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MODELLING TUBERCULOSIS NOTIFICATION DATA. 

by Kathryn Anna Hoad 

This thesis describes the development of three different Tuberculosis epidemiolog­
ical models: An age dependent parametric statistical model; a compartmental, age 
dependent, differential/difference model; and a Markov chain model that allows 
for location effects in the transmission ofTB. 

Recently collected data from countries that have experienced a long-term decline 
in TB incidence and in the annual risk ofTB infection has exhibited a slow down 
in the decline of the TB notification rate. This stagnation effect has implications 
for projected reductions in TB incidence made by the World Health Organisation. 
Parametric modelling was used to carry out a preliminary analysis of TB data sets 
that were considered to exhibit such stagnation effects. The aim was to examine 
the age and time dependent effects exhibited by each data set and to identifY any 
shared trends. This analysis was a precursor to a more structural age dependent 
compartmental modelling of this data. 

The third model, a Markov chain model, is distinct from the previous two 
models described above. It is constructed to examine the relative significance of 
local and global effects in the transmission of TB. Examining/modelling 'house­
hold' /local effects is a relatively new branch of TB modelling that is considered 
important in the planning ofTB control strategies and has previously been tackled 
with compartmental modelling. The simple Markov chain local effects model is 
used to examine a time-spatial TB data set from the Nyanza province in western 
Kenya It is also shown how this new local/global effects model can be used in the 
design of community/clustered randomised trials. 



Contents 

List of Figures 

List of Tables 

Declaration of Authorship 

Acknowledgements 

List of Definitions 

1 Introduction 

l.1 Parametric Statistical Modelling 

1.2 A compartmental, age-dependent TB Model 

x 

xx 

xxv 

xxvi 

xxvii 

1 

2 

4 

1.3 A Markov Chain model ofTB case clustering in the Nyanza Province 
of West em Kenya . . . . . . . . . 6 

1.4 Chapter arrangement and contents . . . . . . . . 8 

2 An Introduction to Modelling Disease Transmission 

2.1 Formulating models . 

2.2 Measures of disease . 

2.3 Estimating incidence from age-prevalence data 

3 Tuberculosis 

3.1 A brief history of TB in humans 

3.2 Epidemiology of Tuberculosis 

3.3 TB Treatment . . . . . 

3.4 Tests for Tuberculosis. 

11 

11 

11 

13 

15 

16 

16 

21 

23 

24 



CONTENTS III 

4 Summary of the History of TB modelling 26 

5 Fitting Parametric Distributions to age and time dependent TB case 
d~ ~ 

5.1 Introduction............................. 36 

5.2 Exploring trends in the TB data from the Netherlands, UK and 
Morocco. . . . . . 38 

5.3 Modelling strategy .... . . . . . . . . . . . . . . . . . . . .. 40 

5.4 Summary of results of fitting the parametric models to TB data 
from Netherlands, Morocco and UK . . . . . . . . . . . . . . .. 42 

6 Parametric Modelling of Dutch TB Case Data 

6.1 Model formulation ............ . 

43 

43 

6.2 Results of fitting the parametric model to the Dutch TB case data. 44 

7 Parametric Modelling of UK (male) TB Notification Data 58 

7.1 Model formulation .. . . . . . . . . . . . . . . . . . 58 

7.2 Results of fitting the parametric model to the UK (male) TB case 
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 59 

8 Parametric Modelling of Moroccan TB Notification Data 

8.1 Model formulation . . . . . . . . . . . . . . . . . . . 

8.2 Results of fitting the parametric model to the Moroccan PTB case 

71 

71 

data . . . . 72 

8.3. Conclusions. . . . . . . . . . . . . 87 

9 An Age-Structured Tuberculosis Model 88 

9.1 Introduction .'. . . . . . . . . . . . 88 

9.2 A description of a deterministic, compartmental, age-dependent 
TB Model. . . . . . . . . . . . . . 89 

9.3 Assumptions behind the TB model ........ . 

9.4 Equations used in the model ........... . 

9.4.1 Difference Equations describing the model 

9.5 Boundary Conditions . . 

9.6 Equilibrium Calculations 

94 

95 

99 

106 

106 



CONTENTS IV 

9.7 Detection Calculations in the model 108 

9.8 Standardising age dependent results 110 

9.9 Calculating R, The basic case reproduction number 112 

9.10 Calculating TB relapses. . . . . . . . . . . . . . . 114 

9.11 Calculating the percentage decrease in TB Incidence 114 

9.12 Adapting demographic data for input to model. . . . 115 

9.13 Fitting the compartmental model to the TB data sets from the 
Netherlands and Morocco. . . 118 

9.13.1 Parameter Estimation .................... 118 

10 Fitting and Sensitivity Analysis of Compartmental TB Model using TB 
case data from the Netherlands 120 

10.1 Fitting to Dutch TB notification data . . . . . . . . . 120 

10.2 Sensitivity analysis using Dutch TB notification data 127 

10.2.1 Varying parameter value A(l), "Initial Force of Infection". 128 

10.2.2 Varying parameter value B, "the exponential rate of decline 
in the contact rate between TB cases and others". . . . . . 130 

10.2.3 Varying parameter value p (for ages 15+), "the propor-
tion of infected susceptibles which develop progressive 
primary TB in one year". . . . . . . . . . . . . . . . . . . 131 

10.2.4 Varying parameter value p (for ages 0-14), "the propor-
tion of infected susceptibles which develop progressive 
primary TB in one year". . . . . . . . . . . . . . . . . . . 133 

10.2.5 Varying parameter value v (ages 15+), "the rate at which 
latent infections become TB cases by endogenous reacti-
vation". . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

10.2.6 Varying parameter value x (for ages 15+), "Proportion of 
re-infections which is susceptible to developing TB within 
one year". . . . . . . . . . . . . . . . . . . . . . . . . . . 135 

10.2.7 Varying parameter value x (for ages 0-14), "the propor-
tion ofre-infections which is susceptible to developing TB 
within one year". . . . . . . . . . . . . . . .'. . . . . . . 137 

10.2.8 Varying parameter value F (for ages 15+), "the propor-
tion of progressive primary cases which become infectious 
within one year". . . . . . . . . . . . . . . . . . . . . . . 138 



CONTENTS V 

10.2.9 Varying parameter value F (for ages 0-14), "the proportion 
of progressive primary c~es which become infectious". . 141 

10.2.10 Varying parameter value ¢, "the proportion of failed treat-
ment cases which is infectious". . . . . . . . . . . . . . . 142 

10.2.11 Varying parameter value w, "the rate of smear conversion 
from non-infectious to infectious TB". . . . . . . . . . . . 143 

1 0.2.12 Varying parameter value !-Li, "the death rate for infectious 
TB" .............................. 144 

1 0.2.13 Varying parameter value !-Ln, "the death rate for non-infectious 
TB" .............................. 146 

10.2.14 Varying parameter value E, "the relative case detection rate 
of non-infectious cases". . . . . . . . . . . . . . . . . . . 147 

10.2.15 Varying parameter val ue r, "the rate of relapse from fail ed 
treatment to active TB". ............ . . . . . . 148 

10.2.16 Varying parameter value' det', "the rate at which TB cases 
are found and treated under a second improved control 
regime".. . . . . . . . . . . . . . . . . . . . . . . . . . . 149 

10.2.17 Varying parameter value 'DetNotDot', "the rate at which 
TB cases are found and treated under a previous (non-
DOTS) less efficient regime". ............... 150 

10.2.18 Varying parameter value 'cure', "the proportion of treated 
cases given curative chemotherapy under a second improved 
control regime". ...................... 152 

10.2.19 Varying parameter value 'CureNotDot', "the proportion of 
treated cases given curative chemotherapy under a previ-
ous (non-DOTS) less efficient control regime". 153 

10.3 Summary of Sensitivity Results ................... 154 

11 Fitting and Sensitivity Analysis of Compartmental TB model using 
Pulmonary TB case data from Morocco 156 

11.1 Fitting to Moroccan Pulmonary TB case data . . . 156 

11.2 Sensitivity analysis using Moroccan PTB case data 166 

11.2.1 Varying parameter value ).(1), "Initial Force of Infection". 167 

11.2.2 Varying parameter value 0, "the exponential rate of decline 
in the contact rate between TB cases and others". . . . . . 168 



CONTENTS VI 

11.2.3 Varying parameter value p (for ages 15+), ''the propor-
tion of infected susceptibles which develop progressive 
primary TB in one year". . . . . . . . . . . . . . . . . . . 170 

11.2.4 Varying parameter value p (for ages 0-14), ''the propor-
tion of infected susceptibles which develop progressive 
primary TB in one year". . . . . . . . . . . . . . . . . . . 172 

11.2.5 Varying parameter value v (for ages 15+), "the rate at which 
latent infections become TB cases by endogenous reacti­
vation". . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 

11.2.6 Varying parameter value x (for ages 15+), ''the propor-
tion of re-infections which is susceptible to developing TB 
within one year". . . . . . . . . . . . . . . . . . . . . . . 173 

11.2.7 Varying parameter value x (for ages 0-14), "the propor-
tion ofre-infections which is susceptible to developing TB 
within one year". . . . . . . . . . . . . . . . . . . . . . . 176 

11.2.8 Varying parameter value F (for ages 15+), "the propor-
tion of progressive primary cases which become infectious 
within one year". . . . . . . . . . . . . . . . . . . . . . . 177 

11.2.9 Varying parameter value F (for ages 0-14), "the proportion 
of progressive primary cases which become infectious". . 178 

11.2.10 Varying parameter value ¢, "the proportion of failed treat-
ment cases which is infectious". . . . . . . . . . . . . . . 180 

11.2.11 Varying parameter value w, "the rate of smear conversion 
from non-infectious to infectious TB". . . . . . . . . . . . 181 

11.2.12 Varying parameter value fJ,i, "the death rate for infectious 
TB". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 

11.2.13 Varying parameter value fJ,n, "the death rate fornon-infectious 
TB". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 

11.2.14 Varying parameter value E, ''the relative case detection rate 
of non-infectious cases". . . . . . . . . . . . . . . . . . . 185 

11.2.15 Varying parameter value r, "the rate of relapse from failed 
treatment to active TB". .................. 185 

11.2.16 Varying parameter value 'det', "the rate at which TB cases 
are found and treated under the DOTS regime". . . . . . . 187 

11.2.17 Varying parameter value 'DetNotDot', "the rate at which 
TB cases are found and treated under a previous non-DOTS 
regime".. . . . . . . . . . . . . . . . . . . . . . . . . . . 189 



CONTENTS Vll 

11.2.18 Varying parameter value 'cure = Co + CIt', "the propor­
tion of treated cases given curative chemotherapy under 
the DOTS regime". . . . . . . . . . . . . . . . . . . . . . 190 

1l.2.19Varying parameter value 'CureNotDot = cndo + cndlt', 
''the proportion of treated cases given curative chemother-
apy under a previous non-DOTS regime". . . . . . . . . . 192 

1l.2.20 Varying the two parameter values 'cure' and 'CureNot-
Dot' simultaneously. . . . . . . . . . . . . . 194 

1l.2.21 Varying 11 parameter values simultaneously 196 

1l.3 Summary of Sensitivity Analysis . . . . . . . . . . . 199 

12 Modelling Local and Global Effects in the Transmission of TB Ob­
served in Asembo and Gem, Kenya: Designing a Spatial Model of TB 
Case Clustering. 200 

12.1 Introduction. . . . . . . . . . . . 201 

12.2 The Kenyan Space-Time TB Data 201 

13 Space Time Clustering 207 

14 Kenya Model construction 212 

14.1 Designing a Spatial Model of Disease Case Clustering. . . . . . . 212 

14.1.1 Modeling of male/female characteristics and of age depen-
dence . . . . . . . . . . . . . . . . . . . . . . . . . .. 220 

14.l.l.1 Conditional form of the local effect coefficient . 221 

14.l.1.2 Non-conditional form oflocal effect coefficient 223 

15 Kenyan Model Results 226 

15.1 Estimating the global and local effect parameters 226 

15.l.1 Villages as locality marker . . . . . . . . 226 

15.l.2 Zone as locality marker. . . . . . . . . . 236 

15.l.3 Testing the robustness of the modelling procedure. 245 

15.l.3.l The effect of decreasing sample size (M) on the 
fitting of the simple model. . . . . . . . . . . . 246 

15.l.3.2 Investigating the effect of the length of the in-
fectious period b2 ............• 249 

15.l.3.3 Investigating the effect oftime step length ... 254 



CONTENTS V1l1 

15.l.3.4 Investigating the effect of different starting pa­
rameter values in the NeIder-mead optimisation 
procedure .. . . . . . . . . . . . . . . . . . . 256 

15.1.3.5 Investigating the effect of different sizes of zone 258 

15.1.3.6 Effect of different groupings of villages into 16 
zones ................. . 

15.l.3.7 Summary of robustness tests of model 

16 Cluster Randomised Trial Design 

16.1 Introduction . . . . . . . . . . 

16.2 Splitting zones into two groups representing two different treat-

264 

266 

267 

267 

ment groups in a group randomised trial . . . . . . . . . . . . . . 269 

17 Discussion and Conclusions for the Markov-chain local/global effects 
model 274 

18 Conclusions and discussion of Thesis regarding all three TB models 276 

18.1 Parametric Statistical TB modelling ................ 276 

18.2 Compartmental age-dependent TB model ............. 278 

18.3 Modelling Local and Global Effects in the Transmission of TB 
Observed in Asembo and Gem, Kenya: Designing a Spatial Model 
ofTB Case Clustering. . ...................... 282 

A Maximising the posterior - Using Least squares/Neldermead Simplex 
methods 286 

Al NeIder-mead Simplex Algorithm .. 287 

B An Introduction to Likelihood Theory 291 

B.l Calculating the Asymptotic variance covariance matrix: ..... 292 

C Sensitivity and Uncertainty Analysis 293 

C.l Complex Models of disease transmission: 293 

C.2 Summary of Sampling Schemes:- 294 

D Bootstrapping 296 

D.l Nonparametric Bootstrap 296 

D.2 Bootstrap Confidence Intervals 298 



CONTENTS IX 

E Demography and Health in Morocco 299 

E.I A brief history of the changing demography and health in Morocco 299 

E.l.I Demography 299 

E.l.2 Health.... 300 

F Exponential line fits to TB data from the Netherlands, Morocco and 
UK 301 

FI Exponential line fits to the Dutch TB data . . . . 

F2 Exponential line fits to the Moroccan PTB data . 

F3 Exponential line fits to UK white males TB data . 

References 

301 

303 

304 

305 



List of Figures 

4.1 Flow diagram of the 1962 Waaler, Geser, Anderson compartmental 
TB model [38]. . . . . . . . . . . . . . . . . . . . . . . . . . .. 28 

4.2 Flow diagram of the 1965 Brogger compartmental TB model [84]. 30 

4.3 Flow diagram of the 1975 Azuma compartmental TB model [95].. 32 

4.4 Flow diagram of the 1997 Vynnycky, Fine compartmental TB model [28]. 33 

5.1 Plot of the exponential rate of decline in TB case numbers over 
age, for the Dutch TB data set. . . . . . . . . . . . . . . . . . ., 39 

5.2 Plot of the exponential rate of decline in TB case numbers over 
age, for the UK TB data set. .................... 39 

5.3 Plot of the exponential rate of decline in TB case numbers over 
age, for the Moroccan PTB data set. . . . . . . . . . . . . . . .. 39 

6.1 Scatter plots of the associations between the parameters /31, ... ,/37 
with /32,' .. ,/38. . . . . . . . . . . . . . . . . . . . . . . . . . .. 48 

6.2 Scatter plots of the associations between the parameters /31, ... ,/37 
with /39, ... ,/316. .......................... 49 

6.3 Scatter plots of the associations between the parameters /38,' .. ,/315 
with /39, ... , /316. .......................... 50 

6.4 (a)-(h): Plots of the fitted parametric model and Dutch TB notifi­
cation data for each of the 8 age ranges. .. . . . . . . . . . . ., 51 

6.5 (a)-(h): Plots of the fitted parametric model and Dutch TB notifi­
cation data for a selection of years between 1952 and 1994. . . .. 52 

6.6 (a)-(h): Plots of the fitted parametric model and Dutch TB notifi­
cation data with Asymptotic perfonnance confidence intervals and 
confidence bands, for each of the 8 age ranges. .......... 54 

6.7 (a)-(h): Plots of the fitted parametric model and Dutch TB noti­
fication data with bootstrapped performance confidence intervals 
and confidence bands, for each of the 8 age ranges. .. . . . . .. 56 

x 



LIST OF FIGURES Xl 

7.1 Scatter plots of the associations between the parameters /31 = 0", 

/32, /33, /34, /35, /36, /37 and /38. .................... 63 

7.2 (a)-(h): Plots of the fitted parametric model and UK TB notifica-
tion data (for white males only) for each of the 8 age ranges. . .. 64 

7.3 (a)-(i): Plots ofthe fitted parametric model and UK TB notification 
data (for white males only) for a selection of years between 1953 
and 1989. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65 

7.4 (a)-(h): Plots of the fitted parametric model and UK TB notifi­
cation data (for white males only) with Asymptotic perfonnance 
confidence intervals and confidence bands, for each of the 8 age 
ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 67 

7.5 (a)-(h): Plots of the fitted parametric model and UK TB notifica­
tion data (for white males only) with Bootstrapped perfonnance 
confidence intervals and confidence bands, for each of the 8 age 
ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69 

8.1 Scatter plots of the associations between the parameters /31, /32 and 
/33, with the parameters /32 to /315. . . . . . . . . . . . . . . . . .. 76 

8.2 Scatter plots of the associations between the parameters /34, /35 and 
/36, with the parameters /35 to /315. . . . . . . . . . . . . . . . .. 77 

8.3 Scatter plots of the associations between the parameters /37, /38, /39 
and /310, with the parameters /38 to /315. . . . . . . . . . . . . . .. 78 

8.4 Scatter plots of the associations between the parameters /311, /312, 
/313 and /314, with the parameters /312 to /315. ...... . . . . .. 79 

8.5 (a)-(h): Plots of the fitted parametric model and Moroccan con­
finned pulmonary TB data for each of the 8 age ranges. . . . . .. 80 

8.6 (a)-G): Plots of the fitted parametric model and Moroccan con­
firmed pulmonary TB notification data for a selection of years be-
tween 1980 and 2000. . . . . . . . . . . . . . . . . . . . . . .. 81 

8.7 (a)-(h): Plots of the fitted parametric model and Moroccan con­
firmed pulmonary TB notification data with Asymptotic perfor­
mance confidence intervals and confidence bands, for each of the 
8 age ranges. ............................ 83 

8.8 (a)-(h): Plots of the fitted parametric model and Moroccan con­
firmed pulmonary TB notification data with Bootstrapped perfor­
mance confidence intervals and confidence bands, for each of the 
8 age ranges. .......................... 85 

9.1 Flow diagram of the age-dependent compartmental TB model. 90 



LIST OF FIGURES XlI 

9.2 Plot of interaction between the DOTS and non-DOTS detection 
rates, (det = cdrD(t) and detND), with DOTS introduced at time 
step 10, DOTS detection rate target (a) set at 70% and the time 
taken to attain a set to 6 years. . . . . . . . . . . . . . . . . . . . 110 

9.3 Flow diagram of states and parameters in the TB model used to 
estimate the reproductive number. ................. 113 

10.1 Plot of the function used for the model parameter v = VI e2l:~) (a-30), 

rate at which latent infections become TB cases by endogenous re­
activation; where VI is the initial value of the parameter for ages 
2:: 15 and a = age step .. . . . . . . . . . . . . . . . . . . . . . 124 

10.2 (a)-(h): Plots of the fit for the compartmental model to the Dutch 
TB data, for each of the 8 age ranges. ............... 125 

10.3 (a)-(c): Plots of the fit for the compartmental model to the Dutch 
TB data, for three selected years. . . . . . . . . . . . . . . . . . . 126 

10.4 (a)-(c): Plots of the fit for the compartmental model to the Dutch 
TB data, over the years 1952 to 1994 ................ 126 

10.5 (a)-(b): Plots of the fit for the compartmental model to the Dutch 
TB data, for initial year 1952 and middle of time period 1974. .. 129 

10.6 (a)-(c): Plots of the fit for the compartmental model to the Dutch 
TB data, over the years 1952 to 1994. . .............. 129 

10.7 (a)-(c): Plots of the fit for the compartmental model to the Dutch 
TB data, for three selected years. . . . . . . . . . . . . . . . . . . 131 

10.8 (a)-(c): Plots of the fit for the compartmental model to the Dutch 
TB data, for three selected years. . . . . . . . . . . . . . . . . . . 132 

10.9 (a)-(c): Fits of the compartmental model to the Dutch TB data. . . 132 

10. 10 (a) - (b): Plot of the fit for the compartmental model to the Dutch 
TB data, over the years 1952 to 1994. . .............. 133 

10.11 (a)-( c): Plots of the fit for the compartmental model to the Dutch 
TB data, for the last 3 age ranges. ................. 134 

1 0.12( a)-(h): Plots of the fit for the compartmental model to the Dutch 
TB data, for each of the 8 age ranges. ............... 136 

10. 13 (a)-(c): Plots of the fit for the compartmental model to the Dutch 
TB data, for three selected years. . . . . . . . . . . . . . . . . . . 137 

10.14 Plot of the fit for the compartmental model to the Dutch TB data, 
for ages 0-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 



LIST OF FIGURES Xlll 

10. 15 (a)-(h): Plots of the fit for the compartmental model to the Dutch 
TB data, for each of the 8 age ranges. ............... 139 

10. 16(a)-(c): Plots of the fit for the compartmental model to the Dutch 
TB data, for three selected years. . . . . . . . . . . . . . . . . . . 140 

10.17Fits of the compartmental model to the Dutch TB data, for ages 0-14.141 

10. 18(a)-(b): Plots of the fit for the compartmental model to the Dutch 
TB data, for selected years. . . . . . . . . . . . . . . . . . . . . . 142 

10. 19(a)-(c): Plots of the fit for the compartmental model to the Dutch 
TB data, for three selected years. . . . . . . . . . . . . . . . . . . 143 

10.20(a)-(b): Plots of the fit for the compartmental model to the Dutch 
TB data, for years 1974 and 1994 .................. 145 

10.21 (a)-(b): Plots of the fit for the compartmental model to the Dutch 
TB data, over the years 1952 to 1994 ................ 145 

10.22(a)-(b): Fits of the compartmental model to the Dutch TB data, 
1974 and 1994. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 

10.23 (a)-(b): Plots of the fit for the compartmental model to the Dutch 
TB data, over the years 1952 to 1994 ................ 147 

10.24(a)-(c): Plots of the fit for the compartmental model to the Dutch 
TB data, for three selected years. . . . . . . . . . . . . . . . . . . 148 

10.25(a)-(b): Plots of the fit for the compartmental model to the Dutch 
TB data, for selected years. . . . . . . . . . . . . . . . . . . . . . 149 

10.26(a)-(b): Plots of the fit for the compartmental model to the Dutch 
TB data, for two selected years. (c) Plot of the fit for the compart­
mental model to the Dutch TB data, over all years, for all ages. . . 150 

1 0.27 (a)-(c): Plots of the fit for the compartmental model to the Dutch 
TB data, for three selected years. . . . . . . . . . . . . . . . . . . 151 

10.28(a)-(b): Plots of the fit for the compartmental model to the Dutch 
TB data, for selected years. . . . . . . . . . . . . . . . . . . . . . 152 

10.29(a)-(c): Plots of the fit for the compartmental model to the Dutch 
TB data, over the years 1952 to 1994. . .............. 153 

1 0.30 (a): Plots of the fit for the compartmental model to the Dutch TB 
data, for 1974. (b)-(c): Plots of the fit for the compartmental model 
to the Dutch TB data, over the years 1952 to 1994, for ages 0-14 
and 15+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 



LIST OF FIGURES 

11.1 Plot of the function used for the model parameter p = Co~o) + 
(7g~O) + P2, proportion of infected susceptibles which develop 

progressive primary TB within one year; where P2 is the initial 

XlV 

value of the parameter for ages:::; 15 and a = age in half yearly steps158 

11.2 Plot of the function used for the model parameters cure = Co + CIt 

and cureNotDot = mdo +mdlt, proportion of treated cases cured 
under DOTS and a previous non-DOTS regime, respectively; where 
Co, CI, mdo and mdl are the initial values and t = time in half 
yearly steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 

11.3 (a)-(c): Plots of the fit for the compartmental model to the Moroc­
can confirmed PTB case data, for three selected years: 1980, 1990 
and 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 

11.4 (a)-( c): Plots of the fit for the compartmental model to the Moroc-
can confirmed PTB case data, over the years 1980 to 2000. . . . . 163 

11.5 (a)-(h): Plots of the fitted age dependent model to Moroccan PTB 
case data, 1980-2000, for each of the eight age groups. ...... 164 

11.6 (a)-(b): Plots of the fit for the compartmental model to the Moroc-
can confirmed pulmonary TB data, over the years 1980 to 2000. . 167 

11.7 Plot of the fit for the compartmental model to the percentage de­
crease in the Moroccan confirmed pulmonary TB data, over the 
years 1994 to 2000. . . . . . . . . . . . . . . . . . . . . . . . . . 168 

11.8 (a)-(b): Plots of the fit for the compartmental model to the Moroc-
can confirmed pulmonary TB data, over the years 1980 to 2000. . 169 

11.9 Plot of the fit for the compartmental model to the percentage de­
crease in the Moroccan confirmed pulmonary TB data, over the 
years 1994 to 2000. . . . . . . . . . . . . . . . . . . . . . . . . . 169 

11.1 O( a)-(b): Plots of the fit for the compartmental model to the Moroc-
can confirmed pulmonary TB data, over the years 1980 to 2000. . 171 

11.11 Plot of the fit for the compartmental model to the percentage de­
crease in the Moroccan confirmed pulmonary TB data, over the 
years 1994 to 2000. . . . . . . . . . . . . . . . . . . . . . . . . . 171 

11.12Plotofthe fit for the compartmental model to the Moroccan con­
firmed pulmonary TB data, for ages 0-14, over the years 1980 to 
2000. ................................ 172 

11.13 Fits of the compartmental model to Moroccan PTB data, for ages 
15+, for varying values ofv(15+) .................. 174 

11.14( a)-(f): Plots of the fit for the compartmental model to the Moroc-
can confirmed pulmonary TB data, for each age range. ...... 175 



LIST OF FIGURES 

1 1. 15Plot of the fit for the compartmental model to the percentage de­
crease in the Moroccan confirmed pulmonary TB da~ over the 

xv 

years 1994 to 2000. . . . . . . . . . . . . . . . . . . . . . . . . . 175 

1 1. 16(a)-(b): Plots of the fit for the compartmental model to the Moroc-
can confirmed pulmonary TB data, for ages 5-14. . . . . . . . . . 176 

11.17Plot of the fit for the compartmental model to the percentage de­
crease in the Moroccan confirmed pulmonary TB data, over the 
years 1994 to 2000. . . . . . . . . . . . . . . . . . . . . . . . . . 177 

11.18Plot of the fit for the compartmental model to the Moroccan con­
firmed pulmonary TB data, over the years 1980 to 2000, for ages 
15+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 

11.19 Fits of compartmental model to Moroccan PTB data, for ages 0-14. 179 

11.20Fit for the compartmental model to the percentage decrease in the 
Moroccan confirmed pulmonary TB data, over the years 1994 to 
2000. . ............................... 179 

1 1.21 (a)-(b): Plots of the fit for the compartmental model to the Moroc-
can confirmed pulmonary TB data, over the years 1980 to 2000. . 180 

11.22Fits for the compartmental model to the percentage decrease in the 
Moroccan confirmed pulmonary TB data, over the years 1994 to 
2000. ................................ 181 

1 1.23 (a)-(b): Plots of the fit for the compartmental model to the Moroc-
can confirmed pulmonary TB data, over the years 1980 to 2000. . 182 

11.24( a)-( c): Fits of compartmental model to the Moroccan PTB data. . 183 

1 1.25 Fits for the compartmental model to the percentage decrease in the 
Moroccan confirmed pulmonary TB data, over the years 1994 to 
2000. ............................. 183 

1 1.26 (a)-(c): Fits of compartmental model to Moroccan PTB data. . . . 184 

1 1. 27 Fits for the compartmental model to the percentage decrease in the 
Moroccan confirmed pulmonary TB data, over the years 1994 to 
2000. . ............................... 184 

1 1. 28 (a)-(c): Plots of the fit for the compartmental model to the Moroc-
can confirmed pulmonary TB data, over the years 1980 to 2000. . 186 

11.29Plot of the fit for the compartmental model to the percentage de­
crease in the Moroccan confirmed pulmonary TB data, over the 
years 1994 to 2000. . . . . . . . . . . . . . . . . . . . . . . . . . 186 

1 1. 30 (a)-(c): Plots of the fit for the compartmental model to the Moroc-
can confirmed pulmonary TB data, over the years 1980 to 2000. . 188 



LIST OF FIGURES 

1 1.31 Plot of the fit for the compartmental model to the percentage de­
crease in the Moroccan confirmed pulmonary TB data, over the 

XVI 

years 1994 to 2000. . . . . . . . . . . . . . . . . . . . . . . . . . 188 

11.32(a)-(c): Plots of the fit for the compartmental model to the Moroc-
can confirmed pulmonary TB data, over the years 1980 to 2000. . 189 

11.33Plot of the parameter cure values.. . . . . . . . . . . . . . . . . . 191 

1 1. 34 (a)-(c): Plots of the fit for the compartmental model to the Moroc-
can confirmed pulmonary TB data, over the years 1980 to 2000. . 191 

11.35Plot of the fit for the compartmental model to the percentage de­
crease in the Moroccan confirmed pulmonary TB data, over the 
years 1994 to 2000. . . . . . . . . . . . . . . . . . . . . . . 191 

11.36Plot of the parameter 'cureNotDot = cndo + cnd1t values. ., . . 192 

11.37(a)-(c): Fits of compartmental model to Moroccan PTB data. . . . 193 

11.38Fits of the compartmental model to the percentage decrease in the 
Moroccan confirmed pulmonary TB data, over the years 1994 to 
2000. .......................... 193 

11.39Plot of the parameters 'cure' and 'cureNotDot' values. ...... 195 

11.40(a)-(c): Fits of compartmental model to Moroccan PTB data. . . . 195 

1 1.41 Fits for the compartmental model to the percentage decrease in the 
Moroccan confirmed pulmonary TB data, over the years 1994 to 
2000. . ............................... 196 

11.42(a)-(h): Plots of the fit for the compartmental model to the Moroc-
can confirmed pulmonary TB data, for each of the 8 age ranges. . 197 

12.1 Geographical (longitude and latitude) location of the TB notifica-
tions .................................. 203 

12.2 Geographical (longitude and latitude) location of the villages in 
the Asembo and Gem regions. .,. . . . . . . . . . . . . . . . . 204 

13.1 Results of analysing the Kenyan TB data set with SaTScan, using 
the space-time permutation model . . . . . . . . . . . . . . . . . 210 

14.1 Graphical representation of the four transition probabilities for an 
example history of a TB case individual. . . . . . . . . . . . . . . 217 

14.2 Geographical (longitude and latitude) location of the villages and 
the 16 zone groupings. . ...................... 225 



LIST OF FIGURES XVll 

IS.1 Geographical (longitude and latitude) location of the villages in 
the original 16 zone groupings with rn case distribution overlaid. 236 

IS.2 RUNl: MLE of global and local prevalence coefficients bo and b1 
for decreasing sample sizes. ................ 247 

IS.3 RUNl: MLE of Co coefficient for decreasing sample sizes. 247 

IS.4 RUNl: MLE of b; coefficient for decreasing sample sizes. 248 

IS.S RUN2: MLE of global and local prevalence coefficients bo and b1 
for decreasing sample sizes. ................ 248 

IS.6 RUN2: MLE of Co coefficient for decreasing sample sizes. 248 

IS.7 RUN2: MLE of b; coefficient for decreasing sample sizes. 249 

IS.8 MLE of global and local prevalence coefficients (bo, b1)in the sim-
ple model, for increasing infectious period length b2 . ....... 2S0 

IS.9 MLE of Co coefficient in the simple model, for increasing infec-
tious period length b2. . . . . . . . . . . . . . . . . . . . . . . . . 2S0 

IS.10MLE of b; = time step/b2, in the simple model, for increasing 
infectious period length h . . . . . . . . . . . . . . . . . . . . . 2S1 

IS.11 MLE of global prevalence coefficient bo in five age category model, 
for increasing infectious period length b2 • .. . . . • . • • . . . • 2S1 

IS.12Age Model results: MLE oflocal prevalence coefficient b1: ages 
0-IS, for increasing infectious period length h .......... 2S1 

IS. 13 Age Model results: MLE oflocal prevalence coefficient b1: ages 
16-24,for increasing infectious period length h. . . . . . . . . . 2S2 

IS.14Age Model results: MLE of local prevalence coefficient b1: ages 
2S-34, for increasing infectious period length b2 . . . . . . . . . . . 2S2 

IS.ISAge Model results: MLE of local prevalence coefficient b1: ages 
3S-64, for increasing infectious period length b2 . . . . . . . . . . . 2S2 

IS.16Age Model results: MLE of local prevalence coefficient b1: ages 
65+, for increasing infectious period length b2 . .......... 2S3 

IS.17MLE of coefficient Co in the five age category model, for increasing 
infectious period length b2 . . . . . . . . . . . . . . . . . . . . . . 2S3 

IS.18MLE of b; = time step/b2 in the five age category model, for 
increasing infectious period length b2. . . . . . . . . . . . . • . • 2S3 

IS.19MLE of Local and Global effect coefficient for varying time step 
lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . 2SS 

IS.20MLE of bf = time step/b2 for varying time step lengths. 2SS 



LIST Of. FIGURES XVlll 

15.21MLE of Co coefficient for varying time step lengths. . . . . . . . . 255 

15.22MLE of Global and background prevalence coefficients (bo and co) 
for varying NeIder-mead optimisation starting values of Co. . . . . 256 

15.23MLE oflocal prevalence coefficient bI and parameter b'2 for vary-
ing NeIder-mead optimisation starting values of Co. . . . . . . . . 257 

15.24MLE of local prevalence coefficient bI and b'2 for varying Nelder-
mead optimisation starting values of Co, between 0.0001 and 0.0005.257 

15.25MLE of global and local prevalence coefficients, bo, bI , for the sys­
tematic grouping of villages into increasing zone sizes (and thus 
decreasing numbers of zones: 16 to 2). . . . . . . . . . . . . . . . 259 

15.26MLE of global and local prevalence coefficients, bQ, bI , for the sys­
tematic grouping of villages into increasing zone sizes (and thus 
decreasing numbers of zones: 108 to 16). ............. 260 

15.27MLE of global and local prevalence coefficients, bo, bI , for the ran-
dom grouping of villages into increasing zone sizes (and thus de-
creasing numbers of zones). . ................... 260 

15.28MLE of b'2 coefficient for the systematic grouping of villages into 
increasing zone sizes (and thus decreasing numbers of zones: 108 
to 16) ................................. 261 

15.29MLE of b'2 coefficient for the systematic grouping ofviIlages into 
increasing zone sizes (and thus decreasing numbers of zones: 16 
to 2) .................................. 261 

15.30MLE of b'2 coefficient for the random grouping of villages into 
increasing zone sizes (and thus decreasing numbers of zones). .. 262 

15.31MLE of Co coefficient for the systematic grouping of villages into 
increasing zone sizes (and thus decreasing numbers of zones: 108 
to 16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 

15.32MLE of Co coefficient for the systematic grouping of villages into 
increasing zone sizes (and thus decreasing numbers of zones: 16 
to 2) .................................. 263 

15.33MLE of Co coefficient for the random grouping of villages into 
increasing zone sizes (and thus decreasing numbers of zones). ., 263 

15.34MLE of global and local prevalence coefficients, bo, bI , for various 
different groupings of the 217 villages. . . . . . . . . . . . . . . . 264 

15.35MLE of parameter b'2 for various different groupings of the 217 
villages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 



LIST OF FIGURES XIX 

15.36MLE of parameter Co for various different groupings of the 217 
villages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 

16.1 MLE oflocal and global effect coefficients for varying differences 
in the TB prevalence between two groupings of8 zones. . .... 272 

16.2 Merging of zones: MLE of local and global effect coefficients for 
varying differences in the TB prevalence between two groupings 
of 6 zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 

16.3 Merging of zones: MLE of local and global effect coefficients for 
varying differences in the TB prevalence between two groupings 
of 4 zones ............................... 272 

16.4 Deletion of zones: MLE oflocal and global prevalence coefficients 
for varying differences in the TB prevalence between two group-
ings of7 zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 

16.5 Deletion of zones: MLE oflocal and global prevalence coefficients 
for varying differences in the TB prevalence between two group-
ings of 6 zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 

16.6 Deletion of zones: MLE oflocal and global prevalence coefficients 
for varying differences in the TB prevalence between two group-
ings of 4 zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 

F1 (a)-(h): Plots of the Dutch TB case data for each of the 8 age 
ranges, with exponential line fits of the form: In(TB casesIlOO,OOO) 
= A exp(-B age). . ......................... 301 

F2 (a)-(h): Plots of Moroccan PTB case data for each of the 8 age 
ranges, with exponential line fits of the form: In(TB casesll 00,000) 
= A exp(-B age). . ......................... 303 

F.3 (a)-(h): Plots of UK (Male) TB case data for each of the 8 age 
ranges, with exponential line fits of the form: In(TB casesll 00,000) 
= A exp(-B age). . ......................... 304 



List of Tables 

6.1 Parameter MLE values with 99% asymptotic and bootstrap confi-
dence intervals. . . . . . . . . . . . . . . 46 

6.2 Correlation matrix for the 16 parameters. 47 

7.1 Correlation matrix for the 8 parameters. . . . . . . . . . . 61 

7.2 Parameter MLE values with 99% asymptotic and bootstrap confi-
dence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . .. 62 

8.1 Parameter MLE values with 99% asymptotic and bootstrap confi-
dence intervals. . . . . . . . . . . . . . . 74 

8.2 Correlation matrix for the 15 parameters. 75 

9.1 Name and description of variables used in the compartmental age­
dependent 1B model. . . . . . . . . . . . . . . . . . . . . . . .. 91 

9.2 Name and description of parameters used in the compartmental 
age-dependent 1B model. ..................... 92 

9.3 Description of parameters used in the compartmental age-dependent 
TB model. ............................. 93 

10.1 Parameter values obtained by fitting TB model outputs to Dutch 
TB notification data. ........................ 122 

10.2 Parameter values obtained by fitting TB model outputs to Dutch 
TB notification data (continued). . . . . . . . . . . . . . . . 123 

10.3 Values of the parameter ).(1), selected as input to the model. . . . 128 

10.4 Values of the parameter B, selected as input to the model . . . . . 130 

10.5 Values of the parameter p(ages 15+), selected as input to the model 131 

10.6 Values of the parameter p(ages 0-14), selected as input to the model 133 

10.7 Values of the parameter v(ages 15+), selected as input to the model 134 

10.8 Values of the parameter x(ages 15+), selected as input to the model 135 

xx 



LIST OF TABLES XXI 

10.9 Values of the parameterx(ages 0-14), selected as input to the model 137 

10. 1 o Values of the parameter F(ages 15+), selected as input to the model 138 

10.11 Values of the parameter F(ages 0-14), selected as input to the model 141 

10. 12Values of the parameter cp, selected as input to the model 142 

10. 13 Values of the parameter w, selected as input to the model . 143 

10. 14Values of the parameter /-Li, selected as input to the model. 144 

10.15Values of the parameter /-Ln, selected as input to the model. 146 

10. 16Values of the parameter t, selected as input to the model . 147 

10. 17Values of the parameter r, selected as input to the model. . 148 

10.18 Selected values of Parameter' det', used as input to the model. 149 

10. 19The values of parameter 'DetNotDot' selected as input to the model 150 

10.20Values of the parameter 'cure', selected as input to the model. . . 152 

10.21 Values of the parameter 'CureNotDot', selected as input to the mode1153 

11.1 Parameter values obtained by fitting TB model outputs to Moroc-
can PTB case data .... . . . . . . . . . . . . . . . . . . . . . 159 

11.2 Parameter values obtained by fitting TB model outputs to Moroc-
can PTB case data (continued). ............... 160 

11.3 Values of the parameter >-(1), selected as input to the model. . . . 167 

11.4 Values of the parameter e, selected as input to the model ..... 168 

1l.5 Values of the parameter p(ages 15+), selected as input to the model 170 

11.6 Values of the parameter p(ages 0-14), selected as input to the model 172 

11.7 Values of the parameter v(ages 15+), selected as input to the model 173 

11.8 Values of the parameterx(ages 15+), selected as input to the model 174 

11.9 Values of the parameter x(ages 0-14), selected as input to the model 176 

11.10Values of the parameter F(ages 15+), selected as input to the model 177 

11.11 Values of the parameter F(ages 0-14), selected as input to the model 178 

11.12Values of the parameter cp, selected as input to the model 180 

11.13Values of the parameter w, selected as input to the model . 181 

11.14 Values of the parameter /-Li, selected as input to the model . 182 

11.15Values of the parameter /-Ln, selected as input to the model. 184 

11.16Values of the parameter t, selected as input to the model 185 

11.17Values of the parameter r, selected as input to the model . 185 



LIST OF TABLES XXII 

11.18Values of the parameter' def, selected as input to the model .., 187 

11.19Values of the parameter 'DetNotDof, selected as input to the model 189 

11.20Values of the parameter 'cure', selected as input to the model. . . 190 

11.21 Values of the parameter 'CureNotDof, selected as input to the model 192 

11.22Values of the parameters 'cure' and 'CureNotDof, selected as in-
put to the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 

11.23Details of parameter values varied simultaneously to investigate 
interaction effects. ......................... 198 

12.1 Summary of the population demography (age/gender) of the study 
area, averaged over the study period, 1997 to 2002. 203 

12.2 Example sample of west em Kenyan TB data set. 205 

12.3 Example History Matrix. . . . . . . . . . . . . . 206 

14.1 Maximum Likelihood Estimates for the conditional form of the 
(two category) age dependent model. ............... 222 

15.1 Maximum Likelihood Estimates and 95% confidence intervals for 
the parameters in village models: Simple model, Gender model, 
Age model: (2 categories, 3 categories,S categories). ...... 227 

15.2 Maximum Likelihood Estimates and 95% confidence intervals for 
the parameters in village models: Mixed Age/Male model, Mixed 
Age/Female model. . . . . . . . . . . . . . . . . . . . . . . . . . 228 

15.3 Estimated probability of becoming a case in the next time step 
(aw) for the simple model with villages as the locality marker. . . 229 

15.4 Estimated probability of becoming a case in the next time step 
(aw) for the gender model with villages as the locality marker. . . 230 

15.5 Estimated probability of becoming a case in the next time step 
(aw) for age model (two categories) with villages as the locality 
marker. . .............................. 230 

15.6 Estimated probability of becoming a case in the next time step 
(aw) for age model (three categories) with villages as the locality 
marker. . .............................. 231 

15.7 Estimated probability of becoming a case in the next time step 
(aw) for age model (five categories) with villages as the locality 
marker. . .............................. 232 



LIST OF TABLES 

15.8 Estimated probability of becoming a case in the next time step 
(aw) for male/age model (five categories) with villages as the lo-

XXlll 

cality marker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 

15.9 Estimated probability of becoming a case in the next time step 
(aw) for female/age model (five categories) with villages as the 
locality marker. . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 

15. 1 o Correlation matrix for the parameters in the simple village model. 235 

15.11Maximum Likelihood Estimates for the parameters in '16 zone' 
models: Simple model, Gender model, Age model: (2 categories, 
3 categories, 5 categories). .. . . . . . . . . . . . . . . . . . . . 237 

15. 12Maximum Likelihood Estimates for the parameters in '16 zone' 
models: Mixed Age/Male model, Mixed Age/Female model. ... 238 

15. 13 Estimated probability of becoming a case in the next time step 
(aw) for the simple model with zone as the locality marker. 239 

15.14Estimated probability of becoming a case in the next time step 
(aw) for the gender model with zone as the locality marker. 240 

15.15Estimated probability of becoming a case in the next time step 
(aw) for age model (two categories) with zone as the locality marker. 
240 

15. 16Estimated probability of becoming a case in the next time step 
(aw) for age model (three categories) with zones as the locality 
marker. . .............................. 241 

15. 17Estimated probability of becoming a case in the next time step 
(aw) for age model (five categories) with zones as the locality 
marker. . .............................. 242 

15. 18Estimated probability of becoming a case in the next time step 
(aw) for male/age model (five categories) with zones as the local-
ity marker. ............................. 243 

15. 19Estimated probability of becoming a case in the next time step 
(aw) for female/age model (five categories) with zones as the lo-
cality marker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 

15.20Correlation matrix for the parameters in the simple 16 zones model. 
245 

15.21Maximum Likelihood Estimates for the parameters in the simple 
model when TB cases are randomly assigned to the 217 villages. 246 

15.22Maximum Likelihood Estimates of the parameters in the simple 
model for varying lengths of time step. .............. 254 



LIST OF TABLES XXIV 

16.1 The estimated minimum difference in TB prevalence detectable by 
the simple model when 16, 14, 12 and 8 zones are assigned equally 
to two different groups. ...................... 270 



Acknowledgements 

I would first like to thank my supervisor Professor Russell Cheng whose assis­

tance, advice, time and support has always been given freely and generously through­

out the course of my PhD study. I would also like to thank his wife Anne for her 

generous support and hospitality. 

Many people at the World Health Organization have helped me through the course 

of my PhD and I would especially like to thank Dr Brian Williams and Dr Chris 

Dye for their help and support. I would also like to thank the people at the 

Centers for Disease Control and Prevention (CDC) and Kenya Medical Research 

Institute (KEMRI) for their support. I am indebted to the Kenya Ministry of 

HealthlNational Leprosy and Tuberculosis Program for availing their TB surveil­

lance data. 

I am also grateful to the EPSRC who funded me throughout this research. 

I would also like to thank Emily Webb, Christine Currie, Naomi, Jenny, Sarah, 

Ronni, James and Georgie for their invaluable friendship and support. 

I would also like to acknowledge and thank the many people in the maths faculty 

and various support services of the University of Southampton who have been so 

supportive and helpful to me. 

I would very much like to thank my parents, whose continued uncritical support 

and patience throughout my time of study has been invaluable to me. 

Last but not least I would very much like to thank Jon for his continued support, 

patience and for making me smile and laugh when I really needed it. 



Glossary: Some key epidemiological definitions 

• Modelling: 

- Deterministic model - A mathematical model in which the parameters 

and variables are not subject to random fluctuations, so that the system 

is at any time entirely defined by the initial conditions chosen. 

- Stochastic model - A mathematical model which takes into considera­

tion the presence of some randomness in one or more of its parameters 

or variables. The predictions of the model therefore do not give a single 

point estimate but a probability distribution of possible estimates. 

- Force of infection - The per capita rate at which those susceptible to 

infection are infected. 

- Reproductive rate (Ra) - The average number of secondaI)' infections 

produced when one infected individual is introduced into a susceptible 

population 

• General terms: 

- Syndromic - A group of symptoms indicating a disease 

- Asymptomatic - Without obvious signs of symptoms of disease 

- Pathogenesis - The origin and development of disease. 

- Morbidity - A diseased condition or state; the incidence of a disease or 

of all diseases in a population. 

- Seroconversion - Development of antibodies in the blood serum as a 

result of infection or immunization 

- Seropositive - Showing a positive reaction to a blood serum test for a 

disease; Showing seroconversion 



Chapter 1 

Introduction 

This thesis describes the development of three different Tuberculosis epidemiolog­

ical models: An age dependent parametric statistical model; a compartmental, age 

dependent, differential/difference model; and a Markov chain model that allows 

for location effects in the transmission of TB. 

The methodology used is based on epidemiological modelling with a fairly 

statistical approach of model fitting using likelihood methods for parameter esti­

mation. Likelihood methods and resampling methods were employed in the sen­

sitivity analysis of the various models. All three TB models were programmed in 

ExcelNBA language, using a modular program structure. 

Recently collected data from countries that have experienced a long-term decline 

in TB incidence and in the annual risk ofTB infection has exhibited a slow down in 

the decline of the TB notification rate [67]. This stagnation effect has implications 

for projected reductions in TB incidence made by the World Health Organisation 

under their TB control strategy DOTS. Parametric modelling was therefore used 

to carry out a preliminary analysis of TB data sets that were considered to ex­

hibit such stagnation effects. The aim was to examine the age and time dependent 

effects exhibited by each data set and to find which trends were shared by these 

1 
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data sets. This analysis was a precursor to the more structural age dependent com­

partmental modelling that followed. The parametric model shows that there are 

significant age and stagnation effects and that these trends are shared by all three 

data sets examined. But it can not indicate how these effects may arise. Com­

partmental models can be used to try and answer these type of questions and are 

therefore widely used in epidemiological modelling. It was therefore an interesting 

experiment to apply these same data sets to a compartmental model based upon a 

previously constructed W.H.O TB DOTS model [14, 15]. The reconstructed com­

partmental model was investigated as to how well and easily it could explain the 

various time and age effects exhibited in these data sets. 

The third model, a Markov chain model, is distinct from the previous two 

models described above. It is constructed to examine the relative significance of 

local and global effects in the transmission of TB. Examining/modelling 'house­

hold' /local effects is a relatively new branch of TB modelling that is considered 

important in the planning ofTB control strategies and has previously been tackled 

with compartmental modelling. The simple Markov chain local effects model is 

used to examine a time-spatial TB data set from the Nyanza province in western 

Kenya It is also shown how this new local/global effects model can be used in the 

design of community/clustered randomised trials. 

1.1 Parametric Statistical Modelling 

Countries that have experienced a long-term decline in TB incidence and in the 

annual risk ofTB infection, often exhibit a slow down in the annual decline of the 

crude notification rate. This behaviour is referred to as stagnation and is most often 

observed in middle-to-higher income countries with increasing life expectancy. 

As the risk of infection declines, the proportion of disease due to initial infection 

(primary disease) and re-infection also declines. When the risk of infection reaches 
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an extremely low level it is likely that most of the disease detected is endogenous 

re-activation disease, which does not depend on the current risk of infection. This 

effect is called the 'ageing of the epidemic' and can not be adjusted for in analysis 

by standardisation by age. 

The prime objective of this section of the thesis is to analyse and investigate the 

age and time dependent behaviour ofTB case data from three countries considered 

to fall into this category of countries that have an increasing life expectancy and 

exhibit an ageing of the TB epidemic. Thus TB data sets from the Netherlands, 

Morocco and UK are compared to investigate whether they exhibit any similar 

characteristi cs/trends. 

The general methodology is to fit a family of parametric models to the data 

sets from the Netherlands, Morocco and UK. Thus, the significance of certain fea­

tures of the data can be inferred from the significance of certain model parameters 

responsible for explaining such features. 

All three data sets exhibit a decline in TB that is greatest in the younger age 

ranges and gradually levels off in the older age ranges. The data also exhibits a 

strong sigmoidal shape (with age) and a tailing off behaviour (with time) that need 

to be captured by the fitted model. 

A family of parametric distributions are fitted to the TB data sets. The method 

of Maximum Likelihood is used to fit the chosen distributions and the direct search 

optimisation method, NeIder-mead, is used to find the maximum value of the like­

lihood. It is assumed that each TB data set is a set of identically distributed random 

variables drawn from the Normal distribution. The mean of this distribution is as­

sumed to be a function dependent on both age and time and takes the general 

form of a polynomial multiplied by a logistic function. The polynomial is used to 

describe the tail behaviour of the TB data and the logistic function describes the 

sigmoidal shape of the data. 
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Confidence intervals for the maximum likelihood estimator values and con­

fidence/performance bands for the model fits, are constructed using Asymptotic 

Theory and the Bootstrap (re-sampling) Method. 

The general characteristics of the TB data sets as they vary with time and age 

are satisfactorily captured by this family of parametric models. There are a few 

more detailed characteristics that the models fail to capture. However, it is unclear 

whether all these characteristics are derived from true features of the data. The 

accuracy of the data must be questioned especially for the two oldest age ranges 

in the Dutch data, for very young children and for the Moroccan year data that 

is created by projection (1995 onwards). The parametric modelling does confirm 

that the data contains significant age and time dependent trends. The fact that 

this family of functions successfully explains all three data sets confirms that the 

data from these three different countries share some significant trends. Parametric 

modelling however does not answer the question of why/how these effects/trends 

might occur. The most popular method used in TB epidemiological modelling 

for answering such questions is to construct and employ a compartmental, differ­

ence/differential equation model. Thus a compartmental model was re-constructed 

and applied to two of the previously examined data sets in order to investigate how 

well and easily such a model can explain the age and time dependent effects ex­

hibited by such data sets. 

1.2 A compartmental, age-dependent TB Model 

This model was constructed with the primary purpose of investigating the ability of 

such compartmental models to analyse the progression ofTB in countries with an 

increasing life expectancy and a very low annual risk of infection, where' aging of 

the epidemic' and thus stagnation effects could occur. This model is re-constructed 

and adapted from one developed by C.Dye et. al. [14, 15] to investigate the ef-



CHAPTER 1 5 

fect of Directly Observed Short-course Therapy (DOTS), the WHO's strategy for 

worldwide TB control, on tuberculosis epidemics in developing countries with a 

high TB burden. This deterministic, compartmental model, is set in discrete time. 

The'population is moved through the model by difference equations. HIV is not 

included in this new re-constructed version of the model as the countries that are 

of prime interest are not considered to have a large HIV problem, thus simplifying 

the model. It was also considered important to allow the model to take time steps 

of less than 1 year to adequately capture the progression of a TB epidemic in a 

population. 

The emphasis of this work is on examining the ability of compartmental mod­

els to fit to TB data from countries experiencing an ageing of their population and 

an aging of the TB epidemic. Thus, after producing a reasonable fit to TB data sets 

from the Netherlands and Morocco, most of the work concentrates on the sensi­

tivity analysis of the model. The aim is to explore how varying the values of each 

input parameter affects the outcome variable. The outcome investigated was the 

number ofTB cases per 100,000 of population for each of8 age groups. The UK 

data set was not used as it only contains TB data for white males and the model 

does not make this distinction between gender and ethnicity. 

It is found that the shape of the line fit for both countries does not vary signifi­

cantly across the 8 age ranges. Hence, in the case of the Dutch data, the model fits 

well for the first three age ranges but fails to capture the 'flattening' of the curved 

behaviour ofthe data in the later age ranges. It is also unable to explain the 'tailing 

off' and subsequent increase in TB case numbers observed in the Moroccan data. 

It is also noticeable that the model was unable to fit to the initial year data well, 

overestimating the number of TB cases in the adult age ranges. This was most 

noticeable in the fit to the Dutch data although many different warm-up scenarios 

were tried. 

Most of the parameters, when varied by a fixed amount, affected the outcome 
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variable as would be expected and this behaviour is explainable by the known 

epidemiology ofTB. There were a few notable exceptions however, namely, p(for 

ages 15+) - the proportion of infectious susceptibles which develop progressive 

primary TB in 1 year; x(for ages 15+) - the proportion of re-infections which is 

susceptible to developing TB within 1 year; r - the rate of relapse from failed 

treatment to active TB. These three parameters caused the same counter-intuitive 

effects in the outcome variable for both countries' data sets. 

All the parameters mostly behave in a non-linear way (except perhaps for very 

small variations in value) and interact with each other in complicated and subtle 

ways. It was also noticeable that varying the parameters one at a time did not 

significantly improve the model fit to each of the age groups over time. 

Thus this age dependent compartmental model, despite the large number of 

parameters, struggled to explain some of the age dependent characteristics shown 

by the Moroccan and Dutch TB case data. These two countries are considered 

similar in that they have an increasing life expectancy and exhibit an ageing of the 

TB epidemic. 

When comparing the fits of the previous parametric models to the Dutch and 

Moroccan data with those of the age dependent compartmental model, the para­

metric model successfully captured much more of the age and time dependent 

characteristics of these data sets. 

1.3 A Markov Chain model of TB case clustering in 

the Nyanza Province of Western Kenya 

This is a separate and distinct model from the previous two models. It is con­

structed to examine the relative significance oflocal and global effects in the trans­

mission ofTB. The simple Markov chain model is used to examine a time-spatial 
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TB data set from the Nyanza province in western Kenya. It is also shown how this 

new local/global effects model can be used in the design of community/clustered 

randomised trials. 

The Kenyan data set analysed comprises 840 notifications of all types of TB 

collected in Asembo and Gem by the Kenya Ministry ofHealthlNational Leprosy 

and TB program and the CDC over a six year period from 1997 to 2002. The 

data includes information on the treatment start-date (month and year), age, gen­

der, and contact address (village). GIS coordinates (longitude and latitude) of the 

contact address (village) were added for each TB case in the data set to allow for a 

time/spatial analysis of the data. This detailed history of individuals allows for the 

possibility of investigating transmission effects, in particular whether these effects 

are local or global. 

This model is therefore created in an attempt to identifY whether the nearest 

reported source of possible infection is a localised one stemming from an individ­

ual's contacts with family or near neighbours or whether it arises from much more 

dispersed 'global' contact. The basic methodology is to construct a stochastic 

Markov-chain model whose behaviour is determined by a number of key parame­

ters representing possible local and global effects on TB transmission. This model 

is then fitted to the Kenyan TB data using maximum likelihood and NeIder-mead 

optimisation to estimate these key parameter values. Markov-chain models are 

based on transition probabilities and are very different in approach from the type 

of compartmental model described in chapters 9 - 11 or the statistical parametric 

models described in chapters 5 - 8. 

It is constructed by following the individual histories of all the individuals over 

the study period. It is assumed that, at any time point, the state of an individual can 

only be one of two prescribed states: a TB case (State 1) and non-TB case (State 0). 

A (single step) transition probability governs each single time-step transition made 

by an individual and is constructed as a parametric function that includes separate 
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components representing the local and global clustering ofTB cases. Male/female 

characteristics and age dependence are also included into the transition probability 

structure. 

The model shows that there is a significant local effect in TB transmission. The 

results also show that age seems to be a significant factor whereas gender on its 

own is not. 

A number of tests of the robustness of the modelling procedure were carried 

out including: a demonstration that the importance of local prevalence is not sim­

ply an artifact of the modelling; testing the effect of decreasing sample size on the 

fitting of the model; investigating the effect of the length of the infectious period; 

investigating the effect of different starting parameter values in the NeIder-mead 

optimisation procedure; investigating the model's sensitivity to the spatial scale of 

disease clustering. The results of all these various robustness tests were satisfac­

tory and indicated that this model is valid and robust. 

An important possible use of the local and global effect model is in the de­

sign of a community randomized trial where geographical clusters of people are 

divided into two groups and the effectiveness of an intervention policy is assessed 

by applying it to one group but not the other. Here the model can be used to cal­

culate the minimum difference in an outcome variable that can be detected with 

statistical significance, taking the effect of clustering of cases into consideration. It 

thereby gauges the potential effectiveness of such a trial. Such a possible applica­

tion is illustrated by setting up cluster randomised trial scenarios using the western 

Kenyan time/spatial TB data set and applying the model. 

1.4 Chapter arrangement and contents 

Background Material 
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Chapter 2 contains basic background material on disease modelling in gen­

eral. Chapter 3 introduces the human disease of Tuberculosis. It includes a brief 

chronological history of TB and describes the epidemiology of this widespread 

disease. A summary of the history of mathematical TB modelling is contained in 

Chapter 4. 

Main Chapters 

Chapters 5, 6, 7 and 8 describe the analysis, construction and fitting of a fam­

ily of parametric statistical functions to TB data from the Netherlands, UK and 

Morocco. 

Chapter 9 describes the construction of the compartmental, age-dependent TB 

Model, including a full list and description of the difference equations powering 

the model and an explanation as to how the demographic data was adapted for input 

into the model. Chapters 10 and 11 describe the fitting and sensitivity analysis of 

the compartmental, age-dependent model to TB data from the Netherlands and 

Morocco respectively. 

Chapters 12 to 16 introduce and describe a new Markov-chain local/global 

effects TB model used to analyse a time-spatial TB data set from western Kenya. 

Chapter 17 discusses the results and possible future work regarding the local/global 

effects model and the analysis of the Kenyan TB data set. 

Chapter 18 concludes the thesis, discussing all three different models and sug­

gesting possible further work. 

Appendices 

Appendix A describes the methodology of the NeIder-mead optimisation algo­

rithm. An introduction to Likelihood Theory is contained in Appendix B. Appen­

dix C describes the most common methods of sensitivity and uncertainty analysis. 

A brief description of the bootstrap methodology is contained in Appendix D. 

Appendix E contains a brief history of the changing demography and health in 
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Morocco. Appendix F contains graphs of the fitting of exponential trend lines to 

log transforms of the TB data from Morocco, Netherlands and UK.. 



Chapter 2 

An Introduction to Modelling 

Disease Transmission 

2.1 Formulating models 

Epidemiology is the study of diseases in populations and communities rather than 

in particular individuals. Mathematical modelling is used to help in the under­

standing of the biology of a problem. Dynamical models based on difference 

or differential equations are designed to take into account the actual dynamics of 

the disease over time. They can be constructed to simulate the actual situation 

that exists and are limited only by the imagination of the scientist and the current 

data available. They can be linear, non-linear, complex or simple and are often 

compartmental in construction. These models are usually designed to describe the 

past !mown history of the disease and to predict the future un!mown course of the 

disease [25]. 

Once the general structure of the model has been formulated, the various pa­

rameters need to be measured and then fed into the model, usually as rates. For 

example: 

11 
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- rate at which susceptible people become infected 

- mortality rate of people with the disease (which determines the rate at which 

the model loses people through death.) 

- birth rate (which determines the rate at which new people are recruited to 

the model) 

All these rates can be further broken down into subgroups, for example, rates for 

men and women or different age groups. Using a knowledge of all these rates and 

the values at an initial state, the simulation model can then show how the different 

rate processes combine to determine the changes in the state of the system over 

time. 

If the rates are measured in continuous time then they are written as differ­

ential equations. If they make up a simple system of equations then this can be 

solved using calculus. However for more complex systems, the problem is usually 

formulated directly into difference equations and programmed into a computer to 

run the simulation over a set number of time periods. 

The kind of model starts with a certain number (or proportion) of people in 

each state category and then calculates the numbers in each successive time step 

according to our knowledge of the natural history of the disease. The model can 

be run for various values of the parameters to see what happens over time, for 

differing scenarios. 

This model does not include any random effects and is therefore called a de­

terministic model. To make the simulation model more realistic, random effects 

can be included. These are then termed stochastic models. For example, where in 

a deterministic model x% of susceptibles would be infected in one time unit, a sto­

chastic model would consider each individual and use a random number generator 

to infect each person with a probability of x%. 
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A stochastic model therefore gives a different result each time it is run, but if 

it is run many times, the average result should be close to the result of a single 

deterministic model run. Running a stochastic model many times therefore allows 

the variability of the results to be determined [25]. 

Although compartmental models are very common there are various other 

methods that are used to model diseases, such as statistical models where sim­

ple or more complex parametric functions are fitted to known data, time series 

analysis, or Markov chain models. 

2.2 Measures of disease 

There are a number of indicators that are used to describe the transmission and 

epidemiology of a disease. The following is a list of epidemiological terminology 

with definitions, that are most commonly used in modelling disease [25]. 

• The force of infection is the per capita rate at which susceptibles are in­

fected. 

• The incidence of a disease is the rate at which uninfected people become 

infected. . Incidence is most commonly measured in numbers of cases per 

person per year, thus, 

incidence rate = 

number of uninfected people infected in time period 
number ofuninfected people at start of time period x time period 

• The prevalence is the proportion of people infected with the disease in the 

population at any particular time. Prevalence is therefore dimensionless and 

is calculated by~ 

al 
_ number of people infected at point in time 

prev ence - ul.. 
pop atIon at tIme 
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• The change/in prevalence = (force of infection - recovery rate) x time 

period. 

• The risk or cumulative incidence is the proportion of uninfected people 

who become infected in a given time period. So, risk = incidence x time 

period. 

• Period prevalence is the proportion of people who were diseased at any 

time point during a given interval. 

• The odds of becoming infected equal the number becoming infected di­

vided by the number staying uninfected. Thus, 

number becoming infected 
odds = 

number staying uninfected 

odds 

risk x number uninfected at start 
(1 - risk) x number uninfected at start 

risk 
1 -risk 

• The recovery rate can be defined as the rate at which infections are lost or 

people recover. Thus, 

number of people recovered in time period 
recovery rate = 1'" d popu atIOn x tIme peno 

• The mortality rate or death rate is calculated as 

al
. number of deaths 

mort Ity rate = . . . 
populatIOn x tIme penod 

• The basic case reproduction number (or rate), Ro, is the number of sec­

ondary cases produced by one primary case in a completely susceptible pop­

ulation. lfno interventions are implemented to reduce the transmission rate 

then prevalences reach approximately (R~~I). In practical terms this means 

that if a vaccine existed for this disease, the proportion of people that would 

need to be vaccinated in order to control the epidemic would be (R~~l). 
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Ro therefore describes the magnitude of the control problem. For example, 

Smallpox had an Ro value of approximately 3. Thus it was only necessary 

to vaccinate 2/3 of the population and sustain this level for long enough in 

order to eradicate smallpox [25]. 

2.3 Estimating incidence from age-prevalence data 

It is the incidence of a disease that epidemiologists are usually most interested in. 

But it is also very difficult if not impossible to observe directly and is therefore 

commonly estimated from the more easily measurable prevalence of the disease. 

For example the rate at which prevalence increases or decreases with age can be 

used to get an estimate of the incidence by effectively using age as a surrogate for 

time. Thus the slope of the age prevalence curve, corrected for the disease related 

mortality and overall growth of the epidemic, can be used to get a good measure 

of incidence [25]. 



Chapter 3 

Tuberculosis 

Tuberculosis is a world wide disease. It kills approximately 2 million people each 

year and in 1993, the World Health Organisation (WHO) declared tuberculosis a 

global emergency. In 2003 the WHO estimated that 31 million people are exposed 

to TB each year and approximately 8 million become sick with TB [51]. 

The following section is a chronological history of TB in humans. It illus­

trates how TB has long been a major cause of illness and mortality in humans and 

describes the significant medical discoveries in the fight against this disease. 

The subsequent sections describe the epidemiology, treatments and tests for TB 

and explain some of the important terminology that will be used in the following 

chapters. These sections therefore contain information on how TB infects, acts, 

is identified and combatted, that is either assumed or referred to directly in the 

following chapters. 

3.1 A brief history of TB in humans 

The existence of TB (though not always known by this name) as a human dis­

ease, has been traced as far back as 2000 to 4000BC. This section provides a brief 

16 
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chronological summary of the history ofTB in humans. 

• 2400BC to 4000BC - Egyptian mummies show definite pathological signs 

of tubercular decay. [4,3,21] 

• 460BC - Hippocrates wrote that 'phthisis' (consumption) was the most preva­

lent disease of the times and was almost always fatal. [4,3,21] 

• 55BC to 800AD Britain - Graves dating from the Roman Occupation of 

Britain show evidence ofTB. [29] 

• Mid 17th Century - Consumption (TB) was the cause of one fifth of all deaths 

in London, as recorded in the 'Bills of Mortality'. It was known as the 

'White Plague' as TB became epidemic in the major cities of Europe and 

America. [29] 

• 1679 - In his 'Opera Medica' (first edition 1679), Dr Sylvius Franciscus de 

Le Boe, (b.1642-d.1672), was the first to recognise tuberculosis as a con­

sistent and characteristic change in the lungs and other parts of the body in 

consumptive patients. He stated that tubercles are often found in the lung, 

and that "they softened and suppurated to form cavities". (suppurate rv to 

ripen and generate pus) [4,3,21] 

• 17th century Italy - The earliest mention of the infectiousness ofTB is found 

in 17th century Italian medical literature. Indeed, in 1699 the Republic of 

Lucca issued a decree that " ... henceforth, human health should no longer 

be endangered by objects remaining after the death of a consumptive. The 

names of the deceased should be reported to the authorities, and measures 

undertaken for disinfection." [4,3,21] 

• 1700 - John Jacobus Manget created the phrase Miliary tuberculosis (TB) 

which refers to the clinical disease resulting from the uncontrolled spread of 
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Mycobacterium tuberculosis in the body. He used the term miliary because 

of the similarity he noticed between the appearance of millet seeds and the 

firm small white nodules found on the surface of the TB diseased lung. [3, 

54] 

• 1720 - English physician Benjamin Marten published 'A New Theory of 

Consumption' in which he theorised that TB could be caused by "wonder­

fully minute living creatures", and that these could cause the lesions and 

other symptoms of the disease. He also wrote, regarding the infectiousness 

of TB disease, "It may be therefore very likely that by an habitual lying 

in the same bed with a consumptive patient, constantly eating and drink­

ing with him, or by very frequently conversing so nearly as to draw in part 

of the breath he emits from the Lungs, a consumption may be caught by a 

sound person .. .I imagine that slightly conversing with consumptive patients 

is seldom or never sufficient to catch the disease." [4,3,21] 

• 19th century - By the tum of the 19th century the world TB death rate was 

estimated at 7 million per year. There were real fears that European civilisa­

tion would be destroyed by this pernicious disease. [29] 

• 1836 - Dr George Bodington, an English physician, wrote down the idea of 

providing TB patients with a special diet, exercise and fresh air in a rural 

environment. These ideas were not supported by the medical establishment 

of the time. [74] 

• 1850s - TB sufferer Hermann Brehmer, a Silesian botany student, advised by 

his doctor to find a 'healthier climate' travelled to the Himalayan mountains 

and returned 'cured' ofTB. He subsequently switched to studying medicine 

and in 1854 presented his doctoral dissertation "Tuberculosis is a Curable 

Disease". In 1859 Dr Brehmer built the first 'sanatorium' in Gorbersdorf, 

in a pine forest in the mountains of Silesia, eastern Europe (Poland). This 
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becarne the blueprint for many subsequent sanatoria world wide. [4,3, 74, 

21] 

• 1865 - Dr Jean-Antoine Villemin, a French military physician, showed that 

consumption (TB) could be passed from humans to cattle and from cattle to 

rabbits. He postulated that this disease was therefore caused by a specific 

microorganism and did not, as had been thought for centuries, arise sponta­

neously in each affected organism. [4,3,21] 

• 1882 - German biologist, Robert Koch (b.1843 - d.191O), (1905 awarded 
. 

the Nobel Prize for Physiology or Medicine) developed new techniques of 

staining bacteria which made them more easily visible and helped to iden­

tify them. He thus discovered the tubercle bacillus as well as a method of 

growing it in pure culture. In 1882 he published his classical work on My­

cobacterium tuberculosis. With this brilliant scientific discovery the fight 

against TB began in earnest. [4,3,2] 

• 1882 - In 1832, an English physician named James Carson, demonstrated 

in animals that injection of air into the pleural space collapsed the diseased 

lung, permitting it to heal (4). This method called artificial pneumothorax 

was finally put into practice in the treatment ofTB when Italian C. Forlanini 

rediscovered the process in 1882 [3]. It was found that this method could be 

used to collapse the TB affected lung, putting it 'at rest' and thus allowing 

the tuberculous cavities to heal. Unfortunately this treatment did not work 

for patients in late-stage TB, as the advanced disease kept the lung from 

collapsing. A surgical treatment for late-stage TB patients was devised that 

consisted of removing parts of the upper ribs on one side to collapse the rib 

cage and hence cause the affected lung to collapse allowing it to heal. This 

treatment method is known as extra-pleural thoracoplasty. [52] 

• 1895 - German physicist Wilhelm Konrad von Rontgen (b.1845 - d.1923) 
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discovered x-rays allowing the progress and severity of a patient's disease to 

be viewed and monitored. [4,3,21] 

• Early 20th century - Edward Archibald, a surgeon at the Royal Victoria Hos­

pital in Montreal, Canada, was the first surgeon in North America to surgi­

cally treat late-stage TB with extra-pleural thoracoplasty. [52,21] 

• 1921 - French bacteriologist, Albert Calmette and veterinarian, Camille Guerin, 

while working at the Pasteur Institute produced a live, weakened strain of 

Mycobacterium bovis, (the bovine equivalent of Mycobacterium tuberculo­

sis). In 1921, the Bacille Calmette Guerin (BCG) vaccine was developed 

for use in humans. It was first used in Britain in 1953. It remains the only 

vaccination available against tuberculosis. [4,3, 1] 

• 1939 - Selman A. Waksman discovered that the Actinomycetes fungi inhib­

ited bacterial growth. [21] 

• 1940 - Antibiotic Actinomycin was isolated and found to be effective against 

TB but was too toxic to be used on humans or animals. [21] 

• 1943 - Dr Schatz, Bugie and Waksman announced the discovery of an an­

tibiotic, streptomycin, that was successful in inhibiting M.tuberculosis and 

was of a low enough toxicity to be of use in humans and animals. [21] 

• 20th November 1944 - Streptomycin first administered to a TB patient, (a 21 

year old woman known as 'Patricia'). The disease was immediately halted, 

she made a rapid recovery and the TB bacteria disappeared from her spu­

tum. Unfortunately, streptomycin resistant TB strains soon started to ap­

pear, However with a rapid succession of new anti-TB drugs appearing in 

the following years these resistant strains were combatted by combining two 

or three drugs. [4,3,29,21] 
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• 1949 to 1963 -Discovery and production ofanti-TB drugs p-aminosalicylic, 

isoniazid, pyrazinamide, cycloserine, ethambutol and rifampicin. [3] 

3.2 Epidemiology of Tuberculosis 

Tuberculosis (TB) is primarily a disease of the respiratory system (Pulmonary Tu­

berculosis (PTB)) with varying degrees of infectiousness and usually occurs as 

pneumonia. But (non-infectious) TB can also occur in the brain, back, lymph 

nodes or other organs and bones. It is caused by being infected with the airborne 

bacterial germ Mycobacterium tuberculosis. Bacilli only live in the air for ap­

proximately two hours so individuals who have intense systematic exposure to TB 

bacilli in poorly ventilated areas are the most likely to become infected. 

If the body is unable to protect itself from the TB Bacilli when they are first 

breathed in, then the germs can develop into active TB disease within weeks of 

being infected. In this case the active TB disease is termed Primary disease. 

Latently infected individuals have the TB bacilli in their bodies but are not 

sick or infectious (inactive TB) and may never develop active TB because their 

body's immune system 'seals off' the TB bacilli which can lie dormant for years. 

Thus the Latent period can vary vastly in length. The inactive TB Bacilli can 

become active again when the body's defences are weakened. This can be due 

to a number of different reasons, including, natural aging, serious illness, drug or 

alcohol abuse, HIV infection, or lack of health care due to homelessness etc ... If 

this reactivation of the TB Bacilli leads to active TB, it is termed Re-activation 

disease or Endogenous disease. Experts estimate that only 5 - 10% of people 

infected with TB (and are HIV negative) will actually develop active TB in their 

life time. Thus, as latent individuals are not clinically ill, new cases of infection 

can go undiscovered for some time. 
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It is also possible for an already infected person to become re-infected with the 

lB Bacilli. If this re-infection causes active lB, it is termed Re-infection disease 

or Exogenous disease. 

Thus clinical (active) TB may follow soon after initial infection (primary dis­

ease) or many years after (post-primary disease), either by endogenous reacti­

vation or after exogenous reinfection. The risks of developing disease are age­

dependent but the age-specific risks of developing endogenous or exogenous dis­

ease are difficult to assess and there is also a great variability in the estimates of 

the risk of developing primary disease between studies. 

However, some groups of people are considered to have a higher risk of con­

tracting TB than others; these include HIV positive individuals, people in close 

contact with those who have active infectious TB (e.g. relatives, health care work­

ers .. ), those with medical conditions that weaken the body's defenses to disease 

(e.g. diabetes, people taking immune-suppressant drugs .. ), people from countries 

with a high TB prevalence, workers or residents of long-term care facilities (e.g. 

nursing homes, some hospitals or prisons .. ), the mal-nourished, alcoholics and IV 

drug users. 

Incidence of active-TB in developed countries can be as low as 10 per 100,000 

population or less. Conservative estimates for this rate at the beginning of the 

twentieth century are 300-600 per 100,000. Now most developing countries have 

incidences of active-TB of 30-200 per 100,000 [45]. But it is possible to have 

high prevalence of latent infections and low incidence of active-lB because lB 

has low progression rates. The likelihood of progression to active-TB depends on 

age of infection and on factors that correlate well with socio-economic status. The 

. risks of developing disease are age-dependent and are higher for adolescents and 

adults than for children. Age at infection, chronological age and reinfection are 

considered three of the most important factors underlying tuberculosis morbidity 

in a population. TB morbidity and mortality rates are also strongly affected by 
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urban living conditions. Infectiousness of source case, duration and frequency of 

exposure, characteristics of shared environments all contribute to the overall risk 

of transmission per contact. The CDC estimate that one active case contributes to 

9 effective identified contacts. The W.H.O estimate that someone in the world is 

newly infected with TB bacilli every second and overall, one-third of the world 

population is currently infected. 

3.3 TB Treatment 

There are many anti-TB drugs now available. Preventative Therapy aims to kill the 

dormant Bacilli and usually consists of a daily dose of isoniazid (INH), taken for 

anything from 6 months to a year. The W.H.O's recommended treatment regime is 

called DOTS: Directly Observed Short-course Therapy. It combines five elements: 

political commitment, microscopy services, drug supplies, monitoring systems and 

direct observation of treatment. Sputum positive patients are put on a course of 

anti-TB drugs, the most common of which are isoniazid, rifampicin, pyrazinamide, 

streptomycin and ethambutol. The patients are constantly monitored to ensure they 

finish the whole 6 to 8 month treatment. By the end of2000, all 22 of the countries 

with the highest TB rates had adopted DOTS. 

Once treatment has started the infectious individual should become non-infectious 

within a few weeks. However, if the treatment is not completed the TB disease can 

return and the patient can become infectious again. There is also a risk that the 

TB can become resistant to the anti-TB drugs. Shortly af1er drug treatment was 

first introduced single drug-resistant TB strains first appeared and strains of TB 

that are resistant to all major anti-TB drugs have developed more recently. Multi­

drug resistant TB (MDR TB) is a very dangerous form of drug-resistant TB and is 

considered a significant threat to effective TB control. 
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3.4 Tests for Tuberculosis 

The symptoms of TB are a persistent cough, coughing up blood, fevers, weight 

loss, constant tiredness, night sweats and loss of appetite, but these are not exclu­

sive to TB and therefore further tests are necessary to confirm that an individual 

has contracted active TB. 

The results of these tests are used to make up TB notification data. In order to 

understand the origins and possible shortcomings ofTB case notification data sets 

that are now available for various countries, it is necessary to know a little about 

the medical tests and data collection methods that are employed. 

The Tuberculin Mantoux PPD skin test shows if a person has been infected. A 

small amount oftest material is placed just below the top layers of skin, usually on 

the forearm, and re-examined a few days later. If a bump/rash of a certain size has 

developed the test is considered significant and the person is assumed to have been 

infected with TB. In these PPD skin test positive cases a chest X-ray is usually 

taken to assess whether the infected individual has active TB. The X-ray should 

show any damage that active TB has caused to the lungs. 

Sputum (i.e. 'coughed up' matter including saliva, foreign material, mucus or 

phlegm from the respiratory tract) can be tested to see if it contains TB bacilli. 

If bacilli is detected by either of the two test methods used, microscopy (also re­

ferred to as smear test) or culture, the case is classified as sputum-positive. Smear­

positive cases are considered more infectious than only culture-positive cases, thus 

the term 'infectious TB case' is often used to mean the sputum smear-positive case. 

It is important to note that sputum tests in young children are not always accurate 

(and hence often not used) as young children rarely develop 'phlegmy' coughs. 

Thus sputum-positive case data may underestimate the number of TB cases in 

children. Therefore skin testing is more often used on children rather than the spu­

tum test. TB verified by this skin test is referred to as primo infections. There may, 
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however, be more inaccurate notifications of TB made with this method than the 

sputum-positive tests that are considered very accurate in adults. Therefore primo 

infections data may contain false positive cases. 

Passive case detection occurs when detection of cases is not produced by active 

efforts, i.e. disease detection only occurs when infected people present themselves 

to a health service. This is opposed to 'active case finding' which occurs when 

people who have the disease are actively searched for. In the case of TB this can 

be accomplished in various ways, e.g. testing relatives or close contacts of known 

active TB cases, checking people who are deemed to be at high risk of infection 

(people with illV, slum dwellers, drug users ... ), or routine surveys of everyone 

in a defined area (e.g. six-monthly surveys are carried out in South African gold 

mining communities). 

," . 

, 'i, 
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Summary of the History of TB 

modelling 

Probably the earliest use of a mathematical model to study the epidemiology ofTB 

was presented in a 1962 paper by Hans Waaler (WHO senior statistician), Anton 

Geser MD (WHO epidemiologist) and Stig Anderson (WHO senior officer) [38]. 

They construct a simple compartmental dynamic epidemiological model using dif­

ference equations that reflect the dynamics ofTB. They also show its potential for 

giving a time trend ofTB and in evaluating TB control programs. 

The model is based on five 'axioms' (assumptions), namely, 

(i) TB is an infectious disease caused by transmission of Tubercle bacilli from 

person to person. 

(ii) TB is a benign infection. Only a small proportion of those infected develop 

disease and only infected persons can become diseased. 

(iii) Only persons with tissue destruction (cases) can transmit infection to other 

persons. (NB. choice of definition of a 'case' depends on purpose of model 

and nature of available data.) 

26 



CHAPTER 4 27 

(iv) Once infected, a person remains so for rest of life. 

(v) Newborns are always infection free. 

Using these axioms, the transmission dynamics ofTB are expressed as a series of 

symbolic relationships, i.e. difference equations. Time moves in one year steps 

and the rate of new infections is proportional to the number of active infectious 

cases. Figure 4.1 shows the flow diagram of this model. 

As can be seen from the flow diagram, the set of linear functions that describe 

the change in each class from one time step to the next are therefore: 

I t/t+1 = h(Ct) 

Ct/t+1 = h(It) 

H t/ t+1 = h(Ct ) 

D Nt / t+1 = !4(Nt ) 

DIt/ t+1 = !5(It) 

D Ct/ t+1 = !6(Ct ) 

Bt / t+1 = /7(Pt ) 

In order to estimate the values of the 7 parameters (fi for i = 1,2, ... , 7) Waaler, 

Geser and Anderson suggest observing the sets of variables in the functional re­

lationships. For example; observe Ct, the number of cases at time t, and It/HI, 

number of new infections over a certain time period, divide It/ t+1 by Ct to calcu­

late an estimate for parameter h. 

The difference equations that govern the flow of population through the model 

can also be constructed from the flow diagram and the above linear functions, 
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Figure 4.1: Flow diagram of the 1962 Waaler, Geser, Anderson compartmental TB 

model [38]. 
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namely: 

Nt+1 - Nt 

It+1 - It 

Ct+1 - Ct 

Pt+1 - Pt 

Bt/t+1 - DNt/t+1 - I t / t+1 

I t /t+1 + H t / t+1 - DIt/t+1 - Ct / t+1 

Ct / t+1 - D Ct/ t+1 - H t / t+1 

B t / t+1 - D t / t+1 

where D t/ t+1 = D Ct/ t+1 + DIt/t+1 + D Nt / t+1 

29 

Although simple this model is the basis for all TB compartmental models that 

come after. 

In 1965 S.Brogger [84] published an improved version of the previous model. 

He incorporated age dependence and used a combination of linear and nonlinear 

terms to calculate the infection rate. The model consists of six epidemiological 

classes: Uninfected, Infected, Pulmonary Lesions, Cases, Vaccinated and Fail­

ures. He divided the model population into 15 one year age groups for ages 0 to 

14 years and into 15 five year age groups for ages 15 to 89 years. Movement be­

tween these groups was accomplished by selecting 10% of the younger age group 

and moving it to the older age group. Each age group is divided into the six epi­

demiological classes. The population then moves through the age groups within 

each class to simulate aging and through the six classes within each age group to 

simulate disease progression. Figure 4.2 shows the flow diagram of this model. 

Brogger was not concerned about the Incidence of infection as he argued that 

the large number of infected persons (latents) already existing in most communities 

would cause a large time lag between when action is taken to reduce incidence 

and any resulting reduction. This was of particular importance to Brogger as he 

was most concerned with comparing the effectiveness of various control strategies. 

Instead, Brogger used the prevalence to influence flow rates between categories. 
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Vaccinated 

Failures 

.D. = 'Natural' course ofTB disease, i.e. with no control program. 

Figure 4.2: Flow diagram of the 1965 Brogger compartmental TB model [84]. 
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He also realised that a given set of parameter values could represent a wide 

range of different control programs and pointed out that the operational aspects 

of the program are not directly specified in the model. He also confessed that 

the lack of quantitative information/data available to the model could cause error 

in the results in absolute terms (numbers). But he maintained that this does not 

effect the accuracy of the results on relative terms i.e. when comparing control 

programs against each other. Both of these observations are still relevant to current 

TB modelling. 

Two years later ReVelle, Lynn and Feldmann (1967) [20] published a paper de­

scribing two models; a compartmental model based on the original Waaler, Geser, 

Anderson model, but developed as a system of non-linear ordinary differential 

equations; and an optimisation model derived from the first. They also, impor­

tantly, gave a full probabilistic explanation of why the infection rate depends lin­

early on the prevalence and set down the form of the infection rate that is currently 

most commonly used, namely, 

(3~ where, 
N 

(3 a contact rate, i.e. the average number of people per unit 

time that anyone will encounter sufficiently to cause infection. 

S Number of susceptibles x Number of active infectious cases. 

N Population number 

These models were used primarily to evaluate the effectiveness of different 

control methods and their costs. 

Waaler and Piot (1969) [37] developed an age dependent model, also with 

the main purpose of evaluating different control strategies. They stated that epi­

demiological effectiveness of control measures must be judged by the changes in 

transmission that they bring about. 
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Subsequent TB models are 'variations on a theme' using these first handful of 

TB models as a template. For example in 1975 YAzuma [95], published a simple 

epidemiological model (that did not require 'large' computers) to calculate annual 

trends in prevalence and TB incidence, TB mortality and BCG coverage. The 

model was used to analyse data from Japan. The model uses 15 difference equa­

tions to move the population through various state classes as shown in figure 4.3. 

I I Non Infected I POPULATION 
Birth 

I I ! ~ BeG Vaccinated 
, ... __ .. _-_ ... _ ..... _ .. _ .. _*. Death 

/ 
! BeG protected 

i 

TB Infected 

-t-- TB Death I I . 

IACh~+ 
I ! i TB treated I 
I ! ! I 
I i i I 

Figure 4.3: Flow diagram of the 1975 Azuma compartmental TB model [95]. 

As can be seen from this brief description this model differs little from the first 

few models already described. 

Another more complicated compartmental model was constructed by Vynncky 

and Fine (1997) [28] to estimate the age-dependent risks of developing primary, 

endogenous, and exogenous tuberculosis and although it includes more of the epi­

demiological complexity of TB it is still easy to see from the flow diagram in 

figure 4.4 that it has the same basic structure as the earlier models. 
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Figure 4.4: Flow diagram of the 1997 Vynnycky, Fine compartmental TB 

model [28]. 
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Further developments in TB modelling have mainly come about because of the 

changing threat ofTB. Perhaps the most noticeable change in TB modelling came 

about in the early 1990s when the impact of the mv epidemic on the incidence of 

TB was first taken into account. From that time onwards a large percentage of TB 

models constructed (compartmental and statistical) incorporate an mv element 

into the dynamics of the model [5, 65, 66, 27]. However, I will not expand further 

on this aspect as this thesis deals with TB modelling rather than TBIHIV mod­

elling. It should be noted however, that the 1998 papers by C.Dye et al. [14, 15] 

that contain the model that is re-constructed and further analysed in this thesis (see 

chapter 9), belong amongst this group of TB models, as it originally contained an 

HIV element. 

Other adaptions include the modelling of antibiotic resistant TB strains that are 

considered to be a serious and growing threat to TB control [12, 88]; the construc­

tion of models that incorporate cluster (local or generalised household) effects and 

investigate the impact these cluster effects may have on TB transmission dynamics 

[45, 10]. This subject is explored in depth in Chapters 12 to 16. 

Apart from compartmental and standard statistical modelling of collected data 

there have been a few attempts to utilise different modelling techniques in the 

study of TB transmission dynamics, including Markovian Modelling [89], use of 

GIS technology leading to spatial analysis [75] and the use of Bayesian networks 

and statistical relational models [49]. 

As previously mentioned chapter 9 describes the re-construction and adap­

tation of a compartmental, age-dependent TB Model similar to those described 

above [14, 15]. It is then applied to two TB data sets from Morocco and the 

Netherlands in chapters 10 and 11. First, however, the following chapter describes 

the construction of a family of parametric statistical regression models that are 
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used to analyse the same data sets as the compartmental model, in order to con­

firm the significance of age and time effects in the data Such statistical models 

are useful in indicating the sort of detail that compartmental models may need to 

incorporate to satisfactorily capture significant features of the data 

, , 
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Fitting Parametric Distributions to 

age and time dependent TB case data 

5.1 Introduction 

In countries that have experienced a long-term decline in the incidence of TB and 

in annual risk ofTB infection, a slow down in the annual decline of the crude noti­

fication rate (referred to as stagnation) is often observed. It is most often observed 

in middle-to-higher income countries with an increasing life expectancy rate and 

therefore a rapidly ageing population. 

This stagnation effect can be explained by examining the natural histOIY ofTB. 

As the risk of infection declines, the proportion of disease due to initial infection 

(primary disease) and due to re-infection also declines. When the risk of infection 

reaches an extremely low level it is likely that most of the disease detected is due 

to re-activation. This effect is called the 'ageing of the epidemic' and can not be 

adjusted for in analysis by standardisation by age. 

Re-activation disease by its very nature does not depend on the current risk of 

infection and the probability of occurrence of the disease is not believed to decline 

36 
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significantly with lengthening time since infection. In addition, medical factors 

that may increase the risk of re-activation of latent TB, such as lung cancer and 

diabetes are predominantly found in the older generations. Therefore the incidence 

of this disease only declines if the latently infected cohorts either 'die off' or are 

given preventative therapy. Thus a country with an increasing life expectancy and 

a very low annual risk of infection could expect the decline in TB notifications to 

stagnate. 

Therefore in order to analyse the progression of TB in these types of countries 

it is necessary to create mathematical models that can capture the essential epi­

demiological and demographic characteristics that are involved in the stagnation 

effect. 

TB data sets from three countries, Netherlands, UK and Morocco, that are con­

sidered to have an aging population, low/decreasing annual risk of infection and 

exhibit an aging of the epidemic, are examined for similar trends/characteristics. 

The age and time dependent trends apparent in such data are investigated by con­

structing and fitting a family of parametric models to all three data sets. The form 

of the fitted models was chosen using knowledge of the shape and trends of known 

mathematical functions. The stability and fit of different variations/combinations 

of mathematical functions (exponential, polynomial and logistic) were compared 

to find the 'best' model for each data set. It was found that this decision could be 

easily made by simple inspection of model results. Thus, other more formal model 

comparison methods, such as Akaike (AlC) and Bayesian (BIC) information cri­

teria, were not considered necessary in this case. 

The rest of this chapter contains a preliminary examination and a description 

of the general parametric regression method used to analyse these three data sets. 

Chapters 6, 7 and 8 contain the specific details of the model fitted with an analy­

sis of the results for each TB data set from the Netherlands, UK and Morocco, 

respectively. 
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5.2 Exploring trends in the TB data from the Nether­

lands, UK and Morocco 

In order to clarify the distinguishing trends in these data sets, exponential functions 

were fitted to the data using a log scale for the y (TB cases) axis. This enabled an 

approximate value for the slope of the data for each age range to be evaluated. 

Using these values the relative decline in TB case nwnbers across the various age 

ranges can be assessed and compared for each country. Appendix F contains the 

graphs of these exponential line fits with equations for each trend line fitted, for all 

three countries' data. 

The UK (male) data shows similar characteristics to the data from the Nether­

lands, in that the decline in the data is greater in the younger age ranges and begins 

to level off in the older age ranges (see graphs 5.1 and 5.2). 

The Moroccan data shows a more extreme but similar pattern in that the younger 

ages exhibit a sharp decline in TB that levels offuntil an increase in TB is exhibited 

in the older age ranges (see graph 5.3). 

These data sets therefore show a marked and similar age dependency. 
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Figure 5.1: Plot of the exponential rate of decline in TB case numbers over age, 
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Figure 5.2: Plot of the exponential rate of decline in TB case numbers over age, 
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5.3 Modelling strategy 

• Model formulation A family of parametric distributions are fitted to the TB 

case data from the UK, Netherlands and Morocco. The method of Maximum 

Likelihood is used to fit the distributions and the direct search optimisation 

method, NeIder-mead, is used to find the maximum value of the likelihood, 

L(/3, y). 

Let Y be the set of observed TB notification case data for a specific country 

and /3 be a set of unknown parameters to be estimated. It is assumed that Y 

is a set of identically distributed random variables drawn from the Normal 

distribution with probability density function 

_(y_?)2 
e 20-

f(Y, B) = ~ 
21l' 0'2 

where fJ is a function dependent on both age, (X), and time, (T). 

Let 0' = /31 and let fJ (T, X, a) = (a1 + a3 X + asX2) 1~~::;:~2) where a 

is another set of parameters dependent on /3 and T, such that, 

a1 = /32 + /37T + /312T2 

a2 = /33 + /38T + /313T2 

a = a3 = /34 + /3gT + /314T2 

a4 = /3s + /3lOT + /31sT2 

as = /36 + /311T + /316 T2 

This is the general construction of the parametric models fitted to the UK, 

Dutch and Moroccan TB data The specific models fitted to each country are 

adapted by setting one or more of the /3 parameters to zero and by making 0' 

a function of age and/or time. 

The logistic component of the function fJ(T, X, a) captures the initial rise 

in the TB data with age and the general sigmoidal shape. The polynomial 



CHAPTER 5 41 

captures any 'tailing off' behaviour in the data. An exponential function was 

tried in place of the polynomial but produced a model that was hard to fit and 

exhibited unstable behaviour. 

• Producing confidence intervals 

- Asymptotic Theory It is known that the asymptotic probability dis­

tribution of Maximum Likelihood estimates is Normal, hence as sam­

ple size n ---7 00, [3 rv N {(3, V((3)}, whereV((3) is approximated by 

V( l:!) rv [_ ,,2 L(f3,y) I _]-1 
fJ - "f3 2 f3=f3 . 

The Hessian, ,,2 ~~,y) 1f3=.6' is calculated numerically using a finite-difference 

fonnula for the second derivatives. 

The (1 - a) 100% confidence interval for the parameter (3i is calculated 

from [3 ± z~ V ~i (;3) 

- Bootstrap Method The basic bootstrap method was also used to create 

confidence intervals for the model parameters. This method samples 

with replacement from the original data set to create n further sets. For 

each of these 'new' data sets, the parametric model is fitted as before, 

resulting in a further n sets of MLEs. (See Appendix D for details of 

the Basic Bootstrap) 

The chosen specific models and the results from the fitting of these models to 

the TB data sets for the Netherlands, Morocco and the UK are described in the 

following Chapters 6, 8 and 7 respectively. 
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5.4 Summary ofresuIts of fitting the parametric mod­

els to TB data from Netherlands, Morocco and 

UK 

The general characteristics of the TB data sets as they vary with time and age 

are satisfactorily captured by this family of parametric models although there are 

a few that the models fail to capture. However, it is unclear whether all these 

characteristics are derived from true features of the data. The accuracy of the data 

must be questioned especially in the two oldest age ranges in the Dutch data, young 

children and in the Moroccan year data that is created by projection. In view of 

this, it is concluded that this family of parametric models is sufficiently flexible to 

capture the main characteristic features of these TB data sets. 
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Parametric Modelling of Dutch TB 

Case Data 

6.1 Model form ulation 

A Normal distribution model is fitted to the TB notification data for the Nether-

lands from 1952 to 1994: 

( 
(Y_I')2) 

Y rv Normal(/.l, (J), with pdf (T~e -~ ,where Y represents the TB no-

tification data; (J = 131; /.l = T/(T, X, a); T = time; X = age and 13 = parameters 

to be estimated. 

Let 

where 

a1 = 132 + f37T + f312T2 

a2 = 133 + f38T + f313T2 

a = a3 = 134 + f3gT + f314T2 

a4 = 135 + f3lOT + f315T2 

a5 = 136 + (JuT + f316T2 
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Note that the variance is dependent on both age and time. 

6.2 Results offitting the parametric model to the Dutch 

TB case data 

The confidence limits for each parameter, ((3i, i = 1,2 ... ,16), produced by using 

asymptotic theory and bootstrapping, along with the maximum likelihood esti­

mates for each parameter are displayed in table 6.1. The only parameter that may 

be insignificant is (38, (at a very high significance level of 99%), but as this is a 

linear term in a quadratic function and the quadratic term (313 is considered signif­

icant, parameter (38 is kept in the model. 

The correlations for the 16 (3 parameters can be found numerically displayed in 

table 6.2 and graphically displayed in figures 6.1 to 6.3. The strongest correlations 

are between the (3 parameters making up the quadratic functions al and a3, a3 and 

a5 and between those in al and a5. Likewise, there is a weaker correlation between 

az and a4. There is also a strong correlation between the (3 terms within each 

function a; constant term with linear term and linear term with quadratic term. All 

these correlations are understandable as aI, a3 and a5 make up the quadratic term 

in 7J and az and a4 make up the exponential term in 7J (see section 6.1). It also 

seems reasonable that the terms in a quadratic function should be correlated with 

each other. 

Apart from the above linear correlations the scatter plots for the (3 parameters 

show a random scatter, thus there is no significant evidence that any normality 

assumptions made for this model would be invalid. 

The fits of the parametric model to the Dutch TB case data for each of the 8 

age ranges are shown in figures 6.4 (a)-(h). The model fitted well for all ages and 

seems to have captured well the time dependent trends for each age group. It looks 
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at first that the 'bump' in the model fit that first starts to appear in the fit for age 

group 35-44, may be as a result of the model attempting to fit to the 'jump' in the 

data for age group 65-69. This was of interest due to the possible inaccuracy of 

the data for these latter ages. The hypothesis was tested by fitting the model to the 

Dutch data set with the 'jump' smoothed out. The smoothing was accomplished 

by simply reducing the values of the data for the years 1974 onwards in age group 

65-69 by a fixed amount so as to bring them in line with the trend of the preceding 

years. However, using this amended data set did not alter the fit and the 'bump' 

that can be seen in figures 6.4 (d)-(h)was still present. This confirmed that the 

trend seen in the model fit was a product of the model itself and not due to fitting 

to possibly inaccurate data. 

The fits to the Dutch data for a selection of years are shown in figures 6.5 (a)­

(h). The model also seems to have captured the changing age dependent trends of 

the data, for each time point selected, in the first 20 years of the time period. The 

model fits less well to the years after 1970. The shape of the data seems to suggest 

a cubic function may be a good fit although this was not found to be true. The 

parametric model however struggles to fully capture this 'cubic-like' trend in the 

data from 1970 to 1994. 

99% performance confidence intervals and confidence bands were constructed 

for each of the 8 age groups, using two different methods. The first method using 

asymptotic theory assumes normality and the results are shown in figures 6.6 (a)­

(h). The second method uses bootstrapping and the results are shown in figures 6.7 

(a)-(h). It can be seen that these two methods give very similar results. All these 

performance confidence intervals and bands are reassuringly narrow, encasing the 

model fit line. 
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Table 6.1: Parameter MLE values with 99% asymptotic and bootstrap confidence intervals. 

Asymptotic Theory Bootstrapping Method 

ML Estimates Lower 99% CI Limit Upper 99% CI Limit Lower 99% CI Limit Upper 99% CI Limit J 

4.460 3.986 4.934 3.760 4.705 
I 

378.024 343.639 412.410 364.836 392.735 

2.427 2.210 2.644 2.226 2.616 
I 

-10.110 -11.478 -8.742 -10.575 -9.609 

0.224 0.194 0.253 0.203 0.245 

0.082 0.069 0.095 0.077 0.086 

-32.889 -37.651 -28.127 -34.413 -31.226 
I 

-0.022 -0.059 0.014 -0.051 0.015 

0.766 0.569 0.963 0.732 0.797 I 
I 

I 
-0.011 -0.013 -0.009 -0.012 -0.010 

-0.005 -0.007 -0.003 -0.006 -0.005 

0.981 0.747 1.215 0.881 1.086 

0.004 0.002 0.005 0.002 0.005 

-0.020 -0.028 -0.012 -0.022 -0.018 I 

1.7E-04 1.4E-04 2.1E-04 1.5E-04 2.0E-04 

l.lE-04 3.7E-05 1.9E-04 9.2E-05 1.3E-04 , 

-- - -- -- -

n 

~ 
~ 
?;:I 
0\ 

~ 
0\ 



Table 6.2: Correlation matrix for the 16 parameters. 

f31 f32 f33 f34 f3s f36 f37 f38 f3g f310 f311 f312 

f31 -0.05 -2.E-03 0.06 0.03 -0.06 0.05 3.E-03 -0.05 -0.03 0.05 -0.03 

f32 -0.05 -0.06 -0.98 -0.67 0.94 -0.66 0.01 0.63 0.57 -0.60 0.38 

f33 -2.E-03 -0.06 0.01 0.66 0.02 -0.14 -0.54 0.19 -0.64 -0.20 -4.E-03 

f34 0.06 -0.98 0.01 0.59 -0.99 0.64 -5.E-04 -0.68 -0.52 0.68 -0.32 

f3s 0.03 -0.67 0.66 0.59 -0.54 0.20 -0.25 -0.14 -0.88 0.13 -0.12 
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Figure 6.1: Scatter plots of the associations between the parameters /31, .. . , /37 

with /32 , . . . , ,88 . 
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Figure 6.2: Scatter plots of the associations between the parameters /31 , . .. ,/37 

with /39 , . .. ) ,616, 



C HAPTER 6 50 

. . . . . , : : : ~ : : 

' • f 
~::::: '. ~- I. 

: [I] " , , 

::1 
, 

: 

! ::, ,:, : 
' . . :; i . , .. 

: i 
: 

: .... . . ' " . "I • . 
: 

:'1> ' ... , 
.' 

:::::::: 
= 

: : : :: ::: :: :: :; ::~::::: ... ~ ; : ; ; : 3 ;. 

Figure 6.3: Scatter plots of the associations between the parameters fJ8, ... ,fJ15 

with fJ9 ... , ,616 . 



CHAPTER 6 51 

Figure 6.4: (a)-(h): Plots of the fitted parametric model and Dutch TB notification 

data for each of the 8 age ranges. 
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Figure 6.5: (a)-(h): Plots of the fitted parametric model and Dutch TB notifi cation 

data for a selection of years between] 952 and 1994. 
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Figure 6.6: (a)-(h): Plots of the fitted parametric model and Dutch TB notification 

data with Asymptotic performance confidence intervals and confidence bands, for 

each of the 8 age ranges. 
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Figure 6.7: (a)-(h) : Plots of the fitted parametric model and Dutch TB notification 

data with bootstrapped performance confidence intervals and confidence bands, 

for each of the 8 age ranges. 
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Chapter 7 

Parametric Modelling of UK (male) 

TB Notification Data 

7.1 Model form ulation 

A Nonnal distribution model is fitted to the TB notification data (Y) for white 

males in the UK from 1953 to 1989: 

Y rv Normal(M, 0-) with pdf 

where Y represents the TB notification data; (/ = /31; M = 'r/(T, X, ex); T = time; 

X = age and /3 = parameters to be estimated. 

Let 

where 

[ 

ex1 = /32 + /35T + /3sT2 

ex = ex2 = /33 + /36T 

ex3 = /34 + /37T 

58 
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Note that the variance, 131 = (72, is independent of age and time. 

7.2 Results of fitting the parametric model to the UK 

(male) TB case data 

The maximum likelihood estimates as well as the confidence limits for each pa­

rameter, (fJi, i = 1,2, ... ,8), produced using asymptotic theory and bootstrapping 

methods, are displayed in table 7.2. None of the parameters seem insignificant, at 

a very high significance level of 99%. 

The correlations for the 8 13 parameters can be found numerically displayed in 

table 7.1 and graphically displayed in figures 7.1. The strongest correlations are 

between the 13 parameters making up the linear functions 002 and 003. There is also a 

strong correlation between the 13 terms within each function oo. These correlations 

are understandable as 002 and 003 make up the exponential term in 'T/. It also seems 

reasonable that the terms in a quadratic or linear function should be correlated with 

each other. 

Apart from the above linear correlations the scatter plots for the 13 parameters 

show a random scatter, thus there is no significant evidence that any normality 

assumptions made for this model would be invalid. 

The fits of the parametric model to the UK (male) TB case data for each of the 

8 age ranges are shown in figures 7.2(a)-(h). The model fitted generally well and 

seems to have captured the time dependent trend for each age group. The model 

fit to the first three age groups (years 0-24) is seen to be slightly less accurate than 

that for the remaining ages. 

The fits to the UK data for a selection of years are shown in figures 7.3 (a)-(h). 

The model also seems to have captured the general age dependent trends of the 

data, for each time point selected. 
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99% performance confidence intervals and confidence bands were constructed 

for each of the 8 age groups, using two different methods. The first method using 

asymptotic theory assumes normality and the results are shown in figures 7.4 (a)­

(h). The second method uses bootstrapping and the results are shown in figures 7.5 

(a)-(h). It can be seen that these two methods give very similar results. All these 

performance confidence intervals and bands are reassuringly narrow, encasing the 

model fit line. 



Table 7.1: Correlation matrix for the 8 parameters. 

/31 /32 /33 /34 /35 /36 /37 

/31 1 0.0016 0.0018 0.0008 -0.0021 -0.0022 -0.0022 

/32 0.0016 1 0.1531 -0.1180 -0.8403 -0.2896 -0.2062 

/33 0.0018 0.1531 1 0.7377 -0.2180 -0.5879 -0.7523 

/34 0.0008 -0.1180 0.7377 1 -0.1074 -0.1464 -0.7065 

/35 -0.0021 -0.8403 -0.2180 -0.1074 1 0.3384 0.4709 

/36 -0.0022 -0.2896 -0.5879 -0.1464 0.3384 1 0.7020 

/37 -0.0022 -0.2062 -0.7523 -0.7065 0.4709 0.7020 1 

/38 0.0020 0.7201 0.0865 -0.0109 -0.9437 -0.2793 -0.4296 

/38 I 

0.0020 

0.7201 I 

0.0865 

-0.0109 I 

-0.9437 

-0.2793 I 

-0.4296 

1 

n 

~ 
>-:l 
tr:I 
tel 
-....l 

0\ ...... 



Parameters 

/31 ( = u) 

/32 

/33 

/34 

/35 

/36 

/37 

/38 
-

Table 7.2: Parameter MLE values with 99% asymptotic and bootstrap confidence intervals. 

Asymptotic Theory Bootstrapping Method 

ML Estimates Lower 99% CI Limit Upper 99% CI Limit Lower 99% CI Limit Upper 99% CI Limit 

7.7443 6.9245 8.5642 6.625 8.6756 

135.9483 129.8145 142.0822 127.7676 142.5714 

0.8231 0.4451 l.2011 0.4035 l.2016 

0.1288 0.1036 0.1541 0.1033 0.1581 

-8.9065 -10.0688 -7.7442 -10.1811 -7.6801 

0.1240 0.0856 0.1624 0.093 0.1671 

-0.0021 -0.0030 -0.0011 -0.0031 -0.0009 

0.2087 0.1582 0.2592 0.1575 0.2631 
-- -- --- --------- ----

n 
~ 
'"""d 

t;l 
~ 
-...l 

Rj 
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Figure 7.1 : Scatter plots of the associations between the parameters {31 = a, {32, 

/3s , {34, {35, {36, {37 and {38. 
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Figure 7.2: (a)-(h): Plots of the fi tted parametric model and UK TB notification 

data (for white males only) for each of the 8 age ranges. 
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Figure 7.3 : (a)-(i) : Plots of the fitted parametric model and UK TB notification 

data (for white males only) for a selection of years between 1953 and 1989. 
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Figure 7.4: (a)-(h): Plots of the fitted parametric model and UK TB notification 

data (for white males only) with Asymptotic performance confidence intervals and 

confidence bands, for each of the 8 age ranges. 
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Figure 7.5: (a)-(h): Plots of the fitted parametric model and UK TB notification 

data (for white males only) with Bootstrapped performance confidence intervals 

and confidence bands, for each of the 8 age ranges. 
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Chapter 8 

Parametric Modelling of Moroccan 

TB Notification Data 

8.1 Model form ulation 

A Normal distribution model is fitted to the confirmed pulmonary TB notification 

data for Morocco from 1980 to 2000: 

( 
(Y_I')2) 

Y rv Normal(J.L, (J), with pdf O"~e -~ ,where Y represents the TB no-

tification data; (J = /31T + /315X; J.L = 'T/(T,X, a); T = time; X = age and /3 = 

parameters to be estimated. 

Let 

where 

al = /32 + /37T + /311T2 

a2 = /33 

a = a3 = /34 + /3sT + /312T2 

a4 = /35 + /3gT + /313T2 

a5 = /36 + /3lOT + /314T2 

71 
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Note that the variance is dependent on both age and time. 

8.2 Results offitting the parametric model to the Mo­

roccan PTB case data 

The confidence limits for each parameter, (fJil i = 1,2 ... ,15), produced by using 

asymptotic theoIY and bootstrapping, along with the maximum likelihood esti­

mates for each parameter are displayed in table 8.1. 

The parameters that may be insignificant, because their asymptotic confidence 

intervals include the value zero, are fJ41 fJ61 fJ8 and fJlO (at a veIY high significance 

level of 99%). But as these are constant and linear terms in quadratic functions 

and the quadratic terms /312 and /314 are considered significant, the parameters 

{f3i, i = 4,6,8, 10} are kept in the model. It should be noted that the bootstrapped 

confidence intervals do not show evidence that any of the fJ parameters are in­

significant and therefore strengthens the decision to keep the parametric model as 

formulated above. 

The correlations for the 15 13 parameters can be found numerically displayed 

in table 8.2 and graphically displayed in figures 8.1 to 8.4. 

There are many strong correlations behveen the 13 parameters. From the nu­

meric correlation values alone, all the parameters seem to be correlated \vith all 

other parameters, except for the parameters .B1, 133 and 1315 .fJl and /315 are only 

correlated with each other which is reasonable as they are the two parameters of 

the standard deviation function. fJ3 = 0:2 is only strongly correlated with /35, the 

constant term in 0:4. This is also understandable as 0:2 and 0:4 make up the expo­

nential term in 'f}. 

Although there are no obvious non-linear correlations that can be seen in the 

scatter plots for the 13 parameters, the large amount of correlation between the 
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parameters would throw doubt upon the validity of any independence assumptions. 

The fits of the parametric model to the Moroccan TB case data for each of the 

8 age ranges are shown in figures 8.5 (a)-(h).The model fits well for the majority 

of age ranges 10-44 and 65+ and seems to have captured well the time dependent 

characteristics for these age groups. The model seems to underestimate the number 

of TB cases in the younger children aged 0-9. However it must be noted that the 

data for children of these ages can be very unreliable (see chapter 3, section 3.4) 

and the numbers of cases per 100,000 is very low for these ages hence exaggerating 

the error in the model fit. The model struggles to fit to the data for the age group 

45-64 and does not seem to adequately capture the characteristics of the data for 

this group. 

The fits to the Moroccan data for a selection of years are shown in figures 8.6 

(a)-(h). The model seems to have captured the general age dependent trends of the 

data, for each time point selected. 

99% performance confidence intervals and confidence bands were constructed 

for each of the 8 age groups, using two different methods. The first method us­

ing asymptotic theory assumes normality and the results are shown in figures 8.7 

(a)-(h). The second method uses bootstrapping and the results are shown in fig­

ures 8.8 (a)-(h). It can be seen that these two methods give similar results, with 

the asymptotic confidence intervals/bands slightly wider than those constructed by 

bootstrapping. This may be caused by the strong correlations between the parame­

ters. 
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(311 
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(313 

(314 

(315 

Table 8.1: Parameter MLE values with 99% asymptotic and bootstrap confidence intervals. 

Asymptotic Theory Bootstrapping Method 

ML Estimates Lower 99% CI Limit Upper 99% CI Limit Lower 99% CI Limit Upper 99% CI Limit 

0.064 0.006 0.121 0.020 0.113 

171.804 78.629 264.979 115.865 208.787 

7.236 6.761 7.711 6.921 7.627 

-3.935 -8.333 0.462 -5.763 -1.667 

0.453 0.397 0.510 0.418 0.495 

0.031 -0.017 0.078 0.001 0.052 

24.285 3.291 45.279 19.668 29.204 

-0.870 -1.850 0.109 -1.078 -0.763 

-0.013 -0.022 -0.005 -0.021 -0.009 

0.008 -0.002 0.018 0.006 0.010 

-1.405 -2.335 -0.475 -1.607 -1.153 

0.053 0.01 0.096 0.043 0.062 

5.67E-04 1. 89E-04 9.45E-04 3.38E-04 8.61E-04 

-4. 84E-04 -9.47E-04 -2. 187E-05 -6.25E-04 -3.74E-04 
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Table 8.2: Correlation matrix for the 15 parameters. 

{31 {32 {33 {34 ,85 {36 {37 {38 {3g {310 ,811 

{31 1 -0.15 0.36 0.14 0.3 -0.13 0.01 -0.01 -0.09 0.01 0.03 

!32 -0.15 1 -0.25 -0.99 -0.76 0.96 -0.86 0.86 0.83 -0.84 0.76 

{33 0.36 -0.25 1 0.23 0.73 -0.21 0.14 -0.13 -0.28 0.13 -0.1 

{34 0.14 -0.99 0.23 1 0.72 -0.99 0.84 -0.86 -0.78 0.86 -0.75 

,85 0.3 -0.76 0.73 0.72 1 -0.67 0.58 -0.56 -0.81 0.53 -0.51 

{36 -0.13 0.96 -0.21 -0.99 -0.67 1 -0.82 0.85 0.74 -0.87 0.73 

i37 0.01 -0.86 0.14 0.84 0.58 -0.82 1 -0.99 -0.83 0.96 -0.98 

{38 -0.01 0.86 -0.13 -0.86 -0.56 0.85 -0.99 1 0.79 -0.99 0.97 

{3g -0.09 0.83 -0.28 -0.78 -0.81 0.74 -0.83 0.79 1 -0.75 0.81 
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{314 0.03 0.74 -0.09 -0.76 -0.46 0.77 -0.94 0.97 0.72 -0.98 0.96 
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Figure 8.4: Scatter plots of the associations between the parameters (311, (312, (313 

and (314, with the parameters (312 to (315. 
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Figure 8.5: (a)-(h): Plots of the fitted parametric model and Moroccan confirmed 

pulmonary TB data for each of the 8 age ranges. 
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Figure 8.6: (a)-U): Plots of the fitted parametric model and Moroccan confirmed 

pulmonary TB notification data for a selection of years between 1980 and 2000. 
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Figure 8.7: (a)-(h): Plots of the fitted parametric model and Moroccan confirmed 

pulmonary TB notification data with Asymptotic performance confidence intervals 

and confidence bands, for each of the 8 age ranges. 
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Figure 8.8: (a)-(h): Plots of the fitted parametric model and Moroccan confirmed 

pulmonary TB notification data with Bootstrapped performance confidence inter­

vals and confidence bands, for each of the 8 age ranges. 
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8.3 Conclusions 

The TB data sets from these three different countries, Netherlands, Morocco and 

UK, showed similar age and time dependent trends and characteristics. All dis­

played a general slowing of the decline in TB in the older age ranges. 

The chosen family of parametric models consisting of a logistic and polyno­

mial element, successfully fit to all three data sets. The time and age dependent 

characteristics are satisfactorily captured by this family of parametric models. 

There are some effects that the models fail to capture but it is unclear whether 

all these characteristics are derived from true features of the data but arise from 

erroneous data collection/manipulation. The accuracy of the data can be generally 

questionable in very young children due to the difficulty in obtaining positive spu­

tum test results. The data in the two oldest age groups from the Netherlands suffer 

from a change in age ranges around 1972 used in the collection of data. The Mo­

roccan year data although regarded as generally reliable is created by projection 

from 1995 onwards. 

The following chapters describe the investigation into the ability of compart­

mental TB models to capture these age and time characteristics exhibited in TB 

data from countries with increasing life expectancy and slow down in the annual 

decline of the crude notification rate. A suitable compartmental model is rebuilt 

from a previously existing model devised by C.Dye et al [14, 15]. The TB data sets 

from the Netherlands and Morocco are analysed using this compartmental model. 

The UK. data was not used as it only contains TB data from white males and the 

model is not built to make this distinction between gender and ethnicity. 



Chapter 9 

An Age-Structured Tuberculosis 

Model 

9.1 Introduction 

C.Dye et. al. [14][15] developed an age-structured mathematical model to investi­

gate global Tuberculosis control strategy, for each of the six World Health Organ­

isation (WHO) regions (sub-Saharan Mrica, Americas, Eastern Mediterranean, 

Europe - divided into East and West, South East Asia, Western Pacific). In partic­

ular, it was set up to explore the effect of Directly Observed Short-course Therapy 

(DOTS), the WHO's strategy for worldwide TB control, on tuberculosis epidemics 

in those developing countries where the disease is most prevalent. Their TB model 

uses data from studies of the biology of TB and from the history of successful 

TB control in industrialised countries. The model incorporates and uses a separate 

HIV/AIDS model (as detailed in Garnett and Anderson, 1994 [31]) to generate 

HIV epidemics applicable to each of the six WHO world regions. 

A newly re-constructed version of this model, adapted to enable investigation 

of the possible stagnation ofTB in countries with an aging population, is described 
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in detail in the following sections and Chapters. 

9.2 A description of a deterministic, compartmental, 

age-dependent TB Model 

This model was constructed with the primary purpose of analysing the progression 

ofTB in countries with an increasing life expectancy and a very low annual risk of 

infection, where 'aging of the epidemic' and thus stagnation effects could occur. 

It was specifically re-constructed from the age-structured mathematical model de­

veloped by C.Dye et. al. [14] [15] at the W.H. 0 to investigate their global Tubercu­

losis control strategy. This re-constructed version was programmed in ExcelNBA 

using the two papers [14][15] that document the structure of the original TBIHIV 

model. The HIV element of the original WHO model [14][15] has been taken out. 

This somewhat simplifies the model and is not an unrealistic modification as the 

countries that would be of prime interest in this model are not considered to have 

a large HIV problem. 

This deterministic, compartmental model, is set in discrete time and is run by 

difference equations. See Figure 9.1 for a flow diagram of the TB model and 

Tables 9.1, 9.2 and 9.3 for definitions of the variables and input parameters. 
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I Variable Name I Definition 

S(t, a) 

M(t, a) 

Ti(t, a) 

Tn(t, a) 

L(t, a) 

Ni(t, a) 

Nn(t, a) 

Fi(t, a) 

Fn(t, a) 

Ii(t, a) 

In(t, a) 

Proportion of population who are uninfected and susceptible to 

infection, of age a at time t 

Proportion of population immune to infection (naturally or after 

vaccination), of age a at time t 

Proportion of population who have infectious (smear positive) 

TB; primary, endogenous, exogenous or relapse; of age a at time 

t 

Proportion of population who have non-infectious (smear nega-

tive) pulmonary and extra-pulmonary TB, of age a at time t 

Proportion of population who are latently infected or cured ofTB 

under good treatment, age a at time t 

Proportion of population who are self-cured from infectious TB, 

(i.e. recover from disease naturally without medical intervention), 

of age a at time t 

Proportion of population who are self-cured from non-infectious 

TB, (i.e. recover from disease naturally without medical interven-

tion), of age a at time t 

Proportion of incidences of infectious TB which is not cured un-

der treatment; classed as failed, defaulted or transferred out in 

cohort analysis; of age a at time t 

Proportion of incidences of non-infectious TB which is not cured 

under treatment; classed as failed, defaulted or transferred out in 

cohort analysis; of age a at time t 

Incidence rate of infectious TB, for those of age a at time t 

Incidence rate of non-infectious TB, for those of age a at time t 

Table 9.1: Name and description of variables used in the 

compartmental age-dependent TB model. 
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I Variable Name I Parameter Description 

time Step Time step (in years) 

'\(1) Initial value of the force of infection 

m+ Rate at which immunity is acquired by susceptibles 

m_ Rate at which protective immunity is lost 

m M(l, a), Fraction immunised at birth 

n Rate of natural cure for infectious and non-infectious TB 

/li Death rate for infectious TB 

/In Death rate for non-infectious TB 

e Exponential rate of decline in the contact rate /3, to reflect 

'socio-economic improvement' 

cp Proportion of failed treatment cases which are infectious 

E Relative case detection rate of non-infectious cases 

cas e_deLDOTS Rate at which TB cases are found and treated under DOTS 

(or a comparable strategy) 

case_cure~OTS Proportion of treated cases given curative chemotherapy un-

der DOTS (or a comparable strategy) 

case_deLnon Rate at which TB cases are found and treated pre-DOTS 

DOTS 

case_cure.non Proportion of treated cases given curative chemotherapy 

DOTS pre-DOTS) 

Table 9.2: Name and description of parameters used in the 

compartmental age-dependent TB model. 
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I Variable Name I Parameter Description 

1r(t,a) Proportion of population in age class a at time t 

(3(t) Per capita contact rate between Ti & rest of population, at 

timet 

w Rate of smear conversion from non-infectious to infectious 

TB 

rn Rate of relapse after self cure to active TB 

r Rate of relapse from failed treatment to active TB 

x( age:::;agecut) Proportion of re-infections which is susceptible to develop-

ing TB within one year 

x( age>agecut) (as above) 

p(age:::;agecut) Proportion of infected susceptibles which develop progres-

. sive primary TB within one year 

p(age>agecut) (as above) 

v(age:::;agecut) Rate at which latent infections become TB cases by endoge-

nous reactivation 

v(age>agecut) (as above) 

f(age:::;agecut) Proportion of progressive primary cases which become in-

fectious 

f(age>agecut) (as above) 

Table 9.3: Description of parameters used in the compart­

mental age-dependent TB model. 
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9.3 Assumptions behind the TB model 

In order to construct this mathematical model certain assumptions were made. 

These assumptions were made in accordance with current scientific thinking about 

the epidemiology and natural history of TB. If an assumption was made in or­

der to simplify the model it was only used if it was thought to not significantly 

compromise the validity of the model. The following is a list of these underlying 

assumptions. 

• Different proportions of the model population move through the 9 states 

according to the corresponding governing equations and the values of the 

input parameters. 

• Case detection is measured as the number of infectious cases diagnosed and 

treated per year divided by the estimated annual incidence of new infectious 

cases. It is assumed that cases who would otherwise have received inferior 

treatment are enrolled onto the DOTS programme. Extra cases are only 

treated when all such patients have been recruited. New DOTS programmes 

concentrate on achieving high cure rates first and then work on improving 

case detection. 

• Patients who complete Short Course Chemotherapy (SCC) are assumed to 

be cured of TB but remain infected and move into the latent class. 

• The term treatment failure covers all patients who do not complete treat­

ment, i.e. those that 'fail', 'default' or 'transfer out'. They have the same 

death rate as those without active TB and have a higher chance of re-developing 

full TB than those cured. Those who 'fail' plus a proportion of the others 

remain infectious. 
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• Self-cured individuals are assUmed to have a higher chance of relapsing to 

full TB than others. 

• It is assumed that Infectious TB suffers a higher elevated death rate than 

non-infectious TB. 

• Numerical simulations are able to be carried out with a time (t) and age (a) 

step of:S: one year (defined by user), due to the general opinion that some 

changes in the TB state of an individual may occur in shorter periods than 

one year. 

• There is no gender dependence i.e. the model does not distinguish between 

TB cases in males and females. This greatly simplifies the model and was 

not considered to significantly compromise the validity of the model. 

• The age limit is input by the user (only limited by the age data available for 

each country of interest). It is assumed that death occurs at this limit. 

9.4 Equations used in the model 

Difference and other equations are used to govern the movement of the popula­

tion through the various states of the TB model. The following is a list of these 

equations with their definitions. 

1. The force of infection (or Incidence rate) is the per capita rate at which 

susceptibles are infected and is denoted by: 

agelim 

A(t) = j3(t) L 1r(t, a) (Ti(t, a) + ¢Fi(t, a)) 
a=O 

where j3(t) = j3(O)e-Bt . 

j3(t) is the per capita contact rate between infectious TB cases and other 
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individuals. e-Bt allows for a possible exponential rate of decline in (3( t), 

reflecting 'socio-economic improvement'. (3(0) is a chosen positive constant 

used to set the initial contact rate value. 

To calculate the Force of Infection, the proportion of the population in age 

class a at time t, 1r(t, a), multiplied by the sum of the proportion of pop­

ulation who have infectious TB, ~(t, a), and the proportion of infectious 

TB cases undergoing treatment who fail treatment and are left infectious, 

¢Fi(t, a), is summed over all age classes. This is then multiplied by the per 

capita contact rate between infectious TB cases and other individuals, (3(t). 

2. The proportion of incidence of infectious TB in the population at time t, age 

a, i.e all inputs to state ~ in the model (see flow diagram 9.1) is calculated 
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as: 

97 

)..(t -l)p(a - l)f(a - l)S(t - 1, a-I) 

Proportion of infected susceptibles which develop progressive 

primary infectious TB within 1 year 

+ (v(a -1) + x(a -l)p(a - l) .. (t -l))f(a - l)L(t - 1, a-I) 

Proportion of Latents which develop progressive primary 

infectious TB, by endogenous reactivation or reinfection 

+ wTn(t - 1, a-I) 

Proportion of non-infectious TB population that develop 

infectious TB by smear conversion 

+ rFi (t-1,a-1) 

Proportion of individuals who fail treatment for infectious TB 

and relapse to active infectious TB 

+ rnNi(t -l,a -1) 

Proportion of individuals who relapse from self/natural cure 

3. The proportion of incidence of non-infectious TB in the population at time t, 

age a, i.e all inputs to state Tn in model (see flow diagram 9.1) is calculated 
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as: 

98 

).,(t - l)p(a - 1)(1 - f(a - l»S(t - I, a-I) 

Proportion of infected susceptibles which develop progressive 

primary non-infectious TB within 1 year 

+ (v(a - 1) + x(a - l)p(a -l».,(t -1»(1 - f(a - 1» 

L(t - I, a-I) 

Proportion of Latents which develop progressive primary 

non-infectious, by endogenous reactivation or reinfection 

+ rFn(t-1,a-1) 

Proportion of individuals who fail treatment for non-infectious 

TB and relapse to active non-infectious TB 

+ rnNn(t-1,a-1) 

Proportion of individuals who relapse from self/natural cure 

4. Hence, the proportion of incidence of both infectious TB and non-infectious 

TB in the population at time t, age a, is calculated as: 

I(t, a) = Ii(t, a) + In(t, a) - wTn(t - I, a-I) 

This is simply the sum of the two separate incidences of infectious and non­

infectious TB minus the proportion of individuals with non-infectious TB 

that develop infectious TB by smear conversion. If this was not subtracted 

there would be a proportion of the TB incidences that were counted twice in 

the formulation of I(.). 

5. (i) The proportion of population aged a, in the model at time t, is simply 
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calculated as: 

Agetot(t, a) S(t, a) + L(t, a) + Ti(t, a) + Tn(t, a) 

+ Fi(t, a) + Fn(t, a) + Ni(t, a) + Nn(t, a) + M(t, a) 

(ii) The proportion of the population (for all ages) in the model at time t, 

is therefore: 

Gtot(t) = L Agetot(t, a) 
Va 

Both these equations are used to re-standardise the model values so that the 

proportion of the population in the model is equal to one for all t. This 

is necessary ·because the proportion of deaths that leave the model is not 

replenished by 'births'. Therefore after a few iterations of the model the 

sum of all the proportions of the population in the 9 states will be less than 

one. 

9.4.1 Difference Equations describing the model 

The following nine difference equations govern the change in the proportion of 

population in each of the nine state classes. They can be determined directly from 

the flow chart in Figure 9.1. 

6. The change in the proportion of individuals who have never been infected 
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but are susceptible to infection is calculated by: 

S(t, a) - S(t - 1, a-I) = 

m_M(t -l,a -1) 

Proportion of immune individuals who lose their protective immunity 

+ -A(t - l)S(t - 1, a-I) 

Proportion of susceptibles who become infected with TB 

m+S(t - 1, a-I) 

Proportion of population susceptible to infection who gain 

immunity to infection 

7. The change in the proportion of individuals who are latently infected, or 

cured ofTB (and therefore return to the latent state) is calculated as: 

L(t, a) - L(t - 1, a-I) = 

(1- p(a - l))A(t -l)S(t - 1, a-I) 

Proportion of infected susceptibles who get a latent infection 

+ [(det)(cure) + (detN D) (cureN otDot)] Ii(t - 1, a-I) 

+ E[(det)(cure) + (detN D) (cureN otDot)]In(t - 1, a-I) 

Proportion of infectious and non-infectious TB cases who are 

detected and cured and therefore return to the Latent state 

(v(a -1) + x(a -l)p(a - l)A(t - l))L(t - 1, a-I) 

Proportion of La tents which develop progressive primary infectious 

or non-infectious TB, by endogenous reactivation or reinfection 

8. The change in the proportion of individuals who have infectious (smear pos­

itive) primary, endogenous, exogenous or relapse TB is calculated as: 



CHAPTER 9 101 

1i(t,a) - Ti(t -l,a -1) = 

).,(t - l)p(a - l)f(a -l)S(t - 1, a -1) 

Proportion of infected susceptibles which develop progressive 

primary infectious TB within 1 year 

+ (v(a - 1) + x(a - l)p(a - l)).,(t - l))f(a - l)L(t - 1, a - 1) 

Proportion of Latents which develop progressive primary 

infectious TB, by endogenous reactivation or reinfection 

+ wTn (t - 1, a - 1) 

Proportion of individuals with non-infectious TB that develop 

infectious TB by smear conversion 

+ rFi (t-1,a-1) 

Proportion of individuals who fail treatment for 

infectious TB and relapse to active infectious TB 

+ r nNi (t - 1, a - 1) 

Proportion of individuals who relapse from self/natural 

cure to active infectious TB 

[det + detN D]Ii(t - 1, a - 1) 

Proportion of incidences of infectious TB that are detected 

and diverted to treatment 

(f-li)Ti(t - 1, a - 1) 

Proportion of infectious TB population that die a TB related death 

nTi (t - 1, a - 1) 

Proportion of individuals who experience a self/natural 

cure from active infectious TB 
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The proportion of individuals in state Ti (.) can therefore be simplified to 

the proportion of all incidences of infectious TB that are not detected and 

diverted to treatment, minus all those with infectious TB who either die a 

TB related death or experience a self/natural cure from active infectious TB. 

Ti(t, a) - Ti(t - 1, a-I) == 

[1 - (det + detN D)]Ii(t - 1, a-I) - (ILi + n)Ti(t - 1, a-I) 

9. The change in the proportion of individuals who have non-infectious (smear 

negative) pulmonary and extra-pulmonary TB is calcul'ated as: 
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Tn(t,a) - Tn(t-1,a-1)= 

A(t - l)p(a - 1)(1- f(a - l))S(t -1, a-I) 

Proportion of infected susceptibles which develop 

progressive primary non-infectious TB within 1 year 

+ (v(a -1) + x(a -l)p(a - l)A(t - 1))(1- f(a - 1)) 

L(t-1,a-1) 

Proportion of Latents which develop progressive primary 

non-infectious TB, by endogenous reactivation or reinfection 

+ rFn(t-1,a-1) 

Proportion of individuals who fail treatment for 

non-infectious TB and relapse to active non-infectious TB 

+ rnNn(t - 1, a-I) 

Proportion of individuals who relapse to active non-infectious 

TB from self/natural cure 

c[(det) + (detN D)]In(t - 1, a-I) 

Proportion of incidences of non-infectious TB 

that are detected and diverted to treatment 

(w + /-In + n)Tn(t -1, a-I) 

Proportion of non-infectious TB population that develop 

infectious TB by smear conversion, die a TB related death 

or experience self/natural cure from active non-infectious TB 

The proportion of individuals in state Tn (.) can therefore be simplified to 

the proportion of all incidences of infectious TB that are not detected and 

diverted to treatment, minus all those with non-infectious TB who either 
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die a TB related death or experience a self/natural cure from active non­

infectious TB. 

[1 - E(det + detN D)]In(t - 1, a-I) 

-(w + J-ln + n)Tn(t -1, a-I) 

10. The change in the proportion of individuals with infectious TB which are 

not cured under treatment, is calculated as: 

Fi(t, a) - Fi(t - 1, a-I) = 

[(det)(l - cure) + (detN D)(l - cureN D)]Ii(t - 1, a-I) 

Proportion of incidences of infectious TB that fail treatment 

rFi(t -l,a -1) 

Proportion not cured under treatment, who relapse to active 

infectious TB 

11. The change in the proportion of individuals with non-infectious TB which 

are not cured under treatment, is calculated as: 

Fn(t, a) - Fn(t - 1, a-I) = 

E[(det)(l - cure) + (detN D)(l - cureN D)]In(t - 1, a-I) 

Proportion of incidences of non-infectious TB that fail treatment 

rFn (t-1,a-1) 

Proportion not cured under treatment, who relapse to active 

non-infectious TB 

12. The change in the proportion of individuals who are immune to infection, 
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either naturally or following vaccination, is calculated as: 

M (t, a) - M (t - 1, a-I) = 

m+S(t-1,a-1) 

Proportion of susceptibles who gain immunity 

m_M(t -l,a -1) 

Proportion of immune individuals who lose their immunity 

13. The change in the proportion of self-cured from infectious TB, is calculated 

as: 

Ni(t - 1, a-I) = 

nTi(t -l,a -1) 

Proportion of individuals with infectious TB who experience 

self/natural cure 

rnNi(t - 1, a-I) 

Proportion of self-cured population who relapse to active 

infectious TB 

14. The change in the proportion of self-cured from non-infectious TB is calcu­

lated as: 

Nn(t -1, a-I) = 

nTn (t - 1, a-I) 

Proportion of individuals with non-infectious TB who 

experience self/natural cure 

rnNn(t - 1, a-I) 

Proportion of self-cured population who relapse to active 

non-infectious TB 
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9.5 Boundary Conditions 

Boundary conditions are required as the model equations alone do not allow for 

an input of new people (i.e. births) into the model. The model is therefore set up 

so that S(Vt, a = 1) = 1 - m, where m = M(Vt, a = 1). All other states at age, 

a = 1, are set to zero, for all t. 

The lifespan of the model population, (agelim), after which age it is assumed 

everyone dies, is input by the user. 

9.6 Equilibrium Calculations 

Equilibrium values are calculated for time, t = 1 and age, a = 1 to agelim. A 

simplified set of seven equations adapted from the 9 state equations in section 9.4.1 

is used to find equilibrium. The two 'Failed Treatment' states are eliminated from 

these equilibrium equations along with the case detection and cure parameters as 

it is assumed that treatment has not started before time t = 1. 

At equilibrium: 

S(t, a-I) - S(t - I, a-I) 0 

L(t,a-1)-L(t-1,a-1) 0 

Ti(t, a-I) - ~(t - I, a-I) 0 

Tn (t, a-I) - Tn (t - 1, a-I) 0 

Ni (t, a-I) - Ni (t - 1, a-I) 0 

Nn(t, a-I) - Nn(t - I, a-I) 0 

M(t,a-1)-M(t-1,a-1) 0 

Let D stand for any of the above state classes. 

Now if D(t, a-I) = D(t - I, a-I) 
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then D(t, a) - D(t - 1, a-I) - D(t, a) - D(t, a-I). 

Hence, each state equation can be written in terms of a and a-I for t = 1 and 

solved for each value of a: 

1. Susceptibles: 

8(1, a) - 8(1, a-I) = -(A(l) + m+)8(1, a-I) + m_M(l, a-I) 

2. Latents: 

L(l, a) - L(l, a-I) = 

(1 - p(a - 1))A(1)8(1, a-I) 

- (v(a -1) + x(a -l)p(a -l)A(l))L(1, a-I) 

3. Infectious TB: 

Ti(l, a) - Ti(l, a-I) = 

A(l)p(a - l)f(a - 1)8(1, a-I) 

+ (v(a - 1) + x(a - l)p(a - l)A(l))f(a - l)L(l, a-I) 

+ wTn(l, a-I) + rnNi(l, a-I) 

- (n + Mi)Ti(l, a-I) 

4. Non-Infectious TB: 

Tn(l, a) - Tn(l, a-I) = 

A(l)p(a - 1)(1 - f(a - 1))8(1, a-I) 

+ (v(a -1) + x(a -l)p(a -l)A(l))(l- f(a -l))L(l, a-I) 

+. rnNn(l, a-I) - (n + w + Mn)Tn(l, a-I) 
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5. Natural/self cure from Infectious TB: 

6. Natural/self cure from non-Infectious TB: 

7. Immunity: 

M(l, a) - M(l, a-I) = m+S(l, a-I) - m_M(l, a-I) 

9.7 Detection Calculations in the model 

The case detection rate is measured as the ratio: 

The proportion of infectious cases diagnosed and treated per year 
The proportion of incidences of new infectious cases 
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A non-DOTS treatment regime is introduced a set number of time steps into 

the model run. DOTS is then introduced a set number of time steps after that 

and increases the detection rate linearly until the set DOTS detection rate target 

is achieved. The times of introductions of these treatments and the detection rate 

target is input by the user. 

The following algorithm describes how the varying detection rates in the model 

are achieved: 

1. Set initial parameter values: 

• Let case_deLDOTS = a (Target detection rate under DOTS) . 

• Let case_deLnonDOTS = fJ (Detection rate under pre-existing (Non­

DOTS) regimes). 
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• Letydot be the time t at which the introduction of DOTS begins in the 

country in question. 

• Let DurationDOTS be the number of years taken to introduce DOTS 

into the country; i.e. number of years from ydot till the DOTS target 

detection rate (a) is reached. 

2. Calculate the change in detection rate and put into array cdrD(t): 

For all t: 

(a) If time t < ydot, i.e. the present time step t is before the time at which 

DOTS is introduced into the country, then cdrD(t) = o. Thus, there is 

no change in the detection rate from what was the existing detection 

rate in the country. 

(b) Ifydot < t < (ydot + DurationDOTS) i.e. the present time step t falls 

in the interval when DOTS is being introduced into the country, then 

cdrD(t) = D:,.~~~-:n1!;BTS 
(c) If time t > (ydot + DurationDOTS), then cdrD(t) = a; i.e. the DOTS 

target detection rate is assumed to have been achieved in the country. 

3. Re-set detection parameters, det and detND, for inclusion in the model 

equations, using the cdrD(t) 'change-in-rate' values calculated in 2. above: 

• det = cdrD(t). This is the change in detection rate. 

• detND = [/3 - cdrD(t)]. This models DOTS taking over from a pre­

existing non-DOTS regime. 

• If detND < 0, then set detND = o. This circumstance occurs when the 

DOTS detection rate becomes greater than the pre-existing regime's 

detection rate. 
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In the model equations (see section 9.4) the detection rate is calculated as the 

sum of det and detND. Graph 9.2 shows this interaction between the paranleters 

det = cdrD(t) and detND. 

Plot of how the detection rate for DOTS regime (det) and the 
detection rate for non-DOTS regime (DetND) Interact. 

- - " der - detection rate for DOTS regime 

I - • 'detND' = detection rate for non-DOTS pre-exlstlng raglme 

- 'det + detNO' '" overall detection rate If DOTS not Introduced 
- 'det + detNO' - overall detection rate If DOTS Introduced 

0.8 

0.7 
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I! 0.5 ./ 
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Figure 9.2: Plot of interaction between the DOTS and non-DOTS detection rates, 

(det = cdrD(t) and detND), with DOTS introduced at time step 10, DOTS detec­

tion rate target (a) set at 70% and the time taken to attain a set to 6 years . 

9.8 Standardising age dependent results 

At the end of a model run, the 'proportion ' values for each t and a have been 

recorded for all required states and variables. However, these recorded 'propor­

tions ' may not be true proportions because the total proportion of the model popu­

lation at time t may be less than one due to loss of people from the model through 

death. The recorded values therefore must be re-standardised to become true pro­

pOltions. Then, for each t the standardised proportions belonging to each age class, 

are multiplied by the proportion of individuals in that particular age class accord-
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ing to the age distribution data of an appropriate country. The results can then be 

swnmed over age. 

For example: Let S be the proportion of population in a specific TB state class 

or variable (Susceptibles, Latents, TB deaths, etc ... ), then the sum over all age 

classes, a, of S can be written as: 

S ~ L [ S(t, a) 1f(t, a) ] urn.:::. - X =---'---:-'----:-

- Va Agetot(t, a) I:va 1f(t, a) 

where, Agetot(t, a) is the proportion of population still in the model at time t, 

age a, and 1f(t, a) is the variable that holds the demographic age distribution data 

for each time t, age a. Obviously if the age distribution data is in the form of 

true proportions then the sum of 1f(t, a) over all a will be one. But this may not 

always be the case and therefore re-standardisation is achieved by dividing 1f(t, a) 

by I:va 1f(t, a). 

In order to divide the results into, for example, two age ranges: a = Ages::; 15 

and (3 = Ages> 15, the following calculations would be carried out: 

S ~a ~ [ S(t, a) 1f(t, a) 1 um - - ~ x -~--'---
~ - a=O Agetot(t, a) I:~~o 1f(t, a) 

Sumo;::,B - f= [ S(t, a) x 1f(t, a) 1 
~ - a=16 Agetot(t, a) I:!~161f(t, a) 

The theoretical basis for the above calculations can be explained in terms ofprob­

ability: 

Let P(alt) be the Probability of a given t, and 1f*(t) = I:va 1f(t, a), then, 

P(ant) _ 1f(t, a) . 
P(alt) = P(t) = 1f*(t) , for the true population 

(~I ) P(S n alt) S(t, a) . 
P .::, a, t = P( I) == A ()' for the model population at getot t, a 
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P(3It) LP(3nalt) 
Va 

L P(31a, t)P(alt) 
Va 

'" [ 3(t, a) 1f(t, a)] 
~ Agetot(t, a) x 1f*(t) 
Va 

Because the model outputs the total number of TB cases or total incidence, 

etc.. it is necessary to multiply the relevant output values by the respective time 

dependent detection rates used in the model (det + detND), before comparing the 

results with recorded/observed TB data. 

9.9 Calculating R, The basic case reproduction num­

ber 

In order to estimate R, the basic equation, 

is approximated by, 

R = number ~f secondary cases 
pnmary cases 

R _ Proportion of Infectious TB cases in first time period 1 
- Proportion of people with active infectious TB x Exit Rate 

Figure 9.3 highlights the relevant part of the model flow diagram 9.1 used in 

calculating R. 
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Figure 9.3: Flow diagram of states and parameters in the TB model used to esti­

mate the reproductive number. 

Exogenous or endogenous 
(re)infection 

NOnTBd~ (v(a) + )..(t)p(a)x(a))f(a)L(t, a) 

Primary TB 
)..(t)p(a)f(a)S(t, a) Successful treatment 

S(t, a) det + detND 
Ti(t, a) L(t, a) 

Deathfroy 
infectious TB: i Self/natural cure: n 

This can be simplified into one combined input to the Infectious TB state and 

one combined output rate: 

e Infectious TB Incidence Infectious TB -+ Exit Rate 

Thus, 

ExitRate = det + detN D + n + fJ,i + fJ, 

and letting Rl be the incidence ofinfectiousTB, 

R1(t, a) = )..(t)pfS(t -1, a-I) + (v + )..(t)px)fL(t -1, a-I) 
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Standardising Rl in the normal way and summing over a gives: 

R (t ) 1r(t,a) 
R* t _ "" 1 ,a x 1r(t,a) 

1 ( ) - ~ Agetot(t, a) 

The proportion of Infectious TB at time t, 

T _ "" [ ~(t, a) 7T"(t, a) ] sum i - L... x =---,---,-,.......:-...,... a Agetot(t, a) La 7T"(t, a) 

Thus, 

R t = Rt(t) 
() sumTi x ExitRate 

9.10 Calculating TB relapses 

The proportion of relapses from Infectious TB, non-infectious TB and self/natural 

cure is calculated by the equation: 

relapse(t, a) = r (Fi(t - 1, a-I) + Fn(t - 1, a-I)) 

+rn (Ni(t -1, a-I) + Nn(t - 1, a-I)). 

This is used to fine tune the estimate of 'new TB cases' when fitting the model 

output to 'new cases' recorded data. 

9.11 Calculating the percentage decrease in TB In-

cidence 

It was decided to include a calculation of the percentage decrease in TB incidence 

as one of the outputs of the model in order to compare with recent data collected 

from Morocco. This data indicates that the incidence ofTB in very young children 
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is falling at more than 10% per year. But that TB incidence in the population as 

a whole is only falling at around 3 to 4%. It is reasonable to assume that children 

with TB must have been recently infected and it therefore seems reasonable to 

assume the decline in incidence in young children approximates the decline in 

transmission of the disease. The slower rate of decline over all ages as opposed 

to the decline in disease transmission seems indicative of the stagnation effects 

previously described. Thus, this apparent difference in the two observed rates of 

decline are of in~erest to those studying and devising TB control strategies. 

Calculating the percentage decrease in TB incidence involves measuring the 

gradient of the decline in TB. The relationship between the model output of TB 

incidence per 100,000, per year, and time in years is generally exponential for 

each age category. Thus taking natural logs of the output produces a fairly linear 

relationship so that aline of best fit in the standard form ofy = mx+c can be fitted 

to the data. Here y, the response variable, is TB incidence per 100,000 and x, the 

explanatory variable, is time in years. The line is fitted by the least squares method 

and can be fitted to however many years of data seem appropriate/or of interest. 

The percentage decline in TB is therefore taken as the negative of the gradient of 

the fitted line multiplied by 100. These values are then plotted on a scatter graph. 

The average rate of percentage decline is calculated by applying the same 

method to the average values of TB incidence taken across all age categories for 

each year. 

9.12 Adapting demographic data for input to model 

The TB compartmental age-dependent model requires age dependent demographic 

data as an input. It also needs to be in a specific format, namely proportions 

of the population in one year age steps. This section contains a description of 
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the smoothing techniques employed to adapt the given demographic data from 

Morocco and the Netherlands into the required format. 

The smoothing and polynomial fitting methods described in this section are 

illustrated using the Moroccan age data set for 1980 to 2001. 

1. The TB model does not discriminate between the sex of individuals, so the 

age distribution data, originally split into males and females, is first com­

bined and then transformed into population proportions: 

Let M be the number of males in age category a in year t and let F be 

the number of females in age category a in year t, then, the proportion of 

population in age category a in year tis, Total popula1:On In year t' 

I ~:~ges I 0-4 
5-9 

1980 

1981 

2000 

2001 

0.123665388 0.122006842 

0.123745145 0.121828179 

0.124224901 0.122413433 

0.l24211465 0.122428689 

... 65-85 
toW I 

0.046802115 1 

0.046864753 1 

0.04587891 1 

0.045872189 1 

2. Dividing through by the range of each age category transforms the data into 

age categories of length 1 year: 
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Age 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1980 

0.024733078 

0.024733078 

0.024733078 

0.024733078 

0.024733078 

0.024401368 

0.024401368 

0.024401368 

0.024401368 

0.024401368 

Age 

65 0.002228672 

66 0.002228672 

67 0.002228672 

68 0.002228672 

83 0.002228672 

84 0.002228672 

85 0.002228672 

3. The proportion data is then smoothed by averaging: 

(0, 1, [2,] 3,4,) 5, 6, 7, 8, 9, 10, 11, 12, ... . 

0, (1,2, [3,] 4, 5,) 6, 7,8,9, 10, 11, 12, ... . 
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where, ( ) surrounds the values to be averaged and [ ] denotes where the 

averaged value is to be placed. 

Three different averaging ranges were used, one after another, to take into 

account the increasing lengths of the original age categories: 1st averaging 

range = 5; 2nd averaging range = 10; 3rd averaging range = 20. 

4. A polynomial is then fitted to the smoothed proportion data: 

t, [ej jt (k - Xi)] 

C1(k - x2)(k - X3) ... (k - Xn) 

+C2(k - xl)(k - X3) ... (k - Xn) ... 

+Cn(k - xl)(k - X2) ... (k - XlO) 
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where Yk = proportion data for age k (1 to 86), Xi = selected age values at 

which the polynomial passes through the respective proportion values, Cj = 

Coefficient values for each selected (Xi) age value. 

The final population values are obtained by exponentiating log(Yk) for each 

k. 

5. Ext:r:apol ati on: The coefficient values, Cj, can be used to create population 

data for years prior to 1980 or after 2001. This can be used to warm-up the 

computer model or project outcome results into the future. 

9.13 Fitting the compartmental model to the TB data 

sets from the Netherlands and Morocco 

The following chapters describe the fitting and sensitivity analysis of this compart­

mental model to the TB data sets from the Netherlands and Morocco, as initially 

analysed by the parametric regression models in chapters 5, 6 and 8. The UK data 

set was not used as it only contains TB data from white males and the model is not 

built to make this distinction between gender and ethnicity. 

9.13.1 Parameter Estimation 

Starting values for parameter estimates were taken from the various literature avail­

able in the area including C.Dye et. al. [14][15]. 

As the objective was to investigate the sensitivity and behaviour of the model 

it was necessary to get a reasonable initial fit to each data set. Maximum likeli­

hood methods with the numerical optimisation algorithm NeIder-mead were used 

to accomplish this. The large number of parameters caused the NeIder-mead algo­

rithm to be very slow and unstable. The parameter estimates were therefore further 
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adapted by hand in order to produce a fit to the data that could be used as a base 

line for the sensitivity analysis. 

Various functions were experimented with for the different age dependent pa­

rameters. The default setting was two age-specific rates for each age dependent 

parameter with a cut-off age of 15. The specifics of the age dependent functions 

used when fitting the model to the Dutch and Moroccan data sets are described in 

detail in chapters 10 and 11 respectively. These two chapters also contain extensive 

descriptions of the model sensitivity analysis and results for each country. 



Chapter 10 

Fitting and Sensitivity Analysis of . 

Compartmental TB Model using TB 

case data from the Netherlands 

10.1 Fitting to Dutch TB notification data 

The emphasis of this work is on examining the ability of a compartmental model 

to fit to TB data from countries experiencing an aging of their population and the 

aging of the TB epidemic. The Netherlands is considered to be such a countIy. 

Thus, after producing a reasonable fit to the Dutch data, most of the work in this 

chapter concentrates on the sensitivity analysis of the model. 

The outcome investigated was the number ofTB cases per 100,000 of po pula­

tion for each of the 8 age groups, for years, 1952 to 1994. The model estimates the 

case data by manipulating the TB Incidence values, I(t,a). 

A selection of different starting values and age dependent functions were tried 

for the various model parameters. Initial fitting was carried out using a Nelder­

mead optimisation algorithm to minimise the least squares error in the fit to the 

120 
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data. The NeIder-mead method becomes extremely slow when attempting to opti­

mize a 'large' number of parameters at once. Because of the large number of po­

tentially important parameters in the model this fitting technique was only feasible 

to be carried out on a few of the parameters at a time. Even so, the NeIder-mead 

program still showed signs of instability implying a large degree of irregularity and 

complexity in the interactions of the parameters and resulting output of the model. 

The resulting parameter values from these fittings were therefore entered into the 

model and further fitting to the data carried out by hand. 

Tables 10.1 and 10.2 contain the input parameter values that produced the fits 

used as the base values for subsequent sensitivity analysis. The immunity and 

natural/self cure variables and associated parameters were set to zero due to their 

insignificant effect on the model results and in order to simplify the model for 

analysis. Parameter 'v', rate at which latent infections become TB cases by en­

dogenous re-activation, was calculated in the model using the age dependent func­

tion v = vle
21n

j;) (a-30), where Vl is the initial value of the parameter shown in 

Table 10.1 for ages :2: 15 and a = age step. The main feature for this parameter 

that the selected function had to capture, was a very slow increase in ages 15 to 

approx 60 followed by a sharp increase in value. This mirrors the current bio­

logical understanding of the disease, that as a person ages the immune system is 

less likely to be able to keep latent infection at bay and thus re-activation disease 

is more likely to occur in the elderly than in younger healthier individuals. Fig­

ure 10.1 shows how the selected exponential function for parameter 'v' captures 

this age dependent trend. 

It should be noted in this case that the DOTS variables and mechanisms built 

into the model are used to represent a general increase in case finding and cure 

rate, and not to represent the actual DOTS regime as put forth by the WHO. 
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Fitting to Dutch TB notification data 

Parameter Description Initial Value 

.\(1) Force of infection 0.18 

x(age::::)S) Proportion of re-infections which is susceptible O.lS 

x(age> IS) to developing TB within one year O.lS 

p(age~lS) Proportion of infected susceptibles which 0.0371 

p(age> IS) develop progressive primary TB within a year 0.178S 

v(age~lS) rate at which latent infections become TB cases 1.0E-07 

v(age>lS) by endogenous re-activation 2.8S7E-06 

J(age~lS) Proportion of progressive primary cases 0.0992 

J(age>lS) which become infectious 0.4439 

/Li Death rate for infectious TB 0.3126 

/Ln Death rate for non-infectious TB 0.2307 

r Rate of relapse from failed treatment to active TB 0.3 

w Rate of smear conversion from non-infectious to 0.0181 

infectious TB 

e exponential rate of decline in contact rate between 0.03S 

TB cases and others 

E Relative case detection rate of non-infectious cases O.S 

<P Proportion offailed treatment cases which is infec- 0.S746 

tious 

Table 10.1: Parameter values obtained by fitting TB model 

outputs to Dutch TB notification data. 
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Fitting to Dutch TB notification data continued 

Parameter Description Initial Value 

det Rate at which TB cases are found and treated under 

DOTS 

cure Proportion of treated cases gIVen curative 

chemotherapy under DOTS 

detNotDot Rate at which TB cases are found and treated under 

a previous non-DOTS regime 

cureNotDot Proportion of treated cases given curative therapy 

under a previous non-DOTS regime 

start date of model 

Time step (in part of years) 

finish date of model 

Date at which DOTS interventions begin 

Duration of introductory period of DOTS (in years) 

Date at which Non-Dots interventions begin 

model age limit (in years) 

model age cut off for age dependent parameters (in years) 

Table 10.2: Parameter values obtained by fitting TB model 

outputs to Dutch TB notification data (continued). 

0.8 

0.9 

0.7 

0.75 

1952 

0.5 

1994 

1965 

10 

1952 

100 

15 
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0.0012 

0.001 

0.0008 
.l!l 
~ 

0.0006 

0.0004 

0.0002 

0 
15 35 55 75 95 

age (years) 

Figure 10.1: Plot of the function used for the model parameter v = v I e21~g) (a-30), 

rate at which latent infections become TB cases by endogenous re-activation; 

where VI is the initial value of the parameter for ages 2': 15 and a = age step 

The fits to the data that the above described parameter values and parameter 

function produce are shown in graphs 10.2 to 10.4. It is noticeable that the model 

was unable to fit to the initial years data (1952) for the adult age ranges, although 

many different warm-up scenarios were tried. It is also obvious the shape of the 

line fit does not vary across the 8 age ranges, hence although the fit looks good for 

the first three age ranges it soon fails to capture the 'flattening' of the curve in the 

data in the five older age groups. 

Thus despite the complexity of the compartmental model it seems unable to 

fully capture the age dependent effects in the TB data Thus the foHowing sections 

describe the further investigation into the model's ability to fit to the time and age 

characteristics in the Dutch TB data. 
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Figure 10.2: (a)-(h): Plots of the fit for the compartmental model to the Dutch TB 

data, for each of the 8 age ranges. 
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Figure 10.3: (a)-( c) : Plots of the fit for the compartmental model to the Dutch TB 

data, for three selected years. 
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Figure 10.4: (a)-(c) : Plots of the fit for the compartmental model to the Dutch TB 

data, over the years 1952 to 1994. 
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10.2 Sensitivity analysis using Dutch TB notification 

data 

The aim is to explore how varying the values of each input parameter affects the 

outcome variable. The value of each parameter used to produce a fit to the data as 

displayed in the previous section is referred to as the base val ue. Each parameter 

is taken in turn and the model run with anew value, a percentage of the base value, 

for that parameter. The percentages by which the parameter values are varied were 

selected to show a representative pattern of how the outcome variable is affected. 

These sensitivity results are displayed visually in graphical form. 

The parameters were found to behave in an expected logical manner, explain­

able by the epidemiology of TB, apart from three notable exceptions. Varying 

p(for ages 15+) - the proportion of infectious susceptibles which develop progres­

sive primary TB in 1 year, x(for ages 15+) - the proportion ofre-infections which 

is susceptible to developing TB within 1 year, and r - the rate of relapse from failed 

treatment to active TB, affected the outcome in counter intuitive ways that were 

not easily explained by studying the model mechanisms. 

Some parameters were found to be more sensitive than others and most showed 

a distinctly non-linear behaviour. Varying these parameters one at a time failed 

to significantly improve the model's ability to better explain the age dependent 

characteristics of the data. 

The following sections contain detailed descriptions of the results of varying 

each parameter separately. 



CHAPTER 10 128 

10.2.1 Varying parameter value .\(1), "Initial Force of Infec-

tion". 

The parameter .:\(1) is varied by 20% and 50% of its base value (see table 10.3) to 

explore the effect of increasing the starting value of the force of infection. 

Table 10.3: Values of the parameter .:\(1), selected as input to the model 

50% ofbv 80% ofbv bv 120%ofbv 150% ofbv 

.:\(1) 0.09 0.144 0.18 0.216 0.27 

bv = base value 

In the first few years of the model run a 50% and 20% change in the starting 

value of .:\ produces a similar change in the outcome value (see figure 1O.S(a)). 

At half way through the model run (1974) a nonlinear effect can be seen (see 

figure 10.S(b)). In general an increase and decrease in .:\(1) can be seen to increase 

and decrease TB incidence respectively. This effect reduces with time (figures 10.6 

(a) to (c)). This behaviour seems logical; a higher initial force of infection would 

be expected to produce a higher TB incidence at least in the first few years until 

the other mechanisms (e.g. detection and cure rates) begin to have an effect. It is 

however interesting to note that by the middle of the time period TB incidence is 

virtually the same regardless of the initial force of infection value. 
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Figure 10.5: (a)-(b): Plots of the fit for the compartmental model to the Dutch TB 

data, for initial year 1952 and middle of time period 1974. 
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Figure 10.6: (a)-(c): Plots of the fit for the compartmental model to the Dutch TB 

data, over the years 1952 to 1994. 
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10.2.2 Varying parameter value B, "the exponential rate of decline 

in the contact rate between TB cases and others". 

The parameter e is varied by plus and minus 20% of its base value (see table 10.4) 

to investigate the effect of varying the exponential rate of decline in the contact 

rate between TB cases and others. 

Table 10.4: Values of the parameter e, selected as input to the model 

80% of base value base value 120% of base value 

e 0.028 0.035 0.042 

As there is no warm up, the e value at time 0 (1952) has very little initial effect 

on the outcome variable (figure 10.7(a)). The nonlinear effect of e increases with 

time as can be seen in figures 10.7 (b) and (c). 

There is a larger effect for ages 15-34, which are the ages generally accepted 

as having a higher risk of contracting primary TB (figure 10.7 (c)). Lower values 

of e and hence a slower exponential rate of decline in contact rate produce greater 

TB incidence. Higher values of e and hence a greater exponential rate of decline in 

contact rate produce smaller values of TB incidence. These results seem logical; 

a higher contact rate would be expected to increase transmission of disease and 

therefore increase TB incidence; a lower contact rate would be expected to lower 

TB incidence. 

The relative changes in outcome values for each age group produced by vary­

ing e also corresponds with current scientific thinking about the epidemiology of 

TB. The greatest variation in outcome occurs in ages 15-35 which are the ages 

generally accepted as having the highest risk of infection. As the epidemic ages 

the TB incidence in the older age groups is thought to be predominantly fuelled by 

re-activation disease which would not be overly affected by contact rate. 
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Figure 10.7: (a)-(c) : Plots of the fit for the compartmental model to the Dutch TB 

data, for three selected years. 
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10.2.3 Varying parameter value p (for ages 15+), "the propor­

tion of infected susceptibles which develop progressive 

primary TB in one year". 

The parameter p (for ages 15+) is varied by 20% and 80% of its base value (see 

table 10.5), to investigate the effect of increasing the proportion of infected adult 

susceptibles which develop progressive primary TB in one year. 

Table 10.5: Values of the parameter p(ages 15+), selected as input to the model 

20% ofbv 80% ofbv bv 120% ofbv 180% ofbv 

p(ages 15+) 0.036 0.143 0.179 0.214 0.321 

bv = base value 

For time 0 (1952) the variation in parameter p (for ages 15+) is reflected in a 

linear way in the outcome values; a larger value ofp produces greater TB incidence 

and a smaller value of p produces less TB incidence (see figure 10.8 (a» This 

pattern is carried on through the time period in all ages 15 and greater, although 

the variation in outcome reduces with time and becomes negligible. 
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These results seem logical ; if a higher proportion of infectious susceptibles 

develop progressive primary TB then it would be expected that the incidence of 

TB would increase. However, this trend is reversed for chi Idren aged 0-14. After 

the first few years of the time period a decrease in the proportion of infectious 

adults aged 15+ which develop primary TB causes an increase in TB incidence for 

children aged 0-14. 

This is counter intuitive and close analysis of the equations (including system­

atic simplification) and mechanisms of the model has thus far produced no obvious 

reasons as to why this effect occurs. This would need further investigation. 

Figure 10.8: (a)-(c) : Plots of the fit for the compartmental model to the Dutch TB 

data, for three selected years. 
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Figure 10.9: (a)-(c) : Fits of the compartmental model to the Dutch TB data. 
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10.2.4 Varying parameter value p (for ages 0-14), "the propor­

tion of infected susceptihles which develop progressive 

primary TB in one year". 

The parameter p (for ages 0-14) is varied by pI us and minus 500/( of its base val ue 

(see table 10.6) to investigate the effect of increasing the proportion of infected 

susceptibles, aged 0-14, which develop progressive primary TB in one year. 

Table 10.6: Values of the parameter p(agesO-14), selected as input to the model 

50% of base value base value 150% of base value 

p(ages 0-14) 0.0186 0.0371 0.0557 

Increasing and decreasing the proportion of infected susceptibles aged 0-14 

which develop primary TB, increases and decreases the TB incidence respectively. 

The effect of this parameter on the outcome variable is mostly confined to the 

0-14 age group (see figure 10.10 (a»).lt has little effect on the overall TB incidence 

(seefigme 10.10 (b) . 

Figme 10.10: (a) - (b) : Plot of the fit for the compartmental model to the Dutch 

TB data, over the years 1952 to 1994. 
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10.2.5 Varying parameter value v (ages 15+), "the rate at which 

latent infections become TB cases by endogenous reacti-

vation". 

The parameter v (for ages 15+) is varied by plus and minus 50% of its base value 

(see table 10.7) to investigate the effect of increasing the rate at which latent infec­

tions in those aged over 15 become TB cases by endogenous reactivation. 

Table 10.7: Values of the parameter v(ages 15+), selected as input to the model 

50% of base value base value 150% of base value 

v(ages 15+) 1.43E-06 2.86E-06 4.3E-06 

Increasing the value of v (for ages 15+) in conjunction with the exponential 

fW1ction for the parameter (as described at the beginning of this chapter) increases 

TB incidence, especially in the older age groups (see figures 10.11 (a) to (c» . This 

is in line with current epidemiological views of how re-activation disease occurs 

in an aging population. 

Figure 10.11 : (a)-(c): Plots of the fit for the compartmental model to the Dutch TB 

data, for the last 3 age ranges. 
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10.2.6 Varying parameter value x (for ages 15+), "Proportion 

of re-infections which is susceptible to developing TB 

within one year". 

The parameter x (for ages 15+) is varied by 20% and 70% of its base value (see ta­

ble 10.8) in order to explore the effect of increasing the proportion of re-infections 

which are susceptible to developing TB within one year. 

Table 10.8: Values of the parameter x(ages 15+), selected as input to the model 

30% ofbv 80% ofbv bv 120% ofbv 170% ofbv 

x(ages 15+) 0.045 0.12 0.15 0.18 0.255 

bv = base value 

A large decrease in the value of x (for ages 15+) has a large and unexpected 

effect on the outcome variable, TB incidence, especially in the ages 0-45 (see 

figures 10.12 (a) to (d)). This effect can also be seen in figures 10.13 (a) to (c), 

showing the trend in TB incidence for certain years, over all 8 age groups. 

At time 0 (1952), a 20% or 70% change in the value ofx(ages 15+) produces a 

relative change in the outcome variable; with a larger value ofx producing higher 

TB incidence and a small value of x producing lower TB incidence (figure 10.13 

(a)). This trend is reversed however, for ages 0-35, by around 1974, approximately 

halfway through the time period (figure 10.13 (b)). By the end of the time period 

(1994) the trend is reversed for all ages, with a larger value ofx producing far less 

TB incidence than the smaller values ofx (figure 10.13 (c)). The largest variation 

in outcome values occurs in the 15-35 age groups. 

These results seem epidemiologically counter intuitive and would benefit from 

further investigation (which has not been carried out to date). 
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Figure 10.12: (a)-(h): Plots of the fit for the compartmental model to the Dutch 

TB data, for each of the 8 age ranges. 
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Figure 10.13 : (a)-(c): Plots of the fit for the compartmental model to the Dutch TB 

data, for three selected years. 
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10.2.7 Varying parameter value x (for ages 0-14), "the propor­

tion of re-infections which is susceptible to developing 

TB within one year". 

The parameter x (for ages 0-14) is varied by plus and minus 100% of its base 

value (see table 10.9) in order to explore the effect of varying the proportion ofre­

infected children, aged 0-14, which are susceptible to developing TB within one 

year. 

Table 10.9: Values of the parameter x(ages 0-14), selected as input to the model 

0% of base value base value 200% of base val ue 

x(ages 0-14) 0 0.15 0.3 

In contrast with the previous related parameter x(ages 15+), this parameter 

behaves linearly and logically. An 100% increase in the proportion of reinfections 

in ages 0-14 which are susceptible to developing TB within one year, produces a 

relatively small increase in TB incidence and correspondingly, an 100% decrease 

in x(ages 0-14) produces a relatively small fall in TB incidence. This effect is only 
I 

noticeable in the first half of the time period fo r children aged 0-14 (see fi gure 
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10.14). 
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Figure 10.14: Plot of the fit for the compartmental model to the Dutch TB data, 

for ages 0-14. 

10.2.8 Varying parameter value F (for ages 15+), "the propor­

tion of progressive primary cases which become infec-

tious within one year". 

The parameterF (for ages 15+) is varied by plus and minus 100% of its base value 

(see table 10. 'I 0) to explore the effect of varying the proportion of progressive 

primary cases in those aged 15+ which become infectious within one year. 

, Table 10.10: Values of the parameter F(ages 15+), selectedas input to the model 

0% of base value base value 200% of base val ue 

F(ages 15+) 0 0.444 0.888 

Initially at time 0 (1952) an increase in F(ages 15+), the proportion ofprogres­

sive primary cases in ages 15+ which become infectious within one year, causes 

a corresponding increase in the amount of TB incidence. Likewise, a decrease in 

F(ages 15+) produces a corresponding decrease in TB incidence (figure 10.16 (a». 

This trend is reversed by 1974 for all ages except the very elderly (see figure 10.] 6 
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(b)) However, by the end of the time period (1994) this trend has reverted back 

again (see figure 10.16 (c)) so that an increase in F(ages 15+) causes an increase 

in TB incidence and visa versa. 

It would make logical sense that if more progressive primary cases become 

infectious this would in turn cause an increase in TB incidence. However for 

adults aged 15+ the opposite occurs in the middle years (approx 1964-1980) (see 

figures 1 0.15 (b) to (h)). This phenomenon is repeated for children aged 0-15 over 

almost the entire time period (figure] 0.15 (a)). 

A possible reason for these illogical effects is that by varying the base value 

by 100% the resulting parameter values are well outside most ranges of values 

considered biologically reasonable for this parameter. For example, Styblo [48], 

Murray et al [18] and Dye et al [14, 15] quote a range for the parameter values of 

approx 0.5 to 0.65 . It is therefore plausible that the values used in this sensitivity 

analysis are unreasonably small or large. Varying the value by less than 80o/c 

causes no visible variation in the outcome variable and can therefore be considered 

as not having a significant effect on the outcome. 

Figure 10.15 : (a)-(h) : Plots of the fit for the compartmental model to the Dutch 

TB data, for each of the 8 age ranges. 
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Figure 10.16: (a)-(c): Plots of the fit for the compartmental model to the Dutch TB 

data, for three selected years. 
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10.2.9 Varying parameter value F (for ages 0-14), "the propor­

tion of progressive primary cases which become infec-

tious". 

The parameter F (for ages 0-14) is varied by plus and minus lOOt( of the base value 

(see table 10.11) in order to investigate the effect of increasing the proportion of 

children aged 0-14 with progressive primary cases which become infectious. 

Table 10.11: Values of the parameter F( ages 0-14), selected as input to the model 

0% of base val ue base value 200% of base value 

F(ages 0-14) 0 0.099 0.198 

The effect of varying the proportion of progressive primary cases which be­

come infectious in those aged 0-14 is minimal. An 100% increase in the value of 

F(ages 0-14) produced a tiny increase in TB incidence and an 100% decrease in 

F(ages 0-14) produced a minute fall in TB incidence, for ages 0-14 (figure 10.17). 

This behaviour is as would be expected, in that a higher proportion of primary 

cases becoming infectious would be expected to cause an increase in TB inci­

dence. Varying this variable has no visible effect on the outcome variable for those 

aged 15 and over. 

sa -tJo~d 1B irdct!nlr 'rt~sI).1 4:.~ 

eo - fJodd TB iOOctnO!' frt atC5 0..1 4: base 

20 

10 
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1552 t9::! 1964 ISiD 1915 ISS2 19S8 1994 

IJln& (yS911) 

Figure] 0.17: Fits of the compartmental model to the Dutch TB data, for ages 

0-14. 
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10.2.10 Varying parameter value ¢, "the proportion of failed 

treatment cases which is infectious". 

The parameter c/J is varied by plus and minus 74% of the base value (see ta­

ble 10.12) in order to explore the effect of varying the proportion of failed treat­

ment cases which is infectious. 

Table 10.12: Values of the parameter c/J, selected as input to the model 

26% of base value base value 174% of base value 

c/J 0.1494 0.5746 0.9998 

The particular value of 74% was chosen to increase 

the base value to approximately 1, the maximum value 

Increasing and decreasing the proportion of failed treatment cases that become 

infectious produced a very small corresponding increase and decrease in TB inci­

dence. The change in outcome values were slightly larger during the middle of the 

time period (see figure 10.18 (a) and (b)). 

Figure 10.18: (a)-(b): Plots of the fit for the compartmental model to the Dutch 

TB data, for selected years. 
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10.2.11 Varying parameter value w, "the rate of smear conver­

sion from non-infectious to infectious TB". 

The parameter w is varied by plus and minus 100% of its base value (see ta­

ble 10.13) in order to examine the effect of varying the rate of smear conversion 

from non-infectious to infectious TB. 

Table 10.13 : Values of the parameter w, selected as input to the model 

0% of base val ue base value 200% of base val ue 

w 0 0.0181 0.0362 

Increasing and decreasing the rate of smear conversion from non-infectious to 

infectious TB by 100%, produced a very small corresponding and logical increase 

and decrease in TB incidence. The change in outcome values is slightly larger 

during the first half of the time period (see figures 10.19 (a) to (c» . 

Figure 10.19: (a)-(c) : Plots of the fit for the compartmental model to the Dutch TB 

data, for three selected years. 
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10.2.12 Varying parameter value fi,i, "the death rate for infec­

tious TB". 

The parameter fJ,i is varied by plus and minus 50% of its base value (see ta­

ble 10.14) to examine the effect of increasing the death rate from infectious TB. 

Table 10.14: Values of the parameter fJ,i, selected as input to the model 

50% of base value base value 150% of base value 

fJ,i 0.156 0.313 0.469 

An increase in the death rate from infectious TB, causes a decrease in TB inci­

dence. Likewise, a decrease in the infectious TB death rate increases the incidence 

ofTB (figures 10.21 (a) and (b)). The variation in outcome values are most pro­

nounced in the middle of the time period (see figures 10.20 (a) and (b)). 

It makes sense that increasing the death rate of those with infectious TB and 

hence eliminating an increased amount of potential transmitters of the disease 

would have the effect of decreasing TB incidence. It therefore also makes sense 

that decreasing the death rate of those with infectious TB and hence leaving an 

increased amount of potential transmitters of the disease in the community would 

have the effect of increasing TB incidence. 

Decreasing the infectious TB death rate seems to have a larger impact on TB 

incidence than increasing the death rate by an identical percentage of the base 

rate. This may be due to an interaction with parameters such as the detection and 

cure rates. Decreasing fJ,i leads to increased transmission but none of the other 

parameters that could counter act this effect and lessen TB incidence are increased 

in value. They are left at their base values which coped with consequences of the 

base value ofTB death rate but not the increased rate. 
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Figure 10.20: (a)-(b): Plots of the fit for the compartmental model to the Dutch 

TB data, for years 1974 and 1994. 

• RCOOfdr:d Tn Oal.'l 
- r.1odei TO lnciklnca: -% 
- ModelTB r.::ijenoc; base 
- ModclTO Im:;ijenco: +% 

(a) 1974. 

"9,gmups 
• Rcconiod 11)OJtD - _ ,TO ncIOcooc:·iI 

- Model TS i\C:i1CnCe: base 
- Modol m nciIeoor. '" 

(b) 1994. 

Figure. 10.21: (a)-(b): Plots of the fit for the compartmental model to the Dutch 

TB data, over the years 1952 to 1994. 
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10.2.13 Varying parameter value J-lm "the death rate for non­

infectious TB". 

The parameter J.L.n is varied by plus and minus 80% of its base value (see ta­

ble 10.15) in order to investigate the effect of increasing the death rate from non­

infectious TB. 

Table 10.15 : Values of the parameter Pn, selected as input to the model 

20% of base value base value 180% of base value 

Pn 0.046148 0.23074 0.415332 

The effect of increasing and decreasing the death rate from non-infectious TB 

is almost identical to the effect of varying the death rate from infectious TB. 

An increase in pn causes a decrease in TB incidence and a decrease in Pn 

causes an increase in TB incidence (see figures 10.22 and 10.23). This seems to 

be a logical result as an increase in the death rate of those with non infectious TB 

would generally decrease the prevalence of non infectious TB in the population 

and would also therefore decrease the number of non-infectious cases becoming 

infectious by smear conversion. 

Figure 10.22: (a)-(b): Fits of the compartmental model to the Dutch TB data, 1974 

and 1994. 
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Figure 10.23: (a)-(b): Plots of the fit for the compartmental model to the Dutch 

TB data, over the years 1952 to 1994. 
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10.2.14 Varying parameter value E, "the relative case detection 

rate of non-infectious cases". 

The parameter E is varied by plus and minus 100% of its base value (see ta­

ble 10.16) to investigate the effect of increasing the relative case detection rate 

of non-infectious cases 

Table 10.16: Values of the parameter E, selected as input to the model 

0% of base value base value 200% of base value 

E 0 0.5 1 

An 100% increase in E, the relative case detection rate of non-infectious cases, 

causes a small increase in TB incidence. A decrease in E causes a small decrease 

in TB incidence. The effect is most notable at time 0 (1952) (figure 10.24 (a» . 

This phenomenon although seeming to go against logic, occurs because the model 

results, i.e. number ofTB cases, are multiplied by E along with the relevant detec­

tion rates in order to be comparable with the observed data. Hence a larger value 

of E would increase the value of the outcome variable. This effect is most notice­

able at time 0 (1952) because there is no warm-up and therefore no time for other 
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factors/parameters to start reducing TB incidence. 

Figure 10.24: (a)-(c): Plots of the fit for the compartmental model to the Dutch TB 

data, for three selected years. 
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10.2.15 Varying parameter value r, "the rate of relapse from 

failed treatment to active TB". 

The parameter r is varied by plus and minus 80% of its base value (see table 10.17) 

to examine the effect of increasing the rate of relapse from failed treatment to 

active TB. 

Table 10.17: Values of the parameter r, selected as input to the model 

20% of base value base value 180% of base value 

r 0.06 0.3 0.54 

A decrease in r, the rate of relapse from failed treatment to active TB, causes an 

increase in TB incidence. Likewise, an increase in r causes a very slight decrease 

in TB incidence (see figures 10.25 (a) and (b». 

This appears counter intuitive and would, like the previous parameters p( 15+) 

and x(15+), benefit from further investigation. 
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Figure 10.25 : (a)-(b): Plots of the fit for the compartmental model to the Dutch 

TB data., for selected years. 
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10.2.16 Varying parameter value 'det', "the rate at which TB 

cases are found and treated under a second improved 

control regime". 

The parameter 'del' is varied by plus and minus 25% of its base value (see ta­

ble 10.18) to investigate the effect of varying the rate at which TB cases are found 

and treated under a second i'mproved control regi me. 

Table 10.] 8: Selected values of Parameter 'del', used as input to the model. 

75% of base value base value 125% of base value 

'def 0.6 0.8 1 

This new improved control regime is brought in around 1974. Increasing the 

detection rate initially has the effect of increasing TB incidence. This is because 

more (or in this case all TB cases) are being found and identified (figure 10.26 (a) 

and the model results are multiplied by the time dependent detection rate in order 

to be comparable to the observed data. By the end of the time period (1994) the 

increased detection rate (in conjunction with a good cure rate) is decreasing TB 

incidence in the younger age ranges 0-45 years (figure 10.26 (b» . But varying this 
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parameter by 25% of its base value had very little over all effect on TB incidence 

(figures 10.26 (c». This is probably due to the fact that the previous control regime 

had a good detection and cure rate and had already been in effect for the previous 

13 years. 

Figure 10.26: (a)-(b): Plots of the fit for the compartmental model to the Dutch 

TB data, for two selected years. (c) Plot of the fit for the compartmental model to 

the Dutch TB data, over all years, for all ages. 
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10.2.17 Varying parameter value 'DetNotDot', "the rate at which 

TB cases are found and treated under a previous (non­

DOTS) less efficient regime". 

The parameter 'DetNotDot' is varied by plus and minus 30% of base value (see 

table 10.19) to investigate the effect of varying the rate at which TB cases are found 

and treated under a previous (non-DOTS) less efficient regime. 

Table 10.19: The values of parameter 'DetNotDot' selected as input to the model 

70% of base value base value 130% of base val ue 

'DetNotDot' 0.49 0.7 0.91 

At time 0 (1952) the increased detection rate increases the TB incidence due 
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to the same reasons explained previously for parameter ' det' (figure 10.27 (a» ; 

i.e. increased detection rates cause more cases to be identified hence inflating TB 

incidence and the model results are multiplied by the time dependent detection 

rate in order to be comparable to the observed data. By 1974 however, the new 

improved control regime has taken over. This new regime has a detection rate 

of 0.8. Thus it is detecting less cases than the previous regime 's increased rate 

of 0.91 , but more than the previous regimes base and decreased rates of 0.7 and 

0.49 respectively. For these reasons we see a reversal of the trend by 1974 so 

that the increase in the value of parameter 'DetNotDot' causes a decrease in TB 

incidence and visa versa (figure 10.27 (b» . By 1994 the trend has reverted back to 

an increase in detection rate increasing TB incidence as explained above for time 

o (figure 10.27 (c» . 

Figure 10.27: (a)-(c) : Plots of the fit for the compartmental model to the Dutch TB 

data, for three selected years. 
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10.2.18 Varying parameter value 'cure', "the proportion of treated 

cases given curative chemotherapy under a second im­

proved control regime". 

The parameter 'cure' is varied by 11%, 50% and 100% of its base value (see ta­

ble 10.20) in order to investigate the effect of increasing the proportion of treated 

cases given curative chemotherapy under a second improved control regime. 

Table 10.20: Values of the parameter 'cure' , selected as input to the model 

0% ofbv 50% ofbv 89% ofbv bv 111% ofbv 

'cure 
, 

0 0.45 0.801 0.9 0.999 

bv = base value 

Although the effect of increasing and decreasing the proportion of treated cases 

cured under a second improved regime seems non-linear it still follows a logical 

pattern in that increasing cure rates produce less TB incidence and visa versa (fig­

ures 10.28 (a) and (b)). The effect on the output starts at the time the new regime 

using the 'cure ' parameter is first introduced in 1965 (figUJes (a)-(c)) . 

Figure 10.28 : (a)-(b): Plots of the fit for the compartmental model to the Dutch 

TB data, for selected years. 
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Figure 10.29: (a)-(c): Plots of the fit for the compartmental model to the Dutch TB 

data, over the years 1952 to 1994. 
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10.2.19 Varying parameter value 'CureNotDot', "the propor­

tion of treated cases given curative chemotherapy un­

der a previous (non-DOTS) less efficient control regime". 

The parameter 'CureNotDot' is varied by 30% and 90% of its base value (see 

table 10.21) to investigate the effect of increasing the proportion of treated cases 

given curative chemotherapy under a previous (non-DOTS) less efficient control 

regIme. 

Table 10.21: Values of the parameter ' CureNotDot' , selected as input to the model 

10% ofbv 70% ofbv bv 130% ofbv 

'CureNotDot' 0.075 0.525 0.75 0.975 

bv = base value 

The cure rate of the initial control regime has not had any time to effect the 

output at time 0 (1952). Immediately after time 0, however, the effects of a very 

low cure rate (coupled with a fairly good detection rate) produces high TB i.nci­

dence and a very high cure rate produces low TB incidence as would be expected 

(see figure 10.30 (a)-(c)). 
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Figure 10.30: (a): Plots of the fit for the compartmental model to the Dutch TB 

data, for 1974. (b )-( c): Plots of the fit for the compartmental model to the Dutch 

TB data, over the years 1952 to 1994, for ages 0-14 and IS+. 
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The parameters of the compartmental model mostly behave in a non-linear way 

when applied to the data from the Netherlands (except perhaps for very small vari­

ations in value where they behave approximately linearly). It is also noticeable that 

they interact with each other in complicated and subtle ways that are not always 

obvious when examining the difference equations that drive the model. 

Some of the parameters produced a far greater relative effect in the outcome 

variable than others. In particular, € - the relative case detection rate of non­

infectious cases, w - the rate of smear conversion from non-infectious to infec­

tious TB, ¢ - the proportion of failed treatment cases which is infectious, and F -

proportion of progressive primary cases which become infectious within one year, 

have little effect on the outcome variable. However, it was found that eliminating 

these parameters did have a (large) effect on the output of the model , suggesting 

that these parameters although individually seeming relatively unimportant have 

significant interactions with the other model parameters. 

Varying the parameters one at a time did not significantly improve the model 
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fit to each of the age groups over time and therefore failed to significantly improve 

the fit to the age dependent characteristics. 

Most of the parameters caused an effect in the outcome variable, as would be 

expected when varied one at a time, keeping all other parameter values fixed. The 

behaviour and effect on the outcome variable for the most part is explainable by 

the epidemiology of TB. There were however a few notable exceptions. Para­

meters p(for ages 15+) - the proportion of infectious susceptibles which develop 

progressive primary TB in 1 year, x(for ages 15+) - the proportion ofre-infections 

which is susceptible to developing TB within 1 year, and r - the rate of relapse 

from failed treatment to active TB, effect the outcome variable counter intuitively. 

Despite further examination of the model, including systematically simplifying 

the difference equations while noting whether the particular effect in the outcome 

variable was affected, no obvious reason for these anomalies was discovered. A 

full understanding of the model and its results would therefore benefit from further 

investigation of the behaviour of these particular parameters and interactions ofthe 

parameters in the model. 



Chapter 11 

Fitting and Sensitivity Analysis of 

Compartmental TB model using 

Pulmonary TB case data from 

Morocco 

11.1 Fitting to Moroccan Pulmonary TB case data 

The emphasis of this work as with the Dutch data (chapter 10) is on examining the 

ability of a compartmental model to fit to TB data from countries with an aging 

population and aging of the TB epidemic. Morocco is considered to fall into this 

category of countries. Thus, after producing a reasonable fit to the Moroccan data, 

most of the work in this chapter concentrates on the sensitivity analysis of the 

model. 

The outcome investigated was the number of Pulmonary TB (PTB) cases per 

100,000 of population for each of the 8 age groups, for the years 1980 to 2000. 

The Pulmonary TB (PTB) cases are estimated using the Infectious TB Incidence 

156 
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values output by the model. 

A selection of different starting values and age dependent functions were tried 

for the various model parameters. Initial fitting was carried out using the Nelder­

mead optimisation method to minimise the least squares error in the model fit to 

the data. It was chosen for its general stability. However, the NeIder-mead algo­

rithm became extremely slow when attempting to optimise the large number of 

potentially important parameters in the model. It was therefore only feasible to 

carry out this optimisation technique on a few parameters at a time. Even so, the 

NeIder-mead program still showed signs of instability implying a large degree of 

irregularity and complexity in the interactions of the parameters and resulting out­

put of the model. The parameter values obtained from these fittings were therefore 

entered into the model and further fitting to the data carried out by hand. Ta­

bles 11.1 and 11.2 contain the input parameter values that were obtained and used 

to produce the fits used as the base values for subsequent sensitivity analysis. 

The immunity and natural/self cure variables and associated parameters were 

set to zero due to their insignificant effect on the model results and in order to 

simplify the model for analysis. 

Parameter 'p' (for ages 0-14), the proportion of infected susceptibles aged 0-

14 which develop progressive primary TB within one year, was calculated in the 

model using the age dependent function p = (40aOO) + ( 7~~O ) + P2, where P2 is the 

initial value of the parameter shown in Table 11.1 for ages :s: 15 and a = age step. 

The main feature for this parameter that the selected function had to capture, was 

a very slow increase in the parameter value in very young children with a sharper 

increase in value in the older ages to create a smoother transition to the p value for 

ages 15+. Figure 11.1 shows how the selected quadratic function for parameter 'p' 

(for ages 0-15) captures this age dependent trend. 

The parameters 'cure' and 'cureNotDot', proportion of treated cases cured un-
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der DOTS and a previous non-DOTS regime, respectively, were calculated in the 

model using the age dependent linear functions, cure = Co + Clt and cureNotDot 

= endo + endlt; where Co, Cl, cndo and endl are the initial values and t = time 

step. The main feature for this parameter that these selected functions had to cap­

ture, was a slow steady increase in both cure rates but with the constraint that the 

maximum value of 'cureNotDot' was less than the minimum value of 'cure' and 

that 'cure' must be less or equal to one (see figure 11.2). 

0.14 

0.12 
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0.08 

0.06 

0.04 

0.02 
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0 2 3 5 6 8 9 11 12 14 15 

age (years) 

Figure 11.1: Plot of the function used for the model parameter p = C;oo) + 
(7~~O ) +P2, proportion of infected susceptibles which develop progressive primary 

TB within one year; where P2 is the initial value of the parameter for ages ~ 15 

and a = age in half yearly steps 

The fits to the data that the above described parameter values and parameter 

functions produce are shown in figures 11.3 to 11.5. It is noticeable that the shape 

of the line fit does not· vary significantly across the 8 age ranges. Although the 

gradient of the line fit does change slightly over the age ranges, sloping in the 

early age ranges and leveling off in the last four age ranges, it is not a large enough 

change to match the gradient changes in the observed data. The fit to the percent­

age decrease in PTB cases (1994 to 2000) is reasonable for ages 15-65. The model 
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Fitting to Moroccan PTB case data 

Parameter Description Initial Value 

'\(1) Force of infection 0.2 

x(age::;IS) Proportion of re-infections which is susceptible 0.08 

x(age> IS) to developing TB within one year O.IS 

p(age::;15) Proportion of infected susceptibles which 0.005 

p(age> 15) develop progressive primary TB within a year 0.16 

v(age::; IS) rate at which latent infections become TB cases 0 

v(age>IS) by endogenous re-activation 2. 86E-03 

J(age::;IS) Proportion of progressive primary cases 0.04 

J(age>15) which become infectious 0.4439 

/-l Death rate for non-TB causes 0.174 

/-li Death rate for infectious TB 0.313 

/-In Death rate for non-infectious TB 0.231 

r Rate of relapse from failed treatment to active TB 0.3 

w Rate of smear conversion from non-infectious to 0.018 

infectious TB 

e exponential rate of decline in contact rate between 0.02 

TB cases and others 

E Relative case detection rate of non-infectious cases 0.5 

cp Proportion offailed treatment cases which is infec- 0.575 

tious 

Table 11.1: Parameter values obtained by fitting TB model 

outputs to Moroccan PTB case data. 
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Fitting to Moroccan PTB case data continued 

Parameter Description Initial Value 

det Rate at which TB cases are found and treated 

under DOTS 

cure Proportion of treated cases gIven. curative Co 

chemotherapy under DOTS 0.75 

detNotDot Rate at which TB cases are found and treated 

under a previous non-DOTS regime 

cureNotDot Proportion of treated cases given curative ther- endo 

apy under a previous non-DOTS regime 0.5 

warm-up period length (in years) 

start date of model 

Time step (in part of years) 

finish date of model 

Date at which DOTS interventions begin 

Duration of introductory period of DOTS (in years) 

model age limit (in years) 

model age cut off for age dependent parameters (in years) 

Date at which non-DOTS interventions begin 

Table 11.2: Parameter values obtained by fitting TB model 

outputs to Moroccan PTB case data (continued). 
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Figure 11.2: Plot of the function used for the model parameters cure = Co + CIt 

and cureNotDot = cndo + cnd1t , proportion of treated cases cured under DOTS 

and a previous non-DOTS regime, respectively; where Co, CI , cndo and end 1 are 

the initial values and t = time in half yearly steps 

underestimates the percentage decrease in PTB for children aged 0-14 and over 

estimates the percentage decrease for the elderly aged 65+ (see figure 11.4 (d)). 

Thus, again, despite the complexity of this compartmental model , the age de­

pendent effects of the TB data are not fully and satisfactorily explained by this 

fitting of the model. 

The following sections contain the further investigations into the ability of the 

model to capture effectively the age and time dependent trends in the Moroccan 

TB data set. 
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Figure 11.3 : (a)-(c): Plots of the fit for the compartmental model to the Moroccan 

confirmed PTB case data, for three selected years: 1980, 1990 and 2000. 
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Figure 11.4: (a)-(c) : Plots of the fit for the compartmental model to the Moroccan 

confirmed PTB case data, over the years 1980 to 2000. 
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Figure 11.5: (a)-(h): Plots of the fitted age dependent model to Moroccan PTB 

case data, 1980-2000, for each of the eight age groups. 
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11.2 Sensitivity analysis using Moroccan PTB case 

data 

The aim is to explore how varying the values of each input parameter effects the 

outcome variables, the number of infectious TB cases/100,000 and the percentage 

decline in infectious TB for years 1994 to 2000. The value of each parameter used 

to produce a fit to the data as displayed in the previous section is referred to as the 

base value. Each parameter is taken in turn and the model run with a new value 

(a percentage of its base value) for that parameter. The percentages by which the 

parameter values are varied were selected to show a representative pattern of how 

the outcome variable is effected. These sensitivity results are displayed visually in 

graphical form in the following sections. 

Most of the parameters exhibited behaviour that was as expected and explain­

able by the epidemiology of TB. There were some notable exceptions and these 

were the same parameters that were highlighted by the previous sensitivity analysis 

carried out with the Dutch data, namely, p(l5+), x(15+) and r. 

All the parameters in general exhibited non-linear behaviour apart from for 

very small variations in value when an approximately linear behaviour sometimes 

occurred. 

Varying the parameter values one at a time had very little to no effect on the 

model's ability to explain the age dependent characteristics of the data. However, 

increasing some of the more sensitive parameters at the same time did seem to 

improve the fit to the data for ages 0-34. 

The following sections set out the detailed results of varying the value of each 

parameter. 
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11.2.1 Varying parameter value A(l), "Initial Force of Infec-

tion". 

The parameter ),(1) is varied by plus and minus 30% of its base value (see tablel1.3) 

in order to investigate the effect of varying the initial val ue of the force of infection. 

Table 11.3 : Values of the parameter ).(1), selected as input to the model 

70% of base value base value 130% of base value 

).(1) 0.14 0.2 0.26 

A 30% increase and decrease in the inital force of infection causes a relatively 

large corresponding increase and decrease in PTB incidence as expected (see fig-

ures 11.6 (a) and (b). 

Increasing the ).(1) value has the effect of slightly decreasing the percentage 

decline in PTB over the last seven years of the time period, for ages 0-45, but 

slightly increasing the percentage decline for ages 45+. Decreasing the value of 

).( 1) has the opposite effect (figure 11. 7). 

Figure 11.6: (a)-(b): Plots of the fit for the compartmental model to the Moroccan 

confirmed pulmonary TB data, over the years 1980 to 2000. 
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Figure 11 .7: Plot of the fit for the compartmental model to the percentage decrease 

in the Moroccan confirmed pulmonary TB data, over the years 1994 to 2000. 

11.2.2 Varying parameter value B, "the exponential rate of decline 

in the contact rate between TB cases and others". 

The parameter () is varied by plus and minus 20% of its base value (see table]] .4) 

in order to investigate the effect of varying the exponential rate of decline in the 

contact rate between TB cases and others. 

Table 11.4: Values of the parameter e, selected as input to the model 

80% of base value base value 120% of base val ue 

e 0.016 0.02 0.024 

Decreasing and increasing the exponential rate of decline in the contact rate by 

20% ofits base value has a fairly large opposite effect on TB incidence (see figures 

11.8(a) and (b)) . This is as expected. If the contact rate declines more slowly there 

is more opportunity for mixing between cases and others and therefore a higher 

chance of individuals being infected with TB. 

Increasing e, the exponential rate of decline in the contact rate, has the effect of 

slightly increasing the percentage decline in PTB (over the years 1994-2000), for 
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ages 0-45, but slightly decreasing the percentage decline for ages 45+. Decreasing 

the value of () has the opposite effect (see figure 11.9). 

Figure 11.8: (a)-(b): Plots of the fit for the compartmental model to the Moroccan 

confirmed pulmonary TB data, over the years 1980 to 2000. 
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Figure 11.9: Plot of the fit for the compartmental model to the percentage decrease 

in the Moroccan confirmed pulmonary TB data, over the years 1994 to 2000. 
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11.2.3 Varying parameter value p (for ages 15+), "the propor­

tion of infected susceptihles which develop progressive 

primary TB in one year" . 

The parameter p (for ages 15+) is varied by plus and minus 20% of its base value 

(see table 11.5) to explore the effect of varying the proportion of infected suscep­

tibles aged 15+ which develop progressive primary TB in one year. 

Table 11.5: Values of the parameter p(ages 15+), selected as input to the model 

80% of base value base value 120% of base value 

p(ages 15+) 0.128 0.16 0.192 

For ages 15+, a small increase in the proportion of infected susceptibles which 

develop progressive primary TB in one year, causes a small and logical increase in 

PTB incidence. Likewise, a decrease in the value ofp(ages 15+) causes a decrease 

in PTB incidence. The parameter behaves fairly linearly for this small variation 

which can be seen as symmetry of the two percentage decrease and increase fits 

around the base line fit (see figure 11.10 (b».The trend is the same for the percent­

age decline in PTB for years 1994-2000 (figure 1l.11). 

However, an increase and decrease in p(ages 15+) causes a decrease and in­

crease respectively in PTB incidence for children aged 0-14 (see figure 11.10 (a». 

This appears counter intuitive and as for the Dutch data, could not be explained by 

further analysis of the model's mechanisms. This would therefore require further 

investigation. 
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Figure 11.10: (a)-(b): Plots of the fit for the compartmental model to the Moroccan 

confirmed pulmonary TB data, over the years 1980 to 2000. 
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Figure 11.11: Plot of the fit for the compartmental model to the percentage de­

crease in the Moroccan confirmed pulmonary TB data, over the years J 994 to 

2000. 
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11.2.4 Varying parameter value p (for ages 0-14), "the propor­

tion of infected susceptihles which develop progressive 

primary TB in one year". 

The parameter p (for ages 0-14) is varied by plus and minus 90% of its base value 

(see table 11.6) to investigate the effect of varying the proportion of infected sus­

ceptibles aged 0-14 which develop progressive primary TB in one year. 

Table 11.6: Values of the parameter p(ages 0-] 4), selected as input to the model 

10% of base value base value 190% of base value 

p(ages 0-14) 0.0005 0.005 0.0095 

A large increase and decrease in the proportion of infectious susceptibles aged 

0-14 which develop progressive primary TB in one year, causes a corresponding 

small increase and decrease in TB incidence in children aged 0-14. This parameter 

therefore behaves fairly linearly and logically (see figures 11.12). 

• Recorded PTB data for ages ()'14 lime (years) 

- Model Incidence of Infedlous'TB for ages ().14: -'11. 

- Model Incidence of infectious 'TB for ages ()'1 4: base 

- Model Incidence of InfectIous 'TB for ages ()'14: +% 

Figure 11.12: Plot of the fit for the compartmental model to the Moroccan con­

firmed pulmonary TB data, for ages 0-14, over the years 1980 to 2000. 
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11.2.5 Varying parameter value v (for ages 15+), "the rate at 

which latent infections become TB cases by endogenous 

reactivation" . 

The parameter v (for ages 15+) is varied by plus and minus 10% of the base value 

(see table 11.7) to examine the effect on the outcome variable. 

Table 1l.7: Values of the parameter v(ages 15+), selected as input to the model 

90% of base value base value 110% of base value 

v(ages 15+) 2.57E-03 2. 86E-03 3. 14E-03 

For ages 15+ decreasing and increasing the rate at which latent infections be­

come TB cases by endogenous reactivation causes a corresponding decrease and 

increase in TB incidence. There is very little effect on those aged under 15. 

The parameter behaves fairly linearly for this small variation in value and there 

is very little effect on the percentage decrease of PTB as can be seen by the sym­

metry and similar gradients of the three fit lines in figure 11.13. 

The behaviour of this parameter is in line with current scientific knowledge of 

reactivation disease. It is unlikely to occur in children as latent periods can be very 

long. In countries where HIV is not a 'large' problem, reactivation disease is more 

likely to occur in the elderly. 

11.2.6 Varying parameter value x (for ages 15+), "the propor­

tion of re-infections which is susceptible to developing 

TB within one year". 

The parameter x (for ages 15+) is varied by plus and minus 40% of its base value 

(see table 11.8) to investigate the effect of varying the proportion of re-infections 
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• RtoorHd PT8 dICIt for ID" 15+ 
-MedII iIdcIIra d WIcIauI18 far 1OII1!5+: ... - __ "'_T1ItK_,.., ..... 
- NodIIIilddll'adkRc:loiJllBtarIgll15t: ... 

Figure 11.13 : Fits of the compartmental model to Moroccan PTB data, for ages 

15+, for varying values ofv(15+). 

in people aged 15+ which are susceptible to developing TB within one year. 

Table 1l.8: Values of the parameter x(ages 15+), selected as input to the model 

60% of base value base value 140% of base value 

x(ages 15+) 0.09 0.15 0.21 

A decrease in x(ages 15+), the proportion of individuals aged 15+ with re­

infections who are susceptible to developing TB within one year, causes an in­

crease in TB incidence in those aged 0-14 (see figure 11.14 (a» .This trend then 

begins to reverse (see figure 11 .14 (b) and (c» . For ages 35+ a decrease in x(ages 

15+) causes a corresponding decrease in PTB incidence (see figures 1 1.14 (d)-(f) . 

These results seem counter intuitive (as were the corresponding sensitivity re­

sults for the Dutch data set) and require further investigation. 

Increasing and decreasing xC ages 15+) has the corresponding effect of increas­

ing and decreasing the percentage decline in PTB for the years 1994-2000, as 

shown in figure 11.15. 
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Figure 11.14: (a)-(f) : Plots of the fit for the compartmental model to the Moroccan 

confirmed pulmonary TB data, for each age range. 
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Figure 11.15: Plot of the fit for the compartmental model to the percentage de­

crease in the Moroccan confirmed pulmonary TB data, over the years 1994 to 

2000. 
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11.2.7 Varying parameter value x (for ages 0-14), "the propor­

tion of re-infections which is susceptible to developing 

TB within one year". 

The parameter x (for ages 0-14) is varied by plus and minus 100% of its base value 

(see table 11.9) to investigate the effect of varying the proportion of re-infections 

in children aged 0-14 which are susceptible to developing TB within one year. 

Table 11.9: Values of the parameter x(ages 0-14), selected as input to the model 

0% of base value base value 200% of base value 

x(ages 0-14) 0 0.08 0.16 

A large decrease in x(ages 0-14), the proportion of re-infections in children 

aged 0-14 which is susceptible to developing TB within one year, causes a small 

and logical decrease in PTB in children aged 5-14. Likewise, a large increase 

in x(ages 0-14) causes a smal l increase in PTB in those aged 5-14 (figures 11.16 

(a)-(b» . This trend is repeated for the percentage decline in PTB over the years 

1994-2000 (figure 11.17). 

Figure 11 .16: (a)-(b): Plots of the fit for the compartmental model to the Moroccan 

confirmed pulmonary TB data, for ages 5-14. 
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.5 • _od PTB _ timo booro) 

- _ Incidenco oflnlocllow TIl: -" 
- _Incidenco of_TIl: _ 
- _Incidenco of_TIl: +II. 

(a) Ages 5 to 9 years. (b) Ages 10 to 14 years. 
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Figure 11.17: Plot of the fit for the compartmental model to the percentage de­

crease in the Moroccan confirmed pulmonary m data, over the years 1994 to 

2000. 

11.2.8 Varying parameter value F (for ages 15+), "the propor­

tion of progressive primary cases which become infec-

tious within one year". 

The parameter F (for ages 15+) is varied by plus and minus 10% of its base value 

(see table 11.10) to investigate the effect of varying the proportion of progressive 

primary cases for ages 15+ which become infectious within one year. 

Table 11.10: Values of the parameter F(ages 15+), selected as input to the model 

90% of base value base value noo/c. of base value 

F(ages 15+) 0.399538 0.443932 0.488325 

This parameter behaves linearly and logically for a 10% variation in value. A 

decrease in the proportion ofprogressive primary cases for ages 15+ which become 

infectious within one year causes a decrease in pm incidence and visa versa. The 

percentage decline of PTB is not effected as can be seen by the similarity of the 

gradients for all three line fits (see figure 11 .18) 
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Figure 11.18: Plot of the fit for the compartmental model to the Moroccan con­

firmed pulmonary TB data, over the years 1980 to 2000, for ages IS+' 

11.2.9 Varying parameter value F (for ages 0-14), "the propor­

tion of progressive primary cases which become infec-

tious". 

The parameter F (for ages 0-14) is varied by plus and minus 70% of its base value 

(see table 11.11) in order to explore the effect of varying the proportion of pro­

gressive primary cases in children aged 0-14 which become infectious. 

Table 11.11: Values of the parameter F(ages 0-14), selected as input to the model 

30% of base value base value 170% of base value 

F(ages 0-14) 0.012 0.04 0.068 

A large decrease in F(ages 0-14), the proportion of progressive primary cases 

in children aged 0-14 which become infectious in one year, causes a relatively 

small decrease in PTB incidence in those aged 0-14. Likewise a large increase 

in F(ages 0-14) causes a relatively small increase in PTB incidence in those aged 

0-14 (figure 11.19). 

Decreasing F(ages 0-14) has the effect of very slightly increasing the percent­

age decline in PTB (over the years 1994-2000) for ages 0-14 (see figure 11.20). 
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Figure 11 .20: Fit for the compartmental model to the percentage decrease in the 

Moroccan confirmed pulmonary TB data, over the years 1994 to 2000. 
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11.2.10 Varying parameter value ¢, "the proportion of failed 

treatment cases which is infectious". 

The parameter <p is varied by plus and minus 100% of its base value (see ta­

ble 11.12) to explore the effect of varying the proportion of failed treatment cases 

which is infectious. 

Table 11.12: Values of the parameter <p, selected as input to the model 

0% of base value base value 200% of base value 

<p 0 0.57462 1 

A large increase and decrease in <p, the proportion of failed treatment cases 

which is infectious, causes a corresponding small increase and decrease in PTB 

incidence (figures 11.21 (a) and (b)). It makes sense that increasing the number of 

infectious cases in a population increases TB incidence. 

This trend is duplicated in percentage decline of PTB (over 1994-2000) for 

ages 0-15 and 40+, (see figure] 1.22). 

Figure] 1.21: (a)-(b): Plots of the fit for the compartmental model to the Moroccan 

confirmed pulmonary TB data, over the years] 980 to 2000. 
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Figure 11 .22: Fits for the compartmental model to the percentage decrease in the 

Moroccan confirmed pulmonary TB data, over the years 1994 to 2000. 

11.2.11 Varying parameter value w, "the rate of smear conver­

sion from non-infectious to infectious TB". 

The parameter w is varied by plus and minus 50% of its base value (see table 11.13) 

to examine the effect of varying the rate of smear conversion from non-infectious 

to infectious TB. 

Table 11.13 : Values of the parameter w, selected as input to the model 

50% of base val ue base value 150% of base value 

w 0.009033 0.018065 0.027098 

Increasing and decreasing w, the rate of smear conversion from non-infectious 

to infectious TB, causes a corresponding increase and decrease in PTB (infectious 
, 

TB) incidence as would be expected (see figures 1l.23 (a) and (b)).There is very 

little effect on the percentage decrease ofPTB. 
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Figure 11 .23: (a)-(b): Plots of the fi t for the compartmental model to the Moroccan 

confirmed pulmonary TB data, over the years 1980 to 2000. 
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(a) Ages 0-14 years. (b) Ages 15+ years. 

11.2.12 Varying parameter value /-Li , "the death rate for in fec-

tious TB". 

The parameter Pi is varied by plus and minus 90% of its base value (see ta­

ble 11.14) to investigate the effect of varying the death rate for infectious TB. 

Table 11.14: Values of the parameter J.li , selected as input to the model 

10% of base value base value 190% of base value 

j..l; 0.031256 0.312559 0.593862 

Decreasing the death rate for infectious TB causes an increase in PTB inci­

dence from 1994, (the year the DOTS regime takes over from the previous less 

efficient control regime), and onwards. This is logical as decreasing this death rate 

leaves an increased number of infectious TB cases in the population. Before 1994, 

however, a decrease in the infectious TB death rate causes a decrease in PTB in­

cidence (see figure 11.24 (a)-(c)).This is possibly due to an interaction with the 

pre-DOTS and DOTS detection and cure rates. 

A decrease in J.l i also causes a large decrease in the percentage decline ofPTB 
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(over years 1994-2000). An increase in Pi causes a small increase in the percentage 

decline ofPTB for ages 0-20 (see figure 11.25). 

Figure 11.24: (a)-(c): Fits of compartmental model to the Moroccan PTB data. 
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Figure 11.25: Fits for the compartmental model to the percentage decrease in the 

Moroccan confirmed pulmonary TB data, over the years 1994 to 2000. 

11.2.13 Varying parameter value P'm "the death rate for non­

infectious TB". 

The parameter J.1,n is varied by plus and mmus 80% of its base value (see ta­

ble 11.15) in order to investigate the effect of varying the death rate for non­

infectious TB. 

Decreasing the death rate from non-infectious TB causes a large increase in 

PTB incidence. Increasing ~ln causes a smaller decrease in PTB incidence (figure 
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Table 11.15: Values of the parameter fJ.n, selected as input to the model 

20% of base value base value 1 0% of base val ue 

fJ.n 0.046148 0.23074 0.415332 

11.26 (a)-(c)). Decreasing I-Ln causes a small decrease in the percentage decline of 

PTB over years] 994-2000, (see figure 11.27). 

This result at first sight seems puzzling as it is not overly obvious why an 

increase in the amount of non-infectious TB in the population should increase the 

amount of infectious (pulmonary) TB. But this is however a logical result. With a 

higher prevalence of non-infectious TB, a larger number of cases are converted to 

infectious TB by smear conversion hence increasing PTB incidence. 

Figure 11.26: (a)-(c): Fits of compartmental model to Moroccan PTB data. 
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Figure 11 .27: Fits for the compartmental model to the percentage decrease in the 

Moroccan confirmed pulmonary TB data, over the years 1994 to 2000. 
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11.2.14 Varying parameter value E, "the relative case detection 

rate of non-infectious cases". 

The parameter E is varied by plus and minus 100% of the base value (see ta­

ble 11.16) to explore the effect of varying the relative case detection rate of non­

infectious cases. 

Table 1l.16: Values of the parameter E, selected as input to the model 

0% of base value base value 200% of base value 

E 0 0.5 1 

Varying this parameter by 100% of its base value has little to no effect on PTB 

incidence. 

11.2.15 Varying parameter value r, "the rate of relapse from 

failed treatment to active TB". 

The parameter r is varied by plus and minus 70% of its base value (see table 11.17) 

to investigate the effect of varying the rate of relapse from failed treatment to active 

TB. 

Table 1l.17: Values of the parameter r, selected as input to the model 

30% of base value base value 170% of base value 

r 0.09 0.3 0.51 

A large decrease in the rate of relapse from failed treatment to active TB causes 

a small increase in PTB incidence and visa versa although this effect is less pro­

nounced (figures 1l.28 ( a)-( c)). This appears counter intuitive, as with the corre­

sponding sensitivity results for the Dutch data. Therefore, like the previous pa-
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rameters that produced seemingly illogical effects, this parameter would benefit 

from further investigation. 

This parameter shows non linear characteristics and there is no clear trend for 

the effect of varying r on the percentage decline ofPTB (figure 11 .29). 

Figure 11.28: (a)-( c): Plots of the fit for the compartmental model to the Moroccan 

confirmed pulmonary TB data, over the years 1980 to 2000. 
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Figure 11 .29: Plot of the fit for the compartmental model to the percentage de­

crease in the Moroccan confirmed pulmonary TB data, over the years 1994 to 

2000. 
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11.2.16 Varying parameter value 'det', "the rate at which TB 

cases are found and treated under the DOTS regime". 

The parameter 'det' is varied by plus and minus 10% of its base value (see ta­

ble 11.18) to investigate the effect of varying the rate at which TB cases are found 

and treated under the DOTS regime. 

Table 11.18: Values of the parameter 'det', selected as input to the model 

90% of base value base value 110% of base value 

'det' 0.72 0.8 0.88 

A small increase and decrease in the rate TB cases are detected under the DOTS 

regime causes a corresponding increase and decrease in PTB incidence after the 

year 1991, when DOTS is first introduced. This is because more cases are being 

found and identified after this date under the new regime. The model multiplies the 

resulting number of cases by the time dependent detection rate in order to produce 

an output comparable to the observed data. Therefore at first, the number of TB 

cases increases. The incidence ofPTB then declines from 1994 (the year DOTS is 

fully introduced) to the end of the time period (2000), as more cases are found and 

cured (see figures 11.30 (a)-(c)). 

The percentage decline in PTB over this same period (1994-2000) increases 

with increased detection rate and decreases with decreased detection rate. This 

trend is most pronounced in ages 0-15, (see figure 1l.31). 
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Figure 1l.30: (a)-(c) : Plots of the fit for the compattmental model to the Moroccan 

confirmed pulmonary TB data, over the years 1980 to 2000. 
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Figure 11 .31 : Plot of the fit for the compartmental model to the percentage de­

crease in the Moroccan confirmed pulmonary TB data, over the years 1994 to 

2000. 
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11.2.17 Varying parameter value 'DetNotDot', "the rate at which 

TB cases are found and treated under a previous non­

DOTS regime". 

The parameter 'DetNotDot' is varied by plus and minus 10% of the base value 

(see table 11.19) to investigate the effect of varying the rate at which TB cases are 

found and treated under a previous non-DOTS regime. 

Table 11 19' Values of the parameter 'DetNotDot' , selected as input to the model 

90% of base value base value 110% of base value 

'DetNotDot' 0.54 0.6 0.66 

Increasing and decreasing the detection rate of a previous less efficient non­

DOTS regime produces analogous results to those for the DOTS detection rate and 

for the same reasons as described in the previous section (see figures 11.32 (a)-(c». 

Figure 11.32: (a)-(c): Plots of the fit for the compartmental model to the Moroccan 

confirmed pulmonary TB data, over the years 1980 to 2000. 
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11.2.18 Varying parameter value 'cure = Co + CIt', "the pro­

portion of treated cases given curative chemotherapy 

under the DOTS regime". 

The parameter 'cure' is varied by plus and minus 10% of its base value (see ta­

ble 11.20 and figure 11.33) in order to investigate the effect of varying the propor­

tion of treated cases given curative chemotherapy under the DOTS regime. 

Table 11.20: Values of the parameter 'cure', selected as input to the model 

Co Cl 

90% ofbv bv 110% ofbv 90% ofbv bv 110% ofbv 

0.675 0.75 0.825 0.00135 0.0015 0.00165 

bv = base value 

A decrease and increase in the cure rate under the DOTS regime cause a logical 

increase and decrease respectively in PTB incidence after the year 1994, the year 

the DOTS regime is fully introduced. The incidence ofPTB declines after 1994 as 

the new DOTS regime is fully implemented (see figures 11.34 (a)-(c)). 

Over all ages, the percentage decline in PTB is decreased for a decrease in 

cure rate and increased for an increase in cure rate as would be expected (see 

figure 11.35). 
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Figure 11.33: Plot of the parameter cure values. 

Figure 11.34: (a)-(c): Plots of the fit for the compartmental model to the Moroccan 

confirmed pulmonary TB data, over the years 1980 to 2000. 
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Figure 11.35: Plot of the fit for the compartmental model to the percentage de­

crease in the Moroccan confirmed pulmonary TB data, over the years 1994 to 

2000. 
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11.2.19 Varying paloametervalue 'CureNotDot = cndo + cnd1t', 

"the proportion of treated cases given curative chemother­

apy under a previous non-DOTS regime". 

The parameter 'CureNotDot' is varied by plus and minus 2.0% of its base value 

(see table 11.21 and figure 11.36) in order to investigate the effect of varying the 

proportion of treated cases given curative chemotherapy under a previous non­

DOTS regime. 

Table 11 .21: Values of the parameter 'CureNotDot', selected as input to the model 

c:ndo c:nd l 

80% ofbv bv 120% ofbv 80% ofbv bv 120% ofbv 

0.4 0.5 0.6 0.00112 0.0014 0.00168 

Increasing and decreasing the cure rate in a previous less efficient non-DOTS 

regime causes analogous results to those for the DOTS cure rate and for the same 

reasons as described in the previous section (see figures 1') .37 (a)-(c)). 

It is interesting to note that as time moves on and the new DOTS control regime 

takes over, the incidence of TB values become very similar no matter what value 

of Non-DOTS cure rate was previously used . 
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Figure 11.36: Plot of the parameter ' cureNotDot = c:ndo + Gnd jt values. 
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Figure 11.37: (a)-(c): Fits of compartmental model to Moroccan PTB data. 
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Figure 11. 3 8: Fits of the compartmental model to the percentage decrease in the 

Moroccan confirmed pulmonary TB data, over the years 1994 to 2000. 
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11.2.20 Varying the two parameter values 'cure' and 'CureNot­

Dot' simultaneously. 

The two cure parameters are varied simultaneously to investigate the effect of vary­

ing the proportion of treated cases given curative chemotherapy under a previous 

non-DOTS regime along with those under a subsequent DOTS regime. Both the 

cure parameters were increased at the same time, decreased at the same time and 

held at base value at the same time as set out in table 11.22 and shovm in figure 

11.39. 

Table 11.22: Values of the parameters 'cure' and 'CureNotDot', selected as input 

to the model 

'cure' 

Co Cl 

90% ofbv bv 110% ofbv 90% ofbv bv 110% ofbv 

0.675 0.75 0.825 0.00135 0.0015 0.00165 

'CureNotDot' 

cndo cnd1 

80% ofbv bv 120% ofbv 80% ofbv bv 120% ofbv 

0.4 0.5 0.6 0.00112 0.0014 0.00168 

bv = base value 

Decreasing and increasing both non-DOTS and DOTS cure rates together causes 

a logical corresponding decrease and increase in PTB incidence (see figures 11.40 

(a)-(c)). The percentage decline in PTB (over years 1994-2000) is only minimally 

effected. 
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Figure 1l.39: Plot of the parameters ' cure ' and ' cureNotDot' values. 

Figure 11.40: (a)-(c): Fits of compartmental model to Moroccan PTB data. 
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11.2.21 Varying 11 parameter values simultaneously 

The parameters established as the most interesting and sensitive by the previous 

sections investigations are varied simultaneously to give an idea of how these pa­

rameters can interact to effect the model outcomes. All the parameters varied were 

increased at the same time, decreased at the same time and held at base value at 

the same time as set out in table 11.23 . 

Increasing these chosen II parameters together increases PTB incidence for 

all ages over 24. Likewise decreasing all 11 parameters decreases PTB incidence 

for these ages (see figures 11.42 (e)-(h)). For ages 0-24 the results are less clear 

cut. The base value seems to cause the most PTB incidence with an increase in the 

parameters causing a sharper decline in PTB incidence, especially in the 5-9 year 

age range (see figures 11.42 (a)-( d)). 

An increase/decrease in the parameter values caused a marked increase/decrease 

in the percentage decline in PTB for years 1994-2000 (see figure 11.41). 

It is obvious that these parameters interact with each other in complicated and 

subtle non-linear ways that are not obvious by examining the difference equations 

that drive the model . 
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Figure 11.41: Fits for the compartmental model to the percentage decrease in the 

Moroccan confirmed pulmonary TB data, over the years 1994 to 2000. 
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Figure 11 .42: (a)-(h): Plots of the fit for the compartmental model to the Moroccan 

confirmed pulmonary TB data., for each of the 8 age ranges. 
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Table 11.23: Details of parameter values varied simultaneously to investigate interaction effects. 

parameter description percentage 

of base value 

used to vary 

parameter value 

Initial value of force of infection 30 

Exponential rate of decline in contact rate between TB cases and others 20 

Proportion of infected susceptibles which develop progressive primary TB within one year 20 

Rate at which latent infections become TB cases by endogenous reactivation 10 

Proportion of re-infections which is susceptible to developing TB within one year 40 

Proportion of progressive primary cases which become infectious 10 

Rate of smear conversion from non-infectious to infectious TB 50 

Rate at which TB cases are fOlUld and treated under the DOTS regime 10 

Rate at which TB cases are found and treated llilder a previous non-DOTS regime 10 

Proportion of treated cases given curative chemotherapy under the DOTS regime 10 

Time dependent function: cure = Co + Cl t 

Proportion of treated cases given curative chemotherapy under a previous non-DOTS regime 20 

Time dependent function: cureNotDot = cndo + cnd1t 
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11.3 Summary of Sensitivity Analysis 

Most of the parameters behaviour was as expected and explainable by the epi­

demiology of TB. There were however some notable exceptions, namely, p(for 

ages 15+) - the proportion of infectious susceptibles which develop progressive 

primary TB in 1 year; x(for ages 15+) - the proportion of re-infections which is 

susceptible to developing TB within 1 year; r - the rate of relapse from failed treat­

ment to active TB. These three parameters showed the same illogical effects with 

the Moroccan PTB data as they did when applied to the Dutch TB data set. Further 

examination of the model provided no obvious explanations for these results. 

The parameters again showed non-linear characteristics, except for very small 

variations in value where they behave approximately linearly. Varying parameters 

x(ages 0-14), ¢ and E had a relatively small effect on the outcome variable as 

compared with other parameters. 

It is noticeable that varying the parameters one at a time did not significantly 

improve the model fit to the age dependent characteristics. The model therefore 

still struggled to fully capture the age characteristics especially in the older age 

groups. However, increasing the 11 selected parameters at the same time did have 

the effect of varying the gradient and placement of the fitted line so that it gave a 

better fit to the data for ages 0-34 (see figures 11.42 (a)-(e)). 



Chapter 12 

Modelling Local and Global Effects 

in the Transmission of TB Observed 

in Asembo and Gem, Kenya: 

Designing a Spatial Model of TB 

Case Clustering. 

This third model, a Markov chain model, is distinct from the previous two para­

metric and compartmental models previously described. It is constructed to exam­

ine the relative significance of local and global effects in the transmission of TB. 

The simple Markov chain local effects model is used to examine a time-spatial TB 

data set from the Nyanza province in western Kenya. It is also shown how this 

new local/global effects model can be used in the design of community/clustered 

randornised trials. 
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12.1 Introduction 

The following Chapters describe the background, design and application of a Markov 

Chain model of TB case clustering in the Nyanza Province of western Kenya The 

model is created in an attempt to identify whether the nearest reported source of 

. possible infection is a localised one stemming from an individual's contacts with 

family or near neighbours or whether it arises from a much more dispersed contact 

With people in a much less localised way. 

The basic methodology is to construct a stochastic Markov-chain model whose 

behaviour is determined by a number of key parameters and then fit this model 

to the data using maximum likelihood to estimate these key parameter values. 

Markov-chain models are based on transition probabilities and are very different 

in approach from the type of compartmental model described in chapter 9. 

The rest of this chapter sets out the background and detail of the Kenyan TB 

data set analysed by this new local/global effects model. Chapter 13 introduces 

and gives a brief history of modelling space-time clustering of disease. Chapter 14 

contains the detail of the Markov-chain local/global effects model construction. 

Chapter 15 contains the application of this new model to the Kenyan TB data set 

described below. Chapter 16 sets out a possible use of this local/global effects 

model in the design of cluster randornised trials. 

12.2 The Kenyan Space-Time TB Data 

A demographic surveillance system (DSS) exists in the Nyanza Province of west­

ern Kenya as part of the Centers for Disease Control and Prevention (CDC) and 

Kenya Medical Research Institute (KEMRI) research operations. It covers approx­

imately 500 km2 ofland including 217 villages, 75 of which are in Asembo in the 

Rarieda Division of the Bondo District and the rest are in Gem in the Wagai and 
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Yala Divisions of the Siaya District. There is global information systems (GIS) 

positional information (including longitude and latitude coordinates) and annual 

population statistics for each village in the demographic surveillance area (DSA). 

Figure 12.2 contains a map of Asembo and Gem showing the location of each of 

the 217 villages and their allocated identifying number. 

Over 95% of the residents in Asembo and Gem are Luo. Poverty occurs 

throughout the demographic surveillance area (DSA) which is an area of endemic 

Malaria and high HIV prevalence (approximately 22%). Asembo has a high preva­

lence ofHIV in the region around Lake Victoria due to lakeside prostitution whereas 

Gem has a generally lower prevalence of HIV In Asembo the ratio of female to 

male TB prevalence is almost 1 to 1 in the middle age categories (ages 25 to 34). 

This is in contrast to Gem where there is higher TB prevalence among females 

in the 25-30 age category and higher prevalence among males in the 30-34 age 

category. The TB notification data set that will be studied and analysed in the 

following chapters is taken from this DSA. 

The data set comprises 840 notifications of all types ofTB collected in Asembo 

and Gem by the Kenya Ministry ofHealthlNational Leprosy and TB program and 

the CDC over a six year period from 1997 to 2002. Data on the treatment start­

date (month and year), age, gender, and contact address (village) were abstracted 

from district TB registers for patients whose contact address (village) was within 

the DSS area For any missing time periods in the district registers, TB registers 

of health facilities in the area were consulted. GIS coordinates (longitude and 

latitude) of the contact address (village) were added for each TB case in the data set 

to allow for a time/spatial analysis of the data. Figure 12.1 shows the geographical 

distribution of the TB notifications in the data set for the entire study period and 

a summary of the population demography of this study area over the same period, 

1997 to 2002, is shown in table 12.l. 

For input to our local and global effects model as described in Chapter 14, the 
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TB notification data was written in the form of a history matrix (as formulated in 

equation 14.4). Table 12.3 consists of an example history matrix formed from a 

sample of the western Kenyan TB data displayed in table 12.2. 

Table 12.1 : Summary of the population demography (age/gender) of the study 

area, averaged over the study period, 1997 to 2002. 

I % of population II Male I Female I Male and Female I 
::; 15 22.6 22.7 45 .3 

16 - 64 21.3 27.9 49.2 

65+ 2.4 3.1 5.5 

All ages 46.3 53 .7 100 

0.12 

0.10 - ..-• • • 0.08 -. .: --O.OS • • • • -0.04 •• 0.02 

0.00 
Longllvde 

-4.02 1 - 6 ; fi-+-~ -~ . H----~ !I:!- !I:!. ~L-I 
~ - : t Ii. c i -4.04 . . -.. -4.OS .--,- ; -4.08 

-4.10 .. . - -.. -.- 1 TBcaao 

-4.12 -.. _. "': .. - . 2-9TBcuINI 
-4.14 .-- - -.. -- .. 
-4.1' • 11>-19TBCUINI . ---- - -- .. .. --4.1. • • -... - ... ... . 20-311 TB CU_ 
-4.20 • -4.22 . 4!;+ TB caaGI 

-4.24 

Figure 12.1: Geographical (longitude and latitude) location of the TB notifications. 
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Figure 12.2: Geographical (longitude and latitude) location of the villages in the 

Asembo and Gem regions. 
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Table 12.2: Example sample of western Kenyan TB data set. 

Individual Treatment start date village 

Number sex age latitude longitude Month Year number 

1 1 20 -0.19806 34.33531 7 2000 30 

2 2 24 -0.19806 34.33531 9 1999 30 

3 1 33 -0.18448 34.34124 6 2000 32 

4 2 25 -0.18448 34.34124 2 2000 32 

5 2 19 -0.2083 34.31837 6 2000 37 

6 2 21 -0.2083 34.31837 10 2000 37 

7 2 29 -0.18691 34.28558 9 1999 40 

8 2 25 -0.18691 34.28558 9 2000 40 

9 2 56 -0.17607 34.29281 9 2000 41 

10 2 29 -0.17607 34.29281 7 2001 41 



Table 12.3: Example History Matrix. 

Year 1999 2000 2001 

Month 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 

Individual 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

Individual 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Individual 3 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

Individual 4 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Individual 5 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

Individual 6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 

Individual 7 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Individual 8 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

Individual 9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

Individual 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

o = non-TB case; 1 = TB case. 

It is assumed that an individual is infectious for 6 months before treatment starts and then becomes non-infectious. 
~-- - --
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Chapter 13 

Space Time Clustering 

Space-time clustering of disease is described as the interaction between the places 

and times of disease onset, i.e. clusters occur when cases which are close in space 

are also close in time [53]. The existence of such clusters is regarded as evidence 

of the infectiousness of the disease under study. Knox [24] considered the difficult 

problem of deciding whether or not a disease can be regarded as being contagious 

or epidemic and was the first to propose a test statistic for detecting space-time 

interactions/clustering. He proposed examining all possible pairs of cases, in a 

time/spatial data set, to ascertain whether they occurred within some fixed time 

distance is of each other and whether their dates of onset were within some fixed 

time T of each other. The number of pairs, X, satisfying both criteria would then 

be compared with the number of pairs that would be expected to satisfy the space­

time criteria if the cases were randomly distributed in time and space. A value 

of X greater than this expectation value is therefore considered as evidence of 

space-time interaction and therefore clustering. Subsequently, Mantel [68], Pike 

and·Smith [53], Symons et al. [55], Raubertas [78], Diggle et al [73], Jacquez [32], 

Baker [76] and Kulldorff and Hjalmars [59] have all proposed different tests for 

space-time interaction/clustering but the majority of methods only produce a single 

test statistic that rejects or supports the existence of space-time clustering but does 

207 
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not detect or specifY the size and location of any statistically significant clusters. 

Pike and Smith [53] extend and generalise Knox's approach to incorporate the 

analysis of disease with a long latent period. Mantel [68] proposes a space-time 

interaction test where each pair of cases is assigned a value describing their geo­

graphic and temporal closeness. The test statistic is then the sum of the products of 

these values over all case pairs. A large value of this statistic implies the existence 

of space-time interaction. Symons et al. [55] used a different approach by using 

disease occurrence data to classifY space-time cells as low-risk or high-risk cells. 

The high-risk cells are categorised as disease clusters, but it is only after the cells 

have been thus classified that a combinatorial test is used to check whether a larger 

number occur next to each other than would otherwise be expected if they were to 

be randomly distributed. Raubertas [78] proposes a method related to spatial au­

tocorrelation techniques which are widely used to analyse geographical data [7]. 

However, in contrast with the preceding methods, as well as proposing tests for 

clustering, the analysis also specifies the contributions to clustering that is made 

by each time-space cell. 

Kulldorff et al. [59] revisits the problem of space-time analysis with the pro­

posal of the space-time permutation scan statistic which has been incorporated into 

the software package SaTScan [60]. This free software program can be used to 

test whether a disease is randomly distributed over time and space and to evaluate 

the statistical significance of reported space-time disease clusters. (The software 

also carries out purely spatial or temporal analysis and can perform repeated time­

periodic disease surveillance for the early detection of disease outbreaks [60] [61 D. 

The space-time scan statistic takes the form of a cylinder in space and time where 

the base represents the spatial dimension and the height represents the temporal 

dimension. The circular base is centered on each grid point in turn throughout the 

study region. At each of these points the radius of the base is varied continuously 

from zero to an upper limit determined by the user. For each grid point and size 
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of geographical base the height of the cylinder is also varied continuously, so that 

the cylinder moves through time and space covering the whole study region with 

an infinite number of overlapping cylinders of different sizes and shapes. Each of 

these cylinders denotes a possible cluster. 

The space-time permutation model compares the number of cases observed in 

a cluster with the number expected if there was no space-time interaction. This 

model automatically adjusts for any purely spatial or temporal clusters. It is nec­

essary to note that space-time clustering can also be caused by an increased risk of 

disease at different times and location or by changes in the distribution of the pop­

ulation. Due to these possible confounding factors and the fact that the space-time 

permutation model does not require 'population at risk' data, it is advisable to take 

care with the interpretation of the results when analysing case data collected over 

more than one year. 

The SaTScan software was used to analyse the set ofTB notifications collected 

in Asembo and Gem in western Kenya, as described in the previous chapter. Fig­

ure 13.1 shows the clusters that were detected. It should be noted that this data is 

collected over more than one year and therefore the above health warning regard­

ing interpreting these results is relevant. 

Tuberculosis (TB) is primarily a disease oftherespiratory system with variable 

degrees of infectiousness. It is caused by being infected with the airborne bacterial 

germ Mycobacterium tuberculosis. Bacilli only live in the air for approximately 

2 hours so individuals who have intense contact with TB bacilli in poorly venti­

lated areas are the most likely to become infected. TB morbidity and mortality 

rates are strongly affected by living conditions. Infectiousness of the source case, 

duration and frequency of exposure and characteristics of shared environments, all 

contribute to the overall risk of transmission [45]. 

Such characteristics of TB transmission can contribute to clustering in the in-



CHAPTER 13 210 

-
SaTScan Cluster Res(jjs 

0.150 

x x 
0.100 ... .x2'-X~ 

x~xt: ., xXX 1('l,X f 

0.050 
x xXlJI: x x· l - \ \: x Xx x x 
LXi I X 

x x x x x "IX 
\: x xX 

Q) Longitude x:.xxx .. x x x x 
~ 0.000 

~ I x x x ,~i{X ; x jx x .... x ~ 
~ i:l 'xxx x · XX . 

lIi:l x XX ':t x XX ~ 
-0.050 .. ex e •• " 

-0.100 .· .. r.·:, 
x x· • ..;-.,. 

x • • •• x Village 

-0.150 
,.? ........... 

. Cluster 1 
x x '" • • - • • -. 

x X x xx ••••••• • Cluster 2 

-0.200 x x ~ 
.lCluster 3 XX x 
• Cluster 4 

-0.250 

Figure 13.1 : Results of analysing the Kenyan TB data set with SaTScan, using the 

space-time permutation model 

cidence of the disease. Local factors such as a willingness to seek medical care, 

distance to the nearest health facility, or the skill of health care providers could 

cause clustering by influencing recognition and reporting of cases of tuberculosis. 

Space-time clustering refers here to the interaction between places and the 

times of the onset of disease, i.e. cases which are close in space tend to be close 

in time. When this occurs it is likely, but not certain, that it reflects clustering in 

transmission events. Most cluster analysis investigates whether the data of interest 

supports a time/spatial structure or pattem and if possible seeks to establish the 

cause of such a pattern. However, it is already known that TB is infectious. The 

more important question is whether transmission in areas with high TB prevalence 

is fueled predominantly by the over-lying global transmission rate or can be seen 

to be a more localised effect. 

In summary, we al"e concerned with determining whether a c1ustel"ing (lo­

cal) effect is as stl"ong 01" strongel" than a genel"al global effect in l"espect ofTB 
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transmission. This may have consequences for how TB case finding strategies 

are undertaken i.e. focusing on local contacts of infectious cases rather than 

the entire population. 

Recently there has been a realisation of a need to be able to model the lo­

cal effects on the global transmission dynamics of TB. Aparicio, Capurrio and 

Castillo-Chavez [45] set up a compartmental model that incorporates local effects 

on the global transmission dynamics ofTB. They identify two classes of contacts, 

close daily and prolonged contacts that form a cluster or generalised household and 

close but infrequent contacts that classify casual contacts. An epidemiologically 

active cluster constitutes a generalised household with one or more infectious in­

dividuals. Deterministic epidemiological compartmental models are developed to 

evaluate the relative importance ofTB transmission in populations with epidemio­

logically active clusters. Song, Castillo-Chavez and Aparicio [10] extend this work 

to explore the varying time scales involved. They classify TB as a 'slow' disease 

in that it has long and variable latency periods lasting for decades on average and 

relatively short infectious periods lasting for months or years. Population and 

individual-level transmission processes that operate on different time scales are 

used to construct TB epidemic models with two levels of mixing. This approach is 

based on the assumption that an individual's risk of infection is significantly higher 

from within an epidemiologically active cluster than from the general population. 

In the next chapter I introduce a stochastic Markov-chain parametric model that 

specifically includes possible local or more dispersed global effects on the risk of 

contracting a communicable disease. The explicit application is to the transmis­

sion dynamics of tuberculosis, and the model is used to analyse the previously 

described set ofTB notifications collected in Asembo and Gem in western Kenya. 



Chapter 14 

Kenya Model construction 

14.1 Designing a Spatial Model of Disease Case Clus­

tering. 

The following is an attempt at modelling disease case clustering that focuses on 

trying to identify whether the nearest reported source of possible infection is a lo­

calised one stemming from an individual's contacts with family or near neighbours 

or whether it arises from a much more dispersed contact with people in the wider 

community. The model is constructed using the previously described TB data set 

for western Kenyan. 

The basic methodology is to construct a stochastic Markov-chain model whose 

behaviour is determined by a number of key parameters and then fit this model 

to the data using the classical method of maximum likelihood (ML) in order to 

estimate these key parameter values (see Kendall and Stuart [58] for example). 

Markov-chain models are based on transition probabilities and are very different 

in approach from compartmental models. Examples of such latter models are given 

by Dye and Williams [13] and Dye et al. [15]. 

The model is designed to be as simple as possible whilst allowing it to distin-

212 
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guish between local and global effects. 

The data comprises M (840) cases of all types of TB registered with the na­

tional tuberculosis program in the study area, in a population of some N (approx­

imately 130,000) over a given period T (approx six years). The location (village) 

and date of occurrence of each notification is recorded. Population statistics (an­

nual) are also available for each of the villages. There are V (approx 217) villages. 

The model could be formulated with time treated as being continuous, however 

for ease of calculation time is treated as discrete. For simplicity of exposition, let 

the basic time step be unity and the study period be 

t = 0,1,2, ... T. (14.1) 

A possible time step might be one month or a quarter of a year. 

We also treat the population size, N, as being fixed over the period of interest. 

This is a reasonable simplification as the variation in population size over the study 

period is only 7%. 

The model is constructed by following the individual histories of all the indi­

viduals over the study period. We write the history of the ith individual as the row 

vector 

Z (i) = (Z(i) Z(i) Z(i») - 0 , 1 , ... , T (14.2) 

where z?) is the state of the ith individual at time t. 

It is assumed that, at any time point, the state of an individual can only be one 

of two prescribed states. Some TB epidemiological models allow for a large num­

ber of possible states, for example: susceptible, latent (inactive TB), infectious, 

undergoing treatment, dead. [28, 93] For simplicity our model has just two states: 

case (State 1) and non-case (State 0). Our model is described in terms of this 

two-state version. 
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We shall also write 

_ ((1) (2) (N)) T b - Zt ,Zt , ... ,Zt (14.3) 

to denote the column vector giving the state of all individuals at time t. Thus £t 

specifies the overall state of the epidemic at time t. (The superscript T denotes 

transposition, so that we regard ~t as a column vector.) 

We can therefore regard 

(14.4) 

as being a matrix giving a discretised form of the complete data set, with columns 

giving the state of the epidemic at different time points, and rows giving the histo­

ries of each individual. This shall be referred to as the History matrix. 

Pr(Individual i moves to state k in the next time step 

given that shelhe is currently in state j, and that 

the current state of the epidemic is b) (14.5) 

This (single step) transition probability governs the individual single time-step 

transitions made by an individual. Notice that a(i) (kl), ~t) does not depend on t 

explicitly, but it will vary with time through its dependence on ~t , the state of the 

epidemic at time t. 

We now consider the form of the transition probabilities, 

a(i) (Z~21Iz~i) ,b). As there are only two possible states, 0 (non-case) and 1 (case), 

the only possible transitions correspond, in the notation of equation 14.5, to just 

the four cases (j, k) = (0,0), (0,1), (1,0), (1, 1). Moreover the four corresponding 

transition probabilities must satisfy 

(14.6) 
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and 

(14.7) 

i.e. Using the notation abbreviation afr.{3 = a(i) (al,B, ~t) , {a = 0, 1; ,B = 0, I} 

the two transition probabilities aoo and all can be written in terms of the other two 

probabilities alO and aOl: 

aoo (probability of staying a non-case from one time step to the next) 

1- alO 

1 - (probability of moving from being a non-case to being a case 

in one time step.) 

and 

all (probability of staying a case from one time step to the next) 

1- aOl 

1 - (probability of moving from being a case to being a non-case 

in one time step.) 

1 - (probability of recovery in one time step) 

_ (time step) 
1 b2 ' 

where b2 = period of infection (specified in same units as time step) 

1- b; 

Thus we need only specify a(i) (110,.b) and a(i) (011, ~t). Figure 14.1 contains 

an example graphical representation of these four transition probabilities. 

In terms of the propagation ofTB, a(i) (110, ~t) is the key probability as it gives 

the probability that a non-case (effectively, in this simple model, a susceptible) 

individual will become a TB case over the next time step. We can thus introduce a 

parametric form for this transition probability that enables us to include separate 
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components for the global and local clustering ofTB. There are various possibili­

ties here. A very simple form is 

(14.8) 

where bomo (Kt) and blm~i) (~t) are probabilities due respectively to a global ef­

fect and to a local effect, and Co is a generalised positive 'constant reflecting a 

background incidence component or could be thought of as the reactivation rate 

for TB cases. In practice Co can be very small and in terms of the fitted model is 

effectively zero. However, its retention in the model greatly simplifies the estima­

tion process. Without Co the transition probability 14.8 would have to be specially 

redefined for the situation where the local and global prevalences both happen to 

be zero, and thus the transition probability 14.8 is zero which in practice causes 

the Loglikelihood to be inappropriately defined. 

The global and local unknown (positive) parameters, bo and b1, are to be esti­

mated from the data, and mo C~.t) and mli ) (Kt) are measures of the prevalence of 

TB at the global and local level that are the cause of the respective corresponding 

effects. 

It is important to note that the local measure of prevalence, mli ) c.~t), is highly 

dependent on the location of the individual i. It can, for example, simply be the 

prevalence of TB, at time t, in the village to which i belongs. This is easily cal­

culated from ~t . Alternatively if more information is available about the activities 

of the individual, then possible transmission arising [Tom regular attendance at a 

particular market town, work place etc .. can be modelled by taking mii) (~t) to be 

the measure of the prevalence ofTB, at time t, in the population at these locations. 

The other transmission probability required is a(i) (all, ~t), which is simply the 

probability of recovery in any given time step. We assume that this is not location 

dependent. Indeed, in our simple model, we assume that it is an unknown constant, 

a(i) (all, ~t) = b; = tim~2step. The notifications of the TB cases will be assumed 
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as the moment when treatment starts and the individual becomes, in the framework 

of the simple two-state model, non-cases and therefore 'non-infectious'. If this 

is correct then what is needed is an estimate of how long an individual might 

have been infectious for, p,ior to this notification time. In constructing the history 

matrix, the period of infection, b2, is set, at present, at a notional, deterministic, six 

months. Thus the history matrix is built using what is effectively a prior estimate 

of h (Although the value of b2 is fixed it is also treated as the fourth parameter to 

be estimated and its resulting MLE is output as a check to the correct programming 

of the model). 

TB case Individual time 

Figure 14.1: Graphical representation of the four transition probabilities for an 

example history of a TB case individual , using the abbreviation of notation, acx!3 = 

a(i) (a l,6,bJ, {a = 0, 1;,6 = 0, I}. 
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Hence this two state Markov model can be summarized by the transition 
probability matrix: 

(i) 
Pt,v 

Next Future 
State 

o 1 

11 -ala alO l (Note each row sums to one.) 

l aOl 1 - aOl 

11 -(bo Ai/ + bl ~! + co) 
l b; 

a = 0 1· 4 = 0 1 , ,tJ , 

bo Af! + bl ~! + Co l 
1- b; 

M t _ Total number of TB notifications at time t 
IV - Total popUlatIOn 

Mg _ Number ofTB notifications in locality v at time t 
N" - PopUlatIon ill locality v 
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The likelihood of ~(i), the history of the ith individual, is defined to be the 

probability of the occurrence of this particular history. If we assume that the 

transitions forming ~(i) is a sequence of mutually independent events then this 

likelihood is the product of the individual transition probabilities, so that 

T-I 

lik C~:(i)) = P (z6i
)) II a(i) (z~21Iz~i), k) (14.9) 

t=O 

where p (z6i
)) is the probability that the initial state of the ith individual is Z6i

) . In 

practice, when coding this model in excelNBA, the first term p (z6 i
)) is left out. 

This is a reasonable simplification due to the large number of time points used in 

running the model. 

The total likelihood of all the histories is therefore 

N 

lik (Z) = II lik (~(i)) (14.10) 
i=1 

It is usually easier to work with the 10gJikelihood, 

N 

L (Z) = loglik (Z) = 2: log [p (z6i
))] 

i=1 
N T-I 

+ 2: 2: log [a(i) (zi21Izii ), k) ] (14.11) 
i=1 t=O 

If b2 is given and we use (14.8) for a(i) (110, ~t), then the likelihood (14.11) is 

a function of just the three parameters bo, bl and Co, i.e. 

(14.12) 

The maximum likelihood estimate(MLE) [58] of bo, bl and Co are those that 

maximize L = L (bo, bl , colZ) and are conventionally denoted bo, bl and Co. It is 

necessary to use a numerical procedure to maximize L. The NeIder-mead optimi­

sation method was used due to its stability and for ease of programming. 



CHAPTER 14 220 

Standard asymptotic theory [81] can be used to establish the distributional 

properties of the MLEs bo, b1 and Co, including their significance. The confidence 

intervals for each parameter were calculated from the information matrix calcu­

lated from the negative of the inverse of the Hessian of second derivatives. 

An important practical point to note is that the ML method requires the log­

likelihood to be calculated repeatedly for different values of bo, b1 and Co. Each 

loglikelihood calculation involves a summation over N, the size of the entire pop­

ulation. This may seem prohibitively expensive given the size of N. However the 

only detailed calculations required are those involving the M individuals contract­

ing TB. The remaining N - M individuals can be grouped according to the village 

to which they belong, so that the likelihood calculations for these non-TB individ­

uals need only be carried out at the village level. This calculation is therefore only 

of order V, the number of villages, and not of order N - M. 

Thus the total Loglikelihood, L, is calculated in practice as 

M v 

L= LL+ LnjLf 
i=1 j=1 

where Li = log likelihood for TB case individual i; Lf = log likelihood for a 

non-case individual in locality j; and nj = number of non-cases in locality j. 

The above model formulation omits separate modelling of male/female char­

acteristics and of age dependence, but these can be added using a more detailed 

transition probability structure. This is discussed in the next subsection. 

14.1.1 Modeling of male/female characteristics and of age de-

pendence 

We now consider the effect of gender and age on an individual, for those individu­

als who do become cases during the period of study. Let 9 = 1, 2 denote the gender 
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(male, female), and h = 1,2 denote the age-category ('child': 15 years or under, 

'adult': 16 or over) at which notification occurs. At any time point individuals who 

are cases can belong to one of four categories {(g, h), 9 = 1,2, h = 1, 2}. 

14.1.1.1 Conditional form of the local effect coefficient 

The transition probability 14.8 can be refined to 

bomo (~t) 
2 2 

+ ~ ~ br(g, hlJ, k) m~i) (~t IJ, k) + Co (14.13) 
j=l k=l 

where m~i) (klJ, k) is the prevalence of those individuals in category G = 

gender, k = age category), at time t, in the village of individual i, and where 

b1 (g, hlj, k )is the coefficient corresponding to the degree of influence this category 

G = gender, k = age category) has on the probability that a non-case individual in 

category (g = gender, h = age category) will become a case in the next time step. 

One problem with this formulation is that the number of unknown b1 (.1.) coeffi­

cientsjumps from a single unknown, in equation 14.8 to 16 unknowns: b1 (g, hlj, k) , 9 = 

1,2, h = 1, 2,j = 1,2, k = 1,2. This is almost certainly unacceptably large. 

A possible way of reducing this proliferation of coefficients is to examine the 

gender on its own using the model: 

2 

bomo (~t) + ~ br(glj) m~i) (klj) + Co (14.14) 
j=l 

where the arguments 9 and j in b1 (glj) and m~i) (klJ) refer to gender cate­

gories only. Likewise the age effect can be examined on its own using the model 
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(14.15) 

where the arguments h and k in b1 (hlk) and m~i) (~t Ik) refer to age categories 

only. Each of these two models has only four b1 (.1.) coefficients. 

This conditional form of the model was found to be flawed. The results of run­

ning the age dependent model showed significance in two categories: transmission 

of TB from children to adults, and adults to adults. Table 14.1 shows the Maxi­

mum Likelihood Estimates for the parameters in this (two category) Age model. 

The significance of child to adult transmission went against all biological knowl­

edge ofTB transmission and led to a thorough re-examination of the model. It was 

thought that the current form of the local effect, coefficient caused a misleading 

interpretation of the results in that it imposed a conditional causal effect. 

An unconditional form of the model was subsequently formulated. 

Age model: bo b1(1,1)* b1 (1,2)* b1(2,1)* b1 (2,2)* Co 

Upper 95% CL 0.052 0.08 0.023 0.277 0.21 8.06E-06 

MLE 0.043 0.032 0.015 0.189 0.19 5.48E-06 

Lower 95% CL 0.034 -0.016 0.007 0.101 0.171 2.9E-06 

*where, 1 = aged:S; 15 and 2 = aged 16+. 

bdlength of infectious period) is set to 6 months. 

Time step is set to one month. 

Starting parameter values in optimisation procedure/or all parameters, is 0.0001. 

Table 14.1: Maximum Likelihood Estimates for the condi­

tional form of the (two category) age dependent model. 
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14.1.1.2 Non-conditional form of local effect coefficient 

By not allowing the local effect coefficient to take conditional form the 16 previous 

coefficients in equation 14.13 {b l (g, hjj, k) : 9 = 1,2, h = I, 2}, reduce to just 

four, {bl(g, h) : 9 = 1,2; h = I, 2} = {bl (1,2), bl (2, I), bl (I, I), bl (2, 2)}. 

Then transition probability (14.8) can be refined to 

(14.16) 

where mii) (~t) is the prevalence, at time t in the village of individual i and where 

bl (g, h) is the coefficient corresponding to the degree of influence gender and age 

has on the probability that a non-case individual in category (g, h) will become a 

case in the next time step. 

An even simpler formulation with only two unknown bl (.1.) coefficients can be 

used to separately examine gender, 

(14.17) 

and age, 

(14.18) 

Further extensions included constructing models incorporating three and five 

age categories respectively, and a model that is both age (five categories) and gen­

der dependent, in order to reflect age and gender dependent differences in TB and 

human immunodeficiency virus (HIV) incidence. However using the formulation 

in (14.13), a combined gender/age model with five age categories has ten unknown 

bl coefficients. This is almost certainly an unacceptably large number of parame­

ters to have to estimate. A possible way of reducing this proliferation of coeffi­

cients is to construct two separate models: an age/male model and an age/female 
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model. In the first model only the TB notifications for males are used to calculate 

the loglikelihood and only female notifications in the second model. The global 

and local prevalence values are calculated using both male and female data for 

both models. Thus the male/age effect can be examined using the model 

(14.19) 

and the female/age effect can be examined in the same way using the model 

The argument h in b1 (hlmale) and in b1 (hlfemale) refers to the five age cate­

gones. 

A further adaptation to the model was made by clustering the villages into 16 

zones. These zones were created by grouping neighbouring villages together so 

that the number of people residing in each zone were roughly equal. The previ­

ously described models were then run with zones as the 'locality' marker rather 

than individual villages. Figure 14.2 shows the geographical (longitude and lati­

tude) location of the villages and the 16 zone groupings for the Asembo and Gem, 

western Kenyan TB data set. 
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Chapter 15 

Kenyan Model Results 

15.1 Estimating the global and local effect parame-

ters 

15.1.1 Villages as locality marker 

The individual villages were used as the locality marker in the modelling process. 

The transmission probability was structured as shown in equations (14.8) for the 

simple model, (14.14) for the gender model, (14.15) for the age model (with two, 

three or five age categories), (14.16) for the mixed age/male model and (14.17) for 

the mixed age/female model. Table 15.1 and 15.2 shows the Maximum Likelihood 

Estimates, hal hI and Co and their corresponding 95% confidence intervals for the 

parameters in these seven model variations. 

The transition probability of becoming a case in the next time step, (alO)' can 

be constructed using these estimated parameter values (see tables 15.3 to 15.9). 

226 
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Table 15.1: Maximum Likelihood Estimates and 95% confidence intervals for the pa­

rameters in village models: Simple model, Gender model, Age model: (2 categories, 

3 categories, 5 categories). 

b1 (local) I Co 

Simple model: 

Upper 95% CL 0.054 0.119 7.9E-06 

MLE 0.045 0.109 5.4E-06 

Lower 95% CL 0.036 0.1 2.8E-06 

Gender model: Male Female 

Upper 95% CL 0.054 0.129 0.118 7.9E-06 

MLE 0.045 0.115 0.105 5.4E-06 

Lower 95% CL 0.036 0.1 0.092 2.8E-06 

Age model: 1 ::; 15 16+ 

Upper 95% CL 0.052 0.023 0.207 8.0E-06 

MLE 0.043 0.017 0.19 5.5E-06 

Lower 95% CL 0.034 0.01 0.173 2.9E-06 

Age model: 2 ::; 24 25 - 34 35+ 

Upper 95% CL 0.052 0.051 0.464 0.206 8.1E-06 

MLE 0.043 0.043 0.405 0.182 5.5E-06 

Lower 95% CL 0.034 0.035 0.346 0.157 2.9E-06 

Age model: 3 ::; 15 16 - 24 25 - 34 35 - 64 65+ 

Upper 95% CL 0.051 0.023 0.126 0.464 0.259 0.04 8.2E-06 

MLE 0.042 0.017 0.105 0.405 0.228 0.02 5.6E-06 

Lower 95% CL 0.034 0.01 0.084 0.346 0.197 -3.2E-04 3.0E-06 

bdlength of infectious period) is set to 6 months. Time step is set to one month. 

Starting parameter values in optimisation procedure, for all parameters, is 0.0001. 



Table 15.2: Maximum Likelihood Estimates and 95% confidence intervals for the para­

meters in village models: Mixed Age/Male model, Mixed AgelFemale model. 

I I bo b1(local) I Co 

Age/Male model: ::; 15 16 - 29 30 - 34 35 - 64 65+ 

Upper 95% CL 0.06 0.019 0.143 0.85 0.398 0.085 1.2E-05 

MLE 0.042 0.011 0.114 0.671 0.338 0.043 8.1E-06 

Lower 95% CL 0.029 0.003 0.086 0.491 0.278 5.4E-04 3.7E-06 

Age/Female model: ::; 15 16 - 24 25 - 30 31- 64 65+ 

Upper 95% CL 0.055 0.032 0.176 0.526 0.207 0.018 6.3E-06 

MLE 0.043 0.022 0.l43 0.421 0.175 0.002 3.2E-06 

Lower 95% CL 0.032 0.012 0.11 0.316 0.143 -0.013 2.2E-07 

bdlength of infectious period) is set to 6 months. Time step is set to one month. 

Starting parameter values in optimisation procedure, for all parameters, is O. 0001. 
-

n 
~ 
'""0 

S 
....... 
VI 

tv 
tv 
00 



CHAPTER 15 229 

Table 15.3: Estimated probability of becoming a case in the next time step (alQ) 

for the simple model with villages as the locality marker. 

alQ = probability of becoming a case in next time step 

rn~v) = (Local) TB prevalence in village v 

rno = (Global) TB prevalence in whole study area 

alQ - 0.045 rno + 0.109 (v) + 5.4E-06 - rn1 

95% Confidence (0.036, 0.054) (0.1,0.119) (2.8E-06,7.93E-06) 

Intervals 

Standard 0.005 0.005 l.3E-06 

. deviations 
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Table 15.4: Estimated probability of becoming a case in the next time step (alO) for the 

gender model with villages as the locality marker. 

aM = probability of a male becoming a case in next time step 

aia = probability of a female becoming a case in next time step 

rn~v) = (Local) TB prevalence in village v 

rna = (Global) TB prevalence in whole study area 

M - 0.045 rna + 0.115 (v) + 5.4E-06 a lO - rn1 

95% Confidence (0.036,0.054) (0.1, 0.129) (2.8E-06,7.9E-06) 

Intervals 

F - 0.045 rna + 0.105 (v) + 5.4E-06 alO - rn1 

95% Confidence (0.036,0.054) (0.092,0.118) (2.8E-06,7.9E-06) 

Intervals 

Table 15.5: Estimated probability of becoming a case in the next time step (alO) for 

age model (two categories) with villages as the locality marker. 

al~15) = probability of a child (aged::; 15) becoming a case in next time step 

a~~6+) = probability of an adult (aged 2: 16) becoming a case in next time step 

rn~v) = (Local) TB prevalence in village v 

rna = (Global) TB prevalence in whole study area 
(:95) - 0.043 rna + 0.017 (v) + 5.5E-06 alO - rn1 

95% Confidence (0.034,0.052) (0.01,0.023) (2.9E-06,8.0E-06) 

Intervals 

(16+) - 0.043 rna + 0.19 (v) + 5.5E-06 alO - rn1 

95% Confidence (0.034,0.052) (0.173, 0.207) (2.9E-06, 8.0E-06) 

Intervals 
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Table 15.6: Estimated probability of becoming a case in the next time step (alQ) for 

age model (three categories) with villages as the locality marker. 

ai~24) = probability of a person aged::;; 24 becoming a case in next time step 

ai;5-34) = probability of a person aged 2S-34 becoming a case in next time step 

ai~5+) = probability of a person aged 35 or over becoming a case in next time step 

miv) = (Local) TB prevalence in village v 

mo = (Global) TB prevalence in whole study area 

(94) - 0.043 mo + 0.043 (v) + 5.SE-06 alQ - m1 

95% Confidence (0.034,0.OS2) (0.03S, 0.051) (2.9E-06,8.1E-06) 

Intervals 

(25-34) - 0.043 mo + 0.40S (v) + 5.SE-06 alQ - m1 

95% Confidence (0.034,0.OS2) (0.346, 0.464) (2.9E-06,8.1E-06) 

Intervals 
(35+ ) - 0.043 mo + 0.182 (v) + S.SE-06 alQ - m1 

95% Confidence (0.034,0.OS2) (0.lS7, 0.206) (2.9E-06, 8.lE-06) 

Intervals 
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Table 15.7: Estimated probability of becoming a case in the next time step (alD) for 

age model (five categories) with villages as the locality marker. 

al~15) = probability of a child aged::; 15 becoming a case in next time step 

al~6-24) = probability of a person aged 16-24 becoming a case in next time step 

al~5-34) = probability of a person aged 25-34 becoming a case in next time step 

al~5-64) = probability of a person aged 35-64 becoming a case in next time step 

al~5+) = probability of a person aged 65 or over becoming a case in next time step 

mlv) = (Local) TB prevalence in village v 

mo = (Global) TB prevalence over whole study area 
(::;IS) - 0.042 mo + 0.017 (v) + 5.6E-06 alD - m1 

95% Confidence (0.034,0.051) (0.01,0.023) (3.0E-06, 8.2E-06) 

Intervals 
(16-24) - 0.042 mo + 0.105 (v) + 5.6E-06 a lD - m1 

95% Confidence (0.034,0.051) (0.084,0.126) (3.0E-06, 8.2E-06) 

Intervals 
(25-34) - 0.042 mo + 0.405 (v) + 5.6E-06 alD - m1 

95% Confidence (0.034,0.051) (0.346, 0.464) (3.0E-06, 8.2E-06) 

Intervals 
(35-64) - 0.042 mo + 0.228 (v) + 5.6E-06 alD - m1 

95% Confidence (0.034,0.051) (0.197,0.259) (3.0E-06, 8.2E-06) 

Intervals 
(65+) - 0.042 mo + 0.02 (v) + 5.6E-06 alD - m1 

95% Confidence (0.034,0.051) (-3.2E-04, 0.04) (3.0E-06,8.2E-06) 

Intervals 
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Table IS.8: Estimated probability of becoming a case in the next time step (alO) for 

male/age model (five categories) with villages as the locality marker. 

a~(95) = probability of a boy aged:::; 15 becoming a case in next time step 

a~(16-29) = probability of a man aged 16-29 becoming a case in next time step 

a~(30-34) = probability of a man aged 30-34 becoming a case in next time step 

a~(35-64) = probability of a man aged 3S-64 becoming a case in next time step 

a~(65+) = probability of a man aged 6S or over becoming a case in next time step 

mlv) = (Local) TB prevalence in village v 

mo = (Global) TB prevalence over whole study area 
M(95) - 0.042 mo + 0.011 (v) + 8.1E-06 a lO - m1 

95% Confidence (0.029,0.06) (0.003,0.019) (3.7E-06, 1.2E-OS) 

Intervals 
M(16-29) - 0.042 mo + 0.114 (v) + 8.1E-06 alO - m1 

95% Confidence (0.029,0.06) (0.086,0.143) (3.7E-06, 1.2E-OS) 

Intervals 
M(30-34) - 0.042 mo + 0.671 (v) + 8.1E-06 a lO - m1 

95% Confidence (0.029,0.06) (0.491,0.8S) (3.7E-06, 1.2E-OS) 

Intervals 

M(35-64) - 0.042 mo + 0.338 (v) + 8.1E-06 alO - m1 

95% Confidence (0.029,0.06) (0.278, 0.398) (3.7E-06, 1.2E-OS) 

Intervals 

M(65+) - 0.042 mo + 0.043 (v) + 8.1E-06 a lO - m1 

95% Confidence (0.029,0.06) (S.4E-04, 0.08S) (3.7E-06,1.2E-OS) 

Intervals 
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Table 15.9: Estimated probability of becoming a case in the next time step (alO) for 

female/age model (five categories) with villages as the locality marker. 

ai'a(9
5

) = probability of a girl aged::; 15 becoming a case in next time step 

ai'a(16-24) = probability of a woman aged 16-24 becoming a case in next time step 

ai'a(25-3a) = probability of a woman aged 25-30 becoming a case in next time step 

ai'a(31-64) = probability of a woman aged 31-64 becoming a case in next time step 

ai'a(65+) = probability of a woman aged 65 or over becoming a case in next time step 

m~v) = (Local) TB prevalence in village v 

ma = (Global) TB prevalence over whole study area 
F(95) - 0.043 ma + 0.022 (v) + 3.2E-06 a lO - m 1 

95% Confidence (0.032,0.055) (0.012,0.032) (2.2E-07,6.3E-06) 

Intervals 
F(16-24) - 0.043 ma + 0.143 (v) + 3.2E-06 alO - m 1 

95% Confidence (0.032,0.055) (0.11,0.176) (2.2E-07,6.3E-06) 

Intervals 
F(25-3a) - 0.043 ma + 0.421 (v) + 3.2E-06 a lO - m 1 

95% Confidence (0.032,0.055) (0.316,0.526) (2.2E-07,6.3E-06) 

Intervals 
F(31-64) - 0.043 ma + 0.175 . (v) + 3.2E-06 a lO - m 1 

95% Confidence (0.032,0.055) (0.143, 0.207) (2.2E-07,6.3E-06) 

Intervals 
F(65+) - 0.043 ma + 0.002 (v) + 3.2E-06 alO - m 1 

95% Confidence (0.032,0.055) (-0.013,0.018) (2.2E-07,6.3E-06) 

Intervals 
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The local transmission coefficient is larger than the global coefficient in all the 

model variations. The gender dependent model shows no significant difference 

between males and females. However, the age dependent models show significant 

differences between the various age groups. In general, the local transmission 

coefficient, b1, takes a larger value in adults (ages 16+) than in children (ages :::; 

15). It peaks in the age range of25-34 without gender dependence. This coefficient 

also takes particularly large values in the age/gender models in the expected age 

ranges of 30-34 for males and 25-30 in females. 

The estimated correlations between the parameters for the simple model are 

shown in Table 15.10. The estimator for the infection period length, b2, is effec­

tively uncorrelated with the other parameter estimates, which is desirable. 

Correl(bo) co) = -0.55 indicates, quite sensibly, that both the global effect pa­

rameter, bo and the background incidence component, Co are estimating the same 

global influence. Correl(bo) b1) = -0.18 indicates a small compensating relation­

ship between the global and local effect parameters. Correl(b1 ) co) = 0.04 suggests 

an extremely weak or no association between these parameters. 

Table 15.10: Correlation matrix for the parameters in the 

simple village model. 

bo b1 b2 Co 

bo 1 -0.18361 3.51E-10 -0.55122 

b1 -0.18361 1 -1.6E-I0 0.03855 

b2 3.51E-1O -1.6E-1O 1 -4.5E-10 

Co -0.55122 0.03855 -4.5E-I0 1 
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15.1.2 Zone as locality marker 

The villages were assigned to 16 different zones as shown in Figures 14.2 and 15.1. 

This zoning was then used as the new locality marker in the modelling process. 

Tables 15.11 and 15.12 show the MLEs with 95% confidence intervals for the 

parameters in models: simple model; gender model ; two, three and five category 

age models; mixed age/male model; mixed age/female model. 
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Figure 15.1: Geographical (longitude and latitude) location of the villages in the 

original 16 zone groupings with TB case distribution overlaid. 

No significance in the models is lost by the transition to using zones rather 

than villages as the locality marker. There is a slight increase in the local effect 

and reduction in the global effect. The local transmission coefficient, b1, peaks in 

the expected age ranges of25-64 without gender dependence. This coefficient also 

takes particularly large values in the age/gender models in the expected age ranges 

of 30-34 for males and 25-30 in females . 

The transition probability of becoming a case in the next time step, (alO), can 

be constructed using these estimated parameter values (see tables 15.13 to 15.19). 
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Table 15.11: Maximum Likelihood Estimates for the parameters in '16 zone' models: 

Simple model, Gender model, Age model: (2 categories, 3 categories, 5 categories). 

b1 (local) I Co 

Simple model: 

Upper 95% CL 0.037 0.143 6.8E-06 

MLE 0.026 0.13 4.5E-06 

Lower 95% CL 0.015 0.117 2.2E-06 

Gender model: Male Female 

Upper 95% CL 0.037 0.155 0.14 6.8E-06 

MLE 0.026 0.137 0.123 4.5E-06 

Lower 95% CL 0.015 0.119 0.107 2.2E-06 

Age model: 1 ::; 15 16+ 

Upper 95% CL 0.031 0.024 0.256 6.5E-06 

MLE 0.021 0.016 0.236 4.3E-06 

Lower 95% CL 0.011 0.007 0.216 2.2E-06 

Age model: 2 ::; 24 25 - 34 35+ 

Upper 95% CL 0.031 0.061 0.548 0.252 7.2E-06 

MLE 0.021 0.051 0.484 0.223 4.8E-06 

Lower 95% CL 0.011 0.040 0.42 0.194 2.5E-06 

Age model: 3 ::; 15 16 - 24 25 - 34 35 - 64 65+ 

Upper 95% CL 0.028 0.025 0.161 0.55 0.32 0.043 6.9E-06 

MLE 0.019 0.016 0.136 0.487 0.284 0.02 4.7E-06 

Lower 95% CL 0.009 0.008 0.111 0.423 0.248 -0.002 2.4E-06 

bdlength of infectious period) is set to 6 months. Time step is set to one month. 

Starting parameter values in optimisation procedure, for all parameters, is O. 000 1. 



Table 15.12: Maximum Likelihood Estimates for the parameters in '16 zone' models: 

Mixed Age/Male model, Mixed Age/Female model. 

I I bo ·r
n 

b1(local)_.. I Co 

Age/Male model: :s; 15 16 - 29 30 - 34 35 - 64 65+ 

Upper 95% CL 0.03 0.023 0.186 0.909 0.501 0.095 l.IE-05 

MLE 0.016 0.012 0.152 0.728 0.431 0.047 7.2E-06 

Lower 95% CL 0.002 6.8E-04 0.118 0.547 0.362 -6E-04 3.3E-06 

Age/Female model: :s; 15 16 - 24 25 - 30 31- 64 65+ 

Upper 95% CL 0.035 0.034 0.225 0.631 0.246 0.018 4.4E-06 

MLE 0.022 0.021 0.186 0.516 0.209 3E-06 2.2E-06 

Lower 95% CL 0.009 0.008 0.147 0.401 0.173 -0.018 -IE-07 

b2(length of infectious period) is set to 6 months. Time step is set to one month. 

Starting parameter values in optimisation procedure, for all parameters, is 0.0001. 
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Table 15.13: Estimated probability of becoming a case in the next time step (alQ) 

for the simple model with zone as the locality marker. 

alO = probability of becoming a case in next time step 

m~z) = (Local) TB prevalence in zone z 

ma = (Global) TB prevalence in whole study area 

alO - 0.026 ma + 0.13 (z) + 4.SE-06 - m 1 

95% Confidence (0.015,0.037) (0.117,0.143) (2.2E-06, 6.SE-06) 

Intervals 

Standard 0.006 0.007 1.2E-06 

deviations 

"."., 
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Table 15.14: Estimated probability of becoming a case in the next time step (alQ) 

for the gender model with zone as the locality marker. 

an = probability of a male becoming a case in next time step 

aio = probability of a female becoming a case in next time step 

m~z)= (Local) TB prevalence in zone z 

mo = (Global) TB prevalence in whole study area 

M - 0.026 mo + 0.137 (z) + 4.SE-06 alQ - m 1 

95% Confidence (0.015,0.037) (0.119, 0.155) (2.2E-06,6.8E-06) 

Intervals 

F - 0.026 mo + 0.123 (z) + 4.SE-06 alQ - m1 

95% Confidence (0.015, 0.037) (0.107,0.14) (2.2E-06,6.8E-06) 

Intervals 

Table 15.15: Estimated probability of becoming a case in the next time step (alQ) 

for age model (two categories) with zone as the locality marker. 

a~~15) = probability of a child (aged:::; 15) becoming a case in next time step 

al~6+) = probability of an adult (aged 2:: 16) becoming a case in next time step 

ml
z
) = (Local) TB prevalence in zone z 

mo = (Global) TB prevalence in whole study area 
(95) - 0.021 ma + 0.016 (z) + 4.3E-06 alQ - m 1 

95% Confidence (0.011,0.031) (0.007,0.024) (2.2E-06,6.SE-06) 

Intervals 
(16+) - 0.021 ma + 0.236 (z) + 4.3E-06 alO - m1 

95% Confidence (0.011,0.031) (0.216, 0.256) (2.2E-06,6.SE-06) 

Intervals 
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Table 15.16: Estimated probability of becoming a case in the next time step (alD) 

for age model (three categories) with zones as the locality marker. 

ai~24) = probability of a person aged::; 24 becoming a case in next time step 

ai~5-34) = probability of a person aged 25-34 becoming a case in next time step 

a~~5+) = probability of a person aged 35 or over becoming a case in next time step 

m~z) = (Local) TB prevalence in zone z 

ma = (Global) TB prevalence in whole study area 

(:94) - 0.021 ma + 0.051 (z) + 4.8E-06 alD - m1 

95% Confidence (0.011,0.031) (0.04,0.061) (2.5E-06, 7.2E-06) 

Intervals 
(25-34) - 0.021 ma + 0.484 (z) + 4.8E-06 a lD - m1 

95% Confidence (0.011,0.031) , (0.42, 0.548) (2.5E-06,7.2E-06) 

Intervals 
(35+ ) - 0,021 ma + 0,223 (z) + 4.8E-06 a lO - m1 

95% Confidence (0.011,0.031) (0.194,0.252) (2.5E-06,7.2E-06) 

Intervals 
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Table 15.17: Estimated probability of becoming a case in the next time step (alO) 

for age model (five categories) with zones as the locality marker. 

ai~15) = probability of a child aged:; 15 becoming a case in next time step 

al~6-24) = probability of a person aged 16-24 becoming a case in next time step 

ag5- 34) = probability of a person aged 25-34 becoming a case in next time step 

a~~5-64) = probability of a person aged 35-64 becoming a case in next time step 

ai~5+) = probability of a person aged 65 or over becoming a case in next time step 

rniz) = (Local) TB prevalence in zone z 

rno = (Global) TB prevalence over whole study area 
(95) - 0.019 rno + 0.016 (z) + 4.7E-06 alO - rn1 

95% Confidence (0.009, 0.028) (0.008,0.025) (2.4E-06, 6.9E-06) 

Intervals 
(16-24) - 0.019 rno + 0.136 (z) + 4.7E-06 alO - rn1 

95% Confidence (0.009,0.028) (0.111, 0.161) (2.4E-06,6.9E-06) 

Intervals 
(25-34) - 0.019 rno + 0.487 (z) + 4.7E-06 alO - rn1 

95% Confidence (0.009,0.028) (0.423, 0.55) (2.4E-06,6.9E-06) 

Intervals 
(35-64) - 0.019 rno + 0.284 (z) + 4.7E-06 alO - rn1 

95% Confidence (0.009,0.028) (0.248, 0.32) (2.4E-06, 6.9E-06) 

Intervals 

(65+) - 0.019 rno + 0.02 (z) + 4.7E-06 alO - rn1 

95% Confidence (0.009, 0.028) (-0.002,0.043) (2.4E-06, 6.9E-06) 

Intervals 
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Table 15.18: Estimated probability of becoming a case in the next time step (alO) 

for male/age model (five categories) with zones as the locality marker. 

a~(95) = probability of a boy aged::;: 15 becoming a case in next time step 

a~(16-29) = probability of a man aged 16-29 becoming a case in next time step 

a~(30-34) = probability of a man aged 30-34 becoming a case in next time step 

a~(35-64) = probability of a man aged 35-64 becoming a case in next time step 

a~(65+) = probability of a man aged 65 or over becoming a case in next time step 

m~z) = (Local) TB prevalence in zone z 

mo = (Global) TB prevalence over whole study area 
M(95) - 0.016 mo + 0.012 (z) + 7.2E-06 a lO - m1 

95% Confidence (0.002,0.03) (6.8E-04, 0.023) (3.3E-06, l.IE-05) 

Intervals 
M(16-29) - 0.016 mo + 0.152 (z) + 7.2E-06 alO - m1 

95% Confidence (0.002, 0.03) (0.118,0.186) (3.3E-06, 1.1E-05) 

Intervals 
M(30-34) - 0.016 mo + 0.728 (z) + 7.2E-06 a lO - m1 

95% Confidence (0.002,0.03) (0.547,0.909) (3.3E-06, 1.1E-05) 

Intervals 
M(35-64) - 0.016 mo + 0.431 (z) + 7.2E-06 alO - m1 

95% Confidence (0.002, 0.03) (0.362,0.501) (3.3E-06, 1.1E-05) 

Intervals 
, M(65+) - 0.016 mo + 0.047 (z) + 7.2E-06 alO - m1 

95% Confidence (0.002,0.03) (-6E-04, 0.095) (3.3E-06, 1.1E-05) 

Intervals 
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Table 15.19: Estimated probability of becoming a case in the next time step (alO) 

for female/age model (five categories) with zones as the locality marker. 

ai'a(9
5

) = probability of a girl aged:::; 15 becoming a case in next time step 

ai'a(16-24) = probability of a woman aged 16-24 becoming a case in next time step 

ai'a(25-3a) = probability of a woman aged 25-30 becoming a case in next time step 

ai'a(31-64) = probability of a woman aged 31-64 becoming a case in next time step 

ai'a(65+ ) = probability of a woman aged 65 or over becoming a case in next time step 

mr) = (Local) TB prevalence in zone z 

ma = (Global) TB prevalence over whole study area 
F(95) - 0.022 ma + 0.021 (z) + 2.2E-06 a lO - m 1 

95% Confidence (0.009,0.035) (0.008,0.034) (-IE-07,4AE-06) 

Intervals 
F(16-24) - 0.022 ma + 0.186 (z) + 2.2E-06 alO - m 1 

95% Confidence (0.009,0.035) (0.147,0.225) (-IE-07,4AE-06) 

Intervals 
F(25-3a) - 0.022 ma + 0.516 (z) + 2.2E-06 a lO - m 1 

95% Confidence (0.009,0.035) (OA01, 0.631) (-IE-07,4AE-06) 

Intervals 
F(31-64) - 0.022 ma + 0.209 (z) + 2.2E-06 a lO - m 1 

95% Confidence (0.009,0.035) (0.173, 0.246) (-IE-07,4AE-06) 

Intervals 

F(65+) - 0.022 ma + 3E-06 (z) + 2.2E-06 a lO - m 1 

95% Confidence (0.009,0.035) (-0.018,0.018) (-1E-07,4.4E-06) 

Intervals 
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The estimated correlations between the parameters in the simple model are 

shown in Table 15.20. As with the village results, the estimator for the infectious 

period length, b2, is effectively uncorrelated with the other parameter estimates. 

Correl(bo, co) = -0.46 again indicates that both bo and Co are estimating the same 

global influence and Correl(bo, b1) = -0.54 indicates a stronger compensating re­

lationship between the global and local effect coefficients than when the individual 

villages was used as the locality measure. This is to be expected because the local 

effect is now measured over a larger geographical area and therefore the distinction 

between local and global influences are not as marked as before. 

Table 15.20: Correlation matrix for the parameters in the 

simple 16 zones model. 

bo b1 b2 Co 

bo 1 -0.53631 S.4SE-IO -0.46 II 5 

b1 -0.53631 1 -2.SE-I0 0.089507 

b2 S.4SE-IO -2.SE-IO I -3.4E-IO 

Co -0.46 II 5 0.089507 -3.4E-IO 1 

15.1.3 Testing the robustness of the modelling procedure. 

In this section a number of tests are presented which were used to test the robust­

ness of the model. 

The first test is simply to demonstrate that the importance of local prevalence 

was not simply an artifact of the modelling. The TB notifications were randomly 

assigned to the 217 villages and the simple model then fitted to this new data. This 

was repeated several times. The resulting MLE values and 95% CIs were similar 

in each run. Table 15.21 shows a typical set of results and in these tests the local 

effect becomes not significant. 
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Table 15.21: Maximum Likelihood Estimates for the parameters in the simple 

model when TB cases are randomly assigned to the 217 villages. 

bo bI Co 

Upper 95% CL 0.165 0.011 6.4E-06 

MLE 0.15 0.005 4.0E-06 

Lower 95% CL 0.136 -0.001 1.6E-06 

bdlength of infectious period) is set to 6 months. 

Time step is set to one month. 

Starting parameter values in optimisation procedure, for all parameters, is O. 000 1. 

15.1.3.1 The effect of decreasing sample size (M) on the fitting of the simple 

model. 

To examine the effect of changes in the observed prevalence in the data., TB notifi­

cation data was randomly deleted and the MLEs of bo, bI and Co and their 95% CIs 

calculated for differing M. As the number ofTB notification data points decreases, 

the significance of local TB prevalence is lost in the model and superseded by the 

global prevalence. The background prevalence parameter Co decreases in negative 

correlation with the global parameter bo as expected. These results can be used to 

estimate the sample size (M) required to detect significant effects. Figures 15.2 

to 15.7 show the resulting estimated parameter values. Although only two repre­

sentative runs are depicted for brevity, results of repeated runs remain very similar 

in that the confidence interval widths remain stable for the larger sample sizes. For 

the local and global parameter estimates, hI and bo, these intervals remain distinct 

until M has decreased to approximately 350. This gives a clear indication that M 

needs to be of this order to detect a difference between local and global effects of 

the size observed. The confidence intervals for b2 increase in width with decreas­

ing sample size M as would be expected. In contrast, it is interesting to note that 
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the confidence intervals for Co decrease in width as sample size decreases. This 

may be due to the negative correlation between Co and global parameter boo As the 

bo value and 95% confidence interval width both increase, the Co value and 95o/c 

confidence interval width both decrease. 

The Innd of global (be) and local (b1) prev.nc. 
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coellldent va/un with v.r)4ng...,ie alEe M 

0.18 '\. -e- b1 Uppo<CI 
0.14 ~ _____ 

-+-b1 MLE 
0.12 ""..~ _____ .....- -e-b1u-a 
O.l~X/ 

-e-bOU~ 0.D8 
0.D8 ....... . IL ~ -+- bOMLE 

0.04 ~ ~ ~--
om ..- .. / ~--

-to- bO l<MwCI 

o ./ 
~.112 ,rI ..., _4QQ 000 800 

11:_",,-

Figure 15.2: RUNl: MLE of global and local prevalence coefficients bo and b1 for 

decreasing sample sizes. 
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Figure 15.3: RUNl : MLE of Co coefficient for decreasing sample sizes. 
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Figure 15.4: RUNl: :MLE of b2 coefficient for decreasing sample sizes. 
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Figure 15 .5: RUN2: :MLE of global and local prevalence coefficients bo and b1 for 

decreasing sample sizes. 
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Figure 15.7: RUN2: MLE of b2 coefficient for decreasing sample sizes. 

15.1.3.2 Investigating the effect of the length of the infectious period b'2 

249 

The length of the infection period was pre-specified, based on known characteris­

tics of TB. As a check that this does not unduly influence the results, the simple 

model was fitted for varying values of /)'2 (the infectious period length) while all 

other input values were kept constant (time step = 1 month, starting parameter 

values for optimisation = 0.0001). The behaviour of the local and global effect pa­

rameters, bl and bo (shown in Figure 15.8) is consistent with how we would expect 

them to behave as b'2 changes. With a longer infectious period length, the model 

would expect there to be more TB notifications than the 840 provided. Thus, the 

values of bi and bo decrease as the length of the infectious period increases. How­

ever their relative magnitudes are not significantly changed. Figure 15.9 shows the 

estimated values to for increasing values of infectious period length b'2. Due to the 

negative correlation that exists between Co and global parameter bo, the r'o value 

and 95% confidence interval width both increase slightly as the infectious period 

b2 increases in length. Figure IS.10 shows that the estimated values b; closely 

hth th . al I fb* time step h' al fb' matc e eoretic va ues 0 '2 - b2 as t e mput v ue 0 2 mcreases. 

This investigation was also carried out with the S category age model and very 

similar results were obtained as is shown in figures IS.9 to IS.18. 
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15.1.3.3 Investigating the effect of time step length 

The next test shows that use of a time step of one month is a suitable choice. The 

simple model was fitted for varying time step values while all other input values 

were kept constant. Table 15.22 contains the MLE values obtained for both the 

global and local effect parameters for each time step. For small time steps the 

transition probabilities can be considered to behave in a linear fashion because 

in this situation the linear term dominates quadratic and higher order terms, this 

becoming progressively more marked as the step size decreases. Therefore if the 

time step is doubled the parameter values would be expected to approximately 

double also. This pattern can be seen to be occurring in figures 15.19 to 15.21 for 

the two and three month time steps. However, as the time step increases in size the 

linearity property can no longer be expected to hold as the MLE values for the four 

month time step show. This indicates that a time step of one month is satisfactory. 

Table 15.22: Maximum Likelihood Estimates of the parameters in the simple model for 

varying lengths of time step. 

Time step (ts) Global effect Local effect t b(ts=l) 
S X 0 

t b(ts=l) 
S X 1 

length (in months) MLE (bo) MLE (b 1) 

1 0.0324 0.1214 

2 0.0619 0.2338 0.0648 0.2427 

3 0.0984 0.3262 0.0972 0.3641 

4 0.0867 0.346 0.1295 0.4854 

b2 (length of infectiOUS period) is set to 6 months. 

Starting parameter values in optimisation procedure, for all parameters, is 0.0001. 
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Figure 15.19: MLE of Local and Global effect coefficient for varying time step 

lengths. 
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Figure 15.21: MLE of Co coefficient for varying time step lengths . 
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15.1.3.4 Investigating the effect of different starting parameter values in the 

Neider-mead optimisation pl'ocedure 

The numerical stability of the optimisation procedure was checked for the simple 

model by fitting it using a variety of starting values for the NeIder-mead algorithm 

while all other input values were kept constant (b2 = 6 months, time step = 

month). 

The starting value of Co seemed to be the most influential prompting a com­

plimentary change in the MLEs of both Co and ho as illustrated in Figure 15.22. 

This is not surprising in light of the negative correlation between these two para­

meters. Parameter estimates for b I and b2 were hardly affected as can be seen in 

figures 15.23 and 15.24. 
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Figure 15.22: MLE of Global and background prevalence coefficients (bo and co) 

for varying NeIder-mead optimisation starting values of Co. 
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Figure 15.23 : MLE oflocal prevalence coefficient b1 and parameter b; for varying 

Neider-mead optimisation starting values of Co. 
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Figure 15.24: MLE of local prevalence coefficient b1 and b'2 for varying Nelder­

mead optimisation starting values of Co, between 0.000] and 0.0005. 
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15.1.3.5 Investigating the effect of different sizes of zone 

In order to investigate the model's sensitivity to the spatial scale of disease clus­

tering the 240 villages were systematically grouped together by gathering adjacent 

villages into bigger and bigger zones. The model was applied to each grouping 

and the MLEs for the local and global parameters, along with their 95% confi­

dence intervals for groupings of 108 to 16 zones are shown in Figure 15.26. In 

this particular systematic grouping of the villages it can be seen that the global 

and local MLE values stay relatively consistent up to the grouping of 40 zones. 

After this point, as the number of zones decrease (and the zone size increases), the 

global parameter value decreases as the local parameter shows a slight increasing 

trend. A control was also set up where the villages were randomly assigned to 

progressively larger zones. The corresponding results for these random groupings 

are shown in Figure 15.27. The random zoning did not show the same trend as the 

systematic zoning. For large zone size (and therefore small numbers of zones, 20 

or less) the global and local effects become less distinct. 

Figure 15.25 shows the effect of decreasing zone numbers from the original 

16 zones down to just two zones. The trend of decreasing global parameter value 

and increasing local parameter value is seen to continue as the number of zones 

decrease. The range of population values, calculated by subtracting the smallest 

population value in a zone from the greatest, are superimposed in figure 15.25 to 

investigate how much influence the range has on the MLE values. From this graph 

there does not seem to be any significant influence. 

The MLE b; value is not affected by increasing zone size for either systematic 

or random groupings of villages, (see figures 15.28 to 15.30). 

The coefficient Co value for both systematic and random groupings of villages 

is relatively consistent until the number of zones is decreased to approximately 

20. The Co value then seems to decrease in negative correlation with the bo value. 
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This trend is more pronounced when the villages are systematically grouped (see 

figures 15.31 to 15.33). 
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Figure 15.25: MLE of global and local prevalence coefficients, bo, b1, for the sys­

tematic grouping of villages into increasing zone sizes (and thus decreasing num­

bers of zones: 16 to 2). 
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Figure 15.26: MLE of global and local prevalence coefficients, bo bt , for the sys­

tematic grouping of villages into increasing zone sizes (and thus decreasing num­

bers of zones: 108 to 16). 
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Figure 15.27: MLE of global and local prevalence coefficients, bo, b
" 

for the ran­

dom grouping of villages into increasing zone sizes (and thus decreasing numbers 
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Figure 15.28: MLE of b'2 coefficient for the systematic grouping of villages into 

increasing zone sizes (and thus decreasing numbers of zones: 108 to 16). 
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Figure 15.29: MLE of b'2 coefficient for the systematic grouping of villages into 

increasing zone sizes (and thus decreasing numbers of zones: 16 to 2). 
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Figure 15.30: MLE of b2 coefficient for the random grouping of villages into in­

creasing zone sizes (and thus decreasing numbers of zones). 
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Figure 15.31: MLE of Co coefficient for the systematic grouping of villages into 

increasing zone sizes (and thus decreasing numbers of zones: 108 to 16). 
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Figure 15.32: MLE of Co coefficient for the systematic grouping of vi llages into 

increasing zone sizes (and thus decreasing numbers of zones: ] 6 to 2). 

e.timated value. 01 coefficient cO for .orne random 
._ •• _ "'village. to_FYl"1I num ..... "'-. 

0 .00000II 

0 .000008 -- = - == • 0 .000007 - -.- - 00 UpparCl 
O.Q()()()()CI - .;. 
0 .000005 "" • .-t- ' ';'00 IILE 

at ... ... .;. 

0 .000004 ... -00 LowarCl 
0 .000003 -. - . . - : . : 
0 .000002 

. -0 .00000' . 
NumberorZonea 

0 
10 30 50 7 0 110 110 

Figure] 5.33 : MLE of Co coefficient for the random grouping of villages into in­

creasing zone sizes (and thus decreasing numbers of zones). 
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15.1.3.6 Effect of different groupings of villages into 16 zones 

In order to explore whether the way the 217 villages were grouped effected the 

model results the simple model was fitted for a number of random groupings plus 

a further four non-random !:,>Toupings: grouped by latitude; longitude; in order of 

village number; and the original 16 zones grouping of adjacent vi llages. 

The resulting MLEs and 95% confidence intervals for each parameter are shown 

in graphs 15.34 to 15.36. The b2 value is not affected by the different groupings. 

h·· b d b' .t. time step . CC' • 1 d . d T IS IS to e expecte as :2 = b2' IS ellectlve y pre etermme . 

The coefficient Co value can again be seen to behave in direct negative corre­

spondence with the value of the global coefficient boo 

The values of the local and global coefficients, bi and bo, are visibly more dis­

tinct from each other when any geographic based grouping is applied. This implies 

the model is picking up the local geographjc effect of the TB case clustering. 
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Figure 15.34: MLE of global and local prevalence coefficients, bo, b1, for various 

different groupings of the 217 villages. 
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Figure 15.36: MLE of parameter Co for various different groupings of the 21 7 

villages. 
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15.1.3.7 Summary of robustness tests of model 

The various test results show that: 

• the importance of local prevalence as shown in the model results was not 

simply an artifact of the modelling procedure. 

• the model functions well with moderate to large sample sizes (M). The re­

sults indicate that a sample size (M) of at least 400 is recommended. 

• Pre-specifying the length of the infectious period b2 at 6 months does not 

unduly influence the model output. 

• the chosen time step length of 1 month is satisfying. 

• the stability of the optimisation procedure and therefore the validity of the 

MLE values resulting from it. 

• the model reacts predictably and logically to varying sizes of groupings 

(zones) and ways of grouping the locality measure (villages). 

It is therefore concluded that the model is robust and functioning in a satisfactory 

manner. 

The next chapter investigates the possible use of this model in the design of 

cluster randomised trials. 
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Cluster Randomised Trial Design 

16.1 Introduction 

Cluster or group randomised trials are used to assess the relative effectiveness of 

alternative interventions. They occur when the trial subjects (e.g. patients) are 

randomised to a certain intervention at the group level but the resulting data is 

analysed at the individual level. For example, in a group randomised trial of two 

different health interventions, A and B, 10 health centres are randomly assigned 

to carry out intervention A and another 10 health centres are assigned to carry out 

intervention B. The resulting data set consists of the individual patient responses 

to the interventions. Thus, here the trial subjects are the patients, who are clus­

tered/grouped according to the health facility they attend, but the health centres 

rather than the individual patients were randomly assigned to the interventions. 

Usually a significance test is applied to the collected data from such a study in 

order to statistically assess the performance of one intervention over another. The 

statistical power of a trial is defined as the probability of rejecting a false statistical 

null hypothesis given the collected data. This probability that a trial will have a 

significant result, i.e produce a p-value of less than the specified significance level 

(alpha, usually set at 5%) is calculated under the assumption that the difference 

267 
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in intervention results equals the minimal detectable difference (i.e the smallest 

difference believed clinically important or biologically plausible). 

A power analysis should always be carried out at the planning/design stage of 

a trial in order to estimate the required sample size, significance level and size 

of observed effect that it is desirable to detect. The larger the effect size, sample 

size and/or significance level, the greater the likelihood that the trial will result in 

detecting a statistically significant effect. 

A well designed trial ensures that the statistical power is high enough to detect 

reasonable departures from the null hypothesis while taking into account the aims 

of the trial and the resources available (e.g. time, money, available workforce size 

etc .. ). When carrying out a power analysis for a clustered randomised trial the clus­

tering effect must be taken into account, especially when estimating the required 

sample size. People within a group/cluster are likely to have more similarities with 

each other than with people from another group, e.g. geographic, socioeconomic, 

health facilities, racial, sexual, political, age and gender similarities. A clustering 

effect occurs when these group similarities lead to a decreased variation among the 

responses of people in the same group/cluster (within-cluster variation) as opposed 

to the variation of responses between the groups/clusters (between-cluster varia­

tion). Within cluster-variation can therefore increase the differences in responses 

observed between groups and introduce bias. Cluster randomisation can thus re­

duce the effective sample size (ESS) of the trial and it is necessary to adjust for 

this at the design stage. 

An important possible use of the local and global effect model (introduced and 

described in the chapter 14) is in just such a design of a community randomised 

trial where geographical clusters of people are divided into two groups and the 

effectiveness of an intervention policy is assessed by applying it to one group but 

not the other. Here the model can be used to calculate the minimum difference 

in an outcome variable that can be detected with statistical significance, taking 
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the effect of clustering of cases into consideration. It thereby gauges the potential 

effectiveness of such a trial. Such a possible application is illustrated by setting up 

cluster randomised trial scenarios using the western Kenyan time/spatial TB data 

set and applying the model. 

16.2 Splitting zones into two groups representing two 

different treatment groups in a group randomised 

trial 

In order to design a group or community-randomized trial to evaluate the impact 

of a specific intervention policy on tuberculosis transmission in an area with a 

high tuberculosis burden, information to estimate the effect of local versus global 

transmission is required. Communities should be large enough to encompass most 

TB transmission but enough communities are needed to ensure statistical power. 

TB prevalence is chosen to be the outcome variable as a substitute for the true 

variable of interest, TB transmission, due to the difficulties of measuring transmis­

sion directly. The 16 original zones were divided into two different groupings of 

8 zones each and the simple model was then fitted to this data. (The infectious 

period length, b2, was set to 6 months, the time step to one month and the starting 

parameter values in the optimisation procedure to 0.0001). This fitting was re­

peated for a variety of different groupings of the original 16 zones. The difference 

between the prevalence of TB in each group was systematically varied in order 

to try to identify the minimum difference that could be detected with statistical 

significance. Figure 16.1 shows the resulting MLE values for the local and global 

parameters. The minimum detectable difference in TB prevalence is at the point 

where the two 95% confidence intervals for the two groupings separate and no 

longer overlap. This occurs at approximately 0.007. 
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In order to explore the effect of decreasing the number of zones in each group­

ing, zones were merged together with the effect that no TB case data was lost. The 

simple model was then fitted to the new groupings. Figures 16.2 and 16.3 show 

the resulting MLE values of the local and global parameters for 6 and 4 zones in 

each grouping. 

In order to further explore the effect of decreasing the number of zones in each 

grouping along with the sample data size, zones with their corresponding TB case 

data were systematically deleted and the simple model fitted to the new groupings. 

The Figures 16.4 to 16.6 show the resulting MLE values of the local and global 

parameters for 7, 6 and 4 zones in each grouping. A summary of all the groupings 

results is displayed in Table 16.l. 

Table 16.1: The estimated minimum difference in TB prevalence detectable by the 

simple model when 16, 14, 12 and 8 zones are assigned equally to two different 

groups. 

Number of zones TB prevalence TB prevalence Approximate ·minimum 

in each group in Group 1 in Group2 detectable difference 

(method used to in TB prevalence 

reduce zone numbers) 

8 0.003 0.01 0.007 

6 (merging zones) 0.0037 0.01l 0.0073 

4 (merging zones) 0.0023 0.0104 >0.0081 

7 (deleting 2 zones) 0.0041 0.0104 0.0063 

6 (deleting 4 zones) 0.0055 0.01l 0.0055 

4 (deleting 6 zones) 0.0054 0.0131 >0.0077 

The minimum detectable difference is calculated using: 

IGroup 1 TB prevalence - Group 2 TB prevalence I 
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The overall prevalence in the total population remains constant for the first 

three results in Table 16.1 where the sample size was kept constant. From these 

results it seems that as the number of zones in the groupings decrease the minimum 

difference in TB prevalence that is detectable by the model increases. This is 

what would be expected in a group randomised trial where there is a considerable 

clustering effect. 

Decreasing the number of zones in each grouping by deletion of zones and 

therefore sample data produces varying total overall TB prevalence values. For 7 

zones in each grouping the total overall prevalence is 0.0072. For 6 zones the total 

overall prevalence is 0.0082 and for 4 zones it is 0.0093. There seems to be less of 

a pattern to the results for these groupings, possibly due to the confounding factor 

of decreasing amounts of sample data available to the model and thus varying TB 

prevalence in the total population. 

In all the different grouping runs, as the local parameter MLE decreases the 

global MLE increases to compensate, as can be seen in figures 16.1 to 16.6. 
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Figure 16.1: MLE of local and global effect coefficients for varying differences in 

the TB prevalence between two groupings of 8 zones. 
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Figure 16.3: Merging of zones: MLE of local and global effect coefficients for 
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for varying differences in the TB prevalence between two groupings of 7 zones. 
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Figure 16.5: Deletion of zones: MLE of local and global prevalence coefficients 

for varying differences in the TB prevalence between two groupings of 6 zones. 
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Figure 16.6: Deletion of zones: MLE of local and global prevalence coefficients 

for varying differences in the TB prevalence between two groupings of 4 zones. 



Chapter 17 

Discussion and Conclusions for the 

Markov-chain local/global effects 

model 

The model showed that there is a significant local effect of TB transmission with 

a larger local transition coefficient (b1) than the global coefficient (bo) in all the 

different model variations. Age seems to be a significant factor whereas gender on 

its own is not. The two mixed age/gender models show significant local prevalence 

in the anticipated age classes: males aged 30-34 and females aged 25-30. There 

was an understandable increase in the strength of the negative correlation between 

the two global and local effect parameters when the study area was divided into 16 

zones instead of villages. 

The results of the various robustness tests, (e.g. varying M, b2, time step length 

and starting parameter values for the NeIder-mead optimisation algorithm) indicate 

that the model is robust. 

There are several limitations to the interpretation of the results for this par­

ticular TB data set. First, routine TB surveillance program data was used. This 
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data does not represent the full spectrum of cases in the study area. It is estimated 

that the Kenyan national program detects only 47% of TB cases. There are no data 

available to allow comparison of those detected and those not detected on such fac­

tors as health seeking behaviours, accuracy of diagnosis, and survival. TB cases 

reported in the register are from people who self report to a government health fa­

cility, are correctly diagnosed, and survive to start treatment. It is therefore likely 

that some of the clustering effect detected could be due to patchy reporting. Some 

district health centres may be more active in advertising their services or provide 

better quality services than others and so capture a higher fraction of patients. This 

could cause an apparent cluster of TB cases around these health centres and there­

fore cause bias in the local effect parameter. In addition, the home address in the 

registers is recorded for defaulter tracing purposes and does not necessarily reflect 

the place where the person contracted or spread TB. There may be misclassifica­

tion of location in the data. 

Despite the above data limitations it has been shown that this model does detect 

significant local clustering effects (whatever their true cause may be). It has also 

been shown that it is possible to use the model in the design of a cluster randomised 

trial where clusters of subjects are divided into two groups and the effectiveness 

of an intervention policy is assessed by applying it to one group but not the other. 

Here the model can be used to calculate the minimum difference in an outcome 

variable that can be detected with statistical significance, given a certain available 

sample size. It can thereby be used to gauge the potential effectiveness of such a 

trial, taking into account the effect of clustering. 



Chapter 18 

Conclusions and discussion of Thesis 

regarding all three TB models 

This thesis has described the development of three different Tuberculosis epidemi­

ological models: A family of age dependent parametric statistical models; a com­

partmental, age dependent, difference equations model; and a Markov chain model 

that allows for location effects in the transmission of TB. 

18.1 Parametric Statistical TB modelling 

In countries that have experienced a long-term decline in the incidence of TB and 

in annual risk ofTB infection, a slow down in the annual decline of the crude noti­

fication rate (referred to as stagnation) is often observed. It is most often observed 

in middle-to-higher income countries with an increasing life expectancy rate and 

therefore a rapidly ageing population. 

This stagnation effect can be explained by the epidemiology ofTB. As the risk 

of infection declines, the proportion of disease due to initial infection (primary 

disease) and due to re-infection also declines. When the risk of infection reaches 
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an extremely low level it is likely that most of the disease detected is re-activation 

disease. This effect is called the 'ageing of the epidemic'. 

Re-activation disease by its very nature does not depend on the current risk of 

infection and the probability of occurrence of the disease is not believed to decline 

significantly with lengthening time since infection. In addition, medical factors 

that may increase the risk of re-activation of latent TB, such as lung cancer and 

diabetes are predominantly found in the older generations. Therefore the incidence 

of this disease only declines if the latently infected cohorts either' die off' or are 

given preventative therapy. Thus a country with an increasing life expectancy and 

a very low annual risk of infection could expect the decline in TB notifications to 

stagnate. 

In order to analyse the progression of TB in these types of countries it is neces­

sary to create mathematical models that can capture the essential epidemiological 

and demographic characteristics that are involved in the stagnation effect. 

TB data sets from three countries, Netherlands, UK and Morocco, that are con­

sidered to have an aging population, low/decreasing annual risk of infection and 

exhibit an aging of the epidemic, are examined for similar trends/characteristics. 

The UK (male) data shows similar characteristics to the data from the Nether­

lands, in that the rate of decline in the data is greater in the younger age ranges and 

begins to level off in the older age ranges. 

The Moroccan data shows a more extreme but similar pattern in that the younger 

ages exhibit a sharp decline in TB that levels offuntil an increase in TB is exhibited 

in the older age ranges. 

The age and time dependent trends apparent in the data are investigated by 

constructing and fitting a family of parametric models to all three data sets as 

described in chapters 5 to 8. The method of Maximum Likelihood is used to fit the 

distributions and the direct search optimisation method, NeIder-mead, is used to 
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find the maximum value of the likelihood. Confidence intervals for the maximum 

likelihood estimator values and confidence/performance bands for the model fits, 

are constructed using Asymptotic Theol)' and the Bootstrap Method. 

The general characteristics of the TB data sets as they vary with time and age 

are satisfactorily captured by this family of parametric models. There are some 

effects that the models fail to capture but it is unclear whether all these charac­

teristics are derived from true features of the data or arise from erroneous data 

collection/manipulation. The accuracy of the data can be generally questionable 

in vel)' young children due to the difficulty in obtaining positive sputum test re­

sults. The data in the two oldest age groups from the Netherlands suffer from a 

change in age ranges around 1972 used in the collection of data. The Moroccan 

year data although regarded as generally reliable is partly created by projection. 

The parametric model therefore gives a clear indication of the general features 

of age dependency that any subsequent TB model would need to be able to capture. 

18.2 Compartmental age-dependent TB model 

The emphasis of this part of the work is on investigating the ability of compart­

mental TB models to capture the age and time characteristics exhibited in TB data 

from countries with increasing life expectancy, aging of the TB epidemic and a 

slow down in the annual decline of the crude notification rate. A suitable com­

partmental model is rebuilt from a previously existing model devised by C.Dye 

et al [14, 15]. The TB data sets from the Netherlands and Morocco are analysed 

using this compartmental model. The UK data was not used as it only contains TB 

data from white males and the model is not built to make this distinction between 

gender and ethnicity. 

For the Netherlands the outcome investigated was the number of TB cases per 
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100,000 of population for each of the 8 age groups, for years, 1952 to 1994. For 

Morocco the outcome investigated was the number of Pulmonary TB (PTB) cases 

per 100,000 of population for each of the 8 age groups, for the years 1980 to 2000. 

The model was unable to fit well to the initial year data, overestimating the 

number ofTB cases in the adult age groups. This was most noticeable in the fit to 

the Dutch data. It is also obvious the shape of the line fit for both countries does 

not vary significantly across the 8 age ranges. Hence, in the case of the Dutch data, 

although the model fits well for the first three age groups it soon fails to capture 

the 'flattening' of the curvature in the data. It is also unable to explain the 'tailing 

off' and subsequent increase in TB case numbers observed in the Moroccan data. 

But it does successfully capture the maj ority of time dependent trends in the data 

After describing a reasonable fit to the data most of the work concentrates on 
\ 

the sensitivity analysis of the model. The aim is to explore how varying the values 

of each input parameter effects the outcome variables. The value of each parameter 

used to produce the original fits to the data is referred to as the base value. Each 

parameter is taken in tum and the model run with a new value (a percentage of its 

base value) for that parameter. The percentages by which the parameter values are 

varied were selected to show a representative pattern of how the outcome variable 

is affected. 

The parameters of the compartmental model mostly behave in a non-linear way 

except for very small variations in value where they often behave approximately 

linearly. It is also noticeable that they interact with each other in complicated and 

subtle ways that are not always obvious when examining the difference equations 

that drive the model. 

Most of the parameters caused an effect in the outcome variable, as would be 

expected, when varied one at a time keeping all other parameter values fixed. The 

behaviour and effect on the outcome variable for the most part is explainable by 
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the epidemiology of TB. There were however a few notable exceptions. Para­

meters p(for ages 15+) - the proportion of infectious susceptibles which develop 

progressive primary TB in 1 year, x(for ages 15+) - the proportion ofre-infections 

which is susceptible to developing TB within 1 year, and r - the rate of relapse 

from failed treatment to active TB, effect the outcome variable counter intuitively. 

Despite further examination of the model, including systematically simplif)ling 

the difference equations while noting whether the particular effect in the outcome 

variable was affected, no obvious reason for these anomalies was discovered. A 

full understanding of the model and its results would therefore benefit from further 

investigation of the behaviour of these particular parameters and the interactions 

of all the parameters in the model. 

When fitting to the Dutch data some of the parameters produced a far smaller 

relative effect in the outcome variable than others. In particular, E - the relative case 

detection rate of non-infectious cases, w - the rate of smear conversion from non­

infectious to infectious TB, ¢ - the proportion of failed treatment cases which is in­

fectious, and F - proportion of progressive primary cases which become infectious 

within one year, have little effect on the outcome variable. Likewise, when fitting 

to the Moroccan data a variation in the values for parameters x(ages 0-14) - the 

proportion of re-infections which is susceptible to developing TB within 1 year, ¢ 

and E had a relatively small effect on the outcome variable as compared with other 

parameters. However, it was found that eliminating these parameters did have a 

(large) effect on the output of the model, suggesting that these parameters although 

individually seeming relatively unimportant have significant interactions with the 

other model parameters. 

Varying the parameters one at a time did not significantly improve the model 

fit to each of the age groups over time and therefore failed to significantly improve 

the fit to the age dependent characteristics. However, for the Moroccan data, in­

creasing the 11 selected parameters at the same time did have the effect of varying 
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the gradient and placement of the fitted line so that it gave a better fit to the data for 

ages 0-34. But the model still failed to capture fully the age characteristics in the 

data especially in the older age groups. Therefore, despite the apparent flexibility 

and large number of parameters of this compartmental model, there are still age 

dependent features of these TB data sets which would need further modelling to 

capture. 

It would be possible in theory to get a better fit to the data with more robust 

and sophisticated optimisation/fitting techniques and building in an even more so­

phisticated age/time dependency e.g more age/time dependent functions for the 

parameters. It could also be useful to construct another way to obtain equilibrium, 

so that the model starts with the same age distribution for the output variable as the 

observed data (with or without a warm-up). If the characteristics observed in these 

countries' TB data sets and captured by the parametric modelling are considered 

important, it could be useful to devise a way to directly build these trends into the 

age dependent compartmental model. But the large number of parameters in the 

model (which would increase rapidly with a more sophisticated internal age/time 

dependent structure) make the model very unwieldy and difficult to optimise. It 

should also be noted that the data sets that could be applied to this kind of model 

may not be very large, so it is important that the model not become over compli­

cated. 

The accuracy of model results is always going to be limited by the form of 

epidemiological, behavioural and intervention data that are available to inform 

the structure and input values of the model. Perhaps one of the most valuable 

aspects of constructing a compartmental model is that it produces insight into and 

clarification of the real biological system being modelled. 

One of the advantages of carrying out compartmental analysis is the ability to 

assign biological or physiological meaning to the rate/proportion parameters that 

underlie the movement of the population through the model. Parameter estimation, 
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however, is not particularly easy, with research into this aspect arguably lagging 

behind research into model formulation. In the case of diseases such as Tuber­

culosis, the estimation of many parameters is further complicated because when 

individuals are infected but not infectious they may not be distinguished from sus­

ceptibles. Research into overcoming this and other parameter estimation prob­

lems is currently being carried out within a Bayesian framework (using MCMC) 

[34, 35,40, 91, 33]. 

As the work in this part of the thesis shows, analysis of non-linear compart­

mental models is not simple. Particular attention should be paid to ensure that the 

complicated internal structure does not produce spurious results. It is particularly 

important in analysing possible stagnation effects in TB notification data that age 

dependency characteristics are sufficiently captured in the structure of the model. 

18.3 Modelling Local and Global Effects in the Trans­

mission of TB Observed in Asembo and Gem, 

Kenya: Designing a Spatial Model of TB Case 

Clustering. 

Most current epidemiological TB models are homogeneous, in that an infected in­

dividual is equally likely to infect any of the susceptible individuals in the model 

population. This is in effect assuming that an infectious individual in Southamp­

ton is as likely to infect someone in Glasgow as someone else in Southampton. 

This assumption has been found to be adequate for diseases such as influenza, in 

which the disease can be transmitted via casual contact. However, the validity of 

this assumption is generally agreed to be questionable for diseases in which each 

individual has a limited number of potentially infectious contacts. Tuberculosis is 
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such a disease. 

With this in mind, a Markov-chain model is created in an attempt to identify 

whether the nearest reported source of possible infection is a localised one stem­

ming from an individual's contacts with family or near neighbours or whether it 

arises from much more dispersed 'global' contact. Thus, we are concerned with 

determining whether a clustering (local) effect is as strong or stronger than a gen­

eral global effect in respect of TB transmission. This may have consequences for 

how TB case finding strategies are undertaken i.e. focussing on local contacts of 

infectious cases or on the entire population. 

The basic methodology is to construct a stochastic Markov-chain model whose 

behaviour is determined by a number of key parameters representing possible local 

and global effects on TB transmission. This model is then fitted to Kenyan time­

spatial TB data using maximum likelihood to estimate these key parameter values. 

The model showed that there is a significant local effect of transmission with 

a larger local transition coefficient (b1) than the global coefficient (bo). Age was 

identified as a significant factor whereas gender on its own was not. The two mixed 

age/gender models also showed significant local prevalence in the anticipated age 

classes: males aged 30-34 and females aged 25-30. 

A number of tests of the robustness of the modelling procedure were carried out 

including: a demonstration that the importance of local prevalence is not simply 

an artifact of the modelling; testing the effect of decreasing sample size on the 

fitting of the model; investigating the effect of the length of the infectious period; 

investigating the effect of different starting parameter values in the NeIder-mead 

optimisation procedure; investigating the model's sensitivity to the spatial scale of 

disease clustering. The results of all these various robustness tests were more than 

satisfactory. 

It has also been shown that it is possible to use the model in the design of 
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a cluster randomised trial where clusters of subjects are divided into two groups 

and the effectiveness of an intervention policy is assessed by applying it to one 

group but not the other. Here the model can be used to calculate the minimum 

difference in an outcome variable that can be detected with statistical significance, 

given a certain available sample size. It can thereby be used to gauge the potential 

effectiveness of such a trial, taking into account the effect of clustering. 

The model was formulated to match the complexity of the model with the 

quality of the data available. The model assumes an equal period and degree of 

infectiousness for all identified cases. However, not all notified cases are nec­

essarily infectious or equally infectious and indeed the data used for the study 

combined different types of TB (e.g. smear positive, smear negative, and extra 

pulmonary). Additionally, information about the HIV status of each individual in 

the study was not available although it is estimated that HIV prevalence is approx­

imately 20 - 25% in the study area. HIV positive people are more likely than HIV 

negative people to have active TB disease, to be smear negative, to have shorter 

survival, but to be less infectious for TB. HIV could therefore influence TB preva­

lence by influencing transmission and acquisition of active TB. It is interesting to 

note that in the model results the magnitude of the local effect was greatest in the 

age groups that have the greatest prevalence of HIV It is therefore possible that 

the register data shows HIV clustering more than clustering of TB due to the in­

fectiousness of TB cases. This would lead to bias in the local effect, making it 

larger than ifHIV was not present. However, the relevance of the model results in 

the design of a cluster randomised trial is not effected by the reason for clustering. 

With more detailed data it may be possible to refine the model to incorporate a 

larger number of states (rather than just case and non-case). Much of the interest in 

active case finding concerns transmission in households therefore data for individ­

ual families or households would be preferable. IfHIV status data was available 

this could also be incorporated into the model. Another component of the model 
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that requires further development is the way the length of infectious period (b2) 

is handled. The assumption that recovery time is independent of location may be 

flawed. The rate of recovery is dependent on HIV co-infection and drug resistance, 

both of which may be location dependent. In future models it would be preferable 

to include this as a parameter to be estimated. 



Appendix A 

Maximising the posterior - Using 

Least squareslNeldermead Simplex 

methods 

The objective is to minimise the error between the actual recorded data and the 

model output, thus finding the optimal values of the input parameters. 

Recorded Data 
\, 

e Input Parameters MODEL Output ---7 SS(e) 

Using the NeIder-mead Simplex algorithm, the input parameter values are sys­

tematically varied until an optimal fit for the data is found (i.e the objective func­

tion for the error term is minimised). 

In the simple case, the objective function to be minimised is the Sum of Squares: 

ss = I)Yi(B) - Yi)2 
Vi 

where Yi is the model output and Yi is the recorded data. 
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A.I NeIder-mead Simplex Algorithm 

(with reference to the paper "Convergence Properties of the NeIder-mead Simplex 

Method in Low Dimensions" - J.C.Lagarias et. al. [42]) 

The NeIder-mead simplex algorithm was first published in 1965 and is an ex­

tremely popular direct search method for carrying out unconstrained minimisation 

of non-linear functions in multi-dimensions. Direct Search methods are a class 

of minimisation methods that do not require the use of derivatives. They rely ex­

clusively on calculating the value of the objective function and comparing it with 

the best previous value [82]. The fact that the NeIder-mead algorithm is relatively 

simple to program for computer calculation adds to its popularity. 

The standard NeIder-mead algorithm uses four scalar parameters: 

• Reflection: p = 1 

• Expansion: X = 2 

• Contraction: '"Y = 1/2 

• Shrinkage: CJ = 1/2 

in order to minimise an obj ective function, f (B). 

An iteration step of the algorithm: 

Each iteration step begins with a non degenerate simplex .6. and its n+ 1 ver­

tices, (i.e n+ 1 points in Rn). 

1. Order: The n+ 1 vertices are ordered and labelled, Xl, X2, ... ,Xn , Xn+l, so 

that the objective function values satisfy: 
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Because the purpose of this algorithm is to minimise the objective function, 

the vertex Xl is the "best" point, Xn+l is the "worst" point and f(Xn+l) is the 

"worst" function value. 

2. REFLECT: 

The Reflection point, Xn is calculated from: 

centroid of the n best points 
~ 

n L Xi 
i=l n 

n 

(1 + p)(L Xi) - PXn+1 
i=l n 

Evaluate f(Xr). 

If f(XI) ::; f(Xr) ::; f(xn), accept the reflected point, Xn and end the 

iteration. 

3. If f(xr) ::; f(XI) then EXPAND: 

The Expansion point, X e , is calculated from: 

centroid of the n best points 
,-A--... 

n 

LXi 
i=l n 
n 

(1 + PX)(L Xi) - PXXn+1 
i=l n 

Evaluate f(xe). 

If f(xe) ::; f(xr), accept the expansion point, Xe, and end the iteration. 

else If f(xe) 2: f(xr), accept the reflection point, Xn and end the itera­

tion. 

4. If f(xr) 2: f(xn) then CONTRACT between the centroid, L~=l ~, and 

the "better" of Xn+l and Xr: 
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(a) If f(xn) ~ f(xr) < f(xn+1) then calculate the Contraction point, 

XcI 

Evaluate f(Xc1). 

centroid of the n best points 
,.....-A-,. 

n 

LXi 
i=l n 
n 

(1 + p')(L Xi) - P,Xn+1 
i=l n 

n 

""' X· +y( Xr - L...t --.:) 
i=l n 

If f(Xc1) ~ f(xr), accept the contraction point, Xch and end the 

iteration. else If f(Xc1) > f(xr), go to step 5, i.e. perform a shrink 

operation. 

(b) If f(xr) ;::: f(Xn+l) < f(Xn+l) then calculate the Contraction point, 

Xc2 

centroid of the n best points 
,.....-A-,. 

n L Xi 
i=l n 

Evaluate f(Xc2). 

If f(Xc2) < f(Xn+I), accept the contraction point, Xc2' and end the 

iteration. else If f(Xc2) ;::: f(xr), go to step 5, i.e. perform a shrink 

operation. 

5. Perform a SHRINK operation: 

Evaluate f(ai) atthen points, ai = Xl +O"(Xi-XI), where i = 2,3, ... ,n, n+ 

1. 

Thus, the vertices of the simplex at the next iteration, before ordering, will 
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The algorithm terminates when the function values at the vertices of the sim­

plex satisfy some predetermined stopping condition, e.g. a tolerance value for the 

variance of the n+ 1 function values. 

The NeIder-mead paper [39] did not explain how to order the vertices when 

equal function values were produced. This has led to differences in interpretation 

of the NeIder-mead algorithm. An example of a set of tie-breaking rules can be 

found in the 1998 paper by Lagarius et. al. [42]. 

Nelder-mead's algorithm is economical in the number of times it evaluates 

the function at each iteration. In practice it often only needs one or two function 

evaluations to construct a new simplex and is often able to find reasonably good 

solutions fairly rapidly. However, its convergence properties are not particularly 

well understood. Only limited results exist for particular classes of problems based 

in one or two dimensions. Although there are recent attempts to expand these 

results including the 2002 paper by Price, Coope and Byatt [17] which introduces 

a convergent variant of the NeIder-mead algorithm. 



Appendix B 

An Introduction to Likelihood 

Theory 

Let fi be the unknown input parameters to a model. The "most likely" value of fi, 

i.e. the value that makes the observed data the "most probable", is called the maxi­

mum likelihood estimate (m.l.e) of fi because it maximises the likelihood function, 

fx(x, fi). Let ft denote this m.l.e. ft is dependent on the observed data, ~, as dif­

ferent data samples give different likelihood functions. A very useful property of 

the m.l.e is its coherence, i.e. if ft is the m.l.e of fi, then for any function, g(fi), 

the m.l.e is g(ft). Calculating the m.l.e is fairly straightforward and consists of 

maximising the likelihood function. When maximising the likelihood function, 

f~(~, fi), it is usual and easier to work with the log likelihood, log f~(~, fi). Max­

imising the log likelihood function is achieved by finding a stationary point in the 

normal way: by differentiating log f~(~, fi) with respect to fi, setting the results 

equal to 0 and solving. To check that this stationary point is indeed a maximum it 

is necessary to show that the Hessian matrix, a matrix of second derivatives with 

elements [H(fi)]ij = ae~;{}j logf~(~,fi), is negative definite atfi = ft. 
One reason for the Maximum Likelihood estimation's wide popularity is the 

usefulness of the m.l.e's asymptotic behaviour: 
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• Let ~ be n observations of i.i.d random variables X, whose joint p.d.f, 

fx(~,fD = ~~=lfx(Xi,fi), is completely specified except for the values 

of the unknown parameters, fi. Let ~ be the maximum likelihood estimator 

offi· 

Then, as n --t 00, the distribution of the m.1.e, ~, tends to a multivariate 

normal distribution N[fi, I(fi)-l]. 

The variance in this multivariate normal distribution is called the asymptotic 

variance covariance matrix. 

B.I Calculating the Asymptotic variance covariance 

matrix: 

I(fi)-l can be calculated from the Hessian matrix: 

where the variances of fi are the leading diagonal elements and the covariances are 

the off diagonal elements. 

From this covariance matrix the correlation matrix can be calculated: 



Appendix C 

Sensitivity and Uncertainty Analysis 

(Referencing the paper "Sensitivity and Uncertainty Analysis of Complex Models 

of Disease Transmission ... " - Blower and Dowlatabadi [87]) 

C.l Com plex Models of disease transmission: 

Simple models can be solved analytically but the behaviour of more complex mod­

els can only be understood by numerical analysis. Uncertainty analysis and sensi­

tivity analysis are used because these models have a complex structure and a high 

degree of uncertainty in estimating the values of many of the input parameters. 

Model Characteristics: 

• Many uncertain parameters 

• Outcome variables are non-linear functions of the parameters 

• The full range of each input parameter needs investigating 

• The models are computationally taxing. Therefore the ability to complete 

sensitivity analysis with the minimum possible number of computer runs is 

desirable. 
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Uncertainty and Sensitivity Analysis: 

• Uncertainty Analysis is used to assess the variability (prediction impreci­

sion) in the outcome variable that is due to the uncertainty in estimating the 

input values. 

• Sensitivity Analysis extends the uncertainty analysis by identif)ring which 

parameters are important (due to their own estimation uncertainty) in con­

tributing to the prediction imprecision; i.e. it tries to answer the question: 

how do changes in the values of the input parameters alter the value of the 

outcome variable? 

e.2 Summary of Sampling Schemes:-

In order to carry out uncertainty or sensitivity analysis, a large sample of the model 

outcomes and input parameter values have to be collected. The following is a list 

of some of the more popular sampling designs: 

1. Full Factorial Design: This uses every value of each parameter and forms 

every possible combination of parameter values. This therefore explores the 

entire parameter space but is extremely time consuming and hence highly 

impractical, especially for models \vith large numbers of parameters. 

2. Alternative Factorial Design: For a K parameter model, fix the values of K-

1 parameters and vary only the value of the Kth parameter over a specified 

range .. This is very quick and simple. Its main disadvantages are that only 

one parameter can be varied at a time and therefore only a small subset of 

the K-dimensional parameter space can be explored and the values of the 

K -1 parameters have to be estimated with a high degree of precision. 



CHAPTER C 295 

3. Latin Hypercube Sampling (LHS): One of the designs that allow for the 

simultaneous variation of the values of all the input parameters. Latin Hy­

percube Sampling (LHS) scheme is an efficient sampling design proposed 

by McKay, Conover and Beckman (1979). It is a type of stratified Monte 

Carlo sampling and can be seen as an extension of Latin Square sampling. It 

has been demonstrated that if the outcome variable is a monotonic function 

of each of the input functions, the LHS design is the most efficient design 

compared with simple random and fractional stratified sampling designs, 

for estimating the mean value and the cumulative distribution function of 

the output variable. It has also been shown that even if the monotonicity 

assumption doesn't hold, but the sample sizes are large, then LHS is more 

efficient than the simple random sampling design. 

/ 



Appendix D 

Bootstrapping 

, . . ' 

The Bootstrap method is a computer-based method of statistical inference [9] and 

belongs to a large class of methods called resampling methods because they re­

sample from the original sample data set [63]. 

Bootstrapping was given its name by Efron [8] who borrowed it from the 

phrase "to pull oneself up by one's bootstrap". This saying commonly refers to 

succeeding without help from others. The Bootstrap method can be thought of as 

doing just that, in that it aims to carry out statistical calculations, standard errors, 

confidence intervals etc ... using no further information than the already available 

sample data set. 

The following is an explanation ofthe simple nonparametric bootstrap method 

[43]. 

D.I N onparametric Bootstrap 

Let S = {Xl, X 2 , ••• , Xn} be a random sample drawn from a population P = 

{Xl, X2, ..• , XN}. Suppose T = t(S) is a statistic that is used to estimate the pop­

ulation parameter of interest, e = t(P), such as the population mean or standard 
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error for example. 

The traditional approach to estimating the sampling distribution of this statis­

tic T requires making assumptions about the structure of the population P (e.g. 

normality) and either deriving the exact distribution ofT or if this is not possible 

deriving the asymptotic distribution. This method can produce inaccurate results 

if the assumptions are incorrect or, if using asymptotic results, the sample data set 

is 'too' small. 

The bootstrap method avoids these problems and allows us to estimate the 

sampling distribution of T empirically. The algorithm for carrying out the non­

parametric bootstrap is as follows: 

Fori = 1 to M 

Draw a random sample S7 = {XiI) X72) ... ) X7n} of size n from S, using sampling 

with replacement. 

Compute statistic T for each bootstrap sample: Tt = t( St). 

Nexti 

Hence, the distribution of the bootstrap statistic, T*, can then be used as an esti­

mate for the distribution of the true population parameter of interest, B. 

In principle, all possible bootstrap samples of size n could be collected from S. 

Unfortunately, the number of possible S* is nn, which is prohibitively large unless 

n is extremely small. In order to minimise any. possible error in bootstrap inference 

by not using all possible bootstrap samples the number of bootstrap replications, 

M, should be made 'sufficiently' large [43, 9] (Ch6, pgs 51-53). 
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D.2 Bootstrap Confidence Intervals 

There are many different methods of constructing bootstrap confidence intervals. 

This section sets out two of the most common and easiest to implement. 

• The normal-theory interval method assumes that statistic T is normally dis­

tributed and hence constructs a 100(1 - a)% confidence interval as follows, 

where jj* 

SE*(T*) 

where V* (T*) 

V*(T*) 

and T* 

T* 

A * ± zl_~SE (T*) 

1'* - T is an estimate of the bias of T; 

VV*(T*); 

is the estimated bootstrap variance of T* : 

",J:! (T* - T*) 2 
L ... n=l t 

M-1 

is the estimate of the expectation of T* : 

L~l Ti* 
M 

• The bootstrap percentile interval method creates a confidence interval, 

(TJower) ' Tc"Upper)), using the lower and upper quantiles ofT*. The boot­

strap replicates are put in order, { Ttl)' TC;) , ... , TtM) }, and the lower and up-

per quantiles calculated using: lower = [( M + 1) ~ J; upper = [( M + 1) (1 - ~)] . 



Appendix E 

Demography and Health in Morocco 

E.1 A brief history of the changing demography and 

health in Morocco 

This information was partly gathered in a discussion with Salah-Eddine Ottrnani 

MD, MPH, Medical Officer, TB Strategy and Operations (TBS) - Stop TB Commu­

nicable Diseases (CDS), (ottrnanis@who.int); upon my first visit to the WHO in 

Geneva, November 2002. 

E.1.1 Demography 

There has been a rapid decrease in infant mortality in recent times and life ex­

pectancy has been rapidly increasing. It is now estimated at around 69 years. De­

mographic and various TB data collected in Morocco is regarded as being fairly 

reliable for the years 1980 to present day. The last Census was taken in 1994 and 

all subsequent year data is by projection. For the year 2000, the population of 

Morocco is recorded as 29,878,000. 
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E.1.2 Health 

• Tuberculosis programs started in the 1950s and DOTS was first introduced 

into the country in 1991. More detailed information was gathered reo TB 

incidence etc .. from around 1994 onwards. 

• Health care facilities are considered good with both private and public 

health care available to the population. 

• Immigration: There is some migration out of Morocco, but there is consid­

erable internal migration from rural to urban areas. Large movements of 

people began around 1956 when Morocco gained independence. Since then 

urban towns have become very overcrowded. 

• Medical conditions: There has been a considerable change in the diet of 

the general population and there has also been an increase in diabetes and 

cancer cases. HIV is not considered a large problem in Morocco although 

rates are beginning to rise. 

• Ageing population and TB epidemic: The average age of a TB patient in 

Morocco is slowly increasing. People born in 1954 - 1960 are more likely 

to have a TB occurrence than those born in later years. 



Appendix F 

Exponential line fits to TB data from 

the Netherlands, Morocco and UK 

F.1 Exponential line fits to the Dutch TB data 

Figure F.l : (a)-(h): Plots of the Dutch TB case data for each of the 8 age ranges, 

with exponential line fits of the form: In(TB cases/ lOO,OOO) = A exp(-B age). 
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F.2 Exponential line fits to the Moroccan PTB data 

Figure F.2: (a)-(h) : Plots of Moroccan PTB case data for each of the 8 age ranges, 
with exponential line fits of the form: In(TB cases/1OO,OOO) = A ex-p(-B age) . 
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F.3 Exponential line fits to UK white males TB data 

Figure F.3 : (a)-(h): Plots of UK (Male) TB case data for each of the 8 age ranges, 
with exponential line fits of the form: In(TB cases/ l00,000) = A exp(-B age). 
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