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A generalised wave approach based on reflection, transmission and propagation of
waves is presented for the analysis of one-dimensional structural waveguides. The state
vector in the physical domain is transformed to the wave domain using the displacement
and internal force matrices. The wave amplitudes at one point are then related to those
at another point by the (diagonal) propagation matrix, which is true for deterministically
varying waveguides as well as uniform waveguides. The response to external excitation,
reflection and transmission at a point discontinuity, reflection at boundaries, the spectral
element and the energy flow associated with waves are described in a systematic way
using the matrices. Numerical results of the wave approach are always well conditioned
since the positive- and negative-going wave motions are separated. The wave approach
is illustrated for longitudinal and bending motions of deterministically varying straight
beams, based on elementary theories such as Euler-Bernoulli theory. The energy
transport velocity is derived using the relationship between power and energy. In
contrast to that for uniform structures, the energy velocity for deterministically varying
structures depends on position as well as frequency. The in-plane motion of uniform
curved beams, in which longitudinal and bending motions are coupled, is studied as
well. The energy flow associated with waves is described explicitly in terms of the
wavenumbers. Numerical results for the power transmission through a U-shaped
structure are presented. In conjunction with the piecewise approach, the exact results
can be used in an efficient way for arbitrarily varying structures and, eventually, built-
up structures. Employment of deterministically varying elements, rather than uniform
elements, could lead to rapid convergence at low computational cost, especially when
the non-uniformity of the structure becomes severe. The modal behaviour of a linearly
tapered curved beam with clamped-free boundaries is studied and its asymptotic

behaviour related to the pure bending and pure extensional motions is revealed.
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Chapter 1.

INTRODUCTION

1.1 Background

Finite element analysis is a useful tool to analyse the dynamic behaviour of
structures at low frequencies. However, in the high frequency region, it requires
powerful computing resources for a refined model. Statistical energy analysis, which is
concerned with energy flow in a structure and is used at high frequencies, is not suitable
for structures with high damping such as a tyre.

The literature, which is reviewed in the next section, suggests several alternative
approaches using exact solutions such as the transfer matrix method, the dynamic
stiffness method and the wave methods. These approaches are valid for all frequencies
in contrast to finite element analysis, so they can be used efficiently in the high
frequency region and may also be suitable for structures with high damping. Interest has
been shown in the wave approach where the dynamic behaviour of a structure is
described in terms of waves and their propagation, reflection and transmission in the
structure. This wave approach is attractive since the associated numerical results are
always well conditioned.

The present work is concerned with wave motion of various types of one-
dimensional structure. In one-dimensional structures all the field quantities associated
with the motion are written as functions of position along the axis of the structure.

Throughout the thesis the material properties of the structures under consideration are



assumed to be linearly elastic. The geometry and/or material properties may be uniform

along the length, or vary continuously.

1.2 Review of previous work

In this section the literature on wave motion of one-dimensional structures is
reviewed. One-dimensional structures are first categorised according to their type and
then the results of the survey are classified according to the categorisation. Special
attention is paid to three cases: straight bars undergoing longitudinal motion, straight
beams undergoing bending motion and curved beams, in which longitudinal and
bending motions are coupled in their plane. These motions are all based on elementary

theories such as Euler-Bernoulli beam theory.

1.2.1 Classification of one-dimensional structures

Figure 1-1 shows a categorisation of one-dimensional structures according to the
characteristics of the material and geometric properties. The bold-faced groups in the
figure are considered in this thesis. First uniform structures, where the properties are
constant, and non-uniform structures are separated. Periodicity of the spatial variation
divides the non-uniform structures into 3 groups: non-periodic, near periodic and
periodic structures. Non-periodically varying structures can be subsequently divided
into two groups: slowly varying and rapidly varying structures. When the degree of the
non-uniformity is relatively small compared to a wavelength, waves can propagate
along the structure with negligible reflection. These structures are classified as slowly
varying structures. When the non-uniformity becomes severe, waves may not propagate
freely and may be partly reflected. However, previous work has shown that there is a

class of non-uniform structures where no such reflection occurs. These structures are



categorised as deterministically varying structures. Combining the categories of slow
variation and deterministic variation makes another class, called near deterministically
varying structures, which are similar to deterministically varying structures but not the
same. Non-uniform structures, where the geometry and material properties vary in a
complex manner so that the reflection of waves is significant, are classified as arbitrarily
varying structures. Indeed this group includes all other structures, which have not been
classified yet as one of the other groups since exact or approximate closed-form
solutions for the motion are difficult to obtain.

This categorisation has been made on the assumption that the variation of the
properties is prescribed by known functions. The so-called random or disordered
structures, where the properties are given as random variables with a probability

distribution, are beyond the scope of this thesis.

1.2.2  Uniform waveguides

A uniform structure has geometric and material properties which are invariant
along its length. This group includes uniform straight bars undergoing longitudinal
motion, uniform straight beams undergoing bending motion, and curved beams with
constant curvature and constant properties.

Transfer matrix methods have been widely used for analysing the dynamic
behaviour of elastic systems including uniform structures such as space structures. Lin
and Donaldson (1969) outlined the principles of the transfer matrix method and
presented a series of examples of its application including curved panel-stringer rows in
aircraft. The review by Mead (1996) on wave motion in continuous periodic structures

contains some references to the transfer matrix method. Easwaran et al. (1993) derived



the relationships between the impedance matrix and transfer matrix and investigated the
properties of the matrices of symmetrical, reciprocal and conservative systems,
respectively. Zhong and Williams (1995) utilized the symplectic property (see equation
(2.4)) of the transfer matrices to develop a more efficient and accurate computational
procedure for solving eigensolutions of the transfer matrices.

The eigenvectors of the transfer matrix describe the form of the wave motion in
the structure and the eigenvalues are related to the amplitude change of the waves across
the structure. Cremer, Heckl and Ungar (1973) summarized the fundamentals of the
longitudinal, shear, torsional and bending waves and provided numerous examples and
applications. Mace (1984) studied the vibrational behaviour of uniform, straight beams
using a wave approach based on reflection, transmission and propagation of waves
including the nearfield components. Milne (1987) studied the reflection of bending
waves at the boundary of uniform straight beams, where conversion from a propagating
wave into a nearfield wave and vice versa could take place. Using the fact that the
dynamic stiffness matrix representing boundary conditions of a reciprocal system is
symmetric, he showed that magnitudes of the reflection coefficients for the two cases

are the same but the phase difference is 7/2. Miller and von Flotow (1989) studied the

energy flow associated with waves in structural networks of one-dimensional members
such as bars and beams. In their studies, they showed that energy could be propagated
through the interaction between two nearfield waves of opposite direction, which was
also considered by Bobrovnitskii (1992). Ignoring the nearfield waves, Mace (1992)
showed that the scattering matrix for a reciprocal system is symmetric and it is unitary

(consequently the eigenvalues are of unit magnitude) for a conservative system. Mead



(1994) re-examined the phase-closure principle for the natural frequencies of finite
beams. He showed that the principle, which is usually associated with propagating
waves, can also be applied to nearfield waves. Beale and Accorsi (1995) presented a
general matrix method, based on the work of Miller and Flotow, for the analysis of
power flow in two- and three-dimensional frames consisting of uniform members such
as Timoshenko beams.

For structures such as composite beams and curved beams where the various
motions are coupled to each other, wave approaches are also useful in that the motions
can be described in terms of independent waves. Harland et al. (2001) studied wave
motion in straight, tunable fluid-filled beams, which is a three-mode system, using the
wave approach based on the reflection, transmission and propagation of waves.
Chidamparam and Leissa (1993) summarized the large amount of published literature
on the in-plane, out-of-plane and coupled vibrations of curved bars, beams, rings and
arches of arbitrary shape. Recognizing that fewer publications on the vibrations of
loaded arches had appeared, they studied the in-plane free vibrations of loaded curved
arches including centreline extensibility, and found that the centreline stretching causes
a decrease of the natural frequencies and that the decrease may be important, especially
for shallow arches. Wu and Lundberg (1996) investigated the transmission of energy
through a circular bent section connecting two straight beams. Numerical results for
various bend types with different curvatures were presented in polar radiation diagrams
for bend angles between 0° and 360°. Walsh and White (2000) studied the vibrational
power transmission in curved beams using four different models of beam behaviour,

Love-based theory, Fliigge-based theory and the corrections for rotary inertia and shear



deformation, respectively. The power along the circumferential direction was separated
into extensional, bending moment and shear force components, and the time-averaged
value of each component for a single wave mode obtained. Kang et al. (2003) applied
the wave approach based on the reflection, transmission and propagation of waves for

the free in-plane vibration of curved beams with constant curvature.

1.2.3 Slowly varying waveguides

When the lengthscale of the non-uniformity variation is relatively large compared
to the wavelength concerned, waves can propagate along the structure with negligible
reflection to a first approximation, as shown by Lighthill (1978) in his study on acoustic
ducts. These structures are classified as slowly varying structures. Langley (1999)
studied wave propagation along a slowly varying one-dimensional waveguide with
deterministic, periodic and random variation using a perturbation method. He showed
that, in these cases, the power carried by a wave component is preserved along the
waveguide.

Care should be taken in using this approximation since, in some situations, the
wavelength can become very long at certain frequencies, for example, a cut-off
frequency which is found in the case of a beam on an elastic foundation as shown by
Langley (1999). Burr et al. (2001) studied non-uniform Euler-Bernoulli beams under
the action of non-uniform tensile force. When the lengthscale of the non-uniformity is
large compared to the wavelength concerned, they showed that the coupling between
the propagating waves and the nearfield waves (or the energy transfer between the two
kinds of waves) becomes so small that the evolution of the two kinds can be considered

separately. They derived a second order differential equation describing the asymptotic



evolution of the propagating waves, and showed that waves stop propagating and
become trapped in certain conditions of non-uniformity. A similar effect was observed
by Scott and Woodhouse (1992). They investigated the vibrational behaviour of an S-
shaped curved plate strip and showed that certain of the normal modes would be trapped
in the vicinity of the inflection point of the S-strip by a process of total internal
reflection from points where the curvature reaches critical values. To understand the
mode transition phenomenon in the vibration of beams having varying curvature and
cross-section, Tarnopolskaya et al. (1996, 1999) carried out an asymptotic analysis for
the transition of the high-frequency modes and a perturbation analysis for the transition
of the low-frequency modes. The similarities and distinctions between the low mode

and the high mode transitions were described.

1.2.4 Deterministically varying waveguides

For non-uniform waveguides with rapid variation, wave motion is in general
difficult to interpret since the variation may lead to the significant reflection of waves.
However, previous work has shown that there is a class of non-uniform waveguides
where no such reflection occurs. Most of the work is related to acoustic waveguides (i.e.
horns). For example, it is well-known that the governing equation of an acoustic horn
can be solved for several specific types of horn, the so-called Salmon’s family (Pierce
1981), which includes conical, exponential and catenoidal horns. Nagarkar and Finch
(1971) studied a bell and suggested that a sinusoidal horn could also be included in the
family. As a more general case, it was found that wave propagation in a horn, where the
cross-sectional area varies as a power of the length, can be solved exactly in terms of

Bessel functions (McLachlan 1955). The results for non-uniform acoustic waveguides



can be equally applied to structural waveguides with the same variation undergoing
longitudinal motion or torsion, since their governing equations all have the same
mathematical form (Graff 1975). Kumma and Sujith (1997) used the results to
determine natural frequencies of the longitudinal vibration of some non-uniform bars.
Little attention has been paid to non-uniform beams undergoing bending motion,
however, even though their motion can be interpreted in terms of waves. Cranch and

Adler (1956) showed that the motion of a non-uniform beam along the x axis of density
P, cross-sectional area 4 and the second moment of area / where pA(x) < x™ and
EI(x)oc x® with m and » real and non-negative, can be solved in terms of Bessel

+8 -,
. The first three conditions

. . m
functions if n=m+2, n=m+4, n=m+6 or n=

include rectangular beams with linear, quadratic, and cubic thickness variation and with

the width varying to any power. The last condition includes a rectangular beam where
A(x) oc x* and I(x) oc x*. For this condition, the equation of motion can be transformed

into that of a uniform beam as shown by Abrate (1995). It has also been found that the
motion of non-uniform beams with exponentially varying properties along the length
can be expressed simply in terms of exponential functions (Cranch and Adler 1956,
Suppiger and Taleb 1956). These analytical solutions have been used to obtain natural
frequencies for beams for various boundary conditions and with intermediate
constraints, e.g., see references (Conway et al. 1964, Mabie and Rogers 1968, Mabie
and Rogers 1974, Goel 1976, Craver and Jampala 1993, Auciello and Nole 1998).
Banerjee and Williams (1985) used the solutions to obtain the exact dynamic stiffness

matrices for non-uniform beams with » =m+2. Petersson and Nijman (1998) studied



dynamic characteristics of the beams equivalent to the acoustic horn, featured by a
broad-banded transition from vibrations govermned by the properties at the mouth to
vibrations governed by those at the throat. Using the geometrical acoustic approach,
Krylov and Tilman (2004) showed that the incident flexural waves are trapped near the
edge of the wedges, the thickness of which varies as a power of the length, and the
waves are therefore never reflected back.

There are various previous studies using approximate or numerical methods for
deterministically varying waveguides. Karabalis and Beskos (1983) presented the exact
static axial and bending stiffness matrices for a linearly tapered beam element with
constant width, which can be used for dynamics and stability of the structures consisting
of tapered beams in an efficient way. Abrate (1995) applied the Rayleigh-Ritz approach
to non-uniform bars and beams, where the cross section varies polynomially as a
function of distance, under several practical boundary conditions such as fixed-free, and
investigated the sensitivity of the fundamental frequencies to the non-uniformity.
Auciello and Nole (1998) obtained the natural frequencies of a beam composed of two
tapered beam sections with different properties with a mass at the end by using the
Rayleigh-Ritz approach with the orthogonal polynomials as test functions. In particular,
the approximate methods might be useful to model the vibration of higher order non-
uniform structures where the analytical solutions cannot be obtained such as
Timoshenko beams. For example, Gopalakrishnan and Doyle (1994) obtained axial and
flexural dynamic stiffnesses of a higher order non-uniform waveguide using the

displacements of the uniform deep waveguide as Ritz functions.



1.2.5 Near deterministically varying waveguides

Adding small variation to the rapid and deterministic variation will make a certain
class of non-uniform structures. For example, a rectangular beam, where the thickness
and width are linearly tapered but the positions of the fictitious apexes are slightly
different, is one case of these structures.

The motion of these structures can be expected to be similar to that of the
deterministically varying structures, which may be shown by an asymptotic approach as
done for the slowly varying structures. However, there is very little existing literature
concerning these structures and previous studies have mostly been concerned with more

general cases, the arbitrarily varying structures, which are described in the next section

1.2.6.

1.2.6 Arbitrarily varying waveguides

Non-uniform structures, where the geometry and material properties vary in a
complex manner and the magnitude of the variation is not so small, are classified as
arbitrarily varying structures. Indeed this group includes all other structures which are
not yet classified as one of the four groups, since exact or approximate closed-form
solutions of the motion are difficult or impossible to obtain. For example, this group
includes the case of non-uniform straight beams where the cross sectional area and the
moment of inertia varying according to any two arbitrary powers along their length.
Wang (1968) obtained the modal solutions for these non-uniform straight beams in
terms of generalized hypergeometric functions. Eisenberger (1990) obtained the axial,
torsional and bending stiffnesses for the non-uniform beams, where the variation is

given by any polynomial functions, in terms of an infinite series.
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Another approach for the motion of arbitrarily varying structures is a piecewise
approximation where the structure is divided into a sequence of small segments. Each
segment is modelled by an analogous element where the solution is known. The whole
motion of the structure is then predicted by combining the behaviour of the elements
and properties of the joints between the elements. Pease (1965) outlined this piecewise
approach for a general one-dimensional Sturm-Liouville problem. Gallagher and Lee
(1970) studied the numerical errors occurring in the piecewise representation of the
arbitrarily varying beams using two types of segment modelling. One is the stepped
representation, where the segment is modelled as a uniform beam element, and the other
is the tapered representation, where the segment is modelled as a tapered beam element.
The numerical results showed that the tapered representation could reduce the numerical
errors effectively. They also showed that the conventional stepped representation would
not assure the upper bound of the natural frequencies. Hodges et al. (1994) studied the

vibration of the tapered beam using the transfer matrix method.

1.2.7 Summary of review

The purpose of this survey has been to review the published literature on wave
motion of one-dimensional structures. The one-dimensional structures, the properties of
which are linearly elastic and are prescribed by known functions, have been classified
according to their type into the five groups as in Figure 1-1: the uniform, slowly
varying, deterministically varying, near deterministically varying, and arbitrarily
varying structures.

The motion of uniform structures has been investigated extensively using various

methods. One of them is the approach based on the transfer matrix method, which is

11



widely used due to its conciseness. However, numerical difficulties may occur at high
frequencies. These difficulties are related to the existence of nearfield waves, decaying
or increasing along the length. In the wave approach based on the reflection,
transmission and propagation of waves, the positive- and negative-going wave motions
are separated and all computations are conducted in the direction of wave propagation
so that the associated numerical results are always well conditioned (Yong and Lin
1989).

Besides uniform structures, existing literature has shown that there is a class of
non-uniform structures, called deterministically varying structures, where exact closed-
form solutions exist. Compared to the studies of modal behaviour of the structures using
these solutions, little work has been attempted to interpret the motion in terms of waves,
especially for the cases concerning beams undergoing bending motion.

The motion of the slowly varying or near deterministically varying structure could
be estimated from that of the analogous structure for which an exact solution exists, i.e.,
the uniform structure and deterministically varying structure, respectively. However,
care should be taken in this approximation since, in some situations, the wavelength can
become very long at certain frequencies, for example, a cut-off frequency. The motion
of the arbitrarily varying structure could be investigated by a piecewise approach where

the structure is modelled by a series of small elements.

1.3 Objectives
The review results suggest that the wave approach based on reflection,
transmission and propagation of waves is suitable for uniform structures since it does

not require powerful computing resources and is well conditioned. However, most built-

12



up structures are too complicated to apply the wave approach easily. This research was
planned to solve the problem. First it was proposed that a systematic formulation of the
wave approach should be presented so that wave behaviour even in complex cases can
be investigated in a concise way using the formulation. Application of the wave
approach is illustrated in this thesis for several elementary structures. Especially curved
beams drew interest since they are an important element in many built-up structures.
The review results also showed that little work has been attempted to interpret the
motion of deterministically varying structures in terms of waves. Thus application of the
wave approach to deterministically varying structures was proposed. This work is
important since employment of a single deterministically varying element, rather than a
series of uniform elements, in the piecewise approach to arbitrarily varying structures
could reduce computational cost.

In brief, the objectives of this research were:

e Development of a systematic formulation of the wave approach based on
reflection, transmission and propagation of waves for the analysis of one-
dimensional structures

e Study of wave behaviour in uniform structures such as curved beams with
constant curvature

e Study of wave behaviour in deterministically varying structures

e Application of the wave approach including nearfield waves to various

problems such as energy flow in a series of uniform and non-uniform structures
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1.4 Qutline of the thesis

This thesis provides a general overview and gives specific examples of a wave
approach based on reflection, transmission and propagation of waves to one-
dimensional structures. The complexity of the examples increases throughout the thesis.
It is arranged as follows:

In chapter 2, a generalised wave approach based on reflection, transmission and
propagation of waves is presented in a systematic way for the wave analysis of the
motion of one-dimensional structures. The state vector in the physical domain is
transformed to the wave domain using the displacement and internal force matrices. The
wave amplitudes at one point are then related to those at another point by the diagonal
propagation matrix. The response to external excitation, reflection and transmission of
waves at a point discontinuity, reflection of waves at boundaries, and the energy flow
associated with waves are described using the matrices. The relationship between this
wave method and two other methods - the dynamic stiffness method and the transfer
matrix method is established.

In chapter 3, the wave approach is applied to cases concerning straight uniform
bars undergoing longitudinal motion. The bars are a single-mode system, where only
two opposite-going propagating waves occur. The response of the bars to external
excitation, reflection and transmission of waves at a point discontinuity, and reflection
of waves at boundaries are described in a systematic way. These examples give a
simple, clear demonstration of the application of the wave approach. The energy flow
associated with waves is investigated and the power reflection and transmission

coefficients are introduced.
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In chapter 4, the wave approach is applied to cases concerning straight uniform
beams undergoing bending motion. The motion is based on Euler-Beroulli theory
neglecting effects of the shear deformation and rotary inertia. Thus the beams are a two-
mode system, where two propagating waves and two nearfield waves occur. Two issues
related to nearfield waves are discussed in this chapter: the energy flow and numerical
conditioning problem. It is shown explicitly that the energy can be transported by
interaction of two opposite-going nearfield waves. It is also shown that the present wave
approach always provides well-conditioned numerical results while the transfer matrix
method may lead to numerical difficulties related to nearfield waves at high frequencies.

In chapter 5, the wave approach is applied to cases concerning a deterministically
varying structure - straight bars where the area varies as a power of the length. The
response of the non-uniform bars to external forces is investigated and the reactive
behaviour due to non-uniformity is revealed. The energy transport velocity, the velocity
at which energy is carried by waves, is derived using the relationship between power
and energy. In contrast to that of uniform bars, it is not equal to the phase velocity and
depends on position as well as frequency.

In chapter 6, the wave approach is applied to cases concerning a two-mode
deterministically varying structure — straight beams where the area and second moment
of area vary as a power of the length, respectively. The response of the non-uniform
beams to external forces is investigated numerically, and it is shown that the stiffness
and mass-dominant behaviour due to non-uniformity are separately represented by the
propagating and nearfield waves. The energy transport velocity is obtained as well. In
contrast to that of uniform beams, it is not equal to twice the phase velocity and depends

on position as well as frequency.
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In chapter 7, the wave approach is applied to cases concerning thin, uniform,

curved beams based on Fliigge theory. The beams provide coupling of the radial and

tangential displacements, which does not occur in the examples of the previous four
chapters. The dispersion relation is rather complicated and an ambiguity may arise in
defining the dispersion curve for each wave. A criterion is suggested here: the
imaginary value of the wavenumber of a positive-going wave should be negative and
the energy transport velocity associated with a positive-going wave should be positive.
The energy flow associated with waves is also revealed explicitly in terms of
wavenumbers. Numerical results for the energy transmission through a U-shaped
structure are presented as well.

In chapter 8, further applicability of the wave approach is described. Besides the
previous examples, several different kinds of uniform structures and deterministically
varying structures are listed. In conjunction with the piecewise modelling, the wave
approach can be applied to arbitrarily varying structures. In the approach, the arbitrarily
varying structure is divided into a series of small segments, and then each segment is
modelled by a known structural element. It is shown that modelling using
deterministically varying elements can be efficient compared to modelling using
uniform elements. A general procedure of the wave approach for obtaining the natural
frequencies and mode shapes is described. Subsequently the modal behaviour of a
linearly tapered curved beam with clamped-free boundaries is studied.

In chapter 9, the thesis is summarised and recommendations are made for future

studies.
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1.5 Contributions from this thesis

Several original contributions are made in this work, which are:

A systematic formulation for the wave approach based on reflection,
transmission and propagation of waves is presented. The wave generation by
external excitation, the spectral elements and the energy flow associated with
waves, which were not dealt in previous work of, e.g. Harland et al. (2001), are
described in a systematic way using the formulation. The properties of the
reflection, transmission and propagation matrices are also obtained for a
reciprocal system from the property of the transfer matrix, which is symplectic
in the physical domain.

The wave behaviour in deterministically varying structures, which are not
uniform but in which no wave mode conversion occurs, is studied. It is shown
that the wave approach based on reflection, transmission and propagation of
waves can be applied in the same way as that for uniform structures. Examples
include straight bars undergoing longitudinal motion, where the area varies as a
power of the length, and straight beams undergoing bending motion, where the
area and second moment of area vary as a power of the length, respectively.
The energy transport velocity, which depends on position as well as frequency,
for the bars and beams is obtained exactly. The results can be used for an
efficient piecewise approach to arbitrarily varying structures in that
employment of a single deterministically varying element, rather than a series
of uniform elements, can provide rapid convergence to the exact results at low

computational cost, especially when non-uniformity of the structure is severe.
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The wave approach is applied to the in-plane motion of uniform, curved beams
with constant curvature based on Fliigge theory. Even though the radial and
tangential displacements of the beam are coupled together, waves propagate
independently so that the problem could be simplified in the wave domain. A
criterion is suggested for the dispersion relation for each wave in the beam: the
imaginary value of the wavenumber of a positive-going wave should be
negative and the energy transport velocity associated with a positive-going
wave should be positive. Energy flow associated with waves in the beam is
described explicitly in terms of the wavenumbers.

A series of examples of the application of the wave approach are presented. It
is shown that the wave approach can be used as an efficient and well-
conditioned computational method even in cases where nearfield waves cannot
be neglected. Examples include power transmission through a U-shaped

structure and the modal behaviour of a linearly tapered, curved beam.
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Figure 1-1. A categorisation of one-dimensional structures: the bold-faced groups are

considered in this thesis.
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Chapter 2.

A GENERALISED WAVE APPROACH

2.1 Introduction

The aim of this chapter is to review the wave approach based on reflection,
transmission and propagation of waves and to present a generalised and systematic
formulation of the approach for the motion of one-dimensional structures. All examples
in this thesis are reciprocal and conservative systems: the transmission of vibration from
one position to another position has a simple relation to the transmission in the opposite
(or reciprocal) direction, and energy is not dissipated. General forms for the properties
of the transfer matrix, which is symplectic for a reciprocal system in the physical
domain, are obtained in the wave domain and then the properties of the reflection,
transmission and propagation matrices are studied. Systematic formulations are
presented for wave generation by external sources, for the spectral elements, and for
reflection and transmission of waves by a discontinuity or boundary where external
dynamic stiffnesses are attached. The reader may wish to refer to chapter 3 alongside
this chapter as it gives a simple concrete example.

This wave approach gives exact and efficient computation, irrespective of
frequency, for cases concerning uniform structures and deterministically varying
structures. Examples concerning uniform structures are presented in chapters 3, 4 and 7
and examples concerning deterministically varying structures are presented in chapters

5 and 6. In conjunction with the piecewise approach, the wave approach can be used as
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an efficient and well-conditioned method for cases conceming arbitrarily varying
structures, examples for which are presented in chapter 8.

In section 2.2, the physical quantities for the motion of one-dimensional structures
are grouped into a vector and the governing equations are expressed as first order
differential equations. The solution of the governing equations defines the transfer
matrix in the physical domain. The properties of the transfer matrix are reviewed for a
reciprocal system and/or conservative system: the transfer matrix in the physical domain
is symplectic for a reciprocal system and K-unitary for a conservative system.

In section 2.3, the transformation from the physical domain into the wave domain
is made using the eigenvectors of the transfer matrix in the physical domain. General
forms for the properties of the transfer matrix are presented in the wave domain.

At any point on the structure the waves can be divided into two groups, positive-
going and negative-going waves. In section 2.4, the positive- and negative-going wave
motions are separated. In uniform structures and deterministically varying structures,
the waves propagate freely without coupling to each other if there is no discontinuity in
their path. The diagonal propagation matrix is introduced for free wave propagation.

From section 2.5 to section 2.8, various wave phenomena in one-dimensional
structures are described: generation of waves by external excitation, reflection and
transmission at discontinuities, and reflection at boundaries. In section 2.9, the energy
flow associated with waves is studied.

The transfer matrix methods and the spectral element (dynamic stiffness) methods
have been widely used for the analysis of dynamic systems. In section 2.10, the
relationships between these two approaches and the present wave approach are

established.
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2.2 State of a cross-section in the physical domain

Consider a one-dimensional structure where the principal axis is the x-axis as
shown in Figure 2-1. The geometric and/or material properties of the structure may vary
continuously along the x-axis. A cross-section of the one-dimensional structure supports
n degrees of freedom. For example, a bar undergoing longitudinal motion is a single-
mode system, with »=1, where the longitudinal displacement » and the internal force P
are of interest. Throughout this thesis, the time dependence of the motion is assumed to
be of the form of ¢ with angular frequency @ but the explicit time dependence is

suppressed for clarity.

A n-dimensional vector w(x) is composed of the generalized displacements of

the cross-section at a position x. When the corresponding internal forces are also

grouped into a vector f(x), the state of the cross-section at x is expressed as

u(x) = {va} @2.1)

where the 2n-dimensional vector u is termed the physical state vector. For a bar
undergoing longitudinal motion, w={u} , f={P} , and u=[u P]T where the

superscript 7 denotes the transpose. The governing equations of motion are then written

in first-order form as

L -Su 2.2)

where S is termed the system matrix in the physical domain. The system matrix S
reflects the nature of the structure. For a reciprocal system, any eigenvalue of S is

always accompanied by another with the same magnitude but opposite sign (Langley
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1999). Physically the eigenvalues of S are the local wavenumbers associated with
waves at the cross-section so that, for a reciprocal system, the number of positive-going
waves is equal to that of negative-going waves.

The integral form of equation (2.2), even though it is not easy to obtain in general,
gives the transfer matrix U between two different points x, and x, in the physical
domain as

u(x,) =U(x,,x)u(x,) (2.3)

For a reciprocal system, the transfer matrix U is symplectic (Langley 1999), i.e.,
vlJu=J (2.4)
where the matrix J, consisting of the nx» identity matrix I and the »nx# null matrix

0, is given by

i 0! 2.5)
-1 0 @.

Equation (2.4) indicates that, if A is an eigenvalue of U and y is the corresponding
right eigenvector, then 1/4 is also an eigenvalue and Jy is the corresponding left

eigenvector. Throughout this thesis, it is assumed that the eigenvalues are single roots
and for each eigenvalue there is a single eigenvector (i.e., the transfer matrix U is
semisimple), which is true for a substantial number of problems.
For a conservative system, the transfer matrix U is K-unitary (Langley 1999),
ie.,
UJu=J (2.6)
where the superscript / is the Hermitian operator. Equation (2.6) indicates that, if 4 is

an eigenvalue of U and y is the corresponding right eigenvector, then 1//1' is also an

23



eigenvalue and Jy  is the corresponding left eigenvector, where the superscript *
denotes the complex conjugate. If the magnitude of A is unity (i.e., for propagating
waves), then 4 =1/ A" so that the pair reduces to Jjust a single wave component. Thus a
counterpart to the component is not guaranteed in the case: the number of positive-
going waves may not be equal to the number of negative-going waves in a conservative
but non-reciprocal system (e.g., a waveguide where the lossless medium moves with a
velocity).

For a reciprocal and conservative system, the transfer matrix U is real and the

eigenvalue groups of the type (1 A° 1/4 1/A7) arise. If the magnitude of A is unity
g

or A is purely real (i.e., for propagating or nearfield waves), it reduces to (/1 1/ /1).

2.3 State of a cross-section in the wave domain

In this section, the state of a cross-section is described in the wave domain. The
number of wave modes is equal to the number of degrees of freedom supported by the
cross-section. The waves either transport energy in the direction they are travelling or, if
no energy flow is associated with the wave its amplitude will decay in that direction
(e.g., for nearfield waves).

Consider a 2n-dimensional vector a consisting of the (complex) amplitudes of
waves. A transformation from the physical domain to the wave domain is described as

u(x) =M(x)a(x) 2.7)

where the columns of the 2nx2»n matrix M are given by the (right) eigenvectors of U.
Under the transformation given by equation (2.7), equation (2.3) is written in the wave

domain as
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a(x,) =T (x,,x))a(x,) (2.8)

where T is the transfer matrix in the wave domain and is given by
T (x,,%) =M (x,)U(x,,x)M(x,) 2.9
For a reciprocal system, equation (2.9) can be substituted into equation (2.4) to

yield

T ™™ (x,)IM(x,)T =M’ (x,)IM(x,) (2.10)
Equation (2.10) is the most general form defining the property of 7 for a reciprocal
system. The orthogonality relation between the eigenvectors of U indicates that the

matrix M’ (x)JM(x) in equation (2.10) is given by

M’ (x)IM(x) =[ 0 A(x)} @.11)
-A(x) O
where A is a diagonal matrix. When M is normalised to be such that M"JM =J
(Zhong and Williams 1992), equation (2.10) simplifies to
TIT=J (2.12)
Note that equation (2.12) is of the same form as equation (2.4).
For a conservative system, equation (2.9) can be substituted into equation (2.6) to
yield
T "M (x,)IM(x,)T =M" (x)IM(x,) (2.13)
Since the matrix M”JM in equation (2.13) is skew-Hermitian (i.e., iM”7JM is
Hermitian), a suitable choice of the basis results in
iM7IM =J' (2.14)
where J' is diagonal matrix composed of £1, the positive elements are related to the

energy flow transported toward the positive direction, and the negative elements are
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related to the energy flow transported toward the negative direction. The number of the
positive elements in J' may differ from the number of the negative elements for a
conservative and non-reciprocal system. The basis, where equation (2.14) holds, is
called the power wave basis. In this basis, equation (2.13) reduces to
THIT =T (2.15)
The transformation to the power wave basis is discussed again in section 2.8 where the
energy flow associated with waves is studied.
Wave motion in a reciprocal and conservative system satisfies equations (2.10)

and (2.13). Thus it follows that
(M) MO)T =T [M'(x) ] M(x,) (2.16)

All examples in this thesis are for a reciprocal and conservative system, so wave motion

in the examples satisfies equation (2.16).

2.4 Positive- and negative-going wave motions

Henceforth, the wave motions are separated into positive- and negative-going
groups according to the direction in which waves travel: the wave vector a is divided

3

into two vectors a’(x) and a”(x), where the superscripts ‘+’ and ‘-’ denote the

corresponding direction of propagation. For a reciprocal system, the dimensions of the

two vectors a’(x) and a”(x) are the same. In this case equation (2.7) is re-expressed as

B

(Harland et al. 2001)
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where W* and @ are the displacement and internal force matrices. Note that the

matrix M is divided into 4 sub-matrices here. They satisfy
¥, (2.18a,b,c)

T

Equation (2.18c) reduces to (‘P+)T (D_—(CIT) Y~ =1 under suitable normalisation.

Then it follows that M"JM =1J .
Consider now two points x;, and x, on the structure as shown in Figure 2-2,
where the amplitudes of waves at the points are given in a vector form as a*(x) and

a”(x) . In uniform structures and (by definition) in deterministically varying structures,

waves propagate independently without coupling to each other if there is no

discontinuity in their path, ie., 7 is diagonal. In these cases, equation (2.8) is

a’(x,) _ F* 0 a*(x) (2.19)
a(x,) 0 F ||la(x) '

where F* and F~ are diagonal, and are termed the positive and negative propagation

expressed as

matrices, respectively, between the two points. For a reciprocal system, there is a simple

relation between them. Note that the transfer matrix 7~ is given by
T = (2.20)
Substituting equation (2.20) into equation (2.10) gives

A(x)F =F A(x,) 2.21)
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Equation (2.21) further reduces to F* =F~ for a suitable basis where M"JM = J holds.

In this section the state vector in the physical domain has been transformed to the
wave domain using the displacement and internal force matrices, in which the positive-
going and negative-going wave motions are separated. The wave amplitudes at one
point are then related to those at another point by the (diagonal) propagation matrix.
These matrices provide a foundation for a systematic application of the wave approach.
In the following sections, wave motions in various cases, such as generation of waves
by external excitation, reflection and transmission at discontinuities, and reflection at

boundaries, are described in a systematic way using these matrices.

2.5 Wave generation by external excitation
Consider a point on a one-dimensional waveguide excited by local harmonic
forces f,_,e'” as shown in Figure 2-3(a). Waves q" and q are then induced in the

positive and negative directions respectively. Combined with equation (2.17), the

continuity and equilibrium conditions at the excitation point are expressed as

¥Y'q"'=¥q,
q q (2.22a,0)
-0'q"+®q =1,
Consequently q” and q~ are given by
=1 -1
T z[_qr + 0 () qf} £,
(2.23a,b)

_ -1
. :[(D‘ ~o' () 1\11'} £
Combined with the relationships between the displacement and internal force matrices

given by equation (2.18), equation (2.23) reduces to
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g =A" (¥ £,
. (2.24a,b)
¢ =A" (V) 1,

Now suppose that the forces are applied at the left-hand end of the waveguide as
shown in Figure 2-3(b). Since the equilibrium condition at the end is

~®'q" =1, (2.25)

the induced waves q* are given by

(2.26)

Similarly, if the right-hand end of a waveguide is excited as shown in Figure 2-3(c), the

induced waves q~ are given by

q =(@) 1, 2.27)

2.6 Reflection and transmission at a local discontinuity

If there is a point discontinuity such as mass attachment in the propagation path,

some of the energy carried by the waves may be back-scattered. Let the amplitudes of

waves at the left-hand side of the discontinuity be given in vectors a* and a™, and the

amplitudes at the right-hand side in b* and b~ . Then they are related by

S

where R and T are the reflection and transmission matrices for waves incident on the
discontinuity from the left-hand side, and R and T are those for waves incident on the

discontinuity from the right-hand side.
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For a reciprocal system, simple relations hold for the reflection and transmission

matrices. Note that the transfer matrix for the discontinuity is given by

(2.29)

T-RT'R RT
-T'R T

Substituting equation (2.29) into equation (2.10) gives

A(x)R =R"A(x),
A(x,)T =TT A(x), (2.30a,b,c)
A(x,)R =RTA(x,)

For a suitable basis where M"JM = J holds, equation (2.30) further reduces to be such
that R=R”, R=R",and T=T".

The reflection and transmission matrices can be obtained from the continuity and
equilibrium conditions at the discontinuity. For example, consider a point discontinuity
as shown in Figure 2-4 where two coaxial waveguides with different properties are
joined together and external dynamic components, represented by the dynamic stiffness
are attached. The continuity and equilibrium conditions at the discontinuity

matrix K

ext ?
are given by

W =W,,
ot (2.31a,b)
_fa +fb =Ke.rtwa

where the subscripts @ and b denote the left- and right-hand waveguides respectively.
Note that equation (2.31) is not a general form covering all possible situations - for
example, a beam with a simple support is not covered.

Now suppose that the positive-going waves of amplitudes a™ are incident from
the left-hand side and there is no negative-going wave from the right-hand side, i.c.,

" =0. Then equation (2.31) is re-written as
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Y2t +¥ a =¥,
—@ 2 —® a2 +®,'b" =K

(2.32a,b)
ext‘IJb*—b+

Thus the reflection and transmission matrices for waves incident on the discontinuity

from the left-hand side are given by

ext T a

R= —[K v _a, (\P,,*)'l W <:[>‘,‘}_1 [Kt\y -0, (%, )'1 P +<1>;J,
(2.33a,b)

-1 -1 1
T= I:Kext‘Pb+ + ma_ (‘Pa_) ‘Pb+ - ®b+:| ,:Qa_ (‘Pa—) ‘Pa+ - ®a+jl
The matrices R and T for waves incident on the discontinuity from the right-hand side
can also be obtained in a similar way: assume a* =0 now and solve the continuity and

equilibrium conditions.

2.7 Reflection and transmission by multiple discontinuities

In the previous section, the reflection and transmission of waves at a discontinuity
have been described in a systematic way. Expanding the results, in this section,
reflection and transmission of waves by multiple discontinuities are described.

First consider two discontinuities at points x, and x, as shown in Figure 2-5
where external dynamic components are attached and coaxial waveguides are joined.
Waves a” are incident upon discontinuity 1 from the left-hand side. When the relevant
waves at the discontinuites are denoted by a~, b*, ¢* and d*, the relationships

between the waves are
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¢ =F'b’,
¢ =R,c’,
(2.34a,b,c,d,e,f)
b =F¢
a =Ra" + 'i‘lb",
d' =T,"

where R,, T, etc., are the reflection and transmission matrices at the discontinuities,
and F* and F~ are the propagation matrices between the discontinuities. Rearranging
equations (2.34) in terms of the incident waves a*, the reflected waves a~ and the

transmitted waves d* are given by

a”=|R,+TFR,FI-RFR,FT'T, |a’,

_ (2.35a,b)
d" =[ LF[I-RFR,FT'T [a’
The matrix [I-R F R,F*]" in equations (2.35) can be expanded as
[I-RFRF'T =1+(RFRF)+(RFRF) +. (2.36)

The second term in equation (2.36) represents one round trip of waves between the two

discontinuities, and the third term represents two round trips, etc. Thus the reflected
waves a  have components from the direct reflection of the incident waves by
discontinuity 1 (i.e., R,a"), while the remaining components arise from waves which

are initially transmitted through discontinuity 1 and are then subsequently reflected
back-and-forth at the two discontinuities. The net reflected waves are thus the

superposition of the direct and subsequent reflected components. Similarly the

transmitted waves d* consist of the direct components transmitted through the two
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junctions (i.e., T,F'T)a" ), and the components from the subsequent reflections between

the two discontinuities.

Even though equation (2.35) is obtained for the case where two discontinuities are
imposed, it is indeed a general expression and can be applied to a case where three and
more discontinuities are imposed in an iterative manner. In this situation, discontinuities

1 and 2 do not represent a single discontinuity, respectively, but can be thought to
represent groups of discontinuities, respectively. Subsequently the matrices R,, T, "I“l ,
R,, R,, and T, are now global reflection and transmission matrices for the groups of

discontinuities.

2.8 Reflection at boundaries

Consider waves of amplitudes a® incident upon the right-hand end of a
waveguide. Then the amplitudes of the reflected waves, a™, are

a- =Ra” (2.37)

where R is the reflection matrix of the boundary.

The refle