 b3=0.2
H
f(u)
ForceFeedback-

FIGURE 4.20: A fifth-order electromechanical XAM with multi-feedback loops and res-
onators.

The transfer functions STF, ENTF, and QNTF are given by:

Mkm(2) f[ H(z)a;

STF(z) = — (z)i;le,, (4.12)
3
nm(z) 1;[1 Hi(z)ai
ENTER) = oy (M (2 K (4.13)
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QNTF(z) = -+ HI(Z)GIHQ(Z)LQ(IZ;F Hal)ealls)on (4.14)

where

3 3 3 2 i+1
L(Z) = 1+I€m(2) H Hi(z)ai-{—Kq Z b; H Hj(z)aj-{—z a;g; H Hj(z)—l—Hl (z)a1H2(z)g1a3H3(z)b3Kq

i=1 i=1 j=i i=1 j=i

Figure 4.21 shows the Bode diagram of STF, QNTF and ENTF of Figure 4.20. The QNTF
is mainly determined by the number of integrators in the forward paths of the loop and only
slightly by any resonators. Furthermore, the electronic noise level in the signal bandwidth
is nearly the same as that of the FFLR topology, but at high frequencies the noise is highly
attenuated due to the feedback loops compared with the FFLR topology. There are two
notches in the QNTF, the first notch frequency is still determined by the poles of the
sensing element (fno1 =509Hz) and the second notch frequency is provided by both local

resonators (the numerator of Equation 4.14) and given by:

Wno2 = VW1wW2g1a1 + Waw3gaaso

where w1, wy and w3 are the unity-gain frequencies of the first, second and third integrators,
respectively, and f,,0=923 Hz if the unity-gain frequencies of integrators are chosen as the

sampling frequency fs.

However, the outputs of the integrators in any feedback loop topologies, not only contain the
filtered quantization noise, but also a substantial part of the input signal [30]. Compared
with the FFLR topology, the unity gain frequencies of each integrators in MFLR topology
should be kept lower enough not to saturate the integrators. This leads to the relatively
low gain of each integrator, the noise and distortion of each stage can not be heavily sup-
pressed. A root locus of the open-loop filter of the system shown in Figure 4.20 is plotted in
Figure 4.22, in which the minimum quantizer gain Am» = 0.798. Figure 4.23 shows the his-
togram of each integrator output swing. Compared with the FFLR topology (Figure 4.18),
the MFLR output voltage amplitude of each integrator is much higher (on average three
times higher). Therefore, the FFLR topologies are suitable for low-voltage, low-power ap-
plications due to their integrator outputs having a relatively low amplitude [30]. The output
bitstream spectrum of the system shown in Figure 4.20 are shown in Figure 4.24 with (a)
quantization noise only (SQNR=96.1dB) and (b) quantization noise and white electronic
noise (SNR=94.1dB, 2dB lower than SQNR) in response to a 1g, 128Hz sinusoidal acceler-
ation in a 1kHz signal bandwidth. The displacement of the sensing element is 15nm, which
is larger than that of the FFLR of Figure 4.20. This larger displacement signal is beneficial
to the pickoff interface circuits, but will lead to higher harmonic distortion, which can be

cancelled by the linearization proposed in Chapter 5.
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FIGURE 4.21: Bode diagram of STF, QNTF and ENTF of the system shown in Figure 4.20.
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FIGURE 4.23: MFLR topology: integrator output number of occurrence vs. integrator
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FIGURE 4.24: Output bitstream spectrum of the system shown in Figure 4.20 with a 1g,
128Hz sinusoidal input signal.

4.3 Noise Analysis

There are three noise sources in a SAM force feedback control system [7]:

e mechanical noise due to Brownian motion

e clectronic noise introduced by the interface circuit due to thermal noise sources in the

electronic devices

e quantization noise due to the analog to digital conversion process
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It is desirable to design a 3>AM closed-loop system with considerable lower quantization
noise than the other two noise sources. In most applications, the electronic noise is the
dominant noise source. Most present control loops for MEMS sensors are second-order
electromechanical ¥AM, in which the inertial sensing element inherently behaves as a
physical continuous-time integrator. As discussed in Chapter 3.3.2, although the SQNR can
be increased by increasing the over-sampling frequency (similar to a A ADC), in a second-
order electromechanical >AM loop there is strong interaction between the quantization
noise and the electronic noise due to the nonlinear gain of the quantizer. The following
analysis shows that the only difference between the quantization transfer function and
electronic noise transfer function in a second-order electromechanical is in the effective
quantizer gain term. This suggests that increasing the quantizer gain would allow the
output-referred quantization noise to be attenuated relative to the electronic noise floor.
The effective quantizer gain decreases in the presence of electronic noise. If the electronic
noise becomes a significant fraction of the standard deviation of the quantizer input, the
effective quantizer gain is thus significantly reduced. This results in higher output-referred
quantization noise compared to the ideal value. In this situation, further increase the

oversampling frequency can not further increase the SQNR [54], [10].

4.3.1 Noise Analysis of A Second-Order Electromechanical Y AM

Brownian Pickoff Quantization
Noise
752
BN Sensing
Element

M(s

Input .
Inel:'tial Pickoff Phase  Quantizer
Force KP" Comp
Output Bitstream
Electrostatic
Force Feedback
KJD

FIGURE 4.25: Block diagram of a second-order electromechanical EAM for noise analysis.

Figure 4.25 shows the diagram of a second-order electromechanical LA control loop for
noise analysis. M (s) represents the mechanical sensing element that converts the input
inertial force signal into a displacement and inherently serves as a low pass second-order
loop filter. K, is the gain of the pickoff preamplifier that senses the variation of capacitance.
Both are approximately constant for small displacement which is ensured by the closed-
loop operation. 712,0 is the input-referred electronic noise of the pickoff preamplifier. If

for an under-damped sensing element, a pair of complex poles at the resonant frequency
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causes a phase lag of 180° so a phase-lead compensator Cp(s) is needed to stabilize the
loop with a low-frequency zero 2o and a high-frequency pole po: Cy(s) = (s+ 20)/(s + po).
It should be noted that the compensator works in the continuous-time domain which has
a similar function as the compensator in the discrete-time domain used before. In the
following analysis, all transfer functions are assumed in continuous-time for simplifying
the derivation. The signal is then digitized by a one-bit quantizer, which is modeled as a
variable gain K, with additive quantization error V2QN and is usually implemented by a
clocked comparator. Ky, is the gain of the voltage to electrostatic force conversion. From
Figure 4.25, the transfer function for the Brownian noise szN’ as defined by Equation 2.9,

can be derived as:

Dy(s) mM (8)KpoCp(s) K, m
NTFBV S) = — = LF = — (415)
N F2ou(s) | 1+ KM (s)KpoCpls) Ky | Kn

This is identical to the signal transfer function. For simplicity, Brownian noise is neglected
in the forthcoming analysis due to its all-pass property. Flicker noise (or 1/f noise) of the
electronic circuit is also neglected due to chopper stabilization or correlated double-sampling
techniques (CDS) [35]. Only thermal, white electronic noise is considered. The transfer
functions for white electronic noise and quantization noise are given by Equation 4.16 and

Equation 4.17, respectively:

_Do(s) _ Co(s) K, -~
N () _Vio(s) 1+ KM (s)KpoCp(s) Kq e~ KM (8)Kpo (4.16)
NTFon(s) =_€°(5) - ! (4.17)

= lLF ~
VQN(S) 1+ KpM(8)KpoCp(s) Ky KoM (s)KpoCp(s) Kq
Both the electronic noise and quantization noise exhibit the typical noise shaping charac-
teristic in an electromechanical AM. However, these two noises are strongly coupled, so
an index «y is introduced, as the quantization noise to electronic noise ratio, to indicate the

interaction between them:

y = VZQN(S) _ NTFgn(s)
V%N(s) NTFgn(s)

= C,(s)K, (4.18)

Since v > 1, the electronic noise shaping is not as pronounced as for the quantization noise.
The output signal of the sensing element is very low; hence a large gain is required from
the pickoff preamplifier and thus leads to a large electronic noise power at the quantizer

input. The electronic noise has a strong impact on the performance of an electromechanical
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Y AM due to its low mechanical dc gain, which is in contrast to a A A/D. Equation 4.18
requires that the compensator Cp(s) should have a high in-band gain to minimize in-
band quantization noise. However, the Cp(s) only serves as a phase-lead compensator
that has low in-band signal gain (2z9/p0), so a high-order lowpass electronic filter should be
inserted between the compensator and quantizer to supply the high gain in the signal band.
Nevertheless, the interface for a sensing element which is embedded in an electromechanical
3AM has the advantage of suppressing the electronic noise of the pickoff stage. The input-
referred PSDgpy of the thermal electronic noise at the pickoff preamplifier can be evaluated
through some circuit simulation tool, such as Spice. Due to the settling time of the pickoff
preamplifier, an empirical value for the amplifier bandwidth is five times the sampling

frequency fs. The electronic noise variance is hence given by:

V2, = (PSDgn x v/5f5)? (4.19)

Figure 4.26 shows the effect of electronic noise on the SNR in a second-order electromechan-
ical ZAM. The degradation of the SNR with the electronic noise is nonlinear. The higher
the OSR, the higher the SNR. At very high OSR the quantizer gain will be determined
mostly by electronic noise, thus the in-band noise is also dominated by electronic noise.

A 2nd-Order Sigma-Delta interface
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FIGURE 4.26: Effects of electronic noise on SNR in a second-order electromechanical EAM
with different OSR.
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4.3.2 Noise Analysis of A High-Order Electromechanical ETAM

In order to simplify the circuit implementation, a multi-feedback topology is adopted for
noise analysis, which has the advantage of the fewest feedback paths. Figure 4.27 shows the
block diagram for the noise analysis indicating the various noise contributors at different
stages. Most blocks are equivalent to the ones in Figure 4.25, except the electronic inte-
grators have the transfer function given by H(s)=1/(sTs), where Ts =1/ f is the sampling
period. K, K9, K3, K1, Kro and Kp3 are gain coeflicients, the latter three of the minor
feedback loops are required to stabilize the loop. Vznl, Vznz and ans represent thermal

electronic white noise from the first, second and third integrator, respectively.
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FIGURE 4.27: Block diagram for noise analysis of a fifth-order electromechanical LAM.

The input signal has the same transfer function as the Brownian noise. Input signal and
mechanical noise will pass through the system in the signal band without attenuation or
shaping, which means that mechanical noise cannot benefit from an electromechanical TAM
and can only be reduced by optimizing the mechanical design and vacuum packaging. The
transfer function of the electronic noise introduced by the pickoff circuit is given by:

Do(s) Chp(s )K1 K2 K3 K

NTFgn(s) = = = Loop ( ) (4.20)

where

Loop(s) =1+ KM (s)KpoCp(s) K1 K2 K3 K +
sTs (4.21)

—K KpsK3—K
TK3 K+KF2K2 sKBSTs q+ F3 BSTS q
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At low frequencies Equation 4.20 can be approximated by:

Dy(s 1
NTFEN(S) = ___20( ) =~

LF = )74 (4.22)
Vpo(s) beM(s)LFKpo + i
Cp(s)

Compared with Equation 4.16, Equation 4.22 reveals that electronic noise of the pickoff
circuit in a high-order electromechanical XAM may be further reduced depending on the
value of the two terms in the denominator of Equation 4.22, and if the following condition

applies:

Kpy
KeapM(8)LpKpo < =~ 4.23)
f ) p C’p(s) (

This condition is valid for a reduced pickoff gain Kj,, and, in case of an under-damped
sensing element, a compensator with a low signal gain. Although these parameters cannot
be arbitrarily chosen due to loop stability constraints, there is still room to modify them
to further suppress the electronic noise of the pickoff circuit in a high-order XAM. The
impact of the electronic noise of the pickoff preamplifier on the SNR is strongly dependent
on the AM topology and the parameters of sensing element. In contrast, in a second-
order electromechanical AM, the pickoff gain and the signal gain of the compensator C(s)
will be cancelled due to the quantizer, hence the SNR cannot be improved by optimizing
the pickoff gain and compensator gain. Electronic noise of the first integrator has similar
properties as noise of the pickoff circuit, but it is attenuated by the pickoff gain Kpo
(usually > 1), which reduces its significance. The noises of the second integrator and the
third integrator are not only shaped by the sensing element, but also by the proceeding
integrator(s). Noise sources in these stages are greatly attenuated in the signal band and
can be negligible. The transfer function of the quantization noise is given by Equation 4.24

and at low frequencies is approximated by Equation 4.25:

_ Do(s) _ 1
NTFon(s) = VéN(s) "~ Loop(s) (424

D s ST 3
NTFQN(S) — _20( ) |LF ~ ( S) K
Von(s)  KiKaKsKy x KM () Kpo + 4 F5]

(4.25)

Equation 4.25 shows that the quantization noise is further shaped by the three additional

integrators compared with the second-order loop (Equation 4.18). The transfer functions of
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these noise sources are plotted in Figure 4.28 to demonstrate the noise shaping at different
stages in a fifth-order electromechanical XAM. In the fifth-order electromechanical 2AM,

the coupling index between the electronic and quantization noise is given by:

_Von(s) _ NTFgy(s)
Vin(s) NTFon(s)

= KqCP(S)K1K2K3(STs)3 = vK1KoK3(sT,)® = yo (4.26)
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FIGURE 4.28: Noise transfer functions at different stage in a fifth-order electromechanical
YAM.

where 0 = K 1K K3(sTs)? = KlKgKg(D—gvﬁ)?’. Due to oversampling ratio > 1 and
K1KoK3 « 1, and thus ¢ <« 1. Comparing Equation 4.26 with Equation 4.18, the elec-
tronic noise in the fifth-order loop has much less impact on the quantization noise due to
B <« 1 and 8 <« ~, therefore the influence of electronic noise is reduced in the signal band
and the systems can achieve a lower overall noise floor. Since electronic noise at the pickoff
circuit is the dominating noise source in an electromechanical XAM for most applications,
the hardware implementation should make a trade-off between the SNR, the complexity
of the circuit (i.e. the order of the YAM) and the circuit operating frequency (i.e. the
over-sampling ratio). Constraints mostly originate from the thermal electronic noise in the
pickoff preamplifier. The typical noise PSD is approximately 4.5nV/v/Hz in a state-of-
the-art CMOS circuit implementation [84]. Providing the electronic noise PSD is around
5nV/+/Hz, a reasonable SNR is about 70dB using an OSR=256 in a second-order electrome-
chanical ZAM (as shown in Figure 4.26). However, for a fifth-order electromechanical EAM
a reasonable SNR is about 100dB with an OSR=128 (as shown in Figure 4.29).
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A 5th-Order Sigma-Delta Interface

LT R proeeeeie| m— OSR=512

: : i | == OSR=256

; ; i | == OSR=128
1401 - fonnne e prosrnenes i = OSR=64 n

Electronic Noise [nV/sqrt(Hz)]

FIGURE 4.29: Effects of electronic noise on SNR in a fifth-order electromechanical ZAM
with different OSR.

4.4 SQNR Sensitivity to Fabrication Tolerances

Micromachined inertial sensors, despite being fabricated by state-of-the-art micromachining
batch-fabricated techniques, inherently suffer from relatively large fabrication tolerances.
Both surface and bulk micromachining rely on etching techniques, such as anisotropic
etching, isotropic etching and reactive ion etching. The etching processes are not perfect
due to chemical or physical reactions with silicon. Furthermore, etch-stops are still not well
controlled, therefore micromechanical structures depends strongly on the etching rate and
the etchant used; this inevitably results in considerably geometrical feature variations [85].
Consequently, the variations of microstructure geometry will lead to the variation of the
lumped parameters of a given sensing element, (which are: m the mass of the proof mass,

k the spring stiffness of suspensions, and b the damping coefficient).

It can be seen from Equation 2.3 that for a sensing element, its response varies not only with
frequency, but also with parameters [m, b, k]. Any coefficient variations lead to changes of
the system dynamics, therefore change the desired STF and QNTF. The SQNR may be
degraded and in the worst case, the loop may eventually become unstable. Therefore, SQNR
is a criterion used to measure the influence of fabrication tolerance on the performance of an
electromechanical AM. Also this criterion can be applied to assess loop stability indirectly,
as a sharp drop in SQNR is a reliable indication for loop instability. In the following
investigation, each of the nominal values, which are subject to fabrication tolerance, is
replaced by its nominal value plus or minus a random number generated with a uniform
probability density function. The random fluctuations range from zero to a maximum

variation. Relatively high worst case values are assumed: the parameters of a sensing
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element have nominal values [my, by, ko] (which are given by Chapter 8) with uncertainty
+30%. The electronic gain coefficient tolerance due to variations of the electronic circuits
is comparatively small and is assumed to be 2% [65]. The uncertainty is generated by the
Matlab function unifrnd. Monte Carlo simulation (200 samples) is used to verify the loop
performance sensitivity in terms of SQNR fluctuations. A white noise source is located in
the front of the boosting amplifier, with a PSD of 3nV/vHz; this models the electronic
noise contribution of the pick-off electronic amplifier. While limiting the overall system
SNR, the electronic noise has the benefit to dither the 3AM loop and thus linearize it. The
resultant PSD of the output bitstream includes electronic noise; therefore the metric SQNR
is strictly speaking the SNR. The SNR is calculated using a Hanning window 128*1024 bins
FFT. A signal bandwidth (SBW) of 1 kHz for the sensor and an OSR of 64 were assumed.
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FIGURE 4.30: A second order electromechanical ZAM control loop.

A second-order electromechanical ZAM is shown in Figure 4.30, which the sensing element
only acts as the loop filter. In one simulation run the input signal power is varied from -
70dB to full scale and the SNR is calculated from the output bitstream. The result is shown
in Figure 4.31; the horizontal length of each bar represents the SNR fluctuation which is
approximately 10 dB. The SNR sensitivity to fabrication tolerance was also investigated
on the fifth-order control loop shown in Figure 4.12. The SNR fluctuations are shown in
Figure 4.32. In one simulation run the input signal power was varied from -105dB to full
scale. The maximum SNR fluctuations are within 5dB, which is half of that of the second-
order loop. This means that the performance of a fifth-order control loop is on average
a factor 2 less sensitive to fabrication tolerance. Another important finding is that the
stability of the control loop is not affected by fabrication tolerances. Furthermore, it is
worth noting that, being independent of fabrication tolerances, the linearity of the SNR
nominal values in the fifth-order loop is considerably improved when comparing with the

second-order loop.

In addition, the analysis under the same condition was also done for a third-order (2-1)
MASH electromechanical XAM as shown in Figure 3.4, but the SNR average fluctuation
was found to be 20dB (not shown here) and is much higher than that of a single loop. If
there is no additional intelligent correcting techniques (for example coefficient tuning), a
MASH topology may be problematic. This shows that a single loop high-order loop has a
better immunity to fabrication tolerance than that of a MASH loop.
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FIGURE 4.31: Monte Carlo analysis: SNR sensitivity to microfabrication tolerance in a
second-order electromechanical £AM control loop.
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FIGURE 4.32: Monte Carlo analysis: SNR sensitivity to microfabrication tolerance in a
fifth-order electromechanical £AM control loop.

4.5 Dead-Zone and Idle Tones

The repetitive patterns that are present in the quantizer output bitstream under zero
input conditions are called idle patterns. If the input signal is too small to disturb the
idle patterns, this will result in a dead-zone. As discussed in Chapter 3.3.2, ideal LA
A /D converters have an infinite resonant frequency at dc; consequently, dead-zones usually
cannot be observed. This is in contrast to a second-order electromechanical SAM. The finite

resonant frequency of the sensing element, which corresponds to the filter pole frequencies,
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leads to relatively low dc gain at low frequencies (in the signal band). When the external
input signal is zero, the digital feedback signal causes the proof mass to move up and
down at one quarter of the sampling frequency fs. If the input signal of a sensing element
is to be detected, the displacement must at least equal in amplitude to the idle residual
motion generated by the force feedback. Otherwise, a dead-zone occurs in which the output
bitstream of the modulator does not change with variations of the input signal [4]. This
dead-zone can be greater than other noise sources in a second-order electromechanical
Y AM, and thus it determines the minimum detectable acceleration. If the input amplitude
is smaller than a minimal critical value, in the spectrum of the output bitstream, there
will be no visible peak at the input frequency, thus the modulator does not code the input
signal any longer. Although increasing the sampling frequency can reduce the dead-zone,
this is at the sacrifice of increased circuit noise and higher power consumption. For a
second-order electromechanical ¥AM, assuming a zero input acceleration, the quantizer
output bitstream is at the limit cycle frequency of fs;/4 and amplitude amqy; equal to the
full scale input range. The amplitude of the residual motion of the proof mass is given by:
AZ = Qmax/$? = Gmax/ (27 fs/4)%. Boser [4] derived the dead-zone formula for a second-

order electromechanical XAM:

Qdead2 = 8Qmax ( ﬁ )2

7 (4.27)

where f, is the resonant frequency of a sensing element.

uy = Jmin A

M(s) 1\ o, |
Amin | Sensing “2® R
- Element I I I h -A _F

G(s)

M(s) G(s)
Sensing
Element I I I
Fmax

T=4/f,

FIGURE 4.33: Equivalent block diagram of Figure 4.12, illustrating the origin of a dead-
zone in a high-order electromechanical YAM.

As an example, in the following the FFLR topology (as shown in Figure 4.12) is analyzed.
Figure 4.33 shows a re-arranged block diagram of the same system. The figure is used for
illustrating the origin of a dead-zone in a high-order electromechanical XAM. G(s) repre-

sents the electronic third-order filter, which is formed by three integrators and associated
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coefficients (see Figure 4.12) and its transfer function is given by:

(a1 + ag9b1 Hy (S))gHQ(S)Hg(s)bg + 'ilai ' iﬁlo ijj(s)
_ =1 j=ij
Gls) = 1+ gHa(s)bs Hs(s) (4.28)

This transfer function is plotted in Figure 4.34. It can be seen that at low frequencies the

electronic filter has a very large gain (=), while at high frequencies the gain is a constant
at 6dB (=p).

Bode Diagram
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FIGURE 4.34: Bode diagram of the electronic filter of the high-order electromechanical
X AM shown in Figure 4.12.

Therefore, when the condition ua(= cui) = va/2(= Pu;) is satisfied, the dead-zone can be
derived for a fifth-order electromechanical SAM:

g Jr
a)a’ma.x(ﬁ)2 (4.29)

Qdeads ~ 8(
It can be clearly seen from Equation 4.29 and Equation 4.27 that the dead-zone in a high-
order loop is much smaller due to (3/a) << 1 and thus can be neglected. This phenomenon
results from the electronic filter, whose transfer function G(s) has a different behaviour in
the forward path and in the feedback path. In the forward path the signal bandwidth is
very small compared with the sampling frequency fs, and the electronic filter has a very
large low frequency gain. However, in the feedback path, the bitstream Dj has relative low

gain in high frequencies (around fs/4).
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FIGURE 4.35: Power spectral density of the output bitstream assuming a full scale sensor

dynamic range of 1g, OSR=64 and 1024Hz signal bandwidth: (a) shows a second-order

EAM with a sinusoidal input signal of 1 Hz and an amplitude of -54dB; (b) the amplitude

is reduced to -60dB; (c) shows a fifth-order SAM force feedback loop with an input signal
amplitude of -120dB; (d) the amplitude is reduced to 0.

Figure 4.35(a) shows the power spectral density of the output bitstream in a second-order
3UAM force feedback loop with a sinusoidal input signal of 1 Hz and an amplitude of
2 x 1073g (equivalent to -54dB) and an amplitude of 1 x 10~ 3g (equivalent to -60dB) in
Figure 4.35(b). If the input amplitude drops below this critical amplitude of 2 x 10~ 3g,
the signal cannot be seen in the spectrum any longer, this is due to the dead-zone of
the control loop. In comparison, Figure 4.35(c) shows the power spectral density of the
output bitstream of the fifth-order EAM force feedback loop with the same sinusoidal input
signal but an amplitude of 1 x 10~8g (equivalent to -120dB). The signal can still be clearly
seen in the diagram; only when reducing the amplitude further, it disappears due to the
dead zone. The minimal critical amplitude for the fifth-order modulator is around -160dB
(Figure 4.35(d)). The reduction of the dead zone in a high-order electromechanical ZAM

is due to the additional electronic integrators in the forward path, which have greater gain

at low frequencies.
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If the input signal of a ¥AM is constant, the output signal easily exhibits a tonal behaviour,
and in some conditions these tones may be folded into the signal band, thus considerably
reducing the SQNR. A low order ©AM is particularly prone to exhibit such tonal behaviour
[28]. For simulation purposes, the constant input signal is approximated by a very low
frequency signal (1Hz). In the Figure 4.35(a), for the second-order electromechanical SAM,
such tones can be clearly identified in the spectrum as pronounced peaks in the signal band.
As a consequence, the quantization noise cannot be considered as white any longer. In the
fifth-order ¥AM, the additional electronic integrators randomize the quantization error and
thus whiten the quantization noise spectrum. There is no evidence of limit cycles in the
signal band of Figure 4.35(c), therefore limit cycles are greatly suppressed in the fifth-order
electromechanical XAM. In a hardware implementation, there are inevitably additional
noise source such as Brownian noise from the sensing element and electronic noise from the

interface electronics; these act as a dither signal and further suppress the tonal behaviour.

4.6 Effects of The Mechanical Quality Factor (¢ on Noise
Shaping

The mechanical quality factor @ of a sensing element is defined in Equation 2.4. Not
only @) affects the mechanical noise and the dynamic characteristics of inertial sensors,
but both electronic noise and quantization noise will be shaped by the sensing element.
Sensing elements with different @ will exhibit different noise shaping when embedded in
a XAM loop. An under-damped sensing element needs a phase compensator to provide
adequate phase margin. For an over-damped sensing element, the first one of two poles
is usually lower than the signal bandwidth and the second one is much higher than the
signal bandwidth [8], so it is not necessary to add a lead filter to stabilize the loop. The
over-damped sensor embedded in a ¥AM loop is in fact a first-order loop due to the second
pole of the sensing element which does not influence noise shaping in the signal band.
Using an OSR=256, Figure 4.36(a) shows the SQNR comparison between sensing elements
with different @ incorporated in the same loop as shown in Figure 4.5. The parameters of
the sensing element are chosen: m=0.97mg and k=48.1 N/m, and b=0.6, 0.04, and 0.006
N/m/s for over-damped, critically damped and under-damped, respectively. It can be seen
that the loops with the under-damped and critically damped sensing elements have better
quantization noise shaping, while the loop with the over-damped sensing element suffers
from a -21dB SQNR degradation.

Electronic noise is not always detrimental to the performance of a XAM loop. They can
behave as dithering to improve linearity. An input referred electronic noise of 5nV/v/Hz is
added to the pickoff circuit. The nonlinearity of the SNR shown Figure 4.36(b) is within
0.5dB, which is much lower than that (6dB) of without electronic noise dithering. This is
beneficial for control system, but there is a SNR loss due to the electronic noise. For an

optimal design of an electromechanical XAM, the level of electronic noise should provide
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enough dithering, which sets the lower limit on electronic noise. However, the level of
electronic noise should not significantly affect the SNR, which sets the upper limit on

electronic noise.
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FIGURE 4.36: SNR comparison among sensors with different Q.

4.7 Electrostatic Force Feedback Delay

There are many methods [86], [87] to map a transfer function in the continuous time
domain to an equivalent counterpart in the discrete time domain. The principle is that
the impulse responses of the CT and DT should be the same. Using Maple [88], Cherry
et al [89] gave a table for calculation of the z-domain equivalents for s-domain transfer
functions. The continuous waveform of feedback electrostatic force suffers from a delay
between the sensing and feedback phase due to CDS techniques, finite settling time of the
charge amplifier and non-ideal feedback pulse. The parameters for the following discussion

are defined in Figure 4.37.

Ta

| - ¢
Ts 2Ts

0
FIGURE 4.37: Waveform of the feedback electrostatic force and definitions [53], [54].
The feedback duration time is Ty = Typp — Tpp1, and 74 = (Tpo +Typ1)/2 is the time delay

from the center of the feedback pulse to the sampling point. Using the definition 74 here,
instead of the Tss1, as the measure of the loop delay, can provide more information about
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feedback duration and delay time. Both Lemkin et al [53] and Jiang et al [54] derived the

equivalent transfer function in the discrete time domain of a sensing element as:

M(z) = Hu (2)H po(2)Ha(z) (4.30)
where
Hulz) = sz”l

(1= 2z1271)(1 = 29271)

Hy(z) = ((1 - ;—‘i) + ;—Zz_l) (4.31)

Hyr(z) is the equivalent transfer function in the discrete time domain of the sensing ele-
ment. Hyy(z) is the effective duration of the feedback force on the proof mass, which is
effectively a scale factor of the output amplitude. Hy(z) contains the phase lag %z‘l due
to the delay of feedback force pulse. It is necessary to add some phase lead to compensate
the delay in order to keep the loop stable. Equation 4.31 denotes that the loop doesn’t
suffer from the delay when Ty, = T, and 74 = 0.5Ts, which is the ideal case.

Simulations were done with the FFLR topology as shown in Figure 4.12. Figure 4.38 shows
the Bode diagram of the open-loop filter vs. the delay 74, while keeping T'rpe = Ts. When
the delay increases, both the magnitude and phase stability margins decrease. When the

delay increases to 74 = 0.857, the loop becomes critically stable.

In addition, Figure 4.39 gives the relationship of QNTF vs. the delay 74. The figure directly
demonstrates the effects of Hgy(2). The SQNR is calculated to lose 25dB with the delay 74
increase from 0 to 0.857 while keeping Tpo = 7.
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FI1GURE 4.38: Bode diagram of the open-loop filter vs. the delay 74.
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FIGURE 4.39: QNTF vs. the delay 74 in a fifth-order ©AM Figure 4.5.
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4.8 High-Order Continuous-Time Electromechanical ¥ AM

Considering the extra loop delay derived by Equation 4.30, Figure 4.12 is mapped into a CT
implementation of the FFLR topology as shown in Figure 4.40. The two implementations
share the same gain coefficients. With the same simulation conditions (except the loop
delay Typ1 = 0.3, and feedback duration T, = 0.7T; for the CT implementation), the
output bitstream spectrum is plotted in Figure 4.41(a) with quantization noise only and in
Figure 4.41(b) with quantization noise and electronic noise. Comparing with Figure 4.19(a)
and Figure 4.19(b), respectively, the CT implementation has nearly the same performance

as the DT implementation.
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FIGURE 4.40: Continuous-time implementation of the FFLR X AM shown in Figure 4.12.
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FIGURE 4.41: Output bitstream spectrum of the the FFLR YAM shown in Figure 4.40.

Analogously, Figure 4.20 is mapped into a CT implementation of the MFLR topology as
shown in Figure 4.42. The two implementation share same gain coefficients. With same
simulation conditions (except the loop delay T = 0.3T, and feedback duration Ty, = 0.77%
for the CT implementation), output bitstream spectrum is plotted in Figure 4.43(a) with

quantization noise only and in Figure 4.43(b) with quantization noise and electronic noise.
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Comparing with Figure 4.24(a) and Figure 4.24(b), respectively, the CT implementation

has nearly the same performance as the DT implementation.
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FIGURE 4.42: Continuous-time implementation of the MFLR £AM shown in Figure 4.20.
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FIGURE 4.43: Output bitstream spectrum of the MFLR £ AM shown in Figure 4.42.

These simulation results indicate that a CT high-order electromechanical XAM can get a
similar performance as that of a DT high-order electromechanical ¥AM using the same
topology and gain coefficients. The extra loop delay is not a significant problem for the
control system using a high-order SAM if the sampling frequency is relatively low (usually
between 100kHz-500kHz). However, the most attractive property of a CT ¥£AM is that it

provides an inherent anti-aliasing filter on the signal path [90].

4.9 Circuit Non-Idealities

For switched-capacitor (SC) LAM, the dominant non-idealities, such as sampling jitter,
KpT/C noise and operational amplifier parameters (white noise, finite dc gain, finite band-
width, slew rate and saturation voltages), must be taken into account to give overall per-
formance prediction and evaluation. Fortunately, there is a free software toolbox SDT ool
developed by P. Malcovati [67] to simulate all the non-idealities in SC XAM. Figure 4.44

shows the model including the non-idealities: clock jitter, switched thermal noise, op-amp
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noise, op-amp finite gain, op-amp bandwidth, op-amp slew rate and op-amp saturation

voltages.
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FIGURE 4.44: A fifth-order electromechanical SC XAM model to analyze the effects of
non-idealities of circuits.

All these non-idealities are well defined in [56]. The simulation conditions are shown in
Table 4.2. These parameters are typically used by a fifth-order £¥AM to achieve a SNR
of about 120dB. This is also the target value for the micromachined sensor, which will be
discussed in Chapter 8. The performance of the loop is summarized in Table 4.3 with the
conditions of Table 4.2.

Parameters Value
Signal Bandwidth (SBW) 1024 Hz
Sampling Frequency F; 524288 Hz
Oversampling Ratio (OSR) 256
Number of Samples Considered 65536

TABLE 4.2: Simulation conditions of the system shown in Figure 4.44.

Non idealities SNDR (dB)
Ideal Modulator 143.5
Sampling Jitter (10ns) 143
(KpgT/C) Noise (Cs = 5pF) 126
Input Referred Opamp Noise (V, = IOnV/\/E) 129
Finite dc Gain (Hy = 1000) 142.6
Finite Bandwidth (GBW = 10M Hz) 136.9
Slew Rate (SR = 2V/us) 140
Saturation Voltages (Viar = £1.1V) 138

TABLE 4.3: Simulation results of the system shown in Figure 4.44.

It can be seen from the Table 4.3 that switched thermal noise and op-amp noise are the
most critical parameters. With modern CMOS technology, for circuits with the sampling
frequency below 1MHz, sufficient op-amp bandwidth and slew rate are easily achievable.
Figure 4.45(a) and Figure 4.45(b) show the effects of op-amp bandwidth and slew rate,
respectively. All non-idealities are included, the SNR (120dB) performance degrades 23.5dB
compared with an ideal loop without circuit non-idealities (SNR=143.5dB).
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FIGURE 4.45: Influence of circuit non-idealities on the performance of a high-order elec-
tromechanical SAM: (a) with GBW=10MHz; (b) with slew rate=0.8V /us.

In circuit implementation, the loop coefficients obtained by the methodology may not guar-
antee that the integrators outputs are limited to the maximum signal swing permitted by
the circuit realizing the integrators. Coeflicient scaling techniques [91] are introduced to
scale the integrators output swings, but coefficient scaling must preserve the initial QNTF
of a AM to ensure loop stability. Coefficient scaling methods also may reduce the chip
power consumption, but that is different from the power saving from the benefit using
different loop topologies (such as FFLR and MFLR) [30].

4.10 Summary

In this chapter, three topologies of fifth-order single loop ¥AMs for a micromachined ac-
celerometer are presented and discussed in detail. The topologies are adopted from XA
A/D converters. The design methodology utilizes optimization with stability constraints
to find the optimum loop coefficients. The design flow starts with a second-order sta-
ble electromechanical ¥AM and a high-order stable electronic 3AM. Local resonators are
created in the QNTF to further suppress the quantization noise in the signal band. Com-
pared with feedback topologies, the feed-forward topologies are suitable for low-voltage,
low-power applications due to their integrator outputs having a relatively low amplitude
swing. Noise components at the different stages in the high-order electromechanical XAM
have been analyzed and compared with a second-order loop. Due to the large signal gain
supplied by additional integrators in the high-order loop, the interaction between electronic
and quantization noise is weaker than in a second-order loop. This makes the quantization
noise no longer the dominant noise in a high-order electromechanical ZAM. Both the elec-
tronic noise and quantization noise exhibit more favorable noise shaping characteristic in
the signal band in a high-order electromechanical >AM. The electronic noise potentially

can be reduced in a high-order loop by optimizing the YAM topology further. However,
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an electromechanical AM of any order can neither reduce nor shape mechanical noise,
which can only be lowered by optimization of the mechanical structure and vacuum pack-
aging. Furthermore, the mechanical quality factor has a strong impact on noise shaping. In
high-order loops, the dead-zone and tonal behaviour are also considerably suppressed. The
electrostatic force feedback delay reduces the output magnitude, which is dependent on the
ratio of the delay to sampling clock cycle, but it does not greatly affect the loop stability
due to the relatively low sampling frequency when using a high-order YAM. To investigate
the stability of the high-order loops, the root locus, Bode diagram and Nyquist plots can be
used to find the conditional stability margins (the minimum gain of quantizer). However,
so far, the most reliable method to predict the stability margin is system level simulation.
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Chapter 5

Force Feedback Linearization

The major advantage of a one-bit DAC in a continuous-time AM ADC is its linearity,
however, this is not true for an electromechanical one-bit AM. In most analysis of closed-
loop micromachined capacitive sensors, the residual motion z of the sensing element proof
mass is neglected as it is far smaller than the nominal gap dp, and thus the resulting
nonlinear effect is not considered. This is not a valid assumption for high performance
sensors. This chapter analyzes the nonlinearities arising from the conversions between
the mechanical and electrical domains in the feedback loop and the forward path. A
linearization strategy is put forward to reduce the nonlinearity from electrostatic force
feedback on the proof mass to improve the signal-to-noise-and-distortion ratio (SNDR).
This linearization strategy is only useful for very high performmance inertial sensors not for

most state-of-the-art relatively low performance sensors.

5.1 Nonlinear Electrostatic Feedback Force

A modified diagram of a high-order electromechanical ¥AM is shown in Figure 5.1. M (s)
represents the transfer function of the mechanical sensing element that converts the input
inertial force signal into a displacement and inherently serves as a second-order low pass
filter. Vy, represents the feedback voltage, and Dy the quantizer output, which is either a
positive or negative reference voltage (V,¢s, normalized to 1V). Epy is the intrinsic noise
due to Brownian motion. Kp, is the gain of the pickoff interface that converts the dis-
placement to a voltage. Egpy is the input-referred electronic noise of the pickoff interface.
Cp(s) is a lead compensator to supply the necessary phase margin to ensure stability of the
closed-loop system. H(s) is the electronic filter to boost the noise shaping. The one-bit
quantizer is modeled as a variable gain K, with additive quantization white noise Egn.
There are two one-bit DACs in the feedback loop. DACEg is the conventional electronic
DAC within the electronic filter with an error source Epac1, while DACy is the elec-
tromechanical DAC, which converts the voltage to an electrostatic feedback force with an

error source Fpacs.
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FIGURE 5.1: Generic block diagram of a high-order electromechanical ¥AM for non-
linearity analysis.

Referring to Figure 5.1, the transfer function of the system is given by:

Dy(s) =M(S)Kfofzz(€3;{(s)f{q (Xin + Epn — Epaca)
%(EEN%(S) + Epac1) + %L(S)EQN

or,

Do(s) =STF(s)(Xin + EBn — Epaca2)+
+ ENTF(s)(EgnC(s) + Epac1) + QNTF(s)Egn

(5.1)

where L(s) = KM (s)KpoCp(s)H (s)K, is the open-loop filter; and M(s) is the transfer
function of sensing element. STF(s), ENTF(s) and QNTF(s) are the signal, electronic noise

and quantization noise transfer functions, respectively, and given by:

STR(s) = AT s

o % (5.2)
1

QNTF(s)

T 1+L(s)
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For an over-sampling system, the signal band is at relatively low frequency, thus Equa-

tion 5.1 can be approximated by:

1 1
DO(S) =K—fb(XIN + Epy — EDAC2) + W
po
1

+
Ky M (s)KpoH (s) K,

(EENCy(s) + Epact)
(5.3)

Eon

It can be seen from Equation 5.3 that the electromechanical 3 AM can shape the quanti-
zation noise Egn considerably, depending on the over-sampling frequency and the order of
the loop filter. The noise sources Fgy and Epaci are also shaped. However, the Brownian
noise Epy and the electromechanical DAC error Epace will not be shaped by the ¥AM
and thus add directly to the input of the sensor system. Therefore the electromechanical
DAC error Epacois critical for the sensor system performance. The Brownian noise can
be reduced only by mechanical structure optimization and packaging, and thus is not con-
sidered in the following analysis. A conventional electrostatic force feedback arrangement

of an electromechanical ¥AM is shown in Figure 5.2.
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FIGURE 5.2: Common electrode arrangement of the force feedback path in an electrome-
chanical AM.

For an ideal one-bit electronic DAC, there exists no DAC error due to its inherent linearity,
but the conversion of a voltage to an electrostatic feedback force on the proof mass by the
DAC)y is nonlinear, as it depends on the residual proof mass motion. Equation 4.1 can be

rewritten to:

Ky
Ko = sen(D0) Do 7o) (54)

= sgn(Dg)Ko[l — Sgn(DO)Q(dO

7+ 3((%0)2 — 4sgn(D0)(d30)3 4]
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where Ko = 50Afbe2b/2d% denotes the gain of the electrostatic feedback force without
considering the residual proof mass motion. ¢o is the dielectric constant and Ay the
area of the feedback electrodes. The Taylor expansion of Equation 5.4 indicates that the
feedback force has higher harmonic content relating to the residual motion z. Therefore,
the harmonic distortion will lead to a reduction in the SNDR. To investigate the effects of
the nonlinear feedback on electromechanical ¥AMs, a system level simulation was carried
out for a fifth-order electromechanical ¥AM as shown in Figure 5.3 using Matlab/Simulink.
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Excited Signal Kpo . 1 s+b
g, e e Vg, © LE.s+l| |sta
K Low pass To Workspace
Vdis Yout
ElectronicNoise :F_
1 ] K1 K2 - Quantizer
m.s2+b.s+k VTS| oS o VTS| - UTs I
s s s
Z0H
ForceFeedback+ Hi . H2 | H3
e
ForceFeedback-

FIGURE 5.3: Systematic level model of a fifth-order electromechanical SAM.

Simulations use a sampling frequency f,=125kHz and take into account the electronic
thermal noise from the pickoff interface assuming a PSD of 10nV/ VHz for the amplifier.
The spectrum of the output bitstream Dy is plotted in Figure 5.4. Obviously, there is a
third harmonic distortion peak at three times of the input signal frequency (assumed to be
96Hz) which causes the SNDR, to drop by about 20dB in a 300Hz signal bandwidth.

To derive an equation for the signal harmonics all noise sources in Equation 5.1 are omitted.
Due to the time-averaging characteristic of the electromechanical XAM output bitstream,
the time is virtually identical for the top and bottom electrodes to be energized, thus even
harmonics are cancelled. Neglecting the even term of the Taylor expansion of Equation 5.4,

the system output can be approximated to:

Ko = sgn(Do) Kol1 + 3(3 ) (5.5)

Equation 5.5 denotes that the DAC); is expected to suffer from third harmonic distortion
due to the residual proof mass motion. The amplitude difference A between the output
signal at the input force signal frequency and the third harmonic can be calculated by
A = 201log[3(z/dp)?] (dB). If the proof mass motion z is assumed to be very small and its
effect is neglected, the feedback force has a rectangular waveform with amplitude of |Kp|
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FIGURE 5.4: Output spectrum of a fifth-order electromechanical 3 AM with a conventional
force feedback DAC.

(assuming V;..r=1V). However, if the nonlinear feedback effect is considered, the feedback

force becomes nonlinear; this is shown in Figure 5.5.
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FIGURE 5.5: Variation of the feedback force magnitude due to residual proof mass motion.

The superimposed sinusoidal ripple on the upper and lower waveform edges in Figure 5.5 has

the same frequency as the input signal and its amplitude is given by 2(z/do) Ko according
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to Equation 5.4. The amplitude of the third harmonic is given by (z/dg)2K,. Assuming a
50% full scale input signal, the maximum residual proof mass motion z is 0.016um for a

nominal gap of dg=3um; this is shown in Figure 5.6.

Tirne ol f=at

FIGURE 5.6: Residual proof mass displacement.

The SNDR is calculated to be about 82dB with the parameters used for the simulations.
For high performance sensing elements with a lower spring constant the residual motion
can be considerably higher, thus the maximum achievable SNDR. without electrostatic force

feedback linearization is even lower.

5.2 Feedback Electrostatic Force Linearization

5.2.1 Linearized Voltage to Force Conversion in Feedback Loop

To circumvent the nonlinear effect due to the proof motion motion, it is necessary to
linearize the conversion from voltage to electrostatic force. The feedback voltage is modified

to be a function of the residual proof mass motion and is given by:

Vfb = Vfb +sgn(Dyg) - £ (5-6)

where £ = (x/do)Vyp is the linearization factor. The feedback conversion of Equation 5.4

thus becomes:

EoAfb(Vfb + Sgn(Do) . 2)2

2(do + sgn(Dy) - z)? =sgn(Do) Ko (5.7)

K, = sgn(Do)
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It should be noted that the force magnitude in Equation 5.7 is independent of the residual
proof mass motion z and is equivalent to K in Equation 5.4. The modified feedback
arrangement of the electromechanical YAM is shown in Figure 5.7. The additional building

blocks consist of an amplifier, an adder and a subtractor.

Pickoff

Demodulator
Low-pass Filter

Quantizer output

FIGURE 5.7: Modified electrostatic force feedback arrangement of the electromechanical
SAM.

Using this force feedback linearization scheme, a simulation was carried out with the system
model as shown in Figure 5.3. The spectrum of the output bitstream is shown in Figure 5.8,
which has no the third harmonic distortion peak. The SNDR, improves about 20dB due to

the feedback force linearization.
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FIGURE 5.8: Output spectrum of a fifth-order electromechanical XAM with a linear feed-
back force DAC.

Typically, the pickoff interface is implemented with a charge amplifier as shown in Figure 3.1

and its output is given by Equation 3.5. Assuming the gain from the amplifier output Vo



Chapter 5 Force Feedback Linearization 91

to the output Vg, of lowpass filter is unity, or

Viais = Vour = —(ﬂ?/do) x Vs (5.8)

The linearization factor introduced in the previous section can be re-expressed as:

L= (z/do)Vss = Vs X (=V5p/Vs) = Vs x K, (5.9)

Ky = —Vyp/Vs (5.10)

K is the gain of the linearization amplifier in the modified feedback arrangement shown

in Figure 5.7.

5.2.2 Nonlinear Displacement to Voltage Conversion in Forward Path

For high performance sensors, the nonlinear conversion from the sensor motion to voltage of
the pickoff interface should be considered. Considering the effect of the residual motion on
the transfer function of the pickoff circuit, its output voltage is changed from Equation 3.5

to:

Viais = —(z/do) x Vs x [1 — (z/dg)?]* (5.11)

Combining Equation 5.6 and Equation 5.11, the electrostatic feedback force conversion

factor can be rewritten as:

21-1y2
K =yt { 222Dl ) o
Equation 5.12 indicates the electrostatic force is still a function of the residual motion
due to the nonlinear pickoff circuit in the forward path. The feedback force for the three
discussed cases (Equation 5.4, Equation 5.7 and Equation 5.12) are plotted in Figure 5.9
with dp=3um. The ideal feedback force (Equation 5.7, middle, red line) has a constant
absolute magnitude; this is normalized to unity. Consequently, deviations from unity is a

measure of the nonlinearity in the feedback path. Without force feedback loop linearization
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(Equation 5.4, lower, blue line) a significant harmonic distortion is expected for a resid-
ual proof mass deflection z larger than 0.01um, or 0.33% of the nominal gap. With the
proposed linearization (Equation 5.12, upper, green line) noticeable harmonic distortion is
only expected for z larger than 0.3um, or 10% of the nominal gap. For a closed-loop, the
proof mass deflection is usually smaller than this. Figure 5.10 shows a simulation result
considering the nonlinearity of the pickoff preamplifier in the forward path. It can be seen
that the effect of the third harmonic distortion is still visible but considerably reduced.
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FIGURE 5.9: Feedback nonlinearity on the electromechanical DAC waveform with different ‘
feedback loop linearization.
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FIGURE 5.10: £AM spectrum of the output bitstream with a linear feedback DAC and
considering the nonlinearity of the pickoff interface.
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5.3 Summary

In this chapter, the nonlinearity generated by the electromechanical DAC in the feedback
loop and the conversion from displacement to voltage in the forward path has been analyzed.
An effective linearization scheme is proposed to increase the SNDR. The nonlinearity of
the forward path is considerably less significant than that of the feedback loop. The force
feedback linearization will be useful for both high performance sensors and very sensitive
sensing elements (thus very large displacement of proof mass) in closed-loop operation using
a LAM.
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Chapter 6

High-Order Bandpass > AM for
Vibratory Gyroscopes

6.1 Introduction

As discussed in Chapter 4, the control systems based on a lowpass ©AM can not only be
applied to micromachined accelerometers, but also to vibratory gyroscopes. The state-of-
the-art control system [54] for a vibratory gyroscope is based on a second-order lowpass
electromechanical ¥AM, which has a similar topology as the second-order control system

for a micromachined accelerometer as discussed previously.

Usually the sensing element of a vibratory gyroscope is designed with a high quality factor
@ to increase the sensitivity, hence can be treated as a mechanical resonator. Furthermore,
the output characteristic of vibratory rate gyroscopes is narrow-band amplitude-modulated
signal. Therefore, a bandpass £AM is a more appropriate control strategy for a vibratory
gyroscope than a lowpass EAM. The design methodology described in Chapter 4 can be
applied to vibratory gyroscopes, combined with the mature design techniques of electronic
bandpass £A A/D converters.

The control system using a high-order ©AM, as proposed in Chapter 4, can provide much
better noise shaping than when using a second-order YAM where the sensing element only
constitutes the loop filter in the forward path. The only high-order ¥AM interface for a
gyroscope was recently described by [12] where the sensing element is cascaded by two elec-
tronic integrators to form a forth-order loop. However, this is a lowpass ©AM and therefore
requires a relatively high sampling frequency, which put demanding requirements on the
hardware implementation of the interface circuits. A lowpass X AM potentially suffers from
1/f noise, dc offset and drift if used without effective circuit cancellation techniques. Some
high-order £AM loop topologies have favorable noise shaping characteristics for electronic
noise originating from the pickoff circuit. Therefore, the requirements for the electronic

circuits can be considerably relaxed.
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As a general guideline for the design of electromechanical >AM, it is desirable to implement
a control loop with quantization noise level lower than mechanical (Brownian) noise, and
electronic noise. Based on a linearized model for the quantizer [28], the signal transfer
function (STF), quantization noise transfer function (QNTF), and electronic noise transfer
function (ENTF) will be compared between a lowpass fifth-order £AM control loop and
two distinct topologies of bandpass ¥AM control loops. Additionally, extensive system

level simulations in Simulink/Matlab are used to investigate their noise shaping abilities.

6.2 System Level Model of A Vibratory Gyroscope

As the sensing element, a typical surface micromachined gyroscope [54] packaged at ambient
atmospheric pressure is assumed for simulations (mass, m=2ugram, quality factor, Q=100
and nominal resonant frequency, f,=2!4Hz (~ 16kHz) for drive mode). +5% mismatch
between the resonance frequencies in two orthogonal directions (drive (z) and sense (y)) is
assumed due to fabrication tolerances (fy = fz(1 4+ 5%)). The full scale input angular rate
is taken to be sinusoidal with an amplitude of 100°/s at f;,=128Hz. The continuous-time

transfer function of the sensing element in the sense direction is given by:

L/m (6.1)

Mn(s) = ———
s2 4+ ALs + w?
0,5t

where wy is the resonant frequency, m the mass of the sensing element and @), the quality
factor of the sense mode. The following analysis uses its equivalent discrete-time transfer
function in the z-domain, which can be obtained using an impulse-invariant transformation

[54] and already given by Equation 4.30.

x-Linear -
Acceleration Drive Control Loop Conolh:leorce Sense Mode Control Loop
Inertial Force CoriolisForce [ P Coriolis Force
Angular Quadrature y-Movement
Rate Cancellation

» AngularRate Quad.Force[®QuadF QuadF(attn) » QuadForce

x-Movement
e
X0dot | DriveVelocity x-MoveDrive—» -C- Y-Inertial Force

Drive y-Linear
Velocity Acceleration

FIGURE 6.1: Vibratory gyroscope diagram consisting drive mode control loop and sense
mode control loop.

Figure 6.1 shows a block diagram of a closed-loop vibratory gyroscope, which consists of

the drive mode and sense mode control loops. The drive mode control loop is shown in
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Figure 6.2, and its main function is to precisely control the drive oscillation at constant
frequency (wz) and constant amplitude(X,). The EAM feedback control strategy is not
applied to the drive mode, which is usually controlled by phase-locked loops (PLL) [92].
The motion of the vibrating proof mass is described by ¢ = Xy sin(w,t). If the sensor is
rotated around the z-axis with an angular rate Q,, the Coriolis force resulting along the
y direction on the proof mass can be given by Equation 2.17. The y-movement in the
sense mode control loop generated by the amplitude-modulated Coriolis force is shown in
Figure 6.3. The figure is a typical displacement along y-axis in the high-order bandpass
Y AMs, which will be discussed in the following sections. From Equation 2.26 it can be
inferred that the drive frequency w,, drive amplitude Xy, proof mass m and quality factor

Qy should be as large as possible.

d.F
Quadrature Force Quf 2 oree

f(u)

Quadrature MguRate Coriolis
Forc F
Inertial Force ree > x orLe @®
Integratorl | Integrator2 CoriolisForce

D
Inertial - K- 1/s » 1/s
’_
Force
1/mass M ti
DriveVelocity ovement X

x-MoveDrive

ZOH of oscillation

kp\Kjr

Damping constant in x

Movement in y

>

< y-comp Terminator

Spring constant in x of oscillation

FIGURE 6.2: Drive mode control loop block of Figure 6.1.

Fabrication tolerances can have a considerable impact on the performance of micromachined
gyroscopes [93], therefore a quadrature force caused by a misalignment of the sense and
drive mode, is also included in the model. The following discussion focuses on the sense
mode control system using an electromechanical YAM. There are several possible choices
for the sense loop: a) it can be either a low pass or a bandpass ©AM, and b) it can
be either a second-order (sensing element only as loop filter) or a high-order AM. Any
combination of these choices is also possible. In the case of a high-order, lowpass ZAM, the
sensing element is cascaded by electronic integrators, whereas in the case of a high-order
bandpass ©AM the sensing element is cascaded with electronic resonators. Table 6.1 lists
the parameters of the micromachined gyroscope used for the simulation throughout this

work.
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FIGURE 6.3: Y-displacement of the gyroscope in the sense mode control system.

Variable Value Unit Explanations
€0 8.85 x 10~ 12 F/m permittivity constant
m 2x 1079 kg proof mass
fs 218(BP), 2?3(LP) Hz oversampling frequency
fin 27 Hz input signal frequency
Qz 100 deg/sec mazimum input angular velocity
Iz 2l Hz X direction drive frequency; fr=fs/4
¥ +5% resonate frequency mismatch between X and Y
Wy 21 fy rad/s resonant frequency in X (drive) direction
Wy 2 fx (14 ) rad/s resonant frequency in Y (drive) direction
Qu 100 quality factor of the drive mode
Qy 100 quality factor of the sense mode
Xo 2 x 1078 m amplitude of drive oscillation
Xo wy X Xg m/s velocity of drive oscillation
Ygap 1x107° m gap between sensing capacitors
K, 21 N/m effective spring constant in X-direction
K, 25 N/m effective spring constant in Y-direction
D, 2.06 x 10~ Ns/m damping factor in X-direction
D, 2.27 x 10~° Ns/m damping factor in Y-direction
Vstep 5 |4 voltage step for signal pickoff
Ky 3.15x 1079 gain of the voltage to force conversion in the feedback
) 0.001 deg misalignment between drive and sense mode

TABLE 6.1: Parameters of the gyroscope used for simulations
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6.3 High-Order Lowpass > AM Vibratory Gyroscopes

A fifth-order lowpass ©AM with multi-feedback and two local resonators [83] is investigated
as a closed-loop control system for the sense mode of a vibratory gyroscope. The design
is shown in Figure 6.4 as a Simulink model. It contains the sensing element M,(z) in
discrete format, a lead phase compensator (transfer function C,(z) = (1 — 0.9271) after
the pickoff interface (gain Kp,) and three additional electronic integrators. Kps is the gain
of an additional boost amplifier. Hj(z), Ha(z) and H3(z) are integrators with a transfer
function of H;(2) = (271/1 — 271) (i=1, 2, 3). a1, az and a3 are gain coefficients used for
integrator output scaling. The two local resonators are formed by gain constants g; and
92, which create a notch in the signal band to further suppress the quantization noise. All
values of the gain constants are given in the figure. The topology is derived by applying a
design methodology based on optimization and stability criteria which is described in more

detail in Chapter 4.

-Movement g2
Y 0.0004 Yout
Corlolis @:
Force Integﬂrgtorz a3
. M Pickoff Cp 2.89
QuadForce Sensing Element lggso Compensator IntegHr;l torl al Ll c _Z‘_1 .
. 1/m (z-0.9) 0.34 ¥ 4 1P| 1)
S5 ! a2 tize)
@— s2+wy/Qy.s+wy™2 z = 1__1_ = 0.28 |Imtegrator3 Quantizer
y-Inertial — H3
Force ~ \b’:
Kfb 1
Electrostatic Force If g
Top Plate Is Energized Referred b 0.0001 b2 b3
| Electronic 0.18 0.3 0.2

Electrostatic Force if
Bottom Plate is Energized

FIGURE 6.4: Sense mode control loop based on a fifth-order lowpass multi-feedback XAM
and local resonators.

In most devices, the electronic noise from the interface circuits is the dominant noise source,
therefore an input-referred electronic white noise source with a typical value for the power
spectral density (PSD) of 6nV/vHz is placed at the input of the pickoff preamplifier. Ky,
is the gain defined by the voltage to electrostatic force conversion on the proof mass in the

feedback path and given by Equation 4.1.

An oversampling ratio (OSR(= fs1/2f,)) of 256 is chosen as a typical value; this results in
a sampling frequency fs = 22°Hz (~ 8MHz).

The transfer functions STF, ENTF, and QNTF are given by [70]:

mnm(z) Hi(z)ai

ey

..»
1l
—

STF(2) = (6.2)

L(z) X be
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"‘Jm(z) 12_[1 Hi(z)ai
ENTF\(z) = L(z) % (K oMy (2) Kpo) (6.3)
QNTF|(z) = 1+ Hi(z)a1Ha(2)g1 + Ha(2)as H3(2)g2 (6.4)

L(2)

where km(2) = KMy (2) KpoKpstCp(2) Ky is an effective transfer function comprising the
force feedback conversion, sensing element, pickoff preamplifier gain and the compensator;

and

3 3 3 2 i+1
L(z) =1+ kn(2) H Hi(z)a; + K, Zbi H Hi(z)a; + Z a;g; H H;(z) + Hi(z)a1 Ha(2)grasHs(2)bs Ky

i=1 =1 j=i i=1 j=i

The bode diagram of the transfer functions (STF, QNTF, ENTF) is shown in Figure 6.5.
It can be seen that the STF has a sharp peak around the drive resonant frequency f; due
to the quality factor of 100, and therefore the signal bandwidth is very narrow, and there is
no flat region in the signal band. The output bitstream spectrum is shown in Figure 6.6(a)
with a close-up view around the signal bandwidth (Figure 6.6(b)), which indicates that
the signal is symmetrically located at f, £ fin. The SNR is calculated to be about 90dB
in a 256Hz bandwidth. It should be noted that the two signal peaks have 6dB difference,
which is due to the signal has a sharp transfer function in the signal band. This further
verified the STF Bode diagram shown in Figure 6.5. Bandwidth is a critical factor for the
dynamic performance of a micromachined vibratory gyroscope [94]. Thus using a control
system based on a lowpass AM restricts vibratory rate gyroscopes to relatively narrow

band signal.
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FIGURE 6.5: Bode diagram of the transfer functions of the signal, quantization noise and
electronic noise of the sense mode control system based on a fifth-order YAM depicted in

Figure 6.4.
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FIGURE 6.6: Output bitstream spectrum of the control system based on a fifth-order
lowpass YAM depicted in Figure 6.4.

6.4 Second-Order Bandpass XAM for Sense Mode Control
System

The sensing element of vibratory rate gyroscope is equivalent to a resonator in the electrical
domain, therefore it lends itself to be incorporated in a bandpass AM control loop. A

bandpass SAM loop is designed using the sensing element only as the loop filter. This
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results in a sense mode control system having a topology of a second-order bandpass ZAM,

which is shown in Figure 6.7.
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FI1GURE 6.7: Sense mode control loop based on a second-order bandpass ZAM.

The difference to a second-order lowpass ZAM (as described in [54]) is that the sampling
frequency can be as low as four times the resonant frequency (fs = 4fy,). Furthermore, the
compensator has a different format compared with the compensator for a lowpass ZAM
interface. It compensates the phase lag of the sensing element at high frequencies to provide
sufficient loop phase margin for stable operation. The design of such a compensator using
classic control theory [72] is also an initial step toward the design of a high-order bandpass

loop addressed subsequently. The compensator used here is given by:

Crlz) = z+202.§193:12 (6.5)
The Bode diagram of the compensator and sensing element is plotted in Figure 6.8. With
the compensator, the phase lag originating from the sensing element is sufficiently com-
pensated at high frequencies and provides 90° phase lead at fs/2 compared to without
compensation. The output bitstream spectrum is shown in Figure 6.9. If distortion is not
included, the signal to noise ratio is about 63dB in a bandwidth of 256Hz. However, there
are lots of idle tones in the spectrum, this is due to the quantization noise not being white
anymore. Calculating the SNR, including harmonic distortion results in a value of about
35dB which unacceptably low for most applications. For a lower order 2AM, the additive
white noise approximation of the non-linear one-bit quantizer is not a valid assumption.
These tones may fold into the signal band and degrade the SNR. In contrast, a high-order
ZAM suffers less tonal behaviour [28]. Therefore, the control system using a high-order
2AM can help to reduce these tones. This is verified in the subsequent sections.
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6.5 High-Order Bandpass XAM Vibratory Gyroscopes

6.5.1 High-Order Bandpass ¥AM Using A MFLR Topology

- g2
Coriolis y-Movement Yout
Force F F»(j) 0.007 @
@ ' Mm Pickoff C Resonator2 -3
QuadForce Sensing Element Kpo Co p tor R torl R2 Q .
B} sZHrwy/Qy.stwy~2 £ Khst Lden(z) [ _1'_2 X 2| RS e Vo
y-Inertial 1 1472 0.28 le';;wri‘ 2.89
Force ).
J Kib @"
Electrostatic Force if Input gl
Top Plate is Energized JReferred b1 0.0009 b2 b3
Electronic 0.18 0.3 0.2
Noise

Kib
Electrostatic Force if
Bottom Plate is Energized

FIGURE 6.10: Sense mode control system based on a eighth-order bandpass XAM with
multi-feedback loops and local resonators.

Applying the transformation Equation 2.64 to the fifth-order low pass ©AM described above
(Figure 6.4) results in an eighth-order bandpass ¥AM, which is shown in Figure 6.10. This
system adopts a topology of multi-feedback loops with two local resonators, which is the
same as that used in Chapter 4.2.4. The control loop consists of the same micromachined
sensing element My, (z) (i.e. the first resonator) cascaded with a lead phase compensator
Cp(z), and three electronic resonators Rj(z), Ra(z) and Rs(z) which are given by Equa-
tion 2.65. a1, a2 and as are gain constants used for scaling the resonator output amplitude.
The gain constants in the feedback path, g; and go, are used to generate two local res-
onators. Thus, a notch is created in the signal band to further suppress the quantization
noise. The OSR (=fs2/2fin) for a band pass ZAM is the ratio between the sampling fre-
quency fss and twice the input signal frequency fi,. Using the same value of the OSR
as for the low pass AM, the sampling frequency fss is now reduced to 216Hz (= 65kHz)
compared with approximately 8 MHz for the lowpass SAM. The transfer functions STF,
ENTF and QNTF are given by:

Mbm (2) ]f[l Ri(z)a;
STFy(z) = I < Kn (6.6)
3
"Cm(z) 1;[1 Ra(z)az
ENTFs(z) = TG % (Kb (2K (6.7)

QNTEy(z) = 1+ R (z)ale(z)Lg(lz;r Ra(2)agR3(2)g2 (6.8)
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where

2 i+1

z)ai + Ky Zb HR z)a; + Zaig,- HRj(z) + Ri(z)a1Ry(2)g1aaR3(2)b3 K,

i=1 j=i

L(z) =1+ km(2

||":]m

The bode diagram of these transfer functions is shown in Figure 6.11. A high-order
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FIGURE 6.11: Bode diagram of the transfer functions of the signal, quantization noise and
electronic noise of the eighth-order bandpass ¥AM with multi-feedback loops and local
resonators.

bandpass £AM is also a conditionally stable closed-loop system [28]. The root locus of the
open-loop filter is plotted in Figure 6.12(a), with a close-up shown in Figure 6.12(b). In
order to ensure that the poles lie within the unit circle, the critical minimum gain of the
quantizer should be Kgmin = 0.693. If the quantizer gain K, is less than Kgmsy,, one pole
pair will move out of the unit circle and finally result in an unstable operation. This could be
caused by an input signal overload, therefore instability detection and saturation recovery
techniques should be applied to a hardware implementation of a high-order SAM [81],
however, this was not considered in this work. The spectrum of the output bitstream is
shown in Figure 6.13. The signal is symmetrically located at f; & fin. Tones only appear at
low or high frequencies, but not in the vicinity of the signal band. The SNR is calculated
to be 103dB in a 256Hz signal bandwidth.

6.5.2 High-Order Bandpass AM Using A FFLR Topology

A second topology of an eighth-order bandpass ¥AM is presented in Figure 6.14. It consists

of feed-forward loops and a local resonator. This topology is the same topology used in
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FIGURE 6.12: Root locus of the open-loop filter of the eighth-order bandpass SAM with
multi-feedback loops and local resonators.
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FIGURE 6.13: Output bitstream spectrum of the eighth-order bandpass ZAM with multi-

feedback loops and local resonators.

Chapter 4.2.3.

Similarly,

the control system consists of the micromachined sensing element M,,(z) (as

the first resonator) cascaded with a lead phase compensator Cp(z), and three electronic
resonators Ri(z), Ra(z) and Rs(z) which are given by Equation 2.65. b;, by and b3 are
gain constants used for scaling the resonator output amplitude. The feed-forward loops
are formed by the gain constants a;, as and az and a local resonator is formed by the
feedback path with gain constant g. Thus, a notch is created in the signal band to further
suppress the quantization noise. With a sampling frequency fs2=2'%Hz (=~ 65kHz), the
OSR (fs2/2fin) is equivalent to the lowpass AM shown in Figure 6.4.

The transfer functions STF, ENTF, and QNTF are given by:

STF3

ENTF3(z) =

(2) = mem (2)[b1 Ry (2)b2 R (2) (b3 Ra(2)as + az) + (1 + gR2(2)b3R3(2))(b1R1(2)az + a1)]
L(z) x Ky»

(6.9)

Km (2)[b1R1(2)b2 R2(2) (b3 R3(2)as + az) + (1 + gRa(2)b3R3(2)) (b1 R1(2)az + a1)]
L(2) x (K 5 Mm(2) Kpo)

(6.10)
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FIGURE 6.14: Sense mode control system based on a eighth-order bandpass AM with
feed-forward loops and a local resonator.

QNTFy(z) = 1+932L(2)b333(”) (6.11)

where

4 i—1
L(2) =1+ 6m(2) Y Jas [ b;R;(2) + gRa(2)bsRs(2)[1 — (em(2)Kq(ar + biR1(2)az)]

=1 7=1,5>0

The bode diagram of these loop transfer functions is shown in Figure 6.15. The spectrum
of the output bitstream is shown in Figure 6.16. The root locus of the open-loop filter is
plotted in Figure 6.17(a), with a close-up view shown in (Figure 6.17(b)). In order to ensure
the root locus to lie within the unit circle, the critically minimum gain of the quantizer is
Kymin = 0.695. The SNR is almost same as the control system using a MFLR topology.

The tones are located at either low or high frequencies and have no effect on the signal.

6.6 Discussions

6.6.1 Properties of Signal and Noise Transfer Functions

For the signal transfer function, STF, presented in the two high-order bandpass £AMs, the
response has a relatively wide (>1kHz) flat all-pass characteristic in the frequency range
of interest. This is in contrast to a narrow signal band in a lowpass EAM. Therefore, a
vibratory rate gyroscope employing a bandpass EAM intrinsically has a much higher signal
bandwidth. Another property is that the discrete time circuit blocks are all located after
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FIGURE 6.15: Bode diagram of the transfer functions of the signal, quantization noise and
electronic noise of the eighth-order bandpass ®AM with feed-forward loops and a local
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the sensing element, therefore the continuous-time sensing element provides an implicit
second-order anti-alias filtering. This is an advantageous property of all discussed XAMs

control systems.

For all high-order topologies presented in this Chapter, the ratio between the ENTF and
the STF is given by:

ENTFi(z) _ 1 o
STRG) — mim@K, = b2 (6.12)

Equation 6.12 is calculated by dividing Equation 6.2 by Equation 6.3, Equation 6.6 by
Equation 6.7 and Equation 6.9 by Equation 6.10, respectively. Since the STF has an all-pass
characteristic for the two bandpass topologies, Equation 6.12 denotes that the electronic
noise is shaped by the inverse transfer function of the sensing element. For a micromachined
vibratory gyroscope, the @ is relatively high in order to increase its sensitivity. This leads
to a better electronic noise shaping in the signal band for a bandpass YAM. The SNR of the
two high-order bandpass 3> AMs are almost the same; about 100dB in a 256Hz bandwidth,
compared with about 90dB for the fifth-order, low pass XAM.

It can be seen from the Bode diagrams and the output bitstream spectra, that electronic
noise is dominant noise compared with the quantization noise. Therefore, quantization
noise is no longer the limiting factor for the sensor performance. To achieve a comparable
noise floor in a control system using a lowpass XAM and a bandpass XAM, the sampling
frequency of the former (about 8.4MHz) has to be much higher (256 times) than that of
the latter (about 65kHz). This implies a much higher operating frequency of the interface
and control circuits for a lowpass XAM,; this is a distinct disadvantage. It should be finally
noted that, to simplify the analysis in this chapter, the mechanical Brownian noise has not
been considered in the simulations because it is directly added to the input signal and is

not shaped by any modulator topology.

6.6.2 Effects of Quadrature Force on System Performance

So far quadrature error was not taken into account. Considering a quadrature force due to
microfabrication tolerances and assuming a misalignment angle of n = 0.001°, the output
bitstream spectrum of the system depicted in Figure 6.13 is shown in Figure 6.18. All other
simulation parameters were the same as for the simulation result of Figure 6.16. Such a
relatively small misalignment angle leads to an output amplitude at the drive resonant fre-
quency, fz, which is almost equal to the signal amplitude. Therefore, an effective correction
mechanism should be adopted to avoid saturating the pickoff preamplifier. The quadrature

force can be separated from the Coriolis signal force, since it is out of phase by 90° with
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respect to the input signal. An additional force feedback loop can be used to balance its

effects, which will be discussed for future work in Chapter 9.

Signal Spectrum
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FIGURE 6.18: Quadrature force effects on the output bitstream spectrum of the eighth-
order bandpass ZAM with feed-forward loops and a local resonator (shown in Figure 6.14).

6.6.3 Effects of Resonant Frequency Mismatch on System Performance

A resonant frequency mismatch between the drive mode and sense mode was not yet con-
sidered. Assuming a resonant frequency mismatch 5% due to microfabrication tolerances,
and all other simulation parameters remaining the same, a simulation is done with the fifth-
order lowpass TAM (Figure 6.4). The output bitstream spectrum of the system is shown
in Figure 6.19. There is a significant signal amplitude loss (15dB) due to the mismatch.
While a simulation with the mismatch is done with the control system based on a bandpass
£AM (Figure 6.10), the output spectrum (plotted in Figure 6.20) shows that the spectrum
is no longer perfectly symmetrically mirrored at f, and has a slightly higher noise floor
compared with the Figure 6.13. Nevertheless, there is no signal amplitude degradation due
to the resonant frequency mismatch, this is a major advantage of a bandpass £AM control

loop over a lowpass £AM control loop.

6.6.4 Effects of 1/f Noise and White Electronic Noise

The circuit implementation of a sensing and control system will inevitably generate noise.
Usually, CMOS analog circuits not only generate thermal white noise, but also 1/f noise.

Chopping modulation and CDS techniques are effective methods to remove 1/ f noise, drift
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FIGURE 6.19: Resonant frequency mismatch effects on the output bitstream spectrum of
the fifth-order lowpass TAM (compared with Figure 6.6(b)).
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FIGURE 6.20: Resonant frequency mismatch effects on the output bitstream spectrum of
the eighth-order bandpass ©AM (shown in Figure 6.10).

and offsets [35]. Micromachined vibratory gyroscopes prefer to operate at a high resonant
frequency to increase their sensitivity. The mechanical resonant frequency is usually chosen
to be several kHz, which is higher than the first corner frequency of 1/f noise [95]. This
makes it possible to take advantage of a bandpass AM to remove the low frequency
noise components. Malcovati’s SDToolbox [67] provides a color noise model for the Matlab

environment.
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FIGURE 6.21: Model of the sense mode control system depicted in Figure 6.10 including
the effects of 1/ f noise.
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FIGURE 6.22: Spectrum of the preamplifier color noise, including the 1/f noise and white
noise.

A modified system level model (based on the system shown in Figure 6.10) is depicted in
Figure 6.21; it includes the input-referred color noise at the input of the pickoff preamplifier.
The parameters in the color noise model, such as the corner frequencies and PSD can be
obtained either by transistor-level simulations or from typical values quoted in the literature.
Here, the first corner frequency is chosen to be at 1kHz with a conservative value for the
PSD of 30nV/v/Hz (1/f), and the second corner frequency at five times of the sampling
frequency fs2 with a PSD of 6nV/v/Hz (white noise). Figure 6.22 shows the color noise

spectrum.

The output bitstream spectrum in the control system based on a bandpass SAM (shown
in Figure 6.21) is same as the previous simulation (shown in Figure 6.13), so there is no

penalty from the 1/f noise. If the above color noise model is added in the control system
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based on a lowpass £AM (shown in Figure 6.4), the output bitstream spectrum is also
same as the previous simulation shown in Figure 6.6 and also there is no penalty from
the 1/f noise. Generally speaking, the 1/ f noise in closed-loop micromachined gyroscopes
do not contribute to overall electronic noise floor due to the vibratory gyroscopes resolve
the angular rate signal after synchronous demodulation of the pre-amplified detected sense
structure displacement by mixing it with the phase-locked drive signal. Closed-loop op-
eration shifts the preamplifier 1/f noise out of the signal band. This 1/f noise inherent
immunity is another remarkable advantage of an electromechanical YAM, which have no

use for any CDS or chopping circuit techniques to remove 1/ f noise.
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FIGURE 6.23: Output bitstream spectrum of the system depicted in Figure 6.21 with the
PSD of 16nV /v Hz at the second corner frequency in the color noise model.

If the PSD at the second corner frequency is raised to 16nV/\/E in the color noise model,
the output spectrum is shown in Figure 6.23. The SNR of the bandpass control system
(shown in Figure 6.21) suffers a loss of 6dB. However, if the above color noise model is added
in the control system based on a lowpass EAM (shown in Figure 6.4), the system SNR will
suffer a loss of 18dB. The discrepancy of the SNR loss comes from the white electronic noise
not 1/f noise. It should be noted that the higher pickoff preamplifier gain (Kp,=100) of
the lowpass high-order loop is used than that of (Kp,=1) the bandpass high-order loop. As
discussed in Chapter 4, the pickoff gain Kp, is determined by the loop stability and cannot
be arbitrarily chosen. Furthermore, this phenomenon can be explained by the pickoff gain
effect on white electronic noise in a high-order electromechanical ¥AM, which had been
discussed in Chapter 4.3: the higher the pickoff gain, the lower the system SNR.
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6.7 Summary

This work discusses a range of closed-loop, force feedback control systems based on £AMs
for the sense mode of vibratory rate gyroscopes. It was found that' a high-order band-
pass LAM topology, which cascades several electronic resonators with the micromachined
sensing element, has remarkable advantages over other topologies. Compared with a second-
order £AM loop (which uses the sensing element only as the loop filter), it provides superior
quantization noise shaping and alleviates idle tones. Compared with using a lowpass £AM,
a control system using a high-order YAM has advantages: reducing the sampling frequency
by about two orders of magnitude, a wider and flat signal transfer function in the frequency
range of interest, and an inherent immunity to 1/f and other low frequency noise sources.
Two novel topologies of an eighth-order, bandpass £AM are discussed: a topology based
on multiple feedback loops with two local resonators, and another based on feed-forward
loops with one local resonator. The latter has the advantage that it has much reduced
internal signal levels hence is suitable for a low power implementation. Both topologies
achieve a SNR of about 100dB for typical parameter values for a micromachined sensing

element and state-of-the art electronic components.
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Chapter 7

Experimental Results: A
Fifth-Order Lowpass
Electromechanical CT YAM

7.1 Sensing Element Used in the Prototype

According to the inital plan of this research work, a high performance accelerometer would
have been fabricated using the University cleanroom for test of the prototype. However, due
to the Southampton University fire, these nearly done devices (which discussed in detail in
next Chapter) were no longer available. Fortunately, Qinetiq supplied the sensing element
for this PCB prototype. The device was fabricated using SOI wafers. Physical parameters
of the sensing element are: mass m = 9.7 x 10~ "kg, damping coefficient b=0.2N/m/s
and spring stiffness k=48N/m. The dynamic frequency response of the sensing element is

plotted in Figure 7.1.
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FIGURE 7.1: Bode diagram of the sensing element provided by Qinetiqg.
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Obviously it is an overdamped sensor and the bandwidth is only 100Hz. The bandwidth
needs to be increased by the closed-loop control system. There are two sets of capacitor
electrodes: one set electrodes for force feedback which has nominal capacitance value of
2 x 4.45pF and another set electrodes for sensing which has nominal capacitance value of
2 x 1.4pF. Its mechanical noise floor is 10ug/v/Hz, which is not so low enough that the
ultimate noise floor can not be observed in the following PCB prototype. Therefore, the
performance of the fifth-order CT electromechanical ¥AM reported in this Chapter are

only the preliminary measurement results.

7.2 Front-End Circuits

7.2.1 Pickoff Interface Circuit

There are two very effective methods to improve the performance of a pickoff interface
circuit: correlated double sampling (CDS) and chopper stabilization, which are applied to
suppress low frequency noise (such as 1/f noise) and drift in the signal band [35]. However,
both methods cannot suppress white noise, which set the ultimate limit for the circuits.
Generally speaking, CDS is suitable for SC circuit implementation, while chopper stabi-
lization is usually used for CT circuits. For a PCB prototype using commercial discrete
components, a continuous-time YAM is preferred to discrete-time SC £AM, mainly be-
cause there are too many analog switches for a SC implementation. In this PCB prototype,
the signal is modulated at high frequencies, the dominate 1/f noise from pickoff inter-
face circuits is removed after demodulation, and thus a chopper stabilization technique for
subsequent circuits is not adopted in the prototype for simplification. High performance
capacitance to voltage converters (CVC) are necessary for capacitive accelerometers to mea-
sure both statically and dynamically. Several methods have been introduced to convert a
capacitance variation into a voltage [96]. However, most of them are not capable of handling
very small variations of the order of 1 ppm in the nominal capacitance value. There are
two critical parts in the sensor interface: one is the pickoff preamplifier, which is featured
with low noise and low distortion. A charge amplifier is one of the best preamplifiers to
sense the variation of small capacitance which discussed in Chapter 3.1. Another is the
demodulator, which is designed to remove the modulation from the excitation carrier to
give the frequency representation of the signal. So far, the dominant demodulation methods
include: synchronous demodulation and diode envelope detection, which will be addressed

in detail in the following.

For the measurement of small variations in capacitance with high accuracy, a major problem
is that parasitic capacitance in most cases has the same order of magnitude as the nominal
sensor capacitance; furthermore, capacitances are sensitive to electromagnetic interference.
The sensor capacitance Cy and the parasitic capacitances Cp1, Cp2, and Cp3 and resistances

Ryp and R, are shown in Figure 7.2; all these undesired parasitic components are in parallel
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FIGURE 7.2: Sensing capacitance with parasitic components.

or in series with the sensor capacitance. It is desirable that the CVC should be immune
to the parasitic impedance, that is its output voltage is only dependent on the sensing

capacitance.

Most commonly used capacitive interfaces for accelerometers and vibratory gyroscopes are
a single-ended sensing-element output to interface with the sense electronics. A pair of sense
capacitors is configured in a capacitive half-bridge; capacitance is measured by driving the
ends of the capacitive bridge and taking the output from the center node, as shown in
Figure 7.3(a). The affix + or - denotes the capacitance value increasing or decreasing,
respectively. High output stability requires the precise generation of the two ac excitation
signals which should be insensitive to temperature and power-supply fluctuations. In fact,
according to [97], for inertial grade accelerometers and gyroscopes, the bias stability of

these voltage amplitude is estimated on the order of 1077 V.
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(a) Topology of single-ended interface (b) Topology of differential interface

FIGURE 7.3: Pickoff configuration: a charge amplifier.

This PCB prototype adopts a fully differential interface [5]. By reversing the roles of the
center and the end terminals, a differential sense interface can be achieved with the same
sense element, as shown in Figure 7.3(b). In this case, an excitation voltage with a carrier
frequency fearrier [Hz] and amplitude Vearrier [V] is applied to the center of the capacitive
half-bridge, while the stationary electrodes are connected to the input of the differential
position-sense charge amplifier (which is at virtual ground potential) with very low input
impedance. The parasitic capacitances Cp; and Cpz, as shown in Figure 7.2, are in parallel

with the voltage source and the low input impedance of the charge detector, respectively,
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thus having virtually no effect on the measurement of the current flowing through. The
advantage of this CVC is that circuits are symmetrical, so any undesired common mode
interference can be rejected, including improved power-supply rejection ratio and first order
rejection of common-mode errors, such as switch charge injection, excitation fluctuations
in the magnitude and substrate noise. A final important advantage of driving the proof
mass is that multiple sets of sense capacitors in different axes can be simultaneously force
balanced. Multi-axis force balancing [5] is achieved using one sense interface for each axis
and synchronizing the proof-mass pulses with all three feedback loops. The interface has

the following specifications:

1. the frequency range of the change in acceleration is dc to 1kHz;

2. the minimum detectable change in acceleration is expected 10ug, corresponding to a

capacitance change 12aF ( 10ppm of 1.2 pF);

3. the maximum change in acceleration is lg, corresponding to a capacitance change
12fF ( 1% of 1.2 pF)

7.2.2 Synchronous Demodulation

Synchronous demodulation is widely used to recover very weak electrical signals from strong
noise background. In a capacitive surface-MEMS inertial sensor, for example, synchronous
demodulation techniques have the capability of sensing of a sub-angstrom displacement
of the inertial proof mass [98]. Synchronous demodulation techniques can attenuate low-
frequency error sources such as the input-referred noise and offset of the sensing electronics,

substrate coupling, and electromagnetic interference (EMI) by locking the carrier phase.

HI' * Vx+ f@ Vy+

B
i

\//"-.
carrier | sensor| charge amplifier AM demoduitor | Inamp
AM modultor

FIGURE 7.4: Synchronous demodulation for a fully differential capacitive interface.
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Figure 7.4 shows a common lock-in sensing scheme used for capacitive inertial sensor.
The high-frequency carrier voltage is connected to the proof mass. An imbalance in the
sensing capacitors, caused by the motion of the proof-mass modulates the carrier to create a
modulated signal V;. An analog multiplier multiplies V by a replica of the high-frequency
carrier to generate V;,. The subsequent demodulation process interchanges the location of
the input signal spectrum and the error spectrum in Vj,. Finally, V, is lowpass filtered
to generate V,,:. The lowpass filtering preserves the input signal in V,,;, while the low-

frequency errors are greatly suppressed.

The output signal of the accelerometer is: Asin(wsignat), where A is the amplitude of
the signal and wg;gnq is the signal frequency. The high frequency carrier is expressed by
B sin(wegrriert), where B is the amplitude of the carrier and wegrrier is the carrier fre-
quency. The modulated signal is V; = Asin(wsignait) X B sin(wearriert). The carrier is
used as demodulation but has a small phase shift ¢ (= 0) due to delay in the hardware
implementation, so the demodulated signal is expressed by Equation 7.1 and its spectrum

is shown schematically in Figure 7.5.

Vy = Asin(wsignait) - B sin(Wearriert) - B sin(wearriert + ¢) (7.1)

1 . 1 .
§ABQ sin(wWsignait) cos ¢ + ZAB2 sin[(2wearrier — Wsignal)t + @]

1 .
+ ZAB2 sin[(2wearrier + wsignal)t + ¢

2 wnzrn'ar
Lower
Sideband Upper
- 2w +@ )
zmmm-" Q)‘"»M carrier " signal

FIGURE 7.5: Spectrum of amplitude modulated signal containing two sidebands and the
carrier.

After a fifth-order lowpass filter (with a corner frequency of 67.5kHz, half of the sampling
frequency fs in this prototype), the high frequency carrier is removed and the acceleration

signal is recovered as:

1 .
Vout = §AB2 sin(Wsignait) cos ¢ (7.2)

Synchronous demodulators have several advantages. Firstly, noises are all filtered except
the noise that is in phase with the excitation carrier. Consequently, the noise level is
reduced and the signal to noise ratio is improved. In addition, the level of distortion is less.

Unfortunately synchronous detectors are complex, requiring many discrete components to
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build. Synchronous demodulation techniques are useful if, and only if, the analog multiplier
is functioning within its linear range of operation. If the dc offset in the system is large
enough to saturate the multiplier output or to drive it into a nonlinear regime of operation,
then the final output will suffer considerable distortion and the benefits of lock-in techniques

will start to fade [99)].

Pspice simulations are applied to the front-end circuits. A variable capacitance can be
represented in Pspice as a variable admittance (YX subcircuit) where the voltage between
pin 1 and 2 represents the factor the nominal capacitance (1.2 pF in this case) is multiplied
with. The input signal of the Pspice model is a triangle wave as shown in Figure 7.6, which

emulates 10ppm to 20ppm capacitance variation due to an acceleration variation.

1.06002V

1.00001V

1L.00600V

0.99999V T—

Oms 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2ms

FIGURE 7.6: Signal emulating 10ppm to 20ppm capacitance variation due to acceleration
variation.

The performance of a fully differential interface is based on ideally symmetrical conditions,
that is all components in the two channels are matched. However, in any real circuits, there
is some mismatch, which will lead to an overall performance degradation of the circuit. A
precision balanced demodulator AD630 [100] is chosen due to its accuracy and temperature
stability. It works like a precision op-amp with two independent differential input stages
and a precision comparator which is used to select the active front end. The data sheet
shows that AD630 can recover a signal from 100 dB of interfering noise at 1 kHz in a
2MHz channel bandwidth. A Pspice model of the pickoff interface using the AD630 as
the demodulator is shown in Figure 7.7. Figure 7.8 shows the simulation result with the
ideal matching between the two detection channels except 1% mismatch between sensing

capacitors (Cx1 and Cx2).

An analog multiplier can also be used as a demodulator. Figure 7.9 shows a Pspice model
of the pickoff interface circuit using the analog multiplier AD734 [100]. Figure 7.10 shows
the simulation result with ideal matching between the two channels except 1% mismatch

between sensing capacitors (Cx1 and Cx2).
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FIGURE 7.7: Pspice model of the pickoff circuit using the AD630 as a demodulator.
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FIGURE 7.8: Pickoff circuit output with the AD630 as a demodulator.

FIGURE 7.9: Pspice model of the pickoff circuit using the AD734 as a demodulator.
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FIGURE 7.10: Pickoff circuit output with the AD734 as a demodulator.

7.2.3 Diode Demodulator

Diode envelope detectors can also be used as a demodulator. The circuit of such a typical
detector is shown in Figure 7.11. The diode first rectifies the signal to leave only the
positive side of the signal, and then a capacitor removes any of the remaining carrier
frequency components to leave the demodulated signal [101]. Unfortunately, diodes are not
linear and can cause signal distortion. Its noise performance is not particularly good at low
signal levels. Figure 7.12 shows the diode envelope demodulator for the fully differential

capacitive interface.

Rd

FIGURE 7.11: The schematic of a diode envelope detector.
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FIGURE 7.12: Diode envelope demodulation for a fully differential capacitive interface.
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In order to demodulate the AM signal, the time constant R;Cy is chosen so that the sensor

signal with frequency fsgnai is transferred unaffectedly and the carrier feorrier is filtered:

1
fsignat < 2ROy K fearrier (7.3)

The signal is then amplified by an instrumentation amplifier (INA) with gain Grya. The

output voltage can be calculated by Vot = Grva(Va+ — Vz—). Assuming good matching
among components and Ry, > Ry,

Rﬂ? > (Cx+ — Cx—)
Rpp + Rps Cy
2AC,
Cy

Vout = _GINA X < X ‘/ca'r'rier + (Vdiode+ - Vdiode—))

~ _GINA X ( ) X ‘/ca'r'rie'r (74)

where V4. is the forward voltage of a diode. However, there will be some offset when the

two channels don’t match precisely, so offset nulling is needed.

During the demodulation process in one period of the Vigrrier, the diode is reverse biased
about 7/8 part of the period and forward biased about 1/8 part of the period [96]. When
the diode is reverse biased, both the signal and the noise of the pickoff preamplifier are not
transferred by the demodulator due to the high resistance of the diode (7giode & 00). When
the diode is forward biased, both the signal and the noise of the pickoff preamplifier are
transferred by the demodulator due to the very low resistance of the diode (rgioqe = 0). A
Pspice model using the diode envelope as the demodulator is shown in Figure 7.13. Fig-
ure 7.14 shows the simulation result with ideal matching between the two channels except
1% mismatch between sensing capacitors (Cx1 and Cx2). Compared with the other sim-
ulations, it can be seen that for a carrier frequency of 1MHz, using the diode envelope as
demodulator can achieve a better linearity than with the components AD630 and bigger
output amplitude than with the components AD734. The reason might be that the band-
width of the AD630 is not suitable for demodulating a carrier of 1MHz, and AD734 has a
20dB gain loss due to its design. Although using discrete analog switches and a comparator
to build a phase-sensitive demodulator is good solution, the diode envelope was adopted as

the demodulator in the PCB prototype due to very simple implementation.

7.2.4 Force Feedback Schemes

The capacitors formed by the electrodes around the proof mass of the sensing element are
used for readout and force feedback. There are, in principle, two possible configurations: a)
spatial multiplexing as shown in Figure 7.15(a), which use two separate sets of capacitors
for readout and force feedback; b) time multiplexing as shown in Figure 7.15(b), which
share the same capacitors but a fraction of a cycle is used for readout, the remaining time

for force feedback. The advantage of time multiplexing is higher signal amplitude, but
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FIGURE 7.13: Pspice model using a diode envelope as demodulator.
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FIGURE 7.14: Pickoff output with a diode envelope as demodulator.

it will increase the requirement for circuit frequency response. The advantage of spatial
multiplexing is low requirement for circuit frequency response and common mode rejection,
but the signal amplitude will be reduced. In the PCB prototype, a spatial multiplexing
strategy is applied and the connection between the electrode of the sensing element and
surrounding circuits is shown in Figure 7.16. To avoid any feedback cross-talk effect on the
sensor output, there is the need to disconnect the feedback signal from the sensing element
during the readout phase. Figure 7.17 shows the control sequence using a GAL6001B. In
fact, there are two separate DAC in a high-order electromechanical AM: a) one DAC for
the conversion from a feedback voltage to an electrostatic force on the proof mass, which is
called electromechanical DAC; b) another DAC for the electronic feedback to the electronic
YAM loop filter. In Figure 7.17, analog switches S1, S2, S3 and S4 are low-active switches
for force feedback on the proof mass. In fact, the electromechanical DAC with the timing
control is a RT'Z DAC. Analog switches S5, S6 and S7 perform a RTZ DAC. INA is the
output bitstream and CLKO is the sampling clock with a frequency of 125 kHz, equivalent
to an OSR of 62.5 in a 1kHz signal bandwidth. CLK (2MHz) is the main source clock of
all other clocks. The ratio of the feedback time to the pickoff cycle is 75%; this leaves 2us

for the sensing phase.
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FIGURE 7.15: Capacitor electrode arrangement for force feedback.
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FIGURE 7.16: Connection diagram between the electrodes and surrounding circuits.
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FIGURE 7.17: Timing diagram of the control signals for the analog switches of the two
DACs.

To reduce the complexity of a PCB prototype, a simple multi-feedback topology is adopted.
The input is a 1 kHz, 1V sinusoidal signal. Figure 7.18 shows the Pspice simulation of the
output spectrum in a fifth-order CT electromechanical XAM using single-ended circuits;
the lower curve is with a hanning window, the other without any windowing. The noise
floor is 200V, which corresponds to a SNR, of 74dB.
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FIGURE 7.18: Pspice simulation: output spectrum of a fifth-order CT electromechanical
Y AM using single-ended circuits: the pink solid line is without windowing, while the blue
line is with Hanning window.

7.3 First PCB Prototype Experimental Results

The system power supply is 29V volts for the analog circuits and +5V for the digital
circuits. The force feedback voltage level is set to 1.5V, while the reference voltage of
the DAC for purely electronic ZAM is set to 2.5V. The layout principle of the PCB is
symmetrical. Most of the components on the four-layer PCB are in SMT packages as shown
in Figure 7.19. Appendix 2 shows the schematic of the PCB board. The analog ground
and digital ground are connected at the quantizer with a magnet bead. The symmetry of
the two detection channels is very important, so the components selected for differential
sensing element are all packaged in dual units. The two diodes used for demodulation are
Schottky diodes with a forward voltage, Vioqe=0.25V. After the power supply is switched
on, component tuning is critical to get well-matched differential channels. Referring to
Figure 7.12, the carrier is turned on, and the two integrating capacitors Cy are adjusted so

that V., and V,._ are equal to -Vigrrier and Vi, are equal to O.

FIGURE 7.19: PCB of a fifth-order electromechanical EAM.
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The test environment is illustrated in Figure 7.20. The PCB has been mounted onto a
permanent magnet vibration system manufactured by Ling Dynamic System (model V201).
Its frequency band operates from dc up to 13 kHz with an input impedance of 6 ohm. The
shaker is powered by an audio power amplifier (model Cambridge A1MK3) and a HP 3312A
arbitrary waveform generator. A reference accelerometer ADX 103 manufactured by Analog
Device is soldered on the same PCB board with the sensor to monitor the loop performance.
Both R9211B servo analyzer (ADVENTEST) and Marconi 2382/2380 spectrum analyzer
are used to measure the spectrum of the output bitstream. Attention should be paid to the
impedance matching between the output of the loop and the input of spectrum analyzer.
Data acquisition is also performed using a PCI-DIO-32HS card with LabView [102]. Output
bitstream I /N A is continuously acquired from a digital input channel. The acquisition rate
is controlled by (CLKO). After post-processing with MatLab, the frequency spectrum of
the serial bitstream can be obtained.

National Instrument
F’C_I-DIO~32HS TEK TDS2000

AVENTEST R9211B
FFT Servo Analyzer

Marconi Spectrum Analyzer
Signal Generator 2382/2380
HP3312A |

)
L cemesavysrresTTe

ey peee —
— E\' Shaker BvT
[ ] LDS V201 |

Cambridge Audio
Amplifier almk3

FI1GURE 7.20: Prototype test environment.

The order of the XAM on this PCB prototype can easily be chosen from second-order to
fifth-order by switching on/off the setting jumper. Figure 7.21 shows a series of spectra
of the quantizer output bitstream measured by the ADVANTEST R9211B FFT servo
analyzer: (a). second-order noise floor; (b). second-order with 0.1g 1kHz sinusoidal input;
(c). third-order noise floor; (d). third-order with 0.1g 1kHz sinusoidal input; (e). fourth-
order noise floor; (f). fourth-order with 0.1g 1kHz sinusoidal input; (g). fifth-order noise
floor; (h). fifth-order with 0.1g 1kHz sinusoidal input. The maximum SNR of the prototype
is about 70dB, which is 20dB below the theoretical simulation due to the electronic noise
dominating in the signal band. Moreover, there is little difference between the fourth-
order loop and the fifth-order loop, however, as discussed in Chapter 2.4, the spectrum
slope of the measurement results are nearly 80dB/decade and 100dB/decade, respectively,
which denotes that the control systems are a fourth-order XAM and a fifth-order XAM,
respectively. In order to further reduce the electronic noise in the signal band, a second
PCB prototype was motivated to implement using a fully differential circuit topology. It
consists of a fully differential pickoff and a fully differential continuous-time ZAM.
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FIGURE 7.21: Spectrum of the output bitstream measured by ADVANTEST R9211B FFT
servo analyzer for high-order electromechanical ZAM.
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7.4 Second PCB Prototype Experimental Results

The second PCB prototype is based on fully differential circuits. In a fully differential
circuit, even though V.4 and V,_ may have different rising and falling slopes, the rising
and falling edges of the differential signal V,4q=V,, — V,_ are intrinsically symmetrical, as
illustrated in Figure 7.22. Therefore, a fully differential circuit can get rid of inter-symbol
effect on a XAM [87]. To reduce the complexity of the second version PCB, the simple

multi-feedback topology is used again.

X+

FIGURE 7.22: Inter-symbol effect on a fully differential CT ZAM.

Figure 7.23 shows the Pspice simulation of the output spectrum in a fifth-order CT elec-
tromechanical XAM using fully differential circuits. The noise floor is below 50pV, while
the noise floor of single-ended circuits (Figure 7.18) is about 0.5mV. The whole schematic
of the fifth-order electromechanical ZAM is attached in Appendix 3. The simulation results
are shown in Figure 7.24. The loop output noise floor is shown in Figure 7.24(a), while
Figure 7.24(b) shows the output spectrum in response to a 0.1g, 1kHz sinusoidal input
acceleration. Using the same test environment (Figure 7.20), the experimental results are
shown in Figure 7.25. The output spectrum corresponds to a SNR of 90dB, in response to a
1kHz and 0.1g sinusoidal input acceleration. This is a considerable improvement compared
with the first version single-ended circuits. These two pictures are only available after the
Southampton fire. It can be seen that a dc component appears in the spectrum, which
comes from a small offset from circuit blocks located after the demodulator and lowpass
filter. Comparing Figure 7.25 with Figure 7.24, it can be seen the experimental results
agree well with the simulation. Alternatively, as discussed in Chapter 2.4, it can be clearly
seen that both the spectrum slope of the measurement results are 100dB/decade, which
indicates that the control system is a fifth-order AM. These experimental results are pre-
liminary due to the fabricated sensors were destroyed by the Southampton University fire.
The noise floor is still little higher than expected due to the performance limitation of the
sensor used for the prototype. Although spectrum averaging [23] can further reduce the
noise floor and thus the harmonic distortion can be clearly shown, this is not available due

to the performance limitation of the spectrum analyzer used in the project.
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FIGURE 7.23: Pspice simulation: output spectrum of a fifth-order CT electromechanical
Y AM using fully differential circuits.

7.5 Summary

A CT high-order electromechanical ZAM can get a similar performance as that of a DT
high-order electromechanical ¥AM using the same topology and gain coefficients. The extra
loop delay is not a significant problem for a control system using a high-order 2AM if the
sampling frequency is relatively low. Front-end circuits are analyzed, including the pickoff
circuit and three demodulation circuits. Using available commercial components, a diode
envelope was chosen to demodulate the 1MHz carrier signal in a PCB prototype. A CT
fifth-order electromechanical SAM was used for the PCB prototypes. Due to using a single-
ended circuit topology, the experimental results of the first PCB prototype showed a SNR
of about 70dB. While in the second PCB prototype, a fully differential circuit topology was
adopted, measurements indicate that a SNR of 90dB in a 1kHz signal band was achieved.
This measurement result agrees well with simulations of the fifth-order electromechanical
SAM.
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FIGURE 7.24: Simulations: spectrum of the output bitstream of the fifth-order electrome-
chanical ZAM (2nd version).
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FIGURE 7.25: The spectrum of the output bitstream measured by ADVANTEST R9211B
FFT servo analyzer for the fifth-order electromechanical SAM (2nd version).
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Chapter 8

Microfabrication of A Prototype
Accelerometer

8.1 Motivation

As the simulations done in Chapter 4 and the requirements for navigation/guidance applica-
tions, a very high performance sensing element is required to validate the design methodol-
ogy of a high-order electromechanical YAM. Quantization noise as discussed in 4.3, should
have considerably lower noise floor than mechanical noise and electronic noise. In order
to get a very large dynamic range (for example 100dB) of the control system, the critical
parameter of the sensing element is the mechanical noise floor, which should be below 1ug/
VHz in a 1kHz bandwidth (for a full-scale input +2g). However, there is no such high per-
formance device commercially available. Another important issue for the control system
using an electromechanical ©AM is high-order parasitic mechanical modes [10]. The sensing
element is usually modeled as an ideal second-order mass-spring-damper system, which is
characterized by a single resonant frequency. In fact, the dynamics of comb electrodes and
springs result in high-order parasitic resonant frequencies. As investigated by Seeger [103],
the parasitic modes should be above fs/4 (fs the sampling frequency of the quantizer) so
that the mechanical sensing element acting as a noise-shaping filter does not disturb the
operation of an electromechanical AM. Comb electrodes of a sensing element should be
designed with short and therefore rigid finger electrodes. This leads to very high parasitic
resonant frequencies, well above any frequencies of the feedback signal that potentially
could excite the sense fingers and thus degrade the SQNR. A fully-differential structure of
the sensor also helps to cancel microfabrication mismatches to first order. Additionally, to
achieve a similar performance, the sampling frequency in a high-order electromechanical
Y. AM is much lower than that of a second-order loop, thus high-order loops have relatively
higher immunity to the high-order parasitic modes of a sensing element than a second-
order loop. Therefore, a high performance MEMS accelerometer is needed with the specific

characteristics as discussed above.
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8.2 Sensing Element Design and Analysis

8.2.1 Fully Differential Structure

A lateral single-axis accelerometer is designed with a fully differential structure. Figure 8.1

shows a schematic diagram of the fully differential sensing element.
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Comb-fingers

Fixed electrode Vout-

FIGURE 8.1: Schematic diagram of an accelerometer with a fully differential structure.

The fully differential accelerometer has two sets of capacitors (C,1 and Cp1, Co2 and Cha)
connected in series. The capacitor C,1 and Cp; have a nominal gap di of =3um while Cpa
and Cp2 have a gap of do =30 um. An excitation voltage is applied to the common electrode
- the proof mass, while the fixed electrodes are connected to two pickoff preamplifiers. The
electrostatic force caused by the excitation voltage acts on the proof mass in symmetrically
balanced directions and thus its effect is negligible. The layout is shown in Figure 8.2. The

nominal capacitances at zero acceleration are calculated by:

Ax:
Ca1 = Cb1 = Nfingers -eo$ = 1800 x 8.85 x 10712 x 60 x 107 x (60/3) = 19.12pF

A .
Ca2 = Cha = Nfingers -60% = 1800 x 8.85 x 10712 x 60 x 1075 x (60/30) = 1.912pF

2
It should be noted that the sensing capacitors Cp; and Cp1, Ca2 and Cpy are in opposite
arrangement, hence the capacitance changes in opposite direction when acceleration is

applied.
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FIGURE 8.2: Layout of a fully differential microaccelerometer.

8.2.2 Spring Design

In order to design highly sensitive accelerometer, accurate predictions of the mechanical
spring constant are needed. For simple suspensions the linear or first order, mechanical
spring constant may be derived from basic beam bending equations relating deflection to
loading. Under typical mechanical deflections experienced by accelerometers, this approxi-
mation of linear bending is appropriate. A folded beam structure is chosen for the spring
design of this single-axis accelerometer, which has two folded beam springs, one on each

side. The total spring constant of the microacclerometer is given by [53]:

24FE] 2FEtW3

== T (8.1)
24EI, 2E8W

2= 2 = E (8.2)

where E = 1.65 x 101'N/m? is the Young’s modulus, | represents the beam length, W
the beam width and ¢ the beam thickness. Figure 8.3 shows the structure of the spring,
for the beam length [=800um, thickness t=60pm, and width W=>5um, the spring stiffness
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ky=4.95 N/m is calculated by Equation 8.1. AutoSpring solver is the spring constant
extractor of CoventorWare, which allows the extraction of multi-dimensional, non-linear
spring behaviourfrom complex tether designs. The simulation shown in Figure 8.4 is done
from first-order to fourth-order. In the range of deflection -1um to +1um, the stiffness
constant is 1.25 N/m for one of four parallel springs, so the total K, is 4 x 1.25=5 N/m,

which agrees well with the analytical result.

S00pm

FIGURE 8.3: Structure of the spring (1/4).

Gnuplot

FIGURE 8.4: Mechanical spring simulated using the AutoSpring solver (CoventorWare).

8.2.3 Damping Optimization

The damping in a micromachined sensing element consists of both structural damping and
viscous flow of gas within the structure region [104]. Since at typical operating pressures
the structural damping component is orders of magnitude lower than gas damping, it can be
ignored. The gas damping of a micro sensing element can be classified into a component due
to Couette flow and a component due to squeeze-film damping. Couette flow is a viscous
flow, which occurs when two plates slide parallel to each other under zero pressure gradients.

An example of Couette flow may be found between the proof mass and the substrate during
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motion of the proof mass. Typically this Couette force is an order of magnitude smaller
than squeeze-film forces, and in many designs may be neglected. Squeeze-film damping
occurs when the gap between two closely spaced parallel surfaces changes, it determines
the dynamic behaviourof a micromachined sensing element. In the case of a rectangular
plate (L x W, W < L), the linearized Reynolds equation can be applied, the squeeze

number, representing the compressibility of the squeeze film, is defined as [105]:

_ 12pepL*W

8.
Pol? (83)

B

where pief ¢ is the air effective dynamic viscosity and will be defined below, L is the length of
the rectangular plate, w is the width, P, the ambient pressure, hg the mean film thickness

and w the oscillation frequency of the mass. The effective viscosity is defined as:

u
Py 1.159 (8.4)
149.638 (FK,J

where £ is the air dynamic viscosity, and the second term of the denominator is the cor-

Heff =

rection term as function of the pressure (P is normalized pressure) and Knudsen number
K,. For large plates and thin gaps (i.e., 8 > 0), the gas acts as a compressible fluid since
viscous effects at the plate edges trap air between the plates, the fluid does not move in re-
sponse to the motion of the mass, but behaves as a spring. Small plates and wide gaps (i.e.,
8 =~ 0) permit lateral motion of the gas, so the gas approximates incompressible viscous
flow. Assuming ambient pressure at the edges (the edge boundary condition) the linearized
Reynolds equation can be solved analytically for plates [106]. The damping coefficient d,
and spring stiffness k, have been derived by Blech [105] and are provided below:

648y A m? 4+ 12/
Ga = S he > - (8.5)
mimodd (m)2{(m? + n2/e2)? + &
s
w3 2 4 2/02
=0.8—“effh3 L 3 m” +n’/c 2
O minmoda (mn)2((m? +n2/c2)? + )
T
645%Pp A 1
k, = 849" ol ) 6)

mho (mn)2[(m? + n2/c2)? + %i]

where m and n are odd integers and ¢ = W/L, a geometry-dependent parameter.

The comb fingers in conventional capacitive micro accelerometer use long parallel plates as
electrodes. In order to maximize the sensitivity of a capacitive accelerometer, the overlap
length of comb fingers has to be kept long enough. However, the damping coeflicient is very
large and for high precision applications the sensors need vacuum packaging to lower the
damping and to minimize the mechanical noise floor. There is a design trade-off between
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the sensitivity and mechanical noise. From Equation 8.5, the relationship between the
damping coefficient and the overlap length of comb fingers is cubic, or d, o< W (L/ho)?,
squeeze film damping optimization can be realized by reducing the comb finger overlap area
and increasing the number of parallel comb fingers to preserve the capacitance. For the
design with W=60um, L=60um, c=1, the damping coeflicient of the 1800 pair electrodes

can be derived using Equation 8.5 as following:

2 27,2 2 2
m°+n 2
C_ ~ 7+ 5 — gy = 0522 (8.7)
mnzodd (mn)2[(m? +n?/c2)? + &) © ‘
m

Considering at standard atmospheric pressure (0.1013 MPa or latm) and temperature 300K
(27°), the dynamic viscosity of air is u = 1.86 x 107° Kg/(m-s), therefore

Lefs = 0.895 x 1.86 x 1075 Kg/(mxs),
do = (1800) x 0.8 X 0.895 x 1.86 x 1075 x 60 x 107 x (60/3)* x 0.522 = 6.007 x 10~ (N /m/s)

The MemDamping simulation of CoventorWare analyzes the frequency-dependent damp-
ing and spring characteristics of thin films of gas. Figure 8.5 shows a graph plotting the
damping coefficient of 1800 pair comb fingers (each width 60um, overlap length 70um) as
a function of frequency for the sensing element. The analytical result above matches well
with the simulation for low frequencies. Additionally, both the analytical calculation by

Equation 8.6 and simulation show the spring stiffness k, are so small that can be neglected.

e R A ampingiCostidentini i na T i B
File Tracas PRxis ﬂ] E‘_J m “ﬂ]
Darping Coefficient  Squeeze Film Damping Control
5.5%-003.
5,866-003 |
§,826-003 %
5,78E-003
E5.746003
§ Gap Do=3um
5, 70£-003 Height W=60um
@Danping Coeffictent (N/{n/s})
- Overlap Length L=80um e crens TVIwE
Finger Number N=1800
5,626-003
£,586-003 L
5,546~003
8O 3000 1.45E000 2.63£000 3, 935000 5.17E000
log{Frequencyttz))
Close

FIGURE 8.5: Squeeze-film damping simulated using the MemDamping Solver.
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8.2.4 Modal Analysis

A modal analysis calculation computes the natural resonant frequencies of a mechanical
structure at equilibrium, which define the frequency response of a sensing element. The
system transfer function theoretically becomes infinite at the resonant frequency. These
frequencies and their associated mode shapes represent the overall deformation of the me-
chanical structure oscillating at the modal frequency. The modal frequencies and shapes
of a finite-element model can be calculated and visualized in CoventorWare through the
MemMech solver. Because the modal analysis is performed on an undamped system, the
amplitudes of these mode shapes do not indicate the actual amplitudes of the structure’s
motion and are thus normalized to a maximum deflection of 1 um. The first mode is along
the sensitive y-axis as shown in Figure 8.6, the resonant frequency is 323Hz. While the
analytical result of the first mode is:

1 [ky 1 5N/m

= — 21" = 325H (8.8)

fo or\/ 12 x 10-5Kg

" 2Vm

Figure 8.7 shows the second mode along x-axis, and its resonant frequency of 3.01kHz.
Figure 8.8 shows the third mode along z-axis, and its resonant frequency of 3.96kHz. These
modal frequencies are much larger than the first mode, resulting in low cross-axis sensitivity

as expected.

Modal Analysis

FIGURE 8.6: Modal analysis: mode=1, resonant frequency 323Hz.
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Modal Analysas
Mode

Frequency 3. O1KHz

FIGURE 8.7: Modal analysis: mode=2, resonant frequency 3.01kHz.

Modal Analy=1s
Mode 3

Frequency 3. 96Kz

FIGURE 8.8: Modal analysis: mode=3, resonant frequency 3.96kHz.
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8.2.5 Sensitivity and TNEA

The cross axis sensitivity is evaluated by specifying forces based body acceleration in X, Y
and Z direction. From the displacement, the cross axis sensitivities for X-axis with respect

to Y-axis can be calculated using the following equation [42]:

gov _ Bay/ay _ Azig/(Bzag — Azag) (8.9)
= Aay/a Ay1e/(Dyzg — Aylg)

where a, = Ez# and ay = E# To determine the cross axis sensitivity, a two-stage
simulation is performed by the MemMech solver of CoventorWare. First, 1g acceleration is
applied both on the sense axis (y-axis) and the x-axis, simultaneously. Next, 2g acceleration
is applied on x-axis while maintaining the lg acceleration on y-axis. Figure 8.9(a) and
Figure 8.9(b) show the deflections under these conditions. Using the similar conditions on y-
axis and z-axis, Figure 8.9(c) and Figure 8.9(d) show the deflections under such conditions.
Cross axis sensitivity for x- and z-axes are calculated using the equation above to be -70dB

and -77dB, respectively.

The total static capacitance can be calculated by the MemCap of CoventorWare, which
is the electrostatic solver that computes a charge matrix based on voltage conditions or a
voltage matrix based on charge conditions, including the electric behaviourof lossy media.
Figure 8.10 shows the capacitance of one array consisting 30 pair electrodes including fringe
effects, the total static capacitance of 1800 pair electrodes is 60 x 4.721 = 28.32 pF, while

analytic capacitance without fringe effects results in 21.03pF.

The static sensitivity of the accelerometer can be expressed as:

dc de dx eyA 1 g X AXxm 9.8 xm
Szﬁzd—xxgzd—gxw_%:w: kadO(pF/g) (8.10)
where £9=8.85e-12 is the permittivity of vacuum, A is the sensing area, m (1.2mg) the
mass of the proof mass, k (4.95 N/m) the spring constant, and dy (3 m) the gap between
electrodes. The structure has a very high sensitivity S=16.5 pF/g. The mechanical qual-
ity factor is calculated using Equation 2.4 to be 0.408, and the thermal noise equivalent
acceleration (TNEA) can be calculated using Equation 2.11 to be 0.85 ugv/Hz. Table 8.1

summarizes the parameters of the high-performance micro accelerometer.
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mechDomain

File Help Y-1g/X-1g Acceleration Displacement
mechDomain Max imum Minimum l
Node Displacement 2,426113€-07 0.00

Node X Displacement

1,638513E-09

~6.074893E-10

Node Y Displacement

2,426076E-07

—-9,426409E-13

Nade Z Displacement

2.116312E-11

-2.116201E-11

Close

(a) input Y-1g/X-1g acceleration

mechDomain

File Help Y-1g/X-2g Acceleration Displacement
mechDomain Hax1mum Hininum
Node  Displacement 2.426778E-07 0,00

Node X Displacement

2,717913E-09

-6,4993298E-10

Node Y Displacement

2,426631E-07

-9,663010E-13

Node Z Displacement

2,214204E-11

-2.214093E-11

Close

(b) input Y-1g/X-2g acceleration

File Help Y-1g/Z-1g Acceleration Displacement
mechDomain I'Iaxinﬁm Minimum
Node Displacement 2.426015E-07 0.00

Node X Displacement

6.316478E-10

-6.316489E-10

Node Y Displacement

2,425865E-07

-1,621867E-12

Node Z Displacement

3.00281E6E-08

-7.011384E-12

Close l

File Help

(¢) input Y-1g/Z-1g acceleration

on Displacemen

t

mechDomain Minimun
Node Displacement 2.426877E-07 0.00
Node X Displacement 6.866062€~10 -6.866073E-10
Nade Y Displacement 2.426202E-07 —2.638840E-12
Node Z Displacement [ 6.0063556-09 -2.286734E-14

Close I

(d) input Y-1g/Z-2g acceleration

FIGURE 8.9: Cross sensitivity analysis, output displacement response to: (a) input Y-
1g/X-1g acceleration; (b) input Y-1g/X-2g acceleration; {c)input Y-1g/Z-1g acceleration;
(d) input Y-1g/Z-2g acceleration.
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Capacitance (pF)
File Help  One Array Capacitance including Fringe Effects

 Capacitance (pF) Lager1_1_1 Lager!_1_2
Lagerl 11 N 4,721007E-0L =4, 72100701
Layer1_1_2 =4, 721007E-01 4,721007E-01

FIGURE 8.10: Capacitance including fringe effects (one array comb fingers=30).

' Parameter | Value Unit Name
m 1.2 mg Mass of Proof Mass
ky 5 N/m Spring Stiffness
b 0.006 Ns/m Damping Coefficient
t 60 um Thickness of Proof Mass
L 70 um Length of Comb Fingers (overlap 60um)
w 5 pm Width of Comb Fingers
N 1800 Number of Comb Fingers
do 3 um Sensing Gap Distance
fo 325 Hz Resonant Frequency(0.6% error from the MemMech solver)
Q 0.41 Quality Factor
kzy -70 dB Cross Axis sensitivity (X-Y')
kay 77 dB Cross Awis Sensitivity (Z-Y)
s 21.03 pF Static Sensing Capacitance
S 16.5 pF/g Static Sensitivity
TNEA 0.85 | ug/vVHz Mechanical Noise

TABLE 8.1: Parameters of the ug micro-accelerometer

8.3 Fabrication Process

8.3.1 Silicon on Glass (SOG)

Fabricating the accelerometer using a silicon-on-glass process results in a low parasitic
capacitance between the proof mass and the bottom nonconductive glass substrate. Fur-
thermore, it is free of shear damping. By combining DRIE and anodic bonding, a large
proof mass and very low stress can be achieved using single-crystalline bulk silicon. The
residual stress is greatly removed compared with a poly-silicon surface micromachined pro-
cess. The fabrication process is illustrated in Figure 8.11. The wafer parameters used in
this process is summarized in Table 8.2. It requires three masks: the first is the recess mask
for the Pyrex glass, the second is the structure mask, and the last is the metal contact pads
for wiring. The fabricated sensor is shown in Figure 8.12(a). A local close-up view of parts
of the electrode area and parts of the spring structure is shown in in Figure 8.12(b). The
anodic bonding is shown in Figure 8.13. All these SEM pictures are preliminary fabrication
results, the process was interrupted due to the Southampton University fire. The details of

the fabrication process steps are described below:
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(a) Standard 500um Pyrex glass (b) Wet etching 10um recesses on Pyrex glass

(c) 1pm conductive layer (ITO) shielding to prevent mi- (d) Thin 380um silicon wafer
croloading effect

(e) Anodic bonding the silicon wafer with the glass (f) CMP the silicon wafer to 60um

(g) Structure patterned using DRIE (h) Metal evaporation to form the metal contacts for
wiring package

FI1GURE 8.11: SOG fabrication process for the high performance accelerometer.

Size: 150mm
Type: N
Orientation: < 100 >
Resistivity: 0—0.1 Q- em

Layer Name Thickness | Polished
Silicon Layer 380um yes
Pyrex 7740 Glass Layer 500um N/A

TABLE 8.2: Wafer parameters of the SOG process.

1. The process uses a standard 7740 Pyrex glass (thickness 500um).

2. Glass recesses are etched 10um deep using wet chemicals. The recess is located

underneath the moving proof mass.

3. A 1pm conductive shielding layer is deposited on the glass recess area to prevent the
microloading effects during DRIE. Microloading effect [107] is due to the different
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etching rates for different high aspect ratio gaps. Without the conductive film the

proof mass structure will have a non-uniform profile, especially for the thin fingers.
4. A thin 380um silicon wafer is used for the structure.

5. Anodic bonding the silicon wafer with the standard Pyrex 7740 glass. Bonding volt-

age, temperature and time are 850V, 350°C and 120 mins, respectively.
6. A chemical mechanical polishing (CMP) process to thin the silicon wafer to 60um.
7. Silicon etching using DRIE (aspect ratio 20:1) to form the accelerometer structure.

8. Metal evaporation deposits metal to form contact pads for electrical wiring.

(a) A part of the electrode area

EHT = 20.00 kV Date :4 Dec 2003
Mag= 329X Time :12:15:16

10 TR D NS G ARG S T AT AR I

(b) A close-up view of part of the electrode area and part of the spring
structure

FIGURE 8.12: SEM pictures of the fabricated sensor.
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Signal A = SE1 Data :8 Aug 2004
EHT=2000kv  WD= 12mm Photo No. = 1528 Time :16:10:10

FIGURE 8.13: Anodic bonding (silicon wafer to Pyrex 7740 glass).
8.3.2 Silicon on Insulator (SOI)

In parallel, the sensor is also fabricated using SOI wafers. The specifications of the SOI

wafer is shown in Table 8.3.

Size: 150mm
Type: N
Orientation: < 100 >
Resistivity: 0— 0.1 Q-cm

Layer Name | Thickness | Polished
Device Layer 50um yes
Oxide Layer 3um N/A
Handle Layer 600um yes

TABLE 8.3: Wafer parameters of the SOI process

The minimum capacitor gap of the structure is also 3um. There are two masks (Front-side,
Back-side) of the sensing element. Two plasma-etching steps and one wet-etching step are

used. The fabrication process steps are shown in Figure 8.14 and described below:

1. DS-D0: Using the backside mask, a 20um thick photoresist (SPR220-7) is patterned.
The silicon under the proof mass is first removed from the backside of the wafer.
Etching the handle silicon layer (600um) all the way to the buried oxide layer using
ICP DRIE for 200 minutes (etch rate 3um/min).

2. DS-DO0: Then, the wafer is flipped. The front-side mask is patterned and aligned to
alignment marks on the backside. A 2.2um thick photoresist (SPR518) is used. The
top layer is etched all the way through the thickness of the 50um silicon device layer
using ICP DRIE for 20 minutes (etching rate 3um/min).
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Si

(a) Back side silicon DRIE etching

capacitor

proof mass
electrodes

anchors

springs
(b) Front side silicon DRIE etching

(c) Buried oxide etching and structure releasing

FIGURE 8.14: SOI fabrication process of the high performance accelerometer.

3. WH-E1: Strip 3um SiOs buried oxide layer from wafer using 7:1 BHF wet etching.

4. ME-0X: Evaporating pure Al lum to form the wire pads for connecting electrodes to

a IC package.

To get a successfully fabricated sensor using DRIE, it is necessary to use the features to
get a uniform etching rate across the structure. The two fabrication processes were close
to complete in the cleanroom facilities at the University of Southampton. However, due to
the Southampton University fire last October, the cleanroom was destroyed, and thus the

two fabrication processes were lost. However, the processes were re-started this February

in Eindhoven. Concurrently, the device is also under fabrication in USA.
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8.4 Summary

An accelerometer using a fully differential structure is designed. A large number of comb-
fingers (1800) are used as sensing capacitors with short and therefore rigid finger electrodes.
This arrangement leads to very high modal frequencies of the sensing element, which should
be above fs/4 for the operation of an electromechanical SAM. The parameters (including
the spring stiffness and damping coefficient) obtained using the CoventorWare simulation
agree well with the analytical results. The sensor has a low mechanical noise floor, which
is below a 1ug/v/Hz. The fabrication steps using a SOG process and a SOI process are

given, and some preliminary fabrication results are shown.
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Chapter 9

Conclusions

9.1 Conclusions

This work presents a design methodology of the control system for capacitive micromachined
inertial sensors with a high-order single loop ¥AM. By introducing electronic resonators,
which generates complex pairs of zeros in the signal band, the QNTF’s in-band mean value
is further reduced which suppresses the total in-band quantization noise. Compared with a
MF topology, a FF topology is suitable for low-voltage and low power applications due to
its low integrator output swing. Monte-Carlo analysis on the sensitivity due to fabrication
tolerances, including the sensing element and circuits, verified that a single loop ZAM has
a better immunity to fabrication tolerances than a MASH 3 AM. For high performance
inertial sensors embedded in high-order £AM, non-linear one-bit force feedback on the
proof mass results in harmonic distortion in the signal bandwidth and thus reduces the
SNDR. Using a displacement dependent feedback, a linearization scheme was put forward
and the harmonic distortion is considerably suppressed. Although the pickoff stage still
introduces non-linear effects (and thus a harmonic distortion in the signal bandwidth),
its magnitude is relatively small. The noise components at different stages of the high-
order electromechanical XAM were analyzed, and electronic noise suppression at the pickoff
stage was proposed based on the analysis. The mechanical quality factor @ of a sensing
element also determines the different noise shaping properties. Electronic noise is not always
detrimental in a AM, as it can behave as dithering to improve the linearity. In high-order
electromechanical YAMs, dead-zone and idle tones were greatly alleviated compared with

a second-order XAM.

For a micromachined vibratory gyroscopes, the sensing element is usually designed with a
high quality factor Q, and hence can be treated as a resonator. Closed-loop sensors using
a high-order bandpass XAM as the control system have advantages over using a lowpass
L AM. Compared with a second-order AM loop, it provides much superior quantization
noise shaping, which makes the quantization noise no longer the dominant noise source

and further alleviates idle tones. Compared with a control system based on a high-order
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lowpass ©AM, a high-order bandpass ¥AM reduces the sampling frequency by about two
orders of magnitude and has a wider and flat signal transfer function in the frequency
range of interest. Two novel topologies of an eighth-order, bandpass XAM are discussed
and achieve a SNR ratio of about 100dB for typical parameter values for a micromachined

sensing element and state-of-the art electronic components.

To get good resolution and linearity of capacitance variations, three demodulation methods
were simulated. With available components, the diode envelope demodulation had the best
performance. A prototype of a CT fifth-order electromechanical ¥AM was built using SMT
components in a six-layer PCB. The special issues in continuous-time X AM were addressed,
including clock jitter, inter-symbol effects and excess loop delay. The performance of the
prototype with fully differential circuits was measured in real time by spectrum analyzers.
The SNR of the prototype is about 90dB in a 1kHz signal band with a sampling frequency
of 125kHz. These experimental results are preliminary due to the fabricated sensors were

destroyed by the Southampton University fire.

A high performance micromachined accelerometer was designed with a fully differential
structure. The in-plane sensor has a mechanical noise floor below 1ug/ VHz , static sensi-
tivity 16.5pF /g and a resonant frequency of 325Hz. Detailed FEM analysis were performed
using CoventorWare to design these key parameters of the sensor. The fabrications using
SOG wafers and SOI wafers were re-started after the fire at the University of Southampton.

9.2 Future Work

The goal of this research, in the long term, is to investigate how the performance of inertial
sensors will be improved by incorporating them in a high-order ¥AM. For the future, the

following work should be addressed:

1. Finish the two parallel fabrication processes of the high performance accelerometer us-
ing SOG and SOI wafers. At present, the processes are re-started at Innos-Eindhoven,
and at the same time the fabrication is underway at USA. Once prototypes are avail-
able, the open-loop performance will be tested to get accurate measurement of the

frequency response, including high-order parasitic modal frequencies.

2. An ASIC implementation of a fifth-order ¥AM using the multi-feedback topology
with resonators. The target performance is 120dB (SNR) using a sampling frequency
of 512kHz (equivalent to an OSR of 256 in 1kHz signal bandwidth). This is an EPSRC

project based on the thesis.

3. Investigation of a multi-bit [63] high-order electromechanical XA M. The control sys-
tem as shown in Figure 9.1 preserves the advantage of linearity of a one-bit electro-
static force feedback, gives a better stability margin and higher SQNR. The multi-bit
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quantizer may be implemented by 10~12 bit flash ADC, and the quantization noise
@1 is also shaped by the sensing element. While the electronic filter H(z) can be of
high-order to further reduce the noise Q2 of the one-bit quantization. Moreover, H(z)

and the second quantizer are all in the digital domain, which can be implemented by

a FPGA.
i
Qi) | Q2(2) '
M(z) : l !
Input ' !
Force Loop Filter Kpo 1 ! H() Output i
X@) | Sensing | : _|Analogue ; Electronic| | __| __ Y@ !
Element Interface ! Filter :
- 1 == 1
N-bit 1 1-bit ADC !
Electrostatic Quantizer E E
Force ! )
Feedback ' :
! 1
1-bit DAC | Digital domain |
Kib LU I

FIGURE 9.1: A multi-bit high-order electromechanical ZAM.

4. For a micromachined vibratory gyroscope, the work needs further investigation of the
quadrature bandpass SAM [108], [109] to cancel the quadrature error force due to
fabrication imperfections. To get the correct information of the magnitude and phase
of the quadrature error force, synchronous demodulation in I and @ channels will be
performed, which apply an electrostatic feedback force to cancel the quadrature force
along the sense direction without attenuation of the Coriolis force signal. This will
lead to all digital force feedback on proof mass and also simplify the circuit design

(shown in Figure 9.2).

Electrostatic feedback
Y cortonss force
EE—
E JB oo Bitstream
C 0s ( @ dr lve @
JF corioust Fguaa Front ]
——| Pickoff Drive signal %’
sin(@ T
Position Sense arive! p
Mode 4 B, Bitstream
‘ | .
Quadrature cancellation
Vous Sorce feedback

FIGURE 9.2: An electromechanical ZAM with quadrature force feedback cancellation.

5. Investigate the effects of high-order parasitic modal frequencies of a sensing element,
as shown in Figure 9.3, on the stability and performance of a high-order electrome-
chanical SAM. So far, there is no effective solution to remove their effects only by

electronic compensation techniques [10].
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Bode Diagram

Chapter 9 Conclusions
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FIGURE 9.3: High-order parasitic modal frequencies of a micromachined sensing element.
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Appendix A

MatLab Source Code for the PSD
Simulation

G kok ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok kk kK K ok Rk ok ok ok ok Kk ok ok kK ok kR sk ok kR ok k k ok ok ok ok ko K ko kK ok
% Code is modified based on the work done by P. Malcovati (67] and R. Schreier [29].
% IR R R EEFEEEEEEEEEREEEEEEREREEEEEEEREEEEEEEEREEEEREEREEEREREEREEEIEEESEEEEERESIESEEEIES
clear

t0=clock;

per0=8.85e—-12;

perr=1;

area=6.5e-6 ; %overlap electrode area

nomd=3e—6; % nominal gap

m=9.7e-7;

b=0.2;

k=48.1;

vib=1;

again=1;

cap=le—12;

aaa=vfb/nomd; % linearization factor

%aaa=0; % without linearization

c.decop=2e—6; % represents the decop capacitor of the charge amp circuit
k_of_fb=0.5« (perOxperrrareaxvtb~2)/((nomd) “2); % electrostatic feedback
enoise=10e-9; % input—referred white electronic noise PSD

% A A KA A KA A AR A A A A A A A AR A A A AR A AN AN AR AN AAAA AN AKA A AT AR A KA NAAR A A A A A RA AN A XA TR IR AT A H A AN
bw=1024; % signal bandwidth

R=64; % OSR

Fs=R«#2xbw; % Oversampling frequency

Ts=1/Fs;

Tss=Ts;

N=128+1024; % FFT samples number

nper=128;

Input signal frequency (Fin = nper+Fs/N)
Input signal amplitude (V]

Qo

Fin=nper«Fs/N;
Ampl=0.5-pi/256;
Ntransient=128;
delay=0.01%Ts;
desv=1le—4xTs;
z20=0.9;

o°
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Appendix A MatLab Source Code for the PSD Simulation

% KT/C noise and op—amp non—idealities
echo on;
Cf=5e—-12; % Integrating Capacitance of the first integrator

o°

alfa=(le3—1)/1e3;

9.

% alfa=1;

Amax=1.35; % Op—amp saturation value [V]

sr=1e6; % Op—amp slew rate [V/s]

GBW=5e6; % Op—amp GBW [Hz]

noisel=10e—6; % lst int. output noise std. dev. [V/sqrt (Hz))
a=10e-9; % Random Sampling jitter (std. dev.) [s] (Boser, Wooley JSSC Dec.
echo off;

Vref=1;

finrad=Fin«*2+pi; % Input signal frequency in radians
sO=sprintf ('++ Simulation Parameters =x=');

sl=sprintf (' Fs(Hz)=%1.0f',Fs);

s2=sprintf (' Ts(s)=%1.6e',Ts);

s3=sprintf (' Fin{(Hz)=%1.4f',Fin);

sd4=sprintf (' BW(Hz)=%1.0f"',bw);

sS=sprintf (' OSR=%1.0f',R});

s6=sprintf (' Npoints=%1.0f"',N);

s7=sprintf (' tsim(sec)=%1.3f',N/Fs);

s8=sprintf (' Nperiods=%1.3f',N«Fin/Fs);

disp(s0)

disp(sl)

disp(s2)

disp (s3)

disp (s4)

disp (s5)

disp (s6)

disp(s7)

disp(s8)

hkkhkhhkhkhkhAhkAkhhAh A A A A hA A A A A A AR XA A KA A AA T A A AAA A A A A A A d T A H A A AR A AR AR A KA T Ak ok ok k kK

Open Simulink diagrem first

hhkkkhkhk kR Ak kAT w kb A A A A AT A I A A AT AR AT AT ARARAA A AN A A AR A Ak hkwhk ok kR ok kA &k d ohk bk ok k

o0 oo o

for span=1:50,
sim('SIMULINK MODEL', (N+Ntransient)/Fs); % Starts Simulink simulation

LR R R R R R R R R R E R R R R R R E R R R R R EE R R RN R R R R

e

% Calculates SNR and PSD of the bit—stream and of the signal
90' T AT AR AR AT AR AA AT AAA A AT A AR AAT R A AAAAAA AR A A AT AR AR A A KR A A A R AR AT AR AN Ak kK
Sw=(blackman (N}) ';

w=hann (N) ;

$w=(rectwin(N))';

echo on;

f=Fin/Fs % Normalized signal frequency
fB=Nx (bw/Fs) % Base—band frequency bins

yyl=zeros (1l,N);
yyl=bitstream(2+Ntransient:1+N+Ntransient) ';
echo off;

ptot=zeros (1,N);
[snr,ptot,ps,pn]=calcSNR(yyl(1:N),f, fB,w,N,Vref);

% Ak Kk kA E I A A KA AAA AR AR A A A AR A A AR A AR A A A AAAA A A A AT AR A A AT A A A AR A A A A AT A A,k ko kkxw
% Output

% Ak KK A A A AR A A A TR E R AR AN KA A A F AR FT T AR A AR AA A AT A r kb A A A A AR AR AA R AR A AR AR A AR A AKX T

figure(1l);

A=Op—amp finite gain (alfa=(A-1)/A —> ideal op—amp alfa=1)

88)
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clft;
semilogx (linspace(0,Fs/2,N/2), ptot(1:N/2), 'b');
hold on;

title('PSD of a 5th—Order Sigma—Delta Accelerometer')
xlabel ('Frequency (Hz)')

ylabel ("PSD (dB) ')

axis ([0 Fs/2 —160 0]);

grid on;
$hold off;
text_handle
text_handle

text (floor (Fs/R),—40, sprintf('SNR = %4.1fdB @ OSR=%d\n',6snr,R)};
text (floor (Fs/R),—60, sprintf('Signal Bandwidth =256Hz"));

figure(2);

clf;

plot (linspace(0,Fs/2,N/2), ptot(1l:N/2), 'g');

grid on;

title('PSD of a 5th-Order Sigma-Delta Accelerometer')
xlabel ('Frequency [Hz]"')

ylabel ('PSD [dB]")

axis ([0 Fs/2 =300 0]);

figure(3);

clf;

spec=fft (yyl.+w)/(N/2);

semilogx (linspace(l,Fs/2,N/2), dbv(spec(1l:N/2)), 'r');;
grid on;

title('Amplitude of a 5th—Order Sigma—Delta Accelerometer')
xlabel ('Frequency [Hz]")

ylabel ('Amplitude [dB} ")

axis ([0 Fs/2 —180 0]});

snr2=calculateSNR (spec(l:fB), nper);

text_handle = text(1000,—-25, sprintf('SNR = %4.1fdB @ OSR=%d\n‘,snr2,R));
grid on;

hold off;

sl=sprintf ('SNR(dB)=%1.3f"', snr);

s2=sprintf('Simulation time =%1.3f min',etime (clock,t0)/60);
disp(sl)

disp(s2)

G ok hkkH AR A K KA ARk Ak ok H kA h kA Rk kAR KRR AT IR AR AI R AR KA RA R R FH kKK A KK K kk ok k ok okokokok ok d ok ok k

% Histograms of the integrator outputs

% AAKAKAA KKK A KA I A I T AR AR AR T A A A AR AT IR A A AAIARFT AR A A KA A AR AR TR A XA TR R AR A AN F R

figure (4)

nbins=200;

[binl, xx1]=histo(yl, nbins);
[bin2, xx2]=histo(y2, nbins);
[bin3, xx3]=histo(y3, nbins);

clf;

subplot (1,3,1), plot{xxl, binl)
grid on;

title('First Integrator Output’')
xlabel ('Voltage [V]')

ylabel ('Occurrences')

subplot (1,3,2), plot(xx2, bin2)
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148 grid on;

149 title('Second Integrator Output')
150 xlabel('Voltage [V]')

151 %ylabel ('Occurrences')

152 subplot (1, 3,3), plot(xx3, binl)
153 grid on;

154 title('Third Integrator Output')
155 xlabel ('Voltage [V]'")

156 %ylabel ('Occurrences')

157 % AEKAKAAKA AKX AR T A A A AA AR A A AA A A AAAAAARAA A A AR AL AR A A AR A AN AT A A A A kA A A kAR bk k kA k* k%
o

158 % Input-—output

159 G kKA A KA A KK AR A AR AR AR KA E LA AR KA A LA A AR R AR AL ARAR AR A KA LA KA K KRR A Rk kKA kKA d AT kAR KK

160 aa (span)=20x1logl0 (10"~ ((l—span)/7));
161 bb(span)=snr;

162 hold on

163 figure(5)

164 % plot (aa,bb,'——rs', 'LineWidth', 2, 'MarkerEdgeColor', 'k', 'MarkerFaceColor', 'g', '"MarkerSize'
165 plot (aa,bb, 'kd');

166 axis([—160 0 —10 160])

167 grid on;

168 xlabel ('Input Signal Power (dB) ')

169 title ('SQNR of 5th Order SDM Accelerometer')

170 ylabel ('SQNR (dB) ')

171 end
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Appendix B

OrCAD Schematic of PCB
Prototype (1st version)
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Appendix C

Block Diagram of PCB Prototype
(2nd version)
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Appendix D

OrCAD Schematic of PCB
Prototype (2nd version)
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