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by Kathryn Anna Hoad

This thesis describes the development of three different Tuberculosis epidemiolog-
ical models: An age dependent parametric statistical model; a compartmental, age
dependent, differential/difference model; and a Markov chain model that allows
for location effects in the transmission of TB.

Recently collected data from countries that have experienced a long-term decline
in TB incidence and in the annual risk of TB infection has exhibited a slow down
in the decline of the TB notification rate. This stagnation effect has implications
for projected reductions in TB incidence made by the World Health Organisation.
Parametric modelling was used to carry out a preliminary analysis of TB data sets
that were considered to exhibit such stagnation effects. The aim was to examine
the age and time dependent effects exhibited by each data set and to identify any
shared trends. This analysis was a precursor to a more structural age dependent
compartmental modelling of this data.

The third model, a Markov chain model, is distinct from the previous two
models described above. It is constructed to examine the relative significance of
local and global effects in the transmission of TB. Examining/modelling ‘house-
hold’/local effects is a relatively new branch of TB modelling that is considered
important in the planning of TB control strategies and has previously been tackled
with compartmental modelling. The simple Markov chain local effects model is
used to examine a time-spatial TB data set from the Nyanza province in western
Kenya It is also shown how this new local/global effects model can be used in the
design of community/clustered randomised trials.
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Glossary: Some key epidemiological definitions

e Modelling:

— Deterministic model - A mathematical model in which the parameters
and variables are not subject to random fluctuations, so that the system

is at any time entirely defined by the initial conditions chosen.

— Stochastic model - A mathematical model which takes into considera-
tion the presence of some randomness in one or more of its parameters
or variables. The predictions of the model therefore do not give a single

point estimate but a probability distribution of possible estimates.

— Force of infection - The per capita rate at which those susceptible to

infection are infected.

— Reproductive rate (Ry) - The average number of secondary infections
produced when one infected individual is introduced into a susceptible

population
e General terms:

— Syndromic - A group of symptoms indicating a disease

— Asymptomatic - Without obvious signs of symptoms of disease

Pathogenesis - The origin and development of disease.

Morbidity - A diseased condition or state; the incidence of a disease or

of all diseases in a population.

Seroconversion - Development of antibodies in the blood serum as a

result of infection or immunization

Seropositive - Showing a positive reaction to a blood serum test for a

disease; Showing seroconversion



Chapter 1

Introduction

This thesis describes the development of three different Tuberculosis epidemiolog-
ical models: An age dependent parametric statistical model; a compartmental, age
dependent, differential/difference model, and a Markov chain model that allows

for location effects in the transmission of TB.

The methodology used is based on epidemiological modelling with a fairly
statistical approach of model fitting using likelihood methods for parameter esti-
mation. Likelihood methods and resampling methods were employed in the sen-
sitivity analysis of the various models. All three TB models were programmed in

Excel/VBA language, using a modular program structure.

Recently collected data from countries that have experienced along-term decline
in TB incidence and in the annual risk of TB infection has exhibited a slow down in
the decline of the TB notification rate [67]. This stagnation effect has implications
for projected reductions in TB incidence made by the World Health Organisation
under their TB control strategy DOTS. Parametric modelling was therefore used
to carry out a preliminary analysis of TB data sets that were considered to ex-
hibit such stagnation effects. The aim was to examine the age and time dependent

effects exhibited by each data set and to find which trends were shared by these
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data sets. This analysis was a precursor to the more structural age dependent com-
partmental modelling that followed. The parametric model shows that there are
significant age and stagnation effects and that these trends are shared by all three
data sets examined. But it can not indicate how these effects may arise. Com-
partmental models can be used to try and answer these type of questions and are
therefore widely used in epidemiological modelling. It was therefore an interesting
experiment to apply these same data sets to a compartmental model based upon a
previously constructed W.H.O TB DOTS model [14, 15]. The reconstructed com-
partmental model was investigated as to how well and easily it could explain the

various time and age effects exhibited in these data sets.

The third model, a Markov chain model, is distinct from the previous two
models described above. It is constructed to examine the relative significance of
local and global effects in the transmission of TB. Examining/modelling ‘house-
hold’/local effects is a relatively new branch of TB modelling that is considered
important in the planning of TB control strategies and has previously been tackled
with compartmental modelling. The simple Markov chain local effects model is
used to examine a time-spatial TB data set from the Nyanza province in western
Kenya. It is also shown how this new local/global effects model can be used in the

design of community/clustered randomised trials.

1.1 Parametric Statistical Modelling

Countries that have experienced a long-term decline in TB incidence and in the
annual risk of TB infection, often exhibit a slow down in the annual decline of the
crude notification rate. This behaviour is referred to as stagnation and is most often
observed in middle-to-higher income countries with increasing life expectancy.
As the risk of infection declines, the proportion of disease due to initial infection

(primary disease) and re-infection also declines. When the risk of infection reaches
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an extremely low level it is likely that most of the disease detected is endogenous
re-activation disease, which does not depend on the current risk of infection. This
effect is called the “ageing of the epidemic’ and can not be adjusted for in analysis

by standardisation by age.

The prime objective of this section of the thesis is to analyse and investigate the
age and time dependent behaviour of TB case data from three countries considered
to fall into this category of countries that have an increasing life expectancy and
exhibit an ageing of the TB epidemic. Thus TB data sets from the Netherlands,
Morocco and UK are compared to investigate whether they exhibit any similar

characteristics/trends.

The general methodology is to fit a family of parametric models to the data
sets from the Netherlands, Morocco and UK. Thus, the significance of certain fea-
tures of the data can be inferred from the significance of certain model parameters

responsible for explaining such features.

All three data sets exhibit a decline in TB that is greatest in the younger age
ranges and gradually levels off in the older age ranges. The data also exhibits a
strong sigmoidal shape (with age) and a tailing off behaviour (with time) that need
to be captured by the fitted model.

A family of parametric distributions are fitted to the TB data sets. The method
of Maximum Likelihood is used to fit the chosen distributions and the direct search
optimisation method, Nelder-mead, is used to find the maximum value of the like-
lihood. It is assumed that each TB data set is a set of identically distributed random
variables drawn from the Normal distribution. The mean of this distribution is as-
sumed to be a function dependent on both age and time and takes the general
form of a polynomial multiplied by a logistic function. The polynomial is used to
describe the tail behaviour of the TB data and the logistic function describes the
sigmoidal shape of the data.
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Confidence intervals for the maximum likelihood estimator values and con-
fidence/performance bands for the model fits, are constructed using Asymptotic

Theory and the Bootstrap (re-sampling) Method.

The general characteristics of the TB data sets as they vary with time and age
are satisfactorily captured by this family of parametric models. There are a few
more detailed characteristics that the models fail to capture. However, it is unclear
whether all these characteristics are derived from true features of the data. The
accuracy of the data must be questioned especially for the two oldest age ranges
in the Dutch data, for very young children and for the Moroccan year data that
is created by projection (1995 onwards). The parametric modelling does confirm
that the data contains significant age and time dependent trends. The fact that
this family of functions successfully explains all three data sets confirms that the
data from these three different countries share some significant trends. Parametric
modelling however does not answer the question of why/how these effects/trends
might occur. The most popular method used in TB epidemiological modelling
for answering such questions is to construct and employ a compartmental, differ-
ence/differential equation model. Thus a compartmental model was re-constructed
and applied to two of the previously examined data sets in order to investigate how
well and easily such a model can explain the age and time dependent effects ex-

hibited by such data sets.

1.2 A compartmental, age-dependent TB Model

This model was constructed with the primary purpose of investigating the ability of
such compartmental models to analyse the progression of TB in countries with an
increasing life expectancy and a very low annual risk of infection, where ‘aging of
the epidemic’ and thus stagnation effects could occur. This model is re-constructed

and adapted from one developed by C.Dye et. al. [14, 15] to investigate the ef-
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fect of Directly Observed Short-course Therapy (DOTS), the WHO’s strategy for
worldwide TB control, on tuberculosis epidemics in developing countries with a
high TB burden. This deterministic, compartmental model, is set in discrete time.
The population is moved through the model by difference equations. HIV is not
included in this new re-constructed version of the model as the countries that are
of prime interest are not considered to have a large HIV problem, thus simplifying
the model. It was also considered important to allow the model to take time steps
of less than 1 year to adequately capture the progression of a TB epidemic in a

population.

The emphasis of this work is on examining the ability of compartmental mod-
els to fit to TB data from countries experiencing an ageing of their population and
an aging of the TB epidemic. Thus, after producing a reasonable fit to TB data sets
from the Netherlands and Morocco, most of the work concentrates on the sensi-
tivity analysis of the model. The aim is to explore how varying the values of each
input parameter affects the outcome variable. The outcome investigated was the
number of TB cases per 100,000 of population for each of 8 age groups. The UK
data set was not used as it only contains TB data for white males and the model

does not make this distinction between gender and ethnicity.

It is found that the shape of the line fit for both countries does not vary signifi-
cantly across the 8 age ranges. Hence, in the case of the Dutch data, the model fits
well for the first three age ranges but fails to capture the ‘flattening’ of the curved
behaviour of the data in the later age ranges. It is also unable to explain the ‘tailing
off” and subsequent increase in TB case numbers observed in the Moroccan data.
It 1s also noticeable that the model was unable to fit to the initial year data well,
overestimating the number of TB cases in the adult age ranges. This was most
noticeable in the fit to the Dutch data although many different warm-up scenarios

~ were tried.

Most of the parameters, when varied by a fixed amount, affected the outcome
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variable as would be expected and this behaviour is explainable by the known
epidemiology of TB. There were a few notable exceptions however, namely, p(for
ages 15+) - the proportion of infectious susceptibles which develop progressive
primary TB in 1 year; x(for ages 15+) - the proportion of re-infections which is
susceptible to developing TB within 1 year; r - the rate of relapse from failed
treatment to active TB. These three parameters caused the same counter-intuitive

effects in the outcome variable for both countries’ data sets.

All the parameters mostly behave in a non-linear way (except perhaps for very
small variations in value) and interact with each other in complicated and subtle
ways. It was also noticeable that varying the parameters one at a time did not

significantly improve the model fit to each of the age groups over time.

Thus this age dependent compartmental model, despite the large number of
parameters, struggled to explain some of the age dependent characteristics shown
by the Moroccan and Dutch TB case data. These two countries are considered
similar in that they have an increasing life expectancy and exhibit an ageing of the

TB epidemic.

When comparing the fits of the previous parametric models to the Dutch and
Moroccan data with those of the age dependent compartmental model, the para-
~ metric model successfully captured much more of the age and time dependent

characteristics of these data sets.

1.3 A Markov Chain model of TB case clustering in

the Nyanza Province of Western Kenya

This is a separate and distinct model from the previous two models. It is con-
structed to examine the relative significance of local and global effects in the trans-

mission of TB. The simple Markov chain model is used to examine a time-spatial
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TB data set from the Nyanza province in western Kenya. It is also shown how this
new local/global effects model can be used in the design of community/clustered

randomised trials.

The Kenyan data set analysed comprises 840 notifications of all types of TB
collected in Asembo and Gem by the Kenya Ministry of Health/National Leprosy
and TB program and the CDC over a six year period from 1997 to 2002. The
data includes information on the treatment start-date (month and year), age, gen-
der, and contact address (village). GIS coordinates (longitude and latitude) of the
contact address (village) were added for each TB case in the data set to allow for a
time/spatial analysis of the data. This detailed history of individuals allows for the
possibility of investigating transmission effects, in particular whether these effects

are local or global.

This model is therefore created in an attempt to identify whether the nearest
reported source of possible infection is a localised one stemming from an individ-
ual’s contacts with family or near neighbours or whether it arises from much more
dispersed ‘global’ contact. The basic methodology is to construct a stochastic
Markov-chain model whose behaviour is determined by a number of key parame-
ters representing possible local and global effects on TB transmission. This model
is then fitted to the Kenyan TB data using maximum likelihood and Nelder-mead
optimisation to estimate these key parameter values. Markov-chain models are
based on transition probabilities and are very different in approach from the type
of compartmental model described in chapters 9 - 11 or the statistical parametric

models described in chapters 5 - 8.

It is constructed by following the individual histories of all the individuals over
the study period. It is assumed that, at any time point, the state of an individual can
only be one of two prescribed states: a TB case (State 1) and non-TB case (State 0).
A (single step) transition probability governs each single time-step transition made

by an individual and is constructed as a parametric function that includes separate
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components representing the local and global clustering of TB cases. Male/female
characteristics and age dependence are also included into the transition probability

structure.

The model shows that there is a significant local effect in TB transmission. The
results also show that age seems to be a significant factor whereas gender on its

own 1S not.

A number of tests of the robustness of the modelling procedure were carried
out including: a demonstration that the importance of local prevalence is not sim-
ply an artifact of the modelling; testing the effect of decreasing sample size on the
fitting of the model; investigating the effect of the length of the infectious period,;
investigating the effect of different starting parameter values in the Nelder-mead
optimisation procedure; investigating the model’s sensitivity to the spatial scale of
disease clustering. The results of all these various robustness tests were satisfac-

tory and indicated that this model is valid and robust.

An important possible use of the local and global effect model is in the de-
sign of a community randomized trial where geographical clusters of people are
divided into two groups and the effectiveness of an intervention policy is assessed
by applying it to one group but not the other. Here the model can be used to cal-
culate the minimum difference in an outcome variable that can be detected with
statistical significance, taking the effect of clustering of cases into consideration. It
thereby gauges the potential effectiveness of such a trial. Such a possible applica-
tion is illustrated by setting up cluster randomised trial scenarios using the western

Kenyan time/spatial TB data set and applying the model.

1.4 Chapter arrangement and contents

Background Material
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Chapter 2 contains basic background material on disease modelling in gen-
eral. Chapter 3 introduces the human disease of Tuberculosis. It includes a brief
chronological history of TB and describes the epidemiology of this widespread
disease. A summary of the history of mathematical TB modelling is contained in

Chapter 4.
Main Chapters

Chapters 5, 6, 7 and 8 describe the analysis, construction and fitting of a fam-
ily of parametric statistical functions to TB data from the Netherlands, UK and

"Morocco.

Chapter 9 describes the construction of the compartmental, age-dependent TB
Model, including a full list and description of the difference equations powering
the model and an explanation as to how the demographic data was adapted for input
into the model. Chapters 10 and 11 describe the fitting and sensitivity analysis of
the compartmental, age-dependent model to TB data from the Netherlands and

Morocco respectively.

Chapters 12 to 16 introduce and describe a new Markov-chain local/global
effects TB model used to analyse a time-spatial TB data set from western Kenya.
Chapter 17 discusses the results and possible future work regarding the local/global
effects model and the analysis of the Kenyan TB data set.

Chapter 18 concludes the thesis, discussing all three different models and sug-

gesting possible further work.
Appendices

Appendix A describes the methodology of the Nelder-mead optimisation algo-
rithm. An introduction to Likelihood Theory is contained in Appendix B. Appen-
dix C describes the most common methods of sensitivity and uncertainty analysis.
A brief description of the bootstrap methodology is contained in Appendix D.
Appendix E contains a brief history of the changing demography and health in
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Morocco. Appendix F contains graphs of the fitting of exponential trend lines to
log transforms of the TB data from Morocco, Netherlands and UK.



Chapter 2

An Introduction to Modelling'

Disease Transmission

2.1 Formulating models

Epidemiology is the study of diseases in populations and communities rather than
in particular individuals. Mathematical modelling is used to help in the under-
standing of the biology of a problem. Dynamical models based on difference
or differential equations are designed to take into account the actual dynamics of
the disease over time. They can be constructed to simulate the actual situation
that exists and are limited only by the imagination of the scientist and the current
data available. They can be linear, non-linear, complex or simple and are often
compartmental in construction. These models are usually designed to describe the
past known history of the disease and to predict the future unknown course of the
disease [25].

Once the general structure of the model has been formulated, the various pa-
rameters need to be measured and then fed into the model, usually as rates. For

example:

11
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- rate at which susceptible people become infected

- mortality rate of people with the disease (which determines the rate at which

the model loses people through death.)

- birth rate (which determines the rate at which new people are recruited to

the model)

All these rates can be further broken down into subgroups, for example, rates for
men and women or different age groups. Using a knowledge of all these rates and
the values at an initial state, the simulation model can then show how the different
rate processes combine to determine the changes in the state of the system over

time.

If the rates are measured in continuous time then they are written as differ-
ential equations. If they make up a simple system of equations then this can be
solved using calculus. However for more complex systems, the problem is usually
formulated directly into difference equations and programmed into a computer to

run the simulation over a set number of time periods.

The kind of model starts with a certain number (or proportion) of people in
each state category and then calculates the numbers in each successive time step
according to our knowledge of the natural history of the disease. The model can
be run for various values of the parameters to see what happens over time, for

differing scenarios.

This model does not include any random effects and is therefore called a de-
terministic model. To make the simulation model more realistic, random effects
can be included. These are then termed stochastic models. For example, where in
a deterministic model 2% of susceptibles would be infected in one time unit, a sto-
chastic model would consider each individual and use a random number generator

to infect each person with a probability of z%.
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A stochastic model therefore gives a different result each time it is run, but if
it is run many times, the average result should be close to the result of a single
deterministic model run. Running a stochastic model many times therefore allows

the variability of the results to be determined [25].

Although compartmental models are very common there are various other
methods that are used to model diseases, such as statistical models where sim-
ple or more complex parametric functions are fitted to known data, time series

analysis, or Markov chain models.

2.2 Measures of disease

There are a number of indicators that are used to describe the transmission and
epidemiology of a disease. The following is a list of epidemiological terminology

with definitions, that are most commonly used in modelling disease [25].

o The force of infection is the per capita rate at which susceptibles are in-

fected. -

o The incidence of a disease is the rate at which uninfected people become
infected.” Incidence is most commonly measured in numbers of cases per

person per year, thus,

incidence rate =

number of uninfected people infected in time period
number of uninfected people at start of time period x time period

o The prevalence is the proportion of people infected with the disease in the
population at any particular time. Prevalence is therefore dimensionless and
is calculated by,

number of people infected at point in time
population at time

prevalence =
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e The change in prevalence = (force of infection - recovery rate) x time

period.

e The risk or cumulative incidence is the proportion of uninfected people
who become infected in a given time period. So, risk = incidence X time

period.

e Period prevalence is the proportion of people who were diseased at any

time point during a given interval.

e The odds of becoming infected equal the number becoming infected di-

vided by the number staying uninfected. Thus,

number becoming infected

dds = - .
oces number staying uninfected
B risk X number uninfected at start
~ (1 —risk) x number uninfected at start
risk
ds = .
odds 1 —nsk

e The recovery rate can be defined as the rate at which infections are lost or

people recover. Thus,

number of people recovered in time period
population x time period

recovery rate —

e The mortality rate or death rate is calculated as

number of deaths
population X time period

mortality rate =

e The basic case reproduction number (or rate), Ry, is the number of sec-
ondary cases produced by one primary case in a completely susceptible pop-
ulation. If no interventions are implemented to reduce the transmission rate

(_R%;_l), In practical terms this means

then prevalences reach approximately
that if a vaccine existed for this disease, the proportion of people that would

need to be vaccinated in order to control the epidemic would be %1—).
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R, therefore describes the magnitude of the control problem. For example,
Smallpox had an R, value of approximately 3. Thus it was only necessary
to vaccinate 2/3 of the population and sustain this level for long enough in

order to eradicate smallpox [25].

2.3 [Estimating incidence from age-prevalence data

It is the incidence of a disease that epidemiologists are usually most interested in.
But it is also very difficult if not impossible to observe directly and is therefore
commonly estimated from the more easily measurable prevalence of the disease.
For example the rate at which prevalence increases or decreases with age can be
used to get an estimate of the incidence by effectively using age as a surrogate for
time. Thus the slope of the age prevalence curve, corrected for the disease related
mortality and overall growth of the epidemic, can be used to get a good measure

of incidence [25].
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Tuberculosis

Tuberculosis is a world wide disease. It. kills approximately 2 million people each
year and in 1993, the World Health Organisation (WHO) declared tuberculosis a
global emergency. In 2003 the WHO estimated that 31 million people are exposed

to TB each year and approximately 8 million become sick with TB [51].

The following section is a chronological history of TB in humans. It illus-
trates how TB has long been a major cause of illness and mortality in humans and

describes the sigmficant medical discoveries in the fight against this disease.

The subsequent sections describe the epidemiology, treatments and tests for TB
and explain some of the important terminology that will be used in the following
chapters. These sections therefore contain information on how TB infects, acts,
is identified and combatted, that is either assumed or referred to directly in the

following chapters.

3.1 A brief history of TB in humans

The existence of TB (though not always known by this name) as a human dis-

ease, has been traced as far back as 2000 to 4000BC. This section provides a brief

16
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chronological summary of the history of TB in humans.

e 2400BC to 4000BC - Egyptian mummies show definite pathological signs
of tubercular decay. [4, 3, 21]

e 460BC - Hippocrates wrote that ‘phthisis’ (consumption) was the most preva-

lent disease of the times and was almost always fatal. [4, 3, 21]

e 55BC to 800AD Britain - Graves dating from the Roman Occupation of
Britain show evidence of TB. [29]

e Mid 17** Century - Consumption (TB) was the cause of one fifth of all deaths
- in London, as recorded in the ‘Bills of Mortality’. It was known as the
‘White Plague’ as TB became epidemic in the major cities of Europe and

America. [29]

e 1679 - In his ‘Opera Medica’ (first edition 1679), Dr Sylvius Franciscus de
Le Boe, (b.1642-d.1672), was the first to recognise tuberculosis as a con-
sistent and characteristic change in the lungs and other parts of the body in
consumptive patients. He stated that tubercles are often found in the lung,
and that “they softened and suppurated to form cavities”. (suppurate ~ to

ripen and generate pus) [4, 3, 21]

e 17t century Italy - The earliest mention of the infectiousness of TB is found
in 17** century Italian medical literature. Indeed, in 1699 the Republic of
Lucca issued a decree that “...henceforth, human health should no longer
be endangered by objects remaining after the death of a consumptive. The
names of the deceased should be reported to the authorities, and measures

undertaken for disinfection.” [4, 3, 21]

e 1700 - John Jacobus Manget created the phrase Miliary tuberculosis (TB)

which refers to the clinical disease resulting from the uncontrolled spread of



CHAPTER 3 18

My cobacterium tuberculosis in the body. He used the term miliary because
of the similarity he noticed between the appearance of millet seeds and the
firm small white nodules found on the surface of the TB diseased lung. (3,
54]

e 1720 - English physician Benjamin Marten published ‘A New Theory of
Consumption’ in which he theorised that TB could be caused by “wonder-
fully minute living creatures™, and that these could cause the lesions and
other symptoms of the disease. He also wrote, regarding the infectiousness
of TB disease, “It may be therefore very likely that by an habitual lying
in the same bed with a consumptive patient, constantly eating and drink-
ing with him, or by very frequently conversing so nearly as to draw in part
of the breath he emits from the Lungs, a consumption may be caught by a
sound person...I imagine that slightly conversing with consumptive patients

is seldom or never sufficient to catch the disease” [4, 3, 21]

e 19 century - By the turn of the 19°* century the world TB death rate was
estimated at 7 million per year. There were real fears that European civilisa-

tion would be destroyed by this pemicious disease. [29]

e 1836 - Dr George Bodington, an English physician, wrote down the idea of
providing TB patients with a special diet, exercise and fresh air in a rural
environment. These ideas were not supported by the medical establishment

of the time. [74]

e 1850s - TB sufferer Hermann Brehmer, a Silesian botany student, advised by
his doctor to find a ‘healthier climate’ travelled to the Himalayan mountains
and returned ‘cured’ of TB. He subsequently switched to studying medicine
and in 1854 presented his doctoral dissertation “Tuberculosis is a Curable
Disease”. In 1859 Dr Brehmer built the first ’sanatorium’ in Gorbersdorf,

in a pine forest in the mountains of Silesia, eastern Europe (Poland). This
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became the blueprint for many subsequent sanatoria world wide. [4, 3, 74,

21]

e 1865 - Dr Jean-Antoine Villemin, a French military physician, showed that
consumption (TB) could be passed from humans to cattle and from cattle to
rabbits. He postulated that this disease was therefore caused by a specific
microorganism and did not, as had been thought for centuries, arise sponta-

neously in each affected organism. [4, 3, 21]

e 1882 - German biologist, Robert Koch (b.1843 - d.1910), (/1905 awarded
the Nobel Prize for Physiology or Medicine) developed new techniques of
staining bacteria which made them more easily visible and helped to iden-
tify them. He thus discovered the tubercle bacillus as well as a method of
growing it in pure culture. In 1882 he published his classical work on My-
cobacterium tuberculosis. With this brilliant scientific discovery the fight

against TB began in eamest. [4, 3, 2]

e 1882 - In 1832, an English physician named James Carson, demonstrated
in animals that injection of air into the pleural space collapsed the diseased
lung, permitting it to heal (4). This method called artificial pneumothorax
was finally put into practice in the treatment of TB when Italian C. Forlanini
rediscovered the process in 1882 [3]. It was found that this method could be
used to collapse the TB affected lung, putting it “at rest’ and thus allowing
the tuberculous cavities to heal. Unfortunately this treatment did not work
for patients in late-stage TB, as the advanced disease kept the lung from
collapsing. A surgical treatment for late-stage TB patients was devised that
consisted of removing parts of the upper ribs on one side to collapse the rib
cage and hence cause the affected lung to collapse allowing it to heal. This
treatment method is known as extra-pleural thoracoplasty. [52]

e 1895 - German physicist Wilhelm Konrad von Rontgen (b.1845 - d.1923)
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discovered x-rays allowing the progress and severity of a patient’s disease to

be viewed and monitored. [4, 3, 21]

e Early 20%* century - Edward Archibald, a surgeon at the Royal Victoria Hos-
pital in Montreal, Canada, was the first surgeon in North America to surgi-
cally treat late-stage TB with extra-pleural thoracoplasty. [52,21]

e 1921 - French bacteriologist, Albert Calmette and veterinarian, Camille Guerin,
while working at the Pasteur Institute produced a live, weakened strain of
My cobacterium bovis, (the bovine equivalent of Mycobacterium tuberculo-
sis). In 1921, the Bacille Calmette Guerin (BCG) vaccine was developed
for use in humans. It was first used in Britain in 1953. It remains the only

vaccination available against tuberculosis. [4, 3, 1]

e 1939 - Selman A. Waksman discovered that the Actinomycetes fungi inhib-
ited bacterial growth. [21]

e 1940 - Antibiotic Actinomycin was isolated and found to be effective against

TB but was too toxic to be used on humans or animals. [21]

e 1943 - Dr Schatz, Bugie and Waksman announced the discovery of an an-
tibiotic, streptomycin, that was successful in inhibiting M.tuberculosis and

was of a low enough toxicity to be of use in humans and animals. [21]

e 20" November 1944 - Streptomycin first édnﬂnistered to a TB patient, (a 21
year old woman known as ‘Patricia’). The disease was immediately halted,
she made a rapid recovery and the TB bacteria disappeared from her spu-
tum. Unfortunately, streptomycin resistant. TB strains soon started to ap-
pear. However with a rapid succession of new anti-TB drugs appearing in
the following years these resistant strains were combatted by combining two

or three drugs. [4, 3, 29, 21]
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e 1949 to 1963 - Discovery and production of anti-TB drugs p-aminosalicylic,

isoniazid, pyrazinamide, cycloserine, ethambutol and rifampicin. [3]

3.2 [Epidemiology of Tuberculosis

Tuberculosis (TB) is primarily a disease of the respiratory system (Pulmonary Tu-
berculosis (PTB)) with varying degrees of infectiousness and usually occurs as
pneumonia. But (non-infectious) TB can also occur in the brain, back, lymph
nodes or other organs and bones. It is caused by being infected with the airbome
bacterial germ AMycobacterium tuberculosis. Bacilli only live in the air for ap-
proximately two hours so individuals who have intense systematic exposure to TB

bacilli in poorly ventilated areas are the most likely to become infected.

If the body is unable to protect itself from the TB Bacilli when they are first
breathed in, then the germs can develop into active TB disease within weeks of

being infected. In this case the active TB disease is termed Primary disease.

Latently infected individuals have the TB bacilli in their bodies but are not
sick or infectious (inactive TB) and may never develop active TB because their
body’s immune system ‘seals off” the TB bacilli which can lie dormant for years.
Thus the Latent period can vary vastly in length. The inactive TB Bacilli can
become active again when the body’s defences are weakened. This can be due
to a number of different reasons, including, natural aging, serious illness, drug or
alcohol abuse, HIV infection, or lack of health care due to homelessness etc... If
this reactivation of the TB Bacilli leads to active TB, it is termed Re-activation
disease or Endogenous disease. Experts estimate that only 5 — 10% of people
infected with TB (and are HIV negative) will actually develop active TB in their
life time. Thus, as latent individuals are not clinically ill, new cases of infection

can go undiscovered for some time.
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It is also possible for an already infected person to become re-infected with the
TB Bacilli. If this re-infection causes active TB, it is termed Re-infection disease

or Exogenous disease.

Thus clinical (active) TB may follow soon after initial infection (primary dis-
ease) or many years after (post-primary disease), either by endogenous reacti-
vation or after exogenous reinfection. The risks of developing disease are age-
dependent but the age-specific risks of developing endogenous or exogenous dis-
ease are difficult to assess and there is also a great variability in the estimates of

the risk of developing primary disease between studies.

However, some groups of people are considered to have a higher risk of con-
tracting TB than others; these include HIV positive individuals, people in close
contact with those who have active infectious TB (e.g. relatives, health care work-
ers..), those with medical conditions that weaken the body’s defenses to disease
(e.g. diabetes, people taking immune-suppressant drugs..), people from countries
with a high TB prevalence, workers or residents of long-term care facilities (e.g.
nursing homes, some hospitals or prisons..), the mal-nourished, alcoholics and IV

drug users.

Incidence of active-TB in developed countries can be as low as 10 per 100,000
population or less. Conservative estimates for this rate at the beginning of the
twentieth century are 300-600 per 100,000. Now most developing countries have
incidences of active-TB of 30-200 per 100,000 [45]. But it is possible to have
high prevalence of latent infections and low incidence of active-TB because TB
has low progression rates. The likelihood of progression to active-TB depends on
age of infection and on factors that correlate well with socio-economic status. The
‘risks of developing disease are age-dependent and are higher for adolescents and
adults than for children. Age at infection, chronological age and reinfection are
considered three of the most important factors underlying tuberculosis morbidity

in a population. TB morbidity and mortality rates are also strongly affected by
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urban living conditions. Infectiousness of source case, duration and frequency of
exposure, characteristics of shared environments all contribute to the overall risk
of transmission per contact. The CDC estimate that one active case contributes to
9 effective identified contacts. The W.H.O estimate that someone in the world is
newly infected with TB bacilli every second and overall, one-third of the world

population is currently infected.

3.3 TB Treatment

There are many anti-TB drugs now available. Preventative Therapy aims to kill the
dormant Bacilli and usually consists of a daily dose of isoniazid (INH), taken for
anything from 6 months to a year. The WH.O’s recommended treatment regime is
called DOTS: Directly Observed Short-course Therapy. It combines five elements:
political commitment, microscopy services, drug supplies, monitoring systems and
direct observation of treatment. Sputum positive patients are put on a course of
anti-TB drugs, the most common of which are isoniazid, rifampicin, pyrazinamide,
streptomycin and ethambutol. The patients are constantly monitored to ensure they
finish the whole 6 to 8 month treatment. By the end of 2000, all 22 of the countries
with the highest TB rates had adopted DOTS.

Once treatment has started the infectious individual should become non-infectious
within a few weeks. However, if the treatment is not completed the TB disease can
retum and the patient can become infectious again. There is also a risk that the
TB can become resistant to the anti-TB drugs. Shortly after drug treatment was
first introduced single drug-resistant TB strains first appeared and strains of TB
that are resistant to all major anti-TB drugs have developed more recently. Multi-
drug resistant TB (MDR TB) is a very dangerous form of drug-resistant TB and is

considered a significant threat to effective TB control.
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3.4 Tests for Tuberculosis

The symptoms of TB are a persistent cough, coughing up blood, fevers, weight
loss, constant tiredness, night sweats and loss of appetite, but these are not exclu-
sive to TB and therefore further tests are necessary to confirm that an individual

has contracted active TB.

The results of these tests are used to make up TB notification data. In order to
understand the origins and possible shortcomings of TB case notification data sets
that are now available for various countries, it is necessary to know a little about

the medical tests and data collection methods that are employed.

The Tuberculin Mantoux PPD skin test shows if a person has been infected. A
small amount of test material is placed just below the top layers of skin, usually on
the forearm, and re-examined a few days later. If a bump/rash of a certain size has
developed the test is considered significant and the person is assumed to have been
infected with TB. In these PPD skin test positive cases a chest X-ray is usually
taken to assess whether the infected individual has active TB. The X-ray should

show any damage that active TB has caused to the lungs.

Sputum (i.e. ‘coughed up’ matter including saliva, foreign material, mucus or
phlegm from the respiratory tract) can be tested to see if it contains TB bacilli.
If bacilli is detected by either of the two test methods used, microscopy (also re-
ferred to as smear test) or culture, the case is classified as sputum-positive. Smear-
positive cases are considered more infectious than only culture-positive cases, thus
the term “infectious TB case’ is often used to mean the sputum smear-positive case.
It is important to note that sputum tests in young children are not always accurate
(and hence often not used) as young children rarely develop ‘phlegmy’ coughs.
Thus sputum-positive case data may underestimate the number of TB cases in
children. Therefore skin testing is more often used on children rather than the spu-

tum test. TB verified by this skin test is referred to as primo infections. There may,
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however, be more inaccurate notifications of TB made with this method than the
sputum-positive tests that are considered very accurate in adults. Therefore primo

infections data may contain false positive cases.

Passive case detection occurs when detection of cases is not produced by active
efforts, i.e. disease detection only occurs when infected people present themselves
to a health service. This is opposed to ‘active case finding” which occurs when
people who have the disease are actively searched for. In the case of TB this can
be accomplished in various ways, e.g. testing relatives or close contacts of known
active TB cases, checking people who are deemed to be at high risk of infection
(people with HIV, slum dwellers, drug users...), or routine surveys of everyone
in a defined area (e.g. six-monthly surveys are carried out in South African gold

mining communities).
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Summary of the History of TB

modelling

Probably the earliest use of a mathematical model to study the epidemiology of TB
was presented in a 1962 paper by Hans Waaler (WHO senior statistician), Anton
Geser MD (WHO epidemiologist) and Stig Anderson (WHO senior officer) [38].
They construct a simple compartmental dynamic epidemiological model using dif-
ference equations that reflect the dynamics of TB. They also show its potential for

giving a time trend of TB and in evaluating TB control programs.

The model is based on five ‘axioms’ (assumptions), namely,

(1) TB is an infectious disease caused by transmission of Tubercle bacilli from

person to person.

(i1) TB is a benign infection. Only a small proportion of those infected develop

disease and only infected persons can become diseased.

(ii1) Only persons with tissue destruction (cases) can transmit infection to other
persons. (NB. choice of definition of a ‘case’ depends on purpose of model

and nature of available data.)

26
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(iv) Once infected, a person remains so for rest of life.

(v) Newborns are always infection free.

Using these axioms, the transmission dynamics of TB are expressed as a series of
symbolic relationships, i.e. difference equations. Time moves in one year steps
and the rate of new infections is proportional to the number of active infectious

cases. Figure 4.1 shows the flow diagram of this model.

As can be seen from the flow diagram, the set of linear functions that describe

the change in each class from one time stepAto the next are therefore:

Iyerr = f1(Ch)
Cierr = foll)
Hijpr = f3(Cy)
Dytjee1r = fs(DV:)
Drijey1 = fs(1t)
Deijrr = f6(Cr)
Bijirr = fr(F)

In order to estimate the values of the 7 parameters (f; for i = 1, 2,...,7) Waaler,
Geser and Anderson suggest observing the sets of ‘Van'ables in the functional re-
lationships. For example; observe C;, the number of cases at time t, and I;;11,
number of new infections over a certain time period, divide I; ;1 by C; to calcu-

late an estimate for parameter f.

The difference equations that govern the flow of population through the model

can also be constructed from the flow diagram and the above linear functions,



CHAPTER 4

Death of
Non-infected
Dt

Births
B:

f

Y

N

Non infected
N

fr

T

28

Infected
Non cases

The number of non infected is disregarded as long as the proportion of
non infected is high enough that lack of susceptible hosts is not a limiting

factor in the spread of TB.
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Figure 4.1: Flow diagram of the 1962 Waaler, Geser, Anderson compartmental TB
model [38].
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namely:

Ney1 — Ny = Bijpy1 — Duejerr — L

Iiyy =1y = Ly + Hijor — Drejer — Gy
Cini—C = Ct/t+1 - DCt/t+1 - Ht/t+1
Fiy1—F = Bipy1— Dyt

where Dyjei1 = Dojyr + Dijerr + Dejern

Although simple this model is the basis for all TB compartmental models that

come after.

In 1965 S.Brogger [84] published an improved version of the previous model.
He incorporated age dependence and used a combination of linear and nonlinear
terms to calculate the infection rate. The model consists of six epidemiological
classes: Uninfected, Infected, Pulmonary Lesions, Cases, Vaccinated and Fail-
ures. He divided the model population into 15 one year age groups for ages 0 1o
14 years and into 15 five year age groups for ages 15 to 89 years. Movement be-
tween these groups was accomplished by selecting 10% of the younger age group
and moving it to the older age group. Each age group is divided into the six epi-
demiological classes. The population then moves through the age groups within
each class to simulate aging and through the six classes within each age group to

simulate disease progression. Figure 4.2 shows the flow diagram of this model.

Brogger was not concerned about the Incidence of infection as he argued that
the large number of infected persons (latents) already existing in most communities
would cause a large time lag between when action is taken to reduce incidence
and any resulting reduction. This was of particular importance to Brogger as he
was most concerned with comparing the effectiveness of various control strategies.

Instead, Brogger used the prevalence to influence flow rates between categories.
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Figure 4.2: Flow diagram of the 1965 Brogger compartmental TB model [84].
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He also realised that a given set of parameter values could represent a wide
range of different control programs and pointed out that the operational aspects
of the program are not directly specified in the model. He also confessed that
the lack of quantitative information/data available to the model could cause error
in the results in absolute terms (numbers). But he maintained that this does not
effect the accuracy of the results on relative terms i.e. when comparing control
programs against each other. Both of these observations are still relevant to current

TB modelling.

Two years later ReVelle, Lynn and Feldmann (1967) [20] published a paper de-
scribing two models; a compartmental model based on the original Waaler, Geser,
Anderson model, but developed as a system of non-linear ordinary differential
equations; and an optimisation model derived from the first. They also, impor-
tantly, gave a full probabilistic explanation of why the infection rate depends lin-
early on the prevalence and set down the form of the infection rate that is currently

most commonly used, namely,

ﬁ% , where,
§ = acontactrate, i.e. the average number of people per unit
time that any one will encounter sufficiently to cause infection.
S = Number of susceptibles x Number of active infectious cases.

N = Population number

These models were used primarily to evaluate the effectiveness of different

control methods and their costs.

Waaler and Piot (1969) [37] developed an age dependent model, also with
the main purpose of evaluating different control strategies. They stated that epi-
demiological effectiveness of control measures must be judged by the changes in

transmission that they bring about.
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Subsequent TB models are ‘variations on a theme’ using these first handful of
TB models as a template. For example in 1975 Y.Azuma [95], published a simple
epidemiological model (that did not require ‘large’ computers) to calculate annual
trends in prevalence and TB incidence, TB mortality and BCG coverage. The
model was used to analyse data from Japan. The model uses 15 difference equa-

tions to move the population through various state classes as shown in figure 4.3.

____________________________________________________

, ‘ POPULATION |

Birth i | Non Infected :
E \ BCG Vaccinated i ‘L
i | Death
; BCG protected | >
1 : A
' s
i TB Infected i
' v E
! ; 1 t | TB Death
: Active TB T >
E l : A
g TB ﬁeatedT E
: ]

e e e et e ———— e ———

Figure 4.3: Flow diagram of the 1975 Azuma compartmental TB model [95].

As can be seen from this brief description this model differs little from the first

few models already described.

Another more complicated compartmental model was constructed by Vynncky
and Fine (1997) [28] to estimate the age-dependent risks of developing primary,
endogenous, and exogenous tuberculosis and although it includes more of the epi-
demiological complexity of TB it is still easy to see from the flow diagram in

figure 4.4 that it has the same basic structure as the earlier models.
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Figure 4.4: Flow diagram of the 1997 Vynnycky, Fine compartméental TB

model [28].
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Further developments in TB modelling have mainly come about because of the
changing threat of TB. Perhaps the most noticeable change in TB modelling came
about in the early 1990s when the impact of the HIV epidemic on the incidence of
TB was first taken into account. From that time onwards a large percentage of TB
models constructed (compartmental and statistical) incorporate an HIV element
into the dynamics of the model [5, 65, 66, 27]. However, I will not expand further
on this aspect as this thesis deals with TB modelling rather than TB/HIV mod-
elling. It should be noted however, that the 1998 papers by C.Dye et al. [14, 15]
that contain the model that is re-constructed and further analysed in this thesis (see
chapter 9), belong amongst this group of TB models, as it originally contained an

HIV element.

Other adaptioné include the modelling of antibiotic resistant TB strains that are
considered to be a serious and growing threat to TB control [12, 88]; the construc-
tion of models that incorporate cluster (local or generalised household) effects and
investigate the impact these cluster effects may have on TB transmission dynamics

[45, 10]. This subject is explored in depth in Chapters 12 to 16.

Apart from compartmental and standard statistical modelling of collected data
there have been a few attempts to utilise different modelling techniques in the
study of TB transmission dynamics, including Markovian Modelling [89], use of
GIS technology leading to spatial analysis [75] and the use of Bayesian networks
and statistical relational models [49].

As previously mentioned chapter 9 describes the re-construction and adap-
tation of a compartmental, age-dependent TB Model similar to those described
above [14, 15]. It is then applied to two TB data sets from Morocco and the
Netherlands in chapters 10 and 11. First, however, the following chapter describes

the construction of a family of parametric statistical regression models that are
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used to analyse the same data sets as the compartmental model, in order to con-
firm the significance of age and time effects in the data. Such statistical models
are useful in indicating the sort of detail that compartmental models may need to
incorporate to satisfactorily capture significant features of the data.




Chapter 5

Fitting Parametric Distributions to

age and time dependent TB case data

5.1 Introduction

In countries that have experienced a long-term decline in the incidence of TB and
in annual risk of TB infection, a slow down in the annual decline of the crude noti-
fication rate (referred to as stagnation) is often observed. It is most often observed
in middle-to-higher income countries with an increasing life expectancy rate and

therefore a rapidly ageing population.

This stagnation effect can be explained by examining the natural history of TB.
As the risk of infection declines, the proportion of disease due to initial infection
(primary disease) and due to re-infection also declines. When the risk of infection
reaches an extremely low level it is likely that most of the disease detected is due
to re-activation. This effect is called the ‘ageing of the epidemic’ and can not be

adjusted for in analysis by standardisation by age.

Re-activation disease by its very nature does not depend on the current risk of

infection and the probability of occurrence of the disease is not believed to decline

36
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significantly with lengthening time since infection. In addition, medical factors
that may increase the risk of re-activation of latent TB, such as lung cancer and
diabetes are predominantly found in the older generations. Therefore the incidence
of this disease only declines if the latently infected cohorts either ‘die off” or are
given preventative therapy. Thus a country with an increasing life expectancy and
a very low annual risk of infection could expect the decline in TB notifications to

Stagnate.

Therefore in order to analyse the progression of TB in these types of countries
it is necessary to create mathematical models that can capture the essential epi-
demiological and demographic characteristics that are involved in the stagnation

effect.

TB data sets from three countries, Netherlands, UK and Morocco, that are con-
sidered to have an aging population, low/decreasing annual risk of infection and
exhibit an aging of the epidemic, are examined for similar trends/characteristics.
The age and time dependent trends apparent in such data are investigated by con-
structing and fitting a family of parametric models to all three data sets. The form
of the fitted models was chosen using knowledge of the shape and trends of known
mathematical functions. The stability and fit of different variations/combinations
of mathematical functions (exponential, polynomial and logistic) were compared
to find the ‘best’ model for each data set. It was found that this decision could be
easily made by simple inspection of model results. Thus, other more formal model
comparison methods, such as Akaike (AIC) and Bayesian (BIC) information cri-

teria, were not considered necessary in this case.

The rest of this chapter contains a preliminary examination and a description
of the general parametric regression method used to analyse these three data sets.
Chapters 6, 7 and 8 contain the specific details of the model fitted with an analy-
sis of the results for each TB data set from the Netherlands, UK and Morocco,

respectively.
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5.2 Exploring trends in the TB data from the Nether-
lands, UK and Morocco

In order to clarify the distinguishing trends in these data sets, exponential functions
were fitted to the data using a log scale for the y (TB cases) axis. This enabled an
approximate value for the slope of the data for each age range to be evaluated.
Using these values the relative decline in TB case numbers across the various age
ranges can be assessed and compared for each country. Appendix F contains the
graphs of these exponential line fits with equations for each trend line fitted, for all

three countries’ data.

The UK (male) data shows similar characteristics to the data from the Nether-
lands, in that the decline in the data is greater in the younger age ranges and begins

to level off in the older age ranges (see graphs 5.1 and 5.2).

The Moroccan data shows a more extreme but similar pattem in that the y ounger
ages exhibit a sharp decline in TB that levels off until an increase in TB is exhibited
in the older age ranges (see graph 5.3).

These data sets therefore show a marked and similar age dependency.
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Figure 5.1: Plot of the exponential rate of decline in TB case numbers over age,

for the Dutch TB data set.
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Figure 5.2: Plot of the exponential rate of decline in TB case numbers over age,

for the UK TB data set.
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Figure 5.3: Plot of the exponential rate of decline in TB case numbers over age,

for the Moroccan PTB data set.
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5.3 Modelling strategy

e Model formulation A family of parametric distributions are fitted to the TB
case data from the UK, Netherlands and Morocco. The method of Maximum
Likelihood is used to fit the distributions and the direct search optimisation

method, Nelder-mead, is used to find the maximum value of the likelihood,
L(B,y).

Let Y be the set of observed TB notification case data for a specific country
and [ be a set of unknown parameters to be estimated. It is assumed that Y’
is a set of identically distributed random variables drawn from the Normal

distribution with probability density function

2
—\¥—n

e 20

f¥.0) = 2mo?

where 7 is a function dependent on both age, (X ), and time, (T').

Leto = By andletn (T,X, ) = (g + asX + asX?) _eleaXmad)  ere o

14 elagX—c2)
is another set of parameters dependent on § and T, such that,

4

ar = By + BT + B12T?
oy = P + BT + 13T?
a=4 a3 =P+ BT + fr14T?
oy = Bs + 61T + B1sT?
as = B + T + BisT*

This is the general construction of the parametric models fitted to the UK,
Dutch and Moroccan TB data. The specific models fitted to each country are
adapted by setting one or more of the § parameters to zero and by making o

a function of age and/or time.

The logistic component of the function (7, X, o) captures the initial rise
in the TB data with age and the general sigmoidal shape. The polynomial
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captures any ‘tailing off” behaviour in the data. An exponential function was
tried in place of the polynomial but produced a model that was hard to fit and
exhibited unstable behaviour.

e Producing confidence intervals

— Asymptotic Theory It is known that the asymptotic probability dis-
tribution of Maximum Likelihood estimates is Normal, hence as sam-

ple size n — oo, B ~ N {8,V (8)}, whereV () is approximated by

7 82L(B, -1
V(B) = |-2Ee0), )
The Hessian, ‘SQgg;’y) | s=p» 1 calculated numerically using a finite-difference

formula for the second derivatives.

The (1 — a)100% confidence interval for the parameter §; is calculated
from 3 + zz A/ Va(B)

— Bootstrap Method The basic bootstrap method was also used to create
confidence intervals for the model parameters. This method samples
with replacement from the original data set to create n further sets. For
each of these ‘new’ data sets, the parametric model is fitted as before,
resulting in a further n sets of MLEs. (See Appendix D for details of
the Basic Bootstrap)

The chosen specific models and the results from the fitting of these models to
the TB data sets for the Netherlands, Morocco and the UK are described in the
_ following Chapters 6, 8 and 7 respectively.
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5.4 Summary of results of fitting the parametric mod-
els to TB data from Netherlands, Morocco and

UK

The general characteristics of the TB data sets as they vary with time and age
are satisfactorily captured by this family of parametric models although there are
a few that the models fail to capture. However, it is unclear whether all these
characteristics are derived from true features of the data. The accuracy of the data
must be questioned especially in the two oldest age ranges in the Dutch data, young
children and in the Moroccan year data that is created by projection. In view of
this, it is concluded that this family of parametric models is sufficiently flexible to

capture the main characteristic features of these TB data sets.
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Parametric Modelling of Dutch TB
Case Data

6.1 Model formulation

A Normal distribution model is fitted to the TB notification data for the Nether-
lands from 1952 to 1994:
_y—w?

202

Y ~ Normal(u, o), with pdf ﬁe( ), where Y represents the TB no-
tification data; o = f; p = n(T, X, a); T = time; X = age and [ = parameters

to be estimated.

Let
e(m;X—ag)

77 — (al + a3X + a5X2) 1 + e(a4X—a2)

where
ar = By + BT + 12T

oy = f3 + BT + f1aT?
a=19 ag= P4+ PoT + 1 T?
oy = Ps + ProT + BrsT?
as = fs + uT + PreT?

43
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Note that the variance is dependent on both age and time.

6.2 Results of fitting the parametric model to the Dutch

TB case data

The confidence limits for each parameter, (5;,7 = 1, 2...,16), produced by using
asymptotic theory and bootstrapping, along with the maximum likelihood esti-
mates for each parameter are displayed in table 6.1. The only parameter that may
be insignificant is Js, (at a very high significance level of 99%), but as this is a
linear term in a quadratic function and the quadratic term J;3 is considered signif-

icant, parameter s is kept in the model.

The correlations for the 16 § parameters can be found numerically displayed in
table 6.2 and graphically displayed in figures 6.1 to 6.3. The strongest correlations
are between the § parameters making up the quadratic functions «; and a3, o and
a5 and between those in o7 and as. Likewise, there is a weaker correlation between
oo and 4. There is also a strong correlation between the § terms within each
function «; constant term with linear term and linear term with quadratic term. All
these correlations are understandable as «;, o and as make up the quadratic term
in 77 and - and o4 make up the exponential term in 7 (see section 6.1). It also
seems reasonable that the terms in a quadratic function should be correlated with

each other.

Apart from the above linear correlations the scatter plots for the § parameters
show a random scatter, thus there is no significant evidence that any normality

assumptions made for this model would be invalid.

The fits of the parametric model to the Dutch TB case data for each of the 8
age ranges are shown in figures 6.4 (a)-(h). The model fitted well for all ages and

seems to have captured well the time dependent trends for each age group. It looks



CHAPTER 6 45

at first that the ‘bump’ in the model fit that first starts to appear in the fit for age
group 35-44, may be as a result of the model attempting to fit to the ‘jump’ in the
data for age group 65-69. This was of interest due to the possible inaccuracy of
the data for these latter ages. The hypothesis was tested by fitting the model to the
Dutch data set with the ‘jump’ smoothed out. The smoothing was accomplished
by simply reducing the values of the data for the years 1974 onwards in age group
65-69 by a fixed amount so as to bring them in line with the trend of the preceding
years. However, using this amended data set did not alter the fit and the ‘bump’
that can be seen in figures 6.4 (d)-(h)was still present. This confirmed that the
trend seen in the model fit was a product of the model itself and not due to fitting

to possibly inaccurate data.

The fits to the Dutch data for a selection of years are shown in figures 6.5 (a)-
(h). The model also seems to have captured the changing age dependent trends of
the data, for each time point selected, in the first 20 years of the time period. The
model fits less well to the years after 1970. The shape of the data seems to suggest
a cubic function may be a good fit although this was not found to be true. The
parametric model however struggles to fully capture this ‘cubic-like’ trend in the
data from 1970 to 1994.

99% performance confidence intervals and confidence bands were constructed
for each of the 8 age groups, using two different methods. The first method using
asymptotic theory assumes normality and the results are shown in figures 6.6 (a)-
(h). The second method uses bootstrapping and the results are shown in figures 6.7
(a)-(h). It can be seen that these two methods give very similar results. All these
performance confidence intervals and bands are reassuringly narrow, encasing the

" model fit line.



Table 6.1: Parameter MLE values with 99% asymptotic and bootstrap confidence intervals.

Asymptotic Theory Bootstrapping Method
Parameters | ML Estimates | Lower 99% CI Limit Upper 99% CI Limit | Lower 99% CI Limit Upper 99% CI Limit
51 4.460 3.986 4.934 3.760 4.705
Ba 378.024 343.639 412.410 364.836 392.735
B3 2.427 2210 2.644 2.226 2616
Ba -10.110 -11.478 -8.742 -10.575 -9.609
Bs 0.224 0.194 0.253 0.203 0.245
Ds 0.082 0.069 0.095 0.077 0.086
Br -32.889 -37.651 -28.127 -34.413 -31.226
Ds -0.022 -0.059 0.014 -0.051 0.015
Do 0.766 0.569 0.963 0.732 0.797
B1o -0.011 -0.013 -0.009 -0.012 -0.010
B -0.005 -0.007 -0.003 -0.006 -0.005
D12 0.981 0.747 1.215 0.881 1.086
P13 0.004 0.002 0.005 0.002 0.005
P14 -0.020 -0.028 -0.012 -0.022 -0.018
B1s 1.7E-04 1.4E-04 2.1E-04 1.5E-04 2.0E-04
P1s 1.1E-04 3.7E-05 1.9E-04 9.2E-05 1.3E-04
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Table 6.2: Correlation matrix for the 16 parameters.

B . B2 Bs Ba Bs Bs B Bs Bo Bro B P2 B3 Bia Pis B

51 1 -0.05 2E-03 0.06 0.03 -0.06 0.05 3.E-03 -0.05 -0.03 0.05 -0.03 0.01 0.04 0.03 -0.04
Ba -0.05 1 -0.06 -0.98 -0.67 0.94 -0.66 0.01 0.63 0.57 -0.60 038 5.E-03 -0.39  -042 0.37
B3 -2.E-03 -0.06 1 0.01 0.66 0.02 -0.14 -0.54 0.19 -0.64 -0.20 -4E-03 0.13 -0.13  0.44 0.18
Ba 0.06 -0.98 0.01 1 0.59 -0.99 0.64 -5.E-04 -0.68 -0.52 0.68 -0.32 0.07 0.40 0.44 -0.43
Bs 0.03 -0.67 0.66 0.59 1 -0.54 0.20 -0.25 -0.14 -0.88 0.13 -0.12 -0.01 0.01 0.60 0.03
Bs -0.06 0.94 0.02 -0.99 -0.54 1 -0.61 1.E-03 0.69 0.47 071 0.27 -0.12 -0.39  -045 045
Br 0.05- -0.66 -0.14 0.64 0.20 -0.61 1 0.29 -0.93 -0.13 0.83 -0.80 -0.20 0.88 0.05 -0.82
Bs 3.E-03 0.01 -0.54 -5E-04 -025 1E-03 0.29 1 -0.28 0.45 0.25 -0.08 -0.62 0.17 -0.53  -0.19
Bo -0.05 0.63 0.19 -0.68 -0.14  0.69 -0.93 -0.28 1 0.13 -0.98 0.59 -4E-03 -0.84 -020 090
B1o | -0.03 0.57 -0.64 -0.52 -0.88 047 -0.13 045 0.13 1 -0.12  0.04 -0.14 -0.02  -0.80 2E-03
B 0.05 -0.60 -0.20 0.68 0.13 -0.71 0.83 0.25 -0.98 -0.12 1 -0.45 0.13 0.76 0.27 -0.88
B1z2 | -0.03 0.38 -4E-03 -0.32 -0.12 027 -0.80 -0.08 0.59 0.04 045 1 0.34 -0.87 0.19 0.69
Bis | 0.01 5E-03 0.13 0.07 -0.01 -0.12 -0.20 -0.62 -4E-03 -0.14 - 0.13 0.34 1 -0.13  0.64 -0.06
B1a | 0.04 -0.39 -0.13 0.40 0.01 -0.39 0.88 0.17 -0.84 -0.02 0.76 -0.87 -0.13 1 -0.01 -0.95
B1s | 0.03 -0.42 0.44 0.44 0.60 -0.45 0.05 -0.53 -0.20 -0.80 0.27 0.19 0.64 -0.01 1 -0.12
Bis | -0.04 0.37 0.18 -0.43 0.03 0.45 -0.82 -0.19 0.90 2E-03 -0.88 0.69 -0.06 -095 -012 1
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o]

Figure 6.1: Scatter plots of the associations between the parameters 3, ..., 3-

with o, ..., (



CHAPTER 6 49

Figure 6.2: Scatter plots of the associations between the parameters /3, .... 3,

with B4, . ... Bis.
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Figure 6.3: Scatter plots of the associations between the parameters /g, . ... oI

d i

with 3q. . .. _.1131@.
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Figure 6.4: (a)-(h): Plots of the fitted parametric model and Dutch TB notification

data for each of the 8 age ranges.
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Figure 6.5: (a)-(h): Plots of the fitted parametric model and Dutch TB notification

data for a selection of years between 1952 and 1994.
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Figure 6.6: (a)-(h): Plots of the fitted parametric model and Dutch TB notification

data with Asymptotic performance confidence intervals and confidence bands, for

each of the 8 age ranges.
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Figure 6.7: (a)-(h): Plots of the fitted parametric model and Dutch TB notification

data with bootstrapped performance confidence intervals and confidence bands,

for each of the 8 age ranges.
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Chapter 7

Parametric Modelling of UK (male)
TB Notification Data

7.1 Model formulation

A Normal distribution model is fitted to the TB notification data (Y) for white
males in the UK from 1953 to 1989:

Y ~ Normal(u, o) with pdf

L ()

e
oVl

where Y represents the TB notification data; ¢ = 61; u = (T, X, a); T = time;

X = age and 3 = parameters to be estimated.

Let
e(aaX—ag)

7= N Y elesX—a2)

where
a1 = B+ BsT + BsT*?

a=9q ay=ps+ BT
az = Ps+ 5T

58
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Note that the variance, 3; = ¢, is independent of age and time.
p

7.2 Results of fitting the parametric model to the UK
(male) TB case data

The maximum likelihood estimates as well as the confidence limits for each pa-
rameter, ((;,1 = 1,2, ...,8), produced using asymptotic theory and bootstrapping
methods, are displayed in table 7.2. None of the parameters seem insignificant, at

a very high significance level of 99%.

The correlations for the 8 3 parameters can be found numerically displayed in
table 7.1 and graphically displayed in figures 7.1. The strongest correlations are
between the [ parameters making up the linear functions 2 and 3. There is also a
strong correlation between the (5 terms within each function «.. These correlations
are understandable as a; and i3 make up the exponential term in 7. It also seems
reasonable that the terms in a quadratic or linear function should be correlated with

each other.

Apart from the above linear correlations the scatter plots for the § parameters
show a random scatter, thus there 1s no significant evidence that any normality

assumptions made for this model would be invalid.

The fits of the parametric model to the UK (male) TB case data for each of the
8 age ranges are shown in figures 7.2(a)-(h). The model fitted generally well and
seems to have captured the time dependent trend for each age group. The model
fit to the first three age groups (years 0-24) is seen to be slightly less accurate than

that for the remaining ages.

The fits to thé UK data for a selection of years are shown in figures 7.3 (a)-(h).
The model also seems to have captured the general age dependent trends of the

data, for each time point selected.
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99% performance confidence intervals and confidence bands were constructed
for each of the 8 age groups, using two different methods. The first method using
asymptotic theory assumes normality and the results are shown in figures 7.4 (a)-
(h). The second method uses bootstrapping and the results are shown in figures 7.5
(a)-(h). It can bé seen that these two methods give very similar results. All these
performance confidence intervals and bands are reassuringly narrow, encasing the

model fit line.



Table 7.1: Correlation matrix for the 8 parameters.

b P2 Ds B4 Ds Bs Br Ds

G| 1 0.0016 0.0018 0.0008 -0.0021 -0.0022 -0.0022 0.0020

B2 | 0.0016 1 0.1531 -0.1180 -0.8403 -0.2896 -0.2062 0.7201

B3 | 0.0018 0.1531 1 0.7377 -0.2180 -0.5879 -0.7523 0.0865

B4 | 0.0008 -0.1180 0.7377 1 -0.1074 -0.1464 -0.7065 -0.0109
Bs | -0.0021 -0.8403 -0.2180 -0.1074 1 0.3384 04709 -0.9437
Bs | -0.0022 -0.2896 -0.5879 -0.1464 0.3384 1 0.7020 -0.2793
G | -0.0022 -0.2062 -0.7523 -0.7065 04709 0.7020 1 -0.4296
Bs | 0.0020 0.7201 0.0865 -0.0109 -0.9437 -0.2793 -0.4296 1

L d4LdVHD

19



Table 7.2: Parameter MLE values with 99% asymptotic and bootstrap confidence intervals.

Asymptotic Theory Bootstrapping Method
Parameters || ML Estimates | Lower 99% CI Limit Upper 99% CI Limit | Lower 99% CI Limit Upper 99% CI Limit
Bi(=0) 7.7443 6.9245 8.5642 6.625 8.6756
B2 135.9483 129.8145 142.0822 127.7676 142.5714
B3 0.8231 0.4451 1.2011 0.4035 1.2016
N 0.1288 0.1036 0.1541 0.1033 0.1581
Os -8.9065 -10.0688 -7.7442 -10.1811 -7.6801
Os 0.1240 0.0856 0.1624 0.093 0.1671
Gr -0.0021 -0.0030 -0.0011 -0.0031 -0.0009
Bs 0.2087 0.1582 0.2592 0.1575 0.2631

L ddLdVH)D

29
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ol g

Figure 7.1: Scatter plots of the associations between the parameters /3; = &, (%,

33, B4, Bs, Bs, 37 and Gs.
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Figure 7.2: (a)-(h): Plots of the fitted parametric model and UK TB notification

data (for white males only) for each of the 8 age ranges.
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Figure 7.3: (a)-(1): Plots of the fitted parametric model and UK TB notification

data (for white males only) for a selection of years between 1953 and 1989.
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Figure 7.4: (a)-(h): Plots of the fitted parametric model and UK TB notification

data (for white males only) with Asymptotic performance confidence intervals and

confidence bands, for each of the 8 age ranges.
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Figure 7.5: (a)-(h): Plots of the fitted parametric model and UK TB notification

data (for white males only) with Bootstrapped performance confidence intervals

and confidence bands, for each of the 8 age ranges.
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Chapter 8

Parametric Modelling of Moroccan

TB N otiﬁcatidn Data

8.1 Model formulation

A Normal distribution model is fitted to the confirmed pulmonary TB notification
data for Morocco from 1980 to 2000:

Y ~ Normal(y, o), with pdf
tification data; 0 = 5T + 15 X; u = n(T, X, a); T = time; X = ageand 8 =

g

(Y—u-)?)
~ew?
\}ﬁe( : , where Y represents the TB no-

parameters to be estimated.

Let
) e(a4X——ag)
n= (O{l + O{3X + O{5X ) —1 n e(a4X—oz2)

where
oy = B2+ BT + BuT?

ag = s

a=1q as=LPs+ 0T + f12T?
oy = Ps + BT + BrsT?

o5 = P + BT + 14T?

71
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Note that the variance is dependent on both age and time.

8.2 Results of fitting the parametric model to the Mo-

roccan PTB case data

The confidence limits for each parameter, (5;,7 = 1, 2...,15), produced by using
asymptotic theory and bootstrapping, along with the maximum likelihood esti-

mates for each parameter are displayed in table 8.1.

The parameters that may be insignificant, because their asymptotic confidence
intervals include the value zero, are 34, 05, 05 and (14 (at a very high significance
level of 99%). But as these are constant and linear terms in quadratic functions
and the quadratic terms f;2 and (14 are considered significant, the parameters
{0B:,1 = 4,6,8,10} are kept in the model. It should be noted that the bootstrapped
confidence intervals do not show evidence that any of the J parameters are in-
significant and therefore strengthens the decision to keep the parametric model as

formulated above.

The correlations for the 15 § parameters can be found numerically displayed

in table 8.2 and graphically displayed in figures &.1 to 8.4.

There are many strong correlations between the J parameters. From the nu-
- meric correlation values alone, all the parameters seem to be correlated with all
other parameters, except for the parameters 3y, 83 and Fi5. ) and 35 are only
correlated with each other which is reasonable as they are the two parameters of
the standard deviation function. J3 = a5 is only strongly correlated with 55, the
constant term in ay. This is also understandable as a; and a4 make up the expo-

nential term in 7.

Although there are no obvious non-linear correlations that can be seen in the

scatter plots for the 8 parameters, the large amount of correlation between the
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parameters would throw doubt upon the validity of any independence assumptions.

The fits of the parametric model to the Moroccan TB case data for each of the
8 age ranges are shown in figures 8.5 (a)-(h). The model fits well for the majority
of age ranges 10-44 and 65+ and seems to have captured well the time dependent
characteristics for these age groups. The model seems to underestimate the number
of TB cases in the younger children aged 0-9. However it must be noted that the
data for children of these ages can be very unreliable (see chapter 3, section 3.4)
and the numbers of cases per 100,000 is very low for these ages hence exaggerating
the error in the model fit. The model struggles to fit to the data for the age group
45-64 and does not seem to adequately capture the characteristics of the data for

this group.

The fits to the Moroccan data for a selection of years are shown in figures 8.6
(a)-(h). The model seems to have captured the general age dependent trends of the

data, for each time point selected.

99% performance confidence intervals and confidence bands were constructed
for each of the 8 age groups, using two different methods. The first method us-
ing asymptotic theory assumes normality and the results are shown in figures 8.7
(a)-(h). The second method uses bootstrapping and the results are shown in fig-
ures 8.8 (a)-(h). It can be seen that these two methods give similar results, with
the asymptotic confidence intervals/bands slightly wider than those constructed by
bootstrapping. This may be caused by the strong correlations between the parame-

ters.



Table 8.1: Parameter MLE values with 99% asymptotic and bootstrap confidence intervals.

Asymptotic Theory Bootstrapping Method
Parameters || ML Estimates | Lower 99% CI Limit Upper 99% CI Limit | Lower 99% CI Limit Upper 99% CI Limit
6, 0.064 0.006 0.121 0.020 0113 -
6, 171.804 78.629 264.979 115.865 208.787
0Bs 7.236 6.761 7.711 6.921 7.627
B -3.935 -8.333 0.462 5763 1,667
Bs 0.453 0.397 0.510 0.418 0.495
Bs 0.031 -0.017 0.078 0.001 0.052
i 24.285 3.291 45.279 19.668 29.204
Bs -0.870 -1.850 0.109 -1.078 -0.763
Bo -0.013 -0.022 -0.005 -0.021 -0.009
B1o 0.008 -0.002 0.018 0.006 0.010
B -1.405 -2.335 -0.475 -1.607 -1.153
P2 0.053 0.01 0.096 0.043 0.062
Pis 5.67E-04 1.89E-04 9.45E-04 3.38E-04 8.61E-04
P1a -4 84E-04 -9.47E-04 -2.187E-05 -6.25E-04 -3.74E-04
Bus 0.219 0.166 0272 0.164 0.256

8 YHILAVHD
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Table 8.2: Correlation matnx for the 15 parameters.

I} & B By 0Os Bs Br Bs Ba Bro Bun B B B B
S TH -0.15 036 014 03 -0.13 001 -001 -009 001 003 -003 006 003 -0.72
Ba' | =0.15 -0.25 -099 -0.76 09 -08 086 083 -084 076 -076 -0.75 074 0.1
Bi: 0336 025 1 023 073 -021 014 -013 -028 0.13 -01 0.1 024 -009 -03
Gy 1014 -099 023 1 072 -099 084 -08 -0.78 086 -0.75 077 0.7 -0.76 -0.1
35 103 =0 6073 () 72N ] -0.67 058 -0.56 -081 053 -0.51 049 073 -046 -023
Gs |-0.13 096 -021 -099 -0.67 1 -082 085 074 -087 073 -076 -066 0.77 0.09
3 {001 -08 014 084 058 -082 1 -099 -083 09 -098 097 0.8 -0.94 0.02
3 | -0.01 086 -0.13 -086 -0.56 085 -099 1 079 -099 097 -098 -0.76 097 -0.02
By | -0.09 083 -028 -078 -081 074 -083 079 |1 -0.75 081 -0.77 -097 072 0.06
8| 001 -084 013 08 053 -087 09 -099 -0.75 1 -0.94 097 072 -098 0.02
8111003 076 -01 -075 -051 073 -098 097 081 -094 1 -099 -0.82 096 -0.05
812 | -0.03 -0.76 0.1 077 049 -076 097 -098 -0.77 097 -099 1 0.77 -099 0.05
B3 | 006 -0.75 024 0.7 073 -066 038 -0.76 -097 072 -082 077 1 -0.73 -0.03
341003 074 -009 -076 -046 077 -094 097 072 -098 09 -099 -0.73 1 -0.05
85 1-0.72 0.1 03 -01 -023 009 002 -002 006 002 -005 005 -003 -0.05 1

8 AALAVHD
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Figure 8.4: Scatter plots of the associations between the parameters 3, 312, 13

and 314, with the parameters J;3 to G1sx.
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Figure 8.5: (a)-(h): Plots of the fitted parametric model and Moroccan confirmed

pulmonary TB data for each of the 8 age ranges.
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Figure 8.7: (a)-(h): Plots of the fitted parametric model and Moroccan confirmed

pulmonary TB notification data with Asymptotic performance confidence intervals

and confidence bands, for each of the 8 age ranges.
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Figure 8.8: (a)-(h): Plots of the fitted parametric model and Moroccan confirmed

pulmonary TB notification data with Bootstrapped performance confidence inter-

vals and confidence bands, for each of the 8 age ranges.
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8.3 Conclusions

The TB data sets from these three different coﬁnm'es, Netherlands, Morocco and
UK, showed similar age and time dependent trends and characteristics. All dis-

played a general slowing of the decline in TB in the older age ranges.

The chosen family of parametric models consisting of a logistic and polyno-
mial element, successfully fit to all three data sets. The time and age dependent
characteristics are satisfactorily captured by this family of parametric models.
There are some effects that the models fail to capture but it is unclear whether
all these characteristics are derived from true features of the data but arise from
erroneous data collection/manipulation. The accuracy of the data can be generally
questionable in very young children due to the difficulty in obtaining positive spu-
tum test results. The data in the two oldest age groups from the Netherlands suffer
from a change in age ranges around 1972 used in the collection of data. The Mo-
roccan year data although regarded as generally reliable is created by projection

from 1995 onwards.

The foﬂowing chapters describe the investigation into the ability of compart-
mental TB models to capture these age and time characteristics exhibited in TB
data from countries with increasing life expectancy and slow down in the annual
decline of the crude notification rate. A suitable compartmental model is rebuilt
from a previously existing model devised by C.Dye etal [14, 15]. The TB data sets
from the Netherlands and Morocco are analysed using this compartmental model.
The UK data was not used as it only contains TB data from white males and the

model is not built to make this distinction between gender and ethnicity.
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An Age-Structured Tuberculosis

Model

9.1 Introduction

C.Dyeet. al. [14][15] developed an age-structured mathematical mbdel to investi-
gate global Tuberculosis control strategy, for each of the six World Health Organ-
isation (WHO) regions (sub-Saharan Africa, Americas, Eastern Mediterranean,
Europe - divided into East and West, South East Asia, Westem Pacific). In partic-
ular, it was set up to explore the effect of Directly Observed Short-course Therapy
(DOTS), the WHO’s strategy for worldwide TB control, on tuberculosis epidemics
in those developing countries where the disease is most prevalent. Their TB model
uses data from studies of the biology of TB and from the history of successful
TB control in industrialised countries. The model incorporates and uses a separate
HIV/AIDS model (as detailed in Gamett and Anderson, 1994 [31]) to generate
HIV epidemics applicable to each of the six WHO world regions.

A newly re-constructed version of this model, adapted to enable investigation

of the possible stagnation of TB in countries with an aging population, is described

88
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in detail in the following sections and Chapters.

9.2 A description of a deterministic, compartmental,

age-dependent TB Model

This model was constructed with the primary purpose of analysing the progression
of TB in countries with an increasing life expectancy and a very low annual risk of
infection, where ‘aging of the epidemic’ and thus stagnation effects could occur.
It was specifically re-constructed from the age-structured mathematical model de-
veloped by C.Dye et. al. [14][15] at the W.H.O to investigate their global Tubercu-
 losis control strategy. This re-constructed version was programmed in Excel/VBA
using the two papers [14][15] that document the structure of the original TB/HIV
model. The HIV element of the original WHO model [14][15] has been taken out.
This somewhat simplifies the model and is not an unrealistic modification as the
countries that would be of prime interest in this model are not considered to have

a large HIV problem.

This deterministic, compartmental model, is set in discrete time and is run by
difference equations. See Figure 9.1 for a flow diagram of the TB model and

Tables 9.1, 9.2 and 9.3 for definitions of the variables and input parameters.
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Figure 9.1: Flow diagram of the age-dependent compartmental TB model.
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Variable Name

Definition

S(t,a)

Proportion of population who are uninfected and susceptible to

infection, of age a at time ¢

M(t,a)

Proportion of population immune to infection (naturally or after

vaccination), of age a at time ¢

Ti(t,a) -

Proportion of population who have infectious (smear positive)
TB; primary, endogenous, exogenous or relapse; of age a at time

t

T, (t, a) |

Proportion of population who have non-infectious (smear nega-

tive) pulmonary and extra-pulmonary TB, of age a at time ¢

L(t,a)

Proportion of population who are latently infected or cured of TB

under good treatment, age a at time ¢

Ni(t, a)

Proportion of population who are self-cured from infectious TB,
(i.e. recover from disease naturally without medical intervention),

of agea attime ¢ -

Ny (t,a)

Proportion of population who are self-cured from non-infectious

TB, (i.e. recover from disease naturally without medical interven-

| tion), of age a at time ¢

Fi(t,a)

Proportion of incidences of infectious TB which is not cured un-
der treatment; classed as failed, defaulted or transferred out in

cohort analysis; of age a at time ¢

FL.(t,a)

Proportion of incidences of non-infectious TB which is not cured
under treatment; classed as failed, defaulted or transferred out in

cohort analysis; of age a at time ¢

L’(t, a)

Incidence rate of infectious TB, for those of age a at time ¢

L(t,a)

Incidence rate of non-infectious TB, for those of age a at time ¢

Table 9.1: Name and description of variables used in the

compartmental age-dependent TB model.
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Variable Name Parameter Description
timeStep Time step (in years)
A(1) Initial value of the force of infection
My Rate at which immunity is acquired by susceptibles
m_ Rate at which protective immunity is lost
m M(1, a), Fraction immunised at birth
n Rate of natural cure for infectious and non-infectious TB
1 Death rate for infectious TB
Lhn, Death rate for non-infectious TB
0 Exponential rate of decline in the contact rate [, to reflect
’soclo-economic improvement’
) Proportion of failed treatment cases which are infectious

€

Relative case detection rate of non-infectious cases

case_det_ DOTS

Rate at which TB cases are found and treated under DOTS

(or a comparable strategy)

case_cure_DOTS

Proportion of treated cases given curative chemotherapy un-

der DOTS (or a comparable strategy)

case_det_non

DOTS

Rate at which TB cases are found and treated pre-DOTS

case_cure_non

DOTS

Proportion of treated cases given curative chemotherapy

pre-DOTS)

Table 9.2: Name and description of parameters used in the

compartmental age-dependent TB model.
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Variable Name Parameter Description

7(t, a) Proportion of population in age class ¢ at time ¢

B(t) Per capita contact rate between T; & rest of population, at
time ¢

w Rate of smear conversion from non-infectious to infectious
TB

Tn Rate of relapse after self cure to active TB

r Rate of relapse from failed treatment to active TB

z(age<agecut) Proportion of re-infections which is susceptible to develop-

' ing TB within one year

x(age>agecut) (as above)

p(age<agecut) Proportion of infected susceptibles which develop progres-
‘sive primary TB within one year

p(age>agecut) (as above)

v(age<agecut) Rate at which latent infections become TB cases by endoge-
nous reactivation

v(aige> agecut) (as above)

f(age<agecut) Proportion of progressive primary cases which become in-
fectious

f(age>agecut) (as above)

Table 9.3: Description of parameters used in the compart-

mental age-dependent TB model.
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9.3 Assumptions behind the TB model

In order to construct this mathematical model certain assumptions were made.
These assumptions were made in accordance with current scientific thinking about
the epidemiology and natural history of TB. If an assumption was made in or-
der to simplify the model it was only used if it was thought to not significantly
compromise the validity of the model. The following is a list of these underlying

assumptions.

o Different proportions of the model population move through the 9 states
according to the corresponding goveming equations and the values of the

input parameters.

o Case detection is measured as the number of infectious cases diagnosed and
treated per year divided by the estimated annual incidence of new infectious
cases. It is assumed that cases who would otherwise have received inferior
treatment are enrolled onto the DOTS programme. Extra cases are only
treated when all such patients have been recruited. New DOTS programmes
concentrate on achieving high cure rates first and then work on improving

case detection.

e Patients who complete Short Course Chemotherapy (SCC) are assumed to

be cured of TB but remain infected and move into the latent class.

e The term treatment failure covers all patients who do not complete treat-
ment, i.e. those that ‘fail’, ‘default’ or “transfer out’. They have the same
death rate as those without active TB and have a higher chance of re-developing
full TB than those cured. Those who ‘fail” plus a proportion of the others

remain infectious.
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e Self-cured individuals are assumed to have a higher chance of relapsing to

full TB than others.

e It is assumed that Infectious TB suffers a higher elevated death rate than
non-infectious TB.

e Numerical simulations are able to be carried out with a time (¢) and age (a)
step of < one year (defined by user), due to the general opinion that some
changes in the TB state of an individual may occur in shorter periods than

one year.

o There is no gender dependence i.e. the model does not distinguish between
TB cases in males and females. This greatly simplifies the model and was

not considered to significantly compromise the validity of the model.

o The age limit is input by the user (only limited by the age data available for

each country of interest). It is assumed that death occurs at this limit.

9.4 Equations used in the model

Difference and other equations are used to govem the movement of the popula-
tion thfough the various states of the TB model. The following is a list of these

equations with their definitions.

1. The force of infection (or Incidence rate) is the per capita rate at which
susceptibles are infected and is denoted by:

agelim

Mb) = B() Y 7(t,0) (Ti(t, ) + ¢Fi(t, a))

where B(t) = 5(0)e~%.

B(t) is the per capita contact rate between infectious TB cases and other
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individuals. e~% allows for a possible exponential rate of decline in 8(¢),
reflecting ‘socio-economic improvement’. 3(0) is a chosen positive constant

used to set the initial contact rate value.

To calculate the Force of Infection, the proportion of the population in age
class a at time ¢, 7 (t, a), multiplied by the sum of the proportion of pop-
ulation who have infectious TB, T;(¢, a), and the proportion of infectious
TB cases undergoing treatment who fail treatment and are left infectious,
¢ F;(t, a), is summed over all age classes. This is then multiplied by the per
capita contact rate between infectious TB cases and other individuals, 3(t).

2. The proportion of incidence of infectious TB in the population at time ¢, age

a, 1.€ all inputs to state T; in the model (see flow diagram 9.1) is calculated
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L{t,a) = Me—Dpla—1)fla—1)S(t—1,a—1)

Proportion of infected susceptibles which develop progressive
primary infectious TB within 1 year

+ (-1 +z(a—Dpla—DAE-1))fla—1)L{Et—1,a—1)
Proportion of Latents which develop progressive primary
infectious TB, by endogenous reactivation or reinfection

+ wl,(t—1,a—1)
Proportion of non-infectious TB population that develop
infectious TB by smear conversion

+ rE{t—1a—-1)
Proportion of individuals who fail treatment for infectious TB
and relapse to active infectious TB

+ rmN(t—-1,a-1)

Proportion of individuals who relapse from self/natural cure

3. The proportion of incidence of non-infectious TB in the population at time ¢,

age a, 1.e all inputs to state T,, in model (see flow diagram 9.1) is calculated
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I.(t,a)
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AMt—Dpla—1)(1— fla—1))S{t—1,a—1)

Proportion of infected susceptibles which develop progressive
primary non-infectious TB within 1 year

(v(a—1) +z(a—Dpla— 1A - 1)1 - fla—1))
Lt—1,a—-1)

Proportion of Latents which develop progressive primary
non-infectious, by endogenous reactivation or reinfection
rF.(t—1,a —1)

Proportion of individuals who fail treatment for non-infectious
TB and relapse to active non-infectious TB

ol (t — 1,0 — 1)

Proportion of individuals who relapse from self/natural cure

4. Hence, the proportion of incidence of both infectious TB and non-infectious

5.

TB in the population at time ¢, age a, is calculated as:

CI(t,a) = L(t,a) + L(t,a) —wT(t—1,a— 1)

This is simply the sum of the two separate incidences of infectious and non-

infectious TB minus the proportion of individuals with non-infectious TB

that develop infectious TB by smear conversion. If this was not subtracted

there would be a proportion of the TB incidences that were counted twice in

the formulation of I(.).

(i) The proportion of population aged a, in the model at time ¢, is simply
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calculated as:

Agetot(t,a) = S(t,a) + L(t,a) + Ti(t, a) + Tu(t, a)
+ Fi(t,a) + Fu(t,a) + Ni(t,a) + Nu(t,a) + M(t,a)

(i1) The proportion of the population (for all ages) in the model at time ¢,

is therefore:
Gtot(t) = ZAgetot(t,a)
Va

Both these equations are used to re-standardise the model values so that the
proportion of the population in the model is equal to one for all ¢. This
is necessary because the proportion of deaths that leave the model is not
replenished by ‘births’. Therefore after a few iterations of the model the
sum of all the proportions of the population in the 9 states will be less than

one.

9.4.1 Difference Equations describing the model

The following nine difference equations govern the change in the proportion of
population in each of the nine state classes. They can be determined directly from

the flow chart in Figure 9.1.

6. The change in the proportion of individuals who have never been infected
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but are susceptible to infection is calculated by:

S(t,a) — S(t—1l,a—1)=
m_M(t—1,a—1)
Proportion of immune individuals who lose their protective immunity
+ “A(E-1DS{t—1,a—1)
Proportion of susceptibles who become infected with TB
- myS(t—1,a—1)
Proportion of population susceptible to infection who gain

immunity to infection

7. The change in the proportion of individuals who are latently infected, or

cured of TB (and therefore return to the latent state) is calculated as:

L(t,a) — L{t—1l,a—1)=
(1—pla—1NA(t—-1)S(t—1,a-1)
Proportion of infected susceptibles who get a latent infection
[(det)(cure) + (detN D)(cureNotDot)|I;(t — 1,a — 1)

+ ¢[(det)(cure) + (detN D)(cureNotDot)|I.(t — 1,a — 1)
Proportion of infectious and non-infectious TB cases who are
detected and cured and therefore return to the Latent state

— (wla—-1+z(a—pla— ANt —-1))L{t—1,a—1)

Proportion of Latents which develop progressive primary infectious

or non-infectious TB, by endogenous reactivation or reinfection

8. The change in the proportion of individuals who have infectious (smear pos-

itive) primary, endogenous, exogenous or relapse TB is calculated as:
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Ti(t—1,a—1) =

Mt—Dpla—1)fla—1)S(t—1,a—1)

Proportion of infected susceptibles which develop progressive
primary infectious TB within 1 year
(via—1)+z(a—Dpla— DAt - 1)) fla—1)L{t—1,a — 1)
Proportion of Latents which develop progressive primary
infectious TB, by endogenous reactivation or reinfection
wlp(t—1,a —1)

Proportion of individuals with non-infectious TB that develop
infectious TB by smear conversion

rF({t—1,a—1)

Proportion of individuals who fail treatment for

infectious TB and relapse to active infectious TB

roNi(t — 1,0 — 1)

Proportion of individuals who relapse from self/natural

cure to active infectious TB

[det + detND)I(t — 1,0 — 1)

Proportion of incidences of infectious TB that are detected
and diverted to treatment

(u)Ti(t — L,a—1)

Proportion of infectious TB population that die a TB related death
nTi(t —1,a — 1)

Proportion of individuals who experience a self/natural

cure from active infectious TB
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- The proportion of individuals in state 7;(.) can therefore be simplified to
the proportion of all incidences of infectious TB that are not detected and
diverted to treatment, minus all those with infectious TB who either die a

TB related death or experience a self/natural cure from active infectious TB.
Ti(t,a) —Ti(t—1,a—1) =

1 — (det + detND)|Li(t — 1,a — 1) — (us + m)T3(t — L, a — 1)

9. 'The change in the proportion of individuals who have non-infectious (smear

negative) pulmonary and extra-pulmonary TB is calculated as:
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T.(t—1,a—1) =

At —Dpla—1)(1 - fla—1)S(t—1,a—1)

Proportion of infected susceptibles which develop
progressive primary non-infectious TB within 1 year

(v(a — 1) +o(a — p(a — DAt — 1))(1 - fla— 1)
Lt—1,a—1)

Proportion of Latents which develop progressive primary
non-infectious TB, by endogenous reactivation or reinfection
rFu(t—1,a—1)

Proportion of individuals who fail treatment for
non-infectious TB and relapse to active non-infectious TB
ralNa(t — 1,0 — 1)

Proportion of individuals who relapse to active non-infectious
TB from self/natural cure

e[(det) + (detND)|I,,(t — 1,a — 1)

Proportion of incidences of non-infectious TB

that are detected and diverted to treatment

(W p +n)Tp(t—1,a—1)

Proportion of non-infectious TB population that develop
infectious TB by smear conversion, die a TB related death

or experience self/natural cure from active non-infectious TB

The proportion of individuals in state T,,(.) can therefore be simplified to

the proportion of all incidences of infectious TB that are not detected and

diverted to treatment, minus all those with non-infectious TB who either
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die a TB related death or experience a self/natural cure from active non-

infectious TB.

To(t,a) —Th(t—1,a—1) = [1—e(det + detND)|I,(t —1,a — 1)

—(w + pn + 1)L (t—1,a — 1)

10. The change in the proportion of individuals with infectious TB which are

not cured under treatment, is calculated as:

Fi(t,a) — F({t—1,a—1)=
[(det)(1 — cure) + (detND)(1 — cureN D) L(t — 1,a — 1)
Proportion of incidences of infectious TB that fail treatment
— rF({t—-1,a—1)
Proportion not cured under treatment, who relapse to active

infectious TB

11. Thechange in the proportion of individuals with non-infectious TB which

are not cured under treatment, is calculated as:

Fo.(t,a) — F.(t—1,a—1)=
e[(det)(1 — cure) + (detND)(1 — cureND)|I,(t — 1,a — 1)
Proportion of incidences of non-infectious TB that fail treatment
— rE(t—-1,a-1)
Proportion not cured under treatment, who relapse to active

non-infectious TB

12. The change in the proportion of individuals who are immune to infection,
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either naturally or following vaccination, is calculated as:

M(t,a) — M{E—1,a—-1)=
myS(t—1,a—1)
Proportion of susceptibles who gain immunity
- m_M{—1,a—1)

Proportion of immune individuals who lose their immunity

13. The change in the proportion of self-cured from infectious TB, is calculated
as:
Ni(t,a) — N(t—1,a—1)=
nTi(t—1,a—1)
Proportion of individuals with infectious TB who experience
self/natural cure
— rNi(t—1,a—1)
Proportion of self-cured population who relapse to active

infectious TB

14. The change in the proportion of self-cured from non-infectious TB is calcu-

lated as:

Np(t,a) — N(t—1,a—1)=
nT,(t—1,a—1)
Proportion of individuals with non-infectious TB who
experience se_lf/natural cure
— o Np(t—1,a—1)
Proportion of self-cured population who relapse to active

non-infectious TB
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9.5 Boundary Conditions

Boundary conditions are required as the model equations alone do not allow for
an input of new people (i.e. births) into the model. The model is therefore set up
so that S(V¢,a = 1) = 1 —m, where m = M(V¢,a = 1). All other states at age,
a = 1, are set to zero, for all ¢.

The lifespan of the model population, (agelim), after which age it is assumed

everyone dies, is input by the user.

9.6 Equilibrium Calculations

Equilibrium values are calculated for time, ¢ = 1 and age, a = 1 to agelim. A
simplified set of seven equations adapted from the 9 state equations in section 9.4.1
is used to find equilibrium. The two ‘Failed Treatment’ states are eliminated from
these equilibrium equations along with the case detection and cure parameters as

1t is assumed that treatment has not started before time ¢ = 1.

At equilibrium:

St,a—1)—S(t—1,a—1) = 0
Lit,a—1)—L{t—1,a—1) = 0
Ti(t,a—1)—T;(t—1,a—1) = 0
To(t,a—1) =T (t—1,a—-1) = 0
Ni(t,a—1)—=Ni(t—1,a—1) = 0
No(t,a—1) = Np(t—1,a—1) = 0
M(t,a—1)—M(@E—1,a—1) = 0

Let 2 stand for any of the above state classes.

NowifQ(t,a—1)=Qt—1,a — 1)



CHAPTER 9 , 107

then Q(¢,a) — Qt —1,a — 1) = Q(t, a) — Qt,a — 1).

Hence, each state equation can be written in terms of ¢ and ¢ — 1 for¢t = 1 and

solved for each value of a:

1. Susceptibles:

S(1,a) = S(l,a—1)=—-(A1) +my)S1,a— 1)+ m_M(1,a —1)

2. Latents:

L(l,a) — L(l,a—1)= |
(1 —pla—-1)X1)5(1,a—-1)
— (wle—1)+2z(a—pla—1)X1))L(1,a — 1)

3. Infectious TB:

T(l,a) — T(l,a—1)=
AD)p(a—1)f(a—1)S(1,a—1)
+ (wa—1)+z(@-Dpla— DA fla—1)I(1,a—1)
+ wlh(l,a—1) + raNi(1,a— 1) |

— (n+w)T(1,a—1)

4. Non-Infectious TB:

T.(l,0) — Ta(l,a—1)=
ADp(a—1)(1 — fla—1)5(0a 1)
+ (v(a—1)+z(a— pla— DAL ~ fla —1))L(1,a — 1)

+ . 'rnNn(la a— 1) - (TL +w+ ,U'n)Tn(]-, a-— 1)
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5. Natural/self cure from Infectious TB:
N;i(1,a) — N;(1,a —1) =nT;(1l,a — 1) = r,N;(1,a — 1)
6. Natural/self cure from non-Infectious TB:
Nn(l,0) = No(1,a —1) =nT,(1,a — 1) —r,Np(l,a — 1)

7. Immunity:

M1,a) —M1,a—1)=m;S(l,a—1) —m_M(1,a—1)

9.7 Detection Calculations in the model

The case detection rate 1s measured as the ratio:

The proportion of infectious cases diagnosed and treated per year
The proportion of incidences of new infectious cases

A non-DOTS treatment regime is introduced a set number of time steps into
the model run. DOTS is then introduced a set number of time steps after that
and increases the detection rate linearly until the set DOTS detection rate target
1s achieved. The times of introductions of these treatments and the detection rate

target is input by the user.

The following algorithm describes how the varying detection rates in the model

are achieved:

1. Set initial parameter values:

e Let case_det DOTS = « (Target detection rate under DOTS).

e Let case_det nonDOTS = [ (Detection rate under pre-existing (Non-
DOTS) regimes).
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e Let ydot be the time ¢ at which the introduction of DOTS begins in the

country in question.

e Let DurationDOTS be the number of years taken to introduce DOTS
into the country; i.e. number of years from ydot till the DOTS target

detection rate (<) is reached.

2. Calculate the change in detection rate and put into array cdrD(t):

For all ¢:

(a) If time ¢ < ydot, 1.e. the present time step ¢ is before the time at which
DOTS is introduced into the country, then cdrD(¢) = 0. Thus, there is
no change in the detection rate from what was the existing detection

rate in the country.

(b) If ydot < t < (ydot + DurationDOTS) i.e. the present time step ¢ falls
in the interval when DOTS is being introduced into the country, then
_ _ ax(t-ydot)
cdrD() DurationDOTS
(c) If time ¢t > (ydot + DurationDOTS), then cdrD(¢) = «; i.e. the DOTS

target detection rate is assumed to have been achieved in the country.

3. Re-set detection parameters, det and detND, for inclusion in the model

equations, using the cdrD(?) ‘change-in-rate’ values calculated in 2. above:

e det=cdrD(¢). This is the change in detection rate.
e detND = [J - cdrD()]. This models DOTS taking over from a pre-
existing non-DOTS regime.

e If detND < 0, then set detND = 0. This circumstance occurs when the
DOTS detection rate becomes greater than the pre-existing regime’s

detection rate.
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In the model equations (see section 9.4) the detection rate is calculated as the
sum of det and detND. Graph 9.2 shows this interaction between the parameters

det = cdrD(¢) and detND.

Plot of how the detection rate for DOTS regime (det) and the
detection rate for non-DOTS regime (DetND) interact.

= = ‘'det' = detection rate for DOTS regime

= ='detND’ = detection rate for non-DOTS pre-existing regime
'det + detND"' = overall detection rate If DOTS not Introduced
'det + detND"' = overall detection rate if DOTS Introduced

| o8
0.7
Eos - , |
£ 04 N - |
' 8 03| : o2 - ;
0.1 L |
o r——— -t \' B e — [\
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ;
time step, t ‘

Figure 9.2: Plot of interaction between the DOTS and non-DOTS detection rates,
(det — cdrD(t) and detND), with DOTS introduced at time step 10, DOTS detec-

tion rate target (@) set at 70% and the time taken to attain « set to 6 years.

9.8 Standardising age dependent results

At the end of a model run, the ‘proportion’ values for each ( and a have been
recorded for all required states and variables. However, these recorded ‘propor-
tions’ may not be true proportions because the total proportion of the model popu-
lation at time { may be less than one due to loss of people from the model through
death. The recorded values therefore must be re-standardised to become true pro-
portions. Then, for each ¢ the standardised proportions belonging to each age class,

are multiplied by the proportion of individuals in that particular age class accord-
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ing to the age distribution data of an appropriate country. The results can then be

summed over age.

For example: Let = be the proportion of .population in a specific TB state class
or variable (Susceptibles, Latents, TB deaths, etc...), then the sum over all age

classes, a, of = can be written as:

_ =(t, ) r(t,q)
Sums = %; {Agetot(t, a) % S vaT(t, a)

where, Agetot(t, a) is the proportion of population still in the model at time ¢,

age a, and 7 (%, a) is the variable that holds the demographic age distribution data
for each time ¢, age a. Obviously if the age distribution data is in the form of
true proportions then the sum of 7 (¢, a) over all a will be one. But this may not

always be the case and therefore re-standardisation is achieved by dividing (¢, a)
by >\, 7(t, a).

In order to divide the results into, for example, two age ranges: o = Ages < 15

and g = Ages > 15, the following calculations would be carried out:

15 [
o _ Z(¢, a) (¢, a)
Sum=" = Z Agetot(t, a) % S5 7(t,a)

a=0
80 [ —
SumE'B — Z '_‘(t’ a‘) x 7T(t, a‘) }

a=16 _Agetot(t, a) Ziozm 7(t, a)

The theoretical basis for the above calculations can be explained in terms of prob-
ability:

Let P(a|t) be the Probability of a given ¢, and 7*(t) = >, (¢, a), then,

Plant) _=(t,a)

Pllt) ==~ = 7@

, for the true population

_ P(=Nalt) =(t,a) .
P(E|a,t) = = for th ulati
(Ela, 1) P(alt) Agetot(t, a)’ or the model population
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P(E[f)

I

> P(ENalt)
= Y _ P(Zla,t)P(alt)

=(t, a) 7(t,a)
2. [Agetot(t, Q) " T

Va

Because the model outputs the total number of TB cases or total incidence,
etc.. it 1s necessary to multiply the relevant output values by the respective time
dependent detection rates used in the model (det + detND), before comparing the

results with recorded/observed TB data.

9.9 Calculating 17, The basic case reproduction num-

ber

In order to estimate R, the basic equation,

number of secondary cases

R .
primary cases

1s approximated by,

_ Proportion of Infectious TB cases in first time period y 1
~ Proportion of people with active infectious TB Exit Rate

Figure 9.3 highlights the relevant part of the model flow diagram 9.1 used in
calculating R.
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Figure 9.3: Flow diagram of states and parameters in the TB model used to esti-

mate the reproductive number.

Exogenous or endogenous
(re)infection

(v(a) + A(t)p(a)z(a)) f(a) L(¢, a)

Non TB death:
Primary TB
ful t
S(t.a) A(®)p(a) f(a)S(t, a) g;ciecsithDreatment
| (6. a) L(t,a)
Death from
infectious TB; Self/natural cure: n

This can be simplified into one combined input to the Infectious TB state and

one combined output rate:

6 Infectious TB Incidence — Infectious TB —  Exit Rate

Thus,
EzxitRate = det + detND +n+ p; + i

and letting R, be the incidence of infectious TB,

Ri(t,a) = At)pfS(t - La—1)4+ w4+ X&pz)fL(t—1,a—1)
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Standardising R in the normal way and summing over a gives:

Rl(t a) 1rta.

1r(t a)

Ri(t) = Xa: Agetot(t, a)

The proportion of Infectious TB at time £,

Ti(t, a) n(t,a)
suml; = Z [Agetot(t a) 8 2. m(ta)

Ri(t)
sumT; x Ezit Rate

R(t) =

9.10 Calculating TB relapses

The proportion of relapses from Infectious TB, non-infectious TB and self/natural

cure is calculated by the equation:

relapse(t,a) = r(F({t—-1l,a—1)+ F,(t—1,a—1))

+r, (Ni(t—1,a— 1) + No(t — 1,a — 1)).

This is used to fine tune the estimate of ‘new TB cases’ when fitting the model

output to ‘new cases’ recorded data.

9.11 Calculating the percentage decrease in TB In-

cidence

It was decided to include a calculation of the percentage decrease in TB incidence
as one of the outputs of the model in order to compare with recent data collected

from Morocco. This data indicates that the incidence of TB in very young children
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is falling at more than 10% per year. But that TB incidence in the population as
a whole is only falling at around 3 to 4%. It is reasonable to assume that children
with TB must have been recently infected and it therefore seems reasonable to
assume the decline in incidence in young children approximates the decline in
transmission of the disease. The slower rate of decline over all ages as opposed
to the decline in disease transmission seems indicative of the stagnation effects
previously described. Thus, this apparent difference in the two observed rates of

decline are of interest to those studying and devising TB control strategies.

Calculating the percentage decrease in TB incidence involves measuring the
gradient of the decline in TB. The relationship between the model output of TB
incidence per 100,000, per year, and time in years is generally exponential for
each age category. Thus taking natural logs of the output produces a fairly linear
relationship so that a line of best fit in the standard form of y = mz + ¢ can be fitted
to the data. Here y, the response variable, is TB incidence per 100,000 and z, the
explanatory variable, is time in years. The line is fitted by the least squares method
and can be fitted to however many years of data seem appropriate/or of interest.
The percentage decline in TB is therefore taken as the negative of the gradient of
the fitted line multiplied by 100. These values are then plotted on a scatter graph.

The average rate of percentage decline is calculated by applying the same
method to the average values of TB incidence taken across all age categories for

each year.

9.12 Adapting demographic data for input to model

The TB compartmental age-dependent model requires age dependent demographic
data as an input. It also needs to be in a specific format, namely proportions

of the population in one year age steps. This section contains a description of



CHAPTER 9 116

the smoothing techniques employed to adapt the given demographic data from

Morocco and the Netherlands into the required format.

The smoothing and polynomial fitting methods described in this section are

illustrated using the Moroccan age data set for 1980 to 2001.

1. The TB model does not discriminate between the sex of individuals, so the
age distribution data, originally split into males and females, is first com-

bined and then transformed into population proportions:

Let M be the number of males in age category a in year ¢ and let ' be

the number of females in age category a in year ¢, then, the proportion of

M4 F

population in age category a in year ¢ is, Total population in year ¢’

Age Ranges | 0-4 5-9 ... 65-85 total
Years

1980 0.123665388 0.122006842 ... 0.046802115 1
1981 0.123745145 0.121828179 ... 0.046864753 1
2000 0.124224901 0.122413433 ... 0.04587891 1
2001 0.124211465 0.122428689 ... 0.045872189 1

2. Dividing through by the range of each age category transforms the data into
age categories of length 1 year:
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Age 1980 Age
0 0.024733078
1 0.024733078 65  0.002228672

0.024733078 66  0.002228672
0.024733078 67  0.002228672
0.024733078 68  0.002228672
0.024401368
0.024401368

0.024401368 83  0.002228672
0.024401368 84  0.002228672
0.024401368 85  0.002228672

O 0 3 & L =k WN

3. The proportion data is then smoothed by averaging:

©,1,[2,]13,4,)5,6,7,8,9,10, 11, 12,...

0,(1,2,[3,]4,5)6,7,8,9

2 2 2 2

10,11,12,....

where, () surrounds the values to be averaged and [ ] denotes where the

averaged value is to be placed.

Three different averaging ranges were used, one after another, to take into
account the increasing lengths of the original age categories: 1st averaging

range = 5; 2nd averaging range = 10; 3rd averaging range = 20.

4. A polynomial is then fitted to the smoothed proportion data:

log(ye) = Z!Cj 11 (k—ﬁi)}

=1 i=1,ij
ie log(yr) = Cilk—z2)(k—z3)...(k — 211)
-I—Cz(k — .’171)(1(} - .’173)(1{} - .’1711)...

+Cn(k — z1)(k — 22)...(k — 210)
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where y; = proportion data for age k (1 to 86), x; = selected age values at
which the polynomial passes through the respective proportion values, C; =

Coefficient values for each selected (x;) age value.

The final population values are obtained by exponentiating [og(yy) for each
k.

5. Extrapolation: The coefficient values, C;, can be used to create population
data for years prior to 1980 or after 2001. This can be used to warm-up the

computer model or project outcome results into the future.

9.13 Fitting the compartmental model to the TB data

sets from the Netherlands and Morocco

The following chapters describe the fitting and sensitivity analysis of this compart-
mental model to the TB data sets from the Netherlands and Morocco, as initially
analysed by the parametric regression models in chapters 5, 6 and 8. The UK data
set was not used as it only contains TB data from white males and the model is not

built to make this distinction between gender and ethnicity.

9.13.1 Parameter Estimation

Starting values for parameter estimates were taken from the various literature avail-

able in the area including C.Dye et. al. [14][15].

As the objective was to investigate the sensitivity and behaviour of the model
it was necessary to get a reasonable initial fit to each data set. Maximum likeli-
hood methods with the numerical optimisation algorithm Nelder-mead were used
to accomplish this. The large number of parameters caused the Nelder-mead algo-

rithm to be very slow and unstable. The parameter estimates were therefore further
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adapted by hand in order to produce a fit to the data that could be used as a base

line for the sensitivity analysis.

Various functions were experimented with for the different age dependent pa-
rameters. The default setting was two age-specific rates for each age dependent
parameter with a cut-off age of 15. The specifics of the age dependent functions
used when fitting the model to the Dutch and Moroccan data sets are described in
detail in chapters 10 and 11 respectively. These two chapters also contain extensive

descriptions of the model sensitivity analysis and results for each country.



Chapter 10

Fitting and Sensitivity Analysis of
Compartmental TB Model using TB

case data from the Netherlands

10.1 Fitting to Dutch TB notification data

The emphasis of this work is on examining the ability of a compartmental model
to fit to TB data from countries experiencing an aging of their population and the
aging of the TB epidemic. The Netherlands is considered to be such a country.
Thus, after producing a reasonable fit to the Dutch data, most of the work in this

chapter concentrates on the sensitivity analysis of the model.

The outcome investigated was the number of TB cases per 100,000 of popula-
tion for each of the 8 age groups, for years, 1952 to 1994. The model estimates the
case data by manipulating the TB Incidence values, I(t,a).

A selection of different starting values and age dependent functions were tried
for the various model parameters. Initial fitting was carried out using a Nelder-

mead optimisation algorithm to minimise the least squares error in the fit to the

120
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data. The Nelder-mead method becomes extremely slow when attempting to opti-
mize a ‘large’ number of parameters at once. Because of the large number of po-
tentially important parameters in the model this fitting technique was only feasible
to be carried out on a few of the parameters at a timé. Even so, the Nelder-mead
program still showed signs of instability implying a large degree of irregularity and
complexity in the interactions of the parameters and resulting output of the model.
The resulting parameter values from these fittings were therefore entered into the

model and further fitting to the data carried out by hand.

Tables 10.1 and 10.2 contain the input parameter values that produced the fits
used as the base values for subsequent sensitivity analysis. The immunity and
natural/self cure variables and associated parameters were set to zero due to their
insignificant effect on the model results and in order to simplify the model for
analysis. Parameter ‘v’, rate at which latent infections become TB cases by en-
dogenous re-activation, was calculated in the model using the age dependent func-

. in(2 _
tion v = wvye? a (a—30)

, Where v; is the initial value of the parameter shown in
Table 10.1 for ages > 15 and a = age step. The main feature for this parameter
that the selected function had to capture, was a very slow increase in ages 15 to
approx 60 followed by a sharp increase in value. This mirrors the current bio-
logical understanding of the disease, that as a person ages the immune system is
less likely to be able to keep latent infection at bay and thus re-activation disease
is more likely to occur in the elderly than in younger healthier individuals. Fig-

ure 10.1 shows how the selected exponential function for parameter ‘v’ captures

this age dependent trend.

It should be noted in this case that the DOTS variables and mechanisms built
into the model are used to represent a general increase in case finding and cure

rate, and not to represent the actual DOTS regime as put forth by the WHO.
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Fitting to Dutch TB notification data
Parameter Description Initial Value
A1) Force of infection 0.18
x(age<15) | Proportion of re-infections which is susceptible 0.15
x(age>15) | to developing TB within one year 0.15
p(age<15) | Proportion of infected susceptibles which 0.0371
p(age>15) | develop progressive primary TB within a year 0.1785
v(age<15) | rate at which latent infections become TB cases 1.0E-07
v(age>15) | by endogenous re-activation 2.857E-06
f(age<15) | Proportion of progressive primary cases 0.0992
f(age>15) | which become infectious : 0.4439
7% Death rate for infectious TB 0.3126
L Death rate for non-infectious TB ‘ 0.2307
T Rate of relapse from failed treatment to active TB 0.3
w Rate of smear conversion from non-infectious to 0.0181
infectious TB
0 exponential rate of decline in contact rate between 0.035
TB cases and others
€ Relative case detection rate of non-infectious cases 0.5
) Proportion of failed treatment cases which is infec- 0.5746
tious

Table 10.1: Parameter values obtained by fitting TB model
outputs to Dutch TB notification data.
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Fitting to Dutch TB notification data continued

Parameter Description Initial Value
det Rate at which TB cases are found and treated under 0.8
DOTS
cure Proportion of treated cases given curative 0.9
chemotherapy under DOTS
detNotDot | Rate at which TB cases are found and treated under 0.7

a previous non-DOTS regime

cureNotDot | Proportion of treated cases given curative therapy 0.75

under a previous non-DOTS regime

start date of model 1952
Time step (in part of years) 0.5
finish date of model 1994
Date at which DOTS interventions begin 1965
Duration of introductory period of DOTS (in years) 10
Date at which Non-Dots interventions begin 1952
model age limit (in years) ' 100
model age cut off for age dependent parameters (in years) 15

Table 10.2: Parameter values obtained by fitting TB model
outputs to Dutch TB notification data (continued).
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Figure 10.1: Plot of the function used for the model parameter v = v,¢* - (=30

rate at which latent infections become TB cases by endogenous re-activation;

where v is the initial value of the parameter for ages > 15 and ¢ age step

The fits to the data that the above described parameter values and parameter
function produce are shown in graphs 10.2 to 10.4. It 1s noticeable that the model
was unable to fit to the initial years data (1952) for the adult age ranges, although
many different warm-up scenarios were tried. It is also obvious the shape of the
line fit does not vary across the 8 age ranges, hence although the fit looks good for
the first three age ranges it soon fails to capture the ‘flattening’ of the curve in the

data in the five older age groups.

Thus despite the complexity of the compartmental model it seems unable to
fully capture the age dependent effects in the TB data. Thus the following sections
describe the further investigation into the model’s ability to fit to the time and age

characteristics in the Dutch TB data.
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Figure 10.2; (a)-(h): Plots of the fit for the compartmental model to the Dutch TB

data, for each of the 8 age ranges.
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Figure 10.3: (a)-(c): Plots of the fit for the compartmental

data, for three selected years.
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10.2 Sensitivity analysis using Dutch TB notification
data

The aim is to explore how varying the values of each input parameter affects the
outcome variable. The value of each parameter used to produce a fit to the data as
displayed in the previous section is referred to as the base value. Each parameter
1s taken in turn and the model run with a new value, a percentage of the base value,
for that parameter. The percentages by which the parameter values are varied were
selected to show a representative pattern of how the outcome variable is affected.

These sensitivity results are displayed visually in graphical form.

The parameters were found to behave in an expected logical manner, explain-
able by the epidemiology of TB, apart from three notable exceptions. Varying
p(for ages 15+) - the proportion of infectious susceptibles which develop progres-
sive primary TB in 1 year, x(for ages 15+) - the proportion of re-infections which
is susceptible to developing TB within 1 year, and r - the rate of relapse from failed
treatment to active TB, affected the outcome in counter intuitive ways that were

not easily explained by studying the model mechanisms.

Some parameters were found to be more sensitive than others and most showed
a distinctly non-linear behaviour. Varying these parameters one at a time failed
to significantly improve the model’s ability to better explain the age dependent

characteristics of the data.

The following sections contain detailed descriptions of the results of varying

each parameter separately.
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10.2.1 Varying parameter value A\(1), “Initial Force of Infec-
tion”.

The parameter A(1) is varied by 20% and 50% of its base value (see table 10.3) to

explore the effect of increasing the starting vatue of the force of infection.

Table 10.3: Values of the parameter A(1), selected as input to the model
50% of bv | 80% of bv | bv | 120% of bv | 150% of by

A(1) | 0.09 0.144 0.18 | 0.216 0.27

bv = base value

In the first few years of the model run a 50% and 20% change in the starting
value of A produces a similar change in the outcome value (see figure 10.5(a)).
At half way through the model run (1974) a nonlinear effect can be seen (see
figure 10.5(b)). In general an increase and decrease in A(1) can be seen to increase
and decrease TB incidence respectively. This effect reduces with time (figures 10.6
(a) to (c)). This behaviour seems logical; a higher initial force of infection would
be expected to produce a higher TB incidence at least in the first few years until
the other mechanisms (e.g. detection and cure rates) begin to have an effect. It is
however interesting to note that by the middle of the time period TB incidence is

virtually the same regardless of the initial force of infection value.
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Figure 10.5: (a)-(b): Plots of the fit for the compartmental model to the Dutch TB

data, for initial year 1952 and middle of time period 1974.
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10.2.2 Varying parameter value 4, “the exponential rate of decline

in the contact rate between TB cases and others”.

The parameter ¢ is varied by plus and minus 20% of its base value (see table 10.4)
to investigate the effect of varying the exponential rate of decline in the contact

rate between TB cases and others.

Table 10.4: Values of the parameter 6, selected as input to the model
80% of base value | base value | 120% of base value

6| 0.028 0.035 0.042

As there is no warm up, the 6 value at time 0 (1952) has very little initial effect
on the outcome variable (figure 10.7(a)). The nonlinear effect of 8 increases with

time as can be seen in figures 10.7 (b) and (c).

There is a larger effect for ages 15-34, which are the ages generally accepted
as having a higher risk of contracting primary TB (figure 10.7 (¢)). Lower values
of § and hence a slower exponential rate of decline in contact rate produce greater
TB incidence. Higher values of § and hence a greater exponential rate of decline in
contact rate produce smaller values of TB incidence. These results seem logical;
a higher contact rate would be expected to increase transmission of disease and
therefore increase TB incidence; a lower contact rate would be expected to lower

TB incidence.

The relative changes in outcome values for each age group produced by vary-
ing ¢ also corresponds with current scientific thinking about the epidemiology of
TB. The greatest variation in outcome occurs in ages 15-35 which are the ages
generally accepted as having the highest risk of infection. As the epidemic ages
- the TB incidence in the older age groups is thought to be predominantly fuelled by

re-activation disease which would not be overly affected by contact rate.
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Figure 10.7: (a)-(c): Plots of the fit for the compartmental model to the Dutch TB

data, for three selected years.
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10.2.3 Varying parameter value p (for ages 15+), “the propor-
tion of infected susceptibles which develop progressive
primary TB in one year”.

The parameter p (for ages 15+) is varied by 20% and 80% of its base value (see

table 10.5), to investigate the effect of increasing the proportion of infected adult

susceptibles which develop progressive primary TB in one year.

Table 10.5; Values of the parameter p(ages 15+), selected as input to the model

20% of bv | 80% of bv | bv 120% of bv | 180% of bv

p(ages 15+) | 0.036 0.143 0.179 1 0.214 0.321

bv — base value

For time 0 (1952) the variation in parameter p (for ages 15+) is reflected in ¢
linear way in the outcome values; a larger value of p produces greater TB incidence
and a smaller value of p produces less TB incidence (see figure 10.8 (a)) This
pattern is carried on through the time period in all ages 15 and greater, although

the variation in outcome reduces with time and becomes negligible.
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These results seem logical; if a higher proportion of infectious susceptibles
develop progressive primary TB then it would be expected that the incidence of
TB would increase. However, this trend is reversed for children aged 0-14. After
the first few years of the time period a decrease in the proportion of infectious
adults aged 15+ which develop primary TB causes an increase in TB incidence for

children aged 0-14.

This is counter intuitive and close analysis of the equations (including system-
atic simplification) and mechanisms of the model has thus far produced no obvious

reasons as to why this effect occurs. This would need further investigation.

Figure 10.8: (a)-(c): Plots of the fit for the compartmental model to the Dutch TB

data, for three selected years.
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10.2.4 Varying parameter value p (for ages 0-14), “the propor-
tion of infected susceptibles which develop progressive
primary TB in one year”.

The parameter p (for ages 0-14) is varied by plus and minus 50% of its base value

(see table 10.6) to investigate the effect of increasing the proportion of infected

susceptibles, aged 0-14, which develop progressive primary TB in one year.

Table 10.6: Values of the parameter p(ages 0-14), selected as input to the model

50% of base value | base value | 150% of base value

p(ages 0-14) | 0.0186 0.0371 0.0557

Increasing and decreasing the proportion of infected susceptibles aged 0-14

which develop primary TB, increases and decreases the TB incidence respectively.

The effect of this parameter on the outcome variable is mostly confined to the
0-14 age group (see figure 10.10 (a)).1t has little effect on the overall TB incidence
(see figure 10.10 (b)).

Figure 10.10: (a) - (b): Plot of the fit for the compartmental model to the Dutch
TB data, over the years 1952 to 1994,
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10.2.5 Varying parameter value v (ages 15+), “the rate at which
latent infections become TB cases by endogenous reacti-

vation”.

The parameter v (for ages 15+) is varied by plus and minus 50% of its base value
(see table 10.7) to investigate the effect of increasing the rate at which latent infec-

tions in those aged over 15 become TB cases by endogenous reactivation.

Table 10.7: Values of the parameter v(ages |5+), selected as input to the model

50% of base value | base value | 150% of base value

v(ages 15+) | 1.43E-06 2.86E-06 | 4.3E-06

Increasing the value of v (for ages 15+) in conjunction with the exponential
function for the parameter (as described at the beginning of this chapter) increases
TB incidence, especially in the older age groups (see figures 10.11 (a) to (c)). This
is in line with current epidemiological views of how re-activation disease occurs

1n an aging population.

Figure 10.11: (a)-(c): Plots of the fit for the compartmental model to the Dutch TB

data, for the last 3 age ranges.
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10.2.6 Varying parameter value x (for ages 15+), “Proportion
of re-infections which is susceptible to developing TB
within one year”.

The parameter x (for ages 15+) is varied by 20% and 70% of its base value (see ta-

ble 10.8) in order to explore the effect of increasing the proportion of re-infections

which are susceptible to developing TB within one year.

Table 10.8: Values of the parameter x(ages 15+), selected as input to the model
30% of bv | 80% of bv | bv | 120% of bv | 170% of by

x(ages 15+) | 0.045 0.12 0.15]0.18 0.255

bv = base value

A large decrease in the value of x (for ages 15+) has a large and unexpected
effect on the outcome variable, TB incidence, especially in the ages 0-45 (see
figures 10.12 (a) to (d)). This effect can also be seen in figures 10.13 (a) to (c),

showing the trend in TB incidence for certain years, over all 8 age groups.

Attime 0 (1952), a 20% or 70% change in the value of x(ages 15+) produces a
relative change in the outcome variable; with a larger value of x producing higher
TB incidence and a small value of x producing lower TB incidence (figure 10.13
(a)). This trend is reversed however, for ages 0-35, by around 1974, approximately
half way through the time period (figure 10.13 (b)). By the end of the time period
(1994) the trend is reversed for all ages, with a larger value of x producing far less
TB incidence than the smaller values of x (figure 10.13 (c)). The largest variation

in outcome values occurs in the 15-35 age groups.

These results seem epidemiologically counter intuitive and would benefit from

further investigation (which has not been carried out to date).
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Figure 10.12: (a)-(h): Plots of the fit for the compartmental model to the Dutch

TB data, for each of the 8 age ranges.
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Figure 10.13: (a)-(c): Plots of the fit for the compartmental model to the Dutch TB

data, for three selected years.
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10.2.7 Varying parameter value x (for ages 0-14), “the propor-
tion of re-infections which is susceptible to developing
TB within one year”.

The parameter x (for ages 0-14) is varied by plus and minus 100% of its base

value (see table 10.9) in order to explore the effect of varying the proportion of re-

infected children, aged 0-14, which are susceptible to developing TB within one

year.

Table 10.9: Values of the parameter x(ages 0-14), selected as input to the model

0% of base value | base value | 200% of base value

x(ages 0-14) | O 0.15 0.3

In contrast with the previous related parameter x(ages 15+), this parameter
behaves linearly and logically. An 100% increase in the proportion of reinfections
in ages 0-14 which are susceptible to developing TB within one year, produces a
relatively small increase in TB incidence and correspondingly, an 100% decrease
in x(ages 0-14) produces a relatively small fall in TB incidence. This effect is only

noticeable in the first half of the time period for children aged 0-14 (see figure
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10.14).
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Figure 10.14: Plot of the fit for the compartmental model to the Dutch TB data,

for ages 0-14.

10.2.8 Varying parameter value F (for ages 15+), “the propor-
tion of progressive primary cases which become infec-

tious within one year”.

The parameter F (for ages 15+) is varied by plus and minus 100% of its base value
(see table 10.10) to explore the effect of varying the proportion of progressive

primary cases in those aged |5+ which become infectious within one year.

Table 10.10: Values of the parameter F(ages |5+), selected as input to the model

0% of base value | base value | 200% of base value

F(ages 15+) | O 0.444 0.888

Initially at time 0 (1952) an increase in F(ages |15+), the proportion of progres-
sive primary cases in ages 15+ which become infectious within one year, causes
a corresponding increase in the amount of TB incidence. Likewise, a decrease in
F(ages 15+) produces a corresponding decrease in TB incidence (figure 10.16 (a)).

This trend is reversed by 1974 for all ages except the very elderly (see figure 10.16
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(b)) However, by the end of the time period (1994) this trend has reverted back
again (see figure 10.16 (c)) so that an increase in F(ages 15+) causes an increase

in TB incidence and visa versa.

It would make logical sense that if more progressive primary cases become
infectious this would in turn cause an increase in TB incidence. However for
adults aged 15+ the opposite occurs in the middle years (approx 1964-1980) (see
figures 10.15 (b) to (h)). This phenomenon is repeated for children aged 0-15 over

almost the entire time period (figure 10.15 (a)).

A possible reason for these illogical effects is that by varying the base value
by 100% the resulting parameter values are well outside most ranges of values
considered biologically reasonable for this parameter. For example, Styblo [48],
Murray et al [18] and Dye et al [14, 15] quote a range for the parameter values of
approx 0.5 to 0.65. It 1s therefore plausible that the values used in this sensitivity
analysis are unreasonably small or large. Varying the value by less than 80%
causes no visible variation in the outcome variable and can therefore be considered

as not having a significant effect on the outcome.

Figure 10.15: (a)-(h): Plots of the fit for the compartmental model to the Dutch

TB data, for each of the 8 age ranges.
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Figure 10.16: (a)-(c): Plots of the fit for the compartmental model to the Dutch TB

data, for three selected years.
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10.2.9 Varying parameter value F (for ages 0-14), “the propor-
tion of progressive primary cases which become infec-
tious”.

The parameter F (for ages 0-14) is varied by plus and minus 100% of the base value

(see table 10.11) in order to investigate the effect of increasing the proportion of

children aged 0-14 with progressive primary cases which become infectious.

Table 10.11: Values of the parameter F(ages 0-14), selected as input to the model

0% of base value | base value | 200% of base value

F(ages 0-14) | 0 0.099 0.198

The effect of varying the proportion of progressive primary cases which be-
come infectious in those aged 0-14 is minimal. An 100% increase in the value of
F(ages 0-14) produced a tiny increase in TB incidence and an 100% decrease in
F(ages 0-14) produced a minute fall in TB incidence, for ages 0-14 (figure 10.17).
This behaviour is as would be expected, in that a higher proportion of primary
cases becoming infectious would be expected to cause an increase in TB inci-
dence. Varying this variable has no visible effect on the outcome variable for those

aged 15 and over.
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Figure 10.17: Fits of the compartmental model to the Dutch TB data, for ages
0-14.
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10.2.10 Varying parameter value ¢, “the proportion of failed

treatment cases which is infectious”.

The parameter ¢ is varied by plus and minus 74% of the base value (see ta-

ble 10.12) in order to explore the effect of varying the proportion of failed treat-

ment cases which is infectious.

Table 10.12: Values of the parameter ¢, selected as input to the model

26% of base value

base value

174% of base value

¢ | 0.1494

0.5746

0.9998

The particular value of 74% was chosen to increase

the base value to approximately 1, the maximum value

Increasing and decreasing the proportion of failed treatment cases that become

infectious produced a very small corresponding increase and decrease in TB inci-

dence. The change in outcome values were shightly larger during the middle of the

time period (see figure 10.18 (a) and (b)).

Figure 10.18: (a)-(b): Plots of the fit for the compartmental model to the Dutch

TB data, for selected years.
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10.2.11 Varying parameter value w, “the rate of smear conver-

sion from non-infectious to infectious TB”.

The parameter w is varied by plus and minus 100% of its base value (see ta-

ble 10.13) in order to examine the effect of varying the rate of smear conversion

from non-infectious to infectious TB.

Table 10.13: Values of the parameter w, selected as input to the model
0% of base value | base value | 200% of base value

w|O0 0.0181 0.0362

Increasing and decreasing the rate of smear conversion from non-infectious to
infectious TB by 100%, produced a very small corresponding and logical increase
and decrease in TB incidence. The change in outcome values is slightly larger

during the first half of the time period (see figures 10.19 (a) to (c)).

Figure 10.19: (a)-(c): Plots of the fit for the compartmental model to the Dutch TB

data, for three selected years.

o

a1 QO
BEEBE
.\L
T8 Wncidencn / 100,000
BB

SR Rt
s ow S & : G

(12 1524 25-34 35-4 4554 5551 5564 N D14 1524 2534 354+ 2554 5564 553 TDe B4 1524 2538 3544 4554 5504 G543 70

i AZE G
g2 Gioug: 3 GIoag3 i

® Rexrdsd TB Data Bg8 QINES & Recorded TB il A3 Groag N

— Modei TB adenc -1 —— Mo 16 Incidence -5
— Nadel TB insidency base —— Medd T [ncidznce: base
— Nadel 1B ncidznog: +% — Vodat 1B Incidonce: +3%

(a) 1952. (b) 1974. (c) 1994.



CHAPTER 10 144

10.2.12 Varying parameter value 1;, “the death rate for infec-
tious TB”.

The parameter y; is varied by plus and minus 50% of its base value (see ta-

ble 10.14) to examine the effect of increasing the death rate from infectious TB.

Table 10.14: Values of the parameter y,;, selected as input to the model
50% of base value | base value | 150% of base value

wi | 0.156 0313 0.469

An increase in the death rate from infectious TB, causes a decrease in TB inci-
dence. Likewise, a decrease in the infectious TB death rate increases the incidence |
of TB (figures 10.21 (a) and (b)). The variation in outcome values are most pro-
nounced in the middle of the time period (see figures 10.20 (a) and (b)).

It makes sense that increasing the death rate of those with infectious TB and
hence eliminating an increased amount of potential transmitters of the disease
would have the effect of decreasing TB incidence. It therefore also makes sense
that decreasing the death rate of those with infectious TB and hence leaving an
increased amount of potential transmitters of the disease in the community would

have the effect of increasing TB incidence.

Decreasing the infectious TB death rate seems to have a larger impact on TB
incidence than increasing the death rate by an identical percentage of the base
rate. This may be due to an interaction with parameters such as the detection and
cure rates. Decreasing u; leads to increased transmission but none of the other
parameters that could counter act this effect and lessen TB incidence are increased
in value. They are left at their base valués which coped with consequences of the

base value of TB death rate but not the increased rate.
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Figure 10.20: (a)-(b): Plots of the fit for the compartmental model to the Dutch
TB data, for years 1974 and 1994.
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Figure 10.21: (a)-(b): Plots of the fit for the compartmental model to the Dutch
TB data, over the years 1952 to 1994.
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10.2.13 Varying parameter value y,, “the death rate for non-

infectious TB”.

The parameter i, is varied by plus and minus 80% of its base value (see ta-

ble 10.15) in order to investigate the effect of increasing the death rate from non-

infectious TB.

Table 10.15: Values of the parameter 1i,,, selected as input to the model

20% of base value | base value | 180% of base value

iy | 0.046148 0.23074 0.415332

The effect of increasing and decreasing the death rate from non-infectious TB

is almost identical to the effect of varying the death rate from infectious TB.

An increase in i, causes a decrease in TB incidence and a decrease in
causes an increase in TB incidence (see figures 10.22 and 10.23). This seems to
be a logical result as an increase in the death rate of those with non infectious TB
would generally decrease the prevalence of non infectious TB in the population
and would also therefore decrease the number of non-infectious cases becoming

infectious by smear conversion.

Figure 10.22: (a)-(b): Fits of the compartmental model to the Dutch TB data, 1974
and 1994,
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Figure 10.23: (a)-(b): Plots of the fit for the compartmental model to the Dutch
TB data, over the years 1952 to 1994.
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10.2.14 Varying parameter value ¢, “the relative case detection

rate of non-infectious cases”.

The parameter ¢ is varied by plus and minus 100% of its base value (see ta-
ble 10.16) to investigate the effect of increasing the relative case detection rate

of non-infectious cases

Table 10.16: Values of the parameter ¢, selected as input to the model

0% of base value | base value | 200% of base value

21:0 0.5 |

An 100% increase in ¢, the relative case detection rate of non-infectious cases,
causes a small increase in TB incidence. A decrease in ¢ causes a small decrease
in TB incidence. The effect is most notable at time 0 (1952) (figure 10.24 (a)).
This phenomenon although seeming to go against logic, occurs because the model
results, i.e. number of TB cases, are multiplied by ¢ along with the relevant detec-
tion rates in order to be comparable with the observed data. Hence a larger value
of ¢ would increase the value of the outcome varnable. This effect is most notice-

able at time 0 (1952) because there 1s no warm-up and therefore no time for other
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factors/parameters to start reducing TB incidence.

Figure 10.24: (a)-(c): Plots of the fit for the compartmental model to the Dutch TB

data, for three selected years.
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10.2.15 Varying parameter value r, “the rate of relapse from

failed treatment to active TB”.

The parameter r is varied by plus and minus 80% of its base value (see table 10.17)

to examine the effect of increasing the rate of relapse from failed treatment to

active TB.

Table 10.17: Values of the parameter r, selected as input to the model

20% of base value | base value | 180% of base value

r| 0.06 0.3 0.54

A decrease in r, the rate of relapse from failed treatment to active TB, causes an

increase in TB incidence. Likewise, an increase in r causes a very slight decrease

in TB incidence (see figures 10.25 (a) and (b)).

This appears counter intuitive and would, like the previous parameters p(15+)

and x(15+), benefit from further investigation.
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Figure 10.25: (a)-(b): Plots of the fit for the compartmental model to the Dutch

TB data, for selected years.
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10.2.16 Varying parameter value ‘det’, “the rate at which TB
cases are found and treated under a second improved

control regime”.

The parameter ‘det’ 1s varied by plus and minus 25% of its base value (see ta-
ble 10.18) to investigate the effect of varying the rate at which TB cases are found

and treated under a second improved control regime.

Table 10.18: Selected values of Parameter “det’, used as input to the model.

75% of base value | base value | 125% of base value

cdciaois 0.8 1

This new improved control regime is brought in around 1974, Increasing the
detection rate initially has the effect of increasing TB incidence. This is because
more (or in this case all TB cases) are being found and identified (figure 10.26 (a))
and the model results are multiplied by the time dependent detection rate in order
to be comparable to the observed data. By the end of the time period (1994) the
increased detection rate (in conjunction with a good cure rate) is decreasing TB

incidence in the younger age ranges 0-45 years (figure 10.26 (b)). But varying this
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parameter by 25% of its base value had very little over all effect on TB incidence
(figures 10.26 (c)). This is probably due to the tact that the previous control regime
had a good detection and cure rate and had already been in effect for the previous

13 years.

Figure 10.26: (a)-(b): Plots of the fit for the compartmental model to the Dutch
TB data, for two selected years. (c) Plot of the fit for the compartmental model to

the Dutch TB data, over all years, for all ages.
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10.2.17 Varying parameter value ‘DetNotDot’, “the rate at which
TB cases are found and treated under a previous (non-

DOTY) less efficient regime”.

The parameter ‘DetNotDot’ is varied by plus and minus 30% of base value (see
table 10.19) to investigate the effect of varying the rate at which TB cases are found

and treated under a previous (non-DOTS) less efficient regime.

Table 10.19: The values of parameter ‘DetNotDot’ selected as input to the model

70% of base value

base value

130%: of base value

‘DetNotDot’

0.49

0.7

0.91

At time 0 (1952) the increased detection rate increases the TB incidence due
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to the same reasons explained previously for parameter ‘det” (figure 10.27 (a));
i.e. increased detection rates cause more cases to be identified hence inflating TB
incidence and the model results are multiplied by the time dependent detection
rate in order to be comparable to the observed data. By 1974 however, the new
improved control regime has taken over. This new regime has a detection rate
of 0.8. Thus it is detecting less cases than the previous regime’s increased rate
of 0.91, but more than the previous regimes base and decreased rates of 0.7 and
0.49 respectively. For these reasons we see a reversal of the trend by 1974 so
that the increase in the value of parameter ‘DetNotDot™ causes a decrease in TB
incidence and visa versa (figure 10.27 (b)). By 1994 the trend has reverted back to

an increase in detection rate increasing TB incidence as explained above for time

0 (figure 10.27 (¢)).

Figure 10.27: (a)-(c): Plots of the fit for the compartmental model to the Dutch TB

data, for three selected years.
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10.2.18 Varying parameter value ‘cure’, “the proportion of treated
cases given curative chemotherapy under a second im-

proved control regime”.

The parameter ‘cure’ is varied by 11%, 50% and 100% of its base value (see ta-
ble 10.20) in order to investigate the effect of increasing the proportion of treated

cases given curative chemotherapy under a second improved control regime.

Table 10.20: Values of the parameter ‘cure’, selected as input to the model
0% of bv | 50% of bv | 39% of bv | bv | 111% of bv
Tureypiv 0.45 0.801 0.9 | 0.999

bv = base value

Although the effect of increasing and decreasing the proportion of treated cases
cured under a second improved regime seems non-linear it still follows a logical
pattern in that increasing cure rates produce less TB incidence and visa versa (fig-
ures 10.28 (a) and (b)). The effect on the output starts at the time the new regime

using the ‘cure’ parameter is first introduced in 1965 (figures (a)-(c)).

Figure 10.28: (a)-(b): Plots of the fit for the compartmental model to the Dutch

TB data, for selected years.

(a) 1974. (b) 1994.
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Figure 10.29: (a)-(c): Plots of the fit for the compartmental model to the Dutch TB
data, over the years 1952 to 1994.

1109079

(a) All ages. (b) Ages 0-14 years. (c) Ages 15+ years.

10.2.19 Varying parameter value ‘CureNotDot’, “the propor-
tion of treated cases given curative chemotherapy un-

der a previous (non-DOTS) less efficient control regime”.

The parameter ‘CureNotDot’ is varied by 30% and 90% of its base value (see
table 10.21) to investigate the effect of increasing the proportion of treated cases
given curative chemotherapy under a previous (non-DOTS) less efficient control

regime.

Table 10.21: Values of the parameter ‘CureNotDot’, selected as input to the model
10% of bv | 70% of bv | bv 130% of bv
‘CureNotDot” | 0.075 0.525 0.75 | 0.975

by - base value

The cure rate of the initial control regime has not had any time to effect the
output at time 0 (1952). Immediately after time 0, however, the effects of a very
low cure rate (coupled with a fairly good detection rate) produces high TB inci-
dence and a very high cure rate produces low TB incidence as would be expected

(see figure 10.30 (a)-(c)).
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Figure 10.30: (a): Plots of the fit for the compartmental model to the Dutch TB
data, for 1974. (b)-(c): Plots of the fit for the compartmental model to the Dutch
TB data, over the years 1952 to 1994, for ages 0-14 and 15+
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10.3 Summary of Sensitivity Results

The parameters of the compartmental model mostly behave in a non-linear way
when applied to the data from the Netherlands (except perhaps for very small vari-
ations in value where they behave approximately linearly). 1t is also noticeable that
they interact with each other in complicated and subtle ways that are not always

obvious when examining the difference equations that drive the model.

Some of the parameters produced a far greater relative effect in the outcome
variable than others. In particular, ¢ - the relative case detection rate of non-
infectious cases, w - the rate of smear conversion from non-infectious to infec-
tious TB, ¢ - the proportion of failed treatment cases which is infectious, and F -
proportion of progressive primary cases which become infectious within one year,
have little effect on the outcome variable. However, it was found that eliminating
these parameters did have a (large) effect on the output of the model, suggesting
that these parameters although individually seeming relatively unimportant have

significant interactions with the other model parameters.

Varying the parameters one at a time did not significantly improve the model
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fit to each of the age groups over time and therefore failed to significantly improve

the fit to the age dependent characteristics.

Most of the parameters caused an effect in the outcome variable, as would be
expected when varied one at a time, keeping all other parameter values fixed. The
behaviour and effect on the outcome variable for the most part is explainable by
the epidemiology of TB. There were however a few notable exceptions. Para-
meters p(for ages 15+) - the proportion of infectious susceptibles which develop
progressive primary TB in 1 year, x(for ages 15+) - the proportion of re-infections
which is susceptible to developing TB within 1 year, and r - the rate of relapse
from failed treatment to active TB, effect the outcome variable counter intuitively.
Despite further examination of the model, inclﬁding systematically simplifying
the difference equations while noting whether the particular effect in the outcome
variable was affected, no obvious reason for these anomalies was discovered. A
full understanding of the model and its results would therefore benefit from further
investigation of the behaviour of these particular parameters and interactions of the

parameters in the model.
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Fitting and Sensitivity Analysis of
Compartmental TB model using
Pulmonary TB case data from

Morocco

11.1 Fitting to Moroccan Pulmonary TB case data

The emphasis of this work as with the Dutch data (chapter 10) is on examining the
ability of a compartmental model to fit to TB data from countries with an aging
population and aging of the TB epidemic. Morocco 1s considered to fall into this
category of countries. Thus, after producing a reasonable fit to the Moroccan data,
most of the work in this chapter concentrates on the sensitivity analysis of the

model.

The outcome investigated was the number of Pulmonary TB (PTB) cases per
100,000 of population for each of the 8 age groups, for the years 1980 to 2000.
The Pulmonary TB (PTB) cases are estimated using the Infectious TB Incidence

156
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values output by the model.

A selection of different starting values and age dependent functions were tried
for the various model parameters. Initial fitting was carried out using the Nelder-
mead optimisation method to minimise the least squares error in the model fit to
the data. It was chosen for its general stability. However, the Nelder-mead algo-
rithm became extremely slow when attempting to optimise the large number of
potentially important parameters in the model. It was therefore only feasible to
carry out this optimisation technique on a few parameters at a time. Even so, the
Nelder-mead program still showed signs of instability implying a large degree of
inegularify and complexity in the interactions of the parameters and resulting out-
put of the model. The parameter values obtained from these fittings were therefore
entered into the model and further fitting to the data carried out by hand. Ta-
bles 11.1 and 11.2 contain the input parameter values that were obtained and used

to produce the fits used as the base values for subsequent sensitivity analysis.

The immunity and natural/self cure variables and associated parameters were
set to zero due to their insignificant effect on the model results and in order to

simplify the model for analysis.

Parameter ‘p’ (for ages 0-14), the proportion of infected susceptibles aged 0-
14 which develop progressive primary TB within one year, was calculated in the
model using the age dependent function p = ( ﬁ) + (%) + po, where p, 1s the
initial value of the parameter shown in Table 11.1 for ages < 15 and a = age step.
The main feature for this parameter that the selected function had to capture, was
a very slow increase in the parameter value in very young children with a sharper
increase in value in the older ages to create a smoother transition to the p value for
ages 15+, Figure 11.1 shows how the selected quadratic function for parameter ‘p’

(for ages 0-15) captures this age dependent trend.

The parameters ‘cure’ and ‘cureNotDot’, proportion of treated cases cured un-
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der DOTS and a previous non-DOTS regime, respectively, were calculated in the
model using the age dependent linear functions, cure = ¢y + ¢;t and cureNotDot
= cndp + cnd;t; where ¢, ¢, endp and cnd, are the initial values and ¢ = time_:
step. The main feature for this parameter that these selected functions had to cap-
ture, was a slow steady increase in both cure rates but with the constraint that the
maximum value of ‘cureNotDot” was less than the minimum value of ‘cure’ and

that ‘cure’ must be less or equal to one (see figure 11.2).
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Figure 11.1: Plot of the function used for the model parameter p = (&;) +

(%) +p2, proportion of infected susceptibles which develop progressive primary
TB within one'year; where p; is the initial value of the parameter for ages < 15

and a = age in half yearly steps

The fits to the data that the above described parameter values and parameter
functions produce are shown in figures 11.3 to 11.5. It is noticeable that the shape
of the line fit does not vary significantly across the 8 age ranges. Although the
gradient of the line fit does change slightly over the age ranges, sloping in the
early age ranges and leveling off in the last four age ranges, it is not a large enough
change to match the gradient changes in the observed data. The fit to the percent-
age decrease in PTB cases (1994 to 20.00) 1s reasonable for ages 15-65. The model
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Fitting to Moroccan PTB case data
Parameter Description Initial Value
A1) Force of infection 0.2

z(age<15) | Proportion of re-infections which is susceptible 0.08
x(age>15) | to developing TB within one year 0.15
p(age<15) | Proportion of infected susceptibles which 0.005
p(age>15) develop progressive primary TB within a year 0.16
v(age<15) | rate at which latent infections become TB cases 0
v(age>15) | by endogenous re-activation 2.86E-03
f(age<15) | Proportion of progressive primary cases 0.04
f(age>15) | which become infectious 0.4439

7 Death rate for non-TB causes 0.174

L Death rate for infectious TB 0.313

L, Death rate for non-infectious TB 0.231

r Rate of relapse from failed treatment to active TB 0.3

w Rate of smear conversion from non-infectious to 0.018

infectious TB
0 exponential rate of decline in contact rate between 0.02
TB cases and others
€ Relative case detection rate of non-infectious cases 0.5
) Proportion of failed treatment cases which is infec- 0.575

tious

Table 11.1: Parameter values obtained by fitting TB model

outputs to Moroccan PTB case data.
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Fitting to Moroccan PTB case data continued
Parameter Description Initial Value
det Rate at which TB cases are found and treated 0.8
under DOTS
cure Proportion of treated cases given curative || ¢p o
chemotherapy under DOTS 0.75 | 0.0015
detNotDot | Rate at which TB cases are found and treated 0.6
under a previous non-DOTS regime
cureNotDot | Proportion of treated cases given curative ther- || cndy | cnd;
apy under a previous non-DOTS regime 0.5 0.0014
warm-up period length (in years) 30
start date of model 1980
Time step (in part of years) 0.5
finish date of model 2000
Date at which DOTS interventions begin 1991
Duration of introductory period of DOTS (in years) 3
model age limit (in years) 85
model age cut off for age dependent parameters (in years) 15
Date at which non-DOTS interventions begin 1955

Table 11.2: Parameter values obtained by fitting TB model

outputs to Moroccan PTB case data (continued).
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Figure 11.2; Plot of the function used for the model parameters cure = ¢q + ¢t
and cureNotDot — endy + endyt , proportion of treated cases cured under DOTS
and a previous non-DOTS regime, respectively; where ¢y, c,.cndy and end, are

the mitial values and [ = time in half yearly steps

underestimates the percentage decrease in PTB for children aged 0-14 and over

estimates the percentage decrease for the elderly aged 65+ (see figure 11.4 (d)).

Thus, again, despite the complexity of this compartmental model, the age de-
pendent effects of the TB data are not fully and satisfactorily explained by this

fitting of the model.

The following sections contain the further investigations into the ability of the
model to capture effectively the age and time dependent trends in the Moroccan

TB data set.
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Figure 11.3: (a)-(c): Plots of the fit for the compartmental model to the Moroccan

confirmed PTB case data, for three selected years: 1980, 1990 and 2000.
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Figure 11.4: (a)-(c): Plots of the fit for the compartmental model to the Moroccan

confirmed PTB case data, over the years 1980 to 2000.
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Figure 11.5: (a)-(h): Plots of the fitted age dependent model to Moroccan PTB

case data, 1980-2000, for each of the eight age groups.
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11.2 Sensitivity analysis using Moroccan PTB case

data

The aim is to explore how varying the values of each input parameter effects the
outcome variables, the number of infectious TB cases/100,000 and the percentage
decline in infectious TB for years 1994 to 2000. The value of each parameter used
to produce a fit to the data as displayed in the previous section is referred to as the
base value. Each parameter is taken in turn and the model run with a new value
(a percentage of its base value) for that parameter. The percentages by which the
parametef values are varied were selected to show a representative pattern of how
the outcome variable is effected. These sensitivity results are displayed visually in

graphical form in the following sections.

Most of the parameters exhibited behaviour that was as expected and explain-
able by the epidemiology of TB. There were some notable exceptions and these
were the same parameters that were highlighted by the previous sensitivity analysis

carried out with the Dutch data, namely, p(15+), x(15+) and r.

All the parameters in general exhibited non-linear behaviour apart from for
very small variations in value when an approximately linear behaviour sometimes

occurred.

Varying the parameter values one at a time had very little to no effect on the
model’s ability to explain the age dependent characteristics of the data. However,
increasing some of the more sensitive parameters at the same time did seem to

improve the fit to the data for ages 0-34.

The following sections set out the detailed results of varying the value of each

parameter.
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11.2.1 Varying parameter value \(1), “Initial Force of Infec-
tion”.

The parameter A(1) is varied by plus and minus 30% of its base value (see table11.3)

in order to investigate the effect of varying the initial value of the force of infection.

Table 11.3: Values of the parameter A(1), selected as input to the model

70% of base value | base value | 130% of base value

A(1) | 0.14 0.2 0.26

A 30% increase and decrease in the inital force of infection causes a relatively
large corresponding increase and decrease in PTB incidence as expected (see fig-

ures 11.6 (a) and (b)).

Increasing the A(1) value has the effect of slightly decreasing the percentage
decline in PTB over the last seven years of the time period, for ages 0-45, but
slightly increasing the percentage decline for ages 45+ Decreasing the value of

A( 1) has the opposite effect (figure 11.7).

Figure 11.6: (a)-(b): Plots of the fit for the compartmental model to the Moroccan

confirmed pulmonary TB data, over the years 1980 to 2000.
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Figure 11.7: Plot of the fit for the compartmental model to the percentage decrease

in the Moroccan confirmed pulmonary TB data, over the years 1994 to 2000.
11.2.2 Varying parameter value 0, “the exponential rate of decline

in the contact rate between TB cases and others”.

The parameter ¢ is varied by plus and minus 20% of its base value (see table 11.4)
in order to investigate the effect of varying the exponential rate of decline in the

contact rate between TB cases and others.

Table 11.4: Values of the parameter 8, selected as input to the model

80% of base value | base value | 120% of base value

g |0.0l6 0.02 0.024

Decreasing and increasing the exponential rate of decline in the contact rate by
20% of its base value has a fairly large opposite effect on TB incidence (see figures
11.8(a) and (b)). This is as expected. If the contact rate declines more slowly there
is more opportunity for mixing between cases and others and therefore a higher

chance of individuals being infected with TB.

Increasing @, the exponential rate of decline in the contact rate, has the effect of

slightly increasing the percentage decline in PTB (over the years 1994-2000), for
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ages 0-45, but slightly decreasing the percentage decline for ages 45+. Decreasing

the value of ¢ has the opposite effect (see figure 11.9).

Figure 11.8: (a)-(b): Plots of the fit for the compartmental model to the Moroccan

confirmed pulmonary TB data, over the years 1980 to 2000.
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Figure 11.9: Plot of the fit for the compartmental model to the percentage decrease

in the Moroccan confirmed pulmonary TB data, over the years 1994 to 2000,
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11.2.3 Varying parameter value p (for ages 15+), “the propor-
tion of infected susceptibles which develop progressive
primary TB in one year”.

The parameter p (for ages 15+) is varied by plus and minus 20% of its base value

(see table 11.5) to explore the effect of varying the proportion of infected suscep-
tibles aged 15+ which develop progressive primary TB in one year.

Table 11.5: Values of the parameter p(ages 15+), selected as input to the model
80% of base value | base value | 120% of base value

plages 15+) | 0.128 0.16 0.192

For ages 15+, a small increase in the proportion of infected susceptibles which
develop progressive primary TB in one year, causes a small and logical increase in
PTB incidence. Likewise, a decrease in the value of p(ages 15+) causes a decrease
in PTB incidence. The parameter behaves fairly linearly for this small variation
which can be seen as symmetry of the two percentage decrease and increase fits
around the base line fit (see figure 11.10 (b)).The trend is the same for the percent-
age decline in PTB for years 1994-2000 (figure 11.11).

However, an increase and decrease in p(ages 15+) causes a decrease and in-
crease respectively in PTB incidence for children aged 0-14 (see figure 11.10 (a)).
This appears counter intuitive and as for the Dutch data, could not be explained by
further analysis of the model’s mechanisms. This would therefore require further

investigation.
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Figure 11.10: (a)-(b): Plots of the fit for the compartmental model to the Moroccan

confirmed pulmonary TB data, over the years 1980 to 2000.
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crease in the Moroccan confirmed pulmonary TB data, over the years 1994 to

2000.




CHAPTER 11 172

11.2.4 Varying parameter value p (for ages 0-14), “the propor-
tion of infected susceptibles which develop progressive

primary TB in one year”.

The parameter p (for ages 0-14) is varied by plus and minus 90% of its base value
(see table 11.6) to investigate the effect of varying the proportion of infected sus-

ceptibles aged 0-14 which develop progressive primary TB in one year.

Table 11.6: Values of the parameter p(ages 0-14), selected as input to the model

10% of base value | base value | 190% of base value

p(ages 0-14) | 0.0005 0.005 0.0095

A large increase and decrease in the proportion of infectious susceptibles aged
0-14 which develop progressive primary TB in one year, causes a corresponding
small increase and decrease in TB incidence in children aged 0-14. This parameter

therefore behaves fairly linearly and logically (see figures 11.12).

Incidence of Infectious TB /100,000
O = N W & 00 O N o O

g8388882813¢
A Recorded FTB data for ages 0-14 Time (years)

—— Model Incldence of infectious TB for ages 0-14: -%

~—— Model Incidence of infectious TB for ages 0-14: base

—— Model Incidence of Infectious TB for ages 0-14: +%

Figure 11.12: Plot of the fit for the compartmental model to the Moroccan con-

firmed pulmonary TB data, for ages 0-14, over the years 1980 to 2000.
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11.2.5 Varying parameter value v (for ages 15+), “the rate at
which latent infections become TB cases by endogenous

reactivation”.

The parameter v (for ages 15+) is varied by plus and minus 10% of the base value

(see table 11.7) to examine the effect on the outcome variable.

Table 11.7: Values of the parameter v(ages 15+), selected as input to the model
90% of base value | base value | 110% of base value

v(ages 15+) | 2.57E-03 2.86E-03 | 3.14E-03

For ages 15+ decreasing and increasing the rate at which latent infections be-
come TB cases by endogenous reactivation causes a corresponding decrease and

increase in TB incidence. There is very little effect on those aged under 15.

The parameter behaves fairly linearly for this small variation in value and there
1s very little effect on the percentage decrease of PTB as can be seen by the sym-

metry and similar gradients of the three fit lines in figure 11.13.

The behaviour of this parameter is in line with current scientific knowledge of
reactivation disease. It is unlikely to occur in children as latent periods can be very
long. In countries where HIV is not a ‘large’ problem, reactivation disease is more

likely to occur in the elderly.

11.2.6 Varying parameter value x (for ages 15+), “the propor-
tion of re-infections which is susceptible to developing
TB within one year”.

The parameter x (for ages 15+) is varied by plus and minus 40% of its base value

(see table 11.8) to investigate the effect of varying the proportion of re-infections
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Figure 11.13: Fits of the compartmental model to Moroccan PTB data, for ages

15+, for varying values of v(15+).

in people aged 15+ which are susceptible to developing TB within one year.

Table 11.8: Values of the parameter x(ages 15+), selected as input to the model

60% of base value

base value

140% of base value

x(ages 15+)

0.09

0. 15

0.21

A decrease 1n x(ages 15+), the proportion of individuals aged 15+ with re-

infections who are susceptible to developing TB within one year, causes an in-

crease in TB incidence in those aged 0-14 (see figure 11.14 (a)).This trend then

begins to reverse (see figure 11.14 (b) and (c)). For ages 35+ a decrease in x(ages

[ 5+) causes a corresponding decrease in PTB incidence (see figures 1 1.14 (d)-(f)).

These results seem counter intuitive (as were the corresponding sensitivity re-

sults for the Dutch data set) and require further investigation.

Increasing and decreasing x(ages |5+) has the corresponding effect of increas-

ing and decreasing the percentage decline in PTB for the years 1994-2000, as

shown in figure 11.15.
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Figure 11.14: (a)-(f): Plots of the fit for the compartmental model to the Moroccan

confirmed pulmonary TB data, for each age range.
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Figure 11.15: Plot of the fit for the compartmental model to the percentage de-

crease in the Moroccan confirmed pulmonary TB data, over the years 1994 to

2000.
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11.2.7 Varying parameter value x (for ages 0-14), “the propor-

tion of re-infections which is susceptible to developing

TB within one year”.

The parameter x (for ages 0-14) is varied by plus and minus 100% of its base value
(see table 11.9) to investigate the effect of varying the proportion of re-infections

in children aged 0-14 which are susceptible to developing TB within one year.

Table 11.9: Values of the parameter x(ages 0-14), selected as input to the model

0% of base value | base value | 200% of base value

x(ages 0-14) | O 0.08 0.16

A large decrease in x(ages 0-14), the proportion of re-infections in children
aged 0-14 which is susceptible to developing TB within one year, causes a small
and logical decrease in PTB in children aged 5-14. Likewise, a large increase
in x(ages 0-14) causes a small increase in PTB in those aged 5-14 (figures 11.16

(a)-(b)). This trend is repeated for the percentage decline in PTB over the years
1994-2000 (figure 11.17).

Figure 11.16: (a)-(b): Plots of the fit for the compartmental model to the Moroccan

confirmed pulmonary TB data, for ages 5-14.
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Figure 11.17: Plot of the fit for the compartmental model to the percentage de-
crease in the Moroccan confirmed pulmonary TB data, over the years 1994 to

2000.

11.2.8 Varying parameter value F (for ages 15+), “the propor-
tion of progressive primary cases which become infec-

tious within one year”.

The parameter F (for ages 15+) is varied by plus and minus 10% of its base value
(see table 11.10) to investigate the effect of varying the proportion of progressive

primary cases for ages 15+ which become infectious within one year.

Table 11.10: Values of the parameter F(ages 15+), selected as input to the model

90% of base value | base value | 110% of base value

F(ages 15+) | 0.399538 0.443932 | 0.488325

This parameter behaves linearly and logically for a 10% variation in value. A
decrease in the proportion of progressive primary cases for ages 15+ which become
infectious within one year causes a decrease in PTB incidence and visa versa, The
percentage decline of PTB is not effected as can be seen by the similarity of the

gradients for all three line fits (see figure 11.18)
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Figure 11.18: Plot of the fit for the compartmental model to the Moroccan con-

firmed pulmonary TB data, over the years 1980 to 2000, for ages 15+.

11.2.9 Varying parameter value F (for ages 0-14), “the propor-
tion of progressive primary cases which become infec-
tious”.

The parameter F (for ages 0-14) is varied by plus and minus 70% of its base value

(see table 11.11) in order to explore the effect of varying the proportion of pro-

gressive primary cases in children aged 0-14 which become infectious.

Table 11.11: Values of the parameter F(ages 0-14), selected as input to the model

30% of base value | base value | 170% of base value

F(ages 0-14) | 0,012 0.04 0.068

A large decrease in F(ages 0-14), the proportion of progressive primary cases
in children aged 0-14 which become infectious in one year, causes a relatively
small decrease in PTB incidence in those aged 0-14. Likewise a large increase
in F(ages 0-14) causes a relatively small increase in PTB incidence in those aged

0-14 (igure 11.19).

Decreasing F(ages 0-14) has the effect of very slightly increasing the percent-
age decline in PTB (over the years 1994-2000) for ages 0-14 (see figure 11.20).
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Figure 11.19: Fits of compartmental model to Moroccan PTB data, for ages 0-14.
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Figure 11.20: Fit for the compartmental model to the percentage decrease in the

Moroccan confirmed pulmonary TB data, over the years 1994 to 2000.
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11.2.10 Varying parameter value ¢, “the proportion of failed

treatment cases which is infectious”.

The parameter ¢ is varied by plus and minus 100% of its base value (see ta-
ble 11.12) to explore the effect of varying the proportion of failed treatment cases

which is infectious.

Table 11.12: Values of the parameter ¢, selected as input to the model

0% of base value | base value | 200% of base value

¢ |0 0.57462 | 1

A large increase and decrease in ¢, the proportion of failed treatment cases
which is infectious, causes a corresponding small increase and decrease in PTB
incidence (figures 11.21 (a) and (b)). 1t makes sense that increasing the number of

infectious cases in a population increases TB incidence.

This trend is duplicated in percentage decline of PTB (over 1994-2000) for
ages 0-15 and 40+, (see figure 11.22).

Figure 11.21: (a)~(b): Plots of the fit for the compartmental model to the Moroccan

confirmed pulmonary TB data, over the years 1980 to 2000.
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Figure 11.22: Fits for the compartmental model to the percentage decrease in the

Moroccan confirmed pulmonary TB data, over the years 1994 to 2000.

11.2.11 Varying parameter value w, “the rate of smear conver-

sion from non-infectious to infectious TB”.

The parameter wis varied by plus and minus 50% of'its base value (see table 11.13)

to examine the effect of varying the rate of smear conversion from non-infectious

to infectious TB.

Table 11.13: Values of the parameter w, selected as input to the model

50% of base value

base value

150% of base value

w | 0.009033

0.018065

0.027098

Increasing and decreasing w, the rate of smear conversion from non-infectious

to infectious TB, causes a corresponding increase and decrease in PTB (infectious

TB) incidence as would be expected (see figures 11.23 (a) and (b)).There is very

little effect on the percentage decrease of PTB.
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Figure 11.23: (a)-(b): Plots of the fit for the compartmental model to the Moroccan

confirmed pulmonary TB data, over the years 1980 to 2000.
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11.2.12 Varying parameter value j,, “the death rate for infec-

tious TB”.

The parameter y; is varied by plus and minus 90% of its base value (see ta-

ble 11.14) to investigate the effect of varying the death rate for infectious TB.

Table 11.14: Values of the parameter ;, selected as input to the model

10% of base value

base value

190% of base value

1 | 0.031256

Qi 358

0.593862

Decreasing the death rate for infectious TB causes an increase in PTB inci-

dence from 1994, (the year the DOTS regime takes over from the previous less

efficient control regime), and onwards. This is logical as decreasing this death rate

leaves an increased number of infectious TB cases in the population. Before 1994,

however, a decrease in the infectious TB death rate causes a decrease in PTB in-

cidence (see figure 11.24 (a)-(c)).This is possibly due to an interaction with the

pre-DOTS and DOTS detection and cure rates.

A decrease 1n ji; also causes a large decrease 1n the percentage decline of PTB
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(over years 1994-2000). An increase in /i; causes a small increase in the percentage

decline of PTB for ages 0-20 (see figure 11.25).

Figure 11.24: (a)-(c): Fits of compartmental model to the Moroccan PTB data.
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Figure 11.25: Fits for the compartmental model to the percentage decrease in the

Moroccan confirmed pulmonary TB data, over the years 1994 to 2000.

11.2.13 Varying parameter value u,, “the death rate for non-

infectious TB”.

The parameter /i, is varied by plus and minus 80% of its base value (see ta-
ble 11.15) in order to investigate the effect of varying the death rate for non-

infectious TB.

Decreasing the death rate from non-infectious TB causes a large increase in

PTB incidence. Increasing /i, causes a smaller decrease in PTB incidence (figure
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Table 11.15: Values of the parameter ju,,, selected as input to the model

20% of base value | base value | 180% of base value

My | 0.046148 0.23074 0.415332

11.26 (a)-(c)). Decreasing i, causes a small decrease in the percentage decline of

PTB over years 1994-2000, (see figure 11.27).

This result at first sight seems puzzling as it is not overly obvious why an
increase in the amount of non-infectious TB in the population should increase the
amount of infectious (pulmonary) TB. But this is however a logical result. With a
higher prevalence of non-infectious TB, a larger number of cases are converted to

infectious TB by smear conversion hence increasing PTB incidence.

Figure 11.26: (a)-(c): Fits of compartmental model to Moroccan PTB data.
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Figure 11.27: Fits for the compartmental model to the percentage decrease in the

Moroccan confirmed pulmonary TB data, over the years 1994 to 2000.
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11.2.14 Varying parameter value ¢, “the relative case detection

rate of non-infectious cases”.

The parameter € is varied by plus and minus 100% of the base value (see ta-
ble 11.16) to explore the effect of varying the relative case detection rate of non-

infectious cases.

Table 11.16: Values of the parameter ¢, selected as input to the model
0% of base value | base value | 200% of base value

el 0 0.5 1

Varying this parameter by 100% of its base value has little to no effect on PTB

incidence.

11.2.15 Varying parameter value r, “the rate of relapse from

failed treatment to active TB”.

The parameter r is varied by plus and minus 70% of its base value (see table 11.17)

to investigate the effect of varying the rate of relapse from failed treatment to active

TB.

Table 11.17: Values of the parameter r, selected as input to the model
30% of base value | base value | 170% of base value

r| 0.09 0.3 0.51

A large decrease in the rate of relapse from failed treatment to active TB causes
a small increase in PTB incidence and visa versa although this effect is less pro-
nounced (figures 11.28 (a)-(c)).This appears counter intuitive, as with the corre-

sponding sensitivity results for the Dutch data. Therefore, like the previous pa-
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rameters that produced seemingly illogical effects, this parameter would benefit

from further investigation.
This parameter shows non linear characteristics and there is no clear trend for

the effect of varying r on the percentage decline of PTB (figure 11.29).

Figure 11.28: (a)-(c): Plots of the fit for the compartmental model to the Moroccan

confirmed pulmonary TB data, over the years 1980 to 2000.
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11.2.16 Varying parameter value ‘det’, “the rate at which TB

cases are found and treated under the DOTS regime”.

The parameter ‘det’ is varied by plus and minus 10% of its base value (see ta-
ble 11.18) to investigate the effect of varying the rate at which TB cases are found
and treated under the DOTS regime.

Table 11.18: Values of the parameter ‘det’, selected as input to the model
90% of base value | base value | 110% of base value

‘det’ | 0.72 0.8 0.88

A small increase and decrease in the rate TB cases are detected under the DOTS
regime causes a corresponding increase and decrease in PTB incidence after the
year 1991, when DOTS is first introduced. This is because more cases are being
found and identified after this date under the new regime. The model multiplies the
resulting number of cases by the time dependent detection rate in order to produce
an output comparable to the observed data. Therefore at first, the number of TB
cases increases. The incidence of PTB then declines from 1994 (the year DOTS is
fully introduced) to the end of the time period (2000), as more cases are found and

cured (see figures 11.30 (a)-(c)).

The percentage decline in PTB over this same period (1994-2000) increases
with increased detection rate and decreases with decreased detection rate. This

trend is most pronounced in ages 0-15, (see figure 11.31).
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Figure 11.30: (a)-(c): Plots of the fit for the compartmental model to the Moroccan

confirmed pulmonary TB data, over the years 1980 to 2000.

2 ] 2 e
- 5 a
5 g aa 8 4
c Xy - (=
P a i @
= :(v‘ 4a%, e
3 3 4 2
2 g a 2
g 2 2
T c! - AV
x R A= 3
e 1, 4 ]
I it
% 2 5
3 3! K
£ “ ot -

—— N rS0enin of ket ous TE b ages
—— Mode: latance of Infecious TH for af 5gos: =5 —— Wadnd In=idanch of inctous T bar apne

(a) All ages. (b) Ages 0-14 years. (c) Ages 15+ years.

2 % daclina in PTB (for yoars 1994-2000)

Decline P18 (Ndyr)

T

n
oM I8 A B W OB OB L R % BB A

—— % decraase catunlid rom Morocca PTH data i by aga cal pops)
== Mol rauta (n age cals) b yrs 1994-2000: %

ki3 de! rasuls (0 A0 cals} I s 1334-2000: base

—&— Model traults (0 adge calsy lor yrs 13332000 + %
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11.2.17 Varying parameter value ‘DetNotDot’, “the rate at which

TB cases are found and treated under a previous non-

DOTS regime”.

The parameter ‘DetNotDot’ is varied by plus and minus 10% of the base value
(see table 11.19) to investigate the effect of varying the rate at which TB cases are

found and treated under a previous non-DOTS regime.

Table 11.19: Values of the parameter ‘DetNotDot’, selected as input to the model

90% of base value | base value | 110% of base value

‘DetNotDot’ | 0.54 0.6 0.66

Increasing and decreasing the detection rate of a previous less efficient non-
DOTS regime produces analogous results to those for the DOTS detection rate and

for the same reasons as described in the previous section (see figures 11.32 (a)-(c)).

Figure 11.32: (a)-(c): Plots of the fit for the compartmental model to the Moroccan
confirmed pulmonary TB data, over the years 1980 to 2000.
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11.2.18 Varying parameter value ‘cure = ¢y + c;t°, “the pro-
portion of treated cases given curative chemotherapy

under the DOTS regime”.

The parameter ‘cure’ is varied by plus and minus 10% of its base value (see ta-
ble 11.20 and figure 11.33) in order to investigate the effect of varying the propor-

tion of treated cases given curative chemotherapy under the DOTS regime.

Table 11.20: Values of the parameter ‘cure’, selected as input to the model

Cp 51
90% of bv | bv 110% of bv || 90% of bv | bv 110% of bv
0.675 0.75 1 0.825 0.00135 0.0015 | 0.00165

bv = base value

A decrease and increase in the cure rate under the DOTS regime cause a logical
increasé and decrease respectively in PTB incidence after the year 1994, the year
the DOTS regime is fully introduced. The incidence of PTB declines after 1994 as
the new DOTS regime is fully implemented (see figures 11.34 (a)-(c)).

Over all ages, the percentage decline in PTB is decreased for a decrease in
cure rate and increased for an increase in cure rate as would be expected (see

figure 11.35).
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Figure 11.33: Plot of the parameter cure values.

Figure 11.34: (a)-(c): Plots of the fit for the compartmental model to the Moroccan

confirmed pulmonary TB data, over the years 1980 to 2000.
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11.2.19 Varying parameter value ‘CureNotDot = cndy+cndq t’,
“the proportion of treated cases given curative chemother-
apy under a previous non-DOTS regime”.

The parameter ‘CureNotDot’ is varied by plus and minus 20% of its base value

(see table 11.21 and figure 11.36) in order to investigate the effect of varying the

proportion of treated cases given curative chemotherapy under a previous non-

DOTS regime.

Table 11.21: Values of the parameter ‘CureNotDot’, selected as input to the model

cndy cnd,
80% of bv | bv | 120% of bv || 80% of bv | bv 120% of bv
0.4 05106 0.00112 0.0014 | 0.00168

Increasing and decreasing the cure rate in a previous less efficient non-DOTS
regime causes analogous results to those for the DOTS cure rate and for the same

reasons as described in the previous section (see figures 11.37 (a)-(c)).

It is interesting to note that as time moves on and the new DOTS control regime
takes over, the incidence of TB values become very similar no matter what value

of Non-DOTS cure rate was previously used.

1

Figure 11.36: Plot of the parameter ‘cureNotDot  endy + end,l values.
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Figure 11.37: (a)-(c): Fits of compartmental model to Moroccan PTB data.

Inciderey of miztious T8 100,000

“oa o~ omow

ndzensa of nlacBaus TR 120 500

s 2
2 2
Bua e

T fyeans]

2 ohlnfectous TH hor s 14 5%
— Mo Ieiuech of Fahctoua TE ko iges 0-14: basa
— Mot Inzidanco ol ainctous TH for agna D142 %

120

nagencs of rlecious TE 1100020

B Rocorad PTI osta b s e

— L

Sxbwancn of Inle A oum THS for e 190:-%
—— Madel Inzidonon of Infactous TN b s

—— Kol Iratuecu of Ifactous 1 loe ugms 154: <5,

(a) All ages.

Decive PN (3

i
1
!
1

e i, it S i) ron torconn PE dll [ epe ael 2con)
(= Mokl vl (o0 e bzt B 73§20, <

—= badai resiss
=t Wb ronsta ni g

A deckng in PTH ffor yeara 1582-2050)

w3} i \rn 1RO basa

(3} fr s 1EMLZ00, 145

(b) Ages 0-14 years.

(c) Ages |5+ years.
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11.2.20 Varying the two parameter values ‘cure’ and ‘CureNot-

Dot’ simultaneously.

The two cure parameters are varied simultaneously to investigate the effect of vary-
ing the proportion of treated cases given curative chemotherapy under a previous
non-DOTS regime along with those under a subsequent DOTS regime. Both the
cure parameters were increased at the same time, decreased at the same time and
held at base value at the same time as set out in table 11.22 and shown in figure

11.39.

Table 11.22: Values of the parameters ‘cure’ and ‘CureNotDot’, selected as input

to the model
‘cure’
Co C1
90% of bv | bv | 110% of bv || 90% of bv | bv 110% of bv
0.675 0.75 | 0.825 0.00135 0.0015 | 0.00165
‘CureNotDot’
endy cnd,
80% of bv | bv | 120% of bv || 80% of bv | bv 120% of bv
0.4 05 |06 0.00112 0.0014 | 0.00168
bv = base value

Decreasing and increasing both non-DOTS and DOTS cure rates together causes
alogical corresponding decrease and increase in PTB incidence (see figures 11.40
(a)-(c)). The percentage decline in PTB (over years 1994-2000) is only minimally
effected.
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11.2.21 Varying 11 parameter values simultaneously

The parameters established as the most interesting and sensitive by the previous
sections investigations are varied simultaneously to give an idea of how these pa-
rameters can interact to effect the model outcomes. All the parameters varied were
increased at the same time, decreased at the same time and held at base value at

the same time as set out in table 11.23.

Increasing these chosen 11 parameters together increases PTB incidence for
all ages over 24. Likewise decreasing all 11 parameters decreases PTB incidence
for these ages (see figures 11.42 (e)-(h)). For ages 0-24 the results are less clear
cut. The base value seems to cause the most PTB incidence with an increase in the
parameters causing a sharper decline in PTB incidence, especially in the 5-9 year
age range (see figures 11.42 (a)-(d)).

An increase/decrease in the parameter values caused a marked increase/decrease

in the percentage decline in PTB for years 1994-2000 (see figure 11.41),

1t is obvious that these parameters interact with each other in complicated and
subtle non-linear ways that are not obvious by examining the difference equations

that drive the model.

%4 deciino In PTB (for yoars 1§94.2000)

Figure 11.41: Fits for the compartmental model to the percentage decrease in the

Moroccan confirmed pulmonary TB data, over the years 1994 to 2000.
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Figure 11.42: (a)-(h): Plots of the fit for the compartmental model to the Moroccan

confirmed pulmonary TB data,

for each of the 8 age ranges.
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Table 11.23: Details of parameter values varied simultaneously to investigate interaction effects.

parameter parameter description percentage

name | of base value
used to vary
parameter value

A1) Initial value of force of infection 30

8 Exponential rate of decline in contact rate between TB cases and others 20

p(> 15) Proportion of infected susceptibles which develop progressive primary TB within one year 20

v(> 15) Rate at which latent infections become TB cases by endogenous reactivation 10

x(> 15) Proportion of re-infections which is susceptible to developing TB within one year 40

F(> 15) Proportion of progressive primary cases which become infectious 10

w Rate of smear conversion from non-infectious to infectious TB 50

det Rate at which TB cases are found and treated under the DOTS regime 10

detNotDot Rate at which TB cases are found and treated under a previous non-DOTS regime 10

cure Proportion of treated cases given curative chemotherapy under the DOTS regime 10

Time dependent function: cure = ¢p + c;t
cureNotDot | Proportion of treated cases given curative chemotherapy under a previous non-DOTS regime | 20

Time dependent function: cureNotDot = c¢ndp + cndit

[T J4LdVH)

861
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11.3 Summary of Sensitivity Analysis

Most of the parameters behaviour was as expected and explainable by the epi-
demiology of TB. There were however some notable exceptions, namely, p(for
ages 15+) - the proportion of infectious susceptibles which develop progressive
primary TB in 1 year; x(for ages 15+) - the proportion of re-infections which is
susceptible to developing TB within 1 year; r - the rate of relapse from failed treat-
. ment to active TB. These three parameters showed the same illogical effects with
the Moroccan PTB data as they did when applied to the Dutch TB data set. Further

examination of the model provided no obvious explanations for these results.

The parameters again showed non-linear characteristics, except for very small
variations in value where they behave approximately linearly. Varying parameters
x(ages 0-14), ¢ and ¢ had a relatively small effect on the outcome variable as

compared with other parameters.

It is noticeable that varying the parameters one at a time did not significantly
improve the model fit to the age dependent characteristics. The model therefore
still struggled to fully capture the age characteristics especially in the older age
groups. However, increasing the 11 selected parameters at the same time did have
the effect of varying the gradient and placement of the fitted line so that it gave a
better fit to the data for ages 0-34 (see figures 11.42 (a)-(e)).



Chapter 12

Modelling Local and Global Effects
in the Transmission of TB Observed
in Asembo and Gem, Kenya:
Designing a Spatial Model of TB

Case Clustering.

This third model, a Markov chain model, is distinct from the previous two para-
metric and compartmental models previously described. It is constructed to exam-
ine the relative significance of local and global effects in the transmission of TB.
The simple Markov chain local effects model is used to examine a time-spatial TB
data set from the Nyanza province in western Kenya. It is also shown how this
new local/global effects model can be used in the design of community/clustered

randomised hials.
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12.1 Introduction

The following Chapters describe the background, design and application of a Markov
Chain model of TB case clustering in the Nyanza Province of westemn Kenya. The
model is created in an attempt to identify whether the nearest reported source of
_possible infection is a localised one stemming from an individual’s contacts with
family or near neighbours or whether it arises from a much more dispersed contact

with people in a much less localised way.

The basic methodology is to construct a stochastic Markov-chain model whose
behaviour is determined by a number of key parameters and then fit this model
to the data using maximum likelihood to estimate these key parameter values.
Markov-chain models are based on transition probabilities and are very different

in approach from the type of compartmental model described in chapter 9.

The rest of this chapter sets out the background and detail of the Kenyan TB
data set analysed by this new local/global effects model. Chapter 13 introduces
and gives a brief history of modelling space-time clustering of disease. Chapter 14
contains the detail of the Markov-chain local/global effects model construction.
Chapter 15 contains the application of this new model to the Kenyan TB data set
described below. Chapter 16 sets out a possible use of this local/global effects

model in the design of cluster randomised trials.

12.2 The Kenyan Space-Time TB Data

A demographic surveillance system (DSS) exists in the Nyanza Province of west-
ern Kenya as part of the Centers for Disease Control and Prevention (CDC) and
Kenya Medical Research Institute (KEMRI) research operations. It covers approx-
imately 500 km? of land including 217 villages, 75 of which are in Asembo in the
Rarieda Division of the Bondo District and the rest are in Gem in the Wagai and
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Yala Divisions of the Siaya District. There is global information systems (GIS)
positional information (including longitude and latitude coordinates) and annual
population statistics for each village in the demographic surveillance area (DSA).
Figure 12.2 contains a mép of Asembo and Gem showing the location of each of

the 217 villages and their allocated identifying number.

Over 95% of the residents in Asembo and Gem are Luo. Poverty occurs
throughout the demographic surveillance area (DSA) which is an area of endemic
Malaria and high HIV prevalence (approximately 22%). Asembo has a high preva-
lence of HIV in the region around Lake Victoria due to lakeside prostitution whereas
Gem has a generally lower prevalence of HIV. In Asembo the ratio of female to
male TB prevalence is almost 1 to 1 in the middle age categories (ages 25 to 34).
This is in contrast to Gem where there is higher TB prevalence among females
in the 25-30 age category and higher prevalence among males in the 30-34 age
category. The TB notification data set that will be studied and analysed in the
following chapters is taken from this DSA.

The data set comprises 840 notifications of all types of TB callected in Asembo
and Gem by the Kenya Ministry of Health/National Leprosy and TB program and
the CDC over a six year period from 1997 to 2002. Data on the treatment start-
date (month and year), age, gender, and contact address (village) were abstracted
from district TB registers for patients whose contact address (village) was within
the DSS area. For any missing time periods in the district registers, TB registers
of health facilities in the area were consulted. GIS coordinates (longitude and
latitude) of the contact address (village) were added for each TB case in the data set
to allow for a time/spatial analysis of the data. Figure 12.1 shows the geographical
distribution of the TB notifications in the data set for the entire study period and
a summary of the population demography of this study area over the same pefiod,
1997 to 2002, is shown in table 12.1.

For input to our local and global effects model as described in Chapter 14, the
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TB notification data was written in the form of a history matrix (as formulated in
equation 14.4). Table 12.3 consists of an example history matrix formed from a

sample of the western Kenyan TB data displayed in table 12.2.

Table 12.1: Summary of the population demography (age/gender) of the study
area, averaged over the study period, 1997 to 2002.
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Figure 12.1: Geographical (longitude and latitude) location of the TB notifications.
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Figure 12.2: Geographical (longitude and latitude) location of the villages in the

Asembo and Gem regions.
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Table 12.2: Example sample of western Kenyan TB data set.

Individual Treatment start date | village
Number sex | age | latitude | longitude | Month | Year number
1 1 20 | -0.19806 | 34.33531 | 7 2000 30

2 2 24 | -0.19806 | 34.33531 | 9 1999 30

3 1 33 | -0.18448 | 34.34124 | 6 2000 32

4 2 25 | -0.18448 | 3434124 | 2 2000 32

5 2 19 | -0.2083 | 34.31837 | 6 2000 37

6 2 21 | -0.2083 | 34.31837 | 10 2000 37

7 2 29 | -0.18691 | 34.28558 | 9 1999 40

8 2 25 | -0.18691 | 34.28558 | 9 2000 40

9 2 56 | -0.17607 | 34.29281 | 9 2000 4]

10 2 29 | -0.17607 | 34.29281 | 7 2001 41




Table 12.3: Example History Matrix.

T1 Y4LdVH)

Year 1999 2000 2001
Month 3 456 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6
Individuall |1O 0 0 0 0 0 00 0 0 1111110O0O0O0O0O O O OOOO0OO0O0
Indiviquat2 /1 1 1 1 11 0 0 O O O OOOOOOOOO O O O O0OO0OO0OO0O0
Individual3 (0 0 0 0 0 0 00 0 1 11 1110O0O0OO0O0O O O OOO0OO0OO0O0
Individual4 (O 0 0 0 0 1 1 1 1 1 1 0 0O O O OOOOO O O OOO0OO0OO0O
Individual5 {0 0 0 0 0 0 0 0 0 1 11 11100O0O0CO0O O O OOOOOO0O
| Individual6 {[O 0 0 0 0 0 0O 0 0 O0O0OO1 111110 O O OO0OOOTUO0OO
Individual7 |1 1 1 1 1. 1.0 0 0 O OO0 OOOOOOOO O O 0O0O0OO0OO0O0
Individual 8 (O 0 0 0 0 0 00O 0 0 0011111100 O O OO0OO0O0OO0OO
Individual 9 |O 0 0 0 0 0 0 O 0 0O O0o011 111100 O O O0OO0OO0OO0OO0TDO
Individual 10 0000000 O O OO0OO0ODODOOOOOO O O 1T11111
0 =non-TB case; 1 = TB case.

It is assumed that an individual is infectious for 6 months before treatment starts and then becomes non-infectious.

90¢C



Chapter 13

Space Time Clustering

Space-time clustering of disease is described as the interaction between the places
and times of disease onset, i.e. clusters occur when cases which are close in space
are also close in time [53]. The existence of such clusters is regarded as evidence
of the infectiousness of the disease under study. Knox [24] considered the difficult
problem of deciding whether or not a disease can be regarded as being contagious
or epidemic and was the first to propose a test statistic for detecting space-time
Interactions/clustering. He proposed examining all possible pairs of cases, in a
time/spatial data set, to ascertain whether they occurred within some fixed time
distance J of each other and whether their dates of onset were within some fixed
time 7 of each other. The number of pairs, X, satisfying both criteria would then
be compared with the number of pairs that would be expected to satisfy the space-
time criteria if the cases were randomly distributed in time and space. A value
of X greater than this expectation value is therefore considered as evidence of
space-time interaction and therefore clustering. Subsequently, Mantel [68], Pike
and Smith [53], Symons et al. [55], Raubertas [78], Diggle et al [73], Jacquez [32],
Baker [76] and Kulldorff and Hjalmérs '[59] have all proposed different tests for
space-time interaction/clustering but the majority of methods only produce a single

test statistic that rejects or supports the existence of space-time clustering but does
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not detect or specify the size and location of any statistically significant clusters.

Pike and Smith [53] extend and generalise Knox’s approach to incorporate the
analysis of disease with a long latent period. Mantel [68] proposes a space-time
interaction test where each pair of cases is assigned a value describing their geo-
graphic and temporal closeness. The test statistic is then the sum of the products of
these values over all case pairs. A large value of this statistic implies the existence
of space-time interaction. Symons et al. [55] used a different approach by using
disease occurrence data to classify space-time cells as low-risk or high-risk cells.
The high-risk cells are categorised as disease clusters, but it is only after the cells
have been thus classified that a combinatorial test is used to check whether a larger
number occur next to each other than would otherwise be expected if they were to
be randomly distributed. Raubertas [78] proposes a method related to spatial au-
tocorrelation techniques which are widely used to analyse geographical data [7].
However, in contrast with the preceding methods, as well as proposing tests for
clustering, the analysis also specifies the contributions to clustering that is made

by each time-space cell.

Kulldorff et al. [59] revisits the problem of space-time analysis with the pro-
posal of the space-time permutation scan statistic which has been incorporated into
the software package SaTScan [60]. This free software program can be used to
test whether a disease is randomly distributed over time and space and to evaluate
the statistical significance of reported space-time disease clusters. (The software
also carries out purely spatiai or temporal analysis and can perform repeated time-
periodic disease surveillance for the early detection of disease outbreaks [60] [61]).
The space-time scan statistic takes the form of a cylinder in space and time where
the base represents the spatial dimension and the height represents the temporal
dimension. The circular base is centered on each grid point in tum throughout the
study region. At each of these points the radius of the base is varied continuously

from zero to an upper limit determined by the user. For each grid point and size
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of geographical base the height of the cylinder is also varied continuously, so that
the cylinder moves through time and space covering the whole study region with
an infinite number of overlapping cylinders of different sizes and shapes. Each of

these cylinders denotes a possible cluster.

The space-time permutation model compares the number of cases observed in
a cluster with the number expected if there was no space-time interaction. This
model automatically adjusts for any purely spatial or temporal clusters. It is nec-
essary to note that space-time clustering can also be caused by an increased risk of
disease at different times and location or by changes in the distribution of the pop-
ulation. Due to these possible confounding factors and the fact that the space-time
permutation model does not require ‘population at risk” data, it is advisable to take
care with the interpretation of the results when analysing case data collected over

more than one year.

The SaTScan software was used to analyse the set of TB notifications collected
in Asembo and Gem in westemn Kenya, as described in the previous chapter. Fig-
ure 13.1 shows the clusters that were detected. It should be noted that this data is
collected over more than one year and therefore the above health warning regard-

ing interpreting these results is relevant.

Tuberculosis (TB) is primarily a disease of the respiratory system with variable
degrees of infectiousness. It is caused by being infected with the airbome bacterial
germ Mycobacterium tuberculosis. Bacilli only live in the air for approximately
2 hours so individuals who have intense contact with TB bacilli in poorly venti-
lated areas are the most likely to become infected. TB morbidity and mortality
rates are strongly affected by living conditions. Infectiousness of the source case,
duration and frequency of exposure and charactenstics of shared environments, all

contribute to the overall risk of transmission [45].

Such characteristics of TB transmission can contribute to clustering in the in-
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Figure 13.1: Results of analysing the Kenyan TB data set with SaTScan, using the

space-time permutation model

cidence of the disease. Local factors such as a willingness to seek medical care,
distance to the nearest health facility, or the skill of health care providers could

cause clustering by influencing recognition and reporting of cases of tuberculosis.

Space-time clustering refers here to the interaction between places and the
times of the onset of disease, i.e. cases which are close in space tend to be close
in time. When this occurs it is likely, but not certain, that it reflects clustering in
transmission events. Most cluster analysis investigates whether the data of interest
supports a time/spatial structure or pattemn and if possible seeks to establish the
cause of such a pattern. However, it 1s already known that TB is infectious. The
more important question is whether transmission in areas with high TB prevalence
is fueled predominantly by the over-lying global transmission rate or can be seen

to be a more localised effect.

In summary, we are concerned with determining whether a clustering (lo-

cal) effect is as strong or stronger than a general global effect in respect of TB
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transmission. This may have consequences for how TB case finding strategies
are undertaken i.e. focusing on local contacts of infectious cases rather than

the entire population.

Recently there has been a realisation of a need to be able to model the lo-
cal effects on the global transmission dynamics of TB. Aparicio, Capurrio and
Castillo-Chavez [45] set up a compartmental model that incorporates local effects
on the global transmission dynamics of TB. They identify two classes of contacts,
close daily and prolonged contacts that form a cluster or generalised household and
close but infrequent contacts that classify casual contacts. An epidemiologically
active cluster constitutes a generalised household with one or more infectious in-
dividuals. Deterministic epidemiological compartmental models are developed to
evaluate the relative importance of TB transmission in populations with epidemio-
logically active clusters. Song, Castillo-Chavez and Aparicio [10] extend this work
to explore the varying time scales involved. They classify TB as a ‘slow’ disease
in that it has long and variable latency periods lasting for decades on average and
relatively short infectious periods lasting for months or years. Population and
individual-level transmission processes that operate on different time scales are
used to construct TB epidemic models with two levels of mixing. This approach is
based on the assumption that an individual’s risk of infection is significantly higher

from within an epidemiologically active cluster than from the general population.

In the next chapter I introduce a stochastic Markov-chain parametric model that
specifically includes possible local or more dispersed global effects on the risk of
contracting a communicable disease. The explicit application is to the transmis-
sion dynamics of tuberculosis, and the model is used to analyse the previously

described set of TB notifications collected in Asembo and Gem in western Kenya.
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Kenya Model construction

14.1 Designing a Spatial Model of Disease Case Clus-

tering.

The following is an attempt at modelling disease case clustering that focuses on
trying to identify whether the nearest reported source of possible infection is a lo-
calised one stemming from an individual’s contacts with family or near neighbours
or whether it arises from a much more dispersed contact with people in the wider
community. The model is constructed using the previously described TB data set

for western Kenyan.

The basic methodology is to construct a stochastic Markov-chain model whose
behaviour is determined by a number of key parameters and then fit this model
to the data using the classical method of maximum likelihood (ML) in order to
estimate these key parameter values (see Kendall and Stuart [58] for example).
Markov-chain models are based on transition probabilities and are very different
in approach from compartmental models. Examples of such latter models are given

by Dye and Williams [13] and Dye et al. [15].

The model is designed to be as simple as possible whilst allowing it to distin-
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guish between local and global effects.

The data comprises M (840) cases of all types of TB registered with the na-
tional tuberculosis program in the study area, in a population of some N (approx-
imately 130,000) over a given period T (approx six years). The location (village)
and date of occurrence of each notification is recorded. Population statistics (an-

nual) are also available for each of the villages. There are V (approx 217) villages.

The model could be formulated with time treated as being continuous, however
for ease of calculation time is treated as discrete. For simplicity of exposition, let

the basic time step be unity and the study period be
t = 01,2,...T. (14.1)

A possible time step might be one month or a quarter of a year.

We also treat the population size, N, as being fixed over the period of interest.
This is a reasonable simplification as the variation in population size over the study

period is only 7%.

The model is constructed by following the individual histories of all the indi-
viduals over the study period. We write the history of the ith individual as the row

vector
A = (zéi), z§i), ceey z¥)> (14.2)

where zt(i) is the state of the ith individual at time ¢.

It is assumed that, at any time point, the state of an individual can only be one
of two prescribed states. Some TB epidemiological models allow for a large num-
ber of possible states, for example: susceptible, latent (inactive TB), infectious,
undergoing treatment, dead. [28, 93] For simplicity our model has just two states:
case (State 1) and non-case (State 0). Our model is described in terms of this

two-state version.
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‘We shall also write

T
(zt(l), zt(z), e ,zt(N)> (14.3)

Iy

to denote the column vector giving the state of all individuals at time ¢. Thus z,
specifies the overall state of the epidemic at time ¢. (The superscript T denotes

transposition, so that we regard 2, as a column vector.)

We can therefore regard

Z == (éo,él: .. )gT) (144)

as being a matrix giving a discretised form of the complete data set, with columns
giving the state of the epidemic at different time points, and rows giving the histo-

ries of each individual. This shall be referred to as the History matrix.

Let a® (k|j,2,) = Pr(Individual 7 moves to state k in the next time step
given that she/he is currently in state 7, and that

the current state of the epidemic is 2, ) (14.5)

This (single step) transition probability governs the individual single time-step
transitions made by an individual. Notice that ™ (k|j, z,) does not depend on ¢
explicitly, but it will vary with time through its dependence on z, , the state of the

epidemic at time ¢.

‘We now consider the form of the transition probabilities,
a® (z,fi)l ‘zt(i), gt> . As there are only two possible states, 0 (non-case) and 1 (case),
the only possible transitions correspond, in the notation of equation 14.5, to just
the four cases (4, k) = (0,0), (0, 1), (1,0), (1,1). Moreover the four corresponding

transition probabilities must satisfy

a®(0[0,z) = 1—a®(1)0,z) (14.6)
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and

a?(11,2) = 1-aP(0)1,2) (14.7)

i.e. Using the notation abbreviation ans = a® (2|, 2,) , {a = 0,1; 8 = 0,1}
the two transition probabilities ago and a1; can be written in terms of the other two

probabilities aio and aoi-

ago = (probability of staying a ﬁon-case from one time step to the next)
= l—ayp
= 1 — (probability of moving from being a non-case to being a case
in one time step.)
and
a;; = (probability of staying a case from one time step to the next)
= 1—ap
= 1 — (probability of moving from being a case to being a non-case
in one time step.)
= 1 — (probability of recovery in one time stép)
_ 4 (time step) ’
ba
where b, = period of infection (specified in same units as time step)

= 1-b

Thus we need only specify o (1]0, z,) and a® (0|1, 2,). Figure 14.1 contains

an example graphical representation of these four transition probabilities.

In terms of the propagation of TB, a® (1|0, z,) is the key probability as it gives
the probability that a non-case (effectively, in this simple model, a susceptible)
individual will become a TB case over the next time step. We can thus introduce a

parametric form for this transition probability that enables us to include separate
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components for the global and local clustering of TB. There are various p>ossibili-

ties here. A véry simple form is
a® (110,2,) = bomo (2,) + b1m(1i) (z,) +¢co (14.8)

where bymy (2z,) and blmgi) (z,) are probabilities due respectively to a global ef-
fect and to a local effect, and ¢; is a generalised positive constant reflecting a
background incidence component or could be thought of as the reactivation rate
for TB cases. In practice ¢y can be very small and in terms of the fitted model is
effectively zero. However, its retention in the model greatly simplifies the estima-
tion process. Without ¢y the transition probability 14.8 would have to be specially
redefined for the situation where the local and global prevalences both happen to
be zero, and thus the transition probability 14.8 is zero which in practice causes

the Loglikelihood to be inappropriately defined.

The global and local unknown (positive) parameters, by and by, are to be esti-
mated from the data, and my (2z,) and m(f) (z,) are measures of the prevalence of
TB at the global and local level that are the cause of the respective corresponding

effects.

It is important to note that the local measure of prevalence, m(f) (z,), is highly
dependent on the location of the individual 4. It can, for example, simply be the
prevalence of TB, at time ¢, in the village to which ¢ belongs. This is easily cal-
culated from 2z, . Altematively if more information is available about the activities
of the individual, then possible transmission arising from regular attendance at a
particular market town, work place etc.. can be modelled by taking mgi) (z,) tobe

the measure of the prevalence of TB, at time ¢, in the population at these locations.

The other transmission probability required is a® (0|1, 2,), which is simply the
probability of recovery in any given time step. We assume that this is not location
dependent. Indeed, in our simple model, we assume that it is an unknown constant,

a® (0|1, 2,) = bt = p;%step' The notifications of the TB cases will be assumed
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as the moment when treatment starts and the individual becomes, in the framework
of the simple two-state model, non-cases and therefore ‘non-infectious’. If this
is correct then what is needed is an estimate of how long an individual might
have been infectious for, prior to this notification time. In constructing the history
matrix, the period of infection, by, is set, at present, at a notional, determunistic, six
months. Thus the history matrix 1s built using what is effectively a prior estimate
of by. (Although the value of b, 1s fixed it is also treated as the fourth parameter to

be estimated and its resulting MLE is output as a check to the correct programming

of the model).

States

Non-
case

N\

1
Case

s°°

h §

\) N
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TB case Individual
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Figure 14.1: Graphical representation of the four transition probabilities for an

example history of a TB case individual, using the abbreviation of notation, .3

a8 z) {a = 0.1, = 0,1}
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Hence this two state Markov model can be summarized by the transition

probability matrix:

Next Future
State
0 1
Qoo Q1o

Piy = State
1 ap1 Q11

?

l—ap apo (Note each row sums to one.)

ao1

1 —bomg () +bim? (z) + co bomo (2) +bimi? (2,) + co

b 1—b;
1— (bo%—l—bl%ﬁ‘a)) bo%*l‘bﬁﬁi + ¢p
o 1— B

where ao.p = a® (0|B,2); a=0,1;8=0,1

M, __ Total number of TB notifications at time ¢
N Total population

My _ Number of TB notifications in locality v at time ¢
Population n locality v

Nv
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The likelihood of 2z, the history of the ¢th individual, is defined to be the
probability of the occurrence of this particular history. If we assume that the
transitions forming z(* is a sequence of mutually independent events then this

likelihood is the product of the individual transition probabilities, so that

lik (z ( )1_ICL(2 (zt+l|zt ,_t> (14.9)

where p (zo ) is the probability that the initial state of the ith individual is z((, ) In

practice, when coding this model in excel/VBA, the first term p (z((, )> is left out.

This is a reasonable simplification due to the large number of time points used in

running the model.

| The total likelihood of all the histories is therefore

N
lik(2) = |]uk(2®) (14.10)

It is usually easier to work with the loglikelihood,
N .
L(2) = loglik(2) = > log|p ()]
i=1

N T-1
+Y > tog o (o140, 2) | aa1n)
0

i=1 t=

If b is given and we use (14.8) for o (1]0, z,), then the likelihood (14.11) is

a function of just the three parameters by, b; and co, i.e.

L = L(bo,b1,c0|Z) (14.12)

The maximum likelihood estimate(MLE) [58] of bg, b; and ¢, are those that
maximize L = L (bg, by, co|Z) ‘and are conventionally denoted 30, 131 and &. Itis
necessary to use a numerical procedure to maximize L. The Nelder-mead optimi-

sation method was used due to its stability and for ease of programming.
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Standard asymptotic theory [81] can be used to establish the distributional
properties of the MLEs bo, b1 and ¢, including their significance. The confidence
intervals for each parameter were calculated from the mnformation matrix calcu-

lated from the negative of the inverse of the Hessian of second derivatives.

An important practical point to note is that the ML method requires the log-
likelihood to be calculated repeatedly for different values of by, b; and ¢y. Each
loglikelihood calculation involves a summation over N, the size of the entire pop-
ulation. This may seem prohibitively expensive given the size of N. However the
only detailed calculations required are those involving the A/ individuals contract-
ing TB. The remaining N — M individuals can be grouped according to the village
to which they belong, so that the likelihood calculations for these non-TB individ-
uals need only be carried out at the village level. This calculation is therefore only

of order V, the number of villages, and not of order N — M.

Thus the total Loglikelihood, L, is calculated in practice as

M v
L=) L+ nL¥
i=1 j=1

where L; = log likelihood for TB case individual ¢; Lé" = Jog likelihood for a

non-case individual in locality j; and 7; = number of non-cases in locality ;.

The above model formulation omits separate modelling of male/female char-
acteristics and of age dependence, but these can be added using a more detailed

transition probability structure. This is discussed in the next subsection.

14.1.1 Modeling of male/female characteristics and of age de-

pendence

‘We now consider the effect of gender and age on an individual, for those individu-

als who do become cases during the period of study. Let g = 1, 2 denote the gender
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(male, female), and h = 1, 2 denote the age-category (‘child’:15 years or under,
“adult’:16 or over) at which notification occurs. At any time point individuals who

are cases can belong to one of four categories {(g,h),g =1,2,h = 1, 2}.

14.1.1.1 Conditional form of the local effect coefficient

The transition probability 14.8 can be refined to

a® (10,9,h,2) = bomo ()

2 2
+2. > bulg hli k) m ()i, k) + e (14.13)
=1 k=1
where mgi) (2,5, k) is the prevalence of those individuals in category (j =
gender, k = age category), at time ¢, in the village of individual 4, and where
b1 (g, hlj, k)is the coefficient corresponding to the degree of influence this category
(j = gender, k = age category) has on the probability that a non-case individual in

category (g = gender, h = age category) will become a case in the next time step.

One problem with this formulation is that the number of unknown b (.|.) coeffi-
cients jumps from a single unknown, in equation 14.8 to 16 unknowns: b, (g, h|7,k), g =

1,2,h=1,2,7=1,2,k =1, 2. This is almost certainly unacceptably large.

A possible way of reducing this proliferation of coefficients is to examine the

gender on its own using the model:

2
a9 (1)0,9,2) = bomo(z)+ Y bi(gl)) m{ (zlf) + oo (14.14)
J=1

where the arguments g and j in b; (g|j) and mgi) (2|7) refer to gender cate-

gories only. Likewise the age effect can be examined on its own using the model
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2
a® (10, h,2) = bomo(z) + Y _ by (RE) M (z,k) + o (14.15)

k=1

where the arguments h and k in b, (h|k) and m(li) (z;|k) refer to age categories

only. Each of these two models has only four b;(.|.) coefficients.

This conditional form of the model was found to be flawed. The results of run-
ning the age dependent model showed significance in two categories: transmission
of TB from children to adults, and adults to adults. Table 14.1 shows the Maxi-
mum Likelihood Estimates for the parameters in this' (two category) Age model.
The significance of child to adult transmission went against all biological knowl-
edge of TB transmission and led to a thorough re-examination of the model. It was
thought that the current form of the local effect coefficient caused a misleading

interpretation of the results in that it imposed a conditional causal effect.

An unconditional form of the model was subsequently formulated.

Age model: bo bi(1,1)* | bi(1,2)* | b1(2,1)* | b:1(2,2)* | o

Upper 95% CL | 0.052 | 0.08 0.023 0.277 021 8.06E-06
MLE 0.043 | 0.032 0.015 0.189 0.19 5.48E-06
Lower 95% CL | 0.034 | -0.016 0.007 0.101 0.171 2.9E-06

*where, 1 = aged < 15 and 2 = aged 16+

ba(length of infectious period) is set to 6 months.
Time step is set to one month.

Starting parameter values in optimisation procedure,for all parameters, is 0.0001.

Table 14.1: Maximum Likelihood Estimates for the condi-
tional form of the (two category) age dependent model.
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14.1.1.2 Non-conditional form of local effect coefficient

By not allowing the local effect coefficient to take conditional form the 16 previous
coefficients in equation 14.13 {b;(g, h|j,k) : g = 1,2,h = 1,2}, reduce to just
four, {b1(g9,h) : g =1,2;h=1,2} = {b:(1,2),5:1(2,1),5:(1,1),51(2,2) }.

Then transition probability (14.8) can be refined to

a’(i) (1|0) g, hﬂgt) = bOmO (gt)
+b (9, ) mi? (2,) + co (14.16)

where m{” (z,) is the prevalence, at time ¢ in the village of individual i and where
b1 (g, h) is the coefficient corresponding to the degree of influence gender and age
has on the probability that a non-case individual in category (g, h) will become a

case in the next time step.

An even simpler formulation with only two unknown b;(.|.) coefficients can be

used to separately examine gender,
0 (110,9.2) = bomo(z) +bi(@)m (z) +eo  (1417)
and age,

o (1)0,h,2) = bomo(z) + b (B)m? (z) + co (14.18)

Further extensions included constructing models incorporating three and five
age categories respectively, and a model that is both age (five categories) and gen-
der dependent, in order to reflect age and gender dependent differences in TB and
human immunodeficiency virus (HIV) incidence. However using the formulation
in (14.13), a combined gender/age modél with five age categories has ten unknown
by coefficients. This is almost certainly an unacceptably iarge number of parame-
ters to have to estimate. A possible way of reducing this proliferation of coeffi-

cients is to construct two separate models: an age/male model and an age/female
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model. In the first model only the TB notifications for males are used to calculate
the loglikelihood and only female notifications in the second model. The global
and local prevalence values are calculated using both male and female data for

both models. Thus the male/age effect can be examined using the model
a® (1|0, h,2,) = bomo(z,) + b1 (hlmale) my (2,) + ¢o (14.19)
and the female/age effect can be examined in the same way using the model
a® (1[0, h, 2z,) = bomo (2,) + b1 (h|female)my (z) + ¢ (14.20) |

The argument h in by (h|male) and in b; (h|female) refers to the five age cate-

gories.

A further adaptation to the model was made by clustering the villages into 16
zones. These zones were created by grouping neighbouring villages together so
that the number of people residing in each zone were roughly equal. The previ-
ously described models were then run with zones as the ‘locality’ marker rather
than individual villages. Figure 14.2 shows the geographical (longitude and lati-
tude) location of the villages and the 16 zone groupings for the Asembo and Gem,

western Kenyan TB data set.
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Figure 14.2: Geographical (longitude and latitude) location of the villages and the

16 zone groupings.
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Kenyan Model Results

15.1 Estimating the global and local effect parame-

ters

15.1.1 Villages as locality marker

The individual villages were used as the locality marker in the modelling process.
The transmission probability was structured as shown in equations (14.8) for the
. simple model, (14.14) for the gender model, (14.15) for the age model (with two,
three or five age categories), (14.16) for the mixed age/male model and (14.17) for
the mixed age/female model. Table 15.1 and 15.2 shows the Maximum Likelihood
Estimates, 30, 51 and & and their corresponding 95% confidence intervals for the

parameters in these seven model vanations.

The transition probability of becoming a case in the next time step, (a10), can

be constructed using these estimated parameter values (see tables 15.3 to 15.9).

226
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Table 15.1: Maximum Likelihood Estimates and 95% confidence intervals for the pa-
rameters in yillage models: Simple model, Gender model, Age model: (2 categories,

3 categories, 5 categories).

bo b1 (local) o
Simple model:
Upper 95% CL | 0.054 0.119 7.9E-06
MLE 0.045 0.109 5.4E-06
Lower 95% CL | 0.036 0.1 2.8E-06
Gender model: Male Female
Upper 95% CL | 0.054 0.129 0.118 7.9E-06
MLE 0.045 0.115 0.105 5.4E-06
Lower 95% CL | 0.036 0.1 0.092 2.8E-06
Age model: 1 <15 164
Upper 95% CL | 0.052 0.023 0.207 8.0E-06
MLE 0.043 0.017 0.19 5.5E-06
Lower 95% CL | 0.034 0.01 0.173 2.9E-06
Age model: 2 <24 25 - 34 35+
Upper 95% CL | 0.052 | 0.051 0.464 0.206 8.1E-06
MLE 0.043 | 0.043 0.405 0.182 5.5E-06
Lower 95% CL | 0.034 | 0.035 0.346 0.157 2.9E-06
Age model: 3 <15 | 16—24  25—34 | 35 -64 | 65+
Upper 95% CL | 0.051 | 0.023 | 0.126 0.464 0.259 0.04 8.2E-06
MLE } 0.042 | 0.017 | 0.105 0.405 0.228 0.02 5.6E-06
Lower 95% CL | 0.034 | 0.01 | 0.084 0.346 0.197 -3.2E-04 | 3.0E-06
by(length of infectious period) is set to 6 months. Time step is set to one month.
Starting parameter values in optimisation procedure, for all parameters, is 0.0001.




Table 15.2: Maximum Likelihood Estimates and 95% confidence intervals for the para-

meters in village models: Mixed Age/Male model, Mixed Age/Female model.

bo b1(local) Co

Age/Male model: <15 |16 —29 | 30 —34 | 35 —64 | 65+

Upper 95% CL 0.06 |0.019]0.143 0.85 0.398 0.085 1.2E-05
MLE 0.042 | 0.011 | 0.114 0.671 0.338 0.043 8.1E-06
Lower 95% CL 0.029 | 0.003 | 0.086 0.491 0.278 5.4E-04 | 3.7E-06
Age/Female model: <15 |16 —24 | 25—30| 31 —64 | 65+

Upper 95% CL 0.055 1 0.032 | 0.176 0.526 0.207 0.018 6.3E-06
MLE 0.043 | 0.022 | 0.143 0.421 0.175 0.002 3.2E-06
Lower 95% CL 0.032 | 0.012 | 0.11 0.316 0.143 -0.013 2.2E-07

ba(length of infectious period) is set to 6 months. Time step is set to one month.

Starting parameter values in optimisation procedure, for all parameters, is 0.0001.

ST 441LdVvHD
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Table 15.3: Estimated probability of becoming a case in the next time step (a;0)

for the simple model with villages as the locality marker.

a10 = probability of becoming a case in next time step
m{*) = (Local) TB prevalence in village v
mgp = (Global) TB prevalence in whole study area
ap = 0.045 my + 0109 m® + 54E-06
95% Confidence | (0.036,0.054) (0.1, 0.119) (2.8E-06, 7.93E-06)

Intervals

Standard 0.005 0.005 1.3E-06

-deviations
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Table 15.4: Estimated probability of becoming a case in the next time step (ajo) for the

gender model with villages as the locality marker.

aM = probability of a male becoming a case in next time step
o, = probability of a female becoming a case in next time step
mﬁ”) = (Local) TB prevalence in village v

mg = (Global) TB prevalence in whole study area

aM = 0.045 mg + 0115 m + 54E-06
95% Confidence |  (0.036, 0.054) (0.1, 0.129) (2.8E-06, 7.9E-06)
Intervals

afy = 0.045 mg + 0105 m” + 5.4E-06
95% Confidence |  (0.036, 0.054) (0.092,0.118)  (2.8E-06, 7.9E-06)
Intervals

Table 15.5: Estimated probability of becoming a case in the next time step (a;q) for

age model (two categories) with villages as the locality marker.

(£15) _
Qg ~ =

probability of a child (aged < 15) becoming a case in next time step
a%SJ“) = probability of an adult (aged > 16) becoming a case in next time step
m{*) = (Local) TB prevalence in village v

mgy = (Global) TB prevalence in whole study area

o = 0.043 my + 0017 m®” + 55E-06
95% Confidence | (0.034, 0.052) (0.01, 0.023) (2.9E-06, 8.0E-06)
Intervals

o150 0043 mp + 019 m” + 55E-06
95% Confidence | (0.034, 0.052) (0.173,0207)  (2.9E-06, 8.0E-06)
Intervals
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Table 15.6: Estimated probability of becoming a case in the next time step (a1o) for
age model (three categories) with villages as the locality marker.

a%w = probability of a person aged < 24 becoming a case in next time step

a%s_w = probability of a person aged 25-34 becoming a case in next time step
a%sﬂ = probability of a person aged 35 or over becoming a case in next time step
m&”) = (Local) TB prevalence in village v

my = (Global) TB prevalence in whole study area

oS = 0.043 my + 0043 m + 55E-06
95% Confidence | (0.034, 0.052) (0.035,0.051)  (2.9E-06, 8.1E-06)
Intervals

a®3 = 0043 mo + 0405 m® + 55E-06
95% Confidence | (0.034, 0.052) (0.346,0.464)  (2.9E-06, 8.1E-06)
Intervals

&P = 0.043 mg + 0182 m® 4+ 55E-06
95% Confidence |  (0.034, 0.052) (0.157,0.206)  (2.9E-06, 8.1E-06)
Intervals '
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Table 15.7: Estimated probability of becoming a case in the next time step (a;p) for

age model (five categories) with villages as the locality marker.

a%ls) = probability of a child aged < 15 becoming‘a case in next time step
agﬁf—z‘*) = probability of a person aged‘ 16-24 becoming a case in next time step
a%s_‘%) = probability of a person aged 25-34 becoming a case in next time step
a§%5_64) = probability of a person aged 35-64 becoming a case in next time step
a§%5+) = probability of a person aged 65 or over becoming a case in next time step
m{") = (Local) TB prevalence in village v
mg = (Global) TB prevalence over whole study area
oS = 002 my + 0017 m + 5.6E-06

95% Confidence |  (0.034, 0.051) (0.01, 0.023) (3.0E-06, 8.2E-06)
Intervals

a7 = 002 my + 0105 m{” + 5.6E-06
95% Confidence |  (0.034, 0.051) (0.084, 0.126) (3.0E-06, 8.2E-06)
Intervals

S P 0.042 mp + 0405 m + 5.6E-06
95% Confidence |  (0.034, 0.051) (0.346, 0.464) (3.0E-06, 8.2E-06)
Intervals

a®% = 0042 mo + 0228 m{ + 5.6E-06
95% Confidence | (0.034, 0.051) (0.197, 0.259) (3.0E-06, 8.2E-06)
Intervals

& = 0042 my + 002 m + S5.6E-06

95% Confidence | (0.034, 0.051) (-3.2E-04, 0.04) (3.0E-06, 8.2E-06)
Intervals
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Table 15.8: Estimated probability of becoming a case in the next time step (a;p) for
male/age model (five categories) with villages as the locality marker.

a%(sls) = probability of a boy aged < 15 becoming a case in next time step

a%(ls_zg) = probability of a man aged 16-29 becoming a case in next time step

a%(30_34) = probability of a man aged 30-34 becoming a case in next time step

a%(ss_w = probability of a man aged 35-64 becoming a case in next time step
a%(sﬂ) = probability of a man aged 65 or over becoming a case in next time step
m{" = (Local) TB prevalence in village v

mo = (Global) TB prevalence over whole study area

M=) 0042 my + 0011 m” + 8.1E-06
95% Confidence |  (0.029, 0.06) (0.003, 0.019) (3.7E-06, 1.2E-05)
Intervals

oM06-29 0042 my + 0114 m” + 81E-06

95% Confidence |  (0.029, 0.06) (0.086, 0.143) (3.7E-06, 1.2E-05)
Intervals

e 0042 me + 0671 m{ + 8.1E-06

95% Confidence (0.029, 0.06) (0.491, 0.85) (3.7E-06, 1.2E-05)
Intervals

M50 0042 mo + 0338 m® + 8.1E-06

95% Confidence |  (0.029, 0.06) (0.278, 0.398) (3.7E-06, 1.2E-05)
Intervals

G = 0042 mo + 0043 m{” + 8.1E-06
95% Confidence |  (0.029, 0.06) (5.4E-04,0.085)  (3.7E-06, 1.2E-05)

Intervals
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Table 15.9: Estimated probability of becoming a case in the next time step (a;o) for

female/age model (five categories) with villages as the locality marker.

afo(sls) = probability of a girl aged < 15 becoming a case in next time step
afo(ls_w = probability of a woman aged 16-24 becoming a case in next time step
airo(zs—so) = probability of a woman aged 25-30 becoming a case in next time step
afo(e'l_s‘i) = probability of a woman aged 31-64 becoming a case in next time step
afo(65+) = probability of a woman aged 65 or over becoming a case in next time step
m§“> = (Local) TB prevalence in village v
mp = (Global) TB prevalence over whole study area
ab s = 0043 my + 0022 m + 32E-06

95% Confidence (0.032, 0.055) (0.012, 0.032) (2.2E-07, 6.3E-06)
Intervals

a1 = 0043 mp + 0143 m{ + 32E-06
95% Confidence |  (0.032, 0.055) (0.11, 0.176) (2.2E-07, 6.3E-06)
Intervals

ah®30 - 0043 my + 0421 m” 4+ 32E-06
95% Confidence | (0.032, 0.055) (0.316, 0.526) (2.2E-07, 6.3E-06)
Intervals

alB=e  — 0043 my + 0175 m{” + 3.2E-06
95% Confidence |  (0.032, 0.055) (0.143, 0.207) (2.2E-07, 6.3E-06)
Intervals

ai&h = 0043 my + 0002 m{” + 3.2E-06

95% Confidence |  (0.032, 0.055) (-0.013, 0.018) (2.2E-07, 6.3E-06)
Intervals
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The local transmission coefficient is larger than the global coefficient in all the
model variations. The gender dependent model shows no significant difference
between males and females. Howeyver, the age dependent models show significant
differences between the various age groups. In general, the local transmission
coefficient, b, takes a larger value in adults (ages 16+) than in children (ages <
15). It peaks in the age range of 25-34 without gender dependence. This coefficient
also takes particularly large values in the age/gender models in the expected age
ranges of 30-34 for males and 25-30 in females.

The estimated correlations between the parameters for the simple model are
shown in Table 15.10. The estimator for the infection period length, b,, is effec-
tively uncorrelated with the other parameter estimates, which is desirable.
Correl(bg, o) = —0.55 indicates, quite sensibly, that both the global effect pa-
rameter, by and the background incidence component, ¢, are estimating the same
global influence. Correl(bg, b;) = —0.18 indicates a small compensating relation-
ship between the global and local effect parameters. Correl(b;, co) = 0.04 suggests

an extremely weak or no association between these parameters.

Table 15.10: Correlation matrix for the parameters in the

simple village model.

bo by by Co
bo | 1 -0.18361 3.51E-10 -0.55122
b; | -0.18361 1 -1.6E-10  0.03855
by | 3.51E-10 -1.6E-10 1 -4.5E-10
¢o | -0.55122 0.03855 -4.5E-10 1
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15.1.2 Zone as locality marker

The villages were assigned to 16 different zones as shown in Figures 14.2 and 15.1.
This zoning was then used as the new locality marker in the modelling process.
Tables 15.11 and 15.12 show the MLEs with 95% confidence intervals for the
parameters in models: simple model; gender model; two, three and five category

age models; mixed age/male model; mixed age/female model.
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Figure 15.1: Geographical (longitude and latitude) location of the villages in the

original 16 zone groupings with TB case distribution overlaid.

No significance in the models is lost by the transition to using zones rather
than villages as the locality marker. There is a slight increase in the local effect
and reduction in the global effect. The local transmission coefficient, &, peaks in
the expected age ranges of 25-64 without gender dependence. This coefficient also
takes particularly large values in the age/gender models in the expected age ranges

of 30-34 for males and 25-30 in females.

The transition probability of becoming a case in the next time step, (a.4;), can

be constructed using these estimated parameter values (see tables 15.13 to 15.19).
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Table 15.11: Maximum Likelihood Estimates for the parameters in ‘16 zone’ models:

Simple model, Gender model, Age model: (2 categories, 3 categories, 5 categories).

bo b;(local) o
Simple model:
Upper 95% CL | 0.037 0.143 6.8E-06
MLE 0.026 0.13 4.5E-06
Lower 95% CL | 0.015 0.117 2.2E-06
Gender model: Male Female
Upper 95% CL | 0.037 0.155 0.14 6.8E-06
MLE : 0.026 0.137 0.123 4.5E-06
Lower 95% CL | 0.015 0.119 0.107 2.2E-06
Age model: 1 <15 164
Upper 95% CL | 0.031 0.024 0.256 6.5E-06
MLE 0.021 0.016 0.236 4.3E-06
Lower 95% CL | 0.011 0.007 0.216 2.2E-06
Age model: 2 <24 25 — 34 35+
Upper 95% CL | 0.031 | 0.061 0.548 0.252 | 7.2E-06
MLE 0.021 | 0.051 0.484 0.223 | 4.8E-06
Lower 95% CL | 0.011 | 0.040 0.42 0.194 | 2.5E-06
Age model: 3 <15 [ 16—24 | 25—34 | 35 —64 | 65+
Upper 95% CL | 0.028 | 0.025 | 0.161 0.55 0.32 0.043 | 6.9E-06
MLE 0.019 | 0.016 | 0.136 0.487 0.284 0.02 4.7E-06
Lower 95% CL | 0.009 | 0.008 | 0.111 0.423 0.248 -0.002 | 2.4E-06
ba(length of infectious period) is set to 6 months. Time step is set to one month.
Starting parameter values in optimisation procedure, for all parameters, is 0.0001.




Table 15.12: Maximum Likelihood Estimates for the parameters in ‘16 zone” models:

Mixed Age/Male model, Mixed Age/Female model.

bo bi(local) Co

Age/Male model: <15 16 —29 | 30—34 | 35 — 64 | 656+

Upper 95% CL 0.03 | 0.023 0.186 0.909 0.501 0.095 1.1E-05
MLE 0.016 | 0.012 0.152 0.728 0.431 0.047 | 7.2E-06
Lower 95% CL 0.002 | 6.8E-04 | 0.118 0.547 0.362 -6E-04 | 3.3E-06
Age/Female model: <15 16 —24 | 256—30 | 31 —64 | 656+

Upper 95% CL 0.035 | 0.034 0.225 0.631 0.246 0.018 | 44E-06
MLE 0.022 | 0.021 0.186 0.516 0.209 3E-06 | 2.2E-06
Lower 95% CL 0.009 | 0.008 0.147 0.401 0.173 -0.018 | -1E-07

by (length of infectious period) is set to 6 months. Time step is set to one month.

Starting parameter values in optimisation procedure, for all parameters, is 0.0001.
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Table 15.13: Estimated probability of becoming a case in the next time step (a10)

for the simple model with zone as the locality marker.

a0 = probability of becoming a case in next time step
m{® = (Local) TB prevalence in zone z
mgo = (Global) TB prevalence in whole sfudy area

ap = 0026 my + 013 m{® + 4.5E-06
95% Confidence | (0.015,0.037)  (0.117, 0.143) (2.2E-06, 6.8E-06)
Intervals
Standard 0.006 0.007 1.2E-06

deviations
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Table 15.14: Estimated probability of becoming a case in the next time step (a1o)

for the gender model with zone as the locality marker.

a = probability of a male becoming a case in next time step
af, = probability of a female becoming a case in next time step
m{® = (Local) TB prevalence in zone z

my = (Global) TB prevalence in whole study area

at = 0026 mg + 0137 m{? + 4.5E-06
95% Confidence |  (0.015,0.037)  (0.119,0.155)  (2.2E-06, 6.8E-06)
Intervals

af, = 0026 me + 0123 m{P + 45E-06
95% Confidence |  (0.015, 0.037) (0.107, 0.14) (2.2E-06, 6.8E-06)
Intervals

Table 15.15: Estimated probability of becoming a case in the next time step (a1q)

for age model (two categories) with zone as the locality marker.

(<15)

ajp ’ = probability of a child (aged < 15) becoming a case in next time step
a(l%)G“L) = probability of an adult (aged > 16) becoming a case in next time step

mgz) = (Local) TB prevalence in zone z

mg = (Global) TB prevalence in whole study area

oS = 0.021 mg + 0016 m{® + 43E06
95% Confidence | (0.011, 0.031) (0.007,0.024)  (2.2E-06, 6.5E-06)
Intervals

it = 0021 my + 0236 m{? + 43E-06
95% Confidence | (0.011, 0.031) (0.216,0.256)  (2.2E-06, 6.5E-06)
Intervals '
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Table 15.16: Estimated probability of becoming a case in the next time step (a;o)

for age model (three categories) with zones as the locality marker.

a%m) = probability of a person aged < 24 becorrﬁng a case in next time step
ag%5—34) = probability of a person aged 25-34 becoming a case in next time step

a&%ﬂ) = probability of a person aged 35 or over becoming a case in next time step

m{? = (Local) TB prevalence in zone z

my = (Global) TB prevalence in whole study area

oS = 0.021 mg + 0051 m{? + 48E-06
95% Confidence |  (0.011, 0.031) (0.04, 0.061) (2.5E-06, 7.2E-06)
Intervals

ol = 0.021 me + 0484 mlP + 48E-06
95% Confidence |  (0.011, 0.031) - (0.42, 0.548) (2.5E-06, 7.2E-06)
Intervals

& = 0021 me + 0223 m® + 48E-06
95% Confidence |  (0.011,0.031) (0.194,0.252)  (2.5B-06, 7.2E-06)
Intervals
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Table 15.17: Estimated probability of becoming a case in the next time step (aiq)

for age model (five categories) with zones as the locality marker.

(<15)

ajp = probability of a child aged < 15 becoming a case in next time step
a%s_w = probability of a pérson aged 16-24 becoming a case in next time step
a%s_?"l) = probability of a person aged 25-34 becoming a case in next time step
ag%s_s‘l) = probability of a person aged 35-64 becoming a case in next time step
a(I%SJ“) = probability of a person aged 65 or over becoming a case in next time step
mgz) = (Local) TB prevalence in zone z
mg = (Global) TB prevalence over whole study area
a5 = 0.019 my + 0016 m{P + 47E-06

95% Confidence |  (0.009, 0.028) (0.008,0.025)  (2.4E-06, 6.9E-06)
Intervals

a7 = 0.019 me + 0136 m® + 4.7E-06
95% Confidence |  (0.009, 0.028) (0.111, 0.161) (2.4E-06, 6.9E-06)
Intervals

a7 = 0.019 my + 0487 m{® + 47E-06
95% Confidence (0.009, 0.028) (0.423, 0.55) (2.4E-06, 6.9E-06)
Intervals

oy = 0019 me + 0284 mPP + 4.7E-06
95% Confidence |  (0.009, 0.028) (0.248, 0.32) (2.4E-06, 6.9E-06)
Intervals

o = 0019 mg + 002 mP + 47E-06

95% Confidence (0.009, 0.028) (-0.002, 0.043) (2.4E-06, 6.9E-06)
Intervals
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Table 15.18: Estimated probability of becoming a case in the next time step (a10)

for male/age model (five categories) with zones as the locality marker.

a%(gs) = probability of a boy aged < 15 becoming a case in next time step
a%(ls_w) = probability of a man aged 16-29 becoming a case in next time step
a%(30—34) = probability of a man aged 30-34 becoming a case in next time step
a%(35_64) = probability of a man aged 35-64 becoming a case in next time step
a%(SSJ’) = probability of a man aged 65 or over becoming a case in next time step
m:(f) = (Local) TB prevalence in zone z
mo = (Global) TB prevalence over whole study area
A 0.016 my + 0012 m®® + 7.2B-06

95% Confidence |  (0.002, 0.03) (6.8E-04, 0.023) (3.3E-06, 1.1E-05)
Intervals

gMs=29) - 0016 mo + 0152 m{? + 7.2E-06
95% Confidence |  (0.002, 0.03) (0.118, 0.186) (3.3E-06, 1.1E-05)
Intervals

gME=3 0016 my + 0728 m{® + 7.2E-06
95% Confidence |  (0.002, 0.03) (0.547, 0.909) (3.3E-06, 1.1E-05)
Intervals

a8 0016 me + 0431 m + 7.2B-06
95% Confidence |  (0.002, 0.03) (0.362, 0.501) (3.3E-06, 1.1E-05)
Intervals

Qe - 0016 mo + 0047 m{P + 7.2E-06

95% Confidence |  (0.002, 0.03) (-6E-04, 0.095) *  (3.3E-06, 1.1E-05)
Intervals
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Table 15.19: Estimated probability of becoming a case in the next time step (a10)

for female/age model (five categories) with zones as the locality marker.

F(L15)

F(16—24)
Q1

F(25-30)

F(31—64)
an)

F(65+)

m{® = (Local) TB prevalence in zone z

mo = (Global) TB prevalence over whole study area

ayo = probability of a girl aged < 15 becoming a case in next time step

= probability of a woman aged 16-24 becoming a case in next time step
alp = probability of a woman aged 25-30 becoming a case in next time step
= probability of a woman aged 31-64 becoming a case in next time step

a1 = probability of a woman aged 65 or over becoming a case in next time step

g =) 0.022 me + 0021 mP® + 22E-06
95% Confidence |  (0.009, 0.035) (0.008, 0.034) (-1E-07, 4.4E-06)
Intervals

F(16-24)
Q10

0.022 my

+ 0186 m{?

+ 2.2E-06

95% Confidence
Intervals

(0.009, 0.035)

(0.147, 0.225)

(-1E-07, 4.4E-06)

F(25-30)
Q10

0.022 mo

+ 0516 m{P?

+ 2.2E-06

95% Confidence
Intervals

(0.009, 0.035)

(0.401, 0.631)

(-1E-07, 4.4E-06)

F(31—64)
a1

0.022 mg

+ 0209 m{

+ 2.2E-06

Intervals

95% Confidence |  (0.009, 0.035) (0.173, 0.246) (-1E-07, 4.4E-06)
Intervals

a5t = 0022 me + 3B-06 m{¥ + 22E-06
95% Confidence |  (0.009, 0.035) (-0.018, 0.018) (-1E-07, 4.4E-06)
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The estimated correlations between the parameters in the simple model are
shown in Table 15.20. As with the village results, the estimator for the infectious
period length, by, is effectively uncorrelated with the other parameter estimates.
Correl(bg, cg) = —0.46 again indicates that both by and ¢ are estimating the same
global influence and Correl(bg, b;) = —0.54 indicates a stronger compensating re-
lationship between the global and local effect coefficients than when the individual
villages was used as the locality measure. This is to be expected because the local
effect is now measured over a larger geographical area and therefore the distinction

between local and global influences are not as marked as before.

Table 15.20: Correlation matrix for the parameters in the

simple 16 zones model.

bo b bq Co
bo | 1 -0.53631 5.45E-10 -0.46115
by | -0.53631 1 -2.5E-10  0.089507
by | 5.45E-10 -2.5E-10 1 -3.4E-10
cg | -0.46115 0.089507 -34E-10 1

15.1.3 Testing the robustness of the modelling procedure.

In this section a number of tests are presented which were used to test the robust-

ness of the model.

The first test is simply to demonstrate that the importance of local prevalence
was not simply an artifact of the modelling. The TB notifications were randomly
assigned to the 217 villages and the simple model then fitted to this new data. This
was repeated several times. The resulting MLE values and 95% Cls were similar
in each run. Table 15.21 shows a typical set of results and in these tests the local

effect becomes not significant.
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Table 15.21: Maximum Likelihood Estimates for the parameters in the simple

model when TB cases are randomly assigned to the 217 villages.

bo bl Cp
Upper 95% CL | 0.165 | 0.011 | 6.4E-06
MLE 0.15 | 0.005 | 4.0E-06

Lower 95% CL | 0.136 | -0.001 | 1.6E-06

ba(length of infectious period) is set to 6 months.

Time step is set to one month.

Starting parameter values in optimisation procedure, for all parameters, is 0.0001.

15.1.3.1 The effect of decreasing sample size (M) on the fitting of the simple

model.

To examine the effect of changes in the observed prevalence in the data, TB notifi-
cation data was randomly deleted and the MLLEs of by, b; and ¢y and their 95% Cls
calculated for differing M. As the number of TB notification data points decreases,
the significance of local TB prevalence is lost in the model and superseded by the
global prevalence. The background prevalence >parameter ¢p decreases in negative
correlation with the global parameter by as expected. These results can be used to
‘estimate the sample size (M) required to detect significant effects. Figures 15.2
to 15.7 show the resulting estimated parameter values. Although only two repre-
sentative runs are depicted for brevity, results of repeated runs remain very similar
in that the confidence interval widths remain stable for the larger sample sizes. For
the local and global parameter estimates, 51 and 50, these intervals remain distinct
until M has decreased to approximately 350. This gives a clear indication that M
needs to be of this order to detect a differénce between local and global effects of
the size observed. The confidence intervals for 52 increase in width with decreas-

ing sample size M as would be expected. In contrast, it is interesting to note that
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the confidence intervals for ¢y decrease in width as sample size decreases. This
may be due to the negative correlation between ¢ and global parameter by. As the
by value and 95% confidence interval width both increase, the ¢, value and 95%

confidence interval width both decrease.

‘ The trend of giobal (b0) and local (b1) prevalence
coefficient values with varying sample size M
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Figure 15.2: RUNI: MLE of global and local prevalence coefficients by and b, for

decreasing sample sizes.
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Figure 15.3: RUNI1: MLE of ¢ coefficient for decreasing sample sizes.
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Figure 15.5: RUN2: MLE of global and local prevalence coefficients b, and b, for
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The trend of h2* with varying sampis size M; with
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Figure 15.7: RUN2: MLE of I coefficient for decreasing sample sizes.

15.1.3.2 Investigating the effect of the length of the infectious period 0,

The length of the infection period was pre-specified, based on known characteris-
tics of TB. As a check that this does not unduly influence the results, the simple
model was fitted for varying values of b, (the infectious period length) while all
other input values were kept constant (time step = 1 month, starting parameter
values for optimisation = 0.0001). The behaviour of the local and global effect pa-
rameters, b; and b, (shown in Figure 15.8) is consistent with how we would expect
them to behave as b, changes. With a longer infectious period length, the model
would expect there to be more TB notifications than the 840 provided. Thus, the
values of b; and by decrease as the length of the infectious period increases. How-
ever their relative magnitudes are not significantly changed. Figure 15.9 shows the
estimated values ¢, for increasing values of infectious period length b,. Due to the
negative correlation that exists between c; and global parameter by, the ¢y value
and 95% confidence interval width both increase slightly as the infectious period
by increases in length. Figure 15.10 shows that the estimated values b§ closely

match the theoretical values of b3 = t%zstep as the input value of b, increases.

This investigation was also carried out with the 5 category age model and very

similar results were obtained as 1s shown In figures 15.9 to 15.18.
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The trend of global and local cosfficient valuss (b0, b1) for
varying Input valuss of ths Infectious psriod length (b2)
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Figure 15.8: MLE of global and local prevalence coefficients (bo, b))in the simple

model, for increasing infectious period length b,
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Figure 15.9: MLE of ¢ coefficient in the simple model, for increasing infectious

period length bs.
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Estimated output vakies of b2* for varying Input
values of the Infectious peariod length (b2)
P ————— - ———— ——— —— ———— =
0.5 —+— b2 UpperCl
—a—b2 MLE
LM —+— b2 LawerCl
03— = x b2*=1/b2
() e e —
0.1 =
Q T T T AT T =
’ 2 3 4 5 6 i 8 9 10 1 12
| Inlwt value of Infocﬂotugorlod Iongth b2 (ln monmt)

Figure 15.10: MLE of b5 — time step/b, in the simple model, for increasing

infectious period length by.
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Figure 15.12: Age Model results: MLE of local prevalence coefficient b;: ages

0-135, for increasing infectious period length bs.
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Figure 15.13: Age Model results: MLE of local prevalence coefficient b,: ages

16-24, for increasing infectious period length b..
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Figure 15.14: Age Model results: MLE of local prevalence coefficient b,: ages

25-34, for increasing infectious period length 4.
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Figure 15.15: Age Model results: MLE of local prevalence coefficient b;: ages

35-64, for increasing infectious period length bs.
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The trend of local coafficlent values (b1: ages 65+) for
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Figure 15.16: Age Model results: MLE of local prevalence coefficient b,: ages

65, for increasing infectious period length b,.
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Figure 15.17: MLE of coefficient ¢, in the five age category model, for increasing

infectious period length 5.
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creasing infectious period length bs.
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15.1.3.3 Investigating the effect of time step length

The next test shows that use of a time step of one month is a suitable choice. The
simple model was fitted for varying time step values while all other input values
were kept constant. Table 15.22 contains the MLE values obtained for both the
global and local effect parameters for each time step. For small time steps the
transition probabilities can be considered to behave in a linear fashion because
in this situation the linear term dominates quadratic and higher order terms, this
becoming progressively more marked as the step size decreases. Therefore if the
time step is doubled the parameter values would be expected to approximately
double also. This pattern can be seen to be occurring in figures 15.19 to 15.21 for
the two and three month time steps. However, as the time step increases in size the
linearity property can no longer be expected to hold as the MLE values for the four

month time step show. This indicates that a time step of one month is satisfactory.

Table 15.22: Maximum Likelihood Estimates of the parameters in the simple model for

varying lengths of time step.

ts=1) ts=1)

Time step (ts) Global effect | Local effect || ts xbé 1s xbg

length (in months) | MLE (by) MLE (b1)

1 0.0324 0.1214

2 0.0619 0.2338 0.0648 0.2427

3 0.0984 0.3262 0.0972 0.3641

4 0.0867 0.346 0.1295 0.4854

ba(length of infectious period) is set to 6 months.

Starting parameter values in optimisation procedure, for all parameters, is 0.0001.
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15.1.3.4 Investigating the effect of different starting parameter values in the

Nelder-mead optimisation procedure

The numerical stability of the optimisation procedure was checked for the simple
model by fitting it using a variety of starting values for the Nelder-mead algorithm
while all other input values were kept constant (b, = 6 months, time step = |

month).

The starting value of ¢, seemed to be the most influential prompting a com-
plimentary change in the MLEs of both ¢y and b, as illustrated in Figure 15.22.
This is not surprising in light of the negative correlation between these two para-
meters. Parameter estimates for b, and b4 were hardly affected as can be seen in

figures 15.23 and 15.24.

MLE and Confidence Limits of the global and background
prevalence paramatars, (b0 & o), for verying starting valuss of
the c0 parametar In the Nelder Mead optimisation algorithm
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Figure 15.22: MLE of Global and background prevalence coefficients (b and ;)
for varying Nelder-mead optimisation starting values of ¢;.
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Figure 15.24: MLE of local prevalence coefficient b, and b3 for varying Nelder-

mead optimisation starting values of ¢, between 0.0001 and 0.0005.
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15.1.3.5 Investigating the effect of different sizes of zone

In order to investigate the model’s sensitivity to the spatial scale of disease clus-
tering the 240 villages were systematically grouped together by gathering adjacent
villages into bigger and bigger zones. The model was applied to each grouping
and the MLEs for the local and global parameters, along with their 95% confi-
dence intervals for groupings of 108 to 16 zones are shown in Figure 15.26. In
this particular systematic grouping of the villages it can be seen that the global
and local MLE values stay relatively consistent up to the grouping of 40 zones.
After this point, as the number of zones decrease (and the zone size increases), the
global parameter value decreases as the local parameter shows a slight increasing
trend. A control was also set up where the villages were randomly assigned to
progressively larger zones. The corresponding results for these random groupings
are shown in Figure 15.27. The random zoning did not show the same trend as the
systematic zoning. For large zone size (and therefore small numbers of zones, 20

or less) the global and local effects become less distinct.

Figure 15.25 shows the effect of decreasing zone numbers from the original
16 zones down to just two zones. The trend of decreasing global parameter value
and increasing local parameter value is seen to continue as the number of zones
decrease. The range of population values, calculated by subtracting the smallest
population value in a zone from the greatest, are superimposed in figure 15.25 to
investigate how much influence the range has on the MLE values. From this graph

there does not seem to be any significant influence.

The MLE 33 value is not affected by increasing zone size for either systematic

or random groupings of villages, (see figures 15.28 to 15.30).

The coefficient &, value for both systematic and random groupings of villages
is relatively consistent until the number of zones is decreased to approximately

20. The & value then seems to decrease in negative correlation with the b, value.
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This trend 1s more pronounced when the villages are systematically grouped (see

fipures 15.31 to 15.33).

Estimated values of glcbal and local parametara (b0, b1) for the fitting of

the simpis modsi for sysismatic vilinge groupings of 18 to 2 xonss
02 — — — — 4

—— b1 UpparCl
—a— b1 MLE
——Db1 LowerCl

—=— b0 UpparCl

—&— b0 MLE

—=— b0 LowerCl

Range of population vakums In 2omes

BRI W"

7
16,15 14 1312 11 10 9 8 7 6 3 —— ranga of pop.waluss

In zones

“BE588888%¢

Figure 15.25: MLE of global and local prevalence coefficients, by, 0,, for the sys-
tematic grouping of villages into increasing zone sizes (and thus decreasing num-

bers of zones: 16 to 2).
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Figure 15.26: MLE of global and local prevalence coefficients, by, by, for the sys-
tematic grouping of villages into increasing zone sizes (and thus decreasing num-

bers of zones: 108 to 16).
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Figure 15.27: MLE of global and local prevalence coefficients, b, b;, for the ran-
dom grouping of villages into increasing zone sizes (and thus decreasing numbers

of zones).
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Estimated values of b2* for systematic allocations of
villages to varying numbers of zones
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Figure 15.28: MLE of b4 coefficient for the systematic grouping of villages into

increasing zone sizes (and thus decreasing numbers of zones: 108 to 16).
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Figure 15.29: MLE of b5 coefficient for the systematic grouping of villages into

increasing zone sizes (and thus decreasing numbers of zones: 16 to 2).
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Figure 15.30: MLE of b; coefficient for the random grouping of villages into in-

creasing zone sizes (and thus decreasing numbers of zones).
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Figure 15.31: MLE of ¢; coefficient for the systematic grouping of villages into

increasing zone sizes (and thus decreasing numbers of zones: 108 to 16).
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Figure 15.32: MLE of ¢ coefficient for the systematic grouping of villages into

increasing zone sizes (and thus decreasing numbers of zones: 16 to 2).

Estimated values of cosfficient c0 for some random
allocstions of villages to varying numbers of zones
0.000009 ————— ==
0.000008 = m |
e A = |
0.000007 |—=—=—=——— — — = 1
- = c0 UpperCi
0.000006 - Fe— {
000005 s —{| AcOMLE
0. = PO a—t——4 3 .
0.000004 -|— 1
A =c0 LowerCl
0.000003 =
- - = - (- -
0.000002 —w5—= =
|0.000001 |- — - —
l Number of Zones |
o

10 30 50 T0 20 110

Figure 15.33: MLE of ¢ coefficient for the random grouping of villages into in-

creasing zone sizes (and thus decreasing numbers of zones).
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15.1.3.6 Effect of different groupings of villages into 16 zones

In order to explore whether the way the 217 villages were grouped effected the
model results the simple model was fitted for a number of random groupings plus
a further four non-random groupings: grouped by latitude; longitude; in order of

village number; and the original 16 zones grouping of adjacent villages.

The resulting MLEs and 95% confidence intervals for each parameter are shown
in graphs 15.34 to 15.36. The 135 value is not affected by the different groupings.

_ time step

This 1s to be expected as i)g = ———, is effectively predetermined.

The coefficient ¢; value can again be seen to behave in direct negative corre-

spondence with the value of the global coefficient bo.

The values of the local and global coefficients, by and by, are visibly more dis-
tinct from each other when any geographic based grouping is applied. This implies

the model is picking up the local geographic effect of the TB case clustering.

Estimated valuss of gicbal and loos! prevalence caeMalents (b0,
b1) for the fitting of the simpls mods| for various random villegs
groupings, plus four non-random groupings
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Figure 15.34: MLE of global and local prevalence coefficients, 0y, b;, for various

different groupings of the 217 villages.



CHAPTER 15

Emimated valuss of k2" for the fiting of the ample medsl fer
Plus four
groupings

0.18 — —

0.175 |—— — — — - =

R - - || —=—b2 Lowwrci
0.1686 == T || —~—b2 MLE

N B e e — — |—-—h2 Upperci
0.165

0145 -
0.145

TP TSR 4,;,{,{;.%
Model run %&

Figure 15.35: MLE of parameter b} for various different groupings of the 217
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Figure 15.36: MLE of parameter ¢, for various different groupings of the 217

villages.
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15.1.3.7 Summary of robustness tests of model

The various test results show that:

¢ the importance of local prevalence as shown in the model results was not

simply an artifact of the modelling procedure.

¢ the model functions well with moderate to large sample sizes (M). The re-

sults indicate that a sample size (M) of at least 400 is recommended.

e Pre-specifying the length of the infectious period b, at 6 months does not
unduly influence the model output.

¢ the chosen time step length of 1 month is satisfying.

o the stability of the optimisation procedure and therefore the validity of the
MLE values resulting from it.

e the model reacts predictably and logically to varying sizes of groupings

(zones) and ways of grouping the locality measure (villages).

It is therefore concluded that the model is robust and functioning in a satisfactory

manner.

The next chapter investigates the possible use of this model in the design of

cluster randomised trials.



Chapter 16

Cluster Randomised Trial Design

16.1 Introduction

Cluster or group randomised trials are used to assess the relative effectiveness of
alternative interventions. They occur when the trial subjects (e.g. patients) are
randomised to a certain intervention at the group level but the resulting data is
analysed at the individual level. For example, in a group randomised trial of two
different health interventions, A and B, 10 health centres are randomly assigned
to carry out intervention A and another 10 health centres are assigned to carry out
intervention B. The resulting data set consists of the individual patient responses
to the interventions. Thus, here the trial subjects are the patients, who are clus-
tered/grouped according to the health facility they attend, but the health centres
rather than the individual patients were randomly assigned to the interventions.
Usually a significance test is applied to the collected data from such a study in
order to statistically assess the performance of one intervention over another. The
statistical power of a trial is defined as the probability of rejecting a false statistical
null hypothesis given the collected data. This probability that a trial will have a
significant result, i.e produce a p-value of less than the specified significance level

(alpha, usually set at 5%) is calculated under the assumption that the difference
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in intervention results equals the minimal detectable difference (i.e the smallest

difference believed clinically important or biologically plausible).

A power analysis should always be carried out at the planning/design stage of
a trial in order to estimate the required sample size, significance level and size
of observed effect that it is desirable to detect. The larger the effect size, sample
size and/or significance level, the greater the likelihood that the trial will result in
detecting a statistically significant effect.

A well designed trial ensures that the statistical power is high enough to detect
reasonable departures from the null hypothesis while taking into account the aims
of the trial and the resources available (e.g. time, money, available workforce size
etc..). When carrying out a power analysis for a clustered randomised trial the clus-
tering effect must be taken into account, especially when estimating the required
sample size. People within a group/cluster are likely to have more similarities with
each other than with people from another group, e.g. geographic, socioeconomic,
health facilities, racial, sexual, political, age and gender similarities. A clustering
effect occurs when these group similarities lead to a decreased variation among the
responses of people in the same group/cluster (within-cluster variation) as opposed
to the variation of responses between the groups/clusters (between-cluster varia-
fion). Within cluster-variation can therefore increase the differences in responses
observed between groups and introduce bias. Cluster randomisation can thus re-
duce the effective sample size (ESS) of the trial and it is necessary to adjust for

this at the design stage.

An important possible use of the local and global effect model (introduced and
described in the chapter 14) is in just such a design of a community randomised
trial where geographical clusters of people are divided into two groups and the
effectiveness of an intervention policy is assessed by applying it to one group but
not the other. Here the model can be used to calculate the minimum difference

in an outcome variable that can be detected with statistical significance, taking
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the effect of clustering of cases into consideration. It thereby gauges the potential
effectiveness of such atrial. Such a possible application is illustrated by setting up
cluster randomised trial scenarios using the western Kenyan time/spatial TB data

set and applying the model.

16.2 Splitting zones into two groups representing two
different treatment groups in a group randomised

trial

In order to design a group or community-randomized trial to evaluate the impact
of a specific intervention policy on tuberculosis transmission in an area with a
high tuberculosis burden, information to estimate the effect of local versus global
transmission is required. Communities should be large enough to encompass most
TB transmission but enough communities are needed 10 ensure statistical power.
TB prevalence is chosen to be the outcome variable as a substitute for the true
variable of interest, TB transmission, due to the difficulties of measuring transmis-
sion directly. The 16 original zones were divided into two different groupings of
8 zones each and the simple model was then fitted to this data. (The infectious
period length, b,, was set to 6 months, the time step to one month and the starting
parameter values in the optimisation procedure to 0.0001). This fitting was re-
peated for a variety of different groupings of the oniginal 16 zones. The difference
between the prevalence of TB in each group was systematically varied in order
to try to identify the minimum difference that could be detected with statistical
significance. Figure 16.1 shows the resulting MLE values for the local and global
parameters. The minimum detectable difference in TB prevalence is at the point
where the two 95% confidence intervals for the two groupings separate and no

longer overlap. This occurs at approximately 0.007.
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In order to explore the effect of decreasing the number of zones in each group-
ing, zones were merged together with the effect that no TB case data was lost. The
simple model was then fitted to the new groupings. Figures 16.2 and 16.3 show
the resulting MLE values of the local and global parameters for 6 and 4 zones in

each grouping.

In order to further explore the effect of decreasing the number of zones in each
grouping along with the sample data size, zones with their corresponding TB case
data were systematically deleted and the simple model fitted to the new groupings.
The Figures 16.4 to 16.6 show the resulting MLE values of the local and global
parameters for 7, 6 and 4 zones in each grouping. A summary of all the groupings

results is displayed in Table 16.1.

Table 16.1: The estimated minimum difference in TB prevalence detectable by the

simple model when 16, 14, 12 and 8 zones are assigned equally to two different

groups.
Number of zones TB prevalence | TB prevalence | Approximate minimum
in each group in Groupl in Group2 detectable difference
(method used to in TB prevalence

reduce zone numbers)

8 0.003 0.01 0.007

6 (merging zones) 0.0037 0.011 0.0073
4 (merging zones) 0.0023 0.0104 >0.0081
7 (deleting 2 zones) 0.0041 0.0104 0.0063
6 (deleting 4 zones) 0.0055 0.011 0.0055
4 (deleting 6 zones) 0.0054 0.0131 >0.0077

The minimum detectable difference is calculated using:

|Group 1 TB prevalence — Group 2 TB prevalence|
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The overall prevalence in the total population remains constant for the first
three results in Table 16.1 where the sample size was kept constant. From these
results it seems that as the number of zones in the groupings decrease the minimum
difference in TB prevalence that is detectable by the model increases. This is
what would be expected in a group randomised trial where there is a considerable

clustering effect.

Decreasing the number of zones in each grouping by deletion of zones and
therefore sample data produces varying total overall TB prevalence values. For 7
zones in each grouping the total overall prevalence is 0.0072. For 6 zones the total
overall prevalence 1s 0.0082 and for 4 zones it is 0.0093. There seems to be less of
a pattem to the results for these groupings, possibly due to the confounding factor
of decreasing amounts of sample data available to the model and thus varying TB

prevalence in the total population.

In all the different grouping runs, as the local pararnetef MLE decreases the

global MLE increases to compensate, as can be seen in figures 16.1 to 16.6.
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Figure 16.1: MLE of local and global effect coefficients for varying differences in

the TB prevalence between two groupings of 8 zones.
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Figure 16.2: Merging of zones: MLE of local and global effect coefficients for

varying differences in the TB prevalence between two groupings of 6 zones.
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Figure 16.3: Merging of zones: MLE of local and global effect coefficients for

varying differences in the TB prevalence between two groupings of 4 zones.
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Figure 16.4: Deletion of zones: MLE of local and global prevalence coefficients

for varying differences in the TB prevalence between two groupings of 7 zones.
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Figure 16.5: Deletion of zones: MLE of local and global prevalence coefficients

for varying differences in the TB prevalence between two groupings of 6 zones.
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Figure 16.6: Deletion of zones: MLE of local and global prevalence coefficients

for varying differences in the TB prevalence between two groupings of 4 zones.
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Discussion and Conclusions for the
Markov-chain local/global effects

model

The model showed that there is a significant local effect of TB transmission with
a larger local transition coefficient (b;) than the global coefficient (by) in all the
different model variations. Age seems to be a significant factor whereas gender on
its own is not. The two mixed age/gender models show significant local prévalence
in the anticipated age classes: males aged 30-34 and females aged 25-30. There
was an understandable increase in the strength of the negative correlation between
~ the two global and local effect parameters when the study area was divided into 16

zones instead of villages.

The results of the various robustness tests, (e.g. varying M, b,, time step length
and starting parameter values for the Nelder-mead optimisation algorithm) indicate

that the model is robust.

There are several limitations to the interpretation of the results for this par-

ticular TB data set. First, routine TB surveillance program data was used. This
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data does not represent the full spectrum of cases in the study area. It is estimated
that the Ken}}an national program detects only 47% of TB cases. There are no data
available to allow comparison of those detected arnid those not detected on such fac-
tors as health seeking behaviours, accuracy of diagnosis, and survival. TB cases
reported in the register are from people who self report to a government health fa-
cility, are correctly diagnosed, and survive to start treatment. It is therefore likely
that some of the clustering effect detected could be due to patchy reporting. Some
district health centres may be more active in advertising their services or provide
better quality services than others and so capture a higher fraction of patients. This
could cause an apparent cluster of TB cases around these health centres and there-
fore cause bias in the local effect parameter. In addition, the home address in the
registers is recorded for defaulter tracing purposes and does not necessarily reflect
the place where the person contracted or spread TB. There may be misclassifica-

tion of location in the data.

Despite the above data limitations it has been shown that this model does detect
significant local clustering effects (whatever their true cause may be). It has also
been shown that it is possible to use the model in the design of a cluster randomised
trial where clusters of subjects are divided into two groups and the effectiveness
of an intervention policy is assessed by applying it to one group but not the other.
Here the model can be used to calculate the minimum difference in an outcome
variable that can be detected with statistical significance, given a certain available
sample size. It can thereby be used to gauge the potential effectiveness of such a

trial, taking into account the effect of clustering.
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Conclusions and discussion of Thesis

regarding all three TB models

This thesis has described the development of three different Tuberculosis epidemi-
ological models: A family of age dependent parametric statistical models; a com-
partmental, age dependent, difference equations model; and a Markov chain model

that allows for location effects in the transmission of TB.

18.1 Parametric Statistical TB modelling

In countries that have experienced a long-term decline in the incidence of TB and
in annual risk of TB infection, a slow down in the annual decline of the crude noti-
fication rate (referred to as stagnation) is often observed. It is most often observed
in middle-to-higher income countries with an increasing life expectancy rate and

therefore a rapidly ageing population.

This stagnation effect can be explained by the epidemiology of TB. As the risk
of infection declines, the proportion of disease due to initial infection (primary

disease) and due to re-infection also declines. When the risk of infection reaches
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an extremely low level it is likely that most of the disease detected is re-activation

disease. This effect is called the ‘ageing of the epidemic’.

Re-activation disease by its very nature does not depend on the current risk of
infection and the probability of occurrence of the disease is not believed to decline
significantly with lengthening time since infection. In addition, medical factors
that may increase the risk of re-activation of latent TB, such as lung cancer and
diabetes are predominantly found in the older generations. Therefore the incidence
of this disease only declines if the latently infected cohorts either ‘die off” or are
given preventative therapy. Thus a country with an increasing life expectancy and
a very low annual risk of infection could expect the decline in TB notifications to

stagnate.

In order to analyse the progression of TB in these types of countries it is neces-
sary to create mathematical models that can capture the essential epidemiological

and demographic characteristics that are involved in the stagnation effect.

TB data sets from three countries, Netherlands, UK and Morocco, that are con-
sidered to have an aging population, low/decreasing annual risk of infection and

exhibit an aging of the epidemic, are examined for similar trends/characteristics.

The UK (male) data shows similar characteristics to the data from the Nether-
lands, in that the rate of decline in the data is greater in the younger age ranges and

begins to level off in the older age ranges.

The Moroccan data shows a more extreme but similar pattern in that the younger
ages exhibit a sharp decline in TB that levels off until an increase in TB is exhibited

in the older age ranges.

The age and time dependent trends apparent in the data are investigated by
constructing and fitting a family of parametric models to all three data sets as
described in chapters 5 to 8. The method of Maximum Likelihood is used to fit the

distributions and the direct search optimisation method, Nelder-mead, is used to
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find the maximum value of the likelihood. Confidence intervals for the maximum
likelihood estimator values and confidence/performance bands for the model fits,

are constructed using Asymptotic Theory and the Bootstrap Method.

The general characteristics of the TB data sets as they vary with time and age
are satisfactorily captured by this family of parametric models. There are some
effects that the models fail to capture but it is unclear whether all these charac-
teristics are derived from true features of the data or arise from erroneous data
collection/manipulation. The accuracy of the data can be generally questionable
in very young children due to the difficulty in obtaining positive sputum test re-
sults. The data in the two oldest age groups from the Netherlands suffer from a
change in age ranges around 1972 used in the collection of data. The Moroccan

year data although regarded as generally reliable is partly created by projection.

The parametric model therefore gives a clear indication of the general features

of age dependency that any subsequent TB model would need to be able to capture.

18.2 Compartmental age-dependent TB model

The emphasis of this part of the work is on investigating the ability of compart-
mental TB models to capture the age and time characteristics exhibited in TB data
from countries with increasing life expectancy, aging of the TB epidemic and a
slow down in the annual decline of the crude notification rate. A suitable com-
partmental model is rebuilt from a previously existing model devised by C.Dye
et al [14, 15]. The TB data sets from the Netherlands and Morocco are analysed
using this compartmental model. The UK data was not used as it only contains TB
data from white males and the model is not built to make this distinction between

gender and ethnicity.

For the Netherlands the outcome investigated was the number of TB cases per
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100,000 of population for each of the 8 age groups, for years, 1952 to 1994. For
Morocco the outcome investigated was the number of Pulmonary TB (PTB) cases

per 100,000 of population for each of the 8 age groups, for the years 1980 to 2000.

The model was unable to fit well to the initial year data, overestimating the
number of TB cases in the adult age groups. This was most noticeable in the fit to
the Dutch data. It is also obvious the shape of the line fit for both countries does
not vary significantly across the 8 age ranges. Hence, in the case of the Dutch data,
although the model fits well for the first three age groups it soon fails to capture
the “flattening’ of the curvature in the data. It is also unable to explain the ‘tailing
off” and subsequent increase in TB case numbers observed in the Moroccan data.

But it does successfully capture the majority of time dependent trends in the data.

After describing a reasonable fit to the data most of the work concentrates on
the sensitivity analysis of the model. The aim is to explore how varying the values\
of each input parameter effects the outcome variables. The value of each parameter
used to produce the original fits to the data is referred to as the base value. Each
parameter 1s taken in turn and the model run with a new value (a percentage of its
base value) for that parameter. The percentages by which the parameter values are
varied were selected to show a representative pattern of how the outcome variable

1s affected.

The parameters of the compartmental model mostly behave in a non-linear way
except for very small variations in value where they often behave approximately
linearly. It is also noticeable that they interact with each other in complicated and
subtle ways that are not always obvious when examining the difference equations

that drive the model.

Most of the parameters caused an effect in the outcome variable, as would be
expected, when varied one at a time keeping all other parameter values fixed. The

behaviour and effect on the outcome variable for the most part is explainable by
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the epidemiology of TB. There were however a few notable exceptions. Para-
meters p(for ages 15+) - the proportion of infectious susceptibles which develop
progressive primary TB in 1 year, x(for ages 15+) - the proportion of re-infections
which is susceptible to developing TB within 1 year, and r - the rate of relapse
from failed treatment to active TB, effect the outcome variable counter intuitively.
Despite further examination of the model, including systematically simplifying
the difference equations while noting whether the particular effect in the outcome
variable was affected, no obvious reason for these anomalies was discovered. A
full understanding of the model and its results would therefore benefit from further
investigation of the behaviour of these particular parameters and the interactions

of all the parameters in the model.

When fitting to the Dutch data some of the parameters produced a far smaller
relative effect in the outcome variable than others. In particular, ¢ - the relative case
detection rate of non-infectious cases, w - the rate of smear conversion from non-
infectious to infectious TB, ¢ - the proportion of failed treatment cases which is in-
fectious, and F - proportion of progressive primary cases which become infectious
within one year, have little effect on the outcome variable. Likewise, when fitling
to the Moroccan data a variation in the values for parameters x(ages 0-14) - the
proportion of re-infections which is susceptible to developing TB within 1 year, ¢
and ¢ had a relatively small effect on the outcome variable as compared with other
parameters. However, it was found that eliminating these parameters did have a
(large) effect on the output of the model, suggesting that these parameters although
individually seeming relatively unimportant have significant interactions with the

other model parameters.

Varying the parameters one at a time did not significantly improve the model
fit to each of the age groups over time and therefore failed to significantly improve
the fit to the age dependent characteristics. However, for the Moroccan data, in-

creasing the 11 selected parameters at the same time did have the effect of varying
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the gradient and placement of the fitted line so that it gave a better fit to the data for
ages 0-34. But the model still failed to capture fully the age characteristics in the
data especially in the older age groups. Therefore, despite the apparent flexibility
and large number of parameters of this compartmental model, there are still age
dependent features of these TB data sets which would need further modelling to

capture.

It would be possible in theory to get a better fit to the data with more robust
and sophisticated optimisation/fitting techniques and building in an even more so-
phisticated age/time dependency e.g more age/time dependent functions for the
parameters. It could also be useful to construct another way to obtain equilibrium,
so that the model starts with the same age distribution for the output variable as the
observed data (with or without a warm-up). If the characteristics observed in these
countries’ TB data sets and captured by the parametric modelling are considered
important, it could be useful to devise a way to directly build these trends into the
age dependent compartmental model. But the large number of parameters in the
model (which would increase rapidly with a more sophisticated internal age/time
dependent structure) make the model very unwieldy and difficult to optimise. It
should also be noted that the data sets that could be applied to this kind of model
may not be very large, so it is important that the model not become over compli-

cated.

The accuracy of model results is always going to be limited by the form of
epidemiological, behavioural and intervention data that are available to inform
the structure and input values of the model. Perhaps one of the most valuable
aspects of constructing a compartmental model is that it produces insight into and

clarification of the real biological system being modelled.

One of the advantages of carrying out compartmental analysis is the ability to
assign biological or physiological meaning to the rate/proportion parameters that

underlie the movement of the population through the model. Parameter estimation,
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however, is not particularly easy, with research into this aspect arguably lagging
behind research into model formulation. In the case of diseases such as Tuber-
culosis, the estimation of many parameters is further complicated because when
individuals are infected but not infectious they may not be distinguished from sus-
ceptibles. Research into overcoming this and other parameter estimation prob-
lems is currently being carried out within a Bayesian framework (using MCMC)

[34, 35, 40, 91, 33].

As the work in this part of the thesis shows, analysis of non-linear compart-
mental models is not simple. Particular attention should be paid to ensure that the
complicated internal structure does not produce spurious results. It is particularly
important in analysing possible stagnation effects in TB notification data that age

dependency characteristics are sufficiently captured in the structure of the model.

18.3 Modelling Local and Global Effects in the Trans-
mission of TB Observed in Asembo and Gem,
Kenya: Designing a Spatial Model of TB Case

Clustering.

Most current epidemiological TB models are homogeneous, in that an infected in-
dividual is equally likely to infect any of the susceptible individuals in the model
population. This is in effect assuming that an infectious individual in Southamp-
ton is as likely to infect someone in Glasgow as someone else in Southampton.
This assumption has been found to be adequate for diseases such as influenza, in
which the disease can be transmitted via casual contact. However, the validity of
this assumption is generally agreed to be questionable for diseases in which each

individual has a limited number of potentially infectious contacts. Tuberculosis is
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such a disease.

With this in mind, a Markov-chain model is created in an attempt to identify
whether the nearest reported source of possible infection is a localised one stem-
ming from an individual’s contacts with family or near neighbours or whether it
arises from much more dispersed ‘global’ contact. Thus, we are concerned with
determining whether a clustering (local) effect is as strong or stronger than a gen-
eral global effect in respect of TB transmission. This may have consequences for
how TB case finding strategies are undertaken i.e. focussing on local contacts of

infectious cases or on the entire population.

The basic methodology is to construct a stochastic Markov-chain model whose
behaviour is determined by a number of key parameters representing possible local
and global effects on TB transmission. This model is then fitted to Kenyan time-

spatial TB data using maximum likelihood to estimate these key parameter values.

The model showed that there is a significant local effect of transmission with
a larger local transition coefficient (b;) than the global coefficient (by). Age was
identified as a significant factor whereas gender on its own was not. The two mixed
age/gender models also showed significant local prevalence in the anticipated age

classes: males aged 30-34 and females aged 25-30.

A number of tests of the robustness of the modelling procedure were carried out
including: a demonstration that the importance of local prevalence is not simply
an artifact of the modelling; testing the effect of decreasing sample size on the
fitting of the model; investigating the effect of the length of the infectious period;
investigating the effect of different starting parameter values in the Nelder-mead
optimisation procedure; investigating the model’s sensitivity to the spatial scale of
disease clustering. The results of all these various robustness tests were more than

satisfactory.

It has also been shown that it is possible to use the model in the design of
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a cluster randomised trial where clusters of subjects are divided into two groups
and the effectiveness of an intervention policy is assessed by applying it to one
group but not the other. Here the model can be used to calculate the minimum
difference in an outcome variable that can be detected with statistical significance,
given a certain available sample size. It can thereby be used to gauge the potential

effectiveness of such a trial, taking into account the effect of clustering.

The model was formulated to match the complexity of the model with the
quality of the data available. The model assumes an equal period and degree of
infectiousness for all identified cases. However, not all notified cases are nec-
essarily infectious or equally infectious and indeed the data used for the study
combined different types of TB (e.g. smear positive, smear negative, and extra
pulmonary). Additionally, information about the HIV status of each individual in
the study was not available although it is estimated that HIV prevalence is approx-
imately 20 — 25% in the study area. HIV positive people are more likely than HIV
negative people to have active TB disease, to be smear negative, to have shorter
survival, but to be less infectious for TB. HIV could therefore influence TB preva-
lence by influencing btransmission and acquisition of active TB. It is interesting to
note that in the model results the magnitude of the local effect was greatest in the
age groups that have the greatest prevalence of HIV. It is therefore possible that
the register data shoWs HIV clustering more than clustering of TB due to the in-
fectiousness of TB cases. This would lead to bias in the local effect, making it
larger than if HIV was not present. However, the relevance of the model results in

the design of a cluster randomised trial is not effected by the reason for clustering.

With more detailed data it may be possible to refine the model to incorporate a
larger number of states (rather than just case and non-case). Much of the interest in
active case finding concerns transmission in households therefore data for individ-
ual families or households would be preferable. If HIV status data was available

this could also be incorporated into the model. Another component of the model
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that requires further development is the way the length of infectious period (b;)
is handled. The assumption that recovery time is independent of location may be
flawed. The rate of recovery is dependent on HIV co-infection and drug resistance,
both of which may be location dependent. In future models it would be preferable

to include this as a parameter to be estimated.
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Maximising the posterior - Using
Least squares/Neldermead Simplex

methods

The objective is to minimise the error between the actual recorded data and the

model output, thus finding the optimal values of the input parameters.

Recorded Data

A N .
¢ Input Parameters ~ — MODEL —  Output — SS(0)

Using the Nelder-mead Simplex algorithm, the input parameter values are sys-
tematically varied until an optimal fit for the data is found (i.e the objective func-

tion for the error term 1s minimised).

In the simple case, the objective function to be minimised is the Sum of Squares:
55 = (5:(0) —w)’
Vi
where ¢; is the model output and y; is the recorded data.
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A.1 Nelder-mead Simplex Algorithm

(with reference to the paper “Convergence Properties of the Nelder-mead Simplex

Method in Low Dimensions™ - J.C.Lagarias et. al. [42])

The Nelder-mead simplex algorithm was first published in 1965 and is an ex-
tremely popular direct search method for carrying out unconstrained minimisation
of non-linear functions in multi-dimensions. Direct Search methods are a class
of minimisation methods that do not require the use of derivatives. They rely ex-
clusively on calculating the value of the objective function and comparing it with
the best previous value [82]. The fact that the Nelder-mead algorithm is relatively

simple to program for computer calculation adds to its popularity.
The standard Nelder-mead algorithm uses four scalar parameters:
o Reflection: p=1
e Expansion: y =2
o Contraction: vy = 1/2
o Shrinkage: 0 = 1/2

in order to minimise an objective function, f(6).

An iteration step of the algorithm:

Each iteration step begins with a non degenerate simplex A and its n+1 ver-

tices, (i.e n+1 points in R").

1. Order: The n+1 vertices are ordered and labelled, z;, 23, ..., ZTn, Tni1, SO

that the objective function values satisfy:

F@) < f(@2) < ... < f(@n) < f(@ns1)
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Because the purpose of this algorithm is to minimise the objective function,
the vertex x; is the “best” point, &, 1 is the “worst” point and f(xny) is the
“worst” function value.

2. REFLECT:

The Reflection point, z,, is calculated from:

centroid of the n best points

n n
xT; ZT;
T, = iZIE —|—p[(z§=1 n) Tnt1]

= (1+ P)(Z %) — PTnt1

Evaluate f(z,).

If f(z1) < f(z,) < f(zn), accept the reflected point, z,, and end the

iteration.

3. If f(z,) < f(z;) then EXPAND:
The Expansion point, z., is calculated from:

centroid of the n best points
—

~ X - X
i i
Te = — ‘|’X(‘7;'r - E _)
- n - n
i=1 i=1
n

Z;
= (1+ pX)(Z g) — PXTnt1
i=1

Evaluate f(z.).

If f(z.) < f(z,), accept the expansion point, z., and end the iteration.
else If f(z.) > f(z.), accept the reflection point, z,, and end the itera-

tion.

4. If f(z.) > f(z.) then CONTRACT between the centroid, 7, Z, and

the “better” of x,, ., and z..:
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@) If f(zn) < f(zr) < f(Znt1) then calculate the Contraction point,

Tele
centroid of the n best points
' n n
Z; X3
T = o e
i=1 i=1
= (1+ P’Y)(Z E) — PVTnt1
i=1
Evaluate f(z.;).

If f(z.1) < f(z.), accept the contraction point, z.;, and end the
iteration. else If f(z.;) > f(z.), go to step 5, i.e. perform a shrink

operation.

(b) If f(z,) > f(zns1) < f(zni1) then calculate the Contraction point,

Lo
centroid of the n best points
n n
ZT; Z;
Tep = - Y 7[(; n ) = Tnt
n ;
= 0+ D) + s
i=1

Evaluate f(z.).

If f(z2) < f(Znt1), accept the contraction point, .2, and end the
iteration. else If f(z) > f(z.), go to step 5, i.e. perform a shrink

operation.

5. Perform a SHRINK operation:

Evaluate f(«;) at then points, o; = z1+0(z;—2;), wherei = 2,3,...,n,n+
1.
Thus, the vertices of the simplex at the next iteration, before ordering, will

be: z1,vs,Vs, ..., Uns1
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The algorithm terminates when the function values at the vertices of the sim-
plex satisfy some predetermined stopping condition, e.g. a tolerance value for the

variance of the n+1 function values.

The Nelder-mead paper [39] did not explain how to order the vertices when
equal function values were produced. This has led to differences in interpretation
of the Nelder-mead algorithm. An example of a set of tie-breaking rules can be
found in the 1998 paper by Lagarius et. al. [42].

Nelder-mead’s algorithm is economical in the number of times it evaluates
the function at each iteration. In practice it often only needs one or two function
evaluations to construct a new simplex and is often able to find reasonably good
solutions fairly rapidly. However, its convergence properties are not particularly
well understood. Only limited results exist for particular classes of problems based
in one or two dimensions. Although there are recent attempts to expand these
results including the 2002 paper by Price, Coope and Byatt [17] which introduces

a convergent variant of the Nelder-mead algorithm.
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An Introduction to Likelihood

Theory

Let @ be the unknown input parameters to a model. The “most likely” value of 6,
i.e. the value that makes the observed data the “most probable”, is called the maxi-
mum likelihood estimate (m.].e) of § because it maximises the likelihood function,
fo(z,8). Let Q denote this m.lLe. Q is dependent on the observed data, z, as dif-
ferent data samples give different likelihood functions. A very useful property of
the m.l.e is its coherence, i.e. if Q is the m.l.e of g, then for any function, g(9),
the m.le is g(f). Calculating the m.l.e is fairly straightforward and consists of
maximising the likelihood function. When maximising the likelihood function,
fz(z, 8), it is usual and easier to work with the log likelihood, log f,(z, §). Max-
imising the log likelihood function is achieved by finding a stationary point in the
normal way: by differentiating 1o<g fz(z, @) with respect to 0, setting the results
equal to 0 and solving. To check that this stationary point is indeed a maximum it
is necessary to show that the Hessian matrix, a matrix of second derivatives with

elements [H (6)s; = 5257 log f(x, ), is negative definite at § = 6.

One reason for the Maximum Likelihood estimation’s wide popularity is the

usefulness of the m.1.e’s asymptotic behaviour:
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e Let £ be n observations of i.i.d random variables X, whose joint p.d.f,
fx(z,0) = o fx(xi,0), is completely specified except for the values
of the unknown parameters, 6. Let Q be the maximum likelihood estimator
of 6.

Then, as n — oo, the distribution of the m.l.e, é tends to a multivariate

normal distribution N8, 7(9) ™).

The variance in this multivariate normal distribution is called the asymptotic

variance covariance matrix.

B.1 Calculating the Asymptotic variance covariance

matrix:

I(8)~" can be calculated from the Hessian matrix:
o 1(8)™" = E|— 555 108 fo(z, )] !

where the variances of § are the leading diagonal elements and the covariances are

the off diagonal elements.

From this covariance matrix the correlation matrix can be calculated:

CO’U(Q@, 01)

Corr(6;,0;) = V' Var(8:),Var(6;)
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Sensitivity and Uncertainty Analysis

(Referencing the paper Sensitivity and Uncertainty Analysis of Complex Models

of Disease Transmission...” - Blower and Dowlatabadi [87])

C.1 Complex Models of disease transmission:

Simple models can be solved analytically but the behaviour of more complex mod-
els can only be understood by numerical analysis. Uncertainty analysis and sensi-
tivity analysis are used because these models have a complex structure and a high

degree of uncertainty in estimating the values of many of the input parameters.

Model Characteristics:

e Many uncertain parameters
e QOutcome variables are non-linear functions of the parameters
o The full range of each input parameter needs investigating

e The models are computationally taxing. Therefore the ability to complete
sensitivity analysis with the minimum possible number of computer runs is

desirable.
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Uncertainty and Sensitivity Analysis:

e Uncertainty Analysis is used to assess the variability (prediction impreci-
sion) in the outcome variable that is due to the uncertainty in estimating the

input values.

e Sensitivity Analysis extends the uncertainty analysis by identifying which
parameters are important (due to their own estimation uncertainty) in con-
tributing to the prediction imprecision; i.e. it tries to answer the question:
how do changes in the values of the input parameters alter the value of the

outcome variable?

C.2 Summary of Sampling Schemes:-

In order to carry out uncertainty or sensitivity analysis, a large sample of the model
outcomes and input parameter values have to be collected. The following is a list

of some of the more popular sampling designs:

1. Full Factorial Design: This uses every value of each parameter and forms
every possible combination of parameter values. This therefore explores the
entire parameter space but is extremely time consuming and hence highly

impractical, especially for models with large numbers of parameters.

2. Alternative Factorial Design: For a K parameter model, fix the values of K-
1 parameters and vary only the value of the Kth parameter over a specified
range. This is very quick and simple. Its main disadvantages are that only
one parameter can be varied at a time and therefore only a small subset of
the K-dimensional parameter space can be explored and the values of the

K-1 parameters have to be estimated with a high degree of precision.
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3. Latin Hypercube Sampling (LHS): One of the designs that allow for the
simultaneous variation of the values of all the input parameters. Latin Hy-
percube Sampling (LHS) scheme is an efficient sampling design proposed
by McKay, Conover and Beckman (1979). It is a type of stratified Monte
Carlo sampling and can be seen as an extension of Latin Square sampling. It
has been demonstrated that if the outcome variable is a monotonic function
of each of the input functions, the LHS design is the most efficient design
compared with simple random and fractional stratified sampling designs,
for estimating the mean value and the cumulative distribution function of
the output variable. It has also been shown that even if the monotonicity
assumption doesn’t hold, but the sample sizes are large, then LHS is more

efficient than the simple random sampling design.



Appendix D
Bootstrapping

The Bootstrap method is a computer-based method of statistical inference [9] and
belongs to a large class of methods called resampling methods because they re-

sample from the original sample data set [63].

Bootstrapping was given its name by Efron [8] who borrowed it from the
phrase “to pull oneself up by one’s bootstrap”. This saying commonly refers to
succeeding without help from others. The Bootstrap method can be thought of as
doing just that, in that it aims to carry out statistical calculations, standard errors,
confidence intervals etc... using no further information than the already available

sample data set.

The following is an explanation of the simple nonparametric bootstrap method

[43].

D.1 Nonparametric Bootstrap

Let S = {X1,X2,...,X,} be a random sample drawn from a population P =
{z1, %2, ...,zn}. Suppose T = (S) is a statistic that is used to estimate the pop-

ulation parameter of interest, # = ¢(P), such as the population mean or standard
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error for example.

The traditional approach to estimating the sampling distribution of this statis-
tic T requires making assumptions about the structure of the population P (e.g.
normality) and either deriving the exact distribution of 7" or if this is not possible
deriving the asymptotic distribution. This method can produce inaccurate results
if the assumptions are incorrect or, if using asymptotic results, the sample data set

is ‘too’ small.

The bootstrap method avoids these problems and allows us to estimate the
sampling distribution of 7" empirically. The algorithm for carrying out the non-

parametric bootstrap is as follows:

Fori=1to M

Draw a random sample S} = { X}, X7, ..., X}, } of size n from S, using sampling
with replacement.

Compute statistic T for each bootstrap sample: T;* = ¢(S}).

Next ¢

Hence, the distribution of the bootstrap statistic, 7%, can then be used as an esti-

mate for the distribution of the true population parameter of interest, 6.

In principle, all possible bootstrap samples of size n could be collected from S.
Unfortunately, the number of possible 5* is n™, which is prohibitively large unless
n is extremely small. In order to minimise any. possible error in bootstrap inference
by not using all possible bootstrap samples the number of bootstrap replications,

M, should be made ‘sufficiently’ large [43, 9](Ch6, pgs 51-53).



CHAPTER D

208

D.2 Booltstrap Confidence Intervals

There are many different methods of constructing bootstrap confidence intervals.

This section sets out two of the most common and easiest to implement.

¢ The normal-theory interval method assumes that statistic 7" is normally dis-

tributed and hence constructs a 100(1 — «)% confidence interval as follows,

(r-5)

where B*
SE(T*)
where V*(T™)
V(T

and T*

T*

Zl_%SE* (T*)

T* — T is an estimate of the bias of T';

VT

is the estimated bootstrap variance of 7™ :
M * Fie 2
Ei:l (,I'L - T ) .

M—-1 ’
is the estimate of the expectation of 7 :
i T7
M

e The bootstrap percentile interval method creates a confidence interval,

( (*i ower)’ T(*upper)>a using the lower and upper quantiles of 7. The boot-

strap replicates are put in order, {T(*l), Ty o T(*M) }, and the lower and up-

per quantiles calculated using: lower = [(M + 1)2]; upper= [(M + 1)(1 —

a\
2/

).
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Demography and Health in Morocco

E.1 A brief history of the changing demography and

health in Morocco

This information was partly gathered in a discussion with Salah-Eddine Ottmani
MD, MPH, Medical Officer, TB Strategy and Operations (TBS) - Stop TB Commu-
nicable Diseases (CDS), (ottmanis@who.int); upon my first visit to the WHO in
Geneva, November 2002.

E.1.1 Demography

There has been a rapid decrease in infant mortality in recent times and life ex-
pectancy has been rapidly increasing. It is now estimated at around 69 years. De-
mographic and various TB data collected in Morocco is regarded as being fairly
reliable for the years 1980 to present day. The last Census was taken in 1994 and
all subsequent year data is by projection. For the year 2000, the population of
Morocco is recorded as 29,878,000.
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E.1.2 Health

e Tuberculosis programs started in the 1950s and DOTS was first introduced
into the country in 1991. More detailed information was gathered re. TB

incidence etc.. from around 1994 onwards.

¢ Health care facilities are considered good with both private and public

health care available to the population.

¢ Immigration: There is some migration out of Morocco, but there is consid-
erable internal migration from rural to urban areas. Large movements of
people began around 1956 when Morocco gained independence. Since then

urban towns have become very overcrowded.

¢ Medical conditions: There has been a considerable change in the diet of
the general population and there has also been an increase in diabetes and
cancer cases. HIV is not considered a large problem in Morocco although

rates are beginning to rise.

¢ Ageing population and TB epidemic: The average age of a TB patient in
Morocco is slowly increasing. People born in 1954 — 1960 are more likely

to have a TB occurrence than those bom in later years.
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Exponential line fits to TB data from
the Netherlands, Morocco and UK

F.1 Exponential line fits to the Dutch TB data

Figure F.1: (a)-(h): Plots of the Dutch TB case data for each of the 8 age ranges,
with exponential line fits of the form: In(TB cases/100,000) = A exp(-B age).
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F.2 Exponential line fits to the Moroccan PTB data

Figure F.2: (a)-(h): Plots of Moroccan PTB case data for each of the 8 age ranges,
with exponential line fits of the form: In(TB cases/100,000) = A exp(-B age).
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F.3 [Exponential line fits to UK white males TB data

Figure F.3: (a)-(h): Plots of UK (Male) TB case data for each of the 8 age ranges,
with exponential line fits of the form: In(TB cases/100,000) = A exp(-B age).
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