
UNIVERSITY OF SOUTHAMPTON

Generalized Low-Density

Parity-Check Codes

by

Fang-Chun Kuo

A thesis submitted in partial fulfillment for the

degree of Master of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

August 2006

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Master of Philosophy

by Fang-Chun Kuo

An evolution of Gallager's Low-Density Parity-Check (LDPC) codes was first

introduced by Tanner in 1981, namely Generalized Low-Density Parity-Check

(GLDPC) codes, and then further developed by Boutros et at. as well as by

Lentmaier and Zigangirov. It has been shown that Hamming-code based GLDPC

codes are asymptotically good in the sense of minimum distance and exhibit an

excellent performance over both AWGN and Rayleigh channels. Because of the

regular parallel structure of the GLDPC decoder, it is amenable to systolic array

based practical integrated circuit (IC) implementations.

This thesis is devoted to the characterization of iterative symbol based hard

decision aided decoding algorithm designed for GLDPC codes constructed over

GF(q). We proposed a novel symbol-flipping based decoding algorithm, designed

for GLDPC codes defined over non-binary Galois fields using RS constituent codes.

Seven vote rules were proposed and the suggested optimal voting rule was deemed

to be E = 3, V = 0, and e = F = 1.5 where larger values indicates unreliable

symbols and smaller values indicates more reliable symbols. It was demonstrated

by our simulations that our symbol-flipping decoding algorithm can be success­

fully used for decoding nonbinary GLDPC codes constructed from RS constituent

codes. The simulation results also demonstrated that GLDPC codes defined over

GF(q) have the potential of outperforming similar-rate binary constituent codes.

Contents

Abstract

1 Introduction
1.1 Publications Supporting the Thesis

List of Figures

2 Generalized Low-Density Parity-Check Codes
2.1 The Structure of GLDPC Codes

2.1.1 Description of the Parity-Check Matrix .
2.1.1.1 Classic LDPC codes
2.1.1.2 GLDPC codes .. .

2.1.2 Graphical Concept
2.1.2.1 Classic LDPC codes
2.1.2.2 GLDPC codes ...

i

1

3

1

5
5
5
5
7
9

9

11
2.2 Coding Rate. 12
2.3 A Special Case: GLDPC Codes Having J = 2 Levels 13
2.4 GLDPC Encoding. 14
2.5 GLDPC Soft-In/Soft-Out Decoding 17

2.5.1 Introduction................... 17
2.5.2 The Constituent Decoder Using Log-MAP Algorithm 18
2.5.3 Iterative SISO Decoding Algorithm for J = 2-Level GLDPC

Codes . 19
2.6 Decoding Example of the binary J = 2-level GLDPC code 22
2.7 Simulation Results

2.7.1 Effect of the Number of Iterations .. .
2.7.2 Effect of the SISO Decoding Algorithm
2.7.3 Effect of Different Coding Rates
2.7.4 Effect of Different Codeword Lengths . .
2.7.5 Shortened Constituent Hamming Codes.

2.8 Conclusions .

24
25
33
37
40
44
47

3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 49
3.1 Introduction............................... 49

11

CONTENTS iii

3.2 Weighted Bit Flip Voting algorithm for Binary Hamming Code-
Based GLDPC codes . " 51

3.3 The Vote Pairs for Symbol-Flipping Based Non-Binary GLDPC De-
coding . 53

3.4 The Design of the Vote Weight 55
3.5 Symbol-Flipping Based Non-Binary GLDPC Decoding 60
3.6 Simulation Results 61

3.6.1 Effect of the Number of Iterations. 61
3.6.2 Effects of the GLDPC Block-length 65

3.7

3.6.3 Effects of the RS constituent Code
3.6.4 Effect of Different Galois Fields
Conclusion .

4 Conclusions

Bibliography

69
72
74

76

78

Chapter 1

Introduction

The appearance of Shannon's landmark paper [1 J published in 1948 marks the

beginning of two classic fields, Information Theory and Coding Theory. Inspired

by Hamming [2J, coding theorists have developed numerous coding schemes in or­

der to achieve the performance limit predicted by Shannon while maintaining a

reasonable complexity. Two main types of codes namely block codes and convolu­

tion codes [3J have been developed. Following Hamming's single error correcting

code [2J, the family of Bose-Chaudhuri-Hocquenghem (BCH) codes [4, 5, 6J hav­

ing multiple error correction capability has been developed. Another classic block

coding family is represented by that of Reed Solomon (RS) codes [7], which are

the nonbinary codes. Another important coding structure was proposed by Forney

who introduced the notion of Concatenated Codes [8J and following this innova­

tion further diverse alternative solutions have been proposed, such as generalized

concatenated codes [9], product codes [IOJ.

It was the work of Berrou et at. [11 J on turbo codes that rekindled the interests of

coding theorists. The success of turbo codes is a benefit of the associated iterative

decoding algorithm. However, the idea of iterative decoding is closely linked to the

concept of the sum-product algorithm often used for Low-Density Parity-Check

(LDPC) codes [12, 13J. LDPC codes constitute a class of linear block codes,

which were first proposed by Gallager in his 1960 doctoral dissertation [12J and

has scarcely been exploited in practice until their rediscovery by Spielman et al. [14J

and Mackay et at. [15, 16J. One notable exception is the important contribution

of Tanner in 1981 [17J in which Tanner generalized LDPC codes and introduced a

graphical representation of LDPC codes, now often referred to as Tanner graphs.

1

Chapter 1 Introduction 2

Following the important contribution of Wiberg, Loeliger and Kotter [18, 19],

in recent years graph theory has also been gaining more interest in the coding

community [20, 21, 22, 23, 24, 25, 26, 27]. Furthermore, Kschischang has shown

in [22] that a single graphical model based framework that is capable of presenting

compound codes such as turbo codes [11], serially concatenated codes [28, 29],

Gallager's LDPC codes [12] as well as product codes [10] in a identical manner. It

has also been demonstrated in [20] that iterative turbo decoding, Pearl's "belief

propagation" algorithm [30] and the sum-product algorithm were found to be

similar techniques.

Based on the concept of the graphical representation of error control codes, Tan­

ner [17] introduced the concept of Generalized Low-Density Parity-Check (GLDPC)

codes, which may be viewed as an evolution of classic LDPC codes [12]. Then

Hamming-code based GLDPC codes were further explored by Boutros et al. [31,

32] as well as by Lentmaier and Zigangirov [33]. GLDPC codes are constructed

by replacing each single parity check of regular LDPC codes with the parity check

matrix of a small linear block code referred to as the constituent code. It has

been shown that Hamming-code based GLDPC codes are asymptotically good in

the sense of minimum distance and exhibit an excellent performance over both

AWGN and Rayleigh channels [31, 32, 33]. Pothier [34] also demonstrated that

GLDPC codes can be considered as a generalization of product codes and as a

benefit of their higher flexibility in terms of the selection of code length, GLPDC

codes constitute a promising design alternative to replace product codes in many

applications, such as digital audio and TV broadcasting, high speed packet data

transmission and deep space applications. Furthermore, the GLDPC decoder of a

Hamming-code based scheme has a regular parallel structure, which renders them

amenable to systolic array based practical integrated circuit (IC) implementations.

It has been shown in [31] that turbo codes can be described as a particular case

of GLDPC codes, where the interleaver acts only on information symbols. There­

fore, the iterative 8180 decoding algorithm originally applied to turbo codes can

be also applied to GLDPC codes. The trellis-based MAP algorithm [35] was used

in [31, 32] for decoding GLDPC codes, whereas the Johansson-Zigangirov A Pos­

teriori Probability (APP) algorithm [36], which operates with the aid of a single

forward recursion walking its way through a syndrome trellis was used in [33]. A

range of further sub-optimal decoding algorithms designed for GLDPC codes are

exemplified by the Chase algorithm of [37] which was invoked in [38], Kaneko's

Chapter 1 Introduction 3

algrithm of [39] which was used in [40] and the MAX-Log-MAP algorithm which

was employed in [41]. In addition to the above-mentioned soft decoding algo­

rithms, a less complex iterative hard-decision based decoding algorithm, Weighted

Bit Flip Voting (WBFV) algorithm, was proposed by Hirst and Honary [42] for

decoding binary Hamming constituent code based GLDPC codes.

This thesis is devoted to the characterization of iterative symbol based hard de­

coding algorithms designed for GLDPC codes constructed over GF(q), since there

is a paucity of results on GLDPC codes employing nonbinary constituent codes.

By contrast, binary constituent codes have more often been used for constructing

GLDPC codes [38, 40, 41, 42, 43, 44]. Moreover, perhaps the best known classic

codes are the maximum-minimum-distance nonbinary RS codes, which are used

in numerous standards, such as the Digital Audio Broadcast (DAB) and Digital

Video Broadcast (DVB) schemes or in Compact Disc (CD) players. It is therefore

worth investigating, how RS codes behave, when they are embedded in GLDPC

coding schemes. A particular further advantage of GLDPC codes is that their it­

erative decoding is based on the decoding of modest-complexity constituent codes,

hence the total decoding complexity may be expected to be modest.

The outline of the thesis is as follows. In Chapter 2, we introduce the GLDPC

codes' construction algorithm and the iterative Soft-In-Soft-Out decoding algo­

rithm with the aid of an example and briefly summarize a range of classic results.

A symbol-flipping based decoding algorithm, designed for GLDPC codes defined

over non-binary Galois fields was proposed in Chapter 3. The concept of the

WBFV decoding algorithm designed for binary Hamming code based GLDPC

codes is introduced first, since the symbol-flipping based decoding algorithm was

inspired by the WBFV algorithm. It is demonstrated that GLDPC codes defined

over G F(q) have the potential of outperforming similar-rate binary constituent

codes. Finally, Chapter 4 offers our concluding remarks.

1.1 Publications Supporting the Thesis

• R. Y. S. Tee, F. C. Kuo and L. Hanzo: Multilevel Generalized Low-Density

Parity-Check Codes, lEE Electr. Letters, 2nd of February, 2006, Vol. 42,

No.3, pp 167-168

Chapter 1 Introduction 4

• F-C. Kuo and L. Hanzo: Symbol-Flipping Based Decoding of Generalized

Low-Density Parity-Check Codes Constructed over GF(q), Proceedings and

CD ROM of IEEE WCNC 2006, 3-6 April, 2006, Las Vegas

• R. Y. S. Tee, F. C. Kuo and L. Hanzo: Generalized Low-Density Parity­

Check Coding Aided Multilevel Codes, CD ROM, IEEE VTC 2006 Spring

Chapter 2

Generalized Low-Density

Parity-Check Codes

2.1 The Structure of GLDPC Codes

In this section, the structure of GLDPC codes is introduced [34]. There are two

appealing ways of describing the structure of GLDPC codes. The first one is based

on the construction of the Parity Check Matrix (PCM), while the other is based

on the concept of Tanner graphs [17]. Since GLDPC codes may be regarded as an

evolution of classic LDPC codes [12], we will give an example of classic LDPC [12]

codes first and then extend the concept to GLDPC codes.

2.1.1 Description of the Parity-Check Matrix

2.1.1.1 Classic LDPC codes

Consider the example shown in Fig. 2.1, portraying the PCM H of size 9 x 12

of a classic R = KIN-rate LDPC (N, K) code [12] using the parameters of

N = 12, K = 3 and J = 3, where H is constructed by concatenating J = 3

submatrices, namely HI, H2 and H3. The three submatrices HI, H2 and H3 seen

in Fig. 2.1 are of dimension 3 x 12, which are the PCMs of the super-codes 1 C1, C2

and C3
, respectively, that are constructed from the Single Parity Check (SPC)

lSuper-code is proposed in [32], which is constituted by the direct concatenation of L = Njn
number of constituent codes.

5

Chapter 2 Generalized Low-Density Parity-Check Codes

Ho of SPC (4.3) code

E N= 12 ..
n=4-

HI l
l

0 0 0 1 1 0 1 0 0 1 0

0 0 1 0 0 0 1 0 1 1 0 0 N- K = 9
W

7t3 1 1 0 0 : 1 0 0 0 0 0 0 1
,

l
0 0 1 011 0 1 ° i O 1 0 0

, ,

H3 1 0 0 010 0 0 01 1 0 1 1
, ,

0 1 0 110 1 0 110 0 0 0

1=3 submatrices

Hi: PCM of a super- code C i . j= 1.2 •.. . ,1

Ho: PCM of a constituent code Co (n.n-I)

FIGURE 2.1: Parity-check matrix H of an R = K/N = 1/4-rate LDPC (12,3)
code having J = 3 levels, which uses the single parity check code SPC(4,3) as

its constituent code.

6

codes (n, n - 1). More explicitly, the first Parity-Check (PC) submatrix HI seen

in Fig. 2.1 is a block diagonal matrix having the matrix elements Ho along the

main diagonal of HI, which constitute the PCMs Ho of the SPC(n, n - 1) codes

associated with n = 4. Accordingly, each group of n = 4 bits constituting a fac­

tion of a codeword of the super-code C1 is only related to single SPC(4,3) code

rather than to several. Therefore, the super-code C1 is constituted by the direct

concatenation of L = N In = 3 number of SPC(4,3) codes, which are hence re­

ferred to as the constituent codes Co seen in the top third of Figure 2.1. Note

that in order to distinguish the super-codes and constituent codes, we use super­

script and subscript for super-codes and constituent codes, respectively, e.g. HI

is the PCM of the super-code C1 and Ho is the PCM of the constituent code

Co. All the other Parity-Check submatrices, namely H2 and H3 are formed by the

pseudo-random permutation of all the columns of the submatrix HI without inter­

leaving the elements ofthe columns. This operation is formulated as Hj = 7fj (HI)

for j = 2,3, explicitly indicating that the super-codes C2 , C3 are constructed by

random interleaving the super-code C1 as shown in Figure 2.2. Let us explain

Figures 2.1 and 2.2 further. As depicted in Figure 2.1, the pt and 2nd columns

Chapter 2 Generalized Low-Density Parity-Check Codes 7

CI
0 CI

I CI
2 CI

) CI
4 CI

5 CI
6 CI

7 CI
8 CI

9 ClIO CI
II

1 0 0 1 0 0 0 0 1 1 0 0

I TTz I
CI

8 CI
9 CI

4 CI
0 ClIO CI

I CI
5 CI

2 CI
6 CI

7 CI
) CI

II

1 1 0 1 0 0 0 0 0 0 1 0

I TI3
I
I

CI
4 CI

8 CI
0 CI

9 CI I C\o CI
2 C\I CI

5 CI
3 CI

6 CI
7

0 1 1 1 0 0 0 0 0 1 0 0

FIGURE 2.2: The interleavers 7f2 and 7f3 of Figure 2.1

of the PCM HI are randomly permuted to the 4th and 6th columns of the PCM

H2, respectively, therefore in Figure 2.2 the codeword bits CJ and Ci of code­

word vector C I are interleaved to the 4th and 6th positions of codeword vector C 2 ,

respectively. Furthermore, the codeword vectors C2
, (I, 1,0, 1,0,0,0,0,0,0, 1,0),

and C3 , (0, I, I, 1,0,0,0,0,0, I, 0, 0) which are formed by interleaving the codeword

vector C I
, (1,0,0, 1,0,0,0,0, I, 1,0,0) satisfy that C2. H2 = 0 and C3. H3 = O. As

seen in Figure 2.3, the codeword of LDPC C is the intersection, i.e. the common

symbols of the super-codes CI, C2 and C3 . More explicitly, the codeword C of the

LDPC (N, K) code should be checked by the PCM H, which is the concatenation

of the J = 3 PCMs of the super-codes CI, C2 and C3 , therefore we have

(2.1)

2.1.1.2 GLDPC codes

This example of a classic LDPC [12] code can be generalized for the sake of con­

structing GLDPC codes. The SPC (n, n - 1) code is used as the constituent code,

when constructing classic LDPC codes [12], while a more general class of (n, k)

block codes may be used as constituent codes, when constructing GLDPC codes.

Chapter 2 Generalized Low-Density Parity-Check Codes

FIGURE 2.3: LDPC codeword C is the intersection of the super-codes C1, C 2

and C3

PCM of constituent code C 0 (n.k)

n N ..--

n-
o

'------; - - - - -- - --

N-K

FIGURE 2.4: Parity-check matrix H of a GLDPC (N, K) code

8

The (n, k) constituent codesmay be binary, such as binary BCH codes [4 , 5, 6]

or LDPC codes [12, 13] as well as nonbinary BCH codes [4, 5, 6], Reed Solomon

codes [7] or nonbinary LDPC codes [45]. We observe by comparing Figures 2.1

and 2.4 that the matrix Ho now becomes of dimension (n - k) x n which is the

PCM of a constituent code Co(n , k) instead of dimension 1 x n. The first PC sub­

matrix HI of the super-code C1 portrayed in the top third of Figure 2.4 produces

the direct concatenation of N/n number of constituent codes Co(n , k) according

Chapter 2 Generalized Low-Density Parity-Check Codes 9

to [34J. Hence we have [34J
N/n

C1
= EBCo, (2.2)

1=1

where N is the codeword length of the GLDPC (N, K) code, n is the codeword

length of the constituent code Co(n, k) and EB represents the concatenation oper­

ation. Finally, in analogy to Figure 2.1 characterizing the same process for classic

LDPC codes, the PCM H of the GLDPC (N, K) code is constructed from the con­

catenation of the J number of PC submatrices (HI . .. HJ), which are the PCMs

of the super-codes (C1
... CJ), respectively. Thus, the codewords of a GLDPC

(N, K) code may be viewed as the intersection of the codewords of the J super­

codes [34J:

(2.3)

Accordingly, the codeword C of the GLDPC (N, K) code should be checked by all

the J PCMs of the super-codes (C1
••. CJ), therefore we have

C· Hj = 0, (2.4)

where j E {I··· J}. Furthermore, since the PC submatrices H 2 , ••• , H J are de­

rived by permuting the columns of the first PC submatrix HI without interleaving

the elements of the columns, the codewords of the super-codes Cj, j E {2.·· J}

are constituted by random permutations of the codewords of the super-code C1,

which is expressed as Cj = 7f'j (C1
), where 7f'j represents the corresponding symbol­

inter leaver.

2.1.2 Graphical Concept

2.1.2.1 Classic LDPC codes

Fig. 2.5 portrays the bipartite graph of the classic LDPC (12,3) code [12J defined

in Fig. 2.1. As shown in Fig. 2.5, the upper part contains N = 12 LDPC encoded

symbol nodes, while the lower part represents J x N/n = 3 . 12/4 = 9 SPC (4,3)

constituent code nodes. More explicitly, the 9 constituent codes are simple binary

SPC (4,3) codes. An edge between an LDPC encoded symbol node and a con­

stituent code node indicates that the corresponding symbol belongs to particular

constituent code. Therefore, a 12-symbol LDPC-encoded word seen at the top of

Chapter 2 Generalized Low-Density Parity-Check Codes

SPC(4,3)
constituent code

.. N=l2 LDPC-encoded symbol nodes

The clump of the
super-code C 1

..
The clump of the

super-code C2
The clump of the

super-code C 3

JN/n=9 constituent nodes -----~~

FIGURE 2.5: The bipartite graph of the LDPC (12,3) code using the PCM of
Fig. 2.1.

Co(n,k)
constituent code

.. N GLDPC-encoded symbol nodes

• • • •
degr=J ...

... ~.

to 1st to 2nd to J-th

..
The clump of the The clump of the

super-code C 1 super-code C2

clump clump clump

4 ~

The clump of the
super-code C l

.. JN/n constituent nodes ~

FIGURE 2.6: The bipartite graph of the GLDPC (N, K) code. The correspond­
ing classic LDPC bipartite graph is shown in Figure 2.5

10

Figure 2.5 is a valid codeword of the resultant LDPC code, if and only if the 9

constituent code nodes of 4 incoming symbols seen at the bottom of Figure 2.5

belong to the valid SPC (4,3) codewords. Furthermore, the J = 3 edges stemming

from every single LDPC-encoded symbol node are connected to specific SPC (4,3)

constituent code nodes belonging to different so-called clumps [34] of super-codes

C 1
, ••• , C3. Hence, we can also see in Fig. 2.5 that the so-called degrees of the

LDPC-encoded symbol nodes and those of the SPC (4,3) constituent code nodes

are always J = 3 and n = 4, respectively, which are defined as the number of

super-codes and the codeword length of the constituent code SPC (n, n - 1).

Chapter 2 Generalized Low-Density Parity-Check Codes 11

2.1.2.2 GLDPC codes

Similar to the classic LDPC code [12] of Fig. 2.5, the family of GLDPC code can

also be described using a random regular bipartite graph. In this sense, GLDPC

codes may also be viewed as the generalization of Tanner codes [17], as depicted

in Fig. 2.6. The SPC (n, n - 1) code of classic LDPC codes is replaced by a more

general (n, k) block code used as the constituent code Co(n, k). The GLDPC code's

length is N symbols, which is the number of GLDPC-encoded symbol nodes seen

at the top of Fig. 2.6. The bottom of Fig. 2.6 holds J x N/n Co(n, k) constituent

code nodes. The degree of the constituent code node is equal to n, while again the

constituent code itself is defined as Co(n, k) in Fig. 2.6. The degree ofthe GLDPC­

encoded symbol nodes is J, which implies that every symbol node is connected

to J number of Co(n, k) constituent codes represented by J different clumps of

super-codes Cj,j E {2··· J}, respectively. In other words, every GLDPC-encoded

symbol is jointly determined by the J Co(n, k) constituent codes and each Co(n, k)

constituent code belongs to different super-codes.

Similar to the concept of cycle [17] in LDPC codes, the cycle in GLDPC can

also be observed in its bipartite graph, which is defined as the closed loop in the

bipartite graph. Thus the length of cycle is the number of connections between

the GLDPC-encoded symbol nodes and the Co(n, k) constituent code nodes within

the closed loop. Figure 2.7 is a example for the bipartite graph representations

of the length-6 cycle and length-4 cycle in the GLDPC code, which are closed

loops with 6 and 4 connections, respectively. Notice that each GLDPC-encoded

symbol node or Co(n, k) constituent code node is capable of benefitting from more

information provided by other nodes within the cycle if the length of the cycle

is long. The shortest possible cycle of Figure 2.6 is a length-4 cycle as shown in

Figure 2.7. Recall that in Section 2.1.1, we introduced the permutation function

7fj, which allowed us to generate the PC matricies Hj,j = 2"" ,J by permuting

the columns of of the PC matrix HI without interleaving the elements of the

columns. Therefore, in practice 'irj is chosen at random, but by avoiding that two

(or more) GLDPC-encoded symbol nodes are connected to the same J number of

Co (n, k) constituent code nodes, since this would create short cycles of length 4

in the Tanner graph [34].

Furthermore, although the PCM of the GLDPC code is constructed by the PCMs

of the constituent codes, so far there may be no efficient encoding procedure based

Chapter 2 Generalized Low-Density Parity-Check Codes

Symbol
node 2

Symbol
node 6

Constituent Constituent
node 4 node 7

Length-6 cycle

Symbol
node 21

Constituent
node 11

Symbol
node 3

Constituent
node 1

Symbol
nodeS

Constituent
node 18

Length-4 cycle

12

FIGURE 2.7: The example for the bipartite graph representation of the length-6
cycle and the length-4 cycle in GLDPC codes.

only On the constituent codes that does not need the construction of the generator

matrix for GLDPC codes, which was also shown in Section 4.5, p.1l8 of [34J.

Hence, the encoding procedure of the GLDPC code is the same as that of the

LDPC code [46], which needs the construction of the generator matrix of the

GLDPC code.

2.2 Coding Rate [34]

The code rate of a GLDPC code can be lower-bounded by observing its parity­

check matrix as suggested in [34J. The number of rows in each PC submatric Hj,

j E {I ... J}, corresponds to (n - k) N In. Thus the total number of rows (N - K')

in the PCM H satisfies

N - K' = J(n - k)N = J(l - T'o)N
n

(2.5)

where T'o = kin denotes the rate of the constituent code Co(n, k). If we assume

that the PCM H is has full rank, i.e. when all of its rows are independent, then

we have [34J:
K'

R = - = 1 - J(l - T'o)
N

(2.6)

However, in practice it cannot be readily guaranteed that the rows of H are inde­

pendent. Hence the actual dimension K of the GLDPC may be higher than K'.

Chapter 2 Generalized Low-Density Parity-Check Codes

Constituent code GLDPC Code
Type I n I k I 1'0 Minimum Rate

I Hammmg I 7 I 4 I 0.57 " 0.143

Hamming 15 11 0.73 0.467
Shortened Hamming 12 8 0.67 0.333
Shortened Hamming 10 6 0.6 0.2

Hamming 31 26 0.84 0.677
shortened Hamming 25 20 0.8 0.6
shortened Hamming 20 15 0.75 0.5
shortened Hamming 19 14 0.737 0.474
Hamming 63 57 0.90 0.81
shortened Hamming 50 44 0.88 0.76
shortened Hamming 37 31 0.838 0.676

TABLE 2.1: Coding rate of J = 2-1evel GLDPC codes using different constituent
codes Co. [34J

Consequently, the lower bound on the rate of a GLDPC code is [34]:

13

K
R = N 2: 1 - J(1 - 1'0)' (2.7)

2.3 A Special Case: GLDPC Codes Having J

2 Levels

As shown in Section 2.2, the coding rate R decreases, when the number of super­

codes J increases. Furthermore, it has been shown in [31, 32, 33, 34] that GLDPC

codes based on binary Hamming or BCH constituent codes are asymptotically

good, even if we have as Iowa number of levels as J = 2 and that iterative decoding

is very simple to implement in this case. Accordingly, binary GLDPC codes having

J = 2 levels exhibit the highest possible code rate as well as a low-complexity

decoder structure, which are desirable properties in practical applications. Thus,

in our study, we consider only GLDPC codes having J = 2 levels. Table 2.1 shows

the coding rate bound for J = 2-level GLDPC codes based on different constituent

codes.

A J = 2-level GLDPC code is the intersection of the super-codes 0 1 and 0 2
, each

of them being composed of N In independent constituent codes. The constituent

codes belonging to the first super-code 0 1 are referred to here as the upper codes,

Chapter 2 Generalized Low-Density Parity-Check Codes

10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201

0 0 1 0 1 1 1 0 0 000 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 0 0 o 0 0 0 0 0 o 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0

H1 0 0 0 0 o 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 1 0 1 1
0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 o 0 0 0 0 1 0 0 1 0 1 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
1 0 0 0 o 0 0 0 0 o 0 0 0 0 0 0 1 0 1 1 0

H2 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 o 0 0 0 0 o 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 o 0 0

0010111
H ~ 0101110

0
1001011

FIGURE 2.8: The (N - K) x N = 18 x 21-dimensional Parity Check Matrix H of
the GLDPC (21,3) code using the binary (7,4) Hamming code as its constituent

code, where we have N = 21, K = 3 J = 2 and n = 7.

14

while the ones belonging to the second super-code C2 are the lower codes. Fur­

thermore, for practical J = 2-level (N, n) GLDPC codes, it is only possible to

construct a meritorious PCM H in which no undesirable short cycles of length 4

appear in the graph, if we have Nln 2: n [47]. Therefore, the (N, 2, n) GLDPC

codes should always satisfy N In 2: n.

2.4 GLDPC Encoding

In this section, we discuss the encoding procedure of the binary J = 2-level

GLDPC code as well as give an example. Again, the encoding procedure of the

GLDPC code is the same as that of the LDPC code [46], which needs the construc­

tion of the generator matrix of the GLDPC code, since there may be no efficient

encoding procedure based only on the constituent codes that does not need the

construction of the generator matrix for GLDPC codes, which was also mentioned

in Section 4.5, p.118 of [34]. Therefore, here we use the same encoding procedure

of LDPC code which is described in the chapter 2.4 of [46].

The J-level (N, K) GLDPC code is used in this example, where we have N = 21,

K = 3 and J = 2 and adopt the (7,4) binary Hamming code as our constituent

Chapter 2 Generalized Low-Density Parity-Check Codes 15

code. The PCM H is constructed as shown in Figure 2.8, where the upper part

HI is a (9 x 21)-dimensional block diagonal matrix having the matrix elements

Ho. In this example, the (3 x 7)- dimensional matrix Ho is the PCM of the (7,4)

binary Hamming Code. The lower part (9 x 21)-dimensional H2 of H is generated

by permuting the columns of the upper matrix without modifying the elements of

the columns. This operation is formulated as H2 = 7r2(HI) as we mentioned in

Section 2.1.1. For example, the 20th and 19th columns of H2 is permuted from

the Oth and 9th columns of HI, respectively.

In order to generate systematic GLDPC code according to the encoding procedure

described in chapter 2.4 of [46] for LDPC codes, the M x N-dimensional PCM

H is divided into an (N - K) x (N - K) = M x M-dimensional matrix A and

an M x (N - M)-dimensional matrix B as shown below [46]:

(2.8)

Then the (K x N)-dimensional generator matrix G may be expressed as [46J:

(2.9)

In our specific example, we have

(2.10)

and

(2.11)

However, it cannot be guaranteed that the submatrix AT is invertible. Hence as

it was suggested in [46], the columns of the PCM H may have to be reordered

for the sake of being able to calculate the inverse of the matrix AT as it was

suggested in [46J. If the original matrix AT is singular, we will randomly select a

column from B and swap it with a randomly chosen column of A. This process

continues until the matrix A becomes non-singular. Thus upon re-ordering the

columns of the matrix H, we arrive at the reordered M x N = 18 x 21-dimensional

PCM Hr as shown in Figure 2.9. For example, Oth and 20th columns of H in

Figure 2.8 became 2nd and 3rd columns of H r in Figure 2.9, respectively. Then

the K x N = 3 x 21-dimensional generator matrix G as shown in Figure 2.10

Chapter 2 Generalized Low-Density Parity-Check Codes

10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201

0 0 0 0 0 1 0 1 1 1 0 0 o 0 0 0 0 0 0 0 0
0 0 o 0 1 0 1 1 1 0 0 0 o 0 0 0 0 0 0 0 0
0 0 0 1 o 0 1 0 1 1 0 0 o 0 0 0 0 0 0 0 0
1 0 0 0 o 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

H1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0
1 0 o 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 1 1 1
0 1 o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 1 0 1
0 1 1 0 o 0 0 0 0 0 0 0 o 0 0 0 1 0 0 0

0 1 0 0 o 0 0 0 0 0 0 0 o 1 1 0 0 0 0 0
1 0 0 0 o 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
1 0 1 0 o 0 0 0 0 0 0 0 o 1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 o 0 0 0 0 0 1 1 1

H 2 0 0 0 1 1 o 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 0 0 0 o 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 o 0 0 1 0 1 0 0 1 1 o 0 0 0 0 0 0 0 0

F IGURE 2.9 : The (N - K) x N = 18 x 21-dimensional reordered PCM H r of
the GLDPC (21 ,3) code using the constit uent Hamming (7,4) code, where we

have N = 21 , K = 3, J = 2 and n = 7.

10 1 2· . 3 ,'.4 5 :' 6 ' .7 ,'," 8 ;" 9 ~10 ·;1F 12 13 14 -15 ~16 ;,17 c 18 19 201

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 0
0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1

F IGURE 2.1 0: The K x N = 3 x 21-dimensional generator matrix G correspond­
ing to t he PCM H r of t he GLDPC (21 ,3) code using t he constit uent Hamming

(7,4) code, where we have N = 21, K = 3, J = 2 and n = 7.

16

is constructed based on t he reordered new PCM H r , and the source K = 3-bit ­

sequence s = [100] is then mult iplied by G to get the encoded N = 21-bit-sequence

u = [100000000000011000000]' as shown in Figure 2. 11.

Furt hermore, t he reordered PCM H r is also the column-permutation of H thus

it can be represented as Hr = 'Tr' (H). Therefore, for t he sake of recovering L

constituent codewords which belong to t he super-code C 1 from the codeword u of

the GLDPC code, the codeword u needs to be de-interleaved by the de-interleaver

'Tr ~ , as shown in the left part of Figure 2.11 where 'Tr ~ = 'Tr'. Similarly, in order to

recover L constit uent codewords which belong to the super-code C 2 , the codeword

u needs to be de-interleaved by the de-interleaver 'Tr~, as shown in t he right part

of Figure 2.11 where 'Tr~ = 'Tr'('Tr2) '

Chapter 2 Generalized Low-Density Parity-Check Codes

L=3 constituent codewords
in Super-code C 1

I" constituent
codeword

2m constituent
codeword

3
m
c:~~~~~nt ---tl uci

Q I ~91 ~61 ~51 uci
6 1 uci

1 I ~71
L=3 constituent codewords

in Super-code C 2

FIGURE 2.11: The encoding process of the GLDPC (21,3) code using the
constituent Hamming (7,4) code, where we have N = 21, K = 3, J = 2 and
n = 7 and the relationship between codeword u and the constituent codes in

super-codes C1 and C2 .

2.5 GLDPC Soft-In/Soft-Out Decoding

2.5.1 Introduction

17

Gallager presented an iterative decoding scheme designed for LDPC codes in [12].

This algorithm computes iteratively the probability of each coded symbol given a

set of received channel observation, where the probability of correct detection in­

creases upon increasing the iteration index. The goal is to estimate the a posteriori

probability, namely the probability of the coded symbols, given all demodulator

output samples. This algorithm is similar to the one proposed in [48] for the

well known turbo codes and may be considered as the ancestor of all turbo de­

coding techniques. Furthermore, it has been known by Boutros et al. in [31]

that turbo codes can be described as a particular case of GLDPC codes, where

the interleaver acts only on the information symbols but not on the parity sym­

bols. Thus, GLDPC codes are decoded using the same approach. Explicitly, for

each coded symbol, we compute the probability of each decoded symbol given the

corresponding demodulated sample (a posteriori information) and the so-called

Chapter 2 Generalized Low-Density Parity-Check Codes 18

extrinsic information, assuming that the symbol belongs to the super-code C 1.

The latter is fed through the interleaver to the decoder of super-code C2 as the

a priori information. We then compute the probability of each symbol given the

corresponding demodulated sample (a posteriori informaiton) and the extrinsic

information and assume now that it belongs to, the super-code C2 . The resultant

probability is returned of the first super-code's decoder as the a priori information

and this process is continued while a legitimate GLDPC codeword is found or the

affordable number of iterations is exhausted.

A decoding algorithm that processes the soft-decision inputs and produces soft­

decision outputs is referred to as a 8oft-In/8oft-Out (8108) decoding algorithm.

A GLDPC code can be efficiently decoded based on iterative 8180 decoding of

the individual constituent codes, where the code's performance and decoding com­

plexity are heavily dependent on the 8180 decoding algorithm employed. Many

iterative 8180 decoding algorithms [35, 36, 37, 39] have been proposed for decod­

ing linear block codes, both optimal [35] or suboptimal [36, 37, 39]. The most

well-known 8180 decoding algorithm is the MAP (maximum a posteriori proba­

bility) decoding algorithm that was devised by Bahl, Cocke, Jelinek, and Raviv

(BCJR) in 1974 [35]. The BCJR algorithm was devised to minimize the bit-error

probability and to provide reliability values of the decoded symbols. The MAP

algorithm (or its suboptimum versions) constitute the heart of turbo or iterative

decoding [48, 49]. The trellis-based MAP algorithm was used in [31, 32] for de­

coding GLDPC codes, whereas the Johansson-Zigangirov A Posteriori Probability

(APP) algorithm [36], which operates with the aid of a single forward recursion

through a syndrome trellis was used in [33]. A range of other sub-optimal decoding

algorithms, such as the Chase's algorithm, Kaneko's algrithm and MAX-Log-MAP

algorithm were employed in [38], [40] and [41] for decoding GLDPC codes, re­

spectively.

2.5.2 The Constituent Decoder Using Log-MAP Algorithm

In our implementation, we used the Log-MAP algorithm [50] for the sake of strik­

ing an attractive compromise between complexity and coding performance. Fig­

ure 2.12 shows a single constituent decoder of the GLDPC 8I80 decoder scheme,

which employs Log-MAP algorithm. Consider a binary (n, k) linear block code

Co as a constituent code of the GLDPC codes. Let u = (Ul' U2,'" ,un) be a

Chapter 2 Generalized Low-Density Parity-Check Codes

Channel
information Log-MAP A posteriori

A priori decoder information I m!ormatlOn - f"1"\ extrinsic
'-,1/ information _ J

FIGURE 2.12: A constituent decoder using Log-MAP algorithm, which is em­
ployed in a GLDPC decoder, showing the input information received and output

information

19

codeword of Co and T = (rl' r2,'" ,rn) be the received noisy sequence from chan­

nel. In Figure 2.12, we can see that the Log-MAP decoder accepts two inputs,

the a priori information L(Uk) and the soft demodulator output Lcrk, where Lc is

the channel reliability value. At its output, it produces the a posteriori informa­

tion L(Uk IT) as shown in Figure 2.12. The decoder has to calculate the extrinsic

information Le(Uk) imposed by the code constraints from the demodulator's soft­

output sequence T, but excluding the demodulator's soft-output sample rk directly

engendered by the transmitted data bit, Uk. Hence this information is referred to

as the extrinsic information for the bit Uk. During the iterative decoding process,

only the extrinsic information Le(Uk) will be forwarded to the other constituent

decoder as the a priori value L(Uk)'

2.5.3 Iterative 8180 Decoding Algorithm for J

GLDPC Codes

2-Level

We now describe how the iterative decoding of J = 2-level GLDPC codes is carried

out. Figure 2.13 shows the structure of the 8180 decoder invoked for J = 2-level

GLDPC codes. Each super-code's decoding is performed by means of a 8180

decoder. The upper part of Figure 2.13 represents the 8180 decoder of super-code

C1, while the lower part is the 8180 decoder of super-coder C2. The complexity

of each 8180 super-code decoder is modest since each super-code is constructed

of L = N In number of independent constituent codes of small code length n. To

elaborate a little further, the MAP 8180 decoder's complexity is typically lower if

it carries out the backwards and forwards recursion for shorter constituent codes,

as it transpires from the operations detailed in 8ection 5.3.3, p114-122 of [51J. As

Chapter 2 Generalized Low-Density Parity-Check Codes

a priori I

apriori 2

,----------1
1 1

1
Channel Info APP I

SISaL I
I a priori Ext I

l __________ !

I
I Channel Info APP

I SISOL

I ! apriori Ext I

l __________ !

Ext'

a priori 2

APP 2

(Decoder Output)

a priori I

FIGURE 2.13: The structure of 8180 decoding for J = 2-level GLDPC codes
using L = N In number of (n,k) constituent decoders. In our example we have

L = 21/7 = 3 (7,4) binary Hamming decoders.

20

depicted in Fig. 2.13, L low-complexity 8I80 decoders of the constituent codes

operate in parallel in each super-code's decoder.

A step-by-step description of the iterative 8I80 decoding algorithm for the J = 2-

level GLDPC codes is described as follows [31, 32, 34J:

1. For transmission over a Gaussian or fading channel using BP8K modulation,

the conditional LLRs L(rkluk) can be calculated as [51J:

(2.12)

Chapter 2 Generalized Low-Density Parity-Check Codes

where
Ee

Le = 4a-
2

,
2a

21

(2.13)

is defined as the channel reliability value, and a is the fading amplitude. We

have a = 1 for non-fading AWGN channels. Hence, for BP8K transmission

over a possibly fading Gaussian channel, the conditional LLR L(rkluk), which

is referred to as the soft output of the channel, is simply the matched filter

output rk multiplied by the channel reliability value Le. Then the channel's

soft output sequence LeT is fed through the de-interleavers (1fD-1 and (1f~)-1

of Figure 2.13 to the upper and lower decoders, respectively.

2. The de-interleaved soft channel output Lcrk and a priori information L(Uk)1, k =
1,,' . ,N are received by the upper decoder seen in Figure 2.13 and delivered

in parallel to L = N In number of constituent 8180 decoders. Note that dur­

ing the first iteration the upper decoder has no a priori information about

the symbols and hence L(ukh is set to 0 for all symbols, corresponding to

an a priori probability of 0.5.

3. Following the decoding process of each constituent 8180 decoder in the upper

decoder, the a posteriori information L (Uk IT) 1 and the extrinsic information

Le(Ukh are generated for each GLDPC coded symbol Uk, k = 1"" ,N. The

latter is fed through the appropriate interleaver and de-interleaver 1f~ and

(1f;)-1 of Figure 2.13 to the lower decoder of super-code C 2 as the a priori

information.

4. Next the lower decoder of super-code C2 comes into operation. It receives the

interleaved soft channel output Lcrk and the a priori information L(Ukh, k =

1, ... ,N. The L constituent 8180 decoders of the lower decoder seen in Fig­

ure 2.13 generate the a posteriori information L(Uk IT h and the extrinsic in­

formation Le(Ukh for each coded symbol Uk, k = 1,' .. ,N. The latter is then

fed through the interleaver and de-interleaver 1f; and (1fD-1 of Figure 2.13

to the upper decoder of super-code C1 as a priori information.

5. A complete decoding iteration consists of the successive decoding of the

upper and the lower super-codes C1 and C2
, i.e. of two decoding steps. A

tentative hard decision concerning the binary value of each coded symbol

Uk, k = 1, . .. ,N is made based on the a posteriori information of the lower

decoder L(Uk IT h. Then this tentatively decoded codeword is multiplied with

the PCM HT to generate the syndrome vector.

Chapter 2 Generalized Low-Density Parity-Check Codes 22

smitted Tran
Seq

Uo U U2 ~ U Us Un U7 ~ Ug U
to

U
lI Ut? Un U

14
U

1S
U

16 Un U1R U19 ll,o
uence

Rece
channel

ived
info. LJk

Decod ed bit

1 0 0

1

Uo U u2
337 -0.69 -2.28

1 0 0

r
I u I U I u, I Un I U?
1-5.66 14 .28 2.53 1-1.05 1 1.91

0 0 0 0 0 0 0 0 0 0 I I 0 0 0 0 0

r
AWGN

~ U Us Un u7 ~ ug U
to

u
11

U
17 un U

14 U11
U

16
u17 U

1R
U

19

-5.66 4.28 2.53 -1.05 1.91 -3.52 -2.47 -0.92 -039 1.45 1.13 1.82 -2.10 -0.47 -1.26 4.01 -5.00

0 0 .. 0 .. 0 0 0 0 .. 1 1 0 0 0 0 0

(TTl') ·1 (lT2') ·1

~
U I UQ I (---- 1 g constituent ~ I U, I u, I U I un I U I U IU"

-3.52 -2.47 1 SISO decoder -2.28 -3.52 -0.69 337 1.82 -2.JD 1.13

2
m

constituent I U171 Up I ll,o I U41 u1Q It) lUI' I
(---- SISO decoder ~ -1.26 1.45 -1.84 4.28 -5.00 -5.66 4.0:

(---- 3ru constituent ~
SISO decoder

Input channel info. of each constituent
SISO decoder in Super-code C 1

Input channel info. of each constituent
SISO decoder in Super-code C 2

• ---+ Error

FIGURE 2.14: De-interleaving process of the received channel output sequence.
The entire decoder was depicted in Figure 2.13

0

ll,o
-1.84

0

6. The GLDPC decoder repeats steps(2) to (5), until the resultant syndrome

vector becomes an all-zero vector or the maximum number of iterations

is reached. If the syndrome vector is an all-zero vector, we declare that

a legitimate codeword has been found. By the contrast, if the syndrome

vector is not an all-zero vector and the maximum number of iteration is

exhausted, we will declare a decoding failure and output the tentatively

decoded codeword.

2.6 Decoding Example of the binary J

GLDPC code

2-level

In this section, we discuss an example of the iterative SISO decoding of J = 2-level

GLDPC codes using the Log-MAP algorithm[51]. This example highlights how

iterative decoding assists in correcting multiple errors. Our elaborations are based

on Section 2.5.

Chapter 2 Generalized Low-Density Parity-Check Codes 23

lI:J U4 Us U" U7 '4i U9 f
Channel info Ext n. U

3
U

4 Us U6 U~ Us U9
·5.66 -4.28 253 ·1.05 1.91 ·352 ·2.47 SISO, 249 3.99 ·2 17 -{).57 ·I.W 1.61 0.76 ~-

a a a a a a a ---7 Aptiari AI'!' f-----:l ·3.18 -{).29 -+0.36 ·1.63 031 ·1.92 ·1.72 ---; -

U,n U U" U U Ut< ~ f CbanrK:i info Ex!: n. U,n U" U" U U U Un
-{).92 -{)39 1.45 1.13 1.82 ·210 337 SISO 2

-{)53 -{).26 -150 -+034 -{).92 0.48 -{).43 --.
a a a a a a a ---7 A priori AI'!' f-----:l -1.45 -{).65 -{).Q5 IA7 0.90 · 1.62 2.94 ---; :I

'-'
:..

U U" U U Um U", U f Dlannel info Ext

it.
U16 Un U18 U U

I9 ~ U
2

-{).47 ·1.26 -4.04 -{).69 -5.00 -1.84 -228 SISO J
-1.90 -1. 11 -1.63 -1.68 -1.61 ·259 -225 ~ - I-

a a a a a a a ---7 Arnori AI'!' f-----:l -237 ·2.37 -5.67 -2"51 .{;.59 -4.43 -4.53 I----l
-

Un U U, U, U4 U, U" U, U. u" Um U U" U" U U U,< U" U" U'Q U-Xl
//1,) -{).43 -1.68 ·225 2.49 3.99 -217 -{).57 ·I.W 1.61 0.76 -{).5) -026 ·1.50 -+034 -0.92 0.48 -1.90 -1.11 ·1.63 -1.61 ·259 ~ L

L(

De<:oded

/I,l r) 2.94 ·2.37 -4.53 ·3.18 -029 -+0.36 ·1.63 031 -1.92 ·1.72 -1.45 -0.65 -0.05 1.47 0.90 · 1.62 ·237 ·237 -5.67 .{;59 -4.43 IE--
bil I a a a a .. a D a a a a ," i'\ ~ .-,0" I I a a a a a a

• -. Error ~
~ -. Corrected bit

FIGURE 2.15: GLDPC 8180 decoding example during the first iteration of the
upper decoder seen in Figure 2.13

First of all, let us assume that the PCM Hr of Figure 2.9 is used and relevant gen­

erator matrix G is also seen in 2.10. The detailed encoding process is also described

in Section 2.4 that the source K = 3-bit-sequence s = [100] is multiplied by G

to get the encoded N = 21-bit-sequence u = [100000000000011000000]' as shown

in Figure 2.11 . After encoding the source bit-sequence s = [100], the encoded

sequence u = (uo,'" , U20) is transmitted through an AWGN channel having a

noise standard deviation of (J = 0.936 using BPSK modulation, as exemplified in

Figure 2.14 based on our simulations. A logical 0 is transmitted as -1 and a logical

1 is transmitted as + 1. Once the decoded bit stream was transmitted through the

channel, the noise-contaminated received sequence shown in Figure 2. 14 may be

received. This corresponds to the soft output of the demodulator. As shown in

Fig. 2.14, the received sequence has three erroneous bits, U5,U7 and U12, according

to the hard decision philosophy used. Then the resultant demodulator output se­

quence is appropriately deinterleaved for the upper decoder of super-code C1 and

for the lower decoder of super-code C2
, respectively as seen in Figure 2.13. In each

super-code decoder, the interleaved channel information sequence is divided into

L = N In = 21/7 = 3 patterns for the L = 3 SISO decoders of the (7,4) binary

constituent Hamming code.

At the beginning of each iteration, the upper decoder is activated first. Moreover,

during the first iteration of the upper decoder, the a priori information fed to

each of the L = 3 constituent decoders is set to zero. As depicted in Figure 2.15,

Chapter 2 Generalized Low-Density Parity-Check Codes 24

the L = 3 patterns of the demodulator's output information and the zero-value

a priori information are fed into the L = 3 constituent decoders of the upper

decoder. After the Log-MAP decoding of each (7,4) constituent Hamming code,

the a posteriori information and the extrinsic information have been calculated

and fed into the interleaver 7r1 of Figure 2.15 for the sake of reinstating the original

order of bits. The 8180 MAP decoding result of the upper decoder is shown in

Fig. 2.15, which is based on the a posteriori information L(uk!r)l. The results

show that the upper decoder was capable of correcting the bit U12' Furthermore,

the magnitude of L(uk!r h for the two incorrectly decoding bits, namely for U5

and U7, is only 0.36 and 0.31, respectively. This is significantly lower than the

magnitudes of the a posteriori information for most the other bits and indicates

that the decoder is less confident concerning about these two bits being + 1.

In the lower decoder, the extrinsic information Le(Ukh of upper decoder is fed

through the deinterleaver 7r;-1 of Figure 2.13 to the lower decoder as the a priori

information. Again, the a priori information is partitioned into L = 3 sequents

which belong to L = 3 8180 decoders of the (7,4) constituent Hamming codes

in the lower decoder. Figure 2.16 characterizes the decoding process of the lower

decoder of the super-code C 2 seen in Figure 2.13. Each 8180 decoder of the (7,4)

constituent Hamming code receives the demodulator's output information as well

as the a priori information and outputs the a posteriori information as well as

extrinsic information. The interleaver 7r2 of Figure 2.13 collects all the sequences

from the 8180 decoder of the (7,4) constituent Hamming code to recover the

original order of the bits. The extrinsic information can be used as the a priori

information in the upper decoder during the next iteration after deinterleaving by

deinterleaver 7r11 of Figure 2.13. The lower decoder corrects the remaining two

erroneous bits, namely U5 and U7'

2.7 Simulation Results

In this section, our simulation results will be discussed in order to characterize

the achievable performance of the J = 2-level binary GLDPC codes introduced

in the previous sections, when communicating over both AWGN and uncorrelated

Rayleigh fading channels.

Chapter 2 Generalized Low-Density Parity-Check Codes 25

~ UR U Uo U
I4

U
IS

U
I3 li Channel info Ext

L.
U2 U

8
U Uo U U

IS U!3
-2_28 -3.S2 -0.69 337 1.82 -2.10 1.13 SISO I -1.97 -2.39 -2.41 +202 +331 -2.89 +2.84 ~-

-2.25 1.61 -1.68 -0.43 -0.92 0.48 +034 I---:l A priori API' ---l -6.50 -4.31 -4.78 +4.% +4.21 -4.5 1 +4.31 ---i t-

U
I7

U
I2 ~ U4. U'Q U. U" Lr Dumncl info Ext

L.
U

17 U" U", U U'Q U, U

-1.26 1.45 -1.84 -4.28 -5.00 -5.66 -4.()4 SISO 2 -034 -266 -3.32 -2.42 -3.11 -4.22 -297 ~
-l.ll -1.50 -2.59 3.99 -1.61 249 -1.63 I---:l A priori API' ---l -271 -271 -7.7S -271 -9.71 -7.40. -8.64 f---i j

'-'
:..

UIO U9 U
6 Us U

I6
UII U7 Lr Channel info Ext

L.
UIO U

9
U

6 Us U
I6

U U7
-0.92 -2.47 -1.05 2S3 -0.47 -0.39 191 SISO J 0.02 -0.14 -O.()4 0.87 0.47 -0.23 0.79 ~ t- '--

-0.53 0.76 -0.57 -21 7 -1.90 -0.26 -1.60 r--> A priori API' ---l -1.43 -1.l!5 -1.66 -0.48 -1.90 -0.88 -0.48 r---;
-

Un U U, U, U U, U< U, U. ~ UJn U U , U" U U U U17 U,. U'Q U",
,(u,) +2.02 -2.41 -1.97 -4.22 -2.42 0.87 -0.04 0..79 -2.39 -0. 14 0..02 -0.23 -2.66 +284 +3.31 -2.89 0.47 -034 -2.97 -3.11 -3.32 ~ L

L(

Decoded

lI,i r) +4.96 -4.78 -6.50 -7.40 -2.7 1 -0.48 -1.66 -0.48 -4.31 -1.l!5 -1.43 -0.88 -2.71 +4.31 +4.21 -4.51 -1.90 -2.71 -8.64 -9.71 -7.75 ~

bit] 0. 0. 0 0. I"iof 0 I 'ro~' 0. 0 0. 0 0. I] 0 0. 0 0 0 0.

~
L:::l::j ~ Corrected bit

FIGURE 2.16: GLDPC S1S0 decoding example during the first iteration of the
lower decoder seen in Figure 2.13

Using constituent Hamming (15,11) code with coding rate R= 0.467
GLDPC Channel Decoding algorithm Number of
(N,K) iterations
(300,140) AWGN Log-MAP 2, 4, 8, 12, 20, 35, 60
(1200,560) AWGN Log-MAP 2, 4, 8, 12, 20 , 35, 60
(6000,2800) AWGN Log-MAP 2, 4, 8, 12, 20, 35, 60
(300,140) URF Log-MAP 2, 4, 8, 12, 20, 35 , 60
(1200,560) URF Log-MAP 2, 4, 8, 12, 20, 35, 60
(6000,2800) URF Log-MAP 2, 4, 8, 12, 20, 35 , 60

TABLE 2.2: Simulation parameters for three J = 2-level GLDPC codes in­
vestigated, when communicating over an AWGN channel and an uncorrelated
Rayleigh fading (URF) channel using different maximum number of iterations.

2.7.1 Effect of the Number of Iterations

In this subsection, we will use t hree different GLDPC codes which have the same

constituent Hamming (15,11) code, the same coding rate of R = 1
7
5 = 0.467 but

different GLDPC code-lengths. The GLDPC code (N, K) listed in Table 2.2 rep­

resents a code having a coded block-length of N bits and conveying K information

bits. The decoding algorithm used is the Log-MAP algorithm p.139 of [51J. In our

experiments both an AWGN and an Uncorrelated Rayleigh Fading (URF) channel

were applied. All system parameters are listed in Table 2.2.

Chapter 2 Generalized Low-Density Parity-Check Codes 26

The corresponding simulation results are shown in Figures 2.17- 2.22. All the fig­

ures confirm that as the number of iterations used by the decoder increases, the

decoder performs significantly better. In order to analyze the effect of the num­

ber of iterations, we summarize both the Eb/ No required for achieving a BER of

1O-4and the achievable coding gains, when communicating over two different chan­

nels in Table 2.3 and Table 2.4. These results were extracted from Figures 2.17

- 2.22. Furthermore, we introduce another quantity termed as the iteration ef­

ficiency, which is defined as follows. We record the coding gain achieved when

using a maximum of 60 iterations as a reference and define the iteration efficiency

as the percentage of the maximum achievable coding gain at a given number of

iterations. This quantity is also recorded in Table 2.3 and Table 2.4.

Observe in Table 2.3 that upon using a maximum of 1=12 iterations, all codes have

already achieved over 95% of the maximum attainable coding gain in an AWGN

channel. It may be hence inferred that the soft information based iterative decoder

achieves most of its attainable coding gain after few iterations. Further iterations

in excess of 1=12 achieve only a modest further performance improvement at the

cost of a high additional decoder complexity. Moreover, the GLDPC code having

a block-length of 300 bits achieves a lower iteration efficiency than the GLDPC

code having a block-length of 6000 bits, when the maximum number of iterations is

1=12. In other words, as expected, the GLDPC code having a higher block-length

is more efficient at the same number of iterations. It has been demonstrated in [34J

that GLDPC codes can be considered as a generalization of product codes,hence

having a longer block-length implies having a longer interleaver, when using the

same constituent codes. Since the iterative decoding procedure involves passing

the soft-information between the GLDPC encoded symbol nodes as well as the

constituent code nodes and the GLDPC code having a higher block-length suffers

from a lower correlation between the codeword bits, the performance of longer

GLDPC codes may approach the maximum achievable coding gain at a lower

number of iterations, when the GLDPC codes use the same constituent codes.

The same phenomenon is also observed for transmission over uncorrelated Rayleigh

fading channels in Table 2.4.

Chapter 2 Generalized Low-Density Parity-Check Codes

~

·5

10 0.0 0.5 1.0

" Iteration - 2
0 Iteration =4
0 Iteration 8
x - Iteration = 12
§ - Iteration = 20
"- Iteration = 3S

• Iteration 60

~ ,-----.. ""
~"'- "'-
~ \"-. ~

\'t ,\ '\ '\

~~ ~~ ~

\ '\ \

~\\' \, \
1.5 2.0 2.5 3.0 3.5 4.0 4.5

Ei/No

FIGURE 2.17: BER performance of the rate R = 0.467 GLDPC code (300,140)
parameterised in Table 2.2, using different number of iterations, when commu­

nicating over AWGN channels.

" Iteration = 2
0 Iteration - 4
0 Itcl'1ltion = 8
x - Iteration = 12

J-- § - lteration=20

"- Iteration - 35

• Iteration - 60

~'\

-----~~ ~

~ '- "-
'\\ ~

,,,,"

W \

-~ ~ \ .""-

III \.
1\\ \ '\

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Ei/No

FIGURE 2.18: BER performance of the rate R = 0.467 GLDPC code (1200,560)
parameterised in Table 2.2, using different maximum number of iterations, when

communicating over AWGN channels.

27

Chapter 2 Generalized Low-Density Parity-Check Codes

I-

·5
10 0.0 0.5

\\

LO

"- "-
\ ~

,\ ~

~

\

j 'I
II \ \
1.5 2.0 2.5

Et/No

t> Iteration - 2
0 Iteration = 4

<> Iteration 8
x - Iteration = 12
§ - Iteration = 20
~ Iteration - 35

• Iteration = 60

"-
'\,

\

-"

3.0 3.5 4.0

FIGURE 2.19: BER performance of the rate R = 0.467 GLDPC code
(6000,2800) parameterised in Table 2.2, using different maximum number of

iterations, when communicating over AWGN channels.

---,
""-

2 3

~'-..... '-..

~ ~""
~\.".. ."'-
~~ ""

4

Et/No

~~

~\\\

,>,\
~\

5 6

t> Iteration 2
0 Iteration 4

<> Iteration - 8
x - Iteration = 12
§ - Iteration = 20
~ Iteration - 35

• Iteration - 60

lI.

\

."'-\

~\ \
7 8

FIGURE 2.20: BER performance of the rate R = 0.467 GLDPC code (300,140)
parameterised in Table 2.2, using different maximum number of iterations, when

communicating over uncorrelated Rayleigh fading channels.

28

Chapter 2 Generalized Low-Density Parity-Check Codes

I:; Iteration - 2
0 Iteration = 4
0 Iteration - 8
x - heration= 12 ---, ~ § - Iteration = 20
.... Iteration - 35

• Iteration 60

~\ "- "-
~\ '"

~\\ "-
~\\ ~ \.

~ \~ \ 1\

\~

~\;'\ \
2 3 4 5 6 7

Et/No

FIGURE 2.21: BER performance of the coding rate R = 0.467 GLDPC code
(1200,560) parameterised in Table 2.2, using different maximum number of

iterations, when communicating over uncorrelated Rayleigh fading channel.

I:; Iteration 2
0 Iteration - 4
0 Iteration 8
x - Iteration = 12

~ ~ § - Iteration = 20
.... Iteration 35

• Iteration - 60

\ I'-

\\ '\ ""'-
\i \

'\ '\

,~

\ \ \

\

_\ \
2 3 4 5 6 7

Et/No

FIGURE 2.22: BER performance of the rate R = 0.467 GLDPC code
(6000,2800) parameterised in Table 2.2, using different maximum number of
iterations, when communicating over uncorrelated Rayleigh fading channels.

29

Chapter 2 Generalized Low-Density Parity-Check Codes 30

GLDPC Maximum number Required Eb/ No Coding gain Iteration
code of iterations (dB) (dB) Efficiency(%)

I uncoded I N/A 8.3983 o o
(300,140) 2 3.7957 4.6026 81.7557

4 3.3103 5.088 90.3778
8 3.096 5.3023 94.1844
12 3.0402 5.3581 95.1756
20 2.9472 5.4511 96.8275
35 2.8533 5.5450 98.4955
60 2.7685 5.6297 100.000

(1200,560) 2 3.3293 5.069 78.1541
4 2.2621 6.1362 94.6083
8 2.1102 6.2881 96.9503
12 2.0367 6.3616 98.0835
20 1.9937 6.4046 98.7465
35 1.9377 6.4606 99.6099
60 1.9124 6.4859 100.000

(6000,2800) 2 3.2227 5.1756 73.5735
4 1.9640 6.4343 91.4665
8 1.5204 6.8779 97.7724
12 1.4234 6.8779 97.7724
20 1.3829 6.9749 99.1513
35 1.3637 7.0154 99.7271
60 1.3551 7.0346 100.000

TABLE 2.3: Eb/ No required by three different-length, rate R = 0.467 GLDPC
codes parameterised in Table 2.2 for achieving a BER of 10-4 , when communi­

cating over AWGN channels.

Chapter 2 Generalized Low-Density Parity-Check Codes 31

GLDPC Maximum number Required Eb/ No Coding gain Iteration
code of iterations (dB) (dB) Efficiency(%)

I uncoded I N/A 33.9781 o o
(300,140) 2 6.8418 27.1363 94.6423

4 5.9575 28.0206 97.7264
8 5.7674 28.2107 98.3894
12 5.6007 28.3774 98.9708
20 5.4405 28.5376 99.5295
35 5.3739 28.6042 99.7618
60 5.3056 28.6725 100.000

(1200,560) 2 6.2082 27.7699 92.7460
4 4.6897 29.2884 97.8174
8 4.3515 29.6266 98.9470
12 4.2018 29.7763 99.4469
20 4.0992 29.8789 99.7896
35 4.0773 29.9008 99.8627
60 4.0362 29.9419 100.000

(6000,2800) 2 6.0182 27.9599 90.9833
4 4.1016 29.8765 97.2201
8 3.4934 30.4847 99.1992
12 3.3409 30.6372 99.6954
20 3.2774 30.7007 99.9021
35 3.2567 30.7214 99.9694
60 3.2473 30.7308 100.000

TABLE 2.4: Eb/NO required by three different-length, rate R = 0.467 GLDPC
codes parameterised in Table 2.2 for achieving a BER of 10-4 , when communi­

cating over Uncorrelated Rayleigh Fading (URF) channels.

Chapter 2 Generalized Low-Density Parity-Check Codes

30

25

,....,
~
~20
c::
.~

o 15
gf

:.a
o
UlO

t:-

~jr-""-tt: ~~
5 If
o
o 10

- AWGN channel
- URF channel

" N=300
0 N=1200
0 N=6000

-- - -

20 30 40 50 60
Number of iteration

FIGURE 2.23: Coding gain achieved by three different-length, rate R = 0.467
GLDPC codes parameterized in Table 2.2, at a BER of 10-4 , when communi­

cating over both AWGN and uncorrelated Rayleigh fading channels

32

Chapter 2 Generalized Low-Density Parity-Check Codes 33

2.7.2 Effect of the 8180 Decoding Algorithm

Figures 2.24 - 2.29 show our comparisons between GLDPC codes using the MAP,

Log-Map and Max-Log-MAP decoding algorithms described in Chapter 5 of [51].

The GLDPC codes characterised in Table 2.5 were simulated. In Figures 2.24

- 2.29, the "Log-MAP" curve refers to a decoder, which calculates the correction

term of fc(J) in [51] by using a look-up table in conjunction with eight values of

fc(J) stored, as described in [50], and hence introduces an approximation in the

calculation of the LLRs. As Robertson et al. found [50], the look-up procedure

for the values of the correction terms fc(J) imposes no significant degradation on

the performance of the decoder. It can bee seen that, as expected, the MAP and

the Log-MAP decoding algorithms attain identical performances.

It can also be seen from Figures 2.24 - 2.29 that the Max-Log-MAP algorithm

imposes a slight performance degradation compared to the MAP and Log-MAP

algorithms. As shown in Figures 2.24 - 2.29, under the same channel conditions

and using the same constituent codes but different block-lengths, the higher the

Constituent Codeword Number of Decoding Channel
code Length(N) iterations algorithm

Hamming 301 20 Exact-MAP AWGNjURF
(7,4) 301 20 Log-MAP AWGNjURF

301 20 Max-Log-MAP AWGNjURF
3003 20 Exact-MAP AWGNjURF
3003 20 Log-MAP AWGNjURF
3003 20 Max-Log-MAP AWGNjURF

Hamming 300 20 Exact-MAP AWGNjURF
(15,11) 300 20 Log-MAP AWGNjURF

300 20 Max-Log-MAP AWGNjURF
3000 20 Exact-MAP AWGNjURF
3000 20 Log-MAP AWGNjURF
3000 20 Max-Log-MAP AWGNjURF

Hamming 1209 20 Exact-MAP AWGNjURF
(31,26) 1209 20 Log-MAP AWGNjURF

1209 20 Max-Log-MAP AWGNjURF
6014 20 Exact-MAP AWGNjURF
6014 20 Log-MAP AWGNjURF
6014 20 Max-Log-MAP AWGNjURF

TABLE 2.5: Simulation parameters for six different J = 2-level GLDPC codes
investigated, when communicating over both an AWGN channel and an URF

channel using different decoding algorithms.

Chapter 2 Generalized Low-Density Parity-Check Codes

~
---- -

...,~

~

\\

-
~

....... \

,

\\

~

~

2

~

,

"\

\
3

EJNo

t;.
0
0

'-..

~

~

'\ "l>l

~

\ ~ \
,

'lc

\ 1\
4 5

N=301
N=3003
Exact MAP
Log-MAP
Max-Log-MAP

\
6

FIGURE 2.24: BER performance of two different-length, rate R = 0.143 GLDPC
codes, (301,43) and (3003,429), parameterized in Table 2.5, while using different

decoding algorithms for communicating over AWGN channels.

34

block-length, cause the larger the performance degradation imposed by the Max­

Log-MAP algorithm compared to the MAP and Log-MAP algorithms. For exam­

ple, observe in Figure 2.24, that at a BER of 10-4 the associated degradation is

about 0.4 dB and 1 dB for the Max-Log-MAP algorithm in the context of GLDPC

codes having block-lengths of 301 and 3003 bits, respectively. Furthermore, when

comparing Figure 2.24 to 2.25, under AWGN channel conditions and at a simi­

lar block-length, the Max-Log-MAP algorithm inflicts larger degradations, when

GLDPC codes having lower coding rates are used. For instance, at a BER of

10-4 and a block-length of 300 bits, the associated degradation is about 1 dB and

0.5 dB for the Max-Log-MAP algorithm applied by GLDPC codes having a rate

of 0.143 and 0.467, respective. The same phenomenon can also be observed by

comparing Figure 2.27 to Figure 2.28.

Chapter 2 Generalized Low-Density Parity-Check Codes

~- ==E::.::OO-1 -

-5
10 0.0 0.5

,

\

1.0

--....::: '-\ ~

~ ~

,
"'& " \ ~ "

\ 1\

.1
~ \

1.5 2.0 2.5
EtJNo

N-300
---- N=3000

" Exact MAP
0 Log-MAP
0 Ma>-Log-MAP

~

'-c
l'l.

'" ~
'liL
\ '\

3.0 3.5 4.0

FIGURE 2.25: BER performance of two different-length, rate R = 0.467 GLDPC
codes, (300,140) and (3000,1400), parameterized in Table 2.5, while using dif­

ferent decoding algorithms for communicating over AWGN channels.

10-5

0.0 0.5

-

1.0

-

"-"" \"-

""" llL~

~ 'l

\ \\

\

i\.

1\
1.5 2.0

EtJNo

N-I209
- N-6014

" Exact MAP
0 Log-MAP
0 Max-Log-MAP

\

,

1 ,\ 'l.

\ k>

\ 1\
2.5 3.0 3.5

FIGURE 2.26: BER performance of two different-length, rate R = 0.677 GLDPC
codes, (1209,819) and (6014,4074), parameterized in Table 2.5, while using dif­

ferent decoding algorithms for communicating over AWGN channels.

35

Chapter 2 Generalized Low-Density Parity-Check Codes

N=301
-- N=3000

-== - -tF=::-_____ A Exact MAP
0 log-MAP

~ ~
-; Et\ 0 Max-log-MAP

,
\ ,,~ "-
\ "\. '" ,

\'- '-
'\\ \ \'" '"

\ '-'- \

~ \ ~\ \
,

~. ~

\ \ \).,
2 3 4 5 6 7

EtfNo

FIGURE 2.27: BER performance of two different-length, rate R = 0.143 GLDPC
codes, (301,43) and (3003,429), parameterized in Table 2.5, while using differ­
ent decoding algorithms for communicating over un correlated Rayleigh fading

channels.

N-300
N-3000

A Exact MAP
0 log-MAP ---...::::: ~~ 0 Max-log-MAP

\ "-
~ "" ,

~ "" \ \ \ \

~ \,

\ l\J \. '\

(\) , lsJ

~ tJ \
2 3 4 5 6 7

EtfNo

FIGURE 2.28: BER performance of two different-length, rate R = 0.467 GLDPC
codes, (300,140) and (3000,1400), parameterized in Table 2.5, while using differ­
ent decoding algorithms for communicating over un correlated Rayleigh fading

channels.

36

Chapter 2 Generalized Low-Density Parity-Check Codes

2

\"-. \li!

\ 1\ ~\

1 \

345
EJ!No

-Ill ,

\1

\

-
A
0
0

\,

-"(

1\ \

II

\ Ib-
6

N=I209
N=60I4
Exact MAP
Log-MAP
Max-Log-MAP

7 8

FIGURE 2_29: BER performance of two different-length, rate R = 0.677 GLDPC
codes, (1209,819) and (6014,4074), parameterized in Table 2.5, while using dif­
ferent decoding algorithms for communicating over uncorrelated Rayleigh fading

channels.

2.7.3 Effect of Different Coding Rates

37

In this section, the performance of various GLDPC codes will be evaluated at

different coding rates. The simulation parameters of the GLDPC codes used are

summarized in Table 2.6. The coding rate of the GLDPC codes is varied by

changing the coding rates of constituent code. The relationship of the coding rate

between the GLDPC code and its constituent codes was outlined in Section 2.2.

As shown in Figures 2.30 and 2.31, the curves recorded for various coding rates

Constituent Codeword Coding Number of Decoding Channel
code Length(N) rate R iterations algorithm

Hamming 6000 0.467 20 Log-MAP AWGN
(15,11) /URF
Hamming 6014 0.677 20 Log-MAP AWGN
(31,26) /URF
Hamming 5985 0.810 20 Log-MAP AWGN
(63,57) /URF

TABLE 2.6: Simulation parameters for three different J = 2-level GLDPC codes
investigated, when communicating over both an AWGN channel and an URF

channel using different coding rates.

Chapter 2 Generalized Low-Density Parity-Check Codes 38

Constituent Codeword Coding Shannon Required Distance from the
code Length (N) rate R limit (dB) Eb/No (dB) Shannon limit (dB)

Hamming 6000 0.467 0.042 1.45 1.405
(15,11)

Hamming 6014 0.677 1.125 2.2 1.075
(31,26)

Hamming 5985 0.810 2.137 3.05 0.913
(63,57)

TABLE 2.7: Distance for the Shannon capacity limit for various GLDPC codes
using different coding rates R, when communicating over AWGN channels.

ranging from 0.467 to 0.81 are aligned as expected and the performance of the

GLDPC code having a rate of R = 0.467 is better than that of the other two

GLDPC codes.

We also evaluated the AWGN channel's Shannon capacity limit [1] for each GLDPC

codes using different constituent codes. In Table 2.7 and Table 2.8, we recorded

the Eb/ No distance with respect to the Shannon capacity limit for the various rate

GLDPC codes studied, when communicating over both AWGN and uncorrelated

Rayleigh fading channels, respectively. For the GLDPC code using the (15,11)

constituent Hamming code for communicating over AWGN channels, which has a

coding rate of R = 0.467, the associated performance is about 1.405 dB away in

terms of Eb/ No from the Shannon capacity limit at a BER of 10-5 . As we increase

the coding rate to 0.81 by using the (63,57) constituent Hamming codes for com­

municating over AWGN channels, the performance curve is within about 0.913

dB of the Shannon limit, again, when viewed at a BER of 10-5 . By observing

Table 2.7, as the coding rate R increases, the discrepancy between the associated

performance curve and the Shannon limit is reduced in the context of the AWGN

channel. By contrast, as shown in Table 2.8, as the coding rate increases, the

distance for the Shannon limit increases when communicating over uncorrelated

Rayleigh fading channels.

Chapter 2 Generalized Low-Density Parity-Check Codes

-5
10 0.0 0.5

1\

1.0

i

~

" ~

\

\

\
\
1.5 2.0

EtlNo

0 Hamming(l5.11). R- 0.467
0 Hamming(31.26). R= 0.6TI
0 Hamming(63.57). R- 0.81

'" r\

\ ,
(u

\

.h

l--
2.5 3.0

FIGURE 2.30: BER performance of the GLDPC codes parameterized in Ta­
ble 2.6, using different constituent codes which result in different coding rates,

when communicating over AWGN channels.

\

2

. \

3 4
EtlNo

0
0
0

\

1\

\
5

Hamming(l5.1l). R_ 0.467
Hamming(31.26). R= 0.677
Hamming(63.57). R- 0.81

........

"

\

\

AI

\
6 7 8

FIGURE 2.31: BER performance of the GLDPC codes parameterized in Ta­
ble 2.6, using different constituent codes which result in different coding rates,

when communicating over uncorrelated Rayleigh fading channels.

39

Chapter 2 Generalized Low-Density Parity-Check Codes 40

Constituent Codeword Coding Shannon Required Distance from the
code Length (N) rate R limit (dB) Eb/NO (dB) Shannon limit (dB)

Hamming 6000 0.467 0.042 3.3 3.258
(15,11)

Hamming 6014 0.677 1.125 5.4 4.275
(31,26)

Hamming 5985 0.810 2.137 7.8 5.663
(63,57)

TABLE 2.8: Distance for the AWGN channel's Shannon capacity limit for
GLDPC codes using different coding rates R, when communicating over un­

correlated Rayleigh fading channels.

2.7.4 Effect of Different Codeword Lengths

The GLDPC codes characterized in Table 2.9 were simulated when using different

block-lengths. The corresponding simulation results are depicted in Figures 2.32

- 2.37. As we expected, the results show that the GLDPC codes having a higher

block-length perform better, regardless of the coding rate or the channel condition.

It has been shown in [31J that the average minimum distance of the binary GLDPC

codes is a linear function of their length. As the block-length N decreases, the

number of constituent codes in the GLDPC code becomes smaller. Thus the

correlation between the super-code C1 and C2 increases. Since iterative decoding

procedure involves passing soft-information between the GLDPC encoded symbol

nodes as well as the constituent code nodes, but the bits between super-code C1

Constituent Coding Codeword Number of Decoding Channel
code rate R Length(N) iterations algorithm

Hamming 0.143 301 20 Log-MAP AWGN
(7,4) 1204 /URF

3003
5999

Hamming 0.467 300 20 Log-MAP AWGN
(15,11) 1200 /URF

3000
6000

Hamming 0.677 1209 20 Log-MAP AWGN
(31,26) 3007 /URF

6014

TABLE 2.9: Simulation parameters for the eleven different J = 2-level GLDPC
codes investigated, when communicating over both an AWGN and URF chan­

nels using different block lengths.

Chapter 2 Generalized Low-Density Parity-Check Codes

II-

~

\

\\

'\

2

\

'\

\

"'-
~

'\

b

\
3

EJNo

t::.
0
0
<>

"-
'\

"-
\ ".

\
4

N=301
N 1204

- N=3003
N 5999

1\
5

FIGURE 2.32: BER performance of the GLDPC codes employing (7,4) con­
stituent Hamming codes, parameterized in Table 2.9, and using different block­

lengths, for communicating over AWGN channels.

41

and C2 become more dependent on each other, the iterative 8180 decoder of the

GLDPC code becomes less capable of correcting the errors.

Chapter 2 Generalized Low-Density Parity-Check Codes

{; N=300
0 N-1200
0 N=3000
0 N=6000

-"'
1\\"" ~

"\." ""-
li \ "

\ _IS!. 'l!...
~ \ \ ""

" \ ~. '\ \ -5

10 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

EIINo

FIGURE 2.33: BER performance of the GLDPC codes employing (15,11) con­
stituent Hamming codes, parameterized in Table 2.9, and using different block­

lengths, for communicating over AWGN channels.

10-5

0.0 0.5 1.0

~

~'"

\ \ '\

\ ~

>,.

\ ~
1.5 2.0

EIINo

0 N_1209
0 N_3007
0 N-6014

1\

h
\

2.5 3.0 3.5

FIGURE 2.34: BER performance of the GLDPC codes employing (31,26) con­
stituent Hamming codes, parameterized in Table 2.9, and using different block­

lengths, for communicating over AWGN channels.

42

Chapter 2 Generalized Low-Density Parity-Check Codes

{;. N-30J
0 N=J204
0 N-3003

~
(> N=5999

t---.

~ "'- ""-
\ '\ ~

\\ "'-
~ '\

"'"
\.

~ "
r\, ~

\ \ \
2 3 4 5 6

EJNo

FIGURE 2.35: BER performance of the GLDPC codes employing (7,4) con­
stituent Hamming codes, parameterized in Table 2.9, and using different block­

lengths, for communicating over URF channels.

{;. N-300
0 N-1200
0 N-3000
(> N-6000

"--i !I...,

""-
l ~ ~

\ '" 1\ \ \ "
'\' \.
\ \ \

ill <Il

\ i\J \
2 3 4 5 6

EJNo

FIGURE 2.36: BER performance of the GLDPC codes employing (15,11) con­
stituent Hamming codes, parameterized in Table 2.9, and using different block­

lengths, for communicating over URF channels.

43

Chapter 2 Generalized Low-Density Parity-Check Codes 44

0 N=1209
0 N=3007

0 N-6014

"""" ~ \
)"

\ \

\ \

'\' IjJ

\ I ~
2 3 4 5 6 7

Et/No

FIGURE 2.37: BER performance of the GLDPC codes employing (31,26) con­
stituent Hamming codes, parameterized in Table 2.9, and using different block­

lengths, for communicating over URF channels.

2.7.5 Shortened Constituent Hamming Codes

In this section, we will discuss various GLDPC codes using shortened Hamming

codes as constituent codes. In the context of system design, if a GLDPC code of

suitable coding rate cannot be found, it may be desirable to use a shortened con­

stituent block code to meet the system's requirements. For example, for designing

an attractive multi-level coding [52, 53], component codes having specific coding

rates are required. Therefore, we are interested in the characteristics of GLDPC

Constituent code Coding Codeword Decoding Channel
Type n k rate R Length(N) algorithm

Hamming 15 11 0.467 3000 Log-MAP AWGNjURF
Hamming 31 26 0.677 3007 Log-MAP AWGNjURF

Shortened Hamming 25 20 0.6 3000 Log-MAP AWGNjURF
Shortened Hamming 20 15 0.5 3000 Log-MAP AWGNjURF
Shortened Hamming 19 14 0.474 3002 Log-MAP AWGNjURF
Shortened Hamming 37 31 0.676 2997 Log-MAP AWGNjURF

TABLE 2.10: Simulation parameters for the six various J = 2-level GLDPC
codes investigated, when communicating over both an AWGN channel and URF
channels using primitive and shortened Hamming codes as constituent codes,

when the maximum number of iterations is 20.

Chapter 2 Generalized Low-Density Parity-Check Codes

10-5

0.0 0.5 1.0

""" '-..

"'" \,

\\
\

1.5

Et/No

A Hamming(31,26). R=O.677
0 Hamming(25.20). R=O.6
0 Hamming(20.15). R=O.5
0 Hamming(19.14). R=O.474

"" ~

" ~ \

"(

\\ \ \

\ \ \ ~
2.0 2.5

FIGURE 2.38: BER performance of the GLDPC codes parameterized in Ta­
ble 2.10, using different shortened constituent Hamming codes generated from

the (31,26) Hamming code, when communicating over AWGN channels.

45

codes using shortened block code as their constituent codes. The GLDPC codes

characterized in Table 2.10 were studied, when using different primitive and short­

ened Hamming codes as constituent codes. Figure 2.38 and Figure 2.39 shows the

achievable BER performance of the GLDPC code using shortened Hamming codes

generated from the (31,26) Hamming code, when communicating over both AWGN

and URF channels. Since the constituent codes were shortened, the coding rate

of the GLDPC code was reduced.

Figure 2.40 and Figure 2.41 characterize the attainable performance of a range

of similar coding rate GLDPC codes using primitive and shortened Hamming

codes as their constituent codes. As shown in the figures, the GLDPC codes

constructed from shortened Hamming codes has the same performance as their

counterparts using primitive Hamming codes. Generally, it is more beneficial to

choose primitive Hamming or BCH codes as constituent codes, if both primitive

and shortened Hamming or BCH codes are capable of constructing the same coding

rate GLDPC code, since the constituent code having shorter block-length exhibits

a lower complexity.

Chapter 2 Generalized Low-Density Parity-Check Codes

2

\'\

3
EJNo

\~

" t\J
\ \

{>

A
0
0
0

\

4

Hamming(31.26), R=0.677
Hamming(25,20), R=O.6
Hamming(20,!5), R=OS
Hamming(19,!4), R=O.474

"-
"-

\ \

"I

\ \

'\' 4>

\ \
5 6

FIGURE 2.39: BER performance of the GLDPC codes parameterized in Ta­
ble 2.10, using different shortened constituent Hamming codes generated from

the (31,26) Hamming code, when communicating over URF channels.

100

A Hamming(15,1l), R=O.467
A Hmlming(19,!4), R=O.474
0 Hamming(3! ,26), R=O.677
o Hamming(37,3!), R=0.676

1O-!

~'. ~

10.2 ~""" "'\
~
~ \. (:Q

\. \.. 10-3

\

10-4 \ 'til

-5 ''\ ~
10 0,0 0,5 1.0 1.5 2,0 2.5

EJNo

FIGURE 2.40: BER performance of the similar rate GLDPC codes parame­
terized in Table 2,10, using primitive (15,11) constituent Hamming code and
shortened constituent Hamming codes generated from the (31,26) Hamming

code, when communicating over AWGN channels.

46

Chapter 2 Generalized Low-Density Parity-Check Codes

100~~~~~~~rr=S5~ A Hamming(15.11). R=O.467 A Hamming(19.14). R-0.474
o Hamming(31.26). R=O.677

iiiiiiiiiiiii~iiiiiiiiiiii~Oii''''i''~Haimimini~3i7'i31)i'Ri=Oi~~6
10,1

'\;"

~ \ 10'5 '------'------'-----'-------'----"-----"--'
023 456

Et/No

FIGURE 2.41: BER performance of the similar rate GLDPC codes parame­
terized in Table 2.10, using primitive (15,11) constituent Hamming code and
shortened constituent Hamming codes generated from the (31,26) Hamming

code, when communicating over URF channels.

2.8 Conclusions

47

In this chapter, the family of GLDPC codes was introduced. In Section 2.1 the

structure of GLDPC codes was described both by the PCM and by the concept of

Tanner graphs [17]. We commenced by providing an example of classic LDPC [12]

codes, which was then extended to GLDPC codes, since GLDPC codes may be

regarded as an evolution of classic LDPC codes [12]. Section 2.2 described the

coding rate calculation of GLDPC codes, which is naturally related to the choice

of the constituent code. It has been shown in [31, 32, 33, 34] that GLDPC codes

based on binary Hamming or BCH constituent codes are 'asymptotically good',

even if we have J = 2 and that iterative decoding is very simple to implement in

this case. Furthermore, as the coding rate decrease linearly with J, the case of

J = 2-level GLDPC codes is of particular interest, as we argued in Section 2.3.

Section 2.5 gave an introduction to iterative SISO GLDPC decoding algorithms.

Moreover, a detailed example of the binary J = 2-level GLDPC code using the

Log-MAP decoding algorithm was provided in Section 2.6. In Section 2.7, the

performance of binary GLDPC codes was characterized in various scenarios. The

effect of increasing the GLDPC decoder's complexity, i.e. the number of iterations

Chapter 2 Generalized Low-Density Parity-Check Codes 48

was studied in Section 2.7.1, and as seen in Figures 2.17 - 2.22, using eight to twelve

iterations strikes an attractive a compromise between the attainable coding gain

and the associated decoding complexity. The performance of the MAP, the Log­

MAP and the Max-Log-MAP decoding algorithms used by the constituent decoder

was characterized in Figures 2.24 - 2.29 of Section 2.7.2 and it was found that the

MAP and the Log-MAP decoding algorithms attain identical performances, while

the Max-Log-MAP algorithm exhibits a slight performance degradation compared

to the MAP and Log-MAP algorithms. The amount of the degradation is affected

by both the block-length and the coding rate. The performance of GLDPC codes

having different coding rates was evaluated in Figures 2.30 - 2.31 of Section 2.7.3.

In the specific scenarios investigated in Figure 2.30, as the coding rate R increased,

the distance from Shannon limit was reduced in the context of AWGN channel for

coding rate of 0.467, 0.677 and 0.81. The opposite was found in Figure 2.31 for

the uncorrelated Rayleigh fading channel. The effects of increasing the GLDPC

codes' coded block-length was recorded in Figures 2.32 - 2.37 of Section 2.7.4 and

demonstrated that GLDPC codes having a higher block-length perform better,

regardless of the coding rate or the channel. Finally, in Section 2.7.5 the charac­

teristics of GLDPC codes using shortened Hamming code as constituent code were

depicted that the GLDPC codes with shortened Hamming codes have the same

performance, as GLDPC codes invoking primitive Hamming codes. Generally, it is

more beneficial to choose primitive Hamming or BCH codes as constituent codes if

both primitive and shortened Hamming or BCH code are capable of constructing

the same coding rate GLDPC codes, since the constituent codes having shorter

block-length exhibit lower complexity.

Chapter 3

Symbol-Flipping Based Decoding

of Nonbinary GLDPC Codes

3.1 Introduction

In this chapter, we investigate the attainable performance of symbol-based hard

decision decoding algorithm designed for GLDPC codes employing nonbinary con­

stituent codes. The benefit of using purely symbol-based channel codes combined

with symbol-based QAM modulations [54J transmitting a high number of bits per

symbol is the associated high throughput, which is achieved without any band­

width expansion. Furthermore, these non-binary systems are considered robust

against short error bursts confined to a single symbol.

By contrast, binary constituent codes have more often been used for constructing

GLDPC codes [38, 40, 41, 42, 43, 44J. Moreover, perhaps the best known classic

codes are the maximum-minimum-distance nonbinary RS codes [7J, which are

used in numerous standards, such as the Digital Audio Broadcast (DAB) and

Digital Video Broadcast (DVB) schemes or in Compact Disc (CD) players. It is

therefore worth investigating, how RS codes behave, when they are embedded in

GLDPC coding schemes. A particular further advantage of GLDPC codes is that

their iterative decoding is based on the decoding of modest-complexity constituent

codes, hence the total decoding complexity may be expected to be low.

In this treatise a symbol-flipping algorithm is designed for symbol-based hard de­

cision decoding, which may be considered to be an extension of the bit-flipping

49

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 50

algorithm of [12, 42, 55]. Again, the first bit flipping scheme was originally

proposed by Gallager for LDPC codes [12]. Based on the appealing conceptual

and implementational simplicity of the bit-flipping algorithm, the Weighted Bit­

Flipping (WBF) algorithm was developed in [55] for the sake of achieving an im­

proved performance by exploiting some bit-reliability information, which results in

an attractive tradeoff between the achievable performance and the decoding com­

plexity imposed [55]. The concept of bit flipping algorithms using votes [42] was

generalised for employment in GLDPC codes using binary Hamming constituent

codes and hence it was termed as Weighted Bit Flip Voting (WBFV) [42]. Based

on the philosophy of the WBFV algorithm developed for binary Hamming-code

based GLDPC codes, here we propose a symbol flipping algorithm for employment

in nonbinary GLDPC codes. Similar to the WBFV algorithm of [42], the error

correcting capability of the constituent codes is exploited for more accurately de­

termining the position of the least reliable symbols. However, in the context of

the symbol-flipping algorithm, not only the error positions, but also the (q - 1)

legitimate error magnitudes have to be evaluated. This can be achieved, if the

classic algebraic decoders of the nonbinary constituent codes of the GLDPC codes

are applied. In each decoding iteration, the least reliable symbols are corrected

according to the error magnitude provided by the algebraic decoder of the non­

binary constituent code. We will provide simulation results to demonstrate that

symbol-flipping algorithms can be successfully employed for the decoding of non­

binary GLDPC codes. We will also demonstrate that the proposed coding scheme

results in an improved error rate performance in comparison to binary GLDPC

codes using the WBFV decoding algorithm of [42], when communicating over

both AWGN and uncorrelated Rayleigh fading channels.

The remainder of this chapter is organized as follows. In Section 3.2, a brief review

of the WBFV algorithm [42] designed for binary Hamming based GLDPC codes

is provided. Although here a different vote regime is required, since different

constituent algebraic decoders are used. Hence the generation of the votes will

be discussed in Section 3.3. Furthermore, in Section 3.4 we will discuss how to

design the so-called vote weights for the symbol-flipping algorithm. A step-by-step

description of the symbol-flipping algorithm designed for nonbinary GLDPC codes

is summarized in Section 3.5. Our simulation results are presented in Section 3.6

and, finally, our conclusions are offered in Section 3.7

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 51

voteE • vote pair EE ~ vote pair ee • Non-zero Syndromes

votee • vote pair Ee A vote pair eV

o vote pair EV ~
D All-zero Syndromes

vote V vote pair VV

Ee

~I----------------------~.
The clump of super-code C' The clump of super-code C'

FIGURE 3.1: Example of the voting process for the J = 2-level binary GLDPC
(21,3) code using the constituent Hamming(7,4) codes in one iteration. The
21 GLDPC encoded bit nodes are seen in the upper part, while the J. N /n =

2 . 21/7 = 6 constituent code nodes are portrayed in the lower part of the
figure. Similarly to Figure 2.13, the corresponding J = 2-level GLDPC decoder
is represented by the super-code clumps C 1 and C2 , each having L = N/n =

21/7 = 3 constituent Hamming (7,4) decoders

3.2 Weighted Bit Flip Voting algorithm for Bi­

nary Hamming Code-Based GLDPC codes [42]

In this section we will briefly describe the WBFV algorithm of [42] designed for

binary Hamming-based GLDPC codes. Recall that the PCM of GLDPC codes was

outlined in Figure 2.4, the corresponding bipartite graph was seen in Figure 2.6 and

the associated 8180 decoder was portrayed in Figure 2.13. Given the definition

of the GLDPC codes in terms of J number of interleaved super-codes [31 , 32, 33],

the decoding philosophy of the J = 2-level GLDPC (N, K) code of Figure 2.13

is similar to that of a product code, where every symbol of the GLDPC (N, K)

codeword is decoded by two constituent decoders, which belong to two indepen­

dent super-codes [31, 32, 33] . Accordingly, the WBFV [42] algorithm decodes the

GLDPC codes using an iterative method which is different from the MAP 8180

decoder of Figure 2.13.

More specifically, a hard decision decoder is applied by each constituent code

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 52

Co (n, k) which generates n votes for the n bits it covers. For the specific J = 2-

level GLDPC constructions employed, the information bits will belong to the (n, k)

binary Hamming constituent codes in the super-code C1 and C2 , respectively, as

seen earlier in Figure 2.11 of Chapter 2. Moreover, in contrast to the MAP 8180

decoder of Figure 2.13, in the WBFV algorithm, bits' votes are generated by the

hard decision decoders (HDDs) of constituent codes in super-code C1 and C2 as

shown in Fig 3.1. Accordingly, a vote pair will be produced for each bit by the

two HDDs. Note that for the sake of plausible and straightforward explanation,

the GLDPC code considered in Figure 3.1 was constructed without avoiding the

short cycles of length 4. For binary algebraic Hamming decoders, there are only

two possible decoding outcomes [42]:

• All-zero syndromes: this implies the presence of a valid (V) codeword, hence

all the n constituent Hamming code bits are labelled by the character V .

• Non-zero syndromes: Non-zero syndrome implies an invalid codeword, thus

the indicated error position will be labelled with a vote E, while the votes e

are assigned to all the other bits of the (n, k) code.

The magnitude of a vote indicates, how reliable a Hamming constituent code node

considers the current symbol's value to be. To elaborate a little further, it was

proposed by Hirst and Honary [42] that the various votes V, e, E should be given

numerical values so that the votes arriving from the J = 2 decoders for all the

N = 21 bits, which are either VV, eV, EV, ee, eE or EE, may be ranked in terms

of their reliability according to the sum of the J = 2 constituent votes [42]. It was

aslo suggested in [42] that using the weight of V = 0, e = 1 and E = 2 is capable

of producing the lowest possible BERs, where having higher weights represents a

lower reliability. Table 3.1 shows the weights of the various vote pairs adopted

from Hirst and Honary [42] for the WBFV algorithm. In summary, the WBFV

decoding algorithm of Figure 3.1 may be formulated as follows [42]:

1. Apply the HDDs of the binary Hamming constituent codes in super-code C1

and C2 , respectively.

2. Compute the J = 2 vote weights for each of the N bits based on the type of

vote pair.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 53

v = 0, e = 1, E = 2
Vote pair EE Ee EV, ee eV VV
Vote weight 4 3 2 1 0

TABLE 3.1: Vote Weights for WBFV algorithm for the binary Hamming-based
GLDPC codes [42].

3. Rank the bits according to their reliability based on their vote weights, as

seen in Table 3.1.

4. Flip all bits of lowest reliability, i.e. the bits having the maximum vote

weight.

5. Repeat steps (1) to (4). This process of bit flipping continues, until the

highest-weight vote pair becomes VV or the affordable maximum number of

iterations is reached.

3.3 The Vote Pairs for Symbol-Flipping Based

Non-Binary GLDPC Decoding

Our symbol-flipping based decoding algorithm is extended from the concept of the

WBFV algorithm designed for the binary Hamming-code based GLDPC codes [42]

for the GLDPC codes using either nonbinary BCH or RS constituent codes. More­

over, since different constituent algebraic decoders are used, different vote pairs

have to be generated which will discuss in this section. Furthermore, in the symbol­

flipping based decoding algorithm not only the error positions, but also the error

magnitudes defined over GF(q) have to be evaluated, where the algebraic decoders

of the nonbinary constituent codes provide both the error positions as well as the

error magnitudes.

Fig. 3.2 shows the symbols' vote generation process for the GLDPC (21,9) code

constructed over GF(8) using the constituent code RS (7,5). Note that for the

sake of plausible and straightforward explanation, the GLDPC code considered

in Fig. 3.2 was constructed without avoiding the short cycles of length 4. The

votes concerning the specific values of the symbols are generated by the Peterson­

Gorenstein-Zierler (PGZ) or the Berlekamp-Massey (BM) [51] hard decision de­

coders (HDDs) of the RS constituent codes in the super-code C1 and C2 . In

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 54

vote E • vote pair EE
6. All-zero Syndromes 0 vote pairEE

,

vote e • vote pairee A Decoding Failure
vote V D vote paireV EM = Error Magnitude

vote F III vote pair FV ... Decoding Success

~ vote pair Fe

EE eV ee ee eV FY fu fu FYfu fu FY ee eV ee ee eV ee EE
,

~--------------------~~

The clump of super-code CI The clump of super-code C'

FIGURE 3.2: Example of the voting process for the J = 2-level GLDPC (21,9)
code constructed over GF(8) using the constituent RS (7,5) codes in one it­
eration. The 21 GLDPC encoded symbol nodes are seen in the upper part,
while the J . N/n = 2·21/ 7 = 6 constituent code nodes are portrayed in the
lower part of the figure . Similarly to Figure 2.13, the corresponding J = 2-
level GLDPC decoder is represented by the super-code clumps C 1 and C2 , each

having L = N /n = 21/7 = 3 constituent RS (7,5) decoders

nonbinary HDDs, owing to the limited error-correction capability of the RS code,

a decoding failure occurs, when the corrupted codeword is not within the so-called

decoding sphere of a valid codeword. Hence, for the nonbinary algebraic RS con­

stituent decoders used in the symbol-flipping algorithm, there are three possible

decoding scenarios, which are also featured in Fig. 3.2 and discussed below:

• All-zero syndromes: this implies the presence of a valid (V) codeword, hence

all the n constituent RS code symbols are labelled by the character V.

• Non-zero syndromes and decoding success: this indicates the presence of an

invalid but correctable received word. Since successful decoding took place,

the corresponding error positions are labelled with E indicating that the

symbols are in error. By contrast, the symbol label e is assigned to all other

symbols, which were deemed to be the correct symbols in an erroneously

received but correctable codeword.

• Non-zero syndromes and decoding failure: no error positions were identified

owing to decoding failure (F) , therefore no corrective action may be carried

out and no useful information may be gleaned from this decoder. Hence all

the n RS code symbols of the codeword are labelled by F.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 55

As shown in Figure 3.2, after the votes have been assigned, each GLDPC encoded

symbol node will be assigned a vote pair: either EE, EF, Ee, EV, F F, Fe, FV,

ee, eV, or VV. Moreover, a vote pair EE' in Figure 3.2 indicates that different

GF(q) error magnitudes were suggested by the J = 2 constituent decoders. In

this case, we will randomly opt for the error magnitude suggested by one of the

two constituent decoders.

In contrast to the binary Hamming (7,4) constituent code based GLDPC codes

of Section 3.2, in the symbol-flipping based decoding of nonbinary GLDPC codes,

we have the extra vote label F, which results in more legitimate vote pairs and

in the specific vote pair EE', which accrues from different estimated G F(q) error

magnitudes. Therefore, the reliability of each vote pair is unknown in symbol­

flipping based decoding algorithms nonetheless. Figure 3.3 constitutes a useful

indicator of the reliability of vote pairs, which are the probabilities that a symbol is

in error conditioned on its received vote pair. The eleven conditional probabilities

for the eleven possible vote pairs are plotted in Figure 3.3, which were evaluated

by simulation after a single iteration using the GLDPC (300,140) code constructed

over GF(16) using the constituent RS(15,1l) code. We then corrupted each GF(q)

symbol with a certain probability to any of the legitimate GF(q) values. It can be

seen that for a given symbol error rate (SER) p the following reliability ordering

may be inferred: VV> eV > FV > EV > ee > Fe > Ee > FF > EF > EE' >

EE. It may be argued further that the ordering of the vote reliability i.e. obeys

V > e > F > E or V > e = F > E.

3.4 The Design of the Vote Weight

Similarly to the binary Hamming (7,4) coded scenario of Section 3.2, the various

votes V, F, e, E are given numerical values called vote weights so that the votes

arriving from the J = 2 decoders for all the N GLDPC symbols, which are either

EE, EF, Ee, EV, FF, Fe, FV, ee, eV, or VV, may be ranked in terms of their

reliability according to the sum of the J = 2 constituent votes. In this section, we

will discuss how to design the vote weights for the symbol-flipping based decoding

algorithm. The conditional probability evaluation of Figure 3.3 used in Section 3.3

for vote pair ordering is only valid for the first decoding iteration. Therefore, in

practice, the vote weights must be optimized by simulation as a function of the

iteration index. We define furthermore a vote rule as a set of vote weights and

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 56

-
- / " // 1'..-l---'1

1/

v /J

.--/ VI

/ // ~
X vote pair EE
0 vote pair EE'

~ ~/ / 0 vote pair - EF
/'; - vote pair = Ee
0 - vote pair = FF

./ ~ - vote pair = Fe

~ / / - vote pair = ee
~ - vote pair = EV

• - vote pair = FV

1""'- • - votepair=eV

/ / • - vote pair = VV
-6

10 10-1

channel SER

FIGURE 3.3: Conditional probabilities for the vote pairs EE, EEl, EF, Ee,
EV, FF, Fe, FV, ee, eV, and VV, which are evaluated from simulation after
a single iteration using the GLDPC (300,140) code constructed over GF(16)

using the RS (15,11) constituent code.

the resultant vote pair ordering. As before in Section 3.2 we use larger values to

indicate unreliable symbols and smaller values to indicate more reliable symbols.

For the PGZ or BM [51J HDDs of the RS constituent codes, we assume that the

vote weights are ordered according to V < e < F < E, V < F < e < E or

V < e = F < E. Based on our simulations similar to those reported in Figure 3.3

but not detailed here, we propose seven different vote rules for the symbol-flipping

based decoding algorithm, which are summarized in Table 3.2. According to each

rules, the weight of the vote pair EEl is smaller than that of the vote pair EE,

but larger than that of any of the other vote pairs. Rule 1 - Rule 3 of Table 3.2

are designed for satisfying V < e < F < E. As seen in Table 3.2, the weights of

all vote pairs ordered according to Rule 1 are different, while according to Rule 2

and Rule 3, some vote pairs share the same weight. To elaborate a little further,

more vote pairs share the same weight according to Rule 3, than in Rule 2. By

contrast, Rule 5 - Rule 7 are designed for satisfying V < F < e < E. In Rule 7,

the weight of each vote pair is different, and more vote pairs in Rule 5 share the

same weights than in Rule 6. Finally, in Rule 4, the weights of vote F and vote e

are the same.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 57

Vote Rule Vote Pair Ordering
Rule 1 EE EE' EF Ee FF Fe ee EV FV eV VV

ElF 1 e 1 V
6 5.5 5 4.75 4 3.75 3.5 3 2 1.75 0

3 2 1.75 0
Rule 2 EE EE' EF Ee FF Fe ee, EV FV eV VV

ElF 1 e 1 V
6 5.5 5 4.5 4 3.5 3 2 1.5 0

3 2 1.5 0
Rule 3 EE EE' EF Ee, FF Fe, EV ee, FV eV VV

~ 1 ~ 1
e 1 V 6 5.5 5 4 3 2 1 0
1 0

Rule 4 EE EE' EF,Ee FF, Fe, ee, EV FV, eV VV

ElF 1 e 1 V
6 5.5 4.5 3 1.5 0

3 1.5 1.5 0
Rule 5 EE EE' Ee EF, ee Fe, EV FF, eV FV VV

~ 1 ; 1
e 1 V 6 5.5 5 4 3 2 1 0
2 0

Rule 6 EE EE' Ee EF ee Fe FF,EV eV FV VV

~ 1 t5 1
e 1 V 6 5.5 5 4.5 4 3.5 3 2 1.5 0
2 0

Rule 7 EE EE' Ee EF ee Fe FF EV eV FV VV

~ 11~51
e

16
6 5.5 5 4.75 4 3.75 3.5 3 2 1.75 0

2

TABLE 3.2: Vote pair weights and their ordering for the seven vote rules de­
signed based on simulations similar to those characterized in Figure 3.3.

0 Rule I
0 Rule 2

" Rule 3

f- 0 Rule 4
.i. RuleS

• Rule 6

• Rule?
~ --a

~ "'"
~ ~ ,

\

II

Iii \ \

c \
2 3 4 5 6 7 8

EJNo

FIGURE 3.4: BER versus Eb/NO performance of the coding rate R = 0.467
GLDPC (4005,1869) code using RS{15,1l), GF(16) constituent codes for
transmission over an AWG N channel according to the weighting rules 1-7 of

Table 3.2.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 58

0 Rule 1
0 Rule 2

" Rule 3

<> Rule 4
... Rule 5

• Rule 6

• Rule 7

" ""'-

\l\.

\\

\\\

"\'

~
2 3 4 5 6 7 8

EJNo

FIGURE 3.5: BER versus Eb/NO performance of the coding rate R = 0.73
GLDPC (4005,2937) code using RS(15,13), GF(16) constituent codes for
transmission over an AWGN channel according to the weighting rules 1-7 of

Table 3.2.

0 Rule 1
0 Rule 2

" Rule 3

<> Rule 4
... Rule 5

• Rule 6

• Rule 7

'llI ..
1\

•
II)" ..

1:J
2 3 4 5 6 7 8

EJNo

FIGURE 3.6: BER versus Eb/NO performance of the coding rate R = 0.484
GLDPC (1612,728) code using RS(31,23), GF(32) constituent codes for
transmission over an AWG N channel according to the weighting rules 1-7 of

Table 3.2.

Page 59 missing

Page 60 missing

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 61

v = 0, e = F = 1.5, E = 3
Vote pair EE EE' EF,Ee FF, Fe, ee, EV FV, eV VV
Vote weight 6 5.5 4.5 3 1.5 0

TABLE 3.3: Vote weights for the symbol-based decoding of nonbinary GLDPC
codes.

Using constituent RS (15,11) code over GF(16) with coding rate R=0.467
GLDPC Channel Decoding Number of
(N,K) algorithm iterations
(300,140) AWGN/URF SF 2, 4, 5, 10, 20, 35, 60
(1005,469) AWGN/URF SF 2, 4, 5, 10, 20, 35, 60
(4005,1869) AWGN/URF SF 2, 4, 5, 10, 20, 35, 60

TABLE 3.4: Simulation parameters for three different-length J = 2-level
GLDPC codes constructed over GF (16), when communicating over an AWGN
channel and an uncorrelated Rayleigh fading (URF) channel using different

number of iterations.

3.6 Simulation Results

3.6.1 Effect of the Number of Iterations

We will use three different-length J = 2-level GLDPC codes constructed over

GF(16) and having a coding rate of R = 0.467 for demonstrating the achievable

performance improvement upon using an increased number of decoding iterations.

The detailed simulation parameters are listed in Table 3.4. The decoding algorithm

shown in Table 3.4 is the Symbol-Flipping (SF) based decoding algorithm. Both

AWGN and Uncorrelated Rayleigh Fading (URF) channels were applied.

It may be observed in Figure 3.8 that for the (300,140) GLDPC code the maximum

number of iterations required is less than 10, when transmitting over an AWGN

channel. Similarly, for the (1005,469) GLDPC code characterized in Figure 3.9

and for the (4005,1869) GLDPC code evaluated in Figure 3.10, no further im­

provements may be attained, when the number of iterations becomes higher than

I =20. We can also observe Figures 3.8 - 3.10 that when the code's blocklength

is increased, more iterations are necessary to eliminate the erroneous symbols in

the codeword. Furthermore, the number of useful decoding iterations gracefully

increases with N. Similarly, the same phenomenon is observed happen in the un­

correlated Rayleigh fading channel scenarios, as shown in Figures 3.11-Figure 3.13.

We can see that setting the number of iterations to I =20 may be deemed suf­

ficiently high for fully exploiting the error-correction power of the decoder, when

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 62

2 3 4

BlINo

• Iteration - 2

• Iteration = 4
t; Iteration _ 5
0 Iteration - 10
<:i Iteration = 20
0 Iteration = 35
0 Iteration = 60 ,"'1 "-

,,~~

"- ..
\ \~ '\

" "\

\ \ \

~

1 "\

..
;!; \

5 6 7 8

FIGURE 3.8: BER performance of the coding rate R = 0.467 GLDPC code
(300,140) parameterized in Table 3.4, using different number of iterations, when

communicating over an AWGN channel.

-

2 3 4

BlINo

"-

-~ I'\,. ~

!L}, \~

ffi~

~

5 6

• Iteration = 2

• Iteration 4
t; Iteration -5
o - lterlllion= 10
<:i Iteration - 20
0 Iteration 35
0 Iteration - 60

'\

"I "\

\ \ '.

\

\ \
7 8

FIGURE 3.9: BER performance of the coding rate R = 0.467 GLDPC code
(1005,469) parameterized in Table 3.4, using different number of iterations,

when communicating over an AWGN channel.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 63

BER of GLDPC N=4005 with RS code (15, 11) (Rc = 0.47)

10
0

2

~

~

345

EJNo

"-

~"'"

\\ ~ b\

~

~ \

6

• Iteration = 2

• Iteration - 4
(; Iteration - 5
0 Iteration = 10
<:> Iteration - 20
0 Iteration - 35
0 Iteration 60

\

~ "" \ \ ~

\

\ \
7 8

FIGURE 3.10: BER performance of the coding rate R = 0.467 GLDPC code
(4005,1869) parameterized in Table 3.4, using different number of iterations,

when communicating over an AWGN channel.

BER of GLDPC N=300 with RS code (15, 11) (Rc = 0.47) in Rayleigh Channel

10
0

• Iteration - 2

• Iteration = 4
{; Iteration = 5

-! "-- 0 Iteration _ 1 0
<:> Iteration 20
0 Iteration - 35
0 Iteration - 60

~"
I\~ I".

"-
1 \"a .""

"-
fIl. \'" ~

"-
.. ~ 11

1\ \ \
2 4 6 8 10 12 14 16 18 20

EJNo

FIGURE 3.11: BER performance of the coding rate R = 0.467 GLDPC code
(300, 140) parameterized in Table 3.4, using different number of iterations, when

communicating over an URF channel.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 64

BER of GLDPC N=1005 with RS code (15, 11) (Rc = 0.47) in Rayleigh Channel

10°
• Iteration ~ 2

'" Iteration = 4

" Iteration - 5
~ ~ 0 Iteration = 10

" Iteration - 20
0 Iteration - 35
0 Iteration - 60

t"- '"

~"
"-

\.\ \'. '" ..
1 '\ \ "-

Il'

\ ~ \ \,.

~,\, \
2 4 6 8 10 12 14 16 18 20

EJNo

FIGURE 3.12: BER performance of the coding rate R = 0.467 GLDPC code
(1005,469) parameterized in Table 3.4, using different number of iterations,

when communicating over an URF channel.

BER of GLDPC N=4005 with RS code (15, 11) (Rc = 0.47) in Rayleigh Channel

10° • Iteration - 2

'" Iteration =: 4

" Ileration = 5

"9~ 0 Iteration = 10

" Iteration - 20
0 Iteration = 35
0 Itcl1ltion - 60

"-

\\"'"

\\ "'-
..

\ \ "'-
III '" \ j, '\

\ \ \
2 4 6 8 10 12 14 16 18 20

EJNo

FIGURE 3.13: BER performance of the coding rate R = 0.467 GLDPC code
(4005, 1869) parameterized in Table 3.4, using different number of iterations,

when communicating over an URF channel.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 65

the block-length is less than 4000 symbols (16000 bits). Therefore, in our fu­

ture investigations, we opted for setting the number of iterations to 20, when the

block-length is less than 16000 bits.

3.6.2 Effects of the GLDPC Block-length

As seen in [42], the block-length of the binary GLDPC code is important, when

using WBFV decoding algorithm owing to the associated increased minimum dis­

tance of longer codes. In this subsection, we will investigate the associated perfor­

mance trends of nonbinary GLDPC codes, when the block-length of the GLDPC

code is increased. The corresponding simulation parameters are listed in Table 3.5.

As shown in Figures 3.14 - 3.17, the achievable BER performance imposed upon

increasing the block-length N, when communicating over both AWGN and URF

channels. Figures 3.18 and 3.19 were plotted for further quantifying the rela­

tionship between the coding gain and block-length. As depicted in Figures 3.18

and 3.19, the coding gain increases relatively rapidly for the block-lengths be­

tween N = 1000 and then increases more slowly, as the the block-length exceeds

this value, when communicating over both AWGN and URF channels.

GLDPC Constituent Coding Decoding Number of Channel
(N,K) code rate R algorithm iterations
(300,140) RS(15,1l) 0.467 SF 20 AWGN
(510,238) jURF
(1005,469)
(2010,938)
(3000,1400)
(4005,1869)
(300,220) RS(15,13) 0.73 SF 20 AWGN
(510,374) jURF
(1005,737)
(2010,1474)
(3000,2200)
(4005,2937)

TABLE 3.5: Simulation parameters for J = 2-level GLDPC codes constructed
over GF (16), when communicating over an AWGN channel and an URF channel

using different codeword lengths.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 66

2

'"""1

~

345
EJNo

t\'\

~U

\\
6

• N300

• N=51O
6 N=!ooS
o - N=2010
<;) N=3000
0 N=400S

.,
\

\ .
7 8

FIGURE 3.14: BER performance of the coding rate R = 0.467 GLDPC
(300,140), (510,238), (1005,469), (2010,938), (3000,1400), (4005,1869) codes
using RS(15,11) constituent codes parameterized in Table 3.5, and different

block-lengths, when communicating over an AWGN channel.

1001l==~ • N 300
• N=5!O
6 N-l005
o N-2010

1O-! <;) N-3000
o N=4005

"

10-

5 ~~!~,~!~~~~~~,\\~\,~~\\\ \I~~
10-6 '---_--'-__ -'--_-'--__ ...L--_---'-__ ---'-_\-'-, \~ l_---'
02345 6 7 8

EJNo

FIGURE 3.15: BER performance of the coding rate R = 0.73 GLDPC
(300,220), (510,374), (1005,737), (2010,1474), (3000,2200), (4005,2937) codes
using RS(15,13) constituent codes parameterized in Table 3.5, and different

block-lengths, when communicating over an AWGN channel.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 67

• N=300

• N-51O
t; N-IOO5 -----, ----.. 0 N=2010
<;> N-3000
0 N-4005

~

\\

1\ \

\ \ \

l- 1\
2 4 6 8 10 12 14 16 18 20

EtlNo

FIGURE 3.16: BER performance of the coding rate R = 0.467 GLDPC
(300,140), (510,238), (1005,469), (2010,938), (3000,1400), (4005,1869) codes
using RS(15,11) constituent codes parameterized in Table 3.5, and different

block-lengths, when communicating over an URF channel.

~
u.l 0.3
I=QI

2 4 6

"-
r'\..

8 10 12
EtlNo

• N=300

• N-51O
t; N-IOO5
0 N-2010
<;> N-3000
0 N=4005

~'\l

\,'\ 1\\'

\\'X

~\ "'''-... '"'----..,

l':I

\e~
14 16 18 20

FIGURE 3.17: BER performance of the coding rate R = 0.73 GLDPC
(300,220), (510,374), (1005,737), (2010,1474), (3000,2200), (4005,2937) codes
using RS(15,13) constituent codes parameterized in Table 3.5, and different

block-lengths, when communicating over an URF channel.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 68

5.0

4.5

2.5

2.0

• - RS(IS.II). R-Il.467
• - RS(lS.J3). R-Il.73

~ ~
...-

/
I -<

-
./

..--

500 1000 1500 2000 2500 3000 3500 4000
Block-length (symbols)

FIGURE 3.18: Coding gain achieved by the rate R = 0.467 GLDPC (300,140),
(510,238), (1005,469), (2010,938), (3000,1400), (4005,1869) codes and rate
R = 0.73 GLDPC (300,220), (510,374), (1005,737), (2010,1474), (3000,2200),
(4005,2937) codes having different lengths and parameterized in Table 3.5, at a

BER of 10-5 , when communicating over an AWGN channel.

34

32

30

ij'28
'-'

.~ 26
CI)

gf24
;a
8 22

20

18

16

• - RS(lS.II). R-Il.467
• - RS(lS.J3). R-Il.73

/'
..--

./
It-

..--

500 1000 1500 2000 2500 3000 3500 4000
Block-length (symbols)

FIGURE 3.19: Coding gain achieved by the rate R = 0.467 GLDPC (300,140),
(510,238), (1005,469), (2010,938), (3000,1400), (4005,1869) codes and rate
R = 0.73 GLDPC (300,220), (510,374), (1005,737), (2010,1474), (3000,2200),
(4005,2937) codes having different lengths and parameterized in Table 3.5, at a

BER of 10-5 , when communicating over an URF channel.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 69

3.6.3 Effects of the RS constituent Code

For the sake of quantifying the effects of different RS codes, nine nonbinary

GLDPC codes defined over GF(16) and GF(32) were employed in our simula­

tions using BPSK modulation for communicating over both AWGN and URF

channels. The corresponding simulation parameters are listed in Table 3.6. Six

codes were constructed over GF(32) and had a codeword length of N = 1612 5-bit

symbols. Specifically, the RS codes (31,19), (31,21), (31,23), (31,25), (31,27),

(31,29) were used as our constituent codes, which have error correcting capabili­

ties of t = 6,5,4,3,2 and 1 5-bit symbols, respectively. Similarly, three codes were

constructed over GF(16) and had a codeword length of N = 2010 4-bit symbols.

The RS codes (15,9), (15,11), (15,13) were used as our constituent codes, which

have error correcting capabilities of t = 3,2 and 1 4-bit symbols, respectively.

Since the constituent codes' rate affects the GLDPC codes' coding rates as well

as coding performance, we are interested in their effect, when these RS codes are

used in the GLDPC codes as the constituent codes.

It can be observed in Fig. 3.20 that the rate R = 0.467 GLPDC (2010,938) code

using the RS (15,11) constituent code achieves the highest coding gain at a BER

of 10-5 , when communicating over an AWGN channel. By contrast, the rate

R = 0.613 GLPDC (1612,988) code using the RS (31,25) constituent code achieves

the highest coding gain at a BER of 10-5
, when communicating over an AWGN

channel as seen in in Figure 3.21.

GLDPC Constituent Coding Galois Decoding Number of Channel
(N,k) code rate R field algorithm iterations
(2010,1474) RS(15,13) 0.73 16 SF 20 AWGN
(2010,938) RS(15,11) 0.467 jURF
(2010,402) RS(15,9) 0.2
(1612,1404) RS(31,29) 0.871 32 SF 20 AWGN
(1612,1196) RS(31,27) 0.742 jURF
(1612,988) RS(31,25) 0.613
(1612,780) RS(31,23) 0.484
(1612,572) RS(31,21) 0.355
(1612,364) RS(31,19) 0.226

TABLE 3.6: Simulation parameters for J = 2-level GLDPC codes constructed
over GF(16) and GF(32), when communicating over an AWGN channel and an

URF channel using different RS codes as constituent codes.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 70

'--

~\ \

\\ \

\ _\

\ \ "(

0 RS(l5,9), R = 0.2
II RS(l5,11), R = 0.467
0 RS(l5, 13), R - 0.73 \ \ 1

2 3 4 5 6 7 8
ElINo

FIGURE 3,20: BER performance of the GLDPC (2010,1474), (2010,938),
(2010,402) codes using RS(15,k) constituent codes parameterized in Ta­

ble 3,5, when communicating over an AWGN channel.

0- RS(31,19),R=0.226
II - RS(31,21), R = 0.355
o - RS(31,23),R=0.484
<:> - RS(31,25),R=0.6J3
.. - RS(31,27), R = 0.742 o - RS(31,29),R=0.871

2 3

\\'- -... a.
\\"'- " ~

4

ElINo

\ \ \

5

\

\

~

\

\\

~\ \

-'"

\

\
6 7 8

FIGURE 3,21: BER performance of the GLDPC (1612,1196), (1612,988),
(1612,780), (1612,572), (1612,364) codes using RS(31,k) constituent codes

parameterized in Table 3,5, when communicating over an AWGN channel.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 71

..Y,---(!'---

'-..

\'L ~

\\ , 1\

\

C>j

\ \

0 RS(l5,9), R _ 0.2
A RS(15,11), R = 0.467 l<J
0- RS(l5,J3),R=0.73 ~

2 4 6 8 10 12 14 16 18 20
EtfNo

FIGURE 3.22: BER performance of the GLDPC (2010,1474), (2010,938),
(2010,402) codes using RS(15,k) constituent codes parameterized in Ta­

ble 3.5, when communicating over an URF channel.

=-- t::------.

~

\ '\ "'"
\ '"

\ \

0- RS(31,19),R=O,226 ~ A - RS(31,21),R=O,355
o - RS(31,23),R=0.484
I? - RS(31,25),R=O,61J
... - RS(31,27), R = 0.742 ,i.

o - RS(31,29),R=0.871

'"
T \

2 4 6 8 10 12 14 16 18 20
EtfNo

FIGURE 3.23: BER performance of the GLDPC (1612,1196), (1612,988),
(1612,780), (1612,572), (1612,364) codes using the RS(31,k) constituent
codes parameterized in Table 3,5, when communicating over an URF channel.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 72

On the other hand, the best constituent code for the GLDPC codes defined over

GF(16) and transmitted over an uncorrelated Rayleigh fading channel was seen to

be the RS (15,19) code in Figure 3.22. For GLDPC codes constructed over GF(32)

and using RS(31,k) constituent codes, the GLDPC code using the RS(31,23) con­

stituent codes achieves the highest coding gain, as depicted in Figure 3.23. Fur­

thermore, the coding rate of the best GLDPC codes is lower, when communicating

over a fading channel than over an AWGN channel, i.e. more powerful constituent

codes have to be used as constituent codes, when the channel conditions degrade.

3.6.4 Effect of Different Galois Fields

In this section, we will evaluate the achievable performance of various GLDPC

codes having the same block-length expressed in terms of bits and having similar

coding rates despite using different Galois fields, when communicating over both

AWGN and uncorrelated Rayleigh fading channels. The associated simulation

parameters are summarized in Table 3.7.

Figure 3.24 characterized the attainable performance of various near-half-rate

GLDPC codes studied having a similar binary block-length of 8000 bits, when

communicating over an AWGN channel and an uncorrelated Rayleigh fading chan­

nel. At the BER of 10-6
, the GLDPC codes using the RS (31,21) and RS(15,11)

constituent codes both having a rate of R = 0.484 exhibits an E b/ No improve­

ment of 1 dB and 0.5 dB in comparison to the binary GLDPC code employing

the (15,11) Hamming constituent codes at a similar coding rate of R = 0.467,

when communicating over an AWGN channel, respectively. In other words, the

Maximum number of iteration = 20
GLDPC Constituent Coding Galois Decoding Channel
(N,K) code rate R field algorithm

(8010,3738) Hamming(15,11) 0.467 2 WBFV AWGN
(2010,938) RS(15,1l) 0.467 16 SF /URF
(1612,780) RS(31,23) 0.484 32 SF
(2010,1474) RS(15,13) 0.73 16 SF
(1612,1196) RS(31,27) 0.742 32 SF

TABLE 3.7: Simulation parameters for J = 2-level GLDPC codes, when com­
municating over an AWGN channel and an URF channel using constituent RS

codes constructed over different Galois fields.

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 73

AWGN -- URF

~- ---- 0 GF(2), Hamming(l5, II), N-801O, R=O.467

~ ~- - a-_
-"60 A GF(l6), RS(15, II), N=201O, R=O.467 -. 0 GF(32), RS(31.23), N_1612, R=O.484

\ ,
1 \

\

\ I

\ ITt

\ I I

I

!ill

I I ..
I)" I I ,

I I

2 4 6 8 10 12 14 16 18 20

Et/No

FIGURE 3.24: BER performance of the coding rate R ~ 0.47 GLDPC
(8010,3738), (2010,938), (1612,780) codes using constituent codes constructed
over different Galois fields parameterized in Table 3.5, when communicating

over both an AWGN channel and an URF channel.

larger the Galois field applied, the better the achievable BER performance. How­

ever, in an AWGN channel, the binary GLDPC code outperforms the GLDPC

code constructed over GF(16) at a BER lower than 10-5 . It may be attributed

to the fact that the number of RS(15,11) constituent codes used by the GLDPC

codes constructed over GF(16) is lower than that of the Hamming (15,11) con­

stituent codes since their binary block-lengths are similar. Thus the correlation

between the decisions of the super-codes C1 and C2 increases. As the symbols of

the super-codes become more dependent on each other, the iterative decoder of

the GLDPC code is less likely to correct the errors, although the error-correction

capability of the RS(15,11) code is higher than that of the Hamming(15,11) code.

In Figure 3.25 a similar phenomenon is observed for the GLDPC codes having

a higher coding rate, when communicating over both an AWGN channel and an

uncorrelated Rayleigh fading channels. Furthermore, as shown in Figure 3.25 for

a coding rate coding rate R of 0.73, the GLDPC code constructed over GF(32) is

capable of combatting the effects of a fading channel significantly better than the

GLDPC constructed over GF(16).

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 74

AWGN
--'URF

A GF(l6), RS(15,13), N-20iO, R=D.73

~ =::<1:: ~ :~- - - 0 GF(32). RSC3I.27), N=1612, R=D.742

\ ~
~

\
\

\ , \
\

...
\ t;J \

\

t.I " \ \
, ,

2 4 6 8 10 12 14 16 18 20
EJNo

FIGURE 3.25: BER performance of the coding rate R ~ 0,73 GLDPC
(2010,1474), (1612,1196) codes using constituent codes constructed over dif­
ferent Galois fields parameterized in Table 3,5, when communicating over both

an AWGN channel and an URF channel.

3.7 ConcI usion

In this chapter, we proposed the symbol-flipping based decoding of GLDPC codes

constructed over GF(q), which employ nonbinary constituent codes, e.g. non­

binary BCH codes or RS codes. Since our symbol-flipping based decoding al­

gorithm was inspired by the concept of the WBFV algorithm designed for the

binary Hamming-code based GLDPC codes [42], we gave a brief description of the

WBFV decoding algorithm in Section 3.2. A further discussion of vote pairs de­

signed for symbol-flipping based decoding algorithms was given in Section 3.3.

The vote pairs used by the symbol-flipping algorithm are constituted by the

vote labels E, e, F or V, which are assigned by the PGZ or BM HDDs of the

nonbinary RS constituent codes. Furthermore, the vote pair reliability ordering,

VV > eV > FV > EV > ee > Fe > Ee > FF > EF > EE' > EE deduced

from Figure 3.3 indicates the likely ordering of the probabilities that a symbol is

in error, conditioned on its associated vote pair. In Section 3.4 we proposed seven

different vote rules to design the vote weight and use simulations to find the most

beneficial vote rule, which was deemed to be E = 3, V = 0, and e = F = 1.5,

as shown in Table 3.3. We used larger values to indicate more unreliable symbols

Chapter 3 Symbol-Flipping Based Decoding of Nonbinary GLDPC Codes 75

and smaller values to indicate more reliable symbols. In Section 3.5, a step-by-step

description of the symbol-flipping algorithm designed for nonbinary GLDPC codes

was provided. In Section 3.6, the performance of nonbinary GLDPC codes using

the advocated symbol-flipping algorithm was characterized in various scenarios.

The effect of increasing the GLDPC decoder's complexity, i.e. the number of it­

erations was studied in Section 3.6.1. As seen in Figures 3.8 - 3.13, as the code's

block-length is increased, more iterations are necessary to eliminate the erroneous

symbols in the codeword, when communicating over AWGN channel and uncorre­

lated Rayleigh fading channels. However, the number of useful decoding iterations

increases only slowly with N. The effect of increasing the GLDPC codes' block­

length was demonstrated in Section 3.6.2, indicating that the attainable BER

performance improves upon increasing the block-length N, when communicating

over both AWGN and uncorrelated Rayleigh fading channels. The performance of

GLDPC codes using the family of RS constituent codes having different error cor­

rection capability was evaluated in Section 3.6.3. For GLDPC codes using the fam­

ily of RS(15,k) constituent codes, the best constituent codes were the RS(15,l1)

and RS(15,9) codes for transmission over AWGN and uncorrelated Rayleigh fad­

ing channels, respectively. By contrast, when considering the GLDPC codes us­

ing the family of RS(31,k) constituent codes, the best constituent codes are the

RS(31,25) and RS(31,23) schemes, when communicating over AWGN and uncorre­

lated Rayleigh fading channels, respectively. In Section 3.6.4, the performance of

GLDPC codes having the same block-length expressed in bits and having similar

coding rates despite being constructed over different Galois fields was evaluated.

At the BER of 10-6
, the GLDPC codes constructed over higher order Galois field

exhibits a better performance, when communicating both AWGN and uncorrelated

Rayleigh fading channels. In conclusion, the symbol-flipping decoding algorithm

advocated can be successfully used for decoding GLDPC codes constructed from

nonbinary constituent codes. The simulation results demonstrated that GLDPC

codes defined over GF(q) have the potential of outperforming similar-rate binary

constituent codes.

Chapter 4

Conclusions

In this thesis, an efficient symbol-based hard decision aided decoding algorithm

was designed for nonbinary GLDPC codes using RS constituent codes.

First of all, in Chapter 2 we introduced the structure of J = 2-level GLDPC codes

and their iterative SISO decoding algorithm with the aid of an example. Then we

outlined the characteristics of binary GLDPC codes using iterative SISO decoding

in various quantifying scenarios, the effects of the number of iterations, those of

the decoding algorithm applied by the constituent decoders as well as those of the

coding rate, block-length and benefits of shortened binary Hamming codes used

as constituent codes.

In Chapter 3, we proposed a novel symbol-based hard decision based symbol­

flipping decoding algorithm designed for GLDPC codes constructed over GF(q)

using RS constituent codes. This decoding philosophy was motivated by the

Weighted Bit Flip Voting (WBFV) algorithm designed for binary Hamming based

GLDPC codes. Thus we briefly introduced the WBFV algorithm in Section 3.2.

The entire design process of the symbol-flipping based decoding algorithm was

demonstrated in Section 3.3 and Section 3.4. The concept of the vote pairs, VV,

e V, FV, EV, ee, Fe, Ee, F F, EF, EEl, and EE in the symbol-flipping based de­

coding algorithm. Seven vote rules were proposed in Section 3.4 and the suggested

optimal voting rule was deemed to be E = 3, V = 0, and e = F = 1.5, as shown in

Table 3.3, where larger values indicates unreliable symbols and smaller values in­

dicates more reliable symbols. A summary of the symbol-flipping based decoding

algorithm designed for nonbinary GLDPC codes using RS constituent codes was

provided in Section 3.5. Our simulations demonstrated that the symbol-flipping

76

Chapter 4 Conclusions 77

decoding algorithm inspired by the WBFV algorithm of [42] can be success­

fully used for decoding nonbinary GLDPC codes constructed from RS constituent

codes. It was also demonstrated that GLDPC codes defined over GF(q) have the

potential of outperforming similar-rate binary constituent codes. Furthermore, we

also characterized the achievable performance of GLDPC codes invoking various

numbers of iterations, block-lengths, as well as different RS codes as constituent

codes.

Our future research will design a large variety of GLDPC codes, in an effort to

identify the best combination of system components.

Bibliography

[1] C. Shannon, "A mathematical theory of communication," Bell System Tech­

nical Journal, pp. 379-427, 1948.

[2] R. Hamming, "Error Detection and Error Correcting Codes," Bell System

Technical Journal, vol. 29, pp. 147-160, 1950.

[3] P. Elias, "Coding of Noisy Channels," IRE Convention Record, vol. 4, pp. 37-

47, 1955.

[4] A. Hocquenghem, "Codes correcteurs d'erreurs," Chiffres, vol. 2, pp. 147-156,

September 1959.

[5] R. C. Bose and D. K. Ray-Chaudhuri, "On a class of error correcting binary

group codes," Information and Control, vol. 3, pp. 68-79, March 1960.

[6] R. C. Bose and D. K. Ray-Chaudhuri, "Further results on error correcting

binary group codes," Information and Control, vol. 3, pp. 279-290, September

1960.

[7] 1. S. Reed and G. Solomon, "Polynomial codes over certain finite fields,"

Journal of the Society of Industrial and Applied Mathematics SIAM, vol. 8,

pp. 300-304, June 1960.

[8] G. D. Forney, Concatenated Codes. Cambridge, MA: MIT Press, 1966.

[9] V. A. Zinov'ev, "Generalizeed Concatenated Codes," Problemy Peredachi In­

formatsii, vol. 12, no. 1, pp. 5-15, 1976.

[10] F. J. MacWilliams and N. J. A. Sloane, The theory of Error-correcting Codes.

Amsterdam, The Netherlands: North-Holland, 1993.

[11] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon Limit Error­

Correcting Coding and Decoding: Thrbo Codes," in IEEE International Con­

ference on Communications, pp. 1064-1070, 1993.

78

BIBLIOGRAPHY 79

[12J R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT

Press, 1963.

[13J R. Gallager, "Low density parity check codes," IEEE Transaction on Infor­

mation Theory, vol. S, pp. 21-2S, January 1962.

[14] M. Sipser and D. A. Spielman, "Expander codes," IEEE Transactions on

Information Theory, vol. 42, no. 6, pp. 1710 - 1722, 1996.

[15J D. J. C. MacKay, "Good error-correcting codes based on very sparse matri­

ces," IEEE Transactions on Information Theory, vol. 45, pp. 1710-1722, Mar.

1999.

[16J D. J. C. MacKay and R. M. Neal, "Good codes based on very sparse matrices,"

in C. Boyd (editor) Cryptography and Coding: 5th lAM Conference, vol. 2,

pp. 100-111, Springer 1995. Lecture Notes in Computer Science.

[17J R. M. Tanner, "A recursive approach to low complexity codes," IEEE Trans­

actions on Information Theory, vol. IT-27, pp. 533 - 547, Sept. 19S1.

[lSJ N. Wiberg, H.-A. Loeliger, and R. Kotter, "Codes and Iterative Decoding on

General Graphs," European Transactions on Telecommunications, pp. 513-

525, September 1995.

[19] N. Wiberg, Codes and Decoding on General Graphs. Phd thesis, Linkoping

University, Sweden, 1996.

[20] B. J. Frey and F. R. Kschischang, "Probability propagation and iterative

decoding," in Proceedings of the 34 th Allerton Conference, October 1996.

[21] B. J. Frey, "Pseudo-Random Codes Based on Bayesian Networks," in Proceed­

ings of the 5th Candian Workshop on Information Theory(CWIT), pp. 15-1S,

June 1997.

[22J F. R. Kschischang and B. Frey, "Iterative Decoding of compound Codes by

Probability Propagation in Graphical Models," IEEE Journal on Selected

Area in Communications (JSA C), vol. 16, pp. 219-230, February 1995.

[23J B. J. Frey, F. R. Kschischang, H. A. Loeliger, and N. Wiberg, "Factor graphs

and algorithms," in Proceedings of the 35 th Allerton Conference, October

1997.

BIBLIOGRAPHY 80

[24J F. R. Kschischang, B. Frey, and H.-A. Loeliger, "Factor graphs and the

sum-product algorithm," IEEE Transactions on Information Theory, vol. 47,

pp. 498-519, February 2001.

[25J G. D. Forney, "On iterative decoding and the two-way algorithm," in Proceed­

ings of the International Symposium Turbo Codes and Related Topics, Sept.

1997.

[26J G. D. Forney, "Codes on graphs: Normal realizations," IEEE Transactions

on Information Theory, vol. 47, no. 2, pp. 520-548, 2001.

[27J G. D. Forney, "Codes on graphs: constraint complexity of cycle-free realiza­

tions of linear codes," IEEE Transactions on Information Theory, vol. 49,

no. 7, pp. 1597-1610, 2003.

[28J S. Benedetto and G. Montorsi, "Serial concatenation of block and convolu­

tional codes," Electronics Letters, vol. 32, pp. 887-888, May 1996.

[29J S. Benedetto and G. Montorsi, "Iterative decoding of serially concatenated

convolutional codes," Electronics Letters, vol. 32, pp. 1186-1187, June 1996.

[30J J. Pearl, "Fusion, propagation and structuring in belief networks," Artificial

Intelligence, vol. 29, no. 3, pp. 241-288, 1986.

[31J J. Boutros, O. Pothier, and G. Zemor, "Generalized low density (Tanner)

codes," in IEEE Internationl Conference on Communications (ICC 1999),

vol. 1, pp. 441 - 445, June 1999.

[32J O. Pothier, L. BruneI, and J. Boutros, "A low complexity F EC scheme based

on the intersection of interleaved block codes," in Vehicular Technology Con­

ference, pp. 274-278, 1999.

[33J M. Lentmaier and K. S. Zigangirov, "On generalized low-density parity-check

codes based on Hamming component codes," IEEE Communication Letters,

vol. 3, pp. 248 - 250, Aug. 1999.

[34J O. Pothier, Compound codes based on graphs and their iterative decoding.

Ph.d. thesis, Ecole Nationale Suprieure des Telecommunications, Jan. 2000.

http://www.comelec.enst.fr/boutros/coding/.

BIBLIOGRAPHY 81

[35] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimum Decoding of Linear

Codes for Minimizing Symbol Error Rate," IEEE Transaction on Information

Theory, vol. 20, pp. 284-287, March 1974.

[36] T. Johansson and K. Zigangirov, "A simple one-sweep algorithm for optimal

APP symbol decoding of linear block codes," IEEE Transactions on Infor­

mation Theory, vol. 44, pp. 3124-3129, Nov. 1998.

[37] D. Chase, "A class of algorithms for decoding block codes with channel mea­

surement information," IEEE Transaction on Information Theory, vol. 18,

pp.170-182, Jan. 1972.

[38J S. Hirst and B. Honary, "Application of efficient Chase algorithm in decoding

of generalized low-density parity-check codes," IEEE Communications Let­

ters, vol. 6, pp. 385 - 387, Sept. 2002.

[39] T. Kaneko, T. Nishijima, H. Inazumi, and S. Hirasawa, "An efficient

maximum-likelihood-decoding algorithm for linear block codes with algebraic

decoder," IEEE Transaction Information Theory, vol. 40, pp. 320-327, Mar.

1994.

[40J T. M. N. Ngatched and F. Takawira, "Efficient decoding of generalized low­

density parity-check codes based on long component codes," in 2003 IEEE

Wireless Communications and Networking, vol. 1, pp. 705 - 710, March 2003.

[41] T. Zhang and K. Parhi, "High-performance, low-complexity decoding of gen­

eralized low-density parity-check codes," in IEEE Global Telecommunications

Conference, vol. 1, pp. 181 - 185, Nov. 2001.

[42J S. Hirst and B. Honary, "Decoding of generalised low-density parity-check

codes using weighted bit-flip voting," lEE Proceedings Communications,

vol. 149, pp. 1 - 5, Feb. 2002.

[43] T. Zhang and K. Parhi, "A class of efficient-encoding generalized low-density

parity-check codes," in 2001 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP '01), vol. 4, pp. 2477 - 2480, May

2001.

[44] 1. Djordjevic, O. Milenkovic, and B. Vasic, "Generalized low-density parity­

check codes for optical communication systems," Journal of Lightwave Tech­

nology, vol. 23, pp. 1939 - 1946, May 2005.

BIBLIOGRAPHY 82

[45] M. C. Davey and D. MacKay, "Low-density parity check codes over GF(q),"

IEEE Communications Letters, pp. 165-167, June 1998.

[46] F. Guo, Low Density Parity Check Coding. Ph.D. thesis, University of

Southampton, January 2005.

[47] T. Zhang, Efficient VLSI Architectures for Error-Correction

Codingh. Ph.D. thesis, University of Minnesota, July 2002.

http://www.ecse.rpi.edu/homepages/tzhang/RVSAL/research.html.

[48] C. Berrou and A. Glavieux, "Near optimum error correcing coding and decod­

ing: turbo-codes," IEEE Transactions on Communications, vol. 44, pp. 1261-

1271, Oct. 1996.

[49] J. Hagenauer, E. Offer, and L. Papke, "Iterative decoding of binary block

and convolutional codes," IEEE Transactions on Information Theory, vol. 42,

pp. 429-445, March 1996.

[50] P. Robertson, E. Villebrun, and P. Hoeher, "A comparison of optimal and sub­

optimal MAP decoding algorithms operating in the log domain," in IEEE

International Conference on Communications, vol. 2, pp. 1009-1013, June

1995.

[51] L. Hanzo, T. Liew, and B. L. Yeap, Turbo Coding, Turbo Equalisation and

Space-Time Coding. John Wiley & Sons Ltd., 2002.

[52] H. Imai and S. Hirakawa, "A new multilevel coding method using error­

correcting codes," IEEE Transactions on Information Theory, vol. 23,

pp. 371-377, May 1977.

[53] U. Wachsmann, R. Fischer, and J. Huber, "Multilevel Codes: Theoretical

Concepts and Practical Design Rules," IEEE Transactions on Information

Theory, vol. 45, p. 1361 V1391, July 1999.

[54] L. Hanzo, S. X. Ng, T. Keller, and W. Webb, Quadrature Amplitude Mod­

ulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised and Space­

Time Coded OFDM, CDMA and MC-CDMA Systemss. John Wiley and Sons

Ltd., 2 ed., November 2004.

[55] Y. Kou, S. Lin, and M. P. C. Fossorier, "Low-density parity-check codes based

on finite geometries," IEEE Transactions on Information Theory, vol. 47,

pp. 2711-2736, Nov. 2001.

