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This thesis considers the use of the wave approach for damage detection in beams. It is 

proposed that the existence of damage can be predicted and its location and depth estimated by 

measurement of the wave scattering coefficients in the frequency domain. Importantly, the 

wavelengths considered here are much longer than the dimensions of the cross-section of the 

beam. 

Here, a damaged beam with a transverse notch or slot is modelled using finite element (FE) 

analysis. This model offers a more detailed description of the shape of the damage and its 

dynamic characteristics than conventional analytical models. The FE model is assembled to 

semi-infinite spectral elements, which impose infinite boundary conditions at each end of the 

FE model. A wave superposition method is then used to estimate the scattering coefficients. 

The scattering coefficients are estimated experimentally for a number of beams containing 

slots. These were made by cutting through the width of the cross-section. The measured 

reflection coefficients are compared with numerical results to estimate the slot depth and good 

agreement is found between the actual and estimated slot depths. Experimental errors and noise 

can make it difficult to estimate the scattering coefficients, particularly at low frequencies or 

when the reflection coefficient is small (e.g., a small slot). 

It is shown how the location of the slot can be estimated, either from the reflection coefficient 

or the phase of the point frequency response function. Both variables include modulation that is 

related to the distance between the sensors and the slot. An inverse Fourier transform, applied 

to the reflection coefficient in the wavenumber domain and transforming into the spatial 

domain, is used to estimate the location of the slot. Moreover, this method can also be used to 

locate more than one slot. The accuracy of the estimated slot location depends on the resolution 

in the spatial domain, which depends on the frequency range used in the analysis; the resolution 

is approximately equal to half the minimum flexural wavelength. 

The results in this thesis show that the reflection coefficient offers a useful feature for 

detecting damage in beams. The main limitation lies in the fact that experimental error and 

noise make it difficult to detect small slots. From the results given here, the method works best 

when the slot depth, and hence the reflection coefficient, is large. 
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Abbreviations 

NDT Non-destructive testing. 

SHM Structural health monitoring. 

VBDD Vibration-based damage detection. 

FRF Frequency response function. 

FE Finite element. 

SE Spectral element. 

FESE Combined finite and spectral element. 

LRT Longitudinal rod theory. 

LVRT Love rod theory. 

EBT Euler-Bernoulli beam theory. 

TBT Timoshenko beam theory. 

DSM Dynamic stiffness matrix. 

kIFT Inverse Fourier transfonn in the wavenumber domain. 

kIFFT Inverse fast Fourier transfonn in the wavenumber domain. 
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Symbols 

Material symbols 

E Young's modulus. 

p Mass density. 

'U Poisson's ratio. 

g Radius of gyration. 

b Width of beam. 

Variables and degrees of freedom 

1 Frequency [Hz]. 

t Time variable. 

U, v Displacement x and y 

A Area of the cross-section. 

I Second moment of area. 

G Shear modulus. 

K Timoshenko shear coefficient. 

h Height of beam. 

w Frequency [rads./s] (w = 27[1). 

x, y Co-ordinates. 

if! Rotation. 

cp, ifJ General degrees of freedom. 

Forces 

F Axial force. C External axial force. 

Q Shear force. P External transverse force. 

M Bending moment. B External moment. 

cr Stress. p Nodal forces. 

Damage variables 

D Notch/slot depth. y Non-dimensional Notch/slot depth. 

W Notch/slot width. K Stiffness. 

1( Stress intensity factor. {J Energy release rate. 
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Wavenumbers 

ko Longitudinal wavenumber. 

ks Shear wavenumber. 

kL Love rod wavenumber. 

kb Euler-Bernoulli flexural wavenumber. 

kt Timoshenko wavenumber for propagating waves. 

kn Timoshenko wavenumber for nearfield waves. 

ke Experimental wavenumber. 

Wave scattering variables 

a, a Wave amplitudes. 

R, R Reflection coefficients. T, T Transmission coefficients. 

r, t Power reflection and transmission coefficients. 

Damage location 

A Spatial variable. 

ks Wavenumber sample vector. 

k~ Wavenumber re-sampled vector. 

Other symbols 

m Mass. 

K Stiffness. 

1] Damping loss factor. 

D Dynamic stiffness matrix. 

.Q Transformation matrix. 

f1 Accelerance. 

M 

K 

C 

H 

I 

fs Frequency sampling vector. 

I1f Frequency sample spacing. 

11k Wavenumber sample spacing. 

Mass matrix. 

Stiffness matrix. 

Damping matrix. 

Receptance matrix. 

Unit matrix. 

Vector quantities are denoted in lower-case bold font and matrices in upper-case bold 

font. 
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1. Introduction 

1.1. Background 

Non-destructive testing (NDT) of damage in structures has been of interest to engineers 

for many years. The term damage is taken to mean a change in the structure that can lead 

to an adverse affect on its integrity, safety and performance. Damage and failure of 

structures can be both costly and catastrophic. NDT allows engineers to survey 

structures, assess damage and maintain the structures; thereby, increasing the life of a 

structure and improving performance and safety. 

It is desirable that damage is detected at the earliest possible moment. The structure is 

therefore monitored for damage and this is referred to as structural health monitoring 

(SHM). In principle, a SHM system monitors a structure for the occurrence and progress 

of damage. This might also include identifying the damage, estimating its severity, its 

location, and developing a prognosis of the remaining life of the structure. 

1.1.1. Structural health monitoring 

Evaluating the health of a structure is much like medically treating a sick patient. An 

overview of how a SHM system might be designed is given in [1,2]; in summary the 

main points are: 

1. establish possible damage scenarios; 

2(a). feature selection; 

2(b). define what data is to be acquired; 
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2(c). numerical analysis and evaluation of chosen features; 

3. testing and data processing; 

4. diagnosis and 

5. prognosis. 

These steps are elaborated more in [1,2]. One of the most important steps is selecting a 

feature. A feature is a variable or parameter that is monitored, a change in which is used 

to signify damage. Drawing on a medical analogy, this might be considered similar to a 

symptom. It is from the recording and measurement of the features that a diagnosis and 

prognosis can be made. The sensitivity of the chosen feature to damage is therefore very 

important because a more sensitive feature means that the damage is easier to detect. 

The diagnosis and prognosis steps (4 and 5) are often separated into the 

following [2,3J: 

• Diagnosis 

1. Existence: predicting the possible existence of damage in a structure. 

ii. Location: predicting the location of damage. 

iii. Extent: predicting the extent of the damage . 

• Prognosis 

iv. Consequence of the damage, e.g., remaining life of the structure. 

At each stage, our knowledge of the damage increases. Although stages i and ii might be 

accomplished by direct experimental methods alone, often stages iii and iv (in particular) 

require models, be they numerical or experimental, of the damage and the structure. The 
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diagnostic stage determines damage specific data, whereas prognosis is damage and 

structure dependent. Prognosis is a much more complex problem than diagnosis and may 

require a great deal of information about the structure, such as the working conditions, 

loading and fatigue behaviour, to name a few. 

A SHM monitoring system is designed with a specific application in mind. Certain 

NDT methods may be inappropriate for certain structures, particular types of damage or 

environmental conditions. A number of desirable features might be identified and some 

examples are given in the following: 

• the ability to detect damage from measurements elsewhere on the structure 

(remote sensing); 

III practicality, e.g., suitable for use under working conditions; 

III sensitive to small scale damage; and 

III robustness (e.g., to changes in environmental or working conditions). 

One benefit of remote sensing in damage detection is that damage can be detected 

using a number of fixed measurement locations, which monitor the whole structure. This 

is particularly useful when it is either impractical, dangerous or costly to move sensor 

devices manually. 

Various methods have been considered for SHM in the past, some of which are 

discussed in [1]. Of particular interest here are vibration-based methods of damage 

detection for SHM. Previous work in this area is reviewed in chapter 2. One of the 

challenges in this field is finding a feature that is sensitive to small damage but can still 

be measured remote from the damage site. For example, where some ultrasonic methods 

can be sensitive to small damage, the monitoring must be local to the damage site; 
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conversely, where modal methods can be insensitive to small damage, the features can be 

measured remote from the damage site. 

1.2. Aims and scope of the thesis 

The aim of this thesis is to explore the use of wave scattering as a means for 

vibration-based damage detection in beams. This focusses on the use of the wave 

scattering coefficients as a feature for diagnosing a transverse slots cut into the beam, 

i.e., estimating existence, depth and location. This is motivated by the desire to find a 

feature that can be measured remote from the damage site, can be used to describe the 

properties of the slot and is sensitive to small damage. 

Using waves that have wavelengths longer than the dimensions of the cross-section of 

the beam, it may be possible to detect the slot through measurements of the wavefield at 

locations remote from the damage site. It is assumed that the scattering coefficients 

depend on the slot shape and, hence, might be used to estimate its depth. Furthermore, 

wave propagation methods might also make it possible to locate the slot. 

This thesis considers damage in mechanical structures, as might be found in civil, 

mechanical and aerospace engineering, concentrating on homogeneous and isotropic 

beams. Although the methods considered here may be equally applicable to non-uniform 

beams and composite beams, these types of structure are not considered. 

1.3. Structure of the thesis 

The chapters in this thesis are structured as follows: 

2. Vibration-based damage detection This chapter reviews research in the area of 
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vibration-based damage detection (VBDD), covering the recent past and state of 

the art. This chapter highlights some of the methods currently under investigation 

and summarises the advantages and limitations of these approaches. 

3. Modelling wave scattering from discontinuities This chapter reviews methods for 

modelling the wave motion and wave scattering in one-dimensional waveguides. 

Analytical methods for estimating wave scattering coefficients of a discontinuity 

are reviewed. A numerical method is used to model discontinuities, which uses a 

combination of finite element analysis and wave models (spectral element models). 

From this model, the scattering coefficients of the discontinuity can be estimated. 

4. Modelling a beam with a notch or slot In this chapter, two models of the damaged 

beam are presented. The well-known linear and elastic lumped spring model of a 

notch [4,5] is reviewed and its scattering coefficients are calculated. The second 

model is a combined finite element and wave model used to model both a notch 

and slot. This model includes more detail of the shape of the damage and is 

compared to the lumped-spring model. 

s. Measuring the scattering coefficients This chapter reviews the methods used for 

experimentally estimating scattering coefficients of discontinuities in beams and 

an experiment is described. The effects of experimental error on the accuracy of 

the measured scattering coefficients is discussed. As an example, the scattering 

coefficients were measured for various masses that were attached to the beam. The 

experimental results are then compared with numerical results that are estimated 

from combined finite and spectral element models of the masses. 

6. Measuring the scattering coefficients of slots Narrow slots, with various depths, 
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were cut into a number of beams. The scattering coefficients of the slots were 

measured and the results are presented in this chapter. The results are compared to 

numerical estimates derived from combined finite and spectral element models of 

the slot. The results are used to show how the measured reflection coefficient can 

be used as evidence that damage exists and for estimating the slot depth. 

7. Estimating slot depth Given the numerical and experimental results of chapters 4 

and 6, respectively, this chapter compares the two for estimating the slot depth 

from the measured reflection coefficients. A reference data set is generated using 

numerical models of the slot, to which experimental results are compared, in order 

to estimate the depth. 

8. Locating slot from the reflection coefficients It is shown here that the location of a 

slot can be estimated by applying an inverse Fourier transform, in the wavenumber 

domain, to the measured reflection coefficients. Experimental results are given and 

the method is also used to locate more than one slot in the beam. 

9. Locating slots using phase information It is shown in this chapter that an inverse 

Fourier transform in the wavenumber domain can be used to locate a slot from 

measurements of the phase of the point frequency response function. 

10. Discussion and suggestions for further work This chapter summarises the main 

findings of the thesis and considers further work that might improve the method. 

1.4. Contributions of the thesis 

In the first half of this thesis, a method is considered that can be used to estimate the 

scattering coefficients of a discontinuity in a beam. The method follows previous work 
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by Doyle [6] and combines finite element models and wave models (spectral element 

models). The contribution of this part of the thesis lies in the application of the combined 

finite element and wave models to estimating the scattering coefficients of a 

discontinuity, in general, and more specifically notches and slots. The combined finite 

element and wave model is used to illustrate how the estimates of the scattering 

coefficients are affected by changes to the shape of the damage (e.g., width) and the 

existence of wave mode conversion. Comparing the results of the numerical damage 

models to conventional analytical models, provides some validation of the analytical 

models as well as suggesting their limitations. 

The second half of this thesis concentrates on damage detection and estimation of the 

depth and location of a slot in the beam. Experimental results are presented to show the 

wave scattering coefficients of various sized slots. The main contribution here lies in the 

use of the measured scattering coefficients for assessing the damage. Methods are given 

for estimating the slot depth and location from the measured reflection coefficients. 

Finally, a second method is described that shows how the location of the slot can be 

estimated from measurements of the phase of the point FRF. 

In summary, the contributions of this thesis are: 

• application of combined finite element and spectral element methods to estimating 

scattering coefficients of discontinuities, with specific application to notches and 

slots; 

• numerical and experimental investigation of the wave scattering properties of slots 

in beams; and 

• development of methods that can be used to estimate the depth and location of a 

slot, from measurements of the wavefield. 

7 



2. Vibration-based damage detection 

2.1. Introduction 

The term vibration-based damage detection (VBDD) refers specifically to methods used 

for SHM that rely on measurements of the dynamic response of a structure and use 

vibro-acoustic features for damage detection. 

Over the last 25 years, there has been growing interest in VBDD and the amount of 

research has been on the increase [7J. High frequency methods such as ultrasonics have 

been used for many years in industrial applications. In the recent past, there has been 

much research activity concentrated on low frequency methods. These are attractive as 

they offer the possibility of sensing damage using measurements made remote from the 

damage site. In this chapter, an overview of the research in this area is given. In 

particular, this focusses on the detection and assessment of cracks in homogeneous 

isotropic beams. 

2.2. Characterising damage 

Damage causes changes in the properties of a structure. These changes can be 

characterised in different ways, and models of the damage can be developed. Damage is 

often characterised as a [7-9]: 

• localised change in structural flexibility (increased flexibility); 

• localised change in mass; and 
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• localised change in damping (increased damping). 

Furthermore, damage may also cause a noticeably non-linear response. 

A localised change in flexibility occurs when a crack is formed and elastic energy 

stored in the beam is released. The change can be related to the strain energy release 

rate [10] and the stress intensity factor [11]. These concepts are explained further in 

chapter 4. 

Changes in mass may occur if the damage is severe, causing part of the structure to 

break off. This type of effect may be seen in composite materials in which layers of the 

composite may spall away. One may also find it in other materials, such as concrete 

structures that have been damaged or metal structures as a result of corrosion. 

Localised changes in damping occur owing to dissipative mechanisms at the damage 

site (e.g., thermoelastic behaviour and friction) but such changes are difficult to measure 

in practice. VBDD using changes to modal damping parameters have been considered 

in [8]. 

In general, cracks behave non-linearly and in some cases, the non-linear behaviour can 

provide a useful feature from which the crack can be detected [9,12,13]. 

2.2.1. Modelling damage in beams 

Modelling a damaged structure has a number of uses. Estimates from a model might be 

compared with experimental results and used to estimate parameters of the damage, e.g., 

its size. Furthermore, the model might be used to estimate how sensitive a particular 

feature is to damage and hence predict how useful that feature might be for damage 

detection. 

A number of damage models can be found in the literature, although some are adopted 
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more than others. The behaviour of damage at low frequencies is often modelled as a 

change in the stiffness local to the damage site. For convenience, often the non-linear 

response is not included in the model and it is assumed that, at low frequencies, changes 

in the damping and mass are not significant in comparison to the change in stiffness [7]. 

One fracture model that has been used in various references is the lumped-spring 

model (sometimes referred to as the spring-hinge model) and this is considered in more 

detail in chapter 4. This model relates the changes in the local strain energy at notch 

shaped fracture to the stiffness of a spring for a given fracture mode [4,5]. At low 

frequencies, one might assume that only the opening mode is significant, as 

in [4,5,14-17]. 

Although the lumped-spring model is used often in the literature, a number of other 

analytical models exist. For example, in [18], the rigidity of the beam is calculated over 

its length. The damage causes a reduction in this rigidity which depends on its type and 

size. A more qualitative approach can also be used to simulate damage, in which the 

elastic modulus of the structure is reduced at the damage site in proportion to its 

size [19,20], 

Conventional analytical models often assume a particular type of damage. The 

lumped-spring models are derived from analysis of a the static behaviour of a notch in a 

beam under a load. In this case, it is assumed that the notch is always open and, as such, 

the change in stiffness is assumed to be constant over time and frequency. This model is 

considered to be most accurate at low frequencies [7]. 

Were the notch subjected to an oscillating load, it will open and close [21]; this is 

referred to as breathing. Neglecting any non-linear behaviour that can ensue (such as 

friction or contact between the notch faces), the dynamic behaviour of a breathing notch 
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is time dependent. The time dependence might be included in the model as in [21], 

where the equivalent stiffness is allowed to vary with time. In [21] and [14], examples of 

the differences between the breathing and open notch models are presented. As these 

references consider changes in the modal parameters, the effects of a breathing notch 

depend on the location of the notch. 

Numerical models offer the advantage of modelling the damage in more detail. For 

example, in [22,23] and [24] the finite element and boundary element methods are used, 

respectively, to model the shape of a notch and to estimate its dynamic properties. These 

models offer a more detailed analysis of the dynamic behaviour and may provide a more 

accurate analysis of the dynamic response, in comparison to the lumped-spring model. 

2.3. Linear vibration-based damage detection 

In this section, some methods for VBDD are reviewed. An overview of each method is 

given, concentrating on the underlying principles. 

2.3.1. Modal methods 

The dynamic response of a structure can be described by its mode shapes and natural 

frequencies. For discrete multiple degree-of-freedom systems, both parameters can be 

determined from the well-known eigenvalue problem [25], which for undamped linear 

free vibration is 

(2.1) 

where K is the stiffness matrix, M is the mass matrix, W = 27fj, f is the frequency and ifJ 

is a vector of degrees of freedom. The mode shapes are the eigenvectors of Eq. 2.1 and 

the natural frequencies are predicted from the eigenvalues. 
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Damage to the structure is assumed to alter the stiffness matrix, such that 

(2.2) 

where K = K - AK and AK is the change in stiffness at the damage site. The eigenvalues 

and eigenvectors of Eq. 2.2 differ from those in Eq. 2.1 and it is this feature that is 

exploited by modal damage detection methods. 

For example, as explained in [19], the change in the jth natural frequency, !1Wj, 

between the undamaged and damaged structures is a function of the change in stiffness 

and the location, otherwise written as 

(2.3) 

where r is a general location vector and g is a function. This suggests that by measuring 

a change in natural frequency, it may be possible to locate the damage. Also, the change 

in natural frequency is a function of AK, which itself is a function of the size of the 

damage. 

To detect damage, the results must be compared to either a model of the undamaged 

structure or a model of the damaged structure. These models may be analytical, 

numerical or based on experimental testing. By comparing measurements made on a 

damaged structure to the undamaged model, it may be possible to note changes in the 

modal parameters that may signify damage, as in [19]. If one wanted to estimate the size 

of the damage, it would be necessary to model the effect of damage and compare this to 

experimental results, as in [4]. 

Typically, only the first few modes are considered for damage detection. In [4], the 

mode shapes and natural frequencies are calculated for a cantilever Euler-Bernoulli beam 

with a single transverse notch, modelled as a rotational spring. Similar studies have 
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considered double-sided notch [5], multiple notch [26] and notch in stepped beams [27]. 

In other studies, the curvature mode shapes have been considered and it is suggested that 

they are more sensitive to damage than the displacement mode shapes [2,28]. 

Experimental results, such as those given by [4], show how the lumped spring model 

can be used to predict the location and extent of a notch in a beam. However, when using 

modal parameters, the accuracy of the damage detection depends on its location. For 

beams in bending, the sensitivity of the modal features depends on the curvature of the 

beam, i.e., changes in strain energy. Therefore, if damage occurs where the curvature is 

large, the effect of the damage is large; while, if the damage occurs where the curvature 

is small, the effect is small. The chances of a damage occurring where the curvature is 

large are improved if higher frequency modes are considered but this is often impractical 

due to the number of sensors and measurements required. 

In the lowest modes, the modal features tend to be insensitive to small damage [4,7]. 

This might be improved by measuring higher frequency modes but, again, this solution is 

often impractical. 

Given that the lower modes are insensitive to small damage, the changes in the modal 

parameters may not exclusively be a result of damage. Temperature variation or other 

environmental effects may alter the modal parameters, as might small changes in the 

boundary conditions. 
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To summarise, the advantages and limitations of modal methods for VBDD are as 

follows: 

• Advantages 

- Damage can be detected from measurements made at locations away from 

the damage site. 

- Modelling methods available for complicated structures. 

- Experimental and numerical methods well understood. 

- Can be less costly than other NDT methods. 

• Limitations 

- Features are insensitive to small damage. 

- Ability to detect damage can depend on the location of the damage. 

- Practical issues often constrain the analysis to the first few modes. 

- Method requires either data describing the undamaged structure and/or 

models of the damaged structure. 

2.3.2. Frequency response methods 

A frequency response function (FRF) describes a ratio between two quantities in the 

frequency domain, e.g., a ratio between the response and the excitation force 

(receptance, mobility and accelerance), a ratio between responses at different locations 

or a ratio between two forces (transmissibility). 

FRFs include magnitude and phase information about the structural response. When 

damage occurs in the structure the FRF is affected and, as with modal methods, the 
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effects are dependent upon the location of the excitation, the location of the damage and 

also on the extent of the damage. 

The most significant effects of damage on the FRF occur at the resonances and 

anti-resonances. Other effects can be seen in the phase. This is shown in [20], in which a 

number of FRFs are predicted from numerical models and are used to simulate damage 

detection on a bridge/truss-like structure. This approach compares the changes between 

the damaged and undamaged structures to locate damage and similar methods were used 

in [29,30]. 

As with the modal methods, FRF methods often require either a model of the 

undamaged structure or a model of the damaged structure. This means that the plant 

response of the structure must be estimated either by numerical or experimental means. 

Damage can also create new resonances in the FRF and this has been used as a feature 

for damage detection in [31]. New resonances and anti-resonances are created when 

waves scatter between the damage and the ends of the beam. At certain frequencies, the 

scattered waves interfere constructively to give a new peak in the FRF or destructively to 

create a new trough. 

When waves are scattered by damage, some of the energy is reflected and some is 

transmitted. As a consequence, damage can cause small changes in the magnitude of the 

peaks in the FRF. This was suggested in [32] as a possible feature for damage detection. 

In [29,33,34] the changes seen in the anti-resonances were considered as a feature for 

damage detection. In [29] the anti-resonances of the damaged and undamaged structures 

were compared and used to estimate the location of the damage. The method was also 

applied to beams with multiple notches in [33] and, although the numerical simulations 

described in [33] show that both notches can be located, the experimental results are not 
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as conclusive. Some reservations about this method are put forward by [34], in reference 

to the practicality of accurately measuring the anti-resonances. Anti-resonances are 

affected by environmental conditions and changes in the boundary conditions that might 

occur in practice but an additional problem is noise. Often, when measuring an FRF 

such as the mobility, one can expect the coherence between the response and excitation 

to be much less than unity at the anti-resonances, which primarily is a result of a poor 

signal-to-noise ratio. The accuracy of this result is then brought into question and one 

asks: how much of the measurement is the signal and how much is noise? This has 

repercussions for repeatability and consistency in the accuracy of the method. 

To summarize the use ofFRF methods for VBDD: 

• Advantages 

- Single measurements can cover a larger frequency ranges than modal 

methods. 

- Possibility of remote damage detection. 

- Experimental and numerical methods are well established. 

• Limitations 

- Features are insensitive to small damage at low frequency. 

- Ability to detect damage can depend on its location. 

- Method requires either data describing the undamaged structure or models of 

the damaged structure. 
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2.3.3. Wave analysis 

The motion of a structure can be described in terms of the wavefield, and a discontinuity, 

such as damage, described in terms of its scattering properties. The use of the wave 

method for VBDD is the particular focus of this thesis and more detail is given in 

chapter 3. Wave methods in VBDD have mostly been considered for very high 

frequency behaviour and these are discussed in the next subsection. 

Wave methods have been employed to produce models of damaged beams for 

predicting, for example, the frequency response [15] or the response in time 

domain [35,36]. In these studies, the wave method has been used specifically for the 

model, while the wave parameters, such as the scattering coefficients of the damage, 

have not been considered as features for damage detection. 

In [15] and [37] the axial and flexural scattering coefficients of a notch in a beam were 

derived, respectively, using the lumped-spring notch model. This analysis showed that 

the scattering coefficients of the lumped-spring depend on frequency and the stiffness of 

the spring (i.e., the notch depth). Therefore, it may be possible that the scattering 

coefficients can be used as a feature for damage detection, as suggested in [37], and this 

is considered in more detail in Chapter 4. 

In [38] the wave scattering coefficients of a beam with inhomogeneities and 

delamination were estimated from analytical wave models. Again, analytical results 

showed how the scattering coefficients depend on the size of the inhomogeneity and on 

frequency. 
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2.3.4. Very high frequency wave methods 

Very high frequency wave methods, such as ultrasonic and surface wave methods, are 

well established and used frequently in industrial applications [1,39]. For these methods 

the wavelength is much shorter than the dimensions of the structure. 

Acoustic emission (AE) analysis [1] is based on the measurement oflamb waves that 

propagate through the structure. AEs are stress waves created by damage as it occurs and 

may emanate from the damage when a load is applied to the structure. AEs are not 

repeatable, thus the structure must be continuously monitored. The main advantage of 

AE analysis is that it can be used to detect small scale damage. One of the disadvantages 

lies in the reproducibility of the AEs, thus requiring the structure to be monitored 

continuousl y. 

Guided waves (or Lamb waves) are very sensitive to small defects. The waves 

propagate through the thickness of the structure as wave modes [40] and these waves 

scatter at any discontinuities. There are an infinite number of wave modes but they 

propagate only when the excitation frequency is above the cut-on frequency of the wave 

mode. In guided wave methods, the aim is to excite the wave modes and measure their 

existence at some point remote from the damage site. This might be achieved due to 

intentional external excitation but can also occur when the structure becomes damaged, 

e.g., when a crack grows. 

Given that Lamb waves are typically of very short wavelength and propagate through 

the thickness of, for example, a plate or beam, the use of such methods offer the 

possibility of detecting small surface and internal defects [41]. Such methods have been 

considered for isotropic and composite structures [39,41-43]. 

There are various difficulties in using Lamb waves for damage detection. Firstly, at a 
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given frequency, a number of wave modes may contribute to the signal. Given that each 

wave mode propagates at a different velocity, having many wave modes can make it 

more difficult to determine specific reflections from damage sites [41]. Another major 

issue lies with signal to noise problems that can arise due to attenuation and dispersion. 

For these reasons, a particular excitation frequency band is chosen to minimise the 

effects of dispersion, i.e., a band in which the group velocity varies by only a small 

amount. In particular, attenuation and dispersion limit the distance over which a 

particular wave can be detected, although the maximum distance can be in the region of 

a few meters, depending on the structure [42]. 

Ultrasonic methods, such as C-scan methods, are well-established in commercial 

applications [1]. A number of standard texts can be found on the subject, for 

example [44]. The structure is excited by an ultrasonic pulse and the scattered pulse is 

then measured at some time later. Using this method, one can build up an image of the 

damaged area. In contrast to Lamb wave methods and AE analysis, ultrasonic scattering 

methods do not rely on exciting wave modes that propagate within the structure. Instead, 

damage is detected through measurement of very high frequency wave reflections from 

defects and other discontinuities within a localised area. The need to perform many tests 

at many points along a structure is seen as one of the main deficiencies of such methods 

for practical SHM. 

2.3.5. Time domain methods 

It may be possible to detect damage from measurements of the scattered waves. For 

example, a pulse is sent through a structure, is scattered and then returns to the excitation 

point some time later. If the wave speed is known and is also constant with frequency, 

the time delay between sending and receiving the pulse can be used to estimate the 
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location of the scatterer. This approach is used in pulse-echo ultrasonics and is 

considered for lower frequency applications in [35,36]. 

In dispersive systems, different frequencies travel at different speeds. Dispersion 

makes it difficult to differentiate between the waves that scatter from the damage and 

waves that scatter from other discontinuities, as explained in [35,36]. 

Other ways of looking at time-domain measurements in dispersive media, such as 

time-frequency or wavelet processing techniques may enable more information to be 

extracted. There has also been some interest shown in the possibility of using 

time-reversal methods in SHM. For example, in [45] time-reversal techniques were 

applied to lamb wave propagation to detect experimentally where masses were attached 

to a plate. Similarly, in [46], numerical simulations show how damage in a plate can be 

located by time-reversal methods. 

2.4. Processing of data from damage structures 

In vibration engineering, time data is often processed and converted to the frequency 

domain, the purpose of which is to show more information about the physical make-up 

of the signal. Similarly, in VBDD there are many different methods used to process 

damage detection features in order to learn more about the features and perhaps enhance 

them. Many of these methods seek to quantify a chosen feature and this may lead to the 

estimation of the damage parameters such as location and extent. 

In vibration, the data that is processed is often recorded in the frequency, time or 

modal domain. It should be remembered that the ability to detect damage from a given 

feature is more a question of choosing a suitable feature than it is of choosing a suitable 

processing method. In other words, if the chosen feature is insensitive to damage, it is 
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unlikely that processing that same feature will improve the ability to detect the damage. 

The main concern of this thesis is the use of waves for VBDD and not signal 

processing. Therefore, in this section, a brief overview of some of the processing 

methods in the literature is given but it is by no means exhaustive. The reader is directed 

to [1] and [47] for further examples, explanation and references. 

2.4.1. Non-stationary signal processing 

Non-stationary signal processing includes a range of processing methods that are used to 

process signals that are time-variant. In the literature there are a number of papers that 

consider the use of the wavelet transform for VBDD. As explained in [48], the variation 

of wavelet parameters, such as the scale, can be related to the location and extent of the 

damage. In [49], the spatial wavelet transform is implemented on mode shape data for a 

cracked beam and is used to locate local perturbations in the mode shape that may 

signify the existence of a crack. 

One of the benefits of time-variant or time-frequency analysis methods is the ability to 

capture and track changes in the structural parameters and this can be particularly useful 

in SHM. 

2.4.2. Statistical methods 

Statistical methods are used to look for underlying statistical trends or anomalies in the 

measured data which can make the existence of damage become clearer. A number of 

examples are given in [1], such as outlier analysis [50] and principle component analysis. 

These two methods, for example, have been used to signify the existence of damage. By 

quantifying the anomalies in the statistical analyses, it is possible to set-up threshold 

levels that can be used to warn of damage in the structure. 
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In [51], kurtosis is used to predict the existence of abrupt changes in the signal that 

may be caused by a crack. The kurtosis can be used to signify the existence of the crack 

and, through multiple measurements, it was shown in [51] that a notch can be located 

and its depth estimated. 

2.4.3. Pattern recognition 

Damage detection can be considered as a pattern recognition problem. When damage 

occurs it causes changes to a number of features. By considering how the features change 

and recognising the pattern of the changes, it may be possible to detect the damage. 

A description of pattern recognition using artificial neural networks for VBDD is 

given in [1] and in [3]. Briefly, the neural network is trained using various input and 

output variables for many different damage scenarios. In an experiment, the input and 

output variables are measured and the network used to predict the scenario that best fits 

the measured data. The accuracy of this method depends on the quality of the training 

data, which is often numerical. 

2.5. Summary 

In this chapter, an overview of the methods used for vibration-based damage detection 

has been given. Importantly, the damage causes changes in a number of features. There 

has been a substantial amount of research into how damage affects modal parameters and 

the frequency response. 

Low frequency methods of VBDD are advantageous because they can be used to 

detect damage at locations remote from the damage site but they are limited by not being 

sensitive to small scale damage. Very high frequency methods are more sensitive to 
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damage but can not always be used for remote damage detection, particularly if the 

waves are localised or attenuation is an issue. 

This thesis explores the use of wave methods in a frequency range that falls between 

the low frequency modal methods and the very high frequency wave methods. With this 

approach it may be possible detect damage remote from the damage site whilst obtaining 

information about the damage from the scattering coefficients. 
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3. Modelling wave scattering from 
discontinuities 

3.1. Introduction 

It is proposed that the wave scattering coefficients of a crack depend on parameters such 

as the crack depth. Therefore, by measuring the scattering coefficients of the crack, it 

may be possible to estimate the crack depth. To do this requires a model to which 

experimental results can be compared. 

Here, analytical and numerical models of a discontinuity are described, from which 

the scattering coefficients can be estimated. In this chapter, the models are described in 

general, for any discontinuity, whereas the specific case of a crack is considered in 

chapter 4. 

When the dynamic properties, e.g., the equilibrium and compatibility conditions, of a 

discontinuity can be described analytically, the wave scattering coefficients can be 

estimated using the wave method, and this is reviewed here. However, for a general case, 

the dynamic properties of the discontinuity are not known analytically. 

When an analytical model is not available, the discontinuity can be modelled 

numerically and its dynamic properties estimated using finite element (FE) analysis. 

However, estimating the scattering coefficients of the discontinuity directly from the FE 

model is not straightforward, least of all because the model is finite and waves reflect at 

the ends. 

It would be easier to estimate the scattering coefficients of the discontinuity if the 

model were infinite, i.e., without the reflections from the ends of the model. Such a 
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model is developed here using the methods previously described by Doyle et al. [6,22], 

in which models of structures were developed by combining FE and spectral element 

(SE) models. Taking a FE model of a portion of the beam that contains the discontinuity, 

semi-infinite boundary conditions can be imposed at both ends using the SE method. 

This step effectively removes the reflections from the ends of the FE region. Here, a 

method is described that can be used to estimate the scattering coefficients of the 

discontinuity from the assembled FE and SE model. A number of issues surround the 

assembly of the two models, which are addressed in due course. 

The motivation for producing this model lies in the fact that, although analytical 

models of a cracks exist, they do not account for the exact shape of the crack or dynamic 

behaviour such as wave mode conversion at the crack. Therefore, the FE model may 

provide a more detailed model to compare with experimental results and also suggest the 

accuracy and limitations of the conventional analytical crack models (this is considered 

further in chapter 4). 

3.2. Wave propagation in rods and beams 

The vibration of any structure can be described in terms of a wave field. Waves transport 

energy through the structure and at a given frequency each wave type is characterised by 

a wavenumber [52]. In this thesis, the wave method is used to model the behaviour of 

beams with discontinuities and, in particular, cracks. In this section the wave method is 

reviewed. 

Throughout, it is assumed that the vibration of the structure is linear and 

time-harmonic. In this case, the deformation of a one-dimensional structure, such as a 
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beam, can be described in the frequency domain by 

¢(x, w) = <I>(x, w)a(w) (3.1) 

where ¢ is the deformation, the <I> = {<1>j ,<1>2,'" ,<1>N} is a row vector of N wave 

functions that are evaluated at location x, a = {aj, a2 ... ,aN f is a column vector of 

corresponding wave amplitudes, T is the transpose operator, W = 2IT! and! is the 

frequency. 

The response in the time-domain is obtained by applying the principle of 

superposition and summing the waves over all frequencies, so that 

+00 

¢(x, t) = J <I>(x, w)a(w) eiwtdw (3.2) 

-00 

which can be seen as the inverse Fourier transform (IFT) of the wave functions. 

Although the wave functions are complex, the time domain response is real. 

The wavefields in a uniform rod or beam are described by an equation of motion. Rod 

theory is said to describe the axial wave motion and a beam theory describes the flexural 

motion. 

Here, the longitudinal and Love rod theories and Euler-Bernoulli and Timoshenko 

beam theories will be briefly reviewed and more detail can be found in [52]. Each 

rodjbeam is described without including damping, though structural damping can be 

included using a complex modulus of elasticity E(1 + iTJ), where E is the Young's 

modulus and TJ is the damping loss factor. 

3.2.1. Longitudinal rod theory 

Longitudinal rod theory (LRT) assumes that the cross-section remains plane under axial 

stress, such that the stress distribution remains constant over the area of the cross-section 

and shear stresses are negligible. These assumptions are most accurate for small 
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displacements and when the wavelength is much longer than the dimensions of the 

cross-section. If the rod is uniform, the equation of motion is [52] 

(Pu (Pu 
EA--pA- =C 

8x2 8t2 

where p is the material density, u is the axial displacement, A is the area of the 

cross-section and C is the applied axial force per unit length. The sign convention is 

illustrated in Fig. 3.1 and the internal axial force is 

8u 
F=EA­ax 

(3.3) 

(3.4) 

The general solution of Eq. 3.3, for free vibration (C = 0), is found by assuming that the 

displacement is defined by a wave function, such that u(x, w) = a<l>(x)e iwt
, where a is the 

wave amplitude. Substituting this into Eq. 3.3 and omitting the time dependence eiwt
, the 

general solution can be shown to be 

(3.5) 

where ko = W -V piE is the longitudinal wave number, a+,_ denotes the amplitude of a 

propagating forward-going or backward-going wave and the superscript A indicates an 

axial wave. 

~U(X) --I .F 

I-----~ ... X 

Fig. 3.1: Sign convention for axial motion and forces. 
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3.2.2. Love rod theory 

Love rod theory (LVRT) [52] is more accurate than LRT as it includes Poisson 

contraction. However, it remains a plane-stress model and does not account for 

contraction out of plane or any changes to the stress distribution caused by the changed 

shape of the cross-section. 

For uniaxial stress (J"xx, the strains are related by Eyy = -'UCxx, where u is Poisson's 

ratio and Cxx and Eyy are the normal strains in the x and y directions, respectively. 

Neglecting shear strains, the contraction in the y-direction is [52] 

au 
v = yEyy = -yu­ax 

Graff [52] shows how Eq. 3.6 is used to derive the equation of motion, which is 

(3.6) 

(3.7) 

where I is the second moment of area of the cross-section. The internal force F L is given 

as 

au 2 a (a2u) FL = EA- +pIu - --ax ax at2 
(3.8) 

The general solution for free vibration is found in the same way as LRT. Omitting the 

time dependence eiwt , then 

(3.9) 

where kL = ~kU(1 - [ukog]2) is the Love wavenumber and g = VI fA is the radius of 

gyration. LVRT differs from LRT by including the kinetic energy associated with 

in-plane Poisson contraction. This results in a fourth order differential term in the 

equation of motion, the importance of which depends on the radius of gyration. At long 

wavelengths (ukog « 1), the contraction is negligible and the general solution and 

wavenumber are similar to LRT. 
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3.2.3. Euler-Bernoulli beam theory 

Euler-Bernoulli beam theory (EBT) describes a beam in flexure, where wavelengths are 

much longer than the dimensions of the cross-section. As the beam bends, the 

cross-section displaces transversely by vex, t) and rotates through the angle !ft. EBT 

assumes that shear deformation and rotational inertia are negligible and, for small 

rotations,!ft = 8vj8x. The equation of motion is [52] 

(3.10) 

where P is the applied transverse force per unit length. The bending moment M and 

shear force Q are 

8M 
Q(x, t) = - 8x 

82v 
M(x, t) = EI 8x2 

Fig. 3.2 shows the sign conventions adopted here for a beam. 

Q 

1----... X 

i vex) 

r1) lj/(X) 

Fig. 3.2: Sign conventions for a beam in flexure. 

(3.11) 

The solution for free vibration (P = 0) is sought by substituting vex) = a<D(x)e iwt into 

Eq. 3.10. Omitting the time dependence, the general solution can be shown to be 

(3.12) 
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where kb = -\!w2pA/ E/ is the Euler-Bernoulli wavenumber and the superscripts P and N 

denote propagating flexural and nearfie1d waves, respectively. The nearfield waves decay 

exponentially with distance and do not radiate power to the farfield. Nearfield waves can 

not be neglected when considering the motion in close proximity to their source and they 

also play an important role when waves interact with discontinuities. When using 

Eq. 3.12, numerical problems can occur beacause a,!ekbX increases exponentially with 

distance. This problem can be overcome by writing Eq. 3.12 as 

(3.13) 

where L is the distance to some reference position on the beam and a~,N are wave 

amplitudes that differ from Eq. 3.12 by a phase term. 

3.2.4. Timoshenko beam theory 

Timoshenko beam theory (TBT) [53] includes the effects of rotary inertia and shear 

deformation of the cross-section that are neglected in EBT. This theory is more accurate 

than EBT, particularly when the wavelength is not very long in comparison to the 

dimensions of the cross section. The governing equations are [52] 

8
2

1/1 (8V) 8
2

1/1 E/- + GAK - -1/1 -p/- = 0 
8x2 8x 8t2 

(3.14) 

(3.15) 

where G is the shear modulus and K is the Timoshenko shear coefficient. Eq. 3.14 relates 

the moments and angular acceleration, whereas Eq 3.15 relates transverse forces and 

lateral acceleration. Values of the Timoshenko shear coefficient for typical cross-sections 

can be found in [54]. All of the beam models in this thesis consider a rectangular 
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cross-section, therefore the shear coefficient used is 

K= 
12 + llu 
10(1 + u) 

(3.16) 

The rotation of the cross-section ifi now includes the rotation due to bending and shear 

Yxy. The shear stress is 

au av av 
Y =-+-=--ifi 

xy ay ax ax 

and the internal shear force and bending moment are 

(
av ) a2 ifi aM Q = GAK - - ifi = pI- - - ; ax at2 ax 

M = EIalj/ 
ax 

(3.17) 

(3.18) 

EBT is obtained from TBT by assuming the shear angle is zero, differentiating Eq. 3.14 

once with respect to x, summing the resulting equation with Eq. 3.15 and neglecting the 

rotary inertia term pI a2 ifi / 8{2. 

Omitting the time dependence, the solution to the free vibration problem is sought by 

assuming that 

v = ae-ikx ; (3.19) 

where e is an amplitude ratio as yet undefined. It can be shown [52] that there are two 

general solutions for TBT, given by 

(3.20) 

(3.21) 

where the Timoshenko wavenumbers are! 

(3.22) 

(3.23) 

I For the derivation, see Appendix § A. 
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and 6 = ko/kb and/3 = ks/kb' where ks = W ...jp/GK is the shear wavenumber. From 

Eq. 3.15 it follows that 

(3.24) 

The wavenumber kt is always real and positive, corresponding to a propagating wave. 

The wavenumber kn is imaginary when 6/3 < 1, corresponding to a nearfield wave. When 

6/3 > 1, kn is real and represents a second propagating wave or second spectrum [55]. 

The frequency associated with 6/3 = 1 is the Timoshenko cut-on frequency. Here, it is 

assumed that the excitation frequency is below this cut-on frequency and kn is imaginary. 

At low frequencies, the longitudinal and shear wavelengths are much longer than the 

flexural wavelength and as W ---7 O. 

(3.25) 

Therefore, at low frequencies the Timoshenko wavenumbers approximate those of EBT. 

3.3. Wave reflection and transmission 

A structural discontinuity may be thought of as a change in impedance that is 

unaccounted for by the equation of motion. A discontinuity can be characterised by its 

wave reflection and transmission coefficients, which describe how incident waves are 

scattered [56]. The scattering coefficients may depend on frequency, incident wave type 

and, in a more general sense, they can also depend on the angle of incidence or energy 

dissipation at the discontinuity. 

The wavefield of the beam illustrated in Fig. 3.3, comprises axial, flexural and 

32 



--+ --+ 
a+ 
~ ~ 1 ___ 

~ 

a ~ ~ 

b+ 

---. Axial wave 
'VV Flexural wave 
'--.. Nearfield wave 

- -- .. 
x 

Discontinuity 

Fig. 3.3: A discontinuity in an infinite rod or beam. 

nearfield waves. The wave reflection matrix R can be written 

a~ aA 
+ 

a_ = a~ a+ = aP 
+ 

af! aN + 

and the transmission matrix T as 

(3.26) 

(3.27) 

where a+, a_ and b+ are vectors of incident, reflected and transmitted wave amplitudes 

and the superscript on each reflection and transmission coefficient denotes the type of the 

incident and scattered waves, e.g, RAP is the reflection coefficient given an incident 

propagating flexural wave and a reflected axial wave, whereas RPA is the opposite. 

The tenns along the diagonal ofR or T, with the superscripts AA, PP and NN, 

describe scattered waves of the same type as those incident. When the off-diagonal 

coefficients are non-zero, energy from one wave type (or mode) is transferred to another; 

a phenomenon referred to as wave-mode conversion. The significance of wave-mode 
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conversion depends on the discontinuity. One example of such a discontinuity, of interest 

here, is a one-sided transverse crack. 

3.3.1. Power reflection and transmission coefficients 

Power scattering coefficients represent the proportions of energy that are reflected and 

transmitted. These coefficients offer a more physical interpretation of the size of the 

wave scattering. The power scattering coefficients are defined as 

r 
ri p r =-, 

pi 
(3.28) 

where i, r, and t denote incident, reflected and transmitted wave type, i.e., these are 

replaced by either A,P or N. Furthermore, pi is the incident wave power, p r is the 

reflected wave power and p t is the transmitted wave power. 

The wave amplitude scattering coefficients in Eq. 3.26 and 3.27 are converted to 

power scattering coefficients using Eq. 3.28 and the wave power for each wave type is 

given in Table AI, which can be found in Appendix A2. 

For example, consider the coefficient RAP where 

(3.29) 

From Table Al (see Appendix, § A2), if LRT and EBT are used to describe the waves, 

the reflected wave power is 

(3.30) 

and the incident wave power is 

(3.31) 
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where Co and Cb are the phase velocities from LRT and EBT, respectively. Therefore, the 

power reflection coefficient rAP is 

(3.32) 

In all cases, the condition of conservation of energy should be met. Neglecting 

nearfield terms and in the case where the discontinuity is undamped, this implies that 

(3.33) 

(3.34) 

3.4. Estimating scattering coefficients from an analytical model 

The scattering coefficients of a discontinuity can be found analytically if its dynamic 

properties are known analytically. This method is explained in [56] and an example is 

presented here. 

One advantage of an analytical solution is that it can offer an insight into the 

parameters that control the wave scattering. The main drawback of the method is that the 

dynamic characteristics of complex discontinuities are not readily described analytically. 

3.4.1. Scattering of a point mass 

To illustrate the analytical method, the scattering coefficients of a point mass are 

presented here. A point mass in a beam is illustrated in Fig. 3.4. The wavefield consists 

of incident, reflected and transmitted axial and flexural waves. There is no wave-mode 

conversion at the mass so the axial and flexural wave scattering can be treated separately. 

For axial waves the compatibility and equilibrium conditions of the mass are 

(3.35) 
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~ 

. - - ------.... ------- --+~ X 

Fig. 3.4: Analytical model of a point mass in a beam. 

where m is the mass and the subscripts + and - denote the right and left hand sides of the 

discontinuity, respectively. 

Using LVRT (see § 3.2.2), Eqs. 3.7 and 3.8 can be used to show that 

aA = { 1 } [1 
1 + -1 

(3.36) 

where m = w2m/{ikL(EA - W 2p/1J2 }. The reflection and transmission coefficients are 

found by inverting the matrix on the right-hand side ofEq. 3.36, such that 

TAA = b~ = _2_ 
aA 2-m + 

At low frequencies, /RAA/ ~ 0 and /TAA/ ~ 1 whilst at high frequencies (as long as 

(3.37) 

For flexural waves, the compatibility and equilibrium conditions conditions of the 

mass are 

(3.38) 

(3.39) 

Using TBT (see § 3.2.4), the compatibility and equilibrium conditions for the 

36 



displacement and the moment in Eqs. 3.38 and 3.39, can be used to show that 

(3.40) 

The compatibility and equilibrium conditions for the rotation and shear force, 

Eqs. 3.38 and 3.39, can be used to show that 

(3.41) 

Eq.3.24. 

Eq. 3.40 is used to find a~ in terms of a~ and b~ which is then substituted into Eq. 3.41 

to find the transmission coefficients. A similar substitution is made to find the reflection 

coefficients and both sets of scattering coefficients are given as 

(2dn + m')Gn - 2dn0 n j 
-m'Gt 

(2dn + m')Gn - 2dn 0 n j 
2dn0 t - (2dt + m')0n 

(3.42) 

(3.43) 

As an example, Fig. 3.5 shows the power scattering coefficients rAA, tAA r P and tPP as 

functions of frequency. In this example, the beam model is mild steel with 

E = 210 x 109Nm-2, p = 7850kgm-3, 1) = 0.3, b = 0.05m, h = 0.006m and the mass is 

m = 0.5kg. 
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Fig. 3.5: Power scattering coefficients of a point mass with m = O.5kg: (-), ,.PP; (--), 
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3.S. The spectral element method 

3.5.1. Overview 

Given the difficulties in producing analytical models of discontinuities with complex 

dynamic properties, over the next three sections a numerical model is considered. The 

numerical model is developed using the spectral element (SE) method. The SE method is 

described in detail in [6]. The SE method is a frequency domain approach and, 

conventionally, SEs are defined using wave analysis. Often, a SE is used to model part of 

a structure for which an equation of motion is known. 

It was shown by Doyle [6] that a FE model can be assembled with SEs. Whereas 

in [6] the model was used to estimate the FRF and the response in the time-domain, here 

it is used only in the frequency domain to estimate the scattering coefficients of a 

discontinuity. 

The dynamic properties of the discontinuity are estimated using FE analysis. To 

estimate the scattering coefficients from the FE model directly is not straightforward, 

given that the model is finite and waves reflect from both ends. However, assembling the 

38 



FE model with semi-infinite SEs effectively imposes semi-infinite boundary conditions 

at the ends of the model. This step makes estimating the scattering coefficients of the 

discontinuity more straightforward. 

In this section, the SE method is reviewed and the sections that follow (§ 3.6 and 

§ 3.7) consider the assembly of the FE and SE models and a method for estimating the 

scattering coefficients. 

3.5.2. The dynamic stiffness relation 

A SE is described by the dynamic stiffness relation 

p=D¢ (3.44) 

where p is a vector of nodal forces, ¢ is a vector of nodal dofs and D is the dynamic 

stiffness matrix (DSM). An example of a SE is illustrated in Fig. 3.6. 

Nodal forces 
Node Element y 

/ \ L ~ .~C2 C
j
8 

X 

Bj Bz 
v 

v4-.u Nodal 
degrees of 
freedom 

Fig. 3.6: A I-D spectral element. 
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The nodal dofs and forces of a SE are described using wave analysis, such that 

¢ = 'Pa p = ra (3.45) 

where 'P and r are matrices of wave terms that depend on the equation of motion and 

a = {a+ , a_} T is a vector of positive and negative-going wave amplitudes. From 

Eq. 3.45, the DSM is 

D = r'P-1 (3.46) 

3.5.3. Finite and semi-infinite spectral elements 

A SE that can be used to describe the axial and flexural motion of a uniform rod or beam 

is illustrated in Fig 3.6. If the waves are described by LVRT and TBT (or LRT and EBT), 

each node has three dofs and three forces. The axial displacement and applied axial force 

are denoted by u and C, respectively. The transverse displacement and rotation are v and 

I./J, while the applied transverse force and moment are P and B, respectively. In Fig. 3.6, 

subscripts 1 and 2 are used to denote the node number. The derivations for rod and beam 

SEs are given in [6]. To illustrate the method, a finite rod SE and two semi-infinite beam 

SEs are derived in the following. 

3.5.3.1. Finite rod 

A finite rod SE has its first node at x = 0 and node two at x = L. Using LVRT (§3.2.2, 

Eq. 3.8 and Eq. 3.9), the nodal dofs and forces can be written 

(3.47) 

(3.48) 
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By Eq. 3.46, the DSM of the SE is 

EAkL 2 [ COS(kLL) 
D = sin(kLL) {1 - (kovg) } 

-1 

(3.49) 

3.5.3.2. Semi-infinite beam 

Two semi-infinite beam SEs are illustrated in Fig. 3.7, where one extends to +00 and the 

other to -00. The equations of motion for each element, using TBT, are 

x~O (3.50) 

x:s;;O (3.51) 

(a) 

v,y Nodal 

-00 ... 
i dofs 

Ij/~u,x 
.. 

(b) 
!x=o 

Fig. 3.7: Semi-infinite SEs. 

Both elements in Fig. 3.7 are defined in a similar way. For the element that extends to 

+00, the nodal dofs and forces, using Eq. 3.45 and Eqs. 3.20 and 3.21, are 

(3.52) 
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and 

(3.53) 

where the subscript + denotes that the element extends to +00. The DSM for this 

element is 

(k5 - k;)/0n - (k5 - k;)/0 t j 
(k2 

- k2)/0 0 n t t n 

(3.54) 

By a similar approach, the DSM for the element that extends to -00, denoted by the 

subscript -, can be shown to be 

-(k5 - k;)/0n + (k5 - k;)/0t j 
(k2 

- k2 )/8 8 n t t n 

(3.55) 

Furthermore, by adding D+ and D_, the resulting DSM is that of an infinite Timoshenko 

beam. 

3.6. Assembling FE and SE models 

In this section, the assembly of FE and SE models is reviewed. The elements are 

assembled much like FEs are in FE analysis. One of the main issues of concern here, 

however, is the fact that the FE and SE models are not compatible, in general. Therefore 

an approximate method is used to enforce compatibility and connect the elements 

together. 

3.6.1. The finite element method 

The FE method is a well established tool for estimating structural vibration [57]. A 

structure is modelled using a number of discrete elements for which the deformation is 
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defined by shape functions. The number and type of elements required in a FE model 

depends on the complexity of the structure and the frequency range of interest. More 

elements are needed when the wavelength becomes short. The main advantage of the 

FE method is that it can be used to model structures with irregular geometries. 

Importantly, the FE method can be used to estimate the DSM of an arbitrary 

discontinuity. 

The DSM of an FE model without damping is 

D = K-uiM (3.56) 

where K and M are the global stiffness and mass matrices, respectively. Proportional 

damping may be included using a complex modulus of elasticity. Alternatively, a viscous 

damping model can be used and D = K + iwC - w2M, where C is the damping matrix. 

However, it is assumed that damping in the beams that are tested later in this thesis is 

very small, and the models that follow are treated as undamped. 

3.6.2. Assembling elements 

In general, the FE model and SE model are given by the dynamic stiffness relationships 

(3.57) 

where the superscripts fe denotes the FE model and w the SE (or wave model). 

The relationships in Eq. 3.57 can be written as 

(3.58) 

Here, Eq. 3.58 is referred to as the local model, so-called because it describes the 

relationships between the nodal dofs and forces on the individual elements, and this is 

denoted by the superscript L. 
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When the FE and SE models are assembled, the resultant model is described as the 

"global" model and has a dynamic stiffness relationship given by 

(3.59) 

where G denotes the global model. The local and global dofs and forces are related by a 

transformation matrix n, such that 

(3.60) 

Therefore, from Eq. 3.58 and 3.59, a general form of the dynamic stiffness relationship 

for the assembled FE and SE models is 

(3.61) 

The matrix n contains the compatibility and equilibrium conditions that relate the 

local dofs and forces to the global dofs and forces. This matrix depends on how both the 

FE and SE models are defined. 

3.6.3. A beam with a discontinuity 

In the following, it is shown how a model of a beam with a discontinuity is developed by 

assembling a FE model of the discontinuity with SEs, as shown in Fig. 3.8. 

The FE model consists of a section of the beam that contains the discontinuity and is 

shown in Fig. 3.9. The FE model used here is two-dimensional and assumes plane stress 

conditions. Fig. 3.9 details what are referred to as "interface nodes" and "non-interface 

nodes". 

The interface nodes lie along the interface at which the FE and SE models are 

assembled. The dimensions of the cross section at the interface are equivalent to those of 

the SE model. In this model, no external forces are applied to the non-interface nodes. 
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Fig. 3.8: The model of a discontinuity. 
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Fig. 3.9: The FE model of a section of beam containing the discontinuity. 

As such, the DSM of the FE model can be condensed to reduce its size by removing the 

dofs associated with non-interface nodes. The DSM of the FE model can be partitioned 

as 

(3.62) 

where i and n stand for interface and non-interface, respectively. From Eg. 3.62 it can be 
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shown that 

Ie _ DIe ",Ie. DIe - [D D D-1D ] 
Pi - i 'ri' i - ii - in nn ni (3.63) 

where D{e is a DSM that describes the interface nodal dofs and forces only. 

The reduction of DIe makes manipulation of the DSM easier but does not offer much 

improvement in computational time. As explained in [6], approximate methods might be 

used to reduce the number of dofs more efficiently, such as a modal decomposition of the 

mass and stiffness matrices for the non-interface dofs. However, as computational time 

was not found to be significant here, approximate methods are not used. 

The process used to connect SE models to the FE model at both interfaces is identical; 

therefore, in the following it is described for one interface only. Fig. 3.1O(a) illustrates 

the interface at one side of the FE model, the semi-infinite SE and lists the dofs and 

forces, where the SUbscript R has been added to denote the interface on the right-hand 

side of the FE model. Fig. 3.1 O(b) shows the assembled global model, with one node and 

its dofs and forces. 

To assemble the models in Fig. 3. 10 (a) requires the transformation matrix n, as 

explained in the previous subsection. Firstly, the global node is defined as having the 

same number of nodal dofs and forces as the SE, such that 

uG 
R CG 

R 

ifJG - vG G_ pG R - R PR -
R 

(3.64) 

I{I~ BG 
R 

The dofs on the SE are related to the global model by the compatibility condition 

(3.65) 

Relating the dofs and forces on the FE model to the global dofs and forces is not 
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Fig. 3.10: The interface between the FE and SE models. 

straightforward because, in general, ifJ{; and ifJ~ are incompatible. A method for 

enforcing compatibility is offered in [6,22], however it is described differently here. 

The equations that define a relationship between ifJ{; and ifJ~ depend on the dofs and 

forces in the FE model. For all the models in this thesis, only the in-plane motion is 

considered. For conventional plane-stress/strain elements, such as those in commercial 

FE code, e.g., Ansys, each node in the FE model has two dofs and forces. For the jth 

node, these are written 

(3.66) 

Compatibility between the FE model and the SE model is enforced by applying 

constraints, which assume that the FE model deforms like a rodjbeam at the interface. 

The dofs on the interface are assumed to be related to the global dofs by 

fe _ vG 
Vj - R (3.67) 
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where Y j is the distance from the jth node on the interface of the FE model to the 

centre-line of the beam. In Eq. 3.67, the rotation is assumed to be small, that the axial 

waves cause axial displacement and Poisson contraction and that flexural waves cause 

both transverse displacement and axial displacement as the cross-section rotates. This 

approach is approximate and the errors will be considered in due course. 

The constraints in Eq. 3.67 can be used to describe the relationship between all the 

dofs on the interface of the FE model and the global dofs, such that 

G1 

G2 

G

j 
= [ ~ 0 -:j j ¢/e = G¢P G= (3.68) 

I,R R 

I 

GJ 

where G is a matrix containing the constraints and J is the total number of nodes along 

the interface of the FE model. By Eqs. 3.65 and 3.68, the local dofs at the interface relate 

to the global dofs by 

(3.69) 

Eq. 3.69 enforces compatibility at one interface. As mentioned earlier, semi-infinite 

SE models are connected at both interfaces as shown in Fig. 3.8. In this case, local dofs 

and forces can be written 

fe ¢fe 
Pi,L i,L 

[ D
i
' 

:w j 
fe ¢fe 

pL = DL¢L DL = I pL = 
Pi,R 

¢L = 
i,R 

(3.70) 

0 pZ ¢Z 

P; ¢; 
where the subscript L denotes the interface on the left-hand side of the model. The 

dynamic stiffness relationship for the assembled/global model is similar to Eq. 3.61 and 
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given by 

G 0 

0 G 
pG = n.TnLn ¢P n= (3.71) 

I 0 

0 I 

The assembled model is a combination of FEs and SEs, and this model is referred to 

here as a FESE model. 

3.7. Estimating scattering coefficients from a numerical model 

To estimate the scattering coefficients from a FESE model, the model must include 

incident, reflected and transmitted waves, as illustrated in Fig. 3.11. 

----+ 
~ a+ 

~ _____ n_o;...;.d....;..e....;;l~ ____ _ 
--~=-~~-- - - - - - ~ 

-00 

/ -
Semi-infinite SE 

FE model of the 
discontinuity 

\ 
Semi-infinite SE 

Fig. 3.11: Model required for estimating scattering coefficients. 

The FESE model described in the previous section does not include the incident waves 

a+ because they are undefined in the semi-infinite SE that extends to -00 (see § 3.5.3.2, 

Eq.3.55). 
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In order to create the model in Fig. 3.11 using a FESE model, a wave superposition 

method is used. This method is similar to that in [58] where it is used to determine the 

scattering of acoustic waves from structures. For this method, two models are created. 

The first is a model of a semi-infinite SE, fixed at its node, as shown in Fig. 3.12. This 

model represents the FESE model fixed (or blocked) at the left-hand interface. This 

model is used to calculate the forces at the fixed node, assuming that there is an incident 

and reflected wave field. Equal but opposite forces are then applied to the FESE model. 

By superposition of the nodal dofs and forces in the SE model, with a fixed node, and the 

FESE model, it is shown here that the model in Fig. 3.11 can be created. 

To apply the condition that incident waves are present in the FESE model, node 1 is 

fixed and the wavefield is assumed to include the incident waves (a+)/ and the reflected 

waves (a_)/, as illustrated in Fig. 3.12, where f denotes the fixed node model. 

I 
node 1 - - - - - ------.1' 

Semi-infinite SE 

Fig. 3.12: FESE model fixed at the first node. 
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The dofs and forces at the fixed node in Fig. 3.12 are 

(3.72) 

(3.73) 

where 8+,_ and tp +,_ are matrices that relate the dofs and forces to the wave amplitudes, 

which are derived from the equation of motion. As node 1 is fixed, Eq. 3.72 reduces to 

(3.74) 

where Rf is the reflection coefficient of the fixed end. From Eq. 3.73, the forces at the 

fixed node are 

(3.75) 

Forces that are equal and opposite to Eq. 3.75 are applied to the first node of the FESE 

model, as shown in Fig. 3.13. When the force is applied, two sets of waves are created 

(a_)s and (b+)s, where s denotes waves in the FESE model. 

:- \--~~-), ;; 
Semi-infinite SE 

-------c:!1&-- - - - - - -

node2 / 
node 1 

FE model of the 
discontinuity Semi-infinite SE 

Fig. 3.13: FESE model of the discontinuity. 
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The global dynamic stiffness relation for the FESE model was given in Eq. 3.71. The 

global receptance matrix of the FESE model in Fig 3.13 is HG = [DGr I, such that 

(3.76) 

Therefore the receptance relation in Eq. 3.76 can be written 

(3.77) 

To create the model in Fig. 3.11 the fixed node model in Fig. 3.12 and the FESE 

model in Fig. 3.13 are superposed. In doing so, the net nodal forces are zero while the 

nodal dofs in Fig. 3.11, rP I and rP2' are given by 

(3.78) 

Therefore, 

(3.79) 
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Finally, using the value of (PI)j from Eq. 3.75, the reflection and transmission 

matrices are 

R = _0=1 [H?! (1\ + P _Rj ) + 0+] 

T = -o~! H?2(P+ + P_Rj ) 

3.8. Numerical examples 

(3.80) 

(3.81) 

When the scattering coefficients of a discontinuity are estimated using a FESE model, a 

number of factors affect the accuracy of the result. Perhaps the most significant is the 

definition of the FE model and the choice of variables such as the number of 

elements/dofs in the model or the chosen element type. 

To illustrate the accuracy of the method, a number of examples are presented in which 

the scattering coefficients of a uniform beam are estimated. In theory, the power 

reflection and transmission coefficients of a uniform beam are zero and one, respectively. 

A FE model of the uniform beam is treated as a discontinuity and parameters such as 

element type and number are altered to show how they affect the accuracy of the results. 

From these results, one can suggest the most appropriate element type and number for 

future models. To illustrate the method further, the estimated scattering coefficients of an 

FESE model of a point mass are also presented and compared with analytical solutions. 

All of the FE models were generated in Ansys and a plane-stress analysis performed. 

The beam model has E = 210 X 109 Nm-2 , p = 7850 kgm-3 (mild steel), 'U = 0.3 and 

h = 0.006 m. These properties were chosen for their similarity to the experimental work 

in chapters 5 and 6. The results are presented as functions of non-dimensional axial or 

flexural wavenumbers, depending on the wave type under consideration. In both cases 

the wavenumbers are multiplied by the thickness of the beam to make them 
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non-dimensional. In Figs. 3.l4 and 3.15 the non-dimensional wavenumbers are plotted 

against frequency. Given that the wavenumbers in the following numerical examples are 

very similar to the experiment, these values also give an indication of the frequency 

ranges that are used in the experimental results presented in chapter 5 onwards. 

0.5 

o~--~--~--~--~--~--~--~--~--~--~--~ 
o 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 

kL h 

Fig. 3.14: Non-dimensional Love wavenumber, kLh, plotted as a function of frequency. 

54 



30000~-.----~---r----r---.----.----.----.--~~ 

:>, 
g 1000.·. 
<l.) 
:::l 
0"' 

J: 

0.050.1 0.2 0.3 

. . . . . . . . . . . . . . . .. ...... ...... - . . . . . ........... , ......... \ .. 

0.4 0.5 0.6 0.7 0.8 0.9 
k h 

t 

Fig. 3.15: Non-dimensional Timoshenko wavenumber, kth, plotted as a function of 

frequency. 

3.8.1. Effect of the number of elements in the FE model 

A FE model of the uniform beam is shown in Fig. 3.16. The model was meshed with 

triangular elements that have quadratic shape functions (plane2 in Ansys). The length of 

the model is L = 10h. If the number of elements prescribed along the interface boundary 

is 1 then the number of elements prescribed along the upper and lower boundaries are 

Lljh. Defining the elements in such a way, results in a roughly uniform mesh. 

To illustrate how changing the number of elements affects the estimated scattering 

coefficients, four FE models were generated in which 1 = 2, 5, 7 and 10. The numerical 

results in Fig. 3.17 show the estimated value of the axial power reflection coefficient rAA 

as a function of non-dimensional Love wavenumber. It can be seen that rAA =1= 0 but the 

accuracy of the estimate improves as 1 increases. Furthermore, there seems to be a 
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L= lOh 

Fig. 3.16: The FE mesh of the uniform rodjbeam. 

non-zero reflection coefficient even for large J. It is thought that this error is due to 

differences between the FE and SE models. 

In all the results presented, it was found that the power scattering coefficients sum to 

unity and, therefore, the transmission coefficient has not been given. 

0.8 

~:.... 0.6 

0.4 

0.2 

OL-__ ~ __ -L __ ~ ____ L-__ J-__ ~ __ ~~ __ J-__ ~ 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 
kL h 

Fig. 3.17: Axial power reflection coefficients ,.AA for models with different numbers of 

dofs: (-), J = 2; ( ... ), J = 5; (--), J = 7; (_._), J = 10. 
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The results in Fig. 3.18 also show that r PP "* 0 and that the model is more accurate for 

flexural waves as J is increased. There are noticeable differences between the models 

with J = 2 and J = 5 and only small differences between models with higher values of J. 

At higher frequencies, these differences are most clearly seen in Fig. 3.18 at the minima 

in r pp
. It is believed that the minima occur at different wavenumbers partly because the 

FE models are likely to have different wavenumbers. 
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Fig. 3.18: Flexural power reflection coefficients rPP for models with different numbers of 

dofs: (-), J = 2; (- .. ), J = 5; (--), J = 7; (-x-), J = 10. 

In both Fig. 3.17 and Fig. 3.18 the reflection coefficients exhibit an undulatory 

behaviour and this is most noticeable in rPP , in this frequency range. This behaviour is 

similar to that found in [59] for the reflection and transmission coefficients of beam 

inserts. It is believed that differences between the FE and SE models cause reflections at 
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the interfaces. The interference of the incident waves and waves reflected from the 

interfaces is thought to cause the undulant appearance of the results. 

3.8.2. Effect of the element type in the FE model 

A number of element types may be chosen to produce a plane-stress FE model. The 

numerical results presented here illustrate how the accuracy of the estimated scattering 

coefficients is affected by changing the element type. 

D 
plane2 quadratic elements plane42 linear element 

Fig. 3.19: Plane2 and Plane42 elements in Ansys. 

Three FE models of the uniform beam were generated using different types of 

plane-stress element. In Ansys, these are plane2, rectangular shaped; plane2, triangular 

shaped; and plane42, rectangular shaped. The elements are illustrated in Fig. 3.19. The 

Plane2 elements have quadratic shape functions and mid-sidenodes, whereas the plane42 

element has linear shape functions and no mid-sidenodes. The FE models were meshed 

so that the total number of dofs in each was approximately the same (:::::: 15000). This 

number equated to a mesh with approximately ten elements along the interface boundary 

for Plane2 and twenty elements for Plane42. 

The numerical result in Fig. 3.20 shows ,-AA for each model, where the largest 
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difference between the models is of the order of 10-7 . Fig. 3.21 shows a similar result for 

In Figs. 3.20 and 3.21 the plane42 element gives the better estimate of,-AA and rpp
. 

However, the plane42 element is less appropriate for models that have an irregular 

geometry, for which it is usually better to use triangular shaped elements. For example, a 

crack model requires triangular elements in order to model the shape of the crack, 

particularly around the crack tip. 

As in the previous subsection, the results have a similar undulatory appearance, which 

is attributed to the mis-match between the FE and SE models. There are small 

differences between the results for plane2 and plane42 elements and, for versatility, 

plane2 is used in further models. 

8X 10 
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5 
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,-
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0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 
kLh 

Fig. 3.20: Axial power reflection coefficients ,-AA for models with different element 

types: (-), plane2 rectangular; ( ... ), plane2 triangular; (--), plane42 rectangular. 
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Fig. 3.21: Flexural power reflection coefficients r PP for models with different element 

types: (-), plane2 rectangular; ( ... ), plane2 triangular; (--), plane42 rectangular. 
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3.8.3. Estimating the scattering coefficients using different SE models 

In the examples given so far, LVRT and TBT have been used to model the SEs. In this 

example, the scattering coefficients of the uniform beam are estimated for the case when 

LRT and EBT are used to define the SEs. 

The numerical result in Fig. 3.22 shows the comparison of 0 A when LRT and LVRT 

are used. As the wavenumbers are different, 0 A is plotted as a function of frequency. In 

Fig. 3.22, it appears that there is a slight difference between the models. Again, the 

minimum in the results is attributed to the mis-match between the FE and SE models. 
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Fig. 3.22: Axial power reflection coefficients 0 A for models with different spectral 

elements: (-), LVRT; (- - -), LRT. 
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Fig. 3.23 shows rPP
, again as a function of frequency, for two models in which the SE 

is defined by either EBT or TBT. In Fig. 3.23, the model using TBT is much more 

accurate than when EBT is used. 

10-2 

- - - --

-- --- / 
, 

10-4 , / \ 
/ I 

/ \ 
I 

I \ 

I \ I 

I \ I 

I \ I \ I 
I \ I \ ' 

10--6 \ , 
\ II 

"-
I, I' 

"- " 
II 

.... II I 

10-8 
II I 

i 
I 

10-10 

10-12 

0.05 0.5 1.5 2 2.5 3 
Frequency (Hz) 

x 10
4 

Fig. 3.23: Flexural power reflection coefficients rPP for models with different spectral 

elements: (-), TBT; (- - -), EBT. 

3.8.4. The scattering coefficients of a point mass 

Estimating the scattering coefficients of a uniform beam illustrates the accuracy of the 

FESE model. From the results, it is clear that error exists but this is small. In the 

following, the scattering coefficients of a point mass are estimated using a FESE model 

to illustrate how the errors affect the estimates. 

The model used to estimate the scattering coefficients of a point mass is shown in 

Fig. 3.24. The model comprises two uniform beam FE models to which semi-infinite 
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SEs are connected at one end, while the other ends are connected to either side of a point 

mass. 

SE 

Uniform beam 
FE model 

Point 
mass 

U nifonn beam 
FE model 

Fig. 3.24: FESE model of a point mass. 

The dynamic stiffness relation for a point mass is 

SE 

(3.82) 

where the subscript m denotes the local dofs and forces on the mass. The point mass 

does not have any rotational inertia and does not have a rotational dof. 

The uniform beam FE models were described in the previous subsections. The 

FE models used here have ten elements along the interface and plane2 triangular 

elements were used in the analysis. The FE model, the mass and the SEs are assembled 

as described in § 3.6. The dofs on the interfaces of the FE models that connect to the 

mass are denoted (if1~e) 1 and (if1{e)2' where the subscripts denote the FE beam model 1 

and 2 that are located either side of the mass and the subscripts Land R denote the left 

and right-hand sides of the FE models. The compatibility conditions at the mass are 

(3.83) 
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whilst the rotation is continuous, 

(3.84) 

The scattering coefficients were estimated for three different masses equal to 

m = 0.05, 0.25, and 0.50 kg. Given that each model is plane stress, the width of the 

beam is treated as 1m, thus the mass per unit width in each case is m' = 0.05, 0.25, and 

0.50 kg/m. The mass can also be considered in terms of a non-dimensional mass ratio, 

which is the added mass divided by the product of the mass per unit length of the beam 

and the wavelength. As such, the mass ratio is 

m 
mR=--

pAA 
(3.85) 

where A is the wavelength for the particular wave type, i.e., axial or flexural. Fig. 3.25 

shows the mass ratios for each mass as a function of non-dimensional wavenumber. 
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(a) Mass ratios as a function of 

non-dimensional axial wavenumber: 

0.02 

(-), m = 0.05; (--), m = 0.25; ( ... ), m = 0.5. 
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(b) Mass ratios as a function of non-dimensional 

flexural wavenumber: (-), m = 0.05; (--), 

m = 0.25; ( ... ), m = 0.5. 

Fig. 3.25: Mass ratios of the point masses. 
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The numerical results presented in the following, compare the reflection coefficients 

estimated from the FESE model with with the analytical result given in §. 3.4.1. The 

reflection coefficient,-AA is shown in Fig. 3.26. For each mass, the numerical result is 

inaccurate at very low frequencies. This error is believed to be caused by the mis-match 

between the FE and SE models. At higher frequencies for the larger masses, the error 

does not appear to be as significant, and the numerical and analytical results are very 

similar. 
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Fig. 3.26: Axial power reflection coefficients ,-AA of a point mass: (-), analytical; (--), 

numerical. 

The reflection coefficient r PP is shown in Fig. 3.26. Again, the numerical result is 

inaccurate at low frequencies when the reflection coefficient is of the order of the errors 

in the FESE model. Otherwise, the numerical and analytical results are very similar. 
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Fig. 3.27: Flexural power reflection coefficients r PP of a point mass: (-), analytical; 

(--), numerical. 

3.9. Summary 

The aim of this chapter was to describe a method that can be used to estimate the 

scattering coefficients of a discontinuity that may have complex dynamic characteristics, 

such as a crack. 

Analytical wave methods for estimating the scattering coefficients are restricted to 

discontinuities where the compatibility and eqUilibrium conditions can be written 

analytically. When the discontinuity has complex dynamic characteristics, these can be 

estimated using a FE model. 

Here, the SE method is used to impose infinite boundary conditions at the ends of a 

FE model. This is done by assembling semi-infinite SEs to the FE model using methods 

similar to those in [6]. From such a model, it is more straightforward to estimate the 

scattering coefficients of the discontinuity. The scattering coefficients are found using a 
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wave superposition method, similar to that in [58]. 

This method was used to estimate the scattering coefficients of a uniform beam and a 

point mass. It is clear from these numerical results that there is a mismatch between the 

FE and wave-based SE models, which results in wave reflection at the interfaces between 

the two. 

The accuracy of the estimates of the scattering coefficients also depend on how the 

FE model is defined and parameters, such as the number of dofs in the model and the 

element type. The numerical results given here show that improving the FE model, for 

example by increasing the number of dofs, improves the estimates. However, it is not 

necessarily the case that continual refinement of the FE model results in continual 

improvement in the estimates. It is believed that the accuracy of the model is limited by 

the mismatch between the FE and SE models and the assumptions about the behaviour 

made when assembling the two. 

From the numerical examples, the following remarks can be made as to how to 

develop a FESE model: 

• The SEs should be defined by Love rod theory and Timoshenko beam theory. 

• Triangular elements with quadratic shape functions are often more appropriate and 

appear no less accurate than other plane-stress elements. 

• The number of elements chosen for the FE model depends on the frequency range 

of interest. For the frequency range considered here, in which the minimum 

wavelength is approximately 7 h, it was found that ten elements along the interface 

gave accurate results for both axial and flexural waves. 
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4. Modelling a beam with a notch or slot 

4.1. Introduction 

It is often the case that damage is assessed by comparing experimental results to a 

reference model (see chapter 2) [7]. In chapter 3, analytical and numerical methods for 

modelling a discontinuity and estimating the scattering coefficients have been considered 

in general terms. In this chapter, these methods are used to model a beam with a notch or 

slot and to predict the scattering coefficients of such damage cases. This is done with a 

view to comparing these predictions to experimental results and hence estimating the 

notch or slot depth (see chapters 6 and 7). 

Two models are considered here. The first is an analytical lumped-spring model that 

can be found in a number of studies, for example [4] and [5]. The spring model is based 

on an analogy that relates the strain energy stored in a linear elastic spring to the strain 

energy local to the notch. 

The second model considered is a FESE model, in which a section of the beam 

containing the notch is modelled using FE analysis. While still being elastic and linear, 

the FESE model includes a more detailed description of the notch than the 

lumped-spring model. In this chapter the two models are described and compared. 

4.2. Background 

In fracture mechanics, the behaviour of damage such as notches and slots is often is 

described by one of two methods: linear elastic fracture mechanics (LEFM) or 
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elastic-plastic fracture mechanics (EPFM) [11]. LEFM describes the stress field near to 

the notch tip in terms of the linear theory of elasticity, whereas EPFM uses non-linear 

elasticity to describe the stresses. Assuming that the plastic deformation close to the tip 

does not extend further than a small fraction of the dimensions of the fracture, the 

material may be described as brittle [10] and LEFM used to estimate the stresses around 

the tip. This approach is described in more detail by Tada et al. [11]. Here, only the 

LEFM case is considered. 

4.2.1. Fracture modes 

Three modes of fracture behaviour are illustrated in Fig. 4.1. Mode I is the opening 

mode, mode II is the in-plane shearing mode, and mode I II is the out-of-plane tearing 

mode. Here, it is assumed that the depth of the fracture does not increase when loads are 

applied to the beam. 

Mode I - opening 

Mode II - shearing 

Mode III - tearing 

Fig. 4.1: Fracture modes. 
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The stresses at the fracture tip in each mode are characterised by a stress intensity 

factor (SIF) [11]. The SIF can be interpreted as a measure of the size of the stress 

singularity at the tip and depends upon the loading and the geometry. The SIF, 1<N, can 

be written [11] as 

(4.1) 

where FN(D/h) is a non-dimensional function based on the geometry of the fracture and 

the fracture mode, N denotes the fracture mode (I, II, or III), D is the depth of the 

fracture and a- is the maximum stress applied to the fracture in the given mode. The SIF 

is calculated in a number of ways that are described in [11]. 

4.2.2. Energy changes local to the fracture 

In LEFM, as a fracture forms, potential energy stored in the beam is supplied to the 

fracture faces. The change in local strain energy at the fracture is described by the strain 

energy release rate, {} N, which is the rate of change of potential energy per unit area of 

the fracture face (dUe/dAe) [10], where Ae is the area of the face. The strain energy local 

to the fracture, Ue, is given by the sum of the strain energies for each fracture mode. 

Here, only the in-plane behaviour is considered (modes I and II) and 

Ac 

Uc = J {{}[ + {}1I} dAe (4.2) 

o 

where {}N = '1: (for plane-stress). The relationship in Eq. 4.2 is used to derive the 

stiffness in the lumped-spring notch model. 
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4.3. Lumped-spring model for a beam with a notch 

A beam notch fracture is illustrated in Fig. 4.2. Assuming the beam is excited both 

axially and flexurally, both the opening and shearing modes are of interest. In the 

lumped-spring notch model, the variation in strain energy associated with each mode is 

modelled as a localised stiffness variation [5]. The lumped-spring notch model is used 

often in the literature as a model for low frequency vibration-based damage assessment, 

e.g., [4,26,35]. 

h 

Beam 

Fig. 4.2: Beam with a notch. 

The notch model comprises three springs and is illustrated in Fig. 4.3. This model is 

similar to the model described in [35]. The opening mode is modelled using two springs. 

A rotational spring Kp is used to model the opening of the notch caused by flexural 

motion and a translational spring KA is used to model the opening caused by axial waves. 

The shear mode is modelled with a translational spring Ks. In general, the shear crack 

mode may be excited by axial and flexural waves. However, when using LVRT and TBT 

to model the axial and flexural behaviour, only the flexural waves affect the shear spring 

as the shear stresses in LVRT are assumed to be zero. 
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.. 

Fig. 4.3: The lumped-spring notch model. 

The notch in Fig. 4.2 is not symmetric about the neutral axis, which causes 

wave-mode conversion as waves scatter from the notch. The lumped-spring model is 

considered to be symmetrically located with respect to the neutral axis of the beam and 

does not account for wave-mode conversion. The significance of wave-mode conversion 

is investigated in a later section of this chapter using FESE models. The wave-mode 

conversion might be included in the spring model using an eccentric spring and, 

although this is not considered here, it might be considered for future work. 

4.3.1. Stiffness of the springs 

An example of how the stiffnesses of the springs are derived is given in [5]. Aside from 

assuming that the notch behaves linearly and elastically, it is assumed that the it is 

72 



always open. Each spring has a frequency independent value of stiffness that is derived 

by equating the change in the local elastic energy caused by the existence of damage to 

the strain energy of a spring. The stiffnesses of each spring depend on the SIF (which are 

given in [11]). For each spring the values are given as 

EI 
Kp = --::-:-------

6nh fa y [Xp(y)]2 dy 

Eb 
KA = -----:-:-----

2n fa y [XA(y)]2 dy 

Eb 
Ks=-------

2n fa y [Xs (y)]2 dy 

(4.3) 

(4.4) 

(4.5) 

where y = D / h is the non-dimensional notch depth and the non-dimensional functions 

Xp,A,S (y) are specific to the fracture mode and derived from the SIF. The functions XA, Xp 

and Xs are given by [11] as 

tan(ny /2) 0.752 + 2.02y + 0.37[1 - sin(ny /2)]3 

ny/2 cos(ny/2) 
(4.6) 

tan(ny/2) 0.923 + 0.199[1 - sin(ny/2)]4 

ny /2 cos(ny /2) 
(4.7) 

Xs(y) = 1.30 - 0.65y + 0.37y2 + 0.28y3 

{r::y 
(4.8) 

Figs. 4.4 and 4.5 show the variation of the stiffnesses for the lumped-spring model as a 

function of y. These values are calculated from Eqs. 4.3 to 4.5. At small values of y the 

springs are stiff and, as y approaches unity, the springs become more flexible. 
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Fig. 4.4: Translational notch stiffnesses: (-), K A ; (--), Ks. 
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Fig. 4.5: Rotational notch stiffness K p • 
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4.4. Wave scattering from the lumped-spring notch model 

The dynamic behaviour of the lumped-spring model can be characterised in terms of its 

scattering coefficients, which can be found analytically from the compatibility and 

equilibrium conditions of the spring, as in § 3.4. This problem has also been considered 

in [15] for axial behaviour in a Timoshenko beam. 

4.4.1. Axial wave scattering 

The axial scattering coefficients RAA and TAA are calculated using Love rod theory. As 

there is no wave-mode conversion in the model, in reference to chapter 3 (Eqs. 3.26 

arid 3.27), RAP,PA = 0 and TAP,PA = O. The compatibility and eqUilibrium conditions that 

describe the axial behaviour at the springs are 

(4.9) 

where the subscripts + and - denote the left and right-hand sides of the discontinuity. 

From Eq. 4.9, the scattering coefficients can be shown to be 

(4.10) 

where CA is the non-dimensional compliance, given by 

(4.11) 

Other than at very high frequencies, (kogU)2 < < 1, therefore the non-dimensional 

stiffness in Eq. 4.11 is a function of non-dimensional wavenumber and the integrated 

The scattering coefficients in Eq. 4.10 depend on the stiffness and, therefore, the notch 

depth. As the depth increases, the stiffness decreases. In the frequency range of interest, 

at a given frequency, the magnitude of the reflection coefficient increases with notch 
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depth. As w -7 0, RAA -7 0 and TAA -7 1; while at high frequencies (providing that 

The numerical results presented in Fig. 4.6 show the power reflection coefficient rAA 

as a function of non-dimensional Love wavenumber, for a number of different notch 

depths. A mild steel beam was used for the model, with material properties and 

dimensions equal to E = 21OGNm-2 , p = 7850kgm-3, h = 0.006m and u = 0.3. The 

result in Fig. 4.6 confirms that, for a given frequency in this range, the value of rAA is 

larger for larger depths. 

The transmission coefficient has not been given but, by conservation of energy, it is 

such that tAA = 1 - 0 A • 

10°r---------------~================_J 

Fig. 4.6: Axial power reflection coefficients 0 A for various y. 
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4.4.2. Flexural wave scattering 

For flexural motion, the equilibrium and compatibility conditions of the lumped-spring 

model are 

(4.12) 

(4.13) 

The variables in Eqs. 4.12 and 4.13 are defined in chapter 3, § 3.2.4. 

The analytical solution for the scattering coefficients using TBT is cumbersome and 

this result is not given here. To illustrate how the model behaves, the scattering 

coefficients are given for EBT. It can be shown that the scattering coefficients calculated 

from EBT and TBT are very similar over the frequency range used here. 

From Eqs. 4.12 and 4.13, the scattering coefficients for propagating and nearfield 

flexural waves can be shown to be 

-i(r - 1) + i(Cs - Cp ) 

PN j l --R 1 i(l-T)-Cp-Cs 
- -

NN T - -R (1 - i)(T - 1) - Cp - iCs 

(l + i)(r - 1) + Cs - iCp 

where 

T = {(l + i)Cp + 1}{(-1 + i)Cs + 1} 

The parameters Cp and Cs are non-dimensional compliances, given by 

Cp = 247r(kbh) LY 

y [Xp(y)]2 dy 

Cs = 27r (kbh)3 (Y Y [XS(y)]2 dy 
3 Jo 
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(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 



where, in Eq. 4.18, it has been assumed that the beam has a rectangular cross-section, 

such that 1= bh3/12. The non-dimensional compliances, as in Eq. 4.11, are functions of 

non-dimensional wavenumber and the integrals of y [Xp(y)]2 or Y [XS(y)]2. 

At more than half a wavelength from the spring, the nearfield wave is negligible, 

therefore the scattering terms of most interest are RPP and T PP • The stiffnesses of the 

springs are calculated using Eq. 4.7 and 4.8. For all values of y, the stiffnesses of the 

springs are such that Kp < Ks. At low frequencies it can be shown that C P > > Cs and, 

therefore, the rotational spring dominates the scattering. 

Fig. 4.7 shows the power reflection coefficient r PP for a number of different notch 

depths, as a function of non-dimensional Euler-Bernoulli wavenumber. The beam model 

is the same as that used in the previous subsection. Again, the power transmission 

coefficient, by conservation of energy, is tPP = 1 - r pp
. 

Over the frequency range shown in Fig. 4.7, the rotational spring dominates the 

scattering properties of the lumped spring model and the results shown in Fig. 4.7. As a 

result, the power reflection coefficient tends to 0.5 over this frequency range: the value it 

would asymptote to if only the rotational spring was present in the model. Were we to 

consider the behaviour at higher frequencies, the translational spring becomes more 

significant and at much higher frequencies this dominates the scattering and the power 

reflection coefficient asymptotes to unity. Such high frequencies are not considered in 

this thesis. 

EBT has been used here to find the scattering coefficients of the model. However, for 

the remainder of this thesis, any result that is derived from the lumped-spring model uses 

TBT in the calculation. 
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Fig. 4.7: Flexural power reflection coefficients r PP for selected values of y. 

4.4.3. Remarks 

The results from the lumped-spring notch model suggest that the scattering coefficients 

depend on frequency and notch depth. In the frequency range of interest, the reflection 

coefficients are largest when the frequency and notch depth are large also. For all depths, 

the scattering is small at low frequencies, and in the limit w ~ 0 then rAA -7 0 and 

r PP 
-7 O. The results given here also show that r PP > 0 A in this frequency range. 

4.5. A numerical model of a beam with a notch 

The accuracy of the damage model is important if it is to be compared with experimental 

results, in order to estimate, for example, notch depth. The lumped-spring model 

involves various assumptions, does not include behaviour such as wave-mode conversion 

or the exact shape of the damage. 

In this section, an FESE model of the beam is considered, in which a section of the 
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beam including the notch is modelled with FE analysis. The FESE model provides a 

more detailed description of the dynamic behaviour of the notch than the lumped-spring 

model, by inclusion of wave-mode conversion and the notch shape. Various numerical 

examples are presented here to illustrate the differences between the models. 

4.5.1. Defining the model 

Details of the model are shown in Fig. 4.8, where L is the length of the section, and an 

example of the FE model is given in Fig. 4.9. 

In the FE model, the size of the notch opening/width must be defined. The width of 

the notch at the opening, W, is described by the non-dimensional parameter W = W/h. 

From numerical examples, it was found that there were no significant differences 

between estimates of the scattering coefficients from models with notch widths smaller 

than W = 1/300. In this case, it is assumed that the more important parameter that 

defines the scattering is the notch depth. This may not be the case at very high 

frequencies and when the stresses around the edges of the opening become important. In 

the models that follow, the width is set to W = 1/300, unless otherwise stated. 
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Fig .. 4. 8: . S.Cl1emAtic of the beam with a notch. 

h 

Fig. 4.9: FE mesh of the notch. 

In the FE model, plane-stress triangular elements with quadratic shape functions 

(plane2 in Ansys) were used. The mesh was concentrated around the notch tip and, local 

to the tip, isosceles triangles were used, as illustrated in Fig. 4.9. The number of elements 

was prescribed along the upper, lower and interface boundaries of the model. The 

number of elements is such that there are the same number of elements prescribed per 
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unit length of the boundary, e.g., if there are 10 elements prescribed along the interface 

which has a length hand L = lOh (see Fig. 4.8) then there are 100 elements prescribed 

along the upper and lower boundaries. This gives a more even mesh away from the notch 

tip. In the results that follow, the models had 10 elements along the interfaces and the 

beam is mild steel with E = 21OGNm-2 , p = 7850kgm-3 , h = 0.006 and u = 0.3. 

In the FE model, the notch faces are unconstrained and the crack can open and close 

but it is assumed the notch faces do not come into contact. Therefore it is assumed that 

the relative displacements of the nodes along the faces of the notch are comparatively 

small. 

4.5.2. Effect of number of dofs in the model 

The number of dofs in the FE model has a bearing on the accuracy of the FESE model, 

as explained in chapter 3. In the examples that follow, the scattering coefficients were 

estimated for four FESE models with y = 0.50, in which the number of elements along 

the interface between the FE and SE regions was 10, 12, 15 and 20, respectively. Each 

model was of length L = 10h, so that the number of elements prescribed along the upper 

and lower boundaries was 10 times the number of elements along the interface. 

The numerical results in Fig. 4.10 show ,-AA as a function of non-dimensional 

wavenumber. It is not possible over this range to distinguish between the predictions of 

each model. The results in Fig. 4.11 shows that this is also true of rp? 

The transmission coefficients are not shown. In each model it was found that 

conservation of energy was met, namely that ,-AA + tAA + ,-AP + tAP = 1 and 

rPP + tPP + rPA + tPA = 1 to within machine accuracy. 
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Fig. 4.10: Axial power reflection coefficients ,-AA for models with 10, 12, 15 and 20 

elements along the interface boundary and y = 0.50. 
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Fig. 4.11: Flexural power reflection coefficients r PP for models with 10, 12, 15 and 20 

elements along the interface boundary and y = 0.50. 
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The FESE notch model includes wave-mode conversion that occurs when waves are 

scattered by the notch. The total energy that is transferred from an incident flexural wave 

to reflected and transmitted axial waves is illustrated in Fig. 4.12. Again, there are no 

distinguishable differences between the models with different numbers of dofs. The 

results in Fig. 4.12 shows that the amount of energy being transferred to axial waves is 

significant, making up around 10% of the total scattered energy at the higher frequencies. 
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Fig. 4.12: Sum of the wave-mode conversation terms r PA + tPA for models with 10,12, 

15 and 20 elements along the interface boundary and r = 0.50. 
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These examples have been repeated for a number of other notch depths. Over the 

frequency range of interest, there were no significant differences when the number of 

dofs is increased, therefore, the number of elements along the interface is chosen as 10 

for all FESE models that follow. 

4.5.3. Effect of the length of the model 

The large stresses at the notch tip are localised and, by the Saint-Venant's principle [60], 

it is assumed that details of the complicated stress field are insignificant at a length equal 

to 'a few' beam thicknesses from the notch. If the FE model is too short and the stress 

field at the interface includes the effects of the tip, the mis-match between the FE model 

and SEs is likely to be worse, making estimates of the scattering coefficients less 

accurate. 

Five FE models, with r = 0.50, are used here to illustrate how changing the length of 

the FE model affects the estimated scattering coefficients. The lengths of the models are 

L = lOh, ISh, 20h, and 2Sh, respectively. 

Figs. 4.13 and 4.14 show the power reflection coefficients ,-AA and r PP for each model. 

In both figures, it is difficult to discern between the models at low frequencies and there 

are only small differences at higher frequencies. Changing the length of the model alters 

the stress distribution at the interface and the wave interference that occurs due to 

reflections from the interface. It is believed that the differences seen in the results in 

Figs. 4.13 and 4.14, are caused by these changes rather than L being too small. 

Therefore, in all FESE crack models that follow, the length chosen is 10h. 
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Fig. 4.13: Axial power reflection coefficient r4A for FE models with various 

lengths:(-), L = lOh; (--), L =15h; (- . -), L =20h; (- .. ), L =25h. 
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Fig. 4.14: Flexural power reflection coefficient r PP for FE models with various 

lengths.:(-), L =lOh; (--), L =15h; (_. -), L =20h; ( ... ), L =25h. 
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4.5.4. Effect of the notch width 

The FESE models thus far have considered a notch (see Fig. 4.8). In the experimental 

work described in chapter 6, the beam is damages by cutting a slot in the beam, which is 

like the model shown in Fig. 4.15. The slot is modelled in a similar manner to the notch. 

Given that there is no tip, the mesh density is increased around the base of the slot. 

Fig. 4.16 shows ,-AA for various widths and compares the slot model to the notch model 

where y = 0.50. In the results, it would appear that the reflection coefficient depends on 

the width of the slot. Over this frequency range, larger slot widths cause larger reflection 

coefficients. When the width of the slot is small, up to W = 1/30, there are only small 

differences between the results. 

Fig. 4.17 shows r PP for each model. At low frequencies, for a given frequency, the 

reflection coefficient is larger for larger slot widths. However at high frequencies, for the 

larger slot widths, the reflection coefficient reaches a peak and then decreases. From the 

numerical model, it is difficult to explain the exact cause of this, though it may be due to 

changes in the transverse and rotary inertia at the slot. 
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Fig. 4.15: A slot in a beam. 
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Fig. 4.16: Axial power reflection coefficients ,-AA for different slot widths: (-), notch 

with W = 1/300; (--), slot with W = 1/300; (- . -), slot with W = 1/30; (- .. ), slot with 

W = 1/6;(-x-), slot with W = 1/3. 
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Fig. 4.17: Flexural power reflection coefficients r PP for different slot widths: (-), notch 

with W = 1/300; (--), slot with W = 1/300; (_. -), slot with W = 1/30; ( ... ), slot with 

W = 1/6;(-x-), slot with W = 1/3. 
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4.5.5. Remarks 

The examples given in this section have considered how changes to the FESE model can 

affect the estimates of the scattering coefficients. The numerical results suggest that 

scattering coefficients depend on frequency, notch/slot depth and width. Furthermore, 

wave-mode conversion is significant for large notches/slots at high frequencies. 

4.6. Numerical results 

4.6.1. Reflection coefficients of a notch 

In this section, numerical results for a number of FESE notch models are presented. 

Fig. 4.18 shows ,-AA for depths ranging from y = 0 to y = 0.40 (the values of yare shown 

in the figure). When y = 0 the model is equivalent to a uniform beam, for which ,-AA = O. 

However, as explained in chapter 3, the mis-match between the FE model and SEs 

causes reflections at the interface boundary, such that ,-AA > O. 

In Fig. 4.18, at low frequencies and when y = 0.05,0.10, the estimated reflection 

coefficients are of similar order to the errors caused by the mis-match at the interface 

between the FE and SE models. Above y = 0.15, ,-AA is approximately a factor of 10 

larger than when y = 0 and it is assumed that the errors are relatively less significant for 

larger notch depths. 

Fig. 4.19 shows ,-AA for notch depths above y = 0.40. In this frequency range, as the 

depth increases, ,-AA appears to increase monotonically. 
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Fig. 4.18: Axial power reflection coefficients rAA for,), = 0.05 to,}, = 0.40. 
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Fig. 4.19: Axial power reflection coefficients 0 A for,}, = 0.45 to y = 0.80. 
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Figs. 4.20 and 4.21 show rPP for various notch depths. The values of rPP are larger at 

any given frequency than,-AA. For y = 0.05, r PP is again of a similar order to when y = 0 

and it would appear that the estimate is affected by the mis-match between the models. 

For y > 0.10, the estimates of r PP are a factor of 100 or more larger than those when 

y = 0 and it is assumed that the results from the larger notches are not significantly 

affected by the modelling errors. 
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Fig. 4.20: Flexural power reflection coefficients r PP for y = 0.05 to y = 0.40. 

For notches with y > 0.65 (Fig. 4.21), it can be seen that r PP noticeably decreases at 

higher frequencies. A similar result was found in the previous section for slot models 

with large widths. However, this last example shows that it is difficult to gain insight into 

the dynamic characteristics that govern the scattering, when using a numerical model. It 

is difficult to draw conclusions about the parameters that control the scattering of the 

notch from a FESE model, without further modelling and experimental work. 
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Fig. 4.21: Flexural power reflection coefficients rPP for'Y = 0.45 to 'Y = 0.80. 

4.6.2. Comparison between notch models 

A number of examples have been chosen to illustrate the differences between the lumped 

spring and FESE notch models. Fig. 4.22 shows that the trend of rAA is similar in both 

models. However, it is clear that the estimate of ,-AA from the lumped-spring model is 

larger than in the FESE model for this frequency range. The lumped-spring does not 

include wave-mode conversion, such that ,-AA + rAA = 1. However, including wave-mode 

conversion implies that ,-AA + rAA < 1 (i.e., ,-AA + rAA + ,-AP + rAP = 1) and it is hence not 

suprising that the estimates of the reflection coefficients using the lumped-spring model 

are larger than those of the FESE model. 

Fig. 4.23 shows r PP for the lumped-spring and FESE notch models. At low 

frequencies and for small depths, especially for 'Y < 0.5, the predicted reflection 

coefficients are very similar. For crack depths 'Y > 0.5, the estimates of rPP from the 

spring model appear to increase monotonically with frequency, while the estimates from 

the FESE models decrease at high frequencies. 
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Fig. 4.22: Axial power reflection coefficients rAA for various notch depths.: (-), 

lumped-spring; (--), FESE model. 
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Fig. 4.23: Flexural power reflection coefficients rPP for various notch depths: (-), 

lumped-spring; (--), FESE model. 
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The estimates of r PP from the lumped-spring and FESE models agree reasonably well. 

However, the lumped-spring model does not include wave-mode conversion (i.e. 

non-zero rPA,AP and rAP,PA), which become particularly significant at high frequencies and 

large notch depths. In some respects, the similarity between the results of the 

lumped-spring and FESE notch models might be considered to be coincidental. 

4.7. Summary 

In this chapter, models for estimating the scattering coefficients of a notch and slot have 

been considered. The purpose of this modelling is to provide a reference model to which 

experimental results can be compared. With an accurate model, it might be possible to 

estimate parameters such as slot depth from experimental measurements. 

The analytical lumped-spring notch model has been reviewed and used to predict the 

scattering coefficients. The lumped-spring model is linear, elastic and the stiffness of 

each spring is derived from analysis of the strain energy local to the notch. These 

stiffnesses are derived from the SIF of the notch, assuming that the notch is always open. 

Furthermore, it was assumed that the depth does not increase as the beam deforms. 

Here, a more detailed model has been developed using the FESE method that was 

described in the previous chapter. The geometry of the notch/slot can be modelled in 

more detail and the FESE model provides a more accurate description of the wave field 

by including behaviour such as wave-mode conversion. 

The FESE model is linear, elastic, does not include notch growth and assumes that the 

notch is open. Numerical results from the FESE models showed that the scattering 

coefficients depend on frequency, notch depth and width. Furthermore, the FESE model 

shows that wave-mode conversion is significant, particularly at high frequencies and for 
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large notch depths. Estimates from the lumped-spring and FESE models are similar at 

lower frequencies, but noticeable differences arise as the frequency or notch depth 

increases. However, the advantage of the lumped-spring notch model is that it is a more 

simple model than the FESE models and might be used as a first estimate of the 

scattering coefficients. 
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5. Measuring the scattering coefficients 

5.1. Introduction 

In this chapter, methods for measuring scattering coefficients on a beam are reviewed. 

An experiment is described which uses these methods to estimate the scattering 

coefficients of various attached masses and the results are compared to numerical 

estimates from FESE models. In the next chapter, these methods are applied to 

measuring the scattering coefficients of slots in beams. 

As in the numerical approach, the scattering coefficients are estimated from the 

incident, reflected and transmitted waves. Experimentally, the waves are decomposed 

from the measured response. Methods for wave decomposition are well known and are 

reviewed here. To decompose the waves, the wavenumber must be known or estimated. 

The wavenumber can be estimated from theory but the material properties and 

dimensions are not always known accurately and it is often more reliable to estimate the 

wavenumber experimentally. Again, there are established ways of doing this and one 

method is reviewed here. 

The experiment comprises a uniform beam, the ends of which are placed in sand to 

reduce reflections at the boundaries. The beam is excited using an instrumented hammer 

and accelerometers are used to measure the response. To this beam are attached various 

masses and the scattering coefficients are estimated. 

Measurement errors, such as sensor mis-calibration, affect the accuracy of the results. 

It is difficult to analyse the effect of error, given the number of variables. Therefore, 

numerical examples are presented to illustrate some of the issues that can arise. 
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5.2. Estimating wave number and wave amplitudes 

In this section, methods for estimating the wavenumber and wave amplitudes are 

reviewed. In principle, these methods might be used to decompose axial, flexural and 

torsional waves, although, the experimental approaches may differ in each case. 

From the numerical results given in the previous chapter, the flexural wave reflection 

coefficients of a crack are larger than those for axial waves. Therefore, the methods 

described herein focus on the flexural wave motion. 

5.2.1. Estimating the flexural wavenumber 

The wavenumber can be estimated either by theory or experiment. The material 

properties of the beam are not always known accurately and a more reliable estimate can 

be found experimentally. 

The wavenumber is estimated using three or more sensors (here, three were used) as 

illustrated in Fig. 5.1, where /),. is the sensor spacing. Using this method, it is assumed 

that the damping across the span of the sensors and the contribution of nearfield waves is 

negligible. To satisfy the latter point, a rule-oj-thumb is used and, for a given frequency, 

the sensors are situated at least half a wavelength from any discontinuities in the beam. 

The displacement at each sensor in Fig. 5.1 is 

(5.1) 

(5.2) 

(5.3) 

where Vn is the displacement at the nth sensor, ke is the experimental flexural 

wavenumber and a+ and a_ are the propagating flexural wave amplitudes at x = 0 (the 

superscript p, which was used to denote propagating flexural wave, has been omitted). 
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Fig. 5.1: Wavenumber estimation on a beam using three sensors. 

By summing Eqs. 5.1 and 5.3, then dividing by Eq. 5.2, it can be shown that 

(5.4) 

such that the wavenumber is 

k 1 _I(VI+V3) 
e = - cos 2 

~ V2 
(5.5) 

Issues that arise when this method is used in practice will be discussed later. 

5.2.2. Wave decomposition 

Wave decomposition methods are well established (for example, [61]). In general, the 

response measured at a set of sensors is described by the wave amplitudes in the form 

s = Ea (5.6) 

where s is a vector of measurements taken at a number of sensors, a is a vector of wave 

amplitudes and E is a matrix of terms that describe the wave propagation. If the matrix E 

is square, the wave amplitudes can be estimated from 

(5.7) 
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If the matrix E is over-determined, a pseudo-inverse (in a least-squares sense) can be 

used to estimate the wave amplitudes by 

(S.8) 

1112 1112 
I ...... --==..=...:------... I ...... --=-=-.... I 

III 

I I 
I I 

I 

i/ 
III L U,x 

Sensor 

2 

x=o 

Fig. 5.2: Two sensor setup for wave decomposition. 

The propagating flexural waves in a beam can be decomposed using a minimum of 

two sensors, as illustrated in Fig. S.2. Again, the nearfield waves and damping are 

neglected. The displacement at sensors 1 and 2 can be written 

(S.9) 

From Eq. S.9, a = E-1 v and the wave amplitudes are 

(S.lO) 

(S.11) 

99 



The matrix E is singular when kel1 = IT. To avoid the singularity either the spacing or the 

frequency range must be chosen so that kel1 < IT. The reader is directed to [62] for more 

discussion about conditioning problems that are encountered with this approach. 

5.3. Estimating scattering coefficients 

The scattering coefficients are calculated from the incident, reflected and transmitted 

waves. In a beam, waves can be incident on both sides of the discontinuity and, in 

general, the scattering coefficients for waves incident on one side of the discontinuity are 

not equal to those for waves incident on the other side. Considering only the propagating 

flexural waves, there are two reflection coefficients, RlI and R22 , and two transmission 

coefficients TJ2 and T 21 , where the first number in the subscript denotes which side of the 

discontinuity the wave is incident upon and the second number denotes the side on 

which the scattered wave propagates. If RlI = R22 and TJ2 = T2h the discontinuity is said 

to be symmetric. 

To measure the scattering coefficients, the propagating waves are decomposed on 

either side of the discontinuity using two sensor pairs, as illustrated in Fig. 5.3. 

Pair 1 

Discontinuity 

Pair 2 

I 

: h+ 
/\f\,. 

1 I I 

a_~ b_~ 
I I 
I I 
I I 
I I I 

~:.~----------~.~:~.~-------------------. : 
I I I 

L 

Fig. 5.3: Using two sensor pairs to measure the scattering coefficients. 
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Neglecting the contribution of nearfield waves and damping, the incident, reflected 

and transmitted waves are related by 

(5.12) 

(5.13) 

where L1 and ~ are the distances from the centre of the sensor pairs to the centre of the 

discontinuity and the wave amplitudes are estimated at the centre of each sensor pair. 

Furthermore, Eqs. 5.12 and 5.13 do not include any effects of wave mode conversion. 

i 
Excitation (1) 

7ontinUi::/ Sensor pair 

, , 
+----+-~ : ... ---. 

i 
Excitation (2) 

Fig. 5.4: Estimating the scattering coefficients using two excitations. 

L 

To estimate the scattering coefficients, the beam is excited on both sides of the 

x 

discontinuity, as illustrated in Fig. 5.4. The forces must be located outside the span of the 

sensor pairs and the excitations are not applied at the same time, rather they are applied 

in tum. 
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For each excitation we find two equations, in the form of Eqs. 5.12 and 5.13, and these 

can be written as 

(5.14) 

where the superscripts (1) and (2) denote the wave amplitudes measured for excitation 

(1) and (2), respectively. By pre-multiplying the matrix on the left-hand side ofEq. 5.14 

by the inverse of the matrix of wave amplitudes on the right-hand side, the measured 

scattering coefficients can be shown to be 

(

a(l) b(2) _ a(2) b(l)) 
_ + + + + 2ikeL2 

R22 - (l)b(2) _ (2)b(l) e 
a+ _ a+ _ 

(5.15) 

(5.16) 

Eq. 5.14 is poorly-conditioned when a~) and b~) have a similar amplitude to a~) and 

b<!). This can occur when strong reffectors exist outside the span of the sensor pairs, such 

as the ends of the beam. In this case it is difficult to estimate the scattering coefficients 

accurately. The problem of conditioning depends on the structure being tested and has 

been considered in more depth in [62]. Treatment, such as tapered damping, might be 

applied to the beam to reduce the amplitude of the waves reffecting from discontinuities 

outside the sensor pairs. 

If the location of the discontinuity is unknown, as is usually the case in crack 

detection, the measured scattering coefficients can be estimated at the sensor pairs. This 
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is equivalent to letting L 1,2 = 0 in Eqs. 5.15 and 5.16, such that the estimates are 

(5.17) 

(5.18) 

where --:-denotes the scattering coefficient estimated at the sensor pairs. It can be seen in 

Eqs. 5.17 that the difference between Rll ,22 and Rll ,22 is a phase term. Similarly, this is 

true for the transmission coefficients. The existence of phase terms in the measured 

scattering coefficients does not affect estimates of the power scattering coefficients, given 

that 

~ 2 2 
r22 = IR22 I = IR221 (5.19) 

~ 2 2 
t12 = lTd = lTd (5.20) 

5.4. Experimental setup 

A beam that is assumed to be nominally uniform and homogeneous along its length was 

arranged such that the ends of the beam were partially buried in sand, as illustrated in 

Fig. 5.5. The sand acts to damp waves that propagate near the ends of the beam. This 

reduces the amplitude of waves that are reflected from the ends and lessens problems 

that are associated with ill-conditioning when estimating the scattering coefficients. 

Approximately 1m of beam was placed in the sand at each end. The sand is most 

effective when the wavelength is short compared to this length and, at high frequencies, 

the response is similar to that of an infinite beam. At low frequencies, when the 

wavelength is longer than 1m, the waves are not as strongly attenuated by the sand and 

conditioning problems might persist. Fig. 5.6 shows a diagram of the sandbox from 

above. The foam wedges were used to keep the sand in place. 
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Fig. 5.5: Experimental rig for estimating scattering coefficients on a beam. 
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u,x 
Sandbox from above 

Fig. 5.6: View of the sandbox from above. 
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Over time, the sand moves as the beam settles. This makes it practically impossible to 

obtain consistent reflection coefficients from the sandboxes. However, provided that the 

waves reflecting from the ends of the beam are reduced, the fact that the amount of 

reflection may vary between experiments should not be a concern. 

The reflected wave field from the sand boxes may include axial and torsional waves, 

as well as flexural waves, because of wave-mode conversion. Furthermore, the sand may 

introduce some non-linear behaviour. One way to assess the linearity is to measure the 

coherence between the excitation and the sensor outputs. In all the experimental results 

given in this chapter, the coherence was found to be close to l, except at low frequencies 

where resonances and anti-resonances occur. From this result, it is assumed that any 

non-linear behaviour caused by the sandboxes is insignificant. 

The beam was supported by the sand and three nylon wires, equally spaced along the 

length of the beam, as illustrated in Fig. 5.5. The nylon wires were tied to the beam 

through a small hole made at the edge. The holes had a diameter less than lmm and are 

much smaller than the discontinuities that were measured. It is assumed that the errors 

caused by the holes are small in comparison with other sources of error. 

U sing sandboxes to lessen conditioning problems is not usually a practical solution. 

Further work could consider other more practical means of reducing these problems. 

A number of beams were used in the experiments that are described later. All were 

mild steel, with the dimensions b = O.05m and h = O.006m. These values are nominally 

constant over the length of the beam, and the beam was 6m long. 

105 



PCB accelerometers. 
Type PCB-352C22 

Sandbox 
\ Discontinuity 

Force: 
PCB Impact 
hammer. 
Type 086D80 

Frequency 
analyser 

Data Physics 
Mobilyzer 

v,y L 
u,x 

Fig. 5.7: Experimental equipment setup for measuring the vibration on the beam. 

Fig. 5.7 shows the experimental equipment used to measure the vibration on the beam. 

All the signals were processed using the Data Physics analyser and the vibration is 

measured on the beam using accelerometers PCB-352C22. For a given frequency, the 

sensors are located at least half a wavelength from any discontinuity so that the nearfield 

waves are negligible. The beam was excited using a PCB-086D80 impact hammer with a 

steel tip. Although every effort was made to excite only flexural waves in the beam, it is 

possible that other wave modes were excited, such as torsion. This may cause some 

errors in the measured results given that these waves may contribute to the measured 

response but are not accounted for in the calculations. 
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5.5. Experimental error 

Experimental errors affect the accuracy of the estimated wavenumber, the wave 

decomposition and the estimates of scattering coefficients. The following lists some of 

the possible sources of error that are thought to affect the accuracy of the experimental 

work: 

.. sensor mis-calibration; 

.. noise; 

.. estimation of wavenumber; 

.. conditioning problems; 

.. measurement errors (errors in the experimental setup); 

.. assumptions in the formulation; 

.. inhomogeneity in the beams; 

.. nylon wire support holes; and 

.. non-linear response of the sandboxes. 

Some of these sources of error have been mentioned earlier, such as conditioning 

problems, assumptions in the formulations (i.e., negligible nearfields and damping ), the 

non-linear response of the sandboxes and the support holes. 

5.5.1. The effect of sensor mis-calibration errors 

It is impossible to analyse the overall effect that all possible causes of experimental error 

have on the estimates of the scattering coefficients. In the following, the specific issue of 
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Fig. 5.8: Beam model of an infinite uniform beam. 

mis-calibration error is illustrated. This example offers some insight into the result of 

having errors on the measured response when estimating the scattering coefficients. 

Fig. 5.8 shows an infinite beam with a discontinuity, two forces and two sensor pairs 

This model is used to simulate the experiment in noise free conditions. For this example, 

it is assumed that ke is known exactly. 

Suppose that the beam is excited by force (1) and there are no errors in the estimation. 

Given that the beam is infinite, b~) = 0 and the displacement at each sensor is 

(5.21) 

V - b(1)eikell/2 . v - b(1)e-ike!1/2 
3- + ,4- + (5.22) 

Therefore, by Eq. 5.9, the wave amplitudes at the sensor pairs are 

V e ike!1/2 v e-ikell/2 
(1) 1 - 2 

a+ = 
2i sin(keL1) 

V e ike!1/2 v e-ike ll/2 
(1) _ 2 - 1 

a_ - 2i sin(keL1) 
(5.23) 

(5.24) 
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The reflection and transmission coefficients of the discontinuity, measured at the sensor 

pairs, are 

(5.25) 

To simulate a mis-calibration error on sensor 1, VI is multiplied by a factor (1 + El), 

where E1 is the error and may be complex. For excitation by force (1), only a~) and a~) 

are affected by the error. From Eq. 5.23, the erroneous wave amplitude estimates are 

(5.26) 

V eike!<./2 - V (1 + E )e-ike!<./2 (' [a(l) + a(1) e-ike6.])' -(1) 2 1 1 (1) +-a = =a -E 
- 2i sin(ke~) - 1 2i sin(keL'l) 

(5.27) 

where -; denotes a variable subjected to error. 

Having included the error, the estimates of the reflection and transmission coefficients 

in Eq. 5.25 are 

(5.28) 

From Eqs. 5.26, 5.27, and 5.24, the reflection and transmission coefficients in Eq. 5.28 

can be shown to be 

(5.29) 

(5.30) 

Eqs. 5.29 and 5.30 show that the inclusion of error creates a second term that depends 

on the size of the error, the wavenumber and the correct values of the scattering 
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coefficients. At low frequencies, the true behaviour of the scattering coefficients is often 

such that /R l1 /-t 0 and /T21 /-t 1 as w -t O. However, with the error included, as 

w -t 0, /'&11/-t 1 and /t12 /-t O. This result suggests that the effect of the 

mis-calibration error is very significant at low frequencies. 

The errors are different when exciting the beam with force (2). In theory, a~) = 0 for 

the infinite beam. However, by including errors on sensor 1, it is found that 

(5.31) 

Setting a~2) = 0, it follows that 

(5.32) 

This is only equal to zero, when CI = 0, i.e., no error, or ar.!) = 0, i.e., when the 

transmission coefficient of the discontinuity is equal to zero. 

It can also be shown that errors in wavenumber or ~ have some similarity with the 

effects seen for mis-calibration. A more complex scenario, for example where the beam 

is finite and errors exist on all sensor outputs and on the wavenumber estimate, can be 

expected to produce similar but compounded inaccuracies. 

5.5.2. Numerical example 

The infinite beam model, shown in Fig. 5.8, is used to simulate the experiment, in which 

the discontinuity is a point mass with m = 0.5kg (chapter 3, § 3.4.1) and the simulation 

does not include noise. The response of the beam is modelled using TBT, where 

E = 210 x 109Nm-2
, p = 7850kgm-3

, u = 0.3 and h = 0.006m. The point mass is 

symmetric and LI = ~, so that Rl1 = R22 and TI2 = T21 . A calibration error is simulated 

by multiplying VI by a factor of 1.05. The estimated power scattering coefficients are 

presented in Fig. 5.9 as a function of non-dimensional Timoshenko wavenumber. 
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(a) Estimated reflection coefficients: (--), rll,22 (b) Estimated transmission coefficients: (--), 
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error. 

Fig. 5.9: Estimated reflection and transmission coefficients with a simulated 

mis-calibration error on the output of sensor 1. 

The results in Fig. 5.9 clearly show that the error in the estimates is significant at low 

wavenumbers. Also, there would appear to be no difference between the erroneous 

estimates of rjj and r22 when L1 = Lz and the scatterer is symmetric. Two other 

important features are the modulation apparent in all the estimated scattering coefficients 

and the fact that the coefficients do not satisfy the conditions of conservation of energy, 

i.e., rjj + t12 =1= 1 and r22 + t21 =1= 1. The modulation in the results is related to the second 

terms on the right-hand side of Eqs. 5.29 and 5.30. The frequency of the modulation is 

related to the distances L j and Lz. From these results it appears that the reflection 

coefficient provides the better estimate, as it appears to modulate approximately about 

the exact value, except at low wavenumbers. 
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5.6. Experimental results 

In this section, results are presented to give experimental examples of wavenumber 

estimation, wave decomposition, and the estimation of scattering coefficients. Using the 

experimental setup, described earlier in this chapter, the scattering coefficients are 

estimated for various masses that were attached to the beam. The measured scattering 

coefficients are then compared to numerical estimates that have been found using FESE 

models of the masses. 

5.6.1. Estimating the wavenumber 

The wavenumber was estimated using the method described in § 5.2.1. Three 

accelerometers were placed along the centre-line of a uniform section of beam. The 

response was measured in terms of accelerence /1 (acceleration per unit force). Therefore, 

replacing displacement in Eq. 5.5 with accelerence, the wavenumber estimate is 

~k - 1 -1 (/11 + /13) 
e - ~ cos 2/12 (5.33) 

where the subscript on the variable /1 denotes the accelerometer number, ke is the 

experimental estimate of the wavenumber ke and Ll = 0.02m. 

The wavelengths in the experiment were much longer than the dimensions of the 

cross-section. From EBT it is expected that ke ex: {l. The real part of the measured 

wavenumber is shown as a function {l in Fig. 5.10. As can be seen from Fig. 5.10, at 

higher frequencies, the estimate appears to be a linear function of {l as expected. At 

lower frequencies it is thought that experimental errors affect the wavenumber estimate. 

From numerical simulations, not given here, it was found that errors caused by sensor 

mis-calibration are significant when 01 + /13)/2/12 is close to 1 and when the wavelength 

is much longer than the sensor spacing. 

112 



90 

80 

70 

,. 60 [ 

5 
50 

<....,~ 

" 40 
~ 

20 

10 

0 
5 10 20 30 40 50 60 70 80 90 100 

ll2 (Hz In) 

Fig. 5.10: Estimated wavenumber ke • 

The imaginary part of the experimental estimate might suggest damping but it was 

found to be much larger than would be expected were it solely a result of damping. 

Numerical calculation of the inverse cosine in Eq. 5.33 can lead to a complex result if 

011 + 113)/2112 > 1 and this can result from errors such as sensor mis-calibration. This 

issue is a particular problem if cos(kell) is close to unity. As a result, errors in the 

imaginary part can be more prominent when II is very much smaller than the wavelength 

at a given frequency. The level of damping can be assessed by considering the 

attenuation per unit length, which is calculated from the imaginary part of the estimated 

wavenumber and given by 

(5.34) 

where the reference eO denotes no attenuation and kIM is the imaginary part of the 

experimental wavenumber. The attenuation is shown in Fig. 5.11. It can be seen that at 

low frequencies the attenuation is positive and this type of error can occur whenever the 

011 + 113)/2112 > 1. Furthermore, there is a noticeable modulation that occurs above 
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1000Hz. Modulation can occur in the accelerence as a result of wave interference that 

occurs due to waves reflecting from the slot and from the ends of the beam. It is thought 

that this effect contributes to the modulation seen in Fig. 5.11 but, without further 

investigation into the experimental errors, it can not be considered to be the sole cause. 

20 

..§ 15 

1000 1500 2000 2500 3000 3500 4000 4500 5000 

Frequency (Hz) 

Fig. 5.11.' Attenuation per unit length. 

Any experimental error in ke will increase the errors in the wave decomposition. In an 

attempt to reduce the possible effects that errors in the wavenumber estimate may have 

on further calculations, a curve was fitted to the estimate ke to find an expression for the 

wavenumber. From EBT, it is assumed that 

(5.35) 

The constant Be can be estimated from ke by applying a least-squares fit to the measured 
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data, such that 

J ~ 

L Wj ke,j-ffj 
j=1 

Be=----­
J 

L W] fj 
j=1 

(5.36) 

where W j is a weighting of the data at the jth frequency. The weighting can be used to 

discard results at certain frequencies (by setting Wj = 0) and might be used to increase 

the significance of the results at other frequencies. Doing so may improve the estimate of 

Be. For the result in Fig. 5.10, all frequencies below -11 = 20 are discarded, to reduce 

~ 

some of the the errors in ke, and Be is calculated from the remaining data. It is then 

assumed that the value of Be is true for all frequencies. 

From this point forward, the terms "measured wavenumber" or "experimental 

wavenumber" refer to ke as calculated from the least-squares fit to the experimental data. 

5.6.2. Uniform beam 

The scattering coefficients of a uniform length of beam were measured experimentally 

and the results are presented here. Theoretically, the power reflection and transmission 

coefficients of a uniform section of beam are rl 122 = 0 and tl2 21 = 1. , , 

The waves are decomposed from measurements of the accelerance, with a sensor 

spacing of L'l = 0.02m. Eq. 5.9 can be written in terms of accelerance as 

(5.37) 

Fig 5.12 shows the power reflection coefficients rII,22 of the uniform length. As a 

result of experimental errors and noise, rll,22 =F O. The errors appear worse at low 

frequencies, perhaps resulting from sensor mis-calibration errors and conditioning errors 
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that are caused by large reflections from outside the span of the sensor pairs. In this 

example, r22 appears less accurate than r11 . 

The result in Fig. 5.12 can be considered to be the noise floor in future measurements. 

If a discontinuity has reflection coefficients that are of a similar order to the noise floor, 

these measurements may be less accurate and more susceptible to the effects of error. 

Fig. 5.13 shows the power transmission coefficients for the uniform beam. Both 

results are close to 1 at lower frequencies, although they are inaccurate at very low 

frequencies owing to errors caused by strong resonances and conditioning problems. At 

higher frequencies the transmission coefficients deviate about 1 though, on the whole, 

the estimates appear to be less than 1. Again, the accuracy of the measurement appears 

to be worse at low frequencies for the reasons given previously. Given the effect that 

errors such as sensor mis-calibration have on the transmission coefficients, as shown by 

these measured results and the numerical example in § 5.5.2, it is decided to concentrate 

on the reflection coefficients for all further measurements. 
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(a) rll. (b) r22. 

Fig. 5.12,' Measured reflection coefficients for a uniform length of beam. 
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Fig. 5.13: Measured transmission coefficients for a uniform beam. 

5.6.3. Attached mass 

A number of experiments were performed to estimate the scattering coefficients of 

various masses that were attached to the uniform beam and the results are presented 

here. For each mass the scattering coefficients were predicted numerically using a FESE 

model for comparison with the measured values. 

The masses were made from mild steel and the density was estimated to be 

approximately p = 7800kgm-3 . In each experiment, two masses with the same 

dimensions were bonded, using superglue, to the surface on each side of the beam, as 

shown in Fig. 5.14. Three experiments were performed with three different sizes of mass 

and their dimensions are given in Table 5.1 and depicted in Fig. 5.14. 
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Fig. 5.14: Schematic of the mass discontinuity. 

1 (40, 50, 10) 

2 (30,50,10) 

3 (30,50,20) 

Table 5.1: Dimensions of the mass discontinuites. 
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5.6.4. FESE model of the attached masses 

The SE model of the mass was developed using a plane-stress FE model of a section of 

the beam containing the mass, as shown in Fig. 5.15. Given that this is a plane-stress 

model, bm = 1. 

Mass 

Fig. 5.15: FE model of a beam section with an attached mass. 

The Young's modulus of the mass is taken to be that of the beam. In the frequency 

range of interest, the mass is effectively rigid and its translational and rotational inertia 

are thought to be important. 

In order to create the FESE model, the material properties of the beam must be 

known, so that the numerical and experimental wavenumbers are approximately equal. 
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By taking a sample of the beam and measuring its mass and dimensions, the density was 

estimated. This was found to be approximately 7700kgm-3 . The value of E was then 

estimated from the wavenumber. From EBT, the wavenumber is 

(5.38) 

Using Eq. 5.35, it can be shown that the estimate of E is 

(5.39) 

where Be is given by Eq. 5.36. This approach depends on the availability of a sample. 

For the beam specimens, E was found to be approximately 185GNm-2
. 

5.6.5. Results and discussion 

The scattering coefficients of each mass were estimated using the approach described in 

§ 5.3. The results in Figs. 5.16 to 5.18 show the measured power reflection coefficients 

for each mass alongside the value predicted by the FESE models. 
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(a) Power reflection coefficient rll: (--), FESE (b) Power reflection coefficient r22: (--), FESE 

model; (-), rll measured. model; (-), measured. 

Fig. 5.16: Measured and predicted power reflection coefficients of mass 1. 
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Fig. 5. j 7: Measured and predicted power reflection coefficients of mass 2. 
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Fig. 5.18: Measured and predicted power reflection coefficients of mass 3. 
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Figs. 5.16 to 5.17 show good agreement between the estimates of the FESE models at 

low and mid-frequencies in the range of interest. At higher frequencies the experimental 

results have a "jagged" appearance which may be due to the manner in which the masses 

are glued to the beam. Moreover, although the masses were mounted so that the 

discontinuity was roughly symmetrical, some error in the mounting is likely to exist, 

which may cause wave-mode conversion at the mass. The effects of wave-mode 

conversion are thought to be more significant at higher frequencies. At low frequencies, 

ill-conditioning causes errors in the results due to strong resonances in the beam. Also, 

the results show a noticeable modulation, similar to that seen in the numerical example 

considered in § 5.5.2, and this is thought to result from sensor mis-calibration and 

possibly errors in wavenumber estimation. 

5.7. Summary 

Methods for measuring the wavenumber, wave amplitudes and scattering coefficients 

have been reviewed. An experimental beam rig has been described and used to measure 

the scattering coefficients of a uniform length of beam and various masses that were 

attached to the beam. 

Experimental error plays a significant role in the accuracy of the estimated scattering 

coefficients. The accuracy is, for example, affected by sensor mis-calibration, errors in 

the estimate of wavenumber, conditioning problems caused by large reflections from 

outside the sensor pairs, and noise. 

It is difficult to quantify the errors as there are many sources and variables to consider. 

However, some numerical examples were used here to illustrate how the results can be 

affected. At low frequencies, the estimates of the scattering coefficients are less accurate 
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due to noise, sensor mis-calibration and conditioning problems. From mid-high 

frequencies, the estimates exhibit modulation, which is believed to be caused by 

mis-calibration and errors in the wavenumber estimation. 

Noise can cause significant error whenever the scattering coefficient is comparatively 

small. This was illustrated in the estimates of the scattering coefficients for a uniform 

length of beam. 

The experimental results for the masses compare well with the FESE models, 

particularly at low-mid frequencies. This result offers some validation of the FESE 

method as a tool for predicting the scattering coefficients. 

In the following chapter, the experimental methods that were described here are used 

to measure the scattering coefficients of a number of beams with slots. 
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6. Measuring the scattering coefficients 
of slots 

6.1. Introduction 

In this chapter, the scattering coefficients of a number of damaged beams are measured 

and the results presented. The beams are damaged by cutting narrow slots through the 

width. The experimental method follows that described in chapter 5 and the beams have 

slots in the range y = 0.10 to y = 0.70. If the scattering from the slots can be 

distinguished, the results might be used to suggest the existence of the damage and 

possibly to estimate the depth of the slot. 

The measured scattering coefficients are compared with FESE models, which were 

described in chapter 4. The comparison is used to illustrate how the FESE models might 

be used to estimate the slot depth. This approach is expanded in chapter 7. 

6.2. Experimental setup 

6.2.1. Making the slot 

The beams used for the slot experiments have similar material properties and dimensions 

to those used for the attached masses (chapter 5 § 5.6.3). The undamaged beams are 

assumed to be homogeneous and isotropic, with uniform dimensions along the length. 

Seven beams were damaged by cutting a single slot through the cross section. The slots 

were cut by hand using a mitre saw with a blade that was 1mm thick. The blade of the 

mitre saw was set normal to the edge of the beam and the cut made across the width of 
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the beam, as illustrated in Fig. 6.1. 

b 

h W ~lrnm 

Fig. 6.1: Illustration of the slot that was cut in the beam. 

A more uniform depth may have been achieveable by machining the slot; however, the 

length of the beams made this impractical and the available machine saw widths were 

larger than 1 mm. 

It was difficult to cut the slot to a specific depth. Every effort was made to ensure that 

the depth of the slot was uniform along the width of the cross section, although 

undoubtedly some non-uniformities arose. 

6.2.2. Measuring slot depth 

In total, 7 specimens were created, with a single slot cut in each, where the depths 

ranged from y = 0.10 to y = 0.70. The slot was not wide enough to measure using 

standard vernier depth gauges, therefore an ad hoc. method was used. 

A thin steel ruler was inserted into the slot as illustrated in Fig. 6.2. Two steel blocks 

lay flush to the beam on either side of the ruler and, when in place the blocks were 

clamped to the ruler. This assembly was then removed from the slot and the depth of the 

slot was estimated by measuring the distance from the end of the ruler to the steel blocks 
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with a vernier gauge, which had an accuracy of ±0.02mm. The depth of the slot was 

measured at 6 points along the width of the cross-section. Each measurement was 

repeated 3 times and the average of all values was taken to find a single value for the 

depth. It was found that the depth of the slot varied slightly over the width. The variation 

was typically less than O.l5mm (or y = 0.025) and often the error was worse towards the 

edges, owing to the cutting technique. 

The average slot depth for each specimen is given in Table 6.1. The values of y in 

Table 6.1 are approximate but, in the following, the specimens are referred to by these 

values, e.g. ' ... specimen with y = 0.22.'. 

6.3. Results 

The scattering coefficients of the slots were measured for each specimen in Table 6.1 and 

the results are presented in this section. Each result is plotted alongside numerical 

clamp clamp 

h 

Fig. 6.2: Measuring the depth of the slot. 
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Specimen (1) (2) (3) (4) (5) (6) (7) 

Averagey 0.13 0.22 0.34 0.39 0.50 0.55 0.62 

Table 6.1: Measured slot depths. 

predictions from FESE models of the slot, modelled with a width of W/h = 1/6 (or 

W = 1mm). The wavenumber of each specimen was estimated as described in chapter 5, 

§ 5.6.1. The wavenumber estimates of all the specimens were roughly ke = 0.86 -fl. 

Samples of the beams were taken to estimate the densities and these were found to be 

approximately p = 7700kgm-3 for each specimen. The Youngs modulus E was 

estimated from the wavenumbers, using Eq. 5.39 (chapter 5), and was found to be 

around E = 185GNm-2 for each specimen. 

In the interests of clarity, only the power reflection coefficients, r11, for waves incident 

from the left-hand side of the slot, are plotted for each specimen given that it was found 

that '22 was very similar. The main difference between the two is that the modulation in 

each result has a different frequency and this is due to the difference in the distance from 

each of the sensor pairs to the slot. 

Fig. 6.3 shows a comparison between measured values of r11 for a uniform 

undamaged length of beam (see chapter 5, § 5.6.2) and those measured on a damaged 

specimen with y = 0.13. It is difficult to discern between the measurements, which 

shows that the reflections from the slot are of the same order as the errors and noise in 

the experiment. The slot is perhaps noticeable at higher frequencies, though this is not 

clear. Experimental errors make it difficult to learn much from this result and one can not 

be sure that a slot is present. 

The measured reflection coefficients for the other specimens are presented in Figs. 6.4 
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(b) r = 0.13. 

Fig. 6.3: Measured power reflection coefficient rll for a uniform length and slot with 

y = 0.13. 

to 6.9. In the figures, the measured values of rll for each specimen are compared to the 

reflection coefficients estimated from FESE slot models with various depths. 

In Figs. 6.4 to 6.9, the measured reflection coefficients are seen to modulate. 

Assuming that the modulation is a consequence of error, as suggested in the previous 

chapter, a third-order polynomial least-squares fit is used to estimate the trend of the 

reflection coefficient. This is done as a visual aid, for comparison with the estimates of 

the FESE models; it is not intended to represent the reflection coefficient without error. 
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Fig. 6.4: Power reflection coefficient rll for a slot with y = 0.22: (-), experimental; 

(-.-), least-squares fit to experiment; (--), FESE slot models. 
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Fig. 6.5: Power reflection coefficient rll for a slot with y = 0.34: (-), experimental; 

(-.-), least-squares fit to experiment; (--), FESE slot models. 
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Fig. 6.6: Power reflection coefficient TIl for a slot with y = 0.34: (-), experimental; 

(-.-), least-squares fit to experiment; (--), FESE slot models . 
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Fig. 6.7: Power reflection coefficient TI I for a slot with y = 0.50: (-), experimental; 

(-.-), least-squares fit to experiment; (--), FESE slot models. 
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Fig. 6.8: Power reflection coefficient rll for a slot with y = 0.55: (-), experimental; 

(-.-), least-squares fit to experiment; (--), FESE slot models. 
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Fig. 6.9: Power reflection coefficient rll for a slot with y = 0.62: (-), experimental; 

(-.-), least-squares fit to experiment; (--), FESE slot models. 
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6.4. Discussion 

Figs. 6.4 to 6.9 show that the measured reflection coefficients are similar to the 

predictions of the FESE models, though the experimental results show a modulation, 

which is thought to be caused partly by sensor mis-calibration and errors in the 

wavenumber estimates. At low frequencies, the experimental results are affected also by 

noise and ill-conditioning. At high frequencies, there are noticeable differences between 

the modulation in the measurements for the larger slot depths (Figs. 6.7 to 6.9) in 

comparison to the other results with smaller depths. 

The measured reflection coefficients for larger slots exhibit sharp peaks and troughs, 

particularly for keh > 0.25. The peaks occur roughly periodically as a function of 

frequency and this is shown in Fig. 6.10, where rll is plotted. Given that the period is a 

function of frequency, this might suggest an influence on the result from axial and/or 

torsional waves. 

0.5,-----,-----.----,-----,-----.---,,-----, 

0.45 

0.4 

0.35 

0.05 

3000 4000 5000 6000 7000 8000 
Frequency (Hz) 

Fig. 6.10: Power reflection coefficient r]] as a function of frequency, for y = 0.62. 

132 



It can be shown numerically that wave-mode conversion causes axial waves to scatter 

from the slot. It is further possible that wave mode conversion occurs as waves reflect 

from the sandboxes. If axial waves also propagate along the beam, the reflected flexural 

wave from the slot is the sum of a reflected incident flexural wave plus reflections of 

incident axial waves. These axial wave components are not included when the scattering 

coefficients are calculated, which could result in errors. Moreover, the axial wavelength 

is much longer than that of the flexural waves and, as a result, such waves are not as well 

attenuated by the sandboxes. 

It is interesting to note that the spacing of the peaks in Fig. 6.10 is approximately 

425Hz. The exact boundary conditions of the sand boxes are not known but assuming 

free-free boundary conditions, the natural frequencies for axial motion are given by the 

equation 

(6.1) 

where Lb = 6m is the total length of the beam and in is the nth natural frequency. For the 

experimental beam, the spacing between each natural frequency, as given by Eq. 6.1, is 

in - /n-l = 406 (6.2) 

Given the similarities between this value and the spacing of the peaks in Fig. 6.10, it is 

possible that the peaks are caused by the existence of axial waves. The following 

subsection presents a numerical example to support this suggestion. 

6.4.1. The influence of axial waves on estimates of flexural scattering coefficients 

Axial waves are generated when flexural waves scatter at the slot. It is thought that these 

waves influence the estimates of the flexural wave scattering coefficients when they are 

reflected by the sandboxes. This effect is simulated in the following example. 
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Fig. 6.11 illustrates a numerical model comprising an undamped infinite Timoshenko 

beam including a FESE model of a slot with y = 0.55. The scattering coefficients of the 

sandboxes are not used in this simulation, rather a lumped spring model (see chapter 4) 

is included on each side of the sensor pairs to simulate the effect of waves reflecting from 

the sandboxes. The amplitude of the reflected axial waves can be varied by altering the 

stiffnesses of the springs in the lumped spring model. As in the experiment, the model 

has two transverse forces and the response at each sensor location is calculated to 

estimate the scattering coefficients. 

Lumped­
spring model 

FESE slot 
Sensors model Sensors 

-00 __ _ _�����I---or----@o-@--

Force (1) 

Lumped­
spring model 

Force (2) 

+00 

Semi-infinite 
wave-based SE 

Fig. 6.11,' Model used to simulate the experimental estimation of rll for a damaged 

beam. 

The flexural reflection coefficient of the slot was estimated for three examples in 

which the axial stiffnesses in the lumped-spring models were, in tum, KA = lOIs, 1010 

and 108Nm. When KA = 1O lsNm, the power axial reflection coefficient of the 

lumped-spring is less than 10-10 ; for KA = 101ONm, it is less that 0.4; and for 

KA = 108Nm, it is close to 1. These three models simulate the cases where there is: a) 

almost zero axial wave reflection at the sandboxes; b) moderate axial wave reflection at 

the sandboxes; and c) very large axial wave reflection at the sandboxes. The flexural 

wave power reflection coefficient is presented in Fig. 6.12 for each of the three models. 
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These results show that when there is very little axial wave reflection at the lumped 

springs, the flexural wave reflection coefficient is estimated accurately. As the size of the 

axial wave reflection from the lumped springs increases, the flexural wave reflection 

coefficient is less accurate. Most notable are the sharp peaks in rll, which occur when 

the axial wave reflection coefficients of the springs are large. This result has similarities 

with the experimental result in Fig. 6.10. 
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Fig. 6.12: Numerical estimation of rll: (--), KA = 1015N/m; (- x -), KA = 10 I 0N/m; 

There are a number of factors that might contribute to the effect shown in Fig. 6.12. 

For example, the amplitude of the axial wave generated by wave mode conversion at the 

slot is frequency dependent. From the FESE notch model, the result presented in 

chapter 4 (Fig. 4.12) suggested that the amplitude of the axial waves generated at the 

notch by wave mode conversion is less at low frequencies and larger at high frequencies. 
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It may be for this reason that large peaks are not seen in Fig. 6.10 at lower frequencies. 

Given that the wave mode conversion at the slot and the reflection coefficients of the 

sandboxes are both frequency dependent, it is difficult to accurately quantify the effects 

of the axial waves. However, from the numerical results presented here it does appear 

that the errors seen in the experimental results, such as in Fig. 6.10, can be simulated and 

are related to axial wave propagation. 

6.4.2. Measuring the reflection coefficients on a free-free beam 

When the ends of the beam cause large reflections, the measured reflection coefficients 

are ill-conditioned (chapter 5,§ 5.5). To illustrate this problem the beam was removed 

from the sandboxes so that the boundary conditions at each end were free-free. The 

specimen used was that with 'Y = 0.50 and the measured power reflection coefficient, rll 

is presented in Fig. 6.13 (the result for the same specimen, but with ends in sandboxes, is 

given in Fig. 6.7). The sharp peaks in the result are due to ill-conditioning of the 

reflection coefficient, resulting from strong resonant behaviour in the beam. Owing to 

the conditioning issues, it is difficult to estimate the reflection coefficient of the slot from 

Fig. 6.13. 

In a more realistic example, the ends of the beam are likely to be connected at, for 

example, joints. The size of the reflected waves from the joints are often much smaller 

than those from the ends of the free-free beam. Therefore, conditioning issues may not 

cause such severe problems in more practical examples. 
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Fig. 6.13: Power reflection coefficient for a slot in a free-free beam with r ~ 0.50 .. 

6.5. Summary 

Transverse slots have been cut in a number of beam specimens and the reflection 

coefficients of the slots have been measured. The width of the slot is constant and the 

depth is approximately uniform over the width of cross-section. The experiments have 

been used to show how damage can be detected in beams using the reflection coefficients. 

Various slot depths have been tested and these range from r = 0.10 to r = 0.70. 

As shown in the previous chapter, the measured results suffer from experimental 

errors. In particular, when the slot is small or at low frequencies, the experimental results 

are affected by noise. Furthermore, at low frequencies the reflection coefficients are 

ill-conditioned and are also affected by other errors such as sensor mis-calibration. 

At higher frequencies, the results exhibit a noticeable modulation, which can be 

attributed to experimental errors such as sensor mis-calibration. Importantly, the 
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reflections from larger slots are more evident at mid and high frequencies. 

Comparing the measured results to predictions from FESE models, it was found that 

the measurements and predictions have similarities. The experimental results suggest 

three important points: 

• it is possible to measure the reflection coefficients of a slot in a beam remote from 

the damage site; 

.. it may be possible to estimate the slot depth by comparing the measured reflection 

coefficients with predictions from FESE models; and 

• the modulation in the measured reflection coefficients is related to the distance of 

the slot from the sensor pairs, hence it may be possible to locate the slot from this 

feature of the reflection coefficient. 

Further to this, if a method could be established to minimise the errors in the 

experimental results, it may be possible to develop a method that could use the reflection 

coefficients to suggest the existence of a slot. From the results presented here, it is clear 

that if one can establish that a non-zero reflection coefficient can be attributed to 

something other than experimental error, such a result could be used to signify the 

existence of a discontinuity. 

The possibility of estimating the slot depth is explored in the next chapter and chapter 

8 considers how the location of the slot can be estimated from the reflection coefficients. 
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7. Estimating slot depth 

7.1. Introduction 

The numerical and experimental results presented in chapters 4 and 6 showed that the 

reflection coefficients of a slot depend on depth and frequency. In this chapter, a method 

for estimating slot depth from the measured reflection coefficients is considered. 

In the experiments, slots of various depths were cut into a number of beams. It was 

shown that FESE models of the slot predict similar values for the reflection coefficient as 

the experiment, although the experiment exhibits modulation. 

In this chapter, the FESE model is used to create a set of models to develop a 

reference data set. Each individual model in the set has a single slot depth and is 

evaluated over a range of frequencies, as described in chapter 4. The analysis is then 

repeated over many slot depths to create a reference set. The slot depth is estimated by 

comparing the experimental reflection coefficient to the reference data set. 

The more slot depths that are modelled in the reference set, the more accurately the 

depth can be estimated. The time needed to compute many FESE models is significant, 

prohibitively so. To avoid this, the results of a small set of FESE models are interpolated 

to estimate the reflection coefficients at other slot depths and frequencies that are not 

included in the FESE models. 

In the following, it is explained how the reference set is defined and how this can be 

used to estimate the slot depths of the experimental specimens. This method is supported 

by numerical and experimental results, which illustrate how accurately the slot depth can 

be estimated. 
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7.2. Method 

The slot depth is estimated by comparing experimental results to numerical estimates. In 

this section, the reference data set is defined and it is shown how this can be used with 

the experimental data to estimate slot depth. 

7.2.1. Definition of the reference data set 

The experimental power reflection coefficient of a slot is defined as a function of depth 

and wavenumber, which is given as reCYe, keh), where Ye is the experimental slot depth, 

which is constant for a given wavenumber, and keh is the non-dimensional experimental 

wavenumber. To estimate the slot depth, 'Ye, the value of re is compared to a set of 

reference models. 

The set of reference models comprises numerical or analytical models of the damaged 

beam at various slot depths, over a range of wavenumbers. The power scattering 

coefficients predicted by the models are used to create a reference data set that is defined 

as rrCy, keh), where y is the slot depth. In practice, the set is discrete and is such that an 

estimate of the power reflection coefficient is known at particular values of y and keh. 

If it can be assumed that there is a unique value of y for any two values of r rand keh, 

then rrCkeh) = reCkeh) when y = Yeo 

7.2.2. FESE slot models for the reference set 

Here, a number of FESE slot models were used to define the data set rr. If the shape of 

the damage was not known, it could be modelled as a notch or a lumped-spring. Both of 

these models are likely to give results that differ to the slot models and how these 

differences affect the estimate of the depth is illustrated later in this chapter. 

The material properties and dimensions of the experimental specimens were used in 
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the FESE models. There are differences between the experimental and numerical 

wavenumbers but they are small for the wavelengths considered. 

An FESE model is required for each value of r in the reference set. Therefore, 

computational time can become an issue if many values of r are modelled. For this 

reason, FESE models were developed only at multiples of r = 0.05, i.e., 

r = 0,0.05, 0.10, ... , 0.90, 0.95. This made a total of 19 FESE models and it is 

assumed that rr = 0 if r = O. 

Furthermore, the size of the frequency (or wavenumber) vector is important and, if 

this includes many frequencies as in the experiment, the computational time can be 

significant. Therefore, the results of the FESE models were found at fewer frequencies 

than in the experiment but the frequency ranges of the numerical and experimental 

results were the same. The FESE models were evaluated at 200 discrete points over the 

frequency range. Fig. 7.1 illustrates the reference set rr in the form of a surface plot. 

7.2.3. Interpolating the reference data set 

In rn the variable r defines to what accuracy the slot depth can be estimated; in this case, 

to the nearest multiple of r = 0.05. This can be improved upon by including more FESE 

models in rr at different values of y. However, if the function rr is smooth and 

continuous, the numerical results can be interpolated to estimate the values of r r at 

values of y and keh that were not included in the FESE models. Using interpolation is 

significantly faster, computationally, than producing more models. However, 

interpolation is an approximation and therefore the result is less accurate than if more 

models were produced. 

A cubic spline is fitted to the results of the FESE model using the spline function in 

Matlab. With the spline, the r variable is resampled so that it has a resolution of 0.01 
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Fig. 7.1: Illutration of the reference data set rr. 

(i.e., the slot depth can be estimated to the nearest multiple of y = 0.01). Furthermore, 

the wavenumber variable is resampled so that it has the same resolution as the 

experimental results. 

7.2.4. Estimating slot depth 

At a given wavenumber, re is a single experimental value for an unknown slot depth and 

rr is a function of y. An example of this is shown in Fig. 7.2, where re is plotted as a 

constant. This figure shows rr for a given value of wavenumber, which is like taking a 

slice through the surface shown in Fig. 7.1. The slot depth is estimated as the value of y 

at the point where the two lines intersect, which in this example is approximately 0.40. 

This is then repeated at all wavenumbers. 

In practice, re and rr are discrete functions. The estimate of slot depth is thus found by 
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Fig. 7.2: Comparing rr and re for a given value of wavenumber. 

minimising the cost function 

(7.1) 

i.e., finding the value of r for which I rr(r) - re I is minimised. The cost function for the 

example shown in Fig. 7.2 is shown in Fig. 7.3, where it can be seen that the minimum 

occurs at r = 0.4. 

7.2.5. Estimating slot depth at high frequencies 

It has been assumed that there is a unique value of r for given values of rr and keh. For 

large slot depths, the FESE model predicts that the reflection coefficient decreases at 

high frequencies, as shown in chapter 4 (§ Fig. 4.6). As a result, there is not a unique 

value of r for all possible values of rr and keh. 

Fig. 7.4 shows an example where the cost function has two local minima. In this 

numerical example re = 0.55 and is correctly estimated from the smaller of the two 

minima. In general, however, it can not be assumed that the smaller of the two minima is 
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Fig. 7.3: The cost function for a given value of wavenumber. 

located at the correct value of slot depth. 

The most straightforward way to avoid this problem is to consider low to mid 

frequencies only, when estimating the depth. However, errors such as noise, particularly 

at low frequencies, may affect the estimates. Further work might include the 

development of a more robust method for numerically estimating the slot depth. 

7.3. Numerical examples 

This section contains two numerical examples that illustrate the estimation of slot depth 

from the reference data set. 

7.3.1. Estimating slot depth 

The reflection coefficients are estimated using FESE models for two slotted beams with 

Ye = 0.24 and Ye = 0.39, respectively. The reflection coefficients from each model are 

treated as noise free experimental data and compared to the reference data set to estimate 
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Fig. 7.4: The cost function ley) when re = 0.1 and kth = 0.6. 

the slot depth. Furthermore, as neither slot depths were modelled as part of the reference 

data set, the accuracy of the estimated slot depths depend on the accuracy of the 

interpolation. 

The results in Fig. 7.5 show that slot depths are estimated to good accuracy. For the 

slot with Ye = 0.24, the estimated depth is y = 0.24, and for the slot with Ye = 0.39 the 

estimate is 0.38. 
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Fig. 7.5: Estimated slot depths: (x), for)le = 0.24; (0), for)le = 0.39. 

7.3.2. Example with simulated errors 

In chapter 5, a numerical example was used to show how a sensor mis-calibration error 

or errors in the wavenumber estimate can lead to modulation in the measured scattering 

coefficients. 

Here, the experiment is simulated using a FESE slot model with)l = 0.50. The model 

is illustrated in Fig. 7.6, where L J = ~ and the output of sensor 1 is multiplied by a 

factor of 1.05 to simulate a mis-calibration error. 

Fig. 7.7(a) shows the reflection coefficient rll as calculated from the model. As shown 

in chapter 5 (§ 5.5.2), there are significant errors in rll at low frequencies. At higher 

frequencies, the sensor mis-calibration results in a noticeable modulation in the result. 

Fig. 7.7(b) shows the estimates of slot depth. At low wavenumbers, the 

mis-calibration error causes the slot depth to be, by and large, over estimated. At higher 

wavenumbers, the modulation seen in the reflection coefficient is also prevalent in the 

estimate of the slot depth. Furthermore, at high frequencies, there are spurious results 

146 



Sensors 1 and 2 Sensors 3 and 4 

\ i~ 
I 

~y / ... : ... 
I 
I 

r 
0-:-0 , 0+-0 

r ----- ; Slot 
Force (1) model Force (2) 

Fig. 7.6: The damaged beam model. 

which arise from the fact that there are two local minima in the cost function used to 

estimate the slot depth and, because the smallest value has been taken, the slot depth is 

estimated incorrectly at some wavenumbers. 
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(a) Reflection coefficients: (--), rll without 

error; (-), rll with error. 
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Fig. 7.7: Reflection coefficient and estimated slot depth with a calibration error 

simulated on the output of sensor 1. 

In chapter 6, it was suggested that errors cause the measured reflection coefficient to 

modulate more-or-Iess about the true value. Therefore, the slot depth could be estimated 
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by taking the average of the estimated slot depths, Yay' When taking the average slot 

depth, care must be taken to discard any obvious signs of error. For example, for the 

result shown in Fig. 7.7(b), one might discard all values for keh < 0.15, assuming them 

to be erroneous. Furthermore, estimates above keh = 0.35 might also be discarded to 

remove other possible errors at high wavenumbers. If the slot depth is averaged over this 

range, one finds that Yay = 0.49 and the effects of the modulation average out to give a 

good approximation of the slot depth. However, if the whole wavenumber range is used, 

and errors are included in the average, the estimate is Yay = 0.59. 

7.4. Experimental results 

In chapter 6, Figs. 6.3 to 6.9, the measured power reflection coefficients were given for 

each damaged beam specimen used in the experiments. Here, the slot depth has been 

estimated for each specimen using a reference data set comprising FESE models of the 

slot and the results are presented in this section. In each example, rll and r22 were 

processed to estimate the slot depth. It was found that there were only small differences 

in the estimated slot depth if r22 was processed, so only the results for rll are presented 

here. 

7.4.1. Estimating slot depth 

Fig. 7.8 shows the estimated slot depths for the specimen with Ye = 0.22. The 

modulation in this result arises due to the modulation in the measured reflection 

coefficient. At low frequencies, the reflection coefficient includes error such as noise, 

ill-conditioning of the scattering coefficients and sensor mis-calibration. As a result of 

the errors, the measured power reflection coefficient at low wavenumbers can be larger 
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than any of the values contained in the reference data set. Therefore, the estimated depth 

is equal to the largest value in the reference set. This can be seen in Fig. 7.8, in which 

there is a concentration of estimates at y = 0.95 for low wavenumbers. Averaging the 

slot depth over all values of keh, gives an estimate of Yav = 0.25. 
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Fig. 7.8: Estimated slot depth for the specimen with Ye = 0.22. 

A systematic and robust method of removing the erroneous results that are thought to 

exist in the estimation of slot depth is not considered here. This is due to the fact that the 

exact causes of the errors can only be speculated, without further investigation into the 

sources and effects of experimental errors and noise. Such investigation might lead to 

improvements in the slot depth estimates and could form part of further work. As such, 

the average slot depth is estimated over the full range of the measurement and this 

estimate includes any erroneous results. Given that it is expected that errors exist at 
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lower wavenumbers, for reasons such as sensor mis-calibration error and 

ill-conditioning, it is expected that this estimate of the slot depth is an overestimate. 

The largest slot depth tested was the specimen with Ye = 0.62 and the estimated slot 

depths are plotted in Fig. 7.9. This result shows a concentration of estimates at Y = 0.95 

at low wavenumbers, similar to Fig. 7.8. Again, this is a result of the measured reflection 

coefficient being larger than the values in the reference data set. However, by inspection 

of Fig. 7.9, this problem may also occur at higher wavenumbers when the modulation in 

the reflection coefficient is very large. Taking the average of the depth estimates over all 

values of wavenumber, it was found that Yay = 0.68. 
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Fig. 7.9: Estimated slot depth for the specimen with Ye = 0.62. 

The average slot depth was estimated for each experimental specimen and the results 

are given in Fig. 7.10. In each, the average slot depth is calculated over the whole 

wavenumber range. Fig. 7.10 shows that the estimated average slot depths give a good 
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estimate of the actual depth. 
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Fig. 7.10: Estimated average slot depths. 

7.4.2. Using other damage models to estimate the depth 

0.68 

0.60 0.70 0.80 

The results in Fig. 7.10 were calculated using a reference model that was defined using 

FESE models of a slot. If the shape of the slot is unknown, one might use FESE models 

of a notch or define the reference set using the lumped-spring notch model, as described 

in chapter 4. 

Two more reference data sets were defined using a FESE notch model and the 

lumped-spring notch model, respectively. From these reference sets, the average slot 

depth of each specimen was estimated and the results are presented in Fig. 7.11. 

The results show that the slot depth is over-estimated by both models but the results 
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are still a good approximation. Given that the lumped-spring model is computationally 

very much more efficient than the FESE models, this result suggests that the lumped 

spring model can be used, perhaps, as a first approximation to estimate the depth. 

IiIIII FESE notch model 

I£l Lumped-spring model 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

y 

Fig. 7.11: Estimated average slot depths using the FESE notch model and the 

lumped-spring model. 

7.5. Summary 

In this chapter, it has been shown that the measured power reflection coefficients of a slot 

can be used to estimate the slot depth. This was achieved by developing a reference data 

set from FESE models of the slot, which is then compared to the experimental results. 

To reduce the computational time, FESE models were developed for a small number 

of slot depths and evaluated. A cubic spline was then applied to the reference data set, to 
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approximate the reflection coefficients at slot depths and frequencies not evaluated in the 

FESE models. 

If the shape of the damage is unknown, the FESE notch model or the lumped-spring 

model might be used to define the reference data set. Using these models to estimate the 

depth of the slots in the experiment, it is found that the slot depth is overestimated but 

the estimates still offer good approximations of the slot depth. The lumped-spring model 

is much more computationally efficient than the FESE models and, therefore, could be 

used as a first approximation of the slot depth. 

Errors in the measured reflection coefficients make the estimates of the slot depth less 

accurate. The errors in the measured reflection coefficient are also prevalent in the slot 

depth estimates. At low wavenumbers, the slot depth is often over-estimated. At higher 

frequencies, the modulation in the measured reflection coefficient is apparent in the 

depth estimates. Furthermore, experimental errors can create values of the measured 

reflection coefficient that are larger than any of the values in the reference data set, 

thereby introducing errors in the depth estimates. 

The slot depth can be estimated by averaging the depth estimates over each value of 

wavenumber. This estimate proved accurate but might be improved if the sources and 

effects of experimental error are identified and minimised and erroneous results 

discarded. 
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8. Locating slots from the reflection 
coefficients 

8.1. Introduction 

An important part of damage detection is the ability to locate the damage. Although, it 

may be possible to detect the presence of a discontinuity in the structure, positively 

identifying the discontinuity is a separate issue. One could argue that locating a 

discontinuity brings us one step closer to identifying it. 

In this chapter, a method is described that uses the measured reflection coefficients in 

chapter 6 to locate the slots in each of the experimental specimens. The scattering 

coefficients modulate as a function of wavenumber and the frequency of this modulation 

can be related to the distances from each sensor pair to the slot. The inverse Fourier 

transform is used to transform the scattering coefficient from the wavenumber to spatial 

domains and, from this, estimate L1 and L;,. These distances are shown in Fig. 8.1. Issues 

that arise in this process, such as sampling and resolution, are addressed herein. 

Numerical and experimental results are used to illustrate the accuracy of the estimated 

locations. Also included is an example to illustrate how the method can be used to locate 

more than one slot. 
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Fig. 8.1: Schematic of the damaged beam. 

8.2. Method 

In chapter 5, Eq. 5.15, the measured scattering coefficients were given and these can be 

written as 

(8.1) 

where 811 ,22 is the phase of the reflection coefficients at the discontinuity. In these 

estimates, both damping and the contribution of any nearfield waves has been neglected. 

The reflection coefficients are complex oscillating functions and have, in general, three 

terms that vary with frequency: IR]],221, e-2ikeLJ,2 and e iBll ,22. The term IR]],221 describes the 

magnitude of the reflection coefficient, while the phase has two distinct components, one 

that relates to 8]],22 and one that relates to L],2. Often eiBll
,22 is slowly varying with 

frequency and analytical and numerical models predict this in the case of a slot. How 

rapidly the term e-2ikeLI,2 varies with frequency, depends on ke and L1,2. The term e-2ikeL1,2 

often varies far more rapidly with frequency than eiBll ,22 unless L1,2 is very small. 

8.2.1. Inverse Fourier transform in the wavenumber domain 

The oscillating components of the reflection coefficient are directly related to the lengths 

L1 and~. By finding the frequency of the oscillations, L1,2 can be estimated. The term 
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'frequency' is normally used in structural vibration to describe the oscillations per unit 

time. To avoid confusion, here the term "k-frequency" is used to describe the number of 

oscillations per unit wavenumber. In the same way that a spectrum of a time history is 

said to describe the harmonic content of the signal, the k-frequency content, or 

k-harmonics, are described by the k-spectrum. Relating these terms to the reflection 

coefficients: the reflection coefficients oscillate at k-frequencies that relate to the phase 

terms and by finding the k-harmonic content of the reflection coefficient, the lengths L] 

and ~ can be estimated. 

To determine the k-harmonic content of the reflection coefficient, the inverse Fourier 

transform (IFT) is used. The IFT transforms the reflection coefficients from the 

wavenumber domain to the spatial (or wavelength) domain. Again, often the IFT is used 

in structural analysis to transform the frequency domain to the time domain, so the term 

kIFT is used here to make it clear that the transform is from wavenumber to space. The 

kIFT can be written 

00 

seA) = f S (k)e27fikA dk (8.2) 

-00 

where k is the wavenumber and the variable A has units of length. The variable A is 

directly related to the physical distance by x = lfA. It is important to note that S must be 

a function of k and k must be known. 

One might make the observation that seA) is a form of spatial impulse response and 

should be real, but it is unclear what the kIFT of a scattering coefficient physically 

represents. Here, seA) is treated as a spectrum, which is referred to as the 'k-spectrum', 

and this describes the k-harmonic composition of the function S (k), in the spatial 

domain. 
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8.2.1.1. Example of the kIFT 

To illustrate the application of the kIFT, suppose that S = R 11 , as given in Eq. 8.1, but 

assume that IR 111 and ell are constant for all ke • Transforming S with the kIFT, it is found 

that 

00 

seA) = J IRlll eiBJ1 e2lfike(x-Ll/lf) dke 

-00 

(8.3) 

where b denotes the delta-function. The k-spectrum has one k-harmonic that is 

represented by a delta-function at A = L1 In and, therefore, x = L1. This simple example 

shows how L1 can be estimated from the reflection coefficient. 

8.3. Practical considerations 

8.3.1. Resampling the reflection coefficients 

In the experiments, Rll and ~2 are sampled variables. Therefore, seA) is calculated 

using the inverse fast Fourier transform (kIFFT). To apply the kIFFT, Rll and R22 must 

be functions of wavenumber. 

From the measurement, the reflection coefficients are always sampled in the frequency 

domain. Let the measured reflection coefficient be R(fs), where fs = nl1f is the 

frequency sample vector, n is the sample number and I1f is the sample spacing, which is 

constant for all frequencies. 

The reflection coefficient in the wavenumber domain is described by R(ks), where 

ks = nl1k is the wavenumber sample vector and 11k is the sample spacing in the 

wavenumber domain. 

To apply the kIFFT to R(ks), the sample period of ks must be constant for all 
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wavenumbers. The variables is and ks are related by the dispersion relation. If the 

wavenumber is proportional to frequency (e.g., axial waves) then 11k ex: l1i, such that 11k 

is constant. However, for flexural waves, it is assumed that ks ex: {1s and, as such, the 

sample spacing is not constant in the wavenumber domain. 

To get around this problem, the reflection coefficient is resampled using a new 

wavenumber sample vector k~, which has a constant sample period I1k'. The vector k~ 

has the same number of samples as ks and covers the same range. The sample period of 

k~ is given by 

I1k'= N 
kmax - kmin 

(8.4) 

where kmax and kmin are the maximum and minimum values of the original sample vector 

ks and N is the number of samples. 

The reflection coefficient is resampled using the spline function in Matlab. The 

function was used to interpolate between the sample points, to estimate the values of the 

reflection coefficient at the new sample points in k~. 

An example to illustrate the resampling procedure is shown in Fig. 8.2. This figure 

shows a function R = sin(kL), with L = 1 and k = 0.8 {J. The function is plotted against 

the three sample vectors, is, ks and k~. A point of interest is the small number of sample 

points for small values of ks • It is in this region that the interpolation may be less 

accurate. 
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Fig. 8.2: Illustration of the resampling of the reflection coefficient. 

8.3.2. Resolution 

In the k-spectrum, the spatial variable A is discrete and is given by 

A= N([O,1,2, ... ,M-l]) 
M kmax - kmin 

where M is the number of points in the kIFFT. The resolution of A and hence x 

determines how accurately the lengths L J and Lz can be estimated. 

(8.5) 

The resolution can only be improved by increasing the number of points in the kIFFT 

or by increasing the wavenumber range. How much the wavenumber range can be 

increased is constrained by factors such as the frequency range of the experimental 

equipment. Moreover, when the wavelength is shorter than the dimensions of the 

cross-section, higher order wave modes cut on and the estimates of RJJ and R22 , as given 
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here, are invalid. 

Given the importance of the resolution, every effort should be made to improve it, 

where possible. Making improvements to the experiment equipment may be costly and 

time consuming. For flexural motion, the frequency range would need to be quadrupled 

in order to halve the resolution. For axial or torsional motion, the frequency range would 

need to be doubled to halve the resolution. Over a given frequency range, the axial and 

torsional wavenumbers are often much smaller than the flexural wavenumber for thin 

beams. Therefore, often the resolution is best when flexural waves are measured. 

8.3.3. Windowing 

The measured scattering coefficient has a finite bandwidth in the wavenumber domain 

and, as such, the effect of the finite window smears the k-spectrum, seA). 

Theoretically [63], for seA) to show a k-harmonic, R 11 ,22 must include at least one 

oscillation within the wavenumber range, therefore 

JT 
L I2 >----, kmax - kmin 

(8.6) 

This result states that a discontinuity must be located at a minimum distance from either 

of the sensor pairs in order for it to be located using the k-spectrum. 

8.3.4. Aliasing 

The sampling rate of the original sample vector fs is 1/ I1f. Although there is no fixed 

sampling rate for the sample vector ks, for the new wavenumber sampling vector, k~, the 

sampling rate, ksmp , is 

k __ 1_ 
smp - 11k' (8.7) 
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This sampling rate has units of length. Therefore, we can also define a theoretical 

folding k-frequency, kff' at approximately 

1 
kff = 2!lk' 

This limit defines the maximum k-frequency that can be analysed without causing 

(8.8) 

aliasing. The folding k-frequency determines the maximum values of L1,2 that can be 

estimated using the kIFFT. The maximum value of L 1,2, Lmax, is theoretically 

(8.9) 

The folding k-frequency depends on the wavenumber and the number of sample points 

in k~. Often, kff is large compared to L1,2, e.g., in the experiments that were discussed in 

chapter 6, Lmax > 100m, such that effects of aliasing are not a concern. 

8.3.5. Measurement error and noise 

Experimental error affects the accuracy of the estimates of L 1,2 (e.g., errors in the 

estimation of the wavenumber). Assuming that the reflection coefficients are known, 

errors in wavenumber affect the derivation of the wavenumber sample vectors ks and k~. 

As a result, the spatial variable x of the k-spectrum includes error. 

Noise on the reflection coefficient can also affect the estimation of L1 2. This is a well 

known problem of a sinusoidal signal embedded in noise. When the signal to noise ratio 

is small, the k-harmonic may be masked by noise and it is more difficult to estimate L 1,2. 

8.4. Numerical examples 

In this section, the results of a number of numerical examples are presented to illustrate 

the estimation of slot location using the kIFFT. In all the numerical and experimental 

results, the k-spectrum is plotted as a function of x (or lfA). 
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8.4.1. Resampling the reflection coefficient 

The reflection coefficient is resampled by interpolating between the sample points in the 

original frequency vector along a new wavenumber sample vector. This process is 

approximate and may affect the accuracy of the estimates of L 1,2. 

To illustrate the accuracy of the resampling method, suppose that S (k) = Rll = e-2ikLJ , 

where L1 = 1m, k = 0.87 {1 and the frequency range is from 0 to 9600Hz with 16384 

sample points. The number of points used to calculate the kIFFT is also 16384. These 

values are similar to the experimental work. 

The function S can be defined in two ways. First, it is defined by a frequency sample 

vector ks that has a constant sampling period in the frequency domain. As explained, this 

function must be resampled along a new sample vector k~ in order to apply the kIFFT. A 

second function S (ks ) is also defined, in which ks has a sample period that is constant in 

the wavenumber domain. As such, S (ks ) does not require resampling before it is 

transformed using the kIFFT. The purpose of comparing the two is to illustrate the 

accuracy of the resampling procedure. If the resampling is accurate, the k-spectrum of 

S (k~) should be equivalent to that of S (ks ). 

Fig. 8.3 shows part of S(k) and the power k-spectra, Is(A)12
, for each case. Each row 

of subfigures in Fig. 8.3 is labelled, (a), (b) and (c), respectively. The figures in row (a) 

show S (ks ) and its k-spectrum. It is clear that the k-spectrum has little meaning, when the 

sample period is not constant as a function of wavenumber. The figures in row (b) show 

S (k~) and its k-spectrum, which is the resampled version of S (ks ). The value chosen for 

L1 was 1m and it can be seen that the peak in the k-spectrum of S (k~) occurs near to 

x = 1m. Finally, row (c) shows S(ks), which did not require resampling. Its k-spectrum 

is almost identical to that found for S (ks ) with only minor differences found in the 
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magnitude of the peak. 

Fig. 8.4 shows the region of the k-spectra for S (ks ) and S (k~) around the peak. The 

peak value occurs at x ~ O.995m, and the resolution of x is O.037m in this example. 
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Fig. 8.3: Illustration of the k-spectra for variables when the sample period is constant or 

is not constant as a function of wavenumber, where Ll = 1m. 
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Fig. 8.4: Estimation of location using the kIFFT, L1 = 1m: (- 0 -), function was 

resampled; (- x -), function was not resampled. 

8.4.2. Locating damage in an infinite beam 

In this subsection, the kIFFT is used to locate a notch with y = 0.50 in an infinite beam. 

A numerical model is used to simulate the experiment, which is illustrated in Fig. 8.5. 

The sensor spacing is 2cm and the beam is excited by point forces. The frequency range 

is from 0.1 to 9600Hz with 16384 sample points. The model was created using the 

lumped-spring notch model. 

The kIFFT is used to transform both reflection coefficients, R11 and ~2 found from the 

model after they have been resampled, i.e., the reflection coefficients "measured" by 

sensor pairs 1 and 2. The k-spectra are shown in Fig. 8.6 and the estimated distances 

from the sensor pairs to the notch, rounded to the nearest millimetre, are shown in the 

figure and given in Table 8.1, where-:-denotes the estimates. The estimates are taken 

from the location of the tips of the k-harmonics. The resolution of x is approximately 

3.7 cm, as calculated from Eq. 8.5. These results indicate that the location of the 

lumped-spring can be estimated with good accuracy from the k-spectrum. 
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Fig. 8.5: Infinite beam model with a notch. 
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Fig. 8.6: Locating a notch in an infinite beam with y = 0.50: (-), k-spectrum for L1 

from RII ; (--), k-spectrum for ~ from R22 . 
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~ ~ 

Rll R22 

~ -y L J (m) LJ (m) ~ (m) ~ (m) 

0.50 1.00 1.024 4.00 4.009 

Table 8.1: Estimated notch locations for a numerical model of a cracked infinite beam. 

8.5. Experimental results 

8.5.1. Slotted beam specimens 

The kIFFT is now applied to the reflection coefficients that were measured on each of the 

beam specimens that were considered in chapter 6. The k-spectrum for the specimen 

with y = 0.50 is shown in Fig. 8.7 (the measured reflection coefficient can be found in 

Fig. 6.7, chapter 6, § 6.3.). 
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Fig. 8.7: Estimation of the location of a slot with y = 0.50: (--), k-spectrum for LJ from 

R II ; (--), k-spectrum for ~ from R22 . 
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The distances from the slot to the sensor pairs were measured to the nearest centimetre 

and are LJ = 0.83m and Lz = 1.l8m; these are referred to as the 'actual' values. The 

location of the slot can be estimated from the k-harmonics shown in Fig. 8.7 and the 

values, found to the nearest centimetre, are L J = 0.84m and Lz = 1.21m, which are in 

good agreement with the actual values. 

~ ~ 

RII R22 

-
Y L1 (m) L1 (m) Error (m) L2 (m) ~ (m) Error (m) 

f"\ 1'") 0.84 0.83 0.01 1 1 f"\ 1.16 0.03 V.l.J 1.1:1 

0.22 0.84 0.86 0.02 1.17 1.19 0.02 

0.34 0.81 0.83 0.02 1.21 1.25 0.04 

0.39 0.86 0.84 0.02 0.98 0.96 0.02 

0.50 0.83 0.84 0.01 1.18 1.21 0.03 

0.55 0.83 0.85 0.02 1.18 1.17 0.01 

0.62 0.83 0.80 0.03 1.19 1.16 0.03 

Table 8.2: Actual and estimated slot locations for the experimental beams. 

The kIFFT was applied to the reflection coefficients of each beam specimen and the 

estimated locations are given in Table 8.2. This table also shows the 'actual' locations of 

the slots, measured to the nearest centimetre. The results show a good agreement 

between the actual and estimated values, where the resolution of x is 3.7cm. 

Interestingly, Fig. 6.3(b) (chapter 6, § 6.3) showed that it was not possible to 
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accurately estimate the reflection coefficient of the slot when y = 0.13 because the 

magnitude of the reflection coefficients were similar to the magnitudes due to errors and 

noise. However, applying the kIFFT to the reflection coefficient, Fig. 8.8, shows that it is 

possible to estimate the location of the slot. The reflection coefficients are small for this 

slot and, as such, the magnitudes of the k-harrnonics are small. Also, the noise is more 

obvious in the k-spectrum, given in Fig. 8.8. Noise is more likely to be an issue when 

locating small slots using the kIFFT. 
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Fig. 8.8: Estimation of the location of a slot with y = 0.13: (-), k-spectrum for L1 from 

R Il ; (--), k-spectrum for Lz from R 22 . 

8.5.2. Free-free beam 

An example that illustrated the difficulties of measuring the scattering coefficients on a 

free-free beam was given in chapter 6 (§ 6.4.2, Fig. 6.13). Large reflections from the 
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ends of the beam cause the estimates of the scattering coefficients to be ill-conditioned 

and this also occurs when any large scatterers exist outside the span of the sensor pairs. 

The reflection coefficient R 11 is (from Eq. 5.15) 

(8.10) 

and when a~l) b<!:) ~ a~) b~) the reflection coefficient is very sensitive to measurement 

errors. The oscillations in the complex reflection coefficient are described in the phase 

term e2ikLJ and there is also a phase term associated with the complex wave amplitudes. 

Although analytically it would seem that the term e2ikLJ is unaffected if the calculation is 

ill-conditioned, numerically this is only the case up to machine accuracy. However, the 

reflection coefficient is only likely to be so large at a few frequencies. Therefore, the 

oscillation caused by the term e2ikLJ may still be apparent in the measured reflection 

coefficient. 

Fig. 8.9 shows the k-spectrum for the free-free beam with y = 0.55. The estimated and 

actual slot locations are given in Table 8.3. This result shows that there is more noise in 

the k-spectrum for the free-free case than when the beam is in sandboxes and this is 

thought to be a result of the conditioning errors in the calculation of the scattering 

coefficients. Although this does not appear to affect the estimated locations in this 

example, it may pose a problem for estimating smaller damage when there are large 

scatterers outside the span of the sensors. 
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Fig. 8.9: Estimation of the location of a slot with r = 0.55, in a free-free beam: (-), 

k-spectrum for Ll from R 11; (--), k-spectrum for ~ from R22 . 

~ ~ 

Rll R22 

~ 

r Ll (m) Ll (m) Error (m) ~(m) ~ (m) Error (m) 

0.55 (free-free) 0.83 0.84 0.01 1.18 1.20 0.02 

Table 8.3: Actual and estimated slot locations for the free-free beam with r = 0.55. 

8.5.3. Remarks 

For the experimental specimens tested here, the kIFFT has been used to locate the slots. 

The method worked well for all the specimens tested, although the harmonics are clearer 

when the reflection coefficient is large. If the reflection coefficient is small, its harmonics 

may be masked by noise. 
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8.6. Locating multiple slots 

Of great interest in the field of damage detection is the ability to locate multiple slots. In 

this section, it is shown that this can be achieved through analysis of the scattering 

coefficients. 

Sensor pair Slot [1] 

-00 

\ :_ .. 4--__ il Slot[2J~i_"'f---_L_2_ .. _! 
'------IW ,o-i-o 

---f 7_.II-____ :~-... ~II--=~--=~~~~~~~~~~ ... ~-'-:--L-4--4 .. - ..... ----'r +00 

Force (1) Force (2) 

Fig. 8.10: Infinite beam model with two slots. 

Fig. 8.10 illustrates an infinite beam with two slots. Both slots must be in-between the 

sensor pairs. The wavefield can be described by two equations, that are 

a_ = {Ri'i e -2ik,L, + t [R\i' T! i' T;\' r [R\~ ]'"-1) e-2&"L, +",L, -L,,) } a+ + ... 

+ {f, [T[llT[2l]n [R[ll R [2l ](n-1) e-ike{L2+L3+2n(L4-L2))} b 
L..J 21 21 22 II -
n=1 

b+ = {R;~e-2ik"" + t [R\~Tg'T;i'r [R\i'r1) e-2ik,IL,+",z..-L,ll} b_ + ." 

+ {f, [T[1lT[2l ]n [R[l l R[2l ](n-1) e-ike{L2+L3+2n(L4-L2))} a 
L..J 12 12 22 II + 
n=1 
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where the superscripts [1] and [2] denote the scattering coefficients of slots [1] and [2]. 

In Eqs. 8.11 and 8.12, the summation terms describe waves that scatter between the slots. 

These waves create additional k-harmonics that relate to the distance from the sensor 

pair plus multiples of the distance between the slots. If the second slot does not exist, 

Eqs. 8.11 and 8.12 are equivalent to Eqs. 5.12 and 5.13 

If the measured scattering coefficients are found using Eqs. 5.15 and 5.16, from 

chapter 5 (§ 5.3), and Eqs. 8.11 and 8.12, it can be shown that 

N 

R = R[ll e -2ikeL I + ~ [R[21T [llT[1)]n [R[l)]Cn-1) e-2ike{LI+n(LrLIl) 
11 II L.J II 12 21 22 (8.13) 

n=1 

N 
R = R[21 e -2ikeL2 + ~ [R[l)T[21

T [21]n [R[21]cn
-1) e-2ike{Lz+nCL4-Lz)) 

22 22 L.J 22 12 21 II (8.14) 
n=1 

The reflection coefficients in Eqs. 8.13 and 8.14 do not represent a single reflected wave 

but are a combination of multiple reflections. However, the k-harmonic components of 

R11 and R22 in Eqs. 8.13 and 8.14 are related to the distances from the sensor pairs to 

each slot. 

The magnitude of each successive k-harmonic component in R II ,22 depends upon the 

reflection and transmission coefficients of each discontinuity and, in general, would 

depend on damping. If there were many discontinuities, the amplitude of the reflected 

wave for each successive discontinuity decreases. This means that the magnitude of each 

successive k-harmonic component decreases also. 

8.6.1. Experimental result 

Two slots were cut in a beam specimen, as described in chapter 6. One slot has r = 0.45 

and the second has r = 0.64. This specimen is different to the others in that the second 

slot is cut through the cross-section at an angle as illustrated in Fig. 8.11. The original 
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purpose of this specimen was to investigate how the reflection coefficients of a skewed 

slot differ from a slot that it is at 90° to the edge of the beam, although these results are 

not included in this thesis. 

The skewed slot extends over 3cm and its location is given as the distance along the 

centre-line to the slot. Fig. 8.12 shows Is(A)12 for both reflection coefficients and the 

actual and estimated locations are given in Table 8.4. Again the agreement is good and 

the estimates are within a few centimetres of the actual locations. 

~ ~ 

Ril R22 

~ ~ 

y L1 (m) L1 (m) Error (m) L2 (m) ~ (m) Error (m) 

0.45 0.69 0.69 0.00 1.33 1.35 0.02 

0.64 (slanted) 1.44 1.43 0.01 0.58 0.57 0.01 

Table 8.4: Actual and estimated slot locations for the beam with two cracks. 

Slot [1] Slot [2] , , 
------- , , 

I <:::: I ~ ------- , , , , , , 
,l1li .. ' , , 
3cm 

Fig. 8.11: Illustration of the experimental beam with two slots (note that the width of the 

beam is shown and the slot depth goes into the plane). 
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Fig. 8.12: Estimation of the location of two slots with y = 0.45 and y = 0.64: (-), 

~ ~ ~ 

k-spectrum for LI from Rll ; (--), k-spectrum for ~ from R22 • 

8.7. Summary 

A method has been described for estimating the location of a slot in a beam, from the 

measured reflection coefficients. The modulating components of the reflection 

coefficients are related to the location of the slot. A wavenumber to space kIFFT is used 

to transform the reflection coefficients to determine the k-harmonics. To use this method 

the wavenumber must be known. 

The method has been used to estimate the location of slots in numerical and 

experimental examples. The accuracy of the estimated locations depends on the 

resolution of the k-spectrum and experimental errors. Here, the experiments showed that 

the slots could be located to within a few centimetres. Moreover, it was possible to locate 

a shallow slot (y = 0.13) and a slot in a beam with free-free boundary conditions. 

Furthermore, the method can also be applied to beams with multiple slots and a similar 
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level of accuracy has been obtained. Also, this approach is not restricted to slots and can 

be applied to any other types of scatterer. 

The kIFFT method works better when the slot and hence the magnitude of the 

k-harmonic is large. If the slot is small, as in the case where 'Y = 0.13, the k-harmonics 

may be obscured by noise. 
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9. Locating slots from the phase of the 
point FRF 

9.1. Introduction 

In the previous chapter, a method for locating damage using the measured reflection 

coefficients was described. A disadvantage of this approach is the need to take 

measurements with sensor pairs either side of the region in which the slot might lie. 

In this chapter, an alternative method of estimating the slot location is considered. The 

method analyses the phase of the point FRF, the k-harmonics of which are related to the 

distance between the excitation point and scatterers in the beam. 

FRF methods have been considered before for damage detection in which the 

locations of the resonances and anti-resonances have been used to signify damage (e.g., 

[33]). Often, to assess the damage, the measured FRF is compared with a model of the 

undamaged or damaged structure. The method described herein does not require 

knowledge of the undamaged structure, other than the location of known discontinuities 

(such as ends or joints) and the wavenumber. 

The method is described and is then illustrated by numerical and experimental results. 

In keeping with the experimental work, only the flexural waves will be considered here, 

although the method can be applied to other wave types. 
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9.2. Theory 

The phase of a wave changes as it propagates and when it is scattered. In the following 

examples it is shown how this fact can be exploited to locate discontinuities. 

9.2.1. Discontinuity in an infinite beam 

Fig. 9.1 shows an infinite Timoshenko beam with a discontinuity. The beam is excited at 

x = 0 by a point transverse force, creating propagating and nearfield flexural waves 

which travel along the beam and reflect from the discontinuity. 

L 

Force 

Fig. 9.1: An infinite beam with a discontinuity, excited by a point transverse force. 

Neglecting damping and the contribution of nearfield waves that are scattered by the 

discontinuity, the accelerance at the excitation point, f-lp' is 

(9.1) 
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where the subscript p denotes that it is a point FRF. The phase of J-lp is 8p and is given by 

{ ( 
IR I a e-2ikIL+iBIl)} 

= 1f + 1m In [a+ + a~] + In 1 + 11 + N 
a+ + a+ 

(9.2) 

In general, a+ and a~ are complex such that a+ + a~ = Ce iFJ
, where C is real, 8 is a phase 

angle and both variables are frequency dependent. The second logarithmic term in 

Eq. 9.2 can be expanded as an infinite series. The first three terms of the series are 

(9.3) 

+ ... 

(9.4) 

The series in Eq. 9.4 includes an infinite number of complex exponential terms, the 

arguments of which relate to multiples of the distance 2L. The magnitudes of the 

exponential terms depend on the reflection coefficient and, in general, on damping. Also, 

the phase component e iBll and its multiples are often much more slowly varying with 

wavenumber in comparison to e-2ik,L and its multiples. This is very similar to the 

problem in the last chapter and it is proposed that the location of a slot can be estimated 

by calculating the k-spectrum of the phase of the point FRF. 

Similar expressions to Eq. 9.4 exist for finite beams, although the fact that waves 

travel in both directions and reflect at the ends of the beam make the expressions more 

complicated. However, the resulting expressions include a similar series of complex 

exponential terms with arguments relating to distance. These involve not only the 

distance to the discontinuity (i.e., the slot) but also the distances to the ends of the beam 

and other discontinuities. 
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To find the k-harmonic components of the phase and estimate the distance L, the kIFT 

(see previous chapter) is applied to Op. As in the previous chapter, the physical 

interpretation of the k-spectrum of the phase is unclear. Here it is treated as a spectrum 

and is complex. It might also be considered to be a modified cepstrum. The cepstrum is 

real and can be defined as the IFf of the logarithm of a complex spectrum [64]. The 

k-spectrum of the phase differs in that the imaginary part of the logarithm is taken to find 

the phase. The cepstrum has previously been applied in the wavenumber and spatial 

domains in [65,66] to estimate scattering coefficients. 

Here, Op is measured as a function of frequency but the kIFFT is applied in the 

wavenumber domain. As in the previous chapter, the phase must be resampled so that 

the sample spacing is constant as a function of wavenumber. 

The experimental measurement of Op may have a D.C. offset and may also exhibit a 

trend. A D.C. offset or a trend in the measured phase may cause significant k-harmonics 

and leakage in the k-spectrum, at small values of x. These components might be reduced 

by removing the mean and the trend of the experimental data. The function detrend in 

Matlab can be used to remove the D.C. offset and any linear trend in the experimental 

data and this was used in the numerical and experimental work that follows. 

9.3. Numerical examples 

In this section a number of numerical examples are presented to show how the 

k-spectrum of the phase of the point FRF can be used to locate a notch. In each example 

the beam is modelled using Timoshenko beam theory and the lumped spring model is 

used to model the notch. The beam is mild steel with E = 21OGNm-2
, p = 7850kgm-3

, 

h = 0.006 and u = 0.3. Moreover, the frequency vector is from 0.1 to 9600 Hz and has 
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16384 sample points. 

9.3.1. A notch in an infinite beam 

An infinite beam with a notch is illustrated in Fig. 9.1. Using the model with a crack 

depth of y = 0.50, the point accelerance is calculated and shown in Fig. 9.2(a). The 

kIFFT is used to transform () p and determine the k-spectrum, which is presented in 

Fig.9.2(b). 

In Fig. 9.2(b), the first k-harmonic occurs when x ~ L. Estimating the location at the 

tip of the first peak, is was found that x = 0.998L and the resolution of the x variable is 

approximately 0.037 L. Although it is difficult to see from Fig. 9 .2(b), a very small 

k-harrnonic occurs at x = 2L and smaller ones occur at other multiples of L. 
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(a) Phase of the point accelerance. 
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5L12 

Fig. 9.2: The phase and k-spectrum of the point accelerance of an infinite beam with a 

notch. 
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9.3.2. A notch in a finite beam 

In a finite beam, waves reflect from the ends of the beam and any other discontinuities. 

Here, a finite beam with a single notch is considered and illustrated in Fig. 9.3, where Lo 

and ~ are the distances from the excitation to the ends of the beam and L j is the distance 

from the excitation to the notch. 

Lo L2 
~ ~ ~ ~ 

~ ~I ~ 

r 
w 

Free end Notch Free end 

Excitation 

Fig. 9.3: Beam model for estimating the location of a notch. 

The wavefield includes waves that travel in both directions and scatter from all 

discontinuities. Thus, one might expect that the k-harmonic components of the phase of 

the point FRF, and hence the peaks in the k-spectra, relate to distances from the 

excitation point to the discontinuities: Lo, Lj, ~; plus multiples of these values, nLo, 

nL j , nL2 (for n = 1,2, ... ,00); and sums of combined values and their multiples, e.g., 

Lo + L j , nL j +~, etc .. 

The peaks in the k-spectrum can be related to known scatterers and, in some cases, it 

may be possible locate the notch with a single measurement. However, more than one 

measurement is often needed because the k-spectrum only describes the distances to the 

scatterers and not the direction in which they lie, in respect to the excitation. 
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In order to estimate the location of the damage, a measurement is made and the 

k-spectrum recorded. Known scatterers (e.g., the ends of the beam, joints) are identified 

in the k-spectrum and the distance from the excitation to the damage might also be 

estimated. The point FRF and k-spectrum are then measured at a different location. By 

noting how the k-harmonics move in respect to where the point FRF is measured, it is 

possible to note whether the k-harmonic associated with the damage moves closer to or 

further away from the measurement, thus, making it possible to determine on which side 

of the excitation the damage lies. 

It is desirable to have a more systematic approach for locating the damage in the 

k-spectra. One of the difficult issues is identifying higher k-harmonics of the scatterers. 

Whether or not higher k-harmonics exist in the k-spectrum, over the distances that are of 

interest, depend on the specific problem. One method that might be used is illustrated in 

Fig. 9.4. 

At the top of Fig. 9.4, the beam is shown with a notch. Excitation position {I} is 

located to the left of the notch. Firstly, the point FRF and k-spectrum are measured for 

excitation position {I} (the peaks in the k-spectrum are illustrated in the figure). The 

mirror image of the k-spectrum is also plotted, using the excitation as the origin, as 

illustrated in Fig. 9.4. Plotting the k-spectrum and its mirror image in this way shows all 

the possible locations of the scatterers on each side of the excitation. If peaks occur 

outside the length of the beam, they can be ignored. 

Suppose that the excitation is moved to position {2} (see Fig. 9.4). The k-spectrum is 

plotted again, this time with excitation position {2} as the origin. The peaks that 

correspond to the locations of the scatterers should concur with the relative locations 

found when excitation position {l} was used. These peaks are ringed in Fig. 9.4. The 
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comparison between the k-spectrum for excitations positions {I} and {2} show that the 

notch is to the right of the excitation. 

Excitation {2} Excitation {I } 

\ / I7I-N_o_t_ch __ .-.;!;B~e;;:;:,am~--l End 
t End 
, 

, ........... Mirror image ............. ·· .. ·································i···············[ , ..................................... , ............................................... k -spectrum I .. · ........ · .. · 

I~ ! f' I~ 
: : 

: l--
, . 
I 1 , ...... · .......... • .................... · .. · .................................... ·1 .... 1· .......... • ............................ , ................. , , ........ · .... · .... • .......... ·1· .... ' .... 1 .......... · .................................. · ............................................................ .. 

For Excitation {I } 
, , , , 

, , 
I : 
I : 

I I I I· 

L ---------__ L ,:-------,J, ---- -- ___ L~ _____________ -___ ------J -----
For Excitation {2l End Notch End 

Fig. 9.4: Estimating damage location using the k-spectrum of the phase of the point FRF. 

The example shown in Fig.9.4 illustrates a systematic approach to locating damage. In 

practice, the peaks differ in magnitude and higher k-harmonics can occur. Both these 

factors can make the identification of the scatterers more difficult. 
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9.3.2.1. Numerical example 

The damaged finite beam in Fig. 9.5 is modelled using TBT, with the properties 

E = 21OGNm-2
, p = 7850, h = 0.006 and'U = 0.3. In addition, the total length of the 

beam is L = 6m and the notch is modelled using a lumped spring with a depth of 

y = 0.50. The location of the notch and excitations, relative to the left-hand end of the 

beam, are shown in Fig. 9.5, where the notch is at x = 3m and excitations positions {I} 

and {2} are at x = 2.50m and 2.25m, respectively. The distance between excitations 

positions {1} and {2} is L' = 0.25m. 

The magnitude and phase of the point accelerance, for excitation position {I}, are 

presented in Fig. 9.6. This result shows how the notch causes changes in the resonance 

frequencies and the occurrence of new resonances in the FRF for the damaged case. It 

should be further added that this example is noise free. 

The k-spectrum is calculated from the phase of the point accelerance for excitation 

positions {1} and {2}. As described in the previous subsection, the k-spectra are plotted 

along with their mirror images, with the origin at the excitation and this is shown in 

Fig. 9.7. The vertical lines in the plot show the k-harmonics that remain in the same 

place when the excitation is moved. This result shows that the notch is to the right of 

both excitations. The location of the notch is estimated, with good accuracy, as 

x = 2.99m for both excitations. 
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Fig. 9.5: A damaged finite beam. 
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Fig. 9.6: Point accelerance of a finite beam: (-), undamaged; (--), damaged (for which 

y = 0.50). 
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Fig. 9.7: k-spectra for a beam with one crack: (a), excitation position {1}; (b), excitation 

position {2}. Other peaks: (i) the mirror image of the notch k-harmonic; (ii) the mirror image of the left 

end k-harmonic; (iii) k-harmonic associated with the distance to the notch plus the distance to the left end. 

9.3.3. A finite beam with two notches 

Given that reflections from each scatterer in the beam can result in peaks in the 

k-spectrum, one might expect that peaks will occur in the event that the beam has 

multiple notches. The following example is used to show that the k-spectrum might be 
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used for locating two notches. 

Fig. 9.8 shows a model of a beam with two notches. This example uses the same 

material properties as the example in § 9.3.2.1. Again, a lumped-spring is used to model 

both notches which are of depth r = 0.50. Fig. 9.8 details the locations of the excitations 

and the notches, where the only difference between this and the example in § 9.3.2.1 is 

the second notch at x = 4m. 

The k-spectra for each excitation are shown in Fig. 9.9. Both notches are predicted to 

be to the right of the excitations and the notch locations are estimated as x = 2.99m, for 

the first notch, and x = 3.99m for the second notch. This result shows that both notches 

can be located with a good degree of accuracy. 
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Fig. 9.8: A finite beam with two notches. 
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Fig. 9.9: k-spectra for a beam with two notches: (a), excitation position {l}; (b), 

excitation position {2}. Other peaks: (i) the mirror image of crack 2 k-harmonic; (ii) the mirror image 

of notch 1 k-harmonic; (iii) the mirror image of the left end k-harmonic; (iv) k-harmonic associated with 

the distance to notch 2 plus the distance to the left end. 

9.4. Experimental results 

The point accelerance was measured on each of the experimental slotted beam 

specimens described in chapter 6, in which slots were cut into the beams and the beams 

were tested with each end placed in sand. For each specimen, the kIFFT was used to 

calculate the k-spectra from the phase. The location of the slot in each specimen was 
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estimated from the k-spectrum and the results are presented in this section. 

The point accelerance was measured by placing an accelerometer at a point on the 

centre-line of the beam and an instrumented hammer was used to excite the beam at the 

same point but on the opposite side of the beam. Fig. 9.10 shows the point accelerance 

measured on the specimen with y = 0.55. In this result, the measured phase has a D.C. 

offset that appears to be roughly constant over the range keh = 0.05 to keh = 0.40. At low 

wavenumbers, when keh < 0.05, the phase changes erratically. The coherence between 

the force input and the response was much less than 1 in this region, and it is thought that 

a poor signal to noise ratio (particularly at anti-resonances) may cause these errors. 

-
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Fig. 9.10: Point accelerance measured on the slotted beam with y = 0.55. 

Including the portion of the phase below keh = 0.05 in the calculation of the 

k-spectrum affects the result. Fig. 9.11 shows two k-spectra for the specimen with 
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y = 0.55, that have been derved from the result shown in Fig. 9.10. In one of the 

k-spectra, the kIFFT was applied over the range keh = 0 to keh = 0.50. In the second 

result, the k-spectrum was calculated for the range keh = 0.05 to keh = 0.50. By not 

including the errors, the noise floor of the k-spectrum is lowered. Given that the 

magnitudes of the peaks in the k-spectrum are related to the size of the reflection 

coefficients of the scatterers, it may be more difficult to locate smaller scatterers (e.g. 

small cracks) if the noise floor in the k-spectrum is of a similar magnitude. Also in 

Fig. 9.11, it is noted that at very low values of x there appears a large peak. This is 

thought to result from the trend seen in the measured phase at higher wavenumbers. 
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Fig. 9.11: The k-spectra of a slotted beam specimen with 'Y = 0.50:(--), calculated over 

the range keh = 0 to keh = 0.55; (-), calculated over the range keh = 0.05 to keh = 0.50. 
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The peaks in Fig. 9.11 indicate the locations of the scatterers. The peak at x ~ I.50m 

represents one end of the beam, the next peak represents the slot and is at x ~ 1.68m and 

the peak at x ~ 4.58m is the other end of the beam. The actual location of the slot is 

x = 1.64m and the accuracy of the location estimates are determined by the resolution of 

the x variable, which is approximately 5cm for this result. 

The results measured on the specimens with y = 0.22 to y = 0.62 were processed 

using the kIFFT and the k-spectrum was used to estimate the locations of the slots. The 

results are given in Table. 9.1. 

y actual (m) estimate (m) 

0.22 1.510 1.570 

0.34 1.530 1.471 

0.39 1.550 1.630 

0.50 1.530 1.579 

0.55 1.640 1.680 

0.62 1.475 1.496 

Table 9.1: Actual and estimated slot locations. 

For these results, the location of the slot was known. However, when the location of 

the slot is unknown it can be located by plotting the mirror image of the k-spectrum, as 

was explained in § 9.3.2.1 and 9.3.3. As an example, this method was implemented on 

the specimen with y = 0.50. Two k-spectra for this specimen are shown in Fig. 9.12. The 

first excitation is located at 1.07m from the slot and the second is at 0.77m. The 
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estimates from the k-spectra are 1.08m and 0.79m, respectively. From the plots of the 

k-spectra, the slot is correctly predicted as being to the right of both excitations. 
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Fig. 9.12: k-spectra for the specimen with y = 0.50: (a), excitation at 1.07m from the 

slot; (b), excitation at 0.77m from the slot. Other peaks: (i) the mirror image of the slot 

k-harmonic; (ii) k-harmonics associated with the trend in the data; (iii) the mirror image of the left end 

k-harmonic; (iv) k-harmonic associated with the distance to the slot plus the distance to the left end. 

9.5. Summary 

In this chapter, it was shown that discontinuities can be located from the phase of the 

measured point FRF. The phase of the point FRF, as a function of wavenumber, 

comprises many modulating components that relate to the distances from the excitation 

192 



to any scatterers in the beam. By applying the kIFFT to the phase, these distances can be 

estimated from the peaks in the k-spectrum. 

The magnitude of the peaks in the k-spectrum depend on the reflection coefficient of 

that particular scatterer. Therefore, it is easier to locate large damage. Small 

notches/slots have small peaks in the k-spectra and estimating their location can be more 

difficult if there is a significant amount of noise present in the measurement. 

The location of a peak in the k-spectrum gives the distance from the excitation to the 

scatterer but does not give information in regards to on which side of the excitation the 

scatterer lies. This must be deduced from the locations of known scatterers, such as the 

ends of the beam, and it may be necessary to make further measurements, moving the 

excitation and sensor to other locations, in order to estimate the location of the damage. 

The numerical and experimental results given here show that the method can be used 

to show the existence of a slot and estimate its location. The accuracy of the estimates 

depend on the resolution of the spatial variable which is defined by the frequency range 

of the measurement. Increasing this range, as in chapter 8, can improve the resolution. 
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10. Further work and concluding 
remarks 

In this final chapter, the main outcomes of the thesis are discussed and suggestions are 

made for possible improvements and further work. 

10.1. Outcomes 

In this thesis, the use of wave scattering for detection of notches/slots in beams has been 

considered. In summary, the main contributions are: 

• A method for combining FE and wave models (FESE) has been used to estimate 

the scattering coefficients of a notch or slot in a beam. This model provides a more 

detailed description of the dynamic properties of the damage. The numerical 

results show the significance of wave mode conversion at increased notch or slot 

depths and frequency. The FESE modelling method, as applied here, can be used 

to estimate scattering coefficients of other types of discontinuity, which might have 

application in other areas of structural analysis. 

• A slot was cut into a beam and its scattering coefficients were measured. The 

experimental results for a number of specimens with different slot depths are 

given. The measured reflection coefficient might be used to signify the existence 

of a damage. 

• By comparing the measured reflection coefficients to the FESE models, it was 

shown that the depth of the slot can be estimated. This is dependent on the damage 

model used and the correct estimation of the wavenumber and the material 
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properties. 

• It was also shown that the location of the slot can be estimated from the measured 

reflection coefficients. This is accomplished through application of the inverse 

Fourier transform from the wavenumber to spatial domains. This method is 

applicable to other types of discontinuity. 

• Finally, in addition to the previous point, a method for estimating the location of a 

slot from a measurement of the point FRF is given. This method is quick and 

straightforward and can be used to signify the existence of damage as well as 

estimate its location. In this method the locations of other discontinuities in the 

beam, such as boundaries, are found also. 

Using the wave method for damage detection has a number of advantages: 

• it can be used to show the existence and location of damage and may give an 

estimate of the extent of the damage; 

• it is useful for remote sensing of damage; and 

• the experimental methods are well-known and would not necessarily require a 

skilled operator for use. 

Equally, there are a number of important limitations, which might be addressed in further 

work: 

• smaller slots have smaller reflection coefficients; 

• experimental error and noise makes measuring small damage difficult, at low 

frequencies in particular; 
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• to estimate the reflection coefficients, the wavenumber of the beam must be 

known; and 

• strong reflectors other than the damage can cause conditioning problems, which 

affect the estimates of the reflection coefficient. 

10.2. Further work 

10.2.1. Improvements 

In certain areas the methods described in this thesis can be improved. In the FESE 

model, the reflections at the interface boundary between the FE and SE models is a 

concern when the reflection coefficient of a discontinuity is small. The discontinuity at 

the interface is due to the fact that the models are different but the constraints that are 

used assume that the models have equivalent stress distributions. It may be possible to 

improve the assembly procedure by using polynomial functions to describe the 

constraints and find the best fit of the nodes on the FE interface boundary to those on the 

SE models. This might be optimised by minimising the reflection coefficient of the 

boundary. 

Experimental error and noise is a major issue and is very important when trying to 

measure small scale damage. Some of the effects of errors are illustrated in chapters 5 to 

7, however, these only give examples. In further work, it would be useful to establish the 

sensitivities of the measured scattering coefficients and wavenumber to experimental 

error. This may highlight the important errors that affect the accuracy of the damage 

detection and suggest further improvements to the method. 
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10.2.2. Damage identification 

The problem of identifying damage has not been considered here. However, one might 

be able to identify the damage from the scattering coefficients. The scattering coefficients 

have two important features: phase and magnitude. Therefore, it may be possible to treat 

the scattering coefficients as a form of "spectral ident" which can be compared to a 

database of other common discontinuities in order to predict its type. Given that a major 

component of the phase of the measured reflection is related to the location of the 

damage, identification might be better based on the power scattering coefficients. 

It is possible that two types of discontinuity have similar scattering coefficients over 

the same frequency range. For example, it was suggested in [37] that the reflection 

coefficient of a notch resembles that of a point mass. If this is the case, the identification 

procedure is more complicated as a number of possibilities may suggest themselves for a 

particular result. However, it may be possible to rule out certain types of discontinuity. 

Another approach to identification might be to combine the wave method given here 

with other damage detection methods such as modal and FRF methods. In each of the 

methods, damage affects the parameters in different ways and, as such, combining this 

knowledge might lead to better predictions of the damage type. 

10.2.3. Sensor/actuator technologies 

To apply the wave method to autonomous SHM requires actuators and sensors suitable 

for when the structure is in use. The methods described in this thesis use hammer 

excitation and standard (though small) accelerometers. Sensor/actuator technologies 

such as piezo actuators might be mounted on the structure to make measurements, and 

further work should consider the most appropriate technologies to implement the 
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experimental methods considered in the previous chapters. 

10.2.4. Extension to non-uniform beams and two dimensional problems 

It is desirable that the wave method can be used to detect damage in more general 

structures such as a non-uniform beams and plates. In theory, if the wavenumber is 

known for a non-uniform beam, it may be possible to apply the same methods as given 

here. 

It is not obvious how the scattering methods described herein can be adapted and used 

for damage detection in two dimensions. Clearly, damage in plates will also scatter the 

waves that travel through the plate. Damage detection using the wave method in two 

dimensions poses a number of problems, in particular that of the the direction of wave 

propagation. 

10.3. Concluding remarks 

The results in this thesis have shown that wave methods can be used to predict the 

existence of a slot and estimate its location and depth with a good degree of accuracy. It 

is more difficult to measure smaller slots given the size of experimental errors in 

comparison to the magnitude of the reflection coefficients. The methods work best when 

the reflection coefficients are large, i.e., at high frequencies or with large slot depths. 
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A. Appendix 

A.I. Calculation of Timoshenko wavenumbers 

Eqs. 3.14, 3.15 and 3.19 are combined to give 

r k2GAK - pAW2 

l ikGAK 

ikGAK j { V } 

plw2 _ eEl _ GAK if/ = 0 

(A.l) 

The wavenumbers are found from the determinant of the matrix in Eq. Al and are the 

roots of 

(A2) 

where ko = (;J ~p/ E is the longitudinal wave number, ks = W ~p/GK is the shear wave 

number and kb = ~w2pA/ El is the Euler-Bernoulli wave number. 

A.2. Time averaged wave power 

Table Al gives the time averaged power of waves for each rod and beam model [67]. 

The time averaged power is quoted in terms of the phase and group velocity, the values 

of which can be found in Table A2 [67]. 
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Model Time Averaged Wave Power 

LRT 

LVRT 

EBT 

TBT 

Table A.I: Time averaged wave power. 

Model Phase Velocity Group velocity 

LRT Co = -vEjp CgO = Co 

LVRT 

BBT Cgb = 2Cb 

TBT C - CbVi 
t - ~(oz+/J2)+ y(oZ-f32)Z+4 

Table A.2: Phase and group velocities for rods and beams. 

200 



References 

[1] Staszewski, W., Boller, C. and Tomlinson, G., Health Monitoring of Aerospace 

Structures: Smart Sensor Technologies and Signal Processing, Wiley, u.K., 2004. 

[2] Farrar, c., Doebling, S. and Nix, D., Vibration based structural damage 

identification, Philosophical Transactions of the Royal Society of London A, 

Vol. 359,pp. 131-149,2001. 

[3] Worden, K., Manson, G. and Allman, D., Experimental validation of a structural 

health monitoring methodology: Part I. Novelty detection on a laboratory 

structure, Journal of Sound and Vibration, Vol. 259, No. (2), pp. 323-343,2003. 

[4] P.F. Rizos, N. A. and Dimarogonas, A., Identification of crack location and 

magnitude in a cantilever beam from the vibration modes, Journal of Sound and 

Vibration, Vol. 138, No. (3), pp. 381-388, 1990. 

[5] Ostachowicz, W. and Krawczuk, M., Analysis of the effect of cracks on the 

natural frequencies of a cantilever beam, Journal of Sound and Vibration, Vol. 150, 

No. (2), pp. 191-201, 1991. 

[6] Doyle, J., Wave Propagation in Structures: Spectral Analysis Using Fast Discrete 

Fourier Transforms, Springer, 2nd edn., 1997. 

201 



[7] Dimarogonas, A., Vibration of cracked structures: A state of the art review, 

Engineering Fracture Mechanics, Vol. 55, No.5, pp. 831-857, 1996. 

[8] Panteliou, S. D., Chondros, T. G., Argyrakis, V. C. and Dimarogonas, A. D., 

Damping factor as an indicator of crack severity, Journal of Sound and Vibration, 

Vol. 241, No.2, pp. 235-245, 2001. 

[9] Chu, Y. and Shen, M.-H., Analysis offorced bilinear oscillators and the 

application to cracked beam dynamics, AIAA, Vol. 30, No. (10), pp. 2512-2519, 

1992. 

[10] Irwin, G., Analysis of stresses and strains near the end of a crack transversing 

plate, Journal of Applied Mechanics - Transactions of the ASME, Vol. 24, 

pp. 361-364, 1957. 

[11] Tada, H., Paris, P. and Irwin, G., The Stress Analysis of Cracks Handbook, 

American Society of Mechanical Engineers, 3rd edn., 2000. 

[12] Rivola, A. and White, P., Bispectral analysis of the bilinear oscillator with 

application to the detection offatigue cracks, Journal of Sound and Vibration, 

Vol. 216, No. (5), pp. 889-910, 1998. 

[13] Vanhoenacker, K., Schoukens, J., Guillaume, P. and Vanlanduit, S., The use of 

multisine excitations to characterise damage in structures, Mechanical Systems 

and Signal Processing, Vol. 18, pp. 43-57, 2004. 

[14] Qain, G.-L., Gu, S.-N. and Jiang, J.-S., The dynamic behaviour and crack 

detection of a beam with crack, Journal of Sound and Vibration, Vol. l38, No. (2), 

pp.233-243,1990. 

202 



[15] Mei, C., Karpenko, Y., Moody, S. and Allen, D., Analytical approach to free and 

forced vibrations of axially loaded cracked Timoshenko beams, Journal of Sound 

and Vibration, Vol. 291, pp. 1041-1060,2006. 

[16] Fernndez-Sez, J. and Navarro, c., Fundamentalfrequency of cracked beams in 

bending vibrations: an analytical approach, Journal of Sound and Vibration 256, , 

No. (1), pp. 17-31,2002. 

[17] RoutoIo, R. and Surace, C., Natural frequencies of a bar with multiple cracks, 

Journal of Sound and Vibration, Vol. 272, pp. 301-316, 2004. 

[18] Sinha, J., FriswelI, M. and Edwards, S., Simplified models for the location of 

cracks in beam structures using measured vibration data, Journal of Sound and 

Vibration, Vol. 251, No.1, pp. 13-38,2002. 

[19] Cawley, P. and Adams, R., The location of defects in structures from measurements 

of natural frequencies, Journal of Strain Analysis, Vol. 14, pp. 49-57, 1979. 

[20] Thyagarajan, S., Schulz, M., Pai, P. and Chung, J., Detecting structural damage 

using frequency response functions, Journal of Sound and Vibration, Vol. 210, No. 

0), pp. 162-170, 1998. 

[21] Chondros, T. G., Dimarogonas, A. D. and Yao, J., Vibration of a beam with a 

breathing crack, Journal of Sound and Vibration, Vol. 239, No.1, pp. 57-67,2001. 

[22] Gopalakrishnan, S. and Doyle, J., Super spectral-elements for wave propagation 

in structures with local non-uniformities, Computer methods in applied mechanics 

and engineering, Vol. 121, pp. 77-90, 1995. 

203 



[23] Mahmood, A., Popplewell, N. and Shah, A., Scattering of elastic waves by cracks 

in steel pipes, Vol. VIn International conference on recent advances in structural 

dynamics of Southampton, UK, 14-16 July 2003,2003. 

[24] Lakshmanan, K. and Pines, D., Modelling damage in rotorcraftfiexbeams using 

wave mechanics, Smart materials and structures, Vol. 6, pp. 383-392, 1997. 

[25] Ewins, D., Modal testing: Theory and practice, Research Studies Press, 1984. 

[26] Lele, S. and Maiti, S., Modelling of transverse vibration ofshort beamsfor crack 

detection and measurement of crack extension, Journal of Sound and Vibration, 

Vol. 257, No. (3), pp. 559-583, 2002. 

[27] Nandwana, B. and Maiti, S., Detection of the location and size of a crack in 

stepped cantilever beams based on measurements of natural frequencies, Journal of 

Sound and Vibration, Vol. 203, No. (3), pp. 435-446, 1997. 

[28] Alvandi, A. and Cremona, C., Assessment of vibration-based damage 

identification techniques, Journal of Sound and Vibration, Vol. 192, pp. 179-202, 

2006. 

[29] Baminos, Y., Douka, E. and Trochidis, A., Crack identification in beam structures 

using mechanical impedance, Journal of Sound and Vibration, Vol. 256, No. (2), 

pp.287-297,2002. 

[30] Lee, U. and Shin, J., A frequency-domain method of structural damage 

identificationformulatedfrom the dynamic stiffness method, Journal of Sound and 

Vibration, Vol. 257, No. (4), pp. 615-634, 2002. 

204 



[31] Lui, D., Gurgeni, H. and Veidt, M., Crack detection in follow section structures 

through coupled response measurements, Journal of Sound and Vibration, Vol. 261, 

pp. 17-29, 2003. 

[32] Owolabi, G., Swamidas, A. and Seshadri, R., Crack detection using changes in 

frequencies and amplitudes offrequency response junctions, Journal of Sound and 

Vibration, Vol. 265, pp. 1-22,2003. 

[33] Douka, E., Bamnios, G. and Trochidis, A., A methodfor determining the location 

and depth of cracks in double-cracked beams, Applied Acoustics, Vol. 65, 

pp.997-1008,2004. 

[34] Dharmaraju, N. and Sinha, J. K., Some comments on the use of anti resonance for 

crack identification in beams, Journal of Sound and Vibration, Vol. 286, 

pp.669-671,2005. 

[35] Palacz, M. and Krawczuk, M., Analysis of longitudinal wave propagation in a 

cracked rod by the spectral element method, Computers and structures, Vol. 80, 

pp.1809-1816,2002. 

[36] Palacz, M., Krawczuk, M. and Ostachowicz, W., The dynamic analysis of a 

cracked Timoshenko beam by the spectral element method, Journal of Sound and 

Vibration, Vol. 264, pp. 1139-1153,2003. 

[37] Rousseau, M., Waters, T. and Mace, B., An audio-frequency wave technique for 

damage detection in beams, Proceedings of the 5th international conference on 

damage assessment in structures (DAMAS 2003), Southampton, UK, 1-3 July, pp. 

433-442, 2003. 

205 



[38] Wang, C. and Rose, L., Wave reflection and transmission in beams containing 

delamination and inhomogeneity, Journal of Sound and Vibration, Vol. 264, 

pp.851-872,2003. 

[39] Su, Z., Ye, L. and Lu, Y., Guided Lamb waves Jor identification oj damage in 

composite structures: A review, Journal of Sound and Vibration, , No. 295, 

pp. 753-780, 2006. 

[40] Viktorov, I., Rayleigh and Lamb Waves, Plenum Press, 1970. 

[41] Cawley, P. and Alleyne, D., The use oj Lamb waves for the long range inspection 

oj large structures, Ultrasonics, ,No. 34, pp. 287-290, 1996. 

[42] Cawley, P. and Alleyne, D., The interaction oj Lamb waves with dejects, IEEE 

Trans. on Ultrasonics, Ferroelectrics and Frequency Control, ,No. 39, pp. 381-397, 

1992. 

[43] Hurlebaus, S., Niethammer, M., Jacobs, L. and Valle, c., Automated 

methodology to locate notches with Lamb waves, Acoustics Research Letters 

Online, , No.2, pp. 97-102, 2001. 

[44] Cracknell, A., Ultrasonics, Wykeham Publications, 1980. 

[45] Wang, C., Rose, J. and Chang, F., A synthetic time-reversal imaging methodJor 

structural health monitoring, Smart Material and Structures, Vol. 13, pp. 415-423, 

2004. 

[46] Lin, X. and Yuan, F., Detection oj multiple damages by prestack reverse-time 

migration, AIAA Journal, Vol. Vol. 39, No. No.Il, pp. 2206-2215,2001. 

206 



[47] Samuel, P. and Pines, D., A review of vibration-based techniques for helicopter 

transmission diagnostics, Journal of sound and vibration, ,No. 282, pp. 475-508, 

2005. 

[48] Kim, H. and Melhem, H., Damage detection of structures by wavelet analysis, 

Engineering Structures, Vol. 26, pp. 347-362,2004. 

[49] Chang, C.-C. and Chen, L.-W., Vibration damage detection of a Timoshenko beam 

by spatial wavelet based approach, Applied Acoustics, Vol. 64, pp. 1217-1240, 

2003. 

[50] Worden, K., Manson, G. and FielIer, N., Damage detection using outlier analysis, 

Journal of Sound and Vibration, Vol. 229, No. (3), pp. 647-667,2000. 

[51] Hadjileontiadis, L. J., Douka, E. and Trochidis, A., Crack detection in beams 

using kurtosis, Computers and structures, Vol. 83, pp. 909-919,2005. 

[52] Graff, K., Wave Motion in Elastic Solids, Dover, 1991. 

[53] Timoshenko, S., On the correction for shear of the differential equation for 

transverse vibrations of prismatic bars, Philosophy Magazine, pp. 744-746, 1921. 

[54] Cowper, G., The shear coefficient in Timoshenko's beam theory, Journal of 

Applied Mechanics, ASME, Vol. 33, No.2, pp. 335-340, 1966. 

[55] Abbas, B. and Thomas, J., The secondfrequency spectrum ofTimoshenko beams, 

Journal of Sound and Vibration, Vol. 51, No.1, pp. 123-137, 1977. 

[56] Mace, B., Wave reflection and transmission in beams, Journal of Sound and 

Vibration, Vol. 97, No. (2), pp. 237-246, 1984. 

207 



[57] Petyt, M., Introduction to finite element analysis, Cambridge University Press, 

1990. 

[58] Fahy, F., Sound and Structural Vibration, Academic Press, 1995. 

[59] Mace, B., Jones, R. and Harland, N., Wave transmission through structural 

inserts, Journal of the Acoustic Society of America, Vol. 109, No.4, 

pp. 1417-1421,2001. 

[60] Timoshenko, S. and Goodier, J., Theory of Elasticity, McGraw-Hill, New York, 

1970. 

[61] Mace, B. and Halkyard, C., Time domain estimation of response and intensity in 

beams using wave decomposition and reconstruction, Journal of Sound and 

Vibration, Vol. 230, No. (3), pp. 561-589, 2000. 

[62] Halkyard, C. and Mace, B., Structural intensity in beams - waves, transducer 

systems and the conditioning problem, Journal of Sound and Vibration, Vol. 185, 

No.2, pp. 279-298, 1995. 

[63] Bendat, L. and Piersol, J., Analysis of Random Data, 1974. 

[64] Oppenheim, A. and Schafer, R., Digital Signal Processing, Prentice Hall, 1975. 

[65] KhaliIi, N. and Hammond, J., Application of cepstral techniques for the 

determination of reflection coefficients for dispersive systems - 1. Theory and 

numerical results, Mechanical systems and signal processing, Vol. 7, No.5, 

pp.425-435,1993. 

[66] KhaliIi, N. and Hammond, J., Application of cepstral techniques for the 

determination of reflection coefficients for dispersive systems - 2. Comparison 

208 



between theory and experiment, Mechanical systems and signal processing, Vol. 7, 

l'lo. 5, pp. 437-449, 1993. 

[67] Cremer, L., Heckl, M. and Ungar, E., Structure Borne Sound, Springer-Verlag, 

1973. 

209 


