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Reliable and timely information on dlseqse;spec;ﬁc treatment burdens within a health system is
critical for the planning and monitoﬁ:hg (.)f“seryii:‘c‘é provision. Health Management Information
Systems (HMIS) exist to address this V:r‘vieed at\ .’national scales across Africa but are failing to
deliver adequate data due to widespread under-reporting by health facilities. Faced with this
inadequacy, vital public health decisions often rely on crudely adjusted regional and national
estimates of treatment burdens. This study has taken the example of presumed malaria in
outpatients within the largely incomplete Kenyan HMIS database and has developed geostatistical
modelling frameworks for the prediction of the monthly tally of treatinents for malaria (MC) at all
facilities and months where this value is missing. Three different kriging methodologies were
compared to test the effect on prediction accuracy of (a) the extension of a spatial-only to a space-
time prediction approach, and (b) the replacement of a globally-stationary with a locally-varying
random function model. Space-time kriging was found to produce predictions with 98.4% less
mean bias and 14.8% smaller mean imprecision than conventional spatial-only kriging. A
modification of space-time kriging that allowed space-time variograms to be recalculated for
every prediction location within a spatially-local neighbourhood resulted in a larger decrease in
mean imprecision over ordinary kriging (18.3%) although mean bias was reduced less (87.5%).
Because the MC variable included non-spatial variation caused by differences between individual
facilities and their catchment populations, a series of studies were conducted to model catchment
population size. These predictions require refined models that incorporated rich local data that
were not available at the national level so directly estimated catchment population values were not
available. An alternative approach was developed that incorporated data on the total number of
outpatients seen at facilities each month as a proxy measure of catchment size. Two modelling
frameworks were developed to implement this approach and the most accurate model was
identified in a cross-validation exercise. A model-based and an empirical method were developed
to measure the uncertainty of predictions of MC and how this changed as sets of predictions were
aggregated in space and time. The final set of predictions enabled the national treatment burden
for presumed malaria in the government health sector to be defined during the 1996-2002 period.
During this time, the national annual treatment burden was predicted as 6.8 million cases, with an
expected margin of error of 1.3%. The modelling framework presented here provides for the first
time reliable information from imperfect HMIS data to support evidence-based decision making

at national and sub-national levels.
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Chapter 1

1. Introduction

1.1 Project motivation

The United Nations Millennium Development Goals (MDGs) reflect the principal
development challenges facing the international community (UN, 2000). The eight
goals, agreed by 147 member states of the United Nations in 2000, consist of 18 specific
targets to be met by 20135, and arc accompanied by 48 quantifiable indicators. Three of
the eight goals relate explicitly to the most prominent public health issues faced by low-
income countries: the reduction of child mortality; the improvement of maternal health;
and the combating of HIV/AIDS, malaria, tuberculosis, and other discases.
Underpinning all efforts to mect these public health challenges is the need to strengthen
health care systems in low-income nations (WHO, 2000a). With this renewed focus on
health system functionality has come growing recognition of the fundamental
importance of health information to form an evidence base for decisions about health
system organization, financing, management, and delivery (Murray et al., 2004,
AbouZahr and Boerma, 20035; Macfarlane, 2005; World Economic Forum, 2006).
Reliable and timely information on physical, human and financial health system
resources, the type, quality and coverage of health services offered to the population in
need, and the impact of those services on population health is essential for the effective
planning of service provision, the implementation of targeted public health programmes,
the allocation of resources, the monitoring of intervention strategies, and the evaluation

of policies and programmes (Murray ct al., 2003, 2004).
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Although large quantities of health data are collected worldwide through population-
based surveys, surveillance programmes, vital registration systems, and routine health
system records, data in low and middle-income countries remain incomplete,
inconsistent and inadequate to meet the challenges set by the MDGs. A basic
information requirement for the planning and delivery of drugs, staff and other
commoditics within a national health system is accurate and up-to-date data on the
number of patients utilising different health facilities and the types of illness for which
they are treated. Such information requirements are addressed in most countries by some
form of national Health Management Information System (HMIS) that, among many
other functions, coordinates the routine acquisition of trcatment records from health
facilitics and the transfer, compilation and analysis of these data through district,

regional and national levels.

A perfect HMIS requires all health facilities to report promptly at regular intervals,
allowing comprehensive quantification of treatment events through time and space
across the health system. The reality of HMIS in Africa and elsewhere stands in marked
contrast to this ideal (WHO/SEARO, 2003; WHO/AFRO, 2003; Setel et al., 2005;
WHO, 2005a; Health Metrics Network, 2005a). Typically, many facilitics never report
or report only intermittently resulting in spatially and temporally incomplete national
data (Al Laham et al., 2001; MoH Kenya, 2001a; Rudan et al., 2005; Health Metrics
Network, 2005b). Following several decades of donor investment in HMIS across Africa
the incomplete nature of routine national reporting has shown little improvement (Evans
and Stansfield, 2003; AbouZahr and Boerma, 2005). The widespread inadequacy of
national HMIS data sets presents a substantial obstacle to evidence-based public health
decision-making (Snow et al., 2003a). Faced with poor data coverage, important public
health metrics are often cstimated using rudimentary methods to account for missing

values (WHO, 1995; Kindermans, 2002; Derriennic, 2003).

The Kenyan HMIS is typical of many in Africa, with widespread under-reporting by
health facilities and a largely incomplete national database (MoH Kenya, 2001a). A
particularly important health system metric in Kenya, as elsewhere in sub-Saharan
Africa, is the treatment burden for malaria, defined here as the total number of malaria
diagnoses that are made at Government of Kenya (GoK) health facilities in a given

month or year. Malaria is the most common diagnosis in outpatients across Kenya (MoH
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Kenya, 2001a) and the treatment protocol for this disease is undergoing a period of
transition in Kenya due to the decreasing efficacy of existing drugs and the introduction
of new, more expensive ones (Kindermans, 2002; WHO, 2005b; MoH Kenya, 2005c¢).
The procurement of these new drugs requires accurate quantification of the number of
treatments that are required (WHO, 2006). Such quantification is also required if donor
assistance is to be obtained from new investment mechanisms such as the Global Fund

to Fight AIDS, Tuberculosis, and Malaria (Murray et al., 2003; Ashraf, 2005; GFATM,
2005).

This project addresses the problem of producing reliable estimates of the treatment
burden for malaria in the Kenyan government’s formal health sector using incomplete

data from the national HMIS database.

1.2 Project aims and approach

1.2.1 Project aims and objectives

The overall aim of this project is to provide reliable national and sub-national estimates
of the annual outpatient treatment burden for malaria at health facilities in the formal
government health sector in Kenya. This overall aim will be achieved by meeting the

following specific objectives:

(1) to develop models by which missing values in the Kenyan HMIS outpatient malaria
record can be predicted (along with estimates of prediction accuracy) to produce a

spatiotemporally complete database;

(2) to evaluatc these models and identify the best-performing approach in terms of

prediction accuracy; and

(3) to implement this best-performing approach to cstimate monthly and annual
outpatient trecatment burdens for malaria at the national, provincial, and district levels

with accompanying uncertainty estimates.
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1.2.2 Project approach

Whilst the Kenyan HMIS is characteristic of others in Africa in terms of the incomplete
status of the national database, it is distinct in that the vast majority of health facilities
have been recently georeferenced (Noor et al., 2004, Noor 2003). This process involves
the identification and recording of latitude and longitude co-ordinates for cach facility,
allowing the construction of a spatial database. This referencing means that data
(monthly facility records) and unknown values (where facilities have failed to report in a
given month) can be placed in a spatial framework, and the task of predicting the
unknown values can be considered a spatial modelling problem (Cressie, 1993; Bailey

and Gatrell, 1995).

Geostatistics is a field of spatial modelling that incorporates established tools such as
kriging for the prediction of unknown values in space from spatially distributed data
(Matheron, 1971; Journel and Huijbregts, 1978; Isaaks and Srivastava, 1989; Goovaerts,
1997). Although gcostatistics incorporates a wide array of tried-and-tested spatial
modelling techniques it is more than simply a ‘tool-box” of algorithms to accomplish
specific tasks with spatial data. Geostatistics is founded on the theory of regionalized
variables (Matheron, 1971), a conceptual probabilistic modelling paradigm that centres
on the characterisation and exploitation of spatial autocorrelation in the variable of
interest. The robust yet flexible nature of the geostatistical paradigm has led to its
extension, beyond its original sct of core tools, to new approaches that are adapted to

suit a wide range of data scenarios and modelling objectives.

This project has adopted a primarily geostatistical approach to the objectives defined
above. The strategy throughout has bcen to extend the application of established
geostatistical techniques to other approaches that may be better suited to the
characteristics of the HMIS data set and to compare quantitatively the predictive
performance of different techniques. The HMIS database consists of monthly records
collected at a set of spatially distributed facilities over several yecars. As such, an
alternative to representing these data as a series of independent spatial data sets is to
place all data in a single space-time framework. A particular focus of this project has
been the use of space-time geostatistical approaches that can utilise simultaneously

spatial and temporal autocorrelation in the property of interest in order to predict
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unknown values distributed across space and through time. A further focus has been the
local characterisation of spatial autocorrelation structures, taking advantage of the large
number of data distributed across space with the aim of more accurately characterising

the spatial heterogeneity displayed by the HMIS data.

A central theme of this project has been the issuc of spatial standardisation. The HMIS
data represent monthly counts of malaria diagnoses at each facility. When count data
such as these are used in public health modelling settings, the raw data are usually
standardised by some measure of the population from which that count was generated
(Lawson, 2001). In the current case, each count is influenced by a range of factors
specific to cach facility such as its size, function, and catchment population, and
accounting for these factors may reveal greater spatial structure in the property of
interest which may, in turn, allow missing values to be predicted with greater accuracy.
Because very little facility-specific information is available across Kenya, a key concern
of this project has been to develop novel strategies that allow a degrce of spatial
standardisation between count data at different facilitics. Again, the effect of these
different strategies on the ultimate accuracy of predictions of missing values was

evaluated.

1.3 Contributions made by the project

This project has resulted in, for the first time, reliable estimates of the annual outpatient
treatment burden for malaria at health facilitics in the formal government health sector in
Kenya at the national, provincial and district levels. These estimates represent a tangible
resource to assist evidence-based decision-making for the provision of anti-malarial
resources in this under-funded health service. In meeting this primary objective, a series

of further contributions have been made by this project and these are summarised below.

HMIS outpatient data on discase-specific counts are gencrally collected cach month
from a set of spatially-distributed health facilities, resulting in a space-time data set. This
study has shown that such data may display spatial autocorrelation even before any
standardisation to account for facility-specific factors and that, where present, this

spatial structure can be exploited using established geostatistical techniques to predict
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missing values. Furthermore, this study has shown that these data may display
substantial temporal, as well as spatial, autocorrelation. By comparing spatial-only and
space-time models for geostatistical prediction, this study has shown that, for the case of
Kenya, the space-time approach, by exploiting temporal as well as spatial
autocorrclation in the data, is able to predict missing values with greater accuracy than

the spatial-only approach.

The spatial structurc of discase-specific HMIS data is determined, in part, by the spatial
pattern of the disease in the population across a country which can often display
substantial spatial heterogeneity in both first and second order characteristics, driven by
climatic, topographic and demographic factors. Where such spatial characteristics are
present, the adoption of a globally-stationary random function (RF) model for
geostatistical prediction may be less appropriate than one in which only smaller sub-
regions are considered stationary. This study has developed a local approach to space-
time geostatistical prediction which cnables space-time autocorrelation structures to be
estimated and modelled within a spatially-local neighbourhood around cach prediction.
By comparing the global and local space-time models this study has shown that, for the
case of Kenya, the local approach is able to predict missing values with greater accuracy
than the global approach. However, this increase in accuracy was modest and came at a

substantial price in terms of labour and computational resources.

Public health data in the form of counts are usually standardised by some measure of the
population from which the counts were gencrated. For HMIS data the appropriate
denominator is the catchment population of cach facility, but such information is not
available for facilities across Kenya. One response is to estimate catchment populations
from census-derived population maps within a GIS. A simple and widely-used
catchment model can be generated by defining Thiessen polygons around each facility.
As part of a wider project (led by Abdisalan Noor at the Kenya Medical Research
Institute (KEMRI)-University of Oxford-Wellcome Trust Collaborative Programme) to
develop catchment models for Kenyan health facilities, this study has developed
methods for assessing the assumptions that underpin the use of Thiessen polygons in this
context and has shown that, for a set of test facilities in four Kenyan districts, these

assumptions are invalid.
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In the absence of facility catchment population estimates, an alternative approach to the
standardisation of HMIS count data was developed in this study. Data on the total count
of all-cause outpatient cases (i.e. not limited to any one disease) at cach facility were
used to define denominators with which to standardise the disease-specific count data,
with the rationale that the total outpatient count acts as a proxy measurc of facility
catchment populations. In the Kenyan HMIS, however, the use of data on the total count
as a denominator was limited by the fact that these values were only available for the
same points as the disease-specific count data, meaning that the denominator itsclf had
to be predicted for unsampled locations. By devcloping and testing an alternative
prediction framework that incorporated total count data in this way, this study showed
that this approach can substantially increase the spatial autocorrelation in the resulting
standardised count data, which can then be predicted using geostatistical techniques with
a greater accuracy than the raw count data. However, this study also showed that the
uncertainty introduced by the need to predict the denominator at unsampled locations
can negate much of the benefit of using a standardised numerator, and a sccond

predictive framework was developed in which this uncertainty was reduced.

By developing and testing a scries of geostatistical modelling frameworks that
incorporate spatial and space-time tcchniques, globally-stationary and locally-stationary
models, and alternative ways of standardising HMIS count data, this study has been able
to compare quantitatively the effect of cach modclling strategy and identify that
framework that is most suitable for predicting missing malaria outpatient data in the
Kenyan HMIS. A stochastic simulation approach was developed and tested that adapted
a sequential Gaussian simulation algorithm in order to generate a model of the

uncertainty associated with predictions made within the final modelling framework.

In summary, this study has developed and tested geostatistical modcls that can predict
missing values within the Kenyan HMIS data base to an acceptable level of accuracy,
with realistic accompanying measurcs of prediction uncertainty. This study, therefore,
serves as an example to other public health practitioners faced with the task of delivering
rcliable metrics from imperfect HMIS data. The usc of such techniques was made
possible in Kenya by the existence of a comprehensive georeferenced database of
government health facilities. As such, this project also serves as an examplc of the

importance and potential benefit of developing nationwide health service GIS
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frameworks to health planning agencies across the developing world.

1.3.1 Publications

The research carried out for this project has resulted (in part or in full) in the following

publications (or submissions) and conference presentations.

Peer-reviewed journal papers

Gething, P.W., Noor, A.M., Zurovac, D., Atkinson, P.M.,, Hay, S.I., Nixon, M.S., and
Snow, R.W., 2004. Empirical modelling of government health service use by children

with fevers in Kenya. Acta Tropica, 91, 227-237.

Gething, P.W., Noor, A.M., Gikandi, P.W., Ogara, E., Hay, S.I., Nixon, M.S., Snow,
R.W., and Atkinson, P.M., 2006. Improving data from imperfect health management

information systems in Africa using space-time geostatistics. PLoS Medicine, 3.

Gething, P.W., Noor, A.M., Gikandi, P.W., Hay, S.I., Nixon, M.S., Snow, R.W., and
Atkinson, P.M., 2006. Developing geostatistical space-time models to predict malaria
outpatient treatment burdens in Kenya. Submitted to Geographical Analysis, under

review.

Gething, P.W., Atkinson, P.M., Noor, A.M., Gikandi, P.W., Hay, S.I., and Nixon, M.S.,
2006. A local space-time kriging approach applied to a national outpatient malaria data

set. Computers & Geosciences, under review.

Noor, AM., Amin, A.A., Gething, P.W., Atkinson, P.M., Hay, S.I., and Snow, R.W,,
2006. Modelling distances travelled to government health services in Kenya. Tropical

Medicine and International Health, 11, 188-196.
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Conference presentations

Empirical modelling of Kenyan health facility catchments as an aid to predicting malaria

risk. Epidemiology.: a spatial perspective 2003, Salford, UK, 2003.

Optimising the utility of national malaria data for health system planning in Kenya using

spatiotemporal analysis. Geostars UK 2005, Belfast, UK, 2005.

Optimising the utility of national malaria data for health system planning in Kenya using
spatiotemporal analysis. Workshop on Recent Advances in Modelling Spatio-temporal

Data, Southampton Statistical Sciences Research Institute, Southampton, UK, 2005.

1.4 Thesis Qutline

Chapter 2 provides detailed information on specific issues that provide a contextual
backdrop to the study including the current status of health information in low-income
countries and the role of HMIS in providing important health information. Relevant
information is given on Kenya and its health system, how the Kenyan HMIS operates
within this system, and the particular relevance of malaria as a public health problem.
Chapter 3 presents the two main data sets on which this project was based: routine
malaria outpatient data from the Kenyan HMIS, and a corresponding spatial database of
health facilities. The construction and compilation of these data sets are described and
exploratory analysis is presented that describes the broad spatial and temporal
characteristics of the outpatient data set. Analysis is also included that examines the
extent and patterns of missing data. Chapter 4 describes the principal established
methods used in this project starting with an overview of the conceptual underpinnings
of geostatistics, and the key concepts and tools by which the approach can be used to
characterisc and predict spatial phenomena. The extension of spatial-only geostatistical
techniques to space-time settings is also discussed and a brief review is included of the
use of geostatistical methods in public health and malaria settings. Chapter 5 presents
the conceptual framework that was developed in this project to meet the aims stated in
this chapter. The various factors that are likely to influence malaria treatment burdens at

different facilitics are identificd and the way in which these are likely to vary in space

10
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and time is discussed. In light of this discussion two distinct modelling strategies are
proposed and the rationale for these is explained. The first involves the prediction of
catchment populations for facilities across Kenya, and this work is presented in Chapter
6. The sccond involves the inclusion of a second outpatient variable from the HMIS in a
geostatistical prediction framework and two such frameworks are developed and tested.
Chapter 7 addresses different techniques for geostatistical prediction and implements a
comparison of spatial-only and space-time approaches. Globally stationary and locally-
varying models are also compared. In Chapter 8, the different prediction frameworks are
implemented to predict missing malaria cases (MC) for a test data sct and their
predictive accuracies are compared. An uncertainty model is also developed that
provides model-based measures of prediction uncertainty using an adapted space-time
sequential Gaussian simulation technique adapted to represent the modelling framework
used. In Chapter 9, the final modelling framework is implemented using the full data set
to predict malaria treatment burdens across Kenya. An empirical model validation
approach is also developed to provide estimates of the expected prediction errors at
different levels of spatial and temporal aggregation. Chapter 10 is a discussion chapter
that considers some of the most important issues that have arisen during the project, and
looks ahcad to future avenues for research that have resulted. The thesis ends with a

brief conclusion in Chapter 11.
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2. Background

2.1 Introduction

Having laid out the motivation for this study and its specific objectives in Chapter 1, this
chapter is designed to offer detailed information on specific issues that provides a
comprehensive backdrop to the problem addressed. Information is given across a
spectrum of detail, from a general description of the health information field in which
this study is best categorised to a specific account of the niche that it aims to fill: the use
of incomplete routine outpatient data from HMIS to estimate malaria treatment burdens
in Kenya. The over-arching issue of inadequate health information in low-income
countries 18 introduced first, and the importance, current status, and potential of HMIS to
provide vital information is discussed. An account is given of the provision of health
carc in Kenya, and how the Kenyan HMIS currently contributes to the functionality of
the health system. A summary of the burden of malaria in Kenya is provided and the
importance of producing reliable estimates of treatment burdens is explained, along with

the pivotal role of HMIS in providing such estimates.

2.2 Health information in low-income countries

2.2.1 Requirements for health information

The MDGs have brought into sharp focus the need for wholesale improvements in the
availability of reliable and timely health information as part of international efforts to

strengthen health systems in low-income countries (WHO, 2000a; Murray ct al., 2004;

13
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AbouZahr and Boerma, 2005; Macfarlane, 2003; UN, 2006; World Economic Forum,
2006). The neced to improve the cvidence base for public health decision-making
(PARIS21, 2004; Scott, 2003) is reflected in numerous established and emerging
programmes from international health and donor agencies such as the World Health
Organisation (WHO) (WHO, 2000a, 2000b) and the Roll Back Malaria partnership
(RBM) (RBM, 2000), and the launch of new initiatives such as the Ellison Institute
(Murray ct al., 2004; Horton, 2005), the Health Metrics Network, and the Partnership in
Statistics for Development in the 21st Century (PARIS21).

Health information is required in a multitude of forms to meet the diverse requirements
of different regional, governmental, and international public health actors. Information is
required on the health status of populations, the characteristics of the health system and
services available, and the efficacy of the health system in benefiting public health. The
list of indicators included in the MDGs (UN, 2001) serves to highlight those public
health metrics considered most important to the international development agenda.
These include both population health indicators (such as infant and child mortality,
maternal mortality and HIV prevalence, and the prevalence and death rates associated
with malaria and tuberculosis) and health service indicators (such as child immunization
coverage, the provision of obstetric care, the coverage of malaria preventative and
curative measures, the detection and appropriate treatment of tuberculosis, and the

proportion of the population with sustainable access to essential drugs).

Whilst the establishment of a small number of clearly defined public health indicators
within the MDGs is a powerful tool to drive global public health policies, the
implementation of inclusive and effective national-level health systems requires more
comprehensive information on the full spectrum of public health challenges and the
type, quality, and coverage of services that are provided (AbouZahr and Boerma, 2005).
Furthermore, these data are required at finer spatial and temporal resolutions in order to
identify intra-national discrepancies in public health status or service provision to allow
targeted public health programmes and the allocation of resources, and to drive
decentralized policy making. In addition to the monitoring and evaluation of population
health and service provision, effective health system management requires
comprehensive, timely, and reliable information on the demand for services (e.g. the

number of treatments being administered for a given condition) and the status and flux
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of human and financial resources, physical assets, and logistics supply (Health Metrics

Network, 2005¢).

2.2.2 Sources of health information

The mechanisms and resources for generating and archiving health data are generally
substantially under-developed in low-income countries compared to the systems in place
in higher-income nations. Nevertheless, large numbers of health data are collected cach
year in low-income countries from a range of sources and by a variety of agencies
addressing different information needs. A useful distinction is between active and
passive data collection. Active data collection involves proactive methods of obtaining
health data such as surveys and surveillance systems and is usually motivated by specific
information requirements. Passive collection refers to systems that record data on a
routine basis such as the collection of patient records at health facilities, and is often
motivated only by a gencral, and often ncbulous, requirement for health information.
Both these approaches can provide information on scrvice provision and the health
status of the population, although cach has inherent strengths and weaknesses in meeting

specific information needs.

Active population-based mechanisms for generating health data are implemented in
many low-income countries worldwide and include houschold surveys and surveillance
programmes. Population surveillance and survey ecfforts are becoming increasingly
internationally coordinated (Health Metrics Network, 2005d). Three of the most
prominent international household survey initiatives are the Demographic and Health
Survey (DHS), the Multiple Indicator Cluster Survey (MICS), and the World Health
Survey (WHS). DHS is funded largely by the United States Agency for International
Development (USAID) and is the largest international survey programme, having been
implemented in over 75 countries since its inception in 1984. DHS surveys are
implemented approximately every five years in the target countries and consist of
nationally representative houschold surveys with large samples of up to 30,000
households providing population and health data on a wide range of indicators. MICS is
a UNICEF initiative developed in 1994 to provide household survey data on a range of
child health and development indicators (UNICEF, 1999). MICS surveys have been
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carried out in over 60 countries during 1995 and again during 2000, with a further round
currently in progress. The WHS is a recent WHO initiative that aims to enlist Ministries
of Health around the world to implement a standardised module-based population survey
to collect data on population health status, risk factors, and the responsiveness, coverage,
access, utilisation, and cost of health services. These three internationally coordinated
population-based survey programmes arc designed to provide statistically sound,
internationally comparable estimates of key population health indicators and have been
developed or adapted largely with the aim of monitoring the health-related targets set out

in the MDGs.

A further source of actively-collected population health data is provided by longitudinal
sentinel surveillance studics. In contrast to the national snap-shot provided by individual
houschold surveys such as DHS and MICS, longitudinal sentinel surveillance studies are
ongoing efforts that aim to monitor prospectively at regular intervals the same set of
individuals within a sample community in order to better assess health status and
interventions through time. As with houschold surveys, such efforts are becoming
internationally coordinated to enhance cross-study comparability, principally through the
INDEPTH Network Demographic Surveillance Systems (DSS) which currently

incorporates 31 surveillance sites in 17 low-income countries (IDRC, 2002; Sankoh et

al., 2004).

The substantial international investment that has allowed the ecstablishment of
coordinated active data-collection programmes such as DHS, MICS, WHS and DSS has
led to tangible increases in the availability and quality of population-based health data
with which to monitor intermational targets such as the MDGs. Whilst such data are
widely used by national policy-makers, their utility is limited by their spatial and
temporal coverage and resolution. National household surveys such as DHS are
designed to be nationally representative and data are generally available at no finer level
of spatial disaggregation than the first-level administrative unit (usually the province).
This severely limits their usc for decentralized (e.g. district level) decision-making.
Furthermore, the large duration between repeat surveys (~ 5 years) limits the scale of
temporal patterns that can be monitored. Surveillance studies such as DSS represent, in
some respects, the inverse situation, providing fine resolution spatial and temporal

coverage but only over a small local areca that is not necessarily nationally
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representative. Whilst surveillance studies often collect high-quality data on a rich array
of health variables, national houschold surveys are generally limited to a relatively small

set of variables.

National health systems cannot rely on active population-based survey and surveillance
data alone to meet their health information requirements. If limited health system funds
are to be used efficiently to maximise the efficacy of service delivery in low-income
countries, health systems require reliable data on a much more comprehensive suite of
population health and service variables at substantially finer spatial and temporal
resolutions. Inclusive information on health service demand, provision, and functionality
can only be feasibly supplied from within the health system itself, using passively
collected data obtained on a routine basis by health system facilitics and practitioners.
Two data collection mechanisms that often constitute the backbone of information
systems within low-income health services are vital registration (VR) systems and health
management information systems (HMIS). VR systems are designed to provide the most
fundamental population metrics such as births, deaths, and, crucially, the causes of
death, ideally based on an internationally standardised classification procedurc such as
the International Classification of Diseases (ICD) (WHO, 2004b). In low-income
countries, VR systems generally provide only an incomplete and fragmented record of
vital events and are often based on unreliable methods for determining cause of death
such as verbal autopsy (Snow et al., 1992b; Mahapatra and Chalapati Rao, 2001; Morris
et al.,, 2003; Silvi, 2003; Sibai, 2004; Mathers et al., 2005). HMIS often perform a
number of functions but their core role is generally to coordinate the routine collection
and collation of facility-based records of morbidity and mortality along with
management and financial data. As discussed in Chapter 1, data from HMIS are the

principal focus of this project and these systems are now discussed in more detail.

2.3 HMIS in Africa

2.3.1 Definitions and functionality

The term health information system (HIS) is often used in the broadest sense to

encompass all data collection instruments, actors, resources, and institutions involved in
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the collection of health data at the national level (Ustiin et al., 2003). Different
Ministries of Health define different information subsystems as being either components
of, or external to, their national HIS. Furthermore, other countries use the term health
management information system which tends to be used more specifically to refer to a
well defined information system operated by a Ministry of Health to coordinate routine
data collection. In some cases, a formal restructuring has been implemented in which an
HIS has been modified and relaunched as an HMIS. This adjustment has often been
motivated by a desire to refocus data collection and use, often in line with a policy of
health scrvice decentralisation and with an emphasis on managers utilizing health
information at the facility and district level (MoH Kenya, 2000; Gladwin et al., 2002;
Mutemwa, 2006). For the purposes of this discussion, the term HMIS will be used
exclusively, accepting that in some cases HIS and HMIS are one and the same entity,

whilst in others they are quite distinct.

Definitions of HMIS abound and rarcly correspond exactly (Health Metrics Network,
2005¢c). If active population-based data collection mechanisms can be reasonably
excluded from the definition then the corc function of HMIS can be stated as the
provision of routine facility-based data. In a fully-functional HMIS, these routine facility
data provide both service and management information. Service information relates to
both supply (the services available at each facility, and the quality, capacity, and
coverage of service provision) and demand (records of service use, the numbers of
inpatients and outpatients being treated and what they are being treated for).
Management information relates to the wide range of ancillary data nceded for the
efficient planning, monitoring, and implementation of health service delivery.
Information 1s required on human resources (e.g. health personnel, staffing levels and
turnover, ratio of population to health workers), finance (e.g. disbursement and
expenditures, efficiency monitoring, annual budgets and accounts, ratio of population to
expenditure, expenditure by the public), physical assets (e.g. records of capital
investment, buildings and equipment supply, status, maintenance requirements and life
span), and logistics (c.g. data to estimate requirements of drugs, vaccines, contraceptives

and other essential medical supplies).

Some form of HMIS is operated by most Ministries of Health across sub-Saharan Africa

and elsewhere in the developing world. In the overwhelming majority of low-income
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nations, however, these systems are considered to be severely underperforming or failing
completely, and unable to meet basic health information requirements (Keller, 1991;
Avgerou, 1993; Cibulskis and Hiawalyer, 2002; Gladwin ct al., 2002, 2003; Littlejohns
et al.,, 2003; Chaulagai ct al., 2005; Mutemwa, 2006). Data from HMIS are seen as
fragmentary and biased by both policy-makers and the academic community. This
scepticism about the quality of HMIS data has led to a gross disparity between the level
of resources that are invested in their gencration and the extent to which they are used as
a basis for either rescarch or decision making. This disparity can only be reduced by
improving the reliability of information that can be obtained from HMIS. Whilst
wholesale improvements in HMIS infrastructure must remain the long-term goal, the
reliability and, hence, utility of current HMIS data can be improved using statistical

modelling, and it is this rationale that has motivated the current project.

2.3.2 Limitations of HMIS outpatient data in Africa

The focus of this project is on HMIS data as a means of quantifying treatment burdens
for a given condition, using the example of malaria in Kenya. The metric of interest is
the number of outpatients that are treated for the disease in a given month or year in
facilities around the country. Such information is best supplied from routine outpatient
records. A principal function of all HMIS is the collection and transfer of these records
from all facilities through district and provincial levels and their ultimate collation into a
national database. Whilst the problems and deficiencies in HMIS-generated outpatient
data vary between countries, a common set of limitations can be identified that restrict
the utility of these data for the delivery of information to health decision-makers that is
reliable, accurate and representative. These generic limitations can be divided into those
internal to HMIS — failings or weakncsses at specific points within the system — and
those cxternal to it — operating outside the system but reducing the value of the

information that can be obtained.
2.3.2.1 Internal constraints

In an effective HMIS, routine outpatient data are based on accurate diagnosis and

comprehensive registration of cases at the facility level and consistent reporting of these

19



Chapter 2 Background

records (usually monthly) to the next level in the administrative framework. Numerous
studies have been undertaken across Africa to assess HMIS functionality, along with
others that have focused on related clinical practices. Many health facilities, especially
those in peripheral rural areas, have limited or no access to laboratory facilities for the
analysis of samples with which to confirm diagnoses of malaria and other prevalent
communicable diseases. In a study of 81 government health facilities in four districts of
Kenya, 42% had access to a functional microscope (Zurovac et al., 2002). In a study in
Ethiopia, 53% of sampled facilitics had the capacity for laboratory confirmation of
malaria, although this was as low as 33% for health centres alone (WHO, 2001b). A
Ugandan study reported that 51% of facilities had the capacity for laboratory
confirmation of malaria, 44% for tuberculosis, and 21% for meningococcal meningitis
(CDC, 2000). Furthermore, even where laboratory tests are available, they are often
inaccurate (Zurovac ct al., 2006), and arc often ignored in diagnoses (Barat et al., 1999).
In the absence of laboratory facilitics, diagnoses for malaria and other discases are
generally based on clinical examination. Although efforts have been made by the WHO
and others to provide guidelines and diagnostic algorithms to assist clinical diagnosis,
increases in diagnostic accuracy have been limited (Redd et al., 1992, 1996; Smith et al.,
1994). This is partly due to the overlap of symptoms displayed by common
communicable diseases. The symptoms of malaria can overlap with those of pneumonia,
hepatitis, influenza, viral encephalitis, haemorrhagic fever and meningitis, among others
(Warrell, 2002; Kallander ct al., 2004). In practice, presumptive diagnosis and treatment
of all fevers as malaria is the norm in many malarious areas (Bloland et al., 2003). The
WHO Integrated Management of Childhood [llnesses (IMCI) programme, developed to
improve clinical diagnosis and treatment practices in areas with limited laboratory
access, advocates that all febrile children in high risk areas be considered to have, and be
treated for, malaria (WHO, 1997; Perkins et al., 1998; Gove, 1998). Various studies
have retrospectively tested clinically diagnosed malaria cases using laboratory
techniques to asses the accuracy of clinical diagnosis for outpatients. Zurovac et al
(2002) found that, although sensitivity (the proportion of patients with malaria who were
correctly diagnosed as such) exceeded 90% in four Kenyan sentinel districts, specificity
(the proportion of patients without malaria who were correctly diagnosed as such) was
much lower (39%). A study of peripheral health facilities in one district of Tanzania
reported a positive predictive value (PPV — the proportion of positive diagnoses that

were correct) of clinical diagnosis of 44% across all ages (Font et al., 2001). A study in
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rural Mozambique found a PPV of 89% (Loveridge et al., 2003). The poor availability of
accurate diagnostic methods and the institutionalized presumptive treatment of fevers as
malaria means that there is likely to be a substantial discrepancy between HMIS
outpatient records of diagnosis and treatment for malaria and the true extent of

outpatient malaria morbidity.

A further widespread and fundamental limitation of HMIS in Africa is the extensive
under- and non-reporting of routine data from health facilities (Al Laham et al., 2001;
MoH Kenya, 2001a; Rudan et al., 2005; Health Metrics Network, 2005b). Reasons for
under-reporting include resource constraints, such as a shortages of outpatient registers
and reporting forms, limited means of sending data, and lack of staff training (WHO,
2001b; Chilundo et al., 2004; Health Metrics Network, 2005¢). Furthermore, whilst
time-demands on front-line health workers for data recording and reporting are often
considerable (Braa ct al., 1997), feedback of HMIS information from higher levels to
peripheral facilities is usually limited. This inequity can lead to diminished motivation
for busy health workers to commit time to data recording and reporting. Widespread
under-reporting inevitably leads to substantial gaps in the national HMIS database which

prevents the straightforward quantification of basic outpatient health and service metrics.

2.3.2.2 External constraints

The principal external constraint on the utility of routine outpatient data for assessing
public health is the under-utilisation of health facilities by thec community. Factors such
as the high cost of treatment, poor access, and inadequate service delivery have led to
low utilisation rates of formal health services across Africa (Fosu, 1994; Oranga and
Nordberg, 1995; Mwenesi et al., 1995; Foster, 1995; Ryan, 1998; Molyneux et al., 1999,
2002). Low utilisation means that a significant proportion of morbidity due to
communicable discasc is never presented to the formal health sector and is thercfore not
included in HMIS data. Many African studies have investigated the behaviour of those
sceking care for communicable discascs and a wide divergence in attendance rates has
been reported (McCombie, 1996, 2002). Studics in Kenya that have investigated
treatment-seeking for malaria, or malaria-like fevers, have found attendance rates at

formal facilities of between 18% and 43% (Ruebush et al., 1995; Hamel et al., 2001;
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Amin et al., 2003; Guyatt and Snow, 2004). A study of fatal malaria cases in Tanzania
found that 65% had presented at government or private health facilitics (de Savigny et
al., 2004) whilst a large houschold survey in rural Ethiopia reported attendance of 80%
for suspected malaria cases (Deressa et al., 2003). The most comprehensive picture of
attendance rates to formal health services in low-income countries is provided by DHS
surveys. A standard module of these surveys includes the percentage of children with

symptoms of acute respiratory illness (ARI) or fever that were taken to a formal health

Table 2.1 DS estimates of national attendatice rates of children with ARI or fever to formal health facilities in ninc cast
African countries.

Country DHS Survey year Child attendance rate (%)*
Eritrea 2002! 43
Kenya 20037 45
Malawi 2004° 20
Mozambique 2003* 55
Rwanda 20000 15
Tanzania 2004-2005° 57
Uganda 2000-20017 65
Zambia 2001-2002" 69
Zimbabwe 1999° 50

*This variable is obrained i the DHS surveys as the percentage of children under five years who had a cough accompanied by short, rapid breathing (symptoms of
AR and / or fever @ the fwo weeks preceding the survey for whom treatment was sought from a formal health facility or provider. [. (NSEQ Eritrea and ORC
Macro, 2003); 2. (CBS Kenya and ORC M: 2003); 3. (NSO Malawi and ORC Macro, 2005); 4. (INE Mogamique and ORC Macro, 2003); 5. (ONAPO
Rwanda and ORC Macro, 2001); 6. (NBS Tanzania and ORC Macro, 2003); 7. {UBOS Uganda and ORC Macro, 2001); 8. (CSO Zambia and ORC Macro, 2003);
9. (CSO Zimbabwe and ORC Macro, 2006).

service provider. Table 2.1 lists these attendance rates from the most recent DHS
surveys for nine East African countries. Rates ranged from 15.1% in Rwanda (ONAPO
Rwanda and ORC Macro, 2001) to 69.1% in Zambia (CSO Zambia and ORC Macro,
2003). The causes and extent of under-utilisation vary considerably both within and
between African countries. Treatment secking decisions at the houschold level are
influenced by a diverse range of factors including physical and economic access, social
and cultural beliefs and values, the actual or perceived quality of care offered by formal
sector facilities, and the range of alternative treatment options available. In the above
DHS surveys, the most frequently cited reasons given by mothers for non-attendance
included lack of money to pay for treatment, the distance to the health facility, lack of
availability or means to pay for transport to the facility, and previous experience of
lengthy queues for treatment once at the facility. The unavailability of suitable drugs at

health facilities due to stock-outs is also widely cited as a reason for non-attendance.
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2.3.2.3 Implications

Despite decades of donor assistance in HMIS across Africa, and a growing awareness of
their importance to health system delivery, tangible progress in increasing data
availability and quality has gencrally been slow (WHO, 1993; Lippeveld et al., 2000;
Evans and Stansfield, 2003; WHO, 2004a; AbouZahr and Boerma, 2005; Health Metrics
Network, 2005¢). The internal and external constraints considered here present a
challenge to users of routine outpatient data. If duc consideration is not given to these
limitations, there is a potential for data to be misinterpreted and misleading conclusions
to be made. A critical realisation is that the spatiotemporal pattern of outpatient cases of
malaria and other diseases recorded in the database does not represent directly the
underlying pattern of the diseas¢ in the community. Instead, the relationship is
characterised by uncertainty introduced by the limitations discussed above. This
uncertainty leads to the potential for misapplication of HMIS outpaticent data. The crude
use of such data to estimate the total burden of a given illness in the population, for
example, is likely to result in gross under-estimation, even after missing data are taken
into account, due to the extensive under-utilisation of government facilitics by care-
seckers. Similarly, attempts to infer the relative prevalence of different diseases in a
population should be treated with caution duc not only to differential utilisation patterns
but also to the unreliability of diagnosis. Even greater uncertainty is associated with the
relationship between outpatient morbidity and the transmission dynamics of a given
communicable discase (Snow et al., 1997) and, as such, attempts to link the two should

focus on assessing the characteristics and extent of this uncertainty.

Whilst factors such as under-utilisation and misdiagnosis reducc the suitability of
outpatient data to provide information on morbidity in a population, they are less
obstructive when the data are to be used to analyse within-system treatment patterns and
resource requirements. The number of outpatient treatments administered for a given
condition within a health system is partly determined by the proportion of those afflicted
in the population who attend health facilities for treatiment, and by the proportion of
those attending who are correctly diagnosed. As such, it is not necessary to correct for
the effects of misdiagnosis and under-utilisation when using HMIS outpatient data to
estimate the treatment burden for a given condition, since these factors contribute to

defining that burden. Widespread under-reporting of outpatient records by health
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facilities, however, i1s a more serious limitation to the use of HMIS data for estimating
treatment burdens. A complete HMIS database allows the straightforward quantification
of the number of patients treated for each diseasc at each facility each month, allowing
the comprchensive assessment of specific resource requircments. Where large
proportions of data are missing each month, however, and the number and location of
missing data varics between months, an HMIS database cannot provide such
quantifications directly. The incompleteness of HMIS databases contributes substantially

to their under-use by health system decision-makers.

The remainder of this chapter considers the provision of health care in Kenya and
presents details of the Kenyan HMIS. The burden of malaria is then discussed along
with the importance of defining antimalarial drug demand. The potential role of HMIS

data in estimating drug demand is then examined.

2.4 Kenya and its health system

2.4.1 Kenya country profile

Kenya straddles the equator and is situated on the eastern coast of the African continent
with borders to Tanzania to the south, Uganda to the west, Ethiopia and Sudan to the
north, Somalia to the northeast, and the Indian Ocean to the southeast (Figurc 2.1). The
country is divided into 8 provinces and 72 districts and has a land area of 571,466 square
km of which the majority (~ 80%) is arid or semi-arid. Table 2.2 contains summary
information for each province. The bulk of Kenya's 30 million people live in the
extensive highland region that makes up the country’s south west quadrant (Figure 2.2).
This fertile elevated plateau stretches from Lake Victoria in the west to the lowlands in
the cast and is bisected by the Great Rift Valley running approximately north-south. The
most denscly populated regions are centred around the shores of Lake Victoria and
around the capital, Nairobi. A further region of dense population is found along the
Indian Ocean coastline, incorporating the country’s principal port city, Mombassa.
Average temperatures and rainfall vary considerably across Kenya due to the varying
altitude and proximity to the lakes or occan. A marked seasonal pattern is evident with a

short dry season from January to March, a long rainy season from March to May, a long
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Figure 2.1 Overview map showing the position of Kenya and its neighbours on the east of the African continent.

dry season from May to October, and a further short rainy season from October to
December. Kenya has endured decades of poor economic performance and slow
economic growth that has contributed to an overall deterioration in the welfare of the
population. Government estimates state that around 56% of the population were living in
poverty in 2003, and that the proportion living below the poverty level has steadily
increased (CBS Kenya, 2003). Increasing poverty has gone hand in hand with rising

Table 2.2 Summary information for the Kenyan provinces: population and land area.

Province Population” : Area (Sq. km)
Central 3,724,159 13,191
Coast 2,487,264 83,603
Eastern 4,631,779 159,891
Nairobi 2,143,254 684
North-Eastern 962,143 126,902
Nyanza 4,392,196 16,162
Rift Valley 6,987,036 173,854
Western 3,358,776 8,361
KENYA 28,686,607 582,648

" Population as recorded in the 1999 census (CBS Kenya, 200 1a)
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Figure 2.2 Maps of Kenya showing: (top) altitude in metres; (middle) district and provincial administrative boundaries,
and province names; and (bottom) population density per km? in each sub-location (5" level administrative level) based
on the 1999 census.
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unemployment and illiteracy rates and the concomitant decline in living standards has
been reflected in worsening public health. Having shown signs of improvement during
the 1970s and 1980s, the crude death rate and infant mortality rate increased during the

1990s whilst life expectancy declined (CBS Kenya and ORC Macro, 2003).

2.4.2 Health service provision in Kenya

The provision of health services to the Kenyan population is implemented by various
governmental and non-governmental organisations and is delivered through a
hierarchical administrative system that coordinates multiple levels of service delivery
(MoH Kenya, 2003). The organisation of formal health care delivery through the
Ministry of Health operates at three levels: national, provincial, and district. The national
level centres on the Ministry of Health headquarters, housing the Central Board of
Health. The provincial level incorporates the Provincial Health Management Boards
and Provincial Health Management Teams and acts as an intermediary between the
national and district levels, oversecing district level health policy and quality standards
and coordinating district level provision. The district level comprises District Health
Management Tcams that concentrate on the delivery of health services and generate
their own expenditure and budgetary plans within the provincial and national
framework. Whilst the Ministry of Health is the primary source of health care, operating
around 52% of health facilitics nationwide, a substantial proportion of service provision
comes from other service providers. Non-governmental and charitable organisations,
including the religious missions, mostly operate services in underserved, often rural,
areas. They provide both curative and preventative services and receive some
governmental support as well as income from external donors and user fees. Around
40% of the country’s health services are offered by the private-for-profit sector,
including clinics and hospitals that generally specialise in curative services with limited
preventative services being offered (MoH Kenya, 2003; NCAPD/MOH/CBS Kenya and
ORC Macro, 2005).

The network of health facilities operated by the providers listed above are themselves

organised in a hierarchical framework. The most basic and numerous facilitics are the

dispensaries, followed by sub-health centres, health centres, sub-district hospitals,
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district hospitals and provincial hospitals. At the apex are the nation’s two teaching and
referral hospitals. Dispensaries are generally the first point of contact with patients and
are staffed by enrolled nurses and medical assistants providing services such as antenatal
care as well as basic outpatient curative care. Health centres offer a wider range of
curative and preventative outpatient services including minor surgical procedures, and
are staffed by midwives or nurses, clinical officers and occasionally by doctors. District
hospitals act as the first referral points for health centres and dispensaries within each
district and offer 24 hour inpatient and outpatient care in a range of clinical services
backed up by laboratory and other technical support. Provincial hospitals act as the next
level of referral, offering specialised care not available at district hospitals including
intensive care services. They also provide supervision, monitoring, and technical
assistance to the district hospitals. Kenyatta National Hospital in Nairobi and the Moi
Teaching and Referral Hospital, 320 km to the north-west of the capital in the Rift
Valley province, are Kenya’s centres of excellence providing complex health care and
highly skilled personnel and representing a high concentration of the nation’s health care

resources.

Despite a series of major policy initiatives (MoH Kenya, 1999, 2005b), the Kenyan
health service remains incfficient and public health status remains poor. A series of
indicators point to a worsening level of health care provision over the past two decades.
The doctor-to-population ratio declined during the 1980s and 1990s and the overall use
of public health services also declined, falling from 0.6 new consultations per person in
1990 to 0.4 in 1996 (CBS Kenya, 2003). Although public-sector spending on health has
increased in absolute terms, it has not kept up with population growth such that public
per-capita hcalth expenditure fell from USS$12 in 1990 to USS$6 in 2002
(NCAPD/MOH/CBS Kenya and ORC Macro, 2005).

2.4.3 The Kenyan health management information system

Each level of the Kenyan health system hierarchy described above requires health
information at different spatial and temporal scalcs to assist planning and decision-
making. The need for a national mechanism to collect health data was recognised at an

carly stage by the Ministry of Health and they established the Division of Health
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Information Systems in 1974, charged with the responsibility of collecting, processing,
analysing and disseminating health and health-related data. This system collected
epidemiological data (inpatient and outpatient records) and produced annual bullctins
containing data from the facilities. The system was revised and partly computerized
through USAID funding during the 1980s. An assessment of this system was made as
part of the 1994 Kenya Health Policy Framework (MoH Kenya, 1994) which led to the
establishment in 1999 of the Division of Health Management Information Systems in an
attempt to address shortcomings and provide more reliable information with the broader
scope needed for planning, budgeting, monitoring, and evaluation at all levels (MoH

Kenya, 2000).

A primary function of the current Kenyan HMIS is the coordination of routine outpatient
data collection, collation, and analysis. In principle, each health facility makes a record
of each outpatient visit and the resulting diagnosis or diagnoses that were made. These
data are compiled onto a standard form at each health facility, and completed forms arce
passed each month on to District Medical Records Officers based at district hospitals. At
the district level, data from cach facility within the district are collated into a District
Outpatient Morbidity Summary and sent through the hicrarchy to the national HMIS
headquarters at the Ministry of Health, where all data are received by Medical Records
Technicians who order, collate, and check data before entering them into the national
database opecrating on a rudimentary computer system. This database lists outpatient
counts for each health facility under a suite of diagnostic categories. National outpatient
data are made available publicly in HMIS reports that are published at intervals of

approximately four years.

The most recent major health policy initiative in Kenya is the National Health Sector
Strategic Plan for the period 2005-2010 (MoH Kenya, 2005a). This policy document
identifies the continuing inadequacy of the HMIS to provide the health information that
is required, and makes the improvement of the system a priority. The principal limitation
of the HMIS as a source of routine outpatient data is the low reporting rate of monthly
outpatient records by both facilities and districts. The Kenyan HMIS report for the 1996-
1999 period states an overall monthly reporting rate of between 33% and 40% over all
facilities (MoH Kenya, 2001a). Because the number and identity of health facilities that

report each month changes, statistics on the total count of cases of each disease seen
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each month are not a reliable way of estimating resource requirements, or of analysing
differences over time or between different regions. Because of this inadequacy, the use
of HMIS data for monitoring and evaluation, problem-solving, decision-making, and

trend analysis is extremely limited at national, provincial, and district levels.

2.5 The burden of Malaria

Malaria is a life-threatening infectious disease caused by protozoan parasites of the
genus Plasmodium. The vector for the human form of malaria is the female Anopheles
mosquito which transmits the parasite to the human host during a blood meal and forms
part of the complex parasite life-cycle. The symptoms of malaria typically appcar 9 to 14
days after infection and can initially include fever, headache and vomiting. If left
untreated, the infection can progress rapidly to become life-threatening, by destroying
red blood cells (anaemia) and by clogging the capillaries that carry blood to the brain
(cerebral malaria) or other vital organs. Young children and pregnant women are

particularly at risk of the disease.

Malaria is found throughout the tropical and sub-tropical regions of the world and
remains a leading global cause of morbidity and mortality (WHO, 2005a), with an
estimated 300-660 million clinical cases occurring annually worldwide (Snow et al.,
2005). Africa, particularly the sub-Saharan region, bears a grossly disproportionate
proportion of the worldwide burden of malaria with two thirds of its population
estimated to be at risk of the discase (Hay ct al., 2004). Africa is estimated to account for
two thirds of the overall clinical burden, and three quarters of that caused by
Plasmodium  falciparum, the most severe and life-threatening malaria parasite
(Korenromp, 2004). Africa is also thought to account for 89% of the global mortality
burden (WHO, 2003b) with between three-quarters to one million African children
under the age of five dying each year (Snow et al., 1999a, 2003a). That the continent
bears the brunt of the worldwide malaria burden is due partly to the prevalence of the
most potent malaria parasite and vector species and partly to the limited economic and

public health resources to combat the discase effectively.
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2.5.1 The burden of malaria in Kenya

Malaria 18 a major cause of morbidity and mortality in Kenya and presents a substantial
barrier to development with around 20 million Kenyans living at risk of the disease.
Although current estimates are of unknown accuracy, recent figures state that, each year,
an estimated 145,000 children under the age of five arc admitted to hospital due to
malaria and 34,000 children of this age die of the disecase (MoH Kenya, 2001b). Malaria
is the leading cause of outpatient cases and places a heavy burden on the health system
and public health expenditure. Personal expenditure due to malaria is also high with a
recent survey estimating that every affected houschold spends around US$20 cach year
on malaria treatment (CBS Kenya, 2001b), which represents a substantial financial
burden to a large proportion of the population. The morbidity associated with malaria
has a significant impact on productivity and is estimated to result in 170 million lost
working days each ycar (MoH Kenya, 2001b). This cconomic burden has the largest
impact on the rural poor who rely largely on small-scale agriculture as a source of
income. The underlying level of morbidity due to malaria is not uniform across Kenya,
but varies considerably due to a complex set of climatic, human, and vector interactions.

These factors are discussed in detail in section 5.2.1 of Chapter 5.

2.5.2 Using effective drugs to combat malaria in Kenya

Government led efforts to combat malaria in Kenya are coordinated by the Division of
Malaria Control (DOMC) at the Ministry of Health. The current policy framework on
combating malaria (MoH Kenya, 2001b) is centred around four key strategic objectives:
(1) clinical management through provision of effective and prompt treatment; (2)
management of malaria and associated anacmia in pregnancy; (3) control of the malaria
vector {(anopheline mosquitoes) using insecticide treated bed nets (ITNs) and spraying of
insecticides; and (4) improving epidemic preparcdness and response. The first objective
in this list is scen as the cornerstone of the national malaria strategy, aiming to guarantee
that people have rapid access to effective, affordable, acceptable, and available
antimalarial drugs to enhance prompt and cffective treatment of malaria episodes. A
critical factor in the provision of effective antimalarial drugs is the need to continually
monitor drug efficacy. That is, to monitor the extent to which the malaria parasites

within the population are devcloping resistance to the drugs being used. The
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development of resistance is a largely inevitable evolutionary process, occurring as a
result of innate genctic diversity in the parasite population. Those genotypes that are
better suited to survive the effects of a given drug are more likely to survive and hence
their prevalence grows until a large proportion of the parasite population shares this
resistant physiology (Wernsdorfer, 1994; Warrell et al., 2002). As such, all antimalarial
drugs have a finite useful therapeutic life (UTL), although this can vary widely

depending on the mechanism and utilisation of the drug.

Since its introduction in the 1930s, the primary antimalarial drug for P.Falciparum
malaria in Kenya has been chloroquine (Shretta et al., 2000). Resistance to chloroquine
grew rapidly across sub-Saharan Africa during the 1980s and 1990s, leading to
substantial increases in mortality (Marsh, 1998; Trape et al., 1998, 2001). Chloroquine
was belatedly replaced in Kenya with a new alternative, sulphadoxine pyrimethamine
(SP), in 1998. However, resistance to SP, and the main alternative, Amodiaquine (AQ),
developed quickly following their introduction which led to a substantial reassessment
of drug policy in 2003. A review of studies carried out by the DOMC Drug Policy
Technical Working Group (DPTWG) concluded that both SP and AQ had fallen below
an acceptable level of efficacy, with an average SP treatment failure rate of 33%
amongst children under five (MoH Kenya, 2005¢). In response to this declining efficacy,
and in line with international recommendations (WHO, 2001a, 2003a, 2005b), the
DPTWG recommended that a change in treatment policy be introduced, with the
introduction of artesunate-based combination therapy (ACT) as the new first-line
antimalarial treatment. The formal plan for transition to the new ACT, artemether-
lumefantrine (brand name Coartem®), was launched by the Ministry of Health in 2005
(MoH Kenya, 2005c¢). ACTs contain a newly developed and potent antimalarial
component derived from the Chinese herb Artemisia annua. By using this compound in
combination with a second drug that works in a different way, ACT is both highly
effective and likely to resist the growth of rapid parasite resistance. It is hoped that ACT,
if implemented carefully across Africa, will allow substantial and long-term reductions
in malaria mortality and morbidity (White, 1998; White et al., 1999; Garner and Graves,
2005).
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2.6 Estimating drug demand

A critical aspect of the transition from SP to Coartem® in Kenya is to ensure that the
correct quantity of the drug is obtained. Accurate estimates of demand are required for
efficient procurement and delivery. It is vital that adequate supplies of the drug are
available since under-stocked health facilities will lead to a rapid loss of public
confidence, further discouraging utilisation and, hence, drug dissemination (MoH
Kenya, 2005¢). However, Coartem” is currently substantially more costly than previous
drugs (Kindermans, 2002) and has a limited shelf-life, meaning that excessive drug
stocks are an expensive waste of resources (UN, 2005). Well defined demand estimates
arc also required by international donors who can provide funding for the new drug

(RPM plus, 2005; GFATM, 2005; WHO, 2006).

The challenge of defining drug requirements in Kenya and across sub-Saharan Africa
has been the subject of numerous studics by academic and public health institutions
(Kindermans, 2002; Snow et al., 2003b, 2003c; MoH Kenya, 2004, 2005¢). A critical
distinction is between estimating the drug requirements of a health system for treating a
given condition and estimating the theoretical drug requirements for treating all cases of
that condition in the population. In low-income countries, and for a disease such as
malaria, the diffecrence between the two is likely to be substantial due to factors
discussed previously, primarily the low utilisation of formal health services to obtain
treatment. In recognition of the widespread inadequacy of health system efforts to
estimate drug demand, the WHO defined a set of best-practice procedures to be
implemented when quantifying the amount of drugs needed to treat a given condition
within a health service (WHO, 1988). Two simple but distinct approaches are advocated:
the morbidity method and the consumption method. The consumption method is based
on assessing the quantity of drugs that have been consumed, cither at the full set of
health facilities within a health system, or at a representative sample. Where demand for
a new drug is to be estimated, the consumption method relies on assessing the
consumption of the previous, outgoing, drug. Even when rcliable data are available for
the previous drug, a key shortcoming is that the patterns of drug stocking and utilisation
may be very different than those for the new drug, given differences in cost and shelf-
life, for example. The morbidity method takes a different approach and requires

estimates of the number of treatment episodes for a given disease in all health facilities.
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This is then multiplied by the quantity of drugs that are administered for each treatment

episode to obtain an estimate of the total drug requirement.

2.6.1 The role of HMIS in estimating drug demand

Accurate drug demand estimates made using the morbidity method are dependent on
reliable estimates of the number of treatment episodes (the treatment burden). In Kenya,
the appropriate source of data on which to base these estimates is the database of routine
health facility records collected within the HMIS. Because of the known incompleteness
of the database, however, these data have not been used to generate such estimates. A
number of important definitions must be considered when using routine facility data in
drug demand estimates. The variable of intercst is the number of treatment episodes. A
treatment episode differs from other forms of contact in that it requires a standard drug
treatment. Follow-up visits that do not result in further treatments, for example, do not
strictly constitute a treatment cpisode. Furthermore, a single patient visit may result in
more than one trcatment cpisode if he/she is treated for multiple conditions. Another
complication is that the standard drug treatment may vary with the age of the patient and
the severity of the condition. Where this is the case, the number of treatment episodes
within each age group or severity category must be quantified separately. In principle,
routine patient records should contain all the necessary information about each patient
visit including patient age, sex, the condition for which they were treated, and whether
the visit was a first contact, a follow-up visit, or a referral. Unfortunately, much of these

data are often never collected, or are lost when data arc aggregated within the HMIS.

2.7 Chapter summary

This chapter has presented information that provides the contextual backdrop to the
problem addressed in this project: the estimation of outpatient treatment burdens for
malaria in Kenya. The importance of health information in low income countries is
becoming increasingly recognised, just as the gross deficiency of current information for
meeting a wide range of requircments is becoming apparent. Although increasing
numbers of health data arc being collected in low-income countries, much of this is

aimed at monitoring broad national-level indicators and is insufficient for detailed
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system management. HMIS are one mechanism for routine data collection that should
provide a wealth of invaluable information to decision-makers about the supply and
demand of resources at health facilities within a health system, but are failing to do so in
most low-income countrics for a range of reasons including low utilisation rates,
unreliable diagnosis of common diseases, and under-reporting of data from hcalth
facilitics. A primary drain on health system resources in Kenya is the burden of malaria.
Because of the introduction of expensive new drugs, a critical responsibility of the
HMIS in Kenya is the provision of routine outpatient data which will allow the malaria
treatment burden to be quantified. Widespread under-reporting, however, means that the
HMIS data cannot be used directly to make these estimates. It is the problem of making

reliable estimates with this incomplete data that is addressed in this project.
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3. Data

3.1 Introduction

This project is based on data integrated from two independent data sets. The principal
data of interest originated from a routine outpatient database generated from health
facilities across Kenya that was collected and collated within the Kenyan HMIS. These
data were matched to a second database that contained the latitude and longitude
coordinates of each health facility. In this chapter, the HMIS outpatient data set and the
georeferenced health facility data set are both described in detail. Exploratory analysis is
presented that describes the broad spatial and temporal characteristics of the outpatient
data set. Analysis is also included that examines the extent and patterns of missing data

in the outpatient data sct.

3.2 The Kenyan national health service database (NHSD)

The stated aim of this project is to predict the total count of outpatients trcated for
malaria in all health facilities across Kenya using incomplete HMIS outpatient data. A
prerequisite in this task is that the total number of health facilities in the country is
known. Furthermore, the spatiotemporal techniques that arc brought to bear on this task
in this project require that the spatial and temporal locations of both data and unsampled
points are known. Outpatient data within the HMIS are temporally referenced, with each
count corresponding to a known month. In common with most HMIS in low-income

countries, however, the Kenyan system does not include spatial data, meaning that the
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spatial locations of the health facilities from which data were generated are unknown.
The current project was conceived, in part, because of the construction of a new and
unique spatial databasc that resulted from an extensive exercise to list and georeference
all health facilities in Kenya. This database is now known as the national health scrvice
database (NHSD) and represents the first such resource of its type in Kenya' A summary
of the construction and key characteristics of the NHSD is presented below. For detailed

accounts, the reader is pointed to Noor ¢t al. (2004) and Noor (2005).

3.2.1 Construction of the NHSD

The NHSD was developed and made available for this study by a team led by Dr.
Abdisalan Noor at the Malaria Public Health & Epidemiology Group, Centre for
Geographic Medicine, part of thc KEMRI-University of Oxford-Wellcome Trust
Collaborative Programme in Nairobi. The first stage in the creation of this resource was
the cstablishment of a single comprehensive list of health facilities from all service
providers around the country. Various independent records of public and private health
facilities held by the Ministry of Health and various other Governmental and NGO
bodies were cross-checked and compiled into a single list. This list was then augmented
with information obtained directly from each district such as hand-drawn maps, local
listings, telecphone directories, and reports. Provisional lists were then sent out to District
Health Management Tcams and relevant NGOs and other parties for cross-checking and
corrections. Having established a single list of Kenyan health facilities, a set of spatial
coordinates were obtained for each using georeferencing data from a variety of sources.
Previous projects run by various research and NGO bodies around Kenya had led to
around half of the 72 Kenyan districts having global positioning system (GPS)
coordinates for some or all of their constituent health facilities. Where health facilities
on the list did not have GPS data, coordinates were obtained instead from various

mapping sources or by matching facilitics to known village or sub-location coordinates.
3.2.2 Use of the NHSD in this project

The NHSD does not represent a single exercise to provide a snapshot of Kenyan health

facilities at a particular instant in time. Rather, the database is continually updated as
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new facilities open, others close, and new information is obtained. In light of this
dynamic nature, analysis in this study operated on two different versions of the NHSD.
The bulk of model development and testing is described in Chapters 7 and 8 and was
carried out using a version of the NHSD made available to this study in August 2004.
Implementation of the developed model to obtain final predictions was carried out using
an updated version of the NHSD obtained in October 2005. In this scction, the former
version is described in more detail. The updated version is summarised alongside the

presentation of the final model implementation in Chapter 9.

3.2.3 Health facilities in the NHSD

Table 3.1 lists all health facilities included in the August 2004 version of the NHSD.
Thesc include facilities operated by the Ministry of Health, the charitable missions,
private-for-profit organisations, NGOs, and other minor service providers including the
armed forces, local authoritics, and other governmental ministries. In addition to the
main hierarchy of facility types discussed in Chapter 2, specialist facilities such as
nursing homes and maternity hospitals, and institutional health facilitics were included.
Not all health facilities werc georeferenced and, in this version of the database, not all
health facilities had a unique identification code (an HMIS number) that was necessary

to match outpatient data in the HMIS with the corresponding health facility.

In this study, the focus was on Ministry of Health facilities only and this decision was
driven by several factors. Firstly, the need for reliable estimates of treatment burdens for
malaria is particularly pressing for government facilities because the phased introduction
of Coartem® as the first-line antimalarial will begin in this sector (MoH Kenya, 2005c).
Secondly, the government sector represents a relatively stable and formally documented
sct of health facilities around the country. Although the construction of the NHSD
revealed a substantial number of Ministry of Health facilities that were not on formal
lists at the Ministry, the exercise resulted ultimately in a comprehensive inventory of
health facilities within this sector, of which only a handful could not be georeferenced.
This is in contrast to facilitics provided by the other major sectors such as the charitable
missions and private organisations, about which far less complete and reliable

information was available, with a lower proportion being gecoreferenced.
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Service provider

1.Hos pitals

2.Hospitals

3. Health

4.Dispensaries

5.Private

6.Private clinics

7.Nursing homes &

8.Special treatment

9. Institution hicalth

All [ucility types

{referral and centres hospitals and Medical maternity hospitals hospitals facilities
district) provincial) centres
) (%) " (%) n (%) ” (%) 1 (%) i () I (%) n (%) H (%) i (%)
Georef. 119 (100.0 10 (100.0) 475 (99.2) 1387 96.7) - - - - 1 (50.0) 6 (100.0) 37 4.9 2035 “7.4)
NIOH HMIS no ne  (97.9 10 (100.0) 248 (93.5) 1230 (85.8) - - - - 2 (100.0) 4 (66.7) 2 (82.1) 1842 (88.2)
: Both 116 97.5) 10 (100.0) 445 (92.9) 1194 {83.3) - - - - 1 (50.0) 4 (66.7) 31 (79.5} 1801 (86.2)
Total 119 10 479 1434 - - 2 6 39 2089
Georet. 8 (96.5) - - 132 (95.7) 665 (86.1) - - - - 12 (66.7) 5 (71.4) 3 (75.0) 900 (87.8)
MISS HMIS 1o 75 (96.9) - - 17 (95.7) 593 (86.1) - - - - 12 (66.7) 6 (71.4) 4 %07 (87.8)
A Both 73 (84.9) - - 12 (812) S18 (67.1) - - - - 9 (50.0) 4 37.1) 3 (75.0) 719 (70.1y
Total 86 - 138 772 - - 18 7 4 1025
Georef. 1 (100.0) - - 15 (714 126 (52.5) 81 (81.0) 1135 (50.9) 207 (68.5) 9 (26.5) 78 (65.5) 1652 (54.2)
PRIV HMIS na 1 (100.0) - - 13 (61.9) 197 (82.1) 47 (47.0) 365 (25.3) 199 (65.9) 3 (3.8) 97 (81.5) 1122 (36.8)
Bath 1 (100.0y - - 9 (42.9) 104 (43.3) 39 (39.0) 266 (11.9) 142 “47.0) 2 (5.9) 69 (58.0) 632 (20.7)
Total 1 - 21 240 100 2231 302 34 119 3048
Georef 2 (100.0) - - 3 (750) 32 (76.2) - - - - 3 (100.0) 16 (64.0) ] (25.0) 57 (71.3)
NGO HMIS no { 0.0) - - 2 (30.0) 16 (38.1) - - - - 1 (33.3) 24 (96.0) 2 (50.00 45 (56.3)
! Both 0 0.0) - - 2 (50.0) 12 (28.6) - - - - ] (33.3) 15 (60.0) 0 (0.0) 30 (37.5)
Total 3 - 4 42 - - 3 25 4 80
Georef. - - - - 47 “22) 36 (85.7) - - - - 3 (75.0) 1 (100.0) 1 (50.0) 88 (88.0)
LA HMIS no - - - - 30 (98.0) 42 (100.0) - - - - 4 (100.0) 1 (100.0) 2 (100.0) 99 ©o.0)
* Both - - - - 46 90.2) 36 (85.7) - - - - 3 (73.0) 1 {100.0y 1 {50.00 87 {87.0)
Total - - 51 42 - - 4 1 2 100
Geo ref. - - - - - B B - - B - - - - - - 21 (70.0) 21 (70.0)
AF HMIS ne - - - - - - - - - - - - - - - - 21 (70.0) 2] (70.0)
Both - - - - - - - - - - - B - - - - 16 (53.3) 16 (53.3)
Tatal - - - - - - - - 30 30
Georef. - - - - - - - - - - - - - - - - 105 (84.7) 105 84.7)
OTHER HMIS no - - - - - - - - - - B - - - - - 109 (87.9) 109 (87.9)
MIN Both - - - - - - - - - - - - - - - - 94 (75.8) 94 (75.8)
Total - - - - - - - - 124 124
Georef. 205 (98.6) 10 (100.0) 672 (97.0) 27246 {88.8) 81 (81.0) 1135 (50.9) 226 (68.7) 37 {50.7) 246 (76.4) 4858 {74.8)
All HMIS no 192 (923 10 (100.0) 630 (90.9) 078 (A1) 47 (47.0) 565 (253) 218 (66.3) 38 2.0 267 (82.9) 4045 (62.3)
Providers  Both 190 (913) 10 (100.0) 614 (88.6) 1864 (73.7) 39 (39.0) 6 (11.9) 156 (47.4) 2 (35.6) 214 (66.5) 3379 (52.0)
Total 208 10 693 2530 100 2231 329 73 322 6496

Table 3.1 Breakdown of health facilities by type and service provider in the August 2004 version of the national health service database. Total facility counts ave shown along with the count (and percentage) ol
facilitics that have georefercncing data (Georef.), that have an 1IMIS number (HMIS no.), and that have both (Both). Service providers are Ministry of Health (MOH), mission (MISS), private (PRIV), non-
governmental organisations (NGO), local authority (LA}, armed forces (AF), and other Ministrics (OTTIER MIN). The section highlighted in grey shows the set of 1765 facilities that were used in this project for

model development and testing.
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All facility types Hospitals

Figure 3.1 Maps of Kenya showing the locations of the 1765 Ministry of Health facilities used in this study for model
development and testing. Each of the three facility categories used are shown along with the combined set of all three

types.

For the purposes of model development and testing, a set of 1765 facilities was selected
in this project from the August 2004 version of the NHSD (Table 3.1). This set was
composed of all mainstream Ministry of Health outpatient facilities that were both
georeferenced and had a unique HMIS number. This set excluded specialist non-

outpatient facilities such as nursing and maternity homes. The various categories of
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outpaticnt facility were condensed into three principal types: hospitals (referral and
teaching hospitals, provincial, and district hospitals); health centres (subsuming sub-
district hospitals); and dispensaries (subsuming sub-hecalth centres). This simpler
classification represents a broad grouping of facilities according to the generic levels of
service they provide. This set consisted of 126 hospitals, 445 health centres, and 1194
dispensaries. The spatial distribution of these health facilities across Kenya (Figure 3.1)
reflects approximately the underlying population density, although it is well established
that access to health facilities is not equitable across the country with rural arcas, for
example, being generally under-served in relation to urban areas (Noor et al., 2003,

2006).

3.3 The Kenyan HMIS outpatient data set

The routine outpatient data on which this project is based were obtained directly from
the Division of HMIS at thc Ministry of Health by the KEMRI-University of Oxford-
Wellcome Trust Collaborative Programme team. This team obtained the data in a simple
TXT format and imported them into MS Excel (Microsoft Corp., USA) and subjected
them to extensive checks for duplication and inconsistencies before porting them into
MS Access (Microsoft Corp., USA) using an MS QuickBasic (Microsoft Corp., USA)
script. Each record included a unique facility code, which allowed the entire data set to
be linked to the NHSD such that data for each facility were integrated with the
corresponding latitude and longitude coordinates. This formatted and spatially

referenced database was then made available for this project.

The HMIS data consisted of monthly records of diagnoses made at outpatient
departments of health facilitics across Kenya over an 84-month period (January 1996-
December 2002). Each record included the total number of outpatients attending a given
facility during a given month. The number of diagnoses made under a wide range of
diagnostic codes was also available for each monthly record per facility. Records were
not structured by age, sex or distinguished as initial or follow-up visits. Due to the
limitations on diagnosis accuracy discussed in Chapter 2, diagnoses could only be

interpreted as representing a presumed case of a given condition,

In this section, those data that corresponded to the set of 1765 Ministry of Health
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facilities defined earlier are presented. Analysis was conducted to assess the number of
missing data within this set and to describe any patterns in when and where data were
missing. Further exploratory analysis was then carried out to describe the broad spatial
An initial aim in the analysis was to characterise and quantify th
incompleteness due to missing data. Missing data in the national database may result
from failings at different points in the HMIS framework such as failure by individual
facilities to submit their monthly records, failure of the District Medical Records

and temporal characteristics displayed by the various diagnostic codes.
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Figure 3.2 (a) Histograms showing the distribution of the number of months reported for each facility type. Complete

reporting would result in 84 monthly records from each facility. (b) Time series plot showing the proportion of health

facilities that reported in each of the 84 months.
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Officers to collate data correctly or to submit their monthly District Outpatient
Morbidity Summary, failure by HMIS headquarters to enter these data correctly into the
main database, or simple physical loss of the relevant form between or at the various
levels in the HMIS. In this study, the relative amount of missing data from each facility
was quantified by a reporting rate, defined as the percentage of months for which an
outpaticnt record was available for each facility. Facilities with less than 100% reporting
rates were deemed to have under-reported, accepting that in some cases this term will
not accurately describe the cause of the missing data. Under-reporting was assessed by

province for each facility type.

3.3.1.1 Results

Under-reporting was found to be widespread, although there was considerable variation
between facility types and provinces (Table 3.2). Figure 3.2 (a) shows the distribution of
reporting rate values for cach facility type. No facilities reported in all 84 months whilst
158 facilities (9%) did not report in any month. A complete 84-month data set for the
1765 facilities would contain 148,260 records. Only 63,543 records were present
representing an overall reporting rate of 42.9% over all facility types and provinces. This
ranged from 12.2% in Nairobi to 52.4% in Central Province. Health centres had the
highest reporting rate (50.0%), followed by hospitals (44.2%) and dispensaries (40.1%).
Overall reporting rate varied both within and between years, with a minimum of 7.6% in

December 1997 and a maximum of 52.8% in June 2000 (Figure 3.2 (b)).
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Hospitals 47.8 12.3 472 36.1 47.0 37.5 50.9 37.7 44.2

Health centres  39.7 15.8 61.1 58.3 54.0 43.7 594 19.0 50.0
Dispensaries 31.9 9.0 46.7 51.7 433 41.1 40.6 20.2 40.1

All facilities 34.6 12.2 51.2 524 45.9 413 49.9 20.9 42.9

Table 3.2 Overall reporting rate in each Kenyan province by f(acility type. These values represent the total percentage ol
the cxpected monthly outpatient records that were available within the IIMIS database.
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It is likely that the majority of missing data are caused by facility-level failures to submit
monthly reports. However, detailed examination of the spatial patterns of under-
reporting revealed evidence that district-level processes also affected reporting rate in
some cases. An example is provided by the neighbouring districts of Kericho and
Nyando in the west of Kenya. Plots of district-wide reporting rate for both districts were
derived and these are shown in Figure 3.3 along with maps showing the health facilities
in cach district. Both plots display evidence of national-level factors, specifically the
very low reporting rate recorded in December 1997 associated with the national nurses
strike. Whilst both plots display a clear temporal trend, these are very different for cach
district. Reporting in Kericho (Figure 3.3 (b)) decreases steadily throughout 1996 and
1997, and then steadily rises for the remainder of the data period. In contrast, reporting
in Nyando (Figure 3.3 (c)) is consistently high throughout 1996 to 1998 (excepting the
December 1997 event) and then consistently low throughout 1999 to 2002. This marked
difference between neighbouring districts suggests the influence of factors operating at
the district level. A district-wide necar-cessation of reporting such as occurred in Nyando
from 1999 onwards clearly results in a contiguous spatiotemporal ‘hole’ in the HMIS
data set, which has clear implications for attempts to predict missing values based on

data proximate in space and time.

The observed overall reporting rate of 42.9% confirmed that the incompleteness of this
databasc is substantial and presents a significant challenge to users. Temporal variations
in reporting rate may have been caused by factors such as impairments to transport
during the rainy season which impedes the effectiveness of the data delivery network,
and scasonal variations in the availability of staff. The pronounced dip in reporting rate
in December 1997 was likely to be related to a national nurses strike at that time. The
fact that the set of facilities that report in any given month changes through time is
important when attempting to identify and explain temporal trends. An observed
national increase in cases of a certain illness in a given month, for example, could be
brought about by a relative increase in reporting from areas where that illness is more

prevalent.
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Figure 3.3 District-level reporting patterns in two western districts of Kenya. (a) Map showing the boundarics and health
facilities (dots) of Nyando and Kericho districts. The two plots show the corresponding district monthly reporting rate (i.c.
the percentage of facilitics in each district that reported in each of the 84 months) for (b) Kericho and (¢) Nyando.
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3.3.2 Exploratory analysis of outpatient diagnosis patterns

The purpose of this section is to present a series of exploratory analyses that aimed to
describe the broad spatial and temporal patterns displayed by the outpatient data for 11
diagnostic codes relating to the principal illnesses and communicable diseases of public
health importance in Kenya. Along with malaria, these were anaemia, diarrhoea, ear
infections, malnutrition, measles, meningitis, pneumonia, pyrexia, respiratory diseases,
and tuberculosis. It should be re-emphasised that, given the ambiguity associated with
outpatient diagnosis, these categories should be interpreted as representing presumed

rather than confirmed causes of illness.

3.3.2.1 Methods

For cach of the 11 diagnostic codes, the total number of cases reported during the 84-
month period was determined along with summary statistics that describe the variation
between facilities in the mean number of cases per month. The relative contribution of
individual diagnoses to total outpatient morbidity was also determined by comparing
cach diagnosis-specific case count to the corresponding total case count. Relative
contributions of each illness were then determined by month for the ecight Kenyan
provinces. This allowed a broad assessment of both the spatial variation in disease
composition across Kenya and the way in which this composition varied during the

study period.

The pattern of scasonal variation in cases was investigated for each diagnostic code by
determining the percentage of cases that occurred in each calendar month, averaged over
the study period. Care was taken to exclude possible bias introduced by monthly
differences in reporting rate by standardising monthly case counts by the number of
facilities that reported. The standardised percentage of cascs, p(i,/) , occurring in a given
calendar month, i, and year, j, was calculated by first dividing the total count of cases, ¢,
for that month and ycar by the number of corresponding facility records, », and then

standardising by the sum of this value for all = 1,2,...12 months in year j (3.1)":

! Please note that, from here on, numbers presented in parentheses within the text in this way
refer to the numbered equations that appear throughout the document.
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These values were calculated nationwide and by province for each diagnostic code. In
each case, an average seasonal profile was also determined as the mean percentage, ¢,

for each calendar month, i, over the n years j=1,2,...n, where n = 7 (3.2).
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3.3.2.2 Results

A total of 55.9 million cases were included in the database, of which the selected 11
illnesses contributed 40 million. The total number of cases recorded under each
diagnostic code during the seven year period ranged from under 7000 for meningitis to
18.5 million for malaria (Table 3.3). For malaria, the mean monthly case count at
facilities ranged from zero to 2044, with a mean of 205.0 for dispensaries, 299.1 for
health centres and 634.2 for hospitals. The distribution of mean monthly case count per
facility was positively skewed for all illnesses, indicating that a small proportion of
facilities had monthly counts that werc far greater than those of the majority of facilities.
The skewness statistic was smaller (i.e. less skewed distributions) in the more common
illnesses (e.g. malaria = 3.1) than the comparatively rarer ones (e.g. meningitis = 39.7),
and was also smaller when facility types were considered individually. Monthly case
counts were largest at hospitals although this pattern was again more pronounced for the
less common illnesses. Malaria was the most common of the illnesses studied,
contributing 33.2% of all cases over the seven years. Respiratory conditions were second
most common with 23.4%, then diarrhoea (4.5%), pncumonia (2.3%), ear infections
(1.3%), anacmia (0.6%), pyrexia (0.3%), malnutrition (0.2%), measles (0.2%),
tuberculosis (0.1%), and meningitis (0.01%). The relative contribution made by each
illness varied between provinces (Figure 3.4). Respiratory conditions, for example,
ranged from 31.6% of total cases in Central province to 17.2% in Nairobi. Malaria

ranged from a contribution of 41.2% in Western province to 6.9% in Nairobi.
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Table 3.3 Total number of diagnoscs and summary statistics for 11 selected diagnostic codes for the 84-

month study period. Faeility types are abbreviated as H (hospitals), HC (liealth centres) and D

(dispensaries).
Diagnosis g_dpceility Total cases Mean cases per month per facility
Standard
Mean deviation Minimum Maximum Skewness®
ALL 348,401 5.8 13.5 0.0 2413 7.4
£ a1 101,194 208 327 0.0 2413 3R
é HC 88,086 49 69 0.0 488 29
D 159,121 45 105 0.0 130.8 6.5
. ALL 2,537,495 38.7 476 0.0 823.0 69
E H 506,442 124.2 124.9 10.0 823.0 28
z HC 755,291 39.8 2.8 03 1725 19
= D 1,185,762 28.6 23.0 0.0 2385 26
ALL 716,443 11.5 56.8 0.0 2044.0 30.7
. é H 223,184 56.0 2021 0.0 2044.0 8.7
2 £ HC 177,437 9.1 8.8 0.0 135.4 78
- D 315,822 75 77 0.0 101.0 49
ALL 18,559,406 262.4 2186 00 1889.0 3.1
Z H 3,351,604 634.2 4309 28.0 2889.0 1.8
; HC 6,036,608 299.1 177.3 11.0 1137.0 14
D 9,171,104 205.9 140.8 0.0 934.8 1.3
s ALL 113,887 1.9 64 0.0 164.8 15.8
z H 37,179 7.7 20.1 0.0 164.8 58
E HC 30,159 17 36 0.0 542 8.6
= D 46,549 13 2.7 0.0 339 52
ALL 111,321 17 28 0.0 66.8 96
% H 15,492 34 6.5 0.0 66.8 8.1
é HC 37,864 20 22 0.0 15.4 29
D 57,965 L4 22 0.0 246 45
. ALL 6746 0.2 41 0.0 163.3 39.7
=1 it 5330 L6 15.0 00 1633 109
E HC 645 0.0 0.1 0.0 L1 5.6
= D 771 0.0 0.3 0.0 6.4 14.7
- ALL 1,301,272 20.2 421 0.0 1130.1 13.8
g H 310,052 719 1213 0.0 1130.1 62
§ HC 406,856 21.5 26.5 0.0 323.0 4.9
- D 584,364 13.9 203 0.0 290.0 57
ALL 159,987 25 6.3 0.0 70.4 50
£ H 24,566 6.2 10.5 0.0 56.9 25
& HC 53,570 26 6.5 0.0 59.4 49
D 81,551 2.0 54 0.0 70.4 5.9
. ALL 13,089,152 186.7 189.8 0.0 37311 72
-§ H 2,451,705 499.3 485 8 38.2 37311 36
;. HC 3,839,460 194.7 125.5 10.0 $95.3 2.0
= D 6,797,987 148.3 97.6 0.0 770.4 16
P ALL 55,203 14 12.7 0.0 353.4 207
% ol 39,349 13.5 07 0.0 353.4 6.2
g HC 9092 0.3 1.5 0.0 210 8.1
= D 6762 03 47 0.0 148.0 29.9

* Skewness values between -1 and | indicale an approximalely normal distribution.
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Figure 3.4 Bar charts showing the rclative contribution of eleven selected diagnoses to total outpatient morbidity at
facilities in each Kenyan province. Initials refer to malaria (Ma), respiratory conditions (R), diarrhoea (D), pneumonia
(Pn), ear infections (E), anaemia (A), pyrexia (P), measles (Me), malnutrition (M), tuberculosis (T), meningitis (Mn), and
all other causes (O). Percentages are given (above bars) for all other causes and for the first five illnesses.
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Figure 3.5 Percentage contribution of diagnoses of malaria (solid line), respiratory diseases (dotted line) and diarrhoea
(dashed line) to total monthly outpatient cases at facilities in each Kenyan province for the 84-month study period January
1996 - December 2002. Discontinuities indicate that no records were present for that period.
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Differences in percentage were also observed between facility types, with both malaria
and respiratory conditions making a relatively greater contribution at dispensaries than at
hospitals. Relative contribution varied temporally as well as spatially. The nationwide
malaria contribution ranged from a maximum of 42.8% of total cases in March 1998 to a
minimum of 26.9% in December 1997. Respiratory conditions ranged from 27.2% (July
1998) to 20.3% (October 2002), and diarrhoea ranged from 6.1% (April 1997) to 2.9%
(July 2002). Figure 3.5 presents time-secries plots of the relative contributions of these
three illnesses to total outpatient morbidity for each province over the 84-month period.
All three diagnoses displayed inter- and intra-annual patterns of variation. Distinct peaks
in malaria contribution were present in various years, of which some occurred
simultancously in scveral provinces, whilst others were unique to a single province.
Some regular (i.e. seasonal) intra-annual variation could be detected in the contribution
of malaria, although this is exposed more clearly for this, and other diagnoses, by the

seasonality profiles shown in Figures 3.6 and 3.7.

The pattern of scasonality differed between diagnoses (Figure 3.6). The mean
nationwide seasonality profile for malaria revealed a characteristic peak in July, with a
smaller peak in February and March. The individual values for each of the seven years
plotted around this mean expose the extent of inter-annual variation in seasonal pattern
which was greatest during the peak months. This seasonality of malaria was similar to
that of anacmia, respiratory conditions and pneumonia, with each showing a relatively
consistent pattern over the seven years. Ear infections, diarrhoea and malnutrition also
had a consistent pattern over the study period with each exhibiting modest scasonality
peaking in May, March, and July respectively. The three least common diagnoses
(meningitis, measles, and tuberculosis) displayed no clear pattern of scasonality, with
large inter-annual variations. For most diagnoses, the pattern of seasonality varied
between provinces. Provincial seasonality profiles for malaria are shown in Figure 3.7.
Strong peaks in cases in July along with smaller peaks in February and March were
generally evident in provinces to the west of the country (Rift Valley, Central, Nyanza
and Western provinces), along with Coast province. Eastern and North Eastern
provinces had less pronounced seasonality whilst Nairobi province exhibited no clear

pattern with erratic inter-annual variation.
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Figure 3.6 Seasonality plots showing the percentage of annual cases occurring each month for 11 selected illnesses at
outpatient facilitics for the 84-month study period January 1996 — December 2002. Shown are the monthly case
proportions for each individual year (circles) as well as the seven-year mcan (continuous line).
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Figure 3.7 Seasonality plots showing the percentage of annual malaria cases occurring each month at outpatient facilities
in each Kenyan province during the 84-month study period January 1996 — December 2002. Shown are the monthly case
proportions for cach individual year (circles) as well as the seven-year mean (continuous line).
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3.3.2.3 Discussion

The relative contribution of each diagnostic code to the total number of outpatient
diagnoses, and the varying nationwide pattern of these contributions has been presented,
along with temporal trends for selected illnesses over the seven-ycar period. One result
that requires explanation is the large disparity between Nairobi and Central provinces in
the rclative contribution of malaria and respiratory diagnoses to total outpatient
morbidity, given that these provinces are contiguous neighbours. A tentative explanation
is that the proportion of patients diagnosed under these two most common diagnoses is
less in the Nairobi data due to a higher standard of diagnostic accuracy. A larger
proportion of patients may be diagnosed more specifically with less common conditions
and are therefore included in the ‘other’ category rather than as malaria or respiratory
diagnoses. This argument is supported by the unusually large proportion of data from
Nairobi province that originates from hospitals and health centres (which have relatively
good diagnostic capabilities) rather than from dispensaries (which have relatively poor
diagnostic capabilities) which was brought about by the unusually low reporting rate for

dispensaries in Nairobi province of just 9%.

Distinct peaks in the time series showing the proportion of malaria cases can be linked to
known malaria emergencics. A pronounced peak in carly 1998 in Rift Valley, Nyanza,
Eastern and North Eastern provinces corresponds to dramatic rises in malaria morbidity
in highland and semi-arid arcas of Kenya following exceptional rainfall in October to
December 1997 associated with the 1997-1998 El Nifio event (Brown ct al., 1998;
Karanja and Mutua, 2000). Distinct peaks are also evident in mid-1999 and mid-2002 in
Western, Nyanza and Rift Valley provinces which again correspond to reported

epidemic events following heavy rains (WHO, 1999; Hay et al., 2003).

Nationwide scasonality profiles (Figure 3.6) represent the overall distribution of cases
across an average year for each illness. Whilst such profiles have important implications
for health-system planning, it is vital that both temporal (i.e. inter-annual) and spatial
variation in scasonality is considered in their interpretation. The patterns of malaria
scasonality in cach province shown in Figure 3.7 can be explained in broad terms by the
corresponding seasonal pattern of rainfall. The strong peak in June and July in the four

western provinces (Central, Nyanza, Western, and Rift Valley) follows the main rainy
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season during March, April, and May. The period between peak rainfall and peak
malaria incidence represents the time taken for the increased rainfall to result in more
favourable mosquito habitats, the establishment of large mosquito populations, increased
infective biting of humans, increased infection and, finally, increased morbidity. In more
easterly provinces, the short rainy season that occurs during October, November, and
December has a more pronounced effect, with the corresponding peak During January

and February.

Inclusion of monthly case proportions for each individual year as well as the seven-year
mean exposes the extent of inter-annual variation in seasonality, which can be attributed
to a range of causes. It has been proposed, for example, that super-annual cycles in
directly transmitted diseascs can be driven by population dynamics under the
susceptible, exposed, infectious, recovered (SEIR) model (Aron and Schwartz, 1984).
An analysis of a 30-year time series of malaria admissions in Kericho in the western
highlands of Kenya revealed that super-annual cycles accounted for over 30% of total
variance (Hay et al., 2001). Long-term trends may also be present for many illnesses
driven by factors such as population movement and demographic change. For malaria,
such trends may also be driven by the decreasing drug efficacy (Marsh, 1998; Shanks et
al., 2000; Bloland, 2001; Trape, 2001), and by climate change, although the relative
significance of the latter is contested (Hay et al., 2002; Reiter et al., 2004). The
provincial variation in scasonality described for malaria (Figure 3.7) reflects the spatial
heterogencity in the influence and timing of a range of controlling factors including
meteorological determinants of suitability for transmission and the ecology and
population dynamics of the mosquito vectors, parasites and at-risk populations (Snow et

al., 1997, 1998; Craig et al., 1999).

By summarising the relative contributions and seasonal patterns of the 11 selected
diagnostic codes at outpatient departments in ecach province over the seven-year study
period, a profile can be constructed that begins to describe the spatial and temporal
pattern of outpatient morbidity in Kenya during that time. However, due to the chronic
level of missing data within the HMIS database, the extent to which these summaries are
representative of the true national picture is unknown. Using these incomplete data to
infer unknown properties of the complete set requires that the temporal and spatial

heterogencity described in this section is considered fully.
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3.3.3 Choice of malaria as the diagnostic code of interest

Of the many illnesses and conditions contributing to public ill-health in Kenya that are
included in the HMIS outpatient data set, malaria was chosen exclusively as the
diagnostic code of interest in this project, and the disease for which treatment burdens
would be estimated. This choice was driven by several factors. Firstly, there is a pressing
case for the nced of these estimates. As described in the previous chapter, malaria
presents an overwhelming public health challenge in Kenya, blighting the lives of
millions of Kenyans and imposing tangible economic constraints on development. Its
prominence as a public health problem is reflected in it being the most commonly
diagnosed discase in outpatients. Furthermore, even in the context of growing awarencss
of the overall need for increases in health information for evidence-based decision-
making, malaria is a disease for which the need for accurate quantification is especially
acute. As discussed carlier, this particular urgency arises from the current need to
determine and obtain donor funding for the switch from inexpensive but rapidly failing
antimalarials to more effective, but expensive, alternatives. Secondly, malaria is a
disease that exhibits considerable spatial (Craig ct al., 1999; Omumbo et al., 2002, 2005)
and temporal (Hay ct al., 1998a, 1998b) hcterogeneity across Kenya and basic attempts
to compensate for missing data within the HMIS to estimate treatment burdens do not
consider explicitly the influence of space and time and are, therefore, likely to lecad to
biased results. As such, the decision to focus on malaria presents the opportunity for

appropriate spatiotemporal techniques to be applied to a pressing public health problem.

3.3.4 Summary of data for model development

Having described in detail the HMIS outpatient and georeferenced health facility
databases that underpin this project, the specific data that were extracted and used can
now be summarised as follows. Data consisted of monthly records of diagnoses made at
outpaticnt departments of Ministry of Health facilities across Kenya over an 84-month
period (January 1996- December 2002). Each record included the total number of
outpatient diagnoscs made at a given facility during a given month and the number of
these diagnoses that were for malaria. The records available were not structured by age,
sex or distinguished as initial or follow-up visits, and malaria diagnoses were generally

not laboratory-confirmed. The data, therefore, represent total cases (TC) or presumed

n
n
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malaria cases (MC) seen as outpatients ecach month at health facilities identified by a

unique georeferenced facility code.

3.4 Chapter summary

This chapter has presented the two principal data sets from Kenya on which this project
was based. The first was a routine outpatient database collected by the HMIS from
health facilities across the country listing the tally of outpatients trcated each month
under a variety of diagnostic codes, including malaria. This data set had been linked to a
second which contained a comprchensive list of health facilities around the country and
included, for the first time in Kenya, extensive georeferencing information. This study
focused only on facilities operated by the Ministry of Health and, because the facility
data set is being updated constantly, two versions were used in this project. An carlier
version was used for model development and testing (Chapters 7 and 8) and an updated
version was used in the implementation of the final model (Chapter 9). This chapter has
also presented the first detailed description of the HMIS outpatient database, assessing
the extent and pattern of under-reporting and describing the broad spatial and temporal

heterogeneity of malaria and other important illnesses in the outpatient record.
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4. Methods

4.1 Introduction

The purpose of this chapter is to provide a detailed description of the modelling tools
that have been used in this project. The discussion in this chapter is limited to
established geostatistical concepts and techniques, whilst the incorporation and
adaptation of these methods in a series of modelling frameworks to meet the stated
project objectives is discussed in subsequent chapters. The following scctions introduce
the conceptual underpinnings of geostatistics, and the key concepts and tools by which
geostatistics can be used to characterise and predict spatial variables. The extension of
spatial-only geostatistical techniques to space-time settings is then introduced and some
key considerations are discussed along with examples of applications. Finally, a brief
review is included of the use of geostatistical methods in public health and malaria

settings.

4.2 The geostatistical paradigm

4.2.1 Deterministic and probabilistic modelling

The objectives of this project entail the prediction of presumed malaria cases (MC) at
locations where it has not been sampled (government outpatient facilities in Kenya with

data missing from the HMIS database). Such prediction requires the use of a model of
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how the property of interest behaves at these unsampled locations. Various conceptual
approaches exist for the formulation of such a model and a useful categorisation is
between deterministic and probabilistic models. In a  deterministic model, each
unknown value is predicted as a single value with no associated prediction error. Such
models can be employed when the physical mechanisms that govern the variable of
interest are well understood and established physical equations exist that allow
calculation of the unknown value with negligible or no error. As the scope and depth of
contemporary scientific knowledge continues to grow, the complexity of systems for
which deterministic modelling is feasible increases also. Sophisticated deterministic
models have been developed to model processes in fields as diverse as sub-atomic
physics, molecular biology, population dynamics, and glaciology. In fields such as the
cpidemiological and public health sciences, however, the systems of interest are
generally of such complexity and magnitude that they retain an inherent unpredictability,
even when many of the constituent processes are understood in detail. In the current
setting, the variable of interest is the number of cases of malaria diagnosed at a given
health facility in a given month. This variable is dependent on a myriad of massively
complex and interacting physical, biological, demographic, social, and political systems
that drive the prevalence of malaria in the population, the way that malaria sufferers
utilise health services to obtain trecatment, and the way they are diagnosed and recorded
if they present to the formal health system. Given the gulf between our understanding
and the complexity of the data-generating system, a deterministic model is neither
feasible nor appropriate. What is needed instead is a modelling approach that recogniscs
explicitly our uncertainty and allows the inevitable error associated with our predictions
to be assessed. Probabilistic models represent an alternative paradigm to deterministic
approaches. In a probabilistic model, the mechanism that generates the sample data and
determines the values of the variable at unsampled locations is viewed as a random
process. Although the mechanism in question is rarely, if ever, entircly random, the
adoption of a probabilistic model provides a framework that can prove extremely useful
in both predicting unsampled values and assessing the uncertainty of those predictions.
Instead of predicting a single value for cach unsampled location with assumed zero
error, probabilistic models allow the prediction of a set of possible values with
corresponding probabilitics of occurrence. Unlike deterministic models, probabilistic
models do not necessarily require knowledge of the physical process that generated the

sample data. Rather, most of the information used is derived from the data themselves.
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4.2.2 Geostatistics and the random function model

Geostatistics has been defined in broad terms as the study of phenomenon that fluctuate
in space (Olea, 1991). Developed originally to address problems of spatial prediction in
the mining industry (Matheron, 1971), the generality of the approach has led
subsequently to its application in a diverse range of settings including geological,
atmospheric, environmental, and epidemiological sciences. Geostatistics offers a
collection of primarily probabilistic tools that have been developed to aid the
understanding and modelling of spatial variability, with the principal motivation of
predicting unsampled values dispersed in space. In common with most probabilistic
approaches, each unobscrved value z is characterised as the outcome of a random
variable (RV) Z, defined as a variable whose values are randomly generated according to
some probabilistic mechanism (Isaaks and Srivastava, 1989). RVs can be categorical or
continuous with the probability of different outcome values being determined by some
probability distribution. In spatial settings, each RV Z and outcome z are associated with
a certain location ug = (x,)), a vector of spatial coordinates, and are denoted as Z(ug) and
z{ug), respectively. The uncertainty about values of Z(ug) can be fully characterised by a
univariate cumulative distribution function (cdf) which models the probability that Z(uo)

does not exceed any given outcome z:
F(u,;z) = Prob{Z(u, < z} (4.1)

In the absence of any information about a given RV, all possible outcomes have an equal
probability of occurrence and, as such, the cdf model does not increase our ability to
infer the value of z(ug). If a set of data from # neighbouring locations {z(u,), ¢ =1,2,...,
n} is available, however, the information provided by these data may allow this prior
model of uncertainty to be updated. This posterior model, updated by neighbouring data

z(u,), 1s termed a conditional cumulative distribution function (ccdf):
F(ugz|z(u,))=Prob{Z(u, < z[z(u,)} (4.2)

A central theme of geostatistics is the provision of a framework by which sample data

z(u,) can be used to update prior models of uncertainty for unsampled RVs Z(up) in

60



Chapter 4 Methods

order to produce posterior ccdfs from which predictions of the unsampled value z(ug)

can be derived. Such a framework is provided by the random function (RF) model.

A spatial RF Z(u) is defined as an infinite set of usually dependent RVs Z, one for each
possible location u in the study arca 4, {Z(u), v u € 2 }(Goovaerts, 1997). Just as a
univariate cdf of an RV Z can be used to represent uncertainty around an unknown
outcome value z, a multi-point cdf can be used to represent the joint uncertainty around
outcome values {z(uy),z(uy),..., z(uy)}at any given set of N locations spatially distributed

across the study area:
F(u,u,,.u,;z,2,,.,z,)=Prob{Z(w) <z, Z(u,) < z,,.... Z(u,,) < z,,} 4.3)

The set of all possible N-point cdfs for any value of N (N € ¥) and for any choice of
locations constitutes the complete spatial law of the RF Z(u). In principle, a RF is only
characterised fully by this complete spatial law. In practice, such complete
characterisation is both infcasible and unnccessary for the prediction of unobserved
values. The approach taken is to characterise the joint relationship between RVs at no
morc than two locations at a time, say Z(uy) and Z(uy"), by the one- and two-point cdfs
and corresponding moments. Of particular importance are the

two-point covariance:
Clug, uo") = E{Z(ug) - Z(wy")} - E{Z(uo)} - E{Z(uy")} (4.4)
and variogram:
2y(ug, up") = Var[Z(up) - Z(up")] 4.5)

Under conditions of stationarity, the degree of dependence between two RVs separated
by the samec lag h ((h = u;” - ug), a vector of distance and direction) is the same for any
such pair Z(ug) and Z(uy") across the study area. Under these conditions, a number of
parameters of the RF exist that summarise this bivariate dependence, dependent only on

h and not on u. These include its covariance function, C(h):
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C(hy=E{Z(u) - Zlu+ h)} - E{Z(w)} - E{Z(u+ h)} (4.6)
and its variogram, y(h):
2p(h) = E {[ Z(u) - Z(u + W)’} 4.7)

The adoption and parameterisation of a RF model provides a powerful framework for
the prediction of unsampled values dispersed in space. The following section describes

the principal considerations and tools by which this framework is implemented.

4.3 Spatial prediction with geostatistics

4.3.1 Stationarity

The existence and infercnce of the covariance function (4.6) or variogram (4.7)
described above requires certain assumptions regarding the stationarity of the RF model.
Strict stationarity entails that the multivariate cdf of the RF is invariant under translation,
such that the N-point cdf of any given sct of N RVs {Z(u,),Z(u,),..., Z(uy)} is the same
of that of any other translated set of N RVs {Z(u;) + h, Z(uy) + h,..., Z(uy) + h},
regardless of the translational lag h. Inference of the covariance function assumes
implicitly that all p RV pairs {Z(u,), Z(u+h); i = 1,2,..., p} separated by the same lag h
share the same two-point ¢df. Under these conditions the two-point covariance C(ug, ug”’)
is dependent only on lag and not on location, allowing all RV pairs (Z(up), Z(u,")) with
that scparation vector to be used in inference of the covariance function for that lag,
C(h). This location independence of the two-point cdf, in addition to the expectation
E{Z(uw)}, is termed stationarity of order two or second-order stationarity, defined

formally by:
E{Zw}=m vue 4 (4.8)
and:

Cthy=E{Z(u) Zu+h)} —m" vue 4 (4.9)
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where m is the expectation of the RF (Journel and Huijbregts, 1978).
Second-order stationarity also implics stationarity of the variogram (4.7) and leads to the

following relationship between it and the covariance function:
y(h) = C(0) - C(h) (4.10)

where C(0) is the covariance at zero lag, equivalent to the variance of the RF. However,
the definition of the variogram does not require second-order stationarity. In addition to
condition (4.8) above, it is sufficient that the increments of the RF, [Z(u) - Z(u + h)], are

second-order stationary. This is termed intrinsic stationarity.

When defining stationarity, it must be stressed that it is simply a property of the RF
model and, hence, a modelling decision which is necessary for statistical inference.
Stationarity is not a real-world characteristic of the phenomenon of interest or a
hypothesis that can be tested. For a given data sct, however, stationarity can be judged
subjectively as an appropriate or inappropriate modelling decision and this may depend
on the objectives of the study and the nature of sampling as well as the underlying
characteristics of the phenomenon. Alternative approaches that can be implemented

when a stationarity RF is considered inappropriate are discussed later.

4.3.2 Inferring second-order moments of the random function model

4.3.2.1 Variogram estimation

It is necessary to characterise the dependence between RV pairs with different
separations h for use in prediction algorithms such a kriging, described later. This
requirement underpins the rationale for inferring the covariance function or variogram of
the RF, as defined above. The most common approach taken is to estimate the variogram
with the » sample data using a straightforward method-of-moments approach. For each

lag, h, the sample (scmi)variogram® $(h) can be estimated as half the mean squared

: Strictly, the term variogram refers to the function 2y(h) = E {[ Z(u) - Z(u + h)}*}, and the semivariogram refers to this
function divided by two, hence, y(h). It is the latter value that is generally estimated and, because of its useful relation to
the covariance function (4.10), used in interpolation algorithms. [1ereafter, the term variogram is used in place of
semivariogram, aceepting that strictly they refer 1o different values.
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difference between all i = 1,2,..., p data pairs separated by that lag:

p(h

oy 1 & ,
#h)= mﬂz(u» —z(u, +h)] (4.11)

i=1

Semivariance values can be calculated for every data pair in the data set and compared
to the corresponding lags, h, by plotting the resulting variogram cloud. An alternative
approach is to pool data pairs according to a finite set of regularly spaced lags, with cach
value of h actually representing a defined range of lag separations. The latter approach
allows a larger sample, and hence a more stable estimate, for cach value of #(h). A
further issuc is the effect of direction on the variogram. Where semivariance is
dependent only on the separation distance, thl, the variogram is deemed isotropic. Where
the direction of separation also has an effect, the variogram is deemed anisotropic. In the
latter case, data pairs arc generally pooled by both distance and direction, and separate

sample variograms estimated for each direction.

4.3.2.2 Variogram modelling

Variogram inference using the sample variogram defined above (4.11) leads to sample

values of #(h, ) at a finite number of lags (and possibly directions) £ = 1,2,...,K. Because

interpolation algorithms such as kriging require semivariance values for any possible lag

h, it is necessary to fit a continuous model 7(h) to the K sample values. When choosing

variogram models to fit to the sample values, it is imperative that the model chosen is
deemed permissible. Of critical importance is that when any given RV, 7, is created as a
finite linear combination of /=1,2,...,n RVs Z(u;) across the study area, the variance of ¥’

is non-negative. Such a lincar combination is expressed formally as:
Y=> AZ(u) (4.12)
i=l

The variance of Yis expressed as a linear combination of covariance values:
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Var[Y]:ii&,/le(ui—uj) (4.13)

=l =1

and the covariancc function C(h) must be chosen such that Var[Y] 0. Covariance
functions that fulfil this requirement are deemed positive definite. Because variogram
models are used ultimately in kriging algorithms to calculate covariances, it follows that
the model #(h) must also result in non-negative variances for Y. Accounting for an RF
model that is only intrinsically stationary (and, hence, the covariance function does not

exist), the variance of Y can be expressed in terms of the variogram as:

i i

VarlY]=-> > 1A ¥, —u)) (4.14)

=1 j=I

Variogram models that cnsure non-negativity of the variance of Y arc termed
conditionally negative definite. The condition is that the sum of the weights /; is zero,
which is necessary to remove the covariance term C(0) from the expression. In practice,
rather than exhaustively check any given model for conditional negative definiteness,
variogram models are sclected from a set of established models that are known to meet
this condition (e.g. Journel and Huijbregts, 1978, Ch. 3; Goovaerts, 1997, Ch. 4; Deutsch
and Journel, 1998, Ch. 2). Of this set, those variogram models considered in this study

arc:

the spherical model:

h AN
) = c~[1.5;—0.5[;” ifh<a @.15)

¢ ith>a

the exponential model:

y(hy=c: [1 - exp{— %H (4.16)
a
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the Gaussian model:

Y(h)=c-|1—exp| — Gh)° 4.17)

2

the power model (where o is a power 0 < w <2):

7(h)y=c-h” (4.18)
and the periodic model:
~ h
Y(hy=c-|1—cos| — 7 (4.19)
a

where £ is the distance component of the lag vector (4 = hl), ¢ is the structural
component or si// parameter, and a is the range parameter (Deutsch and Journel, 1998,
p. 25). These parameters arc shown for a hypothetical spherical variogram model in

Figure 4.1, and each model type is shown in Figure 4.2.

y(h)

Sil -+

e)

L

’ h

Range

-

Figure 4.1 A hypothetical variogram model. Variograms plot semivariance (y) against, in this casc, omnidirectional
distance, /2. The model shown is a nested structure consisting of a nuggel effect model with structural component ¢y, and a
spherical model with structural component ¢;. The sill valuc is the sum of these structural components, and the distance at
which this sill is reached is termed the range.
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() Nugget T Spherical Power

Y(h) Exponent]a[ 1 Gaussian Periodic

Distance h Distance h Distance h

Figure 4.2 Examples of six of the most common permissible variogram models.

The sill parameter is the limiting value y(s0), equivalent to the a priori variance C(0) of a
stationary RF. Variogram models that reach a sill are deemed bounded or transitive. The
lag distance # at which the sill is rcached is represented by the range parameter. The
spherical model reaches its sill at value a, the actual range. In the case of the
exponential and Gaussian models, however, the sill is reached asymptotically and a
practical range 1s therefore defined as the distance at which the variogram reaches 95%
of its sill, y(a) = 0.95-c. The range represents the separation distance beyond which pairs
of RVs arc modelled as independent, that is, no spatial dependence exists. The power
model is an example of an unbounded model and does not reach a sill. Such models
represent REs with an unlimited capacity for spatial dispersion for which neither the a
priori variance nor covariance function can be defined. The periodic model is used to
represent RFs in which a pattern is repeated regularly through space. In this case, the
range parameter defines the distance to the first peak, cquivalent to the size of the
underlying cyclic feature (Deutsch and Journel, 1998, p. 25). When modelling
semivariance through time, a seasonally repeating feature can be modelled using a
periodic model with a range of 6 months which results in a period of 12 months. The

periodic model is conditionally negative definite in 1-D only.

The value of the variogram at h = 0 is strictly 0. Often, however, sample semivariance

values suggest a model should be used that intercepts the ordinate at some positive
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value. This discontinuity is termed the nugger effect, and is modelled with a nugget

model, defined simply as:

7(h) = {O ih=0 (4.20)
¢ 1fh>0
The nugget cffect occurs when the expected difference z(u) - z(u + h) remains positive
even when the separation h tends to zero. This expected difference can be caused by
several factors including measurement error, spatial variability over distances smaller
than the shortest sampling interval, or non-spatial sources of variability that may operate
independently at very close locations. In cases where the sample variogram suggests a
complete absence of spatial auto-correlation (a pure nugget effect), the nugget effect

model can be used in isolation.

In many situations, two or more secparate models are used together as a linear

combination to form a nested variogram model. For example, a nested model 7(n)
could be constructed using a nuggcet effect 7 (h), Gaussian 7, (h) and spherical 7 , (h)

model as #h) = 7, (h) * 7,() + 7 ,(h). The sill value of a nested variogram is
defined by the sum of the structural components of each constituent model. The ratio of
the nugget model to this sill is termed the relative nugget effect and is indicative of the

proportion of the total variance of the RF that is not due to spatial variability.

4.3.3 Kriging

Consider a set of spatial data, z(u,), of an attribute z at # locations u,, & = 1,2,..., nand a
set of ¢ unsampled locations, ug, z*(up), f = 1,2,..., ¢ for which predictions are required.
Kriging is a geostatistical term for a family of generalised linear regression techniques
that provides an approach by which the available data z(u,) can be used to predict values
7*(up) at the unsampled locations (Krige, 1951; Matheron, 1971). Kriging techniques
operate within the conceptual framework provided by the RF model and exploit spatial
dependence in the phenomenon of interest, as modelled by the covariance function or

variogram. Interpreting cach datum z(u,) as a realisation of the RV Z(u,), the kriging
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predictor Z*(u,) can be expressed as a basic linear regression predictor:

n(u)

Z*(uy)—m(uy) =Y A, Z(u,)-mu,)] 4.21)

o=l

where A, 1s the weight assigned to the datum corresponding to Z(u,) and m(u,) and m(ug)
are the expected values of the RVs Z(u,) and Z(u,), respectively. The prediction error
can also be defined as a random variable Z*(u,) - Z(u,) and the objective of kriging is to
minimise the variance of this error, termed the error variance o, (u,), under the
constraint of unbiasedness (i.c. under the constraint that E{ Z*(up) - Z(uwo) } = 0 ).
Numerous variations of kriging exist, cach targeted at subtly different prediction
problems. Two widely used approaches are of relevance in this project, simple kriging

(SK) and ordinary kriging (OK), and these are now discussed in more detail.

4.3.3.1 Simple kriging

The RF Z(u) can be decomposed into a trend component m(u) and a residual component
R(u): Z(u) = R(u) + m(u). In SK, the trend component is modelled as a known stationary

mean m which allows the basic predictor (4.21) to be re-expressed as the SK estimator

Z*SK(UQ)I

n(uy)

Zg(u,) = Mii)/?'a(u())z(ua) 7{] DA (Uo)} m (4.22)

=1
where A, are termed the kriging weights. A minimisation procedure {(c.g. see Goovaerts,
1997, p. 128) can be implemented to derive a system of equations in terms of Z-

covariances for the set of n(ug) kriging weights that minimise the error variance o (u,):

niu)

> A, )Cu,~uy)=Clu,—u,) a=12,.,nu,) (4.23)
A=l

The two covariance terms are C(ug - u,), the covariance between RVs at two data
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locations Z(u,) and Z(u,), and C(u,— w,), the covariance between the RV at a given data
location Z(u,) and at the prediction location Z(ug). These covariance values arc
calculated using a covariance function or, more commonly from a variogram model
fitted to the sample variogram as described previously, which is then converted into a

covariance function using relation (4.10),

The system of equations (4.23) is solved using a matrix operation. In matrix notation,

these equations are written as:
Ksk . Ask (ug) = kg (4.24)

Where Kgk 1s a n{u) x n(u) matrix of the covariances between RVs at data locations, ks

is a vector of the n(uy) covariances between RVs at data locations and the prediction

location, and Asx is a vector of the n{uy) kriging weights:

C(u,-u) - C(ul—um\uﬂ)) A (u) C(u, —u)
: 3 3 S = S (4.25)

C(un(ug) _ul) e C(un(ug) _un['uQ)) ﬂ’n(uu)(u) C(un(u”) _u)

The vector of kriging weights is obtained by inverting the covariance matrix Ksx and

multiplying the resulting matrix K”sx by the covariance vector ks:
Ask (o) = K''sg . ks (4.26)
The minimised error variance, termed the kriging variance o (u,), is defined as :

n(uy)
O (1) = C(0)= > A, (u)Clu, —u,) (4.27)

=]
and is also calculated using the matrices defined above by:

o5 (u,) = C0) - K'sg . K'lsk . ks (4.28)
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4.3.3.2 Ordinary kriging

OK differs conceptually from SK in the way the RF trend component m(u) is modelled.
Rather than consider m(u) to be a known stationary mean m, OK considers the mean to
be unknown and limits its domain of stationarity to a local neighbourhood centred on the
location ug to be predicted. This approach has the important practical implication that the
local mean may vary considerably over the study area which, in practice, is often
considered a more appropriate modelling strategy. Under OK, the basic linear predictor
(4.22) is expressed as a lincar combination of the 12{ug) RVs Z(u,) and the constant local

mean m(up):
' niug) n(ug)
Z (u,) = Zﬁ,ﬂ(uﬂ)Z(ua)J{l— Z/’la(uo)}m(uo) (4.29)

In order to remove the unknown local mean m(ug) from the expression, and to ensure the
unbiasedness of the predictor (i.e. that E{Z*(up) - Z(ug)} = 0), the sum of weights is

constrained to sum to 1, thus removing the second term. This allows the OK predictor

Z. (u,) to bc expressed as:

n(ug)

Z:)K(uo): Z/?’rx(uo)z(ua) (4.30)

with the unbiasedness constraint:

n(u,

)
D A,y =1 4.31)

As with SK, a minimisation procedure (e.g. sece Isaaks and Srivastava, 1989, p. 286 -
289) can be implemented to derive a system of equations in terms of Z-covariances for

the set of n(uy) kriging weights that minimise the error variance o;(u,) of the above

predictor under the constraint of unbiasedness:

71



Chapter 4 Methods

n{ug)
Z/lﬂ(uo)C(uu —ug)+ i (u)=Clu, —uy) a=12,.,n(u,)
- (4.32)

n{ug)

D Ag(uy) =1
f=1

The two covariance terms in (4.32) correspond to those in the equivalent SK system
(4.23) and, although the mean m(uy) is assumed stationary only within local
neighbourhoods, the covariance is generally inferred from all data available across the
study area. The term uox(ug) is the Lagrange parameter (e.g. see James, 2001, p. 655)
and is introduced as part of the minimisation procedure to maintain the balance of #(up)
+ 1 equations and n{ug) + 1 unknowns that is upsct by the addition of the further

equation for the constrained weights (4.31).

As for SK, the OK system of cquations (4.32) is solved using a matrix operation, written

as:
Kok . Aok (llo) = kok (4»33)

The addition of the Lagrange parameter alters these matrices from the SK case as

follows:
C(ul _ul) C(ul _un('ug)) 1 2’1(“0) C(ul _uO) —l
' A ' | : = : (4.34)
C(un(uo) —ul) T C(un(un) _url(_uo)) ] ﬂ'n(un) (u()) C(un(uo) _uO)
1 1 0 U(u,) 1

The vector of kriging weights is obtained in the same way, by inverting the covariance

matrix Kox and multiplying the resulting matrix K 'ox by the covariance vector kox:
plymg g y

hok (ug) = Ko . ko (4.35)
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The ordinary kriging variance o, (u,), is defined as :

n(uy)
Gox (1) =C(0) = > A, (u)C(u, —uy) =ty (uy) (4.36)

a=1
and is calculated as:

O (1,) =C(0) - K'ox . Kok . ko 4.37)

4.3.3.3 Features of kriging predictors

Both OK and SK are exact interpolators such that all data values z(u,) are honoured at
their locations, z*(ug) =z(u,) v u; = u,, both produce unbiased predictions in the sense
that E{ Z*(u) - Z(uy) } = 0, and both minimise the modelled prediction error variance
o3 (u,)= var[Z*(ug) - Z(up)]. The weighting system used by the OK and SK predictors
takes into account both the proximity of each datum to the prediction location (via the
covariance term C(u, — up)) and the proximity between data (via the covariance term

C(u, — uy)), with the latter consideration accounting for redundancy between data.

In addition to the provision of a model for the variogram or covariance function,
implementation of either predictor requires various parameters to be set by the user. Of
particular importance is the choice of search strategy that defines the number n(u) of
local data {z(u,), @ = 1,2,...,1n} that are used in each prediction z*(u). Generally, a local
search radius or limit value is implemented such that n(u) is restricted to substantially
smaller than the total number of data available across the study arca. This practice is
motivated by various factors. Firstly, the reliability of covariance estimates for large
separation distances |h| is questionable since the number of data pairs with this
separation is often small. Secondly, the use of a local search neighbourhood with OK
allows local fluctuations in the mean to be taken into account. Thirdly, the influence of
distant data is generally screened by those more proximate, such that their inclusion has
little effect on the prediction. A further benefit of reducing the number of data involved

in each prediction is that the computational requirements decrecase dramatically, with
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processing time approximately proportional to (r2(u))".

OK is preferred to SK in many situations because it requires neither knowledge or
stationarity of the mean over the entire study area (Goovaerts, 1997). The difference
between OK and SK predictions at a given location is dependent on the departure of the
local mean from the global mean. In regions with a small local mean, the OK estimate
will be smaller than the SK estimate, with the converse applying for regions with a
larger local mean. The difference between OK and SK predictions increases as
predictions are made at locations more distant from any data, since the relative influence

of the mean increases in these situations.

4.3.3.4 Kriging variance as a measure of prediction uncertainty

The kriging variance serves as a criterion for optimisation of the kriging equations as
described above. However, it also provides useful information about ecach prediction.
The kriging variance is dependent on the variogram or covariance model and on the
spatial configuration of the data in relation to the prediction location. Because of this
dependence, the kriging variance provides a mecasure of the uncertainty of each
prediction, with uncertainty increasing for RFs with large spatial variance, and for
predictions that are made at locations more distant from data. The kriging variance is not
dependent, however, on the data values, such that any two sets of data with different
values but the same spatial configuration would yield a prediction with the same kriging
variance. This independence reduces the utility of the kriging variance as an absolute
measure of uncertainty since, for example, it is intuitive that a local set of data with large
variability will result in a less certain cstimate than a less variable set with the same
spatial configuration. As such, the use of kriging variance is generally restricted to a
relative measure of uncertainty, allowing relative comparison of the uncertainty of

individual predictions and different data configurations.
4.3.3.5 Effect of variogram structures on kriging predictions

Having outlined the kriging process, and explained the role of the variogram model, it is

appropriate to consider how the characteristics of the variogram model affect the
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resulting predictions. If two variograms arc considered that differ only in scale, e.g. y(h)
and 2y(h), the values of the resulting kriging predictions will not differ. This is because
the relative influence of different data docs not change and, hence, the kriging weights
remain unaltered. The kriging variance, however, is affected in proportion to the change
in scale. The shape of the variogram model, as determined by the choice and
parameterisation of the constituent permissible models, can have a substantial effect on
both prediction values and kriging variance. Models with a parabolic shape close to the
origin, such as the Gaussian model, are best suited to representing very continuous
phenomena, and result in much larger influence being attributed to data very close to the
prediction location. Models such as the spherical and exponential model have a linear
shape close to the origin, which leads to the influence of ncarby data declining more
evenly with increasing separation from the prediction location than is the case for the
Gaussian model. Models with a large nugget effect mean that the relative importance of
data proximity in determining influence is small. In the extreme case, with a pure nugget
effect model, the influence of proximity is zero and all data are weighted equally. Under
these conditions, the prediction is equivalent to the mean of the data. The variogram
range reflects the maximum distance over which spatial dependence exists, such that

points scparated by greater distances are deemed independent.

For a given data set and an RF model with a given a priori variance, variogram models
with a small nugget and large range values result in relatively more certain kriging
predictions than do models with a large relative nugget effect and/or a small range value.
The equivalent real-world interpretations are that, in the former scenario, the property of
interest varies smoothly through space and is spatially dependent over large distances
whilst, in the second scenario, the property varies erratically in space over short
distances such that there is only a weak tendency for proximate points to be more similar

than those much further apart.

4.3.3.6 Cross-validation

Having implemented a kriging predictor to make a set of predictions z*(uy) at f =
1,2,...,q unsampled locations, it is generally necessary to assess the accuracy of these

predictions, that is to assess the values of z*(uy) - z(ug). However, in genuine prediction
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settings the set of g true values z(uy) is, by definition, unknown such that the accuracy of
predictions cannot be assessed directly. An alternative strategy is provided by cross-
validation which allows the prediction method to be tested at the locations of the
existing observations. Cross-validation proceeds by the removal of a single datum, z(u,,).
The kriging technique in question is then implemented to obtain a prediction z*(u,) at
this point, and the error between datum and prediction z*(u,) - z(u,) is noted. The datum
is then replaced, another removed, and the process begins again, eventually repeating for
all ¢ = 1.2,..., n data locations to provide a complete set of predicted values for

comparison with the data set.
A series of summary statistics can be calculated from the set of cross-validation
predictions to allow, for cxample, straightforward comparison between different

prediction approaches. Summary statistics used in this project include the correlation

cocfficient between the predicted and actual set:
A (,).2(w,)] (4.38)

the mean prediction error (ME):
I3 -
ME =—> z'(u,) - z(u,) (4.39)
n o=1

and the mean absolute prediction error (MAE) (Saito and Goovaerts, 2000):

R
MAE—;Z

a=]

(4.40)

z*(ua)—z(ua)

The correlation cocfficient provides a straightforward measure of linear association
between the data and prediction sets, the ME provides a mecasure of the bias of the
predictor, and the MAE provides a measure of thc mean accuracy of individual

predictions,

The use of cross-validation as a method of accuracy assessment is limited by a number
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of factors. Firstly, although each datum is removed temporarily to generate a cross-
validation prediction at that point, the variogram is not recalculated with the datum
removed and, hence, each cross-validation prediction is not strictly independent of the
datum to which it is compared. Where the number of data is large, however, and no
extreme outliers arc present, the influence of an individual datum on the sample
variogram can be considered negligible in most cases. Secondly, the use of simple
arithmetic averages to generate estimates of ME and MAE may result in biased

estimates when the data are clustered, and this issue is revisited in later chapters,

4.4 Space-time geostatistics

Geostatistics was conccived as an approach for the investigation and prediction of
natural phenomena distributcd across space. The restriction of the conceptual approach
to the spatial domain was appropriate for the geological scttings in which the paradigm
became established. The estimation of ore reserves, for example, requires no
consideration of the temporal domain since, in the timescales that arc likely to be of
interest, the variability through time of the property under study can be considered
negligible. As the range of disciplines in which geostatistical tools have been applied has
expanded, however, prediction scenarios have been increasingly encountered in which
variability of a property through time, as well as space, is of interest. Where data on such
properties are themselves collected at appreciably different times, and where predictions
are required at unsampled points in time as well as space, it is clear that an approach is
required in which the temporal domain, as well as the spatial domain, is considered

explicitly.

Space-time geostatistics is a broad term that incorporates a diverse set of approaches in
which geostatistical concepts and tools developed originally for spatial-only settings
have been adapted for the characterisation and prediction of properties that vary, and are
investigated, through both time and space. Examples of the use of space-time
geostatistical approaches can be found in a wide range of disciplines. Such techniques
have been used to model the space-time distribution of pollutants in the atmosphere
(Casado ct al., 1994; Christakos and Vyas, 1998; Meiring et al., 1998; De laco et al.,
2002; Host et al., 2004; Nunes and Soares, 2005) and how such pollutants are deposited
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on the land surface (Bilonick, 1985; Haas, 1990, 1995; Kyriakidis and Journel, 2001).
Similarly, the dispersion of chemicals has been modelled in occanographic (Lophaven et
al., 2006) and groundwater settings (D'Agostino et al,, 1998; Douaik et al., 2003;
Vanderlinden et al., 2006). Geostatistical space-time interpolation and simulation
techniques have been used in hydrological studies (Christakos et al., 2000; Araghinejad
and Burn, 2005) and the assessment of soil- and groundwater resources (Rouhani and
Myers, 1990; Snepvangers et al., 2003; Jost et al., 2005). Further applications include
the modelling of spatiotemporal patterns in air temperature (Bogaert and Christakos,
1997), the evaluation of long-term wind-field strength as a source of rencwable energy
(Haslett and Raftery, 1989), and thc simulation of regional daily precipitation
(Kyriakidis et al., 2004).

4.4.1 Approaches to space-time geostatistical modelling

Of the broad swathe of conceptual approaches by which space-time variables can be
represented in a geostatistical framework, two distinct strategies have been identificd
(Kyriakidis and Journel, 1999). The first strategy is to model the variable as cither a set
of temporally correlated spatial RFs at 7 points in time (multiple RF model) or a sct of
spatially correlated time series (TS) located at » locations in space (multiple TS model).
The choice between these two sub-strategies is likely to be motivated by the relative
abundance of data in the two domains. Where a large number of data have been
collected through time at a small number of locations in space, the multiple TS model is
likely to be more appropriate. Conversely, where data have been collected densely in
space but at only a small number of times, then the multiple RF model may be more
suitable. In both cascs the spatiotemporal continuity is modelled using the linecar model
of coregionalisation (LMC). In this model, every T spatial RF or »n TS is characterised
with, respectively, a spatial or temporal variogram or covariance function. Temporal
continuity between all T RFs is characterised by T(T - 1)/2 cross-variograms or cross-
covariance functions, whilst spatial continuity between n TS is characterised by »(n -
1)/2 such functions. In this LMC approach, predictions are made using cokriging (e.g.
sce Goovaerts, 1997, p. 203 - 258) and can be made only at space time locations within
each spatial RF or TS. This restriction represents a limitation to the use of an LMC

model in situations where predictions are required at any space-time location within the
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spatiotemporal domain of interest. A further limitation is that the number of auto- and
cross- variograms or covariance functions that must be estimated and modelled,

(T(T + 1)/2 or n(n + 1)/2), can become impractical if both T and # are large.

A second strategy that overcomes the limitations described above is to represent the
space-time phenomenon of interest using a single space-time RF Z(u, 7) where u is a
vector of spatial coordinates and 7 is an instant in time. This approach extends the RF
concept introduced earlier for a spatial-only setting to include time as an additional
dimension. RVs Z((u, 7)) exist for all possible space-time locations (ug, #;) in the

spatiotemporal study domain, each characterised by their cdf:
F((u, 1)o; z) = Prob{Z((u, 1)) =z} (4.41)
Any set of N space-time RVs are characterised by the corresponding N-point cdf:
F((u, D1,...,(u, O)y; 21,...,2y) = Prob { Z((u, 1)) zi,..., Z((u, H)y) zn} (4.42)

The sct of all possible N-point cdfs for any value of N (N & N) and for any choice of
space-time locations constitutes the complete spatial law of the RF Z(u, 7). Separations
between space-time locations are defined by a space-time lag (h,, 4,) where h; is the
spatial lag vector, as defined previously, and /4, is the scalar scparation in time. Unlike

space, there is no concept of anisotropy in time.

Mirroring the spatial-only case, the continuity of the space-time RF can be characterised

by the space-time covariance function, Cthy, 4,):
C(hy, h)=E{Z(u, 1) Z(u+ hy, 1 + h)} - E{Z(u, 1)} - E{Z(u+ hy, t + h)} (4.43)
and the space-time variogram, y(h;, 4,):
29(hy, h) =E {[ Z(u, £) - Z(u + hy, 1 + 1)} (4.44)

The space-time RF allows predictions to be made at any given space-time location
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within the study domain. As in the spatial-only case, this process requires estimation and
modelling of one of the above structural functions, and the implementation of a kriging

procedure. The extension of these processes to the space-time case is now summarised.

4.4.2 Space-time variogram estimation and kriging

Consider a set of space-time data z((u, ),) of the attribute z at n space-time locations o =
1,2,...,n, and a set of predictions z*((u, 7)s) required at ¢ unsampled space-time locations
p = 1,2....,q. Mirroring the spatial-only case, an accepted geostatistical approach is to
infer the space-time autocorrelation structure of the RF by using the » data to estimate a

sample space-time variogram 7 _(h k4, ) betweenalli=1,2,..., p, data pairs at a series of

regular space-time lags:

hh)

7 (b )= > w0 )=l 0, + b, ) (445)
(h&,h, =
A continuous 2-D space-time variogram model, 7 (h 4 ), can then be fitted to this

variogram surface allowing semivariance values to be estimated at any lag for input into

a space-time kriging system,

The extension of spatial-only OK to space-time OK (STOK) results in an equivalent
predictor Z*srox((u, 7)), a linear combination of »n(u, 7) RVs at data locations local in

space and time to the prediction location:

nilu,t)g)

Z;TOK ((U, [)O) = Z /1(1((“7 [)(J)Z((u: [)(z) (446)

=1

with the equivalent unbiasedness constraint:

/1l(uf)(

D> A, (1)) =1 (4.47)

=1
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Again, the utility of this approach lies in its capability to determine the weight, 4,((u,f)o),

assigned to each neighbouring datum such as to minimise the prediction variance:

Flrox (1)) = Varlz * ((u, 1)) = 2((u,1),)] (4.48)

4.4.3 Models for space-time covariance structures

A critical stage in the process described above is the choice of model for the variogram
or covariance function and the estimation of model parameters. As in the spatial-only
case, the principal concerns when modelling space-time autocorrelation structures are to
ensure that the model chosen is valid (i.e. that conditional negative definiteness or
positive-definiteness is ensured for variogram or covariance function models,
respectively) and that the model is sufficiently flexible to allow fitting to the data though
careful estimation of model parameters. Whilst a well established set of models exists
for spatial-only variograms (Dcutsch and Journel, 1998), a more diverse range of models
have been proposed for the modelling of space-time autocorrelation structures
(Kyriakidis and Journel, 1999; De Cesare et al., 2001). These include the product model
(Rodriguez-Iturbe and Mejia, 1974), the metric model (Dimitrakopoulos and Luo, 1994),
the integrated product model (Cressie and Huang, 1999), and the product-sum model
(De Cesare et al., 2001; 2002). In this study, this last class of model was adopted
because: (a) it offers a large class of flexible models that impose less constraints of
symmetry between the spatial and temporal correlation components than other classes,
(b) it does not require an arbitrary space-time metric to be imposed, and (¢) the model
can be fitted to data using relatively straightforward techniques similar to those

established for spatial-only variograms.

The product-sum space-time variogram model, % (h_,%, ), is defined in terms of the

SIL
separate spatial and temporal variograms, ¥, and ¥, and the corresponding spatial and

temporal sills, Cy(0) and C(0):

7,0 1) =(kC (0)+k,)7.(h)+(kC(0)+k,)7.(h) k7. (h )7 (h) (4.49)
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The parameters k&, &, and 43 are defined as:

k, =[C.(0)+C,(0)~C,,(0,0)]/C (0)C, (0) (4.50)
k, =[C,(0,00-C,(0)]/C,(0) (4.51)
k, =[C,,(0,00-C (0)]/C,(0) (4.52)

where C(0,0) is the sill of the space-time variogram, i.e. the limit value at large space-
time lags. Various constraints arc placed on these parameters to ensure model validity

(see De Cesare ct al., 2001). A key advantage of the product-sum model is that 7 (n /)

is defined entirely by paramecters of the sample space-marginal and time-marginal
variograms and the space-time sill, C,(0,0), which can all be estimated from the sample
space-time variogram surface (4.45). The space-marginal variogram plots the

semivariance at each spatial lag for temporal lags of zero, i.e. 7 (h ,0),and is equivalent

to the mean of all spatial-only variograms for all values of 4. Converscly, the time-
marginal variogram plots semivariance at cach temporal lag for spatial lags of zero,

7.,(0,4,), and is equivalent to the mcan of all temporal-only variograms for all values of

hs.

4.5 Geostatistics and public health

The robust conceptual framework offered by the RF model and its utility in exploring
and predicting heterogeneous spatial and space-time properties has resulted in the
approach being applicd to an increasingly diverse range of problems in many disciplines.
Of particular relevance to this project are the growing number of studies in which
geostatistical concepts and tools have been applied to public health problems. The most
common motivation for the application of geostatistical techniques in a public health
context has been the production of continuous maps of a given public health variable
that has been sampled through space (and/or time). A straightforward example is
provided by Carrat and Valleron (1992) who used kriging to produce maps from data on

influenza morbidity in France.
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4.5.1 Geostatistics and areal public health data

Frequently, data relating to public health status are available in an aggregated form over
finite spatial units. The areal data might represent, for example, the incidence rate (e.g.
number of cases per head of population) of a given condition within an administrative
region (e.g. census enumeration district, ward, district, province) during a given period.
A common requirement is the production of a smoothed risk map from such areal data
that allows assessment of the spatial variability in the risk of morbidity or mortality due
to the condition in question which can then be used by policy makers to identify areas of
highest public health need, and to highlight potential causative factors. Examples of the
use of geostatistical tools in this context include the modelling of the risk of sudden
infant death syndrome (Berke, 2004), the mapping and analysis of rates of sexually
transmitted diseases (Law et al., 2004), and the space-time mapping of breast cancer

incidence (Christakos and Lai, 1997).

An important problem in the mapping of incidence rate or relative risk from areal-level
data is that the variance of these values derived from different areal units is non-
stationary because the population size will vary between units. Numerous studies have
used geostatistical tools to address this problem. In a series of studies focusing on
childhood cancer in the West Midlands, England, geostatistical strategies were
developed to account for spatial heterogeneities in the population of children in order to
produce more stable characterisation of cancer risk (Oliver et al., 1992, 1998; Webster ct
al., 1994). Starting with the sample variogram of the rudimentary incidence rate within
electoral wards, they were able to modify the variogram to incorporate information on
the number of children in cach ward in order to estimate a variogram of risk. This
allowed assessment of the spatial autocorrelation of the underlying risk, and prediction
of this variable was carried out using cokriging based on the incidence and risk
variograms. Similar approaches to this problem were suggested by Goovaerts (2005a,
2005b), Goovaerts and Jacquez (2004), and Goovaerts et al. (2005) who developed a
population-weighted semivariogram estimator in order to reduce the influence of cancer
incidence data bascd on small population sizes. Tn later work, Goovaerts (2005¢, 2006)
developed a kriging and simulation approach based on the Poisson distribution to
account explicitly for the handling of count data in predictions and simulations of

uncertainty.
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4.5.2 Geostatistics and malaria

Just as the use of geostatistics has increased in recent years within the field of public
health as a whole, so too has its application to problems specific to malaria. In an early
example, Ribeiro et al. (1996) used kriging to map the distribution of mosquitoes around
villages in Ethiopia in order to guide control measures. Kleinschmidt et al. (2000, 2001)
used kriging to interpolate the residuals of a logistic regression model that predicted
childhood malaria prevalence in West Africa using climatic, population and topographic
variables. Diggle et al. (2002) used geostatistics to predict the presence or absence of
malaria parasites in children in the Gambia. They analysed the influence of a range of
social, environmental, and behavioural factors relating to cach child and their village of
residence and were able to reveal underlying spatial heterogeneities in risk. Gemperli et
al. (2004) used a Bayesian hierarchical geostatistical logistic model to model the risk of
infant mortality in Mali and were able to relate spatial patterns in this risk to known foci
of intense malaria transmission. In a later study, Gemperli et al. (2006) used a similar
approach in conjunction with a deterministic model of transmission intensity to model
the spatial distribution of the entomological inoculation rate (EIR), which is the expected
number of infective bites from malarial mosquitoes sustained per person in a given time

period.

4.6 Chapter summary

This chapter has presented a review of the most important established gecostatistical
concepts and methods that have been incorporated in this study. The central concept of
the random function has been introduced as a probabilistic model for the data-generating
mechanism of spatial data. Variogram cstimation and modelling and kriging prediction
have been described as the fundamental tools by which the utility of the random function
can be exploited to explore and predict spatial variables. The extension of thesc concepts
and tools to spacc-time settings has been described, along with example applications and
consideration of the main conceptual approaches by which this extension can be
achieved. Examples of the application of geostatistics in public health and malaria
studies have been given. No cxamples have been found of the application of

geostatistical techniques to routine outpatient data or to address problems of predicting
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national-level treatment burdens when such data are incomplete. Subsequent chapters
present a conceptual framework and a series of analyses carried out in this project by

which this problem is addressed.
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S. Conceptual Framework

5.1 Introduction

Having explained the background and motivation behind this project, described the
principal data sets involved, and presented the main geostatistical concepts and tools of
relevance, the purpose of this chapter is to provide an overview of the conceptual
framework developed in this project to meet the stated aims. In Chapter 1, the overall
aim was stated as being to provide reliable national and sub-national estimates of the
annual outpatient treatment burden for malaria at health facilities in the formal
government health sector in Kenya. Specifically, this entails the prediction of missing
MC values within the HMIS database, where MC (malaria cases) is defined as the
monthly count of diagnoses for malaria at cach facility. In the following section, the MC
variable 1s considered in more detail, examining the factors that are likely to determine
its value at a given facility and month and the way in which these may vary through
space and time. The implications of these spatial and temporal dependencies for
modelling MC are then discussed and two distinct modelling strategies are identified

that form the basis for the remainder of the thesis.

5.2 Conceptual exploration of the MC variable

This project is centred on the need to predict, and therefore model, the number of
malaria diagnoses that arc made at facilities cach month as represented by the MC
variable in the HMIS database. Regardless of whether a deterministic or probabilistic
modelling approach is ultimately adopted, a useful preliminary exercise is to consider

what a priori knowledge exists about the variable of interest independently of the data,
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Figure 5.1 Simple conceptual model of factors determining MC.

and to construct conceptual relationships between the various contributory factors that
determine its value at any given facility and month. A simple conceptual model is that,
for a given facility, the value of MC is determined by the catchment population of the
facility and by the level of morbidity due to malaria in that population (Figure 5.1). Both

of these determining factors are now explored in more detail.

5.2.1 Factors determining malaria morbidity

The actiology of malaria in a given population is driven by a complex array of
interacting factors (Figure 5.2) and some of the most important are discussed in this
section. A useful categorisation is between factors that determine the suitability of
environmental conditions for the malaria parasite and vector and those that determine
the susceptibility of the human population to infection and subsequent illness (Mouchet
et al., 1998). The presence and intensity of malaria in a given region is determined partly
by the presence and abundance of female Anopheles mosquitoes and of the Plasmodium
parasite. Both are strongly dependent on minimum, maximum, and prevailing
temperatures and humidity (Beier ct al., 1990; Patz et al., 1998; Craig et al., 1999;
Koenraadt et al, 2003; Hoshen and Morse, 2004). Furthermore, female Anopheles
require surface water in which to lay their eggs, with a preference for temporary and
turbid water bodies in which the risks of predation arc small (Snow and Gilles, 2002).
These dependencies mean that the suitability of the environment for malarial conditions
is determined over large spatial scales by altitude and macro-climatic conditions. In
many regions, marked seasonal variations in rainfall and temperature mean that

conditions become suitable for some months in each year and are unsuitable for the
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Figure 5.2 Key cnvironmental and human determinants of malaria morbidity in a given population.

remainder. Smaller scale spatial and temporal variation (Greenwood, 1989; Snow et al.,
1993; Schellenberg ct al., 1998; Brooker et al., 2004) may be driven by regional and
local climate and by the nature of the land surface (Afrane et al., 2005; Minakawa et al.,
2005; Patz and Olson, 2006). Changes to land usc and land cover can play an important
role in creating breeding habitats, often caused by agricultural practices, the building of
irrigation and drainage channels, and the disturbance of land due to clearance or
construction (Keiser et al., 2002; [jumba et al., 2002; Afrane et al., 2006; Munga et al.,
2006). These micro-scale factors may vary considcrably over short distances, and be

modified over short timescales.

Given the presence of infective vectors in a region, a further myriad set of interacting
factors determincs the extent to which the resident population is susceptible to infection
and illness from malaria. Susceptibility can be decreased, for example, by protecting

against mosquito bites, particularly through the use of ITNs and the spraying of
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insecticide residues inside homes (Nevill et al., 1996; Mbogo et al., 1996; Lengeler et
al., 1997; Howard et al., 2000; Guyatt et al., 2002; Ter Kuile et al., 2003; Hawley et al.,
2003; Gimnig et al., 2003; Muller et al., 2006), although the availability and uptake of
such interventions varies according to levels of education, poverty, and other factors
(Brinkmann and Brinkmann, 1995; Makemba et al., 1995; Lengeler and Snow, 1996;
Marsh et al., 1996; Binka and Adongo, 1997; Cham et al., 1997; Snow et al., 1999b;
Abdulla et al.,, 2005). Control measures can be implemented to reduce mosquito
populations through the use of insecticides and larvicides targeted at breeding sites, and

by environmental management to reduce the abundance of these sites (Beales and Gilles,

2002).

Because human hosts represent an integral part of the parasite life cycle, human
populations arc themselves a component of the ecosystem that supports parasite
populations, and not simply a passive recipient of infection. As such, the distinction
between environmental and human determinants of morbidity neglects the interactions
between the two. If a malarious population has access to rapid treatment with effective
anti-malarial drugs, for example, this not only reduces the morbidity of infected
individuals directly but, by reducing or eradicating thc presence of the parasite in the
bloodstream, the parasite prevalence in the vector and risk of further transmission to
uninfected humans is also reduced. Of particular importance in determining the pattern
of morbidity is the role of acquired immunity. Individuals that are repeatedly infected
with, and recover from, malaria develop a functional immunity such that the risk of
morbidity and mortality are reduced for subsequent infections. In arecas of intense
transmission, this immunity generally develops in early childhood meaning that a
disproportionate sharc of illness and death occurs in the very young. In areas of less
intense, seasonal, or sporadic transmission, immunity may not develop or develop much
more slowly such that the risk of morbidity and mortality is shared more evenly across

differcnt age groups (Snow and Gilles, 2002).

The social, biological, economic, and behavioural factors that determinc malaria
susceptibility are likely to vary with less spatial continuity than the climatic and habitat
factors that determine overall environmental suitability. Neighbouring homesteads, for
example, may differ widely in their use of interventions or ability to pay for effective

treatment. A degree of spatial dependence in these factors may be expected, however,
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driven by underlying regional differences in socio-cconomic status, levels of education,
and control measures. The degree of functional immunity within different populations,
in particular, may be cxpected to vary continuously through space, mirroring

approximately the suitability of environmental conditions.

5.2.2 Factors determining the size of a facility catchment population

Various approaches exist for defining the catchment population of a health facility.
When the catchment population of a given facility is discussed as a determinant of MC,
the quantity of interest may be defined as the number of people who would
hypothetically attend that facility to seck treatment for malaria. A useful way to consider
what determines the size of a given catchment population is to start with the largest
possible set of people and progressively refine this set by considering factors that act to
exclude certain groups (Figure 5.3). The suitable set of people to consider initially is
simply all those in the environs of the facility, which will be determined for a given
region by the population density. Of this set, many may chose not to utilise any formal
health facility to seek treatment (Mwenesi et al., 1995; McCombie, 1996, 2002; Amin et
al., 2003). The issuc of low utilisation rates of formal health services is an important one
in low-income settings, and was introduced in Chapter 2. The decision to seek or not
seek formal care is influenced by various cultural, social, and economic factors
including the availability and perception of alternatives such as traditional or faith
healers, or self treatment with home remedies or drugs purchased from the informal
retail sector (Snow et al., 1992a; Ruebush et al., 1995; Goodman et al., 2004; Marsh et
al., 2004; Guyatt and Snow, 2004; Amin and Snow, 2005). A further factor is the ability
to pay for formal care, for the transport needed to reach the facility, or for the time taken
away from work. Furthermore, the social hicrarchy in place in a given community may
mean that female or junior community members cannot obtain permission to leave to
seck care for themselves or for children in their care (Molyneux et al., 1999, 2002). Of
the subset who do choose to attend a formal health facility, not everyone in the region
will have physical access to the facility in question. Factors such as the distance to the
facility, the quality of the transport infrastructure, and the availability and cost of public
transport mean that attendance at the facility may not be feasible in many cases (Noor et

al., 2003; Tanser et al., 2006). Of those who do choose to attend a formal health facility,
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Figure 5.3 Schematic diagram showing factors determining the size of the catchment population for a given facility. Thin
arrows show causation, thick arrows illustrate (he progressively smaller subset of the total population that make up the
catchment population. Although each set of reasons is shown as operating independently, these arc likely to overlap in
reality.

and who have access to the facility in question, many may chosc instead to attend
alternative facilities. Individuals may choose between a set of formal health facilities
based on a range of factors including the distance and cost of journeys to each, the range

and relative quality of services offered, and the cost of these services.

Of the various factors discussed above, many can be considered spatially independent in
that they may vary substantially between facilities regardless of their proximity in space.
Whilst socio-economic and cultural factors that determine care-seeking choices may

display a degree of spatial dependence, other factors are entirely facility-specific. The
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physical accessibility of two adjacent facilities, for example, may be ncarly identical but
cach facility may offer very different services at different levels of quality and cost and

they are therefore likely to have very different catchment populations.

5.2.3 The influence of misdiagnosis

The basic conceptual model for MC as a function of catchment population size and
malaria morbidity (Figure 5.1) is likely to be too simplistic, notwithstanding the
complexity of these two factors themselves. A particularly important source of
uncertainty is the role of misdiagnosis which leads to a disparity between the number of
outpatients who attend a given facility due to an cpisode of malarial illness, and the
number that arc incorporated in the MC variable (Figure 5.4). The causes and extent of
misdiagnosis for malaria were discussed in Chapter 2, and two distinct scenarios can be
identified. The non-diagnosis of truc episodes of malaria (false-negative diagnosis) leads
to an unknown proportion of malaria outpatient visits not contributing to MC. The
incorrect diagnosis of non-malarial illness as malaria leads to an unknown number of
false-positive diagnoses contributing to MC. This latter consideration means that MC is
partly determined by the level of morbidity due to non-malaria conditions in the
catchment population, which will be determined by a wide range of illness actiologies.
Furthermore, the facility catchment population as defined in the previous scction may
not be the same for malaria as for other, non-malaria, conditions since it is determined in
part by the response of individuals to becoming ill with a specific condition. It is worth
noting that the effects of false-negative and false-positive diagnoses on MC are
opposing, such that they counteract one another. Without available data, however, the

net effect is impossible

The spatial pattern of misdiagnosis is difficult to infer. It is likely that both spatial and
non-spatial factors operate to determine the extent of misdiagnosis at different facilities.
Misdiagnosis may be determined by factors such as consultation practices, the type of
medical staff available, levels of training, and the availability of diagnostic equipment
and laboratory facilities. Whilst many of these factors are facility-specific and, therefore,
non-spatial, it is plausible that many of thesc factors are relatively uniform for a given

facility type and that levels of misdiagnosis will be similar. Since no comprehensive data
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are available on misdiagnosis rates across Kenya, its effect on MC cannot be quantified.
As noted in Chapter 2, however, it is not the case that estimates of MC are required in
which the effects of misdiagnosis have been removed because such effects contribute to

defining the trecatment burden.
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Figure 5.4 A conceptual model for the MC variable including the influence of misdiagnosis. The dashed components are
the resulting non-malaria factors that may affect MC.

5.2.4 Implications for modelling MC

Having explored the factors that may determine the value of MC at any given facility
and month and how these may vary in time and space, the implications for modelling
unknown MC values can now be discussed. Returning to the original conceptual model
presented in Figure 5.1, a reasonable expectation is that spatial variability in the first
determining factor, the level of underlying malaria morbidity, is driven mainly by
spatially-dependent processes operating at a scrics of spatial scales. In contrast, the
expectation is that spatial variability in the size of cach catchment population is driven
by both spatially independent facility-specific effects and spatially dependent effects

operating regionally and locally.

The most straightforward geostatistical modelling approach is to use the available MC
data directly to predict unsampled MC values. An implicit assumption of this approach
is that spatial dependence exists between MC values at different facilities. Under these

conditions, the spatial structure can be characterised by cstimating and modelling a
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variogram, which can then be used to estimate the covariances needed for kriging
predictions. A more refined approach, however, is to attempt to account for the sources
of non-spatial variation in MC so that these effects can be removed. If this can be
achieved, the resulting variable will vary more smoothly through space meaning that a
greater proportion of its variability is spatially autocorrelated. These features will be
reflected in a variogram with a smaller relative nugget effect and will, ultimately, allow
kriging predictions to be made with greater accuracy. Because malaria morbidity is
expected to be spatially dependent but catchment population size is expected to be
largely spatially independent, such an approach may amount to standardising the raw
MC data by measures of the non-spatial catchment and facility-specific factors that

confound the spatial structure inherent in the underlying pattern of malaria morbidity.

Standardisation of diseasc incidence data is a common procedure in epidemiological and
public hecalth studics. Such data are rarely used for inference or prediction in their raw
format but are usually divided by a denominator that quantifics the population that
generated the incidences in order to reveal underlying spatial structure in disease risk. If
the incidence data relate to an administrative unit used during a national census, for
example, the population of that unit could be used as a denominator to convert the
incidence count into an incidence rate (Lawson 2001). In the current setting, however,
the population that generates MC values at each health facility cannot be defined easily
within a discrete areal unit. Rather, the population of interest is the catchment population
of each facility. For the vast majority of health facilities in Kenya, however, no direct
information exists about the size of the catchment population, which means that

straightforward standardisation of the MC data is not possible.

The issue of standardising MC data between different facilities to account for non-
spatial variation caused by different catchment population sizes and other facility-
specific factors is a central theme of this thesis. Various approaches have been explored
in this project for the development of a modelling framework that incorporates such

standardisation, and these are introduced in the remainder of this chapter.
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5.3 Approaches to standardising MC data

Two distinct strategies were explored in this project for the standardisation of raw MC
data. The first strategy was to develop approaches for estimating catchment populations
from census-derived population data using geographic information system (GIS)
functionality and novel spatial modelling techniques. The second strategy was to usc TC
data (the total number of monthly outpatient diagnoses at cach facility and month) as a
proxy measure of the catchment population, and to incorporate these data in the

prediction framework for MC. The motivation for these two strategies is now discussed.

5.3.1 Modelling facility catchment populations

In the absence of existing information about the size of facility catchment populations
across Kenya, a straightforward response is to attempt to estimate thesc values using a
predictive model. Data on the distribution of the Kenyan population are available at fine
spatial resolution from the decennial census and, in principle, the job of estimating
catchment populations amounts to identifying the population subset that would attend
each facility according to thc factors identified in section 5.2.2. For most facilities in
Kenya, however, data on many or all of these factors do not exist or are insufficient,
meaning that a model that incorporates all of these factors is infeasible. The recent
construction of the NHSD database, however, means that the type and location of each
facility is known. Furthcrmore, data are available from a small number of Kenyan
districts on the spatial factors that affect the way people choose to utilisc formal health
services. These factors have led in this project to attempts to develop methods for
modelling the spatial aspects of facility catchments, with the ultimate aim of producing
estimates of catchment population size that can act as a standardising denominator to the

raw MC data. This work is presented in Chapter 6.

5.3.2 Incorporating TC data

As explained in Chapter 3, every MC datum in the HMIS database was accompanied by
a corresponding TC datum detailing the total number of all-cause diagnoses for cach

facility and month. As an alternative to deriving catchment population estimates, a
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strategy was devised that used these TC data as a way of standardising the raw MC
values. The rationale was that TC reflects the overall level of use of each facility as
driven by its type, size and utilisation and therefore acts as a useful proxy measure of
catchment population size. The obvious limitation of this use of TC data is that valucs
are only available for the same facilities and months for which MC data also exist. This
co-location means that TC values are not available for those points at which predictions
of MC are required and, as such, these TC values must themselves be predicted at these
points. This problem has led to the development of two different modelling frameworks
that incorporate several geostatistical prediction components to allow TC data to be used

to standardise the raw MC data. These modelling frameworks are now presented.

5.4 Modelling frameworks for predicting MC

Without any standardisation, the prediction of MC can be carried out directly using
established geostatistical techniques. This straightforward approach is termed Model 1 in
this project, and is represented schematically in Figure 5.5 (a). Model 1 can be thought
of as representing the null approach and can be defined more formally as the prediction
of values of MC at the ¢ unsampled facility-months z*yc((u, #)p), f = 1,2,..., g directly

from the » MC data zyc((u, 1),), a = 1,2,..., n.

Two further modelling frameworks were proposed that incorporate TC data, and these
were termed Model 2 and Model 3. In Model 2 (Figure 5.5 (b)), MC data, zyc((u, 1)),
are divided by the corresponding TC data, zrc((u, #),), at each sampled facility-month, to
create a new variable termed malaria proportion (MP), zue((u, £),) = zmc((0, 8)4) / z1c((u,
).). Geostatistical prediction can then be implemented using zyp((u, f),) to obtain
predictions z*vp((u, #)p) at unsampled facility-months. The back-conversion of these
predictions to MC requires corresponding predictions of TC. As such, the TC data
zre((u, 7),) are used in a separate prediction exercise to predict z *rc((u, £)z). MC can then

be predicted as z*vc((u, 1)p) = z*wp((W, £)p) X z*rc((0, Hp).
Model 3 (Figure 5.5 (¢)) uses TC data in a different way from Model 2. Instead of using

individual TC values as denominators for every facility-month, a single denominator is

defined for cach facility, referenced by the £ = 1,2,...,K facility spatial locations (u).
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(a) Model 1
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| MP Malaria proportion * Denotes a prediction

Figure 5.5 Schematic diagrams of three proposed modelling frameworks for predicting malaria cases at unsampled
facility-months.
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This valuc is the mean monthly total cases (MMTC) per facility, z*ynrc(uy). Firstly, as
with Model 2, geostatistical prediction is implemented with the TC data, zrc((u, £),), to
predict z*rc((u, f)p) at unsampled facility-months. 84 monthly TC values arc now
available for each facility, consisting of d=1,2,..., D data and p = 1,2,..., P predictions,
where D + P = 84. The MMTC denominator, z*yrc(uy), is then calculated for each

facility as the temporal mean of these combined data and prediction sets:

ZMMTL(uk D+ P ZZTL((ufraf)d)"'ZzTc((uk;f)p) (5.1)

Each MC datum, zyc((u, #),), is then divided by the MMTC value for the facility in

question, z*ymrc(ug) to create a new variable termed ‘standardised malaria cases’

(SMCOC):

Zene ((u,{)a) _M (5.2)

ZM\/ITC( )

where u, has the same spatial coordinate as (u, 7),. Geostatistical prediction can then be
implemented using zsuc((u, £),) to obtain predictions, z*syc((u, #)g), at unsampled
facility-months. The existing z*ymrc(ug) values are then used to back-transform SMC
predictions to MC, z*yc((u, £)p) = z*sme((u, £)p) % z*wmrc(uy), where w has the same

spatial coordinate as (u, #);.

5.4.1 Model development and testing

Having presented three conceptual modelling frameworks for the prediction of MC, it
was necessary to devclop each framework into a functional approach for obtaining
predictions of MC, and to compare each approach in terms of prediction accuracy. The
set of three modelling frameworks consisted of four different prediction exercises, to
predict MC, TC, MP, and SMC. The first task was to establish a geostatistical
methodology for carrying out these predictions. Rather than simply adopt the most
established methods such as OK, the approach taken in this project was to implement

and develop less widely-used or novel methods that may be better suited to the
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characteristics of the HMIS data set and to quantitatively compare the predictive
performance of these different methods. This work is presented in Chapter 7. Having
identified the most appropriate prediction method, the second task was to implement this
approach within each modelling framework to produce MC predictions and to compare
the accuracy of these predictions to identify the best-performing modelling framework.

This work is presented in Chapter 8.

5.5 Chapter summary

This chapter has provided an exploration of the factors that determine the MC variable
and has presented a simple conceptual model that states that MC is largely a function of
catchment population size and the level of malaria morbidity within that population.
Because of the environmental drivers, the level of malaria morbidity is likely to display
substantial spatial dependence but this structure is likely to be confounded in the MC
variable by non-spatial variability in the size of different catchment populations. As
such, it may result in more accurate predictions of MC if the variable can be
standardised to reduce the effect of this non-spatial variation. Two strategics have been
presented to tackle this problem: the development of spatial models that allow catchment
populations to be predicted; and the use of TC data on total monthly outpatient use at
each facility. Modecls developed for the first strategy are presented in Chapter 6. To
implement the second strategy, two modelling frameworks have been proposed that
incorporate TC data in the prediction of unsampled MC values. Geostatistical prediction
techniques within these modelling frameworks are developed and tested in Chapter 7,

and the modelling frameworks are developed and tested in Chapter 8.
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6. Catchment Modelling

6.1 Introduction

The need for estimates of the size of health facility catchment populations that can be
used as denominator values for the raw MC data has been presented in the preceding
chapter. This requircment led to a serics of modelling studies carried out as part of a
wider project led by Dr. Abdisalan Noor at the Malaria Public Health & Epidemiology
Group, Centre for Geographic Medicine in Nairobi, part of the KEMRI-University of
Oxford-Wellcome Trust Collaborative Programme. This collaborative work is described
in this chapter, with work led by the current author (Gething et al., 2004) presented in
full and work led by Dr. Noor (Noor et al., 2006) described in summary.

The problem faced in this project was to develop ways of estimating facility catchment
populations based only on a census-based GIS population map and data on the type and
location of cach facility. Under these circumstances the most straightforward and widely
used approach is to define catchment boundaries based on Thiessen polygons. This
approach relies on several implicit assumptions about the way care-seekers utilise
different health facilities. In this project, a series of novel spatial modelling techniques
were devised that allowed these assumptions to be tested using data from a patient-use
study carried out in four Kenyan districts (Zurovac et al., 2002). This work is presented
in the following section. A further limitation of many ecxisting catchment modelling
techniques is the representation of space using Euclidean distance. This modelling
approach neglects the heterogeneity of the land surface and how this may affect the
decisions made by care-seckers choosing between health facilities. Collaborative work

led by Dr. Noor to develop GIS-bascd catchment models that incorporate more realistic
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representations of space is described in the second main section of this chapter. The
chapter concludes with a discussion of the success of this work in modelling catchment
populations, and the implications for the overall project aim of defining treatment

burdens for malaria.

6.2 Assessment of a simple Thiessen polygon model

For the majority of the government health facilities in Kenya, the only information
available to assist in estimating catchment populations is their location and type (e.g.
hospital, health centre, dispensary), as provided by the NHSD. Given this information, a
simple and intuitive means of partitioning a population between a series of facilities is
provided by Thiessen polygons. A Thicssen polygon (also called a Dirichlet tile) is
defined in this case as the region that incorporates all points in space that are closer to a
given facility than any other. The use of Thicssen polygons in this context is well
established (Twigg, 1990; Zwarenstein et al., 1991; Albert ¢t al., 2000; Noor ct al.,
2003) and is based on two key assumptions:

(1) that all patients choosc to utilise the facility nearest to them, regardless of its type,
and hence the spatial extent of a facility catchment is determined solely by the proximity

of its neighbours; and

(2) that the proportion of carc-seckers who utilise a given facility (the utilisation rate) is

constant throughout a catchment, and does not decline, for example, with distance away

from the facility.

Previous studies of patient behaviour have allowed inferences to be made about the
validity of one or both of these assumptions in various settings and these are discussed in
the following section. This study presents a series of new spatial analytical methods by
which the validity of these assumptions can be tested directly and hence the suitability of
a Thiessen polygon catchment model assessed explicitly. These methods were applied to
pacdiatric outpatient origin data from a sample of 81 government health facilities in four

districts of Kenya, and the obscrved patient-use patterns reported. The extent to which
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the methods presented allow the validity of the Thiessen polygon assumptions to be

assesscd 1s then discussed.

6.2.1 Background

6.2.1.1 Patient choice

The actual partitioning of a population between two neighbouring facilities is
determined by choices made by care-seeking members of that population. As discussed
in Chapter 5, these choices can be based on a wide range of considerations including
social, cultural, economic and behavioural factors, as well as the characteristics of the
facilities in question (Stock, 1983; Miiller et al., 1998; Onokerhoraye, 1999; Deressa et
al., 2003). If the two facilitics are perceived to be of equal standing by the population
then it would be reasonable to expect care-seekers to base their choice of facility on the
relative distance to each. In this idealised case, a theoretical catchment boundary would
exist that is equidistant to both facilities. If one facility was perceived as a more
attractive option, however, then one might expect care-seckers to be willing to travel
relatively further to reach it than its less-favoured neighbour. In these circumstances, the
location of the catchment boundary would be shifted towards the latter facility. Various
studics into health facility utilisation patterns in developing countries have observed
differences in the attraction or draw of different facility types. A study in rural Nigeria
reported that the perceived lower quality of service available from dispensaries meant
that they were less likely to attract patients over longer distances than were the higher-
order facilities (Stock, 1983). Similar patterns were also noted in later studies in Nigeria

(Onokerhoraye, 1999) and Papua New Guinea (Miiller et al., 1998).

Few studies have attempted to test directly actual patient-use patterns in relation to the
theoretical patterns defined by Thiessen polygons. A simple means of quantifying this
pattern is to determine the proportion of people who have utilised their nearest facility.
Previous analysis of the 81-facility patient origin data used in this study has shown that
this proportion ranges from 56% to 83% over the four districts (Noor et al., 2003). An
earlier study in rural South Africa stated that 81% of homesteads utilise their nearest

facility (Tanser ct al., 2001). These values suggest that, although Thiessen polygons may
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provide a reasonable approximation of patient behaviour, there is a proportion of
patients that base their choice of facility on factors other than distance. Tanser et al.
(2001) also compared actual to predicted (Thiessen) catchments and concluded that there
was overall agreement between predicted and actual catchments but that large inter-

catchment variation existed.

6.2.1.2 Utilisation Rate

The simple allocation of a population into a series of contiguous facility catchments such
as Thiessen polygons assumes a uniform utilisation rate throughout that population. This
implies that, within a catchment, a patient’s likelihood of visiting the facility is not
affected by their distance from it. The concept of distance as a primary influence on
health facility utilisation is well established (Shannon et al., 1969, 1973; Kohli et al.,
1995). Previous studies have investigated the relationship between utilisation rate and
distance in a wide range of settings and a variety of different trends have been observed.
Several studies in rural areas of Ethiopia, for example, have reported distance effects on
care-seeking behaviour with steep distance-decay gradients in utilisation rate and under-
utilisation of more rural health services (Kloos, 1990; Deressa et al., 2003). The studies
by Stock (1983) and Tanser et al. (2001) both describe an exponential decay in
utilisation rate with distance and this model has commonly been presented as a
reasonable approximation of the utilisation-distance relationship in both developed and
developing world settings (Morrill and Earickson, 1968; Ingram et al., 1978). A study in
rural Papua New Guinea reported that although utilisation rate showed a general decline
with distance, this decline was not evident until some distance away from facilities and a
Gaussian curve was therefore proposed as being a more representative model (Muller et
al., 2006). A study in the Kilifi District of Kenya found a decrease in admission rates to
the district hospital with distance such that the rate in populations located more than 25
km from the hospital was one fifth of that within 5 km (Schellenberg ct al., 1998). In
contrast, other studies have found distance to have no systematic effect on utilisation

rate even in rural settings (Girt, 1973; Slack et al., 2002).
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6.2.2 Data and study area

This study was based on data acquired by the Government of Kenya (Ministry of Health
— Division of Malaria Control) and the Kenya Medical Research Institute-Wellcome
Trust Collaborative Programme (Zurovac et al., 2002). The four Kenyan districts of
Bondo, Greater Kisii (now composed of Kisii Central and Gucha district), Kwale and
Makueni (Figure 6.1) were chosen as encompassing a broad range of the most prevalent
environmental, demographic, and socio-economic conditions found across Kenya.
Greater Kisii and Bondo exhibit relatively evenly distributed and high density
population whereas Makueni and Kwale include areas of very low population density.
This difference is reflected in the density of health facilities within the districts. The
districts are described in more detail in Zurovac et al. (2002), Noor et al. (2003) and
Amin et al. (2003).

A total of 81 government facilitics consisting of hospitals, health centres and
dispensaries were sampled from the four districts during 2001-2002. Each facility was
sampled over two days during which time the place of origin was determined for all
children who were attending with a fever. The smallest Kenyan census unit is the
enumeration area (EA), normally consisting of not more than 100 households, and these
were the spatial units by which each child was located. EA population and out-patient
data were compiled into a GIS polygon layer in ArcView 3.2 (ESRI Inc., USA) along
with a point coverage of all GoK health facilities. For a full description of out-patient

and population data acquisition and digitisation see Noor et al. (2003).

6.2.3 Methodology

6.2.3.1 Overview of approach

The various studies described above reported differing draws from different facility
types, significant proportions of patients attending facilitics other than their nearest, and
decay in utilisation rate with distance. Whilst these findings enable an assessment of the
suitability of the Thiessen polygon model, they are less able to suggest how such a

model could be modified to represent more accurately the patient behaviour observed.

106



Chapter 6 Catchment Modelling

A
Bondo QQ\‘“
Makueni
KENYA
Greater Kissi ) Kwale
‘ ™ Bondo Greater Kissi e
it e B

| ):< = ,/"",\‘ r/l~/\ N

A A - VAl o

ﬁ_/{\jﬂ Cj ° ) K (/ % {
EaNe 50 : \ s . . \J\
| \l = e i \ ’/. . S - \\\
r’) .
| “\*;m\m\' ' ; et
| s AL TN
A ) i‘ g SRS

m o - (] . 8 a .
| |L| :L\\DP’/ \ ////
i S 10 km
|' § :“‘? Makueni || Kwale

® %"
| J\X—o).o" o. 5
| 2« ~ Oy . o
| -\...l" '.

B L .t, 4 //
\? \/x\ <////
® °
| << 2N . o \
N AL Tt
o® o\, \
L [ ]
: p—okm L/.A .\\ 30 km \' .-
\ ‘ L
S

| S

Figure 6.1 Location of four study districts in Kenya (top) and maps of each district showing location of all government
hospitals (red dots), health centres (blue dots) , and dispensaries (green dots). North is to the top in all maps.
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In stage 1 of this study, a GIS was used to predict the location of the catchment
boundary along a direct transect between each pair of neighbouring facilities (i.e. along
the imaginary straight line connecting the two facilities) in the sample set based on
patient choice patterns (Figure 6.2). Once the location of the catchment boundary was

established, this was compared to the location predicted by a Thiessen polygon.

When considering a distance decay effect in utilisation rate it may be difficult to
disentangle the influence of neighbouring facilities, especially where they are in
relatively close proximity. This can lead to the incorrect conclusion that distance limits
access to a facility when, in reality, patients at the periphery of a catchment are simply
choosing to utilise a neighbouring facility. These effects can be disentangled, however,
if the pattern of patient choice between the two facilities is analysed prior to assessing
the utilisation rate gradient, and this is the approach taken in Stage 2 of this study. If a
clear patient choice boundary can be identified then it is reasonable to interpret any
reduction in utilisation rate within this boundary as being primarily a distance effect.
The approach taken was to use a Thiessen polygon to define the boundary of each
catchment, but to limit analysis of utilisation rate to a smaller area within this catchment
by excluding a buffered area around the periphery. A suitable width for these buffers
that could be considered sufficient to remove the effect of neighbouring facilities was

determined based on the spatial patterns of patient choice found in Stage 1.

Fuzzy choice value
0.00 - 0,20
0.21-0.40
0.41 - 0.60
0.61-0.80
0.81-1.00
Transect
Facility

Thiessen
polygons

Kilometres 1 N
g

0 2

Figure 6.2 Creation of a fuzzy choice surface, as defined in the text. This example shows the case of Iyabe health centre
(IHC) and Misesi dispensary (MD) in the Greater Kisii district. All enumeration areas contributing one or more patients to
either facility were allocated a fuzzy choice value corrcsponding to the rclative proportion attending Iyabe health centre
(a). The polygon coverage was then rasterised into a 100 m grid and interpolated using an inverse distance weighting
algorithm to predict a choice surface (b). Thicssen polygon boundaries are also shown for reference.

108



Chapter 6 Catchment Modelling

6.2.3.2 Stage 1: Analysis of spatial patterns of patient choice

A total of 174 GoK facilities were located in the four districts. Thiessen polygons were
created around all these facilities and all cases were identified in which two of the 81
sampled facilities were immediately adjacent (i.e. they shared a Thiessen boundary). A
total of 78 such pairs were identified across the four districts. Each pair was considered
in turn and, for each, analysis was performed along the transect betwcen the two
facilities. A fuzzy choice value was assigned to every EA that contributed one or more
patients to either facility in the pair. This value was simply the relative proportion of
patients attending each facility from a given EA. The two facilities in each pair were
labelled A and B such that values ranged from one (all paticnts went to A) to zero (all
patients went to B). Facilities were assigned as A or B in a consistent manner depending
on the type of facilities in question. This meant that each pair fell into one of five
transect classes: health centre-to-dispensary (HC-D); dispensary-to-hospital (D-H);
health centre-to-hospital (HC-H); health centre to health centre (HC-HC); or dispensary-
to-dispensary (D-D). The opposite relationships (i.e. D-HC, H-D, H-HC) did not need to
be considered separately as they were simply the inverse of those considered. For pairs
of matching type, facilities were assigned as A or B arbitrarily. Hospital-to-hospital
transects were not considered as hospitals did not neighbour onc another. The EA fuzzy
choice values were assigned to the EA polygon coverage (Figure 6.2 (a)) and these
vector layers were converted into 100 m by 100 m raster grids and interpolated using an
inverse-distance weighting algorithm. The result was a fuzzy choice surface (Figure 6.2
(b)) which represented a continuous prediction of patient choice behaviour between the

two facilities in question.

For cach facility pair, the fuzzy choice surface was analysed along the transect between
the two facilities in question. Each transect was divided into 100 equally spaced points
and the fuzzy choice value recorded at cach point. This process was implemented using
the ArcView X-Section Utility vi.0 extension. The catchment ‘choice boundary’ was
taken to be located at the point where the fuzzy choice value was equal to 0.5. For cach
of the five transect classcs an ‘average’ transect was created by calculating the mean
fuzzy choice value over all such transects for each of the 100 divisions. Rclative
distances along the transect were considered because the split of patients between

neighbouring facilitics was of interest regardless of the absolute distance between them.
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In addition to creating a mean transect for each transect class, the relative location of the
choice boundary was recorded for each individual transect. A Thiessen polygon
boundary is located at the exact mid-point of a given transect (i.e. at 50%, since transects
ran from zero to 100%). Actual boundary locations less than 50% were closer to facility
A, while those greater than 50% werce closer to facility B. Overall mean and district
mean transect location was calculated for each transect class. Single sample r-tests were
carried out on the overall mean location for cach class. For the D-D and HC-HC classes
a two-tailed test was applied to test for a significant difference from the Thiessen
boundary (i.e. from a mean value of 50%). For the remaining threc transect classes a
one-tailed test was used. Hospitals were the highest-order facility followed by health
centres and then dispensaries. The expectation was that any deviation from the Thiessen
boundary is duc to patients choosing to make a longer journey to reach a higher-order

facility, resulting in a displacement from the Thiessen boundary towards the lower-order

facility.

6.2.3.3 Stage 2. Analysis of spatial patterns of utilisation rate

To isolate the effect of distance on utilisation rate for cach facility it was necessary to
define each catchment such that the influence of neighbouring facilities could be
considered minor. This was achieved by shrinking the Thiessen polygon boundaries of
cach catchment such that their radii were reduced by approximately 25%. This value
exceeds the largest mean deviation from a Thiessen boundary position found in the
analysis of patient choice in Stage 1 (see Table 6.1). This strategy was implemented by
creating an exclusion buffer, the width of which was calculated as a function of the arca
of each polygon. If polygons can be assumed to be approximately square then the width
W of buffer required to achieve a reduction in radius of 25% can be defined in terms of

the polygon area 4 as:
V4

W=025— 6.1
5 (6.1)

and buffers were created at this width for each catchment polygon (Figure 6.3).
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Figure 6.3 Usc of exclusion buffers for assessing within-catchment utilisation rate, the example of Greater Kisii district.
Map (a) shows enumeration areas (fine black lines), government facilitics (red dots), and facility catchment boundaries
based on Thiessen polygons (red lines). The bottom map (b) shows the shrunken catchments used for analysis ol
utilisation ratc following application of exclusion buffers, as described in the text.
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For each sampled facility, a utilisation rate was calculated within ecach EA contributing
one or more paticnts (i.c. excluding those contributing zero patients). This rate was
calculated simply by dividing the number of patients from a given EA who attended the
facility in question by the total population of that EA. Such an approach to defining a
utilisation rate is sub-optimal since the appropriate denominator is the total number of
children in each EA who suffered a fever during the sample period. Facility-based
surveys cannot capture this population-based phenomenon, however, and the use of total
EA population as a denominator was the only viable option given the data available. It
was reasonable to assume, however, that there were not substantial systematic
differences in the incidence of fever over the small spatial regions of interest. To obtain
utilisation rate values that were more comparable between the set of EAs considered for
cach facility, each rate valuc was standardised into a relative utilisation rate (RUR) by
dividing it by the largest value in the set. These RUR values were linked back to the EA
polygon coverage and rasterised into a 100 m by 100 m grid. The study catchment for

each facility was then delineated using the exclusion buffers.

For cach of the 81 rasterised study catchments, the RUR value of every grid cell was
output along with its six-digit latitude and longitude. The straight line distance between
cach facility and the centroid of each non-zcro RUR cell in its study catchment was
calculated. RUR values were then grouped by distance from facility and a mean value
was calculated for every successive 100 m. An overall mean RUR plot was created
along with one for each district. These plots illustrate the influence of distance from
facility on RUR. In contrast to the analysis of patient choice, utilisation rate was

considered with reference to absolute distance.

6.2.4 Results

Mean fuzzy choice transects are shown for the three classes of differing facility type that
were present: HC-D, D-H, and HC-H (Figure 6.4). In each case, the position of the 0.5
fuzzy value, taken to represent the choice boundary, was located nearer the lower-order
facility. Table 6.1 lists the overall and district mean boundary locations for all five
transect classes. The overall mean boundary locations were 51% for the mean D-D

transect, 50% for HC-HC, 59% for HC-D, 40% for D-H and 39% for HC-H. Two-tailed
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Figure 6.4 Mean [uzzy choice transects for all neighbouring facility pairs of class health centre-to-dispensary (a),
dispensary-to-hospital (b) and health centre-to-hospital (c) illusirating the relative draw of different facility types. The
location of the theoretical Thiessen boundary is marked at the mid-point (dashed line) along with the location of the
observed 0.5 fuzzy choice value (dotted line).

single sample #-tests for the D-D and HC-HC classes both revealed no significant
difference from the Thiessen boundary location of 50% (P=0.77 and P=0.98
respectively). One-tailed single sample #-tests for the remaining three classes revealed
that boundary locations were significantly nearer the lower-order facility in each case.
There was substantial variation between distriets with, for example, the mean HC-D
boundary location ranging from 62% in Kwale to 54% in Makueni, and the mean D-H

boundary location ranging from 37% in Bondo to 47% in Makueni. Caution should be

Table 6.1 Mean position of catchment boundaries for cach transect class (%). Values of less than 50% are closer to
the first facility in the pair while values greater than fifty are closer to the sccond. A theoretical Thiessen boundary is
equidistant to both facilitics and would therefore be located at exactly 50%.

District means

Transect class Overall means
Boudo Grt. Kisii Kwale Makueni

Dispensary-to-dispensary 57.30 49.40 42,40 51.41 (P =0.7701)"

ealth centre-to-health centre 52.87 20.20 56.60 49.80 (P =0.9798)"

Health centre-to-dispensary 61.31 55.25 62.17 54.40 58.50 (P =0.0077)"

Dispensary-to-hospital 37.30 39.05 38.60 46.70 39.88 (P= 0.0041)"

Health centre-to-hospital 32.75 50.40 38.63 (P =10.0656)"

“two-tailed single sample r-test for significam difference fram 50%
® one-tailed single sample ¢-1est far significant shift from 50% towards lower-order facility

113



Chapter 6 Catchment Modelling

Ulupgo

Got Matar

Kapiyo to Uyawi
(O-D)

Gobei to Mahaya }
(D-D)

Gotagulu to Ulungo
(HC-D)

Manyuanda to Misori
(HC-D) ‘

Gotagulu to Usigu
(HC-D)

Nyagoko to Gobei| |
(D-D) |

Kapiyo to Borido
(D-H)

Nyagoko to Mahaya
(D-D)

Fuzzy cholce value

Anyuongi to Bondo
(C-H)

Manyuanda to Masaia
(HC-D) |

00 04 08 00 04 08 00 04 08 00 0.4 08 00 0.4 08

Uyawi to Anyuongi

Meadieny to Misori '

@
‘ i (D-D) (HC-D) ‘
A g
o
(=]
I o
«© Nyagcko to Masala Naya to Misoni
‘ S (D-D) (D-D)
-+
o
2
°0 20 40 60 80 100 20 40 60 80 100
Transect Transect

Figure 6.5 Sample of individual fuzzy choice transects from Bondo district. Map shows location and names o[
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= health centre, D = dispensary.
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Figure 6.6 Mean overall and district relative utilisation rate (RUR) plots. Thick lines show the mean RUR value of all
sampled 100 m by 100 m grid cells within every study catchment at each distance. 95% confidence intervals are also
shown (finc lines).

exercised when interpreting these results, however, because the number of pairs for a
given transect class in a single district was often small meaning that sampling variation
was large. The boundary position for the HC-HC class in Kwale, for example, was based
on a single pair. Whilst it is likely that disparities in facility and population density
between the four districts lead to differences in the spatial patterns of patient choice, the
sparsity of data at the district level mean that the results are best interpreted with data
from the four districts combined. Figure 6.5 shows a selection of choice transects from
individual facility pairs in Bondo district. Whilst the mean transects (Figure 6.4)
illustrate the overall draw of different facility types, these individual plots illustrate the

transition in patient choice between two specific facilitics.
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Relative utilisation plots arc shown in Figure 6.6. These include a mean plot for each
district as well as an overall mean. Mean plots are accompanied by 95% confidence
intervals. Each of the district plots extends to a different length which corresponds to the
most distant non-zero pixels found in any of the study catchments in each district. The
districts of Bondo and Greater Kisii are characterised by a relatively dense network of
facilities corresponding to a higher population density. Catchments are, therefore,
smaller than some of those found in the more rural Kwale and Makueni districts (Figure
6.1). For Bondo, RUR fluctuates but exhibits no systematic trend with distance. For
Greater Kisii RUR decreases with distance. For both Kwale and Makueni RUR increases
up to around 2 km, and then levels off (Kwale) or steadily declines (Makueni). Overall

there exists a slight, but steady decrease in RUR with distance up to 6 km.

6.2.5 Discussion

6.2.5.1 Patient choice

The construction of fuzzy patient choice surfaces is presented as a robust means of
assessing patient behaviour for two neighbouring health facilities and identifying the
location and nature of the choice boundary between them. This method represents the
conversion of two separate facility-based variables (attendance per EA) into a single
facility-pair-based variable (fuzzy choice) that describes the spatial partitioning of
patients between the two facilities in question. By analysing patient choice along a
transect between two neighbouring facilities, the influence of other facilities is
minimized. The mean fuzzy choice transects for each transect class (Figure 6.4) suggest
a smooth gradient of choice between the two facility types in question. This is not,
however, representative of the shape of most of the 78 individual choice transects (sce
examples in Figure 6.5). These exhibited a much sharper transition from high to low
choice values indicating a crisper boundary. Although this characteristic of the
individual plots is smoothed in the averaging process, the mean transects are useful for
illustrating the relative drawing power of the different facility types as a whole,
especially with reference to the Thiessen boundary. The calculation of mean boundary

locations, along with the usc of appropriate significance tests (Table 6.1), provides a
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means of comparing directly the observed behaviour patterns to those assumed in a

Thiessen polygon catchment model.

6.2.5.2 Utilisation rate

The method presented allows the effect of distance on utilisation rate to be studied in
isolation from the possible influence of surrounding facilities. Although one
consequence of the usc of exclusion buffers is that the maximum distance over which
this relationship can be studied for any given set of sample facilities is inevitably
reduced, it provides a means of clucidating the influence of distance alone. The degree
of confidence associated with each of the mean plots in Figure 6.6 follows a similar
pattern — wide confidence intervals at small distances which narrow through medium
distances before widening once more at the larger distances. This consistent pattern can
be explained largely by changes in sample size. Only those EAs that contributed patients
to the sample could be included in the analysis and this represented a relatively sparse
sample (between 13% and 28% of EAs across the four districts). The successive 100 m
distance bands (over which RUR values were averaged) can be considered as a series of
concentric bands of equal width and, as such, their area increases linearly with distance
from the facility. Distance bands close to the facility are, therefore, smaller and less
likely to contain as many non-zero RUR pixels as those further away, with a
corresponding effect on sample size. When considering the largest distances in cach
district the sample size is likely to be small since there arc few examples of catchments

that extend to this distance.

Individual district plots display considerable variation, particularly at distance up to
around 1500m. It is likely that much of this inter-district variation can be attributed to
sampling variation due to the relatively sparse number of contributing EAs at these short
distances in each district. When the individual district plots were combined, a general
decrease in RUR is evident over the distances studied (up to around 6000m). This
suggests that, for the data sct studied, the assumption of uniform within-catchment
utilisation rate is inappropriate. The observed decline with distance is consistent with
most other low-income country studies (Stock, 1983; Kloos, 1990; Schellenberg et al.,

1998; Tanser ct al., 2001; Deressa et al., 2003; Muller et al., 2006) although the
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observed decline is far less pronounced than many of those reported. A reasonable
explanation for this difference is that the influence of neighbouring facilities is often
manifest as a reduction in RUR towards the periphery of a catchment and this effect has
not been removed adequately in many studies leading to the over-reporting of decline in

RUR with distance.

Euclidean distance, simply the straight-line distance between two points, was the
distance metric used in this study. When considering distances on the ground, an
alternative metric is the financial or time cost of making the journey between two points.
Various studies have investigated the correspondence between Euclidean distance and
journey cost (Perry and Gesler, 2000; Costa et al., 2003) and the extent to which the two
concur 1s dependent on factors such as the density and quality of transport networks, the
nature of topography, and features such as rivers and swamps. Whilst Thiessen polygons
are defined in terms of Euclidean distance, their validation using georeferenced patient-
use data does not cxplicitly usc any distance metric as it relies solely on the positions of
patients in Cartesian space and their choice of health facility in relation to the Thiessen
polygon boundaries. A consideration of the discrepancy between journey cost and
Euclidean distance becomes important, however, when attempting to explain the reasons
for the observed shifts in boundary positions towards lower-order facilitics. A situation
may exist, for example, whereby the quality of transport networks around hospitals
allows more efficient journcys than that around hcalth centres and dispensaries. In this
case, if carc-seekers based their choice of facility entirely on journey cost then one
would expect a relative increase in the spatial extent of hospital catchments. This
explanation has some grounding in that hospitals are gencrally located in urban areas,
where one might expect transport networks to be most cfficient. However, given that the
majority of patients made the journey to seek treatment on foot, and that populated non-
urban areas generally have comprchensive road, track, and footpath networks, it is
unlikely that this effect is responsible for all of the observed shift in boundary location.
These 1ssues do, however, underline the importance of considering journey cost when

attempting to predict patient behaviour.
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6.2.6 Conclusions

The methods presented in this study allow the two key assumptions inherent in a
Thiessen polygon approach to defining catchment boundaries to be tested directly using
patient-use data and, where these assumptions are found to be invalid, provide guidance
as to how the approach can be refined to better represent the patient behaviour observed.
For the four Kenyan districts studied, the two assumptions were found to be invalid. In
the 78 cases of neighbouring facilities considered, mean boundary locations were found
to be significantly closer to lower-order facilitics than predicted by Thiessen polygons.
This implies that the relative draw of facilities of different types is different and as such
patients are willing to travel some distance further to reach a higher-order facility than a
neighbouring lower-order facility. Analysis of mean within-catchment utilisation rate
revealed that, for distances of up to six km from a facility, a steady decline in utilisation
rate with distance was present. This implies that it is sub-optimal to model utilisation

rate as uniform within a catchment.

6.3 Incorporating the effects of journey-time

In the previous section it was established that the use of Thiessen polygons to define
facility catchment boundaries is likely to be inappropriate for catchments across Kenya.
A further limitation of this and other approaches is the use of straight-line Euclidean
measures to represent the distance between care-seckers and facilities. Factors such as
topography, the presence of natural or human-made barriers, and the nature of the
transport network, mean that the effort, time, and expenditure required to reach a facility
from a given location is not necessarily well represented by Euclidean distance. Rather,

a metric such as journey-time provides a more useful way of defining access to facilities.

One component of this project has been to contribute to a collaborative study led by Dr.
Noor and the KEMRI-University of Oxford-Wellcome Trust Collaborative Programme
team which addressed the problem of incorporating a journey-time metric in catchment
boundary models. This work followed directly from the previous Thicssen polygon
study and the findings played an important role in shaping the development of the

modelling strategy used ultimately in this project to predict MC. As such, this work is
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Figure 6.7 Examples of GIS data used for input into a journey-time based catchment model. Data shown are for Greater
Kisii district and consist of (a) a raster coverage digital elevation model (DEM), (b) a vector coverage of the transport
network including roads, tracks, and footpaths, (c) a vector coverage of population in each enumeration area (EA) derived
from the 1999 national census, and (d) a vector coverage of natural barriers including, in this case, rivers and swamps.
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briefly summarised in this section, and the reader is pointed to the original accounts in

Noor (2005) and Noor et al. (2006).

6.3.1 GIS and patient-use data

The study was based in the same four Kenyan districts as the Thiessen-polygon study,
namely Bondo, Greater Kisii, Kwale and Makueni. For each district, data were collected
by the KEMRI team from a range of sources to create a scries of GIS layers for later
model development. In addition to the data on facility type and location contained within
the NHSD, population data were obtained from the 1999 census at EA level and a digital
national road nctwork map was obtained and augmented for the four districts by
digitizing footpath networks obtained from paper maps. In addition, a digital elevation
model (DEM) was derived from contour maps, and vector data on natural barriers such
as rivers and coastlines were obtained, along with data on human-made barriers such as

national parks and other sanctuaries (Figure 6.7).

Patient-use data were collected in the four districts as part of a household survey
conducted by KEMRI in 2001 (Amin et al., 2003; Guyatt et al., 2004). A stratificd
random sample of approximately 230 EAs was included, covering between 25,040 and
25,928 pcople in each district. During this survey, each sampled homestead was
georeferenced in the field using a geographic positioning system (GPS) and, where a
child had suffered a fever in the previous fourteen days, their care-secking behaviour
was documented, including which formal health facility they had attended, if any. These
data were incorporated in the GIS as a point coverage of homestcads accompanied by

data on their choice of health facility.

6.3.2 Model development

A facility catchment model was developed that accounted for the journey-time required
by care-seekers to reach different facilitics. Pedestrian journcy-time was used because
this was the mode of transport used by the overwhelming majority of patients in the
household survey. A raster cost-surface was developed that estimated the journey time in

minutes from each grid cell to the nearest health facility, taking into account the layout
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Figure 6.8 Example cost-surface for Greater Kisii district showing he estimated pedestrian journey-time in minutes from
each 100m by 100m grid cell to the nearest government health facility. The journey-time algorithm took into account
factors such as the road and footpath network, gradient, and natural barricrs.

of the road and footpath network, the gradient at each point (including the direction so
that uphill and downhill effects were distinguished), and the presence of impassable
features such as rivers, coastline, and enclosed areas such as National Parks and other
sanctuaries (Figurc 6.8). This cost-surface was generated using a novel region-growing
algorithm coded in ANSI C. The raster cost-surface was then used to predict catchment

boundaries that were the journey-time equivalent of Thiessen polygons in that each
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Step 1. For each patient, journey time in minutes was calculated to nearest health centre and
hospital (left diagram) using the journey-time algorithm. The patient’s choice of facility was marked
on a relative journey-time transect (right diagram) with the x-axis position representing their
relative location (in terms of journey-time) between the two facilities, and the y-axis value
representing their choice between the two facility types.
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Step 2. Step 1 was repeated for all patients who used either a health centre or a hospital in all four
districts. In each case, the patient was added to the HC-H transect according to their relative
location (in terms of journey-time) between the two, and their choice of facility was represented as
either a 1 (went to the health centre) or O (went to the hospital).

¥ Choice boundary
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Step 3. When all patients that had used either a hospital or a health centre had been marked on the
HC-H transect, the resulting plot was smoothed using a moving window to give a smooth plot
showing the mean transition in choice between the two facility types with relative journey-time
between them (left plot). This transition was summarised by the location of the 0.5 fuzzy choice
value, deemed the choice boundary (right plot).

Figure 6.9 Schematic diagram outlining the procedure by which the spatial patterns of patient choice were assessed using
journey-time transects. In this example, patients’ choices between health centres and hospitals is considered using the
health centre - to - hospital (HC-H) transcct.

123



Chapter 6 Catchment Modelling

location was predicted as utilising the health facility that was located the shortest

journcy-time away.

Mirroring the Thiessen polygon study, a method was devised for assessing the relative
draw of different facility types. As before, mean choice transects were developed for the
HC-D, D-H and HC-H facility classes. This time, however, the concept of a straight-line
transect between neighbouring facilitics was not useful, since no straightforward
journey-time equivalent exists. Instead, an alternative approach was developed that
placed each sampled homestead on a ‘journey-time transect’ that represented the relative
journey-time between it and facilities of each different type. In this approach, a
homestead that was located 20 minutes from the nearest health centre, and 60 minutes
from the nearest hospital, for example, would be placed 25% of the way along the HC-H
transect (20/(20+60) = 0.25). With all sampled homesteads positioned along the various
mean transects in this way, the proportion utilising cach facility type was calculated at
100 points along cach transect. As before, the point along cach transect at which patients
were found to be equally likely to utilise each facility was deemed the ‘choice
boundary’. This process is illustrated schematically in Figure 6.9. Deviations in these
mean choice boundary locations from the centre of cach transect indicated that patients
were willing to make longer journeys in order to reach certain facility types than others.
The results of these journey-time transects were then incorporated in a further catchment
model. Rather than defining catchment boundarics based on nearest facility journey-
times, the differential draw of different facility types was incorporated and the
equidistant boundaries were adjusted accordingly. The three catchment models
described (the Thiessen polygon model, the journey-time model, and the journey-time
model adjusted for patient choice) were tested empirically by comparing the proportion

of homesteads whose choice of facility was correctly predicted by each model.

6.3.3 Key findings

Of the various findings of this study, the most important in the context of the current
project is the comparison of the different catchment modelling approaches. The basic
Thiessen polygon model was found to predict the correct choice of facility for 72% of

homesteads. Replacing the Euclidean distance metric with journey-time resulted in 74%
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of homesteads being correctly modelled, and when this model was adjusted to

incorporate the effects of patient choice, this value increased to 84%.

6.4 Implications of catchment modelling studies

The two studies presented in the chapter resulted in a series of findings that are
important in their own right. In the context of the current project, however, these studies
were required as ways of developing catchment models that could provide estimates of
catchment populations for health facilities across Kenya that could, in turn, be used to
standardise the raw MC data in the HMIS. In this context, thc most important finding of
these studies is that the most basic catchment models are based on unfounded
assumptions, and that more complex models that incorporate the effects of journey-time
and the differential draw of different facility types provide more realistic predictions of
catchment boundaries. This finding is significant because data with which to implement
these more complex models are not available for the vast majority of facilities across
Kenya. As such, the only feasible approach to define catchments nationwide would be
the use of Thiessen polygons and this has been shown here to be sub-optimal. A further
consideration is that even these more complex catchment models only deliver
predictions of the boundaries between catchments. Whilst this provides useful
information, the issue of within-catchment utilisation rate remains largely unaddressed,
due largely to the complexity of factors involved and the absence of reliable and

comprehensive data.

In summary, the studies presented here have contributed significantly to the
understanding of the spatial patterns of care-sceking behaviour in Kenya, and have
developed a series of novel techniques for assessing these patterns and generating
refined catchment boundary models. However, the goal of most significance to the
current project, the estimation of catchment populations for all health facilities across
Kenya, remains elusive due largely to the unavailability of data on a national scale. The
unavailability of these catchment population estimates has led in this project to the
development of an alternative sct of approaches to standardising MC data and these are

discussed in the proceeding chapters of this thesis.
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6.5 Chapter summary

This chapter has presented two studies that have addressed the issue of defining spatial
models to predict facility catchment populations. In the first study, the most rudimentary
and widely-used catchment model, based on a Thiessen polygon approach, was
investigated. Novel tests were developed using polygon-based patient use data within a
GIS that determined that the two principal assumptions implicit in a Thiessen polygon
model were inappropriate: that all patients use their nearest facility and that utilisation
rate within each catchment is constant. In the second study, the use of Euclidean
distance as a journey metric was replaced with a more realistic measure that used
information on transport networks, gradient, and natural barriers to estimate the journey-
time between carc-seckers and different facilities. This approach allowed patient-use
patterns to be assessed more realistically and a catchment model was produced that
predicted patient’s choice of facility more accurately. By incorporating the fact that
different facility types arc able to draw in patients from greater distances, another

catchment model was produced that further improved prediction accuracy.

These studies have indicated that, in order to predict most accurately which facilities
patients will use when seeking care, thc more complex catchment models must be
implemented. Because the data do not exist currently to support this implementation for
health facilities across Kenya (being unavailable outside the four study districts), and
because even these models do not encapsulate the complexities that determine within-
catchment utilisation patterns, it has not been possible to produce the accurate estimates
of facility catchment populations that are required to act as denominators with which to
standardise the raw MC data in the HMIS database. Because of this, an alternative
strategy has been developed in this project that uses TC data on the total number of
monthly outpatients at facilities as a proxy measure of catchment populations. The
development and testing of this approach is described in the remaining chapters of this

thesis.
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7. Model Development 1:
Development and Evaluation of
Kriging Approaches

7.1 Introduction

Chapter 5 described the need to standardisc raw MC data to account for non-spatial
facility-specific factors that are likely to confound the inherent spatial structure driven
by the underlying pattern of malaria morbidity in Kenya. The preccding chapter
presented a serics of catchment modelling studies and highlighted that reliable estimates
of facility catchment populations for use as denominator values remain unavailable for
facilitics across Kenya. In response to this, an alternative strategy was developed in this
project in which TC data dctailing the total number of all-cause diagnoses for each
facility and month were used as a way of standardising the MC data. This strategy was
presented in Chapter 5 along with two modelling frameworks, Model 2 and Model 3,
that incorporated this approach. The basic non-standardised model in which MC is
predicted directly was also presented and this was labelled Model 1. The task of
developing these frameworks and identifying which approach is likely to provide the
most accurate predictions of MC was split into two stages. The set of three modelling
frameworks (presented in Figure 5.5) consisted of four different prediction exercises to
predict MC, TC, MP and SMC. The first stage was to establish the most appropriate
geostatistical methodology for carrying out these prediction tasks and this is the subject
of the current chapter. The second stage was to adopt the chosen prediction methodology

and implement it within each of the three models to obtain predictions that could be
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compared to identify which predicts MC most accurately, and this is the subject of

Chapter 8.

The approach taken in this chapter has been to focus on one of the four variables listed
above and to compare the performance of three alternative geostatistical prediction
approaches in a cross-validation setting. The malaria proportion variable, MP, was
chosen as the test variable because, of the two standardised variables (MP and SMC),
MP is the more straightforward to obtain and interpret as it is simply the MC value at

each facility-month divided by the corresponding TC value.

7.2 Background

As described in Chapter 4, geostatistical prediction techniques were originally developed
for, and remain principally targeted at, spatial-only settings (Matheron, 1971; Goovacrts,
1997; Chilés and Delfiner, 1999). When sampled and unsampled locations arc
distributed through time as well as space, however, the replacement of spatial-only with
space-time geostatistical approaches can offer several benefits including more data to
support parameter estimation and prediction and, if present, the exploitation of temporal
as well as spatial autocorrelation in observed values. Both spatial-only and space-time
geostatistical prediction techniques generally rely on the adoption of a stationary RF
model parameterised with a stationary variogram. Where a property of interest displays
heterogeneous first and second-order characteristics, however, alternative non-stationary

models may be more appropriate and yield more accurate predictions (Haas, 1995).

In this chapter, the MP variable has been taken as a test variable and three different
geostatistical prediction methodologies are developed and implemented. The objective is
to examine the effect on prediction accuracy of (a) the extension of a spatial-only to a
space-time prediction approach, and (b) the replacement of a stationary space-time RF
model which requires a single global space-time variogram with a locally-varying space-

time RF model which allows the space-time variogram to vary across the study domain.
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7.3 Methodology

The dataset used in this chapter is the 1765-facility HMIS test set which is described in
detail in Chapter 3. MC and TC data were available at 63,542 facility-months and were
converted to MP using simply MP = MC/TC. When a diseasc count (MC) is converted
to a proportion (MP) based on a background denominator value (TC), the uncertainty of
that proportion can be highly sensitive to the magnitude of the denominator. As a
preliminary analysis, the effect of TC on MP variance was checked visually (not shown)
and found to be minimal, with variance approximately constant for all values of TC.
This can be explained by the consistently large TC values (less than 0.2% of TC values
were <30 cases) and the fact that malaria is the most common diagnosis mecaning that
MC values were generally a substantial proportion of TC. It was decided, therefore, that
no aggregation of the monthly MP values was necessary prior to their use in the

subscquent prediction exercises.

Three alternative methodologies were used to obtain predictions of MP at individual
facility-months in three separate cross-validation procedures. These were OK, STOK,
and local space-time ordinary kriging (LSTOK). OK and STOK have been described in
detail in sections 4.3.3.2, and 4.4.2, respectively. The procedure used for LSTOK is
developed and described in full in this chapter. The cross-validation procedure is
explained in section 4.3.3.6 in a spatial-only setting, and its extension to a space-time

setting is straightforward.

7.3.1 Spatial-only prediction of MP

The full set of n = 63,542 MP data {z((u,7),);cx=1,...,s4 was divided by month into {j =
1,...,m} spatial-only sets {z,(u);0=1...0())} where m = 84 months, and the size of each
sct, p(j), varied between months. For each spatial-only set, OK was carried out in the

following steps to obtain a set of p(j) cross-validation predictions {z; (ug);0=1....p(j)}

(1) An omnidirectional sample spatial variogram (4.11) was estimated from the data

using the established method-of-moments approach (Deutsch and Journel, 1998, p.53).
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(2) A suitable model was fitted by eye to the omnidirectional variogram from the set of
five models listed in section 4.3.2.2, the spherical, exponential, Gaussian, power, and
periodic models. Due to the large number of variograms involved, a parsimonious model
structure was adopted for each consisting of a single structured model component. The
spherical model was selected as offering the best fit to the estimated semivariance
values. More importance was attached to ensuring a good fit near the ordinate as values
of the variogram at smaller lag separations have more influence in the subsequent
kriging. In addition to a spherical component, each model included a nugget component

(4.20) to model a discontinuity in semivariance at the ordinate.

(3) OK was implemented with the variogram model parameters from (2) to obtain cross-

validation predictions z;(u s) using the GSLIB kz3d routine (Dcutsch and Journel,
1998). The scarch ncighbourhood for each prediction consisted of the 50 data closest
(using Euclidean distance) to thc prediction point. A single space-time sct of 7 cross-
validation predictions, {z/, ((u.?),);ex=1,...n}, (subscripted ok to denote prediction using

spatial-only OK) was then crcated by joining each of the m spatial-only sets of cross-

validation predictions, zo ((W0),) = U,, ; Z: (u,)-

7.3.2 Space-time prediction of MP

STOK was carried out using the full space-time set of m = 63,542 MP data

{z((w,1),);a=1,...,n} to obtain a set of n cross-validation predictions (2. ((u,1),);ez=L...,1}

to compare to the » data in the following steps:

(1) A sample space-time variogram surface #_(h_/ ) was calculated from the data

(4.48) using a modified space-time GSLIB gamv routine (De Cesare et al., 2002) (see
Figure 7.4 (a)). Steps 2-4, below, were then implemented to use this surface to estimate
parameters of the product-sum space-time variogram model described in section 4.4.3

(De Cesare ct al., 2001, 2002).

(2) Space- and time-marginal variograms were estimated from the space-time variogram

surface as 7 (h ,0) and 7 (0,/) by setting #, = 0 and h, = 0, respectively (see De
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Cesare et al., 2001, p12). The space-marginal variogram is equivalent to the mean of the
84 monthly spatial-only variograms, whilst the time-marginal variogram is equivalent to

the mean of temporal variograms for each of the 1765 facility locations.

(3) Variogram models were fitted by eye to the sample space- and time-marginal
variograms. As for the spatial-only variograms described in the previous section, greater
emphasis was placed on ensuring a good fit at smaller lags. Since manual model fitting
was required for only one spatial and one temporal variogram, a more complex model
structure could be adopted, allowing the use of multiple nested structured components
from the list deseribed above to provide a closer fit. The space-marginal variogram was
fitted with a nested model consisting of a nugget, an exponential, and a spherical
component and the time-marginal variogram was fitted with a nested model consisting
of a nugget, an exponential, a periodic, and a spherical component (sce Table 7.1 for

model parameters).

(4) The space-time sill, Ci(0,0), was estimated directly from the space-time variogram

surface.

(5) The space-time sill and parameters from the space- and time-marginal variogram
models were used to define a product-sum space-time variogram model (4.52) (sec

Figure 7.4 (d).

(6) This variogram model, %,(h_, 7 ), was then used as input in a STOK procedure to
obtain cross-validation predictions zJ . ((u,z),) using a modificd space-time GSLIB kz3d

routine (De Cesare et al., 2002).

7.3.2.1 Parameterising a space-time search criteria

As in the spatial-only case, the search neighbourhood for cach prediction consisted of
the 50 data ‘closest” to the prediction point. Unlike the spatial-only case, however, the
metric by which this closeness can be assessed is not straightforward. In the approach
adopted, a space-time metric is defined that can be used to quantify and compare the

relative space-time distances between candidate data points and the prediction location.
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Figure 7.1 Four examples of space-time kriging search neighbourhoods resulting from the parameterisation of the space-
time search criteria. [n each case, the prediction location is shown (grey dot) along with the data included in its prediction
(black dots). Vertical red bars arc included to provide perspective, linking data from different months at the same spatial
location. Spatial axes are shown in decimal degrees.

If a prediction location has the space-time coordinates (x, y, £) and a candidate datum has

the space-time coordinates (x', y', ¢, then the spatial separation |h| is found simply by

Ih|=+/(x - x)* +(y— »)* and the temporal separation A is found by 4 = ¢ - £. In order to

obtain a single space-time metric, these absolute measures of spatial and temporal
separation are represented as relative proportions of the maximum spatial and temporal

search radii, Smaand Ty, as set by the user. The space-time metric Ast is then defined

as:

= [(x—x’)]z+[<y—y’)]2 +[<r—t’>]z (7.1)
Smax SanX Znnx

The choice of values for the Smux and Tmax parameters was determined heuristically to
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allow the influence of spatial and temporal separation to be approximately equivalent,
and to provide approximately ‘spherical’ search neighbourhoods defined in space-time.
Values of Sy = 450 km and 7T,,.x = 84 months were chosen and Figure 7.1 shows
cxamples of four scarch neighbourhoods resulting from these parameter settings. This
parameterisation is inevitably somewhat arbitrary, and the decision to usc a relatively
large number of data (50) was made in part to provide a sct that would contain sufficient
data distributed in both space and time to allow appropriate influence to be assigned via

the kriging weights.

It is important to emphasisc that this space-time metric is used in the STOK procedure
only to define those data that are used in each prediction, and not in the subsequent
kriging algorithm. The calculation of covariance values between points separated in
space and time respected the absolute spatial and temporal lags between data and

between data and predictions.

7.3.3 Local space-time prediction of MP

The use of STOK, as with OK, implics the adoption of an RF model with stationary
mean and variogram. Where first-order heterogeneities exist, the effect on prediction
accuracy is often attenuated in practice because each prediction is derived from n((w, £)g)
observations within a limited local space-time neighbourhood W{(u, £)g) centred on the
prediction location ((u, f)p) rather than from all # observations throughout the global
study domain (as explained in the previous section). As such, the required domain of
stationarity for each prediction is reduced to the neighbourhood W((u, #);). In the
standard form, however, STOK, as with OK, has no such mechanism to attenuate the
effects of covariance hetcrogeneities since it is reliant on the global sample space-time

variogram, # (h_, 4, ), which is estimated from all » data under the assumption of

stationarity. An alternative approach is to adopt a RF model that is globally non-
stationary, that is, stationarity is considered to exist only within local neighbourhoods
(Journel and Huijbregts, 1978; Haas, 1990). This approach was implemented herc in a
space-time context (denoted local space-time ordinary kriging, LSTOK) to obtain a set

of n local cross-validation predictions {z' . ((u,7),);cx=1,...,s} to compare to the » data in

the following steps:
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(1) The space-time sct of » = 63,542 MP data {z((u,7),);@=1,...,n} were distributed at /
spatial locations {us; é = 1,...,/} wherc / = 1765, the number of health facilities in the
data set. For each of the / spatial locations us where one or more of the » cross-validated
predictions, z*((u, 7),), was required, a space-time ‘cylinder’ (Haas, 1995) was defined

in which to estimate a spatially-local space-time sample variogram, j_(h ,4;u,). Each

st

cylinder consisted of a subset of ¢=1,2,....n(w;) data, {z;((w,7),);c=1,...,n(uy)}. Each

subset was identificd as all data located within the nearest /. = 100 locations in space to
the prediction location ug, and at any month. The ‘radius’ of cach cylinder was therefore
equal to the distance from the prediction location u; to its 100™ nearest observation in
space, and its ‘height’ was m = 84 months. This approach meant local neighbourhoods
were restricted spatially but not temporally. A balance had to be struck between
neighbourhood size (with smaller ncighbourhoods considered more appropriate to model
as being stationary) and the resulting sample size within each neighbourhood, #n(us), with
which to estimate each local sample variogram (with smaller subsets resulting in larger
uncertainty in the sample variogram). Exploratory analysis of time-series of MP at
different spatial locations (not shown) and of the sample time-marginal MP variogram
(see Figure 7.4 (b)) did not suggest the presence of second-order heterogenecity through
time. As such, it was decided to include all data through time within cach cylinder in

order to maximise the sample size n(uy) for a given spatially-limited neighbourhood.

(2) Spatially-local space-time sample variograms were calculated for each spatial
location u; using the same procedure as for section 7.3.2(1) but applied only to the

subset within each spatially-local cylinder, {z;(u_z);c=L...,n(u,)}. After asscssing the

stability of semivariance estimates at the larger lags, it was decided to model spatial lags
up to a maximum of 80% of the diameter of cach cylinder and temporal lags up to a

maximum of 20 months.

(3) A fitted product-sum space-time variogram model was required for cach of the 1765
local variograms. This large number prohibited use of the manual procedure detailed in
section 7.3.2(3-5) and an automated procedure was developed to replicate these steps.
Although estimated and modelled variograms could not be inspected at all 1765
locations, it was necessary to sample the results of the automatic procedure in order to

make modelling decisions. As such, a set of 50 prediction locations was selected at
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random and manually checked at cach stage. The automatic procedure operated as

follows for each local variogram.

(3.1) Sample space- and time-marginal variograms were estimated from the sample

space-time variogram surface as 7 (h ,0) and 7, (0,4) by setting , = 0 and h, = 0,

respectively.

(3.ii) Separate 1-D models were fitted to the sample space- and time-marginal
variograms using a weighted least-squares (WLS) procedure (for brevity, the following
description focuses on the space-marginal variogram, although the equivalent procedure
was also applied to the time-marginal variogram). In order to minimise the
computational requirements of parameter estimation, and following examination of the
50 monitored local sample variograms, a parsimonious 1-D model consisting of a nugget
component and a single spherical component was seclected for fitting to all space-
marginal variograms. As such the required parameter set, 0, to be estimated for each 1-D
model consisted of three parameters, (0 = {co.dspn Cypu}), Where ag is the range
parameter of the spherical component and ¢, and ¢y, are the sill parameters of the
nugget and spherical components, respectively (Deutsch and Journel, 1998). 0 was
estimated using a nested grid-search algorithm written in ANSI C. The three-parameter
1-D variogram model described above was fitted manually to the sample space-marginal
variogram estimated from the global space-time sample variogram as described carlier in
section 7.3.2(1-2) and the resulting parameter set was used as starting values to initialise

the algorithm.

The nested grid-search approach consisted of calculating an objective function, F(0),
described below, at a set of evenly-spaced locations in the 3-d parameter space around
the starting values. In the first iteration, j = 50 values of each parameter were evaluated,
meaning objective functions were calculated for j° = 1.25x10° different parameter sets.
The range of paramcter values to test in the first iteration was determined heuristically to
include a broad swathe of parameter space around the starting values. The range of
parameter values was constrained such that impossible values (i.e. ¢g <0, agn < 0, Cpn <
0) were not permitted. The parameter set that minimised F(0) was identified and became

the starting set for the next iteration. Each subscquent itcration evaluated ;° evenly-
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spaced parameters over a progressively smaller region of the parameter space, each time
identifying the parameter sct that minimised F7(0). The extent to which cach iteration
converged on progressively smaller regions, and the total number of iterations carried
out were again determined heuristically, by examining the fit of the resulting models for

the 50 monitored variograms.

The objective function F(0) (Pardo-Igizquiza, 1999) evaluated for each parameter set
was calculated as a weighted sum of squared differences between the sample space-

marginal variogram, (i), at cach i=1,2,...,n lags and the value of the variogram model

under this parameter set, 7(i;0):

F®)= Y w) [7() - 7:0)] (7.2)

=1

The weighting scheme used to determine w(i) was defined as:

)
O Gaor "

where m(i) is the number of data pairs used to estimate (i). In this scheme, each
variogram estimate j(;) is weighted in approximately inverse proportion to its

estimation variance (Cressic, 1985).

(3.111) Having estimated the parameter sets for the space- and time-marginal variograms,
0, and O, the remaining parameter required for the definition of the space-time
variogram model was the space-time sill, Cy(0,0). A starting value for C,(0,0) was
estimated from a manual fit of the global space-time variogram where all the other
parameters were provided by 6, and 0, and held constant. The WLS procedure described
above was then implemented in the 1-D parameter space to estimate the value of

C,(0,0).

(4) LSTOK was then implemented to obtain »n cross-validation predictions

2 srod@,0),);e=1,...,n) . The kriging algorithm was identical to that used for the global
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STOK described in section 7.3.2 except that, for cach prediction, the relevant spatially-

local space-time variogram model replaced the global model.

7.3.4 Comparison of prediction accuracies

The OK, STOK, and LSTOK prediction methodologies described above each resulted in

a set of n = 63,542 cross-validation predictions of MP {z"((u,?),,);er=1,...,n} to compare to
the » MP data {z((u,7),);@=1...24. To compare the performance of the different

methods, three summary statistics were calculated for each. These were the correlation
coefficient between the predicted and actual set, the ME, and the MAE (defined in
section 4.3.3.6 for the spatial-only case). 2-D histograms were produced to display
graphically the bivariate distribution of the data and corresponding predicted values.
These plots are more informative than scatter-plots when the number of data-prediction

pairs is large. Univariate histograms were also produced for cach set of prediction errors,

{2 ((wn),) ~z((w,0),); =1,...,m} -

As mentioned in Chapter 4, The use of cross-validation as a method of accuracy
assessment is limited by a number of factors. The use of simple arithmetic averages to
generate estimates of ME and MAE may result in biased estimates when the data are
clustered in space and/or time. In the current case, however, it is important to distinguish
between spatial clustering of the set of facilities and clustering of the data themselves in
relation to this background pattern. When an arithmetic average of an attribute at the
data locations is used to estimate the mean of that attribute at the unsampled locations,
the spatial or spatiotemporal arrangement of the combined set of sampled and
unsampled points has no effect on the estimate. Rather, it is the arrangement of the
sampled points within this combined set that may introduce bias if they are highly
clustered. Although the set of facilities are highly spatially clustered (see Figure 3.1),
reflecting approximately the spatial distribution of the Kenyan population, the
spatiotemporal pattern of sampled points within the set of all points did not display
substantial clustering cither spatially or temporally. The use of cross-validation statistics
simply as relative measurcs of the accuracy of different prediction methods further
mitigates the effect of the limitations described above, since such effects are consistent

between methods.
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Figure 7.2 Sample spatial variograms (circles) and fitted variogram models (line) for malaria proportion in six different
months during 2000, 2001, and 2002. A total of 84 such variograms were estimated and modelled, one for each month of
the study period January 1996 - December 2002.

7.4 Results

7.4.1 Variography

Figure 7.2 shows spatial variograms that were estimated from spatial-only data for each
of the 84 months in the data set, and the corresponding manually-fitted variogram
models. The model parameters of these variograms are listed in Table 7.1. A selection of
six of these variograms are presented in a larger format in Figure 7.3. Sample variogram
structure was consistent across the different monthly sample variograms, which
supported the use of the same class of variogram model (with a nugget and single
spherical component) throughout. The estimated range, sill and nugget parameter values,

however, displayed considerable variation betwcen months although no clear patterns
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Month dspu CsPH ENUG Month asey CspH CNUG
1 98.9900 0.00825 0.00736 43 492315 0.00835 0.01076
2 98.5600 0.00568 0.00957 44 94.4500 0.00532 0.00849
3 97.6200 0.00554 0.00826 45 94.4700 0.00596 0.00690
4 97.0300 0.00585 0.00990 46 91.2986 0.00312 0.00897
5 96.8700 0.00873 0.00843 47 20.8277 0.00599 0.00602
6 98.5600 0.00858 0.00832 48 75.9037 0.00555 0.00754
7 95.9700 0.00567 0.01020 49 96.9700 0.00951 0.00839
8 95.5000 0.00428 0.00953 50 96.0000 0.01143 0.00755
9 99.1900 0.00640 0.00834 51 33.2939 0.00974 0.00745

10 94,0100 0.00486 0.00849 52 82.0123 0.01105 0.00887
11 27.8136 0.00655 0.00617 53 97.4300 0.01088 0.00812
12 97.2100 0.00860 0.00601 54 99.6800 0.01264 0.00774
13 95.2600 0.00815 0.00669 55 98.7300 0.01226 0.00813
14 94.5200 0.00901 0.00661 56 98.8800 0.00994 0.00794
15 99.3100 0.00768 0.00605 57 80.8380 0.00903 0.00875
16 97.2400 0.00711 0.00783 58 92.0428 0.00677 0.01036
17 98.3200 0.00703 0.00930 59 89.1899 0.00700 0.01014
18 99.3200 0.01473 0.00852 60 98.7500 0.00864 0.00940
19 88.8497 0.01592 0.00880 61 91.8470 0.00911 0.01042
20 96.4900 0.00866 0.00685 62 71.0508 0.01026 0.01045
21 86.9156 0.00728 0.00591 63 81.1953 0.00998 0.00830
22 96.0400 0.00605 0.00766 64 95.5400 0.00915 0.00753
23 95.6200 0.00832 0.00736 65 95.0744 0.00744 0.00860
24 89.5156 0.01199 0.01250 66 53.0273 0.01357 0.00756
25 99.3400 0.01313 0.01155 67 55.0918 0.01285 0.00885
26 95.8600 0.01369 0.01034 68 75.5966 0.00870 0.00933
27 98.6800 0.01450 0.01182 69 84.5026 0.00696 0.00681
28 98.4400 0.00872 0.00871 70 74.1880 0.00666 0.00670
29 97.6100 0.00702 0.00849 71 65.7891 0.00689 0.00721
30 96.5000 0.00554 0.01017 72 93.2243 0.00668 0.00732
31 95.1100 0.00538 0.00796 73 75.5810 0.00956 0.00759
32 97.2200 0.00624 0.00695 74 94.5700 0.00963 0.00774
33 99.3700 0.00479 0.00732 75 97.5527 0.00785 0.00964
34 92.3486 0.00483 0.00853 76 83.7580 0.00857 0.00796
35 94.3500 0.00623 0.00904 77 58.7546 0.00865 0.00905
36 98.8400 0.00657 0.00660 78 75.3251 0.01068 0.00954
37 98.4900 0.00794 0.00688 79 69.0179 0.01413 0.00897
38 95.5600 0.00626 0.00854 80 90.2984 0.00744 0.00887
39 98.3200 0.00597 0.00799 81 58.9361 0.00688 0.00896
40 94.8500 0.00796 0.01033 82 99.7900 0.00709 0.00881
41 95.3700 0.01153 0.00979 83 69.6865 0.00772 0.00642
42 89.5156 0.01199 0.01250 84 94.3455 0.00758 0.00780

Table 7.1 Parameters of the spherical variogram models fitted to each monthly spatial-only sample variogram of MP.
Each model consisted ofa single spherical component with range aspi (kin) and sill egpy, and a nugget component cxuc.
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Figure 7.4 Space-time variography for malaria proportion. Plots shown are (a) the sample space-time variogram surface,
(b) the sample space-marginal variogram (circles) with fitted 1-D model (line), (¢} the sample time-marginal variogram
(cireles) with fitted 1-D model (line), and (d) the 2-D product-sum space-time variogram model. Eacli vertical axis
measures semivariance, y, and horizontal axes measure either spatial lag (h,) or temporal lag (h,).

Model type a ¢
Nugget - 0.0075
Spatial Model Exponential 30 0.0016
Spherical 85 0.0084
Nugget - 0.0030
Exponential 33 0.0035
Temporal Model Hole 6 0.0003
Spherical 20 0.0020
0.0178

Space-time sill - -

Table 7.2 Parameters of the product-sum space-time variogram model for MP. Values of the range parameter a are given
in kilometres for spatial model components and in months for the temporal model components. ¢ refers to the sill
parameter of each component.
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Figure 7.5 Examples of local space-time variography for four diffcrent locations (rows). Variography was carricd out
automatically in a local neighbourhood around each of the 1765 spatial locations where predictions were made. Plots
shown for each location (upper box) are the sample space-time variogram surface (column (a)), the fitted 2-D product-
sum space-time variogram model (columu (b}), the samplc space-marginal variogram (circles) with fitted 1-D model
(line) (column (c)}, and the sample time-marginal variogram (circles) with fitted 1-D model (line) (column (d)). Each
vertical axis measures semivariance, y, and horizontal axes measure either spatial lag (h,) or temporal lag (). The local
ncighbourhoods in which each of these four local variograms were calculated arc shown in the map (lower box). Each
cluster (black dots) represents the spatial locations (facilities) that contributed data in each casc.
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could be discerned. Figure 7.4 shows the global sample space-time variogram surface
and fitted product-sum model. Also shown arc the sample space- and time-marginal
variograms that were estimated using the sample surface, and the corresponding [-D
variogram models. The corresponding table of model parameters are shown in Table 7.2.
The time-marginal variogram differed substantially in structure from the space-marginal
variogram, with both a smaller modelled sill value and a smaller relative nugget effect
indicative of greater autocorrelation through time than across space. The spatial
variogram shows a small upturn in semivariance for the smallest lags. This effect can be
attributed to the nature of facility-pairs at these separations. A disproportionate number
of these pairs arc cross-type: health facilities of the same type are rarely built so close
together and it is more commonly the case that large facilities such as hospitals, for
example, are surrounded closcly by a number of smaller facilities such as health centres
or dispensaries. The different facility types are more likely to have different MP values
than their spatial separation would otherwise suggest, resulting in a relatively larger
semivariance at these short lags. Figure 7.5 shows examples for four different locations
of the automatic variography procedure implemented to estimate and model local sample
space-time variograms for each of the 1765 spatially-local neighbourhoods. These four
examples illustrate the spatial heterogeneity of the observed space-time autocorrelation
structure, with space- and time-marginal variogram model parameters varying

considerably between the four locations.

7.4.2 Comparison of prediction accuracies

Cross-validation summary statistics for OK, STOK, and LSTOK are shown in Table 7.3.
Both space-time approaches, STOK and LSTOK, resulted in substantially larger values
of the correlation coefficient p than OK (13.1% and 14.8% larger p, respectively),
indicating larger linear correlation between data and prediction sets. ME was small
(indicating small overall bias) for all three approaches, although differences between
sets were considerable. The value for OK showed the largest bias and those for STOK
and LSTOK and were substantially smaller (98.4% and 87.5% reductions in ME,
respectively, relative to OK). The largest MAE was produced by OK predictions,
indicating the largest average prediction inaccuracy, with STOK and LSTOK producing

more accurate predictions (14.8% and 18.3% reductions in MAE, respectively, relative
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Figure 7.6 2-D histograms (column (a)) showing bivariate distribution of predicted against actual values for cross-
validation predictions of malaria proportion (MP) using three different prediction approaches; spatial-only ordinary
kriging, space-time ordinary kriging, and local space-time ordinary kriging. Whiter shading represents a higher frequency
of values (notc non-linear scale). The 1:1 line is also provided (diagonal black line) for each plot. Univariate histograms
(column (b)) show the distribution of prediction error values for each prediction methodology. Error mean (Mean) and
variance (Var) are also given.
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Modelling Approach p ME MAE

Spatial-only ordinary kriging (OK) 0.6764 0.000384 0.0796
Space-time ordinary kriging (STOK) 0.7651 0.000006 0.0678

Local space-time ordinary kriging (LSTOK) 0.7768 0.000048 0.0650

Table 7.3 Comparison of summary statistics for cross-validation predictions of malaria proportion using three
different prediction approaches. The statistics shown are the correlation coefficient, p, the mean error (ME) and
mcan absolute error (MAE).

to OK). The overall pattern was that the space-time techniques offered less biased and
more precise predictions than OK. Of the two space-time approaches, LSTOK provided
more precise predictions than STOK but was slightly more biased overall, although bias

was small in both cases.

Figure 7.6 (a) shows, for each prediction methodology, a 2-D cross-validation histogram
illustrating the bivariate distribution of data and prediction sets. The patterns displayed
support the summary statistic findings presented in Table 7.3 and discussed above. A 2-
D cross-validation histogram for an accurate prediction exercise would show a high
frequency of corresponding data and prediction values along a central region (indicating
small imprecision), centred along the 1:1 line (indicating small bias). The 2-D
histograms for OK, STOK, and LSTOK display progressively tighter central regions,
with a greater frequency of values indicated by the whiter shading. Differences in bias
are less noticeable, although the progressively smaller bias for OK, STOK, and LSTOK
for small data values (e.g. <0.1) is clear if the bottom-left corner of each plot is
compared. Univariate histograms showing the distribution of error values for each
prediction are shown in Figure 7.6 (b). Errors arc approximately Gaussian in cach case
and the progressively smaller error variances for OK, STOK, and LSTOK again

correspond to respectively more precise predictions.
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7.5 Discussion

7.5.1 Comparison of spatial-only and glebal space-time prediction

When predicting a space-time data set, a potential advantage of the spatial-only
approach (c.g. OK) over the global spacc-time approach (e.g. STOK) is that the spatial
variogram is able to vary through time since each month is modelled separately. In
contrast, the global space-time variogram averages these individual spatial variograms
and month-to-month variability is not represented in the model. This potential advantage
of the spatial-only approach is offset by the need to partition the full space-time data sct
into monthly slices, which may each have insufficient data to obtain a stable estimate of
the spatial variogram. A more serious limitation of the spatial-only approach is that any
temporal structure present in the data is ignored. The results presented in the previous
section showed that STOK yielded more accurate predictions than OK. The global
sample space-time variogram (Figure 7.4) displayed substantial temporal autocorrelation
and it is intuitive that prediction accuracy should be enhanced by exploiting this
temporal structure, allowing predictions to be influenced by obscrvations proximate in
time as well as space. A further advantage of STOK over OK in the current context is
that the former is significantly less labour-intensive, requiring the estimation and
modelling of a single space-time variogram rather than 84 separate spatial variograms.
The optimal choice between the two approaches will differ between settings contingent
on a range of factors including the space-time distribution of the data and prediction

points, and the relative magnitudes of spatial and temporal autocorrelation.

7.5.2 Comparison of glebal and lecal space-time prediction

The results described in the previous section showed that more precise predictions were
obtained in the space-time prediction exercisec when a single global space-time
variogram (STOK) was replaced by local space-time variograms that were estimated and
modelled for each prediction location using a spatially-local subset of data (LSTOK). As
with the preceding comparison between OK and STOK, the relative costs and benefits of
LSTOK over STOK in the current case may differ in another setting. Where predictions

are to be made over a large region displaying second-order heterogencity, and where
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data exist at a sufficient density to support stable estimation of variograms within local
neighbourhoods, the use of LSTOK offers the potential to provide greater prediction
accuracy than STOK, as the current case illustrates. Furthermore, the adoption of a RF
model with stationarity of order-two or intrinsic stationarity is likely to be more
appropriate when these characteristics are considered to exist only within cach local

neighbourhood rather than throughout the study region.

The principal drawbacks of LSTOK are the difficulties involved in its implementation.
Firstly, the calculation of a single sample space-time variogram is computationally
expensive (if a spatial variogram is to be estimated at n(hy) lags, and a temporal
variogram at n(h,) lags, then the equivalent space-time sample variogram requires
estimates at n(h)x n(h,) lags). Secondly, where local variograms must be estimated at a
large number of locations, automatic variogram model fitting becomes necessary.
Although procedures such as WLS allow the implementation of objective criteria for
parameterisation, manual fitting is still widely favoured by practitioners of geostatistics
as it allows the incorporation of prior knowledge of the property of interest in the
variogram model. Algorithms to implement automatic fitting are, again, computationally
expensive and can be unreliable, often meaning variogram models must be
parametrically simple, with less nested components, than the equivalent manually-fitted
models. The net effect of using many simple local variogram models compared to a
single complex model will clearly depend on several factors including the nature of the
global and local spatiotemporal autocorrelation structures being considered and the
number of data available with which to estimate local variograms. In the current case,

the use of LSTOK over 1765 spatially-local neighbourhoods has been shown to offer a

modest inerease in prediction accuracy over STOK, although at a substantial additional

cost in terms of dynamic memory requirements and CPU time.

7.6 Conclusion and implications

Three different geostatistical approaches that predict values of the standardised MP
variable have been implemented to examine their relative prediction accuracies. The

extension of the established spatial-only approach to a space-time approach yielded
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substantially more accurate predictions. The further extension of this globally-stationary
space-time approach to a locally-stationary space-time approach whereby space-time
variograms were re-cstimated for cach prediction location within a spatially-local
neighbourhood yielded a further increase in prediction precision, although was

marginally more biased.

It was decided that the most appropriate choice of prediction technique for
implementation of the three modelling frameworks was STOK. Although LSTOK
provided a modest increasc in prediction precision over STOK, this advantage was offset
by a small increase in bias. A further reason for this decision was the dependence of the
feasibility of the LSTOK procedure on the form of the spatial and temporal
autocorrelation structures of the variable of interest. Whilst the sample space- and time-
marginal variograms for MP had a form that could be reasonably represented with
simple two-component (nested nugget and spherical model) variogram models,
examination of the equivalent sample variograms for MP, SMC, and TC (presented in
the next chapter) suggested more complex structures. As such, the automated procedure
for fitting the large number of local variograms required by LSTOK was considered
infeasible, and the advantages of manually fitting a complex model to a single global
variogram were expected to outweigh any potential benefits of incorporating spatial

heterogeneities in variogram form.

7.7 Chapter summary

The purpose of this chapter was to develop and test three different kriging approaches in
order to identify the most suitable approach to implement in the threc modelling
frameworks presented in Chapter 5. Using MP as the test variable, the three different
kriging methodologies were implemented to make cross-validation predictions of MP in
order to test the effect on prediction accuracy of (a) the extension of a spatial-only to a
space-time prediction approach, and (b) the replacement of a globally-stationary with a
locally-varying random function model. Space-time kriging was found to produce
predictions with 98.4% less mean bias and 14.8% smaller mean imprecision than
conventional spatial-only kriging. A modification of space-time kriging that allowed

space-time variograms to be recalculated for every prediction location within a spatially-
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local neighbourhood resulted in a larger decrease in mean imprecision over ordinary
kriging (18.3%) although mean bias was reduced less (87.5%). These results have led to
the decision to use the STOK approach to implement the three modelling frameworks. In
the next chapter this implementation is carried out, and the three modelling frameworks

are compared.
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8. Model Development 2:
Evaluation of Modelling
Frameworks and Development of
an Uncertainty Model

8.1 Introduction

In Chapter 5, three modelling frameworks were presented for predicting unsampled MC values
within the HMIS database. Model 1 represented the null model, with MC being predicted
directly using the raw MC data. Models 2 and 3 represented two alternative approaches by
which TC data could be incorporated as a way of standardising the raw MC data to mitigatc the
effect of non-spatial facility-specific factors that may confound the spatial structure that would
otherwise be present in MC. The modelling frameworks all consisted of one or more
geostatistical prediction exercises. In Chapter 7, a series of different kriging methods was tested
to identify the most suitable approach to use for these predictions and STOK was chosen as the
most appropriate technique. In this chapter, the three modelling frameworks arc implemented to
obtain predictions of MC. These predictions are then compared and the modelling framework

that provides the most accurate predictions is identified.

[f the chosen model is to be implemented to deliver predictions of the total treatment burden for
malaria, then it is critically important that such predictions are accompanied by measures of
their uncertainty. In this chapter, the established geostatistical technique of stochastic simulation

is adapted to a space-time setting and used to represent the different sources of prediction
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uncertainty within the framework of the chosen model. The resulting uncertainty model was
tested by applying it in a cross-validation sense, such that each uncertainty estimate could be

compared to a known prediction error,

8.2 Methodology 1: Comparison of modelling frameworks

8.2.1 Implementation of modelling frameworks

As in Chapter 7, the HMIS test set from 1765 facilities was used in this chapter, consisting of
co-located data on MC and TC from 63,542 facility-months originating from 126 hospitals
(4682 records), 445 health centres (18,669 records), and 1194 dispensaries (40,191 records).
The three modelling frameworks are presented in section 5.4 and summarised in Figure 5.5. In
total, the three modelling frameworks comprised four individual prediction exercises to predict
MC directly (Model 1), TC (Models 2 and 3), MP (Model 2) and SMC (Model 3). Each
framework was implemented using data from all facilities combined, and also separately for the
three facility classes. This meant that a total of 12 prediction exercises was carricd out,
implementing each of the three modelling framework for the four facility categories. Each of the

12 prediction exerciscs followed a similar procedure, as follows.

(1) Firstly, the space-time sample variogram surface 7, (h,, /4 ) was estimated as described in

section 4.4.2. Variograms were modelled up to spatial lags of 100 km and temporal lags of 24
months. Since the objective was to interpolate (fill in gaps), rather than to extrapolate (predict
into the future), time was considered isotropic (i.e. temporal lag was defined only by the number

of months, and not by direction in time).

(2) The product-sum space-time variogram model (4.52) presented in section 4.4.3 (De Cesare

et al. 2001, 2002) was then fitted to the sample variogram surface 7, (h_,5,) using the procedure
outlined in section 7.3.2 of the previous chapter. In brief, sample space-and time-marginal
variograms were estimated from y.(h h) as 7, (h:,O) and 7, (O, h) by setting 4, = 0 and h, =
0, respectively, and variogram models were fitted to these marginal variograms by eye. The

space-time sill C,(0,0) was also estimated from #,_(h , /) and these parameters were used to

define the product-sum variogram model ¥, (h_,A4,).
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(3) The space-time variogram model was used as input into an STOK prediction carried out
using the space-time GSLIB k73d routine (Deutsch and Journel, 1998) modified to allow
prediction of space-time points using product-sum space-time covariance structures (De Cesare

et al., 2002). Again, this procedure is explained in full in section 7.3.2.

8.2.2 Comparison of modelling frameworks

Each modelling framework was implemented as a cross-validation (see section 4.3.3.6) whereby
the output was a set of » predicted values of MC at the data locations, {zyc*((u, #).), a=1,2,...,
n}, that could be compared to the MC data themselves, {zvc((u, ©).), o=1,2,..., n}, at the same
locations in order to assess the predictive accuracy of each model. For Model 1, cross-validation
was applied as described to create the cross-validation set z*yic((u, £),) to compare to zyc((u,
f).). For Model 2, cross-validation sets were required for both MP and TC to define the cross-
validation set z*yc((u, ). = z*wp((0, ),) * z*rc((u, ),). For Model 3, the cross-validation
procedure could not be based entirely on predictions made at data locations since the MMTC
variable, by definition, required predictions at unsampled facility-months (5.1). As such,
MMTC was calculated using both the available TC data zrc((u, 7).} and predictions of TC at
unsampled facility-months z*r¢((u, #)s), and a cross-validation set for MC was predicted using
the resulting z*yyrc(w,) values in the forward and back-transform between MC and SMC such
that z*c((w,9),) = z¥%mc((0, Ha) % z¥vmrc(uy), where u has the same spatial location as (u, #),

and (u, 1)

For each cross-validation set defined above for the three modelling frameworks, the three

summary statistics presented previously (p, MAE, and ME) were calculated to compare

prediction performance.

8.3 Methodology 2: Developing an uncertainty model

8.3.1 Background: Stochastic simulation to estimate space-time regional
uncertainty

In addition to providing a modelling framework to predict MC at unsampled facility-months, a
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further aim of this study was to provide a measure of the uncertainty of these predictions both
individually and over aggregated sets of predictions within different space-time regions.
Comparison of the cross-validation statistics for the three modelling frameworks indicated that
Model 3 produced the most accurate predictions of MC. This important result is presented and
discussed in full later in this chapter. It is necessary to state this outcome here, however,

because Model 3 was therefore chosen as the framework for which to develop an accompanying

uncertainty model.

Space-time kriging procedures allow predictions to be made at a set of ¢ unsampled space-time
locations, {z*((u, £)p), #=1,2,..., ¢} over a spatiotemporal study region. In the current case, the
quantity of interest is the mean or sum of values at a set of space-time locations within the study
area of which some are sampled and some are unsampled (e.g. the sum or mean of MC over all
facilities in a district over a year). In such cases, the relevant set of data can be combined with
the relevant set of predictions and the joint mean or sum can be calculated. Whilst the
contribution to this aggregated value from the original data has zero prediction uncertainty
associated with it, the contribution from the predicted values has an associated prediction
uncertainty that must be evaluated. Stochastic simulation is now presented in brief as a tool for
estimating the uncertainty associated with the mean of a set of predictions. The procedure is
equally applicable, with rudimentary adjustments, to estimating the uncertainty associated with

the sum of a set of predictions.

8.3.1.1 Estimating the joint uncertainty of a set of predictions

If a set of predictions is made at g unsampled space-time locations, {z*((u, £)z), f = 1.2,...,q},
over the study region, the value of interest may be the mean u[z*((u, £)s)] of the ¢ predicted
values over the entire region {f = 1,2,..., g}, or of a subset of v points within a sub-region, {f# =
1,2,..., v}. In addition to calculating these predicted regional means, it is necessary to provide
estimates of the associated uncertainty. Although kriging systems provide ‘optimum’ local
predictions by minimising the variance of the error of each prediction, a set of kriging
predictions appears ‘smoother’ than the original data due to a missing error component.
Conceptually, the RF Z(u, 1) can be decomposed into the predictor Z*((u, £)s), as provided by
kriging, and the corresponding unknown prediction error R((u, #)5): Z((w, )5 = Z*((u, 1)) +

R((u, 1)p). Estimates of the uncertainty associated with predictions of regional or global means
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must take into account the variance introduced by this unknown error component in order to

restore the full variance of the RF model.

One approach to the above problem is to simulate, for each of the f = 1,2,...,g prediction
locations, / = 1,2,..., L realisations &((u, f)s) of the error component with zero mean and the
correct variance and covariance which can then be added to the original prediction, z*((u, 1)), to

give a conditional simulated prediction, z'((u, #);) (Deutsch and Journel, 1998, p. 127):
2((u, D)) = 25((w, D) + e (u, ) (8.1)

If 2%((u, 1)p) is to have the same variance as the true value z((u, #)y) then this approach requires
that the error component is orthogonal to the predictor and has at least the same covariance, if
not spatial distribution, as the actual error. A procedure to generate realisations of the error
component under these conditions was proposed originally by Journel and Huijbregts (1978, p.
495) for a spatial-only setting and is presented here adapted to a space-time setting. /= 1,2,...,L
non-conditional realisations z,."”((u, 7),) that share the same covariance as the RF Z(u, 7) are
simulated at all data and prediction locations v=1,2,...,n+q. The original kriging exercise
performed on the data is then repeated using the simulated values at the n data locations
{z,m([’((u, Do), o = 1,2,....n}, rather than the data, to obtain simulated predictions at the g
unsampled locations {z*"((u, 1)), f = 1,2,...,q} to compare to the simulated values at these
locations {z,."((u, #)), p = 1,2,...,q}. Simulated errors &”((u, 7);) are then defined for each
prediction location as the difference between simulated values and simulated predictions, £ ”((u,
Ny = 2¥9((u, Hy) - Z((u, 1)p), and these can be added to the original predictions z*((u, 7)) to

give conditional simulated predictions, z*"((u, Dy
20((u, ) = 2¥((w, 1)) + 227w, 1)) - 2. "((w, 1)p)] (8.2)

The distribution of the set of L realisations {z'"((u, £),), z7((u, £)p), ..., 2"((u, £);)} at each
prediction location represents the uncertainty of that prediction which can be summarised by the
standard deviation of the L realisations, oy..[z*((u, 1))] = o{2"((u, £)p)], I = 1,2,...,L. Where the
value of interest is the mean, u[z*((u, f);)], of a set of f = 1,2,...,q predicted values within a

region, simulated realisations of the mean, x[z"((u, ?)p)], can also be defined:
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MLz (1) )] = ZZ ((u,7)4) (8.3)

and the distribution of the set of these L realisations { 4[z" ((u,1) ;)] p[z ()]
c [z ((u,1),)] } represents the uncertainty of the predicted mean, p[z"((u,1),)] . Again,

this uncertainty can be summarised by the standard deviation of the L realisations,

Ooml plz" ((u, ) )] 1 =0 lpfz" (u,0) )11, 1=1,2,.., L.

8.3.1.2 Sequential Gaussian simulation

The remaining issue is the choice of simulation algorithm to generate the L non-conditional
simulated realisations of the RF Z(u, 7). Sequential Gaussian simulation (sGs) is one such
algorithm that creates realisations under the assumption of a multiGaussian RF model and is
presented in Goovaerts (1997, pp. 380-393). The space-time equivalent, ST-sGs can be
described in brief as follows. The set of n z-data {z((u, 7)), & = 1,2,..., n} are first transformed
into a corresponding set of y-data, y((u, 7),) = & (z((u, 7),)), with a standard Gaussian cdf where
¢ is the normal-score transform (Goovaerts 1997, p. 266). Under the multiGaussian

assumption, the ccdf at each prediction location is Gaussian and, therefore, fully characterised
by its mean and variance. The sGs algorithm proceeds by visiting sequentially all v data and
prediction locations, v=1,2,....nt+¢, and determining the mean and variance of each ccdf as the
predicted value, y*sk((u, #),), and prediction variance, o”sk((u,7),), respectively, of a space-time
simple kriging (STSK) prediction carried out for that location with the normal score space-time

variogram model, #,(n_4 ), fitted to the sample space-time variogram of the y-data y((u, 7),). A

simulated value, y"((u, ),), is then drawn from the ccdf for the location in question. In the non-
conditional case, each subsequent prediction is conditioned only on values simulated at
previously visited locations, and not on the data y((u, 7),). Once values have been simulated for

all ¢ locations, set y'((u, 1),) is back-transformed into the desired z-data space using the inverse

normal-score transform z”((u, 7),) = ¢ . "((u, 1),)).
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8.3.2 Implementation of ST-sGs to estimate prediction uncertainty

The theoretical approach set out in the previous section was implemented to obtain estimates of
the uncertainty associated with predictions of MC made using Model 3. This required two new
developments: the conversion of techniques for spatial-only simulation to the space-time
setting, and the integration of this space-time version in an uncertainty model that incorporated
the different sources of prediction uncertainty within the framework of Model 3. The first
requirement was met by modifying an existing algorithm for spatial-only sGs, the sgsim GSLIB
routine (Deutsch and Journel, 1998), for a space-time setting. This entailed the replacement of
sub-routines that incorporated spatial variograms and calculated covariances between spatially-
separated locations with space-time equivalents. Provision was made for use of the product-sum
covariance model by incorporating the modified cova3 sub-routine presented by De Cesare et

al. (2002) in the sgsim algorithm,

The uncertainty model was designed to replicate the prediction uncertainty inherent in Model 3.
To briefly restate the structure of Model 3 (see Figure 5.5), TC was predicted first at unsampled
locations and these predictions were combined with existing data to derive the mean TC per
month, MMTC, at each facility. MC data from each facility were then divided by the relevant
MMTC value to create standardised SMC values. SMC was then predicted at all unsampled
locations and back-transformed to predictions of MC using the relevant MMTC value. The
prediction procedures for both TC and SMC introduce uncertainty into the final predictions of
MC, and so the uncertainty model had to incorporate the effects of both.

To construct the uncertainty model, the two STOK procedures in Model 3 that predicted TC and
SMC were replaced with ST-sGs procedures. Because the objective was to develop and then
evaluate the uncertainty model, it was necessary to implement it in a cross-validation mode such
that each uncertainty estimate could be compared to a known prediction error derived from the
cross-validation carried out in Chapter 8. This was carried out by first using ST-sGs to simulate
! conditional realisations of TC at the f = 1,2,..., g unsampled locations, 20 ((u, )p). The
constituent steps of this procedure are detailed in full in Figure 8.1. These realisations were then
combined with the « = 1,2,..., n TC data zic((u, #),) to create / realisations of MMTC. At each
facility location uy, the d=1,2,...,D data and s = 1,2,..., S simulated values were combined for

each realisation to define the simulated MMTC value z”)MMTC(uk):
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‘J(VIH)VIIL( )= erc ((u, ’t)d)+Z"‘1[']L)((ul 0,) (8.4)

The MC data zyc((u, 7),) were then divided by the simulated MMTC value for the facility in

question z7\pre(ug) to define / realisations of SMC at the data locations, z”syc((u, 7),):

20 (,0),) = “ﬁ;ﬁ((“ Do )) (85)

The simulated values ZU')SMC((U; 1),) of SMC at the n data locations were then used as input into
the second ST-sGs procedure that corresponded to the STOK prediction of SMC. Because
cross-validation simulations were required, this ST-sGs procedure was used to obtain
realisations of SMC at the n data locations. These output simulations of SMC are denoted with a
(II) superscript, ZUDSMC((U, 1),), to distinguish them from the input simulations, Z(DSMC((U, D).
This procedure is detailed in full in Figure 8.2. These output simulations of SMC were then
back-transformed using the appropriate simulated MMTC value as defined in (8.4) to obtain the

final simulated MC values, z”yc((u, 7) ,):

Zue ((W,1),) = zge (W,0),) X 2y (W) (8.6)

The above procedure resulted in a set of / = 1,2,..., L conditional realisations of MC, ye((u,
), at the o = 1,2,..., n data locations. The ST-sGs algorithm required substantial computation
and the number of realisations was therefore limited to L = 100. The distribution of these L
simulated sets provided a model of the uncertainty associated with each prediction. This model
could then be compared to the known prediction errors determined in the cross-validation for

Model 3, allowing assessment of the accuracy of the uncertainty model itself.

8.3.3 Testing the accuracy of the uncertainty model

The L simulated sets were tested as a model for (i) local uncertainty, that is, of predictions of
MC at individual facility-months, and (ii) regional uncertainty, that is, of predictions of the

regional mean MC per facility-month over aggregated sets of cross-validation predictions within
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Figure 8.1 Schematic diagram showing stcps involved in producing conditionally simulated realisations of TC at non-data

locations. Non-conditioned fields were gencrated at all points using ST-sGs and these values at data locations were used for
predictions at non-data locations using STOK. These simulated predictions were then compared to the original simulated values at
each non-data location to generate simulated prediction errors (box 2). The original STOK prediction is shown (box 1), and the
simulated errors were added to these predictions to give conditional simulated realisations (box 3). The notation used in this figure is

described further in the text.
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Figure 8.2 Schematic diagram showing steps involved in producing conditionally simulated cross-validation realisations of SMC at
the data locations. Non-conditioned fields were generated at all points using ST-sGs and these values at the data locations were used

for cross-validation predictions at the same data locations using STOK

to obtain simulated cross-validation errors (box 2). The

original STOK cross-validation prediction is shown (box 1), and the simulated errors were added to these predictions to give

conditional simulated cross-validation realisations (box 3).
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space-time regions. Each local uncertainty model was summarised by the simulated error

standard deviation, gy,[e((u, £),)]:
Tamle((u, D)) = ale”((, N, 1= 12,.... L (8.7)

where simulated errors ”((u, 7)) were defined as the difference between each conditional
realisation and the corresponding original prediction, e”((u, £),) = zmc (W, £)a) - 2vc* (1, 1),). It
was then necessary to compare the simulated error standard deviations, ogule((u, ).)], to
estimates of the corresponding actual error standard deviation, & [e((u, £),)], where actual error
was defined as the difference between each cross-validation prediction and the true data value,
e((u, 1)y) = z*uc((u, 1),) - zvc((u, £),). The set of n errors e((u, £),), @ = 1,2,..., n, was partitioned
into b= 1,2,..., B subsets or ‘bins’ according to the magnitude of their corresponding simulated
error standard deviations, oym[e((u, 1),)]. Each bin spanned 1/B™ of the range of values of
osmle((u, 1),)] and the B was chosen as 40. Each bin therefore contained a set &) of j =1,2,....J
error values, each with a corresponding simulated error standard deviation value, og4m[e(j)] . For
each bin, the median of the J simulated error standard deviation values was compared to the

estimated actual error standard deviation, g [&(j)]. This pair of values was obtained for each of

the B bins and plotted on a scatter plot to allow visual comparison.

A large number of regionally-aggregated sets of & = 1,2,...,m prediction locations were defined
using moving space-time windows with spatial radii of between 12.5 km and 100 km and
temporal radii of between 3 and 24 months. The size of aggregated sets varied fromm = 2 tom

= 1000 individual predictions. For each set, the true regional MC mean, y[z, ((u,1),)], and
predicted mean, g[z;((u,r),)] were calculated from the data and cross-validation predictions,

respectively, and the model of prediction uncertainty was defined by the distribution of the
corresponding means of the / = 1,2,...,[ simulated realisations of the m predictions,

1z ((u,1),)] . Each regional model of uncertainty was summarised by the simulated mean

error standard deviation, o, [ &((u, t)a)]] :

o, Lule(,n )] =olude”(u,n ). i=1.2...L (8.8)

where each simulated mean error, #[€"((u,?),)], was defined as the difference between the

simulated mean, 4[z{) ((u,1),)] » and the corresponding predicted mean, y[z,. ((u,1),)]:
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wule (w0 = ulz3e (D)1= #lzye (u,0),)] (8.9)

The large set of regional simulated error standard deviations for different aggregated sets were
compared to estimates of the actual error standard deviation using the same ‘binning’ approach

described above for the local case, resulting in a corresponding scatter plot for the regional case.

8.4 Results

8.4.1 Variography

Figure 8.3 shows the sample space-time variogram surface, the sample space- and time-
marginal variograms and corresponding fitted models, and the resulting product-sum space-time
variogram model for each variable that underwent STOK (TC, MC, MP, and SMC) and for each
facility category (hospitals, health centres, dispensaries, and all three combined). Table 8.1 lists
all the corresponding variogram model parameters. In all cases, the temporal variograms differ
substantially in structure to the corresponding spatial variograms, with temporal variograms
generally having smaller relative nugget effects and smaller sills. Most temporal variograms
were modelled with a periodic component to account for a pseudo-periodic structure. The
spatial variogram for combined facilities was modelled as a pure nugget effect for both the non-
standardised variables (MC and TC), indicating a complete absence of spatial autocorrelation in
these variables. In both cases spatial variograms revealed substantially more structure when
hospitals, health centres, and dispensaries were considered separately. Comparison between MC
and TC indicated that MC was the more spatially structured variable, with MC spatial
variograms generally having lower relative nugget effects and larger range values than those for

TC.

Variograms for the two standardised variables, MP and SMC, had a number of noticeably
different characteristics from those for the non-standardised variables. Firstly, the spatial
variograms for combined facilities both indicated spatial autocorrelation and were modelled
with structured components in contrast to the pure nugget effect models used in the equivalent
variograms for MC and TC. Secondly, the spatial variograms for all facility categories indicated

a greater degree of spatial structure than the non-standardised variables, with generally smaller
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JURITI MC variogram TC vaniogram MP variogram SMC variogram
Facility > c > >

type Model type  « ¢ Model type a ¢ Model type a ¢ Modeltype  a ¢
T e nugget - 1150000 nuggel - 1140000 nugget - 00075 nugget - 0014
Space-marginal exponential 30 0.0016 exponential 5 0.016
variogram spherical 85 0.0084 exponential 30 0.007
e e e spherical 80 ___0.021
= nugget - 24000 nuggel - 140000 nugget - 0.003 nugget - 0.014
i Time-marginal splhierical 40 15000 spherical 40 150000 exponential 3.3 0.0035 exponential 4 0.028
variogram exponential 10 25000 expanential 10 40000 hole 6 0.0003 hole 6 0.002
el hOle 6 6000 hole 6 50000 spherical 20 0.002_
_______ Spacetimesill - - 125000 - - 1200000 - - 00178
T T Thugget - s0000 nugget - o nugeet - 00055 nugget - 0012
Space-marginal exponential 30 350000 spherical 20 2200000 exponential 30 0.0016 cxponential 20 0.036
Y variogram spherical 85 0.0084 exponential 80 0.016
=]
BT T et T 500000 T nuggel - 800000 nugget - 0.0025 nugget - 0012
2 Time-marginal spherical 40 160000 exponential 5 400000 exponential 4 0.004 exponential 5 0.038
variogram exponential 6 180000 spherical 45 1200000 hole 6 0.0003 hole 6 0.001
e bolel 6200000 hole 6400000 spherical |20 0002 ____ sherical __25 ___0.006_
T Spacedimeni T see00. T S Tsoe00] T oo T S TTo066
ST T et - 6000 T nuggel - 80000 nugget - 00065 nugget - 001
Space-marginal exponential 20 30000 cxponetrtial 3 210000 exponential 30 0.0017 exponential 8 0.02
8 variogram exponential 70 49000 exponential 40 100000 spherical 85 0.008 spherical 70 0.038
L
,L:i nugget - 16000 nugget - 80000 nugget - 0.003 nugget - 0.01
= Time-marginal cxponential 6 39000 exponential 4 6000 exponential 4 0.004 exponential 4 0.04
= variogram exponential 20 95000 hole 6 0.0003 spherical 25 0.006
____________________ ... hole S5 17000 spherical |20 _ 0002
Space-timesit - - 100000 so.o o Aooo e - 0016 T 0067
ST T Thageet - 220000 nuggel - 175000 nugget - 0.004 nugget - 0.007
Spacc-marginal exponential 90 29000 gpherical 75 90000 exponential 8 0.0025 exponential 9 0.019
@ variogram exponential 60 0.005 gpherical 80 0.024
£ S spherical 85 00069
é 777777777777777777777777777 nugget - 7500 nuggel - S 50000 nugget - 0.003 nuggel - 0.007
& Time-marginal exponential 5 25000 exponential 5 40000 exponential 3.5 0.0033 exponential 4 0.026
a variogram exponential 25 4000 hole 6 10000 hole 6 0.0003 hole 6 0.0025
exponential 20 50000 spherical 20 0002 __cxpomential 25 0011
S O T koo s TGS

Table 8.1 Space-time variogram model parameters for MC,TC,MP, and SMC for each facility type. Values ol the range parameter (denoted a) are given in kilometres for spatial model components and
months for temporal model components. ¢ denotes the sill parameter ol cach model component.
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Chapter 8 Model Development 2

relative nugget effects and structured components with larger range values. Furthermore,
the sill values of spatial variograms were more similar to the sill values of the temporal
variograms for MP and SMC than was the case for MC and TC. Comparison between
MP and SMC variograms suggests that SMC displays marginally more structure, both

spatially and temporally than does MP.

8.4.2 Comparison of modelling frameworks

The results of the cross-validation for each of the three modelling frameworks are shown
in Table 8.2. Comparison between those predictions made using the combined data set
for all facility types and those made with the facilities separated revealed that the latter
approach resulted in substantially smaller overall bias (smaller ME), substantially
smaller mean inaccuracy (smaller MAE), or both, for all facility types and for all three
models. Focusing on this latter approach, comparison of the three models revealed that
Model 3 produced predictions of MC which had the smallest mean inaccuracy (smallest
MAE) for all three facility classes. Model 2 predictions had a smaller MAE than Model
1 for health centres and dispensaries but a larger MAE for hospitals. Results for overall

bias (ME) were more mixed. The least biased prediction (smallest ME) was provided by

Table 8.2 Comparison of summary statistics for cross-validation predictions of malaria cases using three different
modelling frameworks. Predictions were made separately for hospitals, health centres and dispensaries, and with all
facilities combined. The statistics shown are the correlation coefficient, p, the mean error (ME) and mean absolute error
(MAE), as described in the text. Model 3 (highlighted in bold text) was chosen as the best overall predictor of malaria
cases.

Facility type Model sg::;‘;?fj, P ME MAE
Model | Yes 0.859 4,439 163.188

Model 2 Yes 0.848 6.244 205.730

Hospitals Model 3 Yes 0.856 2.822 19%.423
Model 1 No 0.512 -376.730 425.829

Model 2 No 0.853 -6.945 196.637

Model 3 No 0.850 24276 196.736

Model 1 Yes 0.779 0416 92.067

Model 2 Yes 0.783 -2.179 90.240

Health centres Model 3 Yes 0.789 -1.050 559.042
Model 1 No 0.526 -15.783 150.227

Model 2 No 0.781 -3.614 90.416

Model 3 No 0.793 -1.787 89.745

Model 1 Yes 0.764 0.530 69.527

Model 2 Yes 0.776 -0.397 67.156

Dispensaries Model 3 Yes 0.774 -0.638 66.903
Model [ No 0.527 58.239 136.291

Model 2 No 0.762 1.897 69.790

Model 3 No 0.777 0.414 67.321
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Model 1 for health centres, Model 2 for dispensaries, and Model 3 for hospitals. The
largest values of p (largest linear associations between predicted and actual values) were
provided by Model 1 for hospitals, Model 2 for dispensaries and Model 3 for health
centres, although differences in values of p between the three models were not
substantial. Given these results it was decided that Model 3 was the best overall choice
of predictor for MC because it resulted in the smallest mean inaccuracy for all three
facility classes and, although its predictions were not the least biased for health centres

and dispensaries, the bias in these cases was nevertheless very small.

8.4.3 Evaluation of the uncertainty model

The results of the procedure to test the accuracy of the simulated uncertainty model are
shown in Figure 8.4 for both local predictions of MC at individual facility-months and
regional predictions of mean MC for sets of between 2 and 1000 facility-months
aggregated over space-time neighbourhoods. In the local case (Figure 8.4 (a)), simulated

error standard deviations replicated closely actual values with no overall tendency for
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Figure 8.4 Comparison of simulated and actual standard deviations of prediction errors for MC. Simulated standard
deviations were derived for ndividual and aggregated prediction of MC via space-time sequential-Ganssian-simulation
and corresponding actual errors were obtained from a cross-validation exercisc, Prediction errors werce divided into bins
according to their simulated standard deviation, and the actual standard deviation of the set of errors in each bin was
calculated (circles) along with the 95% confidence interval (vertical bars). Results arc shown for (a) predictions of MC at
individual facility-months and (b) predictions of mean MC withiu sets of between 2 and 1000 facility-mouths created by
aggregating points within progressively larger space-time neighbourhoods.
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over or under-estimation. Points plotted for smaller standard deviations were
progressively less scattered around the 1:1 line, which is indicative of the larger number
of values in these bins. In the regional case (Figure 8.4 (b)), there was, again, a strong
linear association between simulated and actual error standard deviations in each bin,
although there was a tendency for simulated values to be slightly overestimated. This
overestimation was more pronounced for larger standard deviations, although was less in
relative terms. A simulated error standard deviation of 19.2 cases, for example,
corresponded to an actual error standard deviation of 15.2 cases, representing an over-
estimation of 4.0 cases or 26%, whilst a simulated error standard deviation of 71.7 cases
corresponded to an actual value of 59.6 cases, representing an over-estimation of 12.1

cases or 17%.

8.5 Discussion

This study has presented three alternative modelling frameworks in which space-time
geostatistical prediction algorithms can be used to predict MC values at missing facility-
months within the Kenyan HMIS. Whilst Model 1 used these data in their raw form,
Models 2 and 3 used accompanying data, TC, on total outpatient numbers to construct a
denominator and predictions were made on the resulting standardised variables, MP and
SMC, respectively. The rationale was that the spatial structure of the standardised
variables may be greater than that of the raw count data thus yielding more accurate
predictions from the geostatistical algorithms. Since the presence or absence of TC data
matched that of MC, however, predictions of MP and SMC required back-
transformation by corresponding predictions of the relevant denominator (TC and
MMTC, respectively) at unsampled facility-months and, as such, the accuracy of the
ultimate predictions of MC was dependent on the prediction accuracies of both the
standardised variables and the denominator. Predictions made with all three modelling
frameworks were found to be more accurate when hospitals, health centres and
dispensaries were considered separately. Under this approach, Model 2 did not offer a
substantial increase in predictive accuracy over Model 1, indicating that the large
uncertainty associated with modelling TC negated any benefit of modelling a
standardised variable. The modelling framework for Model 3, however, did result in

modest increases in prediction accuracy over Model 1. The temporal variograms for MC
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and SMC had almost identical structure which is to be expected since the denominator,
MMTC, is constant through time at each spatial location. The benefit of standardising
MC by MMTC to obtain SMC can be explained by the spatial variograms for SMC
which had smaller relative nugget effects and sill values that were much nearer to the
corresponding temporal sills than was the case for the MC variograms, indicating a
relative reduction in the overall variance of the variable across space, of which a greater
proportion was autocorrelated. These factors meant SMC could be predicted directly
with greater accuracy than could MC. Although the back-transform by MMTC involved
further uncertainty, the net effect was that MC was predicted with slightly greater
accuracy under this framework than using raw MC data directly in Model 1. The greater
spatial structure displayed by SMC emphasises the potential benefit of incorporating
proxy measures of facility size and utilisation in models to predict MC. However, these
results have shown that, when the only such measures available are themselves
incomplete and subject to substantial uncertainty, their inclusion in a predictive model
can offer only modest increases in prediction accuracy. The success of Model 3 over
Model 2 can be attributed to the way that TC predictions were averaged, along with the
existing TC data, over the 84-month period for each facility before being used as a
denominator. The resulting MMTC values were, therefore, likely to be have a smaller

error variance compared to the individual predictions of TC used as denominators in

Model 2.

The fact that the use of standardised variables in Model 2 and Model 3 resulted in only
modest increases in prediction accuracy over Model 1 is due partly to the effect of
separating data by facility type. When data were predicted together, Model 2 and Model
3 produced dramatically more accurate predictions than Model 1. Much of this benefit of
using standardised variables was negated, however, when data were separated by facility
type because this separation effectively provided an alternative way of standardising the
raw MC data. This effect is clear when comparing the spatial MC variogram for the
three facility types combined, which indicates no spatial structure, and those for the
facility types individually, in which spatial structure is clearly present. A logical
explanation is that there is a degree of consistency in non-spatial factors such as
catchment size and facility utilisation within each facility type, and by considering each
type individually, this source of non-spatial variation is reduced. Although in this study

the increase in prediction accuracy gained using Model 3 is modest compared to the
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non-standardised approach in Model 1, in other situations in which the type of facility is
not known and data cannot be separated by facility type, this increase will be much more

pronounced.

The uncertainty model presented in this chapter provides a framework for estimating the
uncertainty associated with predictions of MC made using Model 3. The results
presented above indicate that this model provides accurate estimates of individual (local)
prediction uncertainty. For aggregated (regional) predictions, the model marginally over-
estimates uncertainty. Given that the over-estimation of prediction uncertainty is
preferable to under-estimation, and that the difference between actual and modelled
uncertainty is small, this model can be considered a useful means of estimating both

local and regional prediction uncertainty.

8.6 Chapter summary

Three modelling frameworks were proposed in Chapter 5 that consisted of four different
prediction exercises to predict MC, TC, MP, and SMC. In Chapter 7, different kriging
methodologies were developed and compared and STOK was identified as the most
appropriate technique for obtaining these predictions. In this chapter the three modelling
frameworks were implemented using STOK. Variograms of the four variables revealed
that the standardised MP and SMC variables, created by incorporating TC data as a
denominator, displayed substantially more spatial structure than raw MC data. This
suggests that TC provides useful information for the prediction of MC. When the
different modelling frameworks were used to obtain predictions of MC, however, Model
2 did not result in more accurate predictions of MC than the null case, Model 1. Model 3
did result in more accurate predictions, although the improvement was modest, and so
this modelling framework was chosen to predict MC values across Kenya in the final
implementation in Chapter 9. Of equal importance to providing accurate predictions is
the provision of accompanying estimates of the associated prediction uncertainty. In this
chapter, an uncertainty model has been developed to produce such estimates for
predictions of MC made with Model 3. This model incorporated a stochastic simulation
approach using sequential-Gaussian-simulation that was adapted for a space-time

situation. A framework was developed using this approach that simulated the uncertainty
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associated with the prediction procedure of Model 3. In the next chapter, the modelling
approach that has been developed and tested in the last two chapters is implemented to

predict unsampled values of MC across Kenya.
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Chapter 9

9. Model Implementation to
Predict Malaria Treatment
Burdens

9.1 Introduction

Having presented a series of modelling frameworks for the prediction of missing MC
values in Chapter 5, and developed and evaluated different aspects of these frameworks
in Chapters 7 and 8, the final framework (Model 3 implemented with STOK) is now
implemented in this chapter to make predictions of MC at all GoK facilities across
Kenya for which monthly values are missing during the 84-month study period January
1996 — December 2002. The model development and testing in Chapters 7 and 8 was
carried out on an early version of the integrated HMIS-NHSD data set containing data
from 1765 georeferenced GoK facilities. This version of the data set was described in
detail in Chapter 3. The model implementation described in this chapter was carried out
using an updated version that incorporates 2165 facilities. A summary of this updated
data set 1s presented, along with a new assessment of the extent of under-reporting and
missing records. In Chapter 8, a model-based approach was presented for estimating the
uncertainty associated with predictions of MC made using Model 3. In this chapter, an

empirical approach is used to validate the final model predictions and this is presented in

full.

9.2 An updated version of the HMIS-NHSD data set

An updated version of the NHSD and associated HMIS data was compiled by the
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KEMRI-University of Oxford-Wellcome Trust Collaborative Programme team and
made available for this project in October 2005. This version of the NHSD represented
the most comprehensive inventory available of health facilities in Kenya and
incorporated 2165 GoK facilities, of which it has been possible to obtain georeferencing
coordinates for 92%, consisting of 129 hospitals, 474 health centres and 1399
dispensaries (Table 9.1). A total of 163 facilities were included in this study that could

not be georeferenced.

As before, the georeferencing and facility information in the NHSD was linked to the
corresponding records in the HMIS to define spatially and temporally referenced MC
and TC data. A total of 63,642 records were available in this updated data set, which
represents/ only a modest increase from the 63,543 that constituted the earlier version,
despite the fact that a further 400 facilities had been included. This apparent disparity is
explained by the fact that these extra facilities were not included in the central HMIS
database at the Ministry of Health headquarters in Nairobi. As such, there was no
mechanism by which routine data from these facilities could be included in the national
database. This substantial information gap serves to highlight the importance of

obtaining a comprehensive inventory of facilities before attempting to quantify treatment

Hospitals Health Centres Dispensaries All
Number of facilities in
upgraded MoH list
Total 129 482 1,554 2,165
Georeferenced 129 (100.0%) 474 (98.3%) 1,399 (90.0%) 2,002 (92.5%)
Facility reporting rate (% of
months reported)
100% 0 (0.0%) 0(0.0%) 0(0.0%) 0 (0.0%)
>75% < 100% 19 (14.7%) 74 (15.4%) 154 (9.9%) 247 (11.4%)
>50% < 75% 31(24.0%) 164 (34.0%) 322 (20.7%) 517 (23.9%)
>25% <50% 45 (34.9%) 132 (27.4%) 299 (19.2%) 476 (22.0%)
> 0% <25% 24 (18.6%) 59 (12.2%) 296 (19.0%) 379 (17.5%)
0% 10 (7.8%) 53 (11.0%) 483 (31.1%) 546 (25.2%)
Overall reporting
Records expected 10,836 40,488 130,536 181,860
Records present 4,680 (43.19%) 18,719 (46.23%) 40,243 (30.83%) 63,642 (35.00%)

Table 9.1 Summary of government health facilitics in Kenya and their reporting behaviour during the 84-month study
period January 1996 to December 2002. Facilities are shown disaggregated by type, georeferencing status and reporting
rate. The expected and actual number of monthly records are also given for cach facility type.
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Figure 9.1 percentage of government health facilities in cach Kenyan district submitting a monthly outpatient morbidity
report to the HMIS. The two months shown are (a) the most complete (February 1996) and (b) the least complete
(December 1997) during the 84-month study period January 1996 - December 2002.

burdens as, evidently, the first requirement is to know the number of facilities (and
hence records) that are missing. In light of the substantial changes in the number of
facilities, the extent of under-reporting was reassessed on this updated data set. There
was considerable variation spatially and temporally (Figure 9.1) and between facility
types (Table 9.1). No facilities reported in all 84 months whilst 546 facilities (25%) did
not report in any month. A complete 84-month data set for each of the 2,165 facilities
would consist of 181,860 facility-months. There were 63,642 records representing an
overall reporting rate of 35%. The overall reporting rate varied both within and between
years, with a minimum of 6% in December 1997 and a maximum of 44% in February
1996. The reporting rate displayed a seasonal pattern, with generally more facilities

reporting during the first three quarters of each year (36%) than the last quarter (31%,).

The 63,642 monthly records in this updated data set included a total of 18.67 million
cases of presumed malaria, with a mean of 293.4 cases per facility-month. These totals
(means) were 3.36 million (716.9) for hospitals, 6.05 million (323.4) for health centres
and 9.26 million (230.2) for dispensaries.
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9.3 Methodology 1: Implementation of Model 3 to predict
MC

In this chapter, Model 3 was implemented to use the MC and TC data from the 63,642
facility-months in the HMIS data set to predict MC values at the 118,218 facility-months
where records were missing. The modelling framework for Model 3 was described in
Chapter 5 and its implementation was described in Chapter 8. The procedure used here
was identical to that in the preceding chapter, except that the cross-validation procedure
was replaced with a prediction procedure. To avoid repetition, the methodological
details of this implementation are not restated in full in this chapter. In brief, data from
each facility type were separated and predicted independently. For each facility type, the
two prediction procedures to predict TC and then SMC were carried out using STOK.
Space-time variograms of TC and SMC were estimated (4.45) and modelled (4.49) using
the product-sum model (De Cesare et al., 2001; 2002). As would be expected given the
small change in data sets, these variograms were almost identical to those presented in
Chapter 8 (Figure 8.3) based on the test data set, and are not presented again in this
chapter. For the 163 facilities that did not have georeferencing information, geostatistical
techniques could not be applied to obtain predictions of missing values. The district in
which each of these facilities was located was known, however, and each missing
facility-month was predicted by attributing the mean MC value for that month from

facilities of the corresponding type in the same district.

The above modelling procedure resulted in predictions of MC at all facilities and months
where data were missing. In combination with the original data, this set represented a
complete picture of the treatment burden for presumed malaria at all facilities for all
months. The level of information that is of most use to decision-makers ranges spatially
from the district to national levels, and temporally from monthly to annual averages or
sums. Having constructed a complete set, individual MC values could be aggregated to
provide treatment burdens at any spatial or temporal level from the individual facility
through to the district, provincial and national levels for the seven year period, and for

any month or year in the set.

179



Chapter 9 Model Implementation

9.4 Methodology 2: Model validation

A validation exercise was undertaken to assess the performance of the model in terms of
the accuracy of predictions of MC. The magnitude of error was estimated at the level of
individual predictions (i.e. prediction of MC at a single facility and month) and at
different levels of spatial and temporal aggregation (e.g. predictions of the sum of MC

for all facilities in a district or province in a given month or year).

9.4.1 Estimating parameters of the global error distribution

A validation set {z,.((u,7),); i = 1,2,...,n.}, was selected randomly from the full set of
MC data {z,,.((w,7),); a=12,...,n}. The size of this validation set, n,, was chosen as

6349, equivalent to 10% of the full data set, and was selected using a stratified random
sample that ensured the proportions of data from hospitals, health centres and
dispensaries matched those of the full data set. The validation data were removed from
the full data set and the modelling procedure was repeated in its entirety using the

remaining 90% of data to produce a set of predictions z,.((u,7),) to compare to the
validation set. The set of prediction errors, g, ((u,r),), was then defined as
£,.((u,0),) = zyc ((u,2),) — 2, ((u,7),), with the v subscript used to denote the validation
set. The set £,((u,7),) was treated as a sample of £ ((u,7),), the full set of (unknown)

errors for predictions of missing data at the f=1,2,...,¢ unsampled facility-months,

where the u subscript is used to denote the full set of unknown errors. The mean, y,, and

standard deviation, o,, of £, ((u,7),) were then estimated using the sample mean X,

(9.1) and standard deviation s, (9.2) calculated from g ((u,7),):

i =X = iz":gw((u,z)j) ©.1)

n, =l

N
[
[—

c%L‘:s‘,.:\/ 1 ”Z(ev«u,z),-)—)?v)z 9.2)

v i=1

180



Chapter 9 Model Implementation

9.4.2 Assessing the effect of aggregation on the variance of prediction errors

Equations (9.1) and (9.2) provide a way of estimating the mean error in predictions of
MC at individual facility-months and the variability around this mean. In addition to this
individual-level error, however, it was necessary to obtain estimates of the error
associated with the sum of MC obtained from sets of predictions aggregated over

different space-time units such as months, years, districts, provinces and so on.

Consider a set of j predictions aggregated together within a space-time unit a,
{zye((,0),)5/=1.2,..., ns}, which is a subset of the full set of predictions, Zue((W,) ).
The corresponding subset of prediction errors are denoted as £, ((u,7), ). The task was to
estimate, for each such subset, the mean of the #, errors, = y[sa ((u,t)j)j, and standard
deviation of this mean, o[y, |. If prediction errors are assumed to be independent and

identically distributed (IID) then these values can be estimated from the estimated
parameters of the global error distribution as shown in equations (9.3) and (9.4),

respectively:

H, =10, 9.3)

6la.]= O, (9.4)

n

a

The assumption of IID is rarely strictly valid when dealing with spatial and/or temporal
data due to the presence of spatial and/or temporal autocorrelation. Before equations

(9.3) and (9.4) could be used to estimate g and o[y, | for each space-time unit it was
necessary to assess the validity of this assumption for the unknown error set &, ((u,7) ;)
using the sample error set g,((u,7).). A sample space-time variogram 7 (h,, %) was
calculated for g ((u,?),)(Figure 9.3). This provided a graphical illustration of the

presence or absence of spatial and temporal autocorrelation in the validation error set. A
second approach was to estimate directly the relationship between the size of each subset

n, and the standard deviation of its mean error gy | using the sample error set

£,((u,1),), and compare this empirical relationship with the theoretical relationship
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presented in (9.4). This was done using the following steps:

(1) A total of #=1,2,...,m different aggregated subsets, ¢, ((u, 1)) ,were created from the
sample error set ¢ ((u,7),). Each subset consisted of all elements of £ ((u,r),) that fell

within a given space-time unit. All permutations of space-time units were considered
leading to, for example, 56 province-years (8 provinces x 7 years), 84 national-months
(1 spatial unit x 84 months) and so on, and only those space-time units that contained
more than one sample error were included. In this way, a total of m = 5709 such

aggregated subsets were defined. The size of these subsets sets ranged from n, = 2 to n,

= 1533.

(2) The mean error of each aggregated set was calculated:

[0 = iz,s“((u,r)j) 9.5)

na J=1

(3) The list of m mean errors, (L, /L, ,,....,1,,, was then plotted against the

corresponding list of set sizes n,,,n,,,...,n, , (Figure 9.4). This plot provided an

illustration of the central tendency and variation of the means of aggregated sets of

errors of different sizes.

(4) The list of m mean errors was sub-divided into a series of b = 1,2,..., B ‘bins’

according to the size of each set, such that each bin contained 4=1,2,...,m, mean errors

U, calculated from sets of similar size. The standard deviation, o, of the m;, mean

errors within each bin was then calculated:

2

B

1 < 1 "7!:’
_1 Z ‘L["Jf - (_Zﬂa,kJ (96)

k=1 h ok

o, =
m,
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(5) The value of o, for each bin was then plotted against the corresponding mean set size
in each bin. The resulting plot (Figure 9.5) provided an illustration of the effect of
aggregation over successively larger space-time units on the standard deviation of the
mean prediction error of those units. The theoretical relationship (9.4) was also plotted

for comparison.

9.4.3 Estimating the prediction error for individual space-time units

Estimates were required of the error associated with predictions of the sum of MC in
each space-time unit of interest across Kenya. The units of interest were defined
spatially at the district, provincial, and national level, and temporally at the monthly and
annual level. This meant there were six different types of space-time unit of interest:
district-months, district-years, province-months, province-years, national-months, and
national-years. A total of 7371 such units were defined, and these are detailed in Table
9.2. The results of the procedure described in section 9.4.2 suggested that the use of
equation (9.4) as a model for the change in the standard deviation of mean error with
aggregation was reasonable, given that error did not display spatial or temporal
autocorrelation (Figure 9.3), and that the empirically-observed relationship was very
close to that described by this equation (Figure 9.5). In this section, the procedure by
which this model was used to estimate the error associated with predictions of the sum
of MC in each individual space-time unit is described. This was done in the following

steps:

Temporal units (n)

Spatial units (n)

Month (84) Year (7)
District (72) 6048 504
Province (8) 672 56
National (1) 84 7

Table 9.2 The number of space-time units of each type, as defined by three spatial and two temporal levels of
aggregation. Figures in parentheses are the numbers of each type of unit.
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(1) Rather than use the global estimates of the (unaggregated) prediction error mean /I,
and standard deviation &, as defined in (9.1) and (9.2), it was decided that it was

preferable to estimate these parameters locally to better capture regional variations,
accepting the reduction in the certainty of these estimates caused by the smaller sample

sizes. As such, the local prediction error mean i, and standard deviation &, were
calculated for each district and province from the relevant subset of the & ((u,?),),

where the subscript ; is used to denote a local estimate. Where the validation set

contained <30 samples for a given district, the provincial estimates were used instead.

(2) The total number of missing data (and hence predictions) in each 4=1,2,...,m space-
time unit was determined (this value is denoted as nsty where the subscript si; indicates

that the statistic relates to a space-time unit).

(3) The expected error 2., of the sum of predictions in each space time-unit was
estimated as the product of the local mean error 4, and the number of predictions in the

unit ngre:

A

2oty = Mg 9.7)

(4) The standard deviation of this sum o[z ] was then estimated using the local error
standard deviation &, and the number of predictions in the unit 757 , based on the same

theoretical relationship established in section 9.4.2:
6'[2 STU] = 0y /sty 9.8)

This process resulted in estimates of the error associated with predictions of MC for all
districts, provinces and nationally for each month and year. The estimated standard
deviation of each predicted sum provides a quantification of the associated uncertainty.
If a Gaussian model is adopted for the error distribution of each sum, then the estimated
standard deviation can be used to calculate indicators of this uncertainty such as a 95%

confidence interval.
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9.4.4 Summarising the prediction error for each aggregation level

The process described above provides estimates of the mean and standard deviation of
the prediction error for each of the 7371 space-time units of interest in this study. [t was
necessary to summarise these estimates to provide a single measure of the accuracy of
predictions for each aggregation level (e.g. what is the expected range of errors for
predictions of MC at the level of district-months, province-years etc). This was done in

the following steps:

(1) The estimated sum of prediction errors in each space-time unit, S, and
accompanying standard deviation &[5, | were expressed as a percentage of the
predicted total MC for that unit. Both predicted MC (missing data) and known MC
(data) were included in the denominator and, as such, the estimated percentage errors
accounted for the proportion of missing data. This is important since, for example, a
prediction error that is large relative to the sum of predictions can still be small relative

to the predicted total, if few data are missing.

(2) The distribution of the percentage error of the sum for each space-time unit was
assumed Gaussian and fully defined in each case by the estimated mean percentage error
and standard deviation discussed above. Each aggregation level therefore contained a set

of distributions modelling the uncertainty in the m predicted MC totals at that level.

(3) A useful summary was the 95% confidence interval that defined the range of
percentage errors that can be expected in 95% of cases at each aggregation level. These
confidence intervals were estimated empirically using a Monte-Carlo simulation
exercise. Each simulated realisation proceeded in two steps. Firstly, a single space-time
unit was chosen at random from the full set that made up each aggregation level.
Secondly, a random draw was made from a normal distribution defined by the estimated

percentage mean error and standard deviation of that unit.
(4) 100,000 realisations were simulated and the Qgas and Q75 quantiles of the resulting

distribution were used to define the lower and upper bounds of the 95% confidence

interval of the percentage error of the predicted sum for each aggregation level.
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This procedure resulted in, for example, estimates of the range (expressed as a 95%
confidence interval) of percentage errors that could be expected for predictions of total

MC for all facilities in a district over a month, all facilities in a province over a year and

SO on.

[ 110-30
[ 130-50
[ 150-60
I 60 -70
Bl 70 - 90
I 90 - 100
B 100 -120
Bl 120 - 150
B 150 - 200

Bl 200 - 250 200km aN

Mean annual MC
per district ('000s)

Figure 9.2 Number of outpatients treated for malaria (MC) at government facilities: Predicted mean annual totals for each
district for the period 1996-2002. Values represent the combined sum of existing and predicted values.
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Data Predictions Combined Total

Dispensaries 1,323,271 2,625,968 3,949,239
Health Centres 864,945 872,214 1,737,159
Hospitals 479,331 628,992 1,108,324

All 2,667,547 4,127,175 6,794,722

Table 9.3 Predicted mean annual counts of outpatients treated for malaria at all Kenyan government hospitals, health
centres and dispensaries for the period 1996-2002. Totals are given for data, predictions, and for the combined total.

9.5 Results

9,5.1 Prediction of treatment burdens

A total of 181,860 predictions of MC were made for the 2165 GoK health facilities over
the 84- month study period. The sum of these predictions was 28.89 million cases which,
when added to the 18.67 million cases reported in the existing records led to a predicted
total of 47.56 million cases nationwide for the seven-year period. The mean annual total
was 6.79 million cases with a mean of 261.5 cases per facility-month. The
corresponding values for each facility type were 1.11 million for hospitals, 1.74 million
for health centres and 3.95 million for dispensaries with means of 716.0, 300.3, 211.8
cases per facility-month, respectively. A summary of these results is presented in Table

9.3 and a complete breakdown is shown in Table 9.4.

Mean annual totals for each district displayed a pattern of spatial heterogeneity and this
is illustrated in the map in Figure 9.2. Some features of this map are worthy of
discussion. Firstly, these district totals have not been standardised by any measure of
district population. The decision not to present any standardised version of this map
reflects that the overall motivation of the project was to predict counts of malaria
diagnoses in outpatients and not to use these predictions to make inferences about the
distribution of malaria in the population. Without standardisation, the count of diagnoses
in each district is influenced as much by the population size as by the presence and
diagnosis of malaria. Nevertheless, the spatial pattern displayed in the map corresponds
in broad terms with the known distribution of malaria across the country, with large
predicted values (darker red districts) in areas of high prevalence around the western

lake shore regions and along the Indian Ocean coastline, and smaller predicted values
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(paler red districts) in areas of low prevalence in the elevated western highlands region
and in the arid north-east. The set of districts with large predicted values in the south-
eastern quadrant away from the coast, however, are in areas known to have a relatively
low burden of malaria. Although they have relatively high population densities, this is
unlikely to account entirely for the apparent anomaly. A more likely explanation is that
rates of misdiagnosis of malaria (i.e. false-positive diagnosis) in these low-malaria
districts are particularly high. Although beyond the scope of this thesis, a detailed
comparison of the predictions of outpatient malaria counts developed in this project with
the latest spatial models of malaria prevalence may highlight regions where the two
appear mismatched. Such an activity may highlight those regions where diagnosis of

malaria is common despite the known or assumed absence of the disease in the

population.

9.5.2 Model validation

9.5.2.1 Evrror parameter estimation and variography

The sample mean prediction error (9.1) for predictions of MC at individual facility-
months was -1.28 cases, as estimated from the validation set of 6349 known prediction

errors, £ ((u,7),). The standard deviation (9.2) was 236.62 cases. The space-marginal

and time-marginal variogram of the errors are shown in Figure 9.3. The spatial
variogram showed no evidence of spatial autocorrelation up to lags of 90 km.

Semivariances over some of the shortest lags displayed large values, although this was
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Figure 9.3 Spatial (a) and temporal (b) variograms of the error in predictions of MC, as estimated using a validation sel.
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Georeferenced Georeferenced Non-georelerenced Non-georelerenced

Data Predictions Data Predictions All Data All Predictions Combined Totals
sum meani n sum mean 1 sum  mean 1 sum mean  n sum mean 1 sum mean 1 sum mean n

1996 596,574 8474 704 615525 7293 844 - - 0- - 0 596,574 8474 704 615,525 7293 844 1,212,099 783.0 1,548
1997 530,883 8746 607 736349 7825 941 - - 0- - 0 530,883 §74.6 607 736,349 7825 941 1,267,232 818.6 1,548
1998 502,925 7858 640 720,885 793.9 908 - - 0- - 0 502,925 7858 640 720,885 793.9 908 1,223,810 790.6 1,548
1999 435,363 6479 672 703,740 803.4 876 - - 0 - - 0 435,363 647.9 672 703,740 §03.4 876 1,139,103 7359 1,548

[ospitals 2000 500,090 648.6 771 522,448 672.4 777 - - 0- - 0 500,090 648.6 771 522,448 6724 777 1,022,538 660.6 1,548
2001 350,706 555.8 631 593.860 0647.6 917 - - 0- - 0 350,706 555.8 631 593.860 0647.6 917 944,566 610.2 1,548
2002 438,778 669.9 655 510,139 5713 893 - - 0- - 0 438,778 669.9 655 510,139 5713 893 948,917 613.0 1,548
Total 3,355,319 - 4,680 4,402,947 - 6,156 - - 0- - 0 3,355319 - 4,680 4,402,947 - 6,156 7,758,266 - 10,836
Mean 479,331 7169 669 628,992 715.2 879 - - 0-

- 0 479,331 716.9 669 628,992 715.2 879 1,108,324 716.00 1,548

1996 1,021,279 3403 3,001 753,023 2802 2,687 6302 5729 11 32,130 378.0 85 1,027,581 3412 3,012 785,153 2832 2,772 1812734 3134 5,784
1997 926,960 3604 2,572 970458 3114 3,116 5453 6059 9 42204 485.1 87 932413 3613 2581 1012,662 3162 3203 1,945,075 3363 5,784

1998 807,898 3281 2,462 985550 3055 3,226 5906 6562 9 29920 3439 87 813,804 3293 2471 1,015470 3065 3313 1829274 3163 5,784

llealih 1999 949075 346.8 2,737 903,500 3062 2951 1,047 5235 2 37,673 400.8 94 950,122 3469 2,739 941,174 309.1 3,045 1891296 327.0 5784
Comros 2000 886,496 3124 2,838 755802 2652 2850 1,160 3867 3 26965 289.9 93 887,656 3124 2841 782767 2660 2943 1670423 2888 5784
2000 693,158 277.3 2,500 796,711 2499 3,188 316 3160 1 23025 2424 95 693,474 2773 2501 819,737 2497 3283 1513211 261.6 5,784

2002 748770 2014 2,570 723450 2320 3,118 796 199.0 4 25088 2727 92 749,566 2912 2,574 748,538 2332 3210 1498104 2590 5784

Total 6,033,636 - 18,680 5,888,494 - 21,136 20,980 217,005 633 6,054,616 - 18,719 6,105,499 - 21,769 12,160,115 40,488

Mcan 861,948 323.0 2,669 841213 278.6 3,019 2,997 537.9 6 31,001 342.8 90 864,945 3234 2674  8§72214 2805 3,110 1,737,159 3003 5,784

1996 1,439378 2262 6,363 2,181,126 2092 10,425 15,545 14132 11 456,680 247.0 1,849 1,454,923 2283 06,374 2,637,806 2149 12,274 4,092,729 219.5 18,648
1997 1,244,143 2512 4,953 2,725,141 2303 11,835 24,358 1873.7 13 518,171 2805 1,847 1,268,501 2554 4966 3243312 237.0 13,682 4,511,813 2419 18,648
1998 1,252366 2487 5,036 2,810,088 2391 11,752 14,754 13413 11 516469 2793 1,849 1,267,120 251.1 5,047 3,326,556 2446 13,601 4593676 246.3 18,648
1999 1,431,059 2497 5731 2,295425 207.6 11,057 16,385 14895 11 436,944 2363 1,849 1447444 2521 5742 2732369 211.7 12906 4,179,813 224.1 18,648
Dispensarics 2000 1,491,673 227.5 6,558 1,865,179 1823 10,230 13,218 5747 23 389483 212.0 1,837 1,504,891 2287 6,581 2254662 186.8 12,067 3,759,553 201.6 18,648
2001 1,131,124 2006 5,639 1,890,144 1695 11,149 2720 2092 13 329375 1783 1,847 1,133,844 200.6 5,652 2219518 170.8 12996 3353362 179.8 18,648
2002 1,179,463 2014 5855 1,633313 1494 10,933 6,710 2581 26 334243 1822 1,834 1,186,173 201.7 5881 1,967,555 154.1 12,767 3,153,728 169.1 18,648
Total 9,169,206 - 40,135 15,400,414 - 77,381 93,690 - 108 2,981,304 12,912 9,262,896 40,243 18,381,779 90,293 27,644,675 130,536
Mean 1,309,887 228.5 5,734 2,200,059 199.0 11,054 13,384 867.5 15 425909 2309 1,845 1,323,271 230.2 5,749 2,625,968 203.6 12,899 3,949,239 211.8 18,648

1996 3,057,231 303.7 10,068 3,540,674 2543 13956 21,847 993.0 22 488,810 2527 1,934 3,079,078 3052 10,090 4,038,483 2542 15890 7,117,561 274.0 25,980
1997 2,701,986 3323 8,132 4431947 2789 15802 29811 13550 22 560,375 289.7 1934 2731,797 3350 8,154 4092322 280.1 17,826 7,724,119 2973 25,980
1998 2,563,180 3150 8,138 4.516,523 2843 15886 20,660 1033.0 20 546,389 2822 1,936 2,583,849 3167 8158 5062912 2841 17,822 7,646,761 2943 25980
1999 2.815497 308.0 9,140 3,902,666 2622 14,884 17,432 13409 13 474,618 2443 1,943 2,832,929 3095 9,153 47377283 260.1 16827 7210212 277.5 25980
All 2000 2,878259 283.1 10,167 3,143,429 226.8 13,857 14378 553.0 26 416,447 2158 1,930 2,892,637 2838 10,193 3,559,877 2255 15,787 6452514 2484 25980
2001 2174988 248.0 §,770 3280715 215.1 15254 3,036 2169 14 352400 1815 1,942 2,178,024 2480 8784 3,633,115 2113 17,196 5,811,139 2237 25980
2002 2,367,011 2607 9,080 2,866,902 191.8 14944 7506 2502 30 359331 1866 1926 2374517 2606 9,110 3226232 1912 16870 5,600,749 2156 25980
Total 18,558,161 63,495 25,691,856 104,673 114,670 147 3,198.369 13,545 18,672,831 63,642 28,890,225 118218 47,563,056 181,860
Mean 2,651,166 292.3 9,071 3,670,265 2454 14,953 16381 780.1 21 456910 236.1 1,935 2,667,547 2934 9,092 4,127,175 244.3 16,888 6,794,722 2615 25,980

'
w
-

Table 9.4 Predicted mean annual counis of outpatients treated for malavia at all Kenyan govermment hospitals, health centres and dispensavies for the period 1996-2002.
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likely to be attributable to sampling variation caused by the scarcity of pairs of sample
points at these short spatial separations. The temporal variogram also showed no

evidence of temporal autocorrelation.

9.5.2.2 Assessing the effect of aggregation on the variance of prediction errors

Figure 9.4 shows a plot of the mean prediction error, u,, of each of the subsets created

by aggregating the sample error set & ((u,r),) over facilities, districts, provinces and

nationally and by month and year. Each value of g, is plotted against the size of the
aggregated set in question, n,. Mean errors are centred approximately on zero at all
aggregation sizes, but the variation around this central value displays a marked reduction
as n, increases. This plot provides a qualitative illustration of the effect of aggregating
predictions (over space and time) on the mean error of those aggregated sets, and the
variation that can be expected around that mean error. Figure 9.5 shows the results of the
next stage of analysis which provided a more quantitative description of this effect by
estimating the standard deviation of the mean errors of sets, o[u,], within a series of bins
representing different subsets of differing size. The empirically estimated values lie very
close to the line that marks the theoretical relationship shown in equation (9.4),
suggesting that this equation provides a useful model of the dependence of o[x,] on n, in

the current setting, despite possible deviations from assumptions of [ID.

9.5.2.3 Prediction error at each aggregation level

Comparison of data with predictions for the 6349 randomly selected MC data in the
validation set yielded mean prediction errors for hospitals, health centres, and
dispensaries of 58.2, -8.8, and -4.7 cases per facility-month, respectively. The true and
predicted sums of the entire national test set were 1,899,234 and 1,891,136, respectively,

representing an overall prediction error of -0.4% for the validation set.

The predictive accuracy of the model increased as predictions of MC totals were made
over larger aggregated space-time units. Table 9.5 shows the expected range (95%
confidence interval) of percentage errors for predictions of total MC (i.e. combined total

of data and predictions) at different levels of spatial and temporal aggregation. These
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Figure 9.4 Mean prediction error, pa, against size, na, for 5709 subsets taken from the sample error set. Points marked in
red are individual (unaggregated) prediction errors. A small number of sets exceeded the x-axis range of this plot
(maximum n;=1533) and thesc have been omitted to allow clearcr display of values with smaller n.. All omitted points

showed no visible departure from g, = 0.
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Figure 9.5 Empirical relationship between the size of subsets of the test data sct and the standard deviation of their mean
prediction crrors. Subsets of different sizes, n,, were created from the test set by aggregating across space (by district,
province, and nationally) and through time (by month and year) and the mean prediction error, yu,, of each subset was
calculated. These subscts wcre then placed in bins according to their size s, and the standard deviation of the mean errors
in each bin, ofu,), was calculated. The x-axis position of each point represents the mean subset size in that bin. The

theoretical relationship ou.]=c./ 7, is also shown (line).
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confidence intervals are not symmetric as they incorporate not only the expected
variance of the error, but any bias introduced by the expected mean error being non-
zero. If the bound of the confidence interval that is farthest from zero is considered, then
the results can be summarised by stating that 95% of errors for the prediction of total
MC at the district-month level were expected to be within 35.3% of the true value. The
equivalent error for predictions of annual totals at the provincial level was 12.2% and for

annual national totals it was -1.3%.

Range of expected errors

Month Year
District -32.72% t0 35.31% -15.71% to 21.25%
Province -15.78% to 20.36% -5.65% to 12.19%
National -3.73% to 2.98% -1.25% to 0.58%

Table 9.5 Expected percentage errors (95% confidence intervals) in predictions of total outpatients treated for malaria
over different levels of spatial and temporal aggregation. Errors were calculated from a validation exercise in which 6349
monthly records (10%) were removed from the data set and predicted using the remaining 90%.

9.6 Chapter Summary

This chapter has presented the implementation of Model 3 to predict MC at all missing
facility-months. This final implementation was carried out using an updated version of
the integrated NHSD-HMIS database which, although containing very few additional
data compared to the version presented in Chapter 3, incorporated a further 400
government health facilities, thus representing the most comprehensive inventory of
facilities that currently exists for Kenya. In order to validate the predictions of MC, an
empirical validation approach was developed and presented in this chapter. In this
approach, 10% of the available data were selected at random, temporarily removed, and
predicted using the remaining 90% of data to obtain a set of prediction errors. This set
was then used to infer the expected prediction errors of the main prediction exercise at
different levels of spatial and temporal aggregation, after establishing that the use of a

theoretical relationship was appropriate in the current setting.

After combining data and predictions together, the predicted mean annual total number
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of outpatients treated for malaria was 6.79 million cases. The validation exercise
suggested that there is a 95% chance that this prediction is accurate to within 1.3% of the
true value. The predictions presented in this chapter, and the associated validation
exercise address the primary aims of this project. The nature of these results and their

implications are discussed in detail in the next, and penultimate, chapter.
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10. Discussion

10.1 Introduction

The purpose of this penultimate chapter is to provide an overview of the progression of
ideas and techniques that resulted from this project, and to discuss the most significant
issues that have arisen. In the next section, the evolution, rationale and ultimate success
of the modelling strategy that incorporated TC data in models to predict MC are
discussed. This is followed by an appraisal of the techniques developed to quantify the
uncertainty of MC predictions. The output of the final model implementation is then
considered and these results and their associated uncertainty are examined in the context
of their utility to public health decision-makers. The wider applicability of the modelling
strategies developed in this project are then discussed. The chapter concludes by

considering possible avenues by which this work can be taken forward in future studies.

10.2 Use of TC in predicting MC

10.2.1 Overview of evolution of modelling strategy

A conceptual consideration of the factors that determine the MC variable (Chapter 5)
proposed that MC is driven by spatially-dependent factors, mostly related to
environmental heterogeneity, and spatially-independent factors, mostly related to
characteristics of individual health facilities and their catchment populations.
Geostatistical techniques are aimed at characterising and predicting spatial (and/or
temporal) variability in the variable of interest and where non-spatial variability exists it

inevitably introduces greater uncertainty in predictions of that variable. In response to
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this, two alternative strategies were conceived with the aim of accounting for some of

the non-spatial variability present in MC.

The first strategy was to investigate the feasibility of developing catchment models that
would allow the size of individual health facility catchment populations to be predicted
across Kenya. Such predictions could then be used as denominator values to standardise
the raw MC data. This strategy was pursued in two collaborative studies presented in
Chapter 6. The first study investigated the use of Thiessen polygons, one of the most
straightforward and widely-implemented approaches to developing catchment boundary
models. The principal assumptions of this approach, that all care-seekers utilise their
nearest facility, and that the rate of utilisation is even within each catchment, were found
to be inappropriate in four sampie districts. The second study implemented a Thiessen
polygon model in the same four districts and also constructed a series of more refined
models. A journey-time metric was developed that replaced straight-line distance as a
more realistic way of assessing care-seekers’ physical access to health facilities and data
from a household survey was used to model the way different facility types compete to
draw in patients from different distances. When the basic Thiessen polygon model was
adjusted to incorporate these refinements, the resulting catchment boundaries were
found to predict more accurately the patterns of facility choice made by individual
homesteads. Because the data required to develop the more refined catchment models
were not available for facilities across Kenya, the only feasible approach to estimating
catchment population sizes was to use Thiessen polygons. An important conclusion of
the two catchment modelling studies discussed above, however, was that such a model is
inappropriate in the Kenyan setting and likely to produce misleading predictions. As
such, directly predicted catchment populations remained unavailable for the purposes of
this project. To exemplify this point, when catchment population estimates were derived
using Thiessen polygon boundaries in conjunction with enumeration area-level
population data, and these estimates were used as denominators to the raw MC counts,
the spatial variograms of the resulting standardised variables displayed a complete

absence of spatial autocorrelation.
In light of the limitations of catchment models to provide denominator values, as

described above, a second strategy was developed. This was to use the TC data on total

outpatient diagnoses that accompanied the disease-specific MC values. The rationale for
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the use of TC was that these values were driven in broad terms by the size of each
facility and its utilisation by the population and, therefore, acted as a proxy measure of
catchment population size. As such, these values were likely to contain information that

might be used to assist in the prediction of MC.

10.2.2 Incorporation of TC in the modelling framework

The most straightforward way of incorporating TC values as a way of standardising MC
is to use them directly as a denominator, thus defining the variable called MP in this
project. When the spatial variogram was estimated using all available MC data, and
compared to the corresponding variogram for MP, the difference was dramatic. Whilst
the former indicated zero spatial autocorrelation, the latter indicated considerable spatial
continuity. These variograms suggested that the use of TC as a denominator did result in
an effective standardisation of the raw MC data and accounted for much of its non-
spatial variability, allowing the inherent spatial structure in MC to be revealed.
However, when the raw MC data were split up according to facility type, the MC
variogram also indicated considerable spatial structure. This was an important result that
suggested that much of the non-spatial variation in MC is caused by differences between
the three facility types and that, when these are considered separately, there is a degree
of within-class consistency in factors such as catchment size and utilisation. This simple
approach also negated some of the benefit of using the standardised MP variable, since
spatial MC variograms for each facility type indicated only marginally less spatial

continuity than those for MP.

If TC data were available at all facility-months, then the standardised MP variable could
be predicted at all locations with missing MC values and back-transformed to the desired
MC predictions using these TC data. Crucially, however, TC data were co-located with
MC such that the respective patterns of data presence or absence corresponded exactly.
Where MC data were missing, therefore, no TC data were available to perform this
back-transform. This presented a potential road-block but a possible solution was to
predict TC values at these locations using STOK in the same way that MC values were
predicted. Examination of the variograms for TC indicated that, when data were
separated by facility type, the variable displayed a degree of both spatial and temporal

structure and this allowed prediction of the missing TC values which could then be used
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for the back-transforms. This approach (Model 2) was compared to the simple use of
raw MC values (Model 1) in Chapter 8. The respective characteristics of the MC and
MP variograms of the full data set were manifest in the model outputs, with Model 2
able to predict MC with much greater accuracy than Model 1. When facilities were
considered separately, however, the differences in accuracy between Model 1 and Model
2 were negligible with Model 1 predicting more accurately for some facility types. The
failure of Model 2 to provide significantly more accurate predictions of MC than Model
1 can be explained by two factors. The first factor was the unexpected degree of spatial
structure that was revealed in MC by simply considering each facility type
independently, which acted to standardise MC values almost as effectively as dividing
them by TC. The second was the need, in Model 2, to predict TC at unsampled locations
which inevitably introduced further uncertainty in the uitimate back-transformed

predictions of MC,

The third modelling framework, Model 3, was developed as a way of reducing the
uncertainty introduced by the need to predict TC. By averaging all predictions of TC,
along with the available TC data, over the 84 monthly values at each location, a single
facility-specific denominator was obtained (MMTC) that was more robust to both
monthly fluctuations in the true value of TC and to error in the TC predictions. When
this denominator was used to standardise MC, variograms of the resulting standardised
variable (SMC) indicated a greater degree of spatial continuity than both MC and MP.
Predictions of MC made using this model were the most accurate of the three
approaches tested and this model was therefore used in the final implementation. The
increases in accuracy offered by Model 3, however, were not substantial when compared
to the simple approach of Model 1. Whilst the enhanced spatial structure indicated by
the SMC variogram confirms that TC data contain information of use in predicting MC,
the benefit of using this standardised variable is, again, largely negated by the
uncertainty introduced by having to predict TC. Whilst Model 3 did offer a partial
solution to this problem compared to Model 2, it remains a substantial limitation in both

approaches.
An important conclusion from this work is that the strategy of standardising MC to

account for facility-specific, non-spatial, sources of variation before predicting missing

MC values is the correct one, and this is illustrated by the substantially greater spatial
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continuity indicated in the SMC variograms. Furthermore, TC data contain useful
information that can be used in this standardisation. The absence of these data at the
locations where MC predictions are required, however, presents a major limitation to
their use in this context, and this limitation has been only partially overcome in this
project. Model 3 can be thought of more generally as a generic approach to predicting
MC that can be built upon and enhanced as external sources of data become available for
predicting facility-specific denominators. Detailed data from each facility on factors
such as its size, staffing levels, and services offered may assist in predicting these
values, as may data on catchment population access and behaviour and such data are
currently being assembled for Kenya by the KEMRI-University of Oxford-Wellcome

Trust Collaborative Programme team.

10.3 Assessing prediction uncertainty

In Chapter 8, the development of an uncertainty model was described that used a space-
time adaptation of sequential Gaussian simulation in a framework that simulated the
uncertainty associated with predictions of MC made using Model 3. Evaluation of this
uncertainty model suggested that it provided accurate measures of the uncertainty in
predictions of both individual MC values and sets of values aggregated over space-time
regions. This model stands as a useful accompaniment to the proposed prediction
framework. The principal downside of this model, however, is its conceptual and
implementational complexity. The large number of processing steps involved mean that
the model must be implemented with care and numerous modelling decisions have to be
made by the user. Furthermore, the use of simulation algorithms on a large space-time
data set is extremely computationally demanding and the resources used to implement
these algorithms in this project (a high-performance Beowulf cluster of several hundred
parallel processors) are not available in most settings. The conceptual complexity does
not limit the usefulness of the model per se, although it may reduce its appeal to
potential end-users such as public health decision-makers who may be less willing to put
faith in uncertainty measures when the underlying model is not easily understood.
Concerns of this type were raised by practitioners in Nairobi and, whilst strictly
unjustified from a theoretical standpoint, this project is concerned with a real-world

issue and the perception of end-users is a factor that cannot be ignored.
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[n response to the factors stated above, an alternative approach to assessing prediction
uncertainty was developed for the final implementation of Model 3 in Chapter 9. The
uncertainty model presented in Chapter 8 extended the model-based approach used to
predict MC to the assessment of prediction uncertainty based on inferred characteristics
of the RF model. As such, uncertainty estimates in this model took into account the
spatiotemporal configuration of data and prediction locations and the likely strength of
relationships between these locations. In contrast to this model-based approach, the
method proposed in Chapter 9 used an empirical approach that relied on summary
statistics derived from a sample of known prediction errors to infer characteristics of the
unknown errors at all prediction locations. A simple model was used to determine how
the uncertainty associated with aggregated sets of predictions changed as these sets
became larger. Although conceptually much more simple than the model-based
simulation model, this approach was nevertheless likely to have provided reasonable
measures of prediction uncertainty at different levels of spatial and temporal
aggregation. Furthermore, this was achieved using an approach that was simple,
straightforward and quick to implement, and that may be conceptually more transparent

to potential end-users.

10.4 The modelling output in context

Predictions of variables derived from HMIS outpatient data in a low-income country are
likely to have a large inherent uncertainty associated with them and this is reflected in
this study in both the variograms and model outputs. At the level of individual facility-
months, predictions with the accuracies presented in Table 8.1 are likely to be of only
limited use to health system decision-makers (MAE was 26.8%, 27.6%, and 22.9% of
the mean MC value for hospitals, health centres and dispensaries, respectively).
Strategic decision-making is rarely made at this level, however, and the accuracy of
aggregated predictions of MC at monthly and annual district, provincial, and national
levels are of greater importance. Predictions of mean MC at these levels entail the
averaging or summation of many individual predictions (along with existing data) across
space-time regions. The results of the empirical validation exercise described in the
previous section suggested that the accuracy of predictions of total MC over different

space-time units would increase as more individual MC predictions were aggregated. As
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such, predictions of total MC for a given district and month could be expected to be
within 35.3% of the true value, whilst the equivalent provincial and national values were
20.4% and 3.7%, respectively. Predictions of the national anmual total could be expected
to be within 1.3% of the true value. Such an effect is expected as individual predictions
are aggregated. The mean error is expected to remain small (since kriging is designed to
produce unbiased predictions, with a zero expected mean error), whilst the variance of

this error decreases, allowing more precise predictions of aggregated values.

It is understood that no equivalent exercises have been undertaken to systematically
evaluate the malaria treatment burden in the government sector in Kenya and so the
predictions made in this project stand as probably the most reliable source of
information for related decision-making at district, provincial, and national levels. The
accompanying measures of uncertainty further enhance the utility of these predictions,
allowing decision-makers to identify realistic ranges of possible values. The prediction
of a mean national annual total of 6.8 million cases during the study period with an
expected margin of error of 1.3% represents a tangible difference to the rudimentary
approach of multiplying nationally available data by a proportion of under-reporting

which would result in a crude estimate of 7.6 million cases.

In the current setting, it is difficult to quantify the levels of accuracy required by public
health decision-makers to allow effective evidence-based decision-making. A valid
question is whether a more rudimentary approach to predicting treatment burden would
be sufficient for effective public health decision making. It is argued here, however, that
the difference between national predictions of 6.8 million cases and 7.6 million cases is
likely to be a substantial one in the context of national-level policy and management
decisions. Furthermore, as predictions are made at progressively finer levels of spatial
and temporal aggregation, the relative disparities between rudimentary and sophisticated
methods of estimation are likely to increase. Even if a rudimentary method resulted in
similar predictions to the approach presented in this project, there are at least two further
arguments for using the more sophisticated approach. Firstly, the approach presented
here provides a realistic measure of the uncertainty in the final predictions, which is an
essential accompaniment to any prediction, allowing decision-makers a tangible
yardstick of prediction reliability. Secondly, the process of developing and testing a

more sophisticated approach adds credence to the resulting predictions. This may be
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important when, for example, these predictions are used in the procurement of national
drug supplies through international donor agencies since any predictions must be based

on reliable methods.

It is important to note that the various measures of uncertainty presented in this project
refer only to prediction uncertainty. Sources of uncertainty that are inherent in the data
themselves have not been considered. Factors such as the incorrect filling out of
reporting forms, or subsequent errors in data transmission and entry into the HMIS
database introduce uncertainty into the data which will be transferred to the predicted
MC totals but not included in the estimates of prediction error. Such sources of
uncertainty can only be quantified reliably by obtaining ‘gold-standard’ data from a

sample of facilities and comparing this to the corresponding routine HMIS data.

10.4.1 What variable has been quantified?

Having presented quantifications of MC totals across Kenya, it is important to reassess
what such totals actually represent. Of crucial importance is the distinction between MC
and the burden of malaria in the population. Because only a small proportion of
incidences of malaria result in a visit to a formal health service provider, as discussed in
Chapter 5, the pattern of malaria seen at health facilities is only loosely connected to that
in the population as a whole and the results of this project should not be used to evaluate
the latter. Furthermore, MC totals do not even represent the true number of incidences of
malaria that are seen at health facilities due to the misdiagnosis of malaria and other
conditions. Because of these factors, MC must be interpreted as quantifying the number
of diagnoses that have been made for malaria and, importantly, the number of malaria
treatments that have been administered. Despite the disparities between MC and the true
pattern of population and outpatient malaria morbidity, the variable remains critical for
health-service planning because it determines the level of resources required to treat

patients under this diagnosis.
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10.5 Wider applicability

Whilst the primary aim of this project was the quantification of the treatment burden for
malaria in government facilities in Kenya, the value of the approaches presented in this
thesis can extend to other settings. It is likely that the treatment burden for other diseases
can be predicted in a similar way, although the accuracy of such predictions will be
influenced by the degree of spatial dependence related to the disease in question. Whilst
many diseases are environmentally constrained in a similar way to malaria, others are

not and geostatistical approaches may be less appropriate in these cases.

In principle, the techniques developed in this project could be applied in other countries
where HMIS data are incomplete. A fundamental requirement, however, is that a
comprehensive list of health facilities is available and that these facilities are
georeferenced. This was made possible for this project by the work of the KEMRI-
University of Oxford-Wellcome Trust Collaborative Programme team and the
construction of the NHSD resource. Rather than a limitation to wider application of the
approach outside Kenya, however, it is argued here that knowing where service
providers are located is a must for any health planning agency and that health service

GIS-frameworks such as the NHSD should be developed everywhere.

In general terms, this project represents, to the best knowledge of the author and all
involved, the first attempt to tackle the problem of missing HMIS data by predicting
individual missing records through the exploitation of space-time structure as opposed to
the crude adjustment of aggregated totals based on the proportion of missing data. As
such, the approach developed in this project stands as a useful tool that can be applied to

HMIS settings to obtain more reliable information for public health decision-making.

10.6 Future work

The model development and results presented in this study raise several important

questions that require attention and can form the basis of further studies.
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10.6.1 Incorporation of information from covariates

A source of potentially useful data for the prediction of MC exists in the form of
environmental covariates provided by remote sensing satellites and other sources.
Remotely sensed covariates such as land-surface-temperature, cold-cloud-duration
(Tucker and Sear, 2001) (used as an indicator of rainfall in the tropics) and the
normalised difference vegetation index (Justice et al., 1985) (a function of soil moisture
availability) are known to be related to malaria distribution (Hay et al., 1996, 1997,
1998a, 1998b; Thomson et al., 1996, 1997; Snow et al., 1998; Craig et al., 1999; Hay
and Lennon, 1999; Hay, 2000; Omumbo et al., 2002, 2005; Rogers et al., 2002), either
synchronously or with a time-lag. If such data are obtained at appropriate spatial and
temporal resolutions, then such data can be assimilated into the framework for predicting
MC. Several geostatistical techniques are available to assimilate these data into the
predictions, including STK with an external drift (STKED) (Goovaerts, 1997; Lloyd,
2002). STKED utilises the local regression relation between the property of interest and
the covariates to estimate a local trend surface, such that STK can proceed on the

residuals.

10.6.2 Updating predictions using sentinel facilities

This project has focused on HMIS data for the years 1996 — 2002. For the duration of
this project, more recent data from the HMIS were not available. A delay is inevitable
between patients being diagnosed and treated at outpatient departments, and the data
being recorded, transferred and ultimately entered into the national HMIS database. The
total delay between diagnosis and acquisition of useable data is currently approximately
two years. Therefore, although the approach developed in this project allows a complete
HMIS record to be reconstructed for the period under study, this record will inevitably
lag behind the current situation by at least two years. As such, critical information on
current and future malaria treatment burdens, that would be of greatest use to public

health planners, is missing.
Extension of the prediction framework to the present day will require the addition of

supplemental data. Of particular interest is the addition of data from a few sentinel

facilities. These are facilities where projects have been initiated to ensure data collection
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and collation is both rapid and of a high quality. Such sentinel facilities exist across
Kenya and an important research question is: what advantage would be gained by
supplementing the HMIS data with more timely data from sentinel sites for which up-to-

date information of trusted quality could be received in near real-time?

To incorporate information from these sentinels, the modelling framework could be
modified to include a temporal trend component that is fitted to sentinel data that span
across all available years, including up to the present day, to capture inter-annual
variation. Each sentinel facility would be fitted with a temporal trend model most likely
involving a two-parameter linear trend component and four-parameter double periodic
component (to represent the first and second seasons of malaria - with the two amplitude

and two phase parameters adjusted locally spatially).

The temporal trends estimated for each sentinel facility could then be used to interpolate
the six temporal trend parameters across all facilities. Various approaches could be
implemented and compared to achieve this. Firstly, a spatial trend surface could be fitted
to each of the (six) parameters of the temporal trend. This spatial trend could be fitted at
the same time as the per-sentinel temporal trends. The number of spatial polynomial
coefficients would need to be chosen carefully such as to represent the spatial variation
adequately. It would be possible to fit the spatial trend as an integral part of the temporal
trend fitting procedure at each sentinel. A second approach would be to predict the
temporal trend parameters for non-sentinel facilities using OK. Once the temporal trend
parameters had been estimated at each facility, it would then be possible to predict MC
values up to the present day using a geostatistical approach such as STK with a trend

(STKT) (Journel and Rossi, 1989; Lloyd and Atkinson, 2002).

If the above procedure could be implemented successfully then an intuitive extension
would be to attempt to predict treatment burdens into the future. Temporal forecasting is
generally hazardous and the estimation of valid confidence intervals, while crucial to the
sensible use of forecasts, can be extremely difficult. Nevertheless, the utility of forecasts
for public health planning needs far exceeds that of any historical data. The potential
accuracy of forecasts could be evaluated by artificially removing the last year of known

data and attempting to predict these values with data from the preceding years.
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Conclusions

206



Chapter 11

11. Conclusions

Public health decision-makers require accurate and timely information on disease-
specific treatment burdens within a health system to allow the monitoring and planning
of resource needs. A basic requirement is reliable national and sub-national data
detailing the number of treatment events for a given disease or condition occurring at
health facilities each month or year. In most African settings, this requirement is
addressed with an HMIS that coordinates the routine acquisition of treatment records
from health facilities and the transfer, compilation and analysis of these data through

district, regional and national levels.

A perfect HMIS requires all health facilities to report promptly in all months, allowing a
comprehensive quantification of treatment events through time and space across the
health system. The reality of HMIS in Africa and elsewhere stands in marked contrast to
this ideal. Typically, many facilities never report or report only intermittently resulting
in spatially and temporally incomplete national data. Following several decades of donor
investment in HMIS across Africa the incomplete nature of routine national reporting

has shown little improvement.

Faced with poor data coverage, national treatment burdens are often estimated using
rudimentary methods to account for missing values. The aim of this project was to
develop a statistical approach to provide more reliable estimates of national outpatient
treatment burdens. This project has focused on the Kenyan HMIS and has used the
example of presumed malaria cases seen at government outpatient facilities around the

country, a variable important to health-system planners.
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Probabilistic models have been developed in this project to predict MC, the monthly
number of malaria cases diagnosed at each facility where HMIS records were missing.
These predictions were required at locations distributed in space and time and the
modelling task was therefore framed as a space-time problem and addressed within the
conceptual framework provided by geostatistics. Such an approach relies on the
presence of autocorrelation in the variable of interest. This study found that raw HMIS
data on malaria diagnoses can display substantial spatial autocorrelation when data from
different facility types are considered independently. This justifies the use of spatial
prediction techniques such as OK. This study also found, however, that these data
display temporal autocorrelation, and that exploiting continuity in both the spatial and
temporal domain using STOK results in considerably more accurate predictions.
Furthermore, the heterogeneity of spatial patterns of malaria across Kenya suggests that
assumptions of second-order stationarity of the RF model used in these predictions may
be sub-optimal. An approach was developed that allowed space-time variograms to be
estimated locally in order to more accurately represent second-order heterogeneities and
this approach was found to result in marginally more accurate predictions, although its

implementation was computationally demanding.

The number of outpatients diagnosed with malaria each month at a given health facility
is a complex variable driven by a wide range of factors. A simple conceptual model was
proposed that divides these factors into spatially-dependent determinants, principally
caused by the heterogeneity of environmental conditions, and spatially-independent
determinants, principally caused by factors specific to each facility and catchment
population. Accounting for these non-spatial effects by standardising the MC variable by
measures of these facility-specific factors can enhance the spatial continuity of the MC
variable. Attempts to derive such measures directly using catchment population models
highlighted the importance of using refined models that required detailed nationwide
data. Because such data were unavailable, a different approach was devised that used TC
data on the total monthly number of outpatients diagnosed for all conditions at each
facility as a proxy measure of facility catchment size. By developing and testing two
alternative prediction frameworks, this study showed that the use of TC data as a
denominator to standardise MC data can account for much of the non-spatial variation
present in MC. However, because TC values were unavailable at MC prediction

locations, these values themselves required prediction and this introduced substantial
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uncertainty into the resulting predictions of MC, negating much of the benefit of using a

standardised numerator.

Two approaches were developed for providing measures of the uncertainty associated
with predictions of MC at different levels of spatial and temporal aggregation. The first
was a model-based geostatistical approach that involved a space-time adaptation of
sequential Gaussian simulation. Evaluation of this uncertainty model found that it
provided accurate measures of local and regional uncertainty. Because the model was
complex and required intricate implementation, an alternative approach was also
developed that could be more widely understood and implemented. This second
approach used an internal validation procedure to obtain a sample of known prediction

errors, and used these to infer the expected errors associated with the real predictions.

The predictive framework presented in this project allowed the incomplete Kenyan
national HMIS database on outpatient malaria to be reconstructed and national treatment
burdens to be estimated. The resulting estimate of the national annual treatment burdens
for presumed outpatient malaria within the government sector was 6.8 million cases,
with an expected margin of error of 1.3%. This figure is substantially different to the
equivalent value of 7.6 million cases derived using rudimentary methods to account for
the proportion of missing records. As such, this project has used geostatistics to provide

results that are of direct use to public health decision-makers in Kenya.

Whilst the underlying problem of inadequate national health reporting systems can only
be fully remedied by substantial and sustained investment in the infrastructure of these
systems, the findings of this study and the predictive tools developed represent an
important contribution that can be used to improve the reliability of information from

HMIS and to enhance their utility as an evidence-base.
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