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COSMOLOGY FROM TYPE I STRING THEORY 

Oliver John Eyton-Williams 

Within the framework of Type I string theory we construct phenomenologically inter­

esting models. The string theory is formulated in a 10 dimensional space of which 6 

are compact and the anisotropies in the compact dimensions lead to a hierarchy of 

gauge and Yukawa couplings. We make use of this hierarchy to construct a model of 

inflationary particle physics and a consistent model for Dirac neutrino masses. The in­

flation model solves the strong CP and f.1 problems of the MSSM and predicts a range 

of allowed ratios for f.1 and the soft masses for the Higgs doublets. We demonstrate 

that it is possible to obtain Dirac masses in agreement with current experimental data. 
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Chapter 1 

Introduction 

1.1 Thesis Structure 

The main body of the thesis is organised as follows. The current chapter consists 

solely of reviews of known physics. First we discuss one of the most well tested phys­

ical theories: the Standard Model (SM) of particle physics. After discussing some of 

the successes and shortcomings of this model we introduce low energy supersymmetry 

(SUSY), first covering the basics of the formalism, then moving on to the well studied 

Minimal Supersymmetric Standard Model (MSSM). The Next to Minimal Supersym­

metric Standard Model (NMSSM) is also discussed as a mechanism for generating the 

supersymmetric Higgs mass jJ, of the MSSM. After this we consider the implications of 

making supersymmetry local, namely we discuss supergravity (SUGRA) and how this 

provides a useful framework for breaking supersymmetry. We then discuss neutrino 

physics in the SM and beyond. Our penultimate review is a brief review of the salient 

points of supersymmetric string theory, focusing on the elements that will prove im­

portant in the main body of the thesis. Finally we introduce inflationary cosmology 

paying particular attention to models of hybrid inflation. 
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In chapter 2 we expand on the parts of string theory most relevant to our model 

building efforts, namely the low energy effective superpotential of Type I strings in the 

presence of intersecting stacks of D-branes. In addition we discuss the soft spectrum 

expected in this class of models and how the geometry of the underlying space is 

of great importance to the models we later build. Specifically we show that it is 

possible to obtain very small Yukawa couplings without invoking particularly small 

extra dimensions. 

Chapter 3 is concerned with a field theory model of hybrid inflation. The require­

ments of inflation are imposed and the phenomenology of the model investigated. A 

prediction for the ratio of soft and supersymmetric masses for the Higgs bosons will 

be obtained, coming directly from the inflationary requirements. From the field theory 

perspective a number of seemingly arbitrary assumptions are required for the model 

to work. These assumptions are justified in chapter 4, making use of the framework 

laid out in chapter 2 to demonstrate that it is possible to build the model of hybrid 

inflation in this framework. The small Yukawa couplings obtained in chapter 2 will 

be put to work connecting the Peccei-Quinn and electroweak (EW) scales. It will be 

demonstrated how the soft spectrum can be made to accommodate our inflation model. 

In chapter 5 we provide another application of the string framework. In this case 

the small Yukawa coupling allows for the generation of Dirac mass matrices. This 

requires consideration of non-renormalisable operators, which was not the case for the 

inflation model, and they are generated using the supersymmetric generalisation of the 

Froggatt-Nielsen (FN) mechanism. 

The thesis is rounded off by a general discussion of the findings in chapter 6. This 

is followed by appendices A and B and concludes with the bibliography. 
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1.2 Underlying Physics 

The rest of this chapter is set aside for discussions of the physical theories that underpin 

the model building efforts that appear in chapters 3 to 5. Due to the range of different 

theories that have relevance to the model building it is impossible to do justice to all, 

or indeed any of the subjects. Instead we attempt to provide sufficient information for 

the reader to better understand the following chapters and do not attempt to make 

these discussions self-contained. It should also again be stressed that the author makes 

no claim as to the originality of the work presented in this or the succeeding chapter. 

Finally to keep the bibliography under control we generally only cite reviews, texts and 

illustrative examples intending no slight to the original authors in the first two chapters 

of this thesis. With these disclaimers in place we start our discussion with the Standard 

Model of particle physics. 

1.3 Standard Model 

For textbook treatments of the SM see for example [1, 2J The SM is a renormalisable 

field theory containing fields that transform under the (spontaneously broken) gauge 

symmetry group SU(3)cxSU(2)LxU(1)y and can be thought of as the union of elec­

troweak theory [3, 4J and quantum chromodynamics [5, 6]. To completely define the 

model one must write down the Lagrangian for all of the fields. Strictly speaking, if all 

the indices, gamma matrices, couplings and group generators are included in full this 

completely specifies the model. Nonetheless it is vastly more convenient and compre­

hensible if the fields are grouped into representations of the symmetries governing the 

SM. Firstly and most fundamentally the fields can be classified by their representation 

under the Lorentz group, of which two representations, spin-l/2 (quarks and leptons) 
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and spin-1 (gauge bosons) have been observed in nature. It has long been expected 

that spin-O fields playa crucial role in breaking the gauge symmetry of the SM from 

SU(3)c XSU(2)L x U(l)y ----+ SU(3)cxU(1)EM' this role being played by the famous Higgs 

boson. However, while it is to be expected that the Higgs boson will appear at the 

Large Hadron Collider (LHC), until that moment the existence of the Higgs can only 

be inferred. As yet we have not properly defined what we mean by mean by quarks, 

leptons and so on, to do so we must require that they transform under representations 

of the gauge symmetry group SU(3)cxSU(2hxU(1)y. In other words a field can be 

thought of as a vector in the space upon which the representation matrices act. This al­

lows us to specify the standard model fields by their gauge and Lorentz transformation 

properties, summarised in table 1.1. 

Field Spin SU(3)c SU(2h U(l)y 

Higgs boson, H == (H+, Ho) 0 1 2 1/2 

Left-handed quarks, Qi == ('ULi' dLi) 1/2 3 2 1/6 

Right-handed up quarks, 'URi 1/2 3 1 2/3 

Right-handed down quarks, dRi 1/2 3 1 -1/3 

Left-handed leptons, Li == (VLi' eLi) 1/2 1 2 -1/2 

Right-handed electrons, eRi 1/2 1 1 -1 

Gluons, gOO, (ex = 1 - 8) 1 8 1 0 

Weak bosons, Aa , (a = 1 - 3) 1 1 3 0 

Hypercharge boson, B 1 1 1 0 

Table 1.1: Gauge and Lorentz representations of the Standard Model fields. The SU(2h 

doublets are decomposed into their representations under U(l)EM and the index i labels 

generations. 
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The fields in different generations are distinguished with either the index i = 1,2,3 

or as follows: Ui = (u,c,t), di = (d,s,b), Vi = (ve,vj.L,vT ) and ei = (e,}.l,r). To be 

more precise the notation with the numerical index should be reserved for the weak 

eigenstate basis and the letters for the mass eigenstates, however we will use these two 

interchangeably. The choice of H to represent the Higgs field, instead of the traditional 

¢, is to avoid any confusion with the inflaton, which is denoted ¢. 

The most important consequence of table 1.1 is that gauge invariant fermion mass 

terms cannot be written down with the fields transforming as shown. Any two vVeyl 

spinors that have been suggestively labelled to imply that they are left and right-handed 

components of a Dirac spinor in fact have different gauge transformation properties, 

hence cannot form an invariant bi-linear. This implies that, if gauge symmetry is a good 

symmetry of the Lagrangian, i.e. intact after quantum corrections, then the fermions 

must be exactly massless in the unbroken phase. 

However the gauge symmetry of the 8M is spontaneously broken and this allows 

mass terms to be included for both fermions and vector bosons. For the vector boson 

masses we need to consider a generalisation of the kinetic term for the Higgs field 

that is symmetric under local symmetry transformations. First the derivative must 

be covariantised, such that oj.LH ---7 Dj.LH where Dj.LH transforms like H, where the 

covariant derivative is given by 

(1.1 ) 

where r a = aa /2 and aa are the Pauli sigma matrices. The kinetic term is now 

(1.2) 

where it is clear from expanding out Eq. (1.2) that it will contain terms that are bilinear 

in the gauge bosons and quadratic in the Higgs boson. When spontaneous symmetry 
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breaking occurs the Higgs boson is replaced by a vacuum expectation value (vev), since 

the Higgs potential does not minimise at zero, but at finite, non-zero values for the 

field H. Three of the degrees of freedom of the Higgs field will be re-interpreted as 

longitudinal modes for massive gauge bosons, but one remains as a perturbation about 

this new minimum; a massive scalar field. 

The potential for the Higgs must be of the following form 

(1.3) 

2 

which has a minimum at IHI2 = iA where residual gauge freedom allows the Higgs vev 

to be expressed as 

(H) = ~ ( : ) (1.4) 

To put it another way this freedom comes from the degeneracy of the different vacua 

means that all choices are equally good and we are allowed to make a global transfor-

mation to choose a convenient vacua 1 . 

Eq. (1.4) is not invariant under the full SU(2)L x U(l)y rotations under which 

H -7 ei(c,aT a+f3/2) H as we see from table 1.1. However it is invariant under a subset 

of SU(2)Lx U(l)y rotations in which a 3 = f3 and a 1 = a 2 = O. In the rest of 

the fields we see that the remaining transformation distinguishes between elements of 

SU(2)L doublets and rotates each element by a local phase that depends on both the 

hypercharge and its T3 eigenvalue. Hence we can say that the gauge symmetry of the 

model has undergone the following transformation, termed electroweak (EW) symmetry 

breaking 

SU(3)c x SU(2h x U(l)y -7 SU(3)c x U(l) EM' (1.5) 

IThis is not true if different vacua are reached in spatially separated regions since we can only make 

a global redefinition not a local (gauge) transformation 
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In the broken phase the gauge bosons acquire masses from their coupling to H in 

Eq. (1.2) and, after we change basis to 

(1.6) 

(1. 7) 

(1.8) 

we obtain the following masses 

m - 9 v mz = Ig2 + g12:!!. and mA = 0 
W - 2' V 2 (1.9) 

where mw is the mass for both W+ and W-. 

To find the masses for the fermions we must make further use of the symmetry 

breaking mechanism. We note that it is possible to write down couplings between two 

fermions and one Higgs boson: 

(1.10) 

where all of the indices, except for generational indices, are suppressed. It is clear that 

when H is replaced with its vev Eq. (1.10) provides Dirac masses for the quarks and 

charged leptons. Note that the 8M cannot generate Dirac masses for the neutrinos 

since no singlet fermion exists to provide an analogous Yukawa coupling; since non-

renormalisable operators are excluded it is impossible to include any masses for the 

neutrinos. 

1.3.1 Standard Model Successes 

The first and perhaps the most obvious success of the 8M is its remarkable agreement 

with experiment: at the time of writing there are no predictions of the 8M out of line 

with experimental tests. Notable successes of the 8M include the prediction of the 
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existence of the c quark, given the existence of the 'U, d and s quarks. Without the 

inclusion of the c quark loop effects enhance flavour changing processes, but Glashow, 

Iliopoulos and Maiani (GIM) observed [7] that including a quark with the same quantum 

numbers as the 'U quark brought these effects under control. 

The decays of the KO meson were shown to violate CP and hence, to introduce CP 

violation into particle physics, Kobayashi and Maskawa [8] introduced a third genera­

tion of matter. This was done so that there would be one irreducible phase left in the 

couplings between \IV bosons and quarks, which is not the case in two generations as 

all the phases can be rotated away. The subsequent discovery of the b quark required 

the existence of the t quark which, when subsequently discovered, further confirmed 

the standard model. In addition the mixing matrix induced in the W boson couplings 

by diagonalising the quark mass matrix, the Cabibbo-Kobayashi-Maskawa (CKM) ma­

trix, has been subject to extensive experimental test. As yet all experimental data is 

consistent with the CKM description of the quark sector. 

1.3.2 Standard Model Problems 

There are a number of unresolved issues with the SM, both on a conceptual level and 

with regard to experiment. Firstly how is a period of inflation possible within the SM? 

It seems that this is not possible since there are a lack of scalars within the SM, only 

the Higgs. Secondly, while the gauge couplings do not unify in the SM, they do come 

close providing a strong hint that there is something between the electroweak scale and 

the scale of the Grand Unified Theories (GUTs). That is, if we take the near miss as 

being more than fluke. 

In addition there is the hierarchy problem. This stems from the observation that the 

mass of the Higgs boson, mH, is extremely sensitive to unknown high energy physics. 
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It can be shown [9] that, if there are any couplings between massive particles and the 

Higgs, one loop effects introduce an additive, quadratic dependence on the momentum 

cut-off, om ~ ex A 2. This would have to be cancelled by the bare mass squared of the 

order of 1036 Gey2, if we take the 8M to be valid up to the Planck scale, to give a 

remainder of the order of 104 - 106 Ge y2. This would have to be done at every order in 

perturbation theory. While there is nothing intrinsically wrong with such fine-tuning 

it essentially seems arbitrary. Let us instead phrase the problem as a question: why 

should the Higgs vev be down at the electroweak scale when the natural scale for the 

Higgs mass is the highest scale in the theory? One possible answer to this question is 

supersymmetry, which we discuss in section 1.4. 

Also there is the strong CP problem, namely why is pure Quantum ChromoDynam-

ics (QCD) (without electroweak effects) CP conserving? If all of the renormalisable, 

gauge invariant terms m QCD Lagrangian are allowed the following term must be 

included [2] 

(1.11) 

where Gp,v is the gluon field strength and G/w = ~Ep,vpcrFPcr. Eq. (1.11) cannot just be 

set to zero, despite the fact this can be expressed as a total derivative, since it can be 

shown that the integral of the total derivative is not identically zero due to instantons 

contributions2. The physical coupling can be obtained when the most general quark 

mass matrix is subjected to a chiral rotation qL -) ULqL and qR -) U RqR such that 

all the quark Yukawa couplings are rendered real and diagonal. If this is performed 

the Lagrangian is modified (since the chiral symmetry is anomalous) and the effective 

2Instantons are field configurations that interpolate between different, degenerate QeD vacua 
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e parameter becomes 

(1.12) 

where eEW arises from the diagonalisation of the quark mass matrices and is given by 

(1.13) 

where M1t and lWd are the quark mass matrices for the up-like and down-like quarks, 

respectively. Since a non-zero e can be shown to [10] give rise to a electric dipole 

moment for the neutron, dn , experimental limits of Idnl < 3 x 1O-26 ecm [11] place an 

upper bound on e:::; 10-10 since dn < 0.63 x 1O-25 ecm [10]. So the strong CP problem 

is essentially, why should these two separate areas of physics, the QCD and EW sectors, 

conspire to give e = 07 

Peccei-Quinn Mechanism 

The Peccei-Quinn (PQ) mechanism [12, 13] provides a possible solution to the strong 

CP problem. Essentially the PQ mechanism introduces an additional field, a, that 

has a linear coupling to the CP-violating gluon field strength term, GJLJ';JLv. Now the 

strong CP violating Lagrangian is 

(1.14) 

Now it is clear that, if a has no other potential, then it will be energetically 

favourable to take on a value such that Eq. (1.14) is minimised, i.e. il = e. With an 

effective e coupling of zero the strong CP problem is solved. 

For the PQ mechanism to be interesting it needs to be explained how this particular 

potential might be arrived at. The idea is to introduce additional, anomalous global 

U(l)PQ symmetry under which the quarks are charged and an additional scalar field, 
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which must carry a charge under the symmetry. The axion, a(x) is identified with the 

dynamical phase of the scalar field, CT, and if the global symmetry were exact would 

have a shift symmetry a(x) --'> a(x) + a, where a is a c-number, forbidding any non-

derivative interactions. However, as noted, U(l)PQ is anomalous and hence the shift 

symmetry is broken by additional terms induced by the anomaly. This conspires to 

give a-xion a mass and introduce Eq. (1.14). Finally fa can be shown [10] to be given 

by 

(1.15) 

where Qa is the PQ charge of CT. 

The axion is subject to experimental bounds coming from cosmology, astrophysics 

and conventional particle physics [10, 14J: 

(1.16) 

These bounds will play important roles in the models built in the main body of the 

thesis. 

1.4 Supersymmetry 

One of the problems with supersymmetry is the multitude of differing notation. For 

this thesis we maintain that Greek indices /1, lJ, P and CT will be retained for Minkowski 

space vector and tensor indices, while spinorial indices will be taken from the beginning 

of the Greek alphabet. With all other indices we will try to avoid Greek if at all possible. 

Unfortunately this is not the convention used in [15] (in which the tensorial indices are 

Latin), but does agree with [2J and [9J and the rest of the thesis. 

Historically, one3 of the origins of supersymmetry was in the development of string 

3SUSY has several origins: for an overview of the history see [16]. 
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theory, in which supersymmetry is needed to introduce fermions. Since this thesis makes 

use of string theory the connection between the two theories is helpful. From a particle 

physics perspective low energy supersymmetry 4 is helpful for a number of reasons, in­

cluding the following. The hierarchy problem is solved since [9] the non-renormalisation 

theorem of SUSY [17] states that there is no infinite renormalisation required, beyond, 

logarithmic, wavefunction renormalisation and cancelling this requires a much milder 

tuning. This still does not explain why the electroweak scale and the Planck scale are 

different, in that this separation is not an a priori prediction of SUSY. It can however 

provide a mechanism to split these scales given appropriate parameters within the right 

class of SUSY models, hence it is very much a model dependent prediction. We will 

return to this question in section 1.4.1. 

Supersymmetry enlarges the Poincare symmetry to include generators, QCt) that 

mix fermions and bosons. Heuristically 

Q[boson >= [fermion> 

Q[fermion >= [boson> 

(1.17) 

(1.18) 

and we can immediately deduce two things. One, Qex is fermionic (as was implied by 

the spinor index) and two, Q must have a non-zero mass dimension. In principle there 

can be more than one SUSY generator, Q~, but we restrict our attention to N = 1 

SUSY. In this case the anticommutators of the spinor generators are given by 

{Q ex, Q t3} = 2a~t3Pp, 

{Qex,Qp} = 0 = {Qa,Qt3} 

(1.19) 

(1.20) 

where aO = Ibx2 and a i are the Pauli matrices. The undotted indices denote left-

4By low energy we mean that supersymmetry is manifest at scales not much in excess of the elec-

troweak scale. 
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handed two component Weyl spinors whereas a dot over the index implies that this 

field is a right-handed two component Weyl spinor. Eq. (1.19) shows that the mass 

dimensions of Q and Q are given by [Q] = 1/2 = [Q]. The rest of Q's algebraic 

properties can be inferred from the Poincare transformations of a spinor operator as 

discussed in [18J. For a more through discussion of notation and conventions see [15], 

bearing in mind the the differing convention for Lorentz 4-vectors. To simplify the 

process of constructing supersymmetric models we utilise superspace formalism and 

sketch out the details necessary for model building. 

Our first step will be to introduce Grassmannian spinor parameters, ecx and eO. 

which obey the following anti-commutation relations 

(1.21) 

This allows us to re-formulate the SUSY algebra as a lie algebra, hence making it 

possible to exponentiate the generators and obtain a unitary operator corresponding 

to a finite SUSY rotation. The only non-zero commutator is given by 

(1.22) 

where the spinor summation convention 'l/Jx = 'ljPXcx = x7/J and 'l/Jx = 'tPo.Xo. = x1iJ has 

been employed. This leads to 

G(e, e) = exp [i(eQ + eQ)] . (1.23) 

To prevent the action of eQ from changing the mass dimension of any field it 

operates on e must have a mass dimension of -1/2, in addition Eq. (1.23) would make 

little sense if eQ were dimensionfu1. 
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Superfields 

We now need an object onto which the SUSY transformations can act. Let us consider 

a general scalar function living in superPoincare space i.e. a representation of the 

Poincare group augmented by the SUSY generators. 

4>(x, B, B) = J(x) + B¢(x) + Bx(x) + BBm(x) + BBn(x) 

+BaILBvIL(x) + (BB)B>.(x) + (BB)e1j;(x) + (BB)(BB)d(x) (1.24) 

where this is a series expansion in Band B, which naturally terminates due to the 

anticommutation relations given in Eq. (1.21). Fierz identities have been applied to 

ensure that this includes all possible, independent, non-zero combinations of Band B. 

The action of Eq. (1.23) on 4> allows one to derive the SUSY transformation laws 

of the components. We do not show all the transformations, but let us consider the 

infinitesimal transformation of d 

(1.25) 

where ~ is a constant, Grassmann spinor analogous to B. 

There are two important features of this equation. One, the SUSY transformation 

is doing what one expects: it is mixing fermions, X and ¢, into a boson, d. Two, 

this field transforms as a total derivative of the ordinary space-time co-ordinates, and 

so we expect that a quantum field theory (QFT) built entirely of this, and similar 

components, will be automatically supersymmetric. It is exactly this approach which 

we will now pursue. 

We wish to consider field theories constructed out of irreducible representations 

of the SUSY transformations. To find chiral representations we require the general 
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superfield, <P, be subject to the covariant constraint 

(1.26) 

where Dn is a covariant derivative in superspace 

(1.27) 

The most general function that satisfies this constraint is <I>(y, e) where 

(1.28) 

hence 

<P(y, e) = A(y) + v'2ei/J(y) + eeF(y) (1.29) 

is the most general, left-handed, chiral superfield (also referred to as chiral superfields), 

where A and F are complex scalar fields and i/JC'< is a complex left-handed Weyl spinor, 

note the undotted index5 . This justifies our assertion that this representation is chiral. 

Eq. (1.29) can be expanded out in terms of x, e and B which introduce higher derivative 

terms, crucial in the derivation of the kinetic terms: 

<P(y, e) =A(x) + v'2ei/J(x) + eeF(x) + ieafLBDj.lA(x) 

i-I -+ M(ee)Dj.li/J(x)aj.le - -(ee)(BB)OA(x). 
v 2 4 

(1.30) 

An analogous construction can be carried out for the other covariant derivative 

(1.31) 

imposing 

(1.32) 

5The undotted index of'lj; can be inferred from the spinorial summation conventions 
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on a general superfield. We note that superfields satisfying this constraint are right­

handed, chiral (also denoted anti-chiral superfields) superfields and that the hermitian 

adjoint of a chiral superfield provides an important example of such a superfield. 

Applying either covariant derivative to a function of chiral and anti-chiral fields 

shows, via the chain rule, that any function of only chiral superfields is chiral. Also a 

function of anti-chiral super fields remains anti-chiral whereas, via the product rule, it 

is possible to show that functions of both chiral and anti-chiral fields are neither chiral 

nor anti-chiral. We also note that the ee (ee) component of <I> (<I> t) transforms as a . 

total derivative and is a candidate for building a SUSY theory. This is not the case for 

the more general superfield, Eq. (1.24), which contains additional fields that contribute 

to the transformation of ee and ee components of Eq. (1.24). See [15] for a complete 

discussion of the transformation laws. 

Since the chiral superfields do not contain any fields with vector indices it is clear 

that we must look elsewhere for gauge bosons. The general scalar superfield, Eq. (1.24), 

does contain the vector components, vJ.L' and we impose V(x, e, 8)t = V(x, e, 8), where 

V is initially general. This ensures that v~ = vJ.L is a candidate for an Abelian vector 

boson. Implementing gauge transformations in a supersymmetric way requires 

V -7 V + <I> + <I>t (1.33) 

where <I> is a chiral superfield. This leads to 

(1.34) 

where this is clearly a gauge transformation in the usual sense. We note that the general 

scalar superfield, Eq. (1.24), would clearly not have been a suitable replacement for the 

sum of chiral superfields since it would introduce vJ.L -7 vf..L + v~ which clearly is not a 

gauge transformation. 
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To bring our notation closer in line with [15] and [19] we redefine the components 

of Eq. (1.24) as follows 

(1.35) 

This has no bearing on any physics since the components in Eq. (1.24) are arbitrary, 

up to their Lorentz transformation properties which are unchanged. As a final note 

many of the fields in V can be gauged away under Eq. (1.33). To see this consider the 

first component of <I> + <I>t = A + A*: since <I> is an arbitrary chiral field A + A* can 

be chosen to exactly cancel the first component of V and thus it cannot be a physical 

degree of freedom. We chose the Wess-Zumino gauge in which 

(1.36) 

The final superfield we will need before we can write down a general N = 1 global SUSY 

Lagrangian is a spinor superfield, containing the gauge field strength as a component. 

We do not attempt to derive the form of the spinor superfields, W a , here; instead we 

quote [15] 

(1.37) 

where V J.! is the gauge covariant derivative. 

If we wish to consider the supersymmetric theory of gravity (SUGRA) this extends 

the theory to include the spin-2 graviton and the spin-3/2 gravitino. For completeness 

we should consider the transformation of superfields with these new fields as compo-

nents, but since we do no physics with these new fields we omit this discussion, but 

instead see, for example [16, 19]. 
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SUSY Lagrangian 

Since any product of chiral superfields is also chiral and the transformations of the 

components are determined by (1.22) it can be shown that the 88 component of such 

a product transforms as a total derivative. To extract this component we introduce 

integration over Grassmannian parameters. 

J da a = 1 

J da 1 0 

(1.38) 

(1.39) 

where a is a single Grassmann variable and since aa = 0 we do not need to consider 

integrals that are any more complicated. Returning to Grassmann spinors we have 

J d28 88 = 1 

J d28 88 = 1 

J d48 (88)(88) = 1 

(1.40) 

(1.41) 

(1.42) 

and all other integrals over different products of 8 and e are zero. The exact form 

of the measures is irrelevant for this thesis since we are using them for book-keeping 

purposes, but they may be found in [15]. 

We define the superpotential, W (<p), as a general function of chiral superfields and 

the Kahler potential, K(<p, <pt) as a general, real function of both chiral and anti-chiral 

superfields. Coupled with Eqs. (1.40)- (1.42) this allows us to now write down a general 
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N = 1 Lagrangian [15] 6 

I: = J d4eK (<I>i, <I>jt e2V
) - [J d2eW(<I>i) + h.C.] 

+~ [J d4
x J d2e Tr(J(<I>itbw~Wab) + h.C.] (1.43) 

where f(<I>i)ab is the gauge kinetic function, whose expectation value will set the gauge 

couplings for the theory. In general the fields in f( <I>i)ab may be drawn from all of 

the fields in the theory, but f(<I>i)ab must be holomorphic in said fields and can only 

have gauge transformation properties such that it is still possible to make the trace 

invariance. The indices a and b denote the fact that, in general, there will be more 

than one gauge group in a given theory. While, in general, the gauge kinetic function 

can be very complicated, in all the models we will consider it is taken to be diagonal. 

Eq. (1.43) also shows that the renormalisable contributions to the superpotential must 

have mass dimension 3 or less and likewise the contributions to the Kahler potential 

must be dimension 2 or less. 

Obtaining the Lagrangian from Eq. (1.43) for general K and W is reasonably in-

volved, but the essential principle is as follows. First perform the integration over 

the Grassmannian spinors and then integrate out the F and D fields. This last step is 

valid because F and D have no kinetic terms allowing one to perform the path-integral, 

hence these fields are termed auxiliary. Equivalently the equations of motion for the 

auxiliary fields can be solved and the solutions used to replace them with propagating 

fields. If we temporarily ignore the gauge fields the result of this process is the following 

6The form of the We> part of the potential has been modified such that it agrees with the expression 

commonly used in effective theories arising from string theory. Specifically, that the gauge couplings 

depend on the real part of f(if:>i)ab, see for example [20,21]. 
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Lagrangian[19] 

(1.44) 

To simplify the form of Eq. (1.44) we have introduced the following notation 

8 8 
gij* = Kij* = 8Ai 8A*j Kle=e=o (1.45) 

8 m 
gij*,k = 8Akgij* = gmj*rik ( 1.46) 

8 m* 
gij*,k* = 8A*kgij* = gim*rj*k* (1.47) 

and hence we see that to obtain canonical kinetic terms we require that gij* = Sij*. 

This is clearly satisfied if 

(1.48) 

and hence this is termed the canonical form for the Kahler potential. 

Returning to the gauge fields we find that the pure gauge part of the Lagrangian is 

given by 

Lgauge = Tr [-~Re(J(cpi)a) (F~vFp,va - i).,aaf-L\l f-L);a + ~(Da)2) 

+~Im(J( cpi)a)F~vFf-LVa] (1.49) 

where we have imposed f(cpi)ab = sab f(cpi)a as will be the case for all the models we 

consider and we have defined Ff-LV = ~Ef-LVPcr Fpcr. The important point to note here, is 

that the gauge coupling is given by the real part of the gauge kinetic function. D-term 

contributions are not considered in this thesis so we go no further in this analysis. 
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SUSY Breaking Lagrangian 

It is manifest that SUSY is not a good symmetry of nature therefore it must be broken 

to give agreement with nature. Since we need SUSY to stabilise the electroweak scale 

any breaking must not disturb the ultraviolet behaviour of the theory: such breaking 

is termed "soft". In other words we cannot allow corrections to the Higgs mass that 

depend quadratically on the cut-off. By power counting arguments ([22, 16] and refer-

ences therein) it can be decided which terms can be included and we now summarise 

those terms relevant to our model building efforts. First, trilinear scalar interactions 7 , 

(1.50) 

and Soft scalar mass-squares, 

(1.51) 

In general one has bilinear scalar interactions, ~bijrjJirjJj + h.c., and gaugino masses, 

(~j\;la,\a,\a + h.c.). However, in our models the bilinears will be zero as discussed in 

section 1.4.3 and the gauginos are not considered. 

R-Symmetry 

The anti-commutator of the SUSY generators, Eq. (1.19), can be seen to be symmetric 

under QQ ---7 ei¢QQ' Given that Q acting on a given state either kills the state or moves 

to a different part of the SUSY multiplet we see that the fermionic and bosonic members 

of a given multiplet have different charges under the symmetry. These are known as 

R-symmetries and may well be realised in nature, though it is not a requirement of 

supersymmetry that they do so. From Eq. (1.22) it is possible to see howe and 7J 

7It is convenient in string constructions to extract a factor of the Yukawa coupling since this appears 

to be the natural form for Aijk. 
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transform. If Qn is given a charge -1 and defined in a way consistent with Eq. (1.22): 

(1.52) 

then it is clear that () must have charge + 1 and e charge -l. Since the superpotential 

contribution to the Lagrangian is constructed from its ()() component it follows that 

the superpotential must carry an R-charge of +2 to yield an invariant Lagrangian. A 

similar argument shows that the Kahler potential must have zero R-charge. 

1.4.1 Minimal Supersymmetric Standard Model 

The Minimal Supersymmetric Standard Model (MSSM) is the simplest possible ext en-

sion of the SM to include supersymmetry. This is achieved by promoting all the fields in 

the SM to superfields and adding an extra Higgs field. The additional Higgs is required 

because the superpotential can only contain fields and not their conjugates. Since the 

conjugate Higgs field was required to generate down-like quarks it is clear that a field 

with the same quantum numbers as the conjugate Higgs field must be introduced to 

act in the same capacity. 

To define the MSSM we must write down the superpotential, Kahler potential and 

soft breaking terms. First we assume canonical kinetic terms and so K is given by 

Eq. (1.48) where this runs over all quarks, leptons and Higgs superfields in the theory8 

Then we define MSSM superpotential, with gauge indices suppressed, as 

(1.53) 

8For this to be gauge invariant e2Vi must be sandwiched between the two superfields, where Vi is the 

sum of the vector superfields associated with <Pi[15]. For example, if <pI is a bifundamental of SU(2) 

and SU(3) then VI = VSU(2) + VSU(3)' 
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with the following soft terms 

(1.54) 

In a slight abuse of notation we have denoted the scalar components of the su-

perfields by the same symbols as the superfields themselves. The fermionic degrees of 

freedom are differentiated by the inclusion of tildes. 

It is possible to address the hierarchy problem within the MSSM since this is a 

concrete SUSY model. One can show (see [22] and references therein) that the renor-

malisation group running can, with a large enough top Yukawa, drive the soft mass for 

the up-like Higgs negative. Since the soft mass can be shown to go negative around the 

electroweak scale and give rise to phenomenologically viable Higgs vevs it can be said 

that SUSY incorporates electroweak symmetry breaking (EWSB) in a natural way. We 

state without derivation9 the minimisation conditions for the Higgs potential given in 

[22] 

m2 

1J.l1 2 + m1-Id = btanj3 - 2Z cos 213 (1.55) 

m2 

1J.l1 2 + m1-I" = bcot (3 + 2
Z cos 213 (1. 56) 

and in terms of J.l 

(1.57) 

In the MSSM, the term J.l is considered to be an explicit mass parameter and is not 

tied to the EW or soft breaking scales, yet Eqs. (1. 55)- (1. 57) suggest that it should be 

9To obtain these expressions one analyses the Higgs potential under the requirement that the Higgs 

vevs are non-zero and finite, in the minimum 
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of the same order as the soft terms and the EW scale. In other words why should f-L be 

around the EW scale rather than, say, the Planck scale? This is the f-L problem of the 

MSSM and while similar to the hierarchy problem it is not as severe since, although it 

is not predicted, the f-L scale is stable under radiative corrections. We propose a possible 

solution to the ~/, problem in chapter 3.1.1. 

We expect, by a similar argument, that the soft terms should also be not much 

above the EW scale. In our models we will make use of the supergravity framework to 

generate the soft terms and make use of the Planck scale to suppress the soft parameters 

to the TeV scale. Hence the soft terms will be discussed further after supergravity has 

been introduced. 

Finally we define our R-charge conventions, taken from [22]. The Higgs superfields 

have R-charge of + 1 while the remaining chiral fields have charge + 1/2 and the gauge 

vector superfields have charge zero. 

1.4.2 NMSSM 

The NMSSM [23] removes the f-L term from the MSSM superpotential and replaces it 

with two new terms, as follows: 

(1.58) 

hence the soft breaking sector is given by 

(1.59) 

Since the potential for N is entirely determined by renormalisable couplings and soft 

parameters it follows that (S) will likely be around the soft breaking scale. Hence the 

NMSSM dynamically generates a f-L term of ), (N) when N is minimised. For discussions 

of NMSSM phenomenology see, for example, [24]. 
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The NMSSM possesses a discrete :1:3 symmetry and as such can fall into three 

distinct vacua post inflation. The minimum energy field configuration that interpolates 

between these vacua is know as a domain wall and is analogous to the behaviour of 

ferro-magnets below the Curie temperature. These domain walls present a serious 

problem for the NMSSM since they generate an unacceptably large contribution to the 

CMB anisotropies. For a discussion of the domain wall problem within the NMSSM 

see [25]. 

1.4.3 SUGRA 

Now that we have given the formalism for global SUSY and considered its simplest 

phenomenologically viable incarnation, the MSSM, we address the issue of making 

gravity supersymmetric and hence consider a theory invariant under local supersym­

metry transformations. There are numerous reasons for considering local SUSY, but 

in this thesis we only wish to consider the following two reasons. Firstly it appears 

naturally as the low energy limit of string theory and secondly it provides a natural 

framework for SUSY breaking to be realised and communicated to low energies. 

Supergravity (SUGRA) arises when the parameter of SUSY transformation is pro­

moted from a constant to having a spacetime dependence: c -7 c(x). Since PJ.! is an 

element of the SUSY algebra this requires our theory to be locally translation invari­

ant, and we see that we have obtained general co-ordinate invariance. This leads us 

to suspect that the theory should include General Relativity (GR). More directly we 

can apply the Noether method and, starting from a free theory invariant under global 

SUSY, allow local transformations. To correct for the variation in the Lagrangian new 

terms must be added and the transformation laws modified. This process is iterated 

and leads to a locally invariant Lagrangian, for an example of this see [18]. When 
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this a similar method is applied to supersymmetrise GR we obtain SUGRA. A more 

involved procedure will lead to the SUGRA Lagrangian in the presence of a general 

matter sector and it is this Lagrangian that will prove important in this thesis. In this 

thesis we only consider the potential for the scalars [22] 

v = exp(K:2 K)[KW (Di W)(Dj W)* - 3K:2IWI2] 

= K:- 6 exp(G)[KW (Gi)(Gj *) - 3K:2] 

and the two point component of the gravitino's, GJ1 , superpotential 

(1.60) 

(1.61) 

(1.62) 

where G = k2 K + In(k3 W), Di W = Wi + K:2 Ki Wand K: 2 = 87rG Nand K and Ware 

reduced to functions of the scalar components of the superfields. 

Given this potential we now want to consider the possible applications of this to 

phenomenology. Specifically we will show how one can obtain a low energy effective field 

theory after SUSY is broken. To achieve this we introduce a hidden sector containing 

fields that do not transform under the MSSM gauge groups with a superpotential 

separated from the MSSM's: 

(1.63) 

For the sake of this discussion we first consider a canonical Kahler potential K = 

L1 11>11 2, but note that we will have to go beyond this assumption in later chapters 

and revisit this issue there. Also, we only consider one hidden sector field z though 

this can be generalised. 

So doing we obtain 

V=exp(K2(1zl'+I<i)il')) [I a;::," +K'z'wl' +la~;~'M +K2<i);WI' -3"IW1']' 

(1.64) 
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One can show [2] that the following vevs minimise Eq. (l.64) 

(l.65) 

where m is an intermediate mass scale, and a and b are arbitrary real parameters. 

From Eq. (l.62) we see that after the hidden sector fields get their vevs 

(l.66) 

vVe will see that this sets the scale of the soft terms, as it will appear as a common mass 

for all the MSSM scalars. In order to simplify matters for low energy phenomenology 

we wish to discard any non-renormalisable operator, decouple gravity and consider a 

renormalisable effective field theory. Formally this is achieved by taking the flat limit 

by sending /'), -) 0, while keeping m3/2 constant. Since /'),2 = 87fGN we see that gravity 

becomes non-interacting. It is necessary to keep m3/2 constant to keep the soft breaking 

scale unchanged. 

This leads us to the following expression for the scalar potential 

VEl I = e"' (1 + ~21;>' I') [rn 4 ((1 + ab)' _ 3&2) + 1 D~;~'M 12 + "'I;>' I'b'", 4 (1.67) 

2 ( 2 )( *) (OWMSSM i* 2 )] +m /'), a b + a - 3b W MSSM + WMSSM + /'), o<j)i <j) bm + h.c . 

The series expansion in the Kahler potential of the matter fields, exp(/'),2 K) = 

1 + /'),2 K + O(K2), has been truncated at first order since all higher orders vanish in 

the flat limit. However the first order picks out the constant inside the square brackets 

and hence provides an important contribution to the soft mass. Re-expressing this in 

terms of m3/2 we obtain 

(1.68) 
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From this expression we can see that we have obtained an expression for global 

SUSY plus soft breaking terms. A notable feature of this potential is that there are 

two universal contributions to the soft masses: one from m3/2 and the other from 

K;2Vo. However, when non-canonical Kahler potentials for the hidden and observable 

sectors are considered there are additional non-universal contributions to the scalar soft 

masses. In general this is the case for string theories and we will consider these effects 

in chapter 2. 

VVe now give a quite general expression for the soft-masses in a SUGRA model, 

but without explicit masses in the superpotential before or after SUSY breakinglO
. 

The original presentation of these results is to be found in [26] and in [27] the effects 

of a non-zero cosmological constant were considered. This is defined in terms of the 

following series expansions for the super and Kahler potentials: 

,1 ~ 
W = W(hm ) + (3 Ya~I(hm)<pa<p <PI + ... , ( 1.69) 

K = k(hm' h~) + ka*~(hm' h~)<pa*<p,6 + ... (1.70) 

where higher powers of the visible sector fields have been neglected since they disappear 

in the flat limit and hm represent the hidden sector fields, with m being an index 

associated with the hidden sector. 

With the F-terms for the hidden sector fields given by pm = eG/ 2 kmn* Gn* we invert 

the Kahler metricll , take the flat limit and the couplings in Eq. (1.69) are replaced by 

lOThis simplification foreshadows the string models, in which this will always be the case. 

llEy no means a trivial step, but one that is made possible by the fact that the inverting matrix can 

be expressed in terms of power series in mpl[26] and hence solved iteratively. 
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effective Yukawa couplings12 given by 

Y' _ W* k/2y 
cxf3, - A e cxf31' 

IWI 
(1.71 ) 

In addition a soft potential is generated with the following form 

(1.72) 

where B~f3 = 0 for all low energy fields in our models, since they have no explicit 

supersymmetric masses and the bilinear coupling is zero. The remaining non-zero soft 

parameters can be expressed as 

where (a t-7 (3) implies that one should repeat the preceding expression with the indices 

exchanged. 

Note that these expressions, Eqs. (1.71) - (1.74), are un-canonically normalised 

and the normalisation of the matter fields will modify these expressions. In all the 

models we consider the Kahler metric for the matter fields will be diagonal, making 

the canonical normalisation a simple case of rescaling. Later in the thesis, whenever 

explicit values or expressions are quoted for the parameters they will be in canonical 

form. This concludes our discussion of SUGRA. 

12Effective supersymmetric masses can also be obtained if they are contained in the original superpo-

tential, or if the bilinear coupling Kiihler potential term has non-zero coupling. Neither of these cases 

will be realised in any of the models we wish to consider so these terms are omitted. 
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1.5 Neutrino Physics 

The majority of this section was compiled from [28, 29, 30]. In the original formulation 

the SM contains no right-handed neutrinos. This forbids Dirac type masses and Ma-

jorana masses can only be generated from non-renormalisable operators, so if we take 

the SM to be valid up to the Planck scale13 then we can estimate the size of possible 

Majorana operators: 

LLHH (200
2

) 6 Mp -t VLVL 1019 GeV '" VLVL (10- eV) (1.75) 

which is clearly far too small to be the only contribution to the neutrino's mass. From 

this we conclude that it is likely that there is some additional physics that generates 

the observed masses and mixings. 

The majority of neutrino model building is focused around the see-saw mechanism 

[30, 28] essentially due to the observed smallness of neutrinos. Without introducing 

a very small Yukawa coupling, 0(10- 13 ), the Higgs mechanism cannot explain why 

neutrino masses appear with an upper bound, from tritium {3 decay, of < 3 eV [31]. 

However we will demonstrate that sufficiently small Yukawa couplings can be found 

within a string theory framework, hence the see-saw mechanism is unnecessary. In 

this model we will generate neutrinos with pure Dirac masses mLR = Yvvu in a SUSY 

framework, with the following term in the superpotential 

(1.76) 

We suppose that the neutrino spectrum is hierarchical with the lowest mass eigen-

value being zero. Hence the neutrino mass eigenstates are Dirac spinors with masses 

determined by their splittings so m2 c::: llsol. c::: 0.01 eV and m3 = llatm. c::: 0.05 eV. 

130f course this moves beyond the 8M since it requires there to be new physics around the Planck 

scale 
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In appendix A we define our mixing conventions, showing how one goes from a 

theory with general Yukawa matrices to one with diagonal Yukawas, but off-diagonal 

couplings to the W boson. 

Finally a few remarks on the experimental signatures of Dirac neutrinos. If there 

are no Majorana masses at all then we have pure Dirac neutrinos and we expect to 

find no neutrinoless double {3 decay (a 6.L = 2 process)[31]. If, instead there are small 

Majorana masses in the model then we have Pseudo-Dirac neutrinos and the mass 

spectrum has additional small splittings generated when the eigenstates are rotated 

into the Majorana basis. This can be seen when considering the mass matrix for one 

generation 

(1. 77) 

where 

(1.78) 

and 

(1.79) 

hence 

(1.80) 

when mL, mR «mD. Such a splitting would be hard to detect with terrestrial base-

lines, but studies have been conducted on the possibility of utilising astrophysical scale 

baselines to enhance the effects of such a splitting (see [32] and references therein). 

With a hierarchical neutrino mass spectrum, m3 > m2 > ml, the most stringent cur-

rent bounds on 6~ are [32] 

(1.81) 
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and 

(1.82) 

Neutrinoless double (3 decay is in principle possible in this framework. However this 

will be heavily suppressed since, by assumption, the dominant contribution to the mass 

eigenstates are the Dirac masses. This coupled with Eqs. (1.82) and (1.80) implies that 

(mL + mR) < 10-3 eV. Since neutrinoless double (3 decay is suppressed by the effective 

mass of the Majorana neutrino this will be very hard to detect[32] 

1 ~ 2 c5mJ -4 
(m)eff = 2" L Uej 2m ::; 10 

j J 

( 1.83) 

and current limits are (m)eff < 0(1) eV. 

1.6 String Theory 

In this section we try to elucidate a few general features of string theory, without delving 

too deeply into the formalism. Our model building efforts start with four dimensional 

effective actions consistent with string theory. Therefore, while the full machinery of 

string theory is of great importance when deriving the low energy theory, it is of less 

importance to physics below the string scale. This being the case we focus our attention 

on what string theory has to say about the form of the effective field theory. 

Nonetheless a few remarks about the underlying theory are in order, to put the 

effective field theory in context 14 . Firstly the fundamental object is a one-dimensional 

relativistic string as opposed to the zero-dimensional point particles found in quantum 

field theories. Strings come two distinct varieties: closed and open. At the most basic 

level closed strings are topologically circular whereas open strings are topologically 

equivalent to a line. A number of remarkable properties spring from considering strings 

14For textbook accounts of the subject see [18, 33, 34, 35, 36] 
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instead of particles, perhaps the most startling being that the number of spacetime 

dimensions is predicted, on grounds of mathematical consistency. The exact prediction 

depends on the type of string theory considered: if the theory only contains bosons, 

then the prediction is 26, but if fermions are included, then the prediction is 10. To be 

more precise we quote the Polyakov [37] action for the superstring [38J 

(1.84) 

where ~ are the two dimensional co-ordinates describing the string's proper time and 

the position along its length. xl-' are the "target" space co-ordinates of the string, 

namely the four spacetime dimensions with which we are familiar and six additional 

spatial co-ordinates, with which we are not. f-L runs from 0 to 9 where the first four 

will denote Minkowski space and the remaining six a compact space, discussed below. 

?jJ1-' are spinorial fields and it can be shown that this action is invariant under world-

sheet15 supersymmetry and pa are two dimensional "gamma" matrices. Finally a' is a 

dimensionful constant that sets the overall scale of string theory, since it is related to 

the tension, T, of the string by T = 2';c/' In addition a' is used to define the string 

scale M* = (a')-1/2. 

There are two good reasons for including fermions into the worldsheet: one, the 

spectrum of the bosonic string has a tachyonic ground state and two, there are no 

fermions in the spectrum of purely bosonic strings. The first reason implies that there 

is no stable vacuum about which the theory can be formulated and the second reason 

means that the bosonic string cannot describe the SM. 

15The path of the string through spacetime. Compare with a worldline for a particle. 
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Compactified Space 

Since strings exist in 10 dimensional spacetime it must be explained why the extra six 

dimensions do not have obvious observable features. In an effective field theory sense, 

why is the four dimensional SM a good description of physics up to, at least, the EW 

scale? Perhaps the simplest possibility is that the extra dimensions are not extended 

dimensions like the first four, but instead are small, compact spaces, for example a 

6-torus. To see how this could work, and clarify what is meant by small, we consider 

field theory in 4 + 1 dimensions where the extra dimension will be compactified on a 

circle16 . For simplicity we consider a real scalar field in this framework given by [41] 

(1.85) 

where A (xJ.L, y) and <P is a function of A. The integration over the y co-ordinate 

spans the circumference of the circle, 27f R, and we require that <P be invariant under 

Y -7 y+27f R, therefore <P(x, y) = <P(x, y+27f R). This implies that <P can be decomposed 

into Fourier components 

<P(x,y) (1.86) 
n=-CX) 

where cP(x)n are complex fields subject to cP~ = cP-n stemming from <P* = <P. Note this 

implies that cPo is real. 

Performing the integral over y in Eq. (1.85) and rescaling cPn -7 V~;R yields 

( 1.87) 

where the cPn fields are termed Kaluza-Klein (KK) states and their masses are propor-

tional to the inverse of the size of the extra dimension. 

16This idea was originally put forward as a fascinating attempt to unify gravity and electromagnetism, 

by Kaluza and Klein (KK) [39, 40] 
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Now it is possible to address the question of how small the extra-dimensions must 

be, since they govern the masses of the rPn fields. If interaction energies are significantly 

below the mass of the lowest excitation then there will be no KK states in the outgoing 

particles. While KK states can appear in loops these effects decouple for sufficiently 

large KK masses, for SM bounds from precision EW tests see, for example [42, 43] 

with the strongest upper bound being R- 1 > 700 GeV if the SM fields are allowed to 

propagate in one extra dimension. Since our model includes six extra dimensions this 

bound can only be taken as a guide, not a hard prediction. 

To obtain a phenomenologically interesting low energy spectrum one must consider 

more complicated spaces than tori since it can be shown [2, 18] that compactification 

on a 6-torus leads to N = 4 SUSY in four dimensions. N 2: 2 SUSY theories are 

not chiral since the extra SUSY generators place the left and right-handed fields in 

the same SUSY multiplet, hence cannot describe the SM. However more complicated 

spaces, such as orbifolds, allow one to break the extended supersymmetry such that 

one is left with D = 4, N = 1 SUSY, below the compactification scale. In addition 

to obtaining N = 1 SUSY orbifolds reduce the (very large) gauge symmetry 17 of the 

theory. These both arise from the fact that not all of the massless four-dimensional 

states, analogous to rPo in the circle case, that arise when one compactifies on a torus 

appear in the spectrum of an appropriate orbifold. In other words only subsets of the 

components of gauge and SUSY multiplets are present in the effective four dimensional 

theory. A phenomenologically interesting example where this is discussed and the low 

energy spectrum derived is [44]. 

Finally we note that the size and shape of the extra dimensional space are given 

by moduli fields. In this thesis we will be concerned with both twisted and untwisted 

17The origin of this will be discussed in the following subsection. 
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moduli where twisted moduli are associated with orbifold fixed points and untwisted 

moduli determine the size of the extra dimensions. A field similar to the moduli is the 

dilaton which determines the strength of the string couplings, in that it is analogous 

to a coupling constant in QFT. 

D-Branes and Gauge Symmetries 

Besides one dimensional strings there are additional extended objects, known as D­

branes [45], generically present in string theory. These objects are associated with the 

boundary conditions of a string which can be one of two forms, Neumann or Dirichlet. 

Neumann boundary conditions in a given co-ordinate allow the string end to move 

along that co-ordinate. In contrast a string is fixed with respect to co-ordinates which 

obey Dirichlet boundary conditions. Therefore one can define a Dp brane as a p + 1 

dimensional hypersurface in which p + 1 dimensions are Neumann and the string end 

is fixed by 9 - p Dirichlet conditions. The number and dimensionality of the branes 

present in the theory are determined in part by the type of string theory one is working 

in and in part by the particular compact space utilised to reach four dimensions; see 

[21] for a discussion of this point. 

From a phenomenological perspective D-branes are important because they are 

subspaces upon which open strings can end. This is vital because open strings can 

give rise to chiral superfields and hence, potentially, the MSSM (or a viable extension 

thereof). In addition a stack of coincident D-branes can give rise to a non-Abelian 

gauge symmetry. One introduces non-dynamical degrees of freedom at the end of a 

string, known as Chan-Paton factors: one for each brane in the stack. It is possible 

to show that [38], for N branes, there are gauge fields transforming in the adjoint of 

U(N) present in the low energy spectrum. In addition open string amplitudes, which 
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must be approximated by interactions in the effective field theory, contain traces over 

the Chan-Paton factors and will be invariant under U(N) rotations. Thus we can say 

that the effective field theory possesses a U(N) symmetry. 

The last important feature we will mention is T-duality. This is purely string 

theoretic symmetry whereby the physics is invariant under the exchange R i--t ~. This 

results from the fact that strings are extended objects and hence can wrap around 

compact dimensions. Since strings are tensionful objects energy is required to stretch a 

string a distance L given by E = LT. Hence to wrap n times around a circle of radius 

R increases the energy of the string by nR/ ct' = nRNt;. Since we expect a tower of 

KK states in the same spectrum we can see that if R i--t -k we have retained exactly 

the same mass spectrum: it is simply that KK and winding states have swapped roles. 

Since a particle theory would only have KK states it could not be symmetric under 

this exchange. This duality acts non-trivially on any Dp-branes in the theory since 

it can be shown [33] that this swaps Dirichlet and Neumann boundary conditions in 

the direction that the duality acts. We will return to this issue when we have more 

precisely defined our framework, in chapter 2. 

1. 7 Inflation 

The majority of this section was drawn from [46, 47, 48, 49] 

In order to discuss inflation [50] we must first sketch the elements of standard big 

bang cosmology. Let us begin with the cosmological principle: simply stated this is the 

idea that, on large scales, the universe is homogeneous and isotropic. This principle 

can be used to derive equations of motion for the evolution of the universe as a whole, 

but first we must introduce the Robertson-Walker (RW) line element, which is implied 
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by the cosmological principle [2, 51]18 

(1.88) 

where a(t) is a scale factor that describes the evolution of the universe and t is referred 

to as the cosmic time, a common time that independent observers could measure irre-

spective of their position in the universe. T, e and ¢ are co-moving coordinates, in that 

they do not change with the evolution of the universe and k is a measure of spatial 

curvature. If k = 0 the universe is flat and if k = 1 it is closed whereas k = -1 implies 

that it is open. 

The dynamics of matter and energy can be described, on large scales, by the equa-

tions of General Relativity, the Einstein equations 

(1.89) 

where loosely put the left hand side describes curvature and the right hand side, matter 

and energy, with a certain ambiguity in the placement of A. The factor of gf-LV suggests 

that A belongs with gravity, but from a particle physics point of view it could have a 

dynamical origin 19. To put these equations in a more tractable form we must impose 

the symmetries inherent in the cosmological principle on both the metric and the stress-

energy tensor. Utilising the cosmological principle and assuming that the universe can 

be treated as a perfect fluid (no frictional forces) leads to a stress-energy tensor with 

the following non-zero elements 

Too = p and Tii = pgii (1.90) 

18 As we are dealing with the evolution of matter and energy on the largest of scales we make use of 

General Relativity. 

19The conflict between possible physical origins and the expected size of A is known as the cosmo-

logical constant problem [52]. We make no attempt to address it in this thesis. 
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where p is the energy density of the fluid, p defines the pressure and i runs over r, e 

and ¢. 

The metric elements in Eq. (1.90) are those giving rise to the RW line element, 

Eq. (1.88) and are expressed as 

a
2 

2 2 2 2 . 2 e goo = 1, grr = -1 _ kr 2 ' gee = -a r, g¢¢ = -a r sm . (1.91) 

It can be shown that Eq. (1.90) coupled with Eq. (1.91), when inserted into the 

Einstein equations, give the Friedmann equations in the presence of a non-zero A: 

a 4-rrGN A 
- = --- (p + 3p) + -
a 3 3 

H2 == (~) 2 = 8-rrGN p _ !5..- + A. 
a 3 a2 3 

(1.92) 

(1.93) 

The fact that there are now only two Einstein equations is a result of the symmetries 

implied by the cosmological principle. 

We now turn to the issue of inflation in this framework. First let us consider a simple 

example with one scalar field, the so called inflaton, ¢,20 and the following Lagrangian 

1 ; 2 
£ = "2 (ojJqJ) V(¢) (1.94) 

where we do not specify the exact form of V (¢) at this stage. For the moment, we 

require that for a particular trajectory of ¢ the dominant contribution to the energy 

density is the potential, i.e. 

(1.95) 

for a range of values of ¢ along its trajectory. If this is the case then Eq. (1.93) reduces 

to 

(1.96) 

2°Not to be confused with the angle ¢ in the RW metric. 
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and it is easy to show that 

a(t) ex: eHt (1.97) 

solves Eq. (1.96) where Eqs. (1.96) and (1.93) show that H is a constant while Eq. (1.95) 

holds. Thus we see that a universe dominated by a slowly varying potential will expo-

nentially expand, i.e. undergo a period of inflationary expansion. 

Next we will consider the conditions under which the potential can give rise to 

inflation, namely the slow-roll conditions. The action is given by 

(1.98) 

where, since we are interested in gravitational interactions, we have included the metric 

in V - det (g) . 

The equation of motion of the scalar field is 

¢ + 3H ¢ + Vi (¢) = 0 ( 1.99) 

where it is clear that, for positive H, the 3H ¢ term acts analogously to a frictional 

force, counteracting the effects of Vi (¢). 

For inflation to last ¢ must provide a negligible contribution 21 to Eq. (1.99) hence 

3H¢ ~ _VI(¢). (1.100) 

Re-deriving the acceleration term from this equation and requiring consistency with 

the assumption that ¢ « 3H ¢ in Eq. (1.99) leads to the famous slow roll conditions 

= M~ 1 V" ( ¢) 1-· 2 1 V" ( ¢) 1 
TJ - 81r V(¢) - mp V(¢) «1 (1.101) 

E = NJ~ (VI ( ¢ ) ) 2 = m ~ (VI (¢ ) ) 2 1 
- 161r V(¢) 2 V(¢) « (1.102) 

21 Strictly speaking this is not necessary for all inflation models. In [53] so called "fast-roll" inflation 

is discussed whereby the slow-roll conditions are violated, but inflationary expansion is still obtained. 

The model presented in this thesis gives rise to slow-roll inflation 
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where the reduced Planck mass is given by mp = Mp / v-s; and if these conditions are 

satisfied then inflation can occur. 

One final issue is the generation of structure in the universe. At some point the 

cosmological principle must break down since when one considers small (from a cosmo-

logical viewpoint) scales, such as the level of galaxies and below inhomogeneities and 

anisotropies are manifest. For inflation models it is shown in [54] and references therein 

that 

(1.103) 

where in this instance the subscript N denotes that this quantity is evaluated N e-folds 

before the end of inflation, when the scale k left the horizon. 

Hybrid Inflation 

Since the model we construct in chapter 3 is one of hybrid inflation we will use a hybrid 

inflation model to illustrate some of this section's points. This class of models was 

introduced in [55, 56] and made use of the following scalar potential 

(1.104) 

where A and 9 are dimensionless couplings while M is coupling of mass dimension one. 

For simplicity we assume that ¢ and CT are real scalar fields. 

First let us consider the potential when ¢ = 0, 

(1.105) 

this shows that, at the origin, the CT field is unstable in exactly the same way as the 

Higgs field in Eq. (1.3) and is minimised away from the origin. If, instead, CT = 0, then 

Eq. (1.104) assumes the particularly simple form 

(1.106) 
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which evidently minimises at the origin. 

Finally, to see the whole picture, we consider the coupling a;¢2(j2 that contributes 

to the effective mass of ¢ or (j, respectively, if (j or ¢ is non-zero. Since this is always 

a positive contribution it can give (j a positive effective mass squared if the inflaton 

is above a critical point, ¢2 > ¢~ - ~I22. If I¢I > I¢cl then Eq. (1.104) is positive 

semi-definite and is minimised for (j = O. The critical value of the inflaton marks 

the transition between a region in which (j is stable and an unstable region where its 

2 

potential takes a form similar to Eq. (1.105). Since Ff¢2(j2 adds to the inflaton's mass 

squared its potential steepens as (j increases, hastening its arrival at ¢ = O. This signals 

the end of inflation. 

It is now possible to postulate an inflationary trajectory for ¢ and (j and see if 

this has a period of slow roll. The smallest possible effective mass squared for ¢ is 

obtained when (j = 0 hence the inflaton must start its evolution above ¢c, and we 

require the energetically favoured position of (j = O. Hence the slow roll conditions can 

be expressed as 

(1.107) 

(1.108) 

where we have made the replacement ~~4 = V(O). The 7] condition is independent of 

the inflaton's trajectory, depending only on the ratio of the massive parameters in the 

model. As E depends on ¢ we can impose 

(1.109) 

Now it is clear that satisfying inflationary requirements is a matter of choosing ap-

propriate parameters for the model, of which some interesting choices are discussed in 

[56]. 
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Strictly speaking TJ and f must also be evaluated a number of e-folds22 before the 

end of inflation. While this has no impact on TJ it can modify the E condition. We omit 

this here, but will return to this matter in chapter 3. 

22The number of e-folds, N, in a given expansion is defined by N = In(aend/astart). 
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Chapter 2 

String Model Building 

In this chapter we layout the string framework in detail. We focus on the parts of the 

framework most relevant to the models we will construct in the following chapters, but 

include more general information wherever it is relevant and does not draw the reader 

too far from the essential points. 

2.1 D-Brane Framework 

This thesis is concerned primarily with utilising string theory to solve particle physics 

problems and attempts to do this study at a reasonably high level. Specifically we tried 

not to delve deep into one explicit string construction, but rather keep our results as 

general as possible. Obviously some choices of string model had to be made and the 

first of these was to work in type I string theory. This necessarily leads to the inclusion 

of D-Branes within the spectrum [45]. As mentioned in section 1.6 the underlying 

orbifold determines the D-Brane setup needed for consistent vacua. However, in this 

thesis we consider the most general setup of D5 and D9 branes, without specifying a 

specific orbifold. To present an intuitive picture for branes and states in the theory 

we refer to fig. 2.1 where the locations of the various string states are shown. The 
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0 1 2 3 4 5 6 7 8 9 

M4 - - - -

D51 - - - - - -

D52 - - - - - -

D53 - - - - - -

D9 - - - - - - - - - -

Table 2.1: D-Brane notation: columns are 

labelled by the dimension they correspond 

to in ten dimensional spacetime. 

two orthogonal directions in fig. 2.1 each represent two compact spatial dimensions 

with identical radii, around which the D-branes wrap. There are two more compact 

dimensions orthogonal to the first four, which are not presented in the figure since they 

do not directly affect the models in this thesis. Finally we note that a useful notation 

for dealing with D-branes is the following. The spacetime dimensions in which a string 

end is free to move are denoted by dashes and the dimensions in which they are fixed 

are given by dots. This allows us to represent Minkowski space, the D5 branes and the 

D9 branes in table 2.1. 

Given this starting point the effective low energy Lagrangian can be derived for 

the D-Brane setup. This can be done because in string theory, unlike N = 1 SUGRA, 

the superpotential, Kahler potential and gauge kinetic functions are not arbitrary, but 

instead are predicted. The Kahler potential for the untwisted moduli and the matter 
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Figure 2.1: Schematic representation of two stacks of D5-branes. The stacks of branes overlap 

in Minkowski space, but are orthogonal in the compactified dimensions. The estates cor-

respond to chiral matter fields, S the dilaton, Ti the untwisted moduli and Y2 is a twisted 

modulus (introduced in section 4.2) localised within the extra dimensions, but free to move in 

Minkowski space. vVe have only presented the string states involved in our construction: for a 

more complete picture see Figure 1 in [57]. 

fields can be shown to be [21] 

and, to lowest order in the matter fields 1 , 

where the C-terms represent the low energy excitations of strings starting and ending on 

D-Branes and dijk = IEijkl and Sand Ti are, respectively, the dilaton and the untwisted 

moduli. The dilaton and moduli are D = 4 closed string singlets of the following form 

1 A valid approximation in our case since the dilaton/moduli vevs are at least lv/po 
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[21] 

and 

2R2 
T 2' 

i = \I + 27]j, 
AlCi 

(2.3) 

(2.4) 

where AI is the D = 10 dilaton, e and 7]i are untwisted Ramond-Ramond closed string 

states that are included for completeness; only the real components of Sand 'n appear 

in the rest of the thesis. 

As such both their gauge interactions and the form of the superpotential will be 

constrained. First we consider the gauge interactions. As shown in chapter 1.6 the 

gauge groups of the string arise from the stacks of branes the open strings end on. 

We note that, as demonstrated in [44], the particular groups living on a given brane 

are given by the underlying compactification. In this thesis we do not try to find the 

specific compactification that can lead to our model. Instead we motivate its existence 

by appealing to similar models in the literature2 and simply require the correct gauge 

groups and particle spectrum. For the gauge groups we assume that, in the low energy 

regime, the unbroken symmetry is that of the MSSM: U(1)yxSU(2)LXSU(3). How 

this is arrived at is beyond the scope of the thesis: we only impose that, in the effective 

theory, there are no exotic remnants. T-Duality requires that a copy of this group 

appears on each of the stacks of branes. As a result, in full generality, we have four gauge 

groups and, in principle, four different gauge couplings: (U(1)yxSU(2hxSU(3))4 with 

couplings g51> g52' g53 and g9· Anticipating the models constructed in chapters 3 and 

5 we restrict our focus to just two of the possible gauge groups, those associated with 

2There are numerous examples of Standard Model and MSSM-like models [44, 58] and we propose 

a high level study, the successes of which should motivate more explicit constructions. 
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the D51 and D52 branes. We denote the location of the group with a superscript, so 

an SU(3)52 is the SU(3) associated with the D52 brane. 

The superscripts of a given C-term denote the location of the ends of the string and 

hence which representations are allowed for any fields associated with that term. For 

example a C5
1
5

2 field could transform as (1,3; 2,1), 3 a bi-fundamental representation 

of SU(3)51 x SU(2)52 , whereas a field like Cf2 could transform like (1,1; 2, 3) in the same 

way as a quark doublet. Note that the subscript denotes fields with different gauge 

transformation properties and, as shown in Eq. (2.5), different Yukawa couplings. 'While 

it is possible to consider models where the gauge group is drawn from the groups of 

several different branes we will be considering models where the MSSM gauge group is 

entirely contained within one stack of branes. We will return to this question in chapter 

4. 

The superpotential can be derived by considering three point amplitudes of open 

string states [59] and can be shown to be, before canonical normalisation: 

W = (CiCiC!? + C5152C5253C5351 + t C':/C95iC95i) + ,~ (CfiC~iCfi 
1-1 1,],k-1 

(2.5) 

where all the Yukawa couplings are order one. This is in contrast to more complicated 

setups in which the branes do not intersect at one point (for example see [60]) resulting 

in a geometric suppression: e- A / cx' where A is the area spanned by the intersection. In 

our case the branes are all assumed to intersect at one point in the extra-dimensional' 

space and do not feel this suppression. 

30ur convention is to quote the representations in ascending order of both their associated groups 

and branes. The example in the text has its SU(2)51 representation followed by its SU(3)5 1 rep., and 

after the semi-colon the sequence repeats for the D52 brane. 
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The final pieces of the puzzle are the gauge kinetic functions which T-duality in-

variance requires to have the following forms [21]: 

19 = Sand 15i = Ti · (2.6) 

In fact, in the presence of twisted moduli these expressions are modified as follows 

[61, 62, 63]. 

190. = fg + L c~Yk and 15i{3 = 15i + L::>~Yk (2.7) 
k k 

where c~,{3 are model dependent coefficients, a and {3 run over the different gauge 

groups and k runs over all possible twisted moduli. For the moment we neglect the 

contributions of the twisted moduli, making the assumption that the dilaton and un-

twisted moduli provide the dominant contributions to the gauge kinetic functions. This 

assumption will be re-evaluated in section 4.2.1. 

From Eq. (2.6) it can be shown [15] that the gauge couplings on the stacks of branes 

are given by 

(2.8) 

It is possible to show [21] how the superpotential changes after canonically normal-

ising the Kahler potential and taking the flat limit, in which Mp ---7 00. We quote this 

here: 

W ~g9 (CiCiC] + C,,5'C""C,,5, + t CfC95'C95
') + j,tl g5, (C;'cg'Ci' 

+ C5iC95iC95i + d· C5iC5i5kC5i5k + ~d· C5j5kC95jC95k) 
~ ~Jk J 2 ~Jk . (2.9) 

It is illustrative to briefly detour, before returning to Eqs. (2.1) and (2.5), to 

canonically normalise more general Kahler potentials and superpotentials [27] given 

by Eq. (1.70) and Eq. (1.69). To obtain canonical kinetic terms we must redefine our 
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fields such that K a *{3 -+ oa*{3. Let us simplify matters slightly by assuming that, as is 

the case in (2.1), the Kahler metric for the matter fields is diagonal, but different from 

the identity. The relevant part of the Kahler potential can be re-expressed as 

(2.10) 

'With this assumption we can make a simple re-scaling 

(2.11) 

and obtain canonical kinetic terms. 

This change manifests itself in the superpotential and the soft terms with the final 

Yukawa couplings being given by 

(2.12) 

where Y~{3~i is the effective Yukawa coupling after symmetry breaking given by Eq. (1.71). 

At the end of our detour we have an expression for the physical, low energy couplings 

in terms of the high energy couplings and elements of the Kahler potential. We can 

now make use of this expression to obtain the canonical form for the superpotential 

given in [21]. 

By way of demonstration we consider two couplings, the only two couplings we 

for K, Kc5j and KC5j52 from Eq. (2.2) we obtain 
3 

(2.13) 

(2.14) 

which is, up to a factor of (81f)-1/2, same result as presented in [21], given in Eq. (2.5). 

This factor is likely due to an inconsistent definition of the gauge kinetic function in 
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[21], the definition in [64] of Re(f) = 1/ g2 improves matters by v=r;r. Also [64] perform 

an analogous calculation for the heterotic string obtaining, as we do, a dependence on 

S + S* in the effective superpotential. Since it is S + S* that appears rather than Re(S) 

this introduces an additional factor of J2 not present in the [21] superpotential. So the 

end result is that the superpotential, Eq. (2.9), should be divided by J2. While this 

discrepancy is odd it will not materially affect any of the conclusions of the thesis due 

to our freedom to set the value of the radii. As a result we use the results of [21], aware 

that the values of the S/~ moduli may be subject to order one corrections. Note, by 

With this yI87f uncertainty we have the following expression 

(2.15) 

where we have only presented the class of terms that will be relevant for our model 

building. The complete set can be derived using the rules laid out above. 

2.1.1 Soft Terms 

Before we discuss the soft terms in this framework we need to introduce a convenient 

parametrisation for the F-terms, in vector form, given by [57] 

(2.16) 

(2.17) 

where C 2 = 1 + 3V~O) [21] and"" = 1 has been imposed with V(O) the vev of the potential 
m3 / 2 

when all of the hidden sector fields obtain their vevs and the visible sector fields are 

set to zero. Also e is a vector, defined shortly, and P is defined as the canonically 

normalising matrix, pt K u * {3P = 1 where a and f3 run over the hidden sector fields, 

but not the low energy fields. For this parametrisation to be of use it must yield 
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the correct vacuum expectation value for the scalar field potential and be possible to 

freely choose how much each field contributes to the SUSY breaking. Since El is a 

vector with trigonometric components, Eli, such that I:i 8; = 1 and IElil :s: 1 Vi this 

parametrisation is valid with (V) = V(O) shown in [57]. 

We now discuss the soft terms in Type I string theory under the assumption that 

the SUSY contributions come solely from the F-terms of the 5/Ti fields given by 

(2.18) 

where since K n *f3 = K n*6n *f3' P is a diagonal, rescaling matrix and we obtain 

(2.19) 

(2.20) 

Now all that remains to be done is to substitute these F-terms in to the soft-term 

expressions given in section 1.4.3, Eqs. (1.73) and (1.74) to obtain the soft masses in 

this framework. The soft masses that will prove relevant to our model building efforts 

are [21] 

m~5i = m~/2 + V(O) - 3C2m~/28k cos
2 e 

J 

(2.21) 

2 2 () 3 C2 2 (. 2 e 8 2 2 B) mC5i5k = m 3/ 2 + V 0 - 2" m 3/ 2 sm + - j cos (2.22) 

and we will make use of the following trilinear couplings 

(2.23) 

Given this parametrisation it is easy to show that the following sum rule must be 

obeyed 

(2.24) 

For a similar analysis using the heterotic string see [27]. 
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2.2 Asymmetric Compactifications 

For our purposes we need to consider a highly anisotropic compactification4 . This is 

necessary for the models to be constructed in chapters 3 and 5, since they both require 

Yukawa couplings of order 10-10 . Since gauge and Yukawa couplings are very closely 

linked the requirement of 0(1) gauge couplings for the MSSM gauge group means there 

is a ratio between Yukawa couplings of approximately 1010. In this thesis we propose 

that this ratio arises due to an asymmetric compactification in which two radii become 

large and four remain small. From Eqs. (2.3) and (2.4) with Eq. (2.8) we see that 

2 
95; = (2.25) 

As is generally the case in extra-dimensional theories the effective four dimensional 

Planck mass depends on the higher dimensional Planck mass and the volume of the 

extra dimensions: 

(2.26) 

and this relation will prove important when deriving the gauge couplings. 

At this stage, having specified none of the parameters, we are free to choose the 

couplings as desired. Selecting the small coupling to be 951 cv 10-10 and the MSSM 

gauge coupling to be 952 cv 1 requires ~~ rv 1010. While these two couplings do not fix 

the third ratio we see, via Eq. (2.26), that 

(2.27) 

so we see the question of what size is R3 is equivalent to asking what is the string scale. 

This expression is only true when there are no twisted moduli in the spectrum, or their 

4For a recent example of a explicit string construction which naturally incorporates anisotropic extra 

dimension see [65] which is analogous to the KKLT construction [66] 
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expectation values are zero. In section 4.2 we will need to go beyond this assumption 

and, while it will not turn out to a have far reaching consequences, we quote the precise 

expression 

(2.28) 

The final parameter we can choose is AI, the D = 10 dilaton, that governs the 

strength of the of string loop corrections. This can be expressed as a function of the 

couplings using Eq. (2.8) and also in terms of the SjTi fields 

(2.29) 

We also note that we can re-express the relationship between NI* and NIp in terms of 

the gauge couplings, and equivalently in terms of the dilaton and moduli, as follows: 

(2.30) 

Fixing the D = 4 Planck mass and 951 and 952 means that M* is determined by the 

remaining two couplings 953 and 99 which in turn fix the value of AI. From this we see 

that if we input all four couplings, and NIp, then we completely determine the string 

scale, string coupling constant and hence the radii. Of course the converse is true, and 

perhaps is a more physical perspective. However, we neither claim to know the origin 

of the particular compact space nor address the question of how the radii we require 

are reached. Instead we input the couplings we require and select order 1 parameters 

for the remaining two couplings5 . 

5These couplings only playa very minor role in our model building, beyond the fixing of the radii 

discussed here. They can be used to fix AI to be very small, ~ 10-10 , in order to ensure that stringy 

effects are dominated by the tree level contribution. This improves the validity of our effective field 

theory approach. 
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Selecting g51 = 10-1°, g52 = Ifi and g53 = g9 = 2 fixes, via Eq. (2.30), M* ~ 1Ol3 

GeV. Since this choice and Eq. (2.29) fix AI ~ 10-11 we see that, from Eq. (2.25), the 

inverse radii are fixed to be 

(2.31) 

These values will receive very minor corrections when we consider the impact of 

twisted moduli, in section 4.2, but the order of magnitude estimates remain intact. We 

see that there are two radii at just above the Planck length and one a factor of 1010 

larger, and that it is this anisotropy that, as expected, generates the necessary hierarchy 

in Yukawa couplings. Anisotropic compactifications are not without precedent in string 

theory, see for example [65]. 

These radii are all too small to have Kaluza-Klein (KK) or winding modes that will 

be readily excitable at collider energies. The winding modes of R1 are ~ n101S GeV 

and R2 and R3 have winding modes of ~ nlOs GeV. The KK modes for R1 are ~ n10s 

GeV and R2 and R3 are ~ n10 1S GeV. 

For the majority of this thesis the exact values of the coupling will not prove to be 

important so, unless specifically stated, we will use the following approximate expres­

sions for the couplings: 

(2.32) 
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Chapter 3 

Inflationary Solution to the 

Strong CP and J1 Problems 

This chapter concerns an inflationary particle physics model, inspired by Type I string 

theory. The model uses the vev of the inflaton post inflation to both solve the strong CP 

problem via the Peccei-Quinn mechanism and generate the supersymmetric Higgs mass 

term, I-l. We will show that this gives a high-scale prediction for the I-l mass, expressed 

in terms of the soft SUSY breaking parameters. Some of the values of parameters for 

this model are taken as assumptions, but many of these will be shown, in chapter 4, to 

have a natural origin within Type I string theory. 

Our goal when we embarked on this study was to find a simple model, consistent 

with Type I string theory, and study its predictions. Our approach was to first of all 

start with an interesting and phenomenologically viable model and then, in Chapter 4, 

see if this model is compatible with Type I string theory. 
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3.1 The Model 

The model we considered was inspired by the cpNMSSM model of Bastero-Gil and King 

[67]: 

where A and", are Yukawa couplings of order 10- 10 . WMSS M is the superpotential 

for the MSSM as given in section 1.4.1. In this model there is no necessity for these 

couplings to be equal, only that they be small. This will turn out not to be the case for 

the model we build in this chapter. Briefly summarised, the cpNMSSM is consistent with 

the MSSM after inflation, solves the strong CP and f-t problems, provides an inflation 

model with a spectral index very close to unity and has the curvature perturbations 

being generated by the inflaton, cp. Clearly this summary does not do justice to the 

model, but more details can be found in [67]. 

Our model uses the following superpotential 

(3.2) 

leading to a SUSY potential of 

VSUSy = IAHuHd + ",N212 + IAcpHu + YbQ3bRI2 + IAcpHd + YtQ3tRI2 + 4",21cpN1 2 

(3.3) 

and a soft potential of 

VsoJt = V(O) + AA)..cpHuHd + ",A""cpN2 + YtAYtQ3HutR + YbAYbQ3HdbR + h.c. 

+ m6 (IHuI2 + IHdl2 + INI2 + ItRI2 + IbRI2) + m~IQ312 - m~lcpl2 (3.4) 

where cp and N are, respectively, the inflaton and waterfall fields and are singlets of 

the MSSM gauge group. It is these two fields that provide both the mechanism for 
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inflation and the means to end it since ¢ experiences a period of slow roll and 1'1 

becomes unstable at a given point along ¢'s trajectory, ending inflation. The Higgs 

fields Hu and Hd have standard MSSM quantum numbers and are not involved in 

inflation. The dimensionless couplings A and /\, are both 0(10-10) parameters, and 

while there is no field theoretic reason for them to be equal, the string construction 

will require A = /\', which we now enforce. The remaining dimensionless couplings 

Yt and Yb are both taken to be order one and again they will identified in the string 

construction. The scalar soft mass, mo, is common to 1'1, Hu, Hd, tR and bR at the 

string scale and is taken to be approximately a TeV. The quark doublets' soft masses 

mQ are also approximately a TeV, but can differ from mo. We allow a lighter, negative 

soft mass squared for the inflaton in order to satisfy the slow roll conditions and yield 

an acceptable inflationary trajectory. We require that the magnitude of the soft mass 

of order an MeV or less, as will be demonstrated in section 3.1.2. Again these are 

assumptions to be justified in the string construction in section 4. It should be noted 

that we do not explicitly re-create the entirety of the rest of the MSSM in this thesis, 

instead we concentrate on the model of inflation and, in chapter 5, the Dirac neutrino 

model. The quark Yukawas included are not an attempt to provide a realistic quark 

sector, they merely show that quark masses can be realised in this framework. 

The model is one of inverted hybrid inflation, since the negative mass squared for 

¢ will result in an inflationary trajectory rolling away from the origin. It solves the 

f.-L problem in a way similar to that of the NMSSM as shown in section 1.4.2, i.e. the_ 

¢ field obtains a vev post inflation and hence generates a J-L = A (¢). This model also 

replaces the discrete Z3 symmetry of the NMSSM with a continuous U(l)pQ symmetry 
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and the invariance of the two terms in Eq. (3.2) clearly leads to the constraint that 

where the usual charges of the quarks, leptons and Higgs [22] lead to the following 

charges for ¢ and N: QPQ (¢) = - 2 and QPQ (N) = 1. The entire spectrum will be 

laid out in table 4.1 at the end of the supersymmetric construction in section 4.1. The 

fact that the inflaton is charged under the U(l)PQ symmetry means that it can spon-

taneously break the symmetry after inflation, if it obtains a vev. We will demonstrate 

that it does so at a scale consistent with current bounds on the axion decay constant, 

We now consider the minimisation of the potential post inflation and defer the 

consideration of the inflationary period as it relies on the results of the minimisation 

procedure. 

3.1.1 The Potential 

In this section we construct and minimise the potential in order to calculate the vevs 

relevant to our model. We initially search the potential under the assumption that the 

Higgs obtain no vevs immediately post inflation. This assumption will be justified by 

analysing the turning points we discover and demonstrating they are minima, under 

certain important constraints. The requirement of zero Higgs vev is crucial, because 

the order of magnitude estimates for any vevs post inflation are either zero or A)../ A. 

The latter of which is clearly in conflict with the experimental value determined by 

In order to map on to the MSSM at low energies both Higgs must be minimised 

at zero at the high scale to allow radiative electroweak symmetry breaking (EWSB) 

to occur in the usual way, as discussed in section 1.4.1. This results in non-zero Higgs 
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vevs at low energy consistent with experimental data. We shall now demonstrate that 

the Higgs can keep their vevs at zero while the infiaton's vev generates an effective TeV 

scale p, term, as required for an effective MSSM theory valid below the Peccei-Quinn 

scale. 

For the first stage of the analysis we re-parametrise the complex scalars. vVe rewrite 

the Lagrangian in polar co-ordinates, ego ¢(x) = i¢jii exp Ct(~)nl. We denote the 

dynamical phases of ¢, N, Hu and Hd as, respectively, 0:, f3, 'Y and 5. There is also one 

constant phase, in A,.\ = IA"\leilT
. So doing we find the following SUSY potential: 

(
1 1 

VSUSy = >-2 41Hdl21Hul2 + 21HullHdllNI2 cosh + 5 - 2(3) (3.6) 

+ll¢12 (IHuI2 + IHdI2) + llNI4 + 1¢1 2 IN I2) (3.7) 

and the soft potential: 

>-
VsoJt = V(O) + y'2IA"\II¢IIHuIlHdl cos(o: + 'Y + 5 + a) 

>- 1 1 + y'2IA,.\II¢IINI2 cos(o: + 2f3 + a) + 2m6 (IHuI2 + IHdl2 + INI2) - 2m~I¢12. 

(3.8) 

We now attempt the minimisation of VSUSy + Vsoft under the assumption that 

(Hu) = (Hd) = 0 2. Under this assumption it is clear that the potential is minimised 

for cos(o: + 2{3 + a) = -1 since the trilinear is the only contribution to the potential 

that can be negative. We note that we can consistently set cos( 0: + 'Y + 5 + a) = -1, 

but that this requires cos( 'Y + 5 - 2(3) = 1. To make the notation legible we henceforth 

lCanonical normalisation of the dynamical phases only makes sense when the modulus obtains a 

vev. We wish to consider the possibility of non-zero Higgs vevs and so parametrise them in this fashion, 

even though we will show that their vevs are zero at the end. 

2More precisely we consider the potential at (Hu) = (Hd) = 0, and show that it can be minimised 

there. 

60 



drop the modulus signs, but it should be remembered that any negative or complex 

vevs are clearly not allowed. 

Taking partial derivatives with respect to Hu and Hd we obtain the following two 

equations 

(3.9) 

(3.10) 

and we clearly see that (Hu) = (Hd) = 0 solves these equations irrespective of the 

phases. Turning to ¢ and N with the phases set as discussed above and (Hu) = (Hd) = 0 

we find that 

Z~ = )..2N3 + 2)..2¢2N - V2)"A).,¢N + m6N = 0 

8V = 2)..2 ¢N2 _ ~ A N 2 = 0 
8¢ vI2 )., . 

(3.11) 

(3.12) 

We now see that the minimisation conditions alone cannot fix the phases since all 

that has been enforced so far is that a + 2(3 + (J' = 2n 7f + 7f. Hence this does not 

determine the phase of f-L. 

We first note that there is a trivial solution to Eqs. (3.11 - 3.10) when all the fields 

are set to zero. This solution is of little interest, but we note it for completeness. To 

find non-trivial solutions we simply solve Eqs. (3.11) and (3.12) algebraically. Since m¢ 

is very small when compared with ma we discount it in the following as including it 

provides a negligible correction. So doing we see that we have two equations and two 
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variables with the following solutions: 

and we had already found that 

A,A 
(¢) = 2V2'\ 

(N) ~ AA VI _ 4rn6 
2,\ A~ 

(3.13) 

(3.14) 

(3.15) 

Considering Eqs. (3.9) and (3.10) we see that they go into each other under the 

exchange of Hu and Hd (which clearly must be the case as V is symmetric under the 

exchange) hence we can just consider Hu = Hd = H and search for other solutions. 

Repeating the analysis under the assumption that N 0 and H ::j:. 0 requires different 

phases to minimise the potential. Specifically we require that cos( a + ~f + 5 + a) = 1. 

Eqs. (3.9) and (3.10) become: 

(3.16) 

and we obtain the following expression for 

(3.17) 

This yields another set of solutions at 

(H) ~ AA V I _ 4m6 
V2'\ A~ 

(3.18) 

A,A 
(¢) = V2'\ (3.19f 

(N) = 0 (3.20) 

Substituting these expressions back into V we find the following expressions for the 
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vacuum energy post inflation 

(3.21) 

(3.22) 

where we have relaxed the assumption that A.\ = AI\; and .\ = "'. This allows us to 

see that if our assumptions are in place then the N = 0 minimum is energetically 

preferred. Also we see that, in principle, we could escape this problem if we relaxed our 

assumptions. For ex:ample, requiring that '7z6 > 1 would remove H f= 0 as a solution 
A 

and setting AI\; = A.\ and .\2 > 4",2 would make VH=O the global minimum. However, 

removing either assumption takes us away from the string construction, though they 

remain acceptable field theoretic models in their own rights. To demonstrate that this 

situation was physically viable would require a calculation of the tunnelling probability. 

If the half-life is significantly longer than the measured age of the universe then it seems 

likely that the universe will survive long enough to be observed. 

As we wish to remain in contact with the string theoretic origins we need to demon-

strate that the local minimum, with zero Higgs vevs, can be reached after inflation. To 

do so, in section 3.1. 2 we will consider a possible trajectory of the inflaton, rp, that will 

destabilise to the desired minimum. Before this we must review the consequences of 

arriving in the minimum described by Eqs. (3.13-3.15). 

Firstly we see that, since rp and N have obtained vevs, U(l)pQ has been sponta-

neously broken and hence the axion can relax to the CP conserving minimum, with 

fa rv (rp) rv (N) rv 1013 GeV. (3.23) 

Then, from Eq. (3.2) it is clear that, when rp obtains its vev the first term, )..rpHuHd, 
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becomes a supersymmetric mass term for Hu and H d , a p, term: 

A>. 
p, = A (¢) =--

4 
(3.24) 

where the phases have been neglected. We see that our assumption that there is only 

one Yukawa coupling, A, means that p, is automatically at the soft breaking scale. 

This, with the requirement of low energy supersymmetry, leads us to a p, term at the 

electroweak scale, solving the p, problem of the MSSM. 

There are further constraints on p, coming from the requirements that inflation end 

and that there be a phenomenologically viable minimum to be reached post inflation. 

In order for inflation to end the N field must become unstable at a point along ¢'s 

trajectory and rapidly roll to its minimum. When N starts to roll it destabilises ¢ 

through their couplings in V; specifically the trilinear coupling AA>.¢N2 causes ¢ to 

accelerate and violate the slow roll conditions. 

Since this means N must obtain a non-zero vev post inflation, Eq. (3.14) implies 

the following constraint 

A~ > 4m6. (3.25) 

So far we have not proved that the stationary point described by Eqs. (3.13)- (3.15) 

is in fact a minimum of the potential. To prove this we need to show that the Hessian 

is positive definite. If 

VHuHu VHuHd VHv.¢ VHu N 

Vij = 
VHdHV. VHdHd V Hd¢ VHd N 

(3.26) 

V¢Hu V¢Hd V¢¢ V¢N 

VNHu V:VHd V N ¢ VNN 

is a positive definite matrix at a given stationary point, then that point is a local 

mmnnum. If instead the Hessian is negative definite, then the point is a local ma.'{imum 
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and finally if there are both positive and negative eigenvalues, then it is a saddle point. 

Re-expressing Eq. (3.26) in terms of mo and the ratio x = & we find that the ratio rno 

must fall in the following range 

8> x 2 > 4 and hence 8m6 > A~ > 4m6. (3.27) 

So we finally arrive at a prediction for the supersymmetric Higgs mass squared, f-J,2, 

in terms of its soft mass, mo: 

0.25m6 < f-J,2 < 0. 5m6 (3.28) 

where we have used Eq. (3.24) to re-express Eq. (3.27) in terms of f-J,. 

Clearly this prediction is valid at the string scale, but to make contact with exper-

iment the couplings would need to be run down to the electroweak scale. However, a 

full study of collider phenomenology was not undertaken in this thesis. 

We note that we have not included the quarks in this analysis. The reason for this is 

that they are held at zero throughout inflation, do not modify the critical point analysis 

and remain at zero in the minimum reached after inflation. This can be demonstrated 

simply by including the quarks in the above analysis, but since doing so does not modify 

our findings we omit it here. 

Incidentally we can now obtain upper and lower bounds on V(O), expressed in 

terms of f-J,. Using Eqs. (3.21) and (3.24) we find that to have an effective cosmological 

constant of zero after inflation we need the following 

(3.29) 

and from Eq. (3.27) we see that 

(3.30) 
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As a rough guide we use J-L rv 1 Te Y motivated by the standard expression for J-L2 [22]: 

(3.31) 

where we take Mz rv 91 GeY[31] leading to a reasonable estimate for V(O) being 

V(O)1/4 rv 108 GeY. (3.32) 

3.1.2 Inflation 

For this model to describe inflation it must satisfy some basic requirements: it must 

have a field that slowly rolls for a sufficient period of expansion, it must generate 

curvature perturbations in line with CMB data and it must predict a spectral index 

consistent with current observations 3 

To meet the first requirement it must satisfy the slow roll conditions, EN « 1 and 

Ir;/NI « 1 where they are defined as: 

1 (V')2 
EN = 2m~ V « 1 (3.33) 

I 
VIII I77NI = m~V «1 (3.34) 

where the subscript, N, implies that E and 77 were evaluated N e-folds before the end 

of inflation4. Specifically this must be at the time of horizon exit of the scales that are 

currently re-entering the horizon. For our model, we have a relatively small vacuum 

energy during inflation, V(O) rv 1032 Gey4, which we imposed to give an effective 

cosmological constant of zero post inflation, as was shown in section 3.1.1. This leads-

3For a survey of similar particle physics models and a discussion of how they satisfy the inflationary 

requirements see for example [48]. 

4 As a consistency check E and 'r} should be evaluated at this point and at a point just before the 

end of inflation to ensure that the slow roll conditions hold for the entire process. We will see that the 

strongest bounds come at the end of inflation and we impose those bounds on our model building. 
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to a small number of e-folds between horizon exit and the end of inflation. To prove 

this we need to know the vacuum energy at the end of inflation and the temperature 

of reheating so we will consider the number of e-folds again, once these have been 

determined. 

We now discuss the hybrid inflation mechanism of which the model described here 

is a slightly different realisation than the one presented in [56]. While the analysis is 

similar to that of section 1.7 it is not quite as simple and necessitates re-examination. 

First we will address the issue of whether or not the inflaton's trajectory naturally 

falls into the phenomenologically desirable minimum after inflation. This requires us 

to consider the dynamics towards the end of inflation. During inflation a second "wa-

terfall" field, N in our model, has a positive mass squared and hence is held at zero. 

It is subsequently destabilised, i.e. obtains a negative effective mass squared, when the 

inflaton passes a critical value. Geometrically speaking the critical point marks the 

transition of the inflaton from a region where all other fields are locally minimised to a 

saddle region in which the N field is unstable. 

To see this we consider the behaviour of the Hessian, Eq. (3.26), along possible 

inflaton trajectories. We only consider possibilities in which all other fields are set to 

zero, essentially for simplicity. We make no claim that this the only possible inflationary 

trajectory, merely that it is a valid option. With this assumption we are entitled to 

set both the cosines multiplying the trilinears equal to minus one. Then the Eq. (3.26) 

takes the following form: 

m6 + ),2
2 

¢2 -~A),¢ 
J2 0 0 

-~A),¢ m6 + ),2
2 

¢2 0 0 
Vij = J2 (3.35) 

0 0 -m2 
cf> 

0 

0 0 0 m6 - V2)'A),¢ + 4,.\2¢2 
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The critical values are the roots of the eigenvalue equations in the Higgs and N 

sectors. From Eq. (3.35) we see that the roots are expressible in terms of the soft 

parameters: the critical points at which N becomes unstable are 

. --- 1± 1--AA ( PffmZ) 
¢ cnt.(N) - 2V2A A~ (3.36) 

and the Higgs fields destabilise at 

AA ( ~) ¢ crit.(H) = V2A 1 ± V 1 - Jif (3.37) 

Within the ranges of ¢ bounded by these critical values the associated field is 

unstable. This result explains the necessity that our model be one of inverted hybrid 

inflation rather than the standard. The trajectory starts with ¢ at a point with a small 

value and all other fields set to zero. This is a stable point for all but ¢ which slowly 

rolls away from the origin, driven by its negative effective mass squared. 

As ¢ rolls it will reach ¢ crit.(N) before ¢crit.(H) , assuming that mo is non-zero. There-

fore it is the phenomenologically preferred minimum with N =I 0 and Hu = Hd = 0 that 

is reached on this trajectory. If the soft mass squared for the inflaton were positive, 

and the initial value for ¢ were large and stable, then it would slowly roll towards the 

origin and would always destabilise in the Higgs direction rather than N. It is possible 

to allow for m~ to be positive since there is a stable region in between the two unstable 

~ 1 ranges bounded by Eqs. (3.36) and (3.37), which can be non-zero. If VI - ~ < 3' 

then this region opens up. It is interesting that this gives much tighter constraints on 

the soft masses than the inverted case, 

(3.38) 

and hence a stronger prediction for f..L: 

9 2 2 1 2 
-mo > f..L > -mo' 
32 4 

(3.39) 
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However the required initial conditions for the standard hybrid case are difficult 

to imagine being satisfied, so for the rest of this thesis we focus our attention on the 

inverted case. 

We shall now discuss the slow roll period that occurs, for the inverted hybrid infla-

tion scenario. 

For this trajectory, the potential effectively simplifies to 

(3.40) 

In this case the slow roll conditions become 

(3.41 ) 

(3.42) 

To ensure that these conditions are satisfied we first derive an upper limit on Im¢ 1 from 

Eq. (3.42): 

Im¢1 «4 MeV. (3.43) 

To find how to satisfy Eq. (3.41) we must first calculate ¢N. From the standard 

[46, 49, 68] equations describing the evolution of a in the slow roll approximation we 

can show that, for a slowly varying Hubble constant, H, we obtain [48] 

(3.44) 

which gives the number of e-folds the universe will undergo between the input value of 

¢ and the critical point at which inflation ends. 

For V given by Eq. (3.40) this obtains the simple form 

N(A--)=- V(O) 1 (A--/A--. )=_In(¢/¢crid 
'f/ JvIJ,m~ n 'f/ 'Pent. 17]1 (3.45) 
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and rPN is obtained from Eq. (3.45): 

(3.46) 

where N is the number of e-folds between the time at which the largest measured scales 

leave the horizon and the end of inflation. vVe now calculate N using the standard 

expression from [48]: 

N = 62 -In (10 16GeV/Vl /4) - ~ In (V1/4/ 1/4) 
end 3 end P reh (3.4 7) 

where Vend is the value of the potential at the end of inflation and P;~: is the reheat 

temperature. \Ve must make a brief detour to calculate these quantities and then obtain 

N. 

First we note that [47]: 

(3.48) 

with the inflaton's decay rate [69]: 

Mg ,,\2 ( 4m6) r", '" --'- '" - 1- - MdJ 
'I' 647r f2 87r A2 ' 

Ja A 
(3.49) 

where post inflation MJ ~ 2,,\2 (N)2 = ~ (1- ~6) '" 1 TeV2. 

Now with g* '" 80 [47] we are in a position to calculate all the desired quantities: 

r ¢ '" 10-10 e V Treh '" 0.2 Ge V Preh '" 0.1 Ge V4
. (3.50) 

This low reheat temperature slightly relaxes the upper bound on the axion decay 

constant, allowing fa'" 1013 GeV [67, 69] and arrive at 

N~ 37. (3.51) 

With N known we can set about satisfying EN. From Eq. (3.41) we obtain5 

5While the details of the standard hybrid inflation case are not included it differs slightly from the 

inverted case. The difference being that there are be slightly tighter constraints on the soft parameters 

to satisfy EN « 1, since r/JN is larger. 
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(
2V(0)e2NI17I) 1/4 

m¢ « 2 2 
MP¢crit.(N) 

In the limiting case when Tl « 1 and 

A,\ 
¢ crit.(N) = 2V2..\ 

where this is the largest value ¢ crit.(N) can have to provide the strongest bound, 

m¢« 5 MeV, 

(3.52) 

(3.53) 

(3.54) 

where this bound and the corresponding bound on Tl depend on the exact details of 

SUSY breaking so, lacking an specific SUSY breaking mechanism, these are left as 

order of magnitude constraints. 

However it turns out the most stringent constraint on m~ comes from the density 

perturbation data. From [54] we see that 

<; = 32 V(O) -1 = 1 92 10-5 
UH 4 EN . X . 

75 mp 
(3.55) 

Satisfying this requirement with the inflaton would drive its mass down to below 

the e V scale. This would require a high degree of fine-tuning6 . If the mass of the 

inflaton ¢ during inflation is in the MeV range this satisfies the slow roll constraints, 

but precludes the possibility that the density fluctuations are provided by the inflaton 

itself. Thus extreme fine-tuning is alleviated [70] if we use a different field, a curvaton 

[71, 72, 73]' to generate the curvature perturbations. There are numerous examples of 

this mechanism in the literature, but we do not speculate as to which one might be 

compatible with our model. 

6For a discussion of fine-tuning and the expected radiative corrections in the closely related ¢NMSSM 

model see [67]. 
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We now consider the spectral index given by[48] 

n = 1 + 21] - 6E (3.56) 

it is perhaps safest to say that we expect the spectral index to be very close to unity. 

Although it is impossible to make an exact prediction without a better understanding 

of the details of SUSY breaking and hence predictions for the soft parameters. It is 

however clear that if the inflaton is responsible for the curvature perturbations n - 1 

will be negligible. This is in agreement with the WMAP one year data, n = 0.99 ± 0.04 

[74]. 

Tied into inflation is the issue of domain walls. Since this model does not possess 

the Z3 symmetry of the NMSSM it sidesteps the domain wall problem discussed in 

section 1.4.2. However, domain walls can still be created when the PQ symmetry 

breaks [75, 76]. However it is possible [77] to avoid this problem if, as is the case in our 

model, a field charged under U(l)PQ already has a non-zero vev by the end of inflation 

and retains a non-zero vev in the minimum post inflation. In our model this role is 

taken by the inflaton which has a vev of ¢crit.(N) at the end of inflation and obtains 

(¢) = 2~'\ in the minimum reached after inflation. 

3.1.3 Inflation summary 

We close this section with a brief review of the main features of the field theory model 

before embarking upon its string construction in the following section. This model 

puts forward the ¢ field as the field responsible both for inflation and for generating the 

supersymmetric Higgs mass term, fL, of the MSSM. In addition it has been demonstrated 

that with the vacuum expectation value of the inflaton at the Peccei-Quinn axion scale 

the ~L term automatically appears at the soft breaking scale, given as a simple function 

of the soft parameters. The very small Yukawa coupling, A, provides the link between 
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these scales, giving rise to fa once the soft parameters are determined. This means the 

physics of inflation simultaneously solves the strong CP and f.L problems and give rise 

to a testable prediction for the f.L parameter in terms of the Higgs' soft scalar mass: 

O.25m5 < fL2 < O.5m5. This implies deep connections between supersymmetric Higgs 

phenomenology, inflation and the absence of CP violation in QCD. 

This analysis has rested on a number of assumptions, namely that the soft masses 

of the Higgs field and of N are equal, that small Yukawa couplings can be obtained and 

these small Yukawa couplings can be equal: A = /'1, in our model. In the next chapter 

we will construct the supersymmetric and soft sectors of the model and in so doing 

provide justifications for these assumptions. 
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Chapter 4 

String Construction of Inflation 

and Small Yukawa Couplings 

In this chapter we investigate the application of the D-brane framework discussed in 

chapter 2, making particular use of the small Yukawa couplings uncovered in section 2.2. 

We demonstrate how string selection rules, arising from the D-brane setup, impose 

non-trivial constraints on the set of allowed superpotentials. The applications of the 

framework are made apparent when the inflationary model of chapter 3 is constructed 

and many of the model's assumptions are seen to be consequences of the underlying 

string theory. 

First we construct the supersymmetric side of the model, consistent with the string 

selection rules, before moving on to consider SUSY breaking. Initially only the dilaton 

and untwisted moduli are considered, but it will be necessary to expand the analysis 

to include the effects of twisted moduli. 
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4.1 Supersymmetric Sector 

This section draws heavily on the information contained within chapter 2 and attempts 

to use this to justify a number of assumptions of the previous section. Chiefly we wish 

to address the origin of the small couplings required by the model and consider the 

main result of the model, namely the high scale relationship between the Higgs' soft 

and supersymmetric masses in Eq. (3.28). 

The superpotential, Eq. (2.15), the relationship between the Yukawa couplings, 

Eq. (2.30), and the expression for AI, Eq. (2.29), are all the tools we need for the 

string construction. Figure 1 displays the two branes that feature in our construction. 

The D52 brane is assumed to have an order one gauge coupling and possess a twisted 

modulus at a fixed point of the orbifold. This fixed point is taken to lie on the D52 

brane, but to be spatially separated from the intersection point of the branes. However, 

because the radius of the D52 brane is very small, as given by Eq. (2.31), the separation 

is similarly limited. Intuitively we expect there to be very little by way of geometric 

effects arising from the small separation and this will be borne out when the calculations 

are performed. All the MSSM fields will be required to transform under representations 

of the D52 brane's gauge group and not the D51 brane which has an order 10-10 

coupling. 

The goal of the following subsection is to elucidate the string selection rules and 

demonstrating how they can be applied. This will show how one obtains a given 

renormalisable superpotential within string theory and how some simple examples are 

not compatible, at the renormalisable level. 
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4.1.1 Methodology 

It should perhaps be re-emphasised that our approach in this paper is one of string 

inspired phenomenology. We make use of a number of the generic properties of low 

energy effective string theory so as to keep our analysis as general as possible and avoid 

specialising to a particular model. Some of the obvious strengths and weaknesses of 

this approach are as follows. We can consider a large class of models in one fell swoop 

and, if it proves impossible to embed our model, be reasonably confident that there 

is little reason to undertake more involved, specific constructions. However without 

the explicit realisation of our model we cannot know that there exists an appropriate 

compactification leading to the right sets of branes and the desired low energy spectrum. 

However the number of possible D = 4, N = 1, low energy string models is vast and 

a complete survey is far beyond the scope of this thesis. With this caveat in mind we 

may still undertake the construction. 

The rules that we enforce are as follows: 

• All supersymmetric terms must found within the low energy effective superpo-

tential, Eq. (2.9). 

• The string states, C5152 etc., can represent more than one low energy field. 

• Each low energy field can only be assigned to one string state. 

• The gauge transformation properties of a string state are determined by the stacks 

of branes to which its ends attach. 

As previously mentioned we only make use of a small subset of these terms. That 

is not a rule that we require, but it is the case for all models in this thesis. Also, when 

we come to consider neutrinos it will be necessary to make use of the supersymmetric 
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generalisation of the Froggatt-Nielsen mechanism to generate non-renormalisable op­

erators. However this only makes use of renormalisable operators from the canonically 

normalised Eq. (2.15) so does not violate our first rule. The final point summarises the 

discussion in section 1.6. 

The approach in this thesis is to take a purely field theoretic superpotential and see 

if it can be realised in the string superpotential, using the rules discussed above. Let 

us consider a toy field theory with just three, gauge singlet superfields, A, Band C 

with the following superpotential: 

(4.1) 

where the ,\'s are constants. 

We now consider the assignment of each term in Eq. (4.1) individually. 

AaA3 cannot appear in the string superpotential for the simple reason that Eq. (2.9) 

contains no terms that are cubic in a single superfield. Were we to assign A to any string 

state we would be then forced to assign it to another string state, which would violate 

our third rule. Incidentally this means that the NMSSM cannot be realised using purely 

renormalisable operators as it includes just such a term. However, the same problem 

does not afflict the AbA2 B term since there are quadratic terms in Eq. (2.9). For 

example it could be assigned to CrC951 C95
1 and other similar terms. To be concrete we 

will have to assign A and B to C95
1 and Cr, respectively, if we wish to use Cr C95

1 C95
1 • 

However, terms like C5
1

5
2 C5

2
5

3 C5
3
5

1 are not acceptable candidates. Finally AcABC 

can be assigned to any of the terms in the string superpotential, Eq. (2.9). In addition 

we are completely free to choose the string states to which the fields are assigned, within 

a particular coupling. In other words, we can freely permute the superfield assignments 

once we have chosen a string term. This is similar for the AbA 2 B term, except that 

only a subset of the string superpotential terms are available. 
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We should now note that all the normal rules of model building apply, except where 

they contradict the string selection rules. By way of example, gauge invariance must be 

insisted upon for all terms. Since our toy model only consists of singlets, this is not very 

restrictive, but remains instructive. Ordinarily one would write down all possible terms 

that have the appropriate mass dimension, are holomorphic and are gauge invariant. 

For our toy model this would include terms like AA 2 , A 2 B, AB2 and so on, where 

we might guess that the high scale couplings are order one where A is the high scale. 

Clearly, since there are only mass dimension 3 terms in Eq. (2.9) AA 2 and A 2 Bare 

ruled out, but we note that AB2 is analogous to BA2, which we have already shown 

is acceptable. However if we attempt to realise them both simultaneously we see that 

this is impossible, since B must be assigned to Cr and this only appears linearly within 

Eq. (2.9). We stress that this is not an artifact of our choice of CrC951C951 for A2B, 

as all viable terms have the same form. 

In summary we have seen that the string selection rules can forbid interactions 

that are otherwise allowed by all the gauge symmetries of the theory. The non­

renormalisation theorem of supersymmetry will keep these couplings at zero. Naturally 

this will not hold when SUSY is broken, but it does remain valid above the soft scale. 

The model building generally proceeds as follows: first we choose a set of radii and 

hence the determine the non-canonical Kahler potential. Then we must canonically 

normalise the Kahler potential and work out the effective superpotential. Having done 

so we assign fields in accordance with the string selection rules and then write down all 

terms that are allowed by both gauge invariance and the aforementioned rules. This 

determines the supersymmetric side of the construction and we will now apply this 

procedure to our model. 
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4.1.2 String Assignments 

Now and hereafter we focus our attention on the specific anisotropic compactification 

considered in section 2.2. Having fixed the Yukawa couplings there is only one small 

coupling, 951 = 10- 10 , which can serve as the A in the model. The remaining couplings 

are taken to be 952 rv g53 rv 99 rv 1. 

We start our assignments by considering A¢N2 . The reason for this is that it has 

exactly the same form as AbA 2 B in section 4.l.l. It was shown there that this class of 

term can only be assigned to a restricted subset of the complete superpotential. This 

is in contrast to the A¢HuHd term which could be assigned to any term in Eq. (2.9) 

with 951 as its Yukawa coupling. 

So doing we see that there are three terms that have the correct form and right 

coupling constant: 

where (j) and (k) are symmetric under relabelling of 2 and 3. Notice also that Eq. (2.9) 

is symmetric under permutations of the 1, 2 and 3 labels if the radii are allowed to vary 

(hence altering the size of the coupling constants). Since the size of the radii is a free 

choice by assumption we see that (j) and (k) are equally good choices. Considering the 

fact that T-Duality is a symmetry of the theory, this and the freedom to relabel links 

all possible permutations of the branes, hence (i), (j) and (k) are effectively equivalent. 

Due to this fact we only consider the Cg1C5152C5152 and hence the assignments of ¢ to 

cg1 and N to C 5
1
5
2. As N does not appear again we must look for the A¢HuHd term. 

There are only two terms with 951 coupling that include cg1, (a): 9 51 cg1 cg1 cg1 and 

(b): g51 cg1 C5152C5152. Notice they are inequivalent under T-Duality and relabelling. 

Now the question of gauge assignments must be addressed. See section 2.1 for a 
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discussion of the possible transformation properties of the string states. These rules 

imply that Cl1 states can only transform under the D51 brane's gauge groups, with g51 

as their gauge coupling. On the other hand C5
1

5
2 states can have quantum numbers 

from both the D51 and the D52 branes. 

We must now ensure that our fields can transform appropriately under the MSSM 

gauge group and that each term can be made invariant. Term (a) requires that we 

assign Hu to Cf1 and Hd to C~l or vice-versa. This means that both Higgs fields must 

transform with a gauge coupling of 10-10 . Since we expect the MSSM gauge couplings 

to be order one at the string scale this is clearly unacceptable. 

Since ¢ obtains a large vev it must not couple to any MSSM gauge bosons or their 

masses will be pushed up to rv 1013 GeV. It is easy to see that ¢ does not couple to 

any MSSM gauge bosons because ¢ belongs to the Cg1 string state and hence cannot 

transform under any gauge groups with order one couplings. However the N field also 

obtains a large vev, comparable to (¢), unless 4m5 is tuned to be very close to A~. 

As such we must require that it does not transform under any MSSM gauge groups. 

Since N is an intersection state, C5 152 , it must transform under one of the gauge 

groups on the D52 brane. This would seem to present us with a problem, as it would 

seem to imply that the N field must transform non-trivially under one of the MSSM 

groups as discussed in section 2.1. However this is only true if string theory gives us 

exactly SU(3)xSU(2)LxU(1)y. Consider as a possibility the following gauge group, 

U(1)yxSU(2)LxSU(3)xGx , where Gx is an unspecified non-Abelian group with an 

X dimensional fundamental representation. This could allow N to transform as follows 

(1, 1, X; 1, 1, X). Now in principle we could use this in our model, assuming we found 

an appropriate Gx and could form the correct invariant with ¢. However we feel this is 

more suited to an explicit construction since we cannot know the exact spectrum in our 
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approach and the exact choice of this additional group lacks the physical motivation that 

has been guiding us so far. vVe do note that the Hu and Hd field are also intersection 

states and must transform under one of the D51 brane's groups. Because of this there 

has to be at least one spontaneously broken group on the D51 brane so that the Higgs 

fields can appear simply as SU(2)I2 doublets, not as bi-fundamentals of both branes. 

In addition to the group being spontaneously broken we require that a effect analogous 

to doublet-triplet splitting 1 in an SU(5) GUT [80] so that in low energies we only 

see one copy of each Higgs doublet. It is possible to imagine a phenomenologically 

viable models with multiple Higgs doublets (see [81] and references therein), but for 

simplicities sake we just want to consider a two Higgs doublet model. Again this is a 

question that could only be properly addressed in a more complete model, however we 

anticipate that any such model could have similar properties to those discussed here. 

We now see that the previously ad hoc assumption of /'i, = A that was made in 

Chapter 3 has been justified in the string construction. 

To complete the superpotential as defined in Eq. (3.2) we need to find order one 

quark Yukawa couplings consistent with these assignments. The specific terms we wish 

to assign are YtQ3HutR and YbQ3HdbR' 

Since both Hu and Hd are assigned to C 5152 , the only order one terms allowed are 

where we must allow the radii to vary slightly to accommodate (13) and (,). Again the 

requirement of gauge invariance must be satisfied. To do so the quark doublet, which 

transforms as a (2,3) under SU(2)L and SU(3), must be assigned to a string state 

with both ends on branes with 0(1) gauge couplings. Of the three possibilities (0) is 

the simplest choice since it has all the standard model gauge factors coming from the 

1 For some examples where this is realised see [78, 79] 
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SU(3) SU(2)L U(l)y U(l)PQ String State 

Q3 3 2 1/6 -1/2 C52 
3 

t C 
R 3 1 -2/3 -1/2 C5]52 

bC 
R 3 1 1/3 -1/2 C5]52 

Hu 1 2 1/2 1 C5152 

Hd 1 2 -1/2 1 C5]52 

¢ 1 1 0 -2 C5] 
3 

N 1 1 0 1 C5]52 

Table 4.1: Inflation Fields 

same stack of branes. Since it has already been shown that the Higgs fields transform 

under a gauge group coming from the D52 branes, assigning Q3 to Cf2 means that 

the entire MSSM gauge group can be found on the same stack of branes. In contrast 

(13) and (r) entail diagonal symmetry breaking from (SU(3) X SU(2)L x U(1)y)2 to 

SU(3) x SU(2)L x U(l)y. Of course this does not rule out (13) and (1'), but in this 

thesis we concentrate on the simplest model, (ex), for the rest of the analysis. 

A summary of the model as it stands is presented in table 4.1. This contains all 

the information about the spectrum that we have constructed so far, namely the string 

assignments and symmetry representations. 

4.2 Supersymmetry Breaking Sector 

In this section we start with the assumption that the SUSY breaking is dominated by 

the dilaton/moduli sector, as discussed in section 2.1.1, as this is the simplest possible 

case in Type I string theory. Having made this assumption we consider the soft mass 

constraints, Eq. (3.27) derived in chapter 3. 
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In the dilaton/moduli dominated case we found that the following sum rule, first 

presented in Eq. (2.24), must be enforced. 

(4.4) 

It will soon become clear that this sum rule will have important consequences for our 

model. If we wish to satisfy the slow roll conditions Eq. (3.41) and (3.42) we require 

that the infiaton's soft mass must be essentially zero, when compared with the other 

soft masses which are at the TeV scale. Putting aside, for a moment, the mechanism 

for obtaining this we will consider its implications. 

From table 4.1 we see that ¢ is assigned to C~1 and N, Hu and Hd to C 515
2. In 

section 2.1.1 it was demonstrated that the fields belonging to a particular string state 

have a common soft mass, so we see that the assumption of a common mass, mo, for 

Hu, Hd and N is justified in the string construction. In addition we see that, while 

there are similarities between their expressions, m~ and m5 generically have different 

values. Even so it must be demonstrated that the Higgs fields can obtain Te V scale 

masses and, at the same time, an MeV scale mass for the infiaton is allowed. 

First of all it can be seen from Eq. (2.21) and (2.22) that, in the limit where 

V(O) -? 0, it is possible to set m~ = m2
51 = 0 while m5 = mb5 1 52 remains non-zero. 

<j/ C
3 

For example, setting 8§ = 8~ = i and cose = 1 gives m~51 = 0 and mb5 152 = ~m~/2' 
3 

the V(O) = 0 assumption, as we must do for our model, will modify the exact values 

of the parameters so they are no longer neat rational numbers, but angles can still be 

chosen to make m 2
51 arbitrarily close to zero, or indeed negative (with an arbitrarily c3 

small magnitude), while retaining a non-zero mb5 152' Reinstating the powers of Mp 
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we see that V(O) contributes to the mass squares as 

(4.5) 

which is negligible when compared with the Higgs' soft masses which are of the order 

of a TeV. Therefore Eq. (4.4) takes the much simpler form of 

(4.6) 

where AC51C5152C5153 = A,\ is required by string theory. Since this trilinear, by virtue 
3 

of the chosen string assignments, is common to the AA'\cPN2 and r<.Al>,cPHuHd terms we 

see that the ass urn ption of A,\ = AI>, is also required 2 . 

Unfortunately it is clear that Eq. (4.6) does not satisfy the lower bound on the ratio 

of the trilinears and soft masses shown in Eq. (3.27) so these soft terms are inconsistent 

with the model of inflation. To overcome this problem we must violate the sum rule 

in Eq. (4.4), which clearly necessitates modifications to the soft parameters. However 

since this sum rule is independent of the Goldstino angles it is clear that we cannot 

simply change the F-terms to avoid this problem: all dilaton or moduli dominated 

models of SUSY breaking will give rise to the same sum rule. So it is clear that we 

must look for sources of SUSY breaking other than just the S and Ii moduli, as they are 

currently formulated. The fields we put forward as additional sources are the twisted 

moduli discussed in section 2.1. We do not introduce these fields, as such, since they are 

already present in the spectrum; instead we allow them to take part in SUSY breaking 

and hence obtain F-terms. In the following section we consider the effect of twisted 

moduli and address the issue of why me/> is so small when compared with the rest of 

the soft masses. 

2,\ = K has already been demonstrated since Krj;N 2 and '\rj;HuHd have been shown to be contained 

in the same string superpotential term in section 4.1.2. 
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4.2.1 Twisted Moduli 

In spaces with singular points, in our case orbifolds, twisted moduli must be present 

in the spectrum as discussed in section 2.1. For simplicity's sake we only consider the 

effect of one twisted modulus, Y2 located at a fixed point in the orbifold spanned by 

D52, i.e. in the 2-torus with dimension R 2 . Y2 is taken to be at a fixed point spatially 

separated by a distance R2 from the origin, as shown in fig. 2.1. 

In the following analysis we draw heavily on the analysis of [57], but generalise it 

to allow AI ::j=. 1 in accordance with our AI rv 1O-1l. In so doing we find that AI has a 

significant effect on the soft spectrum and that it simplifies considerably in the AI ----) 0 

limit. 

The presence of twisted moduli must be represented by modifications to the Kahler 

potential and gauge kinetic functions. Since we desire additional contributions to the 

soft parameters we must also include include new F-terms parametrised by additional 

Goldstino angles and phases. 

First we consider the Kahler potential for the twisted modulus, K(Y2 ). The exact 

form is not known, but K(Y2 ) must be an even function, see [62] and references therein, 

of Y2 + Y 2 - 6es In(T2 + T2). Where 6es is a model dependent coefficient connected 

with anomaly cancellation via Green-Schwarz mixing [61]. The simplest non-trivial 

possibility is to have K as follows 

(4.7) 

This is not the only modification that the Kahler potential must undergo. Since the 

twisted modulus is spatially separated from the origin we expect the effects of SUSY 

breaking coming from that brane to be suppressed, as a function of that distance. 

Intuitively this can be thought of as arising from the fact that the twisted moduli 
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have their wavefunctions localised away from the origin and hence their overlap with 

fields at the origin are geometrically suppressed. With this suppression in place the 

contribution of the F-terms corresponding the Y2 superfield will be reduced. The soft 

spectrum should reflect this and fields sequestered from Y2 should have lighter soft 

masses, assuming that Y2 is the dominant source of SUSY breaking. For a more rigorous 

argument and the original derivation see [57]. 

The states considered to be sequestered are those that are localised away from the 

fixed point where Y2 resides. The most obvious example of a sequestered state is cg1
: 

since both ends of the string are only free to move on the D51 brane it is held apart 

from Y2 . Another example is C5152 , despite the fact that it has one end on the same 

brane as the Y2 . This is because the string tension localises the intersection states at 

the origin, away from Y2 . For an example of an unsequestered state we consider cg2
• 

This state comes from a string which has both ends attached to the D52 branes, which 

means that it is free to move throughout the space containing Y2 field and feels no 

suppression. 

To impose this sequestration we require that a multiplicative factor, ~, be introduced 

to the Kahler potential, where ~ is given by 

This gives rise to a new Kahler potential K = Kseq. + Kunseq. where 

K(5, 5, Ti , T i , Y2, Y 2)seq. = ~ [Y2 + Y 2 6cs In(T2 + T 2)] 2 

+ L ~(T2' Y2) IC;;1 2 + ~ L ~(T2' Y2) ICJil2dijk 
iy'c2 (5 + 5) iy'c2 (Tk + T k) 

1 ~ ~(T2' Y2) IC5i5j 12d. 
+ "2 L (5 + 5)1/2(Tk + Tk)1/2 2Jk 

2 
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and 

_ _ _ 3 _ 3 1 cf 12 
K(S, S, Ii, Ti)unseq. = -In(S + S) - I.: In(Ti + T i ) + L ) 

i=l i=l (Ti + Ti 

Icg212 1 3 IC~212 d IC952 12 
+ (S + S) + 2 ~ (Ti + T i ) ik + (Tl + Td 1/ 2(T3 + T3)1/2 

(4.10) 

For our model AI rv 10- 11 and T2 + T2 rv 40 as can be seen from Eqs. (2.29), (2.8) 

and (2.32). Hence ~ ~ 1 for our model. The exact value for Re(T2) depends on Re(Y2) 

so we only give an approximate value here. However, over the range of values of Re(Y2 ) 

considered in this thesis Re(T2) only varies by a factor of two and the result ~ ~ 1 is 

dominated by AI's contribution. \Ve note that if this were not the case and ~ differed 

from one then canonical normalisation would create substantial modifications of the 

superpotential given in Eq. (2.9). 

Having now specified our Kahler potential, we parametrise the F -terms as follows 

[57] 

Fs = V3m3/2 sin e eias (S + S) 

FT3 = V3m3/283 cos e sin ¢ e ia3 (T3 + T 3 ) 

FY2 = V3m3/2 cos e [Sin ¢ (8c; + yfk8cs ) 8 2 eiaz + cos ¢ eiaY2 (1 - 83s 2) 1 
v k (T2 + T 2 )2 (T2 + T 2 ) 

(4.11) 

where these expressions are valid up to 0 [( 1 r] and the Goldstino parameters, 8 i , 
Tz+T2 -

satisfy the following conditions .L~=l 8r = 1 and 8r :s; 1 Vi. Also 

(4.12) 

87 



is introduced to simplify the expressions. 

Given the Kiihler potential and a parametrisation for the F -terms we can re-derive 

our soft spectrum using the techniques discussed in section 2.1.1. 

We now present the full expressions for the relevant soft masses, in, Ae51 e5152 e 5152 
3 

2 2 2 3 2 8 2 2 e . 2 rf.,. mQ = me52 = m 3/ 2 - m 3/ 2 -1 cos sm 'Y 
3 

(4.13) 

2 2 - 2 3 2 (. 2 e 82 2 e . 2 rf.,.) ma = me5152 = m - "2 m3/ 2 sm + -3 cos sm 'f' (4.14) 

m 2 2 -in2_~m2 8 2cos2 esin2 rf.,. 
¢ = me;1 - k 3/2 2 'Y (4.15) 

where all of the dependence on A] is contained within in given by 

",' ~ mil' [1 - cos' e cos' ¢ ( 1 - e -A,(T,+ 1',)/4) 

- cos
2
esin:¢8§6CS (1- e-A[(T2+T 2)/4) {Y2 + Y 2 - 6csln(T2 +T2)} 

cos2 e sin2 r/J 8 2 e- A[(T2+T2)/4 2 - 2 - - 2 
+ . 2 A](T2 +T2) {Y2 + Y 2 - 6csln(T2 +T2)} 

32k 

A] cos2 e cos ¢ sin ¢ (82 e
i (a 2- aY2) + 8~ e- i (a 2-ay2)) e-A[(T2+T 2)/4 

32Vk 

x {Y, + Y, - 'Gsln(T, + T,)} (S(T, +1',) + AI'GS {Y, + Y, - 'as In(T, + T,)}) 1 

AA = Ae51e5152C5152 = -J3m3/2 cose [sin¢81 eia1 

3 

8 2 e
ia2 - _ _ - 2 

+ sin ¢ e-A[(T2+T 2)/4 A](T2 + T 2) {Y2 + Y 2 - 6GS In(T2 + T 2)} 
8Jk 
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(4.18) 

For our value of AI it is interesting to note that, to a very good approximation, 

m = m3/2, consistent with [21], so the effects of the sequestering are not felt by the 

soft masses. To clarify, the soft masses are clearly different from those presented in 

[21], but this difference is not due to the spatial separation. This is unsurprising since 

the separation between Y2 and the origin, R2 ~ 10-18 GeV2 is below Lstring ~ 10- 13 

Ge V so in this sense they are "close". Also the exponentials vanish from A,\ so it is not 

the sequestering that breaks the sum rule in Eq. (4.6). The sum rule is broken by the 

Kahler potential for the twisted moduli in Eq. (4.7). If it was logarithmic, as all the 

other moduli's potentials are, then the sum rule would hold, but the fact it is quadratic 

breaks the sum rule. 

4.2.2 Allowed soft terms 

In this subsection the soft parameters given by Eqs. (4.14)- (4.18) are examined to see 

how the inflationary constraints of Eq. (3.27) can be satisfied. First we write out the 

soft masses, working in the limit that AI -) 0, which is essentially true, to exceptionally 

good precision. 

2 2 3 2 8 2 2 e . 2 '" mQ = m 3/ 2 - m 3/ 2 - 1 cos sm 'I-' (4.19) 

2 2 3 2 (. 2 2 2 . 2 "') ma = m 3/ 2 - "2 m3/ 2 sm e + 8 3 cos e sm 'I-' ( 4.20) 

2 2 3 2 82 2 e . 2 '" m¢ = m 3/ 2 - km3/2 - 2 cos sm 'I-' (4.21 ) 
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and the expressions for the trilinears simplify in this limit to 

( 4.22) 

( 4.23) 

Our aim is to find values for the Goldstino parameters that satisfy the soft term 

ratio, Eq. (3.27), thereby providing an existence proof. In order to find parameters 

that satisfy all of our constraints, in particular m~ = 0, to a given precision, we note 

that unless 

0<k:::;3 ( 4.24) 

we see from Eq. (4.21) that it is impossible to obtain m~ = O. This in turn places 

constraints on the allowed values of Y2 + Y 2 and T2 +T2 since they appear in Eq. (4.12). 

While we do not specify any particular GUT into which our model could be embedded 

we would like to see if unification is, in principle, possible. To do so we consider Eq. (2.7) 

when there is only one non-zero twisted modulus, Y2 

( 4.25) 

2 

where we have imposed that g~~6 = O:GUT where this is the standard MSSM value. As 

discussed in [21] the coefficients, c~, can be of the same order as the beta functions for 

some orientifolds. However, not wanting to specify a particular compactification, we 

simply set c~ = 1 V{J. In addition we assume that all the phases are set to zero, since 

we are attempting an existence proof, it is enough to prove it for one choice of phase. 

The parameters were generated numerically, using the following method. A value is 

chosen for 15Gs, then a random set of Goldstino parameters and moduli are generated 
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within the range of values known to satisfy m~ = 0 and Eq. (4.25), to a precision 

specified at the outset. It is then easy to calculate the soft parameters in units where 

m3/2 = 1. These parameters are then compared with Eq. (3.27) and we also ensure 

that m~ > O. If all this goes through then these parameters are accepted. 

A sample of points that meet all of our requirements are presented in table 4.2. 

6GB e ¢ 8 1 8 2 83 m2 
0 m2 

Q A,\ AQ Re(T2) Re(Y2) 

-2 5.69 5.33 0.807 0.173 0.565 0.312 0.113 1.34 1.40 27.9 -3.92 

-2 5.54 5.25 0.810 0.497 0.311 0.248 0.215 1.11 1.23 27.8 -3.84 

-4 6.14 5.20 0.463 0.176 0.869 0.100 0.507 0.887 1.19 32.2 -8.22 

-4 5.57 5.26 0.777 0.407 0.479 0.219 0.237 1.01 1.13 32.2 -8.23 

-6 5.54 4.74 0.705 0.529 0.472 0.13 0.195 0.901 1.00 36.9 -12.9 

-6 5.39 3.88 0.937 0.163 0.31 0.0679 0.532 0.551 0.867 36.8 -12.8 

-8 6.68 5.19 0.693 0.156 0.704 0.279 0.0313 1.07 1.09 41.6 -17.6 

-8 7.18 4.57 0.696 0.707 0.127 0.0724 0.448 0.735 0.992 41.7 -17.7 

-10 6.4 4.94 0.379 0.451 0.808 0.0625 0.596 0.652 1.02 46.7 -22.7 

-10 5.43 4.34 0.916 0.316 0.248 0.117 0.0505 0.938 0.963 46.6 -22.6 

Table 4.2: Goldstino parameters and soft terms satisfying all constraints 

Note that the values of the twisted modulus presented in table 4.2 have a negligible 

effect on the gs] coupling since its vev is order 1 and Re(Td"-' 1020 . Also the values of 

m~ have not been displayed since they can be rendered arbitrarily small with sufficient 

numerical precision. 

The data in table 4.2 shows that we have managed to achieve our goal of obtaining 

soft masses that agree with Eq. (3.27) and also allow an arbitrarily small m¢. It is clear, 

from a brief analysis of the allowed sets of parameters in table 4.2, that the sum rule is 
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no longer independent of the Goldstino angles. Obtaining a small m¢ and satisfying all 

constraints now requires careful choice of the Goldstino angles. The Goldstino angle 

dependence of the sum rule is just a result of the more complex Kahler potential and, 

while it was pleasing to be able to put forward reasonably model independent rules, 

they rested upon the assumption of dilaton/moduli domination. It is unsurprising that 

more complicated models do not share these rules. Acquiring a small m~ requires some 

justification: why should we expect the angles to fall into such a pattern? Ultimately 

the answer must lie with the method of SUSY breaking. We do not attempt a detailed 

answer in this thesis, but instead motivate it with an explicit example [62] that yields 

similar results to those required here. In [62] the stabilisation of the dilaton is addressed 

in a Type I string framework, including the effects of twisted moduli, but assuming 

an isotropic compactification. The soft masses are calculated and shown to have a 

similar hierarchy to the model presented here, resulting in the following soft masses 

m~5i = ~;t and m~5i5j ::::; ~m~/2' However they still observe the sum-rule and the soft 
J 

mass squared of ~;t gives 

7) = 1 ( 4.26) 

which clearly does not allow slow roll. For these reasons it is clear that the example of 

[62] cannot provide our model's SUSY breaking mechanism. Nonetheless the fact that it 

incorporates twisted moduli and generates a clear hierarchy in its soft spectrum makes 

this class of SUSY breaking mechanisms attractive candidates for explicit realisations 

of our model. 

4.2.3 String Construction Summary 

The chapter has made use of the framework discussed in chapter 2 and demonstrated 

that it is possible to make use of it to construct the model of inflation presented in 
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chapter 3. The assumptions of small Yukawa couplings, identification of said couplings 

and the particular soft spectra put forward in Eq. (3.4) have all been justified within the 

construction. This was all achieved without requiring an exceptionally low string scale 

or especially large extra-dimensions. For the inflation model considered we utilised 

Yukawa couplings of order 10-10 with a string scale of order 1013 GeV, the largest 

extra dimensions having a compactification scale of order 108 GeV. Therefore we have 

achieved the very large hierarchy between the Yukawa couplings without needing the 

exceptionally small string scales put forward by [82]. 

In the analysis we showed the importance of the contribution of the twisted moduli 

to the soft spectrum. This required the extension of the previous analysis away from 

the AI = 1 limit which is all that had been previously considered. Through this it was 

shown that moving beyond the assumption that SUSY breaking is provided solely by 

the S /Ti fields removed the Goldstino angle independence of the sum rules and allowed 

the inflationary requirements of Eq. (3.27) to be met. 

It is also clear that this model does not exhaust the possibilities of this framework. 

In chapter 5 we further extend the construction, making use of the small Yukawa 

couplings to include a model of Dirac neutrinos. 
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Chapter 5 

Dirac Neutrinos and Hybrid 

Inflation from String Theory 

We now turn to another application of the D-brane framework: Dirac masses for neutri­

nos. The anisotropies in the radii give rise to small Yukawa couplings that are utilised 

for the neutrino masses. Not only is the generation of Dirac masses formulated in the 

same framework as the inflationary particle physics model of chapter 3, but they can 

both be realised at the same time, as different aspects of the same model. 

We write down a minimal neutrino model that reproduces bi-large mixing. This 

model is not minimal in the sense that it has the smallest particle content, but in the 

sense that it is the easiest to construct, while remaining phenomenologically viable. 

5.1 Particle Physics Model 

As discussed in section 1.5 the main objection to Dirac neutrinos is the relative smallness 

of their Yukawa couplings, when compared with other leptons in the Standard Model. 

In the introduction the desired Yukawa couplings were shown to be 10-12 
- 10-13 and 
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we will discuss how these couplings might arise in a string theory context. Our starting 

point will be to utilise the small coupling, g52' and we will construct non-renormalisable 

contributions to the neutrino mass matrix. We will demonstrate how this is consistent 

with the Type I string framework laid out in chapter 2. 

In addition to providing a model of neutrino masses we will also demonstrate that 

it is possible to link this model with the inflationary scenario presented in chapter 3. 

5.1.1 The Model 

In this chapter we again take the approach that the phenomenology comes first then 

we demonstrate that it can be constructed within the string framework. To be more 

precise we layout the mass matrix we wish to construct, find operators suitable for 

generating said matrix and then see how this might be accommodated within the string 

superpotential. The Dirac mass matrices we wish to find are: 

o a 0 o 0 o 

o b e o A o (5.1 ) 

o c f o 0 0(1) 

where for the moment we take the elements of the matrices to be numbers, determined 

by phenomenology, but they will be shown to arise from the vevs of fields within non-

renormalisable operators. 

To analyse the matrices in Eq. (5.1) we first make the assumption that the couplings 

are sequentially dominant 1 

e, f » a, b, c (5.2) 

where much larger means, in this case, that they are greater by a factor of approximately 

5. Clearly, since mZR is diagonal, the lepton mixing matrix UMNS = R23U13R12 (see 

1 For a review of sequential dominance in neutrinos and charged leptons see [83]. 
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appendix A for details) will entirely be given by the diagonalisation matrix for the 

find for the MNS mixings: 

with m3 and m2 given by 

m3 ~ 

m2 ~ 

m1 ~ 

tan(823 ) 
e 

~ y' 
tan(812 ) 

a 
~ 

C23 b - 323 C 

813 ~ 0, 

Je2 + j2 Vu 
e 

= -vu , 
323 

J a 2 + (C23 b - 323 C) 2 Vu 

0 

, 

a 
-Vu , 
812 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

where the measured values for the masses and mixings are, assuming the lowest mass 

is zero [31] 

(5.9) 

m3 ~ 0.05 eV, m2 ~ 0.01 eV and ml ~ O. (5.10) 

It is clear from these expressions that we expect that e and a can be, at most, of the 

order of 10-13 , given the hierarchical neutrinos with m3 '::::::'.0.05 eV and m2 ~ 0.01 eV. 

It is clear that the Yukawa coupling of the inflation sector, A = 10-10 , is too large 

and cannot be identified with any of these couplings. The choice of A = 10-10 was 

motivated by the desire to connect the Peccei-Quinn and electroweak scales and so it 

is worth considering how tight these bounds are. 

From Eqs. (3.13) and (3.23) we see that 

(5.11) 

96 



and from [14] 

(5.12) 

where the upper bound is pushing at the bounds considered in [14], but [69] argue 

that much higher fa is possible. In principle we would need to push fa to 1016 GeV 

to allow A c::: 10-13 ; however, the full structure of Eq. (5.1) cannot be obtained by the 

string selection rules alone, suggesting that we can utilise the mechanism of structure 

formation to increase the suppression. Instead of using fa = 1016 GeV we choose to be 

moderately conservative, making use of the upper bound on fa in Eq. (5.12) requiring 

that we set A rv 10-10 . Therefore the axion physics motivates that A lie in the range 

10-7 > A > 10-10 (with the aforementioned uncertainty in the lower bound), but it is 

the neutrino physics that motivates the choice of the smallest possible coupling. 

The mechanism we introduce to generate Eq. (5.1) is a minimal FN (see appendix B) 

construction, minimal in the sense that we only go up to dimension four superpotential 

terms. Since A rv 10-10 and all of the elements in Eq. (5.1) are:::; 10-13 , dimension three 

operators cannot contribute directly to Eq. (5.1). As such we restrict our attention to 

dimension four operators. The price we pay for keeping the dimensions of the operators 

low is that large (0(10- 3 )) ratios between the £lavon vevs and the messenger fields are 

required. To generate the structure observed in Eqs. (5.3-5.5) we must require that, in 

general, the £lavon vevs are not equal and hence we require multiple £lavons. In this 

sense our model is not minimal. We do not believe that higher dimensional models 

with fewer £lavons are necessarily inconsistent with the string framework, but they are 

more troublesome to construct. 

Before we embark on the FN construction we will consider obtaining Eq. (5.1) via 

the string selection rules with only one £lavon. The motivation for this study would 

be to provide a geometric origin for the structure of Eq. (5.1) in addition to setting 
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the scale. The exact values of the order one Yukawas, stemming from the small extra 

dimensions, could give rise to Eq. (5.1). However, it is difficult to obtain the measured 

masses and mixings presented in Eqs. (5.9) and (5.10) just from geometric arguments 

for the following reasons. Firstly there are only three independent order one Yukawa 

couplings, g52' g53 and gg and, as stated, Eq. (5.1) has five parameters. However it is 

possible to obtain realistic masses and mixings with the following assumptions: e = f 

and a = c. The main difficulty lies in differentiating the three generations: the right-

handed neutrinos and left handed leptons must be assigned differently, between the 

generations. This leads to differing messenger assignments and, since we choose not to 

impose any additional symmetries, the flavon will necessarily be a gauge singlet. Care 

must be taken to ensure that it does not couple with the inflaton and invalidate the 

inflation model. For the above reasons we instead choose the following approach: we 

impose additional flavour symmetries to differentiate the generations and use the same 

assignments in all three generations. 

5.1.2 Froggatt-Nielsen Construction 

To build up the FN sector we need to write down the renormalisable operators that 

make up the dimension four operators. Let us consider the elements of Eq. (5.1) which 

will share a common structure in the FN construction. In full, the operators we wish 

to assemble are 

(5.13) 

where ('IjJ) is the messenger vev2 and Fij represents all the possible flavons. ).. is a small 

Yukawa coupling that will be identified with g51' To reproduce the required order of 

2The mass being given by the coupling and this vev 
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magnitude imposed by Eq. (5.6) we need 

(Fij) ro.J 10-2 _ 10-3 
('ljJ) . 

(5.14) 

and to restrict the allowed operators and hence introduce the zero entries in the mass 

matrix, Eq. (5.1), we will impose additional flavour symmetries. This will be discussed 

in section 5.1.4. 

Eq. (5.13) is built up out of the following three operators; 

(5.15) 

where XFij and XFij are messenger fields. Schematically the generation of Eq. (5.13) 

can be represented as 

Figure 5.1: Froggatt Nielsen supergraphs generating the neutrino mass matrix. 

We now consider how this can be embedded in the string framework presented in 

chapter 2 using the methodology discussed in section 4.1.1. 

5.1.3 String Construction 

The starting point of the string construction is the inflation model, as presented in 

table 4.1. In order to simultaneously accommodate both models the assignments of the 

inflation model are taken as fixed and then consistent neutrino assignments are made. 

The only fields that appear in both sectors are the Hu and Hd fields, which are assigned 
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and g51' The only term that contains both is 

(5.16) 

We now see that there are now two reasons to assign vR. to C~l. Firstly C~l always 
J 

appears with the small coupling, g51' and hence it is impossible to write down right-

handed neutrinos that do not couple with the small coupling3 . Secondly if we instead 

tried to assign XFij to C~l it would be impossible to write down an unsuppressed mass 

term for the messenger fields. Since we want the messenger masses to be integrated out 

before we reach the electroweak scale we require that their masses be as high as possible. 

Before we quantify "as high as possible" we must complete the FN construction. 

With vRj assigned to C~l Eq. (5.16) requires that XFij be assigned to C 5
1
5

2. In 

turn this leads us to consider all possible terms that can contain C5
1

5
2, but with a large 

coupling: 

(5.17) 

It can be shown that each of these choices are equally good candidates for XFi/XFij 1/J in 

the sense that they all satisfy gauge invariance and give rise to the same field theory 

operators. Essentially the analysis in all three cases is identical, so we focus on the 

term with coupling g52' In our choice of assignment for XF;j it is again possible to show 

that both choices are equally good and again we focus on one case, with XFij assigned 

to C5
1

5
2. This leads us to the final term, XF;j LiFij. Once again we are presented with 

choices: it is possible to assign XFijLiFij any of the (many) terms in Eq. (2.9) with 

order one couplings. We select perhaps the simplest of possibilities in which the term is 

3 As can be seen on close inspection of Eq. (2.9): ci1 always appears with the coupling g51 
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to C5152 . It is now possible to re-draw fig. 5.1 including the string couplings. 

Figure 5.2: Froggatt Nielsen supergraphs leading to neutrino Yukawa couplings which are 

suppressed compared with the already small tree-level value g5 , = 10-10 . 

As in 4.1 we note that our approach does not allow us to fully specify the manner 

in which these particular representations are arrived at, but we can confidently state 

the following: if we found that MSSM-like fields were forced to have both ends on the 

D51 brane stack it would be impossible to give them order one gauge transformations. 

Hence it would be inconsistent to assign them this way. However we can see that 

gauge invariance should always be satisfied, since all the string states that have MSSM 

charges (XFij' XFij and the normal MSSM states) have at least one end attached to 

the D52 brane. In section 4.1, in the paragraph following Eq. (4.3), it was decided 

that the D52 brane would contain all the MSSM gauge groups. Since the fields we are 

considering are, at most, representations of one non-abelian gauge group, SU(2)L, this 

can be satisfied by states with one string end on the "MSSM" brane, D52. 

The set of assignments and corresponding string terms are best summarised by 

table 5.1. 

g51 C51 
3 

C5 152 C 5152 g52 C52 
3 

C5152 C5152 
g52 C52 

3 
C 5152 C5 152 

A V C 
Rj Hu XFij 1 1/J XFij XFij 1 Li XFij Fij 

Table 5.1: Neutrino FN String assignments 
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Now all the elements making up Eq. (5.13) have been assembled we can address the 

question of exactly how large is "as high as possible". If the framework were purely 

four dimensional effective field theory then the messenger mass could be sent as high 

as the cut-off and no problems would arise. However the underlying theory is D = 10 

string theory and the size of the extra dimensions proves relevant here. For simplicity, 

we just consider the effect of a flat torus and its corresponding KK and winding modes. 

If we allowed the messenger mass to be comparable to the KK or winding modes of 

its string state then it would be necessary to consider the effects of exchanging higher 

KK/winding states in an FN diagram. It is easy to see that4 , if the a level i KK state 

is exchanged, it will give the same contribution to the superpotential as the zero mode 

with the following coefficient 

(5.18) 

This becomes troublesome when Mx ~ MKK as the higher NIKK modes become increas-

ingly relevant as Mx grows. An approximate value for the sum of all the KK/winding 

contributions can be obtained by integrating Eq. (5.18) over i from 1 to n. We obtain 

-- In 1 + n-- - In 1 + --Mx (( MKK) ( MKK)) 
MKK Mx NIx 

(5.19) 

which diverges as n --+ 00. Clearly, as we are working in an effective field theory, 

the existence of a cut-off prevents n from going towards infinity. Nonetheless a fi-

nite contribution remains, which we may estimate using Eq. (5.19) with the lowest 

KK/winding modes being approximately 108 GeV as discussed after Eq. (2.31). From 

Eq. (5.19) it can be seen that the coefficient varies linearly with the ratio of Mx and 

MKK, with a slowly varying logarithmic correction. If we require that the theory be 

4This is because the FN diagram exchanging KK/winding modes is identical to the zero mode 

diagram, but with a higher mass propagator. 
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cut off at M* ~ 1013 GeV and then impose Mx = 108 GeV we find that n ~ 105 and 

the correction is 0(10), whereas if Mx = 107 GeV the correction is 0(1). 

Since the we are interested in the overall contribution to the mass matrix, Eq. (5.1), 

we see that increasing the messenger mass above the compactification scale introduces 

very little additional suppression. Put another way, the maximum suppression achiev­

able is determined by the compactification scale. As such we set the messenger mass, 

g52 (¢), to be 107 Ge V requiring the product of the £lavon vevs with g52 to be '" 104 -105 

GeV. This leaves Eq. (5.14) intact. 

Majorana masses for the right-handed neutrinos are not allowed at renormalisable 

level due to the string selection rules. Cfl terms never appear quadratically in the 

string superpotential, Eq. (2.9). Higher-dimensional operators for Majorana masses 

are suppressed by (g5J 2 
'" (lO-lO)n with n ~ 2. As a result the see-saw mechanism 

cannot appear in our model, but small Majorana masses could be included. This is not 

allowed in the model as it stands since the FN sector does not generate such masses. 

As such we have several possibilities. If we wish to forbid these masses then we can 

either impose an additional symmetry, for example U(l)B-L, or we simply leave the 

model as it stands and postulate that the necessary messenger fields simply are not 

present in the spectrum. On the other hand, to include these masses we can extend the 

FN sector to generate them. So doing the model would include pseudo-Dirac neutrinos 

with a correspondingly rich phenomenology [84, 32]. Unfortunately, due to the freedom 

inherent in the FN approach, it is difficult to make hard predictions for the Majorana 

masses, beyond the upper limit of the Yukawa coupling, 10-20 . However if we restrict 

all £lavon vevs to be of the same orders as found thus far and impose the same restriction 
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on the messenger masses we expect dimension 4 operators of the following form. 

(5.20) 

Given a Dirac mass of m2 = 0.01 eV this results in a pseudo-Dirac splitting of 

(5.21) 

which is intriguing when considering the current bound of am§ < 10-12 eV2 [32]. Since 

our expected splitting is somewhere between just above and just below the current 

bounds the results of the next generation of neutrino telescopes, ego IceCube [85], 

could be important to our model. The splitting of m3 is expected to be larger by a 

factor of mdm2 rv 5, but the bounds are much weaker, amI < 10-4 , so this is of less 

interest. Since we can also explain why there might be no splitting, Eq. (5.21) is by no 

means a prediction of our model, but would be an interesting confirmation. 

The analysis for the charged lepton FN contribution mass matrix is largely the same 

as for the neutrinos, with the obvious exception that only order 1 Yukawa couplings 

can be utilised. As such we omit the derivation and present the results here in table 5.2 

and in fig. 5.3. 

g52 C52 
3 

C5 152 C5152 g52 C52 
3 

C5 152 C5 152 g52 C52 
3 

C5 152 C5 152 

1 L2 Hd 1 1/J XA - 1 A f-LR XA XA XA 

Table 5.2: FN String assignments for the muon 

In one respect the charged leptons' mass matrix differs from the neutrinos: one 

element is renormalisable. Since we do not require any FN suppression to get a realistic 

tau mass and so that the flavon vevs can all be order 104 - 105 Ge V we generate this 

mass from a renormalisable operator. The operator and its assignments are given in 

table 5.3. 
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Figure 5.3: Froggatt-Nielsen supergraphs leading to the muon mass. Higher-dimensional FN 

diagrams can generate NNLO Yukawa couplings, e.g. for realising the electron mass. 

g52 C52 
3 

C51 52 C5 1 52 

1 L3 Hd t C 
R 

Table 5.3: Tau Lepton String assignments 

To restrict the set of allowed operators we must impose additional Bavour symme-

tries under which the Bavons and matter fields both have charges. This will be the 

subject of the next section. 

5.1.4 Flavour Symmetries 

The approach of this section is to impose additional symmetries to disallow certain 

couplings between matter and Bavons. This is necessary because the string assignments 

chosen in section 5.1.3 allow all intergenerational Yukawa couplings. In fact we would 

expect the mass matrix to be proportional to 

111 

111 (5.22) 

111 

since all the Bavons would couple equally since they would have the same quantum 

numbers. 
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Manifestly this is not the case in nature, so we impose a flavour symmetry, U(1)R x 

1:3, under which the different generations of neutrinos and charged leptons are distin­

guished. We note that a U(1)R symmetry is to be expected (if not explicitly required) 

in a supersymmetric theory and that discrete symmetries are common in orbifolds [86]. 

The U(1)R symmetry will be broken to its 1:2 subgroup, R-Parity as described in [22]. 

The full set of assignments and charges are given in tables 5.4 and 5.5. 

For completeness we include the full renormalisable superpotential consistent with 

these assignments and symmetries 

Wren. = g52 L 3H dTR + 952L2HdXA + 952XA7f;XA + g52XAI-LRA 

+ g51Xa H uvR2 + 952Xa7f;Xa + 952L1xaa + g52 L 2Xab + 952 L3 Xa C 

+ 951Xe H uvR3 + g52Xe7f;Xe + 952 L 2xee + g52 L 3Xef 

+ 951 ¢HuHd + 951 ¢N
2 + 952Q3 Hut R + 952Q3 H dbR' (5.23) 

As discussed in [87] the soft terms can be seen to explicitly break U(1)R. This can 

be seen by considering the gaugino mass terms, 

mAA, (5.24) 

which have R-charges of 2. If we parametrise the U(1)R rotation by eiwQ
, where Q 

is the R-charge and w a real parameter, then w = n7r, where n is an integer, leaves 

Eq. (5.24) invariant. Since the smallest charge possessed by any field in the model is 

1/2 then, under an w = mr rotation such a field will pick up a phase of e~ = i, hence 

the remaining symmetry is 1:4. This is in turn broken when N or A obtains a vev. If we 

require that A be stabilised at its minimum before inflation then the potential domain 

wall problem is avoided since they will be inflated away. It does not seem unreasonable 

that this should take place since the inflation and flavon sectors are decoupled. 
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SU(3)c SU(2)L U(l)y U(l)R Z3 String State 

Q3 3 2 1/6 -1/2 1 C
52 
3 

tC 
R :3 1 -2/3 -1/2 1 C 5152 

bC 
R :3 1 1/3 -1/2 1 C 5152 

Hu 1 2 1/2 1 1 C 5152 

Hd 1 2 -1/2 1 1 C 5152 

vR2 1 1 0 -3/2 0 C~1 

vR3 1 1 0 -7/2 1 C
51 
3 

Ll 1 2 -1/2 -1/2 2 C
52 
3 

L2 1 2 -1/2 -3/2 1 C
52 
3 

L3 1 2 -1/2 -5/2 1 C
52 
3 

f-LR 1 1 1 3/2 1 C 5152 

r C 
R 1 1 1 7/2 1 C 5152 

¢ 1 1 0 0 1 C
51 
3 

N 1 1 0 1 1 C 5152 

A 1 1 0 1 0 C
52 
3 

a 1 1 0 3 0 C 5152 

b 1 1 0 4 1 C 5152 

C 1 1 0 5 1 C 5152 

e 1 1 0 6 0 C5152 

f 1 1 0 7 0 C 5152 

7/J 1 1 0 0 0 C52 
3 

Table 5.4: Matter fields and flavons 
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SU(3)c SU(2)L U(l)y U(l)R :2::3 String State 

XA 1 1 1 5/2 1 C5152 

XA 1 1 -1 -1/2 2 C5152 

Xe 1 2 -1/2 9/2 1 C5152 

- 1 2 1/2 -5/2 2 C5152 Xe 

Xa 1 2 -1/2 5/2 2 C5152 

Xa 1 2 1/2 -1/2 1 C5152 

Table 5.5: Messenger fields 

Finally we wish to address the following technical point, that has been touched on 

earlier in the thesis. In string theory we expect that all matter fields should transform, 

at some stage, under a gauge symmetry, yet we have numerous examples of gauge 

singlets within our model. For these two statements to agree it must be possible to 

assign charges to all the matter fields that are currently singlets. 

To demonstrate this, let us consider two additional U(l) symmetries, U(1)51 on 

D51 and U(1)52 on D52, and assign charges to the SM-singlet fields ¢, vJW Nand 'l/;. 

First, giving Hu and Hd U(1)51 charges of 1, we see that ¢ has charge -2 and thus N 

has charge 1. From the FN diagram in Fig. 5.1 we can determine the charges of the 

messenger fields if we assign a U(1)51-charge q to the right-handed neutrinos vRi and 

finally the Bavons Fij , which are intersection states C 51 52 , end up with charge -(q+ 1). 

Note that only fields which are assigned to string states cg1 and C5
1
5

2 can be charged 

under U (1 hI and only fields cg2 and C5
1
5

2 can be charged under U (1) 52' Similarly for 

the Cg2 state 'l/;, from the FN diagram in Fig. 5.1 we see how giving it a U(lh2 charge 

p determines e.g. the charge of XFij to be -p and the charge of the Bavons Fij to be 

p. It is easy to see that this charge assignment can be extended consistently to all the 
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fields of the model. 

This completes the supersymmetric side of the string construction. For the soft 

spectra we see that it has already been calculated to the same extent as in the inflation 

sector. Because of our particular choice of assignments only three string states are 

made use of: Cf2, C5
1

5
2 and Cf1. In section 4.2.1 analytic expressions for m ~52 , 

3 

m~5152 and m 2 
51 were given by Eqs. (4.13-4.15) respectively and table 4.2 summarises 

0 3 

some example points satisfying all of the constraints on the inflation model. Imposing 

more constraints on the model, coming from a more rigorous phenomenological study 

of the combined inflation and neutrino model, is likely to modify table 4.2. 

Dirac Neutrino Conclusions 

It is clear from this long string of assignments that there are many ways in which the 

neutrino sector could be realised within the string superpotential. This is in contrast 

to the case of the inflation model, discussed in chapter 4, in which there are very few 

choices to be made. Nonetheless we believe it is sufficient to show that there exists 

at least one realisation, the hope being that a full non-perturbative string calculation 

would select the correct model if such a model exists. Be that as it may our goal was 

to simultaneously construct both models within the same framework and it has been 

demonstrated that this is possible with the set of assignments given in tables 5.4 and 

5.5. 

From a phenomenological viewpoint it is interesting that, using a small Yukawa 

coupling, we are able to relate physics at very different scales: namely the neutrino 

mass, electroweak and Peccei-Quinn scales. Of course this required us to introduce 

the flavon vevs and messenger masses into the theory, more scales that need justifying. 

Though we did not attempt to construct the flavon and messenger sectors in full, not to 
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the extent that we achieved for the inflaton sector, we can conceive of possible origins 

for those scales. For the messenger masses we noted that the compactification scale 

sets a upper limit on the amount of suppression it is possible to obtain, regardless of 

the messenger mass. With this in mind we could instead use the lowest KK excitation 

as a messenger mass, if the orbifold symmetry forbids the zero mode. As noted in 

the text following Eq. (5.19) the sum will give an order of magnitude increase with 

respect to the lowest mode's contribution. However, since the lowest mode is an order 

of magnitude larger than the messenger mass given in the model the vevs of the flavons 

remain at the same order of magnitude. Since the flavon vevs are within two orders of 

magnitude of the soft scale it is not unreasonable that the soft terms govern the size 

of the vevs. This could be analogous to, but not as extreme as, the soft terms setting 

the scale for the ¢ and N vevs. 

In this model we restricted the set of allowed operators by the inclusion of a U(l)R x 

23 symmetry leading to the neutrino mass matrix, Eq. (5.1). It would be interesting 

to utilise the string framework to include the quark sector. While it is clear that an 

analogous construction could be made, with one flavon per entry in the Yukawa matrix, 

it would be more satisfying to use fewer flavons and higher orders. It may be possible 

to relate the Cabibbo angle, ee, to the neutrino mass hierarchy, m2/m3, in terms of an 

expansion parameter A = ee. However, this would require a substantial re-working of 

the neutrino sector as well as careful construction of the quark sector. 

Finally we note that the Dirac nature of the neutrinos is difficult to determine since 

it would chiefly be confirmed by the non-observation of neutrinoless double (3 decay. 

Clearly, since one can only set limits by this approach it is not possible to use it to prove 

that neutrinos are Dirac. However it may be possible to obtain pseudo-Dirac neutrinos 

within the string framework and hence produce measurable effects. We expect a split-
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ting given by 2 x 10-12 ey2 2': 5m2 2': 2 x 10-14 ey2 from Eq. (5.21), but unfortunately 

cannot turn this expectation into a hard prediction. Nonetheless detection of this level 

of splitting in forthcoming neutrino telescopes would be an exciting confirmation of our 

model. 
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Chapter 6 

Conclusions 

To sum up we have presented a Type I string construction for a model of Dirac neu­

trinos and hybrid inflation. This model is consistent with experimental observations of 

neutrino masses and the MNS matrix and provides a viable candidate for early universe 

inflation. Our string construction was performed in a very general framework and it 

was interesting to see that even this placed strong restrictions on the models we could 

build. Requiring all interactions to be renormalisable proved too strong a constraint 

for realistic flavour physics: this results from the small number of free parameters and 

the form of the Type I superpotential. While we do not provide a no-go theorem to 

this effect it is a very strong conjecture that flavour physics cannot result from the 

renormalisable superpotential. This is further strengthened if we wish to include the 

quark sector. However going beyond renormalisable level considerably relaxes these 

constraints and it should be possible to accommodate realistic quark models within 

this framework. 

It was also interesting to discover that phenomenologically viable soft terms can 

necessitate moving beyond the assumption of dilaton and untwisted moduli dominance. 

'While the soft spectrum is appealingly simple, in terms of the sum-rule relationships, 
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it proved too restrictive for the inflation model. In this thesis we put forward the 

twisted moduli sector as an additional source of SUSY breaking and thereby violating 

the sum-rules to obtain acceptable soft parameters. It is pleasing to note that it was 

possible to achieve the desired SUSY breaking simply by including the effect of fields 

already present in the theory whose effects had been turned off in the original analysis. 

113 



Appendix A 

Lepton mixing conventions 

For the mass matrix of the charged leptons mfR = YeVd defined by Le = -mfRe{eX + 

h.c. and for the Dirac neutrino mass matrix mLR = Yvvu defined by Lv = -mLRv{v1 

+ h.c., where Vu = (H~) and Vd = (H~), the change from flavour basis to mass 

eigenbasis can be performed with the unitary diagonalisation matrices UeL , UeR and 

UVL , UVR by 

me 0 0 ml 0 0 

U E ut -
eL mLR eR- 0 mil 0 U v ut -

VL mLR VR- 0 m2 0 (A.1) 

0 0 mr 0 0 m3 

This rotation manifests itself in the interactions with the W bosons. The W+ 

couples to the lepton current 

(A.2) 

which is not invariant under the diagonalising rotations. In the mass basis Jf/ becomes 

J Il+ _ 1 (- . IlUMNS .) 
W - J2 VL~1 ij eLl (A.3) 

with the mixing matrix in the lepton sector, the MNS matrix, given by 

UMNS - U ut 
- eL VL' 

(A.4) 
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We use the parameterisation UMNS = R23U13R12 with R 23 , U 13 , R12 defined as 

C12 812 0 C13 0 813 1 0 0 

R12 := -812 C12 0 , U 13 := 0 1 0 , R 23 := 0 C23 823 

0 0 1 -* -813 0 C13 0 -823 C23 

and where 8ij and Cij stand for sin( Bij ) and cos( Bij), respectively. 6 is the Dirac CP 

phase relevant for neutrino oscillations and we have defined 313 := 813e-iO. 
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Appendix B 

Froggatt-Nielsen Mechanism 

The Froggatt-Nielsen mechanism [88] utilises higher dimensional effective operators to 

generate realistic Yukawa couplings. The original approach allowed the left and right-

handed quarks to obtain charges under a new symmetry U(l)F, which required extra, 

"£lavon" fields, F ij , to be used to make up an effective operator, invariant under the 

entire symmetry group of the model. Since these operators are non-renormalisable 

they must be suppressed by a large mass scale, Mx, in the effective field theory. It was 

assumed that U(l)F was broken around Mx both giving rise to a vev for the £lavons and 

providing a mass MXij to "messenger" fields, Xij, that, when integrated out, generated 

the effective operators. 

In the original work only one £lavon and one messenger were utilised and so effective 

operators were of the following form 

(B.1) 

where F is assumed to have charge -1, Qi charge -ai and dRj charge bj . H is assumed 

to have zero charge, but this is a choice, not a requirement. If F obtains a vev such 
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that (F) /Mx = E < 1 then Eq. (B.l) becomes 

(B.2) 

and, for appropriate choices of E and charges for the quark, this can be made to generate 

the SM quark Yukawas in Eq. (1.10). This can be generalised in a straightforward 

manner to include the neutrinos and charged leptons. 

In our work we differ from the original paper in several important ways: our model is 

supersymmetric, we allow more than one £lavon and we restrict ourselves to dimension 

four superpotential terms. 

E.1 Supergraph Formalism 

Starting with the following superpotential, which is an abstracted version of those found 

in chapter 5 

(B.3) 

one can see intuitively that this represents the generation of effective operators by 

writing diagrams in which a heavy superfield is exchanged, see fig. B.1. 

c 

Figure B.l: Generic Froggatt-Nielsen supergraphs diagram 

This is analogous to the exchange of heavy W-bosons generating effective, four­

fermion operators suppressed by Nifv. However in a supersymmetric theory the effec-
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tive operators generated must be supersymmetric and hence it is possible to represent 

them as superfields. To find the coupling of the effective superpotential term it suf­

fices to find the component field Lagrangian, and calculate the coupling constant for 

an effective operator, say a two fermion, two boson interaction. This operator will 

be calculable from an effective non-renormalisable superpotential term with the same 

form, but all fields upgraded to superfields and the same coupling constant. Hence, by 

supersymmetry, we expect all other terms corresponding to the superpotential to be 

present, which can be checked at the level of components. Alternatively this may be 

done at the level of supergraphs and manifest SUSY is maintained at all times. We 

note that corrections to the Kahler potential appear suppressed by one more power of 

the large mass scale [89] and we neglect them in this analysis. 

Finally we note that one must be cautious when applying this proceedure since 

one can give large masses to, supposed, low energy fields. When all flavons and 1j; are 

replaced by their vevs it must be demonstrated that it is possible to find a zero mass 

state that can be identified with the low energy field. In our notation this will be a 

mixture of C and Xij which, after symmetry breaking have the same quantum numbers. 
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