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A generalised wave approach based on reflection, transmission and propagation of 

waves is presented for the analysis of one-dimensional structural waveguides. The state 

vector in the physical domain is transformed to the wave domain using the displacement 

and internal force matrices. The wave amplitudes at one point are then related to those 

at another point by the (diagonal) propagation matrix, which is true for deterministically 

varying waveguides as well as uniform waveguides. The response to external excitation, 

reflection and transmission at a point discontinuity, reflection at boundaries, the spectral 

element and the energy flow associated with waves are described in a systematic way 

using the matrices. Numerical results of the wave approach are always well conditioned 

since the positive- and negative-going wave motions are separated. The wave approach 

is illustrated for longitudinal and bending motions of deterministically varying straight 

beams, based on elementary theories such as Euler-Bernoulli theory. The energy 

transport velocity is derived using the relationship between power and energy. In 

contrast to that for uniform structures, the energy velocity for deterministically varying 

structures depends on position as well as frequency. The in-plane motion of uniform 

curved beams, in which longitudinal and bending motions are coupled, is studied as 

well. The energy flow associated with waves is described explicitly in terms of the 

wavenumbers. Numerical results for the power transmission through aU-shaped 

structure are presented. In conjunction with the piecewise approach, the exact results 

can be used in an efficient way for arbitrarily varying structures and, eventually, built­

up structures. Employment of deterministically varying elements, rather than uniform 

elements, could lead to rapid convergence at low computational cost, especially when 

the non-uniformity of the structure becomes severe. The modal behaviour of a linearly 

tapered curved beam with clamped-free boundaries is studied and its asymptotic 

behaviour related to the pure bending and pure extensional motions is revealed. 
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Chapter 1. 

INTRODUCTION 

1.1 Background 

Finite element analysis is a useful tool to analyse the dynamic behaviour of 

structures at low frequencies. However, in the high frequency region, it requires 

powerful computing resources for a refined model. Statistical energy analysis, which is 

concerned with energy flow in a structure and is used at high frequencies, is not suitable 

for structures with high damping such as a tyre. 

The literature, which is reviewed in the next section, suggests several alternative 

approaches using exact solutions such as the transfer matrix method, the dynamic 

stiffness method and the wave methods. These approaches are valid for all frequencies 

in contrast to finite element analysis, so they can be used efficiently in the high 

frequency region and may also be suitable for structures with high damping. Interest has 

been shown in the wave approach where the dynamic behaviour of a structure is 

described in terms of waves and their propagation, reflection and transmission in the 

structure. This wave approach is attractive since the associated numerical results are 

always well conditioned. 

The present work IS concerned with wave motion of various types of one­

dimensional structure. In one-dimensional structures all the field quantities associated 

with the motion are written as functions of position along the axis of the structure. 

Throughout the thesis the material properties of the structures under consideration are 
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assumed to be linearly elastic. The geometry and/or material properties may be uniform 

along the length, or vary continuously. 

1.2 Review of previous work 

In this section the literature on wave motion of one-dimensional structures is 

reviewed. One-dimensional structures are first categorised according to their type and 

then the results of the survey are classified according to the categorisation. Special 

attention is paid to three cases: straight bars undergoing longitudinal motion, straight 

beams undergoing bending motion and curved beams, in which longitudinal and 

bending motions are coupled in their plane. These motions are all based on elementary 

theories such as Euler-Bernoulli beam theory. 

1.2.1 Classification of one-dimensional structures 

Figure 1-1 shows a categorisation of one-dimensional structures according to the 

characteristics of the material and geometric properties. The bold-faced groups in the 

figure are considered in this thesis. First uniform structures, where the properties are 

constant, and non-uniform structures are separated. Periodicity of the spatial variation 

divides the non-uniform structures into 3 groups: non-periodic, near periodic and 

periodic structures. Non-periodically varying structures can be subsequently divided 

into two groups: slowly varying and rapidly varying structures. When the degree of the 

non-uniformity is relatively small compared to a wavelength, waves can propagate 

along the structure with negligible reflection. These structures are classified as slowly 

varying structures. When the non-uniformity becomes severe, waves may not propagate 

freely and may be partly reflected. However, previous work has shown that there is a 

class of non-uniform structures where no such reflection occurs. These structures are 
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categorised as detenninistically varying structures. Combining the categories of slow 

variation and detenninistic variation makes another class, called near detenninistically 

varying structures, which are similar to detenninistically varying structures but not the 

same. Non-unifonn structures, where the geometry and material properties vary in a 

complex manner so that the reflection of waves is significant, are classified as arbitrarily 

varying structures. Indeed this group includes all other structures, which have not been 

classified yet as one of the other groups since exact or approximate closed-fonn 

solutions for the motion are difficult to obtain. 

This categorisation has been made on the assumption that the variation of the 

properties is prescribed by known functions. The so-called random or disordered 

structures, where the properties are given as random variables with a probability 

distribution, are beyond the scope of this thesis. 

1.2.2 Uniform waveguides 

A unifonn structure has geometric and material properties which are invariant 

along its length. This group includes unifonn straight bars undergoing longitudinal 

motion, unifonn straight beams undergoing bending motion, and curved beams with 

constant curvature and constant properties. 

Transfer matrix methods have been widely used for analysing the dynamic 

behaviour of elastic systems including unifonn structures such as space structures. Lin 

and Donaldson (1969) outlined the principles of the transfer matrix method and 

presented a series of examples of its application including curved panel-stringer rows in 

aircraft. The review by Mead (1996) on wave motion in continuous periodic structures 

contains some references to the transfer matrix method. Easwaran et al. (1993) derived 
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the relationships between the impedance matrix and transfer matrix and investigated the 

properties of the matrices of symmetrical, reciprocal and conservative systems, 

respectively. Zhong and Williams (1995) utilized the symplectic property (see equation 

(2.4)) of the transfer matrices to develop a more efficient and accurate computational 

procedure for solving eigensolutions ofthe transfer matrices. 

The eigenvectors of the transfer matrix describe the form of the wave motion in 

the structure and the eigenvalues are related to the amplitude change of the waves across 

the structure. Cremer, Heckl and Ungar (1973) summarized the fundamentals of the 

longitudinal, shear, torsional and bending waves and provided numerous examples and 

applications. Mace (1984) studied the vibrational behaviour of uniform, straight beams 

using a wave approach based on reflection, transmission and propagation of waves 

including the nearfield components. Milne (1987) studied the reflection of bending 

waves at the boundary of uniform straight beams, where conversion from a propagating 

wave into a nearfield wave and vice versa could take place. Using the fact that the 

dynamic stiffuess matrix representing boundary conditions of a reciprocal system is 

symmetric, he showed that magnitudes of the reflection coefficients for the two cases 

are the same but the phase difference is 1[/2. Miller and von Flotow (1989) studied the 

energy flow associated with waves in structural networks of one-dimensional members 

such as bars and beams. In their studies, they showed that energy could be propagated 

through the interaction between two nearfield waves of opposite direction, which was 

also considered by Bobrovnitskii (1992). Ignoring the nearfield waves, Mace (1992) 

showed that the scattering matrix for a reciprocal system is symmetric and it is unitary 

(consequently the eigenvalues are of unit magnitude) for a conservative system. Mead 
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(1994) re-examined the phase-closure principle for the natural frequencies of finite 

beams. He showed that the principle, which is usually associated with propagating 

waves, can also be applied to nearfield waves. Beale and Accorsi (1995) presented a 

general matrix method, based on the work of Miller and Flotow, for the analysis of 

power flow in two- and three-dimensional frames consisting of uniform members such 

as Timoshenko beams. 

For structures such as composite beams and curved beams where the various 

motions are coupled to each other, wave approaches are also useful in that the motions 

can be described in terms of independent waves. Harland et al. (2001) studied wave 

motion in straight, tunable fluid-filled beams, which is a three-mode system, using the 

wave approach based on the reflection, transmission and propagation of waves. 

Chidamparam and Leissa (1993) summarized the large amount of published literature 

on the in-plane, out-of-plane and coupled vibrations of curved bars, beams, rings and 

arches of arbitrary shape. Recognizing that fewer publications on the vibrations of 

loaded arches had appeared, they studied the in-plane free vibrations of loaded curved 

arches including centreline extensibility, and found that the centreline stretching causes 

a decrease of the natural frequencies and that the decrease may be important, especially 

for shallow arches. Wu and Lundberg (1996) investigated the transmission of energy 

through a circular bent section connecting two straight beams. Numerical results for 

various bend types with different curvatures were presented in polar radiation diagrams 

for bend angles between 00 and 3600

• Walsh and White (2000) studied the vibrational 

power transmission in curved beams using four different models of beam behaviour, 

Love-based theory, Fliigge-based theory and the corrections for rotary inertia and shear 
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defonnation, respectively. The power along the circumferential direction was separated 

into extensional, bending moment and shear force components, and the time-averaged 

value of each component for a single wave mode obtained. Kang et al. (2003) applied 

the wave approach based on the reflection, transmission and propagation of waves for 

the free in-plane vibration of curved beams with constant curvature. 

1.2.3 Slowly varying waveguides 

When the lengthscale of the non-unifonnity variation is relatively large compared 

to the wavelength concerned, waves can propagate along the structure with negligible 

reflection to a first approximation, as shown by Lighthill (1978) in his study on acoustic 

ducts. These structures are classified as slowly varying structures. Langley (1999) 

studied wave propagation along a slowly varying one-dimensional waveguide with 

detenninistic, periodic and random variation using a perturbation method. He showed 

that, in these cases, the power carried by a wave component is preserved along the 

waveguide. 

Care should be taken in using this approximation since, in some situations, the 

wavelength can become very long at certain frequencies, for example, a cut-off 

frequency which is found in the case of a beam on an elastic foundation as shown by 

Langley (1999). Burr et al. (2001) studied non-unifonn Euler-Bernoulli beams under 

the action of non-unifonn tensile force. When the lengthscale of the non-unifonnity is 

large compared to the wavelength concerned, they showed that the coupling between 

the propagating waves and the nearfield waves (or the energy transfer between the two 

kinds of waves) becomes so small that the evolution of the two kinds can be considered 

separately. They derived a second order differential equation describing the asymptotic 
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evolution of the propagating waves, and showed that waves stop propagating and 

become trapped in certain conditions of non-uniformity. A similar effect was observed 

by Scott and Woodhouse (1992). They investigated the vibrational behaviour of an S­

shaped curved plate strip and showed that certain of the nonnal modes would be trapped 

in the vicinity of the inflection point of the S-strip by a process of total internal 

reflection from points where the curvature reaches critical values. To understand the 

mode transition phenomenon in the vibration of beams having varying curvature and 

cross-section, Tarnopolskaya et al. (1996, 1999) carried out an asymptotic analysis for 

the transition of the high-frequency modes and a perturbation analysis for the transition 

of the low-frequency modes. The similarities and distinctions between the low mode 

and the high mode transitions were described. 

1.2.4 Deterministically varying waveguides 

For non-uniform waveguides with rapid variation, wave motion is in general 

difficult to interpret since the variation may lead to the significant reflection of waves. 

However, previous work has shown that there is a class of non-uniform waveguides 

where no such reflection occurs. Most of the work is related to acoustic waveguides (i.e. 

horns). For example, it is well-known that the governing equation of an acoustic hom 

can be solved for several specific types of hom, the so-called Salmon's family (Pierce 

1981), which includes conical, exponential and catenoidal horns. Nagarkar and Finch 

(1971) studied a bell and suggested that a sinusoidal hom could also be included in the 

family. As a more general case, it was found that wave propagation in a hom, where the 

cross-sectional area varies as a power of the length, can be solved exactly in terms of 

Bessel functions (McLachlan 1955). The results for non-uniform acoustic waveguides 
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can be equally applied to structural waveguides with the same variation undergoing 

longitudinal motion or torsion, since their governing equations all have the same 

mathematical form (Graff 1975). Kumma and Sujith (1997) used the results to 

determine natural frequencies of the longitudinal vibration of some non-uniform bars. 

Little attention has been paid to non-uniform beams undergoing bending motion, 

however, even though their motion can be interpreted in terms of waves. Cranch and 

Adler (1956) showed that the motion of a non-uniform beam along the x axis of density 

p, cross-sectional area A and the second moment of area I where pA(x) oc xm and 

El(x) oc xn with m and n real and non-negative, can be solved in terms of Bessel 

m+8 
functions if n = m + 2, n = m + 4, n = m + 6 or n = --. The first three conditions 

3 

include rectangular beams with linear, quadratic, and cubic thickness variation and with 

the width varying to any power. The last condition includes a rectangular beam where 

A(x) oc X4 and lex) oc X4 • For this condition, the equation of motion can be transformed 

into that of a uniform beam as shown by Abrate (1995). It has also been found that the 

motion of non-uniform beams with exponentially varying properties along the length 

can be expressed simply in terms of exponential functions (Cranch and Adler 1956, 

Suppiger and Taleb 1956). These analytical solutions have been used to obtain natural 

frequencies for beams for various boundary conditions and with intermediate 

constraints, e.g., see references (Conway et al. 1964, Mabie and Rogers 1968, Mabie 

and Rogers 1974, Goel 1976, Craver and Jampala 1993, Auciello and Nole 1998). 

Banerjee and Williams (1985) used the solutions to obtain the exact dynamic stiffness 

matrices for non-uniform beams with n = m + 2. Petersson and Nijman (1998) studied 
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dynamic characteristics of the beams equivalent to the acoustic hom, featured by a 

broad-banded transition from vibrations governed by the properties at the mouth to 

vibrations governed by those at the throat. Using the geometrical acoustic approach, 

Krylov and Tilman (2004) showed that the incident flexural waves are trapped near the 

edge of the wedges, the thickness of which varies as a power of the length, and the 

waves are therefore never reflected back. 

There are various previous studies using approximate or numerical methods for 

deterministically varying waveguides. Karabalis and Beskos (1983) presented the exact 

static axial and bending stiffuess matrices for a linearly tapered beam element with 

constant width, which can be used for dynamics and stability of the structures consisting 

of tapered beams in an efficient way. Abrate (1995) applied the Rayleigh-Ritz approach 

to non-uniform bars and beams, where the cross section varies polynomially as a 

function of distance, under several practical boundary conditions such as fixed-free, and 

investigated the sensitivity of the fundamental frequencies to the non-uniformity. 

Auciello and Nole (1998) obtained the natural frequencies of a beam composed of two 

tapered beam sections with different properties with a mass at the end by using the 

Rayleigh-Ritz approach with the orthogonal polynomials as test functions. In particular, 

the approximate methods might be useful to model the vibration of higher order non­

uniform structures where the analytical solutions cannot be obtained such as 

Timoshenko beams. For example, Gopalakrishnan and Doyle (1994) obtained axial and 

flexural dynamic stiffnesses of a higher order non-uniform waveguide using the 

displacements of the uniform deep waveguide as Ritz functions. 

9 



1.2.5 Near deterministically varying waveguides 

Adding small variation to the rapid and deterministic variation will make a certain 

class of non-uniform structures. For example, a rectangular beam, where the thickness 

and width are linearly tapered but the positions of the fictitious apexes are slightly 

different, is one case of these structures. 

The motion of these structures can be expected to be similar to that of the 

deterministically varying structures, which may be shown by an asymptotic approach as 

done for the slowly varying structures. However, there is very little existing literature 

concerning these structures and previous studies have mostly been concerned with more 

general cases, the arbitrarily varying structures, which are described in the next section 

1.2.6. 

1.2.6 Arbitrarily varying waveguides 

Non-uniform structures, where the geometry and material properties vary in a 

complex manner and the magnitude of the variation is not so small, are classified as 

arbitrarily varying structures. Indeed this group includes all other structures which are 

not yet classified as one of the four groups, since exact or approximate closed-form 

solutions of the motion are difficult or impossible to obtain. For example, this group 

includes the case of non-uniform straight beams where the cross sectional area and the 

moment of inertia varying according to any two arbitrary powers along their length. 

Wang (1968) obtained the modal solutions for these non-uniform straight beams in 

terms of generalized hypergeometric functions. Eisenberger (1990) obtained the axial, 

torsional and bending stiffnesses for the non-uniform beams, where the variation is 

given by any polynomial functions, in terms of an infinite series. 
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Another approach for the motion of arbitrarily varying structures is a piecewise 

approximation where the structure is divided into a sequence of small segments. Each 

segment is modelled by an analogous element where the solution is known. The whole 

motion of the structure is then predicted by combining the behaviour of the elements 

and properties of the joints between the elements. Pease (1965) outlined this piecewise 

approach for a general one-dimensional Sturm-Liouville problem. Gallagher and Lee 

(1970) studied the numerical errors occurring in the piecewise representation of the 

arbitrarily varying beams using two types of segment modelling. One is the stepped 

representation, where the segment is modelled as a unifonn beam element, and the other 

is the tapered representation, where the segment is modelled as a tapered beam element. 

The numerical results showed that the tapered representation could reduce the numerical 

errors effectively. They also showed that the conventional stepped representation would 

not assure the upper bound of the natural frequencies. Hodges et al. (1994) studied the 

vibration of the tapered beam using the transfer matrix method. 

1.2.7 Summary of review 

The purpose of this survey has been to review the published literature on wave 

motion of one-dimensional structures. The one-dimensional structures, the properties of 

which are linearly elastic and are prescribed by known functions, have been classified 

according to their type into the five groups as in Figure 1-1: the uniform, slowly 

varying, deterministically varying, near deterministically varying, and arbitrarily 

varying structures. 

The motion of uniform structures has been investigated extensively using various 

methods. One of them is the approach based on the transfer matrix method, which is 
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widely used due to its conciseness. However, numerical difficulties may occur at high 

frequencies. These difficulties are related to the existence of nearfield waves, decaying 

or increasing along the length. In the wave approach based on the reflection, 

transmission and propagation of waves, the positive- and negative-going wave motions 

are separated and all computations are conducted in the direction of wave propagation 

so that the associated numerical results are always well conditioned (Y ong and Lin 

1989). 

Besides unifonn structures, existing literature has shown that there is a class of 

non-unifonn structures, called detenninistically varying structures, where exact closed­

fonn solutions exist. Compared to the studies of modal behaviour of the structures using 

these solutions, little work has been attempted to interpret the motion in tenns of waves, 

especially for the cases concerning beams undergoing bending motion. 

The motion of the slowly varying or near detenninistically varying structure could 

be estimated from that of the analogous structure for which an exact solution exists, i.e., 

the unifonn structure and detenninistically varying structure, respectively. However, 

care should be taken in this approximation since, in some situations, the wavelength can 

become very long at certain frequencies, for example, a cut-off frequency. The motion 

of the arbitrarily varying structure could be investigated by a piecewise approach where 

the structure is modelled by a series of small elements. 

1.3 Objectives 

The review results suggest that the wave approach based on reflection, 

transmission and propagation of waves is suitable for unifonn structures since it does 

not require powerful computing resources and is well conditioned. However, most built-
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up structures are too complicated to apply the wave approach easily. This research was 

planned to solve the problem. First it was proposed that a systematic formulation of the 

wave approach should be presented so that wave behaviour even in complex cases can 

be investigated in a concise way using the formulation. Application of the wave 

approach is illustrated in this thesis for several elementary structures. Especially curved 

beams drew interest since they are an important element in many built-up structures. 

The review results also showed that little work has been attempted to interpret the 

motion of deterministically varying structures in terms of waves. Thus application of the 

wave approach to deterministically varying structures was proposed. This work is 

important since employment of a single deterministically varying element, rather than a 

series of uniform elements, in the piecewise approach to arbitrarily varying structures 

could reduce computational cost. 

In brief, the objectives of this research were: 

• Development of a systematic formulation of the wave approach based on 

reflection, transmission and propagation of waves for the analysis of one­

dimensional structures 

• Study of wave behaviour in uniform structures such as curved beams with 

constant curvature 

• Study of wave behaviour in deterministically varying structures 

• Application of the wave approach including nearfield waves to vanous 

problems such as energy flow in a series of uniform and non-uniform structures 
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1.4 Outline of the thesis 

This thesis provides a general overview and gives specific examples of a wave 

approach based on reflection, transmission and propagation of waves to one­

dimensional structures. The complexity of the examples increases throughout the thesis. 

It is arranged as follows: 

In chapter 2, a generalised wave approach based on reflection, transmission and 

propagation of waves is presented in a systematic way for the wave analysis of the 

motion of one-dimensional structures. The state vector in the physical domain is 

transformed to the wave domain using the displacement and internal force matrices. The 

wave amplitudes at one point are then related to those at another point by the diagonal 

propagation matrix. The response to external excitation, reflection and transmission of 

waves at a point discontinuity, reflection of waves at boundaries, and the energy flow 

associated with waves are described using the matrices. The relationship between this 

wave method and two other methods - the dynamic stiffuess method and the transfer 

matrix method is established. 

In chapter 3, the wave approach is applied to cases concerning straight uniform 

bars undergoing longitudinal motion. The bars are a single-mode system, where only 

two opposite-going propagating waves occur. The response of the bars to external 

excitation, reflection and transmission of waves at a point discontinuity, and reflection 

of waves at boundaries are described in a systematic way. These examples give a 

simple, clear demonstration of the application of the wave approach. The energy flow 

associated with waves is investigated and the power reflection and transmission 

coefficients are introduced. 
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In chapter 4, the wave approach is applied to cases concerning straight unifonn 

beams undergoing bending motion. The motion is based on Euler-Bernoulli theory 

neglecting effects of the shear defonnation and rotary inertia. Thus the beams are a two­

mode system, where two propagating waves and two nearfield waves occur. Two issues 

related to nearfield waves are discussed in this chapter: the energy flow and numerical 

conditioning problem. It is shown explicitly that the energy can be transported by 

interaction of two opposite-going nearfield waves. It is also shown that the present wave 

approach always provides well-conditioned numerical results while the transfer matrix 

method may lead to numerical difficulties related to nearfield waves at high frequencies. 

In chapter 5, the wave approach is applied to cases concerning a detenninistically 

varying structure - straight bars where the area varies as a power of the length. The 

response of the non-unifonn bars to external forces is investigated and the reactive 

behaviour due to non-unifonnity is revealed. The energy transport velocity, the velocity 

at which energy is carried by waves, is derived using the relationship between power 

and energy. In contrast to that of unifonn bars, it is not equal to the phase velocity and 

depends on position as well as frequency. 

In chapter 6, the wave approach is applied to cases concerning a two-mode 

detenninistically varying structure - straight beams where the area and second moment 

of area vary as a power of the length, respectively. The response of the non-unifonn 

beams to external forces is investigated numerically, and it is shown that the stiffuess 

and mass-dominant behaviour due to non-unifonnity are separately represented by the 

propagating and nearfield waves. The energy transport velocity is obtained as well. In 

contrast to that of unifonn beams, it is not equal to twice the phase velocity and depends 

on position as well as frequency. 
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In chapter 7, the wave approach is applied to cases concerning thin, uniform, 

curved beams based on Flugge theory. The beams provide coupling of the radial and 

tangential displacements, which does not occur in the examples of the previous four 

chapters. The dispersion relation is rather complicated and an ambiguity may arise in 

defining the dispersion curve for each wave. A criterion is suggested here: the 

imaginary value of the wavenumber of a positive-going wave should be negative and 

the energy transport velocity associated with a positive-going wave should be positive. 

The energy flow associated with waves is also revealed explicitly in terms of 

wavenumbers. Numerical results for the energy transmission through aU-shaped 

structure are presented as well. 

In chapter 8, further applicability of the wave approach is described. Besides the 

previous examples, several different kinds of uniform structures and deterministically 

varying structures are listed. In conjunction with the piecewise modelling, the wave 

approach can be applied to arbitrarily varying structures. In the approach, the arbitrarily 

varying structure is divided into a series of small segments, and then each segment is 

modelled by a known structural element. It is shown that modelling usmg 

deterministically varYIng elements can be efficient compared to modelling usmg 

uniform elements. A general procedure of the wave approach for obtaining the natural 

frequencies and mode shapes is described. Subsequently the modal behaviour of a 

linearly tapered curved beam with clamped-free boundaries is studied. 

In chapter 9, the thesis is summarised and recommendations are made for future 

studies. 
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1.5 Contributions from this thesis 

Several original contributions are made in this work, which are: 

• A systematic formulation for the wave approach based on reflection, 

transmission and propagation of waves is presented. The wave generation by 

external excitation, the spectral elements and the energy flow associated with 

waves, which were not dealt in previous work of, e.g. Harland et al. (2001), are 

described in a systematic way using the formulation. The properties of the 

reflection, transmission and propagation matrices are also obtained for a 

reciprocal system from the property of the transfer matrix, which is symplectic 

in the physical domain. 

• The wave behaviour in deterministically varying structures, which are not 

uniform but in which no wave mode conversion occurs, is studied. It is shown 

that the wave approach based on reflection, transmission and propagation of 

waves can be applied in the same way as that for uniform structures. Examples 

include straight bars undergoing longitudinal motion, where the area varies as a 

power of the length, and straight beams undergoing bending motion, where the 

area and second moment of area vary as a power of the length, respectively. 

The energy transport velocity, which depends on position as well as frequency, 

for the bars and beams is obtained exactly. The results can be used for an 

efficient piecewise approach to arbitrarily varying structures in that 

employment of a single deterministically varying element, rather than a series 

of uniform elements, can provide rapid convergence to the exact results at low 

computational cost, especially when non-uniformity of the structure is severe. 
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• The wave approach is applied to the in-plane motion of uniform, curved beams 

with constant curvature based on Fliigge theory. Even though the radial and 

tangential displacements of the beam are coupled together, waves propagate 

independently so that the problem could be simplified in the wave domain. A 

criterion is suggested for the dispersion relation for each wave in the beam: the 

imaginary value of the wavenumber of a positive-going wave should be 

negative and the energy transport velocity associated with a positive-going 

wave should be positive. Energy flow associated with waves in the beam is 

described explicitly in terms of the wavenumbers. 

• A series of examples of the application of the wave approach are presented. It 

is shown that the wave approach can be used as an efficient and well­

conditioned computational method even in cases where nearfield waves cannot 

be neglected. Examples include power transmission through aU-shaped 

structure and the modal behaviour of a linearly tapered, curved beam. 
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Figure 1-1. A categorisation of one-dimensional structures: the bold-faced groups are 

considered in this thesis. 
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Chapter 2. 

A GENERALISED WAVE APPROACH 

2.1 Introduction 

The aim of this chapter is to review the wave approach based on reflection, 

transmission and propagation of waves and to present a generalised and systematic 

formulation of the approach for the motion of one-dimensional structures. All examples 

in this thesis are reciprocal and conservative systems: the transmission of vibration from 

one position to another position has a simple relation to the transmission in the opposite 

(or reciprocal) direction, and energy is not dissipated. General forms for the properties 

of the transfer matrix, which is symplectic for a reciprocal system in the physical 

domain, are obtained in the wave domain and then the properties of the reflection, 

transmission and propagation matrices are studied. Systematic formulations are 

presented for wave generation by external sources, for the spectral elements, and for 

reflection and transmission of waves by a discontinuity or boundary where external 

dynamic stiffnesses are attached. The reader may wish to refer to chapter 3 alongside 

this chapter as it gives a simple concrete example. 

This wave approach gives exact and efficient computation, irrespective of 

frequency, for cases concerning uniform structures and deterministically varying 

structures. Examples concerning uniform structures are presented in chapters 3, 4 and 7 

and examples concerning deterministically varying structures are presented in chapters 

5 and 6. In conjunction with the piecewise approach, the wave approach can be used as 
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an efficient and well-conditioned method for cases concerning arbitrarily varymg 

structures, examples for which are presented in chapter 8. 

In section 2.2, the physical quantities for the motion of one-dimensional structures 

are grouped into a vector and the governing equations are expressed as first order 

differential equations. The solution of the governing equations defines the transfer 

matrix in the physical domain. The properties of the transfer matrix are reviewed for a 

reciprocal system and/or conservative system: the transfer matrix in the physical domain 

is symplectic for a reciprocal system and K-unitary for a conservative system. 

In section 2.3, the transformation from the physical domain into the wave domain 

is made using the eigenvectors of the transfer matrix in the physical domain. General 

forms for the properties of the transfer matrix are presented in the wave domain. 

At any point on the structure the waves can be divided into two groups, positive­

going and negative-going waves. In section 2.4, the positive- and negative-going wave 

motions are separated. In uniform structures and deterministically varying structures, 

the waves propagate freely without coupling to each other if there is no discontinuity in 

their path. The diagonal propagation matrix is introduced for free wave propagation. 

From section 2.5 to section 2.8, various wave phenomena in one-dimensional 

structures are described: generation of waves by external excitation, reflection and 

transmission at discontinuities, and reflection at boundaries. In section 2.9, the energy 

flow associated with waves is studied. 

The transfer matrix methods and the spectral element (dynamic stiffuess) methods 

have been widely used for the analysis of dynamic systems. In section 2.10, the 

relationships between these two approaches and the present wave approach are 

established. 
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2.2 State of a cross-section in the physical domain 

Consider a one-dimensional structure where the principal axis is the x-axis as 

shown in Figure 2-1. The geometric and/or material properties of the structure may vary 

continuously along the x-axis. A cross-section of the one-dimensional structure supports 

n degrees of freedom. For example, a bar undergoing longitudinal motion is a single-

mode system, with n= 1, where the longitudinal displacement u and the internal force P 

are of interest. Throughout this thesis, the time dependence of the motion is assumed to 

be of the form of e iaJ
/ with angular frequency OJ but the explicit time dependence is 

suppressed for clarity. 

A n-dimensional vector w(x) is composed of the generalized displacements of 

the cross-section at a position x. When the corresponding internal forces are also 

grouped into a vector f(x) , the state of the cross-section at x is expressed as 

U(X)={;} (2.1) 

where the 2n-dimensional vector u is termed the physical state vector. For a bar 

undergoing longitudinal motion, w = {u} , f = { p} , and u = [ u P r where the 

superscript T denotes the transpose. The governing equations of motion are then written 

in first-order form as 

du =Su 
dx 

(2.2) 

where S is termed the system matrix in the physical domain. The system matrix S 

reflects the nature of the structure. For a reciprocal system, any eigenvalue of S is 

always accompanied by another with the same magnitude but opposite sign (Langley 
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1999). Physically the eigenvalues of S are the local wavenumbers associated with 

waves at the cross-section so that, for a reciprocal system, the number of positive-going 

waves is equal to that of negative-going waves. 

The integral form of equation (2.2), even though it is not easy to obtain in general, 

gives the transfer matrix U between two different points Xl and x2 in the physical 

domain as 

(2.3) 

For a reciprocal system, the transfer matrix U is symplectic (Langley 1999), i.e., 

UTJU=J (2.4) 

where the matrix J , consisting of the n x n identity matrix I and the n x n null matrix 

o , is given by 

(2.5) 

Equation (2.4) indicates that, if IL is an eigenvalue of U and y is the corresponding 

right eigenvector, then 1/ IL is also an eigenvalue and Jy is the corresponding left 

eigenvector. Throughout this thesis, it is assumed that the eigenvalues are single roots 

and for each eigenvalue there is a single eigenvector (i.e., the transfer matrix U IS 

semisimple), which is true for a substantial number of problems. 

For a conservative system, the transfer matrix U is K-unitary (Langley 1999), 

I.e., 

(2.6) 

where the superscript H is the Hermitian operator. Equation (2.6) indicates that, if IL is 

an eigenvalue of U and y is the corresponding right eigenvector, then 1/ IL' is also an 
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eigenvalue and Jy' is the corresponding left eigenvector, where the superscript * 

denotes the complex conjugate. If the magnitude of A is unity (i.e., for propagating 

waves), then A = 1/ A' so that the pair reduces to just a single wave component. Thus a 

counterpart to the component is not guaranteed in the case: the number of positive­

going waves may not be equal to the number of negative-going waves in a conservative 

but non-reciprocal system (e.g., a waveguide where the loss less medium moves with a 

velocity). 

For a reciprocal and conservative system, the transfer matrix U is real and the 

eigenvalue groups of the type (A A' 1/ A 1/ A') arise. If the magnitude of A is unity 

or A is purely real (i.e., for propagating or nearfield waves), it reduces to (A 1/ A). 

2.3 State of a cross-section in the wave domain 

In this section, the state of a cross-section is described in the wave domain. The 

number of wave modes is equal to the number of degrees of freedom supported by the 

cross-section. The waves either transport energy in the direction they are travelling or, if 

no energy flow is associated with the wave its amplitude will decay in that direction 

(e.g., for nearfield waves). 

Consider a 2n-dimensional vector a consisting of the (complex) amplitudes of 

waves. A transformation from the physical domain to the wave domain is described as 

u(x) = M(x)a(x) (2.7) 

where the columns of the 2n x 2n matrix M are given by the (right) eigenvectors of U . 

Under the transformation given by equation (2.7), equation (2.3) is written in the wave 

domain as 
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(2.8) 

where T is the transfer matrix in the wave domain and is given by 

(2.9) 

For a reciprocal system, equation (2.9) can be substituted into equation (2.4) to 

yield 

(2.10) 

Equation (2.10) is the most general form defining the property of T for a reciprocal 

system. The orthogonality relation between the eigenvectors of U indicates that the 

matrix MT (x)JM(x) in equation (2.10) is given by 

MT (x)JM(x) = [0 AO(X)] 
-A(x) 

(2.11 ) 

where A is a diagonal matrix. When M is normalised to be such that MT JM = J 

(Zhong and Williams 1992), equation (2.10) simplifies to 

(2.12) 

Note that equation (2.12) is of the same form as equation (2.4). 

For a conservative system, equation (2.9) can be substituted into equation (2.6) to 

yield 

(2.13) 

Since the matrix MH JM in equation (2.13) is skew-Hermitian (i.e., iMH JM is 

Hermitian), a suitable choice of the basis results in 

(2.14) 

where J' is diagonal matrix composed of ±l, the positive elements are related to the 

energy flow transported toward the positive direction, and the negative elements are 

25 



related to the energy flow transported toward the negative direction. The number of the 

positive elements in J' may differ from the number of the negative elements for a 

conservative and non-reciprocal system. The basis, where equation (2.14) holds, is 

called the power wave basis. In this basis, equation (2.13) reduces to 

THJ'T=J' (2.15) 

The transformation to the power wave basis is discussed again in section 2.8 where the 

energy flow associated with waves is studied. 

Wave motion in a reciprocal and conservative system satisfies equations (2.10) 

and (2.13). Thus it follows that 

(2.16) 

All examples in this thesis are for a reciprocal and conservative system, so wave motion 

in the examples satisfies equation (2.16). 

2.4 Positive- and negative-going wave motions 

Henceforth, the wave motions are separated into positive- and negative-going 

groups according to the direction in which waves travel: the wave vector a is divided 

into two vectors a+(x) and a-(x) , where the superscripts' + ' and' -' denote the 

corresponding direction of propagation. For a reciprocal system, the dimensions of the 

two vectors a+(x) and a-ex) are the same. In this case equation (2.7) is re-expressed as 

(Harland et al. 2001) 

(2.17) 
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where 'I'± and (1)± are the displacement and internal force matrices. Note that the 

matrix M is divided into 4 sub-matrices here. They satisfy 

('I'+ f (1)+ = (<1)+ f 'I'+, 

('I'- f (1)- = (<1)- f 'I'-, 
('I'+ f (1)- -( (1)+ f 'I'- = A 

(2. 18a,b,c) 

Equation (2.18c) reduces to ('I'+f (1)--(<1)+f'I'-=I under suitable normalisation. 

Then it follows that MT JM = J . 

Consider now two points Xl and x2 on the structure as shown in Figure 2-2, 

where the amplitudes of waves at the points are given in a vector form as a+ (x) and 

a-(x). In uniform structures and (by definition) in deterministically varying structures, 

waves propagate independently without coupling to each other if there is no 

discontinuity in their path, i.e., r is diagonal. In these cases, equation (2.8) is 

expressed as 

(2.19) 

where F+ and F- are diagonal, and are termed the positive and negative propagation 

matrices, respectively, between the two points. For a reciprocal system, there is a simple 

relation between them. Note that the transfer matrix r is given by 

(2.20) 

Substituting equation (2.20) into equation (2.10) gives 

(2.21) 
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Equation (2.21) further reduces to F+ = F- for a suitable basis where MT JM = J holds. 

In this section the state vector in the physical domain has been transformed to the 

wave domain using the displacement and internal force matrices, in which the positive-

going and negative-going wave motions are separated. The wave amplitudes at one 

point are then related to those at another point by the (diagonal) propagation matrix. 

These matrices provide a foundation for a systematic application of the wave approach. 

In the following sections, wave motions in various cases, such as generation of waves 

by external excitation, reflection and transmission at discontinuities, and reflection at 

boundaries, are described in a systematic way using these matrices. 

2.5 Wave generation by external excitation 

Consider a point on a one-dimensional waveguide excited by local harmonic 

forces f ex/
Ul1 as shown in Figure 2-3(a). Waves q+ and q- are then induced in the 

positive and negative directions respectively. Combined with equation (2.17), the 

continuity and equilibrium conditions at the excitation point are expressed as 

,¥+q+ ='¥-q-, 

-<I>+q+ + <I>-q- = fexl 

Consequently q+ and q- are given by 

q+ = [ -<1>+ + <1>- ('1'-r '1'+ Jl fext' 

q- = [<1>- -<1>+ ('1'+ r '1'-Jl f ext 

(2.22a,b) 

(2.23a,b) 

Combined with the relationships between the displacement and internal force matrices 

given by equation (2.18), equation (2.23) reduces to 
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+ = A -I ('1'-)T f q ext' 

- = A -I ('1'+)T f q ext 

(2.24a,b) 

Now suppose that the forces are applied at the left-hand end of the waveguide as 

shown in Figure 2-3(b). Since the equilibrium condition at the end is 

-<t>+q+ = f 
ext (2.25) 

the induced waves q+ are given by 

(2.26) 

Similarly, ifthe right-hand end of a waveguide is excited as shown in Figure 2-3( c), the 

induced waves q- are given by 

(2.27) 

2.6 Reflection and transmission at a local discontinuity 

If there is a point discontinuity such as mass attachment in the propagation path, 

some of the energy carried by the waves may be back-scattered. Let the amplitudes of 

waves at the left-hand side of the discontinuity be given in vectors a+ and a- , and the 

amplitudes at the right-hand side in b + and b - . Then they are related by 

{:}[~ !]{::} (2.28) 

where Rand T are the reflection and transmission matrices for waves incident on the 

discontinuity from the left-hand side, and Rand T are those for waves incident on the 

discontinuity from the right-hand side. 
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For a reciprocal system, simple relations hold for the reflection and transmission 

matrices. Note that the transfer matrix for the discontinuity is given by 

Substituting equation (2.29) into equation (2.10) gives 

A(Xl)R = RT A(x1), 

A(X2)T = TT A(x1), 

A(xJR = RT A(xJ 

(2.29) 

(2.30a,b,c) 

For a suitable basis where MT JM = J holds, equation (2.30) further reduces to be such 

The reflection and transmission matrices can be obtained from the continuity and 

equilibrium conditions at the discontinuity. For example, consider a point discontinuity 

as shown in Figure 2-4 where two coaxial waveguides with different properties are 

joined together and external dynamic components, represented by the dynamic stiffness 

matrix K ext , are attached. The continuity and equilibrium conditions at the discontinuity 

are given by 

Wa =Wb , 

-fa +fb = Kextwa 

(2.31a,b) 

where the subscripts a and b denote the left- and right-hand waveguides respectively. 

Note that equation (2.31) is not a general form covering all possible situations - for 

example, a beam with a simple support is not covered. 

Now suppose that the positive-going waves of amplitudes a+ are incident from 

the left-hand side and there is no negative-going wave from the right-hand side, i.e., 

b- = O. Then equation (2.31) is re-written as 
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UJ + + UJ - - - UJ +b+ 
Ta a + Ta a - Tb , 

(2.32a,b) 
ffi + + ffi - - ffi +b+ K UJ +b+ 

-'Va a -'Va a +'Vb = ext Tb 

Thus the reflection and transmission matrices for waves incident on the discontinuity 

from the left-hand side are given by 

The matrices Rand T for waves incident on the discontinuity from the right-hand side 

can also be obtained in a similar way: assume a + = 0 now and solve the continuity and 

equilibrium conditions. 

2.7 Reflection and transmission by multiple discontinuities 

In the previous section, the reflection and transmission of waves at a discontinuity 

have been described in a systematic way. Expanding the results, in this section, 

reflection and transmission of waves by multiple discontinuities are described. 

First consider two discontinuities at points Xl and x2 as shown in Figure 2-5 

where external dynamic components are attached and coaxial waveguides are joined. 

Waves a+ are incident upon discontinuity 1 from the left-hand side. When the relevant 

waves at the discontinuites are denoted by a- , b± , c± and d+ , the relationships 

between the waves are 
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b+ =T]a+ +R]b-, 

c+ = F+b+, 

- R + c = 2C, 

b- = F-c-

a- = R]a+ + T]b-, 

d+ = T
2
c+ 

(2.34a,b,c,d,e,f) 

where R], T] etc., are the reflection and transmission matrices at the discontinuities, 

and F+ and F- are the propagation matrices between the discontinuities. Rearranging 

equations (2.34) in terms of the incident waves a+ , the reflected waves a- and the 

transmitted waves d+ are given by 

a- =[R] +T]F-R2F+[I-R]F-R2F+r]T]]a+, 

d+ = [ T
2
F+ [I - R]F-R

2
F+ r] 1; ] a + 

The matrix [I - R]F-R2F+ r] in equations (2.35) can be expanded as 

(2.35a,b) 

(2.36) 

The second term in equation (2.36) represents one round trip of waves between the two 

discontinuities, and the third term represents two round trips, etc. Thus the reflected 

waves a-have components from the direct reflection of the incident waves by 

discontinuity 1 (i.e., R]a+), while the remaining components arise from waves which 

are initially transmitted through discontinuity 1 and are then subsequently reflected 

back-and-forth at the two discontinuities. The net reflected waves are thus the 

superposition of the direct and subsequent reflected components. Similarly the 

transmitted waves d+ consist of the direct components transmitted through the two 
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junctions (i.e., T2F+Tj a+), and the components from the subsequent reflections between 

the two discontinuities. 

Even though equation (2.35) is obtained for the case where two discontinuities are 

imposed, it is indeed a general expression and can be applied to a case where three and 

more discontinuities are imposed in an iterative manner. In this situation, discontinuities 

1 and 2 do not represent a single discontinuity, respectively, but can be thought to 

represent groups of discontinuities, respectively. Subsequently the matrices Rj' Tj' Tj' 

Rj , R 2 , and T 2 are now global reflection and transmission matrices for the groups of 

discontinuities. 

2.8 Reflection at boundaries 

Consider waves of amplitudes a + incident upon the right-hand end of a 

waveguide. Then the amplitudes of the reflected waves, a - , are 

(2.37) 

where R is the reflection matrix of the boundary. 

The reflection matrix can be obtained from the boundary conditions at the end. 

For example, consider a boundary as shown in Figure 2-6 where external dynamic 

components, represented by the dynamic stiffness matrix Kexf , are attached. The 

boundary condition is given by 

(2.38) 

Combining equation (2.38) with equation (2.17) gives 

<t>+a+ + <t>-a- = -Kexf ('¥+a+ + '¥-a-) (2.39) 

Finally substituting equation (2.37) into equation (2.39) gives 
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(2.40) 

The reflection matrices for two common boundary conditions - free and clamped 

boundaries, can be obtained by letting K ext = 0 (for a free boundary) and K ext = 00 (for 

a clamped boundary), respectively, in equation (2.40). 

Similarly the reflection matrix of the left-hand boundary where negative-going 

waves are converted into positive-going waves can be obtained. In this case the 

equilibrium condition is given by 

(2.41) 

Consequently the reflection matrix Ii of the left-hand boundary is given by 

(2.42) 

2.9 Energy flow 

Even though waves propagate independently, the net energy flow associated with 

the waves is not necessarily given by the simple sum of the individual energy flow 

associated with each wave, i.e. there exists the energy flow associated with the 

interaction between two waves. Following the work done by Miller and von Flotow 

(1989), the energy flow associated with waves is described in a systematic way in this 

section. 

For time harmonic motion, the time-averaged power 11 at a point is given in 

terms of the displacement and internal force vectors by 

(2.43) 
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where ReO denotes the real part of the quantity, (-) indicates a time averaged quantity 

and the superscript T is the transpose operator. Equation (2.43) can be re-written as 

IT = -([ Re( imwe
iOJ1

) J . Re( fe iOJ1
)) 

(2.44) 

where the superscript H is the Hermitian operator. Equation (2.44) gives the energy 

flow in terms of the physical quantities. When the transformation from the physical 

domain to the wave domain is made, the time averaged power is expressed in terms of 

wave amplitudes by 

(2.45) 

where a = [{a + } T {a -} T J and the matrix P is given by 

(2.46) 

1m 
Note that P =-MHJM according to the notation III section 2.2 before dividing 

2 

positive- and negative-going wave motions. Since the matrix P is Hermitian, the power 

IT is always real for any combination of wave components. 

If the matrix P is diagonal, it means that the energy will be transported 

independently by a single wave component. For example, assume that only a pair of 

opposite-going propagating waves is associated with a reciprocal and conservative 

system. For the pair, the eigenvalues are (A A') and the corresponding eigenvectors 

are M = [y y' ] ' where y is a colunm vector satisfying Uy = AY and the superscript * 
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denotes the complex conjugate. If the eigenvectors are normalised such that 

MT JM = iJ (the factor i is introduced in order to be consistent with examples in this 

thesis, e.g., the longitudinal motion), then it follows that 

(2.47) 

where J' is a diagonal matrix composed of ±1. Note that iMH JM is diagonal (thus P 

is diagonal) in this case, which indicates that propagating waves transport the energy 

independently. 

However, for waveguides such as beams undergoing bending motion as 

considered by Bobrovnitskii (1992), there is energy flow associated with the interaction 

between two components and the matrix P is not diagonal. Assume now that there is 

only a pair of opposite-going nearfield waves in the reciprocal and conservative system. 

The eigenvalues and corresponding eigenvectors are all real in this case, i.e., M = M* . 

Thus, on the basis MT JM = -J (the factor -1 is introduced in order to be consistent 

with examples in this thesis, e.g., nearfield waves of the bending motion), it follows that 

iMHJM =-iJ (2.48) 

Equation (2.48) indicates that nearfield waves cannot transport the energy but the 

interaction between two opposite-going nearfield waves can do so. 

If waves are oscillating but decaying (i.e., the wavenumbers are complex), an 

eigenvalue group of the type (A A * 1/ A 1/ A *) arise and the corresponding 

eigenvectors are M = [y y* z z* ] where z is a column vector satisfying 

Uz = A -IZ. This group of waves is seen in the motion of curved beams in chapter 7. 

Thus, on the basis of MT JM = -J , it follows that 
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iM"JM ~_{ 0 
-I' ~] (2.49) 

where 

I'~[~ ~] (2.50) 

In this case the energy flow is associated with the interaction between a pair of waves 

with eigenvalues (A, 1/ A,'), as indicated by Langley (1996). In general, all three wave 

types (propagating, nearfield and complex waves) may be associated with the motion. 

Even in this case such an analysis according to the type of waves is possible: the scaling 

factors for the normalisation may differ but the structure of iMH JM does not change. 

When P is not diagonal, a further transformation can be considered. Since P is 

Hermitian, the power matrix can be written as 

P=EVE-1 (2.51) 

where E is a unitary matrix (i.e. EHE = I) consisting of the eigenvectors of P, and V 

is a diagonal matrix consisting of the (real) eigenvalues of P. Substituting equation 

(2.51) into equation (2.45) gives 

(2.52) 

where p = E-1a . Since V is diagonal, equation (2.52) indicates the energy is 

transported independently by the individual components of p . Note that suitable 

normalisation of the eigenvectors will lead to the elements of V being ±1. This basis is 

called the power wave basis. 
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2.10 Relationship with other methods 

A wave approach based on the reflection, transmission and propagation of waves 

has been developed in a systematic manner. In this section, relationships with two other 

approaches - one is the wave approach based on the transfer matrix method and the 

other is the dynamic stiffness method - are established. 

2.10.1 Wave analysis based on transfer matrix method 

The transfer matrix T in the wave domain has been introduced earlier in section 

2.3. Figure 2-7 shows a drawing analogous to the Holzer-Myklestad model (Meirovitch 

1997), in which each station represents a point discontinuity such as external dynamic 

components and junctions between different waveguides. If positive- and negative-

going waves are grouped together, the left-hand side wave vector a~ of a station j is 

defined as 

(2.53) 

where the superscript I and subscript j refer to the left-hand side of the station j . The 

right-hand side wave vector a~ of the station j is expressed in terms of a~ as 

(2.54) 

where the matrix Qj is termed a point transfer matrix. Considering the reflection and 

transmission of waves at the station (discontinuity), Qj is expressed as 

R1'.-I
] J J 

1'.-1 
J 

(2.55) 
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where R j and Tj are the reflection and transmission matrices for waves incident on the 

station j from the left-hand side, and R j and Tj are the reflection and transmission 

matrices for waves incident on the station j from the right-hand side. 

The wave vector a~+] at the left-hand side of the station j + 1 is related to a~ such 

that 

(2.56) 

where the matrix 0 is called a field transfer matrix from station j to station j + 1 . 

Since there is no discontinuity between two points, the matrix 0 is given by 

[
F: 

:F. = J 

J 0 
(2.57) 

where Fj± are the propagation matrices for the positive- and negative-going waves, 

respectively, between the two stations. Note that the inverse of F; is used for the 

propagation of negative-going waves, which is one of distinct differences between the 

wave approach based on the transfer matrix method and the wave approach based on 

reflection, transmission and propagation of waves. 

Successively applying equations (2.56) and (2.54) for each station yields 

I = r a] =Joao 

a~ = Q] Faa~ 

a~ = :t=; Q] Fa a~ 
(2.58a,b,c, ... ) 

Thus the waves at the right-hand side of station 0 are related to the waves at the left-

hand side of station n as 
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a' = 'T"r ar 

n n 0 0 (2.59) 

where the matrix ~Tor is a transfer matrix in the wave domain and is given by 

(2.60) 

Note that, when reciprocal systems are cascaded, the resulting system should still be 

reciprocal (Easwaran et al. 1993). Thus the matrix ~Tor also satisfies equation (2.12). 

If the system is finite, i.e. boundary conditions are imposed at the ends, their 

effects are considered after the transfer matrix for the whole system is constructed. For 

example, if stations 0 and n are the left and right ends of the system, the wave vectors 

a~ and a~ can be written as 

(2.61a,b) 

where Ro and Rn are the reflection matrices for the boundaries. Substituting equations 

(2.61a,b) into (2.59) describes the wave motion in the finite system. 

Equations (2.59), (2.60) and (2.61) comprise the formulation of the wave 

analysis based on the transfer matrix method, where waves at a point are related to the 

others by cascading the field transfer matrix between two stations and the point transfer 

matrix at each station. Compared to the wave approach based on reflection, transmission 

and propagation of waves, it may be attractive in that it provides in a concise form the 

relationship between waves at different points. However, there are two kinds of 

numerical difficulties that may occur when using the wave approach based on the 

transfer matrix method (Peste1 and Leckie 1963). The first occurs when the transmission 

matrix is singular and its inverse matrix in equation (2.55) does not exist. In fact, the 
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transmission matrix will always be singular if either one of the displacements or the 

internal forces is zero at the discontinuity. For example, if the stiffness of an 

intermediate elastic support is very large compared to the bending stiffness of the beam, 

numerical difficulties may arise. The second difficulty is related to the field transfer 

matrix, which includes the inverse of the propagation matrix, (r t ' as shown in 

equation (2.57). For example, if there exists a wave decaying along the path such as a 

nearfield wave, the field transfer matrix will be ill-conditioned. It means that the round-

off error in the computational process for obtaining the inverse of the propagation 

matrix could be significant. This numerical error due to ill-conditioning of the field 

transfer matrix is demonstrated in section 4.9. 

2.10.2 Derivation of spectral elements 

A spectral element is a finite (or infinite) section of a structure described by a 

dynamic stiffness matrix, which relates the displacements and internal forces at the ends 

of the element (Doyle 1997). In this subsection, spectral elements are derived in terms 

of the displacement, internal force and propagation matrices. 

Consider again the two points Xl and x2 on the waveguide in Figure 2-2. The 

displacements at these points are 

(2.62a,b) 

Since the amplitudes of the waves are related by the propagation matrices as in equation 

(2.19), equation (2.62) can be written as 

(2.63) 

Similarly, the internal forces at the two points are given by 
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(2.64) 

Combining equations (2.63) and (2.64) gives 

(2.65) 

where the dynamic stiffness matrix D for the section of the waveguide is 

(2.66) 

The matrix D is symmetric (D = DT) for a reciprocal system, and it is real for a 

reciprocal and conservative system. 

For a semi-infinite element (referred to as a "throw-off' element by Doyle 

(1997)), the dynamic stiffness matrix (spectral element) is 

(2.67a,b) 

where '¥± and <;I>± are now the displacement and internal force matrices at the 

boundaries of the semi-infinite waveguide, respectively. 

2.11 Summary 

A generalised wave approach based on reflection, transmission and propagation of 

waves has been presented in a systematic way for the motion of one-dimensional 

structures. The state vector in the physical domain was transformed to the wave domain 

using the displacement and internal force matrices, in which the positive- and negative-

going wave motions were separated. The wave amplitudes at one point were then 

related to those at another point by the (diagonal) propagation matrix. These matrices 

provide a foundation for a systematic application of the wave approach. Wave motion in 

42 



various cases such as generation of waves by external excitation, reflection and 

transmission at discontinuities, and reflection at boundaries were then described in a 

systematic manner using the matrices. The property of the reflection, transmission and 

propagation matrices for a reciprocal system were also described: see equations (2.21) 

and (2.30). 

The transfer matrix in physical domain is symplectic for a reciprocal system and 

K-unitary for a conservative system. General forms for the properties of the transfer 

matrix were obtained in the wave domain: see equations (2.10), (2.13) and (2.16). The 

relationship between the present wave approach and the transfer matrix method was also 

established. In contrast to the present wave approach, two kinds of numerical 

difficulties may occur using the transfer matrix method. The first occurs in the case 

where the transmission matrix is singular. For example, if the stiffness of an 

intermediate elastic support is very large compared to the bending stiffness of the beam, 

numerical difficulties may arise. The second difficulty is related to the field transfer 

matrix including the inverse of the propagation matrix. For example, if there exists a 

nearfield wave, the field transfer matrix will be ill-conditioned so that the round-off 

error in the computational process for obtaining the inverse of the propagation matrix 

could be significant. This numerical error due to ill-conditioning of the field transfer 

matrix is demonstrated in section 4.9. However, the wave approach does not suffer such 

numerical difficulties since the positive and negative propagation relationships are 

separated. The spectral elements were also derived in terms of the displacement, internal 

force and propagation matrices. 

The energy flow associated with waves was also described in matrix form. Even 

though waves transport disturbances independently (i.e., the propagation matrix is 
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diagonal), it does not mean that the waves can also transport the energy independently: 

the energy flow could be associated with the interaction between waves, e.g., for a 

conservative system, a pair of waves for which the eigenvalues of the transfer matrix are 

the inverse of the complex conjugate of each other. Further transformation to the power 

wave basis, where the energy is transported independently by individual (power) waves, 

could be considered in such a case. 

In the following chapters, the wave approach is applied to various types of one­

dimensional structure. The complexity of the cases increases throughout the thesis. In 

chapters 3 and 4, longitudinal and bending wave motions in uniform structures are 

studied and, in chapters 5 and 6, those motions in deterministically varying structures 

are studied. In chapter 7, the motion of uniform curved beams where longitudinal and 

bending motions are coupled is studied. In chapter 8, further application of the wave 

approach to, e.g., arbitrarily varying structures, is described. 
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,--... x 

Figure 2-1. A one-dimensional waveguide where geometric and/or material properties 

may vary continuously along the x-axis. 
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Figure 2-2. Propagation of waves between two points. 
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Figure 2-3. Induction of waves by local harmonic forces and moments: (a) applied at a 

point, (b) applied at left-hand end, (c) applied at right-hand end. 
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Figure 2-4. Reflection and transmission of waves at a local discontinuity. 
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Discontinuity 1 
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Figure 2-5. Reflection and transmission of waves through two discontinuities. 
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_ .. _ .. _. -----------, 
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_ .. _ .. _. -----------1 

x=o 

Figure 2-6. Reflection of waves at an end supported by generalised dynamic stiffnesses, 

which are expressed as a matrix Kex/ . 
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Figure 2-7. Wave analysis by the transfer matrix method. 
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Chapter 3. 

WAVE MOTION IN UNIFORM, STRAIGHT BARS 

3.1 Introduction 

The general wave approach based on reflection, transmission and propagation of 

waves, developed in chapter 2, is applied in this chapter to cases concerning uniform, 

straight bars undergoing longitudinal motion. While the systematic formulation of 

chapter 2 is not strictly necessary for these simple cases since the bars are a single-mode 

system, the work will give a clear demonstration of the application of the method. 

In section 3.2, the governing equation for uniform, straight bars undergoing 

longitudinal motion is reviewed. The motion is based on the elementary theory 

neglecting the higher effects such as the inertia associated with Poisson contraction, 

which is considered in chapter 8. For clarity no damping is present as well, thus the 

axial displacement of the bars consists of two propagating waves. In section 3.3, the 

displacement, internal force, and propagation matrices for the bars are defined. Note 

that these matrices have only a single element because there is just one wave mode. 

Using the matrix formulation, wave generation by a force, reflection and 

transmission of waves at discontinuities, reflection of waves at boundaries, and spectral 

elements are described in sections 3.4 to 3.7. In section 3.8, the energy flow associated 

with waves is discussed and the power reflection and transmission coefficients are 

introduced. 
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In section 3.9, a numerical example for wave behaviour in straight bars, where 

the cross-sectional area changes twice discontinuously, is presented. Results obtained 

by two wave approaches, one based on reflection, transmission and propagation of 

waves and the other based on the transfer matrix method, are compared. 

3.2 Equation of motion 

The axial displacement u(x, t) for the free vibration of a bar at position x and time 

t is governed by the differential equation (Graff 1975) 

~l-EA au] = A a
2

u 
ax ax P at 2 

(3.1) 

where p is the density of bar, E is the modulus of elasticity and A is the cross-

sectional area. The corresponding tensile axial force P as shown in Figure 3-1 is 

P=EA
au 
ax (3.2) 

The motion is based on the elementary theory where the inertia associated with Poisson 

contraction in the normal directions to the cross-section is assumed to be negligible and 

the axial displacement across the cross-section is assumed to be uniform. The 

longitudinal motion including the inertia effect is described in chapter 8. 

Equation (3.1) can be easily solved when the material and geometric properties 

are constant with position x. If the time dependence of the motion is assumed to be of 

the form e il1J
/ with angular frequency OJ but suppressed here for clarity, the solution for 

the motion of a uniform bar is given by 

(3.3) 

where Cj and C2 are arbitrarily constants, and the wavenumber k, is given by 
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(3.4) 

Since there is no damping in the bar, k, is real and positive. Substituting equation (3.3) 

into equation (3.2) yields 

P(x) - -iEAk C e -ik/x + iEAk C e ik
/
x 

- , 1 , 2 (3.5) 

The first and second terms of the right-hand side of equation (3.3) or equation (3.5) 

represent a positive-going wave and a negative-going wave, respectively: as time 

increases, the disturbance (u and P) is transported toward the positive (right) direction 

by the first term while the disturbance is transported toward the negative (left) direction 

by the second term. The magnitude of the disturbance does not decay since the 

wavenumber k, is real, i.e., they are propagating waves. 

3.3 The wave description 

The transformation from the physical domain to the wave domain using vectors 

and matrices was expressed as equation (2.7). Following the formulation, the physical 

state vectors for this longitudinal motion are defined as 

w = {u}, f ={p} (3.6a,b) 

The wave vectors are defined as 

(3.7a,b) 

where a+ and a- are the amplitudes of a positive-going wave and a negative-going 

wave, respectively, and are given by 

+ = C e- ik/x 
ai' (3.8a,b) 
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Then the displacement and internal force matrices describing the relationships between 

the physical state vectors and the wave vectors are given by 

'¥+ = [1], 
<1>+ = [-iEAk/] , 

'¥- = [1], 
<1>- = [iEAk/] 

(3.9a,b,c,d) 

These matrices are independent of position in this case, which is not true in cases 

concerning non-uniform bars. These matrices also satisfy equation (2.18), i.e., 

('¥+f <1>+ = (<I>+f '¥+, 
('¥- f <1>- = (<1>- f '¥-, 

('¥+ f <1>- -( <1>+ f '¥- = A 

(3.10a,b,c) 

where the diagonal matrix A for this case is 

(3.11) 

The propagation matrix F for propagation of waves between two points, a 

distance L apart, in a uniform straight bar is given by 

(3.12) 

In this case the positive and negative propagation matrices are the same, which would 

be expected from symmetry between two points. Generally, the relation between them is 

given by equation (2.21), i.e., A(X2 )F+ = F-A(x]). Thus it follows that F+ = F- . 

3.4 Wave generation by local excitation 

The displacement, internal force and propagation matrices were defined for the 

motion of uniform straight bars. The matrices provide a foundation for analysis of wave 

behaviour in various cases concerning the bars. First the response of a uniform straight 

bar to an external point force is investigated in this section. 
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Consider a unifonn straight bar, the left-hand end of which is excited by a 

hannonic point force f'exteimt as shown in Figure 3-2(a). A general fonnulation for 

waves induced by external sources applied to the left-hand end was given in equation 

(2.26), i.e., 

(3.13) 

Since <1>+ is given by equation (3.9c) and f ext = {fext} , the amplitudes q+ of the induced 

wave in this case is given by 

(3.14) 

When the right-hand end is excited by the force fexteimt as shown in Figure 3-2(b), 

the induced wave q- can be obtained by substituting equation (3.9d) and f ext = {fext} 

into equation (2.27). Therefore it follows that 

q - ~ { iE~k}:" (3.15) 

Equations (3.14) and (3.15) show that the displacement of the bar lags in phase behind 

the external force by tr/2, therefore, the velocity is in phase with the external force. 

Now a point of the bar is excited by the force as shown in Figure 3-2(c). The 

continuity condition at the point makes the amplitudes of the positive- and negative­

going waves induced by the force identical at the excitation point in this case, i.e., 

q+ = q-

The equilibrium condition at the point is given by 

-<I>+q+ + <I>-q- = fext 
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(3.17) 



Substituting equations (3.9c) and (3.9d) into equation (3.17) gives 

(3.18) 

3.5 Reflection and transmission at discontinuities 

Consider two identical semi-infinite bars connected by a translational dynamic 

stiffness Kr as shown in Figure 3-3(a). The continuity and equilibrium conditions in 

this case are 

~ =0., 
~ = Kr ( U 2 - u1 ) 

(3.19a,b) 

where the subscripts 1 and 2 refer to the left-hand and right-hand sides of the stiffness, 

respectively. Since the left-hand bar and the right-hand bar are identical in this case, 

equation (3.19) is written as 

a+ -a- = b+, 

a+ -a- = iKr (b+ -a+ -a-) 
(3.20a,b) 

where the dimensionless stiffness Kr = Kr / EAk, is introduced. Thus the reflection and 

transmission matrices for the connection are given by 

R _[ 1 ] 
- l-i2Kr ' 

T=[ i2Kr] 
l-i2Kr 

(3.21a,b) 

Note that there is no reflection if Kr ~ 00 (rigid connection) and there IS no 

transmission if Kr = 0 (no connection). 

Consider now two semi-infinite bars with different geometric shapes and/or 

material properties, which are directly connected as shown in Figure 3-3(b). The 

'continuity and equilibrium conditions at the junction are 

57 



(3.22a,b) 

where the subscripts 1 and 2 refer to the left-hand and right-hand sides of the junction, 

respectively. Equation (3.22) is written in terms of the amplitudes of waves as 

(3.23a,b) 

where r = (EAk')2/(EAk')1 Thus the reflection and transmission matrices for the 

junction are given by 

R=[::; J T-[ 2 ] 
l+r 

(3.24a,b) 

If the Young's moduli of the two bars are the same but the cross-sectional areas are 

different, then the reflection and transmission matrices reduce to 

(3.25a,b) 

As would be expected, the reflection and transmission matrices Rand T for the case 

where the wave is incident from the right-hand side of the junction, can simply be 

obtained by exchanging the subscripts 1 and 2 in equation (3.25). 

3.6 Reflection at boundaries 

Consider a semi-infinite bar with a boundary supported by a translational dynamic 

stiffness KT as shown in Figure 3-4. The equilibrium condition at the boundary is 

(3.26) 

Then equation (3.26) is rewritten as 

(3.27) 
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where KT = KT / EAk, . Thus the reflection matrix R of the boundary is given by 

(3.28) 

For two special cases - clamped (KT ~ (0) and free (KT = 0) boundary conditions, the 

reflection matrices are given by 

Rc =[-1], (3.29a,b) 

where the subscripts c andJrefer to the boundary conditions, respectively. 

3.7 Spectral elements 

In section 2.10.2 the dynamic stiffness matrix for an element was defined in terms 

of the displacement and internal force matrices. Then the dynamic stiffness matrix of 

the semi-infinite, or throw-off, element was given by 

(3.30a,b) 

Substituting equations (3.9) into equation (3.30) gives the dynamic stiffness matrix for 

the semi-infinite bar as 

(3.31) 

The dynamic stiffness matrix for the finite section of length L of the bar, which is 

defined as equation (2.66), is 

(3.32a,b) 

In this case, the bar is a symmetric and reciprocal system so that the dynamic system is 

symmetric and the diagonal elements are also equal. 
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3.8 Energy flow 

In section 2.9, the time-averaged power associated with waves in one-dimensional 

structures was given as 

(3.33) 

where a = [( a + t ( a-t J and the power matrix P is 

(3.34) 

Substituting the displacement and internal force matrices for the uniform straight bar 

into equation (3.34) yields 

P =OJEAk/[l 0] o -1 
(3.35) 

In this case, the power matrix is diagonal so that energy is transported independently by 

each single wave component and there is no energy transported through the interaction 

between the positive- and negative-going components. Thus the time-averaged power 

associated with a positive-going wave with amplitude a+ is 

(3.36) 

where c/ = ~E/ p is the longitudinal wavespeed. It can be seen that power is 

proportional to the longitudinal wavespeed. The time-averaged power associated with a 

negative-going wave with amplitude a- is 
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1 21 _12 
=-"2pAOJ a c, 

(3.37) 

Compared to equation (3.36), the negative sign indicates that the energy is transported 

in the negative direction. 

Consider the reflection and transmission of waves by a discontinuity. To 

indicate how much energy is reflected and transferred, the power reflection coefficient 

Q and power transmission coefficient T can be defined by 

(3.38a,b) 

where TIp TIr and TIt are the incident, reflected and transmitted powers, respectively. 

If there is no energy dissipation, i.e., for a conservative system, the power reflection and 

transmission coefficients should satisfy the relationship 

Q+T=1 (3.39) 

For the bar undergoing longitudinal motion, where the power is defined as 

equation (3.36) or (3.37), when the amplitudes of the incident, reflected and transmitted 

waves are a+ , a- and d+ , respectively, the power reflection and transmission 

coefficients at a discontinuity are given by 

(3.40a,b) 

where the subscripts 1 and 2 refer to left-hand and right-hand side of the discontinuity, 

respectively. 
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3.9 Numerical example 

The reflection, transmission and propagation of waves in uniform straight bars 

have been studied in a systematic way. The results can be used for solving various 

problems concerning the bars. As an application of the previous work, in this section, a 

numerical example, where the cross-sectional area changes twice discontinuously such 

that Aj -+ ~ -+ A3 as shown in Figure 3-5, is presented. The points at which the area 

changes, denoted by junction 1 and junction 2 in the figure, are separated by a distance 

L. Waves a + are incident upon junction 1 from the left-hand side and the other relevant 

waves are denoted by a-, b± , c± and d+ as shown in the figure. Note that this is a 

specific example of reflection and transmission of waves by two general discontinuities 

described in section 2.7. 

3.9.1 Effect of cross-section changes 

The reflection and transmission matrices at a point where the area changes are 

obtained by equation (3.25). Thus the matrices at junction 1 are 

(3.41a,b,c,d) 

and the matrices at junction 2 are 

(3.42a,b,c,d) 

The propagation matrix between the two junctions is 
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F= [e-ik,L ] 

Then the relationships between the waves are 

b+ =~a+ +R1b-, 

c+ =Fb+, 

c- = Rzc+, 

b- = Fc-

a- = R1a+ + T1b-, 

d+ = Tzc+ 

(3.43) 

(3.44a,b,c,d,e,f) 

Rearranging equation (3.44) in tenns of the vector of incident waves a+, the vector of 

transmitted waves d+ is given by 

(3.45) 

Substituting equations (3.41), (3.42) and (3.43) into equation (3.45) gives 

4 -ik,L 

d+ = e . a+ 
(1 + a l ) (1 + a z ) + (1- a

l 
) (1- a z ) e -lZk,L 

(3.46) 

where a l = ~ / Al and a z = A3 / Az represent the ratios of the cross-sectional areas at the 

junctions, respectively. 

The power transmission coefficient T was introduced as equation (3.40b). In 

this case, it is given by 

(3.47) 

Substituting equation (3.46) into equation (3.47) gives 

(3.48) 
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Equation (3.48) indicates that the maximum or minimum transmission occurs when 

k,L = Jr/2, Jr, 3Jr/2, ... and the maximum/minimum position is determined by the sign of 

(l-al)(I-a2 ). For example, if the cross-sectional areas increase monotonically such as 

Al < A2 < A3 , the maximum transmission occurs when k,L = Jr/2, 3Jr/2, 5Jr/2, ... and 

the minimum transmission occurs when k,L = Jr, 2Jr, 3Jr, .... 

Similarly, the power reflection coefficient Q can be calculated by obtaining the 

vector of reflected waves a- in terms of a+. Indirectly, it can also be obtained using 

equations (3.39) and (3.48) since no damping is involved in this case. 

Figure 3-6 shows numerical results of the power reflection and transmission 

coefficients when the area changes are A ~ 2A ~ 4A and A --}- 2A ~ A, respectively. 

It can be seen that the frequencies where the maximum transmission occur in the first 

case become those where the minimum transmission occur in the second case. Figure 3-

7 shows the power transmission coefficients when the cross-sectional area of the middle 

section varies. A greater area change ratio results in lower transmission efficiency. 

3.9.2 Comparison to the transfer matrix method 

In the previous subsection the example was studied using the wave approach 

based on the reflection, transmission and propagation of waves. In this subsection it is 

studied by using the approach based on transfer matrix method, which was presented in 

subsection 2.10.1. 

The relationships between waves at the left-hand side of junction 1 and waves at 

the right-hand side of junction 2 are 

(3.49) 
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where the transfer matrix T is given by 

R.'r-Ij I I 

i-I 
I 

(3.50) 

In equation (3.49), note the assumption that there are no negative-going waves on the 

right-hand side of junction 2. The transmitted waves are then obtained by 

(3.51) 

Substituting the reflection, transmission and propagation matrices given by equations 

(3.41), (3.42) and (3.43) into equation (3.50) gives the transfer matrix T , and then the 

amplitudes of the transmitted waves are obtained by using equation (3.51). 

Figure 3-8 shows the numerical results of the power reflection and transmission 

coefficients obtained by using the transfer matrix method when A ~ 2A ~ 4A. It is 

identical to Figure 3-6(a), which indicates that in this case either method can be used for 

the analysis of the motion of bars. This is generally true for bars, for which there is only 

one propagating wave mode. 

3.10 Summary 

The longitudinal motion of uniform straight bars has been described in terms of 

waves and their reflection, transmission and propagation. The displacement, internal 

force and propagation matrices for the bars were defined and used for the systematic 

analysis of wave motion for various situations such as the wave generation by a force, 

the reflection and transmission of waves at discontinuities, the reflection of waves at 

boundaries, and the derivation of the spectral elements. The energies are transported by 

the two propagating waves independently, and the propagation velocity is the same as 

the phase velocity. 
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The numerical results for bars where the area changes twice discontinuously were 

presented using the two wave approaches, one based on reflection, transmission and 

propagation of waves and the other based on the transfer matrix method. The numerical 

results showed that either method can be used for the analysis of the motion of the bars 

(in the next chapter where the bending motion of beams is studied, it is shown that the 

approach based on transfer matrix method may lead to numerical difficulties). As the 

changes of the area become more severe, the more the incident waves are reflected. The 

power also depends on the phase change of waves propagating between the two 

discontinuities, i.e., the product of the longitudinal wavenumber and the length between 

the two discontinuities. 
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Figure 3-1. Sign convention of physical quantities for longitudinal motion. 
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(a) 

(b) '-"3 {' iwt Jext e 

q- .----~ 

(c) 
I' iml 

Jext e 

I~ 
. _ .. _ .. -------i--------

. + 
.---- j ----. q 

. _ .. _ .. -------;.--------q 

Figure 3-2. Wave generation in a uniform straight bar by a local harmonic force: (a) the 

left-hand end is excited, (b) the right-hand end is excited, (c) a cross-section 

is excited. 
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(a) 

(b) 

Kr 

------~~~------
(incident) 

(reflected) 

a+ ----.1 
a- .----1 ----. b + (transmitted) 

(incident) 

(reflected) 

a+ ----~ 1 
i ----~ b+ 

a ~----! 
(transmitted) 

Figure 3-3. Reflection and transmission oflongitudinal waves: (a) at a junction of two 

identical uniform straight bars connected by a translational dynamic 

stiffness, (b) at a junction of two different uniform straight bars connected 

directly. 
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I A:~A rg ___ ;vvv~ 
(incident) a + ----.. 1 

(reflected) a- ..-----: 

Figure 3-4. Reflection of longitudinal waves at an end of a unifonn straight bar 

supported by a translational dynamic stiffness. 
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- .. - .. -------~ 
(incident) a+ ----~ ----~ b+ 

(reflected) a- ~---- ~---- b-
- .. - .. ---------1 

III 

junction 1 

L 

c+ ----~ 
!-------_ .. _ .. -

----~ d+ (transmitted) 
c- ~----

i-------, 

junction 2 

Figure 3-5. Reflection and transmission of longitudinal waves in a straight bar where 

cross-sectional area changes twice discontinuously, Al ~ A2 ~ A3 . 
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A ~ 2A ~ 4A, by using the wave method based on the transfer matrix 

method; -- , reflection; ------ ,transmission; ................... , total power. 
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Chapter 4. 

WAVE MOTION IN UNIFORM, STRAIGHT BEAMS 

4.1 Introduction 

In this chapter, the general wave approach based on reflection, transmission and 

propagation of waves is applied to cases concerning uniform, straight beams undergoing 

bending motion. Compared to axial vibration of the bars described in chapter 3, one 

distinct feature in these cases is that nearfield waves as well as propagating waves exist 

now. The amplitudes of nearfield waves decay very rapidly along the beam so that they 

are negligible when the propagation distance is longer than, typically, half the 

wavelength. Two issues related to nearfield waves are included in this chapter: power 

flow associated with nearfield waves and numerical conditioning problems associated 

with nearfield waves. 

In section 4.2, the governing equation for uniform, straight beams undergoing 

bending motion is reviewed. The effects of shear deformation and rotary inertia are not 

considered so that the motion is based on Euler-Bernoulli theory. No damping effect is 

included for clarity so that the motion consists of two propagating waves and two 

nearfield waves. In section 4.3, the displacement, internal force, and propagation 

matrices for the beams are defined. Note that these matrices are now 2 x 2 matrices 

since the beam is a two-mode system. 

Using the matrix formulation, wave generation by external point forces, reflection 

and transmission of waves at discontinuities, reflection of waves at boundaries, and 
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spectral elements are described in sections 4.4 to 4.7. In section 4.8, the energy flow 

associated with waves is discussed and the power reflection and transmission 

coefficients are defined. 

In section 4.9, two numerical examples of application of the wave approach based 

on reflection, transmission, and propagation of waves are presented. The first is a beam 

with two simple supports. It is shown that the energy flow can be associated with the 

interaction of two opposite-going nearfie1d waves. Note that the approach based on the 

transfer matrix method cannot be applied to this case since the transfer matrix from the 

left-hand side of a simple support to the right-hand side cannot be defined. The second 

is a beam where the cross-sectional area changes twice discontinuously. It is illustrated 

that the approach based on reflection, transmission and propagation of waves always 

provides well-conditioned numerical results, while the approach based on the transfer 

matrix method may lead to numerical difficulties due to ill-conditioning at high 

frequencies. 

4.2 Equation of motion 

If the effects of shear deformation and rotary inertia are neglected, the bending 

displacement w(x, t) for the free vibration of a beam is governed by the differential 

equation (Graff 1975) 

(4.1) 

where I is the second moment of area. The corresponding shear force and bending 

moment, the convention being adopted as shown in Figure 4-1, are 
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Q = -~(El 02wJ ax ox2
' 

(4.2a,b) 

Equation (4.1) can be easily solved when the material and geometric properties 

are constant with position x. If the time dependence of the motion is assumed to be of 

the form e il1J
( with angular frequency (j) but suppressed here for clarity, the solution for 

the motion of a uniform beam is given by 

(4.3) 

where Cj ,2,3,4 are arbitrary constants, and the bending wavenumber kb is given by 

(4.4) 

The wavenumber kb is real and positive, unless damping is present when it will have a 

negative imaginary part. Note that, unlike axial vibration, kb depends on the specific 

geometric shape of the beam cross-section. The corresponding shear force and bending 

moment can be obtained by substituting equation (4.3) into equation (4.2). 

As in the axial vibration, the first and third terms of the right-hand side of 

equation (4.3) represent a positive-going propagating wave and a negative-going 

propagating wave, respectively: as time increases, the disturbance (wand the other 

corresponding physical quantities) is transported toward the positive (right) and the 

negative (left) direction by the terms, respectively, and it does not decay. The second 

and fourth terms represent nearfield (or evanescent) waves: the phase does not change 

with the distance but the magnitude decays exponentially. 
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4.3 The wave description 

The transformation from the physical domain to the wave domain using vectors 

and matrices was expressed as equation (2.17). Following the formulation, the lateral 

displacement and the slope are grouped as a vector wand the corresponding shear 

force and bending moment are grouped as a vector f such that 

(4.5a,b) 

The wave vectors are defined as 

(4.6a,b) 

where a± are the amplitudes of the propagating waves and a~ are the amplitudes of the 

nearfield waves, and are given by 

(4.7a,b,c,d) 

Then the displacement and internal force matrices describing the relationships between 

the physical state vectors and the wave vectors are given by 

[ 

1 '¥+ = 
-ikb 

[

·k 3 <1>- = E1 1 b 

-k 2 
b 

( 4.8a,b,c,d) 

Note that these matrices are independent of position in this case, which is not true in 

cases concerning non-uniform beams. These matrices also satisfy 

('¥+ f <1>+ = (<1>+ f '¥+, 

('¥- f <1>- = (<1>- f '¥-, 

('¥+f <1>--(<1>+f'¥-=A 
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where the diagonal matrix A is 

3 [i 0] A =4E1kb o -1 
(4.1 0) 

The propagation matrix F for propagation of waves between two points, a 

distance L apart, in a uniform straight beam is given by 

(4.11 ) 

In this case the positive and negative propagation matrices are the same, which would 

be expected from symmetry between two points. Generally, the relation between them 

is given by equation (2.21), i.e., A(x2 )F+ =rA(x1). Thus it follows that F+ =r. 

4.4 Wave generation by local excitation 

Consider a point of a uniform straight beam excited by a harmonic force iexteiwt 

as shown in Figure 4-2(a). The continuity and equilibrium conditions at the point are 

qt+q+ = qt-q-, 

-<1>+ q+ + <1>-q- = f ext 
(4. 12a,b) 

where the external force vector f ext = [Iext 0 r. Substituting the displacement and 

internal force matrices given by equations (4.8) into equation (4.12) yields 

+ _ lext {i} 
q =q =- 4Elk/ 1 (4.13) 

The magnitudes of the four wave components are equal. Note also that the lateral 

displacement, which is obtained by the sum of the amplitudes of the waves, lags in 

phase behind the force by 3JZ" /4 . 
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Now suppose that the external force is applied at the left-hand end of the beam as 

shown in Figure 4-2(b). Since the equilibrium condition at the end is 

-<t>+q+ = f ext (4.14) 

the induced waves q+ are given by 

+ =_ (I+i)fext {I} 
q 2Elk 3 I 

b 

(4.15) 

Note that the induced displacement again lags in phase behind the force by 3rc/4. In the 

final case where the external force is applied at the right-hand end as shown in Figure 4-

2(c), the negative-going wave amplitude q- is 

q_ =_ (1+i)fext {I} 
2Elk/ 1 

which is the same as equation (4.15). 

(4.16) 

Now assume that the beam is excited by a time harmonic moment, instead of the 

force, as shown in Figure 4-3. The external force vector is now f ext = [0 Mext r . For 

the case as shown in Figure 4-3(a), the induced waves are 

+ _ M ext {I} 
q =-q = 4Elk/ -1 (4.17) 

Note that the induced displacement at the excitation point is zero and the induced slope 

(or, rotation) lags in phase behind the moment by rc/4. For the case as shown in Figure 

4-3(b), the induced waves are 

+ = (1+i)Mext {I} 
q 2Elkb2 i 

(4.18) 

For the case as shown in Figure 4-3(c), the induced waves are 
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_ = _ (1 + i)M ext {I} 
q 2Elkb2 i 

(4.19) 

Compared to equation (4.18), note that the sign changes in this case. 

A case where the external force and moment are applied at the same time can also 

be considered. Then the amplitudes of the induced waves can be obtained by simply 

changing the external force vector fe.<t as required and following a similar procedure to 

that above. 

4.5 Reflection and transmission at discontinuities 

Consider a uniform straight beam, a point of which is supported by translational 

and rotational dynamic stiffnesses, Kr and KR , as shown in Figure 4-4(a). The 

continuity and equilibrium conditions at the point are given by 

Wa=W b, 

-fa +fb = Kextwa 

(4.20a,b) 

where the subscripts a and b denote the left- and right-hand sides of the discontinuity 

respectively, and the dynamic stiffness matrix K ext is 

(4.21) 

Note that, in general, K ext could be not diagonal (but symmetric for a reciprocal 

system). Since the displacement and internal force matrices for the left- and right-hand 

sides are the same in this case, equations (4.20) can be re-expressed as 

,¥+a+ + '¥-a- = '¥+b+, 

-<D+a+ -<D-a- + <D+b+ = K '¥+b+ 
ext 
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Combining equations (4.8) and (4.21) with equations (4.22) gives the reflection and 

transmission matrices of the discontinuity (Mace 1984) 

(4.23a,b) 

where I is the identity matrix and 

( 4.24a,b,c,d) 

where the dimensionless stiffnesses Kr = Kr / Elk/ and K R = K R / Elk b are introduced. 

For a simply supported point (namely, Kr ~ 00 and KR = 0), the reflection and 

transmission matrices reduce to 

R =_1 [-1 -}.1] , 
l-i i 

1 [-i T=-
l-i i 

(4.25a,b) 

Note that the coefficients of the matrices are independent of frequency and the 

magnitudes are 1/ J2. For an incident propagating wave this means that half of the 

energy carried by the incident wave is reflected by the simple support and the other half 

is transmitted. Also note that, when the amplitudes of the incident wave are of the form 

a+ = [1 -if, i.e., such that the slope is zero, no wave will be transmitted to the right-

hand side of the simple support. 

Consider now a case where two beams with different geometric shapes and/or 

material properties are directly connected as shown in Figure 4-4(b). In this case the 

displacement, slope, bending moment and shear force are all continuous at the junction, 

namely, 

(4.26a,b) 
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Combined with the displacement and internal force matrices for uniform straight beams 

given by equations (4.8), the reflection and transmission matrices are determined to be 

(Mace 1984) 

R = 2[-2(132 
-1)y -if3(1- y)2 (1 + i)f3(1- y2) ] 

~ (1-i)f3(l- y 2) -2(132 -1)y+ift(l-y)2 ' 
(4.27a,b) 

T =i[ (1+ ft)(I+y) -(1-if3 )(1-y)] 

~ -(1 + if3)(I- y) (1 + 13)(1 + y) 

Note that the reflection and transmission matrices are independent of frequency. If, 

except for the thickness, the other material and geometric properties of the two beams 

are the same, the phase of the (1,1) element of R tends to -tr/2 as the thickness 

difference increases (Mace 1984). If the two beams are identical except for their widths, 

bl and b2 , then ft = 1 and the reflection and transmission matrices reduce to 

1 [-i(I-0-)2 (l+i)(1-0-2)] 
R= ~ (l-i)(1-0-2) i(1-0-)2 ' 

(4.28a, b) 
2 [ 2(1 + 0-) -(1- i)(1- 0-)] 

T = ~ -(1 + i)(1- 0-) 2(1 + 0-) 

where ~ = 0-2 + 60- + 1 and 0- = b2 /b
l

• Note that the phase of the (1,1) element of R is 

-n/2. 

4.6 Reflection at boundaries 

Consider a uniform straight beam where translational and rotational dynamic 

stiffnesses Kr and KR are attached at the right-hand end as shown in Figure 4-5. The 

equilibrium condition at the end is 
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(4.29) 

where the external dynamic stiffuess matrix K ext is given by equation (4.21). Thus 

(4.30) 

Substituting equations (4.8) and (4.21) into equation (4.30) gives the reflection matrix 

R of the boundary (Mace 1984) 

(4.31) 

For three common cases of interest - simply supported, clamped and free ends -

the reflection matrices R are obtained as 

[-1 0] 
Rs = 0 -1' 

R =[ -i -(I+i)] 
c (1') . , - -1 1 

R =[ -i (l+i)] 
f (4.32a,b,c) 

(I-i) i 

where the subscripts s, c andJrefer the boundary conditions, respectively. 

4.7 Spectral elements 

Consider a semi-infinite uniform straight beam extending to x = +00. The 

dynamic stiffness matrix for the semi-infinite, or throw-off, beam is given by 

(4.33) 

Substituting the displacement and internal force matrices given by equations (4.8a,c) 

into equation (4.33) gives 

(4.34) 
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The dynamic stiffness matrix D--«> for the semi-infinite uniform straight beam extending 

to x = -00 is the same as D- , except for the sign changes of the (1,2) and (2,1) 

elements. 

Consider now a finite uniform straight beam of length L. The dynamic stiffness 

matrix for the finite beam is given by 

(4.35) 

Substituting equations (4.8) and (4.11) into equation (4.35) gives 

(4.36) 

D = [-kb (sinh kbL cos kbL + cosh kbL sin kb L ) 

II -sin kbLsinh kbL 

-sinkbLsinhkbL ] 

sinh kbL cos kbL - cosh kbL sin kbL , 

kb 

Note that the dynamic stiffness matrix is symmetric, i.e., D = DT because of reciprocity. 
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4.8 Energy flow 

In section 2.9, the time-averaged power associated with waves in one-dimensional 

structures was given as 

(4.37) 

where a = [( a + r (a -r r and the power matrix P is 

(4.38) 

Substituting the displacement and internal force matrices for the uniform straight beams 

given by equation (4.8) into equation (4.38) yields 

0 0 0 

P = 20JElkt 
0 0 0 -1 

(4.39) 
0 0 -1 0 

0 0 0 

Unlike that for axial vibration of bars, the power matrix is not diagonal. The presence of 

off-diagonal terms indicates that the energy can be transported by the interaction 

between nearfield waves. Suppose that there are two opposite-going nearfield waves 

with amplitudes a; and a~ , respectively, i.e., a = [ 0 a; 0 a~ r. Then the time-

averaged power associated with the nearfield waves is 

(4.40) 

Equation (4.40) indicates that, if a; and a~ are not in phase and are not in counter-

phase, the energy can be transported by interaction of the two opposite-going nearfield 
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waves, as indicated by Bobrovnitskii (1992). Note that the direction of energy flow is 

determined by the phase difference of the amplitudes, e.g., if a~ leads in phase ahead of 

a-;; by TC/2, then the energy will propagate in the positive direction. 

The power matrix in equation (4.39) also indicates that a propagating wave 

transports energy independent of all the other wave components. The time-averaged 

power associated with a positive-going propagating wave with amplitude a + is given by 

1 21 + 12 ="2 pAw a cg 

(4.41) 

where cg = dw/ dk is the group velocity for uniform straight beams. It can be seen that 

power is proportional to the group velocity times mass per unit length, i.e., energy is 

transported by the wave at that velocity. Similarly, the time-averaged power associated 

with a negative-going propagating wave with amplitude a- is given by 

1 21 _1 2 
= -"2 pAw a cg 

(4.42) 

Note that the negative sign indicates the energy is transported in the negative direction. 

In section 3.8, the power reflection coefficient Q and power transmission 

coefficient 'l" were introduced to indicate how much energy is reflected and transferred, 

e.g., at a discontinuity. They are given by 

(4.43a,b) 
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where TI;, TIr and TIl are the incident, reflected and transmitted powers, respectively. 

For example, suppose that a positive-going propagating wave with amplitude a+ is 

incident on a point discontinuity and then reflected into negative-going waves with 

amplitudes a- (propagating) and a~ (nearfield), and transmitted into waves with 

amplitudes d+ and d;. Note that, in this case, two opposite-going nearfield waves do 

not occur together so that no power is associated with the nearfield waves. Thus the 

power reflection and transmission coefficients are given by 

T = (Elk/)2Id +1
2 

(E1kb
3

)] la+12 
(4.44a,b) 

where the subscripts 1 and 2 refer to the left- and right-hand sides of the discontinuity, 

respectively. 

4.9 Numerical examples 

In this section, two numerical examples of application of the wave approach based 

on reflection, transmission, and propagation of waves are presented. The first is a 

uniform beam with two simple supports. It is shown that energy flow can be associated 

with the interaction of two opposite-going nearfield waves. Note that the approach 

based on the transfer matrix method cannot be applied to this case since the transfer 

matrix from the left-hand side of a simple support to the right-hand side cannot be 

defined. The second example is a beam where the cross-sectional area changes twice 

discontinuously. It is illustrated that the approach based on reflection, transmission and 

propagation of waves always provides well-conditioned numerical results while the 
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approach based on transfer matrix method may lead to numerical difficulties due to ill 

conditioning at high frequencies. 

4.9.1 Reflection and transmission by two simple supports 

Consider a uniform straight beam with two simple supports as shown in Figure 4-

6 where the length between the two supports is denoted by L. Suppose that a 

propagating wave with amplitude a+ is incident from the left-hand side of the left 

support, therefore, the incident wave vector a + is 

(4.45) 

The reflection and transmission matrices for a simple support have been obtained as 

equation (4.25), namely, 

R - 1 [-1 -1.
1
], 

1-1 1 

T=_1 [-i -1] 
l-i i 1 

(4.46a,b) 

which are valid when waves are incident from the right-hand side of the support as well 

as from the left-hand side of the support. The propagation matrix F between the two 

supports is 

F= [
e-

ikbL 0] 
o e-kbL 

(4.47) 

For two general discontinuities, the reflected waves a- and the transmitted waves d+ 

were obtained as equation (2.35). In this case they are given by 

a- = {R+TFRF[I-RFRFrlT)a+ 

d+ =TF[I-RFRFr1Ta+ 
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Suppose that a- and a~ are the amplitudes of the reflected propagating and nearfield 

waves, respectively, and d+ and d~ are the amplitudes of the transmitted propagating 

and nearfield waves, i.e., a- = [a- a~ rand d+ = [d+ d~ r. Since no opposite-

going nearfield counterparts to the nearfield waves a~ and d~ exist and the nearfield 

waves a~ and d~ cannot carry energy alone, the power reflection and transmission 

coefficients, Q and 'f , for the two supports are given by 

(4.49a,b) 

Approximate values of the power reflection and transmission coefficients can be 

calculated by neglecting the nearfield waves set up in the intermediate region between 

two supports. Taking only the (1,1) elements of the matrices R, T , F and I, the 

transmitted amplitude d+ is given in this case by 

(4.50) 

The maximum value of the magnitude of d+ is Id+ Imax = la + I and occurs when ei2kbL = i , 

i.e., when 

(4.51) 

where n = 0, 1, 2, 3, .... Note that this maximum transmission occurs when the phase of 

the term RFRF equals a multiple of 27r . The minimum value of magnitude of d+ is 
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(4.52) 

Therefore the power transmission coefficients for maximum and minimum transmission 

are 

(4.53) 

Since no energy dissipation is assumed in this case, the maximum and minimum values 

of the power reflection coefficient are 0 and 8/9, respectively. 

Figure 4-7 shows numerical results for the power reflection and transmission 

coefficients. The results, when nearfield waves in the region between the two supports 

are neglected and when they are included, are compared. It can be seen that 

discrepancies between the two results exist when kbL < ;rr. Thus it indicates that the 

influence of nearfield waves, which set up in the intermediate region between two 

supports, on the energy flow cannot be neglected if the length between two supports is 

less than half a wavelength. When kbL > ;rr, the results show good agreement with the 

approximate behaviour obtained when neglecting the nearfield waves. 

The numerical results have been obtained using the wave approach based on 

reflection, transmission and propagation of waves. Note that the approach based on the 

transfer matrix method cannot be applied to this case since the point transfer matrix 

from the left-hand side of a simple support to the left-hand side cannot be defined. 

Generally, if the stiffness of an intermediate elastic support is very large compared to 

the bending stiffuess of the beam, numerical difficulties may arise in using the approach 

based on transfer matrix method (Pestel and Leckie 1963). 
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4.9.2 Reflection and transmission by area changes 

Consider a straight rectangular beam where the cross-sectional area changes 

discontinuously at two points such that Al -4 A2 -4 A3 , as shown in Figure 4-8. The 

points, where the area changes and denoted by junction 1 and junction 2 in the figure, 

are by a distance L apart. In subsection 4.9.2.1, numerical results for the power 

transmission in this case are obtained using two approaches, one based on reflection, 

transmission and propagation of waves and the other based on the transfer matrix 

method. It is shown that a different kind of numerical difficulty, which is related to 

nearfield waves, may occur in using the approach based on the transfer matrix method. 

In subsection 4.9.2.2, reflection and transmission of waves under various conditions of 

the area change are studied. 

4.9.2.1 Comparison of the two numerical methods 

For the beam shown in Figure 4-8, assume that the width b is invariant but the 

thickness h changes such that h -4 2h -4 h. A propagating wave with amplitude a + is 

incident from the left-hand side of junction 1, therefore, the incident wave vector a+ is 

(4.54) 

The reflection and transmission matrices for the discrete change in the geometric and 

material properties have been obtained as in equation (4.27). In this case, the reflection 

and transmission matrices for junction 1 are 
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1 [8 - i9.J2 -15 (1 + i) .J2] 
R] = 24+25.J2 -15(I-i).J2 8+i9.J2 ' 

1 rlO (2+.J2) 6(2-i.J2)l 

T] = 24 + 25.J2 6(2+i.J2) 10(2+.J2) ' 
( 4.55a,b,c,d) 

- 1 [ -8 - i9.J2 15 (1 + i) J2] 
R] = 24+25.J2 15(I-i).J2 -8+i9J2 ' 

- 1 r 40(1+.J2) -24(I-iJ2)l 

T] = 24 + 25.J2 -24(I+i.J2) 40(1+J2) 

Note again that the elements of the matrices are independent of frequency. The matrices 

for junction 2 are 

( 4.56a,b,c,d) 

The propagation matrix between the two junctions is given by 

[ 

-ikb 2L e ' 
F= 

o 
(4.57) 

where kb,2 is the wavenumber in the central region. Then the reflected and transmitted 

waves, a- and d+ , are obtained by 

a- =Rra\ 

d+ = Tra+; 

- - - - -] 
Rr = R] + T]FR]F[I - R]FR]F] T] 

- - - -] 
Tr = T]F[I - R]FR]F] T] 

where Rr and Tr are global reflection and transmission matrices for the case. 

(4.58a,b) 

The reflected and transmitted waves have been obtained by using the wave 

approach based on reflection, transmission and propagation of waves. Now the waves 

are obtained by the approach based on the transfer matrix method. The relationships 
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between the waves at the left-hand side of junction 1 and the waves at the right-hand 

side of junction 2 are 

(4.59) 

where the transfer matrix 7 is given by 

Ii 1'-1] 1 1 

1'-1 
1 

(4.60) 

In equation (4.59), note the assumption that there are no negative-going waves in the 

right-hand side of junction 2. The reflected and the transmitted waves are then obtained 

by 

a- = RTa+; 

d+ = TTa+; 

RT =-'G.;IT21 

TT = 711 - ~2 'G.;ITzI 
(4.61a,b) 

Substituting the reflection, transmission and propagation matrices given by equations 

(4.55), (4.56) and (4.57) into equation (4.60) gives the transfer matrix 7, and then the 

amplitudes of the reflected and transmitted waves are obtained by using equation (4.61). 

This is the approach based on the transfer matrix method. 

Equations (4.58) and (4.61) should give the same results. However, there are 

some difficulties relating to nearfield waves when numerical calculations using the 

approach based on the transfer matrix method are performed. As shown in equation 

(4.60), the transfer matrix includes F-1 so that the element for the transfer of the 

nearfield wave, i.e, /b.,L, will grow rapidly as kb,2L increases. For example, when 

kb,2L:::; 38 (or, L/ ~ :::; 6), the 2-norm condition number of F-1 is approximately 1016
• 

Thus important information contained in other small terms could be lost in the 
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computational process, e.g., a small value multiplied by ekb.,L may be the rounded off 

when kb 2L is high (Pestel and Leckie 1963). This rounding off may lead to significant 

errors in the numerical results. 

Figure 4-9 shows numerical results, obtained by the two approaches of the (1,1) 

elements of the global reflection and transmission matrices, Rr 11 and Tr 11 • It can be . , 

seen that the approach based on the transfer matrix method fails to give a reasonable 

result when kb,2L (L/ ~ in the figure) is high enough. However, the wave approach 

based on reflection, transmission and propagation of waves does not lead to such 

numerical errors, i.e., the numerical results are always well conditioned. 

4.9.2.2 Effect of cross-section change 

In this subsection, reflection and transmission of waves for various area changes 

are investigated. Figures 4-1O(a) shows numerical results of the power transmission 

coefficients for the case where the width b of the rectangular beam changes but the 

thickness h is invariant. As shown in equation (4.28), the phase of the (1,1) element of 

R for the junction is -7r/2. Thus, when neglecting nearfield waves, the maximum 

transmission occurs at frequencies such that 

(4.62) 

where n = 0, 1, 2, .... It is seen in the figure that the frequencies, at which the maximum 

transmission occurs, agree well with equation (4.62) when kb,2L > 7r . The frequencies 

are independent of the width change ratio. Discrepancies at low value of kb 2L can be 

attributed to the effects of nearfield waves. 
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Figure 4-1 O(b) shows numerical results for the power transmission coefficients for 

various thickness changes when the width is invariant. The values of kb 2L, for which 

the maximum and minimum transmissions occur, depend on the specific thickness 

changes and tend to a limit when the change ratio becomes greater. The tendency can be 

understood by the fact that, as noted below equation (4.27), the phase of the (1,1) 

element of R for the junction tends to -1r /2 as the thickness difference increases. 

4.10 Summary 

The bending motion of uniform, straight beams has been described in terms of 

waves and their reflection, transmission and propagation. The displacement, internal 

force and propagation matrices for the beams were defined and used for the systematic 

analysis of wave motion for various situations such as the wave generation by a force, 

the reflection and transmission of waves at discontinuities, the reflection of waves at 

boundaries, and the derivation of the spectral elements. The energy flow associated with 

waves was also described in matrix form. Energy can be transported by interaction 

between two opposite-going nearfield waves. The power depends on the relative phase 

of the nearfield components. 

Two numerical examples, a beam where two points are simply supported and a 

beam where the area changes twice discontinuously, were presented. The first example 

showed explicitly the possibility that the energy flow could be associated with nearfield 

waves. The second example showed that the approach based on the transfer matrix 

method may lead to numerical difficulties related to nearfield waves while the wave 

approach based on reflection, transmission and propagation of waves always provides 

well-conditioned numerical results. 
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In chapter 3 and this chapter, the motion of unifonn straight structures were 

studied by the wave approach based on reflection, transmission and propagation of 

waves. Examples included the longitudinal and bending motions, which are not coupled 

in this case, of the structures. In the following two chapters, the motion of 

deterministically varying structures is studied by the wave approach. 
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Figure 4-1. Sign convention of physical quantities for bending motion. 
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(a) 

, 

q -+---- i ----. q+ 

(b) 

(c) 
iext

eiOlt t -.. _ .. ---------11' 
q -+----

_ .. _ .. ----------1. 

Figure 4-2. Wave generation in a uniform straight beam by a local harmonic force: (a) a 

point is excited, (b) the left-hand end is excited, (c) the right-hand end is 

excited. 
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Figure 4-3. Generation of bending waves in a uniform straight beam by an external 

harmonic moment: (a) applied at a point, (b) applied at left-hand end, (c) 

applied at right-hand end. 
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(reflected) 
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(reflected) 

+ a ----~ 
----~ b+ 

a- .... ----

a+ ----~ i 
: ----~ b+ 

a .... ---- i 

(transmitted) 

(transmitted) 

Figure 4-4. Reflection and transmission of bending waves: (a) at a point supported by 

translational and rotational dynamic stiffnesses, (b) at a junction of two 

different uniform straight beams directly connected. 
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(incident) 

(reflected) 

a+ -----+ I 
a- +----- j 

Figure 4-5. Reflection of bending waves at the right-hand end of a uniform straight 

beam supported by translational and rotational dynamic stiffnesses. 
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! ----~ d+ 
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(transm Wed) 

Figure 4-6. Reflection and transmission of bending waves in a uniform straight beam 

with two simple supports. 
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Figure 4-7. Power reflection and transmission coefficients of bending waves in a beam 

with two simple supports: (a) reflection coefficient, (b) transmission 

coefficient; --, including nearfield wave components (exact), ------ , 

excluding nearfield wave components (approximate). 
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(incident) a + ----~ ----~ b + 

(reflected) a- <111---- <111---- b-_ .. _ .. ----------\ 

junction 1 

L 

junction 2 

Figure 4-8. Reflection and transmission of bending waves in a straight beam where 

cross-section area changes twice discontinuously, Al ~ A2 ~ A3 • 
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Figure 4-9. Reflection and transmission coefficients for thickness changes, 

h ~ 2h ~ h, obtained (a) by the approach based on reflection, transmission 

and propagation of waves, (b) by the approach based on transfer matrix 

method; ---, TTII; ................... , Rrll' , , 
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Figure 4-10. Power transmission coefficients (a) for various width changes; --, 

b -4 4b -4 b ; ------ , b -4 8b -4 b; ................... , b -4 12b -4 b ; ------- , 

b -4 16b -4 b ; (b) for various thickness changes; --, h -4 1.5h -4 h ; 

------ , h -4 2h -4 h; ................... , h -4 3h -4 h; ------- , h -4 4h -4 h . 
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Chapter 5. 

WA VE MOTION IN NON-UNIFORM, STRAIGHT BARS 

5.1 Introduction 

In the previous two chapters, the wave approach based on reflection, transmission 

and propagation of waves was applied to cases concerning uniform, straight structures. 

There is a class of waveguides, which are not uniform but in which waves can propagate 

without reflection as they do in uniform waveguides. This class was categorised as 

deterministically varying waveguides in chapter 1. Even though little work has been 

done previously on this subject, the wave approach can be applied to cases concerning 

deterministically varying waveguides in a same manner as that for uniform waveguides. 

In this chapter, one such deterministically varying waveguide is studied - a straight bar 

undergoing longitudinal motion where the cross-sectional area varies as A(x) ex:. xJi 

where f.J is a non-negative constant. This is an example of a deterministically varying, 

one-mode system. In chapter 6, wave motion of a deterministically varying, two-mode 

system is described. Several other cases are listed in section 8.3 as well. 

In section 5.2, the governing equation for a straight bar undergoing longitudinal 

motion is reviewed. If the area of the bar varies in a power-law manner, the motion can 

be expressed as a linear combination of Hankel functions of the first and second kinds. 

In section 5.3, the displacement, internal force and propagation matrices for the bar are 

108 



defined. Note again that the vectors and matrices for the longitudinal motion consist of 

only one element. 

Using the matrix formulation, wave generation by a force, reflection and 

transmission of waves at discontinuities, reflection of waves at boundaries, and spectral 

elements are described in sections 5.4 to 5.7. 

In sections 5.8 and 5.9, the energy flow associated with waves in the non-uniform 

bar is described. The energy transport velocity, which is generally different to the group 

velocity, for the non-uniform bar is derived exactly using the relationship between 

power and energy density. 

In section 5.10, numerical results are presented for the transmission of 

longitudinal waves through a tapered connector. 

5.2 Equation of motion 

The axial displacement u(x,t) for the free vibration of a straight bar at position x 

and time t is governed by 

~[EAOUJ= A02U 
ox ox p ot2 

(5.1) 

In section 3.2, it was shown that the solution to equation (5.1) can be easily obtained 

when the bar is uniform. Now, assume that the material properties of the bar are 

constant again but, as shown in Figure 5-1, the cross-sectional area A varies as 

(5.2) 

where a A > 0, x> 0 is the position from the apex (the point at which the area becomes 

zero when the bar is extended as shown in Figure 5-1), and Jl20 is the flaring index 

(Jl can be negative but here attention is focused on the gradually increasing bars along 
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x). When J-l = 0, 1, 2, the bar could be uniform, linearly tapered in thickness, and 

conical, respectively. Assuming an eico1 time dependence but suppressing it here for 

clarity, substituting equation (5.2) into equation (5.1) gives 

(5.3) 

where k, =~ poi / E is the longitudinal wavenumber. No damping is present here so 

that k, is a positive-real constant. 

Equation (5.3) is a form of Bessel's equation. The general solution can be 

expressed in terms of a linear combination of the Hankel functions of the first and 

second kinds of order v = (J-l-l)/2 with argument k,x, i.e. H~I,2)(k,x) (McLachlan 

1955). Since the terms H~I,2)(k,x) can be considered to represent negative- and 

positive-going waves, respectively, the displacement is simply expressed as 

(5.4) 

where a+ and a- are the amplitudes of the waves given by 

+ - -vH(2) (k )C a - x v ,x I' (5.5a,b) 

where C1 and C2 are arbitrary constants. The axial force P is then 

(5.6) 

Note that the amplitude a is defined such that the displacement u(x) is determined 

directly from a± , i.e., the amplitude a represents the amplitude of a displacement wave. 
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5.3 The wave description 

In this section, equations (S.4) and (S.6) are re-expressed in forms of the vectors 

and matrices introduced in equation (2.17). When w = {u} , f = {p} , a + = {a +} and 

a- = {a-}, the displacement and internal force matrices for the non-uniform bars are 

(S.7a,b,c,d) 

Note that the internal force matrices are function ofx. When k/x» 1 (i.e. the frequency 

is high such that x» A, /2tr , where A, is the wavelength), the internal force matrices 

asymptote (see Appendix A) to those for the uniform bar, i.e., 

These matrices also satisfy 

('I'+f <1>+ = (<1>+f '1'+, 

('I'-f <1>- = (<1>-f '1'-, 

('1'+ f <1>- -( <1>+ f '1'- = A 

where the diagonal matrix A for this case is 

(S.8a,b) 

(S.9a,b,c) 

(S.10) 

The propagation matrix F relating the amplitudes of waves at two points x and 

x + L are defined as 

(S.l1a,b) 

Combined with equation (S.S), they are obtained as 
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There is a simple relation between them such that 

F+ A(x+ L) = A(x)F- (5.13) 

where A is given by equation (5.10). When k,x» 1, the matrices asymptote to 

(5.14a,b) 

This indicates that, at high frequencies or if the point x is far from the apex, waves in the 

non-uniform bars propagate as they do in the uniform bar with their amplitudes scaled 

by the square root of the ratio of the cross-sectional area (or generally the characteristic 

impedances defined by A~ E P ) at each end of the section. 

5.4 Wave generation by local excitation 

The displacement, internal force and propagation matrices for the non-uniform 

bars with a power-law variation in area were defined in the previous section. These 

matrices can be used in a systematic way for solving various problems concerning the 

bars. First, the response of the bars to a local external force is investigated in this 

section. 

5.4.1 For bars of gradually increasing area 

Consider a non-uniform bar with a power-law variation in cross-sectional area as 

equation (5.2). When the left-hand end is excited by the time-harmonic longitudinal 

force fexlei0J1 as shown in Figure 5-2(a), the equilibrium condition at the end is given by 

-P(x) = fexl; (5.15) 
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where q+ is a vector of the amplitude of the induced wave. Substituting the internal 

force matrix given by equation (S.7c) into equation (S.IS) gives 

(S.16) 

Specifically, when Jl = 0 (i.e., v = -1/2), q+ reduces to (see Appendix A) 

(S.17) 

Note that the amplitude of the induced wave is identical to that of a uniform bar. When 

Jl = 2 (i.e., v = 1/2, a "conical" bar), equation (S.16) reduces to 

(S.18) 

Compared to the case of the uniform bar where q+ = fexJ(iEAk,), the non-uniformity of 

the bar introduces a stiffness-like term EA/ x as well as the damping-like term iEAk,. 

The stiffness term becomes dominant when k,x« 1. When k,x» 1, the stiffness term 

becomes negligible and the amplitude asymptotes to that of the uniform bar. 

S.4.2 For bars of gradually decreasing area 

Now consider the case where the longitudinal force excites the right-hand end as 

shown in Figure S-2(b), i.e., the response of the gradually decreasing bars to the 

external force. The equilibrium condition at the end is 

P(x) = fext; (S.19) 

Substituting the internal force matrix given by equation (S.7d) into equation (S.19) gives 

(S.20) 

113 



Note that reflection from the apex is ignored in the derivation of equation (5.20). 

Specifically, when Jl = 0, q- reduces to that of that of a uniform bar, I.e., 

ie.rl (5.21) 

Compared to equation (5.18), the sign of the additional term EA/x due to the non-

uniformity is now negative, which means that the mass-like behaviour is dominant at 

I fj .. h· N h EA pAxoi ow requencles III t IS case. ote t at - = 2 2 . 
X k/x 

5.4.3 When a section is excited 

Now a point of the bar is excited by the force as shown in Figure 5-2(c). The 

continuity condition at the point makes the amplitudes of the positive- and negative-

going waves induced by the force identical at the excitation point in this case, i.e., 

(5.22) 

The equilibrium condition at the point is given by 

(5.23) 

Substituting equation (5.22) into equation (5.23) gives 

(5.24) 

Note that the response is purely imaginary, which indicates that the reactive elements 

cancel each other and the response is governed by the damping term as with a uniform 

bar. When Jl = 0 and Jl = 2 , the amplitude reduces to 
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(5.25) 

which is identical to that of a uniform bar. 

5.4.4 Numerical results 

Figures 5-3 and 5-4 show the amplitudes of the induced waves in the non-uniform 

bars when the left and right-hand ends of the bar are excited, respectively. The 

magnitude is normalised by the magnitude of the wave that would be induced in the 

uniform bar, i.e. iext / EAk, . The magnitudes in the two cases are equal but the phases 

are symmetric about -lC/2. When k,x«l, for the gradually increasing bar the phase 

asymptotes to zero (i.e. stiffness-dominated) while for the gradually decreasing bar the 

phase asymptotes to -lC (i.e. mass-dominated). 

Figure 5-5 shows the amplitudes of the waves induced in the non-uniform bars 

when an internal point is excited. In the figure the magnitudes are normalised by 

lext /2EAk, . The magnitude for the case of jl = 2 (i.e., conical bar) is the same as that 

for the case of jl = 0 (i.e., uniform bar) so that they cannot be distinguished. The 

response of the bar for which jl = 3 is larger than that of the uniform bar. The phases 

for all cases are equal to -lC/2 and are independent of frequency. 

5.5 Reflection and transmission at discontinuities 

Consider a case where two different non-uniform bars are directly connected as 

shown in Figure 5-6. The material properties of the two bars are the same. The area of 

the left-hand bar, indicated by bar A in the figure, varies as 

(5.26) 
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where the subscripts a denote bar A. The position of the junction from the apex is xa so 

that the area Aa of bar A at the junction is Aa = aaX;" . Meanwhile the area of the right-

hand bar, indicated by bar B in the figure, varies as 

(S.27) 

where the subscripts b denote bar B. The position of the junction from the apex is Xb so 

that the area Ab of bar B at the junction is Ab = abxbb. The two bars are generally 

different so that ab, Jib and Xb for bar A may be not equal to aa' Jia and xa of bar B, 

respecti vely. 

The axial displacement and internal force are continuous at the junction, namely, 

lTJ + + lTJ - - - lTJ +b+ Ta a + Ta a - Tb , 
(S.28a,b) 

Combined with the displacement and internal force matrices given by equations (S.7), 

the reflection and transmission matrices for the junction are determined to be 

Ab H~:ll (k,xb) _ H~:ll (k[xJ 

R = _ Aa H~:)(k[Xb) H::) (k[xa) 

Ab H::l1 (k[Xb) H:~~l (k[xJ ' 

Aa H::)(k[xb) H:~)(k[xJ 

T= 

4i 

Ab H::l1(k[xb) H:~~l(k[xJ 
Aa H::)(k[xb) H:~)(k[xJ 

(S.29a,b) 

where va = (Jia -1)/2 and Vb = (Jib -1)/2. Similarly, the reflection and transmission 

matrices Rand T for waves incident from the right-hand side of the junction are 

4i 

R= T= (S.30a,b) 
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For a case where Jia = Jib = 2 and Aa = Ab (i.e., they are conical bars and the 

areas at the junction are equal), Rand T reduce to 

T=[_I ] 
I-i~ 

(5.3Ia,b) 

where the dimensionless parameter ~ is given by 

(5.32) 

Since Aa = aax~, Ab = abx; and Aa = Ab, equation (5.32) can be written as 

q_ 1 (~ I) 
- 2k/xa V~-

(5.33) 

Note that the reflection and transmission of waves depend on the position (i.e., xa in 

equation (5.33)), as well as the ratio of the taper rates. Note also that, when one of the 

two bars is uniform rather than conical, the reflection and transmission matrices can be 

obtained by assuming xa -+ 00 or Xb -+ 00 in equation (5.32). 

5.6 Reflection at boundaries 

Consider a boundary of a non-uniform bar supported by a translational dynamic 

stiffness KT as shown in Figure 5-7. The area of the non-uniform bar varies in a power-

law manner as equation (5.2). The equilibrium condition at the right-hand boundary is 

(5.34) 

Thus the reflection matrix R for the boundary is given by 
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R= 

)( _ }{~:{(k,x) 
r }{~2)(k,x) 

)( _ }{~~l (k,x) 
r }{~l)(k,x) 

(5.35) 

where the dimensionless dynamic stiffness }(r = Kr / EAk, . Since no damping is 

present, the magnitude of R is unity. Similarly, the reflection matrix R for the left-

hand boundary can be obtained. 

If }(r = 00 (i.e., clamped boundary), the reflection matrix is 

(5.36) 

Equation (5.36) indicates that the non-uniformity of the bar has no effect on the 

reflection of waves at a clamped boundary. 

When }(r = 0 and Jl = 2 (i.e., free boundary for a conical bar), the reflection 

matrix reduces to 

(5.37) 

Figure 5-8 shows the phase of the reflection coefficient for a free boundary (i.e., 

}(r = 0) of a non-uniform bar for different values of Jl . It is seen that the phase for a 

left-hand case is the opposite of that for the right-hand case, i.e., R j = R~ where the 

superscript * denotes complex conjugate. 

5.7 Spectral elements 

In section 2.10.2 the dynamic stiffness matrix for an element was defined in terms 

of the displacement and internal force matrices. Then the dynamic stiffness matrices of 

the semi-infinite elements extending to x = +00 or x = -00 were given by 
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(5.38a,b) 

Substituting equation (5.7) into equation (5.38) gives 

(5.39a,b) 

Similarly, the dynamic stiffness matrix for a finite non-uniform bar can be 

obtained by substituting equations (5.7) and (5.12) into equation (2.66) to give the 

result, which has been obtained by Banerjee and Williams (1985). 

5.8 Energy flow 

In section 2.9, the time-averaged power associated with waves in one-dimensional 

structures was expressed as 

(5.40) 

where the power matrix P is 

(5.41) 

Substituting the displacement and internal force matrices given by equation (5.7) into 

equation (5.41) yields 

(5.42) 

In this case, the power matrix is diagonal so that energy is transported independently by 

each single wave component and there is no energy transported through the interaction 
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between the positive- and negative-going components. Thus the time-averaged power 

associated with a positive-going wave with amplitude a+ is 

(S.43) 

where c[ = OJ/ k[ is the phase velocity of the longitudinal wave. Noting that a + is given 

by equation (S.Sa), it follows that the power is constant along the bar. This is of course 

obvious from conservation of energy considerations. Similarly, the time-averaged 

power associated with a negative-going wave with amplitude a- is 

(S.44) 

The negative sign indicates that the energy is propagated in the negative direction. 

5.9 Energy transport velocity 

For uniform bars, the energy transport velocity is equal to the phase velocity. This 

is generally not true for non-uniform bars. In this section, the energy transport velocity 

for non-uniform bars with a power-law variation in area is derived. 

The kinetic and potential energies per unit length (i.e. the energy densities), T 

and V respectively, for longitudinal motion of a bar are given by (Cremer et al. 1973) 

(S.4Sa,b) 

where ReO denotes the real part of the quantity. If there is only a positive-going wave 

with amplitude a + in the non-uniform bar, the displacement of the bar will be 

u(x) = a+. For time harmonic motion, the time-averaged energy densities associated 

with the wave are then 
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(S.46a,b) 

where (-) indicates a time-averaged quantity. The total energy density is given by 

£ = (7) + (V), therefore 

(S.47) 

Figure S-9 shows the time-averaged kinetic and potential energy densities, normalised 

by the total energy density, associated with the longitudinal wave in the non-uniform 

bars with four different values of Jl. When Jl = 0 (i.e., uniform bar), the kinetic and 

potential energy densities are the same but, for the other cases, it is seen that (V) > (7) 

in the region of k,x < 1r . As k,x increases, the energy densities become the same. 

In terms of the total energy density and the power, the energy transport velocity 

cE is defined by (Lighthill 1978) 

(S.48) 

This energy transport velocity is generally different to the group velocity, which is 

formally defined by cg = dOJ/dk (for real wavenumbers). Note that, for uniform bars, 

Cg = c,. Substituting equations (S.47) and (S.43) into equation (S.48) gives 

(S.49) 
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The energy transport velocity associated with the negative-going wave is the same as 

that associated with the positive-going wave as would be expected from physical 

consideration. Specifically, when Jl = 2, equation (5.49) reduces to 

(5.50) 

Figure 5-10 shows the energy transport velocity, normalized by the longitudinal 

velocity c" for a non-uniform bar. It can be seen that the velocity decreases as Jl 

increases, i.e. as the degree of non-uniformity increases. When k,x« 1, the velocity is 

approximately proportional to (k,x Y' . The velocity increases as k,x increases and 

finally asymptotes to that of a uniform bar. 

5.10 Numerical examples 

Consider a tapered bar of length L connecting two uniform rectangular bars with 

the same width but different thicknesses, ~ and ~, as shown in Figure 5-11. The 

thickness of the connector varies with x (measured from the apex) as 

hex) = ~X/Xl (5.51) 

where Xl = ~L/( h2 - ~) is the position of junction 1 from the apex. Note that the 

connector is the non-uniform bar of Jl = 1. For simplicity, the material properties of the 

connector and the bars are assumed to be the same. 

Now consider waves a+ incident on the connector from the left-hand uniform bar. 

When the relevant waves at the junctions are denoted by b± , c± and d+ , the 

relationships among the waves are 
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b+ =Tla+ +Rlb-, 

c+ = F+b+, 

c- = R
2
c+, 

b- = F-c-

a- =Rla+ +Tlb-, 

d+ - T c+ - 2 

(5.52a,b,c,d,e,f) 

where R I , TI etc., are the reflection and transmission matrices at the junctions, and F+ 

and F- are the propagation matrices between the junctions. The reflection and 

transmission matrices are obtained in a systematic way by using equation (5.7) with 

v = 0 for the connector and equation (3.9) for the uniform bar, as required. The 

propagation matrices F+ and F- are given by equation (5.12) with x = XI. Rearranging 

equations (5.52) in terms of the incident waves a+ yields 

a - = [ RI + TIF-R2F+ [I - R IF-R2F+ r l TI J a + , 

d+ - [T F+[I - R F-R F+]-IT Ja+ - 2 I 2 I 

where 1 is the identity matrix. 

(5.53a,b) 

Figure 5-12 shows the transmission coefficients for the connector when a 

propagating wave component a+ = {a+} is incident. When k,L» 1 , the power 

transmission coefficient T ~ 1, i.e. the power incident on the connector is totally 

transmitted when the frequency or length increases. The phase difference () between the 

propagating components a+ and d+ then asymptotes to -k,L. When k,L« 1 , the 

results asymptote to those of the case where the two uniform bars are directly connected 

without the connector. As the ratio of thickness increases, less power can transmit 

through the connector. 
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5.11 Summary 

The wave approach based on reflection, transmission and propagation of waves 

has been applied to one example of deterministically varying waveguides: straight bars 

undergoing longitudinal motion where the cross-sectional area varies as A(x) oc x/.J 

where fl is a non-negative constant. The displacement, internal force and propagation 

matrices for the bars were defined and used for the systematic analysis of wave motion 

for various situations such as the wave generation by a force, the reflection and 

transmission of waves at discontinuities, the reflection of waves at boundaries, and the 

derivation of the spectral elements. 

The effect of non-uniformity becomes larger as the frequency decreases or as the 

position moves closer to the apex. For example, the response of the gradually increasing 

bar to the external force exhibits stiffness-dominated behaviour while the response of 

the gradually decreasing bar exhibits mass-dominated behaviour near the apex. These 

reactive elements cancel each other when a point is excited: thus the response exhibits 

damping-like behaviour as with a uniform bar. 

The energy transport velocity of the non-uniform bars was also derived. In 

contrast to that of uniform bars, it is not equal to the phase velocity, and depends on 

position as well as frequency. It was shown that it decreases as the position moves 

toward the apex 

Finally numerical results were presented for the transmission of longitudinal 

waves through a tapered connector. It was demonstrated that the approach can predict 

the dynamic response of cases concerning deterministically varying waveguides without 

approximation errors, irrespective of frequency. 
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Figure 5-1. A non-uniform, straight bar where the area varies as A(x) = aAxP
• 
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Figure 5-2. Wave generation in a non-uniform bar by a local harmonic force: (a) the 

left-hand end is excited, (b) the right-hand end is excited, (c) a cross-section 

is excited. 
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Figure 5-3. Wave generation at the left-hand end of a non-uniform bar with a power-law 

variation in area as equation (5.2): (a) the magnitude of induced wave, 

normalised by that in the uniform bar, (b) the phase of induced wave; 
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Figure 5-4. Wave generation at the right-hand end of a non-uniform bar with a power­

law variation in area as equation (5.2): (a) the amplitude of induced wave, 

normalised by that in the uniform bar, (b) the phase of induced wave; 

---- , f1 = 0; ------ ,f1 = l; -'-'-'-, f1 = 2; ................... , f1 = 3 . 

128 



(a) 

1.5 

lr--------~~==~~=·=··~·~··~·~··~·~··~· ~~.~ .. ~.~ .. ~.~ .. ~ 

0.5 I 
I 

I 

/ 
/ 

OL---~--~----~---L----L---~--~~~ 

o 21t 

n ,---r--,--~--._-_,,_-_r--._--. 

(b) 

n!2 

-n12 1------------------------1 

-n ~-~--~-~--~--~-~--~-~ 
o 2n 

Figure 5-5. Wave generation at the right-hand end of a non-unifonn bar with a power­
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Figure 5-6. Reflection and transmission of waves at a junction between two different 

non-uniform straight bars. 
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Figure 5-7. Reflection of waves at a boundary of a non-uniform bar supported by a 

translational dynamic stiffness: (a) right-hand boundary, (b) left-hand 

boundary. 
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Figure 5-9. Time-averaged kinetic and potential energy densities, normalised by the 

total energy density, associated with a longitudinal wave in a non-uniform 

bar with a power-law variation in area as in equation (5.2): -- , Jl = 0; 
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Chapter 6. 

WAVE MOTION IN NON-UNIFORM, STRAIGHT BEAMS 

6.1 Introduction 

In chapter 5, the wave approach based on reflection, transmission and propagation 

of waves was applied to one class of deterministically varying waveguides: straight bars 

with a power-law variation in area, which are a one-mode system. In this chapter, a two­

mode deterministically varying waveguide is studied: straight beams where the area and 

second moment of area vary respectively as powers of x. The systematic formulation is 

useful since solving the problem explicitly is difficult in these two-mode systems. Note 

also that, as illustrated in chapter 4, the wave approach provides a well-conditioned 

computation for these cases. 

The development of this chapter is similar to that of chapter 5 for non-uniform 

bars. In section 6.2, the governing equation for a non-uniform, straight beam is 

reviewed. The motion is based on Euler-Bernoulli theory. If the cross-sectional area and 

the second moment of area vary as A(x) oc xl' and lex) oc XI'+2 where f.1 is a non­

negative constant, the motion can be expressed as a linear combination of Hankel 

functions of the first and second kinds and the modified Bessel functions. In section 6.3, 

the displacement, internal force and propagation matrices for the beam are defined. 

Since the beams are a two-mode system, the matrices are now 2 x 2 . 

Wave generation by a force and spectral elements are studied in sections 6.4 to 

6.5. As illustrated so far, other problems such as the reflection and transmission of 
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waves at a discontinuity or boundary can also be solved in a systematic way using the 

displacement, internal force and propagation matrices. However, since the expressions 

are too complicated to state explicitly, they are not described here. 

In sections 6.6 and 6.7, energy flow associated with bending waves in the non-

uniform beam is described. The energy transport velocity, which is generally different 

from the group velocity, associated with bending waves in the non-uniform beam is 

derived exactly using the relationship between power and energy density. 

In section 6.8, numerical results are presented for the transmission of bending 

waves through a tapered connector. 

6.2 Equation of motion 

Consider an Euler-Bernoulli beam undergoing bending motion. The lateral 

displacement w(x,t) for the free vibration of the beam is governed by 

(6.1) 

In section 4.2, it was shown that the solution to equation (6.1) can be easily obtained 

when the beam is uniform. Now, assume that the material properties are constant again 

but, as shown in Figure 6-1, the cross-sectional area and the second moment of area 

vary as 

(6.2a,b) 

where a A > 0, al > 0, x > 0 is the position from the apex (the point at which the area 

and the second moment of area become zero when the beam is extended as shown in 

Figure 6-1), and f.i ~ 0 is the flaring index (f.i can be negative but here attention is 

focused on the gradually increasing beams along x). When f.l = 1 and the cross-sectional 
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shape of the beam is rectangular, the beam has linearly varying thickness and constant 

width. Assuming an eimt time dependence, substituting equation (6.2) into equation (6.1 

) gives 

(6.3) 

where kb = 1 p A ( x ) ai / EI ( x) is the flexural wavenumber at position x . In contrast to 

that for uniform beams, the bending wavenumber kb now depends on the position as 

well as frequency, i.e., kb (x) oc ~OJ/ x . Hereafter, if there is no specific indication, kb 

means the wavenumber kb (x) at position x. 

Equation (6.3) can be factorised into the product of the Bessel equation and the 

modified Bessel equation (Cranch and Aldler 1956) so that the general solution can be 

expressed by a linear combination of Hankel functions of order Jl with argument 2kbX, 

represent negative- and positive-going propagating waves, respectively, and the terms 

K/J and I/J positive- and negative-going nearfield waves, respectively. Thus the 

solution of equation (6.3) is given by 

(6.4) 

where a + ,a ~,a - , a -;, are the amplitudes of the four waves at position x given by 

II II 

a+ = x-z H(2) (2k x)C 
/J b P a~ = x-ZK/J(2kbX )C2 , 

/J 
(6.5,a,b,c,d) 

a-;, =x-ZI/J(2kbx)C4 , 
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where C1,2,3,4 are arbitrary constants. The slope Owl ax and the internal forces defined 

by equations (4.2) can also be expressed in terms of the amplitudes of the waves, 

straightforwardly. 

6.3 The wave description 

Noting that w=[w dwldxt ' f=[Q Mt + [+ + JT a = a aN and 

a- = [a- a-;' J ' the displacement and internal force matrices for the non-uniform beam 

are given by 

<1>+ = El 

These matrices satisfy 

3 H~lll (2kb X ) 
- k ----'-=-'-----'-

b H~I) ( 2kb X ) 

e H~~2 (2kbX ) 

b H~I) ( 2kb X ) 

('P+ t <1>+ = (<1>+ t 'P+, 

('P-t <1>- = (<1>-t 'P-, 

('P+ t <1>- -( <1>+ t 'P- = A 
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where the diagonal matrix A is 

4i 1 

trx IH~2)(2kbX)12 
A(x) = Elk; 

o 

o 
(6.8) 

1 1 

When 2kbX» 1, these matrices asymptote to those for the uniform beams given by 

equation (4.8), respectively. 

The propagation matrix F relating the amplitudes of waves at two points x and 

x + L are defined as 

Combined with equation (6.5), they are found to be 

H~2)(2kb~X(x+L) ) 
H~2) (2kbX ) 

o 

F ~(x: L)I H~) (2k;,}x(x+ L)) 
o 

There is a simple relation between them such that 

o 

K,,( 2kb.JXCx+L) ) 

K" (2kbX) 

o 

(6.9a,b) 

(6.10a,b) 

(6.11) 

where A is gIven by equation (6.8). When 2kbX» 1, the propagation matrices 

asymptote to 
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( )(E.+~) [ -ikb L X 2 4 e ,m 

F+;:::; --
x+L 0 

( 
)(E.+~) [ -ikb L x+L 2 4 e ,m 

F-;:::; --
X 0 

(6.12a, b) 

where kb m is given by 

1 1 (1 1) 
kb,m ="2 kb(x)+kb(x+L) 

(6.13) 

The wavenumber kb,m is the effective wavenumber, the inverse of which is equal to the 

average of the inverse of the wavenumbers kb (x) and kb (x + L). In other words, the 

effective wavelength between the two points is given by the average of the wavelengths 

at these points. Equations (6.12) indicate that, at high frequencies or when the position 

is far away from the apex, waves propagate as they do in a uniform beam with the 

effective wavenumber and their amplitudes are scaled by the square root of the ratio of 

Aj"; (or generally the characteristic impedances defined by 2EIk; / OJ) at each end of 

the section. 

6.4 Wave generation by local excitation 

The displacement, internal force and propagation matrices for the non-uniform 

beams where the geometric properties vary as in equation (6.2) have been defined. 

These matrices can be used in a systematic way for solving various problems 

concerning beams. First, the response of beams to a local force is investigated in this 

section. 
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6.4.1 For beams of gradually increasing area 

Consider a non-uniform beam where the area and second moment of area vary as 

equation (6.2). When the left-hand end is excited by the time-harmonic lateral force 

iexleiUil as shown in Figure 6-2(a), the equilibrium condition at the end is given by 

-<t>+q+ = f exl (6.14) 

where fexl = [fe.'1 0 r . Even though force-only excitation is described here, moment 

excitation or their combination can also be handled by simply changing the force vector 

fexl into, e.g., fexl = [0 M exl r ' where Mexl is the amplitude of the time-harmonic 

moment. Substituting the internal force matrix given by equation (6.6c) into equation 

(6.14) gives 

where 

K 11+2 ( 2kb X ) 

KI1 (2kbX ) 

H~?2 (2kb X) 
H~2) (2kbX) 

(6.15) 

(6.16) 

When Jl = 1 and 2kbX« 1 , referring to the asymptotic behaviour of Bessel 

functions given in Appendix A, equation (6.15) asymptotes to 

+ X {1}fexl 
q ~ Elk; -1 "2" (6.17) 

It can be seen that the propagating and nearfield components represent frequency 

dependent stiffness- and mass-like responses, respectively, with equal magnitude. For 
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the displacement, higher order terms are required since the two first order terms cancel 

out. Considering the higher order terms, the displacement induced by the lateral force 

asymptotes to 

(6.18) 

which is consistent with the results for the point mobility obtained by Petersson and 

Nijman (1998). 

6.4.2 For beams of gradually decreasing area 

Now consider the case where the lateral force excites the right-hand end as shown 

in Figure 6-2(b), i.e., the response of gradually decreasing beams to external force. The 

equilibrium condition at the end is 

(6.19) 

Substituting $- given by equation (6.6c) into equation (6.19) gives q-. When ,ll=1 

(6.20) 

The propagating component is negligible compared to the nearfield component and the 

response exhibits rigid body motion with a mass equal to pAx/2. 

6.4.3 When a section is excited 

Now a point of the beam is excited by the lateral force as shown in Figure 6-

2(c). The continuity and equilibrium conditions at the point are 
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'J'+q+ = 'J'-q-, 

-<])+q+ + <])-q- =fext 

Combined with equation (6.6), q+ is found to be 

and 

- + q =q 

(6.21) 

(6.22) 

(6.23) 

The propagating component IS now purely Imagmary, representing damping-like 

behaviour, while the nearfield component is negative-real, representing mass-like 

behaviour. 

6.4.4 Numerical results 

Figures 6-3 and 6-4 show the amplitudes of waves induced by the lateral force 

when the left- and right-hand ends of the non-uniform beam are excited, respectively. In 

the figures the magnitudes are normalised by iext/iiElki . Note that the horizontal axis 

kbX is proportional to J;;;;. When the right-hand end is excited, the response shows 

the rigid body motion if 2kbX« 1, which leads to very large values of the magnitude of 

the nearfield component. When 2kbX« 1, the phase of the propagating component 

tends to zero while the phase of the nearfield component tends to -1[. When 2kbX» 1, 

the behaviour asymptotes to that of the uniform beam. It is seen from Figures 6-3 (A. b) 

and 6-4 (A.b) that the phase of the propagating wave component in the former case 

changes from 0 to -31[/4 (counter-clockwise) but the phase in the latter case changes 
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from 0 to 5rc/4 (clockwise). Also note that Figures 6-3 (B.b) and 6-4 (B.b) are similar 

but not the same. 

Figure 6-5 shows the amplitudes of waves induced by the lateral force when a 

point of the non-uniform beam is excited. In the figure the magnitudes are normalised 

by fe:ct /4 Elk; . The phases are not presented here since the phase of the propagating 

component is -rc/2 and the phase of the nearfield component is -rc at all frequencies 

as shown in equation (6.22). 

6.5 Spectral elements 

Substituting equations (6.6a,c) into equation (2.67a) gives the dynamic stiffness 

matrix at the boundary for the semi-infinite gradually increasing beam such that 

where 

Ll = H~?I (2kbX ) K 11 ( 2kbX ) - K 11+1 (2kbX ) H~2) ( 2kbX ) 

DII =-2k;H~?1 (2kbX)KI1+1 (2kbX) , 

~ _ ~ _ 2 { (2) ( ) ( ) ( ) (2) ( )} 
DI2 -D21 --kb H I1+1 2kbX KI1 2kbX +KI1+1 2kbX HJL 2kbX , 

D22 = kb {H~?2 ( 2kbX ) K 11 (2kbX ) - K 11+2 ( 2kbX ) H~2) ( 2kbX )} 

(6.24) 

(6.25a,b,c,d) 

When 2kbX» 1, the matrix asymptotes to that of the semi-infinite uniform beam, i.e. 

D~El b 
[
-(1-i)k

3 
ikb2] 

ik; (1 + i)kb 
(6.26) 

The dynamic stiffness matrix for the finite non-uniform beam can be also 

obtained by substituting equations (6.6) and (6.10) into equation (2.66) to give the 

result, which has been obtained by Banerjee and Williams (1985). 
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6.6 Energy flow 

In section 2.9, the time-averaged power associated with waves in one-dimensional 

structures was expressed as 

(6.27) 

where the power matrix P is 

(6.28) 

Substituting the displacement and internal force matrices given by equation (6.6) into 

equation (6.28) yields 

g1 0 0 0 

P =2OJElki 
0 0 0 -lg2 

(6.29) 
0 0 -g1 0 

0 Ig2 0 0 

where 

1 1 1 1 
(6.30a,b) g1= 

;rr kb X IH~2) (2kbX )1
2 

' 
gz = 

4kbX I J1 ( 2kbX)K J1 ( 2kbX) 

Unlike that of axial vibration of bars, the power matrix is not diagonal. The presence of 

off-diagonal terms indicates that the energy can be transported by the interaction 

between nearfield waves. Suppose that there are two opposite-going nearfield waves 

with amplitudes a~ and a~, respectively, i.e., a = [ 0 a; 0 a~ J. Then the time-

averaged power associated with the nearfield waves is 

(6.31) 
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Equation (6.31) indicates that, if a~ and a-;, are not in phase and are not in counter-

phase, energy can be transported by interaction of the two opposite-going nearfield 

waves, as indicated by Bobrovnitskii (1992). Note that the direction of energy flow is 

determined by the phase difference of the wave amplitudes, e.g., if a~ leads a-;, by 

1(/2, then the energy will be propagated in the positive direction and vice versa. 

The power matrix in equation (6.29) also indicates that a propagating wave 

transports energy independent of all the other wave components. The time-averaged 

power associated with a positive-going propagating wave with amplitude a + is given by 

(6.32) 

where cb = m/kb is the phase velocity. Noting that a+ is given by equation (6.Sa), it 

follows that the power is constant along the beam. This is of course obvious from 

conservation of energy considerations. Similarly, the time-averaged power associated 

with a negative-going wave with amplitude a-is 

(6.33) 

The negative sign indicates that the energy is propagated in the negative direction. 

6.7 Energy transport velocity 

For uniform beams, the energy transport velocity is equal to the group velocity 

defined by cg = dm/dkb • It is generally not true for non-uniform beams. In this section, 

the energy transport velocity for non-uniform beams with power-law variations in area 

and the second moment of area is found. 
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The kinetic and potential energies per unit length (i.e. the energy densities), 7 

and V respectively, for bending motion of a beam are given by (Cremer et al. 1973) 

(634a,b) 

If there is only the positive-going propagating wave in the non-uniform beam, i.e. 

a+ = [a+ 0 r ' the displacement of the beam will be w(x) = a+. For time harmonic 

motion, the time-averaged energy densities associated with this component are 

(6.35a,b) 

where (-) indicates a time averaged quantity. Note that these are not equal. Indeed, for a 

bar with increasing cross-sectional area in the direction of the wave propagation, 

(V) > (7) . The total energy density is given by £ = (7) + (V), therefore 

(6.36) 

Figure 6-6 shows the time-averaged kinetic and potential energy densities, normalised 

by the total energy density, associated with the propagating bending in the non-uniform 

beams with four different values of J..L • It is seen that (V) > (7) but, as kbX increases, 

the energy densities become the same. 

In terms of the total energy density and the power, the energy transport velocity 

cE is defined by (Lighthill 1978) 

(6.37) 
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This energy transport velocity is generally different from the group velocity, which is 

formally defined by cg = dm/dk (for real wavenumbers). Note that, for uniform beams, 

Cg = 2cb • Substituting equations (6.32) and (6.36) into equation (6.37) gives 

(6.38) 

The energy transport velocity associated with the propagating component of the 

positive-going wave is the same as that associated with the negative-going wave. 

Figure 6-6 shows the energy transport velocity, normalised with respect to cb ' for 

the non-uniform beam with four different values of Jl . The behaviour is similar to that 

of the longitudinal wave described in section 5.9. When 2kbX« 1 , the velocity is 

approximately proportional to (kbX )2.u+
4 

, i.e., (mx r+2 
• When 2kbX» 1, the velocity 

asymptotes to the group velocity of the uniform beam, i.e. c; = 2cb • 

6.8 Numerical examples 

Consider the tapered connector of length L, introduced in section 5.10. The 

situation is the same as before but, here, the structure is undergoing bending motion 

instead of longitudinal motion. The relationships between the waves derived in section 

5.10 are still valid for this case. Thus the reflected and transmitted waves are 

a - = [ R] + T]F-R
2
F+ [I - R]F-R

2
F+ r] T] ] a + , 

d+ = [ T
2
F+ [I - R]F-R

2
F+ r] T] ] a + 

(6.39a,b) 

In equation (6.39), the reflection and transmission matrices are obtained in a systematic 

way by using equation (6.6) with Jl = 1 for the connector and equation (4.8) for the 
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uniform beam, as required. The propagation matrices F+ and F- are given by equation 

(6.10) with x = Xl' 

Figure 6-7 shows the transmission coefficients for the connector when a 

propagating bending wave is incident, i.e. a+ = [a+ 0 J . Note that the abscissa is 

kb mL , where kb m is the effective wavenumber for the connector defined by equation , , 

(6.13). When kb,mL» 1, the power transmission coefficient 7: tends to 1, i.e. the power 

incident on the connector is totally transmitted when the frequency or length increases. 

The phase difference () between the propagating components a + and d+ then 

asymptotes to -kb,mL. When kb,mL« 1, the results asymptote to those of the case 

where the two uniform beams are directly connected without the tapered connector. 

6.9 Summary 

The wave approach based on reflection, transmission and propagation of waves 

has been applied for a two-mode deterministically varying waveguide: non-uniform 

straight beams where A(x) oc xl' and lex) oc X IJ+2 . The displacement, internal force and 

propagation matrices were defined for the beams, and then the response to external 

excitation and the spectral element were described in a systematic way using the 

matrices. 

The effect of non-uniformity becomes larger as the frequency decreases or as the 

position moves closer to the apex. The propagating and nearfield components represent 

frequency dependent stiffuess- and mass-like responses, respectively, due to the non-

uniformity in the region. 

151 



The energy transport velocity of the non-uniform beams was derived exactly. In 

contrast to that of uniform beams, it is not equal to twice the phase velocity, and 

depends on position as well as frequency. It was shown that the velocity decreases as 

the position moves toward to the apex. 

Finally numerical results were presented for the transmission of bending waves 

through a tapered connector. The results are exact, irrespective of frequency, since no 

approximations are im~osed, other than those involved in the derivation of the equation 

of motion. The results obtained by the wave approach are also well-conditioned even in 

the existence of nearfield waves. 
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Left-hand 

x=o 

Apex 

A(x) = aAxlJ 

lex) = a]xlJ 

Right-hand 

end 

Figure 6-1. A non-uniform, straight beam where the area and second moment of area 

vary as A(x) = aAxP and lex) = a]xJl+
2 

• 
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(a) 

(b) 

lext
eiOlt t 
~----

t lex/{ut 

= __ ---Iq_ ... __ -j 

Figure 6-2. Wave generation in a non-uniform beam by a local harmonic force: (a) 

when the left-hand end is excited, (b) when the right-hand end is excited, (c) 

when a cross-section is excited. 
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Figure 6-3. Wave generation at the left-hand end of a non-uniform beam described by 

equation (6.2): (A) propagating component, (B) nearfield component: (a) 

magnitude normalised by that in the uniform beam, (b) phase; 

Jl = 0; ------, Jl = I; -.-.-.-, Jl = 2; ................... , Jl = 3 . 
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Figure 6-4. Wave generation at the right-hand end of a non-uniform beam described by 

equation (6.2): (A) propagating component, (B) nearfield component: (a) 

magnitude normalised by that in the uniform beam, (b) phase; 

f.1 = 0; ------, f.1 = 1; -'-'---, f.1 = 2; ................... , Jl = 3 . 
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Figure 6-5. Wave generation at a point of a non-uniform beam described by equation 

(6.2): magnitude, normalised by that in the uniform beam, of (A) 

propagating component and (B) nearfield component; -- , f1 = 0 ; 

------ , f1 = 1; -.-.-.- , f1 = 2; ................... , f1 = 3 . 
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Figure 6-6. Time-averaged kinetic and potential energy densities, normalised by the 

total energy density, associated with a propagating bending wave in a non­

uniform beam described by equation (6.2): --, JI = 0 ; ------ ,Jl = 1 ; 

-'-'-'-, Jl=2; ""''''''''''''''', Jl=3;thinlinesarefor (V)/((7)+(V)) and 

thick lines are for (7)/((7) + (V)). 
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Figure 6-7. Energy transport velocity, normalised by the phase velocity Cb , associated 

with a propagating bending wave in a non-unifonn beam described by 

equation (6.2): --, Ji = 0; ------, Ji = 1; -.-.-.-, Ji = 2 ; 

Ji =3. 
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Figure 6-8. Transmission of a propagating bending wave through the connector: (a) 

power transmission coefficient r, (b) phase difference e between a+ and 
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Chapter 7. 

WAVE MOTION IN UNIFORM, CURVED BEAMS 

7.1 Introduction 

In this chapter, the wave approach is applied to cases concerning a thin, unifonn, 

curved beam with constant curvature. Attention is focused only on the in-plane motion 

of the beam, i.e., the motion in the plane fonned by the centreline of the undefonned 

beam. The radial and tangential displacements of the beam are coupled in this case, 

which does not occur in the straight structures of the last four chapters. 

In section 7.2, the in-plane motion of thin, unifonn, curved beams is reviewed. 

The motion is based on the four assumptions, known as Love's first approximation. The 

strain-displacement relation of Fliigge is used for the equations of motion. The effects 

of rotary inertia, shear defonnations and damping are ignored as before. 

In section 7.3, the characteristic equation is derived assuming time hannonic 

motion. The equation is of 6th order in wavenumber so that there are six wavenumbers 

satisfying the equation. A criterion to define the direction of propagation of each 

component is suggested: the imaginary value of the wavenumber of a positive-going 

wave should be negative and the energy transport velocity associated with a positive­

going wave should be positive. Using this criterion, the dispersion relation for each 

wave component is defined. 
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As a measure of the coupling of the displacements, the ratio of the tangential 

displacement to the radial displacement is considered in section 7.4. If the magnitude of 

this ratio is much higher than unity or much lower than unity, it will mean that the 

coupling is weak and the motion in one direction is dominant compared to the other. 

In section 7.5, the displacement, internal force and propagation matrices for the 

curved beams are defined. The propagation matrix is diagonal in this case so that, even 

though the displacements are coupled together, the wave components are not coupled at 

all. Thus the problem can be simplified in the wave domain. 

These matrices can be used in a systematic manner for various problems such as 

wave generation by external excitation, reflection and transmission of waves at 

discontinuities, and derivation of spectral elements. However, such examples are not 

specifically presented because wave motion of the curved beams is too complex to 

present full analytical expressions for these cases. 

In section 7.6, the energy flow associated with waves is described. The power 

matrix for the curved beam is defined and the elements of the power matrix are obtained 

explicitly in terms of wavenumbers. Their values are classified according to the 

different conditions for the wavenumbers. Using the results, in section 7.7, the power 

associated with waves is determined for a given frequency. 

In section 7.8, numerical results for the power transmission and reflection through 

a U-shaped structure are presented. 

7.2 Equations of motion 

Based on Fliigge's theory, the equations of the in-plane motion of a curved beam 

with constant curvature are presented. The cross-section is uniform and symmetric 
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about the plane defined by the centreline of the beam, and the material is linearly 

elastic, homogeneous, isotropic and continuous across the cross-section. The in-plane 

and out-of-plane motions of the beam uncouple in this case. Indeed it is assumed here 

that out-of-plane motion does not occur, i.e. the beam supports only circumferential 

stress along the centreline. This beam provides coupling between the radial and 

tangential displacements, which were treated separately in the previous chapters since 

they are not coupled in the straight beams. 

Consider a small segment, subtending an angle de at the centre of curvature, of a 

thin curved beam as shown in Figure 7-1. In the figure the centreline is defined as the 

locus of centroids of each cross-sectional segment. The circumferential coordinate along 

the centreline is denoted by s and the coordinate along the normal to the centreline is z. 

The displacements of the centreline in the radial and tangential directions are denoted 

by wand u, respectively. The arc length ds of the section is ds = Rde where R is 

radius of curvature of the centreline. The sign convention for the internal forces is also 

indicated in the figure. 

When the effects of rotary inertia are neglected, the equations of motion in the 

radial and tangential directions are 

(7.la,b,c) 

Using equation (7.lc), eliminating the shear force Q in equations (7.la) and (7.1b) 

gives 
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(7.2a,b) 

No constraint has been made on R in deriving equation (7.2). Thus equation (7.2) is 

valid for the motion of curved beams where R is constant or a function of s . 

The four assumptions, following Love's first approximation in the classical thin 

shell theory (Leissa 1977), are now made: 

(i) The thickness of the beam in the plane of curvature is thin enough, typically, the 

ratio of the thickness to the smallest radius of curvature is less than about 0.1. 

(ii) Strains and displacements are sufficiently small so that the quantities of second-

and higher-order magnitude in the strain-displacement relations may be 

neglected in comparison with the first-order terms. 

(iii) Compared to the circumferential normal stress and strain, the other normal 

stresses and strains are small enough to be neglected. 

(iv) Normals to the centreline of the beam remain straight and normal to the 

deformed centreline and suffer no extension, i.e, all shear strains and stresses are 

neglected. However, the radial shear force Q, given as the integral of the radial 

shear stress, is supposed to not be zero. 

Displacement components in the radial and tangential direction at a point on the curved 

beam are denoted by W(r,s,t) and V(r,s,t) where r = R + z. Considering the fourth 

assumption, expanding the displacement components in a Taylor series about the 

centreline gives (Doyle 1997) 

W(r,s,t) ~ w(R,s,t), V(r,s,t) ~ u(R,s,t) - zcp(R,s,t) (7.3a,b) 
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where rp is rotation of the normal to the centreline in the counter-clockwise direction 

and is given by 

u Ow 
rp=--+­

R as (7.4) 

Equation (7.3a), where W is independent of r, implies that the radial strain is zero, and 

equation (7.3b) implies that the radial shear strain is zero. The only nonzero component 

is the circumferential strain es and is given by (Walsh and White 2000) 

(7.5) 

where 8s is the extensional strain at the centreline due to stretching of the beam and /3s 

is the change in curvature of the centreline due to the bending deformation of the beam. 

They are related to the displacement components at the centreline by 

w au 
8 =-+-

S R as' fJ =~(_~+ Ow) 
s as R as (7.6a,b) 

Equation (7.5) is the strain-displacement equation used by Flugge. It implies that the 

circumferential strain es does not vary linearly with z . In Love's theory, the strain-

displacement relationship is obtained by neglecting the term z/ R with respect to unity 

in the denominator in equation (7.5), i.e., the strain varies linearly with z as in the 

straight beam. 

The extensional stress (5s corresponding to the total strain is given from Hooke's 

law, and therefore (Walsh and White 2000) 

(7.7) 
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Utilizing the assumption that z/ R« 1, the total strain es of equation (7.5) can be 

expressed as a power series in z/ R . If the series is truncated from the third-order terms 

in R and substituted into equation (7.7), it gives 

( 

Z Z2 Z2 J 
(J" ~ E [; --[; +-[; -zfJ --/3 

s S R S R2 S S R S 
(7.8) 

The normal force N and bending moment M at a cross-section are then obtained by 

integration of the extensional stress, i.e., 

(7.9a,b) 

Substituting equation (7.8) into equations (7.9) and integrating give 

(7.10a,b) 

Finally substituting equation (7.10) into equation (7.2) gives the equations of motion for 

curved beams where EA, E1 and R could vary with s. 

Henceforth attention is restricted to uniform curved beams where EA, E1 and R 

are constant along the beam. The normal force N and bending moment M for the curved 

beam are then given from equations (7.10) and (7.6) by 

(7. lla,b) 

The shear force Q is obtained by substituting equation (7 .11 b) into equation (7 .1 c), 

therefore, 

(7.12) 
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Now substituting equation (7.11) into equation (7.2) gives (Walsh and White 2000) 

(7.13a,b) 

These are the equations of motion for thin, uniform, curved beams with constant 

curvature based on Flugge theory. When R tends to infinity, the radial and tangential 

displacements decouple and the equations become those for the uniform, straight beams. 

7.3 Dispersion relation 

The radial and tangential displacements satisfying equation (7.13) are assumed to 

be of exponential form such that 

(s t) = C ei(mt-ks) W, w , (7. 14a,b) 

where Cw and Cu are arbitrary constants, and k is wavenumber for the curved beam. 

Substituting equation (7.14) into equation (7.13) gives 

[

_I_(k2R2 _1)2 +1- P R2o} 
AR2 E 

ikR 

(7.15) 

For non-trivial solutions, the determinant of the matrix in equation (7.15) should be zero 

so that 

If k, and kb denote the longitudinal and bending wavenumbers for the straight beam, 

equation (7.16) can be written as 
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(7.17) 

where K = 1/ R is the curvature. Equation (7.17) is the dispersion relation. Since it is a 

cubic equation with respect to e, there are three pairs of k satisfying equation (7.17) 

at a given frequency, three for positive-going waves and three for negative-going waves. 

Before obtaining solutions to equation (7.17), it is worthwhile investigating their 

asymptotic values in certain limits. When K is small enough such that the terms 

involving K can be neglected, equation (7.17) reduces to 

(7.18) 

i.e., four wavenumbers asymptote to the bending wavenumber and two wavenumbers 

asymptote to the longitudinal wavenumber as expected. This is the "straight beam 

limit". 

Unlike the straight beams, there exists a cut-off frequency OJe in the curved beam. 

Letting k = 0 in equation (7.17) gives 

(7.19) 

From this it follows that 

(7.20) 

where c1 is the longitudinal phase velocity for a uniform straight bar. The frequency OJe 

is called as the "ring frequency" of the beam. Note that this ring frequency, based on 

Fliigge theory, slightly differs from that obtained on Love's theory by the term II AR2 . 
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However this difference is likely to be negligible smce 1/ AR2 (or hi R for a 

rectangular beam) should be small for the thin beam assumption to be valid. 

When OJ ~ 0 , equation (7.17) reduces to 

(7.21) 

The wavenumber for one mode tends to zero but the other two modes are such that 

e = K2 , i.e., the wavelength asymptotes to 2TCR (the beam is simply displaced in a 

rigid-body motion). 

The asymptotic behaviour of the wavenumbers for the curved beam in certain 

limits has been discussed. Exact solution of equation (7.17) can be obtained by noting 

that equation (7.17) is a cubic equation in z = k 2 
• The solution for a cubic equation can 

be found in the work of Abramowitz and Stegun (1965). Substituting k 2 = z , equation 

(7.17) becomes 

(7.22) 

where a2 a1 and ao are the corresponding coefficients of equation (7.17). Now let 

(7.23a,b) 

and 

(7.24a,b) 

The three roots Z1' Z2 and Z3 of the cubic equation (7.22) are 
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(7.25a,b,c) 

Finally, the six solutions of equation (7.17) are k = ±~, i = 1,2,3. Here note that the 

three roots Zj, Z2 and Z3 satisfy 

Zj + Z2 + Z3 = -a2 , 

ZjZ2 + Z2Z3 + Z3Zj = a j , 

ZjZ2 Z 3 = -ao 

(7 .26a,b,c) 

which are used later for discussion of power associated with waves in section 7.6. 

Figure 7-2 shows a typical dispersion relation for a curved beam with constant 

curvature. Here, for clarity, dimensionless parameters for the radius of gyration X , 

wavenumber k and angular frequency OJ are introduced such that 

-/1 
X=~rAR2' (7.27) 

Then equation (7.17) can be re-written in terms of the dimensionless parameters as 

(7.28) 

In the figure, the wavenumbers are shown for the beam with X2 = 1/1200, which 

implies that hi R = 0.1 if the beam is rectangular. The frequency range concerned here 

is far below the cross-over frequency, where predominant bending and extensional wave 

modes have the same wavenumber, Q = 1/ X:::::: 34.6 (i.e., the longitudinal wavelength A, 

is Al = 2;rx) (Walsh and White 2000). There are five branch points as a whole. The 
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lowest two branch points are located near the frequency ~ = i /3;:::: 10-2
• The next two 

points are located near the frequency ~ = 4 i ;:::: 0.16 where the bending wavelength Ab 

is Ab = 7rR. The highest branch point is at the ring frequency ~ = 1, i.e., Al = 27rR. 

The existence of these branch points may cause difficulties in deciding the 

direction of propagation associated with each solution for k. These difficulties cannot be 

removed by adding damping as for the quadratic case - for example, bending motion of 

a straight uniform beam on an elastic foundation (Doyle 1997). A criterion suggested 

here is that the wavenumber of a positive-going wave should satisfY 

Im{k}~O, Re{8k/8cv} > 0 if Im{k} = 0 (7.29a,b) 

Equation (7.29a) indicates that imaginary value of the wavenumber of a positive-going 

wave should not be positive. If non-zero, the amplitude of the wave thus decays in the 

positive x direction. If the imaginary value is zero, equation (7 .29b) is used: the slope of 

the dispersion curve for the real part of the wavenumber of a positive-going wave 

should be positive (more precisely, the energy transport velocity associated with a 

positive-going wave should be positive). Figure 7-3 shows the dispersion relation for 

the three positive-going waves when this criterion is applied. The wavenumbers of the 

three negative-going waves are the negatives of those of the positive-going waves. 

In Figure 7-3, the frequency range is divided into 4 regions separated by the 

branch points. In region I, the wavenumbers for the three modes are all purely real so 

that all the wave modes propagate along the curved beam. One interesting feature is that 

the real wavenumbers for the third mode c;; are negative in this region. Thus the phase 

velocity of the mode is negative while the energy is transported in the positive x 

direction (i.e., a wave transports energy in the direction opposite to the direction of the 
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phase velocity). In region II, ~2 is complex, which represents a decaying but oscillating 

wave. Since ~2 = - ( ~3 r ' a spatially decaying standing wave can be set up. Only the 

first mode can propagate. In region III also, only the first mode propagates. The other 

wave modes are both evanescent, i.e., they decay without a change in phase. In region 

IV, ~3 becomes purely real. In this region the waves are broadly analogous to bending 

and extensional waves in a straight beam. 

7.4 Displacement ratio 

The radial and tangential displacements of the curved beam are not independent 

of each other. From equation (7.15), the ratio a = Cu/Cw of these displacements is 

obtained by 

iKk 
a=---

e-k2 
I 

(7.30) 

If the magnitude of a is greater than unity, the tangential motion will be larger than the 

radial motion, and vice versa. 

There are six wave components associated with the motion of the curved beam as 

described in section 7.3. For clarity, the direction of wave motion is no longer explicitly 

specified using the subscripts '+' and '-'. Instead the wave components are now 

denoted by subscript i where i = 1, 2, ... ,6, where i = 1, 2, 3 denote the three positive-

going components, respectively, and i = 4, 5, 6 denote the corresponding negative-going 

components, respectively. Then the ratio a j for a wave component i is given by 

replacing k with k j in equation (7.30), and therefore, 
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i = 1,2, ... , 6 (7.31) 

Note that a 4,S,6 = -aj ,2,3' respectively, since k4,s,6 = -kj ,2,3' respectively. 

Figure 7-4 shows the ratio for the three positive-going wave components for the 

curved beam with 22 = 1/1200. The four regions shown in Figure 7-3 are not marked 

again in this figure for clarity. They can be inferred from the discontinuous behaviour of 

the results. First it is seen that the radial displacement is dominant for the first wave 

mode since the magnitude of a j is less than unity in the whole frequency range. In 

region II, the magnitude of a 2 is the same as that of a3 • In regions III and IV, the radial 

motion is dominant for the second mode. Near the ring frequency n = 1, the radial 

motion is dominant for the third mode (see the magnitude of a 3 tends to zero at the ring 

frequency) but, as frequency goes up, the tangential motion becomes dominant. The 

phase difference between the amplitudes is between tr/2 and -tr/2. 

7.S The wave description 

In this section the displacement, internal force and propagation matrices for the 

uniform curved beam are presented. Since the curved beam is a three-mode system, the 

relevant vectors and matrices are now defined of order 3 x 1 and 3 x 3 , respectively. 

Assuming the displacements to be of the exponential form given by equation 

(7.14), the radial and tangential displacements of the beam are given by 

w(s) = Cje-ik,S + C2e-ik2S + C3e-ikJs + C4e-ik4S + Cse-ikss + C6e-ik6S 

u(s) = ajCje-ik,S + a2C2e-ik2S + a3C3e-ikJs +a4C4e-ik4S + asCse-ikss + a6C6e-ik6S 
(7.32a,b) 

where C 's are arbitrary constants. Note again that k4,s,6 = -kj,2,3 and a 4,S,6 = -a j ,2,3' 
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Even though equation (7.32) is simple, it is not in a suitable form for later 

development since, at high frequencies (where the radial and tangential displacements 

decouple), a3 and a6 tend to infinity. Instead, the radial and tangential displacements 

are expressed as 

w(s) = Cle-ik,S + C2e-ik2S + (a
3 
r1 

C3e-ik3S + C4e-ik4S + Cse-ik5S + (a
6 
r1 

C6e-ik6S 

u(s) = alCle-ik,S + a2C2e-ik2S + C3e-ik3S + a4C4e-ik4S + asCse-ik5S + C6e-ik6S 

Now, at high frequencies, all the coefficients a1,2,4,S and (a3,6 t tend to zero. 

(7.33a,b) 

The physical vectors wand f , consisting of the generalized displacements and 

corresponding internal forces, are defined as 

(7.34a,b) 

Note that the rotation rp and the internal forces Q, M and N are obtained by substituting 

equation (7.33) into equations (7.4), (7.12), (7.11 b) and (7.11 a), respectively. The wave 

vectors consisting of wave amplitudes are defined as 

(7.35a,b) 

Then the matrices 'P and (1) for the transformation from the wave domain to the 

physical domain are given by 

'P-=["'4 "'s 
(1)- = [<1>4 «I>s 

(7.36a,b,c,d) 

where the column vectors '" i and ~ for i = 1, 2, 4, 5 are 
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IV; ~{-(Ka~,+ik+ 
iElk; (K2 - kn 

«P; = EI(K2 -kn (7.37a,b) 

EA ( K - ik; a; ) + E1 K ( K2 - k;2 ) 

and 'JI; and «P; for i = 3, 6 are 

IV; ~ ~, {-(Ka~;+ik+ 
iElk; (K2 - k;2 ) 

«P; 
1 

EI(K2 -kn (7.38a,b) = 
a; 

EA(K-ik;a; )+E1K(K2-kn 

When Q» 1, when the radial and tangential displacements decouple, the matrices 'I'+ 

and cD + asymptote to 

~'~r+ 
1 

~J r-
iElk

' 

E1e 

-lk'] <1>' ~ -~lk} 
b 

-kb E1e (7.39a,b) b 
0 0 

i.e., the matrices are composed of those of the uniform straight beam and the uniform 

straight bar, and the other elements are zero, as expected. 

The propagation matrix F describing propagation of waves over length L along 

the curved beam is given by 

o 
(7.40) 

o 

The positive and negative propagation matrices are the same in this case as expected. 

The displacement, internal force and propagation matrices for the curved beam 

have been defined in equations (7.36) and (7.40). As illustrated so far, these matrices 

can be used in a systematic manner for various problems such as wave generation by 

external excitation, reflection and transmission of waves at discontinuities, and 
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derivation of spectral elements. However, such examples are not specifically presented 

because wave motion of the curved beams is too complex to present full analytical 

expressions for these cases. In section 7.8, a numerical example is presented. Before 

doing this, the energy flow associated with waves in the curved beam is studied first in 

the following two sections. 

7.6 Energy flow 

In section 2.9, the time-averaged power associated with waves in one-dimensional 

structures was expressed as 

(7.41) 

where a = [(a + t ( a -t r and the matrix P is given by 

(7.42) 

Substituting equation (7.36) into equation (7.42) gIves the power matrix P for the 

curved beam with constant curvature. Then the (m, n) element of the matrix for 

m = 1, ... ,6 and n = 1, ... ,6 is 

(7.43) 

In section 7.5, 'l'i and <l>i for i = 3, 6 were not defined in the same form as 'l'i and <l>i 

for i = 1, 2, 4, 5 for the reason stated there. However using the definition will make the 

following discussion lengthy. Thus, for the time being, 'Vi and <l>i for i = 3,6 are 

assumed to be given in the same form as equation (7.37). Indeed this assumption will 
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not affect the qualitative investigation of Pmn since the difference only comes from 

dividing by the displacement ratio a3 or a6 • Under this assumption, equation (7.43) is 

given by 

Finally substituting equation (7.31) for the displacement ratio into equation (7.44) gives 

(7.45) 

Note again that equation (7.45) is only true for Pm,n for m = 1, 2, 4, 5 and n = 1,2,4,5, 

respectively. When the components of the third mode are concerned (i.e. m or n is 3 or 

6, respectively), it should be divided again by a3 , a 6 , or their self or cross product as 

required. 

Equation (7.45) indicates the energy flow associated with the SIX wave 

components in the curved beam. Three cases are discussed separately in the next three 

subsections: the energy carried by a single wave component in subsection 7.6.1, the 

energy carried by interaction between the positive-going and negative-going 

components of one mode in subsection 7.6.2, and the energy carried by interaction 

between the components from two different modes in subsection 7.6.3. 

7.6.1 Energy flow due to a single wave component 

The diagonal elements of the matrix P are related to the power carried by a single 

wave component. When n = m, equation (7.45) becomes 
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(7.46) 

Now P is investigated for three cases for the wavenumber k as follows: mm m 

(i) Purely imaginary wavenumber: The first parenthesized term in equation (7.46) 

indicates that, if km is purely imaginary (i.e., the wave mode is evanescent), the 

element will be zero. Thus power carried by the wave components of the second 

mode will be zero in regions III and IV, i.e. ~2 = ~4 = 0 in these regions. 

(ii) Purely real wavenumber: If km is purely real (i.e. k: = km ), equation (7.46) 

reduces to 

(7.47) 

Equation (7.47) holds for wave components m = 1, 2,4,5. For the third mode 

(i.e. m = 3,6), it becomes 

(7.48) 

When K is small so that the terms involving K can be neglected with respect to 

km and km asymptotes to the wavenumbers of the straight beam and bar, 

equation (7.47) asymptotes to that for the straight beam and equation (7.48) 

asymptotes to that of the straight bar as expected. 
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(iii) Complex wavenumber: Now assume km is not purely real or purely imaginary. 

Since km satisfies the characteristic equation (7.17), 

(7.49) 

the complex conjugate of km also satisfies the characteristic equation, i.e, 

(7.50) 

Subtracting equation (7.49) from equation (7.50) gives 

(7.51) 

Since the first bracketed term in equation (7.51) will not be zero if km is not 

purely real or purely imaginary, it follows that 

(7.52) 

Using equation (7.52) it can be shown that the bracketed term in equation (7.46) 

is zero for complex km • 

According to the discussion above, a single wave component can transport energy only 

when the wavenumber is purely real, as expected. 

7.6.2 Energy flow due to two opposite-going waves of one mode 

The non-diagonal elements of P are related to the power carried by the 

interaction between two different wave components. First consider the case that a 

positive-going wave component of one mode interacts with the negative-going 

component of the same mode, or vice versa. Six elements of the power matrix are 

relevant to this case, i.e. Er4' Pzs, ~6' ~l' P"2 and Pc,3. The power matrix is Hermitian 
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so that the first three elements are complex conjugates of the latter three elements. Since 

kn = -km in this case, equation (7.45) becomes 

(7.53) 

Equation (7.53) is the same as equation (7.46) except for the first parenthesized term. 

Thus the interaction between two opposite-going wave components of one mode can 

transport energy only when the wavenumber is purely imaginary: if km is real, the first 

parenthesized term is zero, and, if km is complex, the bracketed term is zero. Therefore 

~4 = ~l = 0 in the whole frequency range, ~5 and Ps2 are non-zero in regions III and 

IV, and ~6 and ~3 are non-zero in region III. The non-zero element ~5 IS 

(7.54) 

and the non-zero element ~6' after allowing for the normalisation with respect to a3 

and a 6 , is 

(7.55) 

Note again that the counterpart elements Ps2 and ~3 are the complex conjugates of ~5 

and ~6' respectively. 
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7.6.3 Energy flow due to two different wave modes 

Now consider the case that a wave component of one mode interacts with a 

component of another mode. The elements ~2' ~3' ~5' ~6' etc of the power matrix 

are relevant to this case. Since km and kn in equation (7.45) are independent 

wavenumbers for different modes, it follows from equation (7.26) that 

(7.56) 

Substituting k:K 2 from equation (7.56) into equation (7.45) yields 

mEl (kn + k: ) {k~ - ( k: r}{ k~ + ( k: r + k~ - k; - 2K2 } 

P
mn 

= 2 ( k,2 - ( k: r ) (7.57) 

Using the wavenumber ko for the third mode, which is related through equation (7.26a) 

to km and kn , equation (7.57) reduces to 

(7.58) 

(i) The first bracketed term in the numerator of equation (7.58) indicates that the 

interaction of the two components cannot transport power if the wavenumber for 

one of the two interacting waves is purely real or purely imaginary. Thus 

~2 = ~3 = ~5 = ~6 = 0, ~2 = ~3 = 0, and ?s4 = 1;;4 = 0 in the whole frequency 

range. 

(ii) Only Pz3' Pz6 and ~5 (and their counterparts) in the matrix P have not been 

considered yet. These elements are related to energy transported by interaction 

between a wave component of the second mode and a wave component of the 
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third mode. Since at least one wavenumber for the two modes is purely real or 

purely imaginary in the whole frequency range except region II, ~3' ~6 and I;5 

are zero over most of the frequency range. The first parenthesized term in the 

numerator of equation (7.58) indicates that, even in region II, ~3 is zero since 

k3 = -k;. As a result, ~6 and I;5 are non-zero in region II. Since k6 = k; in 

region II, the non-zero ~6 in the region is, after allowing for the normalisation 

with respect to a 6 , given by 

(7.59) 

The non-zero ~5 in region II is I;5 =~:. 

7.6.4 Summary of section 7.6 

The elements of the power matrix for the curved beam with constant curvature 

have been expressed explicitly in terms of wavenumbers, and their values were 

classified according to different conditions for the wavenumbers. It was shown that 

energy flow is associated with three cases: 

a single wave with purely real wavenumber (i.e., a propagating wave) 

interaction between two opposite-going waves of one mode, for which the 

wavenumber is purely imaginary (i.e., two opposite-going nearfield waves) 

interaction between two opposite-going waves from different modes, for 

which the wavenumbers are a complex conjugate pair 

In the next section, these results are used to find the power associated with waves when 

the frequency is given. 
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7.7 Energy flow at a single frequency 

To help to clarify the energy flow in the curved beam, the results of section 7.6 

are described here again from a somewhat different viewpoint: when the frequency is 

given, the energy flow paths (carriers) are identified at that frequency as follows: 

(i) In region I: all waves are propagating and the wavenumbers are real in this 

frequency range. The power matrix becomes diagonal and is given by 

~1 0 0 0 0 0 

0 ~2 0 0 0 0 

0 0 ~3 0 0 0 
p= 

0 0 0 -~1 0 0 
(7.60) 

0 0 0 0 -~2 0 

0 0 0 0 0 -~3 

where the diagonal elements are 

(7.61a,b,c) 

Note that the net power due to waves in vector a is given by 

(7.62) 

For example, if there are two opposite-going waves of the first mode, i.e., 

a = [a] 0 0 a4 0 Or, the net power is given by 

183 



(7.63) 

(ii) In region II: the non-zero elements are ~ l' ~6' ~5 and their counterparts ~4' 

Pr,z and Ps3' In the case, ~6 = Pr,~ = ~~ = Ps3' Thus the power matrix is given by 

~l 0 0 0 0 0 

0 0 0 0 0 Pz6 
0 0 0 0 ~: 0 

p= (7.64) 
0 0 0 -~l 0 0 

0 0 ~6 0 0 0 

0 ~: 0 0 0 0 

where the element ~l is the same as equation (7.61a) and 

(7.65) 

F or example, for the case where a = [ 0 az 0 0 0 a6 r ' the power 

associated with the waves is given by 

I1 = Re ( ~6 ( az )' a6 ) (7.66) 

where Re (.) denotes the real part of the quantity. The direction of energy flow 

depends on the sum of the phases of ~6' (az)' and a6 • 

The power matrix is not diagonal in this region, which may lead to 

further transformation to a basis, so-called power wave basis, where power is 

transported independently only by a single component. The matrices V and E 

of the eigenvalues and eigenvectors, respectively, of the power matrix for the 

transformation are 

184 



~l 0 0 0 0 0 

0 1?z61 0 0 0 0 

0 0 1?z61 0 0 0 
v= 

0 0 0 -~l 0 0 

0 0 0 0 -1?z61 0 

0 0 0 0 0 -1?z61 
0 0 0 0 0 

0 
1 

0 0 0 
rjJ 

Ji J2 
0 0 

1 
0 

rjJ* 
0 

Ji Ji E= 
0 0 0 1 0 0 

0 0 
¢ 

0 
1 

0 
Ji -Ji 

0 
¢* 

0 0 0 
1 

Ji -J2 (7.67a,b) 

where ¢ = (~61. Note that ?z6 is complex in this region. 
?z6 

(iii) In region III: the power matrix is given by 

~l 0 0 0 0 0 

0 0 0 0 ?zs 0 

0 0 0 0 0 ~6 p= (7.68) 
0 0 0 -~l 0 0 

0 ?z~ 0 0 0 0 

0 0 P,: 0 0 0 

where the element ~l is the same as equation (7.61a) and 

{ k" } 2 2 bK 
~5 =-OJElk2 2(k2 -K )+ 2 ' 

(k/2 -k;) 
(7.69a,b) 

_ k,' { 2(k;-K')(k,'-k;)'} 
~6 --OJEA- 1+ 4 2 

k3 kb K 
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The elements ~5 and P;6 are negative-imaginary III this regIOn so that the 

eigenvalues and eigenvectors are 

~l 0 0 0 0 0 

0 1~51 0 0 0 0 

0 0 1P;61 0 0 0 
V= 

0 0 0 -~l 0 0 

0 0 0 0 -1~51 0 

0 0 0 0 0 -1P;61 
1 0 0 0 0 0 

0 
1 

0 0 0 J2 -J2 

0 0 
1 

0 0 
J2 -J2 

E= 
0 0 0 1 0 0 

0 0 0 
1 

0 J2 -J2 
0 0 0 0 

1 

J2 -J2 (7.70a,b) 

(iv) In region IV: the power matrix is given by 

~l 0 0 0 0 0 

0 0 0 0 ~5 0 

0 0 P;3 0 0 0 
(7.71) p= 

0 0 0 -~l 0 0 

0 ~~ 0 0 0 0 

0 0 0 0 0 -~3 

where the elements ~l' P;3 and ~5 are the same as equations (7.61a), (7.61c) 

and (7.69a), respectively. The element ~5 is negative-imaginary in this region 

so that the eigenvalues and eigenvectors are 
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F:l 0 0 0 0 0 

0 IPz51 0 0 0 0 

0 0 ~3 0 0 0 
V= 

0 0 0 -F:l 0 0 

0 0 0 0 -IPz51 0 

0 0 0 0 0 -~3 

1 0 0 0 0 0 (7. 72a,b) 

0 
1 

0 12 0 -12 0 

0 0 1 
E= 

0 0 0 

0 0 0 0 0 

0 0 0 
1 

0 12 -12 
0 0 0 0 0 1 

Figure 7-5 shows the magnitudes of the elements of P for the curved beam with 

x2 = 1/1200 as a function of a frequency. In the figure the magnitudes of ~3 and ~6 

are normalised with respect to wEAk, and the others are normalised with respect to 

2wElki . It is seen that there are always three energy transport paths at any frequency 

given. It means that, including the counterparts not shown in the figure (e.g., in region I, 

~4' Ps5 and ~6 associated with the negative-going waves), there are six energy 

transport paths as expected. It is also seen that, at high frequencies, the powers 

associated with the waves tend to those in the straight beam (i.e., F:p Pz5 and ~6 tends 

to unity above the ring frequency n = 1 ). 

7.8 Numerical examples 

In section 7.5, the displacement, internal force and propagation matrices for the 

curved beams were defined as equations (7.36) and (7.40). These matrices can be used 
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in a systematic manner for various problems concerning the motion of the curved beam 

In this section, a numerical example is given for illustration of the approach based on 

reflection, transmission and propagation of waves. 

Consider a structure where two parallel straight beams are connected by a curved 

beam with constant curvature subtending angle 1£ as shown in Figure 7-6. The beams 

are made of the same material, and the cross-sections are all rectangular in shape of 

thickness h and width b. The vector of amplitudes of waves incident from the left-hand 

side of junction 1 is a + , that of reflected waves is a - , and that of transmitted waves is 

The physical quantities are continuous at the two junctions, respectively. At 

junction 1, the continuity conditions are 

(7.73a,b) 

where w = [ w rp u t ' f = [Q M Nt, and the subscripts a and b denote the left-

and right-hand sides of junction 1, respectively. Assuming that, at the right-hand side of 

junction 1, the amplitudes of positive-going waves are given in a vector b+ but there are 

no negative-going waves at this moment, equation (7.73) is re-written as 

Hi + + Hi - - Hi +b+ Taa +Taa =Tb , 

ffi + + ffi - - ffi +b+ 
'Va a + 'Va a = 'Vb 

where the matrices for the straight beam are 
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~:=r+ 
1 

~l 
[ -iElk' Elk3 

o 1 <1>; = -E~k; b 

-kb Elk2 o , b 
0 0 -iEAk, 

~;=H' ~l [iElk' 
-Ele 

iE~k' 1 

(7.75a,b,c,d) 

<1>; = -r:l; b 

kb Ele b 
0 0 

and the matrices 'Pb + and <1>/ for the curved beam are given by equation (7.36a,c). 

Note in equation (7.74) that the wave vectors a± in the straight beam are 3xl, the first 

and second elements are the propagating and nearfield waves relating to bending 

motion, respectively, and the third element is the propagating wave relating to 

longitudinal motion. From equation (7.74), the reflection and transmission matrices R J 

and TJ for waves incident from the left-hand side of junction 1 are given by 

(7.76a,b) 

The other reflection and transmission matrices RJ , TJ , R 2, T2 R2 and 1'2 can be 

obtained in a similar way. The propagation matrix F between the junctions is given by 

equation (7.40). Using the reflection, transmission and propagation matrices, the 

reflected and transmitted waves for the case are obtained as 

a- = Rra+; 

d+ = Tra\ 

~ ~ ~ ~ -J 
Rr = R J + TJFRJF[I - RJFRJF] TJ 

~ ~ ~ -J 
Tr = TJF[I - RJFRJF] TJ 

(7.77a, b) 

where Rr and Tr are global reflection and transmission matrices for the junctions. 

189 



Suppose that the incident waves are a + = [ at 0 oJ, i.e., only the propagating 

bending wave component of amplitude a+ impinges from the left-hand side of junction 

1. Then the input power into the curved connector is 

(7.78) 

If the amplitudes of the reflected waves are a - = [ a]- a2 a; r ' the reflected power is 

(7.79) 

Thus the power reflection coefficient Q = -11r /11; is given by 

Q = QBB +QBL (7.80) 

where Q BB and Q BL are 

(7.81a,b) 

Note that Q BB is the coefficient related to bending-to-bending reflection and Q BL is the 

coefficient related to bending-to-longitudinal reflection. Similarly, for transmitted 

waves d+ = [dt d; r ' the power transmission coefficient r = 11/ /11; is given by 

(7.82) 

where the coefficients r BB and r BL are 

(7.83) 

Note that the sum of the coefficients is unity for a conservative system, i.e., 

(7.84) 
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Suppose now that the incident waves are a + = [ 0 0 a; J, i.e., a propagating 

longitudinal wave of amplitude a; impinges from the left-hand side of junction 1. In 

this case the input power into the curved beam is 

(7.85) 

Then the power reflection and transmission coefficients Q and T for this case are 

where the coefficients are 

(7.86a,b,c,d) 

For a conservative system, the sum of these four coefficients is unity. 

Figure 7-7(a) shows numerical examples of the power coefficients for the cases 

where a propagating bending wave is incident on junction 1 from the left-hand side, i.e., 

+ [+ a = a1 o OJ while Figure 7 -7(b) shows those where a propagating longitudinal 

wave is incident, i.e., a + = [ 0 0 a; J . Although it is not shown in the figure, the sum 

of the four coefficients is unity. It is seen that TBL = TLB and QBL = QLB due to 

reciprocity. Above the ring frequency n = l, TBB and TLL are approximately equal to 

unity, i.e. the incident waves can pass through the junctions and the curved beam freely 

without scattering or conversion into the other wave type. Below the ring frequency, the 

bending wave is substantially transmitted but the longitudinal wave is mainly reflected 

backwards as a longitudinal wave. For a frequency n < 10-2 
, it is seen that TBL = QBL 
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and T LB = Q LB • Although it IS not shown in the figure (b), it holds that 

Q = Q LB + Q LL = 0.5 (thus T = TLB + TLL = 0.5) at the ring frequency n = 1, i.e., half the 

energy carried by the longitudinal wave is reflected and the other half is transmitted. 

7.9 Summary 

The equations of in-plane motion of thin, uniform, curved beams have been 

derived based on Fliigge theory. The radial and tangential displacements of the curved 

beam are coupled together due to curvature. This coupling will be negligible when the 

curvature becomes smaller and/or frequencies increase. The dispersion relation for 

constant curvature has been obtained when time harmonic motion was assumed. The 

equation is of 6th order in k so that six wave components are associated with the motion 

of the curved beam, three positive-going components and the other three negative-going 

components: the curved beam is a three wave mode system. 

An ambiguity may occur in defining each branch of the dispersion curve for the 

SIX wave components. In this thesis, a criterion has been suggested to remove the 

ambiguity: the wavenumber of a positive-going wave should satisfY 

Im{k} ~O, Re{8kj8m} >0 ifIm{k}=O (7.87a,b) 

I.e., the imaginary value of the wavenumber of a positive-going wave should be 

negative and the energy transport velocity (the slope of the dispersion curve of the real 

wavenumber in this case) associated with a positive-going wave should be positive. 

Using this criterion, the dispersion curve for each component was well defined. The first 

and second modes are predominantly related to the propagating and nearfield waves of 

bending deformation. The third mode is predominantly related to the longitudinal 
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motion. Above the ring frequency, where the longitudinal wavelength is equal to the 

circumference of the complete ring, the wavenumber of the third mode becomes purely 

real. It was seen that energy is transported by the second mode in the direction opposite 

to the direction of the disturbance propagation, at low frequencies. 

After specifying each branch of the dispersion relation in this manner, the wave 

motion of the curved beams was described in a systematic way. The displacement, 

internal force and propagation matrices for the curved beams were defined. The 

propagation matrix is diagonal in this case so that, even though the displacements are 

coupled together, the wave components are not coupled at all. Thus the problem could 

be simplified in the wave domain. 

The time-averaged power associated with waves was expressed explicitly in terms 

of wave numbers. It was shown that energy flow is associated with three cases: 

a single wave with purely real wavenumber (i.e., a propagating wave) 

interaction between two opposite-going waves of one mode, for which the 

wavenumber is purely imaginary (i.e., two opposite-going nearfield waves) 

interaction between two opposite-going waves from different modes, for 

which the wavenumbers are a complex conjugate pair 

Using these results the power associated with waves in the curved beam was determined 

when the frequency is given. 

Numerical results for the power transmission and reflection through aU-shaped 

structure are presented using the wave approach based on reflection, transmission and 

propagation of waves. It was shown that, above the ring frequency, the energy 

associated with the propagating waves can be transmitted through the curved section 
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with negligible reflection. At the ring frequency, half the energy carried by the 

longitudinal wave is reflected and the other half is transmitted. 
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Figure 7-1. Differential element of a thin, curved beam and sign convention of physical 

quantities. 
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Chapter 8. 

APPLICATIONS 

8.1 Introduction 

A generalised wave approach based on reflection, transmission and propagation of 

waves has been developed and applied to cases concerning uniform and 

deterministically varying structures in previous chapters. Attention was paid especially 

to longitudinal and bending motions of the structures. As would be expected, there are 

plenty of other cases where the wave approach can be used as an efficient and well­

conditioned method. For example, torsional motion of structures is expressed in the 

same mathematical form as longitudinal motion. Thus the results obtained in chapters 3 

and 5 can be directly used for the structures undergoing torsion rather than longitudinal 

motion by replacing relevant parameters and variables. Table 8.1 lists the motions 

sharing the same mathematical form and relationships of the parameters. 

The objective of this chapter is to illustrate further possible application of the 

wave approach by presenting several other cases, which have not been dealt with to 

date. First, in section 8.2, application of the wave approach to higher-order uniform 

waveguides is briefly discussed. The displacement, internal force and propagation 

matrices for the longitudinal wave motion based on Love theory and for the bending 

wave motion based on Timoshenko theory are presented, respectively. One thing, which 

may be noted, is that it is always possible to use the wave approach for the motion of 

uniform waveguides where the coefficients of the governing equations are constant. 
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Even at high frequencies, the wave approach will provide an efficient and well­

conditioned computational approach. 

In section 8.3, several different kinds of deterministically varying waveguides are 

presented. The displacement, internal force and propagation matrices for waveguides 

with an exponential, rather than power-law, variation in the geometric properties are 

presented. The longitudinal power transmission through an exponential connector is 

investigated using the matrices. 

In section 8.4, the wave approach is applied for the motion of arbitrarily varying 

waveguides where the properties vary in a complex manner so that exact solution to the 

motion is difficult or impossible to obtain. In the application, the arbitrarily varying 

waveguide is divided into a series of small segments, and then each segment is 

modelled by a known structural element - a piecewise approach. Several different 

schemes in developing a piecewise model by using uniform elements and 

deterministically varying elements are described. The numerical efficiency relating to 

each model is then investigated. 

In section 8.5, as a final example for the application of the wave approach, the 

motion of finite structures is studied. A general procedure for obtaining the natural 

frequencies and mode shapes is described and numerical results for the modal behaviour 

of a tapered, curved beam are presented. 

8.2 Higher-order uniform waveguides 

Even though the interest of this thesis has been confined to cases based on 

elementary theories such as Euler-Bernoulli beam theory, the wave approach can 

equally be applied to the motion of uniform structures based on higher-order theories. 

203 



These higher-order theories, such as Love's bar theory and Timoshenko's beam theory, 

provide more accurate description of the motion at high frequencies than elementary 

theories. Since the wave approach does not suffer numerical difficulties due to ill-

conditioning at high frequencies, in contrast to other methods such as the transfer matrix 

method, no drawback will occur in applying the wave approach. 

8.2.1 Straight bar based on Love's theory 

The longitudinal wave motion in uniform straight bars, described in chapter 3, is 

based on the elementary theory assuming constant longitudinal strain across the cross-

section and neglecting the transverse deflection. The real deformation is more complex 

so that the elementary theory is not adequate for the motion at high frequencies. Higher-

order theories such as Love, Mindlin-Herrmann and three-mode theories can be 

considered in this case. In this subsection, the displacement, internal force and 

propagation matrices for the longitudinal wave motion based on Love's theory are 

presented. 

As a bar deforms axially, it also contracts transversly due to the Poisson effect. 

Assume that the kinetic energy is affected by this transverse deformation but the strain 

energy remains unchanged. Then the axial displacement u(x, t) for the free vibration is 

governed by (Doyle 1997) 

(8.1) 

where v is the Poisson ratio and J is the polar moment of area. The axial force P is then 

defined as 
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For time harmonic motion, the solution to equation (S.l) is found to be 

where the wavenumber fJ is 

u(x) - C e -iflx + C eiflx 
- 1 2 

/3 = (j) I_---'-p_A __ 
EA - y2 pJ (j)2 

(S.2) 

(S.3) 

(S.4) 

Note that, above the frequency (j) = ~ EA/ (y2 pJ) , the wavenumber is purely imaginary. 

At such frequencies the assumptions made break down. 

The displacement and internal force matrices for the longitudinal motion based on 

Love's theory are 

\f+ = [1], 

cI> + = [ -i ( EA - y2 pJ (j)2 ) /3 J, 
\f- =[1], 

cI>- =[i(EA- y 2p J(j)2)/3 ] 
(S.5a,b,c,d) 

The propagation matrix F for propagation of waves between two points, a distance L 

apart, in the bar is 

F= [e- iflL 
] (S.6) 

S.2.2 Straight beams based on Timoshenko's theory 

The bending wave motion in uniform straight beams, described in chapter 4, is 

based on Euler-Bernoulli theory neglecting the effects of rotary inertia and transverse 

shear deformation. In this subsection, the displacement, internal force and propagation 

matrices for the bending wave motion based on Timoshenko's theory accounting for the 

two effects are presented. 
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The equations of motion for a uniform, straight beam based on Timoshenko's 

theory are given by (Graff 1975) 

(S.7a,b) 

where rp is the slope due to bending, G is shear modulus and K is the Timoshenko 

shear coefficient. The shear coefficient K is less than 1 and K ::::::: 0.S3 for a rectangular 

cross-section. The shear force Q and bending moment M are given by 

M=EI
Orp 

ox (S.Sa,b) 

Equations (S.7a) and (S.7b) are coupled through wand rp. The terms including GAK 

of equation (S.7) are due to the shear deformation and the term including pI is due to 

the effect of rotary inertia. 

Assume that the solutions to equation (S.7) are of the exponential form as 

w(x t) = C ei(OJI-/lx) , w , (S.9a,b) 

where Cw is a arbitrary constant and a is a constant relating to the dependence between 

the lateral displacement and slope. Substituting equation (S.9) into equation (S.7) gives 

[
GAK f3

2 
- pAoi -if3GAK ]{ Cw } _ 0 

if3GAK EI f32 + GAK - pIoi aCw 

(S.10) 

For non-trivial solutions, the determinant of the matrix in equation (S.10) should be zero 

so that 

(S.11 ) 

where 
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-no} k j - --

E ' 
(S.12a,b,c) 

At low frequencies, equation (S.1l) tends to 

(8.13) 

I.e., the wavenumbers asymptote to those of Euler-Bernoulli beam theory. At high 

frequencies, it tends to 

(S.14) 

i.e., one pair of the wavenumbers asymptotes to the longitudinal wavenumbers while the 

other pair asymptotes to the shear wavenumbers. Note also that there is a cut-off 

frequency OJe : letting /3 = 0 in equation (S.11) gives 

llJ~ ~GAK 
pI 

(S.15) 

Since equation (S.ll) is quadratic in /32 , there are four roots, /31' /32' -/31 and -/32 

where 

1 

/31 = ~ { ( kj
2 
+ kn + J 4k: + ( kj

2 
- k; t Y , 

1 
(S.16a,b) 

/32 = ~ { ( k} + k; ) - J 4k: + ( kj
2 

_ k; )
2 
} 

2 

For curved beams, a criterion to distinguish the wavenumber for a positive-going wave 

was introduced in chapter 7: the imaginary value of the wavenumber is negative and the 

energy transport velocity is positive. It can also be applied to this case. Here /31 and /32 

represent positive-going waves, and -/31 and -/32 negative-going waves. If no damping 

is present, /31 is positive-real while /32 is negative-imaginary below the cut-off 
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frequency and positive-real above that frequency. They asymptote to the shear and 

longitudinal wavenumbers, respectively, at high frequency. The plot of the dispersion 

relation for these wavenumbers is found in the work of Doyle (1997). For each wave 

component, the ratio a of the slope to the lateral displacement is found from equation 

(8.10) to be a1, a 2, -a1 and -a2 where 

1 (2 2) a 2 =- ks - /32 
132 

(8.17a,b) 

Thus the general solution to equation (8.7) is given by 

(8.18a,b) 

The shear force and moment can then be obtained by substituting equation (8.18) into 

equations (8.8). 

Thus the displacement and internal force matrices for the positive-going waves in 

Timoshenko beams are obtained by 

<P + = [-GA~ (if31 + a1 ) -GA~ (if32 + a 2 )] 

-iE! f31a1 -iE! f32a2 
(8. 19a,b) 

The matrices for the negative-going waves are obtained by replacing 13 with -13 

(consequently also replacing a with -a ). The propagation matrix F between two 

points, a distance L apart, in the beam is 

e~' ] (8.20) 

These matrices can be used for the systematic wave analysis of problems concerning 

Timoshenko beams. 
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8.3 Deterministically varying waveguides 

In chapters 5 and 6, the wave approach was applied to non-uniform waveguides 

where the geometric properties vary as a power of x. The wave approach can also be 

applied to the motion of different types of non-uniform waveguides, where exact 

solutions can be found. In subsection 8.3.1, those undergoing longitudinal motion are 

described briefly and, in subsection 8.3.2, those undergoing bending motion are 

described. Numerical results, which are used in section 8.4, for the power transmission 

through an exponential connector are presented in subsection 8.3.3. 

8.3.1 Non-uniform, straight bars 

Consider again a non-uniform, straight bar undergoing longitudinal motion. The 

axial displacement u(x,t) for the free vibration is governed by 

.£..[EA au] = A a2

u 
ax ax P at 2 

Equation (8.21) can be rewritten as 

(8.21) 

(8.22) 

where the primes denote differentiation with respect to x. It can be easily solved for the 

case where the coefficient (1/4A2)[(A')2 - 2AA"] is constant. For example, suppose that 

the cross-sectional area A varies in a exponential manner such that 

A(x) = Aoe2ax (8.23) 

where a is a real number. Assuming a time dependence of the form eiaJ
/ but 

suppressing it here for clarity, substituting equation (8.23) into equation (8.22) gives 
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(8.24) 

where k, =~ poi / E . The solution to equation (8.24) is found to be 

(8.25) 

where 

(8.26) 

Note that there is a cut-off frequency k, = a , below which f3 is imaginary, i.e., waves 

cannot propagate. 

The displacement and internal force matrices for this bar with exponential 

variation in the area are defined as 

'¥+ = [e-ax ], 

«I> + = [ - EA ( ifJ + a) e -ax] , 

'¥- = [e-ax ], 
«I> - = [ EA ( if3 - a) e -ax] 

(8.27a,b,c,d) 

The propagation matrix F for propagation of waves between two points, a distance L 

apart, in the bar is given by 

(8.28) 

Non-uniform bars including the exponential bar, where the cross-sectional area 

A(x) varies such that the coefficient (l/4A 2 )[(A')2 -2AA"] is constant, are listed in 

Table 8.2. The displacement and internal force matrices for positive-going waves are 

presented for the bars. The matrices for negative-going waves can be obtained by 

replacing the wavenumber fJ with - fJ in the matrices. The propagation matrices for 

these non-uniform bars are the same as equation (8.28) so that they are not stated in the 

table. 
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8.3.2 Non-uniform, straight beams 

In chapter 6, the wave approach was applied to bending motion of non-uniform 

Euler-Bernoulli beams where A(x) oc x P and lex) oc x p
+

2
• Similar analysis can be 

followed for bending motion of non-uniform beams where A(x) oc x P and lex) oc x p
+

4 
, 

where A(x) oc x P and lex) oc x P+
6

, and where A(x) oc Xfl and lex) oc X(p+8)/3. The 

solutions for these beams are expressed in terms of Bessel functions as shown by 

Cranch and Adler (1956). 

Besides these power-law-type non-uniform beams, exact solutions for the wave 

motion in beams with exponential variation can be found as well. Consider again a non-

uniform, straight beam undergoing bending motion. The bending displacement w(x, t) 

for the free vibration of a beam is governed by 

(8.29) 

Suppose that the geometric properties vary in an exponential manner such that 

(8.30a,b) 

Rectangular beams with exponential variation in width but constant thickness satisfy 

equation (8.30). For time harmonic motion, combining equation (8.30) with equation 

(8.29) gives 

( 
d2 d 2 J( d

2 
d 2 J dx2 + 2a dx - kb.o dx2 + 2a dx + kb,o W = 0 (8.31) 

where k: 0 = pAaoi , Thus the solution to equation (8.31) is 
, Elo 

(8.32) 
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where 

(8.33a,b) 

Note that, below the frequency kb,o = a , the wavenumber /J1 is imaginary: no wave can 

propagate. 

The displacement and internal force matrices for the positive-going waves in the 

exponential beam are 

'¥+ = e-ax [ 1 1] 
-if31 -a -132 -a ' 

<1>+ = e-ax E1 -1 1 -a 1 -la 1- a 
[ 

'133 :p2 . 213 3 

-1312 +i2af31 +a2 
f3{ +a/Ji. -a

2
f32 _a

3
] 

f3i + 2af32 + a 2 

(8.34a,b) 

The matrices for the negative-going waves are obtained by replacing 13 with -13. The 

propagation matrix F between two points, a distance L apart, in the beam is 

[

e- i/11 L 

F= o 
(8.35) 

These matrices can be used for the systematic wave analysis of problems concerning the 

exponential beam. 

8.3.3 Longitudinal power transmission through an exponential connector 

The power transmission through an exponential bar of length L connecting two 

uniform bars, as shown in Figure 8.1, is studied here. Results are used further in section 

8.4 where various approximate solutions are considered. The areas of the uniform bars 

are Ao and AL , respectively, and the area of the exponential bar varies as 

A(x) = Aoe2ax (8.36) 

Note that the parameter a is determined to be 
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(8.37) 

The displacement, internal force and propagation matrices for the exponential bar were 

derived in subsection 8.3.1. Using these matrices and the matrices for the uniform bars, 

the wave analysis for this case can be conducted in a systematic way. Since similar 

work has been done for many examples so far, results are given here without details. 

The power transmission coefficient T for longitudinal wave transmission through 

the exponential bar is given by 

(8.38) 

Figure 8.2 shows T for three cases: AL = 1. lAo , AL = 2Ao , and AL = 5Ao. When 

k, L « ~ In ( 1), the coefficient asymptotes that of the case where two uniform bars 

are connected directly, i.e., T = 2AoAL 2 • When k{ L » ! In (AL J, T ~ 1 as would 
(Ao +AJ 2 Ao 

be expected. 

8.4 Arbitrarily varying waveguides: a piecewise approach 

So far this thesis has been concerned with cases where the problems can be solved 

exactly. However, most real non-uniform structures are too complicated to analyse 

exactly. Consider now non-uniform structures where the properties vary in a complex 

manner so that the exact solution is difficult or impossible to obtain. These structures 

were categorised as arbitrarily varying waveguides in chapter 1. 
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One approximate approach for the motion of arbitrarily varying structures is a 

piecewise representation where the structure is divided into small segments. Each 

segment is then modelled by an element, for which the solution is known, such as 

uniform elements. The motion of the original structure is then predicted by combining 

the behaviour of the elements and properties of the joints between the elements. In 

subsections 8.4.1 to 8.4.3, four different piecewise models for an exponential connector 

are presented. It is seen that employment of a deterministically varying element, rather 

than a uniform element, for modelling the segment can lead to rapid convergence at low 

computational cost. 

8.4.1 Modelling of a section: using uniform elements 

Consider again the exponential connector of length L as shown in Figure 8-1. In 

subsection 8.3.3 the exact results for the longitudinal power transmission through the 

connector were presented. Here the exponential connector is approximated by a series 

of uniform elements of length Lll . Although it is possible and may be recommendable 

to divide a structure irregularly, here the interval Lll is chosen to be constant. Figure 8-

3 shows two different schemes in the piecewise modelling of the exponential connector. 

One uses the uniform element with the smallest area of each segment and the other uses 

the uniform element with the geometric-mean area of each segment. 

Figure 8-4 shows the longitudinal power transmission coefficients through the 

connector estimated by the two piecewise models when AL = SAo. The exact results, 

obtained earlier in subsection 8.3.3, are shown as well. Figure 8-4(a) is the result when 

the connector was modelled by a series of three uniform elements (i.e., Lll = L 13). It 

seems that there is no substantial advantage using the geometric-mean area instead of 
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the smallest area in this case. When the piecewise model is refined (here increasing the 

number of elements to 10), it gives better approximate results as seen in Figure 8-4(b). 

8.4.2 Modelling of a section: using deterministically varying elements 

In the previous subsection, the exponential connector was approximated by a 

series of uniform elements. Now the connector is approximated by a series of non-

uniform elements where the area is given by 

(8.39) 

where Xo is the distance from the apex to the end. Recall that these non-uniform 

elements were studied in chapter 5. Figure 8-5 shows two different schemes in 

modelling the connector as a series of the non-uniform elements. One employs the non-

uniform element with J1 = 1 while the other employs the non-uniform element with 

Jl = 2. Note that, when Ao and AL is fixed and Jl ~ 00, the area change becomes 

exponential: 

lim ~ = lim Jl {( AL J~ -11 = ~ 1n ( AL J = 2a 
,u->co Xo ,u->co L Ao J L Ao 

(8.40) 

Thus 

lim Ao (1 + ~J,u = lim Ao (1 + 2axJ,u = Aoe2ax 

,u->co Xo ,u->co Jl 
(8.41 ) 

First the connector is approximated by only a single non-uniform element. Figure 

8-6(a) shows the longitudinal power transmission coefficients through the connector 
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estimated in this case. The model using the non-unifonn element with J1 = 2 is better in 

the accuracy than the model using the non-unifonn element with J1 = 1 . Next the 

connector is approximated by a series of three non-uniform elements. As seen in Figure 

8-6(b), the estimation results are nearly the same as the exact results. When compared to 

the results shown in Figure 8-4(a), it is seen that these models using the non-unifonn 

elements give much better estimation than the models using the unifonn elements, if the 

numbers of the piecewise elements are the same. 

8.4.3 Numerical efficiency 

Four different schemes III piecewise modelling have been illustrated in the 

previous two subsections. At this stage, a question may occur as to how many segments 

the structure should be divided into, and what element should be used for the segment. 

The answer is a compromise between the computational cost and the accuracy: the 

numerical procedures should have sufficient accuracy but not excessive accuracy, as 

this increases significantly the cost of computation. In this subsection, such a 

compromise in applying the piecewise approach is discussed in relation to the previous 

example, the longitudinal power transmission through the exponential connector. 

Figure 8-7(a) shows the computational time, taken in estimating the power 

transmission through the exponential connector by using the piecewise models, versus 

the number of elements used for the models. Since no substantial difference occurs 

between the two unifonn models - one with the smallest area and the other with the 

geometric mean area, only the unifonn model with the smallest area is used here. There 

is no difference in the computing time between the piecewise models using the non­

unifonn element with J1 = 1 and J1 = 2 (the results for the model of J1 = 2 are almost 
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identical to those for the model of Jl = 1 ). It is seen that a longer time is required by the 

models using the non-uniform element than the model using the uniform element. 

However, as seen in Figure 8-7(b), the models using the non-uniform element provide 

more accurate estimates than the model using the uniform element. The model using the 

non-uniform element with Jl = 2 is better in the accuracy than the model using the non-

uniform element with Jl = 1. Note that the rapid drop in the estimation error when the 

number of elements increases from 6 to 7 is related to the finite frequency range, which 

cannot be infinite, fixed for the error calculation. 

Rearranging the results of Figure 8-7, a plot of the computational time versus the 

estimation error is obtained as shown in Figure 8-8. It is seen that the convergence of 

the model using the uniform elements is slower than the others. From this plot, one can 

compare the numerical efficiency of each model and decide which one is the best when 

considering the computational environment given and the estimation accuracy required. 

In general cases the same situation is expected. A piecewise model using 

deterministically varying elements, instead of uniform elements, could provide rapid 

convergence to the exact results at low computational cost, especially when non­

uniformity of the waveguide is severe. 

8.5 Finite waveguides: natural frequencies and mode shapes 

The numerical examples, which have been presented until now, are related to 

infinite structures where no boundary conditions are imposed. As a final example, the 

vibration of finite structures is investigated using the wave approach in this section. In 

subsections 8.5.1, the natural frequencies of a uniform, curved beam under various 

boundary conditions are obtained. Kang et al. (2003) studied the same cases. 

217 



Comparison to their results is made for validation of the present work. In subsections 

8.5.2 and 8.5.3, the natural frequencies and mode shapes of non-uniform, curved beams 

are presented. 

8.5.1 Natural frequencies of a uniform, curved beam 

Consider a uniform, curved beam subtending an angle ()L' as shown in Figure 8-

9(a), where the radius of curvature of the centreline, R, is constant. The amplitudes of 

waves at the ends are related by 

d+ =Fa+, 

d-=RLd+, 

a- = Fd-, 

+ R -a = oa 

(8.42a,b,c,d) 

where Ro and RL are reflection matrices at the ends (B = 0 and B = BL ), respectively, 

and F is the propagation matrix for the curved beam given by equation (7.40). 

Rearranging equation (8.42) gives 

(8.43) 

Let C(m) be the determinant of the term in the bracket, i.e., 

(8.44) 

The frequencies at which C(m) = 0 are the natural frequencies of the beam. Since the 

reflection and propagation matrices are given exactly, this will give the exact natural 

frequencies for the case. 

Besides the exact results, approximate results by using a piecewise approach are 

obtained. In the approach the curved beam is modelled by a series of n uniform, straight 

elements as shown in Figure 8-9(b). Each element has the same length ds = R!J.B , 
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where fj,B = BLin is the angle subtended by one element. The local co-ordinate system 

changes for each element. Thus the continuity conditions at a junction between the jth 

element and (j+ 1 )th element are 

Wj = Awj +p 

fj = Afj +1 

(8.45a,b) 

where W = [w rp u Y and f = [Q M NY with the subscripts j or (j+ 1) denoting 

the element, and 

A= 0 1 0 
[ 

cos(fj,B) 0 sin(fj,B) 1 

- sin( 61)) 0 cos(" 0) j (8.46) 

One can establish the relationships between the waves in this piecewise model by 

considering the reflection and transmission at each junction and the propagation in each 

element, and finally derive the same form as equation (8.42) such that 

b+ = Fo,La+, 

b- = RLb+, 

a- = FL,ob-, 

a+ = Roa-

(8.47a,b,c,d) 

where Fo Land FL,o are not the diagonal propagation matrices but the matrices defining 

the relationships between the waves at the ends. Rearranging equation (8.47) gives 

(8.48) 

The frequencies at which the determinant of the term in the bracket is zero are the 

natural frequencies estimated by the piecewise model. 
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Figures 8.10 shows the plot of the determinant c( (])) for a uniform curved beam 

with clamped-clamped ends for %2 = 1/1200 and aL = 5" . The non-dimensional 

frequency 0' is introduced, for comparison to the previous results, as 

0' = OJR 2 ~PA 
E1 

(8.49) 

Note that 0' = 0/% . The frequencies at which the real and imaginary values of C ( n') 

are both zero are indicated in the plot and are the natural frequencies. It is seen that the 

natural frequencies obtained by a piecewise approach using 60 straight elements agree 

well with the exact result. Further comments regarding the third frequency 0; are made 

in the next paragraph. Note here that the real and imaginary parts of the determinant are 

zero at n;. Figure 8.11 shows the determinant C (0') when the subtended angle is 

aL = 1800

• Figure 8-11(a) was already presented by Kang et al. (2003): Figure 7 in their 

work. Even though Kang et al. obtained it based on Love's theory and the present work 

obtains it based on Fliigge 's theory, the two results are very similar. One distinct 

difference, which does not affect the determination of the natural frequencies, is that the 

present results do not show the abrupt change in the slope of C (0') near 0' = 4.164 . It 

seems due to the differences in determining the dispersion relation of a curved beam. 

Table 8.3 shows the first four non-dimensional natural frequencies 0' of the 

uniform curved beam for %2 = 1/1200. The results are compared to those obtained by 

Kang et al. (2003). It seems that the third frequency n; of the clamped-clamped beam 

of aL = 50 is missing in the results of Kang et al. Rather than the results by the exact 

model using the single curved element, the results by the piecewise model using 60 
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unifonn elements are much closer to those of Kang et al. It seems to be because the 

curved model of the present work is based on Fliigge 's theory instead of Love's theory. 

8.5.2 Natural frequencies of a linearly tapered, curved beam 

Consider again a curved beam subtending an angle BL but now the beam is non-

unifonn as shown in Figure 8-12. The cross-sectional shape of this curved beam is 

rectangular, where the width is constant but the thickness h varies linearly along the 

angle B as 

(8.50) 

where a is a constant (note that the thickness ratio at the ends of the beam is given by 

(1 + a)/(I-a» and hL/2 is the thickness at angle BL/2. The thickness of the beam is 

unifonn if a = 0 while, if a > 0, it gets gradually thicker in the direction of B. The 

boundary conditions are imposed such that the slender end of the beam is free and the 

thick end is clamped. No exact solution for the motion of this non-unifonn curved beam 

seems to exist so that natural frequencies of the beam are here obtained by a piecewise 

approach. The curved beam is equally partitioned into n segments so that each segment 

subtends the same angle !J. B = BL / n. Each segment is then modelled as a unifonn, 

curved element. 

A question may occur as to how to define the thickness of the curved element and 

how many elements should be used for obtaining adequate accuracy. In order to 

investigate it numerically, three different models are developed: in the first the 

element's thickness is taken to be the smallest thickness of the segment, in the second it 

is the largest thickness, and in the third it is the geometric mean of the smallest and 
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largest thickness. The first is called here the thinner model, the second the thicker 

model, and the third the mean model. Thus, in the thinner model, the thickness h; of the 

jth element is given by 

(8.51 ) 

where ()j-l = (j -1)f:" () for j = 1, 2, ... , n. In the thicker model, the thickness hJ of the 

jth element is given by 

(8.52) 

where ()j = jf:,,() for j = 1,2, ... , n. In the mean model, the thickness h; of the jth 

element is given by 

(8.53) 

Figures 8-13 to 8-15 show the first four natural frequencies of the free-clamped beam 

subtending angles ()L = r, ()L = 20° and ()L = 40°, respectively. In this case hL/z/ R = 0.1 

and the constant a in equation (8.50) is a = 0.9. The number of elements increases in 

increments of 5 starting from 5 elements. In the figure, the non-dimensional frequency 

Q" is defined by using the properties at angle ()L/2 as 

(8.54) 

Note that this non-dimensional frequency is different to the previous frequency defined 

as equation (8.49). 
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In general the thinner and thicker models do not guarantee upper and lower 

bounds, respectively, on the frequency since the modelling underestimates or 

overestimates both the mass and the stiffness. However, in the present case, the results 

of the two models tend to decrease or increase monotonically after a sufficient number 

of elements (e.g., 40) is used so that the true natural frequencies seem likely to be 

bounded by the results of the thinner and thicker models. The geometric mean model 

seems to provide the compromise between the thinner and thicker models, and provide 

quicker and better estimation. 

It is commonly seen that the estimates become approximately constant after the 

number of elements becomes greater than 40. In order to obtain an adequate number of 

elements quantitatively, from the results presented in Figures 8-13 to 8-15, the change 

rate 6 as a percentage is calculated as shown in Figure 8-16. The rate 6 is defined as 

6 = 1/' - /1 xl 00 
/ 

(8.55) 

where / and f' are the estimated frequencies before and after refining the model using 

more elements, respectively. If 6 < 1 , the frequency obtained by the next-step 

refinement differs within 1 % of the current frequency (i.e., the improvement in 

estimating the frequency by next-step refinement is expected to be less than 1 % of the 

current estimate). It is seen that, after 40 elements, 6 becomes less than 0.5%. Thus the 

following numerical results for the case are obtained by using 40 elements. 

Figure 8-17 shows the first five natural frequencies versus the angle subtended by 

the beam. Figure 8-17(a) is the plot for the uniform, curved beam (a = 0) and Figure 8-

17 (b) is the plot for the tapered, curved beam with a = 0.9. It should be noted that, in 

the tapered beam, the taper rate (i.e., non-uniformity) becomes smaller as the angle 

223 



Increases. In the figure some trends can be noticed: in some regions the natural 

frequencies hardly change while in other regions they change linearly as the angle 

increases. 

In order to explain these behaviours closely, Figure 8-17(a) is drawn again as 

Figure 8-18(a) where 6 further lines are added. The horizontal lines are the natural 

frequencies of the beam undergoing pure bending (or inextensional) motion while the 

diagonal lines are the frequencies of the beam undergoing pure extensional motion (see 

the section below where the mode shapes for each natural frequency are given). The 

results indicate that the mode sequences will change as the angle increases, even for the 

uniform curved beam: for example, when eL < 4° the first mode of the uniform beam is 

related to the pure extensional motion but when eL > 4° the first mode is related to the 

pure bending motion. 

In order to get a clearer view of the change of natural frequencies when the beam 

becomes tapered, Figures 8-17(a) and 8-17(b) are combined as shown in Figure 8-18(b). 

It is seen that the first and second horizontal lines move up while the third and the 

fourth lines move down. The slopes of the lines relating to the pure extensional motion 

become larger but, as modes get higher, the changes become smaller (e.g., for the 4th 

extensional lines, it is seen that they are almost same). 

8.5.3 Mode shapes of a linearly tapered, curved beam 

Once the natural frequencies are known, the mode shapes for each natural 

frequency can be obtained. The shapes can be easily obtained in some cases, e.g., a 

uniform structure where waves do not suffer reflection in the region between the ends, 

but it could be cumbersome in other cases, e.g., where there are many discontinuities. In 
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this section, the relationships are derived for a general case and then the mode shapes of 

the non-uniform curved beam of the previous subsection are presented. 

Figure 8-19 shows a piecewise model consisting of n elements, or a finite 

structure with (n -1) discontinuities between the ends. The relationships between waves 

can be found the following procedure: 

Step 1: obtain individual matrix at each point 

(i) reflection matrices at the ends: R1 , Rn+l 

(ii) reflection matrices at discontinuities: R 2 , R3 , ... , R n, R 2 , R3 , ... , Rn 

(iii) transmission matrices at discontinuities: T2 , T3 , ... , Tn' T2 , T3 , ... , Tn 

(iv) propagation matrices for an element: Ft, F2+ , ••• , F; , F1- , F2- , ••• , Fn-

Step 2: obtain global matrix between two points 

(i) reflection matrices: R1-2' R]-3 , ... , R 1_n , where the subscript 1 ~ n denotes 

point 1 and point n. 

(ii) transmission matrices: T1-2' T]-3 , ... , T1_ n 

Step 3: obtain the relationships between waves in an iterative manner (This is one 

example. The relationships can also be established in other ways as would be expected) 

(i) First obtain the amplitudes of waves in the nth element (i.e., the rightmost 

element). The relationships between wave in the nth element are 

(8.56a,b,c,d) 
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Rearranging these relationships gives 

a;+l = [I - F;Rl_nF;Rn+l r1 
F;T1_nat , 

- R + an+1 = n+lan+l' (8.57a,b,c,d) 

Equation (8.57) indicates that a~ and a; can be obtained III 

sequence from given at . 

(ii) Obtain the amplitudes of waves in the mth element. The amplitudes, a~_l and 

a;_l' of waves at the point (n-I) can be obtained as 

a- =[I-F- R F+ R ]-l{F- R F+ T a++F- Ta-} n-l n-l n n-l l-(n-l) n-l n n-l l-(n-l) 1 n-l n n , 

a;_l = T1_(n_l)at + Rl_(n_l)a~_l 
(8.58a,b) 

Equation (8.58) indicates that a~_l and a;_l can be obtained from at and a~ 

given. In general equation (8.58) can be written as 

(8.59a,b) 

Equation (8.59) indicates that the amplitudes of waves at the point mare 

obtained from at and a:+1: the amplitudes can be obtained in an iterative 

manner for m = n -1, n - 2, ... , 2 . 

(iii) Obtain the amplitudes of waves in the first element (i.e., leftmost element). 

Finally a~ is obtained as 

(8.60) 
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It has been shown how the relationships between the waves in a piecewise model 

consisting of many elements or a finite structure with many discontinuities can be 

derived. In the procedure, waves at the right boundary are first identified and, then, 

waves at other positions are identified progressively along the structure until the left 

boundary is reached. As would be expected, the relationships can be established in other 

ways. 

When relationships between the waves have been established, the physical 

behaviour of the structure is obtained by transformation from the wave domain to the 

physical domain. The physical quantities at the jth point are 

(8.61) 

where j = 1, 2, ... , n + 1. 

Figure 8-20 shows the first five mode shapes of the tapered, curved beam of 

a = 0.9 and (}L = ISO. It is seen that the first, third and fifth modes are substantially 

related to the radial motion rather than the tangential motion (the shapes are the typical 

1 S\ 2nd and 3rd of clamped-free straight beams). In contrast, the second and fourth modes 

are substantially related to the tangential motion. This behaviour is in good agreement 

with the previous interpretation of the natural frequencies. Consult again Figure 8-17(b). 

It can be seen in the figure that, when (}L = 1 SO , the first, third and fifth natural 

frequencies are located close to the pure bending lines but the second and fourth natural 

frequencies are located close to the pure extensional lines. 

From Figures 8-17(b) and 8-20, the modal behaviour of the tapered beam can be 

predicted when the length of the beam changes. For example, when (}L = SO, the first 
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natural frequency is on the first pure extensional line. Thus the mode shape is similar to 

the second, rather than the first, mode shape of f)L = 1 Y . 

8.6 Summary 

The wave approach based on reflection, transmission and propagation of waves is 

a general method for the wave analysis for one-dimensional structures. It can always be 

applied to uniform waveguides where the coefficients of the governing equation are 

constant. The displacement, internal force and propagation matrices for the longitudinal 

wave motion based on Love theory and for the bending wave motion based on 

Timoshenko theory were presented. Since the wave approach always provides well­

conditioned numerical results, no drawback will occur in applying the wave approach at 

high frequencies. 

The displacement, internal force and propagation matrices for non-uniform 

waveguides with an exponential, rather than power-law, variation III the geometric 

properties were presented. These matrices can be used in a systematic way for further 

study of the motion of the exponential waveguides. The exact results for the 

longitudinal power transmission through an exponential connector were presented. 

In conjunction with the piecewise approach, the wave approach can be applied to 

the motion of arbitrarily varying waveguides where the properties vary in a complex 

manner so that exact solution to the motion is difficult or impossible to obtain. Different 

schemes in developing a piecewise model were described and the corresponding 

numerical efficiency were investigated. It was seen that a piecewise model using 

deterministically varying elements, rather than uniform elements, could provide rapid 

convergence at low computational cost. 
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Consideration was then gIven to the motion of finite structures. A general 

procedure to obtain the natural frequencies and mode shapes was described and was 

validated by comparison to the existing work. Subsequently the modal behaviours of a 

linearly tapered curved beam with the clamped-free boundaries were studied when the 

length of the beam changed. This tapered curved beam is of similar shape to the bead 

part of a tyre. The tendencies of pure bending and pure extensional motions in the 

behaviour were revealed. 
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Table 8.1. Three cases equivalent to the longitudinal vibration of bars and relevant parameters. 

Longitudinal Axial displacement 
vibration of bars u(x) 

EA(x) pA(x) 

For modulus of rigidity G and 
Torsional Rotation 

vibration of rods B(x) 
polar moment of inertia J pJ(x) , 

GJ(x) 

Vibration of Lateral displacement Mass per unit length 
strings w(x) 

Tension rex) o-(x) 

Acoustic wave Pressure 
For speed of sound e, 

motion in ducts p(x) 
A(x) A(x) 

c2 

-
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Table 8-2. Non-uniform bars and their displacement and internal force matrices for the wave approach. 

Cross-sectional area Wavenumber Displacement matrix Internal force matrix 

A(x) p '1'+ <1>+ 

Ane2ax ~k12 _a2 e-ax -EA(if3 + a )e-ax 

-EA(if3 +a c~sax )_._1_ An (sin ax l ~k/ +a
2 l/sinax 

smax smax 

-EA(if3 -a sinax ) 1 An (cosax)2 ~k12 +a2 l/cosax 
cosax cosax 

EA('f3 cosh ax ) 1 An (sinhax)2 ~k12 _a2 l/sinhax - 1 +a 
sinhax sinhax 

EACf3 sinh ax ) 1 An (coshax)2 ~k12 _a2 l/coshax - 1 +a 
cosh ax cosh ax 
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Table 8.3. Non-dimensional natural frequencies {jj of a uniform, circular beam for 

%2 = 1/1200. 

Span 
Kang et al. 

U sing a single Using 60 
angle B.C. Mode circular element straight 

()L 
(2003) 

(exact) elements 

"0 
~ 1 1247.5675 1247.0700 1247.5671 
0.. a 
cO 2 2489.7481 2493.9590 2489.7522 -u 
I 

"0 3 - 2937.7038 2942.5757 
~ 

~ 4 3740.4334 3741.2092 3740.4345 
0 

50 

1 1247.1131 1247.4466 1247.1132 
~ 
~ 2 2493.9771 2494.2896 2493.9773 
I-< 
~ 

I 
~ 3 2937.7679 2937.2384 2937.7678 
~ 
I-< 
~ 

4 3741.4749 3741.4112 3741.4752 

"0 
~ 1 4.3694551 4.3721593 4.3699451 
S 
cO 2 9.4982704 9.5078102 9.4992769 -u 

I 

"0 3 17.704014 17.722215 17.705837 
~ 

S 4 25.641709 25.668470 25.643747 
cO 

0 
1800 

1 1.8363460 1.8371547 1.8365554 
~ 
~ 2 5.3028579 5.3078041 5.3034600 
I-< 
~ 

I 
~ 3 11.099972 11.111971 11.101225 
~ 
I-< 
~ 

4 18.988464 19.010617 18.9905925 
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x=O x=L 

exponential : 

C~i.-I-A-L--··-··-

_ .. - .. ---+----
(incident) a+ ... ----1 1 ____ .- d+ 

(reflected) a ----.-" - .. - .. ----t---_~ (transmittea) 

: ~'!----I .. _ .. -
: ...... 1---- L .. , 

junction 1 junction 2 

Figure 8-1. Reflection and transmission of waves through a connector of length L with 

exponential variation in area between two uniform bars with areas Ao and 

AL , respectively. 
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Figure 8-2. The longitudinal power transmission through the exponential connector of 

length L between two uniform bars with areas Ao and AL , respectively; 

- A = 1 1 L1 • ---- A = 2 L1 • ............. A = 5 L1 , L ''''''0' 'L"'''O , 'L ""0' 
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exponential i 
(a) CO~f-I---··-··-

- .. - .. ----+-...,==-==-::=-= t unifor: mldelling with smallest area 

-.. -.. ---+--=~~!-! ---.. _ .. -
.... __ 1---- L ... 

(b) 

I uniform modelling v;rith geometric-mean area 

i( ~ .. - .. -i i 
~------- -1 
I l 

I ! 

I ~J i------- ~~; ____ .. _ .. _ 
'.. L .. ' 

1 1 

Figure 8-3. Two different schemes in piecewise modelling of the exponential connector: 

employment of uniform elements with (a) the smallest area and (b) the 

geometric-mean area. 
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Figure 8-4. Estimation of the longitudinal power transmission coefficient for the 

exponential connector by modelling the connector as a series of (a) three 

uniform elements (ru: = L /3 ), (b) ten uniform elements (ru: = L /10): 

-- ,exact; ---- , using the smallest area of each segment; ............. ,usmg 

the geometric-mean area of each segment. 
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1 
J1=2 ~dr-----"-"-

J1= ~_ .... ;:> 
\ -- .... ~~ ...... ", .... -~~~~ '\ 

- .. - .. ___ ~:-:""-::ii:-=~:":-;;"--- " exponential 

connector 

.. L 

Figure 8-5. Modelling the exponential connector as a non-uniform element where the 

area varies as A(x) oc xJi with J1 = 1 and J1 = 2, respectively. 
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Figure 8-6. Estimation of the longitudinal power transmission coefficient for the 

exponential connector by modelling the connector as (a) a single non­

uniform element (ill = L ), (b) a series of three non-uniform elements 

(ill = L /3): -- , exact; ---- , using the non-uniform element with f..I. = 1 ; 

............. , using the non-uniform element with f..I. = 2 . 
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Figure 8-7. (a) The computational time versus the number of elements, (b) the 

estimation error versus the number of elements; ---, the model using the 

uniform elements; ---- , the model using the non-uniform elements with 

f.i = 1; ............. , the model using the non-uniform elements with f.i = 2 . 
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Figure 8-8. Computational time versus estimation error in using piecewise models; 

-- , the model using the uniform elements; -----, the model using the 

non-uniform elements with f..i = 1; ............. , the model using the non-uniform 

elements with f..i = 2 . 
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(a) 

(b) 

Figure 8-9. A finite uniform curved beam with constant curvature: (a) modelling with a 

single-span curved element, (b) piecewise representation of the circular 

beam with a series of straight elements. 
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Figure 8-10. Results for a uniform circular beam with clamped-clamped ends for 

.i2 = 1/1200 and BL = 5°: obtained by (a) the exact, (b) the piecewise model 

using 60 straight elements; -, Re[ C(Q')]; ---- , Im[ C(Q')]. 
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Figure 8-11. Results for a uniform circular beam with clamped-clamped ends for 

%2 = 1/1200 and OL = 180' : obtained by (a) the exact (b) the piecewise 

model using 60 straight elements. -, Re [ C (Q') J; ---- , 1m [ C (Q') J. 
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Figure 8-12. A circular beam with thickness varying linearly along the length. 
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Figure 8-13. Natural frequencies of the free-clamped tapered curved beam of 

hL/2/ Ro = 0.1, a = 0.9 and ()L = r: (a) first, (b) second, (c) third and (d) 

fourth frequencies; estimated by the thinner model ( -e- ), the thicker 

model (--",*-- ), and the mean model ( ....... -6 ........ ). In the figure Off is given by 

equation (8.54). 
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Figure 8-14. Natural frequencies of the free-clamped tapered curved beam of 

hL/z/ Ro = 0.1, a = 0.9 and ()L = 20°: (a) first, (b) second, (c) third and (d) 

fourth frequencies; estimated by the thinner model ( -e- ), the thicker 

model (--""*-- ), and the mean model ( ........ ~ ........ ). In the figure n" is given by 

equation (8.54). 
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Figure 8-15. Natural frequencies of the free-clamped tapered curved beam of 

hL12 / Ro = 0.1, a = 0.9 and ()L = 40°: (a) first, (b) second, (c) third and (d) 

fourth frequencies; estimated by the thinner model (-e-- ), the thicker 

model (--,"*-- ), and the mean model ( ........ b. ........ ). In the figure n" is given by 

equation (8.54). 
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Figure 8-16. The percentage change of estimated natural frequencies versus the number 

of elements 
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Figure 8-17. Non-dimensional natural frequency for clamped-free curved beams with 

%2 = 1/1200: (a) uniform beam, i.e., a = 0, (b) non-uniform beam with 

a = 0.9. In the figure n" is given by equation (8.54) and ()L is the arc 

sub tended by the beam. 
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Figure 8-18. Re-drawing of Figure 8-17: (a) the natural frequencies of the uniform beam 

( solid lines) and their asymptotic behaviour (dotted lines with arrows), (b) 

the frequencies of the tapered beam (solid lines) versus those of the uniform 

beam (dotted lines). 
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Figure 8-19. Reflection and transmission of waves in a finite structure. 
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Figure 8-20. Mode shape of the free-clamped, circular beam with hL/z/ R = 0.1, a = 0.9 

and ()L = 15'. 
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Chapter 9. 

CONCLUSIONS 

9.1 Summary of present work 

This thesis provides a general overview and gives specific examples of a wave 

approach based on reflection, transmission and propagation of waves for one­

dimensional structures. One-dimensional structures, the properties of which are linearly 

elastic and are prescribed by known functions, were categorised as in Figure I-I. 

Among the categories, the present work was concerned with uniform structures and 

non-periodic non-uniform structures. 

A generalised wave approach based on reflection, transmission and propagation of 

waves was developed in a systematic way. The physical quantities for the motion of 

one-dimensional structures were grouped into a vector and the governing equations 

were expressed as first order differential equations. The solution of the governing 

equations defines the transfer matrix in the physical domain, which is symplectic for a 

reciprocal system and K-unitary for a conservative system. The state vector in the 

physical domain was transformed to the wave domain using the eigenvectors of the 

transfer matrix and the general forms for the properties of the transfer matrix were 

obtained in the wave domain. If waves are not coupled to each other, the transfer matrix 

is diagonal. The positive- and negative-going waves were then separated and the 

amplitudes at one point were related to those at another point according to their 

propagation direction. This is one distinctive feature of the wave approach. In the wave 
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approach, all computations are conducted in the direction of wave propagation so that 

the associated numerical results are always well conditioned. For a systematic 

application of the wave approach, the displacement, internal force and propagation 

matrices were introduced. The response to external excitation, reflection and 

transmission of waves at a point discontinuity, reflection of waves at boundaries, the 

spectral elements and the energy flow associated with waves were described using the 

matrices. The general forms for the properties of the reflection, transmission and 

propagation matrices were given for a reciprocal system. 

The wave approach provides exact and efficient computation, irrespective of the 

frequency, for the motion of uniform waveguides where the coefficients of the 

governing equations are constant. In chapter 3, the wave approach was applied to cases 

concerning straight uniform bars undergoing longitudinal motion, which are a single­

mode system. These examples gave a simple, clear demonstration of the application of 

the wave approach. In chapter 4, the wave approach was applied to cases concerning 

straight uniform beams undergoing bending motion based on Euler-Bernoulli theory. 

The beams are a two-mode system, where two propagating waves and two nearfield 

waves ocurr. It was shown explicitly that the transfer method may lead to numerical 

difficulties related to nearfield waves at high frequencies while the wave approach does 

not suffer such difficulties. The energy flow associated with the interaction two 

opposite-going nearfield waves was studied as well. The wave approach to the motion 

of uniform structures based on higher-order theories, rather than elementary theories, 

was briefly studied in section 8.2. 

There is a class of waveguides, which are not uniform but in which waves can 

propagate without reflection as they do in uniform waveguides. This class was 
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categorised as deterministically varying waveguides in this thesis. In chapters 5 and 6, 

the wave approach to the deterministically varying structures was described. Examples 

were cases concerning straight bars where the area varies as a power of x, and straight 

beams where the area and second moment of area vary as powers of x respectively. The 

response of the non-uniform structures to external forces was investigated and the 

reactive behaviour due to non-uniformity was revealed. It was shown that the wave 

approach can be applied equivalently as for uniform structures without drawbacks. It 

was seen that the potential energy per unit length associated with a propagating wave 

component is greater than the kinetic energy per unit length. The energy transport 

velocity, the velocity at which energy is carried by waves, was also derived using the 

relationship between power and energy. In contrast to that of uniform bars, it is not 

equal to the group velocity, which is formally defined by cg = dOJ/dk (for real 

wavenumbers). The velocity depends on position - it decreases as waves approach the 

apex - as well as frequency. The exponential types of deterministically varying 

waveguides were briefly studied in section 8.3. 

In chapter 7, the wave approach was applied to cases concerning thin, uniform, 

curved beams with constant curvature, the motion of which was based on Fliigge 

theory. The beams provide coupling of the radial and tangential displacements, which 

does not occur in the examples of the previous four chapters. However, in the wave 

domain, the waves are not coupled so that the problem could be simplified. The 

dispersion relation for each wave was defined by using a criterion: the imaginary value 

of the wavenumber of a positive-going wave should be negative and the energy 

transport velocity associated with a positive-going wave should be positive. The energy 
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flow associated with waves in the curved beam was revealed explicitly in terms of 

wavenumbers. Numerical results for the power transmission through aU-shaped 

structure were presented. 

In conjunction with the piecewise modelling, the wave approach can be applied to 

arbitrarily varying structures. In the approach, the arbitrarily varying structure is divided 

into a series of small segments, and then each segment is modelled by a known 

structural element. It was illustrated that a piecewise model using deterministically 

varying elements could provide rapid convergence to the exact at low computational 

cost. The approach was also applied to the motion of finite systems. A general 

procedure for obtaining the natural frequencies and mode shapes was described. The 

modal behaviour of a linearly tapered curved beam with clamped-free boundaries was 

studied when the length of the beam changed. Its asymptotic behaviour was revealed to 

be related to the pure bending and pure extensional motions. 

9.2 Proposals for future research 

The wave approach based on reflection, transmission and propagation of waves 

presented in this thesis is a general method for the wave analysis for one-dimensional 

structures. Thus it can be applied in an equivalent way to cases beyond the current 

interest. The cases may be listed as: 

Application to non-conservative waveguides: the present work was concerned 

with conservative systems. Damping destroys the conservative nature. Since the 

wave approach provides well-conditioned numerical computation, it can be 

applied equivalently to heavily damped structures where all wavenumbers are 
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complex. The energy flow associated with waves may also be of interest since 

all wave components can in principle interact to transmit energy. 

Application to non-reciprocal waveguides: the present work was concerned with 

reciprocal systems. It can be destroyed in cases such as waveguides where the 

medium is moving. In this case, the symmetry between the positive-going and 

negative-going wave motions is not assured, i.e., the symmetry condition of the 

reflection, transmission and propagation matrices does not hold. 

Application to higher-order waveguides: some examples such as bars based on 

Love's theory and beams based on Timoshenko theory were briefly described. 

The higher-order theories provide more accurate description of the motion at 

high frequencies than elementary theories. In contrast to other methods such as 

the transfer matrix method, the wave approach always provides well-conditioned 

computation even at high frequencies. 

Application to multi-dimensional waveguides: interest can also be expanded to 

two- or three-dimensional structures where the problem is reducible to one­

dimension, i.e., all the field quantities depend on only the x-axis. For example, 

the motion of thin uniform rectangular plates, where the state of cross-section is 

modelled by using admissible functions, can be solved using the wave approach. 

Application to industrial structures: eventually, the wave approach can be used 

for the motion of built-up structures. The computational efficiency and 

numerical conditioning problems in using the wave approach, rather than other 

methods, for such problems may be interesting. Combination of the wave 

approach with finite element method can also be attempted for complex 

structures. 
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Appendix A. 

BESSEL FUNCTIONS 

A.I Introduction 

In this appendix some properties of Bessel functions are summarized. They relate 

to various forms of Bessel's equation and their solutions, the recurrence relations and 

the limiting behaviour. Further details can be found in references (McLachlan 1955, 

Abramowitz and Stegun 1965). 

A.2 Bessel's equation 

Many differential equations are transformable into Bessel's equation. One of the 

very useful general forms of Bessel's equation is (Doyle 1997) 

(A. 1) 

The solution to equation (A. 1 ) is given by 

(A.2) 

where Cj and C2 represent arbitrary constants, and 

(A. 3) 
r 
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In equation (A.2), Hankel functions of the first and second kinds of order v, H~l)(Z) 

and H~2) (z) represent waves travelling toward the negative and positive z -directions, 

respectively. 

Similarly, the general form of the differential equation for the modified Bessel 

functions is 

(A.4) 

The solution to equation (A.4) is given by 

(A.S) 

where 1v(z) and KvCz) are the modified Bessel functions. 

Specifically, several forms of Bessel's equation and their solutions are 

d
2
1f/ (1 + 2v) dlf/ k 2 - 0 -2-+ + If/- , 

dz z dz 
(A.6a,b) 

(A.7a,b) 

(A.8a,b) 

Note that equation (A.6a) is related to the governing equation of the motion of non-

uniform bars with a polynomial variation in area. 

Consider a combination of equations (A.7a) and (A.8a) such as 

[ 
d2 d][ d

2 
d] Z-2 +(1+v)-+k2 Z-2 +(1+v)--k2 If/=O 

dz dz dz dz 
(A. 9) 

When it is expanded, a differential equation of 4th order is obtained as 
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d 4 d 3 d 2 

Z2 -{+ 2(2 + v)z-{-+ (1 + v)(2+ v)~-elf = 0 
dz dz dz 

(A. 10) 

Note that this equation is related to the governing equation of the motion of non-

uniform beams with a polynomial variation in area and the second moment of area. The 

general solution to equation (A. 10) is given by 

A.3 Recurrence relations 

The Bessel function of the first kind, JvCz), satisfies 

(A.l2a,b) 

Expanding the derivatives appearing in equation (A. 12) gives 

(A. 13a,b) 

where ()' denotes the derivative over z. Alternatively, subtracting (A.13b) from (A. 13 a) 

or adding them gives 

2v 1 
J Y+1 (z) = -;-Jy(z) -JV _ 1 (z), J~(z) ="2{ J y _ 1 (z) - J v+1 (z)} (A.14a,b) 

Equations (A.12) to (A.l4) are called the recurrence relations of Bessel functions and 

also hold for the functions I:(z), H;Il(z) and H;2)(Z). 

Similarly, the recurrence formulas of the modified Bessel functions are 

summarized as 

(A.15a,b) 

(A.16a,b) 
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! [zv Kv(z) ] = _zv Kv_l(Z) , 

2v 
Kv+1(z) =-Kv(z)+Kv_1(z), 

z 

zK~(z)-vKJz) = -zKv+1(z) 

AA Bessel functions of half-integral order 

(A. 17a,b) 

(A. 18a,b) 

(A. 19a,b) 

(A.20a,b) 

Bessel function of half-integral order (2n + 1)/2, where n is an integer, can be 

expressed in closed form in terms of elementary functions. Several of them are 

H (l)( ) - 'ff iz - iH(l) ( ) 1/2 Z - -1 -e - - -1/2 Z 
1CZ 

H (2) ( ) - 'ff -iz - iH(2) ( ) 1/2 Z - 1 -e - -1/2 z 
1CZ 

11/2 (z) = J 2 sinh z , 
1CZ 

1-1/2 (z) = J 2 cosh z 
trz 
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(A.21a,b) 

(A.22) 

(A.23a,b) 

(A. 24) 

(A.25a,b) 

(A. 26) 

(A.27a,b) 



(A.28) 

A.S Limiting behaviour 

When Izl »1 and z is real, the Bessel functions asymptote to 

(A.29a,b) 

(A.30a,b) 

Thus it follows that 

(A.31 a,b,c,d) 

(A.32a,b,c,d) 

Now consider the case when Izl« 1. When v = 0, the Bessel functions tend to 

(A.33a,b) 

Ko (z) ~ -In(z) (A. 34a,b) 

where r ~ 0.577216 is Euler's constant. When the real value of v is positive, they are 

(A.35a,b) 

(A. 36a,b) 

where rc v) is the gamma function. 
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