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Within the framework of Type I string theory we construct phenomenologically inter-
esting models. The string theory is formulated in a 10 dimensional space of which 6
are compact and the anisotropies in the compact dimensions lead to a hierarchy of
gauge and Yukawa couplings. We make use of this hierarchy to construct a model of
inflationary particle physics and a consistent model for Dirac neutrino masses. The in-
flation model solves the strong CP and p problems of the MSSM and predicts a range
of allowed ratios for p and the soft masses for the Higgs doublets. We demonstrate

that it is possible to obtain Dirac masses in agreement with current experimental data.



Contents

1 Introduction

1.1 Thesis Structure . . . . . . . . e
1.2 Underlying Physics . . . . . . . . ..« . e
1.3 Standard Model . . . . . . ... L e
1.3.1 Standard Model Successes . . . . . . . . . ...
1.3.2 Standard Model Problems . . . . . ... . ... ... .......
1.4 Supersymmetry . . . . . . .. e e e
1.4.1 Minimal Supersymmetric Standard Model . . . . . . . .. .. ..
1.4.2 NMSSM . . ..o e
143 SUGRA . . . . e
1.5 Neutrino Physics . . . . . . . . e
1.6 String Theory . . . . . . . . . . e
1.7 Inflation . . . . . . .

2 String Model Building

2.1 D-Brane Framework . . . . . . . . . . ...
2.1.1  Soft Terms . . . . . . .
2.2 Asymmetric Compactifications . . . . .. ... . ... ...,

11

22

24

25

30

32

37

44



3 Inflationary Solution to the Strong CP and . Problems 56

3.1 The Model . . ... . .. 57
3.1.1 The Potential . . . . . . . 59

3.1.2 Inflation . . . . . . .. . 66

3.1.3  Inflation summary . . . . ... . ... 72

4 String Construction of Inflation and Small Yukawa Couplings 74
4.1 Supersymmetric Sector . . . . . . ... L 75
4.1.1 Methodology . . . . . . .. 76

4.1.2  String Assignments . . . . . . . ... Lo 79

4.2 Supersymmetry Breaking Sector . . . ... ... .o 82
421 Twisted Moduli . . . . .. ... oL 85

4.2.2 Allowed soft terms . . . . . .. .. L 89

4.2.3 String Construction Summary . . . . . . . . .. ... 92

5 Dirac Neutrinos and Hybrid Inflation from String Theory 94
5.1 Particle Physics Model . . . . . . . .. oo 94
51.1 The Model . ... .. . . . . . 95

5.1.2  Froggatt-Nielsen Construction . . . ... ... ... .. .. ... 98

5.1.3 String Construction . . . . . . .. . ... oo 99

5.1.4 Flavour Symmetries . . . . . . ... ... 00000 105

6 Conclusions 112
A Lepton mixing conventions 114
B Froggatt-Nielsen Mechanism . 116
B.1 Supergraph Formalism . . . . .. .. ... ... oo 117

i



List of Figures

2.1

9.1

9.2

9.3

B.1

Schematic representation of two stacks of D5-branes. The stacks of branes
overlap in Minkowski space, but are orthogonal in the compactified dimensions.
The C states correspond to chiral matter fields, S the dilaton, 7; the untwisted
moduli and Y5 is a twisted modulus (introduced in section 4.2) localised within
the extra dimensions, but free to move in Minkowski space. We have only
presented the'string states involved in our construction: for a more complete

picture see Figure 1in [57].. . . . . . . . . ..o

Froggatt Nielsen supergraphs generating the neutrino mass matrix. . . . . . .
Froggatt Nielsen supergraphs leading to neutrino Yukawa couplings which are
suppressed compared with the already small tree-level value gs, = 10710,

Froggatt-Nielsen supergraphs leading to the muon mass. Higher-dimensional
FN diagrams can generate NNLO Yukawa couplings, e.g. for realising the elec-

fron mass. . . . . . . e e e e e e e e e e e e e e e

il

101



List of Tables

1.1

2.1

4.1

4.2

5.1

5.2

5.3

5.4

5.5

Gauge and Lorentz representations of the Standard Model fields. The
SU(2) 1, doublets are decomposed into their representations under U(1) gas

and the index 7 labels generations. . . . . . ... . ... .. ... ..

D-Brane notation: columns are labelled by the dimension they corre-

spond to in ten dimensional spacetime. . . . . . . . . ... ...

Inflation Fields . . . . . . . . .

Goldstino parameters and soft terms satisfying all constraints . . . . . .

Neutrino FN String assignments . . . . . . . .. . . .. ...
FN String assignments for the muon . . . . . . . ... ... .. ... ..
Tau Lepton String assignments . . . . . .. .. . . ... o
Matter fields and flavons . . . . . . . . ... oL

Messenger fields . . . . . . . . Lo L e

v



Preface

The work described in this thesis was carried out in collaboration with Prof. S. F. King

and Dr S. Antusch. The following list details of and references for our original work.

e Chapter 3 - O. J. Eyton-Williams and S. F. King Phys. Lett. B610 (2005) 87

hep-ph/0411170

e Chapter 4 - O. J. Eyton-Williams and S. F. King, JHEP 0506 (2005) 040

[arXiv:hep-ph/0502156].

e Chapter 5- S. Antusch, O. J. Eyton-Williams and S. F. King, JHEP 0508 (2005)

103 [arXiv:hep-ph/0505140].

The majority of the original work in this thesis is to be found in chapter 3 and all
following chapters. The material in chapters 1 and 2 was collected from a number of

different sources and the original presentations are referenced therein.



Acknowledgements

I would like to take this opportunity to thank all the people who have made my life
better/easier/more productive for the duration of my studies. In no particular order:

My officemates. Most obviously for their friendship, but also the subsidiary details
of sharing of cartoons, games, blathering about nothing, blathering about physics, the
list goes on. So, thanks Jon (L, M and B), Martin and Martin, Phil, Iain, Tom and
Olly. It’s been fun.

Steve, my supervisor for providing me with enough encouragement to keep me going
and for having the determination one needs when building models. My collaborator,
Stefan, for his insightful input and inhuman tolerance of stupid questions.

My family for supporting me when things go slightly awry. That and dragging me
to family functions.

And Nicola for being unreasonably lovely.

Vi



Chapter 1

Introduction

1.1 Thesis Structure

The main body of the thesis is organised as follows. The current chapter consists
solely of reviews of known physics. First we discuss one of the most well tested phys-
ical theories: the Standard Model (SM) of particle physics. After discussing some of
the successes and shortcomings of this model we introduce low energy supersymmetry
(SUSY), first covering the basics of the formalism, then moving on to the well studied
Minimal Supersymmetric Standard Model (MSSM). The Next to Minimal Supersym-
metric Standard Model (NMSSM) is also discussed as a mechanism for generating the
supersyrﬁmetric Higgs mass p of the MSSM. After this we consider the implications of
making supersymmetry local, namely we discuss supergravity (SUGRA) and how this
provides a useful framework for breaking supersymmetry. We then discuss neutrino
physics in the SM and beyond. Our penultimate review is a brief review of the salient
points of supersymmetrié string theory, focusing on the elements that will prove im-
portant in the main body of the thesis. Finally we introduce inflationary cosmology

paying particular attention to models of hybrid inflation.



In chapter 2 we expand on the parts of string theory most relevant to our model
building efforts, namely the low energy effective superpotential of Type I strings in the
presence of intersecting stacks of D-branes. In addition we discuss the soft spectrum
expected in this class of models and how the geometry of the underlying space is
of great importance to the models we later build. Specifically we show that it is
possible to obtain very small Yukawa couplings without invoking particularly small
extra dimensions.

Chapter 3 is concerned with a field theory model of hybrid inflation. The require-
ments of inflation are imposed and the phenomenology of the model investigated. A
prediction for the ratio of soft and supersymmetric masses for the Higgs bosons will
be obtained, coming directly from the inflationary requirements. From the field theory
perspective a number of seemingly arbitrary assumptions are required for the model
to work. These assumptions are justified in chapter 4, making use of the framework
laid out in chapter 2 to demonstrate that it is possible to build the model of hybrid
inflation in this framework. The small Yukawa couplings obtained in chapter 2 will
be put to work connecting the Peccei-Quinn and electroweak (EW) scales. It will be
demonstrated how the soft spectrum can be made to accommodate our inflation model.

In chapter 5 we provide another application of the string framework. In this case
the small Yukawa coupling allows for the generation of Dirac mass matrices. This
requires consideration of non-renormalisable operators, which was not the case for the
inflation model, and they are generated using the supersymmetric generalisation of the
Froggatt-Nielsen (FN) mechanism.

The thesis is rounded off by a general discussion of the findings in chapter 6. This

is followed by appendices A and B and concludes with the bibliography.



1.2 Underlying Physics

The rest of this chapter is set aside for discussions of the physical theories that underpin
the model building efforts that appear in chapters 3 to 5. Due to the range of different
theories that have relevance to the model building it is impossible to do justice to all,
or indeed any of the subjects. Instead we attempt to provide sufficient information for
the reader to better understand the following chapters and do not attempt to make
these discussions self-contained. It should also again be stressed that the author makes
no claim as to the originality of the work presented in this or the succeeding chapter.
Finally to keep the bibliography under control we generally only cite reviews, texts and
illustrative examples intending no slight to the original authors in the first two chapters

of this thesis. With these disclaimers in place we start our discussion with the Standard

Model of particle physics.

1.3 Standard Model

For textbook treatments of the SM see for example [1, 2] The SM is a renormalisable
field theory containing fields that transform under the (spontaneously broken) gauge
symmetry group SU(3).xSU(2).xU(l)y and can be thought of as the union of elec-
troweak theory [3, 4] and quantum chromodynamics [5, 6]. To completely define the
model one must write down the Lagrangian for all of the fields. Strictly speaking, if all
the indices, gamma matrices, couplings and group generators are included in full this
completely specifies the model. Nonetheless it is vastly more convenient and compre-
hensible if the fields are grouped into representations of the symmetries governing the
SM. Firstly and most fundamentally the fields can be classified by their representation

under the Lorentz group, of which two representations, spin-1/2 (quarks and leptons)




and spin-1 (gauge bosons) have been observed in nature. It has long been expected
that spin-0 fields play a crucial role in breaking the gauge symmetry of the SM from
SU(3)exSU(2) xU(1)y — SU(3)exU(1) g, this role being played by the famous Higgs
boson. However, while it is to be expected that the Higgs boson will appear at the
Large Hadron Collider (LHC), until that moment the existence of the Higgs can only
be inferred. As yet we have not properly defined what we mean by mean by quarks,
leptons and so on, to do so we must require that they transform under representations
of the gauge symmetry group SU(3),xSU(2),xU(1)y. In other words a field can be
thought of as a vector in the space upon which the representation matrices act. This al-
lows us to specify the standard model fields by their gauge and Lorentz transformation

properties, summarised in table 1.1.

( Field Spin | SU@3). | SU@)L | U()y
Higgs boson, H = (H™, Hy) 0 1 2 1/2
Left-handed quarks, Q; = (upi,dri) || 1/2 3 2 1/6
Right-handed up quarks, ug; 1/2 3 1 2/3

Right-handed down quarks, dg; 1/2 3 1 -1/3

Left-handed leptons, L; = (vi;,eri) || 1/2 1 2 —-1/2
Right-handed electrons, eg; 1/2 1 1 -1
Gluons, g%, (@ =1—8) 1 8 1 0
Weak bosons, A%, (a =1—3) 1 1 3 0
Hypercharge boson, B 1 1 1 0

Table 1.1: Gauge and Lorentz representations of the Standard Model fields. The SU(2),
doublets are decomposed into their representations under U(1) g and the index ¢ labels

generations.



The fields in different generations are distinguished with either the index i =1,2,3
or as follows: u; = (u,c,t), di = (d,s,b), vi = (Ve,Vu,vr) and ¢; = (e, 4, 7). To be
more precise the notation with the numerical index should be reserved for the weak
eigenstate basis and the letters for the mass eigenstates, however we will use these two
interchangeably. The choice of H to represent the Higgs field, instead of the traditional
¢, is to avoid any confusion with the inflaton, which is denoted ¢.

The most important consequence of table 1.1 is that gauge invariant fermion mass
terms cannot be written down with the fields transforming as shown. Any two Weyl
spinors that have been suggestively labelled to imply that they are left and right-handed
components of a Dirac spinor in fact have different gauge transformation properties,
hence cannot form an invariant bi-linear. This implies that, if gauge symmetry is a good
symmetry of the Lagrangian, i.e. intact after quantum corrections, then the fermions
must be exactly massless in the unbroken phase.

However the gauge symmetry of the SM is spontaneously broken and this allows
mass terms to be included for both fermions and vector bosons. For the vector boson
magses we need to consider a generalisation of the kinetic term for the Higgs field
that is symmetric under local symmetry transformations. First the derivative must
be covariantised, such that 8, — D,H where D, H transforms like H, where the

covariant derivative is given by
D,H=1|0,—igAlr® = 'B 1.1
pH = | Oy —igAym® — 19 By H (1.1)
where 7% = ¢%/2 and ¢ are the Pauli sigma matrices. The kinetic term is now
|D,HI|? (1.2)

where it is clear from expanding out Eq. (1.2) that it will contain terms that are bilinear

in the gauge bosons and quadratic in the Higgs boson. When spontaneous symmetry



breaking occurs the Higgs boson is replaced by a vacuum expectation value (vev), since
the Higgs potential does not minimise at zero, but at finite, non-zero values for the
field H. Three of the degrees of freedom of the Higgs field will be re-interpreted as
longitudinal modes for massive gauge bosons, but one remains as a perturbation about
this new minimum; a massive scalar field.

The potential for the Higgs must be of the following form

9 2\ 2 4
V(H) = =2 HYH + (HTH) = A (HTH - “—) - % (1.3)

. + . 2 . .
which has a minimum at |H|? = g—/\ where residual gauge freedom allows the Higgs vev
to be expressed as

1 0
(= = : (1.4)

v

To put it another way this freedom comes from the degeneracy of the different vacua
means that all choices are equally good and we are allowed to make a global transfor-
mation to choose a convenient vacual.

Eq. (1.4) is not invariant under the full SU(2)px U(1)y rotations under which
H — ee* ™" +8/2) I as we see from table 1.1. However it is invariant under a subset
of SU(2),x U(1)y rotations in which o® = § and o' = o? = 0. In the rest of
the fields we see that the remaining transformation distinguishes between elements of
SU(2); doublets and rotates each element by a local phase that depends on both the
hypercharge and its 7° eigenvalue. Hence we can say that the gauge symmetry of the

model has undergone the following transformation, termed electroweak (EW) symmetry

breaking

SU(3), x SU(2), x U(1)y — SU(3), x U(1) gar- (1.5)

'This is not true if different vacua are reached in spatially separated regions since we can only make

a global redefinition not a local (gauge) transformation



In the broken phase the gauge bosons acquire masses from their coupling to H in

Eg. (1.2) and, after we change basis to

Wi = % (4}, FiA%) (1.6)
78 = g21+ — (94> — ¢'B,) (1.7)
s 921+ 9" (6'AL +9B,) (1.8)
we obtain the following masses
mwzgg, mZ:\/gTJF—g’Qg and m4 =0 (1.9)

where my is the mass for both W+ and W~
To find the masses for the fermions we must make further use of the symmetry
breaking mechanism. We note that it is possible to write down couplings between two

fermions and one Higgs boson:
Ly = —XyLiHep; — MNoQHdp; — N4Q H ' upj + hoc. (1.10)

where all of the indices, except for generational indices, are suppressed. It is clear that
when H is replaced with its vev Eq. (1.10) provides Dirac masses for the quarks and
charged leptons. Note that the SM cannot generate Dirac masses for the neutrinos
since no singlet fermion exists to provide an analogous Yukawa coupling; since non-
renormalisable operators are excluded it is impossible to include any masses for the

neutrinos.

1.3.1 Standard Model Successes

The first and perhaps the most obvious success of the SM is its remarkable agreement
with experiment: at the time of writing there are no predictions of the SM out of line

with experimental tests. Notable successes of the SM include the prediction of the



existence of the ¢ quark, given the existence of the u, d and s quarks. Without the
inclusion of the ¢ quark loop effects enhance flavour changing processes, but Glashow,
Iliopoulos and Maiani (GIM) observed [7] that including a quark with the same quantum
numbers as the u quark brought these effects under control.

The decays of the K meson were shown to violate CP and hence, to introduce CP
violation into particle physics, Kobayashi and Maskawa [8] introduced a third genera-
tion of matter. This was done so that there would be one irreducible phase left in the
couplings between W bosons and quarks, which is not the case in two generations as
all the phases can be rotated away. The subsequent discovery of the b quark required
the existence of the ¢ quark which, when subsequently discovered, further confirmed
the standard model. In addition the mixing matrix induced in the W boson couplings
by diagonalising the quark mass matrix, the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix, has been subject to extensive experimental test. As yet all experimental data is

consistent with the CKM description of the quark sector.

1.3.2 Standard Model Problems

There are a number of unresolved issues with the SM, both on a conceptual level and
with regard to experiment. Firstly how is a period of inflation possible within the SM?
It seems that this is not possible since there are a lack of scalars within the SM, only
the Higgs. Secondly, while the gauge couplings do not unify in the SM, they do come
close providing a strong hint that there is something between the electroweak scale and
the scale of the Grand Unified Theories (GUTs). That is, if we take the near miss as
being more than fluke.

In addition there is the hierarchy problem. This stems from the observation that the

mass of the Higgs boson, my, is extremely sensitive to unknown high energy physics.



It can be shown [9] that, if there are any couplings between massive particles and the
Higgs, one loop effects introduce an additive, quadratic dependence on the momentum
cut-off, 5m%{ x A% This would have to be cancelled by the bare mass squared of the
order of 10%% GeV?, if we take the SM to be valid up to the Planck scale, to give a
remainder of the order of 10* — 108 GeV?2. This would have to be done at every order in
perturbation theory. While there is nothing intrinsically wrong with such fine-tuning
it essentially seems arbitrary. Let us instead phrase the problem as a question: why
should the Higgs vev be down at the electroweak scale when the natural scale for the
Higgs mass is the highest scale in the theory? One possible answer to this question is
supersymmetry, which we discuss in section 1.4.

Also there is the strong CP problem, namely why is pure Quantum ChromoDynam-
ics (QCD) (without electroweak effects) CP conserving? If all of the renormalisable,
gauge invariant terms in QCD Lagrangian are allowed the following term must be

included [2]

2 -~

g
Lo = 00cn 755 1T(CuGuv) (1.11)

where G, is the gluon field strength and GW = %EWWF'D". Eq. (1.11) cannot just be
set torzero7 despite the fact this can be expressed as a total derivative, since it can be
shown that the integral of the total derivative is not identically zero due to instantons
contributions?. The physical coupling can be obtained when the most general quark
mass matrix is subjected to a chiral rotation ¢q;, — Upqr and qr — Ugrggr such that
all the quark Yukawa couplings are rendered real and diagonal. If this is performed

the Lagrangian is modified (since the chiral symmetry is anomalous) and the effective

*Instantons are field configurations that interpolate between different, degenerate QCD vacua



§ parameter becomes
0 =0gcp — 9w (1.12)
where fgy arises from the diagonalisation of the quark mass matrices and is given by
Opw = arg(det(M¥) det(M?)) (1.13)

where M* and M? are the quark mass matrices for the up-like and down-like quarks,
respectively. Since a non-zero # can be shown to [10] give rise to a electric dipole
moment for the neutron, dy,, experimental limits of |d,| < 3 x 1072%ecm [11] place an
upper bound on 8 < 10719 since d,, < 0.63 x 10~ %¢ cm [10]. So the strong CP problem
is essentially, why should these two separate areas of physics, the QCD and EW sectors,

conspire to give § = 07

Peccei-Quinn Mechanism

The Peccei-Quinn (PQ) mechanism [12, 13] provides a possible solution to the strong
CP problem. Essentially the PQ mechanism introduces an additional field, a, that
has a linear coupling to the CP-violating gluon field strength term, Gu,,é#,,. Now the

strong CP violating Lagrangian is

a 92 ~
'Ca.zion - 9 - E WTT(G#UGMU)' (114)

Now it is clear that, if a has no other potential, then it will be energetically
favourable to take on a value such that Eq. (1.14) is minimised, i.e. %) = ¢. With an
effective § coupling of zero the strong CP problem is solved.

For the PQ mechanism to be interesting it needs to be explained how this particular
potential might be arrived at. The idea is to introduce additional, anomalous global

U(1) pg symmetry under which the quarks are charged and an additional scalar field,

10



which must carry a charge under the symmetry. The axion, a(z) is identified with the
dynamical phase of the scalar field, o, and if the global symmetry were exact would
have a shift symmetry a(z) — a(z) + o, where o is a c-number, forbidding any non-
derivative interactions. However, as noted, U(1)pg is anomalous and hence the shift
symmetry is broken by additional terms induced by the anomaly. This conspires to
give axion a mass and introduce Eq. (1.14). Finally f, can be shown [10] to be given

by
fo= Qs (o) (1.15)

where @, is the PQ charge of .

The axion is subject to experimental bounds coming from cosmology, astrophysics

and conventional particle physics [10, 14]:
10'° GeV < f, < 10" GeV. (1.16)

These bounds will play important roles in the models built in the main body of the

thesis.

1.4 Supersymmetry

One of the problems with supersymmetry is the multitude of differing notation. For
this thesis we maintain that Greek indices y, v, p and o will be retained for Minkowski
space vector and tensor indices, while spinorial indices will be taken from the beginning
of the Greek alphabet. With all other indices we will try to avoid Greek if at all possible.
Unfortunately this is not the convention used in [15] (in which the tensorial indices are
Latin), but does agree with [2] and [9] and the rest of the thesis.

Historically, one? of the origins of supersymmetry was in the development of string

*SUSY has several origins: for an overview of the history see [16].
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theory, in which supersymmetry is needed to introduce fermions. Since this thesis makes
use of string theory the connection between the two theories is helpful. From a particle
physics perspective low energy supersymmetry ¢ is helpful for a number of reasons, in-
cluding the following. The hierarchy problem is solved since [9] the non-renormalisation
theorem of SUSY [17] states that there is no infinite renormalisation required, beyond,
logarithmic, wavefunction renormalisation and cancelling this requires a much milder
tuning. This still does not explain why the electroweak scale and the Planck scale are
different, in that this separation is not an a priori prediction of SUSY. It can however
provide a mechanism to split these scales given appropriate parameters within the right
class of SUSY models, hence it is very much a model dependent prediction. We will
return to this question in section 1.4.1.

Supersymmetry enlarges the ?oincaré symmetry to include generators, (Jq, that

mix fermions and bosons. Heuristically

QR|boson >= | fermion > (1.17)

Q| fermion >= |boson > (1.18)

and we can immediately deduce two things. One, @ is fermionic (as was implied by
the spinor index) and two,  must have a non-zero mass dimension. In principle there
can be more than one SUSY generator, Q%, but we restrict our attention to N =1

SUSY. In this case the anticommutators of the spinor generators are given by

{Qa7©ﬁ} ZQUZBP/,L (119)

(Qar Qp} = 0= {00, T3} (1.20)

where 0% = L5495 and o! are the Pauli matrices. The undotted indices denote left-

“By low energy we mean that supersymmetry is manifest at scales not much in excess of the elec-

troweak scale.

12



handed two component Weyl spinors whereas a dot over the index implies that this
field is a right-handed two component Weyl spinor. Eq. (1.19) shows that the mass
dimensions of @ and Q are given by [Q] = 1/2 = [@Q]. The rest of Qs algebraic
properties can be inferred from the Poincaré transformations of a spinor operator as
discussed in [18]. For a more through discussion of notation and conventions see [15],
bearing in mind the the differing convention for Lorentz 4-vectors. To simplify the
process of constructing supersymmetric models we utilise superspace formalism and
sketch out the details necessary for model building.

Our first step will be to introduce Grassmannian spinor parameters, 0% and 0

which obey the following anti-commutation relations
{0%,6°} = {04,05} = {6°,8;} = O. (1.21)

This allows us to re-formulate the SUSY algebra as a lie algebra, hence making it
possible to exponentiate the generators and obtain a unitary operator corresponding

to a finite SUSY rotation. The only non-zero commutator is given by
[0Q,0Q] = 200+8P, (1.22)

where the spinor summation convention ¥y = %%y = x¢ and ¥ = ¥, ¥* = X1 has

been employed. This leads to
G(0,0) = exp [i(6Q + 6Q)] . (1.23)

To prevent the action of Q from changing the mass dimension of any field it
operates on # must have a mass dimension of -1/2, in addition Eq. (1.23) would make

little sense if 8Q were dimensionful.

13




Superfields

We now need an object onto which the SUSY transformations can act. Let us consider
a general scalar function living in superPoincaré space i.e. a representation of the

Poincaré group augmented by the SUSY generators.

®(z,0,0) = f(x) + 0¢(z) + O%(x) + 06m(z) + 60n(z)

+00"Bu,(z) + (00)A(z) + (00)0%(z) + (00)(80)d() (1.24)

where this is a series expansion in 8 and 8, which naturally terminates due to the
anticommutation relations given in Eq. (1.21). Fierz identities have been applied to
ensure that this includes all possible, independent, non-zero combinations of § and 6.

The action of Eq. (1.23) on @ allows one to derive the SUSY transformation laws
of the components. We do not show all the transformations, but let us consider the

infinitesimal transformation of d
Sed = %a“ (o€ + Ea* ] (1.25)

where £ is a constant, Grassmann spinor analogous to 4.

There are two important features of this equation. One, the SUSY transformation
is doing what one expects: it is mixing fermions, x and ¢, into a boson, d. Two,
this field transforms as a total derivative of the ordinary space-time co-ordinates, and
so we expect that a quantum field theory (QFT) built entirely of this, and similar
components, will be automatically supersymmetric. It is exactly this approach which
we will now pursue.

We wish to consider field theories constructed out of irreducible representations

of the SUSY transformations. To find chiral representations we require the general

14



superfield, ®, be subject to the covariant constraint
Dy® =0 (1.26)
where Dy is a covariant derivative in superspace
Dy = 8o + 670450, (1.27)
The most general function that satisfies this constraint is ®(y, ) where
yH = a* +io*0 | (1.28)
hence
O(y,0) = Aly) + V264(y) + 69F (y) (1.29)

is the most general, left-handed, chiral superfield (also referred to as chiral éuperﬁelds),
where A and I’ are complex scalar fields and % is a complex left-handed Weyl spinor,
note the undotted index®. This justifies our assertion that this representation is chiral.
Eq. (1.29) can be expanded out in terms of z, § and § which introduce higher derivative

terms, crucial in the derivation of the kinetic terms:

B(y,0) =A(z) + V20¢(z) + 00F (z) + i0o+08, A(z)

(00)(06) 0 A(z). (1.30)

e [ =

7 —
+ —=(00)0, ¥ (z)c"6 —
T500)5(a)
An analogous construction can be carried out for the other covariant derivative
- gb
Dy = 04 + wiﬁﬂ o, (1.31)
imposing

Do® =0 (1.32)

®The undotted index of v can be inferred from the spinorial summation conventions
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on a general superfield. We note that superfields satisfying this constraint are right-
handed, chiral (also denoted anti-chiral superfields) superfields and that the hermitian
adjoint of a chiral superfield provides an important example of such a superfield.

Applying either covariant derivative to a function of chiral and anti-chiral fields
shows, via the chain rule, that any function of only chiral superfields is chiral. Also a
function of anti-chiral superfields remains anti-chiral whereas, via the product rule, it
is possible to show that functions of both chiral and anti-chiral fields are neither chiral
nor anti-chiral. We also note that the 86 (96) component of ® (') transforms as a
total derivative and is a candidate for building a SUSY theory. This is not the case for
the more general superfield, Eq. (1.24), which contains additional fields that contribute
to the transformation of 68 and #6 components of Eq. (1.24). See [15] for a complete
discussion of the transformation laws.

Since the chiral superfields do not contain any fields with vector indices it is clear
that we must look elsewhere for gauge bosons. The general scalar superfield, Eq. (1.24),
does contain the vector components, ’vu, and we impose V (z,6,6)! = V(z,8,0), where

V is initially general. This ensures that v}, = v, is a candidate for an Abelian vector

boson. Implementing gauge transformations in a supersymmetric way requires
V—V+0+ 0! (1.33)
where ® is a chiral superfield. This leads to
v, = v+ Ou(i(A— A%)) = v, + A (1.34)

where this is clearly a gauge transformation in the usual sense. We note that the general
scalar superfield, Eq. (1.24), would clearly not have been a suitable replacement for the
sum of chiral superfields since it would introduce v, — v, + ’UL which clearly is not a
gauge transformation.
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To bring our notation closer in line with [15] and [19] we redefine the components

of Eq. (1.24) as follows
- 1
Uy — —Uu, A—iAandd— §D‘ (1.35)

This has no bearing on any physics since the components in Eq. (1.24) are arbitrary,
up to their Lorentz transformation properties which are unchanged. As a final note
many of the fields in V can be gauged away under Eq. (1.33). To see this consider the
first component of ® 4 ®1 = A 4+ A*: since ® is an arbitrary chiral field A 4 A* can
be chosen to exactly cancel the first component of V' and thus it cannot be a physical

degree of freedom. We chose the Wess-Zumino gauge in which

V = Vigz = —60"Fu, + i(66)8 — i(B8)0) + %(99)( 5)D. (1.36)

The final superfield we will need before we can write down a general AV = 1 global SUSY
Lagrangian is a spinor superfield, containing the gauge field strength as a component.
We do not attempt to derive the form of the spinor superfields, W%, here; instead we

quote [15]
W = ~iA*(y) + 82 D(y) + 0°0" Fu (y) — (00)7“°*V X4 (y) (1.37)

where V, is the gauge covariant derivative.

If we wish to consider the supersymmetric theory of gravity (SUGRA) this extends
the theory to include the spin-2 graviton and the spin-3/2 gravitino. For completeness
we should consider the transformation of superfields with these new fields as compo-
nents, but since we do no physics with these new fields we omit this discussion, but

instead see, for example [16, 19].

17




SUSY Lagrangian

Since any product of chiral superfields is also chiral and the transformations of the
components are determined by (1.22) it can be shown that the #8 component of such
a product transforms as a total derivative. To extract this component we introduce

integration over Grassmannian parameters.

/da a=1 (1.38)
/da 1=0 (1.39)

where a is a single Grassmann variable and since aa = 0 we do not need to consider

integrals that are any more complicated. Returning to Grassmann spinors we have

/d29 06 =1 (1.40)
/d2§_9: 1 (1.41)
/d49 (66)(08) = 1 (1.42)

and all other integrals over different products of 8 and € are zero. The exact form
of the measures is irrelevant for this thesis since we are using them for book-keeping
purposes, but they may be found in [15].

We define the superpotential, W (®), as a general function of chiral superfields and
the Kahler potential, K(®, <I>T) as a general, real function of both chiral and anti-chiral

superfields. Coupled with Eqgs. (1.40)- (1.42) this allows us to now write down a general
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N =1 Lagrangian [15] ©
L= /d49K (qﬂ,@ﬁew) - U 2oW (D7) -}-h.c.}
4l { [t [ o m(si@t W) + h.c} (1.43)

where f(®%)% is the gauge kinetic function, whose expectation value will set the gauge
couplings for the theory. In general the fields in f(®;)* may be drawn from all of
the fields in the theory, but f(®")? must be holomorphic in said fields and can only
have gauge transformation properties such that it is still possible to make the trace
invariance. The indices a and b denote the fact that, in general, there will be more
than one gauge group in a given theory. While, in general, the gauge kinetic function
can be very complicated, in all the models we will consider it is taken to be diagonal.
Eq. (1.43) also shows that the renormalisable contributions to the superpotential must
have mass dimension 3 or less and likewise the contributions to the Kahler potential
must be dimension 2 or less.

Obtaining the Lagrangian from Eq. (1.43) for general K and W is reasonably in-
volved, but the essential principle is as follows. First perform the integration over
the Grassmannian spinors and then integrate out the F' and D fields. This last step is
valid because F' and D have no kinetic terms allowing one to perform the path-integral,
hence these fields are termed auxiliary. Equivalently the equations of motion for the
auxiliary fields can be solved and the solutions used to replace them with propagating

fields. If we temporarily ignore the gauge fields the result of this process is the following

®The form of the W part of the potential has been modified such that it agrees with the expression
commonly used in effective theories arising from string theory. Specifically, that the gauge couplings

depend on the real part of f(®;)?®, see for example [20, 21].
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Lagrangian[19]

s OW oW 1
8141 814*] + Rl]*kl w w 1r/) 1,)

1 2 2 * N\
_§< A 8W>WW 1( W' Lp W )ww] (1.4)

L= —gij*BuAiE)“A*j — igij*EjE“Du?/}i -

DAOAI Y oAk OA*PA VI 9 Ak
where D, = uwi—{—f‘éj 3uAij, not to be confused with D, which acts on superfields.

To simplify the form of Eq. (1.44) we have introduced the following notation

o 0

a m
Gigk = ZE%is = Imyr Lk (1.46)
8 m*
Gig k= Z ek Jism = GimeLpe g (1.47)

and hence we see that to obtain canonical kinetic terms we require that gi;« = 0+,

This is clearly satisfied if
K= oo (1.48)

and hence this is termed the canonical form for the Kéhler potential.
Returning to the gauge fields we find that the pure gauge part of the Lagrangian is

given by
! 1 iNa a va \a <a 1 ar?2
Lgauge = Tr —ZRe(f(‘D )%) [ Ef, PR — iAoV X + 5(D )

im0 FL P (1.49)

where we have imposed f(®*)% = §% f(®%)® as will be the case for all the models we
consider and we have defined F* = %e“”/’”FpU. The important point to note here, is
that the gauge coupling is given by the real part of the gauge kinetic function. D-term

contributions are not considered in this thesis so we go no further in this analysis.
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SUSY Breaking Lagrangian

It is manifest that SUSY is not a good symmetry of nature therefore it must be broken
to give agreement with nature. Since we need SUSY to stabilise the electroweak scale
any breaking must not disturb the ultraviolet behaviour of the theory: such breaking
is termed “soft”. In other words we cannot allow corrections to the Higgs mass that
depend quadratically on the cut-off. By power counting arguments ([22, 16) and refer-
ences therein) it can be decided which terms can be included and we now summarise

those terms relevant to our model building efforts. First, trilinear scalar interactions’,

1 - 1
§Aijk¢i¢j¢k +h.c = ngijkAijkﬁbiﬁbj@ék + h.c. (1.50)
and Soft scalar mass-squares,
mZl;. (1.51)

In general one has bilinear scalar interactions, %bij(bigéj + h.c., and gaugino masses,
(%M’a/\a/\a + h.c.). However, in our models the bilinears will be zero as discussed in

section 1.4.3 and the gauginos are not considered.

R-Symmetry

The anti-commutator of the SUSY generators, Eq. (1.19), can be seen to be symmetric
under Q, — Q.. Given that Q acting on a given state either kills the state or moves
to a different part of the SUSY multiplet we see that the fermionic and bosonic members
of a given multiplet have different charges under the symmetry. These are known as
R-symmetries and may well be realised in nature, though it is not a requirement of

supersymmetry that they do so. From Eq. (1.22) it is possible to see how 8 and [

"t is convenient in string constructions to extract a factor of the Yukawa coupling since this appears

to be the natural form for Aj.
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transform. If ), is given a charge —1 and defined in a way consistent with Eq. (1.22):
5 .
Qo = = — 0”09, (1.52)

then it is clear that § must have charge +1 and # charge —1. Since the superpotential
contribution to the Lagrangian is constructed from its 08 component it follows that
the superpotential must carry an R-charge of +2 to yield an invariant Lagrangian. A

similar argument shows that the Kahler potential must have zero R-charge.

1.4.1 Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is the simplest possible exten-
sion of the SM to include supersymmetry. This is achieved by promoting all the fields in
the SM to superfields and adding an extra Higgs field. The additional Higgs is required
because the superpotential can only contain fields and not their conjugates. Since the
conjugate Higgs field was required to generate down-like quarks it is clear that a field
with the same quantum numbers as the conjugate Higgs field must be introduced to
act in the same capacity.

To define the MSSM we must write down the superpotential, Kdhler potential and
soft breaking terms. First we assume canonical kinetic terms and so K is given by
Eq. (1.48) where this runs over all quarks, leptons and Higgs superfields in the theory®

Then we define MSSM superpotential, with gauge indices suppressed, as

Wissm = Y2 QiHyU; + Y;jQinDj +YY L HaE; + pHyHy (1.53)

8For this to be gauge invariant e2%* must be sandwiched between the two superfields, where V; is the
sum of the vector superfields associated with ®'[15]. For example, if ®' is a bifundamental of SU(2)

and SU(3) then Vi = Visy 2y + Vsu -
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with the following soft terms
Lot = % [M355 + MyWW* + MiBB + hc|
+ [bH Hy + Ay Auy Qi HWUs + Mgy Agy; QiHaDj + Aey; Ae, LiHgEj + h.c.]
+ m, [Hal* + mby, | Hu* + md, QiQ; (1.54)
+mi, LiLf + mp, UUf +mb, DD} +mp, EfE;.

In a slight abuse of notation we have denoted the scalar components of the su-
perfields by the same symbols as the superfields themselves. The fermionic degrees of
freedom are differentiated by the inclusion of tildes.

It is possible to address the hierarchy problem within the MSSM since this is a
concrete SUSY model. One can show (see [22] and references therein) that the renor-
malisation group running can, with a large enough top Yukawa, drive the soft mass for
the up-like Higgs negative. Since the soft mass can be shown to go negative around the
electroweak scale and give rise to phenomenologically viable Higgs vevs it can be said
that SUSY incorporates electroweak symmetry breaking (EWSB) in a natural way. We

state without derivation® the minimisation conditions for the Higgs potential given in

[22]
2
];L|2—+-qud =btanf — m—2z—c052ﬁ (1.55)
2
\u|2+m}{u =bcot 8+ %Z—COS 24 (1.56)

and in terms of p

2 2 2
m%, ~—m% tancd 1
2 Hy o, 2
4 = — —m%. 1.57
H tan? 4 — 1 5z ( )

In the MSSM, the term p is considered to be an explicit mass parameter and is not

tied to the EW or soft breaking scales, yet Eqs. (1.55)- (1.57) suggest that it should be

9To obtain these expressions one analyses the Higgs potential under the requirement that the Higgs

vevs are non-zero and finite, in the minimum
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of the same order as the soft terms and the EW scale. In other words why should p be
around the EW scale rather than, say, the Planck scale? This is the p problem of the
MSSM and while similar to the hierarchy problem it is not as severe since, although it
is not predicted, the y scale is stable under radiative corrections. We propose a possible
solution to the p problem in chapter 3.1.1.

We expect, by a similar argument, that the soft terms should also be not much
above the EW scale. In our models we will make use of the supergravity framework to
generate the soft terms and make use of the Planck scale to suppress the soft parameters
to the TeV scale. Hence the soft terms will be discussed further after supergravity has

been introduced.
Finally we define our R-charge conventions, taken from [22]. The Higgs superfields
have R-charge of +1 while the remaining chiral fields have charge +1/2 and the gauge

vector superfields have charge zero.

1.4.2 NMSSM

The NMSSM [23] removes the u term from the MSSM superpotential and replaces it

with two new terms, as follows:
WH Hy — WANHy Hy + §N3 (1.58)
hence the soft breaking sector is given by

; | 1
VIMSSM — yMBSM |\ A\ N H H, + 3 — bHLHy + he.+ my[ NP (1.59)

Since the potential for N is entirely determined by renormalisable couplings and soft
parameters it follows that (S) will likely be around the soft breaking scale. Hence the
NMSSM dynamically generates a p term of A (N) when N is minimised. For discussions
of NMSSM phenomenology see, for example, [24].
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The NMSSM possesses a discrete Zz symmetry and as such can fall into three
distinct vacua post inflation. The minimum energy field configuration that interpolates
between these vacua is know as a domain wall and is analogous to the behaviour of
ferro-magnets below fhe Curie temperature. These domain walls present a serious
problem for the NMSSM since they generate an unacceptably large contribution to the

CMB anisotropies. For a discussion of the domain wall problem within the NMSSM

see [25].

1.4.3 SUGRA

Now that we have given the formalism for global SUSY and considered its simplest
phenomenologically viable incarnation, the MSSM, we address the issue of making
gravity supersymmetric and hence consider a theory invariant under local supersym-
metry transformations. There are numerous reasons for considering local SUSY, but
in this thesis we only wish to consider the following two reasons. Firstly it appears
naturally as the low energy limit of string theory and secondly it provides a natural
framework for SUSY breaking to be realised and communicated to low energies.
Supergravity (SUGRA) arises when the parameter of SUSY transformation is pro-
moted from a constant to having a spacetime dependence: ¢ — €(z). Since P, is an
element of the SUSY algebra this requires our theory to be locally translation invari-
ant, and we see that we have obtained general co-ordinate invariance. This leads us
to suspect that the theory should include General Relativity (GR). More directly we
can apply the Noether method and, starting from a free theory'invariant under global
SUSY, allow local transformations. To correct for the variation in the Lagrangian new
terms must be added and the transformation laws modified. This process is iterated

and leads to a locally invariant Lagrangian, for an example of this see [18]. When
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this a similar method is applied to supersymmetrise GR we obtain SUGRA. A more
involved procedure will lead to the SUGRA Lagrangian in the presence of a general
matter sector and it is this Lagrangian that will prove important in this thesis. In this

thesis we only consider the potential for the scalars [22]
V = exp(k2K)[KY " (D;W)(D;W)* — 32 W |4 (1.60)

= k8 exp(G)[KY (G;)(Gj+) — 3K?) (1.61)

and the two point component of the gravitino’s, G, superpotential
Vs D exp(r?K/2)x? (W* GG, + W5 G, ) (1.62)

where G = k2K + In(k*W), D;W = W; + s2K;W and k? = 87Gy and K and W are
reduced to functions of the scalar components of the superfields.

Given this potential we now want to consider the possible applications of this to
phenomenology. Specifically we will show how one can obtain a low energy effective field
theory after SUSY is broken. To achieve this we introduce a hidden sector containing
fields that do not transform under the MSSM gauge groups with a superpotential

separated from the MSSM’s:
W = WMSSM ‘+‘ Wh' (163)

For the sake of this discussion we first consider a canonical Kéhler potential K =
S°; @72, but note that we will have to go beyond this assumption in later chapters
and revisit this issue there. Also, we only consider one hidden sector field z though
this can be generalised.

So doing we obtain

2 2

OWyssm
oo!

+ KPOFW

~ 3n2|I/V|2} :
Oz

~ oW,
V = exp (k°(|]2]* + |@'%)) U L RPW +/

(1.64)
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One can show [2] that the following vevs minimise Eq. (1.64)

(z) = ax™t, (W) = bm2k71, <8Wh> =m? (1.65)

where m is an intermediate mass scale, and a and b are arbitrary real parameters.

From Eq. (1.62) we see that after the hidden sector fields get their vevs
mg/y = k% exp(k?K/2)W* ~ exp(a®/2)bm?k. (1.66)

We will see that this sets the scale of the soft terms, as it will appear as a common mass
for all the MSSM scalars. In order to simplify matters for low energy phenomenology
we wish to discard any non-renormalisable operator, decouple gravity and consider a
renormalisable effective field theory. Formally this is achieved by taking the flat limit
by sending « — 0, while keeping m3,, constant. Since k% = 87 Gy we see that gravity
becomes non-interacting. It is necessary to keep mg/y constant to keep the soft breaking
scale unchanged.

This leads us to the following expression for the scalar potential

oW, 2 .
YOS+ K20 %0%mt (1.67)

Vs = e (14 52(0°%) | m*((1 + ab)? — 36) + }W

aWMSSM

W@i*me + h.c)} .

+m2/£(a2b + a = 3b)(Wssm + Wigem) + & <

The series expansion in the Kéhler potential of the matter fields, exp(k?K) =
1+ k2K + O(K?), has been truncated at first order since all higher orders vanish in
the flat limit. However the first order picks out the constant inside the square brackets
and hence provides an important contribution to the soft mass. Re-expressing this in

terms of mgy/y we obtain

2

Viss = 5g7| + Vot (g, + Vo) @2

s OW _ i
+ Mgy (a2+ % —3) (W +W*) + (mquﬂ +h.c.> (1.68)
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where we have let V = e“2m4((1 +ab)? - 3b2) and defined W = e**/2Wyssu.

From this expression we can see that we have obtained an expression for global
SUSY plus soft breaking terms. A notable feature of this potential is that there are
two universal contributions to the soft masses: one from mg/, and the other from
x?Vy. However, when non-canonical Kahler potentials for the hidden and observable
sectors are considered there are additional non-universal contributions to the scalar soft
masses. In general this is the case for string theories and we will consider these effects
in chapter 2.

We now give a quite general expression for the soft-masses in a SUGRA model,
but without explicit masses in the superpotential before or after SUSY breaking!V.
The original presentation of these results is to be found in [26] and in [27] the effects
of a non-zero cosmological constant were considered. This is defined in terms of the

following series expansions for the super and Kahler potentials:

1

5 Yoy (hm) 27007 4 (1.69)

W = W(hn) +

K = K(hm, hl) + Koeg(hm, L)@ ®P 4. (1.70)

where higher powers of the visible sector fields have been neglected since they disappear
in the flat limit and h,, represent the hidden sector fields, with m being an index
associated with the hidden sector.

With the F-terms for the hidden sector fields given by F'™ = eC/2K™n" G, we invert

the Kahler metric!!, take the flat limit and the couplings in Eq. (1.69) are replaced by

19This simplification foreshadows the string models, in which this will always be the case.

By no means a trivial step, but one that is made possible by the fact that the inverting matrix can

be expressed in terms of power series in mp'[26] and hence solved iteratively.
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effective Yukawa couplings'? given by

w*
Y, = feK/QY . (171)
afy ‘Wi afy

In addition a soft potential is generated with the following form
* 1 ].
Viojt = g @ &7 + (gA'aﬁv‘I’“‘I’%” + EBgﬁqﬂqﬂ + h.c.> (1.72)

where B&ﬂ = 0 for all low energy fields in our models, since they have no explicit
supersymmetric masses and the bilinear coupling is zero. The remaining non-zero soft
parameters can be expressed as
mgﬁ = (mg/Q + VO) Ka*ﬂ - Fm* (8,"1*8”}%&*[3 — am* Ka*,yk’yé*ankg*ﬂ) ,FW1 (173)
: w

. . ot
afy = WEW/QFT” {Kmyaﬂv + OmYapy — (K P OmKpra Yoy

(e B)+(@em) L74)

where (o < () implies that one should repeat the preceding expression with the indices
exchanged.

Note that these expressions, Egs. (1.71) - (1.74), are un-canonically normalised
and the normalisation of the matter fields will modify these expressions. In all the
models we consider the Kédhler metric for the matter fields will be diagonal, making
the canonical normalisation a simple case of rescaling. Later in the thesis, whenever
explicit values or expressions are quoted for the parameters they will be in canonical

form. This concludes our discussion of SUGRA.

“Effective supersymmetric masses can also be obtained if they are contained in the original superpo-
tential, or if the bilinear coupling Kéahler potential term has non-zero coupling. Neither of these cases

will be realised in any of the models we wish to consider so these terms are omitted.
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1.5 Neutrino Physics

The majority of this section was compiled from [28, 29, 30]. In the original formulation
the SM contains no right-handed neutrinos. This forbids Dirac type masses and Ma-
jorana masses can only be generated from non-renormalisable operators, so if we take
the SM to be valid up to the Planck scale!® then we can estimate the size of possible
Majorana operators:

S &OQGV 1078 eV 1.75
LVL | 1519 e NI/LI/L( e ) (1.75)

LLHH
Mp

which is clearly far too small to be the only contribution to the neutrino’s mass. From
this we conclude that it is likely that there is some additional physics that generates
the observed masses and mixings.

The majority of neutrino model building is focused around the see-saw mechanism
(30, 28] essentially due to the observed smallness of neutrinos. Without introducing
a very small Yukawa coupling, O(107!3), the Higgs me‘chanism cannot explain why
neutrino masses appear with an upper bound, from tritium 3 decay, of < 3 eV [31].
However we will demonstrate that sufficiently small Yukawa couplings can be found
within a string theory framework, hence the see-saw mechanism is unnecessary. In
this model we will generate neutrinos with pure Dirac masses m{p = Y, v, in a SUSY

framework, with the following term in the superpotential

/\\uiALiHul/lg{j . (1.76)

2

We suppose that the neutrino spectrum is hierarchical with the lowest mass eigen-
value being zero. Hence the neutrino mass eigenstates are Dirac spinors with masses

determined by their splittings so ma ~ A, ~ 0.01 eV and m3 = Ay, ~ 0.05 eV.

130f course this moves beyond the SM since it requires there to be new physics around the Planck

scale
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In appendix A we define our mixing conventions, showing how one goes from a
theory with general Yukawa matrices to one with diagonal Yukawas, but off-diagonal
couplings to the W boson.

Finally a few remarks on the experimental signatures of Dirac neutrinos. If there
are no Majorana masses at all then we have pure Dirac neutrinos and we expect to
find no neutrinoless double § decay (a AL = 2 process)[31]. If, instead there are small
Majorana masses in the model then we have Pseudo-Dirac neutrinos and the mass
spectrum has additional small splittings generated when the eigenstates are rotated

into the Majorana basis. This can be seen when considering the mass matrix for one

generation
myn mp mg O :
- (1.77)
mp Mg 0 my
where
_ ! A2 2 1.78
Me = 5 mr, +mpgr —1/4m%, — (mp — mRg) (1.78)
and
L 1 dm? 2 1
my =g mL+mR+\/ mp — (mr, — mg) (1.79)
hence
62 =m2 —m?~2(my +mg)mp, (1.80)

when my, mgr < mp. Such a splitting would be hard to detect with terrestrial base-
lines, but studies have been conducted on the possibility of utilising astrophysical scale
baselines to enhance the effects of such a splitting (see [32] and references therein).
With a hierarchical neutrino mass spectrum, mgz > mq > mq, the most stringent cur-

rent bounds on §2, are [32]

62 < 10712 eV? (1.81)

™m1,2
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and
2 -4 12
0rny <1077 V2, (1.82)

Neutrinoless double § decay is in principle possible in this framework. However this
will be heavily suppressed since, by assumption, the dominant contribution to the mass
eigenstates are the Dirac masses. This coupled with Egs. (1.82) and (1.80) implies that
(mr+mg) < 1073 eV. Since neutrinoless double 8 decay is suppressed by the effective

mass of the Majorana neutrino this will be very hard to detect[32]

—4
Pff Z P_]2 S 10 (183)

and current limits are (m),;, < O(1) eV.

1.6 String Theory

In this section we try to elucidate a few general features of string theory, without delving
too deeply into the formalism. Our model building efforts start with four dimensional
effective actions consistent with string theory. Therefore, while the full machinery of
string theory is of great importance when deriving the low energy theory, it is of less
importance to physics below the string scale. This being the case we focus our attention
on what string theory has to say about the form of the effective field theory.
Nonetheless a few remarks about the underlying theory are in order, to put the
effective field theory in context!*. Firstly the fundamental object is a one-dimensional
relativistic string as opposed to the zero-dimensional point particles found in quantum
field theories. Strings come two distinct varieties: closed and open. At the most basic
level closed strings are topologically circular whereas open strings are topologically

equivalent to a line. A number of remarkable properties spring from considering strings

M¥or textbook accounts of the subject see [18, 33, 34, 35, 36
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instead of particles, perhaps the most startling being that the number of spacetime
dimensions is predicted, on grounds of mathematical consistency. The exact prediction
depends on the type of string theory considered: if the theory only contains bosons,
then the prediction is 26, but if fermions are included, then the prediction is 10. To be

more precise we quote the Polyakov [37] action for the superstring [38]

SR /d2§ (Baw“ﬁawu - i@“paaa'%) (1.84)

4ol

where £ are the two dimensional co-ordinates describing the string’s proper time and
the position along its length. xz* are the “target” space co-ordinates of the string,
namely the four spacetime dimensions with which we are familiar and six additional
spatial co-ordinates, with which we are not. p runs from 0 to 9 where the first four
will denote Minkowski space and the remaining six a compact space, discussed below.
W* are spinorial fields and it can be shown that this action is invariant under world-
sheet!® supersymmetry and p% are two dimensional “gamma” matrices. Finally o is a
dimensionful constant that sets the overall scale of string theory, since it is related to
the tension, T, of the string by T = 5% | In addition o’ is used to define the string
scale M, = (a’)_l/Q.

There are two good reasons for including fermions into the worldsheet: one, the
spectrum of the bosonic string has a tachyonic ground state and two, there are no
fermions in the spectrum of purely bosonic strings. The first reason implies that there
is no stable vacuum about which the theory can be formulated and the second reason

means that the bosonic string cannot describe the SM.

'5The path of the string through spacetime. Compare with a worldline for a particle.
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Compactified Space

Since strings exist in 10 dimensional spacetime it must be explained why the extra six
dimensions do not have obvious observable features. In an effective field theory sense,
why is the four dimensional SM a good description of physics up to, at least, the EW
scale? Perhaps the simplest possibility is that the extra dimensions are not extended
dimensions like the first four, but instead are small, compact spaces, for example a
6-torus. To see how this could work, and clarify what is meant by small, we consider
field theory in 4 + 1 dimensions where the extra dimension will be compactified on a

circle!®. For simplicity we consider a real scalar field in this framework given by [41]

2TR 2mR
1
S:/d%«/ dyz::/d%/ dy§8A<I>(9A<I> (1.85)
0 0

where A = (z#,y) and ® is a function of A. The integration over the y co-ordinate
spans the circumference of the circle, 2rR, and we require that ® be invariant under
y — y+2nR, therefore ®(z,y) = ®(z, y+27R). This implies that ® can be decomposed

into Fourier components

+0o0
Slry) = 3. dulx)em/ R (1.86)

n=—o00
where ¢(z), are complex fields subject to ¢} = ¢_, stemming from ®* = ®. Note this

implies that ¢q is real.

Performing the integral over y in Eq. (1.85) and rescaling ¢, — \/%%é yields

1 = * 2 *
S = /d41‘ [Eamoau%} + /d%; <8u¢>na“¢n + %qﬁnqﬁn) (1.87)

where the ¢, fields are termed Kaluza-Klein (KK) states and their masses are propor-

tional to the inverse of the size of the extra dimension.

18This idea was originally put forward as a fascinating attempt to unify gravity and electromagnetism,

by Kaluza and Klein (KK) [39, 40]
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Now it is possible to address the question of how small the extra-dimensions must
be, since they govern the masses of the ¢, fields. If interaction energies are significantly
below the mass of the lowest excitation then there will be no KK states in the outgoing
particles. While KK states can appear in loops these effects decouple for sufficiently
large KK masses, for SM bounds from precision EW tests see, for example [42, 43]
with the strongest upper bound being R~ > 700 GeV if the SM fields are allowed to
propagate in one extra dimension. Since our model includes six extra dimensions this
bound can only be taken as a guide, not a hard prediction.

To obtain a phenomenologically interesting low energy spectrum one must consider
more complicated spaces than tori since it can be shown [2, 18] that compactification
on a 6-torus leads to A/ = 4 SUSY in four dimensions. A > 2 SUSY theories are
not chiral since the extra SUSY generators place the left and right-handed fields in
the same SUSY multiplet, hence cannot describe the SM. However more complicated
spaces, such as orbifolds, allow one to break the extended supersymmetry such that
one is left with D = 4, N/ = 1 SUSY, below the compactification scale. In addition
to obtaining A/ = 1 SUSY orbifolds reduce the (very large) gauge symmetry '7 of the
theory. These both arise from’the fact that not all of the massless four-dimensional
states, analogous to ¢q in the circle case, that arise when one compac“ciﬁes on a torus
appear in the spectrum of an appropriate orbifold. In other words only subsets of the
components of gauge and SUSY multiplets are present in the effective four dimensional
theory. A phenomenologically interesting example where this is discussed and the low
energy spectrum derived is [44].

Finally we note that the size and shape of the extra dimensional space are given

by moduli fields. In this thesis we will be concerned with both twisted and untwisted

"The origin of this will be discussed in the following subsection.
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moduli where twisted moduli are associated with orbifold fixed points and untwisted
moduli determine the size of the extra dimensions. A field similar to the moduli is the
dilaton which determines the strength of the string couplings, in that it is analogous

to a coupling constant in QFT.

D-Branes and Gauge Symmetries

Besides one dimensional strings there are additional extended objects, known as D-
branes [45], generically present in string theory. These objects are associated with the
boundary conditions of a string which can be one of two forms, Neumann or Dirichlet.
Neumann boundary conditions in a given co-ordinate allow the string end to move
along that co-ordinate. In contrast a string is fixed with respect to co-ordinates which
obey Dirichlet boundary conditions. Therefore one can define a Dp brane as a p+ 1
dimensional hypersurface in which p + 1 dimensions are Neumann and the string end
is fixed by 9 — p Dirichlet conditions. The number and dimensionality of the branes
present in the theory are determined in part by the type of string theory one is working
in and in part by the particular compact space utilised to reach four dimensions; see
[21] for a discussion of this point.

From a phenomenological perspective D-branes are important because they are
subspaces upon which open strings can end. This is vital because open strings can
give rise to chiral superfields and hence, potentially, the MSSM (or a viable extension
thereof). In addition a stack of coincident D-branes can give rise to a non-Abelian
gauge symmetry. One introduces non-dynamical degrees of freedom at the end of a
string, known as Chan-Paton factors: one for each brane in the stack. It is possible
to show that [38], for N branes, there are gauge fields transforming in the adjoint of

U(N) present in the low energy spectrum. In addition open string amplitudes, which
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must be approximated by interactions in the effective field theory, contain traces over
the Chan-Paton factors and will be invariant under U(N) rotations. Thus we can say
that the effective field theory possesses a U(N) symmetry.

The last important feature we will mention is T-duality. This is purely string
theoretic symmetry whereby the physics is invariant under the exchange R < %. This
results from the fact that strings are extended objects and hence can wrap around
compact dimensions. Since strings are tensionful objects energy is required to stretch a
string a distance L given by E = LT. Hence to wrap n times around a circle of radius
R increases the energy of the string by nR/o/ = nRM2. Since we expect a tower of
KK states in the same spectrum we can see that if R « % we have retained exactly
the same mass spectrum: it is simply that KK and winding states have swapped roles.
Since a particle theory would only have KK states it could not be symmetric under
this exchange. This duality acts non-trivially on any Dp-branes in the theory since
it can be shown [33] that this swaps Dirichlet and Neumann boundary conditions in
the direction that the duality acts. We will return to this issue when we have more

precisely defined our framework, in chapter 2.

1.7 Inflation

The majority of this section was drawn from [46, 47, 48, 49]

In order to discuss inflation [50] we must first sketch the elements of standard big
bang cosmology. Let us begin with the cosmological principle: simply stated this is the
idea that, on large scales, the universe is homogeneous and isotropic. This principle
can be used to derive equations of motion for the evolution of the universe as a whole,

but first we must introduce the Robertson-Walker (RW) line element, which is implied
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by the cosmological principle [2, 51]8

dr?

2 _ 2 2
dS ——dt _a(t) m

+r? (d6? + sin?0dg?) (1.88)

where a(t) is a scale factor that describes the evolution of the universe and ¢ is referred
to as the cosmic time, a common time that independent observers could measure irre-
spective of their position in the universe. r, 8 and ¢ are co-moving coordinates, in that
they do not change with the evolution of the universe and k is a measure of spatial
curvature. If £ = 0 the universe is flat and if k = 1 it is closed whereas k = —1 implies
that it is open.

The dynamics of matter and energy can be described, on large scales, by the equa-

tions of General Relativity, the Einstein equations
1
R/,LIJ - Qg/,LUR + Ag/,w = _87TGNT;LL/ (189)

where loosely put the left hand side describes curvature and the right hand side, matter
and energy, with a certain ambiguity in the placement of A. The factor of g, suggests
that A belongs with gravity, but from a particle physics point of view it could have a
dynamical originlg.’ To put these equations in a more tractable form we must impose
the symmetries inherent in the cosmological principle on both the metric and the stress-
energy tensor. Utilising the cosmological principle and assuming that the universe can
be treated as a perfect fluid (no frictional forces) leads to a stress-energy tensor with

the following non-zero elements

Too = p and Ty = pgu (1.90)

18 As we are dealing with the evolution of matter and energy on the largest of scales we make use of

General Relativity.
The conflict between possible physical origins and the expected size of A is known as the cosmo-

logical constant problem [52]. We make no attempt to address it in this thesis.
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where p is the energy density of the fluid, p defines the pressure and ¢ runs over 7,6
and ¢.
The metric elements in Eq. (1.90) are those giving rise to the RW line element,

Eq. (1.88) and are expressed as

2
a .
goo =1 grr=—7p 5 900 = —a’r?, g = —a’r’sin® 4. (1.91)

It can be shown that Eq. (1.90) coupled with Eq. (1.91), when inserted into the

Einstein equations, give the Friedmann equations in the presence of a non-zero A:

i 4nG A
e_ 7 N(p+3p)+f_ (1.92)
a 3 3
N
s _[a 8GN E A
_(a) _ _k A 1.93
7 (a) 3 P23 (1.93)

The fact that there are now only two Einstein equations is a result of the symmetries
implied by the cosmological principle.
We now turn to the issue of inflation in this framework. First let us consider a simple

example with one scalar field, the so called inflaton, ¢,%° and the following Lagrangian

L= 5000 - V(@) (194

where we do not specify the exact form of V(¢) at this stage. For the moment, we
require that for a particular trajectory of ¢ the dominant contribution to the energy

density is the potential, i.e.
V() > (0,0)° (1.95)

for a range of values of ¢ along its trajectory. If this is the case then Eq. (1.93) reduces

to

(%)2 - Ty (1.96)

20Not to be confused with the angle ¢ in the RW metric.
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and it is easy to show that
a(t) o et (1.97)

solves Eq. (1.96) where Egs. (1.96) and (1.93) show that H is a constant while Eq. (1.95)
holds. Thus we see that a universe dominated by a slowly varying potential will expo-
nentially expand, i.e. undergo a period of inflationary expansion.

Next we will consider the conditions under which the potential can give rise to

inflation, namely the slow-roll conditions. The action is given by

1
/\/— det(g)d*z (E(maw — v<¢)> (1.98)
where, since we are interested in gravitational interactions, we have included the metric

in y/—det(g).

The equation of motion of the scalar field is
¢+3H+V'(¢) =0 (1.99)

where it is clear that, for positive H, the 3H¢ term acts analogously to a frictional
force, counteracting the effects of V().

For inflation to last ¢ must provide a negligible contribution 2! to Eq. (1.99) hence
3H¢ ~ =V'(¢). (1.100)

Re-deriving the acceleration term from this equation and requiring consistency with

the assumption that ¢ < 3Ho in Eq. (1.99) leads to the famous slow roll conditions

_MB|V(@)] o |V"(9)
- 8_; V(s) ‘_ g 46) ‘<< ' (o0
MR V()N mE V()P

6216?(‘/(@) - QP(V(¢)> <! (102

21S¢rictly speaking this is not necessary for all inflation models. In [53] so called “fast-roll” inflation
is discussed whereby the slow-roll conditions are violated, but inflationary expansion is still obtained.

The model presented in this thesis gives rise to slow-roll inflation
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where the reduced Planck mass is given by mp = ]\/[P/\/S_ﬂ' and if these conditions are
satisfied then inflation can occur.

One final issue is the generation of structure in the universe. At some point the
cosmological principle must break down since when one considers small (from a cosmo-
logical viewpoint) scales, such as the level of galaxies and below inhomogeneities and

anisotropies are manifest. For inflation models it is shown in [54] and references therein

that

32 Vy

=——7€y (1.103)
75 m%;

8% (k)
where in this instance the subscript N denotes that this quantity is evaluated NV e-folds

before the end of inflation, when the scale k left the horizon.

Hybrid Inflation

Since the model we construct in chapter 3 is one of hybrid inflation we will use a hybrid
inflation model to illustrate some of this section’s points. This class of models was

introduced in [55, 56] and made use of the following scalar potential
Vo, ¢) = i(M2 —doh)? 4 m—2¢2 + f&ﬂ (1.104)
’ 4 2 2 '
where A and g are dimensionless couplings while M is coupling of mass dimension one.

For simplicity we assume that ¢ and o are real scalar fields.

First let us consider the potential when ¢ = 0,

1

4A(M2 — Xo?)? (1.105)

V(o)

this shows that, at the origin, the o field is unstable in exactly the same way as the
Higgs field in Eq. (1.3) and is minimised away from the origin. If, instead, ¢ = 0, then

Eq. (1.104) assumes the particularly simple form

V(g) = m;aﬁz (1.106)
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which evidently minimises at the origin.

Finally, to see the whole picture, we consider the coupling 923¢202 that contributes
to the effective mass of ¢ or o, respectively, if o or ¢ is non-zero. Since this is always
a positive contribution it can give o a positive effective mass squared if the inflaton
is above a critical point, ¢? > ¢2 = %,2. If \qb| > |¢c| then Eq. (1.104) is positive
semi-definite and is minimised for ¢ = 0. The critical value of the inflaton marks
the transition between a region in which o is stable and an unstable region where its
potential takes a form similar to Eq. (1.105). Since 9;¢202 adds to the inflaton’s mass
squared its potential steepens as ¢ increases, hastening its arrival at ¢ = 0. This signals
the end of inflation.

It is now possible to postulate an inflationary trajectory for ¢ and ¢ and see if
this has a period of slow roll. The smallest possible effective mass squared for ¢ is
obtained when ¢ = 0 hence the inflaton must start its evolution above ¢., and we

require the energetically favoured position of o = 0. Hence the slow roll conditions can

be expressed as

 mpmie’ o= m%'m4f2 <1 (1.107)
2(M*/(4))) 2v(0)
mpm” = mpm’® <1 (1.108)

T M@ T V()
where we have made the replacement %\4 = V(0). The n condition is independent of
the inflaton’s trajectory, depending only on the ratio of the massive parameters in the
model. As ¢ depends on ¢ we can impose

mimie? 2VA mim?

€> 2V (02 = 2 V{(0)i2 (1.109)

Now it is clear that satisfying inflationary requirements is a matter of choosing ap-
propriate parameters for the model, of which some interesting choices are discussed in
(56].
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Strictly speaking 7 and e must also be evaluated a number of e-folds?? before the
end of inflation. While this has no impact on 7 it can modify the € condition. We omit

this here, but will return to this matter in chapter 3.

*2The number of e-folds, N, in a given expansion is defined by N = In(aena/@start)-
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Chapter 2

String Model Building

In this chapter we lay out the string framework in detail. We focus on the parts of the
framework most relevant to the models we will construct in the following chapters, but
include more general information wherever it is relevant and does not draw the reader

too far from the essential points.

2.1 D-Brane Framework

This thesis is concerned primarily with utilising string th’eory to solve particle physics
problems and attempts to do this study at a reasonably high level. Specifically we tried
not to delve deep into one explicit string construction, but rather keep our results as
general as possible. Obviously some choices of string model had to be made and the
first of these was to work in type I string theory. This necessarily leads to the inclusion
of D-Branes within the spectrum [45]. As mentioned in section 1.6 the underlyingw
orbifold determines the D-Brane setup needed for consistent vacua. However, in this
thesis we consider the most general setup of D5 and D9 branes, without specifying a
specific orbifold. To present an intuitive picture for branes and states in the theory

we refer to fig. 2.1 where the locations of the various string states are shown. The
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0 1 2 3 4 5 6 7 8 9

MY - — — -
D, |- — — — — —
D5y |— — — — . . — —

Dbg |- — — — . . . . - -

D9 [— — — — — — — — — -

Table 2.1: D-Brane notation: columns are
labelled by the dimension they correspond

to in ten dimensional spacetime.

two orthogonal directions in fig. 2.1 each represent two compact spatial dimensions
with identical radii, around which the D-branes wrap. There are two more compact
dimensions orthogonal to the first four, which are not presented in the figure since they
do not directly affect the models in this thesis. Finally we note that a useful notation
for dealing with D-branes is the following. The spacetime dimensions in which a string
end is free to move are denoted by dashes and the dimensions in which they are fixed
are given by dots. This allows us to represent Minkowski space, the D5 branes and the

D9 branes in table 2.1.

Given this starting point the effective low energy Lagrangian can be derived for
the D-Brane setup. This can be done because in string theory, unlike AV = 1 SUGRA,
the superpotential, K&hler potential and gauge kinetic functions are not arbitrary, but

instead are predicted. The Kéahler potential for the untwisted moduli and the matter
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Figure 2.1: Schematic representation of two stacks of D5-branes. The stacks of branes overlap
in Minkowski space, but are orthogonal in the compactified dimensions. The C states cor-
respond to chiral matter fields, S the dilaton, 7; the untwisted moduli and Y3 is a twisted
modulus (introduced in section 4.2) localised within the extra dimensions, but free to move in
Minkowski space. We have only presented the string states involved in our construction: for a

more complete picture see Figure 1 in [57].

fields can be shown to be [21]

3
K=—In <s+ S =3 |c§i Zln (T +Tr —|CP% Z digk|CF > | (2.1)
+

1=1 7k=1
1 3 |C5;5k 1 3 g \C’g5i|2
5 Z TS + ST, + Ty 12 5.21 Ty + THVA(T, + T;) /2
and, to lowest order in the matter fields!,
3 Sl L~ (CRP (
K:—IHS+S* - 11’17—‘7‘—1‘7—‘7’* + ‘—’—L—T'—f— —_ 2.2)
(5480 = L W+ TH+ 2 oy + 2 (54 59
P 1 cop?
disk-— + = d;
+jkzl ]A(T+T*) 2 ;1 (S + §)2(T; + T7)
‘0951-‘2
d;
+ ;1 ]k(T +T*)1/2(Tk+T,’:)1/2

where the C-terms represent the low energy excitations of strings starting and ending on
D-Branes and d;j; = |e;;x| and S and T; are, respectively, the dilaton and the untwisted

moduli. The dilaton and moduli are D = 4 closed string singlets of the following form

'A valid approximation in our case since the dilaton/moduli vevs are at least Mp.
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[21]

DRIRIR
_ 6 2.3
S () +1 (2.3)
and
2R?
T, = 5 + i, (2.4)
Ared

where )\; is the D = 10 dilaton, 6 and n; are untwisted Ramond-Ramond closed string
states that are included for completeness; only the real components of S and 7; appear
in the rest of the thesis.

As such both their gauge interactions and the form of the superpotential will be A
constrained. First we consider the gauge interactions. As shown in chapter 1.6 the
gauge groups of the string arise from the stacks of branes the open strings end on.
We note that, as demonstrated in [44], the particular groups living on a given brane
are given by the underlying compactification. In this thesis we do not try to find the
specific compactification that can lead to our model. Instead we motivate its existence
by appealing to similar models in the literature? and simply require the correct gauge
groups and particle spectrum. For the gauge groups we assume that, in the low energy
regime, the unbroken symmetry is that of the MSSM: U(1)y xSU(2),xSU(3). How
this is arrived at is beyond the scope of the thesis: we only impose that, in the effective
theory, there are no exotic remnants. T-Duality requires that a copy of this group
appears on each of the stacks of branes. As a result, in full generality, we have four gauge
groups and, in principle, four different gauge couplings: (U(1)y xSU(2);,xSU(3))* with
couplings gs,, gs,, gs, and gg. Anticipating the models constructed in chapters 3 and

5 we restrict our focus to just two of the possible gauge groups, those associated with

*There are numerous examples of Standard Model and MSSM-like models [44, 58] and we propose

a high level study, the successes of which should motivate more explicit constructions.
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the D5; and D5, branes. We denote the location of the group with a superscript, so
an SU(3)%2 is the SU(3) associated with the D5 brane.

The superscripts of a given C-term denote the location of the ends of the string and
hence which representations are allowed for any fields associated with that term. For
example a C®152 field could transform as (1,3;2,1), 3 a bi-fundamental representation
of SU(3)% xSU(2)52, whereas a field like C5? could transform like (1,1;2, 3) in the same
way as a quark doublet. Note that the subscript denotes fields with different gauge
transformation properties and, as shown in Eq. (2.5), different Yukawa couplings. While
it is possible to consider models where the gauge group is drawn from the groups of
several different branes we will be considering models where the MSSM gauge group is
entirely contained within one stack of branes. We will return to this question in chapter
4.

The superpotential can be derived by considering three point amplitudes of open
string states [59] and can be shown to be, before canonical normalisation:

3 3
W = (Cfcgcg’ + CPE R 0B 1y 0790951‘0951‘) + > (cficgicgf
i=1 ijk=1

. 05 95 5. 5. , 1 A .
+ CFCPC 4 digpCF OO OO 4 2y O G5 0% (25)

where all the Yukawa couplings are order one. This is in contrast to more complicated
setups in which the branes do not intersect at one point (for example see [60]) resulting
in a geometric suppression: e~ A% where A is the area spanned by the intersection. In
our case the branes are all assumed to intersect at one point in the extra-dimensional

space and do not feel this suppression.

30ur convention is to quote the representations in ascending order of both their associated groups
and branes. The example in the text has its SU(2)®' representation followed by its SU(3)*! rep. and

after the semi-colon the sequence repeats for the D5, brane.

48



The final pieces of the puzzle are the gauge kinetic functions which T-duality in-

variance requires to have the following forms [21]:
fg =5 and f51, = 711 (26)

In fact, in the presence of twisted moduli these expressions are modified as follows

61, 62, 63].
foa = fo+ Y ch¥i and fsg = fs, + > _chYx (2.7)
k k

where c’;"ﬁ are model dependent coefficients, o and § run over the different gauge
groups and k runs over all possible twisted moduli. For the moment we neglect the
contributions of the twisted moduli, making the assumption that the dilaton and un-
twisted moduli provide the dominant contributions to the gauge kinetic functions. This
assumption will be re-evaluated in section 4.2.1.

From Eq. (2.6) it can be shown [15] that the gauge couplings on the stacks of branes

are given by

(2.8)

It is possible to show [21] how the superpotential changes after canonically normal-
ising the Kéhler potential and taking the flat limit, in which Mp — oo. We quote this

here:

3 3
W =go (CIQCSC:? 4 OB182 (08283 0835 ZCZQCQ&CQ&) + Z gs, (0?162510351'

i=1 i,5,k=1

+c?c%wﬁ&+dmpﬁcmmvﬁk+%¢ﬂc%%c%mﬁ%) (2.9)

It is illustrative to briefly detour, before returning to Egs. (2.1) and (2.5), to
canonically normalise more general Kahler potentials and superpotentials [27] given

by Eq. (1.70) and Eq. (1.69). To obtain canonical kinetic terms we must redefine our
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flelds such that K,-3 — d4-5. Let us simplify matters slightly by assuming that, as is
the case in (2.1), the Kéhler metric for the matter fields is diagonal, but different from

the identity. The relevant part of the Kéhler potential can be re-expressed as
Ko p®® 0P = K, |0%% (2.10)

With this assumption we can make a simple re-scaling

o 1

and obtain canonical kinetic terms.
This change manifests itself in the superpotential and the soft terms with the final

Yukawa couplings being given by
Yagy = Y., (KaKpK,) ™2 = B (KoK g K,) 7Y g, (2.12)

where Y/

By is the effective Yukawa coupling after symmetry breaking given by Eq. (1.71).

At the end of our detour we have an expression for the physical, low energy couplings
in terms of the high energy couplings and elements of the Kéhler potential. We can
now make use of this expression to obt.ain the canonical form for the superpotential
given in [21].

By way of demonstration we consider two couplings, the only two couplings we
make use of in this model: g5, C3'C®152C5%%2 and g5,C52C®152(C%152. Taking the values

for K, K051 and Kpss, from Eq. (2.2) we obtain
3

Y

051 C5152 (5152

= < (K g Knrs,) ™ (2.13)
= o((nEHSIELTIDN2) (3, 4 7y 4 57Ty + TV

= (Ty + T7) ™% = g5, (8m) /2 (2.14)
which is, up to a factor of (87)*/2, same result as presented in [21], given in Eq. (2.5).
This factor is likely due to an inconsistent definition of the gauge kinetic function in
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[21], the definition in [64] of Re(f) = 1/g* improves matters by \/4r. Also [64] perform
an analogous calculation for the heterotic string obtaining, as we do, a dependence on
S+ 5* in the effective superpotential. Since it is S+ .5* that appears rather than Re(S)
this introduces an additional factor of v/2 not present in the [21] superpotential. So the
end result is that the superpotential, Eq. (2.9), should be divided by v/2. While this
discrepancy is odd it will not materially affect any of the conclusions of the thesis due
to our freedom to set the value of the radii. As a result we use the results of [21], aware
that the values of the S/T; moduli may be subject to order one corrections. Note, by
symmetry the other analogous terms C,?i C5:55 O35 — gs. (2)_1/2(],?1' C5:55 0543

With this /87 uncertainty we have the following expression

3
WS 3 (gsdipCliCooCmon) (2.15)

iyjk=1

where we have only presented the class of terms that will be relevant for our model

building. The complete set can be derived using the rules laid out above.

2.1.1 Soft Terms
Before we discuss the soft terms in this framework we need to introduce a convenient
parametrisation for the F-terms, in vector form, given by [57]

F = /3Cmyy(PO) (2.16)

F' = V/3Cms (01 P) (2.17)

where C? = 1+ 3:1(20) [21] and x = 1 has been imposed with V/(0) the vev of the potential
3/2

when all of the hidden sector fields obtain their vevs and the visible sector fields are
set to zero. Also © is a vector, defined shortly, and P is’deﬁned as the canonically
normalising maftrix, PTKa*gP = 1 where o and 8 run over the hidden sector fields,

but not the low energy fields. For this parametrisation to be of use it must yield
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the correct vacuum expectation value for the scalar field potential and be possible to
freely choose how much each field contributes to the SUSY breaking. Since © is a
vector with trigonometric components, ©;, such that Y, ©2 = 1 and |©;| < 1 Vi this
parametrisation is valid with (V) = V(0) shown in [57].

We now discuss the soft terms in Type I string theory under the assumption that

the SUSY contributions come solely from the F-terms of the S/7; fields given by

FS (Kggn )_1/2 sin fe s
Ft (KTZ'T;' )_1/2 Ccos 9@16_”Ti

F

il

where since K, +53 = K -0,+3, F is a diagonal, rescaling matrix and we obtain
a*p a* a3 g ) g

FS = \/ngg/Q(S + 5*)sin fe=¥7s (2.19)

F' = V3Cmy (T, + T}) cos 0O ;e (2.20)

Now all that remains to be done is to substitute these F-terms in to the soft-term
expressions given in section 1.4.3, Egs. (1.73) and (1.74) to obtain the soft masses in

this framework. The soft masses that will prove relevant to our model building efforts

are [21]

mZs, =mj;, + V(0) = 30%m},0f cos® 6 (2.21)
J
3
Ms5, = M3y + V(0) - 502m§ 13 (sin” 6 + ©7 cos?6) (2.22)

and we will make use of the following trilinear couplings

Ae?icﬁiskc‘ii:ﬁk
J

= —\/ng3/2@i cos fe™ 1, (2.23)

Given this parametrisation it is easy to show that the following sum rule must be

obeyed

m:é-?i + 2m205i5k = |ACfiC5i5kCSiSk |2 + 2V(O) (2'24) )

J

For a similar analysis using the heterotic string see [27].
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2.2 Asymmetric Compactifications

For our purposes we need to consider a highly anisotropic compactiﬁcation4. This is
necessary for the models to be constructed in chapters 3 and 5, since they both require
Yukawa couplings of order 10719, Since gauge and Yukawa couplings are very closely
linked the requirement of O(1) gauge couplings for the MSSM gauge group means there
is a ratio between Yukawa couplings of approximately 1019, In this thesis we propose
that this ratio arises due to an asymmetric compactification in which two radii become

large and four remain small. From Egs. (2.3) and (2.4) with Eq. (2.8) we see that

A (a)?

/
and gg =

As is generally the case in extra-dimensional theories the effective four dimensional
Planck mass depends on the higher dimensional Planck mass and the volume of the

extra dimensions:

8MBR?R2R2

2.26
2 (226)

M3 =

and this relation will prove important when deriving the gauge couplings.
At this stage, having specified none of the parameters, we are free to choose the
couplings as desired. Selecting the small coupling to be g5, ~ 10710 and the MSSM
Ry

gauge coupling to be gs, ~ 1 requires T~ 100, While these two couplings do not fix

the third ratio we see, via Eq. (2.26), that

M2g? g2 )
R} = —I21"% 2.27
37 3on2 M4 (227)

so we see the question of what size is R3 is equivalent to asking what is the string scale.

This expression is only true when there are no twisted moduli in the spectrum, or their

For a recent example of a explicit string construction which naturally incorporates anisotropic extra

dimension see [65] which is analogous to the KKLT construction [66]
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expectation values are zero. In section 4.2 we will need to go beyond this assumption
and, while it will not turn out to a have far reaching consequences, we quote the precise
expression

R? = Mg .
37 2MARe(T1)Re(Th)

(2.28)

The final parameter we can choose is A;, the D = 10 dilaton, that governs the
strength of the of string loop corrections. This can be expressed as a function of the

couplings using Eq. (2.8) and also in terms of the S/7; fields

(2.29)

A = Ind5ass _ ( 2Re(S) e
27ng Re(Tl)Re(TQ)Re(Tg)

We also note that we can re-express the relationship between M, and Mp in terms of
the gauge couplings, and equivalently in terms of the dilaton and moduli, as follows:

1672

2.30
(Re(T1)Re(T2)Re(TS)Re(S))1/2 ( )

M, \ 2
32m* ( Mp) = 05,05,05,99 =

Fixing the D = 4 Planck mass and g5, and g5, means that M, is determined by the
remaining two couplings gs, and gg which in turn fix the value of A;. From this we see
that if we input all four couplings, and Mp, then we completely determine the string
scale, string coupling constant and hence the radii. Of course the converse is true, and
perhaps is a more physical perspective. However, we neither claim to know the origin
of the particular compact space nor address the question of how the radii we require
are reached. Instead we input the couplings we require and select order 1 parameters

for the remaining two couplings®.

®These couplings only play a very minor role in our model building, beyond the fixing of the radii
discussed here. They can be used to fix A; to be very small, ~ 107'%, in order to ensure that stringy

effects are dominated by the tree level contribution. This improves the validity of our effective field

theory approach.



Selecting g5, = 10710, g5, = ,/% and g5, = go = 2 fixes, via Eq. (2.30), M, ~ 10%3
GeV. Since this choice and Eq. (2.29) fix A\; &~ 107! we see that, from Eq. (2.25), the

inverse radii are fixed to be
Ry~ 10® GeV, Ry' ~ 10'® GeV and R; ' ~ 10%. GeV (2.31)

These values will receive very minor corrections when we consider the impact of
twisted moduli, in section 4.2, but the order of magnitude estimates remain intact. We
see that there are two radii at just above the Planck length and one a factor of 10!
larger, and that it is this anisotropy that, as expected, generates the necessary hierarchy
in Yukawa couplings. Anisotropic compactifications are not without precedent in string
theory, see for example [65].

These radii are all too small to have Kaluza-Klein (KK) or winding modes that will
be readily excitable at collider energies. The winding modes of R; are ~ nl10'® GeV
and Ry and Rs have winding modes of ~ n108 GeV. The KK modes for R, are ~ n10%
GeV and Ry and R are ~ nl0!8 GeV.

For the majority of this thesis the exact values of the coupling will not prove to be
important so, unless specifically stated, we will use the following approximate expres-

sions for the couplings:

gs, ~ 107" and gs, ~ g5, ~ go ~ 1. (2.32)
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Chapter 3

Inflationary Solution to the

Strong CP and i Problems

This chapter concerns an inflationary particle physics model, inspired by Type I string

theory. The model uses the vev of the inflaton post inflation to both solve the strong CP

problem via the Peccei-Quinn mechanism and generate the supersymmetric Higgs mass

term, 1. We will show that this gives a high-scale prediction for the p mass, expressed

in terms of the soft SUSY breaking parameters. Some of the values of parameters for

this model are taken as assumptions, but many of these will be shown, in chapter 4, to

have a natural origin within Type I string theory.

Our goal when we embarked on this study was to find a simple model, consistent

with Type I string theory, and study its predictions. Our approach was to first of all
start with an interesting and phenomenologically viable model and then, in Chapter 4,

see if this model is compatible with Type I string theory.
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3.1 The Model

The model we considered was inspired by the pNMSSM model of Bastero-Gil and King

67]:
WeNMSSM = AN HuHg = 6N + (Wyiggyg — piluHa) (3.1)

where A\ and x are Yukawa couplings of order 10710, WnissM s the superpotential
for the MSSM as given in section 1.4.1. In this model there is no necessity for these
couplings to be equal, only that they be small. This will turn out not to be the case for
the model we build in this chapter. Briefly summarised, the pNMSSM is consistent with
the MSSM after inflation, solves the strong CP and u problems, provides an inflation
model with a spectral index very close to unity and has the curvature perturbations
being generated by the inflaton, ¢. Clearly this summary does not do justice to the
model, but more details can be found in [67].

Our model uses the following superpotential
W = MpHuHy + kdN? + 1 Qs HutS, + yp Qs Hab% (3.2)
leading to a SUSY potential of

Vsusy = INH Hq + kN?|2 + | NoHy, + 1,Q3b% | + [N Ha + 4:Qst%|* + 4x*|oN |

(3.3)
and a soft potential of
Vsoft = V(O) + /\A,\QbHqu + HAnQbNQ + ytAthgHut% + ybAyb Qngb?{ + h.c.
g (|l + [Hal® + NP + [ 15 + [V5]*) + md|Qs)* — md|e|’ (34)

where ¢ and N are, respectively, the inflaton and waterfall fields and are singlets of

the MSSM gauge group. It is these two fields that provide both the mechanism for
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inflation and the means to end it since ¢ experiences a period of slow roll and N
becomes unstable at a given point along ¢’s trajectory, ending inflation. The Higgs
fields H, and H; have standard MSSM quantum numbers and are not involved in
inflation. The dimensionless couplings A and & are both @(107!%) parameters, and
while there is no field theoretic reason for them to be equal, the string construction
will require A = &k, which we now enforce. The remaining dimensionless couplings
y: and y; are both taken to be order one and again they will identified in the string
construction. The scalar soft mass, mg, is common to N, H,, Hy, t% and b% at the
string scale and is taken to be approximately a TeV. The quark doublets’ soft masses
mg are also approximately a TeV, but can differ from mgy. We allow a lighter, negative
soft mass squared for the inflaton in order to satisfy the slow roll conditions and yield
an acceptable inflationary trajectory. We require that the magnitude of the soft mass
of order an MeV or less, as will be demonstrated in section 3.1.2. Again these are
assumptions to be justified in the string construction in section 4. It should be noted
that we do not explicitly re-create the entirety of the rest of the MSSM in this thesis,
instead we concentrate on the model of inflation and, in chapter 5, the Dirac neutrino
model. The quark Yukawas included are not an attempt to provide a realistic quark
sector, they merely show that quark masses can be realised in this framework.

The model is one of inverted hybrid inflation, since the negative mass squared for
¢ will result in an inflationary trajectory rolling away from the origin. It solves the
. problem in a way similar to that of the NMSSM as shown in section 1.4.2, i.e. the.
¢ field obtains a vev post inflation and hence generates a u = A (¢). This model also

replaces the discrete Z; symmetry of the NMSSM with a continuous U(1) pg symmetry
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and the invariance of the two terms in Eq. (3.2) clearly leads to the constraint that
QFQ(¢) + QFQ(H,) + QF2(Hy) = 0 and QF9(¢) +2QP9(N) =0 (3.5)

where the usual charges of the quarks, leptons and Higgs [22] lead to the following
charges for ¢ and N: QF9(¢) = —2 and QFP(N) = 1. The entire spectrum will be
laid out in table 4.1 at the end of the supersymmetric construction in section 4.1. The
fact that the inflaton is charged under the U(1)pg symmetry means that it can spon-
taneously break the symmetry after inflation, if it obtains a vev. We will demonstrate

that it does so at a scale consistent with current bounds on the axion decay constant,

r

fa-

We now consider the minimisation of the potential post inflation and defer the
consideration of the inflationary period as it relies on the results of the minimisation

procedure.

3.1.1 The Potential

In this section we construct and minimise the potential in order to calculate the vevs
relevant to our model. We initially search the potential under the assumption that the
Higgs obtain no vevs immediately post inflation. This assumption will be justified by
analysing the turning points we discover and demonstrating they are minima, under
certain important constraints. The requirement of zero Higgs vev is crucial, because
the order of magnitude estimates for any vevs post inflation are either zero or Ay/A.
The latter of which is clearly in conflict with the experimental value determined by
1/2

(<Hu>2 + <Hd)2) = (vV2Gp)~V/? = 246 GeV [31].

In order to map on to the MSSM at low energies both Higgs must be minimised
at zero at the high scale to allow radiative electroweak symmetry breaking (EWSB)

to occur in the usual way, as discussed in section 1.4.1. This results in non-zero Higgs
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vevs at low energy consistent with experimental data. We shall now demonstrate that
the Higgs can keep their vevs at zero while the inflaton’s vev generates an effective TeV
scale p term, as required for an effective MSSM theory valid below the Peccei-Quinn
scale.

For the first stage of the analysis we re-parametrise the complex scalars. We rewrite

the Lagrangian in polar co-ordinates, eg. &(z) = m\(/?‘ exp (lﬁg‘))l We denote the

dynamical phases of ¢, V, H,, and Hy as, respectively, a, 3, v and 4. There is also one

constant phase, in Ay = |A,|e"”. So doing we find the following SUSY potential:

1 1
Vsusy = A2 (Z|Hd|2|Hu|2 + ﬁ\HuHHdHN\Q cos(y+ 6 —20) (3.6)

1 1 \
#1000 (P + |HaP) + NP + 162N (3.7
and the soft potential:

A ,
Vsort = V(0) + EMAH@HHuHHdI cos(a+y+4+0)

+ S A0 cos(x+ 20+ )+ gmd ([Hf2 o+ Haf? + |NP?) = Gl
(3.8)

We now attempt the minimisation of Vsysy + Vs under the assumption that
(H,) = (Hg) = 0 2. Under this assumption it is clear that the potential is minimised
for cos(a + 26 + o) = —1 since the trilinear is the only contribution to the potential

that can be negative. We note that we can consistently set cos(ax + v+ 6 + o) = —1,

but that this requires cos(y+ 0 — 203) = 1. To make the notation legible we henceforth

!Canonical normalisation of the dynamical phases only makes sense when the modulus obtains a
vev. We wish to consider the possibility of non-zero Higgs vevs and so parametrise them in this fashion,

even though we will show that their vevs are zero at the end.

*More precisely we consider the potential at (H,) = (Hy) = 0, and show that it can be minimised

there.
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drop the modulus signs, but it should be remembered that any negative or complex
vevs are clearly not allowed.

Taking partial derivatives with respect to H, and H; we obtain the following two

equations
o /\—QHQH + /\—2¢2H + &H N?cos(y+6 —28) + A Ay GHy+ m3H, =0
8Hu - 9 di+u 2 u 2 d 14 / \/5 A@ d 0++u
(3.9)
oV A? A2 Py A
B, = SHIH+ ¢ Hat T HuN? cos(y + 6 — 26) + 750t mgHa=0
(3.10)

and we clearly see that (Hy,) = (Hy) = 0 solves these equations irrespective of the

phases. Turning to ¢ and N with the phases set as discussed above and (H,) = (Hg) =0

we find that
BV 273 2,2 2
o = NIV 20N - V2AAPN + miN =0 (3.11)
v _ 2AZHN? — iAAN2 = 0. (3.12)

9¢ V2

We now see that the minimisation conditions alone cannot fix the phases since all
that has been enforced so far is that o + 28 + ¢ = 2n7 + 7. Hence this does not
determine the phase of u.

We first note that there is a trivial solution to Egs. (3.11 - 3.10) when all the fields
are set to zero. This solution is of little interest, but we note it for completeness. To
find non-trivial solutions we simply solve Egs. (3.11) and (3.12) algebraically. Since my
is very small when compared with mp we discount it in the following as including it

provides a negligible correction. So doing we see that we have two equations and two
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variables with the following solutions:

Ay
e 3.13
#) =57 (.13
_ Ay 4mg
and we had already found that
(Hy) = (Hy) = 0. (3.15)

Considering Egs. (3.9) and (3.10) we see that they go into each other under the
exchange of H,, and Hy (which clearly must be the case as V is symmetric under the
exchange) hence we can just consider H, = Hy = H and search for other solutions.
Repeating the analysis under the assumption that N = 0 and H # 0 requires different
phases to minimise the potential. Specifically we require that cos(a+~v+d+0) = —1.

Egs. (3.9) and (3.10) become:

A2 AL
H® + 7¢2H — ﬁAWH +miH =0 (3.16)

o _ N
O0H 2

and we obtain the following expression for

ov , A
T = MoH? - A H?*=0 3.17

This yields another set of solutions at

(H) = \%AA 1— 42‘% (3.18)
() = % (3.19)
(N)y =0 (3.20)

Substituting these expressions back into V we find the following expressions for the
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vacuum energy post inflation

Al 4m2\?
v _4mg 3.21
Viizo = V(0) = 575 (1 A? ) (8:21)
A} 4m2\
g = — 1—- —= 3.22
Vv=o = V(0) 16A2 ( A2 ) (8:22)

where we have relaxed the assumption that Ay = A, and A = x. This allows us to
see that if our assumptions are in place then the N = 0 minimum is energetically
preferred. Also we see that, in principle, we could escape this problem if we relaxed our
assumptions. For example, requiring that :ﬂz\a > 1 would remove H # 0 as a solution
and setting A, = Ay and A% > 4x? would make Vy—¢ the global minimum. However,
removing either assumption takes us away from the string construction, though they
remain acceptable field theoretic models in their own rights. To demonstrate that this
situation was physically viable would require a calculation of the tunnelling probability.
If the half-life is significantly longer than the measured age of the universe then it seems
likely that the universe will survive long enough to be observed.

As we wish to remain in contact with the string theoretic origins we need to demon-
strate that the local minimum, with zero Higgs vevs, can be reached after inflation. To
do so, in section 3.1.2 we will consider a possible trajectory of the inflaton, ¢, that will
destabilise to the desired minimum. Before this we must review the consequences of
arriving in the minimum described by Egs. (3.13-3.15).

Firstly we see that, since ¢ and N have obtained vevs, U(1)pg has been sponta-

neously broken and hence the axion can relax to the CP conserving minimum, with
fa~ (¢) ~ (N) ~ 10" GeV. (3.23)

Then, from Eq. (3.2) it is clear that, when ¢ obtains its vev the first term, A\¢H, Hy,
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becomes a supersymmetric mass term for H, and Hy, a p term:

p=Afg) = 2 (324

where the phases have been neglected. We see that our assumption that there is only
one Yukawa coupling, A, means that p is automatically at the soft breaking scale.
This, with the requirement of low energy supersymmetry, leads us to a 4 term at the
electroweak scale, solving the p problem of the MSSM.

There are further constraints on g coming from the requirements that inflation end
and that there be a phenomenologically viable minimum to be reached post inflation.
In order for inflation to end the N field must become unstable at a point along ¢’s
trajectory and rapidly roll to its minimum. When N starts to roll it destabilises ¢
through their couplings in V; specifically the trilinear coupling AAy¢N? causes ¢ to
accelerate and violate the slow roll conditions.

Since this means N must obtain a non-zero vev post inflation, Eq. (3.14) implies

the following constraint
A3 > 4mg. (3.25)

So far we have not proved that the stationary point described by Egs. (3.13)- (3.15)
is in fact a minimmum of the potential. To prove this we need to show that the Hessian

is positive definite. If

ViuH, ViuH, Vies VHLN

Vi, VeuH, Vi VHN
Vij = ‘ e e (3.26)

Vo, Vor, Voo Von

Ve, Vna, VNe VNN
is a positive definite matrix at a given stationary point, then that point is a local

minimum. If instead the Hessian is negative definite, then the point is a local maximum
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and finally if there are both positive and negative eigenvalues, then it is a saddle point.
Re-expressing Eq. (3.26) in terms of mg and the ratio z = Tﬂn% we find that the ratio

must fall in the following range
8 > z” > 4 and hence 8m§ > A3 > 4m}. (3.27)

So we finally arrive at a prediction for the supersymmetric Higgs mass squared, 12,

in terms of its soft mass, mg:
0.25m2 < u? < 0.5m? (3.28)

where we have used Eq. (3.24) to re-express Eq. (3.27) in terms of u.

Clearly this prediction is valid at the string scale, but to make contact with exper-
iment the couplings would need to be run down to the electroweak scale. However, a
full study of collider phenomenology was not undertaken in this thesis.

We note that we have not included the quarks in this analysis. The reason for this is
that they are held at zero throughout inflation, do not modify the critical point analysis
| and remain at zero in the minimum reached after inflation. This can be demonstrated
simply by including the quarks in the above analysis, but since doing so does not modify
our findings we omit it here.

Incidentally we can now obtain upper and lower bounds on V(0), expressed in
terms of p. Using Eqgs. (3.21) and (3.24) we find that to have an effective cosmological

constant of zero after inflation we need the following

Al am2\®  4pt am\?
V)= A (120 5 0 3.29
=5 (1 a2 ) =% 2 ) (329
and from Eq. (3.27) we see that
2 4
0 < V(0) < /\—“2 (3.30)
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As a rough guide we use u ~ 1 TeV motivated by the standard expression for p?[22]:

2 2 2
mi —m4% tan* 8 1
2 Hy H, 2
= —-m 3.31
# tan? 3 — 1 oMz ( )

where we take Mz ~ 91 GeV([31] leading to a reasonable estimate for V(0) being

V(0)Y* ~ 10% GeV. (3.32)

3.1.2 Inflation

For this model to describe inflation it must satisfy some basic requirements: it must
have a field that slowly rolls for a sufficient period of expansion, it must generate
curva”ture perturbations in line with CMB data and it must predict a spectral index
consistent with current observations 3

To meet the first requirement it must satisfy the slow roll conditions, ey < 1 and

Inn| < 1 where they are defined as:

1 V2
ey = Em% (—) <1 (3.33)

<1 (3.34)

where the subscript, IV, implies that ¢ and n were evaluated N e-folds before the end
of inflation?. Specifically this must be at the time of horizon exit of the scales that are
currently re-entering the horizon. For our model, we have a relatively small vacuum
energy during inflation, V(0) ~ 10°2 GeV*, which we imposed to give an effective

cosmological constant of zero post inflation, as was shown in section 3.1.1. This leads-

3For a survey of similar particle physics models and a discussion of how they satisfy the inflationary

requirements see for example [48].
4As a consistency check € and 7 should be evaluated at this point and at a point just before the

end of inflation to ensure that the slow roll conditions hold for the entire process. We will see that the

strongest bounds come at the end of inflation and we impose those bounds on our model building.
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to a small number of e-folds between horizon exit and the end of inflation. To prove
this we need to know the vacuum energy at the end of inflation and the temperature
of reheating so we will consider the number of e-folds again, once these have been
determined.

We now discuss the hybrid inflation mechanism of which the model described here
is a slightly different realisation than the one presented in [56]. While the analysis is
similar to that of section 1.7 it is not quite as simple and necessitates re-examination.
First we will address the issue of whether or not the inflaton’s trajectory naturally
falls into the phenomenologically desirable minimum after inflation. This requires us
to consider the dynamics towards the end of inflation. During inflation a second “wa-
terfall” field, N in our model, has a positive mass squared and hence is held at zero.
It is subsequently destabilised, i.e. obtains a negative effective mass squared, when the
inflaton passes a critical value. Geometrically speaking the critical point marks the
transition of the inflaton from a region where all other fields are locally minimised to a
saddle region in which the NV field is unstable.

To see this we consider the behaviour of the Hessian, Eq. (3.26), along possible
inflaton trajectories. We only consider possibilities in which all other fields are set to
zero, essentially for simplicity. We make no claim that this the only possible inflationary
trajectory, merely that it is a valid option. With this assumption we are entitled to
set both the cosines multiplying the trilinears equal to minus one. Then the Eq. (3.26)

takes the following form:

mg + A2 A 0 0
A 2 A% 9 :
— XAy mi4+Ae? 0 0
Vi; = V2 2 (3.35)
2
0 0 —mg 0
0 0 0 md—V2AA\p + 4N2p?
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The critical values are the roots of the eigenvalue equations in the Higgs and N
sectors. From Eq. (3.35) we see that the roots are expressible in terms of the soft

parameters: the critical points at which N becomes unstable are

Ay 4m?
P crit.(N) = VN (1 +4/1— A—/Q\O) (3.36)

and the Higgs fields destabilise at

Ay dm?
¢ crit.(H) — — =+ (1 +4/1— -0 . (337)
= Vax VT &

Within the ranges of ¢ bounded by these critical values the associated field is
unstable. This result explains the necessity that our model be one of inverted hybrid
inflation rather than the standard. The trajectory starts with ¢ at a point with a small
value and all other fields set to zero. This is a stable point for all but ¢ which slowly
rolls away from the origin, driven by its negative effective mass squared.

As ¢ rolls it will reach ¢ ¢y vy before deris 11y, assuming that myg is non-zero. There-
fore it is the phenomenologically preferred minimum with N # 0 and H,, = Hyg = 0 that
is reached on this trajectory. If the soft mass squared for the inflaton were positive,
and the initial value for ¢ were large and stable, then it would slowly roll towards the
origin and would always destabilise in the Higgs direction rather than N. It is possible

to allow for mé to be positive since there is a stable region in between the two unstable

Wi

)

m2
ranges bounded by Egs. (3.36) and (3.37), which can be non-zero. If 4/1 — 4739 <

then this region opens up. It is interesting that this gives much tighter constraints on

the soft masses than the inverted case,

gmg > A2 > 4m? (3.38)

and hence a stronger prediction for u:

1
—mi>pt> ng. (3.39)
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However the required initial conditions for the standard hybrid case are difficult

to imagine being satisfied, so for the rest of this thesis we focus our attention on the

inverted case.

We shall now discuss the slow roll period that occurs, for the inverted hybrid infla-

tion scenario.

For this trajectory, the potential effectively simplifies to

V=V(0) - %mgqs? (3.40)

In this case the slow roll conditions become

1 mpmydy

_ LTPTPN g 3.41
VT TVE (3.41)
| =m2 mel® (3.42)

V(0)

To ensure that these conditions are satisfied we first derive an upper limit on |mg| from

Eq. (3.42):
img| < 4 MeV. (3.43)

To find how to satisfy Eq. (3.41) we must first calculate ¢n. From the standard
46, 49, 68] equations describing the evolution of a in the slow roll approximation we
can show that, for a slowly varying Hubble constant, H, we obtain [48]

N(¢) = Mp*—d¢ (3.44)
¢critA V

which gives the number of e-folds the universe will undergo between the input value of
@ and the critical point at which inflation ends.

For V given by Eq. (3.40) this obtains the simple form

V(0)
MpEm?

_In(¢/ eriv.) (3.45)

In(¢/derir.) = i

N(@) = -
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and ¢y is obtained from Eq. (3.45):

¢N = (;Zscrit.(N)e_Nm| (346)

where N is the number of e-folds between the time at which the largest measured scales
leave the horizon and the end of inflation. We now calculate N using the standard

expression from [48]:

_ 16 1/4 1 1/4 , 1/4
N =62~ In (10°GeV/ V) = = In (V2 /il (3.47)
where Vgng is the value of the potential at the end of inflation and prlgs is the reheat
temperature. We must make a brief detour to calculate these quantities and then obtain

N.

First we note that [47]:

B 4
pren ~ g T, =~ g, (1.29* 1/4,/Mpr¢) — 2.1M3I? (3.48)
with the inflaton’s decay rate [69]:

M3 A2 4dm?
Ty~ 2 w1229 1 3.49
¢ 64 f2 87T< A?\) ¢ ( )

2
where post inflation ]\/f; ~ 202 (N)? = ‘—4} <l - %) ~ 1 TeVZ

A

Now with g, ~ 80 [47] we are in a position to calculate all the desired quantities:
Dy ~10710 eV Ty~ 0.2 GeV  prp ~ 0.1 GeV™ (3.50)

This low reheat temperature slightly relaxes the upper bound on the axion decay

constant, allowing f, ~ 10 GeV [67, 69] and arrive at
N = 37. (3.51)

With N known we can set about satisfying ey. From Eq. (3.41) we obtain®

SWhile the details of the standard hybrid inflation case are not included it differs slightly from the
inverted case. The difference being that there are be slightly tighter constraints on the soft parameters

to satisfy ey < 1, since ¢y is larger.
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2V (0)e2Ni| )

my < | gt | - (3.52)
(M?D 2. (N)

In the limiting case when n < 1 and

Ay

. = 3.53
¢ crit. (N) - 2\/—2-/\ ( )

where this is the largest value ¢ ;¢ (n) can have to provide the strongest bound,
me K 5 MeV, (3.54)

where this bound and the corresponding bound on 7 depend on the exact details of
SUSY breaking so, lacking an specific SUSY breaking mechanism, these are left as
order of magnitude constraints.

However it turns out the most stringent constraint on mi comes from the density

perturbation data. From [54] we see that

_2v)

5
=75 md

eyt = 1.92 x 1075, (3.55)

Satisfying this requirement with the inflaton would drive its mass down to below
the eV scale. This would require a high degree of fine-tuning®. If the mass of the
inflaton ¢ during inflation is in the MeV range this satisfies the slow roll constraints,
but precludes the possibility that the density fluctuations are provide(i by the inflaton
itself. Thus extreme fine-tuning is alleviated [70] if we use a different field, a curvaton
[71, 72, 73], to generate the curvature perturbations. There are numerous examples of
this mechanism in the literature, but we do not speculate as to which one might be

compatible with our model.

®For a discussion of fine-tuning and the expected radiative corrections in the closely related pNMSSM

model see [67].
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We now consider the spectral index given by[48]
=142 — 6e (3.56)

it is perhaps safest to say that we expect the spectral index to be very close to unity.
Although it is impossible to make an exact prediction without a better understanding
of the details of SUSY breaking and hence predictions for the soft parameters. It is
however clear that if the inflaton is responsible for the curvature perturbations n — 1
will be negligible. This is in agreement with the WMAP one year data, n = 0.99 £0.04
(74].

Tied into inflation is the issue of domain walls. Since this model does not possess
the Z3 symmetry of the NMSSM it sidesteps the domain wally problem discussed in
section 1.4.2. However, domain walls can still be created when the PQ symmetry
breaks [75, 76]. However it is possible [77] to avoid this problem if, as is the case in our
model, a field charged under U(1)pg already has a non-zero vev by the end of inflation
and retains a non-zero vev in the minimum post inflation. In our model this role is
taken by the inflaton which has a vev of @i () at the end of inflation and obtains

(¢) = 2—“%} in the minimum reached after inflation.

3.1.3 Inflation summary

We close this section with a brief review of the main features of the field theory model
before embarking upon its string construction in the following section. This model
puts forward the ¢ field as the field responsible both for inflation and for generating the
supersymmetric Higgs mass term, p, of the MSSM. In addition it has been demonstrated
that with the vacuum expectation value of the inflaton at the Peccei-Quinn axion scale
the 1 term automatically appears at the soft breaking scale, given as a simple function

of the soft parameters. The very small Yukawa coupling, A, provides the link between
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these scales, giving rise to f, once the soft parameters are determined. This means the
physics of inflation simultaneously solves the strong CP and u problems and give rise
to a testable prediction for the p parameter in terms of the Higgs’ soft scalar mass:
O.25m% < p? < 0.5m3. This implies deep connections between supersymmetric Higgs
phenomenology, inflation and the absence of CP violation in QCD.

This analysis has rested on a number of assumptions, namely that the soft masses
of the Higgs field and of N are equal, that small Yukawa couplings can be obtained and
these small Yukawa couplings can be equal: A = k in our model. In the next chapter
we will construct the supersymmetric and soft sectors of the model and in so doing

provide justifications for these assumptions.
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Chapter 4

String Construction of Inflation

and Small Yukawa Couplings

In this chapter we investigate the application of the D-brane framework discussed in
chapter 2, making particular use of the small Yukawa couplings uncovered in section 2.2,
We demonstrate how string selection rules, arising from the D-brane setup, impose
non-trivial constraints on the set of allowed superpotentials. The applications of the
framework are made apparent when the inflationary model of chapter 3 is constructed
and many of the model’s assumptions are seen to be consequences of the underlying
string theory.

First we construct the supersymmetric side of the model, consistent with the string
selection rules, before moving on to consider SUSY breaking. Initially only the dilaton
and untwisted moduli are considered, but it will be necessary to expand the analysis

to include the effects of twisted moduli.
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4.1 Supersymmetric Sector

This section draws heavily on the information contained within chapter 2 and attempts
to use this to justify a number of assumptions of the previous section. Chiefly we wish
to address the origin of the small couplings required by the model and consider the
main result of the model, namely the high scale relationship between the Higgs’ soft
and supersymmetric masses in Eq. (3.28).

The superpotential, Eq. (2.15), the relationship between the Yukawa couplings,
Eq. (2.30), and the expression for A;, Eq. (2.29), are all the tools we need for the
string construction. Figure 1 displays the two branes that feature in our construction.
The Dby brane is assumed to have an order one gauge coupling and possess a twisted
modulus at a fixed point of the orbifold. This fixed point is taken to lie on the D5,
brane, but to be spatially separated from the intersection point of the branes. However,
because the radius of the D5, brane is very small, as given by Eq. (2.31), the separation
is similarly limited. Intuitively we expect there to be very little by way of geometric
effects arising from the small separation and this will be borne out when the calculations
are performed. All the MSSM fields will be required to transform under representations
of the D5y brane’s gauge group and not the D5; brane which has an order 1071
coupling,.

The goal of the following subsection is to elucidate the string selection rules and
demonstrating how they can be applied. This will show how one obtains a given
renormalisable superpotential within string theory and how some simple examples aré

not compatible, at the renormalisable level.

5



4.1.1 Methodology

It should perhaps be re-emphasised that our approach in this paper is one of string
inspired phenomenology. We make use of a number of the generic properties of low
energy effective string theory so as to keep our analysis as general as possible and avoid
specialising to a particular model. Some of the obvious strengths and weaknesses of
this approach are as follows. We can consider a large class of models in one fell swoop
and, if it proves impossible to embed our model, be reasonably confident that there
is little reason to undertake more involved, specific constructions. However without
the explicit realisation of our model we cannot know that there exists an appropriate
compactification leading to the right sets of branes and the desired low energy spectrum.
However the number of possible D = 4, NV = 1, low energy string models is vast and
a complete survey is far beyond the scope of this thesis. With this caveat in mind we
may still undertake the construction.

The rules that we enforce are as follows:

e All supersymmetric terms must found within the low energy effective superpo-

tential, Eq. (2.9).

The string states, C°1%2 etc., can represent more than one low energy field.

Each low energy field can only be assigned to one string state.

The gauge transformation properties of a string state are determined by the stacksw

of branes to which its ends attach.

As previously mentioned we only make use of a small subset of these terms. That
is not a rule that we require, but it is the case for all models in this thesis. Also, when

we come to consider neutrinos it will be necessary to make use of the supersymmetric
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generalisation of the Froggatt-Nielsen mechanism to generate non-renormalisable op-
erators. However this only makes use of renormalisable operators from the canonically
normalised Eq. (2.15) so does not violate our first rule. The final point summarises the
discussion in section 1.6.

The approach in this thesis is to take a purely field theoretic superpotential and see
if it can be realised in the string superpotential, using the rules discussed above. Let
us consider a toy field theory with just three, gauge singlet superfields, A, B and C

with the following superpotential:
W = M A% + \yA®B + A\ ABC (4.1)

where the A’s are constants.

We now consider the assignment of each term in Eq. (4.1) individually.

Ao A® cannot appear in the string superpotential for the simple reason that Eq. (2.9)
contains no terms that are cubic in a single superfield. Were we to assign A to any string
state we would be then forced to assign it to another string state, which would violate
our third rule. Incidentally this means that the NMSSM cannot be realised using purely
renormalisable operators as it includes just such a term. However, the same problem
does not afflict the A\,A?B term since there are quadratic terms in Eq. (2.9). For
example it could be assigned to CJC%1C%1 and other similar terms. To be concrete we
will have to assign 4 and B to C%t and C{, respectively, if we wish to use Cngle%l.
However, terms like C5152(3233(C53% are not acceptable candidates. Finally \;ABC
can be assigned to any of the terms in the string superpotential, Eq. (2.9). In addition
we are completely free to choose the string states to which the fields are assigned, within
a particular coupling. In other words, we can freely permute the superfield assignments
once we have chosen a string term. This is similar for the M\,A%2B term, except that

only a subset of the string superpotential terms are available.
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We should now note that all the normal rules of model building apply, except where
they contradict the string selection rules. By way of example, gauge invariance must be
insisted upon for all terms. Since our toy model only consists of singlets, this is not very
restrictive, but remains instructive. Ordinarily one would write down all possible terms
that have the appropriate mass dimension, are holomorphic and are gauge invariant.
For our toy model this would include terms like AA?, A2B, AB? and so on, where
we might guess that the high scale couplings are order one where A is the high scale.
Clearly, since there are only mass dimension 3 terms in Eq. (2.9) AA% and A%B are
ruled out, but we note that AB? is analogous to BA?, which we have already shown
is acceptable. However if we attempt to realise them both simultaneously we see that
this is impossible, since B must be assigned to C} and this only appears linearly within
Eq. (2.9). We stress that this is not an artifact of our choice of C{C%1C%1 for A?B,
as all viable terms have the same form.

In summary we have seen that the string selection rules can forbid interactions
that are otherwise allowed by all the gauge symmetries of the theory. The non-
renormalisation theorem of supersymmetry will keep these couplings at zero. Naturally
this will not hold when SUSY is broken, but it does remain valid above the soft scale.

The model building generally proceeds as follows: first we choose a set of radii and
hence the determine the non-canonical Kahler potential. Then we must canonically
normalise the Kihler potential and work out the effective superpotential. Having done
so we assign fields in accordance with the string selection rules and then write down all
terms that are allowed by both gauge invariance and the aforementioned rules. This

determines the supersymmetric side of the construction and we will now apply this

procedure to our model.
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4.1.2 String Assignments

Now and hereafter we focus our attention on the specific anisotropic compactification
considered in section 2.2. Having fixed the Yukawa couplings there is only one small
coupling, g5, = 1079, which can serve as the ) in the model. The remaining couplings
are taken to be gs, ~ g5, ~ go ~ 1.

We start our assignments by considering A¢N2. The reason for this is that it has
exactly the same form as A\, A%B in section 4.1.1. It was shown there that this class of
term can only be assigned to a restricted subset of the complete superpotential. This
is in contrast to the A¢H, H, term which could be assigned to any term in Eq. (2.9)
with gs, as its Yukawa coupling.

So doing we see that there are three terms that have the correct form and right

coupling constant:
(1) : g5, CY1C%1 0% () g5, CSIC5 00158 and (k) : g5, CC520%52 (4.2)

where (j) and (k) are symmetric under relabelling of 2 and 3. Notice also that Eq. (2.9)
is symmetrié under permutations of the 1, 2 and 3 labels if the radii are allowed to vary
(hence altering the size of the coupling constants). Since the size of the radii is a free
choice by assumption we see that () and (k) are equally good choices. Considering the
fact that T-Duality is a symmetry of the theory, this and the freedom to relabel links
all possible permutations of the branes, hence (i), (7) and (k) are effectively equivalent.
Due to this fact we only consider the C’g’l C51%2(5152 and hence the assignments of ¢ to
C’g’l and N to C31%2, As N does not appear again we must look for the A\¢H, Hy term.
There are only two terms with g5, coupling that include C’g’l, (a): gs, C’C‘;”C'g” 5?1 and
(b): 95105’:105152 C51%2. Notice they are inequivalent under T-Duality and relabelling.

Now the question of gauge assignments must be addressed. See section 2.1 for a
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discussion of the possible transformation properties of the string states. These rules
imply that Cisl states can only transform under the D5; brane’s gauge groups, with gs;
as their gauge coupling. On the other hand C3'? states can have quantum numbers
from both the D5; and the D54 branes.

We must now ensure that our fields can transform appropriately under the MSSM
gauge group and that each term can be made invariant. Term (a) requires that we
assign H, to C2' and Hy to C5' or vice-versa. This means that both Higgs fields must
transform with a gauge coupling of 107!%. Since we expect the MSSM gauge couplings
to be order one at the string scale this is clearly unacceptable.

Since ¢ obtains a large vev it must not couple to any MSSM gauge bosons or their
masses will be pushed up to ~ 10 GeV. It is easy to see that ¢ does not couple to
any MSSM gauge bosons because ¢ belongs to the Cg’l string state and hence cannot
transform under any gauge groups with order one couplings. However the NN field also
obtains a large vev, comparable to (), unless 4m2 is tuned to be very close to A?\.
As such we must require that it does not transform under any MSSM gauge groups.
Since N is an intersection state, C°152, it must transform under one of the gauge
groups on the D5y brane. This would seem to present us with a problem, as it would
seem to imply that the N field must transform non-trivially under one of the MSSM
groups as discussed in section 2.1. However this is only true if string theory gives us
exactly SU(3)xSU(2);,xU(1)y. Consider as a possibility the following gauge group,
U(1)y xSU(2)L xSU(3)xG x, where Gx is an unspecified non-Abelian group with an
X dimensional fundamental representation. This could allow N to transform as follows
(1,1,X;1,1,X). Now in principle we could use this in our model, assuming we found
an appropriate G x and could form the correct invariant with ¢. However we feel this is

more suited to an explicit construction since we cannot know the exact spectrum in our
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approach and the exact choice of this additional group lacks the physical motivation that
has been guiding us so far. We do note that the H, and H, field are also intersection
states and must transform under one of the D5; brane’s groups. Because of this there
has to be at least one spontaneously broken group on the D5; brane so that the Higgs
fields can appear simply as SU(2)%2 doublets, not as bi-fundamentals of both branes.
In addition to the group being spontaneously broken we require that a effect analogous
to doublet-triplet splitting! in an SU(5) GUT [80] so that in low energies we only
see one copy of each Higgs doublet. Tt is possible to imagine a phenomenologically
viable models with multiple Higgs doublets (see [81] and references therein), but for
simplicities sake we just want to consider a two Higgs doublet model. Again this is a
question that could only be properly addressed in a more complete model, however we
anticipate that any such model could have similar properties to those discussed here.

We now see that the previously ad hoc assumption of x = A that was made in
Chapter 3 has been justified in the string construction.

To complete the superpotential as defined in Eq. (3.2) we need to find order one
quark Yukawa couplings consistent with these assignments. The specific terms we wish
to assign are y; Q3 Ht% and ypQ3 Hyb.

Since both H, and Hy are assigned to C%1%2, the only order one terms allowed are
(a) 9520520525105251,(5) 99052530515205351 and (’Y) 9530952051520951 (43)

where we must allow the radii to vary slightly to accommodate (§) and (). Again the
requirement of gauge invariance must be satisfied. To do so the quark doublet, which
transforms as a (2,3) under SU(2); and SU(3), must be assigned to a string state
with both ends on branes with O(1) gauge couplings. Of the three possibilities (o) is

the simplest choice since it has all the standard model gauge factors coming from the

'For some examples where this is realised see (78, 79]
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SU(3) SU@2). |U()y | U(1)pg | String State

Qs | 3 2 1/6 | —1/2 o

3 3 1 -2/3 | —=1/2 o152
vl 3 1 1/3 | —1/2 Cord2
H,| 1 2 1/2 1 152
Hy| 1 2 -1/2 1 152
o 1 1 0 -2 o

N 1 1 0 1 C5152

Table 4.1: Inflation Fields

same stack of branes. Since it has already been shown that the Higgs fields transform
under a gauge group coming from the D5, branes, assigning (3 to sz means that
the entire MSSM gauge group can be found on the same stack of branes. In contrast
(8) and () entail diagonal symmetry breaking from (SU(B) x SU(2)r % U(l)y)2 to
SU(3) x SU(2), x U(1)y. Of course this does not rule out (4) and (v), but in this
thesis we concentrate on the simplest model, («), for the rest of the analysis.

A summary of the model as it stands is presented in table 4.1. This contains all
the information about the spectrum that we have constructed so far, namely the string

assignments and symmetry representations.

4.2 Supersymmetry Breaking Sector

In this section we start with the assumption that the SUSY breaking is dominated by
the dilaton/moduli sector, as discussed in section 2.1.1, as this is the simplest possible
case in Type I string theory. Having made this assumption we consider the soft mass

constraints, Eq. (3.27) derived in chapter 3.

82



In the dilaton/moduli dominated case we found that the following sum rule, first

presented in Eq. (2.24), must be enforced.
TTLé;,T. + 2m?j5i5k = |AC?* C5i5k 0545 '2 + ZV(O). (4.4)

It will soon become clear that this sum rule will have important consequences for our
model. If we wish to satisfy the slow roll conditions Eq. (3.41) and (3.42) we require
that the inflaton’s soft mass must be essentially zero, when compared with the other
soft masses which are at the TeV scale. Putting aside, for a moment, the mechanism
for obtaining this we will consider its implications.

From table 4.1 we see that ¢ is assigned to C’gl and N, H, and Hy to C%%2. In
section 2.1.1 it was demonstrated that the fields belonging to a particular string state
have a common soft mass, so we see that the assumption of a common mass, my, for
H,, H; and N is justiﬁed in the string construction. In addition we see that, while
there are similarities between their expressions, mé and m? generically have different
values. Even so it must be demonstrated that the Higgs fields can obtain TeV scale
masses and, at the same time, an MeV scale mass for the inflaton is allowed.

First of all it can be seen from Eq. (2.21) and (2.22) that, in the limit where

V(0) — 0, it is possible to set mg = mgcg,1 = 0 while mg = mé5152 remains non-zero.

2 _ 2 1,2
ool = 0 and mgs,s, = CULEYY

3

For example, setting ©% = 03 = % and cosf = 1 gives m

From Eq. (2.23) 4, = —m3/ge_i%' and clearly Eq. (4.4) is satisfied. Relaxing

2105152 C5152
the V(0) = 0 assumption, as we must do for our model, will modify the exact values
of the parameters so they are no longer neat rational numbers, but angles can still be
chosen to make mém arbitrarily close to zero, or indeed negative (with an arbitrarily

3

small magnitude), while retaining a non-zero méslf,Z. Reinstating the powers of Mp
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we see that V'(0) contributes to the mass squares as

V) _ 10%

2 2 2 =
R = 4.
Mz~ [0Ey GeV* = 10 MeV (4.5)

which is negligible when compared with the Higgs’ soft masses which are of the order

of a TeV. Therefore Eq. (4.4) takes the much simpler form of
2m3 ~ 4y (4.6)

where AC§10515205153 = A, is required by string theory. Since this trilinear, by virtue
of the chosen string assignments, is common to the AAy\¢N? and kA, ¢ H,H, terms we
see that the assumption of Ay = A, is also required?.

Unfortunately it is clear that Eq. (4.6) does not satisfy the lower bound on the ratio
of the trilinears and soft masses shown in Eq. (3.27) so these soft terms are inconsistent
with the model of inflation. To overcome this problem we must violate the sum rule
in Eq. (4.4), which clearly necessitates modifications to the soft parameters. However
since this sum rule is independent of the Goldstino angles it is clear that we cannot
simply change the F-terms to avoid this problem: all dilaton or moduli dominated
models of SUSY breaking will give rise to the same sum rule. So it is clear that we
must look for sources of SUSY breaking other than just the S and T; moduli, as they are
currently formulated. The fields we put forward as additional sources are the twisted
moduli discussed in section 2.1. We do not introduce these fields, as such, since they are
already present in the spectrum; instead we allow them to take part in SUSY breaking
and hence obtain F-terms. In the following section we consider the effect of twisted

moduli and address the issue of why mg is so small when compared with the rest of

the soft masses.

2)\ = k has already been demonstrated since k¢N? and A¢H,H4 have been shown to be contained

in the same string superpotential term in section 4.1.2.
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4.2.1 Twisted Moduli

In spaces with singular points, in our case orbifolds, twisted moduli must be present
in the spectrum as discussed in section 2.1. For simplicity’s sake we only consider the
effect of one twisted modulus, Y; located at a fixed point in the orbifold spanned by
D5y, ie. in the 2-torus with dimension Ry. Y5 is taken to be at a fixed point spatially
separated by a distance Ry from the origin, as shown in fig. 2.1.

In the following analysis we draw heavily on the analysis of [57], but generalise it
to allow A; # 1 in accordance with our A; ~ 107!, In so doing we find that A; has a
significant effect on the soft spectrum and that it simplifies considerably in the Ay — 0
limit.

The presence of twisted moduli must be represented by modifications to the Kéhler
potential and gauge kinetic functions. Since we desire additional contributions to the
soft parameters we must also include include new F-terms parametrised by additional
Goldstino angles and phases.

First we consider the Kéhler potential for the twisted modulus, K(Y2). The exact
form is not known, but K(Y2) must be an even function, see [62] and references therein,
of Yo+ Y,y — cg In(7y + Tg). Where dgg is a model dependent coefficient connected
with anomaly cancellation via Green-Schwarz mixing [61]. The simplest non-trivial

possibility is to have K as follows
. — 1 _ _
K(¥2,Y2) = 5 [Ya+ V2 - dos In(Ty +T9)]°. (4.7)

This is not the only modification that the K&hler potential must undergo. Since the
twisted modulus is spatially separated from the origin we expect the effects of SUSY
breaking coming from that brane to be suppressed, as a function of that distance.

Intuitively this can be thought of as arising from the fact that the twisted moduli
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have their wavefunctions localised away from the origin and hence their overlap with
fields at the origin are geometrically suppressed. With this suppression in place the
contribution of the F-terms corresponding the Y5 superfield will be reduced. The soft
spectrum should reflect this and fields sequestered from Y, should have lighter soft
masses, assuming that Y; is the dominant source of SUSY breaking. For a more rigorous
argument and the original derivation see [57].

The states considered to be sequestered are those that are localised away from the
fixed point where Y5 resides. The most obvious example of a sequestered state is C.?l:
since both ends of the string are only free to move on the D5; brane it is held apart
from Y3. Another example is C%%2, despite the fact that it has one end on the same
brane as the Y,. This is because the string tension localises the intersection states at
the origin, away from Y;. For an example of an unsequestered state we consider C‘;z.
This state comes from a string which has both ends attached to the D59 branes, which
means that it is free to move throughout the space containing Y, field and feels no
suppression.

To impose this sequestration we require that a multiplicative factor, &, be introduced

to the Kéahler potential, where £ is given by
1 7 — —
E(T2,Ys) = exp [—é <1 — e‘(Tz+Tz)/\1/4> {YQ +Yy—dgsin(Ty + Tg)}2 . (4.8)
This gives rise to a new Kahler potential K = Kgeq + Kunseq. Where

— — — 1 — = 12
K(S,5,T;,Ti,Y2,Y2)seq. = 3 Y2+ Yy —basin(Th + 1))

T Y
ZfTQ,YQ ; Z £(Ta,Ys) ‘051|
1o Tk+T

TQaYQ)
4=
Z S+S 1/2 Tk—f—Tk)l/Q

|G 2 dyj,

l f(TQaYQ) ’Cg5i|2dijk (49)

2 2 (Ty + TH)YV2(Ti + T)'/?
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(i

K(8,5,T:,Ti)unseq. = — In(S + 5) — }:mT+T +23T+T

2 1i P, (ol
(S+5) 24 (T,+Ty) " (Ty + Tw)V2(Ts + T3)'/2

(4.10)
where d;; = |ei;].

For our model A; ~ 107! and Ty + Ty ~ 40 as can be seen from Egs. (2.29), (2.8)
and (2.32). Hence £ ~ 1 for our model. The exact value for Re(T:) depends on Re(Y?3)
so we only give an approximate value here. However, over the range of values of Re(Y3)
considered in this thesis Re(T3) only varies by a factor of two and the result £ =~ 1 is
dominated by \;’s contribution. We note that if this were not the case and ¢ differed
from one then canonical normalisation would create substantial modifications of the
superpotential given in Eq. (2.9).

Having now specified our Kéahler potentiél, we parametrise the F-terms as follows

[57]
Fs = \/§m3/2 sinf e**s (S + S)

Fr, = \/§m3/2®i cosfsin g e (T + T))

Ty +T : :
(T2 +T) ©Og e'*? — cos p e _dos }

Fr, = v/3ma cosf {sin .
T 3/ g vk Ty +To

Fr, = \/§m3/2®3 cos fsin ¢ "3 (Ty + T'3)

] kéa » » 52
Fy, = fnl3/2 cos @ {Slngﬁ (\;‘ES -+ ﬁ) Oy e'*2 4 COS¢e7‘aYZ (1 _ @%)

(4.11)

where these expressions are valid up to @ [(T +IT )7} and the Goldstino parameters, ©;,
2 2)7

satisfy the following conditions Y22 | ©? = 1 and ©2 < 1 Vi. Also

k=1+das (YQ -+ ?2 —das ln(TQ ~+ TQ)) (412)
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is introduced to simplify the expressions.
Given the Kahler potential and a parametrisation for the F-terms we can re-derive
our soft spectrum using the techniques discussed in section 2.1.1.

We now present the full expressions for the relevant soft masses, m, Ac§10515205152

1
and AC§,20515205152, up to O (T2+Tz>

mQQ = m???? = mg/Q — 3m§/2®% cos? @ sin® o) (4.13)
3

mé = méSISZ =m? — Emgﬂ (sin2 8+ 02 cos?f sin® ) (4.14)

- 3 . =

mi = m?jgl =m? - Emg/QG)% cos? @ sin? ¢ (4.15)

where all of the dependence on Aj is contained within m given by

m? = m§/2 {1 — cos? 8 cos? ¢ (1 — e_’\I(T2+T2)/4>

2002 402 _
o8 Qsmkqb@Q %s (1 - e_’\I(T2+T2)/4> {V2+ Y3 —dcsIn(Ty + Ta)}

cos? fsin? ¢ @% = A (T2+T2)/4
32k
Ap cos? 0 cos ¢ sin ¢ (62 etez=ar) 4 ] e—i(az—aY2)> oA r(T24T2)/4

32vk

x {Yy + Y2~ dcsn(Tr + T2)} <8(T2 +T2) + Ardas {Yo + Yo — dgs In(Th + Tz)})

7 Eva =1 2
A Ty +T)? {Ya+ Vo — SasIn(Tz + Ta) }

(4.16)
A/\ = AC§’1C515205152 = —\/§m3/2 cos 8 [Sin ¢ @1 Eial
06228 (DT 7 % )12
+SIH¢W€ 2 )\](TQ+T2){YQ+Y2—5GSln(TQ+T2)}
— cos ¢ %2 oA (T2+T2)/4 {Y2 +Y,—dgsin(Ty + Tg)}}
(4.17)
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) @ eiaz
AQ = Acgzcslszcslsz = _\/§m3/2 COSH {Sln¢ i/_k—:

@ iaz — _ _ __
1 sin qbé% e~ MOATD/A N () 4 To) (Vo + ¥y — a5 In(Th + Ta) )’

—Ccos ¢

iay2

(1 n 26—/\1(T2+T2)/4> {Y24+Y2—égsIn(Th + TQ)}}
(4.18)
For our value of A7 it is interesting to note that, to a very good approximation,
m = mg/y, consistent with [21], so the effects of the sequestering are not felt by the
soft masses. To clarify, the soft masses are clearly different from those presented in
[21], but this difference is not due to the spatial separation. This is unsurprising since
the separation between Yz and the origin, Ry &~ 107'% GeV? is below Lstring ~ 10713
GeV so in this sense they are “close”. Also the exponentials vanish from A, so it is not
the sequestering that breaks the sum rule in Eq. (4.6). The sum rule is broken by the
Kahler potential for the twisted moduli in Eq. (4.7). If it was logarithmic, as all the
other moduli’s potentials are, then the sum rule would hold, but the fact it is quadratic

breaks the sum rule.

4.2.2 Allowed soft terms

In this subsection the soft parameters given by Eqs. (4.14)- (4.18) are examined to see
how the inflationary constraints of Eq. (3.27) can be satisfied. First we write out the
soft masses, working in the limit that A; — 0, which is essentially true, to exceptionally

good precision.

mg = mg/2 - 3m.§/2®% cos? §sin? ¢ : (4.19)
3

mé = mg/g - §m§/2 (sin2 0 + ©3 cos? § sin’ ¢) (4.20)
3

mi = mg/g - Emg/QGE cos® @sin? ¢ (4.21)
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and the expressions for the trilinears simplify in this limit to

Ay = _\/§m3/2 cosf [Osin ¢ e'®l — cos ¢ e’ {Y2+ Y5 —dos In(Tz + T2)j]

(4.22)

@2 6m2

Ap = —V/3m cos @ |sin ¢
Q 3/2 Pk

— COo8 ¢eiay2 {YQ —i—?g — s In(Th +T2)}:| .

(4.23)

Our aim is to find values for the Goldstino parameters that satisfy the soft term
ratio, Eq. (3.27), thereby providing an existence proof. In order to find parameters
that satisfy all of our constraints, in particular m; = 0, to a given precision, we note

that unless
0< k<3 (4.24)

we see from Eq. (4.21) that it is impossible to obtain mi = 0. This in turn places
constraints on the allowed values of Yo+ Yy and T+ T3 since they appear in Eq. (4.12).
While we do not specify any particular GUT into which our model could be embedded
we would like to see if unification is, in principle, possible. To do so we consider Eq. (2.7)

when there is only one non-zero twisted modulus, Ya

4
= Re(fsy.0) + c3Re(Ya) ~ 24 (4.25)

2
95,,8
2

where we have imposed that 9127;,@ = acyr where this is the standard MSSM value. As

discussed in [21] the coefficients, c§7 can be of the same order as the beta functions for
some orientifolds. However, not wanting to specify a particular compactification, we
simply set c% = 1 V4. In addition we assume that all the phases are set to zero, since
we are attempting an existence proof, it is enough to prove it for one choice of phase.

The parameters were generated numerically, using the following method. A value is

chosen for §cg, then a random set of Goldstino parameters and moduli are generated

90



within the range of values known to satisfy mé = 0 and Eq. (4.25), to a precision
specified at the outset. It is then easy to calculate the soft parameters in units where
mgz/o = 1. These parameters are then compared with Eqg. (3.27) and we also ensure
that mé > 0. If all this goes through then these parameters are accepted.

A sample of points that meet all of our requirements are presented in table 4.2.

5@5 9 gb @1 @2 @3 mé mQQ A,\ AQ RC(TQ) RE(Y'Q)

—2 15.69 9533|0807 0173 | 0.565 | 0.312 | 0.113 | 1.34 | 1.40 27.9 -3.92

—2 | 554 1]525|0.810|0.497 | 0.311 | 0.248 | 0.215 | 1.11 | 1.23 27.8 —-3.84

—4 | 6.14 [ 5.20 | 0.463 | 0.176 | 0.869 | 0.100 | 0.507 | 0.887 | 1.19 32.2 —8.22

-4 | 5.57 | 5.26|0.777 | 0.407 | 0.479 | 0.219 | 0.237 | 1.01 | 1.13 32.2 —8.23

—6 | 5.54|4.74 | 0.705 | 0.529 | 0.472 | 0.13 | 0.195 | 0.901 | 1.00 36.9 —-12.9

—6 5393880937 0.163 | 0.31 | 0.0679 | 0.532 | 0.551 | 0.867 | 36.8 —12.8

—8 | 6.68 | 5.19 | 0.693 | 0.156 | 0.704 | 0.279 | 0.0313 | 1.07 | 1.09 41.6 —17.6

—8 | 7.18 | 4.57 | 0.696 | 0.707 | 0.127 | 0.0724 | 0.448 | 0.735| 0.992 | 41.7 -17.7

—10| 6.4 | 4.94 | 0.379 | 0.451 | 0.808 | 0.0625 | 0.596 | 0.652 | 1.02 46.7 —22.7

—10 | 5.43 | 4.34 | 0.916 | 0.316 | 0.248 | 0.117 | 0.0505 | 0.938 | 0.963 | 46.6 —22.6

Table 4.2: Goldstino parameters and soft terms satisfying all constraints

Note that the values of the twisted modulus presented in table 4.2 have a negligible
effect on the gs, coupling since its vev is order 1 and Re(7})~ 10%0. Also the values of
m:‘; have not been displayed since they can be rendered arbitrarily small with sufficient
numerical precision.

The data in table 4.2 shows that we have managed to achieve our goal of obtaining
soft masses that agree with Eq. (3.27) and also allow an arbitrarily small mg. It is clear,

from a brief analysis of the allowed sets of parameters in table 4.2, that the sum rule is
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no longer independent of the Goldstino angles. Obtaining a small m and satisfying all
constraints now requires careful choice of the Goldstino angles. The Goldstino angle
dependence of the sum rule is just a result of the more complex Kahler potential and,
while it was pleasing to be able to put forward reasonably model independent rules,
they rested upon the assumption of dilaton/moduli domination. It is unsurprising that
more complicated models do not share these rules. Acquiring a small m% requires some
justification: why should we expect the angles to fall into such a pattern? Ultimately
the answer must lie with thé method of SUSY breaking. We do not attempt a detailed
answer in this thesis, but instead motivate it with an explicit example [62] that yields
similar results to those required here. In [62] the stabilisation of the dilaton is addressed
in a Type I string framework, including the effects of twisted moduli, but assuming
an isotropic compactification. The soft masses are calculated and shown to have a

similar hierarchy to the model presented here, resulting in the following soft masses

2, = V) 2. o lm2 ' i
mcfi = Wz and Miss; A~ gM . However they still observe the sum-rule and the soft
mass squared of vag) gives

Mp

n=1 (4.26)

which clearly does not allow slow roll. For these reasons it is clear that the example of
[62] cannot provide our model’s SUSY breaking mechanism. Nonetheless the fact that it
incorporates twisted moduli and generates a clear hierarchy in its soft spectrum makes

this class of SUSY breaking mechanisms attractive candidates for explicit realisations

of our model.

4.2.3 String Construction Summary

The chapter has made use of the framework discussed in chapter 2 and demonstrated

that it is possible to make use of it to construct the model of inflation presented in
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chapter 3. The assumptions of small Yukawa couplings, identification of said couplings
and the particular soft spectra put forward in Eq. (3.4) have all been justified within the
construction. This was all achieved without requiring an exceptionally low string scale
or especially large extra-dimensions. For the inflation model considered we utilised
Yukawa couplings of order 107'% with a string scale of order 10'3 GeV, the largest
extra dimensions having a compactification scale of order 10® GeV. Therefore we have
achieved the very large hierarchy between the Yukawa couplings without needing the
exceptionally small string scales put forward by [82].

In the analysis we showed the importance of the contribution of the twisted moduli
to the soft spectrum. This required the extension of the previous analysis away from
the Ay = 1 limit which is all that had been previously considered. Through this it was
shown that moving beyond the assumption that SUSY breaking is provided solely by
the S/T; fields removed the Goldstino angle independence of the sum rules and allowed
the inflationary requirements of Eq. (3.27) to be met.

It is also clear that this model does not exhaust the possibilities of this framework.
In chapter 5 we further extend the construction, making use of the small Yukawa

couplings to include a model of Dirac neutrinos.
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Chapter 5

Dirac Neutrinos and Hybrid

Inflation from String Theory

We now turn to another application of the D-brane framework: Dirac masses for neutri-
nos. The anisotropies in the radii give rise to small Yukawa couplings that are utilised
for the neutrino masses. Not only is the generation of Dirac masses formulated in the
same framework as the inflationary particle physics model of chapter 3, but they can
both be realised at the same time, as different aspects of the same model.

We write down a minimal neutrino model that reproduces bi-large mixing. This
model is not minimal in the sense that it has the smallest particle content, but in the

sense that it is the easiest to construct, while remaining phenomenologically viable.

5.1 Particle Physics Model

As discussed in section 1.5 the main objection to Dirac neutrinos is the relative smallness
of their Yukawa couplings, when compared with other leptons in the Standard Model.

In the introduction the desired Yukawa couplings were shown to be 10712 — 10713 and
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we will discuss how these couplings might arise in a string theory context. Our starting
point will be to utilise the small coupling, gs,, and we will construct non-renormalisable
contributions to the neutrino mass matrix. We will demonstrate how this is consistent
with the Type I string framework laid out in chapter 2.

In addition to providing a model of neutrino masses we will also demonstrate that

it is possible to link this model with the inflationary scenario presented in chapter 3.

5.1.1 The Model

In this chapter we again take the approach that the phenomenology comes first then
we demonstrate that it can be constructed within the string framework. To be more
precise we lay out the mass matrix we wish to construct, find operators suitable for
generating said matrix and then see how this might be accommodated within the string

superpotential. The Dirac mass matrices we wish to find are:

0 a 0 00 0
min~| 0 b e | (H), mig~|0 4 o | (Ha (5.1)
0 ¢ f 0 0 O

where for the moment we take the elements of the matrices to be numbers, determined
by phenomenology, but they will be shown to arise from the vevs of fields within non-
renormalisable operators.

To analyse the matrices in Eq. (5.1) we first make the assumption that the couplings

are sequentially dominant!
euf > a,b,c (52)

where much larger means, in this case, that they are greater by a factor of approximately

5. Clearly, since mfR is diagonal, the lepton mixing matrix Uy ns = RazUizRi2 (see

1 - . . . .
For a review of sequential dominance in neutrinos and charged leptons see [83].
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appendix A for details) will entirely be given by the diagonalisation matrix for the
neutrino sector, i.e. Uyng = UJL with diag(m, mg, m3) = Uy, mip UJH. Thus we

find for the MNS mixings:

| o
~—

o

w
N

tan(923) ~ f’
a
tan(f) ~ — 2 (5.4)

Cng — 893¢C

613 ~ O, (55)

with m3 and mq given by

m3 = \el+ fly, = ivu, (5.6)

823

my R~ a2+ (casb—sasc)ive = — oy, (5.7)

where the measured values for the masses and mixings are, assuming the lowest mass

is zero [31]

a3 ~ 45°, 12 =~ 34° and H13 ~ 0 (5.9)

ms =~ 0.05 eV, mqy =~ 0.01 eV and m,; =~ 0. (5.10)

It is clear from these expressions that we expect that e and a can be, at most, of the
order of 10713, given the hierarchical neutrinos with ms ~ 0.05 eV and my =~ 0.01 eV.
It is clear that the Yukawa coupling of thé inflation sector, A = 1071, is too large
and cannot be identified with any of these couplings. The choice of A = 1071° was
motivated by the desire to connect the Peccei-Quinn and electroweak scales and so it
is worth considering how tight these bounds are.

From Egs. (3.13) and (3.23) we see that

A 5.11
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and from [14]
1010 GeV < f, < 101 GeV (5.12)

where the upper bound is pushing at the bounds considered in [14], but [69] argue
that much higher f, is possible. In principle we would need to push f, to 10*¢ GeV
to allow A ~ 107!'3; however, the full structure of Eq. (5.1) cannot be obtained by the
string selection rules alone, suggesting that we can utilise the mechanism of structure
formation to increase the suppression. Instead of using f, = 10'® GeV we choose to be
moderately conservative, making use of the upper bound on f, in Eq. (5.12) requiring
that we set A ~ 10710, Therefore the axion physics motivates that A lie in the range
1077 > A > 1071 (with the aforementioned uncertainty in the lower bound), but it is
the neutrino physics that motivates the choice of the smallest possible coupling.

The mechanism we introduce to generate Eq. (5.1) is a minimal FN (see appéndix B)
construction, minimal in the sense that we only go up to dimension four superpotential
terms. Since A ~ 10719 and all of the elements in Eq. (5.1) are < 10~!3, dimension three
operators cannot contribute directly to Eq. (5.1). As such we restrict our attention to
dimension four operators. The price we pay for keeping the dimensions of the operators
low is that large (O(1073)) ratios between the flavon vevs and the messenger flelds are
required. To generate the structure observed in Egs. (5.3-5.5) we must require that, in
general, the flavon vevs are not equal and hence we require multiple flavons. In this
sense our model is not minimal. We do not believe that higher dimensional models
with fewer flavons are necessarily inconsistent with the string framework, but they are
more troublesome to construct.

Before we embark on the FN construction we will consider obtaining Eq. (5.1) via
the string selection rules with only one flavon. The motivation for this study would

be to provide a geometric origin for the structure of Eq. (5.1) in addition to setting
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the scale. The exact values of the order one Yukawas, stemming from the small extra
dimensions, could give rise to Eq. (5.1). However, it is difficult to obtain the measured
masses and mixings presented in Egs. (5.9) and (5.10) just from geometric arguments
for the following reasons. Firstly there are only three independent order one Yukawa
couplings, ¢s,, gs; and gg and, as stated, Eq. (5.1) has five parameters. However it is
possible to obtain realistic masses and mixings with the following assumptions: e = f
and a = ¢. The main dificulty lies in differentiating the three generations: the right-
handed neutrinos and left handed leptons must be assigned differently, between the
generations. This leads to differing messenger assignments and, since we choose not to
impose any additional symmetries, the flavon will necessarily be a gauge singlet. Care
must be taken to ensure that it does not couple with the inflaton and invalidate the
inflation model. For the above reasons we instead choose the following approach: we
impose additional flavour symmetries to differentiate the generations and use the same

assignments in all three generations.

5.1.2 Froggatt-Nielsen Construction

To build up the FN sector we need to write down the renormalisable operators that
make up the dimension four operators. Let us consider the elements of Eq. (5.1) which
will share a common structure in the FN construction. In full, the operators we wish

to assemble are

,\<5Z€> LiH v (5.13)

where (1) is the messenger vev? and F;; represents all the possible flavons. Ais a small

Yukawa coupling that will be identified with gs,. To reproduce the required order of

?The mass being given by the coupling and this vev
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magnitude imposed by Eq. (5.6) we need

%J}) ~ 1072 = 1075, (5.14)

and to restrict the allowed operators and hence introduce the zero entries in the mass
matrix, Eq. (5.1), we will impose additional flavour symmetries. This will be discussed

in section 5.1.4.

Eq. (5.13) is built up out of the following three operators:
AHUV%jXFi]’ XFI]X‘F«LJTQZJ a‘nd YFIJL’LFL] (5']‘5)

where XF, and xr,; are messenger fields. Schematically the generation of Eq. (5.13)

can be represented as

VRj £y Vi Fyj
Figure 5.1: Froggatt Nielsen supergraphs generating the neutrino mass matrix.

We now consider how this can be embedded in the string framework presented in

chapter 2 using the methodology discussed in section 4.1.1.

5.1.3 String Construction

The starting point of the string construction is the inflation model, as presented in
table 4.1. In order to simultaneously accommodate both models the assignments of the
inflation model are taken as fixed and then consistent neutrino assignments are made.

The only fields that appear in both sectors are the H,, and Hy fields, which are assigned
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to C*152. For /\Huuf?jxpij we look in Eq. (2.5) for any terms that contain both C5152

and gs,. The only term that contains both is
g5, C51 CP1o2 05152 (5.16)

We now see that there are now two reasons to assign szj to Cgl. Firstly Cgl always
appears with the small coupling, gs,, and hence it is impossible to write down right-
handed neutrinos that do not couple with the small coupling®. Secondly if we instead
tried to assign xF,; to Cgl it would be impossible to write down an unsuppressed mass
term for the messenger fields. Since we want the messenger masses to be integrated out
before we reach the electroweak scale we require that their masses be as high as possible.
Before we quantify “as high as possible” we must complete the FN construction.
With y%j assigned to Cgl Eq. (5.16) requires that xr,, be assigned to C®152 In
turn this leads us to consider all possible terms that can contain C°1%2, but with a large

coupling:
9905152 05253 05351 . s, C§2 05152 051 32 and 95, 05152 0951 0952 ) (517)

It can be shown that each of these choices are equally good candidates for XFinFiﬂ/’ in
the sense that they all satisfy gauge invariance and give rise to the same field theory
operators. Essentially the analysis in all three cases is identical, so we focus on the
term with coupling gs,. In our choice of assignment‘ for XF,, it is again possible to show
that both choices are equally good and again we focus on one case, with X, assigned
to C®152, This leads us to the final term, XryLiFij. Once again we are presented with
choices: it is possible to assign X, Lif3; any of the (many) terms in Eq. (2.9) with
order one couplings. We select perhaps the simplest of possibilities in which the term is

found within gs, 0520515205152 and let L; be assigned to C'352 and hence F;; is assigned

3As can be seen on close inspection of Eq. (2.9): 0351 always appears with the coupling gs,
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to C°1%2, Tt is now possible to re-draw fig. 5.1 including the string couplings.

Hu Li Hu Li

c c
VRj 27 VRj Iy

Figure 5.2: Froggatt Nielsen supergraphs leading to neutrino Yukawa couplings which are

suppressed compared with the already small tree-level value g5, = 10712,

As in 4.1 we note that our approach does not allow us to fully specify the manner
in which these particular representations are arrived at, but we can confidently state
the following: if we found that MSSM-like fields were forced to have both ends on the
D5; brane stack it would be impossible to give them order one gauge transformations.
Hence it would be inconsistent to assign them this way. However we can see that
gauge invariance should always be satisfied, since all the string states that have MSSM
charges (xr,;, Xp,, and the normal MSSM states) have at least one end attached to
the D5y brane. In section 4.1, in the paragraph following Eq. (4.3), it was decided
that the D5 brane would contain all the MSSM gauge groﬁps. Since the fields we are
considering are, at most, representations of one non-abelian gauge group, SU(2)r, this
can be satisfied by states with one string end on the “MSSM” brane, D5,.

The set of assignments and corresponding string terms are best summarised by

table 5.1.

5
gs, 031 C5152 | (05152 95, ng 5152 | (5152 gs, ng (5152 | (09152

Al vg | Hu | Xy 1V 9¥ | xm; | Xg, 1| Li | Xm; | By

Table 5.1: Neutrino FN String assignments
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Now all the elements making up Eq. (5.13) have been assembled we can address the
question of exactly how large is “as high as possible”. If the framework were purely
four dimensional effective field theory then the messenger mass could be sent as high
as the cut-off and no problems would arise. However the underlying theory is D = 10
string theory and the size of the extra dimensions proves relevant here. For simplicity,
we just consider the effect of a flat torus and its corresponding KK and winding modes.
If we allowed the messenger mass to be comparable to the KK or winding modes of
its string state then it would be necessary to consider the effects of exchanging higher
KK /winding states in an FN diagram. It is easy to see that?, if the a level i« KK state
is exchanged, it will give the same contribution to the superpotential as the zero mode

with the following coeflicient

#. (5.18)
MX + ZMKK
This becomes troublesome when M, > M i as the higher M ¢ modes become increas-

ingly relevant as M, grows. An approximate value for the sum of all the KK/winding

contributions can be obtained by integrating Eq. (5.18) over ¢ from 1 to n. We obtain

M, My Mgy k '
) —In[1 5.19
Mk k <1n<1+n Mx) n( * ]V[x )) ( )

which diverges as n — co. Clearly, as we are working in an effective field theory,
the existence of a cut-off prevents n from going towards infinity. Nonetheless a fi-
nite contribution remains, which we may estimate using Eq. (5.19) with the lowest
KK /winding modes being approximately 10% GeV as discussed after Eq. (2.31). From
Eq. (5.19) it can be seen that the coeflicient varies linearly with the ratio of M, and

M, with a slowly varying logarithmic correction. If we require that the theory be

“This is because the FN diagram exchanging KK/winding modes is identical to the zero mode

diagram, but with a higher mass propagator.
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cut off at M, ~ 10'® GeV and then impose M, = 10° GeV we find that n ~ 10° and
the correction is O(10), whereas if M, = 107 GeV the correction is O(1).

Since the we are interested in the overall contribution to the mass matrix, Eq. (5.1),
we see that increasing the messenger mass above the compactification scale introduces
very little additional suppression. Put another way, the maximum suppression achiev-
able is determined by the compactification scale. As such we set the messenger mass,
gs, (@), to be 107 GeV requiring the product of the flavon vevs with gs, to be ~ 104 —10°
GeV. This leaves Eq. (5.14) intact.

Majorana masses for the right-handed neutrinos are not allowed at renormalisable
level due to the string selection rules. 0351 terms never appear quadratically in the
string superpotential, Eq. (2.9). Higher-dimensional operators for Majorana masses
are suppressed by (gs,)? ~ (10719)" with n > 2. As a result the see-saw mechanism
cannot appear in our model, but small Majorana masses could be included. This is not
allowed in the model as it stands since the FN sector does not generate such masses.
As such we have several possibilities. If we wish to forbid these masses then we can
either impose an additional symmetry, for example U(1)g_1, or we simply leave the
model as it stands and postulate that the necessary messenger fields simply are not
present in the spectrum. On the other hand, to include these masses we can extend the
FN sector to generate them. So doing the model would include pseudo-Dirac neutrinos
with a correspondingly rich phenomenology [84, 32]. Unfortunately, due to the freedom
inherent in the FN approach, it is difficult to make hard predictions for the Majorana
masses, beyond the upper limit of the Yukawa coupling, 107%°. However if we restrict

all flavon vevs to be of the same orders as found thus far and impose the same restriction
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on the messenger masses we expect dimension 4 operators of the following form.

/\foyc vy c,,c — -1 C
TRR ~ vk (10710 — 10712) eV = my b, (5.20)

Given a Dirac mass of mg = 0.01 €V this results in a pseudo-Dirac splitting of
dm3 =~ 2ma(may) = 2 x (10712 = 10714) (5.21)

which is intriguing when considering the current bound of §m3 < 10712 eV? [32]. Since
our expected splitting is somewhere between just above and just below the current
bounds the results of the next generation of neutrino telescopes, eg. IceCube [85],
could be important to our model. The splitting of m3 is expected to be larger by a
factor of m;/my ~ 5, but the bounds are much weaker, dm? < 1074, so this is of less
interest. Since we can also explain why there might be no splitting, Eq. (5.21) is by no
means a prediction of our model, but would be an interesting confirmation.

The analysis for the charged lepton FN contribution mass matrix is largely the same
as for the neutrinos, with the obvious exception that only order 1 Yukawa couplings

can be utilised. As such we omit the derivation and present the results here in table 5.2

and in fig. 5.3.
g5, C;Q 05152 05152 s, C§J2 05152 05152 g5, Cglz 05152 05152
) 1 }L2 Hy | xa 1 } (4 } XA J X4 11 A | pgp | Xa

Table 5.2: FN String assignments for the muon

In one respect the charged leptons’ mass matrix differs from the neutrinos: one
element is renormalisable. Since we do not require any FN suppression to get a realistic
tau mass and so that the flavon vevs can all be order 10* — 10° GeV we generate this
mass from a renormalisable operator. The operator and its assignments are given in
table 5.3.
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g5, <% I - g5, — 59
XA 95, Xa
Lo A Ly A

Figure 5.3: Froggatt-Nielsen supergraphs leading to the muon mass. Higher-dimensional FN

diagrams can generate NNLO Yukawa couplings, e.g. for realising the electron mass.

g5, 0352 05152 05152

1 L3 Hy t%

Table 5.3: Tau Lepton String assignments

To restrict the set of allowed operators we must impose additional flavour symme-
tries under which the flavons and matter fields both have charges. This will be the

subject of the next section.

5.1.4 Flavour Symmetries

The approach of this section is to impose additional symmetries to disallow certain
couplings between matter and flavons. This is necessary because the string assignments
chosen in section 5.1.3 allow all intergenerational Yukawa couplings. In fact we would

expect the mass matrix to be proportional to

111
111 (5.22)
111

since all the flavons would couple equally since they would have the same quantum

numbers.
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Manifestly this is not the case in nature, so we impose a flavour symmetry, U(1)g X
Z3, under which the different generations of neutrinos and charged leptons are distin-
guished. We note that a U(1)g symmetry is to be expected (if not explicitly required)
in a supersymmetric theory and that discrete symmetries are common in orbifolds [86].
The U(1)g symmetry will be broken to its Zs subgroup, R-Parity as described in [22].
The full set of assignments and charges are given in tables 5.4 and 5.5.

For completeness we include the full renormalisable superpotential consistent with

these assignments and symimetries

Wiren. = 95, L3aHaTh + g5, LaHgxa + g5, XAYXA + 95, XANRA
+ 95, XaHuVho + 95, Xa¥Xa + 95, L1Xa@ + g5, LaXab + g5, L3XaC
+ g5, XeHqu%g + ngXe¢)2e + gs, LQXee + g5, LBXef

+ g5, ¢Hqu + 951 Q)NQ + 954 Q3Hut?2 + g5, Q3Hdb§2 (523)

As discussed in [87] the soft terms can be seen to explicitly break U(1)g. This can

be seen by considering the gaugino mass terms,
MAA, (5.24)

which have R—charges‘of 2. If we parametrise the U(1)g rotation by e“w?  where Q
is the R-charge and w a real parameter, then w = nm, where n is an integer, leaves
Eq. (5.24) invariant. Since the smallest charge possessed by any field in the model is
1/2 then, under an w = nr rotation such a field will pick up a phase of €7 = i, hence
the remaining symmetry is Z4. This is in turn broken when N or A obtains a vev. If we
require that A be stabilised at its minimum before inflation then the potential domain
wall problem is avoided since they will be inflated away. It does not seem unreasonable

that this should take place since the inflation and flavon sectors are decoupled.
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SUB)e | SU2), | U(l)y | U(l)g | Z3 | String State
Qs 3 2 16 | -1/2 | 1 c3?
8, 3 1 -2/3 | -1/2 | 1 CB15
b%, 3 1 /3 | -1/2 |1 C5152
H, 1 2 1/2 1 1 C5152
Hy 1 2 -1/2 1 1 152
Vi 1 1 0 3/2 10 cH
Ve, 1 1 0 7/2 |1 c
L 1 2 1/2 | -1/2 | 2 c3?
Ly 1 2 172 | -3/2 1 C3?
Ly 1 2 -1/2 | -5/2 |1 ce
1% 1 1 1 3/2 |1 C5152
& 1 1 1 7/2 |1 C152
¢ 1 1 0 0 |1 cy
N 1 1 0 1 1 C152
A 1 1 0 1 0 ci?
a 1 1 0 3 0 CO15:
b 1 1 0 4 1 5152
c 1 1 0 5 1 Ch1%
e 1 1 0 6 0 Co13
f 1 1 0 7 0 C3152
Y 1 1 0 0 0 C5?

Table 5.4: Matter fields and flavons
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SU@B)c | SU2), | U(l)y | U(1)r | Z3 | String State
XA 1 1 1 5/2 | 1 Co152
XA 1 1 -1 -1/2 | 2 5152
Xe 1 2 -1/2 9/2 | 1 C5152
Xe 1 2 1/2 | -5/2 | 2 C5152
Xa 1 2 -1/2 5/2 | 2 o152
Xa 1 2 1/2 | -1/2 | 1 o152

Table 5.5: Messenger fields

Finally we wish to address the following technical point, that has been touched on
earlier in the thesis. In string theory we expect that all matter fields should transform,
at some stage, under a gauge symmetry, yet we have numerous examples of gauge
singlets within our model. For these two statements to agree it must be possible to
assign charges to all the matter fields that are currently singlets.

To demonstrate this, let us consider two additional U(1) symmetries, U(1)s, on
D5; and U(1)s, on D5g, and assign charges to the SM-singlet fields ¢, vg;, N and 9.
First, giving H, and Hy U(1)5, charges of 1, we see that ¢ has charge —2 and thus N
has charge 1. From the FN diagram in Fig. 5.1 we can determine the charges of the
messenger fields if we assign a U(1)s,-charge g to the right-handed neutrinos vg; and
finally the flavons Fj;, which are intersection states C%152 end up with charge —(¢+1).
Note that only fields which are assigned to string states C3* and C5152 can be charged
under U(1)s, and only fields C5? and C%%2 can be charged under U(1)s,. Similarly for
the C3? state v, from the FN diagram in Fig. 5.1 we see how giving it a U(1)s, charge
p determines e.g. the charge of yr,, to be —p and the charge of the flavons F;; to be

p. It is easy to see that this charge assignment can be extended consistently to all the
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fields of the model.

This completes the supersymmetric side of the string construction. For the soft
spectra we see that it has already been calculated to the same extent as in the inflation
sector. Because of our particular choice of assignments only three string states are
made use of: C’g’z, C5152 and 0351. In section 4.2.1 analytic expressions for mé?’

mgcslsz and mégl were given by Eqgs. (4.13-4.15) respectively and table 4.2 summarises
some example points satisfying all of the constraints on the inflation model. Imposing

more constraints on the model, coming from a more rigorous phenomenological study

of the combined inflation and neutrino model, is likely to modify table 4.2.

Dirac Neutrino Conclusions

It is clear from this long string of assignments that there are many ways in which the
neutrino sector could be realised within the string superpotential. This is in contrast
to the case of the inflation model, discussed in chapter 4, in which there are very few
choices to be made. Nonetheless we believe it is sufficient to show that there exists
at least one realisation, the hope being that a full non-perturbative string calculation
would select the correct model if such a model exists. Be that as it may our goal was
to simultaneously construct both models within the same framework and it has been
demonstrated that this is possible with the set of assignments given in tables 5.4 and
5.5.

From a phenomenological viewpoint it is interesting that, using a small Yukawa
coupling, we are able to relate physics at very different scales: namely the neutrino
mass, electroweak and Peccei-Quinn scales. Of course this required us to introduce
the flavon vevs and messenger masses into the theory, more scales that need justifying.

Though we did not attempt to construct the flavon and messenger sectors in full, not to '
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the extent that we achieved for the inflaton sector, we can conceive of possible origins
for those scales. For the messeﬁger masses we noted that the compactification scale
sets a upper limit on the amount of suppression it is possible to obtain, regardless of
the messenger mass. With this in mind we could instead use the lowest KK excitation
as a messenger mass, if the orbifold symmetry forbids the zero mode. As noted in
the text following Eq. (5.19) the sum will give an order of magnitude increase with
respect to the lowest mode’s contribution. However, since the lowest mode is an order
of magnitude larger than the messenger mass given in the model the vevs of the flavons
remain at the same order of magnitude. Since the flavon vevs are within two orders of
magnitude of the soft scale it is not unreasonable that the soft terms govern the size
of the vevs. This could be analogous to, but not as extreme as, the soft terms setting
the scale for the ¢ and IV vevs.

In this model we restricted the set of allowed operators by the inclusion of a U(1)g X
Z3 symmetry leading to the neutrino mass matrix, Eq. (5.1). It would be interesting
to utilise the string framework to include the quark sector. While it is clear that an
analogous construction could be made, with one flavon per entry in the Yukawa matrix,
it would be more satisfying to use fewer flavons and higher orders. It may be possible
to relate the Cabibbo angle, ¢, to the neutrino mass hierarchy, ma/ms, in terms of an
expansion parameter A = f¢. However, this would require a substantial re-working of
the neutrino sector as well as careful construction of the quark sector.

Finally we note that the Dirac nature of the neutrinos is difficult to determine since
it would chiefly be confirmed by the non-observation of neutrinoless double § decay.
Clearly, since one can only set limits by this approach it is not possible to use it to prove
that neutrinos are Dirac. However it may be possible to obtain pseudo-Dirac neutrinos

within the string framework and hence produce measurable effects. We expect a split-
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ting given by 2 x 10712 eV? > §m?2 > 2 x 10714 eV? from Eq. (5.21), but unfortunately
cannot turn this expectation into a hard prediction. Nonetheless detection of this level
of splitting in forthcoming neutrino telescopes would be an exciting confirmation of our

model.
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Chapter 6

Conclusions

To sum up we have presented a Type I string construction for a model of Dirac neu-
trinos and hybrid inflation. This model is consistent with experimental observations of
neutrino masses and the MNS matrix and provides a viable candidate for early universe
inflation. Our string construction was performed in a very general framework and it
was interesting to see that even this placed strong restrictions on the models we could
build. Requiring all interactions to be renormalisable proved too strong a constraint
for realistic flavour physics: this results from the small number of free parameters and
the form of the Type I superpotential. While we do not provide a no-go theorem to
this effect it is a very strong conjecture that flavour physics cannot result from the
renormalisable superpotential. This is further strengthened if we wish to include the
quark sector. However going beyond renormalisable level considerably relaxes these
constraints and it should be possible to accommodate realistic quark models within
this framework.

It was also interesting to discover that phenomenologically viable soft terms can
necessitate moving beyond the assumption of dilaton and untwisted moduli dominance.

While the soft spectrum is appealingly simple, in terms of the sum-rule relationships,
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it proved too restrictive for the inflation model. In this thesis we put forward the
twisted moduli sector as an additional source of SUSY breaking and thereby violating
the sum-rules to obtain acceptable soft parameters. It is pleasing to note that it was
possible to achieve the desired SUSY breaking simply by including the effect of fields

already present in the theory whose effects had been turned off in the original analysis.
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Appendix A

Lepton mixing conventions

For the mass matrix of the charged leptons mfR = Yevy defined by L, = —mLREjJ—:eRf +
h.c. and for the Dirac neutrino mass matrix m{g = Y, v, defined by £, = —mERD}:V;f

4+ h.c., where v, = <H3> and vy = <H3>, the change from flavour basis to mass

eigenbasis can be performed with the unitary diagonalisation matrices U, ,U., and

Uy Uy by
me 0 0 mg 0 O
Ue mLR UT = 0 my 0 [ Uy, mig UJR = 0 me 0 |- (A1)
0 0 m, 0 0 mg3

This rotation manifests itself in the interactions with the W bosons. The W

couples to the lepton current

1
+
J{/LV = —\/i (V£1 /‘u6£1> (A2)

which is not invariant under the diagonalising rotations. In the mass basis Jé‘f becomes

TR = — “Ufj”-mseLj) (A.3)

1
= ’\/—-2— (VLI'Y

with the mixing matrix in the lepton sector, the MNS matrix, given by
UI\JNS U UT ) (A4)
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We use the parameterisation Uy ng = RogUis Rio with Ras, Uy, Rio defined as

c12  S12 O ci3 0 313 1 0 0
Ris = —s13 c1g O , Uiz = 0 1 0 , oz = 0 co3  So3 !
0 0 1 —51*3 0 cas 0 —so3 cC23

and where s;; and ¢;; stand for sin(6;;) and cos(f;;), respectively. ¢ is the Dirac CP

phase relevant for neutrino oscillations and we have defined 313 := s13¢™%.
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Appendix B

Froggatt-Nielsen Mechanism

The Froggatt-Nielsen mechanism [88] utilises higher dimensional effective operators to
generate realistic Yukawa couplings. The original approach allowed the left and right-
handed quarks to obtain charges under a new symmetry U(1)p, which required extra,
“flavon” fields, F;j, to be used to make up an effective operator, invariant under the
entire symmetry group of the model. Since these operators are non-renormalisable
they must be suppressed by a large mass scale, M,, in the effective field theory. It was
assumed that U(1)» was broken around M, both giving rise to a vev for the flavons and
providing a mass M, to “messenger” fields, x;j, that, when integrated out, generated
the effective operators.

In the original work only one flavon and one messenger were utilised and so effective

operators were of the following form

. F o\ (aith;)
T‘QinRj <ﬁ> +h.c. (Bl)
X

where F is assumed to have charge —1, Q; charge —a; and dg; charge b;. H is assumed

to have zero charge, but this is a choice, not a requirement. If F' obtains a vev such
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that (F') /M, =€ < 1 then Eq. (B.1) becomes
— "% Q) Hdgj + h.c. (B.2)

and, for appropriate choices of € and charges for the quark, this can be made to generate
the SM quark Yukawas in Eq. (1.10). This can be generalised in a straightforward
manner to include the neutrinos and charged leptons.

In our work we differ from the original paper in several important ways: our model is
supersymmetric, we allow more than one flavon and we restrict ourselves to dimension

four superpotential terms.

B.1 Supergraph Formalism

Starting with the following superpotential, which is an abstracted version of those found

in chapter 5
W = A:Cxij + (¥) XijXij + Xy By Fij (B.3)

one can see intuitively that this represents the generation of effective operators by

writing diagrams in which a heavy superfield is exchanged, see fig. B.1.

Ai Bj Ai Bj
(¥)

< T —_

Xij Xij

C Fij C Fij
Figure B.1: Generic Froggatt-Nielsen supergraphs diagram

This is analogous to the exchange of heavy W-bosons generating effective, four-

fermion operators suppressed by va- However in a supersymmetric theory the effec-
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tive operators generated must be supersymmetric and hence it is possible to represent
them as superfields. To find the coupling of the effective superpotential term it suf-
fices to find the component field Lagrangian, and calculate the coupling constant for
an effective operator, say a two fermion, two boson interaction. This operator will
be calculable from an effective non-renormalisable superpotential term with the same
form, but all fields upgraded to superfields and the same coupling constant. Hence, by
supersymmetry, we expect ’aﬂ other terms corresponding to the superpotential to be
present, which can be checked at the level of components. Alternatively this may be
done at the level of supergraphs and manifest SUSY is maintained at all times. We
note that corrections to the Kéahler potential appear suppressed by one more power of
the large mass scale [89] and we neglect them in this analysis.

Finally we note that one must be cautious when applying this proceedure since
one can give large masses to, supposed, low energy fields. When all flavons and ¢ are
replaced by their vevs it must be demonstrated that it is possible to find a zero mass
state that can be identified with the low energy field. In our notation this will be a

mixture of C and x;; which, after symmetry breaking have the same quantum numbers.
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