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Reliable and timely infoDnation on c45ease-~pecific treatment burdens within a health system is 
.- ,!; ... ~\. lr',... • 

critical for the planning and monitol'i,hg ofiserYjiCe provision. Health Management InfoDnation 
. <y <' 

Systems (HMIS) exist to address this need at national scales across Africa but are failing to 

deliver adequate data due to widespread under-reporting by health facilities. Faced with this 

inadequacy, vital public health decisions often rely on crudely adjusted regional and national 

estimates of treatment burdens. This study has taken the example of presumed malaria in 

outpatients within the largely incomplete Kenyan HMIS database and has developed geostatistical 

modelling frameworks for the prediction of the monthly tally of treatments for malaria (MC) at all 

facilities and months where this value is missing. Three different kriging methodologies were 

compared to test the effect on prediction accuracy of (a) the extension of a spatial-only to a space­

time prediction approach, and (b) the replacement of a globally-stationary with a locally-varying 

random function model. Space-time kriging was found to produce predictions with 98.4% less 

mean bias and 14.8% smaller mean imprecision than conventional spatial-only kriging. A 

modification of space-time kriging that allowed space-time variograms to be recalculated for 

every prediction location within a spatially-local neighbourhood resulted in a larger decrease in 

mean imprecision over ordinary kriging (18.3%) although mean bias was reduced less (87.5%). 

Because the MC variable included non-spatial variation caused by differences between individual 

facilities and their catchment populations, a series of studies were conducted to model catchment 

population size. These predictions require refined models that incorporated rich local data that 

were not available at the national level so directly estimated catchment population values were not 

available. An alternative approach was developed that incorporated data on the total number of 

outpatients seen at facilities each month as a proxy measure of catchment size. Two modelling 

frameworks were developed to implement this approach and the most accurate model was 

identified in a cross-validation exercise. A model-based and an empirical method were developed 

to measure the uncertainty of predictions ofMC and how this changed as sets of predictions were 

aggregated in space and time. The final set of predictions enabled the national treatment burden 

for presumed malaria in the government health sector to be defined during the 1996-2002 period. 

During this time, the national annual treatment burden was predicted as 6.8 million cases, with an 

expected margin of enol' of 1.3%. The modelling framework presented here provides for the first 

time reliable intoDnation from imperfect HMIS data to support evidence-based decision making 

at national and sub-national levels. 
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Chapter 1 

1. Introduction 

1.1 Project motivation 

The United Nations Millennium Development Goals (MDGs) reflect the principal 

development challenges facing the international community (UN, 2000). The eight 

goals, agreed by ]47 member states of the United Nations in 2000, consist of 18 specific 

targets to be met by 2015, and arc accompanied by 48 quantifiable indicators. Three of 

the eight goals relate explicitly to the most prominent public health issues faced by low­

income countries: the reduction of child mortality; the improvement of maternal health; 

and the combating of HIV/ AIDS, malaria, tuberculosis, and other diseases. 

Underpinning all efforts to meet these public health challenges is the need to strengthen 

health care systems in low-income nations (WHO, 2000a). With this renewed focus on 

health system functionality has come growing recognition of the fundamental 

importance of health information to form an evidence base for decisions about health 

system organization, financing, management, and delivery (Murray et al., 2004; 

AbouZahr and Boerma, 2005; Macfarlane, 2005; World Economic Forum, 2006). 

Reliable and timely information on physical, human and financial health system 

resources, the type, quality and coverage of health services offered to the population in 

need, and the impact of those services on population health is essential for the effective 

planning of service provision, the implementation of targeted public health programmes, 

the allocation of resources, the monitoring of intervention strategies, and the evaluation 

of policies and programmes (Murray et al., 2003, 2004). 
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Although large quantities of health data are collected worldwide through population­

based surveys, surveillance programmes, vital registration systems, and routine health 

system records, data in low and middle-income countries remain incomplete, 

inconsistent and inadequate to meet the challenges set by the MDGs. A basic 

information requirement for the planning and delivery of drugs, staff and other 

commodities within a national health system is accurate and up-to-date data on the 

number of patients utilising different health facilities and the types of illness for which 

they are treated. Such information requirements are addressed in most countries by some 

form of national Health Management Information System (HMIS) that, among many 

other functions, coordinates the routine acquisition of treatment records from health 

facilities and the transfer, compilation and analysis of these data through district, 

regional and national levels. 

A perfect HMIS reqUIres all health facilities to report promptly at regular intervals, 

allowing comprehensive quantification of treatment events through time and space 

across the health system. The reality of HMIS in Africa and elsewhere stands in marked 

contrast to this ideal (WHO/SEARO, 2003; WHO/AFRO, 2003; Setel et aI., 2005; 

WHO, 2005a; Health Metrics Network, 2005a). Typically, many facilities never report 

or report only intermittently resulting in spatially and temporally incomplete national 

data (AI Laham et a!., 2001; MoH Kenya, 2001a; Rudan et aI., 2005; Health Metrics 

Network, 2005b). Following several decades of donor investment in HMIS across Africa 

the incomplete nature of routine national reporting has shown little improvement (Evans 

and Stansfield, 2003; AbouZahr and Boerma, 2005). The widespread inadequacy of 

national HMIS data sets presents a substantial obstacle to evidence-based public health 

decision-making (Snow et a!., 2003a). Faced with poor data coverage, important public 

health metrics are often estimated using rudimentary methods to account for missing 

values (WHO, 1995; Kindermans, 2002; Derriennic, 2003). 

The Kenyan HMIS is typical of many in Africa, with widespread under-reporting by 

health facilities and a largely incomplete national database (MoH Kenya, 2001a). A 

particularly important health system metric in Kenya, as elsewhere in sub-Saharan 

Africa, is the treatment burden for malaria, defined here as the total number of malaria 

diagnoses that are made at Government of Kenya (GoK) health facilities in a given 

month or year. Malaria is the most common diagnosis in outpatients across Kenya (MoH 
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Kenya, 2001a) and the treatment protocol for this disease is undergoing a period of 

transition in Kenya due to the decreasing efficacy of existing drugs and the introduction 

of new, more expensive ones (Kindermans, 2002; WHO, 2005b; MoH Kenya, 2005c). 

The procurement of these new drugs rcquires accurate quantification of the number of 

treatments that are required (WHO, 2006). Such quantification is also required if donor 

assistance is to be obtained from new investment mechanisms such as the Global Fund 

to Fight AIDS, Tuberculosis, and Malaria (Murray et al., 2003; Ashraf, 2005; GFATM, 

2005). 

This project addresses the problem of producing reliable estimates of the treatment 

burden for malaria in the Kenyan government's formal health sector using incomplete 

data from the national HMIS database. 

1.2 Project aims and approach 

1.2.1 Project aims and objectives 

The overall aim of this project is to provide reliable national and sub-national estimates 

of the annual outpatient treatment burden for malaria at health facilities in the formal 

government health sector in Kenya. This overall aim will be achieved by meeting the 

following specific objectives: 

(1) to develop models by which missing values in the Kenyan HMIS outpatient malaria 

record can be predicted (along with estimates of prediction accuracy) to produce a 

spatiotemporally complete database; 

(2) to evaluate these models and identify the best-performing approach in terms of 

prediction accuracy; and 

(3) to implement this best-performing approach to estimate monthly and annual 

outpatient treatment burdens for malaria at the national, provincial, and district levels 

with accompanying uncertainty estimates. 
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1.2.2 Project approach 

Whilst the Kenyan HMIS is characteristic of others in Africa in terms of the incomplete 

status of the national database, it is distinct in that the vast majority of health facilities 

have been recently georeferenced (Noor et al., 2004, Noor 2005). This process involves 

the identification and recording of latitude and longitude co-ordinates for each facility, 

allowing the construction of a spatial database. This referencing means that data 

(monthly facility records) and unknown values (where facilities have failed to report in a 

given month) can be placed in a spatial framework, and the task of predicting the 

unknown values can be considered a spatial modelling problem (Cressie, 1993; Bailey 

and Gatrell, 1995). 

Geostatistics is a field of spatial modelling that incorporates established tools such as 

kriging for the prediction of unknown values in space from spatially distributed data 

(Mather on, 1971; Journel and Huijbregts, 1978; Isaaks and Srivastava, 1989; Goovaerts, 

1997). Although geostatistics incorporates a wide array of tried-and-tested spatial 

modelling techniques it is more than simply a 'tool-box' of algorithms to accomplish 

specific tasks with spatial data. Geostatistics is founded on the theory of regionalized 

variables (Matheron, 1971), a conceptual probabilistic modelling paradigm that centres 

on the charactcrisation and exploitation of spatial autocorrelation in the variable of 

interest. The robust yet flexible nature of the geostatistical paradigm has led to its 

extension, beyond its original set of core tools, to new approaches that are adapted to 

suit a wide range of data scenarios and modelling objectives. 

This project has adopted a primarily geostatistical approach to the objectives defined 

above. The strategy throughout has been to extend the application of established 

geostatistical techniques to other approaches that may be better suited to the 

characteristics of the HMIS data set and to compare quantitatively the predictive 

performance of different techniques. The HMIS database consists of monthly records 

collected at a set of spatially distributed facilities over several years. As such, an 

alternative to representing these data as a series of independent spatial data sets is to 

place all data in a single space-time fi"amework. A particular focus of this project has 

been the use of space-time geostatistical approaches that can utilise simultaneously 

spatial and temporal autocorrelation in the property of interest in order to predict 
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unknown values distributed across space and through time. A further focus has been the 

local characterisation of spatial autocorrelation structures, taking advantage of the large 

number of data distributed across space with the aim of more aceurately charaeterising 

the spatial heterogeneity displayed by the HMIS data. 

A central theme of this project has been the issue of spatial standardisation. The HMIS 

data represent monthly counts of malaria diagnoses at each facility. When count data 

such as these are used in public health modelling settings, the raw data are usually 

standardised by some measure of the popUlation from which that count was generated 

(Lawson, 200 I). In the current case, each count is influenced by a range of factors 

specific to each facility such as its size, function, and catchment population, and 

accounting for these factors may reveal greater spatial structure in the property of 

interest which may, in turn, allow missing values to be predicted with greater accuracy. 

Because very little facility-specific information is available across Kenya, a key concern 

of this project has been to develop novel strategies that allow a degree of spatial 

standardisation between count data at different facilities. Again, the effect of these 

different strategies on the ultimate aceuracy of predictions of missing values was 

evaluated. 

1.3 Contributions made by the project 

This project has resulted in, for the first time, reliable estimates of the annual outpatient 

treatment burden for malaria at health facilities in the formal government health seetor in 

Kenya at the national, provincial and district levels. These estimates represent a tangible 

resource to assist evidence-based decision-making for the provision of anti-malarial 

resources in this under-funded health service. In meeting this primary objective, a series 

of further contributions have been made by this project and these are summarised below. 

HMIS outpatient data on disease-specific counts are generally collected each month 

from a set of spatially-distributed health facilities, resulting in a space-time data set. This 

study has shown that such data may display spatial autocorrelation even before any 

standardisation to account for facility-specific factors and that, where present, this 

spatial structure can be exploited using established geostatistical techniques to predict 
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missing values. Furthermore, this study has shown that these data may display 

substantial temporal, as well as spatial, autocorrelation. By comparing spatial-only and 

space-time models for geostatistieal prediction, this study has shown that, for the case of 

Kenya, the space-time approach, by exploiting temporal as well as spatial 

autocorrelation in the data, is able to predict missing values with greater accuracy than 

the spatial-only approach. 

The spatial structure of disease-specific HMIS data is determined, in part, by the spatial 

pattern of the disease in the population across a country which can often display 

substantial spatial heterogeneity in both first and second order characteristics, driven by 

climatic, topographic and demographic factors. Where such spatial characteristics are 

present, the adoption of a globally-stationary random function (RF) model for 

geostatistical prediction may be less appropriate than one in which only smaller sub­

regions are considered stationary. This study has developed a local approach to space­

time geostatistical prediction which enables space-time autocorrelation structures to be 

estimated and modelled within a spatially-local neighbourhood around each prediction. 

By comparing the global and local space-time models this study has shown that, for the 

case of Kenya, the local approach is able to predict missing values with greater accuracy 

than the global approach. However, this increase in accuracy was modest and came at a 

substantial price in terms oflabour and computational resources. 

Public health data in the form of counts are usually standardised by some measure of the 

population from which the counts were generated. For HMIS data the appropriate 

denominator is the catchment population of each facility, but such information is not 

available for facilities across Kenya. One response is to estimate catchment populations 

from census-derived population maps within a GIS. A simple and widely-used 

catchment model can be generated by defining Thiessen polygons around each facility. 

As part of a wider project (led by Abdisalan Noor at the Kenya Medical Research 

Institute (KEMRI)-University of Oxford-Wellcome Trust Collaborative Programme) to 

develop catchment models for Kenyan health facilities, this study has developed 

methods for assessing the assumptions that underpin the use of Thiessen polygons in this 

context and has shown that, for a set of test facilities in four Kenyan districts, these 

assumptions are invalid. 
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In the absence of facility catchment population estimates, an alternative approach to the 

standardisation of HMIS count data was developed in this study. Data on the total count 

of all-cause outpatient cases (i.e. not limited to anyone disease) at each facility were 

used to define denominators with which to standardise the disease-specific count data, 

with the rationale that the total outpatient count acts as a proxy measure of facility 

catchment populations. In the Kenyan HMIS, however, the use of data on the total count 

as a denominator was limited by the fact that these values were only available for the 

same points as the disease-specific count data, meaning that the denominator itself had 

to be predicted for unsampled locations. By developing and testing an alternative 

prediction framework that incorporated total count data in this way, this study showed 

that this approach can substantially increase the spatial autocorrelation in the resulting 

standardised count data, which can then be predicted using geostatistical techniques with 

a greater accuracy than the raw count data. However, this study also showed that the 

uncertainty introduced by the need to predict the denominator at unsampled locations 

can negate much of the benefit of using a standardised numerator, and a second 

predictive framework was developed in which this uncertainty was reduced. 

By developing and testing a senes of geostatistical modelling frameworks that 

incorporate spatial and space-time techniques, globally-stationary and locally-stationary 

models, and alternative ways of standardising HMIS count data, this study has been able 

to compare quantitatively the effect of each modelling strategy and identify that 

framework that is most suitable for predicting missing malaria outpatient data in the 

Kenyan HMIS. A stochastic simulation approach was developed and tested that adapted 

a sequential Gaussian simulation algorithm in order to generate a model of the 

uncertainty associated with predictions made within the final modelling framework. 

In summary, this study has developed and tested geostatistical models that can predict 

missing values within the Kenyan HMIS data base to an acceptable level of accuracy, 

with realistic accompanying measures of prediction uncertainty. This study, therefore, 

serves as an example to other public health practitioners faced with the task of delivering 

reliable metrics from imperfect HMIS data. The usc of such techniques was made 

possible in Kenya by the existence of a comprehensive georeferenced database of 

government health facilities. As such, this project also serves as an example of the 

importance and potential benefit of developing nationwide health service GIS 
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frameworks to health planning agencies across the developing world. 

1.3.1 Publications 

The research canied out for this project has resulted (in part or in full) in the following 

publications (or submissions) and conference presentations. 

Peer-reviewed journal papers 

Gething, P.W., Noor, AM., Zurovac, D., Atkinson, P.M., Hay, S.1., Nixon, M.S., and 

Snow, R.W., 2004. Empirical modelling of government health service use by children 

with fevers in Kenya. Acta Tropica, 91, 227-237. 

Gething, P.W., Noor, AM., Gikandi, P.W., Ogara, E., Hay, S.L, Nixon, M.S., Snow, 

R.W., and Atkinson, P.M., 2006. Improving data from imperfect health management 

information systems in Africa using space-time geostatistics. PLoS Medicine, 3. 

Gething, P.W., Noor, AM., Gikandi, P.W., Hay, S.I., Nixon, M.S., Snow, RW., and 

Atkinson, P.M., 2006. Developing geostatistical space-time models to predict malaria 

outpatient treatment burdens in Kenya. Submitted to Geographical Analysis, under 

reVIew. 

Gething, P.W., Atkinson, P.M., Noor, AM., Gikandi, P.W., Hay, S.1., and Nixon, M.S., 

2006. A local space-time kriging approach applied to a national outpatient malaria data 

set. Computers & Geosciences, under review. 

NoOf, AM., Amin, AA, Gething, P.W., Atkinson, P.M., Hay, S.L, and Snow, R.W., 

2006. Modelling distances travelled to government health services in Kenya. Tropical 

Medicine and International Health, 11, 188-196. 
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Conference presentations 

Empirical modelling of Kenyan health facility catchments as an aid to predicting malaria 

risk. Epidemiology: a spatial perspective 2003, Salford, UK, 2003. 

Optimising the utility of national malaria data for health system planning in Kenya using 

spatiotemporal analysis. Geostats UK 2005, Belfast, UK, 2005. 

Optimising the utility of national malaria data for health system planning in Kenya using 

spatiotemporal analysis. Workshop on Recent Advances in Modelling Spatio-temporal 

Data, Southampton Statistical Sciences Research Institute, Southampton, UK, 2005. 

1.4 Thesis Outline 

Chapter 2 provides detailed information on specific issues that provide a contextual 

backdrop to the study including the current status of health information in low-income 

countries and the role of HMIS in providing important health information. Relevant 

information is given on Kenya and its health system, how the Kenyan HMIS operates 

within this system, and the particular relevance of malaria as a public health problem. 

Chapter 3 presents the two main data sets on which this project was based: routine 

malaria outpatient data from the Kenyan HMIS, and a corresponding spatial database of 

health facilities. The construction and compilation of these data sets are described and 

exploratory analysis is presented that describes the broad spatial and temporal 

characteristics of the outpatient data set. Analysis is also included that examines the 

extcnt and patterns of missing data. Chapter 4 describes the principal established 

methods used in this project starting with an overview of the conceptual underpinnings 

of gcostatistics, and the key concepts and tools by which the approach can be used to 

charactcrise and predict spatial phenomena. The extension of spatial-only geostatistical 

techniques to space-time settings is also discussed and a brief review is included of the 

use of geostatistical methods in public health and malaria settings. Chapter 5 presents 

the conceptual framework that was developed in this project to meet the aims stated in 

this chapter. The various factors that are likely to influence malaria treatment burdens at 

different facilities are identified and the way in which these are likely to vary in space 
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and time is discussed. In light of this discussion two distinct modelling strategies are 

proposed and the rationale for these is explained. The first involves the prediction of 

catchment populations for facilities across Kenya, and this work is presented in Chapter 

6. The second involves the inclusion of a second outpatient variable from the HMIS in a 

geostatistical prediction framework and two such frameworks are developed and tested. 

Chapter 7 addresses different techniques for geostatistical prediction and implements a 

comparison of spatial-only and space-time approaches. Globally stationary and locally­

varying models are also compared. In Chapter 8, the different prediction frameworks are 

implemented to predict missing malaria cases (MC) for a test data set and their 

predictive accuracies are compared. An uncertainty model is also developed that 

provides model-based measures of prediction uncertainty using an adapted space-time 

sequential Gaussian simulation technique adapted to represent the modelling framework 

used. In Chapter 9, the final modelling framework is implemented using the full data set 

to predict malaria treatment burdens across Kenya. An empirical model validation 

approach is also developed to provide estimates of the expected prediction errors at 

different levels of spatial and temporal aggregation. Chapter lOis a discussion chapter 

that considers some of the most important issues that have arisen during the project, and 

looks ahead to future avenues for research that have resulted. The thesis ends with a 

brief conclusion in Chapter 11. 
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2. Background 

2.1 Introduction 

Having laid out the motivation for this study and its specific objectives in Chapter 1, this 

chapter is designed to offer detailed information on specific issues that provides a 

comprehensive backdrop to the problem addressed. Information is gIven across a 

spectrum of detail, from a general description of the health information field in which 

this study is best categorised to a specific account of the niche that it aims to fill: the use 

of incomplete routine outpatient data from HMIS to estimate malaria treatment burdens 

in Kenya. The over-arching issue of inadequate health information in low-income 

countries is introduced first, and the importance, current status, and potential of HMIS to 

provide vital information is discussed. An account is given of the provision of health 

care in Kenya, and how the Kenyan HMIS currently contributes to the functionality of 

the health system. A summary of the burden of malaria in Kenya is provided and the 

importance of producing reliable estimates of treatment burdens is explained, along with 

the pivotal role ofHMIS in providing such estimates. 

2.2 Health information in low-income countries 

2.2.1 Requirements for health information 

The MDGs have brought into sharp focus the need for wholesale improvements in the 

availability of reliable and timely health information as part of international efforts to 

strengthen health systems in low-income countries (WHO, 2000a; Murray et al., 2004; 
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AbouZahr and Boerma, 2005; Macfarlane, 2005; UN, 2006; World Economic Forum, 

2006). The need to improve the evidence base for public health decision-making 

(P ARIS21, 2004; Scott, 2005) is reflected in numerous established and emerging 

programmes from international health and donor agencies such as the World Health 

Organisation (WHO) (WHO, 2000a, 2000b) and the Roll Back Malaria partnership 

(RBM) (RBM, 2000), and the launch of new initiatives such as the Ellison Institute 

(MulTay et aI., 2004; Horton, 2005), the Health Metrics Network, and the Partnership in 

Statistics for Development in the 21 st Century (PARIS21). 

Health information is required in a multitude of forms to meet the diverse requirements 

of different regional, governmental, and international public health actors. Information is 

required on the health status of populations, the characteristics of the health system and 

services available, and the efficacy of the health system in benefiting public health. The 

list of indicators included in the MDGs (UN, 2001) serves to highlight those public 

health metrics considered most important to the international development agenda. 

These include both population health indicators (such as infant and child mortality, 

maternal mortality and HIV prevalence, and the prevalence and death rates associated 

with malaria and tuberculosis) and health service indicators (such as child immunization 

coverage, the provision of obstetric care, the coverage of malaria preventative and 

curative measures, the detection and appropriate treatment of tuberculosis, and the 

proportion of the population with sustainable access to essential drugs). 

Whilst the establishment of a small number of clearly defined public health indicators 

within the MDGs is a powerful tool to drive global public health policies, the 

implementation of inclusive and effective national-level health systems requires more 

comprehensive information on the full spectrum of public health challenges and the 

type, quality, and coverage of services that are provided (AbouZahr and Boerma, 2005). 

Furthermore, these data are required at finer spatial and temporal resolutions in order to 

identify intra-national discrepancies in public health status or service provision to allow 

targeted public health programmes and the allocation of resources, and to drive 

decentralized policy making. In addition to the monitoring and evaluation of population 

health and service provision, effective health system management requires 

comprehensive, timely, and reliable information on the demand for serviccs (e.g. thc 

number of treatments being administered for a given condition) and the status and flux 
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of human and financial resources, physical assets, and logistics supply (Health Metrics 

Network,2005c). 

2.2.2 Sources of health information 

The mechanisms and resources for generating and archiving health data are generally 

substantially under-developed in low-income countries compared to the systems in place 

in higher-income nations. Nevertheless, large numbers of health data arc collected each 

year in low-income countries from a range of sources and by a variety of agencies 

addressing different information needs. A useful distinction is between active and 

passive data collection. Active data collection involves proactive methods of obtaining 

health data such as surveys and surveillance systems and is usually motivated by specific 

information requirements. Passive collection refers to systems that record data on a 

routine basis such as the collection of patient records at health facilities, and is often 

motivated only by a general, and often nebulous, requirement for health information. 

Both these approaches can provide information on service provision and the health 

status of the population, although each has inherent strengths and weaknesses in meeting 

specific information needs. 

Active population-based mechanisms for generating health data are implemented in 

many low-income countries worldwide and include household surveys and surveillance 

programmes. Population surveillance and survey efforts are becoming increasingly 

internationally coordinated (Health Metrics Network, 2005d). Three of the most 

prominent international household survey initiatives are the Demographic and Health 

Survey (DHS), the Multiple Indicator Cluster Survey (MICS), and the World Health 

Survey (WHS). DHS is funded largely by the United States Agency for International 

Development (US AID) and is the largest international survey programme, having been 

implemented in over 75 countries since its inception in 1984. DHS surveys are 

implemented approximately every five years in the target countries and consist of 

nationally representative household surveys with large samples of up to 30,000 

households providing population and health data on a wide range of indicators. MICS is 

a UNICEF initiative developed in 1994 to provide household survey data on a range of 

child health and deVelopment indicators (UNICEF, 1999). MICS surveys have been 

15 



Chapter 2 Background 

can-ied out in over 60 countries during 1995 and again during 2000, with a further round 

cun-ently in progress. The WHS is a recent WHO initiative that aims to enlist Ministries 

of Health around the world to implement a standardised module-based population survey 

to collect data on population health status, risk factors, and the responsiveness, coverage, 

access, utilisation, and cost of health services. These three internationally coordinated 

population-based survey programmes are designed to provide statistically sound, 

internationally comparable estimates of key population health indicators and have been 

developed or adapted largely with the aim of monitoring the health-related targets set out 

in the MDGs. 

A further source of actively-collected population health data is provided by longitudinal 

sentinel surveillance studies. In contrast to the national snap-shot provided by individual 

household surveys such as DHS and MICS, longitudinal sentinel surveillance studies are 

ongoing efforts that aim to monitor prospectively at regular intervals the same set of 

individuals within a sample community in order to better assess health status and 

interventions through time. As with household surveys, such efforts are becoming 

internationally coordinated to enhance cross-study comparability, principally through the 

INDEPTH Network Demographic Surveillance Systems (DSS) which cun-ently 

incorporates 31 surveillance sites in 17 low-income countries (IDRC, 2002; Sankoh et 

aI.,2004). 

The substantial international investment that has allowed the establishment of 

coordinated active data-collection programmes such as DHS, MICS, WHS and DSS has 

led to tangible increases in the availability and quality of population-based health data 

with which to monitor international targets such as the MDGs. Whilst such data are 

widely used by national policy-makers, their utility is limited by their spatial and 

temporal coverage and resolution. National household surveys such as DHS are 

designed to be nationally representative and data are generally available at no finer level 

of spatial disaggregation than the first-level administrative unit (usually the province). 

This severely limits their use for decentralized (e.g. district level) decision-making. 

Furthermore, the large duration between repeat surveys (~ 5 years) limits the scale of 

temporal patterns that can be monitored. Surveillance studies such as DSS represent, in 

some respects, the inverse situation, providing fine resolution spatial and temporal 

coverage but only over a small local area that is not necessarily nationally 
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representative. Whilst surveillance studies often collect high-quality data on a rich array 

of health variables, national household surveys are generally limited to a relatively small 

set of variables. 

National health systems cannot rely on active population-based survey and surveillance 

data alone to meet their health information requirements. If limited health system funds 

are to be used efficiently to maximise the efficacy of service delivery in low-income 

countries, health systems require reliable data on a much more comprehensive suite of 

population health and service variables at substantially finer spatial and temporal 

resolutions. Inclusive information on health service demand, provision, and functionality 

can only be feasibly supplied from within the health system itself, using passively 

collected data obtained on a routine basis by health system facilities and practitioners. 

Two data collection mechanisms that often constitute the backbone of information 

systems within low-income health services are vital registration (VR) systems and health 

management information systems (HMIS). VR systems are designed to provide the most 

fundamental population metrics such as births, deaths, and, crucially, the causes of 

death, ideally based on an intemationally standardised classification procedure such as 

the Intemational Classification of Diseases (ICD) (WHO, 2004b). In low-income 

countries, VR systems generally provide only an incomplete and fragmented record of 

vital events and are often based on unreliable methods for determining cause of death 

such as verbal autopsy (Snow et ai., I 992b; Mahapatra and Chalapati Rao, 2001; Morris 

et ai., 2003; Silvi, 2003; Sibai, 2004; Mathers et aI., 2005). HMIS often perform a 

number of functions but their core role is generally to coordinate the routine collection 

and collation of facility-based records of morbidity and mortality along with 

management and financial data. As discussed in Chapter I, data from HMIS are the 

principal focus of this project and these systems are now discussed in more detail. 

2.3 HMIS in Africa 

2.3.1 Definitions and functionality 

The term health information :,ystem (HIS) IS often used in the broadest sense to 

encompass all data collection instruments, actors, resources, and institutions involved in 
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the collection of health data at the national level COstiin et aI., 2003). Different 

Ministries of Health define different information subsystems as being either components 

of, or external to, their national HIS. Furthermore, other countries usc the term health 

management information "ystem which tends to be used more specifically to refer to a 

well defined information system operated by a Ministry of Health to coordinate routine 

data collection. In some cases, a formal restructuring has been implemented in which an 

HIS has been modified and relaunched as an HMIS. This adjustment has often been 

motivated by a desire to refocus data collection and use, often in line with a policy of 

health service decentralisation and with an emphasis on managers utilizing health 

information at the facility and district level (MoH Kenya, 2000; Gladwin et aI., 2002; 

Mutemwa, 2006). For the purposes of this discussion, the term HMIS will be used 

exclusively, accepting that in some cases HIS and HMIS are one and the same entity, 

whilst in others they are quite distinct. 

Definitions of HMIS abound and rarely correspond exactly (Health Metrics Network, 

200Sc). If active population-based data collection mechanisms can be reasonably 

excluded from the definition then the core function of HMIS can be stated as the 

provision of routine facility-based data. In a fully-functional HMIS, these routine facility 

data provide both service and management information. Service information relates to 

both supply (the services available at each facility, and the quality, capacity, and 

coverage of service provision) and demand (records of service usc, the numbers of 

inpatients and outpatients being treated and what they are being treated for). 

Management information relates to the wide range of ancillary data needed for the 

efficient planning, monitoring, and implementation of health service delivery. 

Information is required on human resources (e.g. health personnel, staffing levels and 

turnover, ratio of population to health workers), finance (e.g. disbursement and 

expenditures, efficiency monitoring, annual budgets and accounts, ratio of population to 

expenditure, expenditure by the public), physical assets (e.g. records of capital 

investment, buildings and equipment supply, status, maintenance requirements and life 

span), and logistics (e.g. data to estimate requirements of drugs, vaccines, contraceptives 

and other essential medical supplies). 

Some form of HMIS is operated by most Ministries of Health across sub-Saharan Africa 

and elsewhere in the developing world. In the overwhelming majority of low-income 
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nations, however, these systems are considered to be severely underperfonning or failing 

completely, and unable to meet basic health information requirements (Keller, 1991; 

Avgerou, 1993; Cibulskis and Hiawalyer, 2002; Gladwin et al., 2002,2003; Littlejohns 

et al., 2003; Chaulagai et a1., 2005; Mutemwa, 2006). Data from HMIS are seen as 

fragmentary and biased by both policy-makers and the academic community. This 

scepticism about the quality of HMIS data has led to a gross disparity between the level 

of resources that are invested in their generation and the extent to which they are used as 

a basis for either research or decision making. This disparity can only be reduced by 

improving the reliability of information that can be obtained from HMIS. Whilst 

wholesale improvements in HMIS infrastmcture must remain the long-term goal, the 

reliability and, hence, utility of current HMIS data can be improved using statistical 

modelling, and it is this rationale that has motivated the current project. 

2.3.2 Limitations of HMIS outpatient data in Africa 

The focus of this project is on HMIS data as a means of quantifying treatment burdens 

for a given condition, using the example of malaria in Kenya. The metric of interest is 

the number of outpatients that are treated for the disease in a given month or year in 

facilities around the country. Such information is best supplied from routine outpatient 

records. A principal function of all HMIS is the collection and transfer of these records 

from all facilities through district and provincial levels and their ultimate collation into a 

national database. Whilst the problems and deficiencies in HMIS-generated outpatient 

data vary between countries, a common set of limitations can be identified that restrict 

the utility of these data for the delivery of information to health deeision-makers that is 

reliable, accurate and representative. These generic limitations can be divided into those 

internal to HMIS - failings or weaknesses at specific points within the system - and 

those external to it operating outside the system but reducing the value of the 

information that can be obtained. 

2.3.2.1 Internal constraints 

In an effective HMIS, routine outpatient data are based on accurate diagnosis and 

comprehensive registration of cases at the facility level and consistent reporting of these 
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records (usually monthly) to the next level in the administrative framework. Numerous 

studies have been undertaken across Africa to assess HMIS functionality, along with 

others that have focused on related clinical practices. Many health facilities, especially 

those in peripheral rural areas, have limited or no access to laboratory facilities for the 

analysis of samples with which to confirm diagnoses of malaria and other prevalent 

communicable diseases. In a study of 81 government health facilities in four districts of 

Kenya, 42% had access to a functional microscope (Zurovac et al., 2002). In a study in 

Ethiopia, 53% of sampled facilities had the capacity for laboratory confirmation of 

malaria, although this was as low as 33% for health centres alone (WHO, 2001b). A 

Ugandan study reported that 51 % of facilities had the capacity for laboratory 

confirmation of malaria, 44% for tuberculosis, and 21 % for meningococcal meningitis 

(CDC, 2000). Furthermore, even where laboratory tests are available, they are often 

inaccurate (Zurovac et al., 2006), and are often ignored in diagnoses (Barat et al., 1999). 

In the absence of laboratory facilities, diagnoses for malaria and other diseases are 

generally based on clinical examination. Although efforts have been made by the WHO 

and others to provide guidelines and diagnostic algorithms to assist clinical diagnosis, 

increases in diagnostic accuracy have been limited (Redd et al., 1992, 1996; Smith et al., 

1994). This is partly due to the overlap of symptoms displayed by common 

communicable diseases. The symptoms of malaria can overlap with those of pneumonia, 

hepatitis, influenza, viral encephalitis, haemorrhagic fever and meningitis, among others 

(Warrell, 2002; Kallander et al., 2004). In practice, presumptive diagnosis and treatment 

of all fevers as malaria is the norm in many malarious areas (Bloland et al., 2003). The 

WHO Integrated Management of Childhood Illnesses (IMCI) programme, developed to 

improve clinical diagnosis and treatment practices in areas with limited laboratory 

access, advocates that all febrile children in high risk areas be considered to have, and be 

treated for, malaria (WHO, 1997; Perkins et al., 1998; Gove, 1998). Various studies 

have retrospectively tested clinically diagnosed malaria cases using laboratory 

techniques to asses the accuracy of clinical diagnosis for outpatients. Zurovac et al. 

(2002) found that, although sensitivity (the proportion of patients with malaria who were 

correctly diagnosed as such) exceeded 90% in four Kenyan sentinel districts, specificity 

(the proportion of patients without malaria who were correctly diagnosed as such) was 

much lower (39%). A study of peripheral health facilities in one district of Tanzania 

reported a positive predictive value (PPV the proportion of positive diagnoses that 

were correct) of clinical diagnosis of 44% across all ages (Font et al., 2001). A study in 
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rural Mozambique found a PPV of 89% (Loveridge et aI., 2003). The poor availability of 

aecurate diagnostic methods and the institutionalized presumptive treatment of fevers as 

malaria means that there is likely to be a substantial discrepancy between HMIS 

outpatient records of diagnosis and treatment for malaria and the true extent of 

outpatient malaria morbidity. 

A further widespread and fimdamental limitation of HMIS in Africa is the extensive 

under- and non-reporting of routine data from health facilities (AI Laham et aI., 2001; 

MoH Kenya, 200]a; Rudan et aI., 2005; Health Metrics Network, 2005b). Reasons for 

under-reporting include resource constraints, such as a shortages of outpatient registers 

and reporting forms, limited means of sending data, and lack of staff training (WHO, 

2001b; Chilundo et aI., 2004; Health Metrics Network, 2005e). Furthermore, whilst 

time-demands on front-line health workers for data recording and reporting are often 

considerable (Bra a et aI., 1997), feedback of HMIS information from higher levels to 

peripheral facilities is usually limited. This inequity can lead to diminished motivation 

for busy health workers to commit time to data recording and reporting. Widespread 

under-reporting inevitably leads to substantial gaps in the national HMIS database which 

prevents the straightforward quantification of basic outpatient health and service metrics. 

2.3.2.2 External constraints 

The principal external constraint on the utility of routine outpatient data for assessing 

public health is the under-utilisation of health facilities by the community. Factors such 

as the high cost of treatment, poor access, and inadequate service delivery have led to 

low utilisation rates of formal health services across Africa (F osu, 1994; Oranga and 

Nordberg, ]995; Mwenesi et aI., ]995; Foster, 1995; Ryan, 1998; Molyneux et aI., 1999, 

2002). Low utilisation means that a significant proportion of morbidity due to 

communicable disease is never presented to the formal health sector and is therefore not 

included in HMIS data. Many African studies have investigated the behaviour of those 

seeking care for communicable diseases and a wide divergence in attendance rates has 

been reported (McCombie, 1996, 2002). Studies in Kenya that have investigated 

treatment-seeking for malaria, or malaria-like fevers, have found attendance rates at 

formal facilities of between 18% and 43% (Ruebush et aI., 1995; Hamel et aI., 2001; 
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Amin et al., 2003; Guyatt and Snow, 2004). A study of fatal malaria cases in Tanzania 

found that 65% had presented at government or private health facilities (de Savigny et 

al., 2004) whilst a large household survey in rural Ethiopia reported attendance of 80% 

for suspected malaria cases (Deressa et al., 2003). The most comprchensive picture of 

attendancc rates to formal health services in low-income countries is provided by DRS 

surveys. A standard module of these surveys includes the percentage of children with 

symptoms of acute respiratory illness (ARI) or fever that were taken to a formal health 

Table 2.1 DUS estimates of national attendance rates of children with ARI or fever to formal health lacilities in nine east 
African conntries. 

Country 

Eritrea 
Kenya 

Malawi 
Mozambique 

Rwanda 
Tanzania 

Uganda 
Zambia 

Zimbabwe 

DHS Survey year 

2002 1 

2003 2 

20043 

2003 4 

20005 

2004-20056 

2000-2001 7 

2001-20028 

19999 

as the percentage of children under five years \vho had 
f(n whom h'catment \\a5 sought from a 

;\;lalawi ;.lild ORC 
2005); n;BOS 

Child attendance rate (%)* 

43 
45 
20 
55 
15 
57 
65 
69 
50 

of 

serVIce provider. Table 2.1 lists these attendance rates from the most recent DRS 

surveys for nine East African countries. Rates ranged from 15.1 % in Rwanda (ONAPO 

Rwanda and ORC Macro, 2001) to 69.1 % in Zambia (CSO Zambia and ORC Macro, 

2003). The causes and extent of under-utilisation vary considerably both within and 

between African countries. Treatment seeking decisions at the household level are 

influenced by a diverse range of factors including physical and economic access, social 

and cultural beliefs and values, the actual or perceived quality of care offered by formal 

sector facilities, and the range of alternative treatment options available. In the above 

DRS surveys, the most fi'equently cited reasons given by mothers for non-attendance 

included lack of money to pay for treatment, the distance to the health facility, lack of 

availability or means to pay for transport to the facility, and previous experience of 

lengthy queues for treatment once at the facility. The unavailability of suitable drugs at 

health facilities due to stock-outs is also widely cited as a reason for non-attendance. 
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2.3.2.3 implications 

Despite decades of donor assistance in HMIS across Africa, and a growing awareness of 

their importance to health system delivery, tangible progress in increasing data 

availability and quality has generally been slow (WHO, 1993; Lippeveld et aI., 2000; 

Evans and Stansfield, 2003; WHO, 2004a; AbouZahr and Boerma, 2005; Health Metrics 

Network, 200Se). The internal and external constraints considered hcre prcsent a 

challenge to users of routine outpatient data. If due consideration is not given to these 

limitations, there is a potential for data to be misinterpreted and misleading conclusions 

to be made. A critical realisation is that the spatiotemporal pattern of outpatient cases of 

malaria and other diseases recorded in the database does not represent directly the 

underlying pattern of the disease in the community. Instead, the relationship is 

characterised by uncertainty introduced by the limitations discussed above. This 

uncertainty leads to the potential for misapplication of HMIS outpatient data. The crude 

use of such data to estimate the total burden of a given illness in the population, for 

example, is likely to result in gross under-estimation, even after missing data are taken 

into account, due to the extensive under-utilisation of government facilities by care­

seekers. Similarly, attempts to infer thc relative prevalence of different diseases in a 

population should be treated with caution due not only to differential utilisation patterns 

but also to the unreliability of diagnosis. Even greater uncertainty is associated with the 

relationship between outpatient morbidity and the transmission dynamics of a given 

communicable disease (Snow et aI., 1997) and, as such, attempts to link the two should 

focus on assessing the characteristics and extent of this uncertainty. 

Whilst factors such as under-utilisation and misdiagnosis reduce the suitability of 

outpatient data to provide information on morbidity in a population, they are less 

obstructive when the data are to be used to analyse within-system treatment patterns and 

resource requirements. The number of outpatient treatments administered for a given 

condition within a health system is partly determined by the proportion of those afflicted 

in the population who attend health facilities for treatment, and by the proportion of 

those attending who are correctly diagnosed. As such, it is not necessary to correct for 

the effects of misdiagnosis and under-utilisation when using HMIS outpatient data to 

estimate the treatment burden for a given condition, since these factors contribute to 

defining that burden. Widespread under-reporting of outpatient records by health 
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facilities, however, is a more serious limitation to the use of HMIS data for estimating 

treatment burdens. A complete HMIS database allows the straightforward quantification 

of the number of patients treated for each disease at each facility each month, allowing 

the comprehensive assessment of specific resource requirements. Where large 

proportions of data are missing each month, however, and the number and location of 

missing data varies between months, an HMIS database cannot provide such 

quantifications directly. The incompleteness ofHMIS databases contributes substantially 

to their under-use by health system decision-makers. 

The remainder of this chapter considers the provision of health care in Kenya and 

presents details of the Kenyan HMIS. The burden of malaria is then discussed along 

with the importance of defining antimalarial drug demand. The potential role of HMIS 

data in estimating drug demand is then examined. 

2.4 Kenya and its health system 

2.4.1 Kenya country profile 

Kenya straddles the equator and is situated on the eastern coast of the African continent 

with borders to Tanzania to the south, Uganda to the west, Ethiopia and Sudan to the 

north, Somalia to the northeast, and the Indian Ocean to the southeast (Figure 2.1). The 

country is divided into 8 provinces and 72 districts and has a land area of571,466 square 

km of which the majority (~ 80%) is arid or semi-arid. Table 2.2 contains summary 

information for each province. The bulk of Kenya's 30 million people live in the 

extensive highland region that makes up the country's south west quadrant (Figure 2.2). 

This fertile elevated plateau stretches from Lake Victoria in the west to the lowlands in 

the east and is bisected by the Great Rift Valley running approximately north-south. The 

most densely populated regions are centred around the shores of Lake Victoria and 

around the capital, Nairobi. A further region of dense population is found along the 

Indian Ocean coastline, incorporating the country's principal port city, Mombassa. 

A verage temperatures and rainfall vary considerably across Kenya due to the varying 

altitude and proximity to the lakes or ocean. A marked seasonal pattern is evident with a 

short dry season from January to March, a long rainy season fi·om March to May, a long 
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Figure 2.1 Overview map showing the position of Kenya and its neighbours on the east of the African continent. 

dry season from May to October, and a further short rainy season from October to 

December. Kenya has endured decades of poor economic performance and slow 

economic growth that has contributed to an overall deterioration in the welfare of the 

population. Government estimates state that around 56% of the population were living in 

poverty in 2003, and that the proportion living below the poverty level has steadily 

increased (CBS Kenya, 2003) . Increasing poverty has gone hand in hand with rising 

Table 2.2 Summary infonnation for the Kenyan provinces: population and land area . 

Province Population 
. 

Area (Sq. km) 

Central 3,724,159 13,191 
Coast 2,487,264 83,603 
Eastern 4,631 ,779 159,891 
Nairobi 2,143,254 684 
North-Eastern 962,143 126,902 
Nyanza 4,392,196 16,162 

Rift Valley 6,987,036 173 ,854 
Western 3,358,776 8,361 
KENYA 28,686,607 582,648 

• Population as recorded in the 1999 census (CBS Kenya, 2001 a) 
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Figure 2.2 Maps of Kenya showing: (top) altitude in metres; (middle) district and provincial administrative boundaries, 
and province names; and (bottom) population density per km' in each sub-location (51h level administrative level) based 
on the 1999 censns. 
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unemployment and illiteracy rates and the concomitant decline in living standards has 

been reflected in worsening public health. Having shown signs of improvement during 

the 1970s and 1980s, the crude death rate and infant mortality rate increased during the 

1990s whilst life expectancy declined (CBS Kenya and ORC Macro, 2003). 

2.4.2 Health service provision in Kenya 

The provision of health services to the Kenyan population is implemented by various 

governmental and non-governmental organisations and is delivered through a 

hierarchical administrative system that coordinates multiple levels of service delivery 

(MoH Kenya, 2003). The organisation of formal health care delivery through the 

Ministry of Health operates at three levels: national, provincial, and district. The national 

level centres on the Ministry of Health headquarters, housing the Central Board of 

Health. The provincial level incorporates the Provincial Health Management Boards 

and Provincial Health Management Teams and acts as an intermediary between the 

national and district levels, overseeing district level health policy and quality standards 

and coordinating district level provision. The district level comprises District Health 

Management Teams that concentrate on the dclivery of health services and generate 

their own expenditure and budgetary plans within the provincial and national 

framework. Whilst the Ministry of Health is the primary source of health care, operating 

around 52% of health facilities nationwide, a substantial proportion of service provision 

comes from other service providers. Non-governmental and charitable organisations, 

including the religious missions, mostly operate services in underserved, often rural, 

areas. They provide both curative and preventative services and receive some 

governmental support as well as income from external donors and user fees. Around 

40% of the country's health services are offered by the private-for-profit sector, 

including clinics and hospitals that generally specialise in curative services with limited 

preventative services being offered (MoH Kenya, 2003; NCAPD/MOH/CBS Kenya and 

ORC Macro, 2005). 

The network of health facilities operated by the providers listed above are themselves 

organised in a hierarchical framework. The most basic and numerous facilities are the 

dispensaries, followed by sub-health centres, health centres, sub-district hospitals, 

27 



Chapter 2 Background 

district hospitals and provincial hospitals. At the apex are the nation's two teaching and 

referral hospitals. Dispensaries are generally the first point of contact with patients and 

are staffed by enrolled nurses and medical assistants providing services such as antenatal 

care as well as basic outpatient curative care. Health centres offer a wider range of 

curative and preventative outpatient services including minor surgical procedures, and 

are staffed by midwives or nurses, clinical officers and occasionally by doctors. District 

hospitals act as the first referral points for health centres and dispensaries within each 

district and offer 24 hour inpatient and outpatient care in a range of clinical services 

backed up by laboratory and other technical support. Provincial hospitals act as the next 

level of referral, offering specialised care not available at district hospitals including 

intensive care services. They also provide supervision, monitoring, and technical 

assistance to the district hospitals. Kenyatta National Hospital in Nairobi and the Moi 

Teaching and Referral Hospital, 320 km to the north-west of the capital in the Rift 

Valley province, are Kenya's centres of excellence providing complex health care and 

highly skilled personnel and representing a high concentration of the nation's health care 

resources. 

Despite a series of major policy initiatives (MoH Kenya, 1999, 2005b), the Kenyan 

health service remains inefficient and public health status remains poor. A series of 

indicators point to a worsening level of health care provision over the past two decades. 

The doctor-to-population ratio declined during the 1980s and 1990s and the overall use 

of public health services also declined, falling from 0.6 new consultations per person in 

1990 to 0.4 in 1996 (CBS Kenya, 2003). Although public-sector spending on health has 

increased in absolute terms, it has not kept up with population growth such that public 

per-capita health expenditure fell from US$12 in 1990 to US$6 in 2002 

(NCAPD/MOH/CBS Kenya and ORC Macro, 2005). 

2.4.3 The Kenyan health management information system 

Each level of the Kenyan health system hierarchy described above requires health 

information at different spatial and temporal scales to assist planning and decision­

making. The need for a national mechanism to collect health data was recognised at an 

early stage by the Ministry of Health and they established the Division of Health 
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Information Systems in 1974, charged with the responsibility of collecting, processing, 

analysing and disseminating health and health-related data. This system collected 

epidemiological data (inpatient and outpatient records) and produced annual bulletins 

containing data from the facilities. The system was revised and partly computerized 

through US AID funding during the 1980s. An assessment of this system was made as 

part of the 1994 Kenya Health Policy Framework (MoH Kenya, 1994) which led to the 

establishment in 1999 of the Division of Health Management Information Systems in an 

attempt to address shortcomings and provide more reliable information with the broader 

scope needed for planning, budgeting, monitoring, and evaluation at all levels (MoH 

Kenya, 2000). 

A primary function of the current Kenyan HMIS is the coordination of routine outpatient 

data collection, collation, and analysis. In principle, each health facility makes a record 

of each outpatient visit and the resulting diagnosis or diagnoses that were made. These 

data are compiled onto a standard form at each health facility, and completed forms arc 

passed each month on to District Medical Records Officers based at district hospitals. At 

the district level, data ii-om each facility within the district are collated into a District 

Outpatient Morbidity Summary and sent through the hierarchy to the national HMIS 

headquarters at the Ministry of Health, where all data arc received by Medical Records 

Technicians who order, collate, and check data before entering them into the national 

database operating on a rudimentary computer system. This database lists outpatient 

counts for each health facility under a suite of diagnostic categories. National outpatient 

data are made available publicly in RMIS reports that are published at intervals of 

approximately four years. 

The most recent major health policy initiative in Kenya is the National Health Sector 

Strategic Plan for the period 2005-2010 (MoH Kenya, 2005a). This policy document 

identifies the continuing inadequacy of the HMIS to provide the health information that 

is required, and makes the improvement of the system a priority. The principal limitation 

of the HMIS as a source of routine outpatient data is the low reporting rate of monthly 

outpatient records by both facilities and districts. The Kenyan HMIS report for the 1996-

1999 period states an overall monthly reporting rate of between 33% and 40% over all 

facilities (MoR Kenya, 200Ia). Because the number and identity of health facilities that 

report each month changes, statistics on the total count of cases of each disease seen 
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each month are not a reliable way of estimating resource requirements, or of analysing 

differences over time or between different regions. Because of this inadequacy, the use 

of HMIS data for monitoring and evaluation, problem-solving, decision-making, and 

trend analysis is extremely limited at national, provincial, and district levels. 

2.5 The burden of Malaria 

Malaria is a life-threatening infectious disease caused by protozoan parasites of the 

genus Plasmodium. The vector for the human form of malaria is the female Anopheles 

mosquito which transmits the parasite to the human host during a blood meal and forms 

part of the complex parasite life-cycle. The symptoms of malaria typically appear 9 to 14 

days after infection and can initially include fever, headache and vomiting. If left 

untreated, the infection can progress rapidly to become life-threatening, by destroying 

red blood cells (anaemia) and by clogging the capillaries that carry blood to the brain 

(cerebral malaria) or other vital organs. Young children and pregnant women are 

particularly at risk of the disease. 

Malaria is found throughout the tropical and sub-tropical regions of the world and 

remams a leading global eause of morbidity and mortality (WHO, 2005a), with an 

estimated 300-660 million clinical cases occurring annually worldwide (Snow et aI., 

2005). Africa, particularly the sub-Saharan region, bears a grossly disproportionate 

proportion of the worldwide burden of malaria with two thirds of its population 

estimated to be at risk of the disease (Hay et ai., 2004). Africa is estimated to account for 

two thirds of the overall clinical burden, and three quarters of that caused by 

Plasmodium Jalciparum, the most severe and life-threatening malaria parasite 

(Korenromp, 2004). Africa is also thought to account for 89% of the global mortality 

burden (WHO, 2003b) with between three-quarters to one million African children 

under the age of five dying each year (Snow et ai., 1999a, 2003a). That the continent 

bears the brunt of the worldwide malaria burden is due partly to the prevalence of the 

most potent malaria parasite and vector species and partly to the limited economic and 

public health resources to combat the disease effectively. 
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2.5.1 The burden of malaria in Kenya 

Malaria is a major cause of morbidity and mortality in Kenya and presents a substantial 

barrier to development with around 20 million Kenyans living at risk of the disease. 

Although current estimates are of unknown accuracy, recent figures state that, each year, 

an estimated 145,000 children under the age of five arc admitted to hospital due to 

malaria and 34,000 children of this age die of the disease (MoR Kenya, 200 1 b). Malaria 

is the leading cause of outpatient cases and places a heavy burden on the health system 

and public health expenditure. Personal expenditure due to malaria is also high with a 

recent survey estimating that every affected household spends around US$20 each year 

on malaria treatment (CBS Kenya, 2001 b), which represents a substantial financial 

burden to a large proportion of the population. The morbidity associated with malaria 

has a significant impact on productivity and is estimated to result in 170 million lost 

working days each year (MoH Kenya, 2001b). This economic burden has the largest 

impact on the rural poor who rely largely on small-scale agriculture as a source of 

income. The underlying level of morbidity due to malaria is not uniform across Kenya, 

but varies considerably due to a complex set of climatic, human, and vector interactions. 

These factors are discussed in detail in section 5.2.1 of Chapter 5. 

2.5.2 Using effective drugs to combat malaria in Kenya 

Government led efforts to combat malaria in Kenya are coordinated by the Division of 

Malaria Control (DOMC) at the Ministry of Health. The current policy framework on 

combating malaria (MoH Kenya, 2001 b) is centred around four key strategic objectives: 

(1) clinical management through provision of effective and prompt treatment; (2) 

management of malaria and associated anaemia in pregnancy; (3) control of the malaria 

vector (anopheline mosquitoes) using insecticide treated bed nets (ITNs) and spraying of 

insecticides; and (4) improving epidemic preparedness and response. The first objective 

in this list is seen as the cornerstone of the national malaria strategy, aiming to guarantee 

that people have rapid access to effective, affordable, acceptable, and available 

antimalarial drugs to enhance prompt and effective treatment of malaria episodes. A 

critical factor in the provision of effective antimalarial drugs is the need to continually 

monitor drug efficacy. That is, to monitor the extent to which the malaria parasites 

within the population are developing resistance to the drugs being used. The 
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development of resistance is a largely inevitable evolutionary process, occurring as a 

result of innate genetic diversity in the parasite population. Those genotypes that are 

better suited to survive the effects of a given drug are more likely to survive and hence 

their prevalence grows until a large proportion of the parasite population shares this 

resistant physiology (Wernsdorfer, 1994; Warrell et aI., 2002). As such, all antimalarial 

drugs have a finite useful therapeutic life (UTL) , although this can vary widely 

depending on the mechanism and utilisation of the drug. 

Since its introduction in the 1930s, the primary antimalarial drug for P.Falciparum 

malaria in Kenya has been chloroquine (Shretta et aI., 2000). Resistance to chloroquine 

grew rapidly across sub-Saharan Africa during the 1980s and 1990s, leading to 

substantial increases in mortality (Marsh, 1998; Trape et aI., 1998, 2001). Chloroquine 

was belatedly replaced in Kenya with a new alternative, sulphadoxine pyrimethamine 

(SP), in 1998. However, resistance to SP, and the main alternative, Amodiaquine (AQ), 

developed quickly following their introduction which led to a substantial reassessment 

of drug policy in 2003. A review of studies carried out by the DOMC Drug Policy 

Technical Working Group CDPTWG) concluded that both SP and AQ had fallen below 

an acceptable level of efficacy, with an average SP treatment failure rate of 33% 

amongst children under five (MoH Kenya, 2005c). In response to this declining efficacy, 

and in line with international recommendations (WHO, 2001a, 2003a, 2005b), the 

DPTWG recommended that a change in treatment policy be introduced, with the 

introduction of artesunate-based combination therapy (ACT) as the new first-line 

antimalarial treatment. The formal plan for transition to the new ACT, artemether­

lumefantrine (brand name Coartem®), was launched by the Ministry of Health in 2005 

(MoH Kenya, 2005c). ACTs contain a newly developed and potent antimalarial 

component derived from the Chinese herb Artemisia annua. By using this compound in 

combination with a second drug that works in a different way, ACT is both highly 

effective and likely to resist the growth of rapid parasite resistance. It is hoped that ACT, 

if implemented carefully across Africa, will allow substantial and long-term reductions 

in malaria mortality and morbidity (White, 1998; White et a!., 1999; Gamer and Graves, 

2005). 
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2.6 Estimating drug demand 

A critical aspect of the transition from SP to Coartem® in Kenya is to ensure that the 

correct quantity of the drug is obtained. Accurate estimates of demand are required for 

efficient procurement and delivery. It is vital that adequate supplies of the drug are 

available since under-stoeked health facilities will lead to a rapid loss of public 

confidence, further discouraging utilisation and, hence, drug dissemination (MoH 

Kenya, 200Sc). However, Coartem® is currently substantially more costly than previous 

drugs (Kindermans, 2002) and has a limited shelf-life, meaning that excessive drug 

stocks are an expensive waste of resources (UN, 2005). Well defined demand estimates 

are also required by international donors who can provide funding for the new drug 

(RPM plus, 2005; GFATM, 2005; WHO, 2006). 

The challenge of defining drug requirements in Kenya and across sub-Saharan Africa 

has been the subject of numerous studies by academic and public health institutions 

(Kindermans, 2002; Snow et aI., 2003b, 2003c; MoH Kenya, 2004, 200Sc). A critical 

distinction is between estimating the drug requirements of a health system for treating a 

given condition and estimating the theoretical drug requirements for treating all cases of 

that condition in the population. In low-income countries, and for a disease such as 

malaria, the difference between the two is likely to be substantial due to factors 

discussed previously, primarily the low utilisation of formal health services to obtain 

treatment. In recognition of the widespread inadequacy of health system efforts to 

estimate drug demand, the WHO defined a set of best-practiee procedures to be 

implemented when quantifying the amount of drugs needed to treat a given condition 

within a health service (WHO, 1988). Two simple but distinct approaches are advocated: 

the morbidity method and the consumption method. The consumption method is based 

on assessing the quantity of drugs that have been consumed, either at the full set of 

health facilities within a health system, or at a representative sample. Where demand for 

a new drug is to be estimated, the consumption method relies on assessing the 

consumption of the previous, outgoing, drug. Even when reliable data are available for 

the previous drug, a key shortcoming is that the patterns of drug stocking and utilisation 

may be very different than those for the new drug, given differences in cost and shelf­

life, for example. The morbidity method takes a different approach and requires 

estimates of the number of treatment episodes for a given disease in all health facilities. 
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This is then multiplied by the quantity of drugs that arc administered for each treatment 

episode to obtain an estimate of the total drug requirement. 

2.6.1 The role ofHMIS in estimating drug demand 

Accurate drug demand estimates made using the morbidity method are dependent on 

reliable estimates of the number of treatment episodes (the treatment burden). In Kenya, 

the appropriate source of data on which to base these estimates is the database of routine 

health facility records collected within the HMIS. Because of the known incompleteness 

of the database, however, these data have not been used to generate such estimates. A 

number of important definitions must be considered when using routine facility data in 

drug demand estimates. The variable of interest is the number of treatment episodes. A 

treatment episode differs from other forms of contact in that it requires a standard drug 

treatment. Follow-up visits that do not result in further treatments, for example, do not 

strictly constitute a treatment episode. Furthermore, a single patient visit may result in 

more than one treatment episode if he/she is treated for multiple conditions. Another 

comp lication is that the standard drug treatment may vary with the age of the patient and 

the severity of the condition. Where this is the case, the number of treatment episodes 

within each age group or severity category must be quantified separately. In principle, 

routine patient records should contain all the necessary information about each patient 

visit including patient age, sex, the condition for which they were treated, and whether 

the visit was a first contact, a follow-up visit, or a referral. Unfortunately, much of these 

data are often never collected, or are lost when data arc aggregated within the HMIS. 

2.7 Chapter summary 

This chapter has presented information that provides the contextual backdrop to the 

problem addressed in this project: the estimation of outpatient treatment burdens for 

malaria in Kenya. The importance of health information in low income countries is 

becoming increasingly recognised, just as the gross deficiency of current information for 

meeting a wide range of requirements is becoming apparent. Although increasing 

numbers of health data arc being collected in low-income countries, much of this is 

aimed at monitoring broad national-level indicators and is insufficient for detailed 
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system management. HMIS are one mechanism for routine data collection that should 

provide a wealth of invaluable information to decision-makers about the supply and 

demand of resources at health facilities within a health system, but are failing to do so in 

most low-income countries for a range of reasons including low utilisation rates, 

unreliable diagnosis of common diseases, and under-reporting of data from health 

facilities. A primary drain on health system resources in Kenya is the burden of malaria. 

Because of the introduction of expensive new drugs, a critical responsibility of the 

HMIS in Kenya is the provision of routine outpatient data which will allow the malaria 

treatment burden to be quantified. Widespread under-reporting, however, means that the 

HMIS data cannot be used directly to make these estimates. It is the problem of making 

reliable estimates with this incomplete data that is addressed in this project. 
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3. Data 

3.1 Introduction 

This project is based on data integrated from two independent data sets. The principal 

data of interest originated from a routine outpatient database generated from health 

facilities across Kenya that was collected and collated within the Kenyan HMIS. These 

data were matched to a second database that contained the latitude and longitude 

coordinates of each health facility. In this chapter, the HMIS outpatient data set and the 

georcferenced health facility data set are both described in detail. Exploratory analysis is 

presented that describes the broad spatial and temporal characteristics of the outpatient 

data set. Analysis is also included that examines the extent and patterns of missing data 

in the outpatient data set. 

3.2 The Kenyan national health service database (NHSD) 

The stated aim of this project is to predict the total count of outpatients treated for 

malaria in all health facilities across Kenya using incomplete HMIS outpatient data. A 

prerequisite in this task is that the total number of health facilities in the country is 

known. Furthermore, the spatiotemporal techniques that are brought to bear on this task 

in this project require that the spatial and temporal locations of both data and unsampled 

points are known. Outpatient data within the HMIS are temporally referenced, with each 

count corresponding to a known month. In common with most HMIS in low-income 

countries, however, the Kenyan system does not include spatial data, meaning that the 
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spatial locations of the health facilities from which data were generated are unknown. 

The cmrent project was conceived, in part, because of the construction of a new and 

unique spatial database that resulted from an extensive exercise to list and georeference 

all health facilities in Kenya. This database is now known as the national health service 

database (NHSD) and represents the first such resomce of its type in Kenya A summary 

of the construction and key characteristics of the NHS D is presented below. For detailed 

accounts, the reader is pointed to Noor et al. (2004) and Noor (2005). 

3.2.1 Construction of the NHSD 

The NHSD was developed and made available for this study by a team led by Dr. 

Abdisalan Noor at the Malaria Public Health & Epidemiology Group, Centre for 

Geographic Medicine, part of the KEMRI-University of Oxford-Wellcome Trust 

Collaborative Programme in Nairobi. The first stage in the creation of this resomce was 

the establishment of a single comprehensive list of health facilities from all scrvice 

providers around the country. Various independent records of public and private health 

facilities held by the Ministry of Health and various other Governmental and NGO 

bodies were cross-checked and compiled into a single list. This list was then augmented 

with information obtained directly from each district such as hand-drawn maps, local 

listings, telephone directories, and reports. Provisional lists were then sent out to District 

Health Management Teams and relevant NGOs and other parties for cross-checking and 

corrections. Having established a single list of Kenyan health facilities, a set of spatial 

coordinates were obtained for each using georeferencing data from a variety of somces. 

Previous projects run by various research and NGO bodies around Kenya had led to 

around half of the 72 Kenyan districts having global positioning system (GPS) 

coordinates for some or all of their constituent health facilities. Where health facilities 

on the list did not have GPS data, coordinates were obtained instead from various 

mapping somces or by matching facilities to known village or sub-location coordinates. 

3.2.2 Use of the NHSD in this project 

The NHSD does not represent a single exercise to provide a snapshot of Kenyan health 

facilities at a particular instant in time. Rather, the database is continually updated as 
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new facilities open, others close, and new information is obtained. In light of this 

dynamic nature, analysis in this study operated on two different versions of the NHSD. 

The bulk of model development and testing is described in Chapters 7 and 8 and was 

calTied out using a version of the NHSD made available to this study in August 2004. 

Implementation of the developed model to obtain final predictions was calTied out using 

an updated version of the NHSD obtained in October 2005. In this section, the former 

version is described in more detail. The updated version is summarised alongside the 

presentation ofthe final model implementation in Chapter 9. 

3.2.3 Health facilities in the NHSD 

Table 3.1 lists all health facilities included in the August 2004 version of the NHSD. 

These include facilities operated by the Ministry of Health, the charitable missions, 

private-for-profit organisations, NGOs, and other minor service providers ineluding the 

armed forces, local authorities, and other governmental ministries. In addition to the 

main hierarchy of facility types discussed in Chapter 2, specialist facilities such as 

nursing homes and maternity hospitals, and institutional health facilities were included. 

Not all health facilities were georeferenced and, in this version of the database, not all 

health facilities had a unique identification code (an HMIS number) that was necessary 

to match outpatient data in the HMIS with the cOlTesponding health facility. 

In this study, the focus was on Ministry of Health facilities only and this decision was 

driven by several factors. Firstly, the need for reliable estimates of treatment burdens for 

malaria is particularly pressing for government facilities because the phased introduction 

of Coartem® as the first-line antimalarial will begin in this sector (MoH Kenya, 200Sc). 

Secondly, the government sector represents a relatively stable and formally documented 

set of health facilities around the country. Although the construction of the NHSD 

revealed a substantial number of Ministry of Health facilities that were not on formal 

lists at the Ministry, the exercise resulted ultimately in a comprehensive inventory of 

health facilities within this sector, of which only a handful could not be georeferenced. 

This is in contrast to facilities provided by the other major sectors such as the charitable 

missions and private organisations, about which far less complete and reliable 

information was available, with a lower proportion being georeferenced. 
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Service provider 1.Huspitals 2.H01ipitals 3.Health 4.Dispensarics 5.Privllte 6.Private clinics 7.Nursing homc"l & S.Special treatmcnt 9. Institution health All facility types 
(district, suh- (rcfernll and centres hospihlls and Medical maternity hospitals hospitals facilities 

district) pl'ovinl'ial) ccntres 

(%) (%) (%) (%) 1%) (%) (%) (%) (%) (%) 

Gcorcf. 119 10 (IOOJI) 475 m7 (96.7) (50.0) (100.0) 2035 (97.4) 

MOH HMIS no 116 10 (100.0) 448 1230 (85.8) (100.0) (66.7) 1842 (882) 
Both 116 10 (]()O.O) 445 1194 (83.3) (SO.IJ) (66.7) 1801 (86.2) 

Total 119 10 479 1434 39 2089 

Gcnref Kl (96.5) 131 665 (86.1) 12 (66.7) 900 (87.8) 

MISS 
HMIS no 75 (%.5) 117 593 (86.1) 12 (66.7) 807 (87.8) 
Both 73 (84.9) 112 SI8 (67.1) 9 (SlLO) 719 (70.1) 

Total 86 138 772 18 ](125 

Georef (100.0) 15 126 81 (81.0) IUS 207 (68.5) (26.5) 78 (65.5) 1652 

I'RIV 
HMISno (100.0) 1.1 197 47 (47.0) 565 199 (65.9) (8.8) 97 (81.5) 1122 
Both (100.11) 104 39 (39.0) 266 142 (47.0) (5.9) 69 (58.0) 632 

Total 21 240 lOll 2231 302 34 119 3048 

Cleorcf (1110.0) (75.0) .12 (76.2) (10lLO) 16 (64.0) (2S.0) 57 

NGO HMISno (0.0) (51l.0) 16 24 (96.0) (SO.O) 4S 

Both (0.0) (SO.O) 12 15 (60.0) (11.0) 30 
Total 42 25 80 

GcorcL 47 (92.2) 36 (85.7) (75.0) (100.0) (500) 88 (88.0) 

LA 
HMISllO 50 (98.0) 42 (100.0) (100.0) (IOO.IJ) (100.0) 99 (99.0) 
Both 46 (90.2) 36 (85.7) (75.0) (100.0) (50.0) 87 (87.0) 

Total 51 42 100 

Gcorcf 21 (700) 21 (700) 

AF 
HMISllO 21 (70.0) 21 (70.0) 

Both 16 (53.3) 16 (53.3) 

Total 30 30 

Genref 105 (84.7) 105 (84.7) 

OTHER HMISno 109 (87.9) J09 (87.9) 

\lIN Both 94 (75.8) 94 (75.8) 
Total 124 124 

Georct 205 10 (100.0) 672 (97.0) 2246 81 (810) 11.1' (50.9) 226 (68.7) 37 246 4858 

All HMIS no 192 ]() (100.0) 630 (90.9) 20n (47.0) 565 (25.3) 21g (66.3) ,18 267 4045 

Providcrs Both 190 10 (10(l.0) 614 (88.6) 1~64 39 (3').0) 266 (119) 156 (47.4) 26 214 3379 

Total 208 10 693 2530 100 2231 329 73 322 6496 

Table 3.1 Breakdown of health facilities by type and service provider in the August 2004 version of tile national health service database, Total facility counts are shown along with the count (and percentage) of 
facilities that have georeferencing data (Gem'd), that have an llMIS number (I-IMIS no,), and that have both (Both), Service providers arc Ministry of Health (MOB), mission (MISS), private (PRIV), non-
governmental organisations (NGO), local authority (LA), armed forces (AF), and other Ministries (OTJlER MIN), The section highlighted in grey shows the set of 1765 facilities that were used in this project for 
model development and testing, 
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Figure 3.1 Maps of Kenya showing the locations of the 1765 Ministry of Health facilities used in this study for model 
development and testing. Each of the three facility categories used are shown along with the combined set of all three 
types. 

F or the purposes of model development and testing, a set of 1765 facilities was selected 

in this project from the August 2004 version of the NHSD (Table 3.1). This set was 

composed of all mainstream Ministry of Health outpatient facilities that were both 

georeferenced and had a unique HMIS number. This set excluded specialist non­

outpatient facilities such as nursing and maternity homes. The various categories of 
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outpatient facility were condensed into three principal types: hospitals (referral and 

teaching hospitals, provincial, and district hospitals); health centres (subsuming sub­

district hospitals); and dispensaries (subsuming sub-health centres). This simpler 

classification represents a broad grouping of facilities according to the generic levels of 

service they provide. This set consisted of 126 hospitals, 445 health centres, and 1194 

dispensaries. The spatial distribution of these health facilities across Kenya (Figure 3.1) 

reflects approximately the underlying population density, although it is well established 

that access to health facilities is not equitable across the country with rural areas, for 

example, being generally under-served in relation to urban areas (Noor et aL, 2003, 

2006). 

3.3 The Kenyan HMIS outpatient data set 

The routine outpatient data on which this project is based were obtained directly from 

the Division of HMIS at the Ministry of Health by the KEMRI-University of Oxford­

Wellcome Trust Collaborative Programme team. This team obtained the data in a simple 

TXT format and imported them into MS Exeel (Microsoft Corp., USA) and subjected 

them to extensive checks for duplication and inconsistencies before porting them into 

MS Access (Microsoft Corp., USA) using an MS QuickBasic (Microsoft Corp., USA) 

script. Each record included a unique facility code, which allowed the entire data set to 

be linked to the NHSD such that data for each facility were integrated with the 

corresponding latitude and longitude coordinates. This formatted and spatially 

referenced database was then made available for this project. 

The HMIS data consisted of monthly records of diagnoses made at outpatient 

departments of health facilities across Kenya over an 84-month period (January 1996-

December 2002). Each record included the total number of outpatients attending a given 

facility during a given month. The number of diagnoses made under a wide range of 

diagnostic eodes was also available for each monthly record per faeility. Records were 

not structured by age, sex or distinguished as initial or follow-up visits. Due to the 

limitations on diagnosis accuracy discussed in Chapter 2, diagnoses could only be 

interpreted as representing a presumed case of a given condition. 

In this section, those data that corresponded to the set of 1765 Ministry of Health 
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facilities defined earlier are presented. Analysis was conducted to assess the number of 

missing data within this set and to describe any patterns in when and where data were 

missing. Further exploratory analysis was then carried out to describe the broad spatial 

and temporal characteristics displayed by the various diagnostic codes. 

3.3.1 Exploratory analysis of missing data 

An initial aim in the analysis was to characterise and quantify the extent of 

incompleteness due to missing data. Missing data in the national database may result 

from failings at different points in the HMIS framework such as failure by individual 

facilities to submit their monthly records, failure of the District Medical Records 
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Figure 3.2 (a) Histograms showing the distribution of the number of months reported for each facility type, Complete 
reporting would result in 84 monthly records from each tacility, (b) Time series plot showing the proportion of health 
facilities that reported in each of the 84 months. 
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Officers to collate data correctly or to submit their monthly District Outpatient 

Morbidity Summary, failure by HMIS headquarters to enter these data correctly into the 

main database, or simple physical loss of the relevant form between or at the various 

levels in the HMIS. In this study, the relative amount of missing data from each facility 

was quantified by a reporting rate, defined as the percentage of months for which an 

outpatient record was available for each facility. Facilities with less than 100% reporting 

rates were deemed to have under-reported, accepting that in some eases this term will 

not accurately describe the cause of the missing data. Under-reporting was assessed by 

province for each facility type. 

3.3.1.1 Results 

Under-reporting was found to be widespread, although there was considerable variation 

between facility types and provinces (Table 3.2). Figure 3.2 (a) shows the distribution of 

reporting rate values for each facility type. No facilities reported in all 84 months whilst 

158 facilities (9%) did not report in any month. A complete 84-month data set for the 

1765 facilities would contain 148,260 records. Only 63,543 records were present 

representing an overall reporting rate of 42.9% over all facility types and provinces. This 

ranged from 12.2% in Nairobi to 52.4% in Central Province. Health centres had the 

highest reporting rate (50.0%), followed by hospitals (44.2%) and dispensaries (40.1 %). 

Overall reporting rate varied both within and between years, with a minimum of7.6% in 

December 1997 and a maximum of 52.8% in June 2000 (Figure 3.2 (b)). 
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Hospitals 47.8 12.3 47.2 36.1 47.0 37.5 50.9 37.7 44.2 

Health centres 39.7 15.8 61.1 58.3 54.0 43.7 59.4 19.0 50.0 

Dispensaries 31.9 9.0 46.7 51.7 43.3 41.1 40.6 20.2 40.1 

All facilities 34.6 12.2 51.2 52.4 45.9 41.3 49.9 20.9 42.9 

Table 3.2 Overall reporting rate in each Kenyan province by [acility type. These values represent the total percentage o[ 
the expected monthly ontpatient records that were available within the HMIS database. 
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It is likely that the majority of missing data arc caused by facility-level failures to submit 

monthly reports. However, detailed examination of the spatial patterns of under­

reporting revealed evidence that district-level processes also affected reporting rate in 

some cases. An example is provided by the neighbouring districts of Kericho and 

Nyando in the west of Kenya. Plots of district-wide reporting rate for both districts were 

derived and these are shown in Figure 3.3 along with maps showing the health facilities 

in each district. Both plots display evidence of national-level factors, specifically the 

very low reporting rate recorded in December 1997 associated with the national nurses 

strike. Whilst both plots display a clear temporal trend, these are very different for each 

district. Reporting in Kericho (Figure 3.3 (b)) decreases steadily throughout 1996 and 

1997, and then steadily rises for the remainder of the data period. In contrast, reporting 

in Nyando (Figure 3.3 (c)) is consistently high throughout 1996 to 1998 (excepting the 

December 1997 event) and then consistently low throughout 1999 to 2002. This marked 

difference between neighbouring districts suggests the influence of factors operating at 

the district level. A district-wide ncar-cessation of reporting such as occurred in Nyando 

from 1999 onwards clearly rcsults in a contiguous spatiotcmporal 'hole' in the HMIS 

data set, which has clear implications for attempts to predict missing values based on 

data proximate in space and timc. 

Thc observed overall reporting rate of 42.9% confirmed that the incompleteness of this 

database is substantial and presents a significant challenge to users. Temporal variations 

in reporting rate may have been caused by factors such as impairments to transport 

during the rainy season which impedes the effectiveness of the data delivery network, 

and seasonal variations in the availability of staff. The pronounced dip in reporting rate 

in December 1997 was likely to be related to a national nurses strike at that time. The 

fact that the set of facilities that report in any given month changes through time is 

important when attempting to identify and explain temporal trends. An observed 

national increase in cases of a certain illness in a given month, for example, could be 

brought about by a relative increase in reporting from areas where that illness is more 

prevalent. 
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Figure 303 District-level rep01ting patterns in two western districts of Kenya. (a) Map showing the boundaries and health 
facilities (dots) of7\yando and Kericho districts. The two plots show the corresponding distlicl monthly reporting rate (i.c. 
the percentage of facilities in eaeh district that reported in each of the R4 months) for (b) Kericho and (e) 7\yando. 
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3.3.2 Exploratory analysis of outpatient diagnosis patterns 

The purpose of this section is to present a series of exploratory analyses that aimed to 

describe the broad spatial and temporal patterns displayed by the outpatient data for 11 

diagnostic codes relating to the principal illnesses and communicable diseases of public 

health importance in Kenya. Along with malaria, these were anaemia, diarrhoea, ear 

infections, malnutrition, measles, meningitis, pneumonia, pyrexia, respiratory diseases, 

and tuberculosis. It should be re-emphasised that, given the ambiguity associated with 

outpatient diagnosis, these categories should be interpreted as representing presumed 

rather than confirmed causes of illness. 

3.3.2.1 Methods 

For each of the II diagnostic codes, the total number of cases reported during the 84-

month period was determined along with summary statistics that describe the variation 

between facilities in the mean number of cases per month. The relative contribution of 

individual diagnoses to total outpatient morbidity was also determined by comparing 

each diagnosis-specific case count to the corresponding total case count. Relative 

contributions of each illness were then determined by month for the eight Kenyan 

provinces. This allowed a broad assessment of both the spatial variation in disease 

composition across Kenya and the way in which this composition varied during the 

study period. 

The pattern of seasonal variation in cases was investigated for each diagnostic code by 

determining the percentage of cases that occurred in each calendar month, averaged over 

the study period. Care was taken to exclude possible bias introduced by monthly 

differences in reporting rate by standardising monthly case counts by the number of 

facilities that reported. The standardised percentage of cases, p(iJ) , occurring in a given 

calendar month, i, and year,), was calculated by first dividing the total count of cases, c, 

for that month and year by the number of corresponding facility records, r, and then 

standardising by the sum ofthis value for all In = 1,2, .. .12 months in year) (3. 1)1: 

1 Please note that, from here on, numbers presented in parentheses within the text in this way 
refer to the numbered equations that appear throughout the document. 
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(3.1) 

These values were calculated nationwide and by province for each diagnostic code. In 

each case, an average seasonal profile was also determined as the mean percentage, q, 

for each calendar month, i, over the n yearsj= 1,2, .. . n, where n = 7 (3.2). 

(3.2) 

3.3.2.2 Results 

A total of 55.9 million cases were included in the database, of which the selected 11 

illnesses contributed 40 million. The total number of cases recorded under each 

diagnostic code during the seven year period ranged from under 7000 for meningitis to 

18.5 million for malaria (Table 3.3). For malaria, the mean monthly case count at 

facilities ranged from zero to 2044, with a mean of 205.0 for dispensaries, 299.1 for 

health centres and 634.2 for hospitals. The distribution of mean monthly case count per 

facility was positively skewed for all illnesses, indicating that a small proportion of 

facilities had monthly counts that were far greater than those of the majority of facilities. 

The skewness statistic was smaller (i.e. less skewed distributions) in the more common 

illnesses (e.g. malaria = 3.1) than the comparatively rarer ones (e.g. meningitis = 39.7), 

and was also smaller when facility types were considered individually. Monthly case 

counts were largest at hospitals although this pattern was again more pronounced for the 

less common illnesses. Malaria was the most common of the illnesses studied, 

contributing 33.2% of all cases over the seven years. Respiratory conditions were second 

most common with 23.4%, then diarrhoea (4.5%), pneumonia (2.3%), ear infections 

(1.3%), anaemia (0.6%), pyrexia (0.3%), malnutrition (0.2%), measles (0.2%), 

tuberculosis (0.1%), and meningitis (0.01%). The relative contribution made by each 

illness varied between provinces (Figure 3.4). Respiratory conditions, for example, 

ranged from 31.6% of total cases in Central province to 17.2% in Nairobi. Malaria 

ranged from a contribution of 41.2% in Western province to 6.9% in Nairobi. 
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Table 3.3 Total number of diagnoses and summary statistics for I I selected diagnostic codes for the 84-
month study peliod. Facility types are abbreviated as II (hospitals), He (health centres) and D 
(dispensaries). 

Diagnosis 
Facility 
type 

ALL 

H 

I-IC 

o 

ALL 

II 

l[C 

o 

ALL 

1-[ 

He 
o 
ALL 

H 

He 
D 

ALL 

H 

He 
o 
ALL 

[-I 

He 
o 

ALL 

II 

llC 

o 

ALL 

H 

HC 

o 

ALL 

H 

HC 

D 

ALL 

H 

He 
o 
ALL 

II 

He 
D 

Total cases 

348,401 

101,194 

R8,OR6 

159,l21 

2,537,495 

596,442 

755.291 

1.185.762 

716,443 

223.184 

177,437 

315,822 

18,559,406 

3,351,694 

6,036,60R 

9,171,104 

113,887 

37.179 

30,159 

46.549 

111,321 

15.492 

37.864 

57,965 

6746 

5330 

645 

771 

1,301,272 

3l0,052 

406.856 

584.364 

159,987 

24,866 

53,570 

81.551 

13,089,152 

2,451,705 

3,R39,460 

6.797.987 

55,203 

39.349 

9092 

6762 

Mean 

5.R 

20.8 

4.9 

4.5 

38, 7 

124.2 

39.8 

28.6 

11.5 

56.0 

9.1 

7.5 

262.4 

634.2 

299.1 

205.9 

19 

7.7 

1.7 

1.3 

1.7 

3.4 

2.0 

1.4 

0.2 

16 

0.0 

00 

20.2 

719 

21.5 

13.9 

2.5 

6.2 

2.6 

2.0 

1R6.7 

499.3 

194.7 

148.3 

14 

13.5 

0.5 

0.3 

Mean cases per month pcr facility 

Standard 
deviation 

13.5 

32.7 

6.9 

lO.5 

47.6 

124.9 

24.8 

23.0 

56.8 

202.1 

8.8 

7.7 

218.6 

430.9 

177.3 

140.8 

6.4 

20.1 

3.6 

2.7 

2.8 

6.5 

2.2 

2.2 

4.1 

ISO 

0.1 

0.3 

42.1 

121.3 

26.5 

20.5 

6.3 

lO.5 

6.5 

5.4 

1R9.8 

4R5.8 

125.5 

97.6 
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163.3 
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56.9 
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70.4 
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Figure 3.4 Bar charts showing the relative contribution of eleven selected diagnoses to total outpatient morbidity at 
facilities in each Kenyan province. Initials refer to malaria (Ma), respiratory conditions (R), diarrhoea (D), pneumonia 
(Pn), ear infections (E), anaemia (A), pyrexia (P) , measles (Me), malnutrition (M), tuberculosis (T), meningitis (Mn), and 
all other causes (0). Percentages are given (above bars) for all other causes and for the first five illnesses. 

~ 

SI 
'05: 

~ ~~ 
~g g 

&1 :il 

~ 

i~ ~ 
1iiS 
~. 

---_ .. - ... _ ... - ... _ .. - ... _ ", .......... .-. ... -\" ... - ............ "" -
~I ~o°:il: I 

~------------------------------~ Jan 
1996 

Jlln 
1997 

Jail 
1998 "'" 1999 

J," 
2000 

Jan 
2001 

J~ 
2002 

Nairobi 

Central 

I 

II - --~- - -~,--- - - -- ------ - ---~-

Coast 

_ - ___ r ... _ "'"A- _ - - ... , ___ ",_,- I"' ... _--_~ .. 

___ r, _ ", ..... -./_ 

Jan 
1996 

Jon 
1997 

J," 
1998 

Jarl 
1999 

J," 
2000 

J," 
2001 

J," 
2002 
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Differenccs in pcrcentage were also obscrved between facility types, with both malaria 

and respiratory conditions making a relatively greater contribution at dispensaries than at 

hospitals. Relative contribution varied temporally as well as spatially. The nationwide 

malaria contribution ranged from a maximum of 42.8% of total cases in March 1998 to a 

minimum of26.9% in December 1997. Respiratory conditions ranged from 27.2% (July 

1998) to 20.3% (October 2002), and dian-hoea ranged from 6.1 % (April 1997) to 2.9% 

(July 2002). Figure 3.5 presents time-series plots of the relative contributions of these 

three illnesses to total outpatient morbidity for each province over the 84-month period. 

All three diagnoses displayed inter- and intra-annual patterns of variation. Distinct peaks 

in malaria contribution were present in various years, of which some occun-ed 

simultaneously in sevcral provinces, whilst others were unique to a single province. 

Some regular (i.e. seasonal) intra-annual variation could be detected in the contribution 

of malaria, although this is exposed more clearly for this, and other diagnoses, by the 

seasonality profiles shown in Figures 3.6 and 3.7. 

The pattern of seasonality diffcred between diagnoses (Figure 3.6). The mean 

nationwide seasonality profile for malaria revealed a characteristic peak in July, with a 

smaller peak in February and March. The individual values for each of the seven years 

plotted around this mean expose the extent of inter-annual variation in seasonal pattern 

which was greatest during the peak months. This seasonality of malaria was similar to 

that of anaemia, respiratory conditions and pneumonia, with each showing a relatively 

consistent pattern over the seven years. Ear infections, dian-hoea and malnutrition also 

had a consistent pattern over the study period with each exhibiting modest seasonality 

peaking in May, March, and July respectively. The three least common diagnoses 

(meningitis, measles, and tuberculosis) displayed no clear pattern of seasonality, with 

large inter-annual variations. For most diagnoses, the pattern of seasonality varied 

between provinces. Provincial seasonality profiles for malaria are shown in Figure 3.7. 

Strong peaks in cases in July along with smaller peaks in February and March were 

generally evident in provinces to the west of the country (Rift Valley, Central, Nyanza 

and Western provinces), along with Coast province. Eastern and North Eastern 

provinces had less pronounced seasonality whilst Nairobi province exhibited no clear 

pattern with en-atic inter-annual variation. 
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3.3.2.3 Discussion 

The relative eontribution of eaeh diagnostie code to the total number of outpatient 

diagnoses, and the varying nationwide pattern of these contributions has been presented, 

along with temporal trends for selected illnesses over the seven-year period. One result 

that requires explanation is the large disparity between Nairobi and Central provinees in 

the relative contribution of malaria and respiratory diagnoses to total outpatient 

morbidity, given that these provinces arc contiguous neighbours. A tentative explanation 

is that the proportion of patients diagnosed under these two most common diagnoses is 

less in the Nairobi data due to a higher standard of diagnostic accuracy. A larger 

proportion of patients may be diagnosed more specifically with less common conditions 

and are therefore included in the 'other' category rather than as malaria or respiratory 

diagnoses. This argument is supported by the unusually large proportion of data from 

Nairobi province that originates from hospitals and health centres (which have relatively 

good diagnostic capabilities) rather than from dispensaries (which have relatively poor 

diagnostic capabilities) which was brought about by the unusually low reporting rate for 

dispensaries in Nairobi province of just 9%. 

Distinct peaks in the time series showing the proportion of malaria cases can be linked to 

known malaria emergencies. A pronounced peak in early 1998 in Rift Valley, Nyanza, 

Eastern and North Eastern provinces corresponds to dramatic rises in malaria morbidity 

in highland and semi-arid areas of Kenya following exceptional rainfall in October to 

December 1997 associated with the 1997-1998 El Nino event (Brown et a!., 1998; 

Karanja and Mutua, 2000). Distinct peaks are also evident in mid-1999 and mid-2002 in 

Western, Nyanza and Rift Valley provinces which again correspond to reported 

epidemic events following heavy rains (WHO, 1999; Hay et a!., 2003). 

Nationwide seasonality profiles (Figure 3.6) represent the overall distribution of cases 

across an average year for each illness. Whilst such profiles have important implications 

for health-system planning, it is vital that both temporal (i.e. inter-annual) and spatial 

variation in seasonality is considered in their interpretation. The patterns of malaria 

seasonality in each province shown in Figure 3.7 can be explained in broad terms by the 

corresponding seasonal pattern of rainfall. The strong peak in June and July in the four 

western provinces (Central, Nyanza, Western, and Rift VaHey) follows the main rainy 
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season during March, April, and May. The period between peak rainfall and peak 

malaria incidence represents the time taken for the increased rainfall to result in more 

favourable mosquito habitats, the establishment of large mosquito populations, increased 

infective biting of humans, increased infection and, finally, increased morbidity. In more 

easterly provinces, the short rainy season that occurs during October, November, and 

December has a more pronounced effect, with the corresponding peak During January 

and February. 

Inclusion of monthly case proportions for each individual year as well as the seven-year 

mean exposes the extent of inter-annual variation in seasonality, which can be attributed 

to a range of causes. It has been proposed, for example, that super-annual cycles in 

directly transmitted diseases can be driven by population dynamics under the 

susceptible, exposed, infectious, recovered (SEIR) model (Aron and Schwartz, 1984). 

An analysis of a 30-year time series of malaria admissions in Kericho in the western 

highlands of Kenya revealed that super-annual cycles accounted for over 30% of total 

variance (Hay et aI., 2001). Long-term trends may also be present for many illnesses 

driven by factors such as population movement and demographic change. For malaria, 

such trends may also be driven by the decreasing drug efficacy (Marsh, 1998; Shanks et 

aI., 2000; Bloland, 2001; Trape, 2001), and by climate change, although the relative 

significance of the latter is contested (Hay et aI., 2002; Reiter et aI., 2004). The 

provincial variation in seasonality described for malaria (Figure 3.7) reflects the spatial 

heterogeneity in the influence and timing of a range of controlling factors including 

meteorological determinants of suitability for transmission and the ecology and 

population dynamics of the mosquito vectors, parasites and at-risk populations (Snow et 

aI., 1997, 1998; Craig et aI., 1999). 

By summarising the relative contributions and seasonal patterns of the 11 selected 

diagnostic codes at outpatient departments in each province over the seven-year study 

period, a profile can be constructed that begins to describe the spatial and temporal 

pattern of outpatient morbidity in Kenya during that time. However, due to the chronic 

level of missing data within the HMIS database, the extent to which these summaries are 

representative of the true national picture is unknown. Using these incomplete data to 

infer unknown properties of the complete set requires that the temporal and spatial 

heterogeneity described in this section is considered fully. 
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3.3.3 Choice of malaria as the diagnostic code of interest 

Of the many illnesses and conditions contributing to public ill-health in Kenya that are 

included in the HMIS outpatient data set, malaria was chosen exclusively as the 

diagnostic code of interest in this project, and the disease for which treatment burdens 

would be estimated. This choice was driven by several factors. Firstly, there is a pressing 

case for the need of these estimates. As described in the previous chapter, malaria 

presents an overwhelming public health challenge in Kenya, blighting the lives of 

millions of Kenyans and imposing tangible economic constraints on development. Its 

prominence as a public health problcm is reflected in it being the most commonly 

diagnosed disease in outpatients. Furthermore, even in the context of growing awareness 

of the overall need for increascs in health information for evidence-based decision­

making, malaria is a disease for which the need for accurate quantification is especially 

acute. As discussed earlier, this particular urgency arises from the current need to 

determine and obtain donor funding for the switch from inexpensive but rapidly failing 

antimalarials to more effective, but expensive, alternatives. Secondly, malaria is a 

disease that exhibits considerable spatial (Craig et a!., 1999; Omumbo et a!., 2002, 2005) 

and temporal (Hay et a!., 1998a, J998b) heterogeneity across Kenya and basic attempts 

to compensate for missing data within the HMIS to estimate treatment burdens do not 

consider explicitly the influence of space and time and are, therefore, likely to lead to 

biased results. As such, the decision to focus on malaria presents the opportunity for 

appropriate spatiotemporal techniques to be applied to a pressing public health problem. 

3.3.4 Summary of data for model development 

Having described in detail the HMIS outpatient and georefereneed health facility 

databases that underpin this project, the specific data that were extracted and used can 

now be summarised as follows. Data consisted of monthly records of diagnoses made at 

outpatient departments of Ministry of Health facilities across Kenya over an 84-month 

period (January 1996- December 2002). Each record included the total number of 

outpatient diagnoses made at a given facility during a given month and the number of 

these diagnoses that were for malaria. The records available were not structured by age, 

sex or distinguished as initial or follow-up visits, and malaria diagnoses were generally 

not laboratory-confirmed. The data, therefore, represent total cases (TC) or presumed 
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malaria cases (MC) seen as outpatients each month at health facilities identified by a 

unique georeferenced facility code. 

3.4 Chapter summary 

This chapter has presented the two principal data sets from Kenya on which this project 

was based. The first was a routine outpatient database collected by the HMIS from 

health facilities across the country listing the tally of outpatients treated each month 

under a variety of diagnostic codes, including malaria. This data set had been linked to a 

second which contained a comprehensive list of health facilities around the country and 

included, for the first time in Kenya, extensive georeferencing information. This study 

focused only on facilities operated by the Ministry of Health and, because the facility 

data set is being updated constantly, two versions were used in this project. An earlier 

version was used for model development and testing (Chapters 7 and 8) and an updated 

version was used in the implementation of the final model (Chapter 9). This chapter has 

also presented the first detailed description of the HMIS outpatient database, assessing 

the extent and pattern of under-reporting and describing the broad spatial and temporal 

heterogeneity of malaria and other important illnesses in the outpatient record. 

56 



Chapter 4 

Methods 

57 



Chapter 4 

4. Methods 

4.1 Introduction 

The purpose of this chapter is to provide a detailed description of the modelling tools 

that have been used in this project. The discussion in this chapter is limited to 

established geostatistical concepts and techniques, whilst the incorporation and 

adaptation of these methods in a series of modelling frameworks to meet the stated 

project objectives is discussed in subsequent chapters. The following sections introduce 

the conceptual underpinnings of geostatistics, and the key concepts and tools by which 

geostatistics can be used to characterise and predict spatial variables. The extension of 

spatial-only geostatistical techniques to space-time settings is then introduced and some 

key considerations are discussed along with examples of applications. Finally, a brief 

reVIew IS included of the use of geostatistical methods in public health and malaria 

settings. 

4.2 The geostatistical paradigm 

4.2.1 Deterministic and probabilistic modelling 

The objectives of this project entail the prediction of presumed malaria cases (MC) at 

locations where it has not been sampled (government outpatient facilities in Kenya with 

data missing from the HMIS database). Such prediction requires the use of a model of 
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how the property of interest behaves at these unsampled locations. Various conceptual 

approaches exist for the formulation of such a model and a useful categorisation is 

between deterministic and probabilistic models. In a deterministic model, each 

unknown value is predicted as a single value with no associated prediction error. Such 

models can be employed when the physical mechanisms that govern the variable of 

interest are well understood and established physical equations exist that allow 

calculation of the unknown value with negligible or no error. As the scope and depth of 

contemporary scientific knowledge continues to grow, the complexity of systems for 

which deterministic modelling is feasible increases also. Sophisticated deterministic 

models have been developed to model processes in fields as diverse as sub-atomic 

physics, molecular biology, population dynamics, and glaciology. In fields such as the 

epidemiological and public health sciences, however, the systems of interest are 

generally of such complexity and magnitude that they retain an inherent unpredictability, 

even when many of the constituent processes are understood in detail. In the current 

setting, the variable of interest is the number of cases of malaria diagnosed at a given 

health facility in a given month. This variable is dependent on a myriad of massively 

complex and interacting physical, biological, demographic, social, and political systems 

that drive the prevalence of malaria in the population, the way that malaria sufferers 

utilise health services to obtain treatment, and the way they are diagnosed and recorded 

if they present to the formal health system. Given the gulf between our understanding 

and the complexity of the data-generating system, a deterministic model is neither 

feasible nor appropriate. What is needed instead is a modelling approach that recognises 

explicitly our uncertainty and allows the inevitable error associated with our predictions 

to be assessed. Probabilistic models represent an alternative paradigm to deterministic 

approaches. In a probabilistic model, the mechanism that generates the sample data and 

determines the values of the variable at unsampled locations is viewed as a random 

process. Although the mechanism in question is rarely, if ever, entirely random, the 

adoption of a probabilistic model provides a framework that can prove extremely useful 

in both predicting unsampled values and assessing the uncertainty of those predictions. 

Instead of predicting a single value for each unsampled location with assumed zero 

error, probabilistic models allow the prediction of a set of possible values with 

corresponding probabilities of occurrence. Unlike deterministic models, probabilistic 

models do not necessarily require knowledge of the physical process that generated the 

sample data. Rather, most of the information used is derived from the data themselves. 
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4.2.2 Geostatistics and the random function model 

Geostatistics has been defined in broad terms as the study of phenomenon that fluctuate 

in space (Olea, 1991). Developed originally to address problems of spatial prediction in 

the mining industry (Matheron, 1971), the generality of the approach has led 

subsequently to its application in a diverse range of settings including geological, 

atmospheric, environmental, and epidemiological SCIences. Geostatistics offers a 

collection of primarily probabilistic tools that have been developed to aid the 

understanding and modelling of spatial variability, with the principal motivation of 

predicting unsampled values dispersed in space. In common with most probabilistic 

approaches, each unobserved value z is characterised as the outcome of a random 

variable CRY) 2, defined as a variable whose values are randomly generated according to 

some probabilistic mechanism (Isaaks and Srivastava, 1989). RVs can be categorical or 

continuous with the probability of different outcome values being determined by some 

probability distribution. In spatial settings, each RV 2 and outcome z are associated with 

a certain location Uo = (x,y), a vector of spatial coordinates, and are denoted as 2(uo) and 

z(uo), respectively. The uncertainty about values of 2(uo) can be fully characterised by a 

univariate cumulative distribution function (cdt) which models the probability that 2(uo) 

does not exceed any given outcome z: 

(4.1) 

In the absence of any information about a given RV, all possible outcomes have an equal 

probability of occurrence and, as such, the cdf model does not increase our ability to 

infer the value of z( uo). If a set of data from n neighbouring locations {z( ua), ex 1,2, ... , 

n} is available, however, the information provided by these data may allow this prior 

modcl of uncertainty to be updated. This posterior model, updated by neighbouring data 

z( ua), is termed a conditional cumu lative distribution function (cedt): 

(4.2) 

A central theme of geostatistics is the provision of a framework by which sample data 

z(u,,) can be used to update prior models of uncertainty for unsampled RVs 2(uo) in 
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order to produce posterior ccdfs from which predictions of the unsampled value z( Uo) 

can be derived. Such a framework is provided by the random function (RF) model. 

A spatial RF Z(u) is defined as an infinite set of usually dependent RVs Z, one for each 

possible location u in the study area jl, {Z(u), 'd u E jl }(Goovaerts, 1997). Just as a 

univariate cdf of an R V Z can be used to represent uncertainty around an unknown 

outcome value z, a multi-point cdf can be used to represent the joint uncertainty around 

outcome values {z( UI),Z( U2), ... , z( UN) }at any given set of N locations spatially distributed 

across the study area: 

(4.3) 

The set of all possible N-point cdfs for any value of N (N ~ P:J) and for any choice of 

locations constitutes the complete spatial law of the RF Z(u). In principle, a RF is only 

characterised fully by this complete spatial law. In practice, such complete 

characterisation is both infeasible and unnecessary for the prediction of unobserved 

values. The approach taken is to characterise the joint relationship between RVs at no 

morc than two locations at a time, say Z( uo) and Z( Uo '), by the one- and two-point cdfs 

and corresponding moments. Of particular importance are the 

two-point covariance: 

CCuo, Uo') = E{Z(uo) . Z(uo')} - E{Z(uo)} . E{Z(uo')} (4.4) 

and variogram: 

2y(uo, uo') = Var[Z(uo) - Z(uo')] (4.5) 

Under conditions of stationarity, the degree of dependencc between two RVs separated 

by the same lag h ((h uo' - uo), a vector of distance and direction) is the same for any 

such pair Z(uo) and Z(uo') across the study area. Under these conditions, a number of 

parameters of the RF exist that summarise this bivariate dependence, dependent only on 

h and not on u. These include its covariance function, CCh): 
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C(h) = E{Z(u) . Z(u + h)} - E{Z(u)} . E{Z(u + h)} (4.6) 

and its variogram, y(h): 

2y(h) E {[ Z(u) - Z(u + h)f} (4.7) 

The adoption and parameterisation of a RF model provides a powerful framework for 

the prediction of unsampled values dispersed in space. The following section describes 

the principal considerations and tools by which this framework is implemented. 

4.3 Spatial prediction with geostatistics 

4.3.1 Stationarity 

The existence and inference of the covanance function (4.6) or variogram (4.7) 

described above requires certain assumptions regarding the stationarity of the RF model. 

Strict stationarity entails that the multivariate cdf of the RF is invariant under translation, 

such that the N-point cdf of any given set of N RV s {Z( U l)'Z( U2), ... , Z( UN)} is the same 

of that of any other translated set of N RVs {Z(Ul) h, Z(U2) + h, ... , Z(UN) h}, 

regardless of the translational lag h. Inference of the covariance function assumes 

implicitly that allp RV pairs {Z(Ui)' Z(ui+h); i = 1,2, ... ,p} separated by the same lag h 

share the same two-point cdf. Under these conditions the two-point covariance C( Uo, Uo ') 

is dependent only on lag and not on location, allowing all RV pairs (Z(uo), Z(uo')) with 

that separation vector to be used in inference of the covariance function for that lag, 

C(h). This location independence of the two-point cdf, in addition to the expectation 

E{Z(u)}, is termed stationarity of order two or second-order stationarity, defined 

formally by: 

E{Z(u)} = m 'cj u E jl (4.8) 

and: 

C(h) = E{Z(u) . Z(u + h)} - m2 
'cj u E jl (4.9) 
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where m is the expectation of the RF (Journel and Huijbregts, 1978). 

Second-order stationarity also implies stationarity of the variogram (4.7) and leads to the 

following relationship between it and the covariance function: 

y(h) = C(O) ~ C(h) (4.10) 

where C(O) is the covariance at zero lag, equivalent to the variance of the RF. However, 

the definition of the variogram does not require second-order stationarity. In addition to 

condition (4.8) above, it is sufficient that the increments of the RF, [Z(u) - Z(u h)], are 

second-order stationary. This is termed intrinsic stationarity. 

When defining stationarity, it must be stressed that it is simply a property of the RF 

model and, hence, a modelling decision which is necessary for statistical inference. 

Stationarity is not a real-world characteristic of the phenomenon of interest or a 

hypothesis that can be tested. For a given data set, however, stationarity can be judged 

subjectively as an appropriate or inappropriate modelling decision and this may depend 

on the objectives of the study and the nature of sampling as well as the underlying 

characteristics of the phenomenon. Alternative approaches that can be implemented 

when a stationarity RF is considcred inappropriate are discussed later. 

4.3.2 Inferring second-order moments of the random function model 

4.3.2.1 Variogram estimation 

It is necessary to characterise the dependence between R V paIrs with different 

separations h for use in prediction algorithms such a kriging, described later. This 

requirement underpins the rationale for inferring the covariance function or variogram of 

the RF, as defined above. The most common approach taken is to estimate the variogram 

with the n sample data using a straightforward method-of-moments approach. For each 

lag, h, the sample (semi)variogram2 j>(h) can be estimated as half the mean squared 

1 Strictly, the term variogram refers to the function 2y(h) - E ([ Z(u) - Z(u + h)l"]. and the semivariogram refers to this 
function divided by two. hence. y(h). It is the latter value that is generally estimated and. because of its useful relation to 
the covariance function (4.10), used in interpolation algorithms. Hereafter. the term variogram is used in place of 
semivariogram. accepting that strictly they refer to different values. 
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difference between all i = 1,2, ... , p data pairs separated by that lag: 

(4.11 ) 

Semivariance values can be calculated for every data pair in the data set and compared 

to the corresponding lags, h, by plotting the resulting variogram cloud. An alternative 

approach is to pool data pairs according to a finite set of regularly spaced lags, with each 

value of h actually representing a defined range of lag separations. The latter approach 

allows a larger sample, and hence a more stable estimate, for each value of r(h). A 

further issue is the effect of direction on the variogram. Where semi variance is 

dependent only on the separation distance, :hl, the variogram is deemed isotropic. Where 

the direction of separation also has an effect, the variogram is deemed anisotropic. In the 

latter case, data pairs arc generally pooled by both distance and direction, and separate 

sample variograms estimated for each direction. 

4.3.2.2 Variogram modelling 

Variogram inference using the sample variogram defined above (4.11) leads to sample 

values of r(h
k

) at a finite number oflags (and possibly directions) k = 1,2, ... ,K. Because 

interpolation algorithms such as kriging require semivariance values for any possible lag 

h, it is necessary to fit a continuous model y(h) to the K sample values. When choosing 

variogram models to fit to the sample values, it is imperative that the model chosen is 

deemed permissible. Of critical importance is that when any given RV, Y, is created as a 

finite linear combination of i= 1 ,2, .. . ,n RV s Z( uD across the study area, the variance of Y 

is non-negative. Such a linear combination is cxpressed formally as: 

n 

Y = LAiZ(UJ (4.12) 
i=1 

The variance of Y is expressed as a linear combination of covariance values: 
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11 11 

Var[YJ = LLA;AjC(U; -U) (4.13) 
;=1 j=l 

and the covariance function CCh) must be chosen such that Var[Y] O. Covariance 

functions that fulfil this requirement arc deemed positive definite. Because variogram 

models arc used ultimately in kriging algorithms to calculate eovariances, it follows that 

the model y(h) must also result in non-negative variances for Y. Accounting for an RF 

model that is only intrinsically stationary (and, hence, the covariance function does not 

exist), the variance of Y can be expressed in terms of the variogram as: 

11 n 

Var[YJ = - LLAiAjYCUi -u) (4.14) 
;=1 j=l 

Variogram models that ensure non-negativity of the vanance of Yare termed 

conditionally negative definite. The condition is that the sum of the weights ); is zero, 

which is necessary to remove the covariance term CCO) from the expression. In practice, 

rather than exhaustively check any given model for conditional negative definiteness, 

variogram models are selected from a set of established models that are known to meet 

this condition (e.g. Journel and Huijbregts, 1978, Ch. 3; Goovaerts, 1997, Ch. 4; Deutsch 

and J ournel, 1998, Ch. 2). Of this set, those variogram models considered in this study 

are: 

the spherical model: 

if h:::; a 
(4.15) 

if h > a 

the exponential model: 

(4.16) 
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the Gaussian model: 

- [ [(3h)2JJ r (h) = c· 1 - exp -----;;- (4.17) 

the power model (where OJ is a power 0 < OJ < 2) : 

(4.18) 

and the periodic model: 

r(h)=C{l-CO{~.ff JJ (4.19) 

where h is the distance component of the lag vector (h = Ihl), c is the structural 

component or sill parameter, and a is the range parameter (Deutsch and Journel, 1998, 

p. 25). These parameters are shown for a hypothetical spherical variogram model in 

Figure 4.1, and each model type is shown in Figure 4.2. 

y(h) 

Sill ........................................... ~ ... ""l'""------------t 

Range 
h 

I<'igurc 4.1 A hypothetical variogram modeL Variograms plot scmivariance (y) against, in this case, omnidirectional 
distance, h. Thc model shown is a nested structure consisting of a nugget efTect model with structural component Co, and a 
sphelical model with structural component c,. The sill valuc is the sum of these structural components, and the distance at 
which this sill is reachcd is termed the range. 
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y(h) Nugget Spherical Power 

y(h) Exponential Gaussian Periodic 

I( 
Distance h Distance h Distance h 

Figure 4.2 Examples of six orthe most common permissible variogram models. 

The sill parameter is the limiting value (( C/)), equivalent to the a priori variance C(O) of a 

stationary RF. Variogram models that reach a sill are deemed bounded or transitive. The 

lag distance h at which the sill is reached is represented by the range parameter. The 

spherical model reaehes its sill at value a, the actual range. In the case of the 

exponential and Gaussian models, however, the sill is reached asymptotically and a 

practical range is therefore defined as the distance at which the variogram reaches 95% 

of its sill, yCa) O.95·c. The range represents the separation distance beyond which pairs 

of RVs are modelled as independent, that is, no spatial dependence exists. The power 

model is an example of an unbounded model and does not reach a sill. Such models 

represent RFs with an unlimited capacity for spatial dispersion for which neither the a 

priori variance nor covariance function can be defined. The periodic model is used to 

represent RFs in which a pattern is repeated regularly through space. In this case, the 

range parameter defines the distance to the first peak, equivalent to the size of the 

underlying cyelic feature (Deutsch and J ournel, 1998, p. 25). When modelling 

semi variance through time, a seasonally repeating feature can be modelled using a 

periodic model with a range of 6 months which results in a period of 12 months. The 

periodic model is conditionally negative definite in I-D only. 

The value of the variogram at h = 0 is strictly O. Often, however, sample semivariance 

values suggest a model should be used that intercepts the ordinate at some positive 

67 



Chapter 4 Methods 

value. This discontinuity is termed the nugget effect, and is modelled with a nugget 

model, defined simply as: 

~ {O yCh) = c 
if h = ° 
if h > ° (4.20) 

The nugget effect occurs when the expected difference z( u) - z( u + h) remains positive 

even when the separation h tends to zero. This expected difference can be caused by 

several factors including measurement error, spatial variability over distances smaller 

than the shortest sampling interval, or non-spatial sources of variability that may operate 

independently at very close locations. In cases where the sample variogram suggests a 

complete absence of spatial auto-correlation (a pure nugget effect), the nugget effect 

model can be used in isolation. 

In many situations, two or more separate models are used together as a linear 

combination to form a nested variogram model. For example, a nested model y(h) 

could be constructed using a nugget effect (h), Gaussian 

model as y(h) (h) + (h). The sill value of a nested variogt'am is 

defined by the sum of the structural components of each constituent model. The ratio of 

the nugget model to this sill is termed the relative nugget effect and is indicative of the 

proportion of the total variance of the RF that is not due to spatial variability. 

4.3.3 Kriging 

Consider a set of spatial data, z(ua), of an attribute Z at n locations Ua , (J. 1,2, ... , n and a 

set of q unsamplcd locations, U/I, z*( up), f3 = 1,2, ... , q for which predictions are required. 

Kriging is a geostatistical term for a family of generalised linear regt-ession techniques 

that provides an approach by which the available data z(ua) can be used to predict values 

z*(up) at the unsampled locations (Krige, 1951; Matheron, 1971). Kriging techniques 

operate within the conceptual framework provided by the RF model and exploit spatial 

dependence in the phenomenon of interest, as modelled by the covariance function or 

variogram. Interpreting each datum z(uo) as a realisation of the RV Z(ua), the kriging 
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predictor Z*(uo) can be expressed as a basic linear regression predictor: 

n(u) 

Z*(uo)-m(uo) = LAa(Uo)[Z(ua)-m(ua )] (4.21) 
a=1 

where )'a is the weight assigned to the datum corresponding to Z(ua) and m(u"J and m(uo) 

are the expected values of the RVs Z(Ua) and Z(uo), respectively. The prediction error 

can also be defined as a random variable Z*( uo) - Z( uo) and the objective of kriging is to 

minimise the variance of this error, termed the error variance O"~(uo)' under the 

constraint of unbiasedness (i.e. under the constraint that E{ Z*(uo) - Z(uo) } = 0 ). 

Numerous variations of kriging exist, each targeted at subtly different prediction 

problems. Two widely used approaches are of relevance in this project, simple kriging 

(SK) and ordinary kriging (OK), and these are now discussed in more detail. 

4.3.3.1 Simple kriging 

The RF Z(u) can be decomposed into a trend component m(u) and a residual component 

R(u): Z(u) = R(u) m(u). In SK, the trend component is modelled as a known stationary 

mean m which allows the basic predictor (4.21) to be re-expressed as the SK estimator 

Z*SK(UO): 

(4.22) 

where ).a are termed the kriging weights. A minimisation procedure (e.g. see Goovaerts, 

1997, p. 128) can be implemented to derive a system of equations in terms of Z­

covariances for the set of n( uo) kriging weights that minimise the error variance ()~ (uo) : 

n(u) 

LA,8(Uo)C(u a - u,8) = C(ua - uo) 
,8=1 

a = 1,2, ... ,n(uo) (4.23) 

The two covariance terms are C( up - ua), the covariance between R V s at two data 
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locations Z(ua) and Z(ufJ), and C(u lZ - uo), the covariance between the RV at a given data 

location Z(u r,) and at the prediction location Z(uo). These covariance values are 

calculated using a covariance function or, more commonly from a variogram model 

fitted to the sample variogram as described previously, which is then converted into a 

covariance function using relation (4.10). 

The system of equations (4.23) is solved using a matrix operation. In matrix notation, 

these equations are written as: 

KSK . ASK (uo) = kSK (4.24) 

Where KSK is a n(u) x n(u) matrix of the eovarianees between RVs at data locations, kSK 

is a vector of the n( uo) co variances between R V s at data locations and the prediction 

location, and ASK is a vector of the n(uo) kriging weights: 

(4.25) 

The vector of kriging weights is obtained by inverting the covariance matrix KSK and 

multiplying the resulting matrix Kl SK by the covariance vector ksK: 

(4.26) 

The minimised error variance, termed the kriging variance o-iK(UO) ' is defined as: 

n(uo) 

(}~K (uo) = C(O) - I Aa(Uo)C(Ua - Uo) (4.27) 
a=] 

and is also calculated using the matrices defined above by: 

(4.28) 
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4.3.3.2 Ordinary kriging 

OK differs conceptually from SK in the way the RF trend component m(u) is modelled. 

Rather than consider m(u) to be a known stationary mean m, OK considers the mean to 

be unknown and limits its domain of stationarity to a local neighbourhood centred on the 

location Uo to be predicted. This approach has the important practical implication that the 

local mean may vary considerably over the study area which, in practice, is often 

considered a more appropriate modelling strategy. Under OK, the basic linear predictor 

(4.22) is expressed as a linear combination of the n(uo) RVs Z(ua ) and the constant local 

mean m(uo): 

(4.29) 

In order to remove the unknown local mean m(uo) from the expression, and to ensure the 

unbiasedness of the predictor (i.e. that E{Z*(uo) - Z(uo)} = 0), the sum of weights is 

constrained to sum to 1, thus removing the second term. This allows the OK predictor 

Z;K (uo) to be exprcssed as: 

n(ua) 

Z~K (uo) = LAa(Uo)Z(ua) (4.30) 
a=l 

with the unbiasedness constraint: 

n(uo) 

LAa(uo) = 1 (4.3\) 
a=l 

As with SK, a minimisation procedure (c.g. see Isaaks and Srivastava, 1989, p. 286 -

289) can be implemented to derive a system of equations in terms of Z-covariances for 

the set of n(uo) kriging weights that minimise the error variance (}~(uo) of the above 

predictor under the constraint of unbiased ness: 
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n(1I0) 

2:A,8(Uo)qua -U,8)+ J!OK(U O) = qUa -Uo) ex 1,2, ... ,n(uo) 
,8~1 (4.32) 

n( lI o) 

2:A,8(UO) =1 
,8~1 

The two covariance terms in (4.32) correspond to those in the equivalent SK system 

(4.23) and, although the mean m(uo) is assumed stationary only within local 

neighbourhoods, the covariance is gencrally inferred from all data available across the 

study area. The term ,LlOK(UO) is the Lagrange parameter (e.g. see James, 2001, p. 655) 

and is introduced as part of the minimisation procedure to maintain the balance of n( uo) 

-I- 1 equations and n( uo) + 1 unknowns that is upset by the addition of the fLlrther 

equation for the constrained weights (4.31). 

As for SK, the OK system of equations (4.32) is solved using a matrix operation, written 

as: 

KOK . AOK (uo) = koK (4.33) 

The addition of the Lagrange parameter alters these matrices from the SK case as 

follows: 

C(U1 -u1) C(u1 -ul1 (lI
o
») 1 ~(uo) C(u1 -uo) 

C(un (lI
o
) -u1) C(U I1 (1I

0
) -U I1 (1I

0
») AI1 ( lI o) (uo) C(U n(lIo) -uo) 

(4.34) 

1 1 0 J!(u o) 1 

The vector of kriging weights is obtained in the same way, by inverting the covariance 

matrix KOK and multiplying the resulting matrix K-
1
0K by the covariance vector kOK : 

(4.35) 
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The ordinary kriging variance o-;K(U
O
)' is defined as : 

n(uol 

O"~K(UO) = C(O)- .LAa(Uo)C(Ua -UO)-,LLOK(U O) (4.36) 
a=l 

and is calculated as: 

(4.37) 

4.3.3.3 Features of kriging predictors 

Both OK and SK are exact interpolators such that all data values z(ua) are honoured at 

their locations, z*( uo) = z( Ur,) V Uo = Ur" both produce unbiased predictions in the sense 

that E{ Z*(uo) - Z(uo) } = 0, and both minimise the modelled prediction error variance 

o-~(uo)= var[Z*(uo) - Z(uo)]. The weighting system used by the OK and SK predictors 

takes into account both the proximity of each datum to the prediction location (via the 

covariance term qUa uo)) and the proximity between data (via the covariance term 

qUa Up)), with the latter consideration accounting for redundancy between data. 

In addition to the prOVISIOn of a modcl for the vanogram or covanance function, 

implementation of either predictor requires various parameters to be set by the user. Of 

particular importance is the choice of search strategy that defines the number n(u) of 

local data {z(ua), ex = 1,2, .. . ,n} that are used in each prediction z*(u). Generally, a local 

search radius or limit value is implemented such that n(u) is restricted to substantially 

smaller than the total number of data available across the study area. This practice is 

motivated by various factors. Firstly, the reliability of covariance estimates for large 

separation distances Ihl is questionable since the number of data pairs with this 

separation is often small. Secondly, the use of a local search neighbourhood with OK 

allows local fluctuations in the mean to be taken into account. Thirdly, the influence of 

distant data is generally screened by those more proximate, such that their inclusion has 

little effect on the prediction. A further benefit of reducing the number of data involved 

in each prediction is that the computational requirements decrease dramatically, with 
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processing time approximately proportional to (n(u))3. 

OK is preferred to SK in many situations because it requires neither knowledge or 

stationarity of the mean over the entire study area (Goovaerts, 1997). The difference 

between OK and SK predictions at a given location is dependent on the departure of the 

local mean from the global mean. In regions with a small local mean, the OK estimate 

will be smaller than the SK estimate, with the converse applying for regions with a 

larger local mean. The difference between OK and SK predictions increases as 

predictions are made at locations more distant from any data, since the relative influence 

of the mean increases in these situations. 

4.3.3.4 Kriging variance as a measure of prediction uncertainty 

The kriging variance serves as a criterion for optimisation of the kriging equations as 

described above. However, it also provides useful information about each prediction. 

The kriging variance is dependent on the variogram or covariance model and on the 

spatial configuration of the data in relation to the prediction location. Because of this 

dependence, the kriging variance provides a measure of the uncertainty of each 

prediction, with uncertainty increasing for RFs with large spatial variance, and for 

predictions that are made at locations more distant from data. The kriging variance is not 

dependent, however, on the data values, such that any two sets of data with different 

values but the same spatial configuration would yield a prediction with the same kriging 

variance. This independence reduces the utility of the kriging variance as an absolute 

measure of uncertainty since, for example, it is intuitive that a local set of data with large 

variability will result in a less certain estimate than a less variable set with the same 

spatial configuration. As such, the use of kriging variance is generally restricted to a 

relative measure of uncertainty, allowing relative comparison of the uncertainty of 

individual predictions and different data configurations. 

4.3.3.5 Effect of va rio gram structures on kriging predictions 

Having outlined the kriging process, and explained the role of the variogram model, it is 

appropriate to consider how the characteristics of the variogram model affect the 
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resulting predictions. If two variograms are considered that differ only in scale, e.g. y(h) 

and 2y(h), the values of the resulting kriging predictions will not differ. This is because 

the relative influence of different data does not change and, henee, the laiging weights 

remain unaltered. The kriging variance, however, is affected in proportion to the change 

in scale. The shape of the variogram model, as determined by the choice and 

parameterisation of the constituent permissible models, can have a substantial effect on 

both prediction values and kriging variance. Models with a parabolic shape close to the 

origin, such as the Gaussian model, are best suited to representing very continuous 

phenomena, and result in much larger influence being attributed to data very close to the 

prediction location. Modcls such as the spherical and exponential model have a linear 

shape close to the origin, which leads to the influence of nearby data declining more 

evenly with increasing separation from the prediction location than is the case for the 

Gaussian model. Modcls with a large nugget effect mean that the relative importance of 

data proximity in determining influence is small. In the extreme case, with a pure nugget 

effect modcl, the influence of proximity is zero and all data are weighted equally. Under 

these conditions, the prediction is equivalent to the mean of the data. The variogram 

range reflects the maximum distance over which spatial dependence exists, such that 

points separated by greater distances are deemed independent. 

For a given data set and an RF model with a given a priori variance, variogram models 

with a small nugget and large range values result in relatively more certain laiging 

predictions than do models with a large relative nugget effect andlor a small range value. 

The equivalent real-world interpretations are that, in the former scenario, the property of 

interest varies smoothly through space and is spatially dependent over large distances 

whilst, in the second scenario, the property varics erratically in space over short 

distances such that there is only a wcak tendency for proximate points to be more similar 

than those much further apart. 

4.3.3.6 Cross-validation 

Having implemented a kriging predictor to make a set of predictions Z *( uI!) at f3 = 

1,2, ... ,q unsamplcd locations, it is generally necessary to assess the accuracy of these 

predictions, that is to assess the values of z*(u;3) - z(u;3). However, in genuine prediction 
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settings the set of q true values z( up) is, by definition, unknown such that the accuracy of 

predictions cannot be assessed directly. An alternative strategy is provided by eross­

validation which allows the prediction method to be tested at the locations of the 

existing observations. Cross-validation proceeds by the removal of a single datum, z(u,x). 

The kriging technique in question is then implemented to obtain a prediction z*(ua) at 

this point, and the elTor between datum and prediction z*(ua) - z(u,,) is noted. The datum 

is then replaced, another removed, and the process begins again, eventually repeating for 

all ex = 1,2, ... , n data locations to provide a complete set of predicted values for 

comparison with the data set. 

A senes of summary statistics can be calculated from the set of cross-validation 

predictions to alloyv, for example, straightforward comparison between different 

prediction approaches. Summary statistics used in this project include the cOlTelation 

coefficient between the predicted and actual set: 

(4.38) 

the mean prediction elTor (ME): 

(4.39) 

and the mean absolute prediction elTor (MAE) (Saito and Goovaerts, 2000): 

(4.40) 

The cOlTclation coefficient provides a straightforward measure of linear association 

between the data and prediction sets, the ME provides a measure of the bias of the 

predictor, and the MAE provides a measure of the mean accuracy of individual 

predictions. 

The use of cross-validation as a method of accuracy assessment is limited by a number 
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of factors. Firstly, although each datum is removed temporarily to generate a eross­

validation prediction at that point, the variogram is not recalculated with the datum 

removed and, hence, each cross-validation prediction is not strictly independent of the 

datum to which it is compared. Where the number of data is large, however, and no 

extreme outliers are present, the influence of an individual datum on the sample 

variogram can be considered negligible in most cases. Secondly, the use of simple 

arithmetic averages to generate estimates of ME and MAE may result III biased 

estimates when the data are clustered, and this issue is revisited in later chapters. 

4.4 Space-time geostatistics 

Geostatisties was conceived as an approach for the investigation and prediction of 

natural phenomena distributed across space. The restriction of the conceptual approach 

to the spatial domain was appropriate for the geological settings in which the paradigm 

beeame established. The estimation of ore reserves, for example, requires no 

consideration of the temporal domain since, in the timeseales that are likely to be of 

interest, the variability through time of the property under study can be considered 

negligible. As the range of disciplines in which geostatistical tools have been applied has 

expanded, however, prediction scenarios have been increasingly encountered in which 

variability of a property through time, as well as space, is of interest. Where data on such 

properties are themselves collected at appreciably different times, and where predictions 

are required at unsampled points in time as well as space, it is clear that an approach is 

required in which the temporal domain, as well as the spatial domain, is considered 

exp licitly. 

Space-time geostatistics is a broad term that incorporates a diverse set of approaches in 

which geostatistical concepts and tools developed originally for spatial-only settings 

have been adapted for the characterisation and prediction of properties that vary, and are 

investigated, through both time and space. Examples of the use of space-time 

geostatistical approaches can be found in a wide range of disciplines. Such techniques 

have been used to model the space-time distribution of pollutants in the atmosphere 

(Casado et aI., 1994; Christakos and Vyas, 1998; Meiring et al., 1998; De Iaco et al., 

2002; Host et aI., 2004; Nunes and Soares, 2005) and how such pollutants are deposited 
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on the land surface (Bilonick, 1985; Haas, 1990, 1995; Kyriakidis and Journel, 2001). 

Similarly, the dispersion of chemicals has been modelled in oceanographic (Lophaven et 

aI., 2006) and groundwater settings (D'Agostino et aI., 1998; Douaik et aI., 2005; 

Vanderlinden et aI., 2006). Geostatistical space-time interpolation and simulation 

techniques have been used in hydrological studies (Christakos et aI., 2000; Araghinejad 

and Burn, 2005) and the assessment of soil- and groundwater resources (Rouhani and 

Myers, 1990; Snepvangers et aI., 2003; Jost et ai., 2005). Further applications include 

the modelling of spatiotemporal patterns in air temperature (Bogaert and Christakos, 

1997), the evaluation of long-term wind-field strength as a source of renewable energy 

(Haslett and Raftery, 1989), and the simulation of regional daily precipitation 

(Kyriakidis et ai., 2004). 

4.4.1 Approaches to space-time geostatistical modelling 

Of the broad swathe of conceptual approaches by which space-time variables can be 

represented in a geostatistical framework, two distinct strategies have been identified 

(Kyriakidis and Journel, 1999). The first strategy is to model the variable as either a set 

of temporally correlated spatial RFs at T points in time (multiple RF model) or a set of 

spatially correlated time series (TS) located at n locations in space (multiple TS model). 

The choice between these two sub-strategies is likely to be motivated by the relative 

abundance of data in the two domains. Where a large number of data have been 

collected through time at a small number of locations in space, the multiple TS model is 

likely to be more appropriate. Conversely, where data have been collected densely in 

space but at only a small number of times, then the multiple RF model may be more 

suitable. In both cases the spatiotemporal continuity is modelled using the linear model 

of coregionalisation (LMC). In this model, every T spatial RF or n TS is characterised 

with, respectively, a spatial or temporal variogram or covariance function. Temporal 

continuity between all T RFs is characterised by T(T - 1)/2 cross-variograms or cross­

covariance functions, whilst spatial continuity between n TS is characterised by n(n -

1 )/2 such functions. In this LMC approach, predictions are made using cokriging (e.g. 

see Goovaerts, 1997, p. 203 - 258) and can be made only at space time locations within 

each spatial RF or TS. This restriction represents a limitation to the use of an LMC 

model in situations where predictions are required at any space-time location within the 
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spatiotemporal domain of interest. A further limitation is that the number of auto- and 

eross- variograms or covariance functions that must be estimated and modelled, 

(T(T + 1)/2 or n(n 1)/2), can become impractical if both T and n are large. 

A second strategy that overcomes the limitations described above is to represent the 

space-time phenomenon of interest using a single space-time RF Z(u, t) where u is a 

vector of spatial coordinates and t is an instant in time. This approach extends the RF 

concept introduced earlier for a spatial-only setting to include time as an additional 

dimension. RVs Z((u, t)o) exist for all possible space-time locations (uo, to) in the 

spatiotemporal study domain, each characterised by their cdf: 

F((u, t)o; z) = Prob{Z((u, t)o) z} (4.41 ) 

Any set of N space-time RVs are characterised by the corresponding N-point cdf: 

F( (u, t)J, . .. ,(u, t)v; Z1, ... ,ZN) = Prob {Z((u, t)l) Z1 , ... , Z((u, t)N) ZN} (4.42) 

The set of all possible N-point cdfs for any value of N (N C;;;;; and for any choice of 

space-time locations constitutes the complete spatial law of the RF Zen, t). Separations 

between space-time locations are defined by a space-time lag (hs, hI) where hs is the 

spatial lag vector, as defined previously, and h is the scalar separation in time. Unlike 

space, there is no concept of anisotropy in time. 

Mirroring the spatial-only case, the continuity of the space-time RF can be characterised 

by the space-time covariance function, C(hs, hI): 

C(hs, hI) E{Z(u, t) . Z(u + hi, t + hD} - E{Z(u, t)} . E{Z(u + hs, t + hI)} (4.43) 

and the space-time variogram, r(h" hi): 

2ieh
" 

hI) = E {[ Z(u, t) - Z(u + h." t + hl)f} (4.44) 

The space-time RF allows predictions to be made at any given space-time location 
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within the study domain. As in the spatial-only case, this process requires estimation and 

modelling of one of the above sh'uctural functions, and the implementation of a kriging 

procedure. The extension of these processes to the space-time case is now summarised. 

4.4.2 Space-time variogram estimation and kriging 

Consider a set of space-time data z(( u, t)a) of the attribute z at n space-time locations a = 

1,2, ... ,n, and a set of predictions z*(( u, t)fJ) required at q unsampled space-time locations 

f3 = ] ,2, ... ,q. Mirroring the spatial-only case, an accepted geostatistical approach is to 

infer the space-time autocorrelation structure of the RF by using the n data to estimate a 

sample space-time variogt'am )/,r(h"hJ between all i = 1,2, ... ,p, data pairs at a series of 

regular space-time lags: 

(4.45) 

A continuous 2-D space-time variogt'am model, 51<1 (h" h{ ), can then be fitted to this 

variogt'am surface allowing semi variance values to be estimated at any lag for input into 

a space-time kriging system. 

The extension of spatial-only OK to space-time OK (STOK) results in an equivalent 

predictor Z*STOK((U, t)o), a linear combination of n(u, t) RVs at data locations local in 

space and time to the prediction location: 

11((U,I)O) 

Z;TOK ((u,t)o) = LArx((u, t)o)Z((u, t)rx) (4.46) 
a=l 

with the equivalent unbiasedness constraint: 

fl((U,I)O) 

LAiX((U,t)o) = 1 (4.47) 
rx=] 
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Again, the utility of this approach lies in its capability to determine the weight, Jea((u,t)o), 

assigned to each neighbouring datum such as to minimise the prediction variance: 

(4.48) 

4.4.3 Models for space-time covariance structures 

A critical stage in thc process described above is the choice of model for the variogram 

or covariance function and the estimation of model parameters. As in the spatial-only 

case, the principal concerns when modelling space-time autocorrelation structures are to 

ensure that the model chosen is valid (i.e. that conditional negative definiteness or 

positive-definiteness is ensured for variogram or covariance function models, 

respectively) and that the model is sufficiently flexible to allow fitting to the data though 

careful estimation of model parameters. Whilst a well established set of models exists 

for spatial-only variograms (Deutsch and loumel, 1998), a more diverse range of models 

have been proposed for the modelling of space-time autocorrelation structures 

(Kyriakidis and loumel, 1999; De Cesare et aI., 2001). These include the product model 

(Rodriguez-Iturbe and Mejia, 1974), the metric model (Dimitrakopoulos and Luo, 1994), 

the integrated product model (Cressie and Huang, 1999), and the product-sum model 

(De Cesare et aI., 2001; 2002). In this study, this last class of model was adopted 

because: (a) it offers a large class of flexible models that impose less constraints of 

symmetry between the spatial and temporal correlation components than other classes, 

(b) it does not require an arbitrary space-time metric to be imposed, and (c) the model 

can be fitted to data using relatively straightforward techniques similar to those 

established for spatial-only variograms. 

The product-sum space-time variogram model, rjh" hJ, is defined in terms of the 

separate spatial and temporal variograms, Ys and Y;, and the corresponding spatial and 

temporal sills, C(O) and ClO): 

(4.49) 
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The parameters k1' k2' and k3 are defined as: 

(4.50) 

(4.51) 

k3 = [Cst (0,0) - C,(O)]jCt(O) (4.52) 

where cstCO,O) is the sill of the space-time variogram, i.e. the limit value at large space­

time lags. Various constraints are placed on these parameters to ensure model validity 

(see Dc Cesare ct a!., 2001). A key advantage of the product-sum model is that Y,t(h"ht ) 

is defined entirely by parameters of the sample space-marginal and time-marginal 

variograms and the space-time sill, Ct(O,O), which can all be estimated from the sample 

space-time variogram surface (4.45). The space-marginal variogram plots the 

semivariance at each spatial lag for temporal lags of zero, i.e. Yst(hs'O), and is equivalent 

to the mean of all spatial-only variograms for all valucs of ht. Conversely, the time­

marginal variogram plots semi variance at each temporal lag for spatial lags of zero, 

Y" (0, hi)' and is equivalent to the mean of all temporal-only variograms for all values of 

hs . 

4.5 Geostatistics and public health 

The robust conceptual framework offered by the RF model and its utility in exploring 

and predicting heterogeneous spatial and space-time properties has resulted in the 

approach being applied to an increasingly diverse range of problems in many disciplines. 

Of particular relevance to this project are the growing number of studies in which 

geostatistical concepts and tools have been applied to public health problems. The most 

common motivation for the application of geostatistical techniques in a public health 

context has been the production of continuous maps of a given public health variable 

that has been sampled through space (and/or time). A straightforward example is 

provided by Carrat and Valleron (1992) who used kriging to produce maps from data on 

influenza morbidity in France. 
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4.5.1 Geostatistics and areal public health data 

Frequently, data relating to public health status are available in an aggregated form over 

finite spatial units. The areal data might represent, for example, the incidence rate (e.g. 

number of cases per head of population) of a given condition within an administrative 

region (e.g. census enumeration district, ward, district, province) during a given period. 

A common requirement is the production of a smoothed risk map from such areal data 

that allows assessment of the spatial variability in the risk of morbidity or mortality due 

to the condition in question which can then be used by policy makers to identify areas of 

highest public health need, and to highlight potential causative faetors. Examples of the 

use of geostatistical tools in this context include the modelling of the risk of sudden 

infant death syndrome (Berke, 2004), the mapping and analysis of rates of sexually 

transmitted diseases (Law et aI., 2004), and the space-time mapping of breast cancer 

incidence (Christakos and Lai, 1997). 

An important problem in the mapping of incidence rate or relative risk from areal-level 

data is that the variance of these values derived from different areal units is non­

stationary because the population size will vary between units. Numerous studies have 

used geostatistical tools to address this problem. In a series of studies focusing on 

childhood cancer in the West Midlands, England, geostatistical strategies were 

developed to account for spatial heterogeneities in the population of children in order to 

produee more stable characterisation of cancer risk (Oliver et aI., 1992, 1998; Webster et 

aI., 1994). Starting with the sample variogram of the rudimentary incidence rate within 

electoral wards, they were able to modify the variogram to incorporate information on 

the number of children in each ward in order to estimate a variogt'am of risk. This 

allowed assessment of the spatial autocorrelation of the underlying risk, and prediction 

of this variable was carried out using cokriging based on the incidence and risk 

variograms. Similar approaches to this problem were suggested by Goovaerts (2005a, 

2005b), Goovaerts and Jacquez (2004), and Goovaerts et ai. (2005) who developed a 

popUlation-weighted semivariogram estimator in order to reduce the influence of cancer 

incidence data based on small population sizes. In later work, Goovaerts (2005c, 2006) 

developed a kriging and simulation approach based on the Poisson distribution to 

account explicitly for the handling of count data in predictions and simulations of 

uncertainty. 
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4.5.2 Geostatistics and malaria 

Just as the use of geostatistics has increased in recent years within the field of public 

health as a whole, so too has its application to problems specific to malaria. In an early 

example, Ribeiro et a1. (1996) used kriging to map the distribution of mosquitoes around 

villages in Ethiopia in order to guide control measures. Kleinschmidt et a1. (2000, 2001) 

used kriging to interpolate the residuals of a logistic regression model that predicted 

childhood malaria prevalence in West Africa using climatic, population and topographic 

variables. Diggle et a1. (2002) used geostatistics to predict the presence or absence of 

malaria parasites in children in the Gambia. They analysed the influence of a range of 

social, environmental, and behavioural factors relating to each child and their village of 

residence and were able to reveal underlying spatial heterogeneities in risk. Gemperli et 

a1. (2004) used a Bayesian hierarchical geostatistieallogistic model to model the risk of 

infant mortality in Mali and were able to relate spatial patterns in this risk to known foci 

of intense malaria transmission. In a later study, Gemperli et a1. (2006) used a similar 

approach in conjunction with a deterministic model of transmission intensity to model 

the spatial distribution of the entomological inoculation rate (EIR), which is the expected 

number of infective bites from malarial mosquitoes sustained per person in a given time 

period. 

4.6 Chapter summary 

This chapter has presented a review of the most important established geostatistieal 

concepts and methods that have been incorporated in this study. The central concept of 

the random function has been introduced as a probabilistic model for the data-generating 

mechanism of spatial data. Variogram estimation and modelling and kriging prediction 

have been described as the fundamental tools by which the utility of the random function 

can be exploited to explore and predict spatial variables. The extension of these concepts 

and tools to space-time settings has been described, along with example applications and 

consideration of the main conceptual approaches by which this extension can be 

achieved. Examples of the application of geostatistics in public health and malaria 

studies have been given. No examples have been found of the application of 

geostatistical techniques to routine outpatient data or to address problems of predicting 
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national-level treatment burdens when such data are incomplete. Subsequent chapters 

present a conceptual framework and a series of analyses carried out in this project by 

which this problem is addressed. 
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5. Conceptual Framework 

5.1 Introduction 

Having explained the background and motivation behind this project, described the 

principal data sets involved, and presented the main geostatistical concepts and tools of 

relevance, the purpose of this chapter is to provide an overview of the conceptual 

framework developed in this project to meet the stated aims. In Chapter 1, the overall 

aim was stated as being to provide reliable national and sub-national estimates of the 

annual outpatient treatment burden for malaria at health facilities in the formal 

govemment health sector in Kenya. Specifically, this entails the prediction of missing 

MC valucs within the HMIS database, where MC (malaria cases) is defined as the 

monthly count of diagnoses for malaria at each facility. In the following section, the MC 

variable is considered in more detail, examining the factors that are likely to determine 

its value at a given facility and month and the way in which these may vary through 

space and time. The implications of thesc spatial and temporal dependencies for 

modelling MC are then discussed and two distinct modelling strategies are identified 

that form the basis for the remainder of the thesis. 

5.2 Conceptual exploration of the MC variable 

This project is centred on the need to predict, and therefore model, the number of 

malaria diagnoses that are made at facilities each month as represented by the MC 

variable in the HMIS database. Regardless of whether a deterministic or probabilistic 

modelling approach is ultimately adopted, a useful preliminary exercise is to consider 

what a priori knowledge exists about the variable of interest independently of the data, 
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Me 

and to construct conceptual relationships between the various contributory factors that 

determine its value at any given facility and month. A simple conceptual model is that, 

for a given facility, the value of MC is determined by the catchment popUlation of the 

facility and by the level of morbidity due to malaria in that population (Figure 5.1). Both 

of these determining factors are now explored in more detail. 

5.2.1 Factors determining malaria morbidity 

The aetiology of malaria in a given population IS driven by a complex array of 

interacting factors (Figure 5.2) and some of the most important are discussed in this 

section. A useful categorisation is between factors that determine the suitability of 

environmental conditions for the malaria parasite and vector and those that determine 

the susceptibility of the human population to infection and subsequent illness (Mouehet 

et aI., 1998). The presence and intensity of malaria in a given region is determined partly 

by the presence and abundance of female Anopheles mosquitoes and of the Plasmodium 

parasite. Both are strongly dependent on minimum, maximum, and prevailing 

temperatures and humidity (Beier et aI., 1990; Patz et aI., 1998; Craig et al., 1999; 

Koenraadt et al., 2003; Hoshen and Morse, 2004). Furthermore, female Anopheles 

require surface water in which to lay their eggs, with a preference for temporary and 

turbid water bodies in which the risks of predation are small (Snow and Gilles, 2002). 

These dependencies mean that the suitability of the environment for malarial conditions 

is determined over large spatial scales by altitude and macro-climatic conditions. In 

many regions, marked seasonal variations in rainfall and temperature mean that 

conditions become suitable for some months in each year and are unsuitable for the 
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Figure 5.2 Key environmental and human determinants of malaria morbidity in a given population. 

remainder. Smaller scale spatial and temporal variation (Greenwood, 1989; Snow et aI., 

1993; Schellenberg et aI., 1998; Brooker et aI., 2004) may be driven by regional and 

local climate and by the nature of the land surface (Afrane et aI., 2005; Minakawa et aI., 

2005; Patz and Olson, 2006). Changes to land usc and land cover can play an important 

role in creating breeding habitats, often caused by agricultural practices, the building of 

irrigation and drainage channels, and the disturbance of land due to clearance or 

construction (Keiser et aI., 2002; Ijumba et aI., 2002; Afrane et aI., 2006; Munga et aI., 

2006). These micro-scale factors may vary considerably over short distances, and be 

modified over short timescales. 

Given the presence of infective vectors in a region, a further myriad set of interacting 

factors determines the extent to which the resident population is susceptible to infection 

and illness from malaria. Susceptibility can be decreased, for example, by protecting 

against mosquito bites, particularly through the usc of ITNs and the spraying of 
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insecticide residues inside homes (Nevill et aI., 1996; Mbogo et aI., 1996; Lengeler et 

aI., 1997; Howard et aI., 2000; Guyatt et aI., 2002; Ter Kuile et aI., 2003; Hawley et aI., 

2003; Gimnig et aI., 2003; Muller et aI., 2006), although the availability and uptake of 

such interventions varies according to levels of education, poverty, and other factors 

(Brinkmann and Brinkmann, 1995; Makemba et aI., 1995; Lengeler and Snow, 1996; 

Marsh et aI., 1996; Binka and Adongo, 1997; Cham et aI., 1997; Snow et aI., 1999b; 

Abdulla et aI., 2005). Control measures can be implemented to reduce mosquito 

populations through the usc of insecticides and larvicides targeted at breeding sites, and 

by environmental management to reduce the abundance of these sites (Beales and Gilles, 

2002). 

Because human hosts represent an integral part of the parasite life cycle, human 

populations arc themselves a component of the ecosystem that supports parasite 

populations, and not simply a passive recipient of infection. As such, the distinction 

between environmental and human determinants of morbidity neglects the interactions 

between the two. If a malarious population has access to rapid treatment with effective 

anti-malarial drugs, for example, this not only reduces the morbidity of infected 

individuals directly but, by reducing or eradicating the presence of the parasite in the 

bloodstream, the parasite prevalence in the vector and risk of further transmission to 

uninfected humans is also reduced. Of particular importance in determining the pattern 

of morbidity is the role of acquired immunity. Individuals that are repeatedly infected 

with, and recover from, malaria develop a functional immunity such that the risk of 

morbidity and mortality arc reduced for subsequent infections. In areas of intense 

transmission, this immunity generally develops in early childhood meaning that a 

disproportionate share of illness and death occurs in the very young. In areas of less 

intense, seasonal, or sporadic transmission, immunity may not develop or develop much 

more slowly such that the risk of morbidity and mortality is shared more evenly across 

different age groups (Snow and Gilles, 2002). 

The social, biological, economIC, and behavioural factors that determine malaria 

susceptibility are likely to vary with less spatial continuity than the climatic and habitat 

factors that detcrmine overall environmental suitability. Neighbouring homesteads, for 

example, may differ widely in their usc of interventions or ability to pay for effective 

treatment. A degree of spatial dependence in these factors may be expected, however, 
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driven by underlying regional differences in soeio-eeonomie status, levels of education, 

and control measures. The degree of functional immunity within different populations, 

in particular, may be expected to vary continuously through space, mirroring 

approximately the suitability of environmental conditions. 

5.2.2 Factors determining the size of a facility catchment population 

Various approaches exist for defining the catchment population of a health facility. 

When the catchment population of a given facility is discussed as a determinant of MC, 

the quantity of interest may be defined as the number of people who would 

hypothetically attend that facility to seck treatment for malaria. A useful way to consider 

what determines the size of a given catchment population is to start with the largest 

possible set of people and progressively refine this set by considering factors that act to 

exelude certain groups (Figure 5.3). The suitable set of people to consider initially is 

simply all those in the environs of the facility, which will be determined for a given 

region by the population density. Of this set, many may chose not to utilise any formal 

health facility to seek treatment (Mwenesi et al., 1995; McCombie, 1996,2002; Amin et 

al., 2003). The issue of low utilisation rates of formal health services is an important one 

in low-income settings, and was introduced in Chapter 2. The decision to seek or not 

seek formal care is influenced by various cultural, social, and economic factors 

including the availability and perception of alternatives such as traditional or faith 

healers, or self treatment with home remedies or drugs purchased ii-om the informal 

retail sector (Snow et al., 1992a; Ruebush et al., 1995; Goodman et al., 2004; Marsh et 

al., 2004; Guyatt and Snow, 2004; Amin and Snow, 2005). A further factor is the ability 

to pay for formal care, for the transport needed to reach the facility, or for the time taken 

away from work. Furthermore, the social hierarchy in place in a given community may 

mean that female or junior community members cannot obtain permission to leave to 

seek care for themselves or for children in their care (Molyneux et al., 1999, 2002). Of 

the subset who do choose to attend a formal health facility, not everyone in the region 

will have physical access to the facility in question. Factors such as the distance to the 

facility, the quality of the transport infrastructure, and the availability and cost of public 

transport mean that attendance at the facility may not be feasible in many cases (Noor et 

al., 2003; Tanser et al., 2006). Of those who do choose to attend a formal health facility, 
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Figure 5.3 Schematic diagram showing factors determining the size of the catchment population for a given facility. Thin 
arrows show causation, thick arrows illustrate the progressively smaller subset of the total population that make up the 
catchment population. Although each set of reasons is shown as operating independently, these arc likely to overlap in 
reality. 

and who have access to the facility in question, many may chose instead to attend 

alternative facilities. Individuals may choose between a set of formal health facilities 

based on a range of factors including the distance and cost of journcys to each, the range 

and relative quality of services offered, and the cost of these services. 

Of the various factors discussed above, many can be considered spatially independent in 

that they may vary substantially between facilities regardless of their proximity in space. 

Whilst socio-economic and cultural factors that determine care-seeking choices may 

display a degree of spatial dependence, other factors are entirely facility-specific. The 
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physical accessibility of two adjacent facilitics, for example, may be nearly identical but 

each facility may offer very different services at different levels of quality and cost and 

they are therefore likely to have very different catchment populations. 

5.2.3 The influence of misdiagnosis 

The basic conceptual model for MC as a function of catchment population size and 

malaria morbidity (Figure 5.1) is likely to be too simplistic, notwithstanding the 

complexity of these two factors themselves. A particularly important source of 

uncertainty is the role of misdiagnosis which leads to a disparity between the number of 

outpatients who attend a given facility due to an episode of malarial illness, and the 

number that are incorporated in the MC variable (Figure 5.4). The causes and extent of 

misdiagnosis for malaria were discussed in Chapter 2, and two distinct scenarios can be 

identified. The non-diagnosis of true episodes of malaria (false-negative diagnosis) leads 

to an unknown proportion of malaria outpatient visits not contributing to MC. The 

incorrect diagnosis of non-malarial illness as malaria leads to an unknown number of 

false-positive diagnoses contributing to MC. This latter consideration means that MC is 

partly determined by the level of morbidity due to non-malaria conditions in the 

catchment population, which will be determined by a wide range of illness aetiologies. 

Furthermore, the facility catchment population as defined in the previous section may 

not be the same for malaria as for other, non-malaria, conditions since it is determined in 

part by the response of individuals to becoming ill with a specific condition. It is worth 

noting that the effects of false-negative and false-positive diagnoses on MC are 

opposing, such that they counteract one another. Without available data, however, the 

net effect is impossible 

The spatial pattern of misdiagnosis is difficult to infer. It is likely that both spatial and 

non-spatial factors operate to determine the extent of misdiagnosis at different facilities. 

Misdiagnosis may be determined by faetors such as consultation practices, the type of 

medical staff available, levels of training, and the availability of diagnostic equipment 

and laboratory facilities. Whilst many of these factors are facility-specific and, therefore, 

non-spatial, it is plausible that many of these factors are relatively uniform for a given 

facility type and that levels of misdiagnosis will be similar. Since no comprehensive data 
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are available on misdiagnosis rates across Kenya, its effect on MC cannot be quantified. 

As noted in Chapter 2, however, it is not the case that estimates of Me are required in 

which the effects of misdiagnosis have been removed because such effects contribute to 

defining the treatment burden. 

-_ .. __ .............. - .......... _--. 
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1<'igure 5.4 A conceptual model for the Me variable including the influence of misdiagnosis. The dashed components are 
the resulting non-malaria factors that may affect Me. 

5.2.4 Implications for modelling Me 

Having explored the factors that may determine the value of MC at any given facility 

and month and how these may vary in time and space, the implications for modelling 

unknown MC values can now be discussed. Returning to the original conceptual model 

presented in Figure 5.1, a reasonable expectation is that spatial variability in the first 

determining factor, the level of underlying malaria morbidity, is driven mainly by 

spatially-dependent processes operating at a series of spatial scales. In contrast, the 

expectation is that spatial variability in the size of each catchment population is driven 

by both spatially independent facility-specific effects and spatially dependent effects 

operating regionally and locally. 

The most straightforward geostatistical modelling approach is to use the available Me 

data directly to predict unsampled Me values. An implicit assumption of this approach 

is that spatial dependence exists between Me values at different facilities. Under these 

conditions, the spatial structure can be characterised by estimating and modelling a 
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variogram, which can then be used to estimate the covanances needed for kriging 

predictions. A more refined approach, however, is to attempt to account for the sources 

of non-spatial variation in Me so that these effects can be removed. If this can be 

achieved, the resulting variable will vary more smoothly tlu·ough space meaning that a 

greater proportion of its variability is spatially autocorrelated. These features will be 

reflected in a variogram with a smaller relative nugget effect and will, ultimately, allow 

kriging predictions to be made with greater aceuracy. Because malaria morbidity is 

expected to be spatially dependent but catchment population size is expected to be 

largely spatially independent, such an approach may amount to standardising the raw 

Me data by measures of the non-spatial catchment and facility-specific factors that 

confound the spatial structure inherent in the underlying pattern of malaria morbidity. 

Standardisation of disease incidence data is a common procedure in epidemiological and 

public health studies. Such data are rarely used for inference or prediction in their raw 

format but are usually divided by a denominator that quantifies the popUlation that 

generated the incidences in order to reveal underlying spatial structure in disease risk. If 

the incidence data relate to an administrative unit used during a national census, for 

example, the population of that unit could be used as a denominator to convert the 

incidence count into an incidence rate (Lawson 2001). In the current setting, however, 

the population that generates Me values at each health facility eannot be defined easily 

within a discrete areal unit. Rather, the population of interest is the catchment population 

of each facility. For the vast majority of health facilities in Kenya, however, no direct 

information exists about the size of the catchment population, which means that 

straightforward standardisation of the Me data is not possible. 

The issue of standardising Me data between different facilities to account for non­

spatial variation caused by different catchment population sizes and other facility­

specific factors is a central theme of this thesis. Various approaches have been explored 

in this project for the development of a modelling framework that incorporates such 

standardisation, and these are introduced in the remainder of this chapter. 
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5.3 Approaches to standardising Me data 

Two distinct strategies were explored in this project for the standardisation of raw MC 

data. The first strategy was to develop approaches for estimating eatchment populations 

from census-derived population data using geographic information system eGIS) 

functionality and novel spatial modelling techniques. The second strategy was to use TC 

data (the total number of monthly outpatient diagnoses at each facility and month) as a 

proxy measure of the catchment population, and to incorporate these data in the 

prediction framework for Me. The motivation for these two strategies is now discussed. 

5.3.1 Modelling facility catchment populations 

In the absence of existing information about the size of facility catchment populations 

across Kenya, a straightforward response is to attempt to estimate these values using a 

predictive model. Data on the distribution of the Kenyan population are available at fine 

spatial resolution from the decennial census and, in principle, the job of estimating 

catchment populations amounts to identifying the population subset that would attend 

each facility according to the factors identified in section 5.2.2. For most facilities in 

Kenya, however, data on many or all of these factors do not exist or are insufficient, 

meaning that a model that incorporates all of these factors is infeasible. The recent 

construction of the NHSD database, however, means that the type and location of each 

facility is known. Furthermore, data are available from a small number of Kenyan 

districts on the spatial factors that affect the way people choose to utilise formal health 

services. These factors have led in this project to attempts to develop methods for 

modelling the spatial aspects of facility catchments, with the ultimate aim of producing 

estimates of catchment population size that can act as a standardising denominator to the 

raw MC data. This work is presented in Chapter 6. 

5.3.2 Incorporating TC data 

As explained in Chapter 3, every MC datum in the HMIS database was accompanied by 

a corresponding TC datum detailing the total number of all-cause diagnoses for each 

facility and month. As an alternative to deriving catchment population estimates, a 
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strategy was devised that used these TC data as a way of standardising the raw MC 

values. The rationale was that TC reflects the overall level of use of each facility as 

driven by its type, size and utilisation and therefore acts as a usenll proxy measure of 

catchment population size. The obvious limitation of this use of TC data is that values 

are only available for the same facilities and months for which MC data also exist. This 

co-location means that TC values are not available for those points at which predictions 

of MC are required and, as such, these TC values must themselves be predicted at these 

points. This problem has led to the development of two different modelling frameworks 

that incorporate several geostatistical prediction components to allow TC data to be used 

to standardise the raw MC data. These modelling frameworks are now presented. 

5.4 Modelling frameworks for predicting Me 

Without any standardisation, the prediction of MC can be carried out directly using 

established geostatistical techniques. This straightforward approach is termed Model 1 in 

this project, and is represented schematically in Figure 5.5 (a). Modell can be thought 

of as representing the null approach and can be defined more formally as the prediction 

of values of MC at the q unsamplcd facility-months Z*Mc((U, t)j3), J3 = 1,2, ... , q directly 

£i'om the n MC data ZMC((U, t)o), a = 1,2, ... , n. 

Two further modelling frameworks were proposed that incorporate TC data, and these 

were termed Model 2 and Model 3. In Model 2 (Figure 5.5 (b», MC data, ZMC((U, t)a), 

are divided by the corresponding TC data, ZTC((U, t),,), at each sampled facility-month, to 

create a new variable termed malaria proportion (MP), ZMP((U, t)a) = z"d(u, t)a) / ZTC((U, 

t)a). Geostatistical prediction can then be implemented using ZMP(( U, t)a) to obtain 

predictions Z*MP((U, t)fi) at unsampled facility-months. The back-conversion of these 

predictions to MC requires corresponding predictions of TC. As such, the TC data 

ZTC((U, t),,) are used in a separate prediction exercise to predict Z*TC((U, t)fi). MC can then 

be predicted as Z*MC((U, t)fi) = Z*MP((U, t)jJ) x Z*TC((U, t)fi). 

Model 3 (Figure 5.5 (c» uses TC data in a different way from Model 2. Instead of using 

individual TC values as denominators for every facility-month, a single denominator is 

defined for each facility, referenced by the k = 1,2, .. . ,K facility spatial locations (Uk)' 
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(a) Model 1 
--_ .. -------- ...................... _-------_ ................................ _--------------_ .. _- .. -_ ...... -_ .................. ---_ .... --. 

MC 

TC 

MC ------« Kriging>>----~. *MC 

MP -<Kriging r *MP X *TC = *MC 

\. ......................... _----------_ ............................... _--_ .. _---------------- .... - ............ ---_ ..................... --_ ........ --

(c) Model 3 .-" ...................... ............................................................................................................................................................... .. 

MC = *SMC -<Kriging"----... *SMC X *MMTC = *MC 

*Mr
C 

" '/ t 
r------J---l---- ___ 1 

: Derive mean monthly: 

~~~~ 
TC -<Kriging). *TC 

!. .. - _oo ...................... oo _____ .. ____ ...................... _ .. _oo __ oo _oo __ oo _oo __ oo .. __________ oo _oo ___ .......... __________ .. _ .. _ .... oo 

TC Total cases 
MC Malaria cases 
MP Malaria proportion 

MMTC Mean monthly total cases 
SMC Standardised malaria cases 

'* Denotes a prediction 

Figure 5.5 Schematic diagrams of three proposed modclling ti-amcworks for predicting malaria cases at ullsampled 
facility-months. 
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This value is the mean monthly total cases (MMTC) per facility, Z*MMTC(Uk)' Firstly, as 

with Model 2, geostatistieal prediction is implemented with the TC data, ZTC((U, t),,), to 

predict Z*TC((U, t)fi) at unsampled facility-months. 84 monthly TC values are now 

available for each facility, consisting of d = ] ,2, ... , D data and p = ] ,2, ... , P predictions, 

where D + P = 84. The MMTC denominator, Z*MMTC(Uk), is then calculated for each 

facility as the temporal mean of these combined data and prediction sets: 

(5.1) 

Each MC datum, ZMC((U, t)o.), is then divided by the MMTC value for the facility in 

question, Z*MMTC(Uk) to create a new variable tcrmed 'standardised malaria cases' 

(SMC): 

Z ((u t) ) = ZMC((U,t),J 
SMC 'a ' () 

ZMMTC Uk 

(5.2) 

where Uk has the same spatial coordinate as (u, t)a. Geostatistical prediction can then be 

implemented using ZSMc((U, t)a) to obtain predictions, Z*SMC((U, t)ji), at unsampled 

facility-months. The existing Z*MMTC(Uk) values arc then used to back-transform SMC 

predictions to MC, Z*MC((U, t)/J) = Z*SMcC(U, t)/!) x Z*MMTC(Uk), where Uk has the same 

spatial coordinate as (u, t)p. 

5.4.1 Model development and testing 

Having presented three conceptual modelling frameworks for the prediction of MC, it 

was necessary to develop each framework into a functional approach for obtaining 

predictions of MC, and to compare each approach in terms of prediction accuracy. The 

set of three modelling frameworks consisted of four different prediction exercises, to 

predict MC, TC, MP, and SMC. The first task was to establish a geostatistical 

methodology for carrying out these predictions. Rather than simply adopt the most 

established methods such as OK, the approach taken in this project was to implement 

and develop less widely-used or novel methods that may be better suited to the 
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characteristics of the HMIS data set and to quantitatively compare the predictive 

performance of these different methods. This work is presented in Chapter 7. Having 

identified the most appropriate prediction method, the second task was to implement this 

approach within each modelling framework to produce MC predictions and to compare 

the accuracy of these predictions to identify the best-performing modelling framework. 

This work is presented in Chapter 8. 

5.5 Chapter summary 

This chapter has provided an exploration of the factors that determine the MC variable 

and has presented a simple conceptual model that states that MC is largely a function of 

catchment population size and the level of malaria morbidity within that population. 

Because of the environmental drivers, the level of malaria morbidity is likely to display 

substantial spatial dependence but this structure is likely to be confounded in the MC 

variable by non-spatial variability in the size of different catchment populations. As 

such, it may result in more accurate predictions of MC if the variable can be 

standardised to reduce the effcct of this non-spatial variation. Two strategies have been 

prcsented to tackle this problem: the development of spatial models that allow catchment 

populations to be predicted; and the use of TC data on total monthly outpatient use at 

each facility. Models developed for the first strategy are presented in Chapter 6. To 

implement the second strategy, two modelling frameworks have been proposed that 

incorporate TC data in the prediction of unsampled MC values. Geostatistieal pre diet ion 

techniques within these modelling frameworks are developed and tested in Chapter 7, 

and the modelling frameworks are developed and tested in Chapter 8. 
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6. Catchment Modelling 

6.1 Introduction 

The need for estimates of the size of health facility catchment populations that can be 

used as denominator values for the raw MC data has been presented in the preceding 

chapter. This requirement led to a series of modelling studies can-ied out as part of a 

wider project led by Dr. Abdisalan Noor at the Malaria Public Health & Epidemiology 

Group, Centre for Geographic Medicine in Nairobi, part of the KEMRI-University of 

Oxford-Wellcome Trust Collaborative Programme. This collaborative work is described 

in this chapter, with work led by the cun-ent author (Gething et aI., 2004) presented in 

full and work led by Dr. Noor (Noor et aI., 2006) described in summary. 

The problem faeed in this project was to develop ways of estimating facility catchment 

populations based only on a census-based GIS population map and data on the type and 

location of each facility. Under these circumstances the most straightforward and widely 

used approach is to define catchment boundaries based on Thiessen polygons. This 

approach relies on several implicit assumptions about the way care-seekers utilise 

different health facilities. In this project, a series of novel spatial modelling techniques 

were devised that allowed these assumptions to be tested using data from a patient-use 

study can-ied out in four Kenyan districts (Zurovac et aI., 2002). This work is presented 

in the following section. A further limitation of many existing catchment modelling 

techniques is the representation of space using Euclidean distance. This modelling 

approach neglects the heterogeneity of the land surface and how this may affect the 

decisions made by care-seekers choosing between health facilities. Collaborative work 

led by Dr. Noor to develop GIS-based catchment models that incorporate more realistic 
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representations of space is described in the second main section of this ehapter. The 

chapter concludes with a discussion of the success of this work in modelling catchment 

populations, and the implications for the overall project aim of defining treatment 

burdens for malaria. 

6.2 Assessment of a simple Thiessen polygon model 

For the majority of the government health facilities in Kenya, the only information 

available to assist in estimating catchment populations is their location and type (e.g. 

hospital, health centre, dispensary), as provided by the NHSD. Given this information, a 

simple and intuitive means of partitioning a population between a series of facilities is 

provided by Thiessen polygons. A Thiessen polygon (also called a Dirichlet tile) is 

defined in this case as the region that incorporates all points in space that are closer to a 

given facility than any other. The use of Thiessen polygons in this context is well 

established (Twigg, 1990; Zwarenstein et aI., 1991; Albert et aI., 2000; Noor et aI., 

2003) and is based on two key assumptions: 

(1) that all patients choose to utilise the facility nearest to them, regardless of its type, 

and hence the spatial extent of a facility catchment is determined solely by the proximity 

of its neighbours; and 

(2) that the proportion of care-seekers who utilise a given facility (the utilisation rate) is 

constant throughout a catchment, and does not decline, for example, with distance away 

from the facility. 

Previous studies of patient behaviour have allowed inferences to be made about the 

validity of one or both of these assumptions in various settings and these are discussed in 

the following section. This study presents a series of new spatial analytical methods by 

which the validity ofthese assumptions can be tested directly and hence the suitability of 

a Thiessen polygon catchment model assessed explicitly. These methods were applied to 

paediatric outpatient origin data from a sample of 81 government health facilities in four 

districts of Kenya, and the observed patient-use patterns reported. The extent to which 
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the methods presented allow the validity of the Thiessen polygon assumptions to be 

assessed is then discussed. 

6.2.1 Background 

6.2.1.1 Patient choice 

The actual partitioning of a population between two neighbouring facilities is 

determined by choices made by care-seeking members of that population. As discussed 

in Chapter 5, these choices can be based on a wide range of considerations including 

social, cultural, economic and behavioural factors, as well as the characteristics of the 

facilities in question (Stock, 1983; Muller et al., 1998; Onokerhoraye, 1999; Deressa et 

al., 2003). If the two facilities are perceived to be of equal standing by the population 

then it would be reasonable to expect care-seekers to base their choice of facility on the 

relative distance to each. In this idealised case, a theoretical catchment boundary would 

cxist that is equidistant to both facilities. If one facility was perceived as a more 

attractive option, however, then one might expect care-seekers to be willing to travel 

relatively further to reach it than its less-favoured neighbour. In thcse circumstances, the 

location of the catchment boundary would be shifted towards the latter facility. Various 

studies into health facility utilisation patterns in developing countries have observed 

differences in the attraction or draw of different facility types. A study in rural Nigeria 

reported that the perceived lower quality of service available from dispensaries meant 

that they were less likely to attract patients over longer distances than were the higher­

order facilities (Stock, 1983). Similar patterns were also noted in later studies in Nigeria 

(Onokerhoraye, 1999) and Papua New Guinea (Muller et al., 1998). 

Few studies have attempted to test directly actual patient-use patterns in relation to the 

theoretical patterns defined by Thiessen polygons. A simple means of quantifying this 

pattern is to determine the proportion of people who have utilised their nearest facility. 

Previous analysis of the 81-facility patient origin data used in this study has shown that 

this proportion ranges from 56% to 83% over the four districts (Noor et aI., 2003). An 

earlier study in rural South Africa stated that 81 % of homesteads utilise their nearest 

facility (Tanser et aI., 2001). These values suggest that, although Thiessen polygons may 
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provide a reasonable approximation of patient behaviour, there is a proportion of 

patients that base their choice of facility on factors other than distance. Tanser et aL 

(2001) also compared actual to predicted (Thiessen) catchments and concluded that there 

was overall agreement between predicted and actual catchments but that large inter­

catchment variation existed. 

6.2.1.2 Utilisation Rate 

The simple aIIocation of a population into a series of contiguous facility catchments such 

as Thiessen polygons assumes a uniform utilisation rate throughout that population. This 

implies that, within a catchment, a patient's likelihood of visiting the facility is not 

affected by their distance from it. The concept of distance as a primary influence on 

health facility utilisation is weII established (Shannon et aL, 1969, 1973; Kohli et aL, 

1995). Previous studies have investigated the relationship between utilisation rate and 

distance in a wide range of settings and a variety of different trends have been observed. 

Several studies in rural areas of Ethiopia, for example, have reported distance effects on 

care-seeking behaviour with steep distance-decay gradients in utilisation rate and under­

utilisation of more rural health services (Kloos, 1990; Deressa et aL, 2003). The studies 

by Stock (1983) and Tanser et aL (2001) both describe an exponential decay in 

utilisation rate with distance and this model has commonly been presented as a 

reasonable approximation of the utilisation-distance relationship in both developed and 

developing world settings (Morrill and Earickson, 1968; Ingram et al., 1978). A study in 

rural Papua New Guinea reported that although utilisation rate showed a general decline 

with distance, this decline was not evident until some distance away from facilities and a 

Gaussian curve was therefore proposed as being a more representative model (Muller et 

aL, 2006). A study in the Kilifi District of Kenya found a decrease in admission rates to 

the district hospital with distance such that the rate in populations located more than 25 

km from the hospital was one fifth of that within 5 km (SchcIIenberg et aL, 1998). In 

contrast, other studies have found distance to have no systematic effect on utilisation 

rate even in rural settings (Girt, 1973; Slack et aL, 2002). 
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6.2.2 Data and study area 

This study was based on data acquired by the Government of Kenya (Ministry of Health 

- Division of Malaria Control) and the Kenya Medical Research Institute-Welleome 

Trust Collaborative Programme (Zurovae et aI., 2002). The four Kenyan districts of 

Bondo, Greater Kisii (now composed of Kisii Central and Gueha district), Kwale and 

Makueni (Figure 6.1) were chosen as encompassing a broad range of the most prevalent 

environmental, demographic, and socio-economic conditions found across Kenya. 

Greater Kisii and Bondo exhibit relatively evenly distributed and high density 

population whereas Makueni and K wale include areas of very low population density. 

This difference is reflected in the density of health facilities within the districts. The 

districts are described in more detail in Zurovac et al. (2002), Noor et aI. (2003) and 

Amin et aI. (2003). 

A total of 81 government facilities consisting of hospitals, health centres and 

dispensaries were sampled from the four districts during 2001-2002. Each facility was 

sampled over two days during which time the place of origin was determined for all 

children who were attending with a fever. The smallest Kenyan census unit is the 

enumeration area (EA), normally consisting of not more than 100 households, and these 

were the spatial units by which each child was located. EA population and out-patient 

data were compiled into a GIS polygon layer in ArcView 3.2 (ESRI Inc., USA) along 

with a point coverage of all GoK health facilities. For a full description of out-patient 

and population data acquisition and digitisation sec Noor et al. (2003). 

6.2.3 Methodology 

6.2.3.1 Overview of approach 

The various studies described above reported differing draws from different facility 

types, significant proportions of patients attending facilities other than their nearest, and 

decay in utilisation rate with distance. Whilst these findings enable an assessment of the 

suitability of the Thiessen polygon model, they are less able to suggest how such a 

model could be modified to represent more accurately the patient behaviour observed. 
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Figure 6.1 Location of four study districts in Kenya (top) and maps of each di strict showing location of all government 
hospita ls (red dots) , health centres (blue dots) , and dispensaries (green dots). North is to the top in all maps. 
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In stage 1 of this study, a GIS was used to predict the location of the catchment 

boundary along a direct transect between each pair of neighbouring facilities (i.e. along 

the imaginary straight line connecting the two facilities) in the sample set based on 

patient choice patterns (Figure 6.2). Once the location of the catchment boundary was 

established, this was compared to the location predicted by a Thiessen polygon. 

When considering a distance decay effect in utilisation rate it may be difficult to 

disentangle the influence of neighbouring facilities, especially where they are m 

relatively close proximity. This can lead to the incorrect conclusion that distance limits 

access to a facility when, in reality, patients at the periphery of a catchment are simply 

choosing to utilise a neighbouring facility. These effects can be disentangled, however, 

if the pattern of patient choice between the two facilities is analysed prior to assessing 

the utilisation rate gradient, and this is the approach taken in Stage 2 of this study. If a 

clear patient choice boundary can be identified then it is reasonable to interpret any 

reduction in utilisation rate within this boundary as being primarily a distance effect. 

The approach taken was to use a Thiessen polygon to define the boundary of each 

catchment, but to limit analysis of utilisation rate to a smaller area within this catchment 

by excluding a buffered area around the periphery. A suitable width for these buffers 

that could be considered sufficient to remove the effect of neighbouring facilities was 

determined based on the spatial patterns of patient choice found in Stage 1. 

fuzzy choice value 

~ 0,00 - 0.20 

~ 0.21 - 0.40 

CJ 0.41- 0.60 .. 0.61 - 0.80 .. 0.81 - 1.00 

.......,;...... Transect 

• Facility 

Thiessen 
polygons 

Kilometres t N ,.............. 
025 

Figure 6.2 Creation of a fuzzy choice surface, as defined in the text. This example shows the case of [yabe health centre 
(IHC) and Misesi dispensary (MD) in the Greater Kisii di strict. All enumeration areas contributing one or more patients to 
either facility were allocated a fuzzy choice value corresponding to the relative proportion attending [yabe health centre 
(a). The polygon coverage was then rasterised into a 100 m grid and interpolated using an inverse distance weighting 
algorithm to predict a choice surface (b). Thiessen polygon boundaries are also shown for reference. 
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6.2.3.2 Stage 1: Analysis of spatial patterns of patient choice 

A total of 174 GoK facilities were located in the four districts. Thiessen polygons were 

created around all these facilities and all cases were identified in which two of the 81 

sampled facilities were immediately adjacent (i.e. they shared a Thiessen boundary). A 

total of 78 sueh pairs were identified across the four districts. Each pair was considered 

in turn and, for each, analysis was performed along the transect between the two 

facilities. Afuzzy choice value was assigned to every EA that contributed one or more 

patients to either facility in the pair. This value was simply the relative proportion of 

patients attending each facility from a given EA. The two facilities in each pair were 

labelled A and B such that values ranged from one (all patients went to A) to zero (all 

patients went to B). Facilities were assigned as A or B in a consistent manner depending 

on the type of facilities in question. This meant that each pair fell into one of five 

transect classes: health centre-to-dispensary (HC-D); dispensary-to-hospital (D-H); 

health centre-to-hospital (HC-H); health centre to health centre (HC-HC); or dispensary­

to-dispensary (D-D). The opposite relationships (i.e. D-HC, H-D, H-HC) did not need to 

be considered separately as they were simply the inverse of those considered. For pairs 

of matching type, facilities were assigned as A or B arbitrarily. Hospital-to-hospital 

transects were not considered as hospitals did not neighbour one another. The EA fuzzy 

choice values were assigned to the EA polygon coverage (Figure 6.2 (a)) and these 

vector layers were converted into 100 m by 100 m raster grids and interpolated using an 

inverse-distance weighting algorithm. The result was afuzzy choice surface (Figure 6.2 

(b)) whieh represented a continuous prediction of patient choice behaviour between the 

two faeilities in question. 

For each facility pair, the fuzzy choice surface was analysed along the transect between 

the two facilities in question. Each transect was divided into 100 equally spaced points 

and the fuzzy choice value recorded at each point. This process was implemented using 

the ArcView X-Section Utility vl.O extension. The catchment 'choice boundary' was 

taken to be located at the point where the fuzzy choice value was equal to 0.5. For each 

of the five transect classes an 'average' transect was created by calculating the mean 

fuzzy choice value over all such transects for each of the 100 divisions. Relative 

distances along the transect were considered because the split of patients between 

neighbouring facilities was of interest regardless of the absolute distance between them. 
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In addition to creating a mean transect for each transect class, the relative location of the 

choice boundary was recorded for each individual transect. A Thiessen polygon 

boundary is located at the exact mid-point of a given transect (i.e. at 50%, since transects 

ran from zero to 100%). Actual boundary locations less than 50% were closer to facility 

A, while those greater than 50% were closer to facility B. Overall mean and district 

mean transect location was calculated for each transect class. Single sample t-tests were 

carried out on the overall mean location for each class. For the D-D and HC-HC classes 

a two-tailed test was applied to test for a significant difference from the Thiessen 

boundary (i.e. from a mean value of 50%). For the remaining three transect classes a 

one-tailed test was used. Hospitals were the highest-order facility followed by health 

centres and then dispensaries. The expectation was that any deviation from the Thiessen 

boundary is due to patients choosing to make a longer journey to reach a higher-order 

facility, resulting in a displacement from the Thiessen boundary towards the lower-order 

facility. 

6.2.3.3 Stage 2: Analysis of spatial patterns of utilisation rate 

To isolate the effect of distance on utilisation rate for each facility it was necessalY to 

define each catchment such that the influence of neighbouring facilities could be 

considered minor. This was achieved by shrinking the Thiessen polygon boundaries of 

each catchment such that their radii were reduced by approximately 25%. This value 

exceeds the largest mean deviation from a Thiessen boundary position found in the 

analysis of patient choice in Stage 1 (see Table 6.1). This strategy was implemented by 

creating an exclusion buffer, the width of which was calculated as a function of the area 

of each polygon. If polygons can be assumed to be approximately square then the width 

W of buffer required to achieve a reduction in radius of 25% can be defined in terms of 

the polygon area A as: 

(6.1) 

and buffers were created at this width for each catchment polygon (Figure 6.3). 
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Figure 6.3 Usc of exclusion buffers for assessing within-catchment utilisation rate, the example of Greater Kisii district. 
Map (a) shows enumeration areas (fine black lines) , government facilities (red dots), and facility catchment boundaries 
based on Thiessen polygons (red lines). The bottom map (b) shows the shmnken catchments used for analysis of 
utili sation rate following application of exclusion buffers, as described in the text. 
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For each sampled facility, a utilisation rate was calculated within each EA contributing 

one or more patients (i.e. excluding those contributing zero patients). This rate was 

calculated simply by dividing the number of patients from a given EA who attended the 

facility in question by the total population of that EA. Such an approach to defining a 

utilisation rate is sub-optimal since the appropriate denominator is the total number of 

children in each EA who suffered a fever during the sample period. Facility-based 

surveys cannot capture this population-based phenomenon, however, and the use of total 

EA population as a denominator was the only viable option given the data available. It 

was reasonable to assume, however, that there were not substantial systematic 

differences in the incidence of fever over the small spatial regions of interest. To obtain 

utilisation rate values that were more comparable between the set of EAs considered for 

each facility, each rate value was standardised into a relative utilisation rate (RUR) by 

dividing it by the largest value in the set. These RUR values were linked back to the EA 

polygon coverage and rasterised into a 100 m by 100 m grid. The study catchment for 

each facility was then delineated using the exclusion buffers. 

For each of the 81 rasterised study catchments, the RUR value of every grid cell was 

output along with its six-digit latitude and longitude. The straight line distance between 

each facility and the centroid of each non-zero R UR cell in its study catchment was 

calculated. RUR values were then grouped by distance from facility and a mean value 

was caleulated for every successive 100 ill. An overall mean RUR plot was created 

along with one for each district. These plots illustrate the influence of distance from 

facility on RUR. In contrast to the analysis of patient choice, utilisation rate was 

considered with reference to absolute distance. 

6.2.4 Results 

Mean fuzzy choice transects are shown for the three classes of differing facility type that 

were present: HC-D, D-H, and HC-H (Figure 6.4). In each case, the position of the 0.5 

fuzzy value, taken to represent the choice boundary, was located nearer the lower-order 

facility. Table 6.1 lists the overall and district mean boundary locations for all five 

transect classes. The overall mean boundary locations were 51 % for the mean D-D 

transect, 50% for HC-HC, 59% for HC-D, 40% for D-H and 39% for HC-H. Two-tailed 
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Figure 6.4 Mean JilZZY choice tmnsects for all neighbouring facility pairs of class health centrc-to·dispensary (a), 
dispensary-to-hospital (b) and health centre-to-hospital (c) illustrating the relative draw of different facility types. The 
location ofthc theoretical Thiessen boundalY is marked at the mid-point (dashed line) along with the location ofthc 
observed 0.5 fuzzy choice value (dotted line). 

single sample t-tests for the D-D and HC-HC classes both revealed no significant 

difference from the Thiessen boundary location of 50% (P=O.77 and P=0.98 

respectively). One-tailed single sample t-tests for the remaining three classes revealed 

that boundary locations were significantly nearer the lower-order facility in each case. 

There was substantial variation between districts with, for example, the mean HC-D 

boundary location ranging from 62% in Kwalc to 54% in Makueni, and the mean D-H 

boundary location ranging from 37% in Bondo to 47% in Makucni. Caution should be 

Table 6.1 Mean position of catchment boundaries [or each transect class (%). Values of less than 50% are closer to 
the first facility in the pair while values greater than fifty are closer to the second. A theoretical Thiessen boundmy is 
equidistant to both facilities and would therefore be located at exactly 50%. 

Transect class 
District means 

Overall means 
Bondo Gr!. Kisii Kwale Makueni 

Dispensary-la-dispensary 57.30 49.40 42.40 51.41 (P = 0.7701)" 

Health centre-to-health centre 52.87 20.20 56.60 49.80 (P = 0.9798)" 

Health eentre-to-dispensalY 61.31 55.25 62.17 54.40 58.50 (P = 0.0077)" 

Dispensary-to-hospital 37.30 39.05 38.60 46.70 39.88 (P = 0.0041)b 

Health centre-lo-hospital 32.75 50.40 38.63 (P = 0.0656)b 

:ltwo-tailcd single sample (-test f{)f significant difference from 500ft) 
b one-tailed single sample {-test ror significant shift from 50% towards lower-order nlcility 
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Figure 6.5 Sample of indi vidual fuzzy choice transects from Bondo di strict. Map shows location and names of 
government hospitals (red dots), health centres (blue dots) and dispensaries (green dots) in Bondo district. Labels on each 
transect detail the two facilities in question. Labels in parentheses refer to the type of facilities involved: H = hospital , He 
= health centre, 0 = dispensary. 
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exercised when interpreting these results, however, because the number of pairs for a 

given transect class in a single district was often small meaning that sampling variation 

was large. The boundary position for the HC-HC class in Kwale, for example, was based 

on a single pair. Whilst it is likely that disparities in facility and population density 

between the four districts lcad to differences in the spatial patterns of paticnt choice, the 

sparsity of data at the district level mean that the results are best interpreted with data 

from the four districts combined. Figure 6.S shows a selection of choice transects from 

individual facility pairs in Bondo district. Whilst the mean transects (Figure 6.4) 

illustrate the overall draw of different facility types, these individual plots illustrate the 

transition in patient choice between two specific facilitics. 
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Relative utilisation plots are shown in Figure 6.6. These include a mean plot for each 

district as well as an overall mean. Mean plots are accompanied by 95% confidence 

intervals. Each of the district plots extends to a different length which corresponds to the 

most distant non-zero pixels found in any of the study catchments in each district. The 

districts of Bondo and Greatcr Kisii are characterised by a relatively dense network of 

facilities corresponding to a higher population density. Catchments are, therefore, 

smaller than some of those found in the more rural Kwale and Makueni districts (Figure 

6.1). For Bondo, RUR fluctuates but exhibits no systematic trend with distance. For 

Greater Kisii RUR decreases with distance. For both Kwale and Makueni RUR increases 

up to around 2 km, and then levels off (K wale) or steadily declines (Makueni). Overall 

there exists a slight, but steady decrease in RUR with distance up to 6 km. 

6.2.5 Discussion 

6.2.5.1 Patient choice 

The construction of fuzzy patient choice surfaces is presented as a robust means of 

assessing patient behaviour for two neighbouring health facilities and identifying the 

location and nature of the choice boundary between them. This method represents the 

conversion of two separate facility-based variables (attendance per EA) into a single 

facility-pair-based variable (fuzzy choice) that describes the spatial partitioning of 

patients between the two facilities in question. By analysing patient choice along a 

transect between two neighbouring facilities, the influence of other facilities is 

minimized. The mean fuzzy choice transects for each transect class (Figure 6.4) suggest 

a smooth gradient of choice between the two facility types in question. This is not, 

however, representative of the shape of most of the 78 individual choice transects (see 

examples in Figure 6.5). These exhibited a much sharper transition from high to low 

choice values indicating a crisper boundary. Although this characteristic of the 

individual plots is smoothed in the averaging process, the mean transects are useful for 

illustrating the relative drawing power of the different facility types as a whole, 

especially with reference to the Thiessen boundary. The calculation of mean boundary 

locations, along with the use of appropriate significance tests (Table 6.1), provides a 
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means of comparing directly the observed behaviour patterns to those assumed in a 

Thiessen polygon catchment model. 

6.2.5.2 Utilisation rate 

The method presented allows the effect of distance on utilisation rate to be studied in 

isolation from the possible influence of surrounding facilities. Although one 

consequence of the usc of exelusion buffers is that the maximum distance over which 

this relationship can be studied for any given set of sample facilities is inevitably 

reduced, it provides a means of elucidating the influence of distance alone. The degree 

of confidence associated with each of the mean plots in Figure 6.6 follows a similar 

pattern wide confidence intervals at small distances which narrow through medium 

distances before widening once more at the larger distances. This consistent pattern can 

be explained largely by changes in sample size. Only those EAs that contributed patients 

to the sample could be included in the analysis and this represented a relatively sparse 

sample (between 13% and 28% ofEAs across the four districts). The successive 100 m 

distance bands (over which RUR values were averaged) can be considered as a series of 

concentric bands of equal width and, as such, their area increases linearly with distance 

from the facility. Distance bands close to the facility are, therefore, smaller and less 

likely to contain as many non-zero RUR pixels as those further away, with a 

corresponding effect on sample size. When considering the largest distances in each 

district the sample size is likely to be small since there are few examples of catchments 

that extend to this distance. 

Individual district plots display considerable variation, particularly at distance up to 

around 1500m. It is likely that much of this inter-district variation can be attributed to 

sampling variation due to the relatively sparse number of contributing EAs at these short 

distances in each district. When the individual district plots were combined, a general 

decrease in RUR is evident over the distances studied (up to around 6000m). This 

suggests that, for the data set studied, the assumption of uniform within-catchment 

utilisation rate is inappropriate. The observed decline with distance is consistent with 

most other low-income country studies (Stock, 1983; Kloos, 1990; Schellenberg et aI., 

1998; Tanscr et aI., 2001; Deressa et aI., 2003; Muller et aI., 2006) although the 
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observed decline is far less pronounced than many of those reported. A reasonable 

explanation for this difference is that the influence of neighbouring facilities is often 

manifest as a reduction in RUR towards the periphery of a catchment and this effect has 

not been removed adequately in many studies leading to the over-reporting of decline in 

RUR with distance. 

Euelidean distance, simply the straight-line distance between two points, was the 

distance metric used in this study. When considering distances on the ground, an 

alternative metric is the financial or time cost of making the journey between two points. 

Various studies have investigated the correspondence between Euclidean distance and 

journey cost (Perry and Geslcr, 2000; Costa et aI., 2003) and the extent to which the two 

concur is dependent on factors such as the density and quality of transport networks, the 

nature of topography, and features such as rivers and swamps. Whilst Thiessen polygons 

are defined in terms of Euclidean distance, their validation using georeferenced patient­

use data does not explicitly use any distance metric as it relies solely on the positions of 

patients in Cartesian space and their choice of health facility in relation to the Thiessen 

polygon boundaries. A consideration of the discrepancy between journey cost and 

Euclidean distance becomes important, however, when attempting to explain the reasons 

for the observed shifts in boundary positions towards lower-order facilities. A situation 

may exist, for example, whereby the quality of transport networks around hospitals 

allows more efficient journeys than that around health centres and dispensaries. In this 

case, if care-seekers based their choice of facility entirely on journey cost then one 

would expect a relative increase in the spatial extent of hospital catchments. This 

explanation has some grounding in that hospitals are generally located in urban areas, 

where one might expect transport networks to be most efficient. However, given that the 

majority of patients made the journey to seek treatment on foot, and that populated non­

urban areas generally have comprehensive road, track, and footpath networks, it is 

unlikely that this effect is responsible for all of the observed shift in boundary location. 

These issues do, however, underline the importance of considering journey cost when 

attempting to predict patient behaviour. 
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6.2.6 Conclusions 

The methods presented in this study allow the two key assumptions inherent in a 

Thiessen polygon approach to defining catchment boundaries to be tested directly using 

patient-use data and, where these assumptions are found to be invalid, provide guidance 

as to how the approach can be refined to better represent the patient behaviour observed. 

For the four Kenyan districts studied, the two assumptions were found to be invalid. In 

the 78 cases of neighbouring facilities considered, mean boundary locations were found 

to be significantly closer to lower-order facilities than predicted by Thiessen polygons. 

This implies that the rclative draw of facilities of different types is different and as such 

patients are willing to travel some distance further to reach a higher-order facility than a 

neighbouring lower-order facility. Analysis of mean within-catchment utilisation rate 

revealed that, for distances of up to six km from a facility, a steady decline in utilisation 

rate with distance was present. This implies that it is sub-optimal to model utilisation 

rate as uniform within a catchment. 

6.3 Incorporating the effects of journey-time 

In the previous section it was established that the use of Thiessen polygons to define 

facility catchment boundaries is likely to be inappropriate for catchments across Kenya. 

A further limitation of this and other approaches is the use of straight-line Euclidean 

measures to represent the distance between care-seekers and facilities. Factors such as 

topography, the presence of natural or human-made barriers, and the nature of the 

transport network, mean that the effort, time, and expenditure required to reach a facility 

from a given location is not necessarily well represented by Euclidean distance. Rather, 

a metric such as journey-time provides a more useful way of defining access to facilities. 

One component of this project has been to contribute to a collaborative study led by Dr. 

Noor and the KEMRI-University of Oxford-Wellcome Trust Collaborative Programme 

team which addressed the problem of incorporating a journey-time metric in catchment 

boundary models. This work followed directly from the previous Thiessen polygon 

study and the findings played an important role in shaping the development of the 

modelling strategy used ultimately in this project to predict Me. As such, this work is 
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Elevation (m) Population (per EA) Natural barriers 

1300 CJ 1 - 311 Swamp 

1500 CJ 312 - 450 River (Seasonal) 

1700 451 - 614 River (PerenniaO 

1900 .. 615 - 883 
Transport network 

2100 .. 884 -1624 
Road/F ootpath .. 1625 - 2707 

2300 

Figure 6.7 Examples of GIS data used for input into a journey-time based catchment model. Data shown are for Greater 
Kisii district and consist of (a) a raster coverage digital elevation model (OEM), (b) a vector coverage of the transport 
network including roads, tracks, and footpaths, (c) a vector coverage of population in each enumeration area (EA) derived 
from the 1999 national census, and (d) a vector coverage of natural barriers including, in this case, rivers and swamps. 
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briefly summarised in this section, and the reader is pointed to the original accounts in 

Noor (2005) and Noor et aI. (2006). 

6.3.1 GIS and patient-use data 

The study was based in the same four Kenyan districts as the Thiessen-polygon study, 

namely Bondo, Greater Kisii, Kwale and Makueni. For each district, data were collectcd 

by the KEMRI team from a range of sources to create a series of GIS layers for later 

model development. In addition to the data on facility type and location contained within 

the NHSD, population data were obtained from the 1999 census at EA level and a digital 

national road network map was obtained and augmented for the four districts by 

digitizing footpath networks obtained from paper maps. In addition, a digital elevation 

model (DEM) was derived from contour maps, and vector data on natural baniers such 

as rivers and coastlines were obtained, along with data on human-made barriers such as 

national parks and other sanctuaries (Figure 6.7). 

Patient-use data were collected in the four districts as part of a household survey 

conducted by KEMRI in 2001 (Amin et aI., 2003; Guyatt et aI., 2004). A stratified 

random sample of approximately 230 EAs was included, covering between 25,040 and 

25,928 people in each district. During this survey, each sampled homestead was 

georeferenced in the field using a geographic positioning system CGPS) and, where a 

child had suffered a fever in the previous fourteen days, their care-seeking behaviour 

was documented, including which formal health facility they had attended, if any. These 

data were incorporated in the GIS as a point coverage of homesteads accompanied by 

data on their choice of health facility. 

6.3.2 Model development 

A facility catchment model was developed that accounted for the journey-time required 

by care-seekers to reach different facilities. Pedestrian journey-time was used because 

this was the mode of transport used by the overwhelming majority of patients in the 

household survey. A raster cost-surface was developed that estimated the journey time in 

minutes from each grid cell to the nearest health facility, taking into account the layout 
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10 km 

Journey time 
(minutes) 

2 -33 

34 - 46 

47 - 57 

58 - 68 

69 - 80 

81 - 94 

95 - 111 

112 -136 

137 -1160 

Figure 6.S Example cost-surface for Greater Kisii district showing he estimated pedestrian journey-time in minutes fro m 
each 100m by 100m grid cell to the nearest government health facility. The journey-time algorithm took into account 
factors sllch as the road and footpath network, gradient, and natural barriers. 

of the road and footpath network, the gradient at each point (including the direction so 

that uphill and downhill effects were distinguished), and the presence of impassable 

features such as rivers, coastline, and enclosed areas such as National Parks and other 

sanctuaries (Figure 6.8). This cost-surface was generated using a novel region-growing 

algorithm coded in ANSI C. The raster cost-surface was then used to predict catchment 

boundaries that were the journey-time equivalent of Thiessen polygons in that each 
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Step 1. For each patient, journey time in minutes was calculated to nearest health centre and 
hospital (left diagram) using the journey-time algorithm. The patient's choice offacility was marked 
on a relative journey-time transect (right diagram) with the x-axis position representing their 
relative location (in terms of journey-time) between the two facilities, and the y-axis value 
representing their choice between the two facility types. 
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Step 2. Step 1 was repeated for all patients who used either a health centre or a hospital in all four 
districts. In each case, the patient was added to the HC-H transect according to their relative 
location (in terms of journey-time) between the two, and their choice of facility was represented as 
either a 1 (went to the health centre) or 0 (went to the hospital). 
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Step 3. When all patients that had used either a hospital or a health centre had been marked on the 
HC-H transect, the resulting plot was smoothed using a moving window to give a smooth plot 
showing the mean transition in choice between the two facility types with relative journey-time 
between them (left plot). This transition was summarised by the location of the 0.5 fuzzy choice 
value, deemed the choice boundary (right plot). 

Figure 6.9 Schematic diagram outlining the procedure by which the spatial pattems of patient choice were assessed using 
journey-time transects. [n this example, patients' choices between health centTes and hospitals is considered using the 
health centre - to - hospital (He -H) transect. 
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location was predicted as utilising the health facility that was located the shortest 

journey-time away. 

Mirroring the Thiessen polygon study, a method was devised for assessing the relative 

draw of different facility types. As before, mean choice transects were developed for the 

HC-D, D-H and HC-H facility classes. This time, however, the concept of a straight-line 

transect between neighbouring facilities was not useful, since no straightforward 

journey-time equivalent exists. Instead, an alternative approach was developed that 

placed each sampled homestead on a 'journey-time transect' that represented the relative 

journey-time between it and facilities of each different type. In this approach, a 

homestead that was located 20 minutes from the nearest health centre, and 60 minutes 

from the nearest hospital, for example, would be placed 25% of the way along the HC-H 

transect (20/(20+60) = 0.25). With all sampled homesteads positioned along the various 

mean transects in this way, the proportion utilising each facility type was calculated at 

100 points along each transect. As before, the point along each transect at which patients 

were found to be equally likely to utilise each facility was deemed the 'choice 

boundaty'. This process is illustrated schematically in Figure 6.9. Deviations in these 

mean choice boundary locations from the centre of each transect indicated that patients 

wcre willing to make longer journeys in order to reach certain facility types than others. 

The results of these journey-time transects were then incorporated in a further catchment 

model. Rather than defining catchment boundaries based on nearest facility journey­

times, the differential draw of different facility types was incorporated and the 

equidistant boundaries were adjusted accordingly. The three catchment models 

described (the Thiessen polygon model, the journey-time model, and the journey-time 

model adjusted for patient choice) were tested empirically by comparing the proportion 

of homesteads whose choice of facility was correctly predicted by each model. 

6.3.3 Key findings 

Of the various findings of this study, the most important in the context of the current 

project is the comparison of the different catchment modelling approaches. The basic 

Thiessen polygon model was found to predict the correct choice of facility for 72% of 

homesteads. Rcplacing the Euclidean distance metric with journey-time resulted in 74% 
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of homesteads being eorreetly modelled, and when this model was adjusted to 

incorporate the effects of patient choice, this value increased to 84%. 

6.4 Implications of catchment modelling studies 

The two studies presented in the chapter resulted in a series of findings that are 

important in their own right. In the context of the current project, however, these studies 

were required as ways of developing catchment models that could provide estimates of 

catchment populations for health facilities across Kenya that could, in turn, be used to 

standardise the raw MC data in the HMIS. In this context, the most important finding of 

these studies is that the most basic catchment models are based on unfounded 

assumptions, and that more complex models that incorporatc the effects of journey-time 

and the differential draw of different facility types provide more realistic predictions of 

catchment boundaries. This finding is significant because data with which to implement 

these more complex models are not available for the vast majority of facilities across 

Kenya. As such, the only feasible approach to define catchments nationwide would be 

the use of Thiessen polygons and this has been shown here to be sub-optimal. A further 

consideration is that even these more complex catchment models only deliver 

predictions of the boundaries between catchments. Whilst this provides useful 

information, the issue of within-catchment utilisation rate remains largely unaddressed, 

due largely to the complexity of factors involved and the absence of reliable and 

comprehensive data. 

In summary, the studies presented here have contributed significantly to the 

understanding of the spatial patterns of care-seeking behaviour in Kenya, and have 

developed a series of novel techniques for assessing these patterns and generating 

refined catchment boundary models. However, the goal of most significance to the 

CUlTent project, the estimation of catchment populations for all health facilities across 

Kenya, remains elusive due largely to the unavailability of data on a national scale. The 

unavailability of these catchment population estimates has led in this project to the 

development of an alternative set of approaches to standardising MC data and these are 

discussed in the proceeding chapters of this thesis. 
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6.S Chapter summary 

This chapter has presented two studies that have addressed the issue of defining spatial 

models to predict facility catchment populations. In the first study, the most rudimentary 

and widely-used catchment model, based on a Thiessen polygon approach, was 

investigated. Novel tests were developed using polygon-based patient use data within a 

GIS that determined that the two principal assumptions implicit in a Thiessen polygon 

model were inappropriate: that all patients use their nearest facility and that utilisation 

rate within each catchment is constant. In the second study, the use of Euclidean 

distance as a journey metric was replaced with a more realistic measure that used 

information on transport networks, gradient, and natural barriers to estimate the journey­

time between care-seekers and different facilities. This approach allowed patient-use 

patterns to be assessed more realistically and a catchment model was produced that 

predicted patient's choice of facility more accurately. By incorporating the fact that 

different facility types arc able to draw in patients from greater distances, another 

catchment model was produced that further improved prediction accuracy. 

These studies have indicated that, in order to predict most accurately which facilities 

patients will use when seeking care, the more complex catchment models must be 

implemented. Because the data do not exist currently to support this implementation for 

health facilities across Kenya (being unavailable outside the four study districts), and 

because even these models do not encapsulate the complexities that determine within­

catchment utilisation patterns, it has not been possible to produce the accurate estimates 

of facility catchment populations that arc required to act as denominators with which to 

standardise the raw MC data in the HMIS database. Because of this, an alternative 

strategy has been developed in this project that uses TC data on the total number of 

monthly outpatients at facilities as a proxy measure of catchment populations. The 

development and testing of this approach is described in the remaining chapters of this 

thesis. 
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7. Model Development 1: 
Development and Evaluation of 
Kriging Approaches 

7.1 Introduction 

Chapter 5 described the need to standardise raw MC data to account for non-spatial 

facility-specific factors that are likely to confound the inherent spatial structure driven 

by the underlying pattern of malaria morbidity in Kenya. The preceding chapter 

presented a series of catchment modelling studies and highlighted that reliable estimates 

of facility catchment populations for use as denominator values remain unavailable for 

facilities across Kenya. In response to this, an alternative strategy was developed in this 

project in which TC data detailing the total number of all-cause diagnoses for each 

facility and month were used as a way of standardising the Me data. This strategy was 

presented in Chapter 5 along with two modelling frameworks, Model 2 and Model 3, 

that incorporated this approach. The basic non-standardised model in which MC is 

predicted directly was also presented and this was labelled Model 1. The task of 

developing these frameworks and identifying which approach is likely to provide the 

most accurate predictions of MC was split into two stages. The set of three modelling 

frameworks (presented in Figure 5.5) consisted of four different prediction exercises to 

predict MC, TC, MP and SMC. The first stage was to establish the most appropriate 

geostatistical methodology for canying out these prediction tasks and this is the subject 

of the current chapter. The second stage was to adopt the chosen prediction methodology 

and implement it within each of the three models to obtain predictions that could be 
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compared to identifY which prcdicts MC most accurately, and this IS thc subject of 

Chapter 8. 

The approach taken in this chapter has been to focus on one of the four variables listed 

above and to compare thc performance of three alternative geostatistical prediction 

approaches in a cross-validation setting. The malaria proportion variable, MP, was 

chosen as the test variable because, of the two standardised variables (MP and SMC), 

MP is the more straightfOlward to obtain and interpret as it is simply the MC value at 

each facility-month divided by the corresponding TC value. 

7.2 Background 

As described in Chapter 4, geostatistical prediction techniques were originally developed 

for, and remain principally targeted at, spatial-only settings (Matheron, 1971; Goovaerts, 

1997; Chiles and Delfiner, 1999). When sampled and unsampled locations are 

distributed through time as well as space, however, the replacement of spatial-only with 

space-time gcostatistical approaches can offer several benefits including more data to 

support parameter estimation and prediction and, if present, the exploitation of temporal 

as well as spatial autocorrelation in observed values. Both spatial-only and space-time 

geostatistical prediction techniques generally rely on the adoption of a stationary RF 

model parameterised with a stationary variogram. Where a property of interest displays 

heterogcneous first and second-order characteristics, however, alternative non-stationary 

models may be more appropriatc and yield more accurate predictions (Haas, 1995). 

In this chapter, the MP variable has been taken as a test variable and three different 

geostatistical prediction methodologies are developed and implemented. The objective is 

to examine the effect on prediction accuracy of (a) the extension of a spatial-only to a 

space-time prediction approach, and (b) the replacement of a stationary space-time RF 

model which requires a single global space-time variogram with a locally-varying space­

time RF model which allows the space-time variogram to vary across the study domain. 
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7.3 Methodology 

The dataset used in this chapter is the I 765-facility HMIS test set which is described in 

detail in Chapter 3. MC and TC data were available at 63,542 facility-months and were 

converted to MP using simply MP = MC/TC. When a disease count (MC) is converted 

to a proportion (MP) based on a background denominator value eTC), the uncertainty of 

that proportion can be highly sensitive to the magnitude of the denominator. As a 

preliminary analysis, thc effect ofTC on MP variance was checked visually (not shown) 

and found to be minimal, with variance approximately constant for all values of TC. 

This can be explained by the consistently large TC values (less than 0.2% of TC values 

were <30 cases) and the fact that malaria is the most common diagnosis meaning that 

MC values were generally a substantial proportion of TC. It was decided, therefore, that 

no aggregation of the monthly MP values was necessary prior to their use in the 

subsequent prediction exercises. 

Three alternative methodologies were used to obtain predictions of MP at individual 

facility-months in three separate cross-validation procedures. These were OK, STOK, 

and local space-time ordinary kriging (LSTOK). OK and STOK have been described in 

detail in sections 4.3.3.2, and 4.4.2, respectively. The procedure used for LSTOK is 

developed and described in full in this chapter. The cross-validation procedure is 

explained in section 4.3.3.6 in a spatial-only setting, and its extension to a space-time 

setting is straightforward. 

7.3.1 Spatial-only prediction of MP 

The full set of n = 63,542 MP data {z((u,t)rJ;a=l,oo.,n} was divided by month into {j 

l, ... ,m} spatial-only sets {Zj (uo);5 = l, ... ,p(j)} where m 84 months, and the size of each 

set, p(j), varied between months. For each spatial-only set, OK was canied out in the 

following steps to obtain a set of p(j) cross-validation predictions {z;(u5 );6 = l,oo.,p(j)}. 

(1) An omnidirectional sample spatial variogram (4.11) was estimated from the data 

using the established method-of-moments approach (Deutsch and ]ournel, 1998, p.53). 
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(2) A suitable model was fitted by eye to the omnidirectional variogram from the set of 

five models listed in section 4.3.2.2, the spherical, exponential, Gaussian, power, and 

periodic models. Due to the large number of variograms involved, a parsimonious model 

structure was adopted for each consisting of a single structured model component. The 

spherical model was selected as offering the best fit to the estimated semivariance 

values. More importance was attached to ensuring a good fit near the ordinate as values 

of the variogram at smaller lag separations have more influence in the subsequent 

kriging. In addition to a spherical component, each model included a nugget component 

(4.20) to model a discontinuity in semivariance at the ordinate. 

(3) OK was implemented with the variogram model parameters from (2) to obtain cross­

validation predictions < (u,,) using the GSLIB kt3d routine (Deutsch and loumel, 

1998). The search neighbourhood for each prediction consisted of the 50 data closest 

(using Euclidean distance) to the prediction point. A single space-time set of n cross­

validation predictions, {Z~K«U,t)rJ;a= 1, ... ,n}, (subscripted OK to denote prediction using 

spatial-only OK) was then created by joining each of the m spatial-only sets of cross­

validation predictions, z' «u, t) ) = un; z.' (u .) . 
OK (t 1=1 I 0 

7.3.2 Space-time prediction of MP 

STOK was carried out using the full space-time set of n 63,542 MP data 

{z«u,t)rx);a = I, ... ,n} to obtain a set of n cross-validation predictions {z;TOK«u,t)a);a= 1, ... ,n} 

to compare to the n data in the following steps: 

(1) A sample space-time variogram surface y" (h" hi) was calculated from the data 

(4.48) using a modified space-time GSLIB gamv routine (De Cesare et al., 2002) (see 

Figure 7.4 (a». Steps 2-4, below, were then implemented to use this surface to estimate 

parameters of the product-sum space-time variogram model described in section 4.4.3 

(De Cesare et al., 2001, 2002). 

(2) Space- and time-marginal variograms were estimated from the space-time variogt'am 

surface as Y,I(h"O) and Y,,(O,hr ) by setting hi = 0 and hs = 0, respectively (see De 
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Cesare et aI., 2001, P 12). The space-marginal variogram is equivalent to the mean of thc 

84 monthly spatial-only variograms, whilst the time-marginal variogram is equivalent to 

the mcan of temporal variograms for each of the 1765 facility locations. 

(3) Variogram models were fitted by eye to the sample space- and time-marginal 

variograms. As for the spatial-only variograms described in the previous section, greater 

emphasis was placed on ensuring a good fit at smaller lags. Since manual model fitting 

was required for only one spatial and one temporal variogram, a more complex model 

structure could be adopted, allowing the use of multiple nested structured components 

from the list described above to provide a closer fit. The space-marginal variogram was 

fitted with a nested model consisting of a nugget, an exponential, and a spherical 

component and the time-marginal variogt'am was fitted with a nested model consisting 

of a nugget, an exponential, a periodic, and a spherical component (see Table 7.1 for 

model parameters). 

(4) The space-time sill, CAO,O), was estimated directly from the space-time variogram 

surface. 

(5) The space-time sill and parameters from the space- and time-marginal variogram 

models were used to define a product-sum space-time variogram model (4.52) (see 

Figure 7.4 (d). 

(6) This variogram model, Yst(h"hJ, was then used as input in a STOK procedure to 

obtain cross-validation predictions Z;TOK((U,t){J using a modified space-time GSLIB kt3d 

routine (Dc Cesare et aI., 2002). 

7.3.2.1 Parameterising a space-time search criteria 

As in the spatial-only case, the search neighbourhood for each prediction consisted of 

the 50 data 'closest' to the prediction point. Unlike the spatial-only case, however, the 

metric by which this closeness can be assessed is not straightforward. In the approach 

adopted, a space-time metric is defined that can be used to quantify and compare the 

relative space-time distances between candidate data points and the prediction location. 
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Figure 7.1 Four examples of space-time kriging search neighbourhoods resulting from the parameterisation oflhe space­
time search criteria. In each case, the prediction location is shown (grey dot) along with the data included in its prediction 
(black dots). Vertical red bars are included to provide perspective, linking data from different months at the same spatial 
location. Spatial axes are shown in decimal degrees. 

If a prediction location has the space-time coordinates (x, y, t) and a candidate datum has 

the space-time coordinates (x' , y', t'), then the spatial separation Ihl is found simply by 

Ihl = J(x - x'/ + (y - y) 2 and the temporal separation h is found by h = t - t'. In order to 

obtain a single space-time metric, these absolute measures of spatial and temporal 

separation are represented as relative proportions of the maximum spatial and temporal 

search radii, Smax and Tmax, as set by the user. The space-time metric hST is then defined 

as: 

(
CX-

XI
)J2 +(Cy- yl)J 2 + (i0lJ2 

S max Sma'/{ T:.nax 

(7.1) 

The choice of values for the Smax and Tmax parameters was determined heuristically to 
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allow the influenee of spatial and temporal separation to be approximately equivalent, 

and to provide approximately 'spherical' search neighbourhoods defined in space-time. 

Values of Smax 450 km and Tmax = 84 months were chosen and Figure 7.1 shows 

examples of four search neighbourhoods resulting from these parameter settings. This 

parameterisation is inevitably somewhat arbitrary, and the decision to use a relatively 

large number of data (50) was made in part to provide a set that would contain sufficient 

data distributed in both space and time to allow appropriate influence to be assigned via 

the kriging weights. 

It is important to emphasise that this space-time metric is used in the STOK procedure 

only to define those data that are used in each prediction, and not in the subsequent 

kriging algorithm. The calculation of covariance values between points separated in 

space and time respected the absolute spatial and temporal lags between data and 

between data and predictions. 

7.3.3 Local space-time prediction of MP 

The use of STOK, as with OK, implies the adoption of an RF model with stationary 

mean and variogram. Where first-order heterogeneities exist, the effect on prediction 

accuracy is often attenuated in practice because each prediction is derived from n((u, t)o) 

observations within a limited local space-time neighbourhood W((u, t)o) centred on the 

prediction location ((u, t)o) rather than from all n observations throughout the global 

study domain (as explained in the previous section). As such, the required domain of 

stationarity for each prediction is reduced to the neighbourhood W((u, t)o). In the 

standard form, however, STOK, as with OK, has no such mechanism to attenuate the 

effects of covariance heterogeneities sinee it is reliant on the global sample space-time 

variogram, rv, (h" hi)' which is estimated from all n data under the assumption of 

stationarity. An alternative approach is to adopt a RF model that is globally non­

stationary, that is, stationarity is considered to exist only within local neighbourhoods 

(Journel and Huijbregts, 1978; Haas, 1990). This approach was implcmented here in a 

space-time context (denoted local space-time ordinary kriging, LSTOK) to obtain a set 

of n local cross-validation predictions {z~STOK«u,t)a);a= l, ... ,n} to compare to the n data in 

the following steps: 
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(1) The space-time set of n = 63,542 MP data {z«u,t)",);a=1, ... ,n} were distributed at I 

spatial locations {u(); <5 1, ... ,l} where I = 1765, the number of health facilities in the 

data set. For each of the I spatial locations Uo where one or more of the n cross-validated 

predictions, z*((u, t)a), was required, a space-time 'cylinder' (Haas, 1995) was defined 

in which to estimate a spatially-local space-time sample variogram, ;i»hs,ht;uo)' Each 

cylinder consisted of a subset of c=] ,2, .. . ,n(ua) data, {zo«u,t)c);c l, ... ,n(uo)}' Each 

subset was identified as all data located within the nearest Ie = ] 00 locations in space to 

the prediction location Us, and at any month. The 'radius' of each cylinder was therefore 

equal to the distance from the prediction location u" to its 100th nearest observation in 

space, and its 'height' was m = 84 months. This approach meant local neighbourhoods 

were restricted spatially but not temporally. A balance had to be struck between 

neighbourhood size (with smaller neighbourhoods considered more appropriate to model 

as being stationary) and the resulting sample size within each neighbourhood, neue)~, with 

which to estimate each local sample variogram (with smaller subsets resulting in larger 

uncertainty in the sample variogram). Exploratory analysis of time-series of MP at 

different spatial locations (not shown) and of the sample time-marginal MP variogram 

(see Figure 7.4 (b» did not suggest the presence of second-order heterogeneity through 

time. As such, it was decided to include all data through time within eaeh cylinder in 

order to maximise the sample size n(ua) for a given spatially-limited neighbourhood. 

(2) Spatially-local space-time sample variograms were calculated for each spatial 

location U(5 using the same procedure as for section 7.3.2(1) but applied only to the 

subset within each spatially-local cylinder, {zo(uc,tc );c=1, ... ,n(uo)}' After assessing the 

stability of semi variance estimates at the larger lags, it was decided to model spatial lags 

up to a maximum of 80% of the diameter of each cylinder and temporal lags up to a 

maximum of 20 months. 

(3) A fitted product-sum space-time variogram model was required for each of the 1765 

local variograms. This large number prohibited use of the manual procedure detailed in 

section 7.3.2(3-5) and an automated procedure was developed to replicate these steps. 

Although estimated and modelled variograms could not be inspected at all 1765 

locations, it was necessary to sample the results of the automatic procedure in order to 

make modelling decisions. As such, a set of 50 prediction locations was selected at 
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random and manually checked at cach stagc. The automatic procedure operated as 

follows for each local variogram. 

(3.i) Sample spacc- and time-marginal vanograms were estimated from the sample 

space-time variogram surface as y,Jhs'O) and Y,,(O,hJ by setting hI ° and hs = 0, 

respectively. 

(3.ii) Separate l-D models were fitted to the sample space- and time-marginal 

variograms using a weighted least-squares (WLS) procedure (for brevity, the following 

description focuses on the space-marginal variogram, although the equivalent procedure 

was also applied to the time-marginal variogram). In order to minimise the 

computational requirements of parameter estimation, and following examination of the 

50 monitored local sample variograms, a parsimonious l-D model consisting of a nugget 

component and a single spherical component was selected for fitting to all space­

marginal variograms. As such the required parameter set, 9, to be estimated for each I-D 

model consisted of three parameters, (9 = {co,aspb, Cspb,}), where as ph is the range 

parameter of the spherical component and Co and Csph are the sill parameters of the 

nugget and spherical components, respectively (Deutsch and Joumel, 1998). 9 was 

estimated using a nested grid-search algorithm written in ANSI C. The three-parameter 

l-D variogram model described above was fitted manually to the sample space-marginal 

variogram estimated from the global space-time sample variogram as described earlier in 

section 7.3.2(1-2) and the resulting parameter set was used as starting values to initialise 

the algorithm. 

The nested grid-search approach consisted of calculating an objective function, F(9), 

described below, at a set of evenly-spaced locations in the 3-d parameter space around 

the starting values. In the first iteration,} = 50 values of each parameter were evaluated, 

meaning objective functions were calculated for / = 1.25 xl05 different parameter sets. 

The range of parameter values to test in the first iteration was determined heuristically to 

include a broad swathe of parameter space around the starting values. The range of 

parameter values was constrained such that impossible values (i.e. Co < 0, asph < 0, Csph < 

0) were not permitted. The parameter set that minimised F(9) was identified and became 

the starting set for the next iteration. Each subsequent iteration evaluated / evenly-
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spaced parameters over a progressively smaller region of the parameter space, each time 

identifying the parameter set that minimised F(O). The extent to which each iteration 

converged on progressively smaller regions, and the total number of iterations carried 

out were again determined heuristically, by examining the fit of the resulting models for 

the 50 monitored variograms. 

The objective function F(O) (Pardo-Iguzquiza, 1999) evaluated for each parameter set 

was calculated as a weighted sum of squared differences between the sample space­

marginal variogram, rCi), at each i=l ,2, .. . ,n lags and the value of the variogram model 

under this parameter set, y(i;O): 

F(9) = f w(i)· [r(i) - y(i; 9)]2 (7.2) 
1=1 

The weighting scheme used to determine H{i) was defined as: 

. m(i) 
w(z) - .,,---'--'--

- [YU;8)]2 
(7.3) 

where m(i) is the number of data pairs used to estimate rCi). In this scheme, each 

variogt'am estimate rei) is weighted in approximately inverse proportion to its 

estimation variance (Cressie, 1985). 

(3.iii) Having estimated the parameter sets for the space- and time-marginal variograms, 

Os and Ot, the remaining parameter required for the definition of the space-time 

variogram model was the space-time sill, CstCO,O). A starting value for CstCO,O) was 

estimated from a manual fit of the global space-time variogram where all the other 

parameters were provided by Os and Ot and held constant. The WLS procedure described 

above was then implemented in the 1-D parameter space to estimate the value of 

ctCo,O). 

(4) LSTOK was then implemented to obtain n cross-validation predictions 

{z~sTOi(u,t)a);a= l, ... ,n}. The kriging algorithm was identical to that used for the global 
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STOK described in section 7.3.2 except that, for each prediction, the relevant spatially­

local space-time variogram modcl replaced the global model. 

7.3.4 Comparison of prediction accuracies 

The OK, STOK, and LSTOK prediction methodologies described above each resulted in 

a set of n = 63,542 cross-validation predictions of MP {/ «u,t)r,,);a= l, ... ,n} to compare to 

the n MP data {z«u,t)a);a=I, ... ,n}. To compare the performance of the different 

methods, three summary statistics were calculated for each. These were the correlation 

coefficient between the predicted and actual set, the ME, and the MAE (defined in 

scction 4.3.3.6 for the spatial-only casc). 2-D histograms were produced to display 

graphically the bivariate distribution of the data and corresponding predicted values. 

These plots are more informative than scatter-plots when the number of data-prediction 

pairs is large. Univariate histograms were also produced for each set of prediction errors, 

{z' «u, t)oJ - z«u, t)a); a = 1, ... , n} . 

As mentioned in Chapter 4, The usc of cross-validation as a method of accuracy 

assessment is limited by a number of factors. The use of simple arithmetic averages to 

generate estimates of ME and MAE may result in biased estimates when the data are 

clustered in space and/or time. In the current case, however, it is important to distinguish 

between spatial clustering of the set of facilities and clustering of the data themselves in 

relation to this background pattern. When an arithmetic average of an attribute at the 

data locations is used to estimate the mean of that attribute at the unsampled locations, 

the spatial or spatiotemporal arrangement of the combined set of sampled and 

unsamplcd points has no effect on the estimate. Rather, it is the arrangement of the 

sampled points within this combined set that may introduce bias if they are highly 

clustered. Although the set of facilities are highly spatially clustered (sec Figure 3.1), 

reflecting approximately the spatial distribution of the Kenyan population, the 

spatiotemporal pattern of sampled points within the set of all points did not display 

substantial clustering either spatially or temporally. The use of cross-validation statistics 

simply as relative measures of the accuracy of different prediction methods further 

mitigates the effect of the limitations described above, since such effects are consistent 

between methods. 
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Figure 7.2 Sample spatial variograms (circles) and fitted variogram models (line) for malaria proportion in six different 
months during 2000, 2001, and 2002. A total of84 sueh variograms were estimated and modelled, one for eaeh month of 
the study peliod January 1996 December 2002. 

7.4 Results 

7.4.1 Variography 

Figure 7.2 shows spatial variograms that were estimated from spatial-only data for each 

of the 84 months in the data set, and the corresponding manually-fitted variogram 

models. The model parameters of these variograms arc listed in Table 7.1. A selection of 

six of these variograms are presented in a larger format in Figure 7.3. Sample variogram 

structure was consistent across the different monthly sample variograms, which 

supported the usc of the same class of variogram model (with a nugget and single 

spherical component) throughout. The estimated range, sill and nugget parameter values, 

however, displayed considerable variation between months although no clear patterns 
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Month 

2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
l3 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

aSPH CSPH 

98.9900 0.00825 
98.5600 0.00568 
97.6200 0.00554 
97.0300 0.00585 
96.8700 0.00873 
98.5600 0.00858 
95.9700 0.00567 
95.5000 0.00428 
99.1900 0.00640 
94.01 00 0.00486 
27.8l36 0.00655 
97.2100 0.00860 
95.2600 0.00815 
94.5200 0.00901 
99.3100 0.00768 
97.2400 0.00711 
98.3200 0.00703 
99.3200 0.01473 
88.8497 0.01592 
96.4900 0.00866 
86.9156 0.00728 
96.0400 0.00605 
95.6200 0.00832 
89.5156 0.01199 
99.3400 0.01313 
95.8600 0.01369 
98.6800 0.01450 
98.4400 0.00872 
97.6100 0.00702 

96.5000 0.00554 
95.1100 0.00538 
97.2200 0.00624 
99.3700 0.00479 
92.3486 0.00483 
94.3500 0.00623 
98.8400 0.00657 
98.4900 0.00794 
95.5600 0.00626 
98.3200 0.00597 
94.8500 0.00796 
95.3700 0.01153 
89.5156 0.01199 

CNUG 

0.00736 
0.00957 
0.00826 
0.00990 
0.00843 
0.00832 
0.01020 
0.00953 
0.00834 
0.00849 
0.00617 
0.00601 
0.00669 
0.00661 
0.00605 
0.00783 
0.00930 
0.00852 
0.00880 
0.00685 
0.00591 
0.00766 
0.00736 
0.01250 
0.01155 
0.01034 
0.01182 
0.00871 
0.00849 

0.01017 
0.00796 
0.00695 
0.00732 
0.00853 
0.00904 
0.00660 
0.00688 
0.00854 
0.00799 
0.01033 
0.00979 
0.01250 

Month 

43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
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49.2315 
94.4500 
94.4700 
9l.2986 
20.8277 
75.9037 
96.9700 
96.0000 
33.2939 
82.0123 
97.4300 
99.6800 
98.7300 
98.8800 
80.8380 
92.0428 
89.1899 
98.7500 
9l.8470 
7l.0508 
81.1953 
95.5400 
95.0744 
53.0273 
55.0918 
75.5966 
84.5026 
74.1880 
65.7891 
93.2243 
75.5810 
94.5700 
97.5527 
83.7580 
58.7546 
75.3251 
69.0179 
90.2984 
58.9361 
99.7900 
69.6865 
94.3455 

CSPH 

0.00835 
0.00532 
0.00596 
0.00312 
0.00599 
0.00555 
0.00951 
0.01143 
0.00974 
0.01105 
0.01088 
0.01264 
0.01226 
0.00994 
0.00903 
0.00677 
0.00700 
0.00864 
0.00911 
0.01026 
0.00998 
0.00915 
0.00744 
0.0l357 
0.01285 
0.00870 
0.00696 
0.00666 
0.00689 
0.00668 
0.00956 
0.00963 
0.00785 
0.00857 
0.00865 
0.01068 
0.01413 
0.00744 
0.00688 
0.00709 
0.00772 
0.00758 

CNUG 

0.01076 
0.00849 
0.00690 
0.00897 
0.00602 
0.00754 
0.00839 
0.00755 
0.00745 
0.00887 
0.00812 
0.00774 
0.00813 
0.00794 
0.00875 
0.01036 
0.01014 
0.00940 
0.01042 
0.01045 
0.00830 
0.00753 
0.00860 
0.00756 
0.00885 
0.00933 
0.00681 
0.00670 
0.00721 

0.00732 
0.00759 
0.00774 
0.00964 
0.00796 
0.00905 
0.00954 
0.00897 
0.00887 
0.00896 
0.00881 
0.00642 
0.00780 

Table 7.1 Parameters of the spherical valiogram models filled to each monthly spatial-only sample variogram ofMP. 
Each model consisted ofa single spherical component with range agpl! (km) and sill CSPll, and a nugget component C~LG 
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Figure 7.4 Space-time variography for malaria proportion. Plots shown are (a) the sample space-time variol,'ram surface, 
(b) the sample space-marginal variogram (circles) with fitted 1-0 model (line), (c) the sample time-marginal vaJiogram 
(circles) with fitted 1-0 model (line), and (d) the 2-0 product-sum space-time variogram model. Each vertical axis 
measures semi variance, ;, and horizontal axes measure either spatial lag (h.,) or temporal lag (hi). 

Model type a c 

Nugget 0.0075 

Spatial Model 
Exponential 30 0.0016 

Spherical 85 0.0084 

Nugget 0.0030 

Exponential 3.3 0.0035 

T emporaJ Model Hole 6 0.0003 

Spherical 20 0.0020 

Space-time sill 0.0178 

Table 7.2 Parameters of the product-sum space-time variogram model for MP. Values oflhe range parameter a arc given 
in kilometres for spatial model components and in months for the temporal model components. c refers to the sill 
parameter of each component 
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Figure 7.5 Examples of local space-time variography for four different locations (rows), Variography was carried out 
automatically in a local neighbourhood around each of the 1765 spatial locations where predictions were made, Plots 
shown fOf each location (upper box) are the sample space-time variogram surface (column (a)). the filled 2-D product­
sum space-time variogI'am model (column (b)). the sample space-marginal vaJiogram (circles) with fitted 1-0 model 
(linc) (column (c)), and the sample time-marginal vaJiogram (circles) with filled J -0 model (line) (column (d», Each 
vertical axis measures semivariance, y, and horizontal axes measure either spatial lag (h,) or temporal lag (h,). The local 
neighbourhoods in which each of these four local variogI'ams were calculated afe shown in the map (lower box), Each 
cluster (black dots) represents the spatial locations (facilities) that contributed data in each easc, 
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could be discerned. Figure 7.4 shows the global sample space-time variogram surface 

and fitted product-sum model. Also shown are the sample space- and time-marginal 

variograms that were estimated using the sample surface, and the corresponding I-D 

variogram models. The corresponding table of model parameters are shown in Table 7.2. 

The time-marginal variogt'am differed substantially in structure from the space-marginal 

variogram, with both a smaller modelled sill value and a smaller relative nugget effect 

indicative of greater autocorrelation through time than across space. The spatial 

variogram shows a small upturn in semivariance for the smallest lags. This effect can be 

attributcd to the nature of facility-pairs at these separations. A disproportionatc number 

of these pairs are cross-type: health facilities of the same type are rarely built so close 

together and it is more commonly the case that large facilities such as hospitals, for 

example, are surrounded closely by a number of smaller facilities such as health centres 

or dispensaries. The different facility types are more likely to have different MP values 

than their spatial separation would otherwise suggest, resulting in a relatively larger 

semivariance at these short lags. Figure 7.5 shows examples for four different locations 

of the automatic variography procedure implemented to estimate and model local sample 

space-time variograms for each of the 1765 spatially-local neighbourhoods. These four 

cxamples illustrate the spatial heterogeneity of the observed space-time autocorrelation 

structure, with space- and time-marginal variogram model parameters varying 

considerably between the four locations. 

7.4.2 Comparison of prediction accuracies 

Cross-validation summary statistics for OK, STOK, and LSTOK are shown in Table 7.3. 

Both space-time approaches, STOK and LSTOK, resulted in substantially larger values 

of the correlation coefficient p than OK (13.1% and 14.8% larger p, respectively), 

indicating larger linear correlation between data and prediction sets. ME was small 

(indicating small overall bias) for all three approaches, although differences between 

sets were considerable. The value for OK showed the largest bias and those for STOK 

and LSTOK and were substantially smaller (98.4% and 87.5% reductions in ME, 

respectively, relative to OK). The largest MAE was produced by OK predictions, 

indicating the largest average prediction inaccuracy, with STOK and LSTOK producing 

more accurate predictions (14.8% and 18.3% reductions in MAE, respectively, relative 
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Figure 7.6 2-D histograms (column (a)) showing bivariate distribution of predicted against actual values for cross­
validation predictions of malaria proportion (MP) using three different prediction approaches; spatial-only ordinary 
kliging, space-time ordinary kriging, and local space-time ordinary kriging. Whiter shading represents a higher frequency 
of values (note non-linear scale). The 1:1 line is also provided (diagonal black line) for eaeh plot. Univariate histograms 
(column (b)) show the distribution of prediction error values for each prediction methodology. Error mean (Mean) and 
variance (Val') are also given. 
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Modelling Approach p ME MAE 

Spatial-only ordinary kriging (OK) 0.6764 0.000384 0.0796 

Space-time ordinary kriging (STOK) 0.7651 0.000006 0.0678 

Local space-time ordinary kriging (LSTOK) 0.7768 0.000048 0.0650 

Table 7.3 Comparison of summary statistics for cross-validation predictions of malaria proportion using three 
different prediction approaches. The statistics shown are thc corrclation coefficient, p, the mcan en'or (ME) and 
mean absolute crror (MAE), 

to OK). The overall pattern was that the space-time techniques offered less biased and 

more precise predictions than OK. Of the two space-time approaches, LSTOK provided 

more precise predictions than STOK but was slightly more biased overall, although bias 

was small in both cases. 

Figure 7.6 (a) shows, for each prediction methodology, a 2-D cross-validation histogram 

illustrating the bivariate distribution of data and prediction sets. The patterns displayed 

support the summary statistic findings presented in Table 7.3 and discussed above. A 2-

D cross-validation histogram for an accurate prediction exercise would show a high 

frequency of corresponding data and prediction values along a central region (indicating 

small imprecision), centred along the 1: 1 line (indicating small bias). The 2-D 

histograms for OK, STOK, and LSTOK display progressively tighter central regions, 

with a greater frequency of values indicated by the whiter shading. Differences in bias 

are less noticeable, although the progressively smaller bias for OK, STOK, and LSTOK 

for small data values (e.g. <0.1) is elear if the bottom-left corner of each plot is 

compared. Univariate histograms showing the distribution of error values for each 

prediction are shown in Figure 7. 6 (b). Errors arc approximately Gaussian in each case 

and the progressively smaller error variances for OK, STOK, and LSTOK again 

correspond to respectively more precise predictions. 
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7.S Discussion 

7.5.1 Comparison of spatial-only and global space-time prediction 

When predicting a space-time data set, a potential advantage of the spatial-only 

approach (e.g. OK) over the global spaee-time approach (e.g. STOK) is that the spatial 

variogram is able to vary through time since each month is modelled separately. In 

contrast, the global spaee-time variogram averages these individual spatial variograms 

and month-to-month variability is not represented in the model. This potential advantage 

of the spatial-only approach is offset by the need to partition the full space-time data set 

into monthly slices, which may each have insufficient data to obtain a stable estimate of 

the spatial variogram. A more serious limitation of the spatial-only approach is that any 

temporal structure present in the data is ignored. The results presented in the previous 

section showed that STOK yielded more accurate predictions than OK. The global 

sample space-time variogram (Figure 7.4) displayed substantial temporal autocorrelation 

and it is intuitive that prediction accuraey should be enhanced by exploiting this 

temporal structure, allowing predictions to be influenced by observations proximate in 

time as well as space. A further advantage of STOK over OK in the current context is 

that the former is significantly less labour-intensive, requiring the estimation and 

modelling of a single space-time variogram rather than 84 separate spatial variograms. 

The optimal choice between the two approaches will differ between settings contingent 

on a range of factors including the space-time distribution of the data and prediction 

points, and the relative magnitudes of spatial and temporal autocorrelation. 

7.5.2 Comparison of global and local space-time prediction 

The results described in the previous section showed that more precise predictions were 

obtained in the space-time prediction exercise when a single global space-time 

variogt'am (STOK) was replaced by local space-time variograms that were estimated and 

modelled for each prediction location using a spatially-local subset of data (LSTOK). As 

with the preceding comparison between OK and STOK, the relative costs and benefits of 

LSTOK over STOK in the current case may differ in another setting. Where predictions 

are to be made over a large region displaying second-order heterogeneity, and where 
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data exist at a sufficient density to support stable estimation of variograms within local 

neighbourhoods, the use of LSTOK offers the potential to provide greater prediction 

accuracy than STOK, as the current case illustrates. Furthermore, the adoption of a RF 

model with stationarity of order-two or intrinsic stationarity is likely to be more 

appropriate when these characteristics are considered to exist only within each local 

neighbourhood rather than throughout the study region. 

The principal drawbacks of LSTOK are the difficulties involved in its implementation. 

Firstly, the calculation of a single sample space-time variogram is computationally 

expensive (if a spatial variogram is to be estimated at n(hs) lags, and a temporal 

variogram at n(ht) lags, then the equivalent space-time sample variogram requires 

estimates at n(hs)x n(h t) lags). Secondly, where local variograms must be estimated at a 

large number of locations, automatic variogram model fitting becomes necessary. 

Although procedures such as WLS allow the implementation of objective criteria for 

parameterisation, manual fitting is still widcly favoured by practitioncrs of geostatistics 

as it allows the incorporation of prior knowledge of the property of interest in the 

variogram model. Algorithms to implement automatic fitting are, again, computationally 

expensive and can be unreliable, often meaning variogram models must be 

parametrically simple, with less nested components, than the equivalent manually-fitted 

models. The net effect of using many simple local variogram models compared to a 

single complex model will clearly depend on several factors including the nature of the 

global and local spatiotemporal autocorrelation structures being considered and the 

number of data available with which to estimate local variograms. In the current case, 

the use ofLSTOK over 1765 spatially-local neighbourhoods has been shown to offer a 

modest increase in prediction accuracy over STOK, although at a substantial additional 

cost in terms of dynamic memory requirements and CPU time. 

7.6 Conclusion and implications 

Three different geostatistical approaches that predict values of the standardised MP 

variable have been implemented to examine their rclative prediction accuracies. The 

extension of the established spatial-only approach to a space-time approach yielded 
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substantially more accurate predictions. The further extension of this globally-stationary 

space-time approach to a locally-stationary space-time approach whereby space-time 

variograms were re-estimated for each prediction location within a spatially-local 

neighbourhood yielded a further increase in prediction precision, although was 

marginally more biased. 

It was decided that the most appropriate choice of prediction technique for 

implementation of the three modelling frameworks was STOK. Although LSTOK 

provided a modest increase in prediction precision over STOK, this advantage was offset 

by a small increase in bias. A further reason for this decision was the dependenee of the 

feasibility of the LSTOK procedure on the form of the spatial and temporal 

autocorrelation structures of the variable of interest. Whilst the sample space- and time­

marginal variograms for MP had a form that could be reasonably represented with 

simple two-component (nested nugget and spherical model) variogram models, 

examination of the equivalent sample variograms for MP, SMC, and TC (presented in 

the next chapter) suggested more complex structures. As such, the automated procedure 

for fitting the large number of local variograms required by LSTOK was considered 

infeasible, and the advantages of manually fitting a complex model to a single global 

variogram were expected to outweigh any potential benefits of incorporating spatial 

heterogeneities in variogram form. 

7.7 Chapter summary 

The purpose of this chapter was to develop and test three different kriging approaches in 

order to identify the most suitable approach to implement in the three modelling 

fiameworks presented in Chapter 5. Using MP as the test variable, the three different 

kriging methodologies were implemented to make eross-validation predictions of MP in 

order to test the effect on prediction accuracy of (a) the extension of a spatial-only to a 

space-time prediction approach, and (b) the replacement of a globally-stationary with a 

locally-varying random function model. Space-time kriging was found to produce 

predictions with 98.4% less mean bias and 14.8% smaller mean imprecision than 

conventional spatial-only kriging. A modification of space-time kriging that allowed 

space-time variograms to be recalculated for every prediction location within a spatially-
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local neighbourhood resulted in a larger decrease in mean imprecision over ordinary 

kriging (18.3%) although mean bias was reduced less (87.5%). These results have led to 

the decision to use the STOK approach to implement the three modelling frameworks. In 

the next chapter this implementation is carried out, and the three modelling frameworks 

are compared. 
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8. Model Development 2: 
Evaluation of Modelling 
Frameworks and Development of 
an Uncertainty Model 

8.1 Introduction 

In Chapter 5, three modelling frameworks were presented for predicting unsampled MC values 

within the HMIS database. Model 1 represented the null model, with MC being predicted 

directly using the raw MC data. Models 2 and 3 represented two alternative approaches by 

which TC data could be incorporated as a way of standardising the raw MC data to mitigate the 

effect of non-spatial facility-specific factors that may confound the spatial structure that would 

otherwise be present in Me. The modelling frameworks all consisted of one or more 

geostatistical prediction exercises. In Chapter 7, a series of different kriging methods was tested 

to identify the most suitable approach to use for these predictions and STOK was chosen as the 

most appropriate technique. In this chapter, the three modelling frameworks are implemented to 

obtain predictions of MC. These predictions are then compared and the modelling framework 

that provides the most accurate predictions is identified. 

If the chosen model is to be implemented to deliver predictions of the total treatment burden for 

malaria, then it is critically important that such predictions are accompanied by measures of 

their uncertainty. In this chapter, the established geostatistical technique of stochastic simulation 

is adapted to a space-time setting and used to represent the different sources of prediction 
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uncertainty within the fi'amework of the chosen model. The resulting uncertainty model was 

tested by applying it in a cross-validation sense, such that each uncertainty estimate could be 

compared to a known prediction error. 

8.2 Methodology 1: Comparison of modelling frameworks 

8.2.1 Implementation of modelling frameworks 

As in Chapter 7, the HMIS test set from 1765 facilities was used in this chapter, consisting of 

co-located data on MC and TC from 63,542 facility-months originating from 126 hospitals 

(4682 records), 445 health centres (18,669 records), and 1194 dispensaries (40,191 records). 

The three modelling fi'ameworks are presented in section 5.4 and summarised in Figure 5.5. In 

total, the three modelling frameworks comprised four individual prediction exercises to predict 

MC directly (Model 1), TC (Models 2 and 3), MP (Model 2) and SMC (Model 3). Each 

framework was implemented using data from all facilities combined, and also separately for the 

three facility classes. This meant that a total of 12 prediction exercises was carried out, 

imp lementing each of the three modelling framework for the four facility categories. Each of the 

12 prediction exercises followed a similar procedure, as follows. 

(1) Firstly, the space-time sample variogram surface r" (h s , h,) was estimated as described in 

section 4.4.2. Variograms were modelled up to spatial lags of 100 km and temporal lags of 24 

months. Since the objective was to interpolate (fill in gaps), rather than to extrapolate (predict 

into the future), time was considered isotropic (i.e. temporal lag was defined only by the number 

of months, and not by direction in time). 

(2) The product-sum space-time variogram model (4.52) presented in section 4.4.3 (De Cesare 

et a1. 2001, 2002) was then fitted to the sample variogram surface Ys/ (h" ht ) using the procedure 

outlined in section 7.3.2 of the previous chapter. In brief, sample space-and time-marginal 

variograms were estimated from r,t (h" h,) as y" (h s ,0) and yj 0, hJ by setting ht = ° and hs = 

0, respectively, and variogram models were fitted to these marginal variograms by eye. The 

space-time sill ('1(0,0) was also estimated from Y,t (h" hi) and these parameters were used to 

define the product-sum variogram model Y,t(h"ht). 
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(3) The space-time variogram model was used as input into an STOK prediction carried out 

using the space-time GSLlB kt3d routine (Deutsch and Journel, 1998) modified to allow 

prediction of space-time points using product-sum space-time covariance structures (De Cesare 

et aI., 2002). Again, this procedure is explained in full in section 7.3.2. 

8.2.2 Comparison of modelling frameworks 

Each modelling framework was implemented as a cross-validation (see section 4.3.3.6) whereby 

the output was a set of n predicted values of MC at the data locations, {ZMC *((u, t)a.) , a 1,2, ... , 

n}, that could be compared to the MC data themselves, {ZMC((U, t)rJ, a=1,2, ... , n}, at the same 

locations in order to assess the predictive accuracy of each model. For Modell, cross-validation 

was applied as described to create the cross-validation set Z*MC((U, t)a.) to compare to ZMC((U, 

t)a.). For Model 2, cross-validation sets were required for both MP and TC to define the cross­

validation set Z*MC((U, t),J = Z*MP((U, t)o) x Z*Tc((U, t),J. For Model 3, the cross-validation 

procedure could not be based entirely on predictions made at data locations since the MMTC 

variable, by definition, required predictions at unsampled facility-months (5.1). As such, 

MMTC was calculated using both the available TC data ZTC((U, t),x) and predictions of TC at 

unsampled facility-months Z*TC((U, t)/J) , and a cross-validation set for MC was predicted using 

the resulting Z*MMTC(Uk) values in the forward and back-transform between MC and SMC such 

that Z*MC((U,t),,) = Z*SMc((U, t),,) x Z*MMTC(Uk), where Uk has the same spatial location as (u, t)" 

and (u, t)jJ. 

For each cross-validation set defined above for the three modelling frameworks, the three 

summary statistics presented previously (p, MAE, and ME) were calculated to compare 

prediction performance. 

8.3 Methodology 2: Developing an uncertainty model 

8.3.1 Background: Stochastic simulation to estimate space-time regional 
uncertainty 

In addition to providing a modelling framework to predict MC at unsampled facility-months, a 
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further aim of this study was to provide a measure of the uncertainty of these predictions both 

individually and over aggregated sets of predictions within different space-time regions. 

Comparison of the cross-validation statistics for the three modelling frameworks indicated that 

Model 3 produced the most accurate predictions of Me. This important result is presented and 

discussed in full later in this chapter. It is necessary to state this outcome here, however, 

because Model 3 was therefore chosen as the framework for which to develop an accompanying 

uncertainty model. 

Space-time kriging procedures allow predictions to be made at a set of q unsampled space-time 

locations, {z*((u, t)/l), fJ = 1,2,00', q} over a spatiotemporal study region. In the current case, the 

quantity of interest is the mean or sum of values at a set of space-time locations within the study 

area of which some are sampled and some are unsampled (e.g. the sum or mean of MC over all 

facilities in a district over a year). In such cases, the relevant set of data can be combined with 

the relevant set of predictions and the joint mean or sum can be calculated. Whilst the 

contribution to this aggregated value from the original data has zero prediction uncertainty 

associated with it, the contribution from the predicted values has an associated prediction 

uncertainty that must be evaluated. Stochastic simulation is now presented in brief as a tool for 

estimating the uncertainty associated with the mean of a set of predictions. The procedure is 

equally applicable, with rudimentary adjustments, to estimating the uncertainty associated with 

the sum of a set of predictions. 

8.3.1.1 Estimating the joint uncertainty of a set 0.1 predictions 

If a set of predictions is made at q unsampled space-time locations, {z*((u, t)/l), fJ = 1,2'00 .,q}, 

over the study region, the value of interest may be the mean ,u[z*((u, t)/l)] of the q predicted 

values over the entire region {fJ = 1,2'00" q}, or of a subset of v points within a sub-region, {fJ = 

1,2'00" v}. In addition to calculating these predicted regional means, it is necessary to provide 

estimates of the associated uncertainty. Although kriging systems provide 'optimum' local 

predictions by minimising the variance of the error of each prediction, a set of kriging 

predictions appears 'smoother' than the original data due to a missing error component. 

Conceptually, the RF Z(u, t) can be decomposed into the predictor Z*((u, t)p), as provided by 

kriging, and the corresponding unknown prediction error R((u, t)/l): Z((u, t)jJ) = Z*((u, t)p) + 

R((u, t)/f). Estimates of the uncertainty associated with predictions of regional or global means 
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must take into account the variance introduced by this unknown error component in order to 

restore the full variance of the RF model. 

One approach to the above problem is to simulate, for each of the f3 = 1,2, ... ,q prediction 

locations, I 1,2, ... , L realisations <Y\ (u, t)j3) of the error component with zero mean and the 

correct variance and covariance which can then be added to the original prediction, z*((u, t)ji), to 

give a conditional simulated prediction, zU)((u, t)ji) (Deutsch and Journel, 1998, p. 127): 

(8.1) 

If ii\(U, t)ji) is to have the same variance as the true value z((u, t)/I) then this approach requires 

that the error component is orthogonal to the predictor and has at least the same covariance, if 

not spatial distribution, as the actual error. A procedure to generate realisations of the error 

component under these conditions was proposed originally by Journel and Huijbregts (1978, p. 

495) for a spatial-only setting and is presented here adapted to a space-time setting. 1= 1,2, .. . ,L 

non-conditional realisations zn}i)((U, t),) that share the same covariance as the RF Z(u, t) are 

simulated at all data and prediction locations v=1,2, ... ,n+q. The original kriging exercise 

performed on the data is then repeated using the simulated values at the n data locations 

{z;,,(/\(u, t),,), (J. = 1,2, ... ,n}, rather than the data, to obtain simulated predictions at the q 

unsampled locations {z*(I)((u, t)ji), f3 = 1,2, .. . ,q} to compare to the simulated values at these 

locations {zn,(I)((U, t)j3), f3 = 1,2, .. . ,q}. Simulated errors &,(I)((u, t)/J) are then defined for each 

prediction location as the difference between simulated values and simulated predictions, &,(I)((u, 

t)ji) = z*(I)((u, t)j3) - Znc(I)((U, t)ji), and these can be added to the original predictions z*((u, t)/I) to 

give conditional simulated predictions, ii)((u, t)ji) : 

(8.2) 

The distribution of the set of L realisations {il)((u, t)/J), Z(2)((U, t)j3), ... , Z(L)((U, t)/I)} at each 

prediction location represents the uncertainty of that prediction which can be summarised by the 

standard deviation of the L realisations, (Jsim[Z*((u, t)jl)] = (J[i{\(u, t)j3)], 1= 1,2, ... ,L. Where the 

value of interest is the mean, ,u[z*((u, t)/i)], of a set of f3 = 1,2, .. . ,q predicted values within a 

region, simulated realisations of the mean, ,u[z(l)((u, t)/J)], can also be defined: 
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(8.3) 

and the distribution of the set of these L realisations {,LL[Z(I>CCU,t)p)] ,,LL[z(2)((u,t)jI)] ' 

... ,,LL[ziL)((U,t)p)]} represents the uncertainty of the predicted mean, ,LL[z'((u,t)p)]. Again, 

this uncertainty can be summarised by the standard deviation of the L realisations, 

8.3.1.2 Sequential Gaussian simulation 

The remaining issue is the choice of simulation algorithm to generate the L non-conditional 

simulated realisations of the RF Z(u, t). Sequential Gaussian simulation (sGs) is one such 

algorithm that creates realisations under the assumption of a multiGaussian RF model and is 

presented in Goovaerts (1997, pp. 380-393). The space-time equivalent, ST -sGs can be 

described in brief as follows. The set of n z-data {z((u, t)o:), a = 1,2, ... , n} are first transformed 

into a corresponding set of y-data, y((u, t)o.) = 9 (z((u, t),,», with a standard Gaussian cdf where 

9 is the normal-score transform (Goovaerts 1997, p. 266). Under the multiGaussian 

assumption, the ccdf at each prediction location is Gaussian and, therefore, fully characterised 

by its mean and variance. The sGs algorithm proceeds by visiting sequentially all v data and 

prediction locations, v=1,2, ... ,n+q, and determining the mean and variance of each ccdf as the 

predicted value, Y*SK((U, t)v), and prediction variance, (lSK((U,t)v), respectively, of a space-time 

simple kriging (STSK) prediction carried out for that location with the normal score space-time 

variogram model, Yy(h"ht)' fitted to the sample space-time variogram of the y-data y((u, t)o:). A 

simulated value, yU)((u, t)v), is then drawn from the ccdf for the location in question. In the non­

conditional case, each subsequent prediction is conditioned only on values simulated at 

previously visited locations, and not on the data y( (u, t)rJ. Once values have been simulated for 

all q locations, set yU)((u, t)v) is back-transformed into the desired z-data space using the inverse 

normal-score transformii)((u, t),) = 901 (y}\(u, t)1'». 
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8.3.2 Implementation of ST -sGs to estimate prediction uncertainty 

The theoretical approach set out in the previous section was implemented to obtain estimates of 

the uncertainty associated with predictions of MC made using Model 3. This required two new 

developments: the conversion of techniques for spatial-only simulation to the space-time 

setting, and the integration of this space-time version in an uncertainty model that incorporated 

the different sources of prediction uncertainty within the framework of Model 3. The first 

requirement was met by modifying an existing algorithm for spatial-only sGs, the sgsim GSLIB 

routine (Deutsch and Journel, 1998), for a space-time setting. This entailed the replacement of 

sub-routines that incorporated spatial variograms and calculated covariances between spatially­

separated locations with space-time equivalents. Provision was made for use of the product-sum 

covariance model by incorporating the modified cava3 sub-routine presented by De Cesare et 

al. (2002) in the sgsim algorithm. 

The uncertainty model was designed to replicate the prediction uncertainty inherent in Model 3. 

To briefly restate the structure of Model 3 (see Figure 5.5), TC was predicted first at unsampled 

locations and these predictions were combined with existing data to derive the mean TC per 

month, MMTC, at each facility. MC data from each facility were then divided by the relevant 

MMTC value to create standardised SMC values. SMC was then predicted at all unsampled 

locations and back-transformed to predictions of MC using the relevant MMTC value. The 

prediction procedures for both TC and SMC introduce uncertainty into the final predictions of 

MC, and so the unce11ainty model had to incorporate the effects of both. 

To construct the uncertainty model, the two STOK procedures in Model 3 that predicted TC and 

SMC were replaced with ST-sGs procedures. Because the objective was to develop and then 

evaluate the uncertainty model, it was necessary to implement it in a cross-validation mode such 

that each uncertainty estimate could be compared to a known prediction enor derived from the 

cross-validation canied out in Chapter 8. This was canied out by first using ST -sGs to simulate 

I conditional realisations of TC at the jJ = 1,2, ... , q unsampled locations, z(/\c((u, t)p). The 

constituent steps of this procedure are detailed in full in Figure 8.1. These realisations were then 

combined with the (J. = 1,2, ... , n TC data ZTC((U, t),,) to create I realisations of MMTC. At each 

facility location Uk, the d = 1,2, .. . ,D data and s = 1,2, ... , S simulated values were combined for 

each realisation to define the simulated MMTC value Z(I)MMTC(Uk): 
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(8.4) 

The MC data ZMC((U, t)a) were then divided by the simulated MMTC value for the facility in 

question Z(l)MMTC(Uk) to define I realisations of SMC at the data locations, Z(1)SMC((U, t)o.): 

(8.5) 

The simulated values Z(I)SMc((U, t)o) of SMC at the n data locations were then used as input into 

the second ST -sOs procedure that corresponded to the STOK prediction of SMC. Because 

cross-validation simulations were required, this ST -sOs procedure was used to obtain 

realisations of SMC at the n data locations. These output simulations of SMC are denoted with a 

(II) superscript, Z[lI)SMC((U, t)o.), to distinguish them from the input simulations, iI)SMC((U, t),,). 

This procedure is detailed in full in Figure 8.2. These output simulations of SMC were then 

back-transformed using the appropriate simulated MMTC value as defined in (8.4) to obtain the 

final simulated MC values, Z(I)MC((U, t)1X): 

(I) (( » _ (1/) (( » (l) ( ) ZMC u,t a - ZSMC u,t a XZMMTC Uk (8.6) 

The above procedure resulted in a set of 1= 1,2, ... , L conditional realisations ofMC, iI)MC((U, 

t),,), at the (J. 1,2, ... , n data locations. The ST-sOs algorithm required substantial computation 

and the number of realisations was therefore limited to L = 100. The distribution of these L 

simulated sets provided a model of the uncertainty associated with each prediction. This model 

could then be compared to the known prediction errors determined in the cross-validation for 

Model 3, allowing assessment of the accuracy of the uncertainty model itself. 

8.3.3 Testing the accuracy of the uncertainty model 

The L simulated sets were tested as a model for (i) local uncertainty, that is, of predictions of 

MC at individual facility-months, and (ii) regional uncertainty, that is, of predictions of the 

regional mean MC per facility-month over aggregated sets of cross-validation predictions within 
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nc Non-conditioned realisation 
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cP Normal-score transfonn 
cP·' Normal-score back-transform 

Figure 8,1 Schematic diagram showing steps involved in producing conditionally simulated realisations ofTC at non-data 

! 

locations. Non-conditioned fields were generated at all points using ST-sGs and these values at data locations were used for 
predictions at non-data locations using STOK. These simulated predictions were then compared to the original simulated values at 
each non-data location to generate simulated prediction errors (box 2). The original STOK prediction is shown (box 1), and the 
simulated crrors were added to these predictions to give conditional simulated realisations (box 3). The notation used in this figure is 
described thrther in the text. 
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Input SMC realisations (z-sp!l£e) at a.=1 .2 •..• n data locations 
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Simulated errors arc then defined for each 
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.. Prediction 
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nc Non-oonditioned realisation 
a Data locations 
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validation predictions. and these are added 
to the original predictions to give 
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_____ -.J 
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<p'l Normal.score back-transform 

CV Cross-validation 

Figure 8.2 Schematic diagram showing steps involved in producing conditionally simulated cross-validation realisations of SMC at 
the data locations. Non-conditioned fields were generated at all points using ST -sGs and these values at the data locations were used 
for cross-validation predictions at the same data locations using STOK to obtain simulated cross-validation errors (box 2). The 
original STOK cross"validation prediction is shown (box 1), and the simulated errors were added to these predictions to give 
conditional simulated cross-validation realisations (box 3). 
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space-time regIOns. Each local uncertainty model was summarised by the simulated error 

standard deviation, (Jsim[ c( (u, t)o.)]: 

(8.7) 

where simulated errors c(l)((u, t}J) were defined as the difference between each conditional 

realisation and the corresponding original prediction, c(I)((u, t)o.) = ZMC(I)((U, t)o.) - ZMC*((U, t)a). It 

was then necessary to compare the simulated error standard deviations, (Jsim[C((U, t),,)], to 

estimates of the corresponding actual error standard deviation, a [6'((u, t)Ct)], where actual error 

was defined as the difference between each cross-validation prediction and the true data value, 

c((u, t)Ct) = Z*MC((U, t),,) - ZMC((U, t\,). The set ofn errors c((u, t)o.), 0. = 1,2, ... , n, was partitioned 

into b = 1,2, ... , B subsets or 'bins' according to the magnitude of their corresponding simulated 

error standard deviations, (Jsim[C((U, t),,)]. Each bin spanned 1IBtl1 of the range of values of 

(Jsim[C((U, t),,)] and the B was chosen as 40. Each bin therefore contained a set c(j) of} =1,2, .. . ,J 

error values, each with a corresponding simulated error standard deviation value, (Jsim[C(j)] . For 

each bin, the median of the J simulated error standard deviation values was compared to the 

estimated actual error standard deviation, aJc(j)]. This pair of values was obtained for each of 

the B bins and plotted on a scatter plot to allow visual comparison. 

A large number of regionally-aggregated sets of (/. = 1,2, ... ,m prediction locations were defined 

using moving space-time windows with spatial radii of between 12.5 km and 100 km and 

temporal radii of between 3 and 24 months. The size of aggregated sets varied from m = 2 to m 

1000 individual predictions. For each set, the true regional Me mean, .u[Z:VIC«U,t)'J], and 

predicted mean, .u[z~c«u,t)a)] were calculated from the data and cross-validation predictions, 

respectively, and the model of prediction uncertainty was defined by the distribution of the 

corresponding means of the I = 1,2, ... ,L simulated realisations of the m predictions, 

.u [z ~b « u, t) IX)] . Each regional model of uncertainty was summarised by the simulated mean 

error standard deviation, O'simLu[E((U,t),,)]]: 

(8.8) 

where each simulated mean error, JL[C:(!) ((u, t)a)] , was defined as the difference between the 

simulated mean, .u [z ~b « u, t) IX )] , and the corresponding predicted mean, .u [z ~c « u, t) IX )] : 
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(8.9) 

The large set of regional simulated error standard deviations for different aggregated sets were 

compared to estimates of the actual error standard deviation using the same 'binning' approach 

described above for the local case, resulting in a corresponding scatter plot for the regional case. 

8.4 Results 

8.4.1 Variography 

Figure 8.3 shows the sample space-time vanogram surface, the sample space- and time­

marginal variograms and corresponding fitted models, and the resulting product-sum space-time 

variogram model for each variable that underwent STOK (TC, MC, MP, and SMC) and for each 

facility category (hospitals, health centres, dispensaries, and all three combined). Table 8.1 lists 

all the corresponding variogram model parameters. In all cases, the temporal variograms differ 

substantially in structure to the corresponding spatial variograms, with temporal variograms 

generally having smaller relative nugget effects and smaller sills. Most temporal variograms 

were modelled with a periodic component to account for a pseudo-periodic stmcture. The 

spatial variogram for combined facilities was modelled as a pure nugget effect for both the non­

standardised variables (MC and TC), indicating a complete absence of spatial autocorrelation in 

these variables. In both cases spatial variograms revealed substantially more structure when 

hospitals, health centres, and dispensaries were considered separately. Comparison between MC 

and TC indicated that MC was the more spatially structured variable, with MC spatial 

variograms generally having lower relative nugget effects and larger range values than those for 

TC. 

Variograms for the two standardised variables, MP and SMC, had a number of noticeably 

different characteristics from those for the non-standardised variables. Firstly, the spatial 

variograms for combined facilities both indicated spatial autocorrelation and were modelled 

with structured components in contrast to the pure nugget effect models used in the equivalent 

variograms for MC and TC. Secondly, the spatial variograms for all facility categories indicated 

a greater degree of spatial structure than the non-standardised variables, with generally smaller 
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relative nugget effects and structured components with larger range values. Furthermore, 

the sill values of spatial variograms were more similar to the sill values of the temporal 

variograms for MP and SMC than was the case for MC and TC. Comparison between 

MP and SMC variograms suggests that SMC displays marginally more structure, both 

spatially and temporally than does MP. 

8.4.2 Comparison of modelling frameworks 

The results of the cross-validation for each ofthe three modelling frameworks are shown 

in Table 8.2. Comparison between those predictions made using the combined data set 

for all facility types and those made with the facilities separated revealed that the latter 

approach resulted in substantially smaller overall bias (smaller ME), substantially 

smaller mean inaccuracy (smaller MAE), or both, for all facility types and for all three 

models. Focusing on this latter approach, comparison of the three models revealed that 

Model 3 produced predictions of MC which had the smallest mean inaccuracy (smallest 

MAE) for all three facility classes. Model 2 predictions had a smaller MAE than Model 

1 for health centres and dispensaries but a larger MAE for hospitals. Results for overall 

bias (ME) were more mixed. The least biased prediction (smallest ME) was provided by 

Table 8.2 Compalison of summary statistics for cross-validation predictions of malaria cases using three different 
modelling frameworks. Predictions were made separately for hospitals, health centres and dispensaries, and with all 
facilities combined. The statistics shown are the correlation coefficient, p, the mean error (ME) and mean absolute error 
(MAE), as described in the text. Model 3 (highlighted in bold text) was chosen as the best overall predictor of malaria 
cases. 

Model 
Facilities p ME :VIAE 

separated? 
hcility type 

Modell Yes 0.859 4.439 193.188 
Model 2 Yes 0.848 6.244 205.730 

Hospitals 
:VIodel3 Yes 0.856 2.822 192.423 
Modell No 0.512 -376.730 425.829 
Model 2 No 0.853 -6.945 196.637 
Model 3 No 0.850 -24.276 196736 

Modell Yes 0.779 0.416 92067 
Model 2 Yes 0.783 -2.179 90.240 
Model3 Yes 0.789 -1.050 89.042 
Modell No 0.526 -15.783 150.227 Health centres 

Model 2 No 0781 -3.614 90.416 
Model 3 No 0.793 -1.787 89.745 

Modell Yes 0.764 0.530 69.527 
Model 2 Yes 0.776 -0.397 67.156 
:VIodcl3 Yes 0.774 -0.638 66.903 
Modell No 0.527 58.239 136.291 Dispensaries 

Model 2 No 0.762 1.897 69.790 
Model 3 No 0777 0.414 67.321 
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Model 1 for health centres, Model 2 for dispensaries, and Model 3 for hospitals. The 

largest values of p (largest linear associations between predicted and actual values) were 

provided by Model 1 for hospitals, Model 2 for dispensaries and Model 3 for health 

centres, although differences in values of p between the three models were not 

substantial. Given these results it was decided that Model 3 was the best overall choice 

of predictor for Me because it resulted in the smallest mean inaccuracy for all three 

facility classes and, although its predictions were not the least biased for health centres 

and dispensaries, the bias in these cases was nevertheless very small. 

8.4.3 Evaluation of the uncertainty model 

The results of the procedure to test the accuracy of the simulated uncertainty model are 

shown in Figure 8.4 for both local predictions of Me at individual facility-months and 

regional predictions of mean Me for sets of between 2 and 1000 facility-months 

aggregated over space-time neighbourhoods. In the local case (Figure 8.4 (a», simulated 

error standard deviations replicated closely actual values with no overall tendency for 
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Figure 8.4 Comparison of simulated and actual standard deviations of prediction errors for Me. Simulated standard 
deviations wcre derived for individual and aggregated prediction of MC via space-time sequential-Gaussian-simulation 
and eOlTesponding actual enors were obtained ii-mil a cross-validation exercise. Prediction errors were divided into bins 
according to their simulated standard deviation, and the actual standard deviation of the set of errors in each bin was 
calculated (circles) along with the 95% confidence interval (vcl1ical bars). Results are shown for (a) predictions ofMC at 
individual facility-months and (b) predictions of mean MC within sets ofbctween 2 and 1000 facility-months created by 
aggregating points within progressively larger space-time neighbourhoods. 
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over or under-estimation. Points plotted for smaller standard deviations were 

progressively less scattered around the 1: 1 line, which is indicative of the larger number 

of values in these bins. In the regional case (Figure 8.4 (b)), there was, again, a strong 

linear association between simulated and actual error standard deviations in each bin, 

although there was a tendency for simulated values to be slightly overestimated. This 

overestimation was more pronounced for larger standard deviations, although was less in 

relative terms. A simulated error standard deviation of 19.2 cases, for example, 

corresponded to an actual error standard deviation of 15.2 cases, representing an over­

estimation of 4.0 cases or 26%, whilst a simulated error standard deviation of 71. 7 cases 

corresponded to an actual value of 59.6 cases, representing an over-estimation of 12.1 

cases or 17%. 

8.5 Discussion 

This study has presented three alternative modelling frameworks in which space-time 

geostatistical prediction algorithms can be used to predict MC values at missing facility­

months within the Kenyan HMIS. Whilst Model 1 used these data in their raw form, 

Models 2 and 3 used accompanying data, TC, on total outpatient numbers to construct a 

denominator and predictions were made on the resulting standardised variables, MP and 

SMC, respectively. The rationale was that the spatial structure of the standardised 

variables may be greater than that of the raw count data thus yielding more accurate 

predictions from the geostatistical algorithms. Since the presence or absence of TC data 

matched that of MC, however, predictions of MP and SMC required back­

transformation by corresponding predictions of the relevant denominator (TC and 

MMTC, respectively) at unsampled facility-months and, as such, the accuracy of the 

ultimate predictions of MC was dependent on the prediction accuracies of both the 

standardised variables and the denominator. Predictions made with all three modelling 

frameworks were found to be more accurate when hospitals, health centres and 

dispensaries were considered separately. Under this approach, Model 2 did not offer a 

substantial increase in predictive accuracy over Model 1, indicating that the large 

uncertainty associated with modelling TC negated any benefit of modelling a 

standardised variable. The modelling framework for Model 3, however, did result in 

modest increases in prediction accuracy over Model 1. The temporal variograms for MC 
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and SMC had almost identical structure which is to be expected since the denominator, 

MMTC, is constant through time at each spatial location. The benefit of standardising 

MC by MMTC to obtain SMC can be explained by the spatial variograms for SMC 

which had smaller relative nugget effects and sill values that were much nearer to the 

corresponding temporal sills than was the case for the MC variograms, indicating a 

relative reduction in the overall variance of the variable across space, of which a greater 

proportion was autocorrelated. These factors meant SMC could be predicted directly 

with greater accuracy than could MC Although the back-transform by ~l\1TC involved 

further uncertainty, the net effect was that MC was predicted with slightly greater 

accuracy under this framework than using raw MC data directly in Modell. The greater 

spatial structure displayed by SMC emphasises the potential benefit of incorporating 

proxy measures of facility size and utilisation in models to predict Me. However, these 

results have shown that, when the only such measures available are themselves 

incomplete and subject to substantial uncertainty, their inclusion in a predictive model 

can offer only modest increases in prediction accuracy. The success of Model 3 over 

Model 2 can be attributed to the way that TC predictions were averaged, along with the 

existing TC data, over the 84-month period for each facility before being used as a 

denominator. The resulting MMTC values were, therefore, likely to be have a smaller 

error variance compared to the individual predictions of TC used as denominators in 

Model 2. 

The fact that the use of standardised variables in Model 2 and Model 3 resulted in only 

modest increases in prediction accuracy over Model I is due partly to the effect of 

separating data by facility type. When data were predicted together, Model 2 and Model 

3 produced dramatically more accurate predictions than Modell. Much of this benefit of 

using standardised variables was negated, however, when data were separated by facility 

type because this separation effectively provided an alternative way of standardising the 

raw MC data. This effect is clear when comparing the spatial MC variogram for the 

three facility types combined, which indicates no spatial structure, and those for the 

facility types individually, in which spatial structure is clearly present. A logical 

explanation is that there is a degree of consistency in non-spatial factors such as 

catchment size and facility utilisation within each facility type, and by considering each 

type individually, this source of non-spatial variation is reduced. Although in this study 

the increase in prediction accuracy gained using Model 3 is modest compared to the 
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non-standardised approach in Modell, in other situations in which the type of facility is 

not known and data cannot be separated by facility type, this increase will be much more 

pronounced. 

The uncertainty model presented in this chapter provides a framework for estimating the 

uncertainty associated with predictions of MC made using Model 3. The results 

presented above indicate that this model provides accurate estimates of individual (local) 

prediction uncertainty. For aggregated (regional) predictions, the model marginally over­

estimates uncertainty. Given that the over-estimation of prediction uncertainty is 

preferable to under-estimation, and that the difference between actual and modelled 

uncertainty is small, this model can be considered a useful means of estimating both 

local and regional prediction uncertainty. 

8.6 Chapter summary 

Three modelling frameworks were proposed in Chapter 5 that consisted of four different 

prediction exercises to predict MC, TC, MP, and SMC. In Chapter 7, different kriging 

methodologies were developed and compared and STOK was identified as the most 

appropriate technique for obtaining these predictions. In this chapter the three modelling 

frameworks were implemented using STOK. Variograms of the four variables revealed 

that the standardised MP and SMC variables, created by incorporating TC data as a 

denominator, displayed substantially more spatial stmcture than raw MC data. This 

suggests that TC provides useful information for the prediction of MC. When the 

different modelling frameworks were used to obtain predictions of MC, however, Model 

2 did not result in more accurate predictions of MC than the null case, Modell. Model 3 

did result in more accurate predictions, although the improvement was modest, and so 

this modelling framework was chosen to predict MC values across Kenya in the final 

implementation in Chapter 9. Of equal impOliance to providing accurate predictions is 

the provision of accompanying estimates of the associated prediction uncertainty. In this 

chapter, an uncertainty model has been developed to produce such estimates for 

predictions of MC made with Model 3. This model incorporated a stochastic simulation 

approach using sequential-Gaussian-simulation that was adapted for a space-time 

situation. A framework was developed using this approach that simulated the uncertainty 
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associated with the prediction procedure of Model 3. In the next chapter, the modelling 

approach that has been developed and tested in the last two chapters is implemented to 

predict unsampled values of Me across Kenya. 
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9. Model Implementation to 
Predict Malaria Treatment 
Burdens 

9.1 Introduction 

Having presented a series of modelling frameworks for the prediction of missing MC 

values in Chapter 5, and developed and evaluated different aspects of these frameworks 

in Chapters 7 and 8, the final framework (Model 3 implemented with STOK) is now 

implemented in this chapter to make predictions of MC at all GoK facilities across 

Kenya for which monthly values are missing during the 84-month study period January 

1996 - December 2002. The model development and testing in Chapters 7 and 8 was 

carried out on an early version of the integrated HMIS-NHSD data set containing data 

from 1765 georeferenced GoK facilities. This version of the data set was described in 

detail in Chapter 3. The model implementation described in this chapter was can-ied out 

using an updated version that incorporates 2165 facilities. A summary of this updated 

data set is presented, along with a new assessment of the extent of under-repOlting and 

missing records. In Chapter 8, a model-based approach was presented for estimating the 

uncertainty associated with predictions of MC made using Model 3. In this chapter, an 

empirical approach is used to validate the final model predictions and this is presented in 

full. 

9.2 An updated version of the HMIS-NHSD data set 

An updated version of the NHSD and associated HMlS data was compiled by the 
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KEMRI-University of Oxford-Wellcome Trust Collaborative Programme team and 

made available for this project in October 2005. This version of the NHSD represented 

the most comprehensive inventory available of health facilities in Kenya and 

incorporated 2165 GoK facilities, of which it has been possible to obtain georeferencing 

coordinates for 92%, consisting of 129 hospitals, 474 health centres and 1399 

dispensaries (Table 9.1). A total of 163 facilities were included in this study that could 

not be georeferenced. 

As before, the georeferencing and facility information in the NHSD was linked to the 

corresponding records in the HMIS to define spatially and temporally referenced MC 

and TC data. A total of 63,642 records were available in this updated data set, which 

represents only a modest increase from the 63,543 that constituted the earlier version, 

despite the fact that a further 400 facilities had been included. This apparent disparity is 

explained by the fact that these extra facilities were not included in the central HMIS 

database at the Ministry of Health headquarters in Nairobi. As such, there was no 

mechanism by which routine data from these facilities could be included in the national 

database. This substantial information gap serves to highlight the importance of 

obtaining a comprehensive inventory of facilities before attempting to quantify treatment 

Hospitals Health Centres Dispensaries All 

:\umber offacilities in 
upgraded :VloH list 
Total 129 482 1,554 2,165 
Georcfcrenced 129 (100.0%) 474 (98.3%) 1,399 (90.0%) 2,002 (92.5%) 

Facility reporting rate (% of 
months reported) 
100% 0(0.0%) 0(0.0%) 0(0.0%) 0(0.0%) 
>75%<100% 19 (14.7%) 74 (154%) 154 (9.9°;'» 247 (114%) 
> 50%<c 75% 31 (24.0%) 164 (34.0%) 322 (20.7%) 517 (23.9%) 
> 25%< 50% 45 (34.9%) 132 (27.4%) 299 (19.2%) 476 (22.0%) 
> O%<c 25% 24 (18.6%) 59 (12.2%) 296 (19.0%) 379 (17.5%) 
0% 10 (7.8%) 53 (11.0%) 483 (31.1 %) 546 (25.2%) 

Overall reporting 
Records expected 10,836 40,488 130,536 181,860 
Records present 4,680 (43.19%) 18,719 (46.23%) 40,243 (30.83%) 63,642 (35.00'10) 

Table 9.1 Summary of government health facilities in Kenya and their reporting behaviour during the 84-month study 
pCliod January 1996 to December 2002. Facilities are shown disaggrcgated by type, georeferencing status and reporting 
rale. The expected and actual number of monthly records are also given for each facility type. 
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Figure 9.1 percentage of government health facilities in each Kenyan district submitting a monthly outpatient morbidity 
report to the HMIS. The two months shown are (a) the most complete (February 1996) and (b) the least complete 
(December 1997) during the 84-month study period January 1996 - December 2002. 

burdens as , evidently, the first requirement is to know the number of facilities (and 

hence records) that are missing. In light of the substantial changes in the number of 

facilities, the extent of under-reporting was reassessed on this updated data set. There 

was considerable variation spatially and temporally (Figure 9.1) and between facility 

types (Table 9.1). No facilities reported in all 84 months whilst 546 facilities (25%) did 

not report in any month. A complete 84-month data set for each of the 2,165 facilities 

would consist of 181 ,860 facility-months . There were 63 ,642 records representing an 

overall reporting rate of 35%. The overall reporting rate varied both within and between 

years, with a minimum of 6% in December 1997 and a maximum of 44% in February 

1996. The reporting rate displayed a seasonal pattern, with generally more facilities 

reporting during the first three quarters of each year (36%) than the last quarter (31 %). 

The 63,642 monthly records in this updated data set included a total of 18.67 million 

cases of presumed malaria, with a mean of 293.4 cases per facility-month. These totals 

(means) were 3.36 million (716.9) for hospitals, 6.05 million (323.4) for health centres 

and 9.26 million (230.2) for dispensaries. 
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9.3 Methodology 1: Implementation of Model 3 to predict 
Me 

In this chapter, Model 3 was implemented to use the MC and TC data from the 63,642 

facility-months in the HMIS data set to predict MC values at the 118,218 facility-months 

where records were missing. The modelling framework for Model 3 was described in 

Chapter 5 and its implementation was described in Chapter 8. The procedure used here 

was identical to that in the preceding chapter, except that the cross-validation procedure 

was replaced with a prediction procedure. To avoid repetition, the methodological 

details of this implementation are not restated in full in this chapter. In brief, data from 

each facility type were separated and predicted independently. For each facility type, the 

two prediction procedures to predict TC and then SMC were carried out using STOK. 

Space-time variograms of TC and SMC were estimated (4.45) and modelled (4.49) using 

the product-sum model (De Cesare et al., 2001; 2002). As would be expected given the 

small change in data sets, these variograms were almost identical to those presented in 

Chapter 8 (Figure 8.3) based on the test data set, and are not presented again in this 

chapter. For the 163 facilities that did not have georeferencing information, geostatistical 

techniques could not be applied to obtain predictions of missing values. The district in 

which each of these facilities was located was known, however, and each missing 

facility-month was predicted by attributing the mean MC value for that month from 

facilities of the corresponding type in the same district. 

The above modelling procedure resulted in predictions of MC at all facilities and months 

where data were missing. In combination with the original data, this set represented a 

complete picture of the treatment burden for presumed malaria at all facilities for all 

months. The level of information that is of most use to decision-makers ranges spatially 

from the district to national levels, and temporally from monthly to annual averages or 

sums. Having constructed a complete set, individual MC values could be aggregated to 

provide treatment burdens at any spatial or temporal level from the individual facility 

through to the district, provincial and national levels for the seven year period, and for 

any month or year in the set. 
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9.4 Methodology 2: Model validation 

A validation exercise was undertaken to assess the performance of the model in terms of 

the accuracy of predictions of Me. The magnitude of error was estimated at the level of 

individual predictions (i.e. prediction of Me at a single facility and month) and at 

different levels of spatial and temporal aggregation (e. g. predictions of the sum of Me 

for all facilities in a district or province in a given month or year). 

9.4.1 Estimating parameters of the global error distribution 

A validation set {ZMC«U,t),); i = 1,2, . .. ,nv}, was selected randomly from the full set of 

Me data {Z~VfC«U,t)a); (J. = 1,2, ... ,n}. The size of this validation set, ny, was chosen as 

6349, equivalent to 10% of the full data set, and was selected using a stratified random 

sample that ensured the proportions of data from hospitals, health centres and 

dispensaries matched those of the full data set. The validation data were removed from 

the full data set and the modelling procedure was repeated in its entirety using the 

remaining 90% of data to produce a set of predictions z~c «u, tU to compare to the 

validation set. The set of prediction errors, ev«U,tU, was then defined as 

e,«U,t)J =z:!c«u,t);)-Zy!c«u,t)J, with the v subscript used to denote the validation 

set. The set ev«u,t)J was treated as a sample of eu «u,t)j3)' the full set of (unknown) 

errors for predictions of missing data at the jJ=I,2, ... ,q unsampled facility-months, 

where the u subscript is used to denote the full set of unknown elTors. The mean, flu, and 

standard deviation, (Ju, of eu «u, t) j3) were then estimated using the sample mean Xv 

(9.1) and standard deviation s) (9.2) calculated from e
v 
«u, t)i) : 

(9.1) 

(Ju = Sv = (9.2) 
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9.4.2 Assessing the effect of aggregation on the variance of prediction errors 

Equations (9.1) and (9.2) provide a way of estimating the mean elTor in predictions of 

MC at individual facility-months and the variability around this mean. In addition to this 

individual-level error, however, it was necessary to obtain estimates of the elTor 

associated with the sum of MC obtained from sets of predictions aggregated over 

different space-time units such as months, years, districts, provinces and so on. 

Consider a set of ) predictions aggregated together within a space-time unit a, 

{Z~1C ((u, t)) ;)=1,2, ... , na}, which is a subset of the full set of predictions, z~c((u,t) p). 

The cOlTesponding subset of prediction errors are denoted as £ a (( u, t)/ ). The task was to 

estimate, for each such subset, the mean of the na errors, JLa = JLlsa((u, t)J, and standard 

deviation of this mean, (}[uJ. If prediction elTors are assumed to be independent and 

identically distributed (nD) then these values can be estimated from the estimated 

parameters of the global elTor distribution as shown in equations (9.3) and (9.4), 

respectively: 

(9.3) 

(9.4) 

The assumption of IID is rarely strictly valid when dealing with spatial and/or temporal 

data due to the presence of spatial and/or temporal autocorrelation. Before equations 

(9.3) and (9.4) could be used to estimate JL" and (}[UJ for each space-time unit it was 

necessary to assess the validity of this assumption for the unknown elTor set Cu (( U, t) p) 

using the sample error set cv((u,t)J. A sample space-time variogt'am y"(h,,h,) was 

calculated for c,((u,tU (Figure 9.3). This provided a graphical illustration of the 

presence or absence of spatial and temporal autocolTelation in the validation elTor set. A 

second approach was to estimate directly the relationship between the size of each subset 

na and the standard deviation of its mean elTor (}[UJ using the sample elTor set 

cv((U,t)J, and compare this empirical relationship with the theoretical relationship 

181 



Chapter 9 Model implementation 

presented in (9.4). This was done using the following steps: 

(1) A total of k= 1,2, ... ,m different aggregated subsets, ca.k ((u, t) j) ,were created from the 

sample error set cv((u,tU. Each subset consisted of all elements of cv((u,t)J that fell 

within a given space-time unit. All permutations of space-time units were considered 

leading to, for example, 56 province-years (8 provinces x 7 years), 84 national-months 

(1 spatial unit x 84 months) and so on, and only those space-time units that contained 

more than one sample error were included. In this way, a total of m = 5709 such 

aggregated subsets were defined The size of these subsets sets ranged from na = 2 to na 

= 1533. 

(2) The mean error of each aggregated set was calculated: 

(9.5) 

(3) The list of m mean errors, fla.p fla,2, ... ,fla,m' was then plotted against the 

corresponding list of set Sizes naJ ,na,2, ... ,na,m (Figure 9.4). This plot provided an 

illustration of the central tendency and variation of the means of aggregated sets of 

errors of different sizes. 

(4) The list of m mean errors was sub-divided into a series of b = 1,2, ... , B 'bins' 

according to the size of each set, such that each bin contained k=1,2, ... ,mh mean errors 

fla.k calculated from sets of similar size. The standard deviation, Clh, of the mh mean 

errors within each bin was then calculated: 

(9.6) 
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(5) The value of Cfb for each bin was then plotted against the corresponding mean set size 

in each bin. The resulting plot (Figure 9.5) provided an illustration of the effect of 

aggregation over successively larger space-time units on the standard deviation of the 

mean prediction error of those units. The theoretical relationship (9.4) was also plotted 

for comparison. 

9.4.3 Estimating the prediction error for individual space-time units 

Estimates were required of the error associated with predictions of the sum of MC in 

each space-time unit of interest across Kenya. The units of interest were defined 

spatially at the district, provincial, and national level, and temporally at the monthly and 

annual level. This meant there were six different types of space-time unit of interest: 

district-months, district-years, province-months, province-years, national-months, and 

national-years. A total of 7371 such units were defined, and these are detailed in Table 

9.2. The results of the procedure described in section 9.4.2 suggested that the use of 

equation (9.4) as a model for the change in the standard deviation of mean error with 

aggregation was reasonable, given that error did not display spatial or temporal 

autocorrelation (Figure 9.3), and that the empirically-observed relationship was very 

close to that described by this equation (Figure 9.5). In this section, the procedure by 

which this model was used to estimate the error associated with predictions of the sum 

of MC in each individual space-time unit is described. This was done in the following 

steps: 

Spatial units (n) 
Temporal units (n) 

Month (84) Year (7) 

Disttict (72) 6048 504 

Province (8) 672 56 

National (1) 84 7 

Table 9.2 The number of space-time unils of each type, as defined by three spatial and two temporal levels of 
aggregation. Figures in parentheses are the numbers of each type of unit. 
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(1) Rather than use the global estimates of the (unaggregated) prediction error mean flu 

and standard deviation o-u as defined in (9.1) and (9.2), it was decided that it was 

preferable to estimate these parameters locally to better capture regional variations, 

accepting the reduction in the certainty of these estimates caused by the smaller sample 

sizes. As such, the local prediction error mean itt and standard deviation a
L 

were 

calculated for each district and province from the relevant subset of the ev«U,t)J, 

where the subscript L is used to denote a local estimate. Where the validation set 

contained <30 samples for a given district, the provincial estimates were used instead. 

(2) The total number of missing data (and hence predictions) in each k=1,2, ... ,m space­

time unit was determined (this value is denoted as nsn: where the subscript sn; indicates 

that the statistic relates to a space-time unit). 

(3) The expected error L STU of the sum of predictions in each space time-unit was 

estimated as the product ofthe local mean error JiL and the number of predictions in the 

unit nSTe;: 

A 

LsTe; = JiLnSTI; (9.7) 

(4) The standard deviation of this sum cr[L'm 1 was then estimated using the local error 

standard deviation o-L and the number of predictions in the unit nSTU, based on the same 

theoretical relationship established in section 9.4.2: 

(9.8) 

This process resulted in estimates of the error associated with predictions of Me for all 

districts, provinces and nationally for each month and year. The estimated standard 

deviation of each predicted sum provides a quantification of the associated uncertainty. 

If a Gaussian model is adopted for the error distribution of each sum, then the estimated 

standard deviation can be used to calculate indicators of this uncertainty such as a 95% 

confidence interval. 
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9.4.4 Summarising the prediction error for each aggregation level 

The process described above provides estimates of the mean and standard deviation of 

the prediction error for each of the 7371 space-time units of interest in this study. It was 

necessary to summarise these estimates to provide a single measure of the accuracy of 

predictions for each aggregation level (e.g. what is the expected range of errors for 

predictions of MC at the level of district-months, province-years etc). This was done in 

the following steps: 

(1) The estimated sum of prediction errors in each space-time unit, t sn , and 

accompanying standard deviation o-[Lsnl were expressed as a percentage of the 

predicted total MC for that unit. Both predicted Me (missing data) and known Me 

(data) were included in the denominator and, as such, the estimated percentage errors 

accounted for the proportion of missing data. This is important since, for example, a 

prediction error that is large relative to the sum of predictions can still be small relative 

to the predicted total, if few data are missing. 

(2) The distribution of the percentage error of the sum for each space-time unit was 

assumed Gaussian and fully defined in each case by the estimated mean percentage error 

and standard deviation discussed above. Each aggregation level therefore contained a set 

of distributions modelling the uncertainty in the m predicted MC totals at that leveL 

(3) A useful summary was the 95% confidence interval that defined the range of 

percentage errors that can be expected in 95% of cases at each aggregation level. These 

confidence intervals were estimated empirically using a Monte-Carlo simulation 

exercise. Each simulated realisation proceeded in two steps. Firstly, a single space-time 

unit was chosen at random from the full set that made up each aggregation level. 

Secondly, a random draw was made from a normal distribution defined by the estimated 

percentage mean error and standard deviation of that unit. 

(4) 100,000 realisations were simulated and the Q025 and Q975 quantiles of the resulting 

distribution were used to define the lower and upper bounds of the 95% confidence 

interval of the percentage error of the predicted sum for each aggregation leveL 
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This procedure resulted in, for example, estimates of the range (expressed as a 95% 

confidence interval) of percentage errors that could be expected for predictions of total 

Me for all facilities in a district over a month, all facilities in a province over a year and 

so on. 

D 10 -30 
D 30 -50 
D 50 -60 
D 60-70 
_ 70 -90 
_ 90 -100 
_ 100 -120 
_ 120 -150 
_ 150-200 
_ 200-250 

Mean annual Me 
per district ('0005) 

200km 

Figure 9.2 Number of outpatients treated for malaria (MC) at govemmcnt facilities: Predicted mean annual totals for each 
district for the period 1996-2002. Values represent the combined sum of existing and predicted values. 
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Data Predictions Combined Total 

Dispensaries 1,323,271 2,625,968 3,949,239 
Health Centres 864,945 872,214 1,737,159 

Hospitals 479,331 628,992 1,108,324 
All 2,667,547 4,127,175 6,794,722 

Table 9.3 Predicted mean annual counts of outpatients treatcd for malmia at all Kenyan government hospitals, health 
centres and dispensaries for the period 1996-2002. Totals are givcn for data, predictions, and for the combined total. 

9.5 Results 

9.5.1 Prediction of treatment burdens 

A total of 181,860 predictions of Me were made for the 2165 GoK health facilities over 

the 84- month study period. The sum of these predictions was 28.89 million cases which, 

when added to the 18.67 million cases reported in the existing records led to a predicted 

total of 47.56 million cases nationwide for the seven-year period. The mean annual total 

was 6.79 million cases with a mean of 261.5 cases per facility-month. The 

corresponding values for each facility type were 1.11 million for hospitals, 1.74 million 

for health centres and 3.95 million for dispensaries with means of 716.0, 300.3, 211.8 

cases per facility-month, respectively. A summary of these results is presented in Table 

9.3 and a complete breakdown is shown in Table 9.4. 

Mean annual totals for each district displayed a pattern of spatial heterogeneity and this 

is illustrated in the map in Figure 9.2. Some features of this map are worthy of 

discussion. Firstly, these district totals have not been standardised by any measure of 

district population. The decision not to present any standardised version of this map 

reflects that the overall motivation of the project was to predict counts of malaria 

diagnoses in outpatients and not to use these predictions to make inferences about the 

distribution of malaria in the population. Without standardisation, the count of diagnoses 

in each district is influenced as much by the population size as by the presence and 

diagnosis of malaria. Nevertheless, the spatial pattern displayed in the map corresponds 

in broad terms with the known distribution of malaria across the country, with large 

predicted values (darker red districts) in areas of high prevalence around the western 

lake shore regions and along the Indian Ocean coastline, and smaller predicted values 
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(paler red districts) in areas of low prevalence in the elevated western highlands region 

and in the arid north-east. The set of districts with large predicted values in the south­

eastern quadrant away fi'om the coast, however, are in areas known to have a relatively 

low burden of malaria. Although they have relatively high population densities, this is 

unlikely to account entirely for the apparent anomaly. A more likely explanation is that 

rates of misdiagnosis of malaria (i.e. false-positive diagnosis) in these low-malaria 

districts are particularly high. Although beyond the scope of this thesis, a detailed 

comparison of the predictions of outpatient malaria counts developed in this proj ect with 

the latest spatial models of malaria prevalence may highlight regions where the two 

appear mismatched. Such an activity may highlight those regions where diagnosis of 

malaria is common despite the known or assumed absence of the disease in the 

population. 

9.5.2 Model validation 

9.5.2. I Error parameter estimation and variography 

The sample mean prediction enor (9.1) for predictions of Me at individual facility­

months was -1.28 cases, as estimated from the validation set of 6349 known prediction 

enors, C
v 
((u,t)J. The standard deviation (9.2) was 236.62 cases. The space-marginal 

and time-marginal variogram of the errors are shown in Figure 9.3. The spatial 

variogram showed no evidence of spatial autoconelation up to lags of 90 km. 

Semi variances over some of the shortest lags displayed large values, although this was 
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Fignre 9.3 Spatial (a) and temporal (b) variograms of the error in predictions of Me, as estimated using a validation set. 
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Table 9.4 Predicted mean annual counts of outpatients treated for malaria at all Kenyan government hospitals, health centres and dispensaries for the period 1996-2002. 
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likely to be attributable to sampling variation caused by the scarcity of pairs of sample 

points at these short spatial separations. The temporal variogram also showed no 

evidence of temporal autocorrelation. 

9.5.2.2 Assessing the effect of aggregation on the variance of prediction errors 

Figure 9.4 shows a plot of the mean prediction error, /1a, of each of the subsets created 

by aggregating the sample error set £vC(u, t)J over facilities, districts, provinces and 

nationally and by month and year. Each value of /1a is plotted against the size of the 

aggregated set in question, na. Mean errors are centred approximately on zero at all 

aggregation sizes, but the variation around this central value displays a marked reduction 

as na increases. This plot provides a qualitative illustration of the effect of aggregating 

predictions (over space and time) on the mean error of those aggregated sets, and the 

variation that can be expected around that mean error. Figure 9.5 shows the results of the 

next stage of analysis which provided a more quantitative description of this effect by 

estimating the standard deviation of the mean errors of sets, O'Cua], within a series of bins 

representing different subsets of differing size. The empirically estimated values lie very 

close to the line that marks the theoretical relationship shown in equation (9.4), 

suggesting that this equation provides a useful model of the dependence of O'[ua] on na in 

the current setting, despite possible deviations from assumptions of lID. 

9.5.2.3 Prediction error at each aggregation level 

Comparison of data with predictions for the 6349 randomly selected MC data in the 

validation set yielded mean prediction errors for hospitals, health centres, and 

dispensaries of 58.2, -8.8, and -4.7 cases per facility-month, respectively. The true and 

predicted sums ofthe entire national test set were 1,899,234 and 1,891,136, respectively, 

representing an overall prediction error of -0.4% for the validation set. 

The predictive accuracy of the model increased as predictions of MC totals were made 

over larger aggregated space-time units. Table 9.5 shows the expected range (95% 

confidence interval) of percentage errors for predictions of total MC (i.e. combined total 

of data and predictions) at different levels of spatial and temporal aggregation. These 
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Figure 9.4 Mean prediction error, Ila, against size, na , for 5709 subsets taken from the sample error set. Points marked in 
red are individual (unaggregated) prediction errors. A small number of sets exceeded the x-axis range of this plot 
(maximum 11,=1533) and these have been omitted to allow clearer display of values with smaller 11 •. All omitted points 
sho wed no visible departure from p. = O. 
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Figure 9.5 Empirical relationship between the size of subsets of the test data set and the standard deviation of their mean 
prediction errors. Suhsets of different sizes, 11., were created from the test set by aggregating across space (by district, 
province, and nationally) and through time (by month and year) and the mean prediction error, Po, of each subset was 
calculated. These subsets were then placed in bins according to their size 11. and the standard deviation of the mean errors 
in each bin, crLu.J, was calculated. The x-axis position of each point represents the mean subset size in that bin. The 
theoretical relationship crLu.J=crj 11. '1l is also shown (line). 
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confidence intervals are not symmetric as they incorporate not only the expected 

variance of the error, but any bias introduced by the expected mean error being non­

zero. If the bound of the confidence interval that is farthest from zero is considered, then 

the results can be summarised by stating that 95% of errors for the prediction of total 

MC at the district-month level were expected to be within 35.3% of the true value. The 

equivalent error for predictions of annual totals at the provincial level was 12.2% and for 

annual national totals it was -1.3%. 

District 

Province 

National 

Range of expected errors 

Month 

-32.72% to 35.31 % 

-15.78% to 20.36% 

-3.73% to 2.98% 

Year 

-15.71% to 21.25% 

-5.65% to 12.19% 

-1.25% to 0.58% 

Table 9.5 Expectcd percentage errors (95% conl1dence intervals) in predictions oflotal outpatients treated for malaria 
over different levels of spatial and temporal aggregation. Errors were calculated from a validation exercise in which 6349 
monthly records (l 0%) were removed from the data set and predicted using the remaining 90')10. 

9.6 Chapter Summary 

This chapter has presented the implementation of Model 3 to predict MC at all missing 

facility-months. This final implementation was carried out using an updated version of 

the integrated NHSD-HMIS database which, although containing very few additional 

data compared to the version presented in Chapter 3, incorporated a further 400 

government health facilities, thus representing the most comprehensive inventory of 

facilities that currently exists for Kenya. In order to validate the predictions of MC, an 

empirical validation approach was developed and presented in this chapter. In this 

approach, 10% of the available data were selected at random, temporarily removed, and 

predicted using the remaining 90% of data to obtain a set of prediction errors. This set 

was then used to infer the expected prediction errors of the main prediction exercise at 

different levels of spatial and temporal aggregation, after establishing that the use of a 

theoretical relationship was appropriate in the current setting. 

After combining data and predictions together, the predicted mean annual total number 
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of outpatients treated for malaria was 6.79 million cases. The validation exercise 

suggested that there is a 95% chance that this prediction is accurate to within 1.3% of the 

true value. The predictions presented in this chapter, and the associated validation 

exercise address the primary aims of this project. The nature of these results and their 

imp lications are discussed in detail in the next, and penultimate, chapter. 
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10. Discussion 

10.1 Introduction 

The purpose of this penultimate chapter is to provide an overview of the progression of 

ideas and techniques that resulted from this project, and to discuss the most significant 

issues that have arisen. In the next section, the evolution, rationale and ultimate success 

of the modelling strategy that incorporated TC data in models to predict MC are 

discussed. This is followed by an appraisal of the techniques developed to quantify the 

uncertainty of MC predictions. The output of the final model implementation is then 

considered and these results and their associated uncertainty are examined in the context 

of their utility to public health decision-makers. The wider applicability of the modelling 

strategies developed in this project are then discussed. The chapter concludes by 

considering possible avenues by which this work can be taken forward in future studies. 

10.2 Use of TC in predicting MC 

10.2.1 Overview of evolution of modelling strategy 

A conceptual consideration of the factors that determine the MC variable (Chapter 5) 

proposed that MC is driven by spatially-dependent factors, mostly related to 

environmental heterogeneity, and spatially-independent factors, mostly related to 

characteristics of individual health facilities and their catchment populations. 

Geostatistical techniques are aimed at characterising and predicting spatial (and/or 

temporal) variability in the variable of interest and where non-spatial variability exists it 

inevitably introduces greater uncertainty in predictions of that variable. In response to 
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this, two alternative strategies were conceived with the aim of accounting for some of 

the non-spatial variability present in MC. 

The first strategy was to investigate the feasibility of developing catchment models that 

would allow the size of individual health facility catchment populations to be predicted 

across Kenya. Such predictions could then be used as denominator values to standardise 

the raw MC data. This strategy was pursued in two collaborative studies presented in 

Chapter 6. The first study investigated the use of Thiessen polygons, one of the most 

straightforward and widely-implemented approaches to developing catchment boundary 

models. The principal assumptions of this approach, that all care-seekers utilise their 

nearest facility, and that the rate of utilisation is even within each catchment, were found 

to be inappropriate in four sample districts. The second study implemented a Thiessen 

polygon model in the same four districts and also constructed a series of more refined 

models. A journey-time metric was developed that replaced straight-line distance as a 

more realistic way of assessing care-seekers' physical access to health facilities and data 

from a household survey was used to model the way different facility types compete to 

draw in patients from different distances. When the basic Thiessen polygon model was 

adjusted to incorporate these refinements, the resulting catchment boundaries were 

found to predict more accurately the patterns of facility choice made by individual 

homesteads. Because the data required to develop the more refined catchment models 

were not available for facilities across Kenya, the only feasible approach to estimating 

catchment population sizes was to use Thiessen polygons. An important conclusion of 

the two catchment modelling studies discussed above, however, was that such a model is 

inappropriate in the Kenyan setting and likely to produce misleading predictions. As 

such, directly predicted catchment populations remained unavailable for the purposes of 

this project. To exemplify this point, when catchment population estimates were derived 

using Thiessen polygon boundaries in conjunction with enumeration area-level 

population data, and these estimates were used as denominators to the raw MC counts, 

the spatial variograms of the resulting standardised variables displayed a complete 

absence of spatial autocorrelation. 

In light of the limitations of catchment models to provide denominator values, as 

described above, a second strategy was developed. This was to use the TC data on total 

outpatient diagnoses that accompanied the disease-specific MC values. The rationale for 
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the use of TC was that these values were driven in broad terms by the size of each 

facility and its utilisation by the population and, therefore, acted as a proxy measure of 

catchment population size. As such, these values were likely to contain information that 

might be used to assist in the prediction of Me. 

10.2.2 Incorporation of TC in the modelling framework 

The most straightforward way of incorporating TC values as a way of standardising MC 

is to use them directly as a denominator, thus defining the variable called MP in this 

project. When the spatial variogram was estimated using all available MC data, and 

compared to the corresponding variogram for MP, the difference was dramatic. Whilst 

the former indicated zero spatial autocorrelation, the latter indicated considerable spatial 

continuity. These variograms suggested that the use of TC as a denominator did result in 

an effective standardisation of the raw MC data and accounted for much of its non­

spatial variability, allowing the inherent spatial structure in MC to be revealed. 

However, when the raw MC data were split up according to facility type, the MC 

variogram also indicated considerable spatial structure. This was an important result that 

suggested that much of the non-spatial variation in MC is caused by differences between 

the three facility types and that, when these are considered separately, there is a degree 

of within-class consistency in factors such as catchment size and utilisation. This simple 

approach also negated some of the benefit of using the standardised MP variable, since 

spatial MC variograms for each facility type indicated only marginally less spatial 

continuity than those for MP. 

If TC data were available at all facility-months, then the standardised MP variable could 

be predicted at all locations with missing MC values and back-transformed to the desired 

MC predictions using these TC data. Crucially, however, TC data were co-located with 

MC such that the respective patterns of data presence or absence corresponded exactly. 

Where MC data were missing, therefore, no TC data were available to perform this 

back-transform. This presented a potential road-block but a possible solution was to 

predict TC values at these locations using STOK in the same way that MC values were 

predicted. Examination of the variograms for TC indicated that, when data were 

separated by facility type, the variable displayed a degree of both spatial and temporal 

structure and this allowed prediction of the missing TC values which could then be used 
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for the back-transforms. This approach (Model 2) was compared to the simple use of 

raw MC values (Modell) in Chapter 8. The respective characteristics of the MC and 

MP variograms of the full data set were manifest in the model outputs, with Model 2 

able to predict MC with much greater accuracy than Model 1. When facilities were 

considered separately, however, the differences in accuracy between Modell and Model 

2 were negligible with Modell predicting more accurately for some facility types. The 

failure of Model 2 to provide significantly more accurate predictions ofMC than Model 

1 can be explained by two factors. The first factor was the unexpected degree of spatial 

structure that was revealed in MC by simply considering each facility type 

independently, which acted to standardise MC values almost as effectively as dividing 

them by TC. The second was the need, in Model 2, to predict TC at unsampled locations 

which inevitably introduced further uncertainty in the ultimate back-transformed 

predictions of MC. 

The third modelling framework, Model 3, was developed as a way of reducing the 

uncertainty introduced by the need to predict TC. By averaging aU predictions of TC, 

along with the available TC data, over the 84 monthly values at each location, a single 

facility-specific denominator was obtained (MMTC) that was more robust to both 

monthly fluctuations in the true value of TC and to error in the TC predictions. When 

this denominator was used to standardise MC, variograms of the resulting standardised 

variable (SMC) indicated a greater degree of spatial continuity than both MC and MP. 

Predictions of MC made using this model were the most accurate of the three 

approaches tested and this model was therefore used in the final implementation. The 

increases in accuracy offered by Model 3, however, were not substantial when compared 

to the simple approach of Modell. Whilst the enhanced spatial structure indicated by 

the SMC variogram confirms that TC data contain information of use in predicting MC, 

the benefit of using this standardised variable is, again, largely negated by the 

uncertainty introduced by having to predict TC. Whilst Model 3 did offer a partial 

solution to this problem compared to Model 2, it remains a substantial limitation in both 

approaches. 

An important conclusion from this work is that the strategy of standardising MC to 

account for facility-specific, non-spatial, sources of variation before predicting missing 

MC values is the correct one, and this is illustrated by the substantially greater spatial 
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continuity indicated in the SMC vanograms. Furthermore, TC data contain useful 

information that can be used in this standardisation. The absence of these data at the 

locations where MC predictions are required, however, presents a major limitation to 

their use in this context, and this limitation has been only partially overcome in this 

project. Model 3 can be thought of more generally as a generic approach to predicting 

MC that can be built upon and enhanced as external sources of data become available for 

predicting facility-specific denominators. Detailed data from each facility on factors 

such as its size, staffing levels, and services offered may assist in predicting these 

values, as may data on catchment population access and behaviour and such data are 

currently being assembled for Kenya by the KEMRI-University of Oxford-Wellcome 

Trust Collaborative Programme team. 

10.3 Assessing prediction uncertainty 

In Chapter 8, the development of an uncertainty model was described that used a space­

time adaptation of sequential Gaussian simulation in a framework that simulated the 

uncertainty associated with predictions of MC made using Model 3. Evaluation of this 

uncertainty model suggested that it provided accurate measures of the uncertainty in 

predictions of both individual MC values and sets of values aggregated over space-time 

regions. This model stands as a useful accompaniment to the proposed prediction 

framework. The principal downside of this model, however, is its conceptual and 

implementational complexity. The large number of processing steps involved mean that 

the model must be implemented with care and numerous modelling decisions have to be 

made by the user. Furthermore, the use of simulation algorithms on a large space-time 

data set is extremely computationally demanding and the resources used to implement 

these algorithms in this project (a high-performance Beowulf cluster of several hundred 

parallel processors) are not available in most settings. The conceptual complexity does 

not limit the usefulness of the model per se, although it may reduce its appeal to 

potential end-users such as public health decision-makers who may be less willing to put 

faith in uncertainty measures when the underlying model is not easily understood. 

Concerns of this type were raised by practitioners in Nairobi and, whilst strictly 

unjustified from a theoretical standpoint, this project is concerned with a real-world 

issue and the perception of end-users is a factor that cannot be ignored. 
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In response to the factors stated above, an alternative approach to assessing prediction 

uncertainty was developed for the final implementation of Model 3 in Chapter 9. The 

uncertainty model presented in Chapter 8 extended the model-based approach used to 

predict MC to the assessment of prediction uncertainty based on inferred characteristics 

of the RF model. As such, uncertainty estimates in this model took into account the 

spatiotemporal configuration of data and prediction locations and the likely strength of 

relationships between these locations. In contrast to this model-based approach, the 

method proposed in Chapter 9 used an empirical approach that relied on summary 

statistics derived from a sample of known prediction elTors to infer characteristics ofthe 

unknown errors at all prediction locations. A simple model was used to determine how 

the uncertainty associated with aggregated sets of predictions changed as these sets 

became larger. Although conceptualiy much more simple than the model-based 

simulation model, this approach was nevertheless likely to have provided reasonable 

measures of prediction uncertainty at different levels of spatial and temporal 

aggregation. Furthermore, this was achieved using an approach that was simple, 

straightforward and quick to implement, and that may be conceptually more transparent 

to potential end-users. 

10.4 The modelling output in context 

Predictions of variables derived from HMIS outpatient data in a low-income country are 

likely to have a large inherent uncertainty associated with them and this is reflected in 

this study in both the variograms and model outputs. At the level of individual facility­

months, predictions with the accuracies presented in Table 8.1 are likely to be of only 

limited use to health system decision-makers (MAE was 26.8%, 27.6%, and 22.9% of 

the mean MC value for hospitals, health centres and dispensaries, respectively). 

Strategic decision-making is rarely made at this level, however, and the accuracy of 

aggregated predictions of MC at monthly and annual district, provincial, and national 

levels are of greater importance. Predictions of mean MC at these levels entail the 

averaging or summation of many individual predictions (along with existing data) across 

space-time regions. The results of the empirical validation exercise described in the 

previous section suggested that the accuracy of predictions of total MC over different 

space-time units would increase as more individual MC predictions were aggregated. As 
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such, predictions of total YlC for a given district and month could be expected to be 

within 35.3% ofthe true value, whilst the equivalent provincial and national values were 

20.4% and 3.7%, respectively. Predictions of the national annual total could be expected 

to be within 1.3% of the true value. Such an effect is expected as individual predictions 

are aggregated. The mean error is expected to remain small (since kriging is designed to 

produce unbiased predictions, with a zero expected mean error), whilst the variance of 

this error decreases, allowing more precise predictions of aggregated values. 

It is understood that no equivalent exercises have been undertaken to systematically 

evaluate the malaria treatment burden in the government sector in Kenya and so the 

predictions made in this project stand as probably the most reliable source of 

information for related decision-making at district, provincial, and national levels. The 

accompanying measures of uncertainty further enhance the utility of these predictions, 

allowing decision-makers to identify realistic ranges of possible values. The prediction 

of a mean national annual total of 6.8 million cases during the study period with an 

expected margin of error of 1.3% represents a tangible difference to the rudimentary 

approach of multiplying nationally available data by a proportion of under-reporting 

which would result in a crude estimate of7.6 million cases. 

In the current setting, it is difficult to quantify the levels of accuracy required by public 

health decision-makers to allow effective evidence-based decision-making. A valid 

question is whether a more rudimentary approach to predicting treatment burden would 

be sufficient for effective public health decision making. It is argued here, however, that 

the difference between national predictions of 6.8 million cases and 7.6 million cases is 

likely to be a substantial one in the context of national-level policy and management 

decisions. Furthermore, as predictions are made at progressively finer levels of spatial 

and temporal aggregation, the relative disparities between rudimentary and sophisticated 

methods of estimation are likely to increase. Even if a mdimentary method resulted in 

similar predictions to the approach presented in this project, there are at least two further 

arguments for using the more sophisticated approach. Firstly, the approach presented 

here provides a realistic measure of the uncertainty in the final predictions, which is an 

essential accompaniment to any prediction, allowing decision-makers a tangible 

yardstick of prediction reliability. Secondly, the process of developing and testing a 

more sophisticated approach adds credence to the resulting predictions. This may be 
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important when, for example, these predictions are used in the procurement of national 

drug supplies through international donor agencies since any predictions must be based 

on reliable methods. 

It is important to note that the various measures of uncertainty presented in this project 

refer only to prediction uncertainty. Sources of uncertainty that are inherent in the data 

themselves have not been considered. Factors such as the incorrect filling out of 

reporting forms, or subsequent errors in data transmission and entry into the HMIS 

database introduce uncertainty into the data which will be transferred to the predicted 

MC totals but not included in the estimates of prediction error. Such sources of 

uncertainty can only be quantified reliably by obtaining 'gold-standard' data from a 

sample of facilities and comparing this to the corresponding routine HMIS data. 

10.4.1 What variable has been quantified? 

Having presented quantifications of MC totals across Kenya, it is important to reassess 

what such totals actually represent. Of crucial importance is the distinction between MC 

and the burden of malaria in the population. Because only a small proportion of 

incidences of malaria result in a visit to a formal health service provider, as discussed in 

Chapter 5, the pattern of malaria seen at health facilities is only loosely connected to that 

in the population as a whole and the results of this project should not be used to evaluate 

the latter. Furthermore, MC totals do not even represent the true number of incidences of 

malaria that are seen at health facilities due to the misdiagnosis of malaria and other 

conditions. Because of these factors, MC must be interpreted as quantifying the number 

of diagnoses that have been made for malaria and, importantly, the number of malaria 

treatments that have been administered Despite the disparities between MC and the true 

pattern of popUlation and outpatient malaria morbidity, the variable remains critical for 

health-service planning because it determines the level of resources required to treat 

patients under this diagnosis. 
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10.5 Wider applicability 

Whilst the primary aim of this project was the quantification of the treatment burden for 

malaria in government facilities in Kenya, the value of the approaches presented in this 

thesis can extend to other settings. It is likely that the treatment burden for other diseases 

can be predicted in a similar way, although the accuracy of such predictions will be 

influenced by the degree of spatial dependence related to the disease in question. Whilst 

many diseases are environmentally constrained in a similar way to malaria, others are 

not and geostatistical approaches may be less appropriate in these cases. 

In principle, the techniques developed in this project could be applied in other countries 

where HMIS data are incomplete. A fundamental requirement, however, is that a 

comprehensive list of health facilities is available and that these facilities are 

georeferenced. This was made possible for this project by the work of the KEMRI­

University of Oxford-Wellcome T rust Collaborative Programme team and the 

construction of the NHSD resource. Rather than a limitation to wider application of the 

approach outside Kenya, however, it is argued here that knowing where service 

providers are located is a must for any health planning agency and that health service 

GIS·frameworks such as the NHSD should be developed everywhere. 

In general terms, this project represents, to the best knowledge of the author and all 

involved, the first attempt to tackle the problem of missing HMIS data by predicting 

individual missing records through the exploitation of space-time structure as opposed to 

the crude adjustment of aggregated totals based on the proportion of missing data. As 

such, the approach developed in this project stands as a useful tool that can be applied to 

HMIS settings to obtain more reliable information for public health decision-making. 

10.6 Future work 

The model development and results presented in this study raIse several important 

questions that require attention and can form the basis of further studies. 
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10.6.1 Incorporation of information from covariates 

A source of potentially useful data for the prediction of MC exists in the form of 

environmental covariates provided by remote sensing satellites and other sources. 

Remotely sensed covariates such as land-surface-temperature, cold-cloud-duration 

(Tucker and Sear, 2001) (used as an indicator of rainfall in the tropics) and the 

normalised difference vegetation index (Justice et ai., 1985) (a function of soil moisture 

availability) are known to be related to malaria distribution (Hay et ai., 1996, 1997, 

1998a, 1998b; Thomson et ai., 1996, 1997; Snow et ai., 1998; Craig et ai., 1999; Hay 

and Lennon, 1999; Hay, 2000; Omumbo et ai., 2002, 2005; Rogers et ai., 2002), either 

synchronously or with a time-lag. If such data are obtained at appropriate spatial and 

temporal resolutions, then such data can be assimilated into the framework for predicting 

Me. Several geostatistical techniques are available to assimilate these data into the 

predictions, including STK with an external drift (STKED) (Goovaerts, 1997; Lloyd, 

2002). STKED utilises the local regression relation between the property of interest and 

the covariates to estimate a local trend surface, such that STK can proceed on the 

residuals. 

10.6.2 Updating predictions using sentinel facilities 

This project has focused on HMIS data for the years 1996 - 2002. For the duration of 

this project, more recent data from the HMIS were not available. A delay is inevitable 

between patients being diagnosed and treated at outpatient departments, and the data 

being recorded, transferred and ultimately entered into the national HMIS database. The 

total delay between diagnosis and acquisition of useable data is currently approximately 

two years. Therefore, although the approach developed in this project allows a complete 

HMIS record to be reconstructed for the period under study, this record will inevitably 

lag behind the current situation by at least two years. As such, critical information on 

current and future malaria treatment burdens, that would be of greatest use to public 

health planners, is missing. 

Extension of the prediction framework to the present day will require the addition of 

supplemental data. Of particular interest is the addition of data from a few sentinel 

facilities. These are facilities where projects have been initiated to ensure data collection 
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and collation is both rapid and of a high quality. Such sentinel facilities exist across 

Kenya and an important research question is: what advantage would be gained by 

supplementing the HMIS data with more timely data from sentinel sites for which up-to­

date information of tmsted quality could be received in near real-time? 

To incorporate information from these sentinels, the modelling framework could be 

modified to include a temporal trend component that is fitted to sentinel data that span 

across all available years, including up to the present day, to capture inter-annual 

variation. Each sentinel facility would be fitted with a temporal trend model most likely 

involving a two-parameter linear trend component and four-parameter double periodic 

component (to represent the first and second seasons of malaria - with the two amplitude 

and two phase parameters adjusted locally spatially). 

The temporal trends estimated for each sentinel facility could then be used to interpolate 

the six temporal trend parameters across all facilities. Various approaches could be 

implemented and compared to achieve this. Firstly, a spatial trend surface could be fitted 

to each of the (six) parameters of the temporal trend. This spatial trend could be fitted at 

the same time as the per-sentinel temporal trends. The number of spatial polynomial 

coefficients would need to be chosen carefully such as to represent the spatial variation 

adequately. It would be possible to fit the spatial trend as an integral part of the temporal 

trend fitting procedure at each sentinel. A second approach would be to predict the 

temporal trend parameters for non-sentinel facilities using OK. Once the temporal trend 

parameters had been estimated at each facility, it would then be possible to predict Me 
values up to the present day using a geostatistical approach such as STK with a trend 

(STKT) (Journel and Rossi, 1989; Lloyd and Atkinson, 2002). 

If the above procedure could be implemented successfully then an intuitive extension 

would be to attempt to predict treatment burdens into the future. Temporal forecasting is 

generally hazardous and the estimation of valid confidence intervals, while crucial to the 

sensible use of forecasts, can be extremely difficult. Nevertheless, the utility of forecasts 

for public health planning needs far exceeds that of any historical data. The potential 

accuracy of forecasts could be evaluated by artificially removing the last year of known 

data and attempting to predict these values with data from the preceding years. 
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11. Conclusions 

Public health decision-makers require accurate and timely information on disease­

specific treatment burdens within a health system to allow the monitoring and planning 

of resource needs. A basic requirement is reliable national and sub-national data 

detailing the number of treatment events for a given disease or condition occurring at 

health facilities each month or year. In most African settings, this requirement is 

addressed with an HMIS that coordinates the routine acquisition of treatment records 

from health facilities and the transfer, compilation and analysis of these data through 

district, regional and national levels. 

A perfect HMIS requires all health facilities to report promptly in all months, allowing a 

comprehensive quantification of treatment events through time and space across the 

health system. The reality ofHMIS in Africa and elsewhere stands in marked contrast to 

this ideal. Typically, many facilities never report or report only intermittently resulting 

in spatially and temporally incomplete national data. Following several decades of donor 

investment in HMIS across Africa the incomplete nature of routine national reporting 

has shown little improvement. 

Faced with poor data coverage, national treatment burdens are often estimated using 

rudimentary methods to account for missing values. The aim of this project was to 

develop a statistical approach to provide more reliable estimates of national outpatient 

treatment burdens. This project has focused on the Kenyan HMIS and has used the 

example of presumed malaria cases seen at government outpatient facilities around the 

country, a variable important to health-system planners. 
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Probabilistic models have been developed in this project to predict MC, the monthly 

number of malaria cases diagnosed at each facility where HMIS records were missing. 

These predictions were required at locations distributed in space and time and the 

modelling task was therefore framed as a space-time problem and addressed within the 

conceptual framework provided by geostatistics. Such an approach relies on the 

presence of autocorrelation in the variable of interest. This study found that raw HMIS 

data on malaria diagnoses can display substantial spatial autocorrelation when data from 

different facility types are considered independently. This justifies the use of spatial 

prediction techniques such as OK. This study also found, however, that these data 

display temporal autocorrelation, and that exploiting continuity in both the spatial and 

temporal domain using STOK results in considerably more accurate predictions. 

Fmihermore, the heterogeneity of spatial patterns of malaria across Kenya suggests that 

assumptions of second-order stationarity of the RF model used in these predictions may 

be sub-optimal. An approach was developed that allowed space-time variograms to be 

estimated locally in order to more accurately represent second-order heterogeneities and 

this approach was found to result in marginally more accurate predictions, although its 

implementation was computationally demanding. 

The number of outpatients diagnosed with malaria each month at a given health facility 

is a complex variable driven by a wide range of factors. A simple conceptual model was 

proposed that divides these factors into spatially-dependent determinants, principally 

caused by the heterogeneity of environmental conditions, and spatially-independent 

determinants, principally caused by factors specific to each facility and catchment 

population. Accounting for these non-spatial effects by standardising the MC variable by 

measures of these facility-specific factors can enhance the spatial continuity of the MC 

variable. Attempts to derive such measures directly using catchment population models 

highlighted the importance of using refined models that required detailed nationwide 

data. Because such data were unavailable, a different approach was devised that used TC 

data on the total monthly number of outpatients diagnosed for all conditions at each 

facility as a proxy measure of facility catchment size. By developing and testing two 

alternative prediction frameworks, this study showed that the use of TC data as a 

denominator to standardise MC data can account for much of the non-spatial variation 

present in MC. However, because TC values were unavailable at MC prediction 

locations, these values themselves required prediction and this introduced substantial 
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uncertainty into the resulting predictions of MC, negating much of the benefit of using a 

standardised numerator. 

Two approaches were developed for providing measures of the uncertainty associated 

with predictions of MC at different levels of spatial and temporal aggregation. The first 

was a model-based geostatistical approach that involved a space-time adaptation of 

sequential Gaussian simulation. Evaluation of this uncertainty model found that it 

provided accurate measures of local and regional uncertainty. Because the model was 

complex and required intricate implementation, an alternative approach was also 

developed that could be more widely understood and implemented. This second 

approach used an internal validation procedure to obtain a sample of known prediction 

errors, and used these to infer the expected errors associated with the real predictions. 

The predictive framework presented in this project allowed the incomplete Kenyan 

national HMIS database on outpatient malaria to be reconstructed and national treatment 

burdens to be estimated. The resulting estimate of the national annual treatment burdens 

for presumed outpatient malaria within the government sector was 6.8 million cases, 

with an expected margin of error of ] .3%. This figure is substantially different to the 

equivalent value of 7.6 million cases derived using rudimentary methods to account for 

the proportion of missing records. As such, this project has used geostatistics to provide 

results that are of direct use to public health decision-makers in Kenya. 

Whilst the underlying problem of inadequate national health reporting systems can only 

be fully remedied by substantial and sustained investment in the infrastructure of these 

systems, the findings of this study and the predictive tools developed represent an 

important contribution that can be used to improve the reliability of information from 

HMIS and to enhance their utility as an evidence-base. 
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